

Xamarin
with

Visual Studio

Launch Your Mobile Development Career by
Creating

Android and iOS Applications Using.NET and
C#

Alessandro Del Sole

www.bpbonline.com

http://www.bpbonline.com

Copyright © 2022 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, BPB Online cannot guarantee the
accuracy of this information.

Group Product Manager: Marianne Conor
Publishing Product Manager: Eva Brawn
Senior Editor: Connell
Content Development Editor: Melissa Monroe
Technical Editor: Anne Stokes
Copy Editor: Joe Austin
Language Support Editor: Justin Baldwin
Project Coordinator: Tyler Horan
Proofreader: Khloe Styles
Indexer: V. Krishnamurthy
Production Designer: Malcolm D'Souza
Marketing Coordinator: Kristen Kramer

First published: July 2022

Published by BPB Online
WeWork, 119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55511-874

www.bpbonline.com

http://www.bpbonline.com

Dedicated to
My wonderful wife Angelica, I’ll love you until the end

About the Author
Alessandro Del Sole is a senior software engineer working on building
mobile apps with Xamarin in the healthcare industry. He has been using
Xamarin since 2015 and is a Xamarin Certified Mobile Developer.
Alessandro has also been Microsoft Most Valuable Professional since 2008,
and has authored many technical books, eBooks, articles, instructional videos
and has been speaker in the most important Italian conferences. He has also
been recently appointed as C# Corner MVP.

About the Reviewer
Ninaada is a Xamarin certified mobile developer with 10+ years of industry
experience. He has extensively worked on Xamarin based projects for more
than 6 years, across various domains and industries including Fortune 500
companies. He also is active in the xamarin community by contributing to
GitHub and blogging occasionally. Currently, he is working as a Xamarin
developer with Steer73. He also has a keen interest in nature and wildlife
photography, which can be found on his social media pages. Find more at
https://linktr.ee/ninaada

https://linktr.ee/ninaada

Acknowledgement
I would first like to thank so much my wife, Angelica, who respects the time
I need to write and that never stops to be supportive to me, always
demonstrating to me so much love.
I would like to then thank the team at BPB Publications for being so
supportive. I have been authoring books for 15 years, but this was my first
time with them, and the whole team made it simpler for me to approach to a
different way of working.
Special thanks to the amazing Arielle (https://imarielle.com), whose music
has been my fuel during the many hours I spent writing.
Finally, I would like to thank all the readers of this book and all those who
have read other books or articles I wrote in the past years. Writing is a big
effort, so you need a motivation to do it and having had good feedback over
the years, is the right motivation for me to still write.

https://imarielle.com

Preface
This book covers mobile app development from the point of view of the
developer that wants to target both iOS and Android systems from one
codebase, using development tools from Microsoft.
The book is intended for both the experienced and the novice developers,
with a special, practical approach for those who want to start a new career as
software developers in the mobile apps industry.
Basic knowledge of the C# programming language is recommended, however
the book introduces general programming and language-specific concepts
that will be used across the book, so that also the novice developer can be
familiar with all the discussed topics.
The goal of the book is explaining how to build mobile apps from the ground
up, focusing on all the necessary aspects: the user interface, the logic, the
interaction with Web services, the consumption of data, the way an app
should be architected for mobile devices.
Special focus is also offered for those who want to start searching a new
occupation as software developers with a Microsoft technical background.
This book is divided into 15 chapters. The first four chapters introduce the
reader into the world of software development with C#, Microsoft Visual
Studio and .NET. Chapters from 5 to 13 are all technical chapters that cover
the development of mobile apps with Xamarin, in a cross-platform approach.
The last two chapters have specific focus on starting, building, and
maintaining a career as a successful mobile developer. Below you find the
details of each chapter.
Chapter 1 describes why it is important to be a mobile app developer today,
and why building apps in a cross-platform approach is the best choice
especially for jobseekers.
Chapter 2 describes how Microsoft jumped into the mobile app development
ecosystem. An introduction to Xamarin is made, plus a you find a discussion
about why choosing Xamarin as the development platform can be the key to
success today.

Chapter 3 gives an introduction on the .NET technology (including the latest
updates) and to Microsoft Visual Studio as a development environment
Chapter 4 is intended to give absolute beginners a quick overview of the C#
programming language to make them feel more comfortable with the
development tools used across the book.
Chapter 5 describes how to create a Xamarin solution with Microsoft Visual
Studio, explaining how the code sharing strategy works to deliver apps to
multiple OSes from the same codebase.
Chapter 6 explains the fundamentals of user interface in mobile apps, and
how to create adaptive and auto-sizing user interfaces using layouts.
Chapter 7 chapter describes how to create the user interface of an app with
the controls offered by Xamarin and how to manage user interaction with
controls.
Chapter 8 describes how to organize the user interface of an app in pages,
the different kinds of pages and how navigation between pages works.
Chapter 9 describes the concept of reusable resource and explains how to
connect data objects to the user interface for automatic communication. It
also explains how to use local SQLite databases to store, retrieve and display
data.
Chapter 10 discusses how to enrich the user interface of an app with
brushes, shapes, and with media contents.
Chapter 11 explains how to handle the different events of an app’s lifecycle
and how to manage common requirements of mobile apps, such as network
connection, battery level, local settings.
Chapter 12 describes how to consume Web services in Xamarin projects,
including Cloud services hosted on Azure.
Chapter 13 describes how to access native iOS and Android APIs from
Xamarin, pointing out how it is something to do only when the Xamarin and
Xamarin.Essentials codebases do not have something that works cross-
platform. It also describes how to implement customizations that are
platform-specific.
Chapter 14 helps you understand how to search for jobs that are related to
mobile app development with Xamarin by making focused, appropriate job
searches based on the reader’s experience after understanding the core

business of a company that is hiring.
Chapter 15 provides advice on what a good approach is in order to keep a
job in the mobile app development market including tips & tricks to work in
a team and to stay up to date with technology.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/ziayzy4
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Xamarin-with-Visual-Studio. In case
there's an update to the code, it will be updated on the existing GitHub
repository.
We have code bundles from our rich catalogue of books and videos available
at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the

https://rebrand.ly/ziayzy4
https://github.com/bpbpublications/Xamarin-with-Visual-Studio
https://github.com/bpbpublications
mailto:errata@bpbonline.com

eBook version at www.bpbonline.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us
at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

http://www.bpbonline.com
mailto:business@bpbonline.com
http://www.bpbonline.com

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book. Thank
you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. The Importance of Mobile App Development

Introduction
Structure
Objectives
The importance of mobile app development

Mobile devices and applications
A brief history of modern mobile devices
Mobile devices for everyone
Mobile devices everywhere

The importance of mobile apps for companies
Career opportunities with mobile app development

Making money with mobile app development
Summarizing how a mobile system works

The importance of a cross-platform approach
Limitations of cross-platform code
Application size and performance

Understanding native applications
Demystifying application performance issues

Staying up to date with new devices and platforms
Getting updates from Apple
Getting updates from Google
Getting news from Microsoft

Conclusion
Points to remember

2. Xamarin and Microsoft in the Mobile App Market
Introduction
Structure
Objectives
Xamarin as the app development framework

Mobile App Development with Microsoft Skills
Xamarin as a company

Introducing the mono project
The transition to Xamarin

Microsoft in the mobile app ecosystem
The importance of Microsoft investments on Xamarin
Improved productivity with Microsoft tools and services

Understanding Xamarin and Xamarin.Forms
Advantages of Xamarin.Forms

Hints about .NET MAUI
Installing and configuring the development tools

System requirements for Xamarin
System requirements on Windows
System requirements on macOS
Android and iOS Devices

Installing and configuring Microsoft Visual Studio
Selecting workloads
Checking for individual components

Configuring Android devices for developer mode
Minimum macOS configuration

Conclusion
Questions
Points to remember

3. Introducing .NET and Visual Studio
Introduction
Structure
Objectives
Introducing .NET

Introducing the .NET framework for Windows
Locating the .NET framework on disk
The .NET framework architecture
The Common Language Runtime (CLR)
Compilers and the concept of Assembly
Assemblies in .NET
The Base Class Library

From .NET Framework to .NET Core
Advantages of .NET Core

.NET 6: One .NET

Building applications with Visual Studio
Signing in with a Microsoft account

Synchronized settings
Introducing the Start window
Understanding projects and solutions

Creating projects with C#
Creating your first C# project

Working with the Visual Studio IDE
Working with tool windows

Solution Explorer
The Error List
The Properties window
The Output window

Editing project properties
Editing application settings

Basic code editing features
Syntax colorization
Zooming the code editor
Introducing IntelliSense
Changing the Code Editor options

Compiling, running, and debugging code
Understanding configurations
Running and Debugging Code
Debugging your code

Preparing the sample project for debugging
Breakpoints and data tips
Detecting and fixing runtime errors

Conclusion
Points to remember
Key terms

4. The C# Programming Language
Introduction
Structure
Objectives
Understanding data types

Meet the Common Type System

Clarifying value types and reference types
.NET primitive types

Declaring and consuming variables
Clarifying the difference between value and reference types

Common data operators
Equals and Not Equals Operators
Arithmetic operators
Conversion operators

Direct type conversion
Converting types with the Convert class
String conversion

Logical operators
Working with strings

Checking for Null or Empty strings
Concatenating strings
Formatting strings

Iterating objects
Understanding loops

Introducing the do loop
Introducing the while loop

Conditional code blocks
The if conditional code block
The switch conditional code block

Introducing arrays
Single-dimensional arrays
Multi-dimensional arrays
Jagged arrays

Object-oriented programming (OOP)
Understanding access modifiers
Defining reference types with classes

Storing information with fields and properties
Running actions with methods
Introducing constructors and static classes
Defining derived types with inheritance

Understanding interfaces and abstract classes
Defining interfaces
Implementing interfaces

Introducing abstract classes
Organizing types within namespaces

Accessing types within namespaces with using directives
Defining value types with structures

Assigning structures to variables
Visibility of structures and their members

Defining enumerations
Using enumerations

Implementing error handling
Implementing events

Advanced C# programming
Generics and Nullable Types

Working with Nullable types
Language INtegrated Query (LINQ)
Asynchronous programming

Conclusion
Suggested readings

5. Building Apps with Xamarin and Xamarin.Forms
Introduction
Structure
Objective
Understanding Xamarin.Android Projects

Understanding the project structure
Drawing and handling the user interface
Configuring the App Manifest
Debugging an Android app

Configuring debugging and Build options
Understanding Xamarin.iOS projects

Understanding the project structure
Handling the user interface
Debugging an iOS app

Understanding provisioning profiles and developer accounts
Configuring App Package options

Cross-platform projects with Xamarin.Forms
Understanding the project structure

Introducing XAML, App.xaml, and MainPage.xaml

Running and debugging apps
Preparing apps for publication

Preparing Android packages
Preparing iOS packages

Conclusion
Points to remember
Key terms

6. Organizing the User Interface with Layouts
Introduction
Structure
Objectives
Understanding the concept of layout

Alignment and spacing options
Understanding the visual tree

.NET objects hierarchy
Organizing the user interface

Creating a Sample Project
The StackLayout
The FlexLayout
The Grid

Spacing, proportions and spans for rows and columns
The AbsoluteLayout
The RelativeLayout
The ScrollView
Controlling the ScrollView programmatically
The Frame
The ContentView

Using a ContentView
Styling the user interface with cascading style sheets

Defining CSS styles as a XAML resource
Consuming CSS files in XAML
Creating and implementing CSS styles in C#

Conclusion
Points to remember
Key terms

7. Understanding Common Views
Introduction
Structure
Objectives
Creating a sample project

Common properties
Working with text

Displaying text with the label
Accepting user input with entry and editor

Entering passwords
Applying and managing fonts

Implementing custom fonts
Complex text formatting with FormattedString

User interaction with buttons
Selecting dates and time

Selecting dates with the DatePicker
Selecting a time with the TimePicker

Displaying HTML content
Selecting Boolean and numerical values

Turning options on and off with the switch
User choices with the CheckBox
Multiple choices with RadioButton

Implementing multiple groups
Value selection with the Slider
Incremental value selection with the Stepper

Implementing search functionalities
Handling long-running tasks
Displaying images

Handling the aspect
Managing image files

Adding interactivity to Views
Implementing GestureRecognizers
Displaying and handling alerts

Understanding visual states
Conclusion
Key terms
Suggested readings

8. Pages and Navigation
Introduction
Structure
Objectives
Introducing available pages

Individual pages: The ContentPage
Master-details views: The FlyoutPage
Organizing contents within tabs: The TabbedPage
Scrolling pages: The CarouselPage

Navigating between pages
Sharing data between pages
Implementing custom titles
Understanding pages lifecycle
Intercepting the physical back button

Common app features: The Shell
Understanding the structure of the Shell
Adding a Flyout menu
Leveraging built-in navigation: The Tab bar
Implementing both the Flyout and Tab bar
Implementing the Search bar
Programmatically interacting with the Shell
Changing the Shell styles

Conclusions
Key terms
Suggested readings

9. Resources and Data Binding
Introduction
Structure
Objectives
Creating a sample project
Understanding and Defining Resources

Defining resources
Defining and assigning styles

Implementing style inheritance
Implementing implicit styling

Binding data to the user interface

Getting started with data binding
Property change notifications: INotifyPropertyChanged
Assigning the binding context

Working with data collections
Displaying data: The ListView
The DataTemplate as a resource

Binding different types: Value converters
Displaying Collections efficiently

Displaying lists with the CollectionView
Scrolling lists with the CarouselView
Displaying item indicators with the IndicatorView
Selecting items with the Picker

Introducing bindable layouts
Advanced data binding: The Model-View-ViewModel pattern

Defining the data model
Implementing the business logic: Commands and ViewModels

Exposing data
Defining actions with Commands

Designing the user interface
MVVM frameworks

Pull-to-Refresh gesture: The RefreshView
Local data access with SQLite databases

Installing the SQLite NuGet package
Getting the database path
Implementing a data model
Implementing a data access layer
Invoking the data access layer
Extending the user interface

Conclusion
Key terms

10. Brushes, Shapes, and Media
Introduction
Structure
Objectives
Creating a sample project
Coloring objects with brushes

Defining linear gradients
Defining circular gradients

Drawing shapes
Drawing circles and ellipses
Drawing rectangles
Drawing lines
Drawing polygons
Drawing custom shapes

Further studies: Path and geometries
Working with multimedia

Installing the Xamarin Community Toolkit
Implementing the MediaElement
Controlling the media file
Playing local files

Conclusion
Key terms
Suggested readings

11. Managing the Application Lifecycle
Introduction
Structure
Objectives
Creating a sample project
The Application class

Working with themes
Defining global variables

Events of the Application lifecycle
Understanding and using Application events

A real-world example: Storing and retrieving data
A real-world scenario: Restoring data forms

Responding to page events
Sending messages through the app

Broadcast messages with MVVM
MessagingCenter tips and tricks

Conclusion
Key terms
Suggested readings

12. Working with Web API
Introduction
Structure
Objectives
Chapter prerequisites

Getting a Free Azure subscription
Downloading Postman

Understanding web services and Web API
JSON: A standard data exchange format
Creating Web API in Visual Studio

Understanding the project structure
Creating a data model
Implementing controllers
Retrieving data
Creating and updating data objects
Deleting data objects
Testing Web API services

Making API calls with Postman
Publishing Web API services
Consuming Web API with Xamarin.Forms

Creating a data model
Creating the ViewModel

Calling Web API services from C#
Designing the user interface
Testing the application

Conclusion
Key terms
Suggested readings

13. Working with Native API
Introduction
Structure
Objectives
Preparing a sample project
Working with the device class

Working with Timers
Running thread-safe code

Device-based content orientation
Conditional XAML: OnPlatform and OnIdiom

Advanced view customization: Custom renderers
Defining a custom view
Defining the Android renderer
Defining the iOS renderer

Applying custom renderers to views
More information on custom renderers

Managing native properties with effects
Declaring effects
Implementing platform-specific effects
Testing the code

Displaying native views
Customizing views with platform-specifics
Accessing device features: The DependencyService class
Cross-platform access to native API: Xamarin.Essentials

Checking the network connection
Checking the battery status
Sending emails and SMS messages

Sending emails
Sending SMS messages

Opening contents
Opening the web browser
Opening default apps
Storing user preferences
Storing secure settings

Secure settings with app version tracking
More essentials API
Hints about plugins

Conclusion
Key terms
Suggested readings

14. Finding a Job
Introduction
Structure
Objectives

Preparing your resume
Finding jobs, the modern way: Using LinkedIn

Searching for a job
A step forward: Attracting jobs

Connecting with the right contacts
Sharing contents from others
Sharing your knowledge

Writing articles and other content
Joining online communities
Sharing your code
Final considerations about LinkedIn

Preparing for job interviews
Technical interviews
Personal interviews

Conclusion
Points to remember

15. Succeeding as a Mobile App Developer
Introduction
Structure
Objectives
Developing your passion and curiosity

Experiment on custom projects
Experimenting with third-party components

Learning to be a team player
Staying up-to-date with development technologies

Attending conferences and meetups
Conclusion
Points to remember
Suggested readings

Index

CHAPTER 1
The Importance of Mobile App

Development

Introduction
As a Xamarin jobseeker, you are preparing to enter the fantastic world of
developing and publishing applications for mobile devices. Writing software
certainly requires a technical background, but it also requires understanding
the market and the user base you are going to target. In the case of mobile
app development, it is necessary to understand why it represents an important
career opportunity today and what the recommended approach to obtain the
best results is. This chapter provides an introduction to the state of mobile
app development today and explains why using a development framework
like Xamarin can open up more opportunities, giving you hints on how to
become autonomous in keeping up to date with new releases in the mobile
world.

Structure
In this chapter, we will cover the following topics:

The importance of mobile app development today
The importance of developing mobile apps with a cross-platform
approach
Staying up to date with technology releases

Objectives
After completing this chapter, you will understand why building mobile apps
is an important opportunity for jobseekers today, and you will also
understand why it’s important to develop applications for multiple platforms
from one codebase. You will get clarifications about which types of mobile

devices are available today and how they are changing people lives. Finally,
you will be provided with tips on how to stay up to date with new releases
and platform updates, which is a crucial part of working in information
technology.

The importance of mobile app development
In the last 10 years, the incredible diffusion of smartphones, tablets, and
wearable devices has literally changed our lives. If you consider
smartphones, the most relevant mobile devices, they not only allow for
making phone calls but also work as personal assistants for everybody. They
allow people to do things that one could only do with a computer until a few
years ago, like surfing the internet, or using dedicated tools and resources.
Think of MP3 players to play music, clocks to see what time it is, a calendar
to mark appointments, newspapers to stay informed and so on; all of this is
now available in a smartphone. For you as a software developer, the
increasing diffusion of mobile devices, their continuous technological
evolution, and the variety of applications they can have make for an
incredible opportunity for finding a long-term job in the software industry.
But before you get started with development, some considerations need to be
made about the evolution of mobile devices and how they changed not only
our lives but also the way companies manage their work.

Mobile devices and applications
The first point to clarify is about what a mobile device is and how this
definition fits nowadays, including a bit of history that will help you focus on
the importance of mobile app development today. Any device that can work
in mobility could be considered a mobile device. Old cellular phones that
only allowed for phone calls and text messages, laptops, watches, MP3
players, compasses, are all examples of mobile devices. Obviously, you
cannot build applications for a cellular phone from the late 90s or for an MP3
player, but they are still mobile devices. So, here comes the first fundamental
consideration: the modern era of mobile devices has started with the
combination of advanced hardware with an operating system. Having an
operating system on a mobile device, such as iOS or Android, not only
brought to the end user an improved, human-centric experience in using all

the built-in system features, including the camera and sensors, but also the
option to have applications. This has made the real difference between the old
devices and modern devices. Having an operating system on a device allows
for building applications that can have different purposes and leveraging all
the system hardware, opening a new world of business opportunities for
individual developers, software companies, and internal enterprise usage.

A brief history of modern mobile devices
Several operating systems are available in the market, but most mobile
devices run on iOS and Android, so we might tend to think that these have
been the first systems to start the mobile revolution. This is only partially
true. In the middle of the 2000s, Microsoft released the Windows Compact
Edition (CE) operating system, which supported the first generation of
smartphones and tablets. At that time, devices running Windows CE already
offered touch screens, even though it was necessary to use a plastic pen to
interact with the device because interaction with the screen was basic back
then. Windows CE was a fully featured operating system and included the
Microsoft .NET Compact Framework platform that developers working with
Microsoft Visual Studio and the C# programming language could use to build
applications for that kind of devices. Windows CE was a visionary operating
system but was penalized by two major issues: it was primarily thought for
business customers and not for a global audience, and it was not pushed
enough into people’s houses, like it happened for Windows PCs instead.
Phones running Windows CE were also available in the market for everyone,
but their diffusion was quite low, resulting in limited success. A few years
later, Apple and Google completed the transition to the era of modern mobile
devices, introducing smartphones and tablets for a global audience, with
operating systems designed for a human-centric approach and not for a
business-centric approach. This made it possible for every person in the
world to develop applications and possibly make money from it.

Mobile devices for everyone
Apple first introduced the iPhone with the iOS operating system in 2008, and
2 years later, they launched the iPad tablet, still running iOS. Despite the
highest cost in the market, Apple put in place an incredible marketing
campaign that allowed the company to push these devices, and now a lot of

people often refer to the iPad as the tablet and to the iPhone as “the phone".
In 2008, Google announced the first version of Android, and the first device
running this operating system was an HTC Dream smartphone. The Android
operating system was then quickly adopted by many producers, and it
became the system of choice for a large number of smartphones and tablets at
an affordable price, which has been one of the keys to their success. When
releasing tablets, both Apple and Google made sure that developers could
reuse most of their code to make their apps run on both device types at no
cost, and this was another point in their success because end users could have
their favorite apps on both the smartphone and the tablet, with only a few
exceptions. Microsoft, after being the first company investing in mobile
operating systems and mobile application development, joined this market
again only years later with the Windows Phone operating system, first
partnering with important producers like LG and Nokia and then building
their own devices. Windows Phone was a very good system, but it was too
late to conquer enough market share to survive, so it was finally dismissed in
2019. In the recent years, Huawei has also created an operating system for
their devices built upon the Android engine and can be considered as the third
most used operating system, after iOS and Android, thanks to the diffusion of
their devices.

Mobile devices everywhere
As technology evolved, tech companies were able to implement operating
systems on other types of devices as well. Two examples are smartwatches
and smart TVs, where you have dedicated versions of the Apple and Google
operating systems that make it possible to have applications on watches and
TV receivers. On a smartwatch, you can make phone calls, send messages,
monitor your heartbeat, share your workout results, and do much more. On a
smart TV, you can use the applications of your favorite streaming services to
watch TV programs and movies. You will see later in the book how Xamarin
allows creating applications for this kind of devices. Microsoft brought
Windows 10 from the PC to the HoloLens holographic glasses and to the
Xbox gaming console, so there are different types of devices with the vision
of making applications available everywhere. Now that you have an overview
of how things evolved over the last few years, it is important to understand
how businesses have started to make mobile devices part of their daily
procedures.

The importance of mobile apps for companies
With smartphones and tablets entering people’s houses, everyone could
quickly understand the potential of these devices and their systems. It was no
longer something only available inside companies for business purposes;
instead, it was something for everyone, from entertainment to simplifying
daily tasks, and so on. Companies are made of people, and people running
companies who were using smart devices for personal purposes have quickly
started to think about bringing smartphones and tablets into daily work to
improve productivity, move things faster and save money. Let’s look at a few
examples:

Restaurants: Years ago, the only way for waiters to take orders was to
go to a customer’s table with pen and paper, write down the order, and
go to the kitchen; now, many restaurants have smartphones or tablets
where waiters quickly enter the order, which automatically notifies the
kitchen, ensuring efficiency and saving time for both the customer and
the restaurant workers.
Hospitals: With a tablet and specific applications, a doctor can check
the conditions of patients in real-time at the bedside and prescribe the
proper therapies, without going back and forth to the desk to check on a
computer and then writing down everything they need.
Sales representatives: They can go to customers and have everything
they need on their tablet without bringing a laptop every time.
Stock management: With a smartphone or tablet, it is possible to
search for products while going around for the stock instead of first
looking on a desktop workstation.
Banks: By offering mobile home banking applications, they give a great
service to customers who can operate their accounts from anywhere
without waiting in line for hours, and they also free a lot of internal
human resources.

There could be thousands of examples, but these are certainly enough to
understand why mobile applications are important for businesses and,
consequently, why mobile app development is so important today. The next
section will further clarify the importance of the considerations mentioned
above.

Career opportunities with mobile app development
The continuous evolution of technology provides important career
opportunities in the world of mobile app development. New powerful
hardware, new types of devices receiving an operating system, continuous
updates to mobile OS, and more companies adopting smartphones and tablets
as tools for their daily work represent the security of jobs in the mobile
application development industry. Opportunities can target two different
segments: individual users and businesses. You can work on applications that
are available to a global audience so that each person can install your apps or
games, or you can work on applications that target companies or applications
for internal usage that companies want to create for their specific
requirements.

Making money with mobile app development
Making money in the first segment, i.e., individual users, is certainly more
difficult. There are millions of apps in the Apple Store and Google Play, and
there are free apps for almost every need. Therefore, you need to invent
something new and create apps or games that thousands of users are going to
love so much that they are willing to pay. Building successful paid
applications for a global audience is something complex and structured, so
they are usually developed by software companies that can count on several
teams: the development team, the marketing team, the localization team,
testers, and the data analysis team.
For individual freelance developers, this can certainly be done, but the effort
is very high. So, if you would like to see the result of your work running on
everyone’s device, you might probably want to search for a job with a
software company. As an alternative, if you wish to maintain your
independence, you could still work as a freelance consultant joining one or
more projects run by a software company. When it comes to companies
adopting mobile devices as tools for their daily work, this is probably the
most interesting option, and one that allows you to get a salary more easily.
In fact, there are companies whose business is building software and
companies whose business is not building software but that want to have
applications for internal enterprise usage. In both cases, you will be able to
work on developing new applications from zero or updating and maintaining
the existing applications on a long-term basis because business requirements

change over time. Moreover, the variety of business types will make your
work even more interesting and challenging, which is extremely important
for your motivation.

Summarizing how a mobile system works
Previously, you have learned that the difference between modern mobile
devices and old-generation mobile devices is in the fact that modern devices
have an operating system that allows for hosting applications. Let’s clarify
these sentences in more details. Operating systems are software that make
interaction possible between the user and the hardware, and they have been
existing since the first computers were ever released in a global market. As an
example, MS-DOS was the operating system from Microsoft empowering
personal computers in the 80s. At that time, everything had to be done via the
keyboard and from the command line, but the simple operation of writing a
file to disk was possible, thanks to the operating system, which connected the
user with the disk drive. Operating systems with a graphical user interface
have then started to change the way users could use computers in the 90s,
with continuous evolution that led to the operating systems we have today on
our computers and devices. With regard to mobile devices, think of the
system camera application you have on your phone:

You tap the camera icon
The software starts the camera
With a simple button, you can control the camera to take pictures or
record videos

Behind these few gestures, there are a lot of concepts that you need to know.
The camera is device hardware on your phone. The OS is the real connection
between you as the user and the hardware because it allows you to interact
with the phone camera via the camera application. The reason why I’m
continuously mentioning that the camera app is an application and not a
function of the operating system is because any application built by a
developer could use the camera hardware. Device producers give users a
built-in system application so that the camera can be used immediately to
take pictures and record videos. But if you think of messaging apps, they
allow you to take pictures and quickly send them to your contacts via a
message outside of the system application. This is possible because the

operating system exposes functions and libraries that any application built by
anyone can call to access hardware on the device. These functions and
libraries are referred to as Application Programming Interface (API).
Every operating system has a specific set of APIs and they are the real key to
build applications for mobile devices. Camera applications pre-installed on
iOS and Android invoke the system API themselves to access the hardware.
APIs exist for everything that makes some work on the device, such as
reading and writing files, interacting with sensors, drawing the user interface.
Apple and Google provide development tools and environments that let
developers access the system APIs through a programming language (like
Swift for Apple and Java for Google) and a set of libraries that simplify
accessing such APIs with a high-level approach. Obviously, it is not possible
to describe in this book how the Apple and Google APIs work (except where
expressly required in Chapter 13, Working With Native API), but the key
point to understand here is how an operating system makes it possible for
applications to use the device hardware and features.

The importance of a cross-platform approach
Based on the discussions of the previous sections, suppose you run a
company that wants to build an application to improve the business for the
two major systems for mobile: iOS and Android. Apple and Google provide
their own development tools, programming languages, platforms, and
environments, and both the operating systems have their own specific
features. With this in mind, you would have two alternatives:

Hiring several developers, some with experience on the Apple platforms
and some with experience on the Android platforms would allow your
company to build an app for both OSes in a shorter time, but the cost
would be much.
Hiring less developers with experience on both development
environments. This would allow for saving money, but it would at least
double the development time, having a huge impact on the release
timing and therefore, on your business.

Because of the demand for companies to make applications available on
different platforms, during the last few years, several technologies have been
created to make it possible for developers to target multiple platforms from a

single codebase. This is referred to as cross-platform development, and it is
not something that only applies to mobile development. In fact, there are
technologies that allow building apps for different systems and different
devices from a single, shared codebase. For instance, the Xamarin.Forms
platform offered by Xamarin allows you to target Android and iOS mobile
systems, Windows and macOS computers, and wearable devices from one
codebase, representing a perfect example of cross-platform development
technology. Table 1.1 provides a summary of the most popular cross-
platform development technologies available today:

Name Short description Programming language

Angular Angular is an open-source framework that allows
for creating apps for mobile devices, desktop,
and the web from a shared Java codebase.

Java

React Native React Native is open-source and has been
developed by Facebook. It allows for creating
apps for Android, iOS, macOS, and Windows
using JavaScript and the React.js library.

JavaScript

Xamarin Xamarin is an open-source framework built upon
the Microsoft .NET technology. It allows for
creating apps for Android, iOS, macOS,
Windows, and wearable devices, and it has been
thought for developers with existing skills about
the Microsoft stack.

C#

Flutter Flutter is an open-source framework developed
by Google, which allows for building apps for
mobile devices and desktop systems, including
Linux. It works with the Dart programming
language, still created by Google.

Dart

Cordova Cordova has been one of the first cross-platform
development tools ever and is now backed by
Adobe. Apps are the result of combining HTML
markup for the user interface and JavaScript code
for operational functions.

HTML + JavaScript

Ionic Ionic has been built on top of Cordova and works
with JavaScript code. It has often been criticized
for lower performance of the generated apps.

JavaScript

Table 1.1: Most popular cross-platform development technologies

It is important to understand that companies usually make decisions about the
technology to use and the people that they need to hire based on many

conditions, including the existing skills of the current employees. This is one
of the key points of Chapter 2, Xamarin and Microsoft in the Mobile App
Market. This book focuses on Xamarin, but there are a few points that all
these cross-platform development frameworks share. These are discussed in
the following sections.

Limitations of cross-platform code
Different operating systems have different architecture and APIs and run on
different hardware. As a result, cross-platform code will not be able to access
all the features that are available to a specific system; it will only be able to
access the ones that multiple systems have in common. For example, an
iPhone and a Samsung running Android both have a camera, and cross-
platform code can certainly take pictures and record videos because this
feature is available on both systems. However, the iPhone’s camera has
functionalities that the Samsung device does not, and vice versa; such
features will not be accessible from cross-platform code because they are
specific to the platform. Continuing with the previous example, developers
will still be able to separately access the full features of the iPhone’s camera
and the full features of the Samsung device’s camera, but this needs to be
done with native code, which means writing code that works only with a
specific platform and, therefore, is not cross-platform. Practical examples
about how this works with Xamarin are given in Chapter 13, Working With
Native API.

Application size and performance
You will often hear people talking about cross-platform applications. This
terminology is incorrect. Applications are always native, where native means
that a cross-platform development framework, like Xamarin.Forms can
generate a binary file that is specific to the target system, such as a .ipa file
for iOS, a .exe file for Windows, and a .apk file for Android. No common
file format can target all the three. The correct terminology is cross-platform
project instead. In the upcoming chapters, you will learn that a project is a set
of source code files, images, fonts, and all the resources that you need to
create an app, which will be finally bundled into the application file. These
clarifications are very important because a lot of developers and often,

stakeholders and decision-makers think that cross-platform means poor
performance and extremely big app size. This is not true; for better
understanding, let’s summarize how native and cross-platform development
work in a few simple words.

Understanding native applications
A native application built with Apple or Google development tools directly
accesses the iOS or Android APIs, respectively. Instead, when you build an
app with a cross-platform development framework, it has libraries that first
detect what kind of operating system the app is running on, and based on the
system, it will invoke the appropriate iOS or Android API to draw the user
interface and invoke other functionalities. In short, your app will need the
framework libraries to work, and these libraries need to be bundled into the
application file produced by the cross-platform development framework. As a
consequence, the generated application file will be a bit bigger because it
needs to include some more libraries.

Demystifying application performance issues
Your application will need to first invoke the cross-platform framework’s
libraries, so it will go into an additional overhead. However, both the
application size and this additional overhead are reasonable and sometimes,
not even noticeable. With regard to Xamarin, this technology has evolved
over the years, with an incredible effort from Microsoft to offer the best
performance possible at the framework level.
Most of the times, if an application is performing poorly, it is because the
architecture has not been designed properly or because developers have not
made the best decisions when writing code. Sometimes, the final application
file becomes very big because it contains unused resources, image files that
are too big for a mobile device, and so on. Additionally, simply updating the
development tools to the latest version might automatically bring
performance improvements. Having that said, you should not be scared about
application size and poor performance only because you are using cross-
platform development tools. The way you architect and code the application
is going to make the difference. In this book, we will provide you with
practical tips and examples on how to always achieve the best performance
possible.

Staying up to date with new devices and platforms
It is important for you to stay up to date with new devices and operating
system updates. In addition, when new devices are available on the market or
when new versions of a mobile operating system are offered as an update to
existing devices, producers also release updated developer tools that target
the new offerings. This is extremely important for you because you need to
ensure that your existing code still works with new devices and updated
systems. Thus, it is important for you to know when updated developer tools
are available and make the necessary adjustments to your work.

In Chapter 5, Building Mobile Apps With Xamarin and Xamarin.Forms, I
will provide specific information on how to update the development
tools you need for this book.

You are free to choose your favorite way for staying up to date, but the
simplest way is bookmarking the developer websites of each producer and
subscribing to news and events, also through newsletters. Especially when
new devices are going to be available on the market, producers organize
conferences that can be usually attended online, which you should watch. The
following paragraphs provide information about subscribing for news related
to the platforms discussed in this book from the major producers.

Getting updates from Apple
Apple shares news and events’ information, such as conferences where the
launch of new products is announced, on their website
(https://www.apple.com). If you’re willing to work in the mobile app
development industry, you might also want to bookmark the Apple
Developer website (https://developer.apple.com). This is the main
developer portal where you can access all the development resources you
need to build apps for macOS, iOS, tvOS and WatchOS. These will be
recalled when appropriate in the book, but here, they also share news about
technical conferences, events, new devices, and new version of the operating
systems from a development point of view. Figure 1.1 shows an example of
the Apple Developer portal with the announcement of the Worldwide
Developer Conference 2021 (WWDC21) and a shortcut to a list of the
announcements made during the event (Apple Event):

https://www.apple.com
https://developer.apple.com

Figure 1.1: Getting updates from the Apple Developer portal

You can click on each shortcut and see the list of announcements, news, new
devices, and technical sessions for developers using proprietary Apple
technologies. For a comprehensive list of updates that are related to
submitting apps to the App Store and to new development libraries, you can
visit the News and Updates website. Figure 1.2 shows an example where you
can see how the website is informing about tax changes on the App Store:

Figure 1.2: The News and Updates web page shows updates for developers

This website is very important because it lists mandatory requirements that
you need to address when publishing apps to the App Store, and it also lists
new and updated developer tools, and updates about the Store policies that
you must be aware of.

Getting updates from Google
Google shares information about the Android operating system and the
development tools on two different websites. News about the Android
operating system and general announcements about Android can be found at
https://www.android.com. Scrolling the page from top to bottom, you will
find shortcuts to the list of new features, design updates, support for specific
technologies, and a list of devices running Android. At the bottom of the
page, you will find a list of news for developers, which you can scroll
horizontally. Figure 1.3 shows how it looks:

https://www.android.com

Figure 1.3: Latest news about Android for developers

The second website from which you can get news about developing for
Android with Google tools is the Google Developers website
(https://developers.google.com). This is the main developer portal and
includes the official documentation for all the Google technologies
supporting the development for Android. It is recommended that you visit the
Events page, where you can find the list of conferences and events that you
can attend to stay up to date about what’s up and coming for developing apps
for Android and new devices supporting this operating system.

Getting news from Microsoft
Even if Microsoft is no longer producing smartphones, tablets (except for
convertible Surface machines), and mobile operating systems, the
development environment, programming language, and platforms described

in this book and that you will use in your working life are produced by
Microsoft. In addition, Xamarin can target Windows 10, which has a store
(the Windows Store) from which users can download applications, so it is
important to stay up to date with new releases from this company. Global
news is available at https://news.microsoft.com. Events and conferences can
be accessed from the Events page (https://www.microsoft.com/en-
us/events), where you can find a list of upcoming and passed events with
recordings for developers, IT professionals and businesses. Note that, even if
the address of the page includes the en-US localization, this is a global page
and summarizes events available worldwide. You can then browse the
Microsoft Developer (https://developer.microsoft.com) website for the
latest news, releases, and updates about development tools and platform. This
is particularly important to stay up to date with new technologies and official
documentation.

Conclusion
With the increasing diffusion of the most modern mobile devices, and due to
the way companies’ businesses have changed over time, becoming a mobile
application developer is certainly one of the best choices you can do to start a
successful and secure career. This not only involves technical skills, but also
understanding how the market is evolving and how users’ and companies’
needs change, along with the availability of new devices and new operating
system versions. Smartphones and tablets are certainly the most used devices
for both personal and business purposes, so you might want to focus your
attention on the iOS and Android operating systems. In order to build
applications, you need development tools and platforms, either native or
cross-platform. There are several options available, and this book discusses
Xamarin and its Xamarin.Forms flavor, which helps you target multiple
systems from one, shared C# codebase in a cross-platform approach. Cross-
platform development has pros and cons, but you will be able to get the most
out of it if the architecture of your application is accurate. Development tools
and platforms also evolve along with devices and operating systems, so you
must stay up to date with announcements and releases from the major
producers; you have seen how to accomplish this in a simple way. After this
general overview of the importance and state of mobile app development
today, it is time to go specific and understand why Xamarin is a good choice

and how it fits in the market today.

Points to remember
Mobile device: Any device that can work in mobility.
Operating system: Software that allows interaction between user and
hardware.
Application Programming Interface (API): Libraries of the operating
system that developers can consume in their applications.
Cross-platform development: Creating software for multiple platforms
and systems from one codebase.

CHAPTER 2
Xamarin and Microsoft in the Mobile

App Market

Introduction
In the first chapter, you got an overview of the status of the mobile app
market today and about the most popular development frameworks for
building applications for mobile devices. This chapter provides further details
on Xamarin, the subject of this book, providing information about its history
and its growth since Microsoft acquired it and helping you understand what
you need to develop apps with this technology. You will also learn the basics
of what’s in the Xamarin development platform and why it can be a great
choice to be successful today.

Structure
In this chapter, we will cover the following topics:

Xamarin as the app development framework
Understanding Xamarin and Xamarin.Forms
Installing and configuring the development tools

Objectives
By completing this chapter, you will clearly understand the benefits of
choosing Xamarin as the development technology to build applications for
mobile devices, more specifically, its Xamarin.Forms flavor. You will learn
what tools you need to use and how to install and configure the development
environment, and you will also get some hints about what Microsoft is
working on for the next generation of mobile app development tools.

Xamarin as the app development framework
For a company, choosing the right development framework for building any
kind of applications is crucial. It has an impact on the budget, timing, and
credibility in front of stakeholders, and it also affects the developers that will
work on a project. There is actually no rule, and the decision depends on
several factors. However, one of the most common approaches in choosing
the development framework considers the existing skills of the developers,
the cost of hiring new developers if the current skills are not enough, and the
cost and time to train current developers in relation to the timing of the
project. Companies often realize that the best option is using a development
framework that allows reusing existing skills or that requires a short training.
This can potentially save a lot of time and money, and it is even more
important when it comes to mobile app development, especially for
companies that do not have their applications yet, making the investment a
risk.

Mobile App Development with Microsoft Skills
For companies where developers have a robust Microsoft background, such
as the .NET technology and the C# programming language, choosing
Xamarin as the development platform for mobile apps is a natural choice.
This is the very first important point of this chapter, which is clarifying the
target user base for Xamarin: developers and companies with a strong
background upon Microsoft technologies. With Xamarin, you can build
mobile applications using C# as the programming language, reusing all the
existing skills and knowledge about the .NET technology. Additional
clarifications are required to understand how you can create applications for
iOS and Android with C#, so a good idea is to start with a bit of history of
Xamarin.

Xamarin as a company
Back in June 2000, Microsoft announced the .NET Framework (pronounced
dot net), a modern technology that developers could leverage to build the new
generation applications on Windows. In the next chapter, you will learn more
about the architecture of the .NET Framework and about its evolution in the
last few years that led to one, cross-platform .NET. For now, you just need to

know that, among other things, .NET Framework implements the following:

Language interoperability, a programming language in the .NET family
can consume code written with other .NET languages.
A large reusable code library that covers the most common operations.
Automatic memory management for many scenarios.
A safe, sandboxed environment for the execution of applications.

Today, .NET is an open-source, cross-platform, and cross-device technology,
but it was all about Windows until 2017. For this reason, when the .NET
Framework was first announced, Miguel de Icaza, a software engineer for the
Ximian company, immediately understood its potential and started
investigating whether it it could be run on Linux. Such an investigation led to
the development of the Mono project, a framework compatible with .NET
that could run on systems other than Windows and that allows developers to
write C# code on such systems.

Introducing the mono project
Mono (https://www.mono-project.com) was first released in 2004 after 3
years of development, and during the years, the development and evolution of
the project focused not only on supporting desktop platforms like Linux but
also mobile platforms like iOS and Android with specific derived
frameworks called MonoTouch and MonoDroid, respectively. An open-
source development environment called MonoDevelop was also created to
allow developers to write C# code on top of Mono. While the development of
Mono was going forward, in 2003, the Ximian company founded by Miguel
de Icaza was acquired by Novell, and the project continued to evolve, pairing
to the new .NET Framework releases. In 2011, Novell was acquired by
Attachmate, which announced hundreds of layoffs, which included Miguel de
Icaza. So, when he had to leave, he founded a new company called Xamarin
with another engineer, Nat Friedman who became the Chief Executive
Officer.

The transition to Xamarin
Xamarin became responsible for continuing the development and evolution
of Mono, with a few but relevant changes: the MonoTouch and MonoDroid

https://www.mono-project.com

frameworks became Xamarin.iOS and Xamarin.Android, respectively, and
MonoDevelop evolved into a new development environment called Xamarin
Studio, which was available for Mac computers as well. Xamarin.iOS and
Xamarin.Android have been the first frameworks that allowed for writing
native applications with C#, but they worked separately. This means that
developers could leverage their existing C# and .NET skills, but they still had
to create two different projects and know the API of both platforms.

Mono is also important for another reason: it is the runtime system
that makes it possible for applications created with Xamarin to run on
different systems. Like the .NET Framework is required to run
Windows applications written, for example, with WPF, Mono is
required for iOS and Android apps created with Xamarin.

Xamarin continued the evolution of their frameworks, and in 2014, they first
released Xamarin.Forms, a new framework that allows to target multiple
platforms (at that time, only iOS and Android) from a single, shared C#
codebase. The goal of Xamarin.Forms was providing unified access to
features that are common to all platforms, such as most of the user interface
controls and some device features. At that time, the Xamarin.Forms codebase
was limited. There was no declarative language to create the user interface, so
everything was done in C#, and developers had to do native development in
several situations. It was not a very productive framework, and probably
many developers were discouraged by the effort they would have needed to
make. However, Xamarin.Forms was the first cross-platform development
framework for C#, and the interest rose quickly. A lot of improvements were
made in a few months; for example, they introduced a basic version of the
eXtensible Application Markup Language (XAML) to design the user
interface in 2015 and several new features that brought Xamarin.Forms to be
a very interesting choice. However, Xamarin licenses for enterprises were
quite expensive, and despite the improvements, the adoption of this
technology seemed to be stuck. However, things quickly changed, as
explained in the upcoming sections.

Microsoft in the mobile app ecosystem
Developers at Xamarin perfectly knew that most C# developers would have
preferred using Microsoft Visual Studio as the development environment

instead of Xamarin Studio, at least on Windows. For this reason, they created
extensions for Visual Studio that made it possible to create Xamarin projects
from within Microsoft’s environment.

You will often hear about extensions when talking about Visual Studio.
An extension can be thought of as a plug-in that adds functionalities to
the development environment. Therefore, when referring to Visual
Studio, the proper terminology is extension, not plug-in.

In addition, with such extensions, Visual Studio included visual tools that
simplified the way the user interface could be designed in Xamarin.iOS and
Xamarin.Android projects. So, Microsoft had a clear idea of Xamarin’s
potential. In fact, in February 2016, Microsoft announced the acquisition of
the Xamarin company, bringing in-house all the cross-platform and native
development technologies they built, hiring their engineers. This huge
investment brought Microsoft back into the mobile app ecosystem, but with a
different approach.

The importance of Microsoft investments on Xamarin
As you might recall from Chapter 1, The Importance of Mobile App
Development, Microsoft was probably not very successful as a provider of
mobile OS and devices, but they have always had the best development tools
and environments on the planet, so they were able to connect the power and
productivity of the Visual Studio development environment with the Xamarin
frameworks in order to provide the best experience to developers with
existing skills on the Microsoft stack and willing to create apps for mobile
devices. In the last 4 years, Microsoft has incredibly pushed Xamarin in
several directions. The codebase has been improved and evolved until to have
what is available today, introducing dozens of controls, reusable code, and
access to device features so that the developer productivity has dramatically
increased. They have open-sourced the whole Xamarin platform (along with
all the technologies based on .NET), moving the source code to GitHub,
which not only means accepting contributions from the community but also
involving and engaging the community in the growth of the product.

Improved productivity with Microsoft tools and services

Based on the experience gained by providing first-class tools to develop
applications for Windows Phone and Windows desktop, Microsoft could
extend to Xamarin and Xamarin.Forms the availability of powerful
productivity tools integrated in the development environment. Not limited to
this, and always keeping in mind the new cross-platform approach, Microsoft
also built Visual Studio for Mac, which was first released in 2017. This was
the natural evolution of Xamarin Studio, but with all the well-known power
of Visual Studio, which developers could use for the first time on Mac
computers. Microsoft has also created an ecosystem of products and services
around Xamarin, such as application lifecycle management tools as part of
Azure, Microsoft’s cloud platform, services that quickly allow developers to
implement push notifications, data synchronization, authorization, and other
services like analytics, which help decision makers drive business and
investments based on the analysis of the application usage.
By pushing Xamarin so much, Microsoft has also been able to increase trust
in their mobile services. Today, with Microsoft Visual Studio 2022,
developers have the most powerful development environment available to
build their applications for mobile devices using Xamarin. Now that you
know where Xamarin is coming from, you need to know something more
about the technical aspects, which is the topic of the next section.

Understanding Xamarin and Xamarin.Forms
Xamarin is a development technology that makes it possible for developers
skilled in C# and the Microsoft stack to build applications for several
operating systems. More specifically, Xamarin groups the following
development platforms:

Xamarin.Android, a set of .NET libraries and tools that allow you to
run C# code on Android devices. This is possible because
Xamarin.Android translates, behind the scenes, all the work done in C#
into the Java equivalent and invokes the proper Java and Google tools to
create the application binaries. As an implication, Xamarin.Android
requires the Java Software Development Kit (SDK) and tools like the
Android SDK Manager and the Android Device Manager. Later in this
chapter, you will see how to properly configure the environment and
install the necessary tools.

Xamarin.iOS, a set of .NET libraries and tools that allow you to run C#
code on iPhone and iPad devices. Behind the scenes, Xamarin.iOS
translates all the work done in C# into the Objective C equivalent and
invokes the Apple developer tools to create the application binaries. As
for Android, the next section will explain how to properly set up your
development environment to target iOS.
Xamarin.Mac, a set of .NET libraries and tools that allow you to run
C# code on macOS machines, building desktop applications. Like
Xamarin.iOS, it translates all the work done into the Objective C
equivalent and invokes the Apple developer tools to create the
application binaries.
Xamarin.Forms, one library that makes it possible to target multiple
platforms from a single, shared codebase. Behind the scenes,
Xamarin.Forms invokes both Xamarin.Android and Xamarin.iOS, and
then these two platforms do the job of invoking the appropriate native
tools to create the application binaries.

Xamarin.Android and Xamarin.iOS make it possible to access the native API
of the operating systems they target, whereas Xamarin.Forms needs to pass
through them. This is also why you will often hear developers talk about
Xamarin native when referring to Xamarin.Android and Xamarin.iOS.

Advantages of Xamarin.Forms
Xamarin native platforms require you to know the operating systems’ API in
detail. Moreover, you will still need two different projects: one for Android
and one for iOS. You will be able to share some logic between the two, but
all the user interface and access to the device features need separate work and
effort. With Xamarin.Forms, you have the following advantages instead:

You do not really need to know the native API in detail (though always
recommended) because you have code that is common to all the
platforms.
You can target multiple platforms from one codebase.
Xamarin.Forms can also target the Universal Windows Platform from
the same codebase, allowing you to make your code run on Windows 10
as well.

You write, debug, and maintain code once, not twice, with a reduced
effort.
You will still publish two different applications, but this is also what
you would do with Xamarin.Android and Xamarin.iOS.

Visual Studio on Windows does not support Xamarin.Mac, so this will not be
discussed further. In Chapter 5, Building Mobile Apps With Xamarin and
Xamarin.Forms, you will get an overview of how creating apps with
Xamarin.Android and Xamarin.iOS works, and Xamarin.Forms will be
discussed more thoroughly.

Hints about .NET MAUI
Microsoft has just released the next-generation framework for developing
applications in a cross-platform approach. This framework is called .NET
MAUI, which stands for Multiplatform Application User Interface, and is
intended to work with .NET 6. Among the others, .NET 6 unifies the API
from different technologies, like Xamarin, into one .NET codebase and
replaces Mono as the runtime platform required to run mobile apps. .NET
MAUI is a full cross-platform development framework that targets mobile
devices as well as desktop systems. It can be considered as the natural
successor and replacement of Xamarin.Forms, and you will learn more
details where appropriate. Microsoft is aware that thousands of developers
around the world have been using Xamarin.Forms to build applications that
are critical for their business, so they have architected .NET MAUI in a way
that allows keeping the same methodology of work, the same code syntax,
the same tools, and the same Xamarin.Forms skills. There will certainly be
some changes, but completely affordable once you know Xamarin.Forms.
Moreover, the project structure will be much simpler and app performance
will be much better at no cost. So, even if Xamarin.Forms is gradually
replaced by .NET MAUI in the next few years, this can be an opportunity for
you. In fact, as a Xamarin jobseeker, it is even more important to learn
Xamarin and Xamarin.Forms today because you will be immediately ready to
use .NET MAUI with the skills you acquire with this book, and you will be
able to work on existing Xamarin.Forms projects that companies will not
migrate soon and that still need to be maintained over time.

Tip: Microsoft will include a Migration Assitant tool, whose goal will be

to simplify the migration from Xamarin.Forms projects to .NET
MAUI. However, keep in mind that it usually takes time before
companies decide to make such important updates to their critical
applications. There are several reasons behind this, but from a
technical and development point of view, you might want to consider
that sometimes, it is better to wait a few weeks and see if bugs are
reported and solved, and that components and libraries produced by
third parties might not be available at the same time as the new
technology.

In general, you should not be too afraid of technological changes and
replacements because this is part of your job in information technology.
Technology evolves and new tools come up, and you, as a developer, must
learn to respond to these changes. Always try to see this as an opportunity,
for example, learning how to help companies migrate to a new platform
before someone else can do, and before their competitors will.

Installing and configuring the development tools
There are some prerequisites for building applications for mobile devices
with Xamarin. First, if you want to build apps for iOS, you will need a Mac.
This is required by the Apple policies, which state that app binaries for iOS
can only be generated on macOS, regardless of the development technology
used. If you do not want (or you cannot) purchase a Mac machine but still
want to target iOS, you can rent a Mac online. Services like MacInCloud
(https://www.macincloud.com) allow you to rent a Mac machine with all
the development tools pre-installed so that you are ready to go. These are
paid services, so make sure you choose an appropriate plan only when
required.

One limitation of a Mac device rented online is that you will not be able
to test your apps on a physical iPhone or iPad, which should be
connected to the Mac. However, as you will see in the next chapter, you
can test the applications on device simulators.

After these general considerations, let’s discuss the system configuration you
need for both Windows and macOS in detail.

https://www.macincloud.com

System requirements for Xamarin
This section describes the minimum system requirements for installing the
necessary development tools to build applications with Xamarin and that are
also required to successfully complete all the chapters in this book. For your
convenience, system requirements are listed for both Windows and macOS,
but this book is based on Windows and the related configuration, so for
macOS, you will only get information about what’s required to produce app
binaries. The reason for this is that most companies with a background on the
Microsoft stack have necessarily worked with Windows for many years, so
this is also the system of choice for building mobile apps.

System requirements on Windows
The official documentation (https://docs.microsoft.com/en-
us/xamarin/cross-platform/get-started/requirements) states that Windows
7 and Visual Studio 2017 are the minimum software requirements, and that
Windows 10 is, instead, required to build apps targeting UWP. However,
based on the experience of years of work with Xamarin, the recommended
system requirements are the following:

A PC with at least 8 Gigabytes of RAM memory. This will make a
difference when you work with device simulators and will help keep
your machine fast enough.
Windows 10 as the operating system, not only to also target UWP from
Xamarin.Forms but also because it’s the most recent and therefore,
powerful and optimized system.
Microsoft Visual Studio 2019 or 2022. The latter is currently the most
recent version available, and Microsoft offers a free Community edition
that you will be able to use at no cost.

The Visual Studio setup program will install all the necessary libraries
and software development kits, including the Java and Google ones.
This will be clarified in the next section.

In the next section, you will walk through the installation and configuration
process of Visual Studio 2022 so that you will get the environment ready.

System requirements on macOS
On a Mac machine, all the development tools would also work with only 4
GB of RAM, but performance would not be acceptable. The following is a
list of the recommended requirements:

A Mac computer with at least 8 Gigabytes of RAM memory. Like
Windows, this will help keep your machine fast enough.
The macOS 10.14 (Mojave) or later.
Microsoft Visual Studio for Mac 2019. At this writing, this is currently
the most recent version available, but Microsoft is working on releasing
version 2022 soon. A free Community edition is also available to be
used at no cost.
Xcode 10 or higher. Xcode is the development environment from
Apple, which also includes the development tools that Xamarin.iOS will
invoke behind the scenes. It can be downloaded for free from the App
Store on your Mac.

In order to install Visual Studio 2019 for Mac on your computer, visit the
Visual Studio for Mac official page
(https://visualstudio.microsoft.com/vs/mac/) and follow the steps to
download, install, and configure the development environment.

Android and iOS Devices
Whether you work on Windows or on macOS, the development tools come
with device simulators that you will be able to use to test your applications. A
device simulator is a virtual machine on which a specific version of the
operating system is installed and that is configured to also simulate a specific
hardware configuration.
Simulators then give you the option to build apps for iOS and Android
without the need of physical devices, but this is not ideal. Users, customers,
stakeholders will use your apps on a physical device, and that’s where you
should test your code. In addition, if you need to show the result of your work
to customers or even your employer, it’s not professional to do so on a
simulator. Obviously, you cannot buy hundreds of different devices, but one
Android device and one iPhone (if you target iOS) would be enough. Then,
device simulators can be a good companion to test code on different

operating system versions and hardware configuration, but at least one
physical device should be a requirement for you.

Installing and configuring Microsoft Visual Studio
Microsoft Visual Studio is the development environment you use to build
mobile apps on a Windows workstation. It is available in different editions:
Enterprise, Professional, and Community. Both the Enterprise and
Professional are paid editions and are usually available through appropriate
licenses. If you will join a company, you will likely get one of these through
a volume license. The Community edition is completely free of charge. It
includes less tools and services, but it has everything you need to build
mobile apps with Xamarin, and it can be used for commercial purposes.
Assuming you will be using the Community edition, visit the Visual Studio
official page at https://visualstudio.microsoft.com/vs/. Click on the
Download Visual Studio button and select the Community 2022 option. This
will download the Visual Studio Installer program on your disk, which you
need to launch.

Selecting workloads
When the Visual Studio Installer starts, it will offer several so-called
workloads. Each workload contains the necessary tools to target a specific
development area, such as desktop, web, cloud and mobile. Locate the
desktop and mobile workload (see Figure 1.2) and make sure you select the
.NET desktop development, Universal Windows Platform development,
and Mobile development with .NET. The latter also includes the necessary
Java and Google support tools.

Figure 2.1: Selecting the appropriate workloads

Actually, selecting Universal Windows Platform development is only
required if you plan to target Windows 10 from your Xamarin.Forms
projects. However, later in the book, you will see the full project
structure, including the UWP project, so the workload is necessary to
fully align with the contents of the book.

Checking for individual components
When you select the workloads, Visual Studio Installer already makes sure
that necessary components will be installed, but it is important to make sure
you really have everything you need. For this reason, click on the
Individual components tab at the top of the window (see Figure 1.2) and
then scroll down the list until you see two groups called Emulators; and
SDKs, libraries, and frameworks, as shown in figure 2.2:

Figure 2.2: Checking for individual components

Under Emulators, make sure that both the options are selected. Under SDKs,
libraries, and frameworks make sure that both the Android SDK setup

options are selected. When ready, click on Close. At this point, click on the
Install button and wait for the installation to complete. In the next chapter,
you will start working with Visual Studio in practice.

Configuring Android devices for developer mode
By default, Android physical devices are not enabled to support app
development, so you need to enable the so-called developer mode. This can
be done by pressing 7 times the build number of the operating system in the
system information of the device. On Android, the operating system
information is not in the same place always. Figure 3.2 shows the Build
number version on my Huawei P10 lite, located under the About phone menu.

Figure 2.3: Enabling the developer mode with the OS build number

After you tap the build number 7 times, a message will inform you that the
developer mode has been enabled. This action will enable a new menu called
Developer options under the system settings. Open this new menu and make
sure that the USB debugging option is enabled.

Minimum macOS configuration
As you learned at the beginning of this section, a Mac computer is required
by the Apple policies to build the application binaries for iOS. If you intend
to target iOS, and if you want to follow this book consistently, you need a
few configuration steps on the Mac. Luckily enough, Visual Studio 2019 has
simplified the way a Mac must be configured for Xamarin development, so
many manual steps that were required previously are no longer necessary. On
your Mac, open the App Store application and search for Xcode. Figure 4.2
shows how this will look:

Figure 2.4: Locating and installing Xcode on a Mac

Assuming that you do not have Xcode yet, you will see a button called

Install instead of Open. Click on the button and wait for Xcode to be
installed. Note that this can take some time. Once the installation is complete,
launch Xcode and wait a few minutes for its first initialization. You can then
close it and wait the appropriate chapters to understand more about how it
works behind the scenes with Xamarin.iOS.

You will soon learn that, in the real world, when new updates of Xcode
are available, it usually takes some days, or even weeks, to get updates
of Xamarin.iOS, Xamarin.Forms, and Visual Studio that match such
updates. For this reason, it is recommended to wait for the availability
of updated Microsoft tools and libraries that target the new versions of
Xcode before updating, otherwise you will no longer be able to run
your C# code on iOS.

Conclusion
When it comes to choosing a development framework for mobile apps,
Xamarin is a natural choice for developers with existing skills on the
Microsoft stack, such as the C# programming language and Visual Studio as
a development environment. The reason is that Xamarin makes it possible to
write C# code and generate native iOS, Android, and UWP applications.
More specifically, with Xamarin.Forms, you can write code once and target
all the supported platforms from a single, shared codebase. You work with
Xamarin and Xamarin.Forms from Visual Studio 2019, Microsoft’s premiere
development environment, and you can work on both Windows PCs and Mac
computers. This chapter gave you a more detailed overview of Xamarin and
helped you install Visual Studio 2022 to start development, but before you
put your hands down on writing code, you need to know how the .NET
technology works and the basics of Visual Studio. This is the goal of the next
chapter.

Questions
1. What is Mono?

Mono is a cross-platform framework that makes it possible to write and
run C# code on different systems like Linux and mobile systems.

2. What is Xamarin.Forms?

Xamarin.Forms is a development platform that allows for targeting
multiple systems like iOS, Android, and UWP from a single, shared C#
codebase.

Points to remember
You can use the free Community edition of Visual Studio 2019 to build
apps with Xamarin even for commercial purposes.
You can develop apps on both Windows and macOS.
A Mac computer is required to build apps for iOS.
The developer mode on an Android device can be enabled by tapping 7
times the operating system’s build number in the device settings.

CHAPTER 3
Introducing .NET and Visual Studio

Introduction
As a developer working with Xamarin, you need to understand the
technology that empowers your applications and the tools you use to write,
debug, and compile code. Microsoft .NET is a technology that includes the
execution environment and tools for building modern applications for the
desktop, the web, mobile, and the cloud. .NET is a very powerful yet
complex technology; in this chapter, you will learn the basics of its
architecture. You will also get a practical introduction to Microsoft Visual
Studio, the development environment you use to create Xamarin projects. In
this chapter, you will also learn important concepts that are used throughout
the rest of the book and get introduced to terminology that will always be
important in your life as a developer.

This chapter discusses concepts, tools, general rules, and practices that
are common to all the .NET platforms and to a variety of applications.
For now, it is more important for you to understand how .NET and
Visual Studio work rather than getting specific information about
Xamarin that would not be useful yet. The general concepts you learn
here will find specific explanations starting from Chapter 5: Building
Mobile Apps with Xamarin and Xamarin.Forms.

Structure
In this chapter, we will cover the following topics:

Introducing .NET
.NET 6: One .NET
Building applications with Visual Studio
Working with the Visual Studio 2019 IDE

Compiling, running, and debugging code

Objectives
After completing this chapter, you will know the basics of the .NET
development technology, and you will have understood why it is necessary to
have this knowledge before working with Xamarin and the purpose of each
major component in the .NET architecture. You will also get started with
Microsoft Visual Studio, the integrated development environment (IDE)
that you use to write applications upon .NET. More specifically, you will
learn how to create projects, debug, and run code, and how to use the most
common tools and windows in the IDE.

An integrated development environment is a software that includes all
the necessary development tools in one place, like the code editor,
debugger, automated tools to launch compilers, and so on. The IDE
acronym will be often used in the book when referring to Visual Studio
for quick reference.

Introducing .NET
Generally speaking, applications need an execution environment that offers
services, tools, and libraries. For many years, the Microsoft .NET Framework
has been the execution environment and development technology of choice
for applications written with the .NET languages: C#, F# and Visual Basic.
.NET is a very powerful technology, but it has two important limitations: it
only works on Windows and does not support mobile development. In 2015,
Microsoft announced a new platform called .NET Core, which would also
run-on systems like macOS, Linux, and mobile devices. The two have been
living in parallel for years but sharing all the API between the two is not
always easy or feasible. For this reason, Microsoft has recently shipped .NET
6, one .NET platform that targets all the systems, from a shared codebase.
Understanding the .NET Framework is extremely important for you, even if
this is not really used in the book, because it is the foundation of everything
about C# and .NET development, including Xamarin. In this chapter, you
will start by looking at the .NET Framework and the path that first brought it
to .NET Core, and finally, to .NET 6.

Introducing the .NET framework for Windows
The .NET Framework includes two major areas: an execution environment
for running applications, and tools with libraries that developers use to build
applications for Windows and the Web. The latest version available is 4.8,
and more about versioning is discussed later in this chapter.
As an execution environment for applications, the .NET Framework lives
between Windows and your applications. As a development technology,
.NET Framework 4.8 contains libraries and command line tools that are
offered for free. In theory, you could write the most complex .NET
application with the Windows’ Notepad and compile it with the .NET tools.
This is not certainly ideal, so Microsoft provides Visual Studio to build
applications for the .NET Framework, a powerful environment that you meet
in the second part of this chapter. C#, Visual Basic and F# are languages that
developers can use to build .NET applications. A flavor of C++ can also be
used to build .NET applications, but in general, this language is considered
for a wider range of purposes. Regardless of the programming language you
use, the .NET Framework allows you to build the following types of
applications:

Web applications with ASP.NET.
Windows desktop applications with Windows Presentation
Foundation (WPF).
Windows desktop applications with Windows Forms.
Network services for data exchange with Windows Communication
Foundation (WCF) and Web API.

Other kinds of applications can be developed with .NET Core, as described in
the next section.

Windows Forms is still supported by Microsoft, but it is an obsolete
platform and should only be used for maintaining existing programs.

Locating the .NET framework on disk
Usually, you will not need to directly interact with the .NET Framework
tools, but sometimes it might be necessary, so it is important for you to know
where to find it. On disk, .NET Framework 4.8 can be found in the

C:\Windows\Microsoft.NET\Framework\4.0.30319 folder. As you can
quickly verify via Windows Explorer, such a folder contains many .dll files
that represent the Base Class Library and many commands line tools, such as
the C# compiler and MSBuild.exe, a tool that is capable of building an entire
solution. Behind the scenes, Visual Studio invokes MSBuild when you
compile your code into binaries. In general, Visual Studio does all the
necessary jobs for you, but it is still important to know where tools and
libraries are located.

The .NET framework architecture
The different components of the .NET Framework work as layers between
Windows and your applications, as you can see in Figure 3.1:

Figure 3.1: The architecture of the .NET Framework

Upon Windows, the first layer is the Common Language Runtime (CLR).
This is discussed in further details in the upcoming sections, but in short, it
represents the execution environment for applications. Upon the CLR, you
find the Base Class Library (BCL). This provides all the system and
reusable .NET objects that you can leverage in your code. The BCL also
works as the infrastructure for most .NET development platforms, such as
Windows Forms, WPF, and ASP.NET, which are the last level of this layered

architecture.

The Common Language Runtime (CLR)
One of the biggest advantages of .NET is that languages like Visual Basic,
C#, and F# all share the same infrastructure. This is represented by the CLR,
which is responsible for:

Managing the application execution from startup to shut down.
Managing memory and resources used by applications.
Managing access to system resources.
Managing security.

The recurring word managing in the list above is not casual. In fact, when
talking about .NET, you will often hear the word managed, referred to a
managed environment and managed code. For better understanding, let’s
consider how developers could build applications for Windows before .NET.
A developer was fully responsible for managing system resources accessed
by an application, memory allocation, files and so on, and the main reason for
this is that applications could directly access the system. This can have
dangerous implications if resources are not handled carefully. The managed
environment provided by .NET makes sure that an application talks to the
.NET Framework via CLR rather than talking directly with the system. The
CLR also takes care of managing memory on behalf of the application, for
example, deallocating objects that are no longer needed. In general, the CLR
takes care of most system resources an application needs, and it can grant
access to system resources only if an application is fully trusted. Obviously,
there might still be situations where developers need to leverage system
resources directly, so .NET makes it possible to access the Windows API via
the so-called P/Invoke, which stands for Platform Invoke. P/Invoke allows
for writing the so-called unmanaged code, a technique that should be only
used when .NET does not provide an API for a given task. This is also the
reason why P/Invoke is not discussed in this book.

Compilers and the concept of Assembly
You create applications writing source code with a programming language,
but the operating system cannot directly understand what you write. For this

reason, development environments include compilers. A compiler is a piece
of software that translates the source code into machine language that an
operating system can understand. For example, .NET ships with several
compilers: the C# compiler, the Visual Basic compiler, the F# compiler; you
can write code with either C#, Visual Basic or F# programming languages,
and then the related compiler translates the source code into a binary file that
the system can understand and run, and this also applies to mobile systems.

There would be much more to say about the compilation process and
the additional tools, like linkers, invoked by the development
environment to produce an executable file. Regarding Xamarin, you
will get all the information in the upcoming chapters. About other
development platforms, it is not possible to explain everything in this
book, and it would also be out of scope, so the best thing to do is visit
the official Microsoft documentation (https://docs.microsoft.com/) and
read how it works in the appropriate platform documentation.

Mobile applications and desktop or Web applications obviously have
different architectures, so the compilation process works a bit differently.
However, some general concepts in .NET are important for you to know, and
they also apply to Xamarin. Generally speaking, programmers write code
with a high-level programming language, and then source code is parsed and
analyzed by compilers. These are responsible for generating binary files that
an operating system can run. Binary files (or shortly binaries) can be
executable files or dynamic link libraries (.dll). Binaries usually need a
runtime, a set of libraries that contain all the types of the application needs.
The key point is that applications written with Visual Basic 6 require their
own runtime, applications written with C++ require another runtime, and
applications written with Java require yet another runtime. One of the goals
of .NET is to simplify how the compilation process happens over source code
written with different languages so that compilers of all the .NET languages
can produce binaries that run on the CLR.

Assemblies in .NET
Regardless of the language you choose to write code, in .NET, all compilers
generate an assembly. You can think of an assembly as a binary file
containing CIL code and metadata. CIL is the acronym for Common

Intermediate Language, which is an evolved, object-oriented assembly
programming language. CIL’s instructions are CPU-independent, and the key
point is that a code snippet written with any .NET language will result in the
same CIL code. The other piece of an assembly is metadata. This includes
information about the types and members defined in your code, digital
signatures and references to other types defined externally. This is useful for
the CLR to identify the needs of your application in advance. This also
happened with Mono, until .NET 6 unified all platforms under the same
umbrella. So, despite the .exe or .dll extension, a .NET assembly is not
really an executable that can be immediately run by the operating system.
When you start a .NET executable, Windows understands that it is an
assembly and invokes the just-in-time (JIT) compiler. JIT is responsible for
analyzing the assembly’s metadata, packaging the information, and
compiling on-the-fly the CIL code into machine code that the operating
system can interpret.

The Base Class Library
Another important building block of the .NET Framework is the Base Class
Library (BCL). The BCL implements hundreds of thousands of reusable
objects and API that you can use in your code and that are available to all the
.NET languages and to most of the development platforms you use to build
applications, such as (but not limited to) Windows Forms, WPF, ASP.NET,
and Xamarin. Leveraging types defined in the BCL allows you to perform a
wide number of programming tasks writing managed code. Types are further
discussed in Chapter 4: The C# Programming Language, but in short, they
are a way to represent an object. The BCL group types within namespaces
and the name of each namespace usually refers to the technology. For
example, the System.Windows namespace exposes types and additional
namespaces to support the development of applications with Windows
Presentation Foundation (WPF), whereas the System.Web namespace
exposes types and additional namespaces to support the development of web
applications with ASP.NET. You can easily recognize namespaces defined in
the BCL because their name begins with the System prefix.

From .NET Framework to .NET Core
In previous releases, the .NET Framework was a unique environment for

building a variety of applications, including desktop applications, web
applications, and apps for mobile devices with flavors like the .NET Compact
Framework. In the last few years, Microsoft has taken some steps forward:
they have kept the full .NET Framework for desktop applications, and they
have created .NET Core (https://github.com/microsoft/dotnet). This is an
open-source, general-purpose, and modular subset of the .NET Framework
that is designed to be portable across platforms, with the goal of maximizing
code reuse and sharing. .NET Core is modular because it is offered in smaller
assembly packages with mostly no dependencies rather than one large
assembly that contains most of the core functionality. This is important for
two reasons: Microsoft could update .NET Core with an agile development
model, while you as a developer can simply choose the functionality pieces
that you need for your apps and libraries. Instead of adding assembly
references, as you are used to doing if you have existing experience with
Visual Studio, when developing for .NET Core, you get packages via the
NuGet Package Manager, an integrated tool in Visual Studio 2019 that makes
it easy to download and include libraries in your projects.

Advantages of .NET Core
The first advantage of .NET Core is that it is cross-platform. This means that
it runs not only on Windows but also on macOS and Linux and its derived
distributions. This is a true revolution for Microsoft, which makes it possible
for developers with experience on the Microsoft stack to write and deploy C#
code on different systems. With .NET Core, you can create the following
applications:

Universal apps for Windows 10
Cross-platform web applications with ASP.NET Core
Portable class libraries
Portable Console applications

In terms of architecture, .NET Core includes two major components:

CoreCLR, a small portable Runtime that includes the garbage collector
and just-in-time compiler (RyuJIT), but it does not include features like
application domains or code access security. The runtime is delivered
via NuGet and is currently represented by the Microsoft.CoreCLR

package.
Base class libraries, which offer almost the same code as the full .NET
Framework BCL, but they have been refactored to remove
dependencies so that it is easier to enable a smaller set of libraries.

Applications built with .NET Core run in an isolated environment. Visual
Studio packages the CoreCLR, the application package, and libraries used by
your application into one local package. With this approach, your
applications are not affected by machine-wide versions of the full .NET
Framework, and, most importantly, they have no dependencies on the
operating system. And because .NET Core could run on Windows, Mac
OSX, and Linux, it provides a shared implementation of APIs exposed by
each operating system so that you can write the same code, regardless of the
platform the application will run on. These shared implementations of the
API must adhere to the .NET Standard (https://docs.microsoft.com/en-
us/dotnet/standard/net-standard), a formal specification that establishes
how an API must be implemented in order to be available on multiple
platforms. Figure 3.2 provides a representation of the .NET Core 5
architecture:

Figure 3.2: The architecture of .NET Core

Now, the point is that there are two major platforms, .NET Framework and

.NET Core, plus additional development technologies like Xamarin that still
work with .NET languages (C# and F#), with most of the .NET API but on a
different runtime (Mono in this case). This is the point where .NET 6 comes
in to unify them all.

.NET 6: One .NET

.NET Framework, .NET Core, and Xamarin share several APIs, libraries,
tools, and programming languages but each targets different scenarios. For
Xamarin, the underlying runtime is also different, because it is based on
Mono. With this in mind, Microsoft decided to unify all these platforms into
one .NET technology, with one set of API, libraries, and tools. This
unification goes by the name of .NET. The work of bringing all the platforms
under one .NET started with .NET 5, released in October 2020, whose main
goal has been to make Xamarin use .NET Core instead of Mono and have one
codebase for both. For Microsoft, the next step is to unify the .NET
Framework and .NET 5 into one shared set of APIs, which goes under the
name of .NET 6, released in November 2021. Figure 3.3 shows how the
.NET 6 architecture appears:

Figure 3.3: The architecture of .NET 6

As you can see, all the high-level development platforms now rely on the
same runtime, libraries, API and tools. Obviously, .NET 6 improves

productivity for developers who now have to deal with one platform, and it
also provides general performance improvements and perfectly integrates
with Microsoft Visual Studio to offer the best development experience
possible. When it comes to Visual Studio, it is now time to discover how you
can build applications with this development environment and most of the
features you will use when working with Xamarin and Xamarin.Forms.

Building applications with Visual Studio
You develop applications in C# by using the Microsoft Visual Studio IDE.
The latest version available is 2022, released in November 2021, but the
minimum recommended version to build apps with Xamarin is 2019. Figures
in this chapter are based on Visual Studio 2019, but they appear the same
with Visual Studio 2022 as well. The goal of this section is to provide the
necessary knowledge of the tools you need in order to work with Xamarin. It
is worth mentioning that Visual Studio is a complex environment, and
therefore, this chapter can only provide an overview of the most common
tasks you will perform from within Visual Studio and of the most relevant
tools you need. In short, you will get familiar with the IDE. The tools
described in this chapter are common to all the .NET development platforms.
Tools that are specific to Xamarin.Forms will be introduced in the upcoming
chapters, where appropriate. At this point, you can start Visual Studio. In the
Windows’ Start menu, you can find a shortcut called Visual Studio 2019 (or
2022 if this is the version you installed). Click on it to start the development
environment.

Signing in with a Microsoft account
The first time you start Visual Studio, you will be asked to sign in with a
Microsoft Account. This is usually an email address based on one of the
Microsoft providers, such as Hotmail, Live, Outlook, but it can also be an
address from another provider and associated to Outlook as a Microsoft
Account. Figure 3.4 demonstrates this:

Figure 3.4: Signing into Visual Studio

Though not mandatory, it is strongly recommended that you sign in to Visual
Studio for the following reasons:

Settings synchronization across machines is enabled.
Visual Studio Community is permanently unlocked.
The IDE will automatically log in to all the Microsoft services

connected to the specified Microsoft Account.
Visual Studio is fully unlocked if it was downloaded from an MSDN
subscription.

Click on Sign in and enter your email address; then, click on Next. At this
point, enter your password when and click on Sign In. Visual Studio will
now complete the login process to the associated Microsoft services, and it
will show the Start window.

Synchronized settings
One of the biggest advantages of connecting a Microsoft Account to Visual
Studio is enabling a feature known as Synchronized Settings. As you
discover in the book, the IDE is highly customizable, and you might want the
same preferences on all the machines where you have installed Visual Studio.
More specifically, synchronized settings are part of Visual Studio’s general
options, which you access by selecting the Tools menu and then the Options
command. These include the following:

Theme settings: You can change the graphic theme of Visual Studio by
opening the Environment page, and finally, the General tab of the
Options dialog.
Startup settings: These can be customized by opening the Startup tab
of the Options dialog.
All the available settings for the text editor. These can be retrieved and
customized by opening the Text Editor tab in the Options dialog.
All the available settings for fonts and colors available in Environment,
Fonts, and Colors tab of the Options dialog.
All the available keyboard shortcuts, both default and custom, available
in the Environment, Keyboard tab of the Options dialog.
Custom command aliases.

Some of these settings are also described in the upcoming sections.

Introducing the Start window
When Visual Studio 2019 starts up, it shows the Start window. Figure 3.5
shows an example based on Visual Studio 2019:

Figure 3.5: Visual Studio 2019’s Start page

On the left side, the Start window shows a list of recently opened projects.
You can remove one or more items from the list by right-clicking on them
and selecting Remove From List. On the right side, the Start window
provides shortcuts to common actions, such as the following:

Clone or check out code: This shortcut allows you to connect to a Git
repository on Azure DevOps or GitHub so that you can clone the
repository or check out the code. This feature is discussed in further
detail in the next section.
Open a project or solution: This shortcut allows you to open an
existing solution or project.
Open a local folder: This shortcut makes it possible for opening an
existing folder as a loose assortment of files, similar to what Visual
Studio Code also allows.
Create a new project: This launches the same-named dialog, where
you can create a new project by selecting a template. This feature will
be discussed thoroughly in the next section.

If you do not want to work with projects and simply want to open the IDE,
you can click on the Continue without code hyperlink. You will create a
new project soon, but it is important for you to first know how projects are
structured in Visual Studio and .NET.

Understanding projects and solutions
In modern software development, an application is not simply the result of
compiling just one code file into a binary. Instead, you write many code files
that are linked to one another, and you need images, data files, fonts, and
other resources. All the files required to build an application are collected in a
project. In Visual Studio, you can create dozens of different project types,
depending on the kind application you want to build. In C#, the list of files
and resources required for a project is contained inside a .csproj file. An
Extensible Markup Language (XML) file that Visual Studio knows how to
handle to properly load a project. In Visual Studio, you might need to work
with multiple projects together, which is a very common situation. This is
represented by solutions that can be considered a container for projects. One
solution can contain an infinite number of projects of different types, such as
C# projects, class libraries, Web services, and Windows client applications.
A solution is an .sln file that, similar to .csproj project files, has an XML
structure. Visual Studio knows how to parse the .sln file and loads projects,
accordingly, providing the option to manage projects and solutions via the
Solution Explorer tool window, which will be discussed in the upcoming
sections.

Due to the large number of different project that you can create with
Visual Studio, in this book it is not possible to describe all the possible
options. For this reason, the focus will be on projects you can create
with C#, since this is the language, you also use to work with Xamarin.

Creating projects with C#
You create projects by clicking on the Create a new project shortcut in the
Start window or via the File, New Project command when already in the
IDE. This will then show a full list of supported project templates for all
languages and platforms. The list can be filtered by using one or more of the
dropdowns at the upper-right corner of the dialog. For example, click on the

All languages dropdown and select C# to restrict the list based on this
language (see Figure 3.6). The list of available project templates may vary
depending on which workloads you have selected during the installation of
Visual Studio, but in general, you can create projects to create desktop
applications, web applications and services, mobile applications, and reusable
libraries.

Figure 3.6: Creating projects with C#

Table 3.1 summarizes a list of the project templates for C# that are most
relevant for you as a Xamarin developer. You can see each template by
scrolling through the list in Visual Studio:

Template Short description

Console Application A project for creating a command-line application that runs on
different systems.

ASP.NET Core Web App A project for creating Web applications that can be hosted on
different systems.

Class library A project for creating a reusable library of code.

ASP.NET Core Web API A project for creating a Web service that exposes API in a
Representational State Transfer (REST) approach.

Windows Forms App A project for creating a desktop application upon the Windows Forms
technology.

WPF Application A project for creating a desktop application upon the Windows
Presentation Foundation technology.

Blank App (Universal
Windows)

A project for creating applications that target the Universal Windows
Platform.

Mobile App
(Xamarin.Forms)

A project template with multiple projects that allows for creating apps
for iOS, Android, and UWP using Xamarin.Forms. This is the project
template you will use most in the book.

Android App (Xamarin) A project for creating Android apps with Xamarin.Android.

iOS App (Xamarin) A project for creating iOS apps with Xamarin.iOS.

Android Wear (Xamarin) A project for creating Android apps for wearable devices with
Xamarin.Android.

iOS Wear (Xamarin) A project for creating iOS apps for wearable devices with
Xamarin.iOS.

Xamarin.UITest Cross
Platform Test Project

A project that allows implementing automated tests for the user
interface over Xamarin projects.

Table 3.1: Most relevant project templates for C#

A short description is available for every project template in the Start
window, which is visible below the project name (see Figure 3.6).

In this chapter, you will use the Console application template to discover
tools in Visual Studio. In the rest of the book, you will use the Mobile App
(Xamarin.Forms) project template to create mobile apps. When you create a
new project, Visual Studio first generates a solution containing one or more
projects, depending on the selected template. Many concepts will be clarified
in the next section, where you create your first project with Visual Studio.

Creating your first C# project
Now that you have seen the main concepts about creating projects, you are
ready to create your first C# project. You will work with a Console
application, which is optimal for instructional purposes and that allows for
quickly understanding what you do without relying on a specific platform. In
the Start dialog, click on the Console Application template. Visual Studio
will show the Configure your new project dialog, where you will be able

to specify the project name and location on disk (see Figure 3.7). The project
name cannot contain blank spaces. Enter MyFirstProgram as the name in the
Project name box. Visual Studio provides a default location to store projects,
which is usually under C:\Users\UserName\source\repos, where UserName
is your Windows user. You can provide a different location, but for now. it is
okay to use the default one. When ready, click on Next:

Figure 3.7: Supplying project information

In the Additional information dialog (see Figure 3.8), you will be able to
specify the target framework. Select the highest .NET Core version available.
On my machine, it is .NET 5.0 (Current). When done, click on Create:

Figure 3.8: Supplying project information

After a few seconds, your project is ready, and Visual Studio 2019 shows the
code editor (see Figure 3.9):

Figure 3.9: The new project is ready

The code simply shows a message in the system Console window, and this
simple project will serve as the base for learning tools and features in Visual
Studio 2019 that you need to know as a developer.

Working with the Visual Studio IDE
The Visual Studio 2019 IDE is a very powerful development environment,
which offers a large number of productivity tools that will simplify your
developer life. This section describes the most important tools, commands,
and features that you need to know to successfully understand the topics
covered in the upcoming chapters. Some other tools require more knowledge
of the C# programming language and will, therefore, be discussed in the later
chapters, where appropriate.

Working with tool windows
Tool windows are floating windows that can be moved, arranged, and docked
to the IDE interface, which provide a large variety of tools. As a general rule,
all the tool windows available in Visual Studio are listed in the View menu.

There are exceptions; for example, tool windows providing testing tools can
be found in the Test menu and those that provide debugging tools can be
found in the Debug menu. The examples in this book require using several
tool windows, and this chapter provides an overview of the ones that are most
frequently used. In particular, this chapter describes the Solution Explorer,
Error List, Properties, and Output windows because you will use them
very often in all your projects. You’ll learn about other tool windows that are
relevant to mobile app development in the appropriate chapters. Rearranging
tool windows is accomplished by clicking on their title and dragging and
dropping it at the new desired position and onto the most appropriate arrow in
the cross shown in Figure 3.10:

Figure 3.10: Arranging tool windows

When you first install Visual Studio, tool windows have a default position in
the IDE, but you can rearrange them at your convenience. The following
sections discuss the tool windows you’ll use most frequently.

Solution Explorer
Solution Explorer is probably the tool window you will interact with the

most. It allows you to manage solutions, projects, and files. It provides a
structured and complete view of the solution, its projects, and files in each
project. It also provides a way to add and remove files and organize files into
subfolders. Figure 3.11 shows how the newly created C# project appears in
Solution Explorer.

Figure 3.11: Browsing a solution with Solution Explorer

As you can see, the solution is at the root level. Nested under it are projects
(in this case, only one project). Inside each project, you can find code files
and subfolders. These can contain images, database files, documents, and any
other required assets. You can also get a list of all the dependencies in the
project. A dependency is a library or component that is necessary for the
application to work. In the case of a Console project built on top of .NET
Core, the required dependency is the Microsoft.NETCore.App library that
you can find under the Frameworks subfolder. In the real world, there will be
several dependencies, and this will be clearer when you start working with
Xamarin in practice. Analyzers are special tools that analyze your source

code as you type, highlighting issues depending on rules and patterns defined
by Microsoft. However, developers can also create their own analyzers to
implement custom code style rules. Analyzers will not be covered in this
book, but an official documentation page is available for them
(https://docs.microsoft.com/en-us/visualstudio/code-quality/roslyn-
analyzers-overview). You use Solution Explorer to add and manage items in
projects as well as to see which files constitute a project. By default, Solution
Explorer shows only the items that compose the project. If you need a
complete view of references and auto-generated code files, you can click on
the Show All Files button, which is the third from right to left in the toolbar
of the window. Solution Explorer also displays the list of types and their
members defined inside each code file. Simply expand the name of the code
file to accomplish this. For example, in Figure 3.11, you can see that the
Program.cs code file defines the Program class, which exposes a method
called Main. When you double-click on a member, the code editor will
automatically open the file and move the cursor to the member definition.

If terms like class or member are completely new for you, do not worry.
In the next chapter, you will learn everything that is required to write
C# code from a beginner point of view.

You can also filter the list of items shown in Solution Explorer by typing
keywords in the search box. Adding, editing, or removing items in a project
is accomplished by right-clicking on the project name and then by selecting
the appropriate command from the Context menu. Figure 3.12 shows how
this appears:

Figure 3.12: The Solution Explorer contextual menu

As you can see in the preceding figure, the context menu offers shortcuts to
many tasks that you can perform against projects or solutions. For example, if
you select the Add command, you will be able to add new items via a
dedicated dialog. When you will be asked to add new items to your projects

in the next chapter, you can select Add | New Item. You can also execute tasks
over individual files. Just right-click on items in the solution instead of right-
clicking on the project’s name.

The Error List
The Error List tool window displays the list of errors, warning messages, and
informational messages that Visual Studio reports during the development
and compilation process of your applications. Figure 3.13 shows how the
Error List window looks:

Figure 3.13: The Error List tool window

In general, the Error List groups code issues that are detected in the code
editor, where issues are represented with squiggles (wavy lines). Errors are
highlighted with red squiggles, whereas warning messages are highlighted
with green squiggles. Errors prevent your application from running, and this
is the typical case of code that cannot compile successfully. They include
problems that Visual Studio or the compiler encounter during the
development and build process, such as syntax errors or invalid object
management. Warnings are related to code that will still successfully compile
but that needs your attention and that you should never ignore. For both
errors and warnings, you can double-click on a message in the Error List,
and the code editor will move directly to the code that caused the message.
You can also press F1 or select the Show Error Help command to get help
on about a given message. Finally, informational messages just provide
information and can be usually ignored.

The Properties window

All the items in a solution have properties. These represent the characteristics
of an item. You will more often hear about properties when talking about
.NET objects, and the next chapter gives you an in-depth explanation, but
files have properties as well. The filename is an example of property of a file.
Whether you need to set object or file properties, Visual Studio offers the
Properties window. Figure 3.14 shows an example of the Properties
window for a button control in Xamarin.Forms:

Figure 3.14: The Properties window over a Button in Xamarin.Forms

The Properties window is made of two columns. The left column shows
property names, and the right column contains the property values. For C#
objects, you will normally set properties in code, but for controls (elements of
the user interface) or files, you can take advantage of the Properties
window. The keyboard shortcut to open the Properties window is F4.

The Output window

Visual Studio continuously invokes external tools. Compilers and the NuGet
package manager are examples of tools that Visual Studio often requires to
run. External tools send a result of their actions when completed, and Visual
Studio redirects such output to the Output window. Continuing the example
of compilers, when the compilation process is completed, the output of the
compiler is sent to the Output window rather than being displayed in the
system console. Figure 3.15 shows an example of the Output window that
contains the results of the compilation process for a C# project:

Figure 3.15: The Output window showing the result of compiling a program

The Output window is interactive. For example, when you’re compiling a
program, if the compiler reports any errors, the Output window shows them,
and you can click on the buttons on the window’s toolbar to navigate error
messages. Navigating to error messages also makes the code editor open up
the code that caused the error. You will find the Output window extremely
useful, especially when debugging, because it also shows the debugger
output. If you click on the Show Output From combo box, you will see a list
of available outputs.

Editing project properties
In the Visual Studio terminology, projects settings are referred to as project
properties. These include the application filename, the application icon,
version number, copyright information, and compilation settings. In order to
open project properties, you right-click on the project name in Solution
Explorer and then you select Properties. Figure 3.16 shows the
Properties editor for the first C# program you created previously:

Figure 3.16: Editing project properties

The Properties editor is organized into tabs, and each tab represents a
specific area of the project, such as application-level properties, external
references, deployment options, compile options, and debugging options. For
now, you don’t need to learn about all the tabs because they change
depending on the type of project you are working on. For Xamarin projects,
the Properties editor has specific tabs that will be discussed in the
appropriate chapters. Actually, the Application tab is the only one that will
be discussed now because it is common to all the project types.

Editing application settings
Application settings include the executable’s name, icon, or metadata that

will be of interest for the operating system, such as the program version,
copyright information, and so on. The Application tab allows you to edit
these kinds of settings, and it is shown by default when you first open
Properties (see Figure 3.16). More specifically:

The Assembly Name field is used to set the name of the compiled
assembly. By default, the assembly’s name is based on the project
name.
The Default Namespace field is used to set the root-level namespace
identifier. (Namespaces will be discussed in the next chapter). You can
think of the root namespace as the object that stores everything that
your project implements. According to Microsoft specifications, the
root namespace should be formed as follows:
CompanyName.ProductName.Version (not mandatory).
Output type specifies the application type (for example, Console
application, class library, Windows Forms application) and is
automatically set by Visual Studio. You should not change the default
setting in this box.
Target framework allows you to change the target version of .NET as
the runtime for the application. This might be useful with desktop
applications when a new release of .NET is published, and you want to
make your programs leverage its new features.
Startup object allows you to specify the main entry point of your
application. This might make sense on Windows projects, but it’s not
the same on Xamarin projects.

The Resources group allows you to specify an icon for Windows
applications and resources that must be embedded in the application itself.
These will not be used with Xamarin.Forms projects, which handle resources
differently.

Basic code editing features
The code editor is the place where you spend most of your developer life, so
it is important for you to know how to leverage all the tools it offers to boost
productivity. Obviously, not all the tools can be discussed in this chapter
because they would require more knowledge of the C# language on one side,

and more complex projects on the other side. So, you will learn about
features like syntax colorization, IntelliSense, and zooming the code. Other
features will be discussed in the next chapter, when you learn more about C#.

Syntax colorization
If you look back at Figure 3.9 and look at the source code of the sample
program, you can notice how words have different colors. Visual Studio
makes it visually easier to understand what each word refers to. In particular:

Reserved words of the C# programming language are in blue.
Names of objects defined inside .NET or custom libraries are in light
blue.
Names of members exposed by such objects are in dark grey.
Namespace identifiers are in black.
Strings are brown.
Comments are in green.

Syntax colorization is an extremely important feature for each code editor
because your eye will immediately recognize parts of source code from their
color, and this will make you much faster.

Zooming the code editor
The code editor supports zooming in and out. This is accomplished by
pressing the Ctrl key plus moving the mouse wheel up and down. You can
also zoom the code editor by changing the zoom percentage that you can find
at the bottom-left corner of the IDE (see Figure 3.9).

Introducing IntelliSense
IntelliSense is a productivity tool for your coding experience represented by
an integrated window that pops up in the code editor as you type, and its goal
is to provide sophisticated auto-completion options. Figure 3.17 shows
IntelliSense in action as a new instruction is being added to code:

Figure 3.17: Advanced code completion with IntelliSense

You can finalize auto-completion with one of the following options:

Tab: Pressing Tab selects the highlighted auto-completion option and
enables you to write other code.
Spacebar: Pressing the spacebar selects the highlighted auto-
completion option, adds a blank space at the end, and enables you to
write other code.
Enter: Pressing Enter selects the highlighted auto-completion option,
adds a pair of empty parentheses at the end, and moves the cursor on a
new line. This option is recommended when you are adding a method
that does not require parameters.

Left parenthesis: Pressing (selects the highlighted auto-completion
option, adds a left parenthesis at the end, and enables you to supply
arguments.
Ctrl + spacebar: Pressing Ctrl + spacebar brings up the full list of
IntelliSense options.

IntelliSense is activated when you type one character, and it even works with
C# reserved words. When you select a word, member name, or identifier in
the IntelliSense list, it will also display the documentation (if available). The
list can be even filtered by member type. IntelliSense is an extremely
valuable productivity tool, because provided suggestions are also based on
the context. This technology is not only available in C# but to all the .NET
languages and markup languages such as XAML and HTML.

Changing the Code Editor options
The code editor can be customized in many ways. You access the code editor
settings via Tools | Options and then locating the Text Editor node in the
Options dialog (see Figure 3.18).

Figure 3.18: Accessing the code editor settings

An in-depth explanation of the code editor options is out of the scope of this

chapter, but here, you can find anything you can change in the settings. For
example, you can enable line numbers by selecting All Languages, Line
Numbers, or you can control default spacing and indentation with the Tabs
node under All Languages or under the name of individual languages.
Options are self-explanatory, so it is not difficult to understand how they
work and what they do.

You might be surprised to discover that the Text Editor options do not
offer the possibility to customize fonts and colors. The reason is that
these are located under the Environment node, Fonts, and Colors
subnode. Here, you can change all the default properties of the code
editor, including the colors for reserved words, identifiers, comments,
and strings.

Compiling, running, and debugging code
Compiling a project means generating a .NET assembly from source code
and assets. In Visual Studio, this process is also referred to as building. As
you learned previously in the Assemblies in .NET section of this chapter, an
assembly can be a standalone application (an .exe file) or a class library (a
.dll binary). However, with Visual Studio supporting many application
types, including native mobile apps, the compilation process can also produce
binary files for specific platforms, such as .apk files for Android and .ipa
files for iOS. To compile a project into an application, you work with the
Build menu. More specifically, you click on Build, Build ProjectName,
where ProjectName is the name of your project. When you invoke this
command, Visual Studio launches a command line tool called MSBuild.exe,
which is capable of building entire solutions. When MSBuild completes
building the solution, Visual Studio shows its log in the Output window. If
you look back at Figure 3.15, you can see the output log of the build process
for the MyFirstProgram sample application. The build log is very important,
especially when the build process fails. In case the build process fails because
of errors in the code, such errors will be listed in the Error List window
(see Figure 3.13) described previously. If the build process succeeds, the
resulting binary files will be placed in a subfolder within the Bin\Debug or
Bin\Release subfolders, depending on the selected output configuration.

Understanding configurations
By default, Visual Studio provides two configurations for compiling projects:

Debug: This configuration ensures that the C# compiler generates
debug symbols so that you can use the Visual Studio debugger to debug
and test your applications.
Release: This configuration excludes debug symbols from the
compilation, and the build process is optimized for releasing your
application to users.

The configuration can be set by either using the combo box located on the
Visual Studio toolbar or via the Build tab of the Properties window (see
Figure 3.19).

Figure 3.19: Changing the build configuration

With Xamarin, there is an additional configuration called Ad-Hoc. It is very
similar to the Release configuration, but it is optimized for distribution to
testers and requires the app to be signed with the appropriate certificates. In
practice, you will not use Ad-Hoc until you are ready to ship the app
packages, and, at development time, you will normally work with the Debug
configuration.

Tip: Visual Studio also allows you to create custom configurations,
based on the default ones. You can do this by clicking on Build |
Configuration Manager. Creating custom configurations is not
necessary in most cases, so this will not be covered here, and especially
for Xamarin, it is recommended to go with the supplied configurations.
So, this tip is more for your knowledge than for practical usage.

The Build tab of the Properties window allows for customizing and

controlling the compilation options. However, this tab (and the build options)
changes according to the type of application you are working on. For
Xamarin, the Build tab offers different options for both Android and iOS
projects. For now, remember that the Build tab is the place where you can
control compilation options. Especially for Android, changes on the build
options will be discussed in Chapter 5: Building Mobile Apps with Xamarin
and Xamarin.Forms.

Running and Debugging Code
When creating applications with Visual Studio, you can run the applications
from within the IDE to see how they work, and you have two options to do
this:

Running the application with an instance of the debugger attached. This
requires the Debug configuration to be enabled.
Running the application without an instance of the debugger attached. It
is recommended to enable the Release configuration.

In order to start the app with the debugger attached, you can either
press F5 or click on the button in the IDE’s toolbar that shows the
project name with a green, Play icon. Instead, press CTRL+F5 to start
without the debugger.

In the case of the sample Console app, the application will run in the system’s
console window. In the case of a Windows Forms or WPF project, the
application will run within Windows and with a graphical user interface. In
the case of a Xamarin project, the application will run in either a phone or
tablet simulator, or a physical device. The debugger is a complex tool that
analyzes the execution of every single line of code during the entire
application lifetime and allows for discovering bugs, fixing errors, finding the
value of variables at a certain moment in time, or simply analyzing the
execution flow. Debugging is crucial in the development lifecycle, and you
will spend many hours debugging your code. For this reason, it is important
to understand the basic concepts of debugging applications in Visual Studio,
which also apply to Xamarin development. Before going on, add the
following line of code after the Console.WriteLine statement in the sample
project: Console.ReadLine();. This will make the application stand by,

waiting for the user input.

Debugging your code
Debugging is the process of analyzing the execution flow of an application,
finding bugs, and discovering runtime errors. To accomplish this, the
debugger needs the so-called symbols, a set of data files that it uses to
connect the source code to the runtime libraries and dependencies and
analyze the flow. Visual Studio generates symbols only when you select the
Debug configuration, which is, therefore, needed to debug. Now, press F5 to
start debugging. Visual Studio will first compile the project and then it will
run the application. The debugger analyzes the execution of every single line
of code, detects runtime errors, and allows developers to take control over the
execution flow. Figure 3.20 shows the sample application running in debug
mode:

Figure 3.20: The application running with the debugger attached

In the bottom area of the IDE, note that some tabs are available, such as
Locals, Watch 1, Call Stack, Breakpoints, Command Window, Immediate
Window, and Output. These are actually tool windows with specific

debugging tools and will be recalled in the upcoming chapters where
required. When an application is in debug mode, Visual Studio’s status bar
and border become orange. Before you learn about the tools, you need to
modify the source code of the sample application and make it intentionally
cause errors that you can fix with the help of the debugger.

Preparing the sample project for debugging
In this section, you will learn how to debug your code, how to analyze the
execution flow, and how to fix errors. This requires having some code that
serves to this purpose. Go to Visual Studio, and in the code, editor change the
existing code as follows:
using System;

using System.IO;

namespace MyFirstProgram

{

class Program

{

static void Main(string[] args)

{

// A text message to be displayed

string textMessage = “Hello World!";

// Attempting to open a file that does not exist

string textFileContent = File.ReadAllText(@"C:\MyFile.txt");

// Displaying a text message

Console.WriteLine(textMessage);

// Waiting for the user input

Console.ReadLine();

}

}

}

The next chapter will teach you more concepts about the C# programming
language, but in short, here you have:

Two using directives at the top, which simplify the way some objects
are accessed in code.
The root namespace that takes the project name.
The definition of the root class called Program, which contains the first
piece of code that will be executed when the application starts, and the
Main method (in the .NET terminology, functions are referred to as
methods).

A variable of type string called textMessage that contains some text
and that will be useful to analyze the execution flow.
A variable of type string that contains the result of the invocation of
the ReadAllText method from the File class, and that attempts to read
the content of a file that does not exist. This will be useful to understand
how to debug runtime errors.
The WriteLine method from the Console class that displays the text
message defined above.
The ReadLine method from the Console class that waits for the user to
press Enter and that is useful to avoid the automatic application
shutdown at the end of the previous instructions.

Now that you have some source code ready, you can finally start leveraging
all the power of the debugger.

Breakpoints and data tips
Breakpoints provide a granular way to control the execution flow of your
code. You can place a breakpoint at a certain point in your code, and the
execution will break there (break mode). When in break mode, you can
analyze variable values and the status of your objects, taking appropriate
actions. When done, you can resume the execution from the same point. You
can add a breakpoint by placing the cursor on a specific line of code and then
press F9. The line of code where you placed a breakpoint it is then
highlighted in red (see Figure 3.21):

Figure 3.21: Adding breakpoints

For a practical understanding of breakpoints, press F5 to start debugging the
application. When a breakpoint is encountered, the debugger breaks the
execution, and the current line of code is highlighted in yellow before the line
itself is executed (see Figure 3.22).

Figure 3.22: Analyzing the execution flow with breakpoints

Note how the Locals tool window shows the value of each variable at that
moment. In this case, they still have no value because the first line of code
has not been executed yet, but the purpose of Locals is helping you
understand variables’ values.

Tip: If the tool windows you see in Figure 3.22 are not automatically
available in Visual Studio, you can manually enable them by opening
the Debug menu and then Windows, selecting those of interest.

Similarly, if you hover over the textMessage variable, you can see a tooltip
displaying the content of the variable itself (see Figure 3.23). This feature is
known as data tips and is extremely useful when you need to investigate the
content or status of an object in a particular moment of the execution flow:

Figure 3.23: Showing variables’ value with Data Tips

Once you have completed your analysis over objects, you can either fully
resume the application execution (until another breakpoint is encountered) by
pressing F5, or you can continue by executing one statement or line of code
at a time. Pressing F10 (shortcut for the Step Over command from the Debug
menu) allows you to execute a statement at a time, where statement is a set of
instructions (for example, a function). With F11, instead, you execute a
single line of code at a time. This is a shortcut for the Step Into command
from the Debug menu). Continuing with the current code example, you can
press F11 to check whether the textMessage variable has been properly
initialized at runtime. Whether you press F10 or F11, the debugger executes
the line of code where the breakpoint is placed, and Visual Studio highlights
the next line in yellow. Now, you can again hover over the variable to see the
assignment result, which is now Hello World!. Once investigations are
completed, you can resume the execution or continue line by line.

Detecting and fixing runtime errors
A runtime error is an error that cannot be predicted and that occurs during
application execution. Usually, runtime errors are due to mistakes in the
programming logic but with a valid syntax, and therefore, the compiler
cannot detect them. An example of a runtime error is creating an application
and giving users the ability to specify a filename, but then the file is not
found on disk; another example is trying to access a database with
insufficient privileges. In real-life applications, you cannot predict what the
user could be doing in a specific situation, but you can predict the possibility
that an error might occur. For this reason, it is your responsibility to
implement appropriate error-handling logic. If you continue debugging your
code, the application’s execution will break again due to a runtime error.
More specifically, the code is attempting to open a file that does not exist.

When a runtime error is encountered, Visual Studio breaks the execution, as
shown in Figure 3.24:

Figure 3.24: Debugging runtime errors

As you can see, the code editor highlights in light green the line of code that
caused the error. A tooltip entitled Exception Unhandled also shows
summary information about the error. In this case, a FileNotFoundException
error was thrown and was not handled by the developer. This is the reason
why the application execution was broken. The Exception Unhandled tooltip
also shows a description of the error message; in this case, the description
says that the specified file could not be found. At this point, you can also
click on View Detail, which enables you to open the Quick Watch window,
shown in Figure 3.25:

Figure 3.25: Investigating error details

The QuickWatch dialog is showing a list of properties from the
FileNotFoundException class. Among others, the StackTrace property is
extremely useful because it shows the full hierarchy of calls to objects that
caused the error. Another interesting property is InnerException. In the
current example, it is set to null, but in many situations, it will show a
hierarchy of exceptions that happened before the current one was raised.
Now, what you should do is fix the error and restart the application. In the
next chapter, you will learn how to implement error handling the proper way,
but for now, you have discovered how to detect bugs and errors.

Conclusion
In this chapter, you learned the basics of the .NET technology and its current
status, and you started working with the Visual Studio 2019 development
environment, creating your first C# project, and understanding how the
debugger works. All these concepts will be useful when you will start to
work with Xamarin, but first you need to get an overview of the C#
programming language, which is offered in the next chapter.

Points to remember
.NET is an open source, cross-platform, and cross-device technology
that allows for creating and running next-generation applications.
.NET has a layered architecture that stays in between the operating
system and applications.
.NET 6 unifies all the .NET APIs into one codebase.

Key terms
.NET Assembly: Binary file resulting from the compilation process that
contains executable code and metadata.
Base Class Library: The main reusable library of code and components
from .NET.
Integrated Development Environment (IDE): A development tool
that includes code editor, debugger, and application lifecycle
management tools all in one place.
Debugger: Tool that allows for discovering bugs and exceptions in an
application.

CHAPTER 4
The C# Programming Language

Introduction
C# is a programming language you can use to write a variety of .NET
applications, including mobile apps with Xamarin. It was first launched in
2002 with .NET Framework 1.0, and it was soon loved by millions of
developers because it provided the ability to fully leverage the power of .NET
with a syntax that was familiar for developers using C and C++, combined
with the ease of usage that was typical of Visual Basic. This chapter
summarizes the most relevant characteristics that you need to know as a
developer writing mobile apps with Xamarin. Other, more specific features of
the language will be described in the upcoming chapters, where appropriate.

As you can imagine, it is not possible to describe in detail the C#
programming language in a few pages. At the end of the chapter, you
will find suggestions for books and documentation about C#.

Structure
In this chapter, we will cover the following topics:

Understanding data types
Common data operators
Iterating objects
Understanding loops
Conditional code blocks
Introducing arrays
Object-oriented programming
Advanced C# programming

Objectives
After completing this chapter, you will be able to leverage the most relevant
C# fundamental features that you not only need to know to build apps with
Xamarin, but that you can use with any .NET project.

Understanding data types
Applications manipulate data, which can be of different types: numbers,
dates, text, and the combination of some of these into complex types that
represent objects of the real life that an application must handle. .NET
implements primitive data types and allows for creating custom types. In
addition, .NET types are shared across languages, and this is possible to
another feature of .NET called the Common Type System. In this section,
you will learn what the Common Type System is, what primitive types are
provided by .NET, and the difference between value and reference types. In
the object-oriented programming section later, you will learn how to create
custom types, which is something you will do very often in your daily work.

Meet the Common Type System
.NET provides a way of manipulating data types known as Common Type
System. This provides a unified model for exposing data types so that all the
.NET languages, such as C#, Visual Basic and F#, can all consume the same
data types. For example, a 32-bit integer is represented by the System.Int32
data type, and all the .NET languages can invoke the System.Int32 object for
declaring integers because this type is provided by the .NET Framework and
is language independent.

System is the root .NET namespace. Namespaces can be considered as
containers of types, as you will learn in the Object-oriented
programming section later in this chapter.

Actually, each data type is an object that inherits from the System.Object
class. This class provides the primary infrastructure that all .NET types must
have. .NET ships with thousands of built-in data types that all derive from
System.Object, and the Common Type System ensures that all .NET types
derive from it. This concept will be clearer after discussing value and

reference types.

Clarifying value types and reference types
Value types are data types that store data directly. Examples of value types
are integers (System.Int32), Booleans (System.Boolean), dates
(System.DateTime) and bytes (System.Byte). Value types are stored in a
memory area called stack. The following is an example of a value type that
contains a value:
System.Int32 anInteger = 5;

C# defines reserved words that represent primitive types defined in the
Common Type System, such as int for System.Int32, bool for
System.Boolean and byte for System.Byte, so the previous assignment can
be rewritten as follows (which is also the common way of doing it):
int anInteger = 5;

C# is case-sensitive. This means that you need to be careful about the
casing of keywords and identifiers. The C# compiler will always inform
you about invalid references, and IntelliSense will help you pick up the
proper ones quickly, but it is something you need to keep in mind. For
example, int is a reserved word, while Int is not.
Reference types are data types that just reference the actual data. In other
words, reference types store the address of their data in the stack, whereas the
actual data is stored in another memory area called managed heap.
Reference types are represented by classes, which are described in more
details in the Object-oriented programming section. The following is an
example of a reference type:
class Person

{

string FirstName { get; set; }

string LastName { get; set; }

}

Reference types derive from System.Object or from other classes that derive
from System.Object, which defines the common infrastructure for all
reference types. Deriving (or also inheriting) from an object is explained
further in the Object-Oriented Programming (OOP) section later, however it
means that an object automatically implements all the public members that
the starting class exposes. C# also represents this with the Object keyword.
Value types undergo an intermediate object called System.ValueType, which

derives from System.Object and that defines the common infrastructure for
all value types.

.NET primitive types
The Base Class Library provides several built-in primitive types that you can
use according to your needs. C# provides reserved words that are
counterparts of the most common value type names. You can use the .NET
names and the C# reserved words interchangeably. Table 4.1 lists the most
common primitive types in the .NET Framework, along with a description of
each and the C# keywords:

Type Description C# Keyword

System.Int16 Represents a numeric value with a range between –32768
and 32767.

short

System.Int32 Represents a numeric value with a range between –
2147483648 and 2147483647.

int

System.Int64 Represents a numeric value with a range between –
9223372036854775808 and 9223372036854775807.

long

System.Single Represents a floating-point number with a range from –
3.4028235E+38 to 3.4028235E+38.

float

System.Double Represents a large floating-point number (double precision)
with a range from –1.79769313486232e308 to
1.79769313486232e308.

double

System.Boolean Accepts True or False values. bool

System.Char Represents a single Unicode character. char

System.DateTime Represents dates, times, or both in different supported
formats (see the following paragraphs).

DateTime

System.Byte Represents an unsigned byte, with a range from 0 to 255. byte

System.SByte Represents a signed byte, with a range from –128 to 127. sbyte

System.UInt16 Represents a numeric positive value with a range between 0
and 65535.

ushort

System.UInt32 Represents a numeric positive value with a range between 0
and 4294967295.

uint

System.UInt64 Represents a numeric positive value with a range between 0
and 18446744073709551615.

ulong

System.Decimal Represents a decimal number in financial and scientific
calculations with large numbers, in a range between –
79228162514264337593543950335 and
79228162514264337593543950335.

decimal

System.TimeSpan Represents an interval of time, in a range between –
10675199.02:48:05.4775808 and
10675199.02:48:05.4775807 ticks.

System.Guid Allows the generation of globally unique identifiers.

System.String Represents text. string

Table 4.1: .NET primitive data types

Declaring and consuming variables
Variables are symbolic names associated to a value that can potentially
change. With every programming language, variables must be of a given
type. When you declare variables in C#, the syntax requires you to first
specify the type, then an identifier, and optionally, a value. The following
example demonstrates how to declare and show the values of different
variables in the Console window:
static void Main(string[] args)

{

// Declares an Integer

int anInteger = 2;

// Declares a double and stores the result of a calculation

double calculation = 74.6 * 834.1;

// Declares one byte storing a hexadecimal value

byte oneByte = 0x0;

// Declares a string

string sampleText = “Hello World in 2021!";

// Declares a Boolean variable

bool isTrueOrFalse = true;

Console.WriteLine(anInteger);

Console.WriteLine(calculation);

Console.WriteLine(oneByte);

Console.WriteLine(sampleText);

Console.WriteLine(isTrueOrFalse);

Console.ReadLine();

}

C# also allows you to declare variables without explicitly specifying their
type, using the var keyword. This keyword enables a feature called local type
inference and delegates to the compiler the job of identifying the type. It

simply works as follows:
// Declares an Integer

var anInteger = 2;

// Declares a double and stores the result of a calculation

var calculation = 74.6 * 834.1;

// Declares one byte storing a hexadecimal value

var oneByte = 0x0;

// Declares a string

var sampleText = “Hello World in 2021!";

// Declares a Boolean variable

var isTrueOrFalse = true;

In general, it is a best practice to explicitly declare a variable type. However,
there are situations in which using var is more convenient; for example, when
the explicit type is extremely long or when you work with the so-called
anonymous types.

Clarifying the difference between value and reference types
There are differences between value types and reference types, and this is
related to how they are allocated in memory and how they manage data.
Value types contain the data they represent, and they are stored in a memory
area called stack. Reference types only contain the address of the actual data
they represent (a reference). The address is stored in the stack, whereas the
actual data is stored in another area, called managed heap. For better
understanding, consider the following lines of code that work with a value
type:
int firstInteger = 1;

int secondInteger = firstInteger;

With these lines, assigning the value of firstInteger to secondInteger
creates an exact copy of the value of firstInteger into the other, which also
means having two integers in memory. If you change the value of
secondInteger, you are not affecting the firstInteger; this can be
demonstrated as follows:
secondInteger = 2;

Console.WriteLine(firstInteger); // prints 1

Console.WriteLine(secondInteger); // prints 2

Now, consider the following example based on a reference type. It works
with the Person class defined above:
Person person1 = new Person();

person1.LastName = “Del Sole";

Person person2 = person1;

By assigning person1 to person2, you are not creating a copy of person1.
You are, instead, creating a copy of the address of the object. So, suppose
you write the following lines:
person2.LastName = “White";

Console.WriteLine(person2.LastName); // Prints White

Console.WriteLine(person1.LastName); // Prints White

You will see how changing a property on an instance will consequently affect
the source instance at the same address in memory. These clarifications are
extremely important, and you will always need to keep them in mind,
especially when working with reference types.

Common data operators
There are different operators available in C#, such as arithmetic operators,
comparison operators, and logical operators. This section provides a brief
description of each category.

Equals and Not Equals Operators
The == and != operators allow for checking whether a condition is true or
false, respectively. The following code shows an example:
bool trueValue = true;

if(trueValue == true)

{

// Condition is true

}

if(trueValue != true)

{

// Condition is false

}

These operators can be used wherever you need to perform a check over a
condition, not only inside if blocks.

Tip: When you need to compare two instances of the same class for
equality, you will use the Equals method that each instance exposes,
inherited from System.Object. There are other ways as well to compare
objects for equality in .NET, but these are not discussed here.

Arithmetic operators

C# provides the arithmetic operators listed in Table 4.2.

Operator Description

+ Addition operator

- Subtraction operator

* Multiplication operator

/ Division operator

^ Exponential operator

% Division remainder

Table 4.2: Arithmetic operators in C#

Operators’ precedence follows the arithmetic rules. For example, in the
following line, multiplication is executed before addition:
double result = 10 + 20 * 5;

The first four operators can also be used as increment operators. For example,
suppose you had the following code:
int value = 1;

value++;

The second line increments the value of one unit. This is the so-called postfix
increment. Now, consider the following code:
int value = 1;

Console.WriteLine(++value); // Displays 2

In this case, the increment happens before using the value, and it is called
prefix increment. In addition, incremental operators can be used to
increment a given number of units. For example, the following line
increments the value of 2 units:
value+=2; // same as value = value + 2;

The following line multiplies the value for two:
a*=2; // same as value = value * 2;

Remember that .NET provides the System.Math class, which exposes many
methods that simplify arithmetic operations.

Conversion operators
You will need to make conversions between .NET types very often. For
example, when users tap on an item of a list in Xamarin.Forms, the selected

item is represented with an object instance, but the data you are displaying is
of specialized type, so you need to convert it from object to your type. You
might also need to represent an integer number as a string, so you need an
appropriate conversion. There are plenty of scenarios in which conversions
might happen, so you need to at least have an overview of conversion
operators.

Direct type conversion
Suppose you have the following code, where onePerson is an object of type
Person:
object aPerson = onePerson;

This is legal in C# but not optimal because aPerson is actually an instance of
the Person class; so, you might want to convert it into the appropriate type.
This can be done as follows:
Person result = (Person)aPerson;

The target type is enclosed between parentheses, and the result is assigned to
the target variable. However, if the conversion fails, an error is raised. This
can happen if you specify an invalid target type. You might handle the error,
or you can use the as operator as follows:
Person result = aPerson as Person;

If the conversion fails, as returns null instead of raising an error. You can
then check if the conversion succeeded with an if block:
if(result != null)

{

// Do something

}

The as operator is not supported by value types unless they are nullable types
(see the Working with Nullable types section later in the chapter).

Converting types with the Convert class
The .NET Base Class Library offers the System.Convert class, which
exposes functions for quick conversion between types. The following
example demonstrates how to convert a double into a decimal:
double value = 2.5;

decimal result = Convert.ToDecimal(value);

The Convert class has methods for all the primitive types and more, such as
ToDateTime, ToInt, and ToByte.

String conversion
In C#, every type derives from System.Object, and therefore, they
implement a method called ToString, which converts the current type
instance into a string. The following code demonstrates how to convert a
DateTime into a string:
string today = DateTime.Today.ToString();

In addition, you can still convert other types into string using the direct
conversion options, as follows:
object aString = “Hello World";

string result = (string)aString;

string result2 = aString as string;

With regard to ToString, this method is flexible and powerful, and it allows
for customizing the output strings with specific formatting options. You can
read the official documentation at https://docs.microsoft.com/en-
us/dotnet/api/system.object.tostring.

Logical operators
Logical operators are special operators that enable comparisons between
Boolean values and return Boolean values. There are several operators and
several different scenarios, but the most common are the And and Or
operators, which are represented by the && and || literals, respectively. The
following code, which includes comments, demonstrates this:
DateTime firstDate = new DateTime(2021, 10, 25);

DateTime secondDate = new DateTime(2021, 11, 30);

if(firstDate > DateTime.Today && firstDate < secondDate)

{

// if firstDate is greater than today AND less than

secondDate....

}

if (firstDate > DateTime.Today || firstDate < secondDate)

{

// if firstDate is greater than today OR less than

secondDate....

}

Another useful operator is !, which is used for negation. Look at this code:
if !(firstDate > DateTime.Today)

{

// if firstDate is NOT greater than today....

}

With it, you can control the Boolean comparison from a negation perspective.
These are the operators you will use most. Other logical operators are
discussed in the official documentation (https://docs.microsoft.com/en-
us/dotnet/csharp/language-reference/operators/boolean-logical-
operators).

Working with strings
Strings are special types in .NET. A string is a reference type, but it is
actually used as a value type. Based on this, you can assign a string to another
string, as follows:
string hello = “Hello World!";

string target = hello;

Strings are immutable, which means they cannot be changed once created.
This also means that when you assign or edit a string, the string object is
actually creating a new string. You can compare two strings for equality or
inequality using the == and != operators, respectively, like in the following
example:
string hello = “Hello World!";

string hello2 = “Hello World";

bool areStringEqual = hello == hello2; // false

bool areStringDifferent = hello != hello2; // true

More complex comparison options are supported via the string.Equals and
string.Compare methods, which are not covered here. The string class
exposes several methods for string manipulation. The most relevant ones are
discussed in the upcoming sections.

Checking for Null or Empty strings
In C#, strings can be null or empty. The difference is that a null string is not
initialized, whereas an empty string is initialized at zero-length. In practice,
you might need to check if a string is null or empty before using it. This is
done via the IsNullOrEmpty method, like in the following example:
if(string.IsNullOrEmpty(stringToCheck))

{

// string is null or empty

}

You can also use the IsNullOrWhiteSpace method to check if the string is
null or only contains white spaces.

Concatenating strings
Concatenating strings is a very common task. C# provides several ways to
concatenate strings. The first way is using the addition operator, as follows:
string result = hello2 + hello;

The second way is using the string.Concat method, where each string is
separated by a comma:
string result = string.Concat(hello2, hello);

The third way is known as string interpolation and allows for quickly
embedding several variables into a string, like in the following example (note
that the string must be preceded by the $ symbol):
string result = $"{hello2} {hello}";

You basically enclose variables within brackets. It is worth mentioning that
you are not limited to including variables of type string; you can also include
other primitive types. This is particularly useful when you need to build
strings at runtime with values supplied by the user, such as URLs. The fourth
way for concatenating strings is using the System.Text.StringBuilder
class, as follows:
// Requires a using System.Text directive

string first = “first";

string second = “second";

string third = “third";

StringBuilder builder = new StringBuilder();

builder.Append(first);

builder.AppendLine(second);

builder.AppendLine(third);

string result = builder.ToString();

The StringBuilder class is very efficient, but it is only recommended when
you have to concatenate or handle hundreds of strings. The Append method
adds a string without adding a line terminator, whereas AppendLine does.

Formatting strings
Often, you need to send output strings in a particular format, such as
currency, percentage, or decimal numbers. The System.String.Format

method enables you to easily format text. The following code is an example
of the classic way:
// Returns “The cost of fuel is $1.00

Console.WriteLine(string.Format(@"The cost of fuel is {0:C}

dollars", 1));

// Returns “You are eligible for a 21.50% discount"

Console.WriteLine(string.Format(“You are eligible for a {0:P}

discount", 21.5F));

// Returns “Hex counterpart for 10 is A"

Console.WriteLine(string.Format(“Hex counterpart for 10 is

{0:X}", 10));

The Format method accepts a number of values to be formatted and then
embedded in the main string, which are referenced with the number enclosed
in brackets. For example, {0} is the second argument, {1} is the third one,
and so on. Symbols specify the format; for example, C stands for currency, P
stands for percentage, and X stands for hexadecimal. C# provides the symbols
listed in Table 4.3:

Operator Description
c Currency
d Decimal
e Scientific
f Floating point
g General
n Number
p Percentage
r Hexadecimal

Table 4.3: String formatting options

These symbols are also accepted by the object.ToString method to format
the output of any type into a string. With regard to this, you will often need to
format dates via the DateTime.ToString method, but this is demonstrated
later in the book.

Iterating objects
Iterations allow for executing the same action multiple times. In C#,
iterations can be performed via for and foreach statements. A for statement
enables you to repeat the same action (or group of actions) a finite number of
times. The following code shows an example in which the same action
(writing to the Console window) is repeated 10 times:
for (int counter = 1; counter < 11; counter++)

{

Console.WriteLine(“Action repeated {0} times", counter);

}

In this kind of statements, you need to define a variable of a numeric type
(counter in the preceding example) that acts as a counter. The counter is
incremented, and the action is repeated until the counter is less than the
specified value. Because the counter is starting from 1, repeating the action
10 times requires it to be less than 11 (that is, a maximum of 10). If the
counter starts from 0, the counter will need to be < 10, but obviously, you
will need to remember that the index of the action (0, 1 and so on) does not
match the number of times the action has been done (1, 2 and so on). Note
how the {0} placeholder in the string can be used to display values that are
not known in advance and stored inside a variable. When you need to
perform the same action over all the items in a collection or array, you can
use a foreach statement. You will learn more about collections in the
upcoming sections, but for now, consider this very simple example, which
iterates the list of running processes on your machine, stored inside an array:
// Requires a using System.Diagnostics directive

Process[] processList = Process.GetProcesses();

foreach(Process in processList)

{

Console.WriteLine(“Process name {0}, process ID {1}",

process.ProcessName, process.Id);

}

Figure 4.1 shows an excerpt of the list processes running on my machine:

Figure 4.1: Executing a foreach loop over the list of running processes

Each process is represented by an instance of the
System.Diagnostics.Process class. Process[] is, instead, an array of
processes. If you want to retrieve some information for each process, such as
the name and the identification number, you can iterate the array by using a
foreach statement. You need to specify a variable (also known as a control
variable) that is the same type as the item you are investigating. In general,
foreach can be executed over objects that implement the IEnumerable
interface. You can exit from a for or foreach statement at any time using the
break; statement. For example, this could be the case of a condition that is
met before the code block is completed.

Understanding loops
Loops in C# allow for repeating an action until a condition is met. There are
two main loops, do and while, discussed in this section.

Introducing the do loop
The do loop executes some code while a specified Boolean expression
evaluates to true. Because that expression is evaluated after each execution of

the loop, a do loop executes one or more times. The following example
demonstrates how to use a do loop to execute an action 10 times, and at least
once:
int max = 0;

do

{

Console.WriteLine(max);

max++;

} while (max < 10);

Note how while determines the condition that evaluates to true and how it
requires the condition to be enclosed between parentheses.

Introducing the while loop
The while loop runs some code while a specified Boolean expression
evaluates to true. Because that expression is evaluated before each execution
of the loop, a while loop can be executed zero or more times, and this is the
difference between the while and do loops. The following example
demonstrates how to use a while loop:
int max = 0;

while (max < 10)

{

Console.WriteLine(max);

max++;

}

In this case, the loop will be executed at least once because max is assigned
with 0, which is less than 10, and the condition is then true. But if max was 11,
the loop would never start.

Conditional code blocks
Conditional code blocks allow you to execute some code only when a
particular expression evaluates to a Boolean value. In C#, there are two
conditional code blocks: if and switch. We will discuss both here.

The if conditional code block
An if block evaluates an expression as true or false and, according to this,
allows you to specify actions that should take place. The following code
shows an example where the user enters a string, and its length is validated

via an if block:
Console.WriteLine(“Enter a valid string (min 5 characters, max

10");

string inputString = Console.ReadLine();

if(inputString.Length < 5)

{

Console.WriteLine(“The input string is too short");

}

else if(inputString.Length > 10)

{

Console.WriteLine(“The input string is too long");

}

else

{

Console.WriteLine(“The input string is valid");

}

The if condition checks whether the condition is true; if it is, the specified
action is taken. You can also specify to evaluate a condition for false. You
can also use an else if statement to provide an alternative evaluation. If no
expression satisfies the condition, the else statement provides an action that
will be executed in such a situation.

If the action that is executed when the condition is satisfied is made of
one line of code, like in the example above, it does not need to be
enclosed within brackets.

The switch conditional code block
The switch statement allows you to evaluate an expression against a series of
values. Generally, switch is used to check whether an expression matches a
particular value in situations evaluated as true. If you consider the code
example provided in the previous section about the if block, it could be
rewritten using switch as follows:
switch(inputString.Length)

{

case < 5:

Console.WriteLine(“The input string is too short");

break;

case > 10:

Console.WriteLine(“The input string is too long");

break;

default:

Console.WriteLine(“The input string is valid");

break;

}

In short:

The switch condition specifies the object that must be checked.
Each case statement checks the condition to be evaluated and allows to
take actions.
The default statement specifies an action that is executed when none
of the previously checked conditions are met.
Case and default blocks must always end with a break statement unless
you use a return instruction to return a value from a function.
Unlike general C# rules, code inside case and default statements is not
enclosed within brackets.

Remember that the C# compiler is optimized to evaluate conditions in
sequence, which means that the first case statement should be the one that
might happen more likely to also improve performance.

Introducing arrays
In software programming, an array is a set of elements identified by an
index. Arrays in C# are zero-based index, which means that the first element
has index = 0, the second element has index = 1, and so on. C# supports the
following types of arrays:

Single-dimensional arrays
Multidimensional arrays
Jagged arrays

Let’s start with single-dimensional arrays.

Single-dimensional arrays
Single-dimensional arrays, as their name implies, have only one dimension
and can be declared as follows:
int[] arrayName = new int[10];

The above line declares an array of integers with a capacity of 10 elements.

The type name is followed by square parentheses. The following line
demonstrates how to access an element in the array by its index:
int result = arrayName[2];

Because they are zero-based, the element with index = 2 is actually the third
one in the array. Obviously, the index can be represented by a variable, like
in the following for loop:
for (int i = 0; i < arrayName.Length; i++)

{

int result = arrayName[i];

}

The Length property returns the number of elements in the array.

Multi-dimensional arrays
A multi-dimensional array allows for having items organized in rows and
columns. The following code demonstrates how to create a three-dimensional
array, where the first dimension can contain four items, the second can
contain three items, and the third can contain two items:
int[,,] array1 = new int[4, 2, 3];

As you can see, a dimension is represented by a comma (,). The first
dimension is implicit, so commas are added only starting from the second
dimension. You still access elements via their index, which basically
specifies the position of the element in the array, like in the following line of
code:
int element = array1[2, 1, 1];

Jagged arrays
Jagged arrays are arrays where each element in the array is another array, so
they are also known as arrays of arrays. The following code declares a jagged
array:
int[][] jaggedArray = new int[3][];

As you can see, the type is followed by two couples of square parentheses. In
this particular declaration, the array has three elements, each a single-
dimensional array. Before elements can be used, they must be initialized, like
in the following example:
jaggedArray[0] = new int[5];

jaggedArray[1] = new int[4];

jaggedArray[2] = new int[2];

As a developer, you need to know what arrays are and how they work.
However, you will use multi-dimensional arrays and jagged arrays only
in specific scenarios, such as complex mathematical calculations. At
least in this book, they will not be used.

Object-oriented programming (OOP)
In your everyday life, you perform all sorts of activities using objects. You
use a glass to drink, you drive a car to reach your office, and you use a phone
to connect to other people. Each of these objects has its own characteristics.
For example, there are hundreds of phone models; they have different colors,
different operating systems, and different carriers, but they all are phones.
OOP is similar to this view of life. In fact, OOP relies on objects; for
example, you can have an object that enables working on files or another
object that enables managing pictures. In .NET, the development of an object
is typically represented by a class. Structures are also objects, but their
purpose is to represent a value more than to take actions. Objects have their
own characteristics known as properties, but they also have some members
that enable taking actions, known as methods. In this chapter, you will learn
how classes in .NET development are structured and how to create your own
classes, implementing all members in C#.

Understanding access modifiers
Access modifiers set the visibility of an object and its members inside and
outside of a project. They are represented by reserved words, summarized in
Table 4.4:

Modifier Description

public The type or member can be accessed by any other code in the same
assembly or another assembly that references it. The accessibility
level of public members of a type is controlled by the accessibility
level of the type itself.

private The type or member can be accessed only by code in the same class or
structure.

internal The type or member can be accessed by any code in the same
assembly, but not from another assembly.

protected

The type or member can be accessed only by code in the same class,
or in a class that is derived from that class.

private protected The type or member can be accessed only within its declaring
assembly, by code in the same class or in a type that is derived from
that class.

protected internal The type or member can be accessed by any code in the assembly in
which it’s declared, or from within a derived class in another
assembly.

Table 4.4: Access modifiers in C#

If no modifier is specified, internal is assumed as the default. It is also worth
mentioning that the availability of modifiers depends on the object or
member. This will be clarified when appropriate.

Defining reference types with classes
In .NET, classes are the types you use to define your own objects, and they
are reference types. Classes are defined with a class block, as follows:
class Person

{

}

Remember that if the access modifier is not specified, C# assigns internal by
default. If your classes should be consumed by other projects, for example,
when you are creating a reusable library, they must be marked as public, as
follows:
public class Person

Classes can define members, such as fields, properties, and methods (all
covered in this chapter), and also other classes and structures. The next
section covers members that can be defined within classes so that you can
have a complete overview of creating your custom classes.

Storing information with fields and properties
Fields are the places where you store information to and read information
from. They are declared in the form of class-level variables and differ from
local variables in that they are declared at the method or property level. The
following code shows how simple it is to declare fields:
class Person

{

DateTime BirthDate;

}

Fields can be reachable from within the class and its members, and if you
specify one of the appropriate qualifiers (such as public), they can also be
reached from the external world. Inside fields, you store the actual
information your custom objects need. You can also provide inline
initialization of fields, as in the following line:
DateTime BirthDate = DateTime.Now;

They can also be initialized in the class’s constructor, and they can also be
read-only. In this case, you use the readonly keyword, as follows:
readonly DateTime BirthDate = DateTime.Now;

A read-only field cannot be modified, so it needs to be initialized in-line, like
in the above line, or in the class’s constructor. Because fields contain the
actual data the application works with, they are not the best way to provide
access to the information, especially to the external world. For this purpose,
you use properties. Properties are the public way that callers have to access
data stored within fields. With properties, you decide the type of permissions
users can have to read and write the actual information. Properties are
typically used as fields, but they act as methods. The way you write
properties can be either simple or extended. You need to know both ways,
because in Xamarin.Forms, you will often use the extended way. Let’s start
from this. You write properties as follows:
private DateTime _birthDate;

public DateTime BirthDate

{

get

{

return _birthDate;

}

set

{

_birthDate = value;

}

}

In short, the get method of the property returns the value of a field, whereas
the set method assigns a value to the backing field through the value
reserved word. Accessing information through properties is important
because you can perform validation or logic over the value in the set method.
As you will see in the upcoming chapters, you will often invoke property
change notification in this place. When you do not need to perform any

actions on the incoming value, you can use the simplified syntax, as follows:
public DateTime BirthDate { get; set; }

This is also known as auto-implemented properties. When using this
syntax, you do not even need to declare a backing field because the C#
compiler implicitly creates one for you and automatically handles the get and
set. Properties can be of any .NET type, including your own types. You use
properties like you would do with any other variable, but this assumes an
instance of the class. For example, you can assign a property as follows:
Person newPerson = new Person();

newPerson.BirthDate = new DateTime(1977, 05, 10);

Then, you can retrieve a property value like this:

DateTime dateOfBirth = newPerson.BirthDate;

Or, as another example, access the value directly:

Console.WriteLine(newPerson.BirthDate);

As a general rule, you use the dot (.) to access any member of any type.

Running actions with methods
A method is a member that performs an operation. Methods may or may not
return a value. The following are minimal examples of methods:
public void DoSomething()

{

if (System.IO.File.Exists(@"C:\SomeFile.txt") == false)

throw new System.IO.FileNotFoundException();

else

Console.WriteLine(“The file exists");

}

public bool DoSomethingElse()

{

bool result = System.IO.File.Exists(@"C:\SomeFile.txt");

return result;

}

The void keyword marks a method that does not return a value. For methods
that return a value, the method name must be preceded by the return type.
To invoke a method, you simply call its name. Continuing with the preceding
example, you can invoke the DoSomething method by typing the following
line:
DoSomething();

If the method returns a value, you should assign the invocation to a variable,
as follows:

bool returnValue = DoSomethingElse();

This is important if you need to evaluate the value returned by the method. If
you do not need to evaluate the result, you can invoke the method without
assigning its result:
DoSomethingElse();

You can invoke functions anywhere you need a value. Continuing with the
preceding example, the following code is acceptable:
Console.WriteLine(DoSomethingElse());

Methods exposed by a class need a dot to be invoked. If DoSomething were
defined in the Person class, you would invoke it as follows:
newPerson.DoSomething();

Methods can receive parameters. In the .NET terminology, parameters are
objects that methods accept and that you write when you declare a method.
Arguments are the expressions you pass to a method when you invoke it, and
each one satisfies a method’s parameter. The following code shows a simple
sample of a method definition receiving an argument and subsequent
invocation of that method passing an argument; the method declaration
defines a parameter called stringToDisplay, and then the method body
passes an argument to the Console.Writeline method:
public void DisplayString(string stringToDisplay)

{

Console.WriteLine(stringToDisplay);

}

public void SendString()

{

DisplayString(“Xamarin for JobSeekers");

}

Parameters can be passed by value, which is the default, or by reference.
Parameters can be passed by reference, adding the ref keyword before the
parameter type (for example, ref int). The following are the differences
between passing parameters by value and by reference:

If you pass a value type by value, the compiler creates a copy of the
original value, so changes made to the argument are not reflected to the
original data. If you pass a value type by reference, changes made to the
object referenced by the argument are reflected to the original data
because, in this case, the argument is the memory address of the data.
If you pass a reference type by reference, the compiler passes in the
memory address. If you pass a reference type by value, the compiler

passes a copy of the memory pointer. In both cases, the original object
will be modified, regardless of how the parameter is passed. The
difference is that when you pass a reference type variable by reference,
the called method can change what object the variable refers to by
replacing its content with a memory pointer to a different object.

You will see some examples of parameters passed by reference later in the
book. Actually, methods in .NET are even more powerful because they
provide an option called overloading. It means providing multiple signatures
of the same method, in which signature is the number and types of arguments
a method can receive. The following code snippet demonstrates overloading:
public string FullName(string lastName, string firstName)

{

return string.Concat(lastName, “ “, firstName);

}

public string FullName(string lastName, string firstName, int

age)

{

return string.Concat(lastName, “ “, firstName, “ of age: “,

age);

}

public string FullName(string lastName, string firstName,

DateTime dateOfBirth)

{

return string.Concat(lastName, “ “, firstName, “ born on: “,

dateOfBirth);

}

As you can see, there are four different implementations of one method
named FullName. Each implementation differs from the others in that it
receives a different number of arguments. The preceding example is simple:
each implementation returns the concatenation of the supplied arguments.

Introducing constructors and static classes
When you declare a class, you are defining a reference type. Normally,
reference types cannot be used directly and need to be instantiated first.
Instantiating a type allows for using one object of that type. You create an
instance of a type using constructors. A constructor is a method with the
same name of the class, which can optionally take parameters. Each class
implicitly defines a parameterless constructor, even if you do not declare one.
The following code shows an example of default, parameterless constructor:

public class Person

{

public Person()

{

}

}

When you use the new keyword to declare a variable of a given type, you are
actually invoking its constructor, like in the following line:
Person onePerson = new Person();

The constructor is also the place where you can initialize object properties
and fields. If you consider the example of the Person class with the
BirthDate property, you could initialize it in the constructor, as follows:
class Person

{

public DateTime BirthDate { get; set; }

public Person()

{

BirthDate = new DateTime(1977, 05, 10);

}

}

Constructors can receive parameters so that you can initialize class’s
members with values determined at runtime. The following snippet shows an
example:
class Person

{

public DateTime BirthDate { get; set; }

public Person(DateTime birthDate)

{

BirthDate = birthDate;

}

}

If you implement a constructor that receives parameters, the implicit
constructor is no longer supplied by the compiler, so you need to
manually provide one if you wish to be able to still create object
instances without default values.

Because constructors are methods, they also support overloading. You could,
therefore, write multiple constructors, as follows:
public Person(DateTime birthDate)

{

BirthDate = birthDate;

}

public Person()

{

BirthDate = new DateTime(1977, 05, 10);

}

With constructors, you can have multiple instances of the same object, for
example, if you need to represent multiple people, multiple books, multiple
orders, multiple customers, and so on. There are situations in which you do
not need to have multiple instances of an object, and a single instance is
enough. In such cases, you can define a static class. The following code
shows an example:
public static class HelperMethods

{

public static double

CalculatePercentage(double inputValue, double percentage)

{

return inputValue / 100 * percentage;

}

}

Static classes are usually defined to implement general-purpose members.
They do not need a constructor because there can be only one instance.
Because of this, the way you invoke members of a static class requires you to
write the class’s name, followed by the dot and the member’s name, like in
the following example:
double result = HelperMethods.CalculatePercentage(250, 20);

You can also define static members inside a class that is not static. This can
be useful to define members that are not connected to a specific instance of
an object.

Defining derived types with inheritance
Inheritance is an important feature in object-oriented programming. A class
can inherit or derive from another class, which means that the new class can
have all properties, methods, and members exposed by the first class, which
is called the base class. The new class can then define its own members.
Inherited members can then be overridden to adapt their behavior to the new
class’s context. .NET allows for single-level inheritance, which means a class
can inherit from one other class at a time. Each class derives implicitly from
System.Object, and the : symbol is used to inherit classes. The following
code provides an example of a base class named Person and a derived class

named Customer:
public class Person

{

public string FirstName { get; set; }

public string LastName { get; set; }

}

public class Customer: Person

{

public string CompanyName { get; set; }

}

In this example, the Customer class exposes a new CompanyName property,
and it exposes the FirstName and LastName properties via inheritance. There
is much power with inheritance, which you will now understand with an
introduction to interfaces and abstract classes.

Understanding interfaces and abstract classes
Interfaces and abstract classes are another important pillar of OOP, and you
will often use them (especially interfaces) with Xamarin. This section
describes both, summarizing the key points.

Defining interfaces
Interfaces provide a list of members that an object must implement to
accomplish particular tasks in a standardized way. They are also known as
contracts because they rule how an object must behave to reach some
objectives. For example, .NET knows that an object that implements the
IValueConverter interface will be used for conversion between types when
working with data binding in Xamarin.Forms and will not have other targets.
As another example, .NET expects you to perform databinding using objects
that implement the INotifyPropertyChanged interface, and that are,
therefore, capable of sending a change notification. An interface is a
reference type defined within an interface { } block. Interfaces define only
signatures for members that classes will then expose and are a set of the
members’ definitions. Imagine you want to create an interface that defines
members for objects that represent different categories of people. This is
accomplished with the following code:
public interface IPerson

{

string LastName { get; set; }

string FirstName { get; set; }

DateTime DateOfBirth { get; set; }

string FullName();

}

By convention, interface identifiers begin with a capital I. Though not
mandatory, this is strongly recommended. The interface definition contains
only members’ definitions with no body. For FullName method definitions,
there is only a signature but not the method body and implementation, which
are left to classes that implement the interface. Members defined within
interfaces cannot be marked with one of the access modifiers, which are
public by default.

Implementing interfaces
Implementing interfaces means telling a class that it needs to expose all
members defined within the interface. You do this by using the : symbol,
followed by the name of the interface. IntelliSense will offer a list of
available interfaces and, when you select IPerson, the code editor will
underline it with red squiggles because the implementation is still missing.
However, you can quickly provide a basic implementation, as follows:

Hover over IPerson.
Click on the light bulb icon.
Click on the Implement Interface option.

Figure 4.2 demonstrates how to accomplish this:

Figure 4.2: Quickly implementing an interface

Not only can you see a preview, but Visual Studio will provide a basic

implementation for you, which needs to be rewritten though. The following
code snippet shows how to implement the IPerson interface within a Person
class:
public class Person : IPerson

{

public string LastName { get; set; }

public string FirstName { get; set; }

public DateTime DateOfBirth { get; set; }

public string FullName()

{

return $"{LastName} {FirstName}";

}

}

Apart from being used as contracts, interfaces are important for a
programming pattern known as polymorphism. Because multiple classes can
implement the IPerson interface, you could declare the following variable
that is able to receive any objects that implement IPerson and manipulate
members that are common to all the instances:
IPerson person = newPerson;

Console.WriteLine(person.FullName());

The newPerson object could be of type Person or any other type that
implements IPerson and, through polymorphism, you can manipulate
common members, regardless of the original type.

Introducing abstract classes
Abstract classes allow for creating a base implementation for derived objects
but cannot be used directly. Consider the following Person class:
public abstract class Person

{

public string LastName { get; set; }

public string FirstName { get; set; }

public virtual string FullName()

{

return $"{LastName} {FirstName}";

}

}

It provides an infrastructure that can be common to any class that represents
people in a more specialized way, such as customers, contacts, and friends. It
is marked as abstract, so you cannot create an instance of the class, and it
must be inherited. Also, note how the FullName provides a basic

implementation, but it is marked as virtual, which gives the option to redefine
its behavior. Following is an example of a Customer class that derives from
Person and that overrides the FullName method:
public class Customer: Person

{

public int CustomerID { get; set; }

public override string FullName()

{

return $"Customer ID: {CustomerID}, Last name: {LastName}";

}

}

You are not obliged to override a virtual method, and you can leverage the
original implementation. In this case, you use the base keyword, followed by
the member’s name.

In summary, interfaces establish which members an object must
implement in order to satisfy a contract; abstract classes establish
which members a derived object must implement, with the option to
provide a base implementation, and without satisfying any contract.

The opposite of abstract classes is sealed classes. A class marked with the
sealed keyword cannot be inherited. This can be useful if you build libraries
that are sold to third parties, and you do not want new objects to be created
starting from yours.

Organizing types within namespaces
Namespaces can be considered as containers of types. Namespaces are
defined within namespace { } blocks. Every namespace can expose the
following types and members:

Classes
Structures
Interfaces
Enumerations
Delegates
Nested namespaces

The following listing provides an example of namespace defining some of the

aforementioned types:
namespace People

{

public interface IContactable

{

bool HasEmailAddress { get; }

}

public abstract class Person

{

public string FirstName { get; set; }

public string LastName { get; set; }

public override string ToString()

{

return FirstName + “ “ + LastName;

}

}

public enum PersonType

{

Work = 0,

Personal = 1

}

public class Contact: Person, IContactable

{

public string EmailAddress { get; set; }

public override string ToString()

{

return base.ToString();

}

public bool HasEmailAddress

{

get

{

if (string.IsNullOrEmpty(this.EmailAddress))

return false;

else

return true;

}

}

}

public struct PersonInformation

{

public PersonType PersonCategory { get; set; }

public bool HasEmailAddress { get; set; }

}

}

The purpose of namespaces is better organizing types. In some situations, an

object’s hierarchy could expose two different types with different behaviors,
but with the same name. For example, imagine you have two Person classes;
the first one should represent business contacts, and the second one should
represent your friends. Of course, you cannot create two classes with the
same name within one namespace. Because of this, you can organize such
types in different namespaces, and thus, avoid conflicts.

By convention, a namespace’s name should have the following form:
CompanyName.ProductName.NamespaceName. This is not mandatory, and
it’s completely up to you to follow this convention. If you use third-
party libraries, namespaces are defined in this way.

Accessing types within namespaces with using directives
You will often need to invoke types defined within long-named namespaces.
To invoke types, you need to write the full name of the type, which includes
the identifier of the namespace that defines a particular type, as in the
following code:
System.IO.FileStream textFile =

new System.IO.FileStream(@"C:\test.txt",

System.IO.FileMode.Open);

Accessing an object by typing the full name, including the namespace, is
known in .NET as fully qualified name. To write simpler and cleaner code
faster, you can add using directives to shorten the way you access types. For
example, at the top of your code file, you can add the following directive:
using System.IO;

This lets the compiler know that it needs to look for types defined in the
System.IO namespace. Then, you can rewrite the previous code snippet as
follows:
FileStream textFile = new FileStream(@"C:\test.txt",

FileMode.Open);

You will still use the fully qualified name if you access two objects with the
same name but from two different namespaces.

Defining value types with structures
Structures allow for creating custom value types. You find a lot of similarities
between classes and structures, although this section explains some important

differences. You create structures using a structure { } block. The following
code provides an example that represents a point coordinate with the
timestamp it was created:
public struct ExtendedCoordinate

{

public double X { get; set; }

public double Y { get; set; }

public DateTime TimeStamp { get; set; }

public ExtendedCoordinate(double x, double y)

{

X = x;

Y = y;

TimeStamp = DateTime.Now;

}

}

Structure can expose several members, such as fields, properties, methods,
and even events as it happens for classes. However, structures should really
be used only when you need types that need to create a copy of the data they
handle, as explained below.

Structures do not support inheritance. They only inherit from
System.ValueType, but no further level is allowed.

Assigning structures to variables
Structures are value types, so assigning an instance of a structure to a variable
declared as of that type creates a full copy of the data. The following code
demonstrates this:
ExtendedCoordinate coordinate = new ExtendedCoordinate(45.2,

37.1);

This is one of the biggest and most important differences between structures
and classes. Obviously, structures can also be passed as method parameters.

Visibility of structures and their members
Structures and their members have access modifiers as well as classes.
Structures only accept private, public, and internal qualifiers. If no qualifier is
specified, internal is provided by default. Structures’ members can be
qualified with modifiers described in Table 4.2.

Defining enumerations
Enumerations are another kind of value type available in .NET. They
represent a group of constants enclosed within an enum { } code block. An
enumeration derives from System.Enum, which derives from
System.ValueType. The following is an example of enumeration:
public enum Food

{

Bread, // 0

Tomato, // 1

Potato, // 2

Chicken, // 3

Fish // 4

}

By default, enumerations are sets of integer values. The preceding code
defines a Food enumeration of type int, which stores a set of integer
constants. The C# compiler can also automatically assign an integer value to
each member within an enumeration, starting from zero, as indicated in
comments. You could manually assign custom values, but you should avoid
this when possible because the standard behavior ensures that other types can
use your enumeration with no errors.

Using enumerations
You use enumerations as any other .NET type. For example, consider the
following method that receives the Food enumeration a parameter and
displays a response depending on which value has been passed:
private void CheckFood(Food foodList)

{

switch (foodList)

{

case Food.Bread:

{

Console.WriteLine(“You chose Bread");

break;

}

case Food.Chicken:

{

Console.WriteLine(“You chose Chicken");

break;

}

default:

{

Console.WriteLine(“All food is good");

break;

}

}

}

The following code snippet then declares a variable of type Food, assigns a
value, and invokes the method by passing the variable:
var myFood = Food.Bread;

CheckFood(myFood);

Note how IntelliSense comes in when you need to specify a value whose type
is an enumeration.

Implementing error handling
As you know, one of the characteristics of .NET languages is interoperability,
which means one language must understand and use code written in other
language. This is why there is a need for a common way for handling errors.
In .NET, errors are identified as exceptions. An exception is an instance of
the System.Exception class (or of a specialized class derived from it) and
provides deep information on the error that occurred. You perform exception
handling by writing a try..catch..finally code block. The logic of the
flow behind this block is the following sequence:

Try to execute the code.
If you encounter an exception, take the specified actions.
Whenever the code execution succeeds or it fails due to an exception,
execute the final code.

The following example demonstrates how to control the exception flow in
case some code attempts to open a file and an error occurs:
// Requires a using System.IO; directive

Console.WriteLine(“Specify a file name:");

string fileName = Console.ReadLine();

FileStream myFile = null;

try

{

myFile = new FileStream(fileName, FileMode.Open);

// Seek a specific position in the file.

// Just for example

myFile.Seek(5, SeekOrigin.Begin);

}

catch (FileNotFoundException ex)

{

Console.WriteLine($"File {ex.FileName} not found.");

}

catch (Exception ex)

{

Console.WriteLine($"An unidentified error occurred:

{ex.Message}");

}

finally

{

myFile?.Close();

}

When you use catch to intercept an exception, you can pass a variable that
stores the instance of the exception object to retrieve a lot of useful
information. With regard to the previous code, it attempts to open a file and
search for a specific position within it. If the file is not found, the
FileStream.Seek method throws a FileNotFoundException. Among other
things, this exposes a FileName property that contains the name of the file
that was not found. In general, all the exception classes expose a property
called Message, which contains the error message, and a StackTrace
property, which is useful for developers to understand which part of the code
caused the error. The Base Class Library, and all third-party libraries in
general, include a large number of specialized exceptions, and it is a best
practice to catch all those that can happen in a specific scenario. In the code
snippet above, a specialized exception is caught for files that are not found,
but because other unpredictable errors can happen, a generic exception is also
caught. The finally block is completely optional, but it is very important in
some cases. In fact, it allows for executing code regardless of the success or
failure of the try block. If you have open files, like in the preceding example,
or open database connections, this is the place where you can close all the
existing references.

Implementing events
Events are a way to notify other objects that something has happened. An
event is declared using the event keyword. When you define an event, you
also need a class that contains the information that the event wants to share
with callers. .NET defines a base class called EventArgs and that you can
inherit to implement your own. Suppose you want to notify callers about the

completion of reading a text file. You can implement an event and an event
arguments class, as follows:
class EventsDemo

{

public event EventHandler<OperationCompletedEventArgs>

FileCompleted;

}

class OperationCompletedEventArgs: EventArgs

{

public string FileName { get; set; }

public OperationCompletedEventArgs(string fileName)

{

FileName = fileName;

}

}

The following are the key points:

EventHandler is a delegate, which is a special .NET type that can be
thought of as a function pointer.
The OperationCompletedEventArgs exposes the information you want
to share with event subscribers, in this case, the filename, which must
be supplied with the constructor.

An event is raised by calling its Invoke method as follows:
public void OpenFile(string fileName)

{

string result = System.IO.File.ReadAllText(fileName);

var eventArgs = new OperationCompletedEventArgs(fileName);

FileCompleted?.Invoke(this, eventArgs);

}

You first create an instance of the event arguments class supplying the
required information, and then you call the Invoke method of the event.
There are two additional points to highlight here:

The Invoke method invocation is preceded by the ?. symbol. As a
general rule, in C# this ensures that, if the object is null, no exception is
thrown and null is returned to the caller.
This is the first time you encounter the this keyword. It represents the
current instance of the class.

Objects that want to be notified of an event must subscribe for it. The
following code demonstrates this:

var demo = new EventsDemo();

demo.FileCompleted += Demo_FileCompleted;

demo.OpenFile(@"c:\myfile.txt");

You subscribe to an event with the += operator, followed by the name of a
method, known as event handler, that will be executed when the event is
intercepted. After you type +=, you can press Tab twice, and Visual Studio
will generate an event handler for you. Obviously, the body of the event
handler must be replaced with your code. The event handler signature has
two parameters:

The object that is sending the event.
An instance of the event arguments class that contains the event
information.

The following is a simple example that demonstrates how the event handler is
made and how to read its information:
private void Demo_FileCompleted(object sender,

OperationCompletedEventArgs e)

{

string fileName = e.FileName;

}

Events are commonly used when handling actions on the user interface, so
you will see additional examples in the upcoming chapters.

This chapter could only make a mention about delegates, but actually,
they are an important part of the .NET architecture. The official
Microsoft documentation has a dedicated page at
https://docs.microsoft.com/en-us/dotnet/csharp/delegates-overview.

Advanced C# programming
This section describes advanced concepts and techniques that you will use
frequently in your daily life as a developer working with Xamarin. As you
can imagine, like for the other topics, there is much more than what can be
summarized in this chapter, so it is always recommended that you read a
specific book about C# programming if you do not have enough experience
or if you feel that you need further explanation.

Generics and Nullable Types

You will often use generics and nullable types when writing code for
Xamarin. Generics are .NET types that can adapt their behavior to different
types of objects from a single implementation. They can hold only the
specified type and avoid accidents of handling objects of different types.
There are dozens of generic types defined in .NET, and you can create your
own generics (not covered in this book), but the most frequent situation for
you is using generic collections. For example, .NET defines the
System.Collections.Generics.List<t> class, an object that can hold a list
of objects of only one type. The <t> literal represents the generic
implementation and is called type parameter. Another collection that you
will use very frequently in Xamarin.Forms is the
System.Collections.ObjectModel.ObservableCollection<t>, which
derives from List<t> and is able to notify the user interface of changes inside
the elements it contains. The following snippet demonstrates how to create a
list of integers, and the technique is the same for every type, including
custom classes:
var integerList = new List<int>();

integerList.Add(1);

integerList.Add(2);

Console.WriteLine(integerList[1]); // writes 2

integerList.Remove(1); // removes 1

You first need an instance of the generic type, and then you can invoke the
Add method to add new objects of the specified type. You can access
individual elements in the list using their index, which is zero-based. You can
also remove members via the Remove method, which removes the specified
value or instance (not the index). Another way to create a list with generics is
using a feature known as collection initializers, which is useful when the
values or instances you need are represented by variables, like in the
following code:
int first = 0;

int second = 1;

var integerList = new List<int> { first, second };

With this syntax, the list is created and populated with the series of values
enclosed between brackets. When you implement your own generics, you can
also provide some constraints. For example, you might want to decide that a
generic can only work with reference types that implement a specific
interface. Generics is a much more complex topic, so I recommend that you
read the official documentation at https://docs.microsoft.com/en-

us/dotnet/csharp/fundamentals/types/generics.

Working with Nullable types
All .NET types have a default value. For reference types, it is null. Value
types have a default value depending on the type itself; for example, it is zero
for int or false for bool. Value types cannot be null. However, there are
situations where it would be important for value types to also support null.
This is the case of mapping database columns to .NET objects or having
three-state objects (such as true, false, null). In C#, this can be accomplished
with nullable types, which are generic types. You have two ways of declaring
nullable types:
Nullable<int> oneInteger = 0;

int? oneInteger = 0;

The Nullable<t> generic type adds support for null values to any value type,
and you can also use a simplified syntax, adding a question mark after the
declared value type. The following code shows an example of how you
consume nullable types:
if (oneInteger.HasValue)

Console.WriteLine(oneInteger.Value);

While you can assign a nullable type directly with a value, you must first
check if the object is not null. This can be done by evaluating the HasValue
property, which returns true if the object is not null. At this point, you can
access the actual value via the Value property. Attempting to access a
nullable type that is null will result in a NullReferenceException.

Language INtegrated Query (LINQ)
Language INtegrated Query (LINQ) is a feature that allows querying
collections of objects using a syntax that recalls the SQL language. This is
one of the most complex and powerful features in C#, so here, it is only
possible to make an introduction with a focus on the way of usage that will be
useful in the later chapters. Suppose you have a List<Person> called people
and you want to retrieve a subset of people for whom the year of birth is less
than 2000. With LINQ, you could write this code as follows:
var query = from person in people

where person.DateOfBirth.Year < 2000

select person;

The from clause allows for referencing every single instance in the collection,
where provides an option to add filters to the query via conditions and select
allows for adding every instance that matches the condition to a new set of
data. The result of the query is an IEnumerable<t> object (which changes to
IQueryable<t> if you are working with a data framework like Entity
Framework). In general, LINQ can be used against every object that
implements the IEnumerable<t> interface. Obviously, there are many more
possible options and clauses, but this is the basic syntax that you need to
know. In fact, you can group query results, perform mathematical
aggregations, and so on. You can also retrieve individual elements from a
query. For instance, you can retrieve the first or last element in the collection.
The following example shows how to retrieve the first element of a sequence:
var query = (from person in people

where person.DateOfBirth.Year < 2000

select person).First();

First is an extension method that returns one instance of the type it is
invoked on; so now, query will be of type Person. .NET is full of extension
methods, and it is possible to create custom ones. As the name implies,
extension methods extend an existing object with new functionalities, without
the need to have the source code of the original object. Actually, extension
methods can be used in dozens of different scenarios, but probably, the most
common is with lambda expressions. A lambda expression can be considered
as anonymous method that allows for performing queries and evaluating
complex expressions in one line. For instance, with lambda expressions you
could rewrite the previous LINQ query as follows:
var query = people.Where(person => person.BirthDate.Year <

2000).First();

The => operator represents the syntax of a lambda expression and provides a
way to declare a reference variable to each element in the sequence. Note
how Where is also an extension method to filter the results. You can combine
multiple conditions using the && and || operators. The First method throws
an exception if no element that matches the condition is found. If you want to
avoid an exception, you can use FirstOrDefault, which returns the default
value for the current type (null in this case). Similarly, LINQ provides the
Last and LastOrDefault methods to retrieve the last element in a sequence.
Everything that can be done with the regular LINQ syntax can be done with
lambda expressions, and you can perform more complex operations in-line.
You will see more examples in the upcoming chapters.

LINQ is not only one of the most powerful features of .NET languages,
but also one of the most complex, and it is impossible to describe all of
its potential in a few pages. It is strongly recommended that you take a
look at the Microsoft documentation (https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/concepts/linq/).

Asynchronous programming
Normally, code runs synchronously, which means one operation at a time.
With short-running operations, there is no problem. With long-running
operations, an application can become unresponsive and can freeze until the
operation completes, and the user will certainly get nervous. As a general
programming concept, it is a best practice to run long-running operations on a
separate thread. A thread can be thought of as an individual unit of work. The
user interface runs on a specific thread, so if all the long-running code affects
the user interface thread, the application will freeze. This is why delegating
potentially long-running operations to a separate thread makes the app more
responsive; this technique is known as multithreading. However, dealing with
threads can introduce other problems, such as (but not limited to) the
following:

An object handled by a thread cannot be accessed by another thread,
and to make it possible, you have to deal with very complex
programming techniques.
Access to resources must be implemented in a way that they are locked
to other threads until a first thread completes its work.

Everything can be solved, of course, but it requires complex work. In order to
make things simpler while still keeping the application responsive, .NET
provides the asynchronous programming pattern since 2012. In short, an
individual thread can be divided into multiple tasks, where each task can
work asynchronously, without creating a separate thread. These are the
relevant points:

The async modifier is added to method declarations.
An await operator is used within async methods to wait for a task to
complete without blocking the thread.

To understand how it works, consider the scenario of reading a long file. The
longer the file, the higher the risk of blocking the user interface until the
operation completes. The following example shows how to create a method
that reads a file asynchronously:
private async Task<bool> ReadFileAsync(string fileName)

{

try

{

string fileContent = await File.ReadAllTextAsync(fileName);

Console.WriteLine(fileContent);

return true;

}

catch (Exception)

{

return false;

}

}

Here are a few additional points of interest:

By convention, the name of asynchronous methods should end with the
async suffix.
Asynchronous methods return objects of type
System.Threading.Tasks.Task, with no return value (that is, void), or
System.Threading.Tasks.Task<T> when they return a value. However,
the return statement just takes the original type, not Task<t> (see the
preceding code).
The compiler creates a unit of work (task) inside the same thread,
which keeps the application responsive and solves all the problems
related to having multiple threads.

Asynchronous programming is probably the most complex topic in C# and
should never be used everywhere; it should only be used where long-running
operations might block the user interface. In this section, you learned the
most basic concepts, which are also important with Xamarin because you will
use this pattern all the time. However, if not used correctly, they can lead to
inefficient code. For this reason, do not forget to read the official
documentation (https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/concepts/async/).

Conclusion

C# is a high-level, compiled, and OOP language that you can use to build a
variety of applications, from desktop to the web and mobile, passing through
cloud. Microsoft has, without a doubt, always considered C# as the most
important .NET language and has continuously invested on it. C# is also the
programming language you will use to build mobile applications with
Xamarin, starting from the next chapter. This chapter could only summarize
the most important features of the language that you will need to keep in
mind as a mobile app developer, but it is certainly necessary for you to go
through additional documents, as suggested in the final subsection. Now, sit
down, fasten your seatbelt, and get ready to start your journey as a Xamarin
developer.

Suggested readings
Book: Mastering C# 8.0, BPB Publishing
(https://bpbonline.com/collections/programming/products/mastering-
c-8-0-book-ebook).
Microsoft official C# documentation (https://docs.microsoft.com/en-
us/dotnet/csharp/).

https://bpbonline.com/collections/programming/products/mastering-c-8-0-book-ebook

CHAPTER 5
Building Apps with Xamarin and

Xamarin.Forms

Introduction
After learning the basics of Microsoft Visual Studio and the C# programming
language, it is time to start working on mobile app development with
Xamarin. Though this book focuses on Xamarin.Forms, it is important for
you to know how native projects work. The reason is that a Xamarin.Forms
solution relies on native projects, so you must know how they are structured
and how you can configure them. The first part of this chapter explains how
to create, configure, and debug native Xamarin.Android and Xamarin.iOS
projects. In the second part, you will learn how to create a Xamarin.Forms
solution, discussing its structure and understanding the fundamentals of this
platform, which is required for the later chapters.

Structure
In this chapter, we will cover the following topics:

Understanding Xamarin.Android projects
Understanding Xamarin.iOS projects
Cross-platform projects with Xamarin.Forms
Preparing apps for publication

Objective
After completing this chapter, you will be able to create Xamarin.Forms
solutions and able be able to configure the backing native projects. You will
also learn the most important concepts about preparing apps for distribution.

Understanding Xamarin.Android Projects
By reusing the skills learned in the previous chapters, open Visual Studio and
go to the Create a new project dialog (or select File | New | Project if you
were already in the IDE). The project template you need to create a
Xamarin.Android project is called Android App (Xamarin). Figure 5.1
shows how it appears (you can also filter the list to find it quickly, like in the
figure).

Figure 5.1: Creating a Xamarin.Android project

Select the template and click on Next. At this point, you will be asked to
specify an application type in the New Android App dialog, as shown in
Figure 5.2:

Figure 5.2: Selecting an Android app type

Table 5.1 describes the possible app types.

Android App Type Description

Single View App Simple app based on one page.

Navigation Drawer App App that implements navigation between multiple pages.

Tabbed App App based on pages grouped by tabs.

Blank App Empty projects for an app where you need to implement everything
from scratch.

Table 5.1: Android app types in C#

For demonstration purposes, select the Single View App template. Note how
you can specify the minimum required Android version in the Minimum
Android Version dropdown at the bottom left (see Figure 5.2). This is a
crucial choice: selecting a higher version gives you the option to leverage the
most recent and modern operating system API and device features but will
exclude users who have a device with a lower version; selecting a lower
version gives you the option to target a larger user base, but it requires you to
use OS and device features that are available on the version you select, which
might not be so recent. When you click on OK, you will be asked to specify a
project name. Enter AndroidApp for this example. After a few seconds, the

Xamarin.Android solution will be ready.

Understanding the project structure
In Solution Explorer, you can see the project structure, which looks like in
Figure 5.3:

Figure 5.3: Structure of the Xamarin.Android project

The following is a list of key points to remember:

Under References, you will find the list of the required libraries, both
system and third parties.
Under the Assets folder, you can add resource files that the app needs,
such as documents or videos.
Under the Resources folder, you can find subfolders where you can add
images, icons, and layout files. More specifically, you will add images
into drawable and folders whose name starts with mipmap. There is a
folder for each resolution.
In the Resources\layout folder, you can find two XML files, which are
related to the user interface definition.

The activity_main.xml file represents the main entry point of the app and
acts as a container of pages, where you can also add controls that are
common to multiple pages. In Android development, an activity represents
either a single page or an individual functionality represented by a block of
components. The content_main.xml file represents the main page, and this is
the place where you can draw the user interface and handle its behavior.

Drawing and handling the user interface
In Xamarin.Android, you draw the user interface by editing XML files, as
you would do with native tools like Android Studio. If you double-click on
the content_main.xml file, you will see the code editor and the graphic
designer, where you can draw elements of the user interface. If you expand
the ToolBox tool window (see Figure 5.4), you will also see a list of controls
that can be used to draw the user interface on the designer:

Figure 5.4: Editing the user interface

The ToolBox should be auto hidden on the left side of the IDE, but if you
cannot see it there, you can select View | Toolbox. You can drag controls onto
the designer surface. For example, drag a TextView control onto the designer.
This control allows for displaying some text. When you do this, the code
editor is updated with the corresponding XML markup. You can then edit
text in the android:text property (see Figure 4.5) or in the Properties
window.

Describing the Android controls is not in the scope of this chapter; the
goal here is to introduce you to Xamarin.Forms. However, as a general
rule, remember that a control is represented by an XML element and
its properties by XML attributes.

The user interface must react to the user actions. For example, the user taps a
button or enters some text in a text box. Elements of the user interface raise
events, which can be handled in C#. For example, if you open the
main_activity.xml file, you will see that there is a floating button that
allows for sending emails. In the MainActivity.cs file, a Click event for this

button is handled as follows:
private void FabOnClick(object sender, EventArgs eventArgs)

{

View view = (View) sender;

Snackbar.Make(view, “Replace with your own action",

Snackbar.LengthLong)

.SetAction(“Action", (View.IOnClickListener)null).Show();

}

In short, when the user clicks on the button, the code retrieves the instance of
the button itself and then invokes the Snackbar.Make method to take an
action that must be implemented by the developer. For now, you should
know that actions are handled in C#; in the upcoming chapters, you will see
how this concept is widely applied to Xamarin.Forms, which is what this
book focuses on. Then, handling events in native code is discussed in
Chapter 13: Working with Native APIs.

Configuring the App Manifest
An Android application can be configured in the so-called manifest. The
manifest is an XML file that contains a set of properties that make it possible
to configure the behavior of the app, and Visual Studio offers a convenient
graphical editor for it. If you double-click on the Properties element in
Solution Explorer, the Application Manifest will appear, as shown in
Figure 5.5.

Figure 5.5: Editing the application manifest

Table 5.2 summarizes the options you can configure via the manifest:

Property Description

Application name The name of the app as it appears on the device. It points to the app_name
variable defined in the Resources\values\strings.xml file.

Package name A unique identifier for the app. By convention it is com., followed by the
company name and the app name.

Application icon The application icon, a .png file stored under the mipmap folders.

Application theme Optional custom graphical theme for the app.

Version number An incremental, unique version number for the app. It can be 1, 2, 3, and so
on.

Version name The version number as it will appear to customers (for example, 1.0, 2.1,
etc.).

Install location With supported systems (up to Android 5.1), it allows for installing the app
on external storages.

Minimum Android

version
The minimum Android version required for the app to run.

Target Android

version
The version of the Android SDK and tools used to compile the project.

Required

permissions
This allows specifying the permissions the app needs to access system
resources and device tools.

Table 5.2: Manifest properties

Take a moment to scroll through the Required permissions list. This is
extremely important because an app is not free to access system resources
and device tools like the camera or sensors, and this makes completely sense
for both privacy reasons and awareness for the user about what the app can
do. For example, if your app needs to connect to the internet, you will need to
flag the INTERNET permission. If it allows for taking pictures or recording
videos, the CAMERA permission must be selected. Permission names are very
often self-explanatory, but you will learn more about permissions with the
code examples provided in the upcoming chapters, where you will implement
real application features. Permissions must be then handled in code to detect
whether the user accepts or rejects permission requests. Luckily, the
Xamarin.Android project template does this for you. In the MainActivity.cs
file, you can find the following code:
public override void OnRequestPermissionsResult(int requestCode,

string[] permissions, [GeneratedEnum]

Android.Content.PM.Permission[]

grantResults)

{

Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode,

permissions, grantResults);

base.OnRequestPermissionsResult(requestCode, permissions,

grantResults);

}

The OnRequestPermissionsResult method invokes the same-named method
from the Platform class of the Xamarin.Essentials library, an important tool
that provides API for common development tasks and which will be
discussed in Chapter 11, Managing the Application Lifecycle. This method
takes care of requesting the user permission based on what you have set in
the manifest. If you forget to configure permissions in the manifest, the app
will throw an exception, so you need to be very careful about this.

Debugging an Android app
You can run, debug, and test Android apps using the steps you learned in the

previous chapters, which means pressing F5 to start debugging or Ctrl + F5
to launch the app without a debugger attached. However, the target here is no
longer the Windows’ console, but a device. This can be a physical phone or
tablet or an emulator. For the sake of simplicity, the following paragraphs are
based on an emulator. In the Visual Studio toolbar, near the Start icon, you
should see the name of a pre-configured Android emulator, and you should
be able to click on the arrow down to see a list of available target devices (see
Figure 5.6):

Figure 5.6: Selecting a device for debugging

On my machine, the list shows an emulator (Pixel 2 Pie 9.0) and a physical
device (HUAWEI WAS-LX1A). If you want to configure the existing emulators or
create a new emulator image with your favorite system properties, you can
click on Android Device Manager. This will open the Android Device
Manager tool, as illustrated in Figure 5.7:

Figure 5.7: The Android Device Manager tool

For example, you can see that the Pixel 2 Pie emulator is configured with 1
GB of RAM memory and a screen resolution of 1080 x 1920. If you wish to
change the configuration, you can click on Edit. Instead, if you prefer to
create a new emulator image from scratch, you can click on New. This is out
of scope here, so it is left as an exercise for you. You do not need to manually
start the emulator from the Android Device Manager because Visual Studio
does it for you. So, if you go back to Visual Studio and press the Start
button, the selected emulator will start up, and the app will be loaded. If you
are targeting a physical device, Visual Studio will launch the app on the
device with an instance of the debugger attached. Figure 5.8 shows how the
current, simple app looks like on the emulator:

Figure 5.8: An Android app running in the emulator with extended controls

Emulators provide extended controls that you can use to simulate different
situations in the application lifecycle, such as the battery level, network
connection, and location. You enable extended controls by clicking on the …
button at the bottom of the emulator toolbar. You can also rotate the
emulator, control the audio level, and take screenshots. When debugging, you
can use all the tools you learned in Chapter 3, Introducing Visual Studio and
.NET, such as breakpoints and data tips.

When the debugger is attached to the app, the execution is certainly
much slower. The reason is that the debugger needs to walk through
every single line of code that is executed, including system code run in
the background. If you wish to test the real app performance, you
should run the app at least without the debugger, and possibly, on a
physical device.

The resulting .apk files can be found under bin\debug or bin\release,
depending on the selected build configuration. You will find two .apk files,
and one contains the signed literal in its name. If you do not provide a

signature, Visual Studio adds one for debugging purposes on a physical
device. Regardless of the device you use, you now have the option to see how
your Android app works, and this is what you will exactly do with
Xamarin.Forms across the rest of the book and with a real user interface, so
keep these steps in mind.

Configuring debugging and Build options
Visual Studio gives you the option to configure several options for debugging
and building an Android app package. If you open the project properties, you
will be able to edit the version of the Android SDK used to build the app
package in the Application tab, as shown in Figure 5.9:

Figure 5.9: Configuring the Android SDK version

This must not be confused with the minimum version required to run your
app. Instead, this allows you to specify which version of the Android tools
must be used to build the app package. When possible, you will use the latest
version available on your machine, but you can downgrade in case of
compatibility issues. In the Android Options tab, you can configure
debugging and build options. If you look at Figure 5.10, you will see many
options, but only a subset will be relevant for your daily work:

Figure 5.10: Configuring debugging and build options

Table 5.3 summarizes the options that are relevant for you:

Option Description

Use Fast Deployment

(debug mode only)
When enabled, only the updated assemblies are rebuilt. This also
keeps the data in the app cache.

Android Package Format You can decide between the classic .apk format and the new app
bundle, which creates a smaller package and delegates the .apk
creation to the Google Play.

Linking This allows for controlling the linker, a tool that continuously looks
for unused types and references and removes them to keep the
package size smaller. Supported options are Sdk Assemblies only
(default), Sdk and User Assemblies, and None.

Table 5.3: Most relevant debugging and build options

For now, leave the default options. You can change them when required. All
these concepts apply to the native Xamarin.Android project included in every
Xamarin.Forms solution, so it is important that you know about them.

The Android Package Signing options will be discussed in the
Publishing apps section.

Understanding Xamarin.iOS projects
With Visual Studio, you can also create native Xamarin.iOS projects.
Additionally, Xamarin.Forms solutions include a Xamarin.iOS native project
if you decide to target this platform as well, so it is important for you to know
at least about their structure. In the Create new project dialog, locate the
iOS App (Xamarin) project template (see Figure 5.11):

Figure 5.11: Creating a Xamarin.iOS project

You can use the search box to quickly filter the list. When you click on Next,
you will be asked to specify a project type (see Figure 5.12).

Figure 5.12: Specifying the iOS project type

Table 5.4 describes the possible app types:

Android App Type Description

Single View App Simple app based on one page.

Master-Detail App App that implements a main page (Master) with navigation between
child pages (Detail).

Tabbed App App based on pages grouped by tabs.

Blank App Empty projects for an app where you need to implement everything
from scratch.

Table 5.4: iOS app types in C#

Depending on which type of device you intend to target, you can select one in
the Device Support group. The default is Universal, which makes an app
work on both iPhones and iPads. The type of device can be always changed
in the Info.plist file in a second moment. The Minimum iOS Version

dropdown allows you to select which minimum iOS version must be installed
on the target device. The lower the version, the higher the number of users
you can reach, but you will not be able to leverage the API exposed by most
recent versions. For the current example, select the Single View App project
and then click on OK. In the next dialog, you will be able to specify a project

name. For the current example, simply enter iOSApp and then click on OK.
After a few seconds, the project will be ready, and Visual Studio will ask you
to connect to a Mac computer. As you remember from Chapter 1, The
Importance of Mobile App Development, and Chapter 2, Xamarin and
Microsoft in the Mobile App Market, a Mac computer with the XCode
development tools is required to build iOS apps with Xamarin and C#. In the
Pair to Mac window, you can specify a Mac that must be in the same
network or be accessible via its IP address. Figure 5.13 demonstrates how
this dialog appears:

Figure 5.13: Connecting Visual Studio to a Mac computer

If the Pair to Mac dialog does not appear automatically, you can
display it with Tools, iOS, Par to Mac.

If your Mac appears in the list, just double-click on it or click on Add Mac to
enter the name or IP address of the Mac itself. When ready, click on Connect.
Assuming that you have enabled the remote access options on your Mac,
Visual Studio will ask the Mac credentials to connect. These are the
username and password of a Mac user that can login to the system. The
dialog will finally inform you whether the connection succeeds or fails.

Understanding the project structure
In Solution Explorer, you can see the project structure, which looks like in
Figure 5.14:

Figure 5.14: The structure of a Xamarin.iOS project

The following is a list of key points to remember:

Under References, you will find the list of the required libraries, both
system and third parties.
Under the Assets Catalogs folder, you store all the icons required by
the Apple Store.
Under the Resources folder, you add images, font files, documents, and
any other resources that the app might need.
The Info.plist file can be considered as the app manifest in iOS and
allows for configuring the app’s main properties. It is discussed in
further detail in the upcoming sections.
The Entitlements.plist file makes it possible to connect the app to
several Apple services (for example, Apple Pay, Apple Sign-in, Siri,
iCloud, etc.) and set up the proper authorizations.

You can also see two .storyboard files, which represent where the user
interface is designed.

Handling the user interface
Xamarin.iOS allows you to create the user interface with .storyboard files,
which is exactly the same format utilized by Apple Xcode. If you look at
Figure 5.14, you can see two files: LaunchScreen.storyboard and
Main.storyboard. The first file allows you to create a functional splash
screen for your app, which includes static images and also other kinds of
visual elements. Main.storyboard represents the root page of the app, and it
is the first page you create. Previously, Visual Studio had an integrated visual
designer to help you create the user interface for Xamarin.iOS projects, but it
has been recently removed. So, you have two options:

Manually writing the XML markup that map the visual elements
directly inside the .storyboard files. For a better understanding, you
can double-click one of the .storyboard files and see how they appear
in the code editor (see Figure 5.15 for an example based on
Main.storyboard).
Editing .storyboard files in XCode on a Mac to leverage more
sophisticated visual design tools.

Figure 5.15: The XML markup of a .storyboard file

For the purpose of this book, both options are quite irrelevant because you
will focus on Xamarin.Forms projects, and Visual Studio has proper design
tools for this. But if you ever need to work on Xamarin.iOS projects with
visual design tools, these will need to be opened on a Mac with XCode. Like
for Android, Xamarin.iOS relies on C# code for responding to user actions on
the user interface as well as for code that is required by the app lifecycle. If
you open the various .cs files in the solution, you will see method names that
easily recall events in the app or page lifecycle. You will learn more on this
in Chapter 13: Working with Native APIs. For now, it is better to spend a few
words on a real-world tip. Open the Main.cs file. This is the main entry point
of the app and the first piece of code that will be executed. You will find a
Main method defined as follows:
static void Main(string[] args)

{

// if you want to use a different Application Delegate class

from

“AppDelegate"

// you can specify it here.

UIApplication.Main(args, null, “AppDelegate");

}

The UIApplication.Main method creates an instance of the UIApplication
class, which represents the application during all its lifecycle. With
Xamarin.iOS, several types of runtime errors might make the app crash
without any exceptions or error messages even with the Debug configuration
enabled, making it extremely difficult to understand what caused the crash.
For this reason, you can enclose the method invocation inside a try..catch
block, as follows:
try

{

UIApplication.Main(args, null, “AppDelegate");

}

catch (System.Exception ex)

{

System.Diagnostics.Debug.WriteLine(ex.Message);

}

This way, if a problem happens, you can use a breakpoint on the catch block
or look at the Output window to see the message provided by the Exception
class. This also applies to your Xamarin.Forms projects, which rely on
Xamarin.iOS for the iOS part, so this is a recommendation that you should
implement on every native iOS project.

Debugging an iOS app
In Xamarin.iOS, you have the usual Debug and Release build configurations,
plus two additional flavors called iPhoneSimulator and iPhone. You use the
first one when you want to work with one of the simulators provided by the
XCode developer tools and the second one when you want to run the app on a
physical device. For example, suppose you want to debug the current sample
app on an iPhone 13 with iOS 15 installed. You select the Debug

configuration, then iPhoneSimulator and the desired device from the
dropdown placed on the Start button, as shown in Figure 5.16:

Figure 5.16: Selecting a target device for debugging

Physical devices connected to your Mac will also be displayed in this list, but
you should pick them up only with the iPhone configuration flavor selected.

You can install or remove device simulators from XCode on your Mac.
This is not something that Visual Studio can handle.

If you press F5, Visual Studio will contact the XCode developer tools on
your Mac. This is required to first build the .ipa application package and
then to start the iPhone simulator. Remember that everything happens on the

XCode side. After one minute or so, you should see the device simulator with
the sample application running, as shown in Figure 5.17:

Figure 5.17: The empty Xamarin.iOS project is running on an iPhone 13 simulator

In practice, the simulator is running on the Mac. Visual Studio is only sharing
the simulator on Windows with a dedicated user interface.

Because iOS simulators actually run on a Mac, if you do not see also the
simulator running on Windows, you must explicitly enable this option.
This can be done by clicking on Tools | Options | Xamarin | iOS
Settings and then selecting the option called Remote Simulator to
Windows.

The simulator has a toolbar with buttons that allow you to simulate gestures,
such as pressing the physical home button, locking the screen, and taking
screenshots. You can access advanced options by clicking on the … button,
such as setting the network conditions and a sample location. Working with
simulators not only makes it possible to test the app with different screen
factors and hardware features, but it also simplifies the development process
because it does not need to have a developer profile. When you want to
debug an app on a physical device, you need a developer profile. This is
explained in the next section.

Understanding provisioning profiles and developer accounts
Building apps for iOS requires an Apple developer account. For development
and debugging purposes, the Apple SDKs generates a free developer account
based on your Apple ID that you can use to write code and debug. This
happens automatically. As mentioned in the Publishing apps section later,
you will need a paid developer account to publish apps or to distribute apps
to testers. For now, the free individual account is fine. If you wish to run your
apps on a physical device, you also need so-called provisioning profiles. A
provisioning profile allows a Mac to recognize your physical devices for
development purposes. This is accomplished in the project properties, so
right-click on the project name in Solution Explorer and then select
Properties. The iOS Bundle Signing tab should be automatically opened
(see Figure 5.18):

Figure 5.18: Managing provisioning profiles for iOS

If the Manual Provisioning option is selected, you will see a profile called
Developer, which is used to debug the application. This is the only option
you can use if you do not have a paid Apple subscription. If you have one,
you will also see additional profiles that can be used to publish the app, and
you can also take advantage of the Automatic Provisioning option so that
Visual Studio does the job of configuring the account for you. The only thing
you will need to do is click on Add Account, provide your Apple ID
credentials, and wait for the information to be downloaded and connected. In
summary, a free developer account is offered by Apple, but it can only be
used for development and debugging against simulators and physical devices,
not for distributing or publishing the app. A provisioning profile is required
for physical devices, not for simulators, and Visual Studio generates them for
you.

Configuring App Package options
Like for Android, where you have the app manifest, on iOS you can also
configure some important project properties. This is accomplished by editing
the Info.plist file. If you double-click on it, you will see the editor shown
in Figure 5.19:

Figure 5.19: Editing the application properties

The Application Name field allows you to specify the name of the app as it
will appear on the device. Bundle Identifier represents a unique identifier
across the entire App Store, and it is made of the com. prefix, followed by the
company name and an app identifier. Note how you can also change the
target devices you selected when creating the project, and how you can
specify the supported device orientations. You are not really creating
Xamarin.iOS project, so you will work with Xamarin.Forms. Hence, it is
recommended that you do not change the Main Interface option value,
which actually points to the .storyboard file used as the root page. The Hide

status bar and Requires full screen options allow for hiding the iOS
status bar (clock, battery status, network) and for taking all the available
screen space, respectively. The latter is particularly useful with the most
recent devices that do not have the physical home button.

It is not possible to summarize all the capabilities and integration
options in this general-purpose book. So, you only get hints about the
possibilities here; you are encouraged to look at the official
documentation (https://docs.microsoft.com/en-us/xamarin/ios) for more
information.

Unlike Android, you do not need to set permissions that the app needs to ask
to the user. These will be handled directly in code. The Info.plist editor
provides three other tabs:

Visual Assets: This is where you can provide an icon for the app, a
startup image, and two icons for iTunes.
Capabilities: Here, you can see if the app needs to integrate with
services like the Game Center, Maps, and background modes. This is
not covered in detail, so take a look at the documentation
(https://docs.microsoft.com/en-us/xamarin/ios/deploy-
test/provisioning/capabilities).
Advanced: In this tab, you can specify if the app can open specific file
types or URLs.

In addition, you can further integrate the application with more Apple
services like Siri and iCloud. This can be accomplished by editing the
Entitlements.plist file. Figure 5.20 shows an example of how it looks
when editing iCloud settings.

Figure 5.20: Editing integration options with Apple services

Remember that both the Info.plist and Entitlements.plist files are not a
prerogative of Xamarin.iOS; rather, they are Apple file formats and can be
also edited in XCode if necessary. Now that you also have a general
knowledge about Xamarin.iOS, it is time to move on to what the book
focuses on: Xamarin.Forms.

So far, you have been working with Android and iOS projects in C#,
but both are individual projects, and there is no cross-platform
development. This will start in the next section.

Cross-platform projects with Xamarin.Forms
Xamarin.Forms is the latest addition to the Xamarin code base; it was added
a few years ago. The goal of Xamarin.Forms is to make it possible to develop
cross-platform projects in C#, sharing as much code as possible. In particular,
it lets you share code for user interface elements that are available to all
platforms and logic that works on all platforms. As you will learn throughout
the book, you can empower your projects with platform-specific features,
which is actually a very common requirement. Xamarin.Forms is what you
will use in this book, so the concepts explained in this section are extremely
important. In the Create a new project dialog, locate the Mobile App

(Xamarin.Forms) project template, for example, typing mobile in the search
list to filter the results, as shown in Figure 5.21:

Figure 5.21: Creating a Xamarin.Forms project

When you click on Next, you will be asked to enter a project name. For the
current example, enter MobileApp and then click on Create. At this point, the
New Mobile App dialog appears and here, you can specify a template for your
app, as shown in Figure 5.22:

Figure 5.22: Selecting an app template

There are three templates:

Flyout, which creates a basic infrastructure with a collapsible side
menu.
Tabbed, which creates a basic infrastructure based on tabs to enable
page navigation.
Blank, which creates an empty project with one page.

For now, select Blank. Then, you can find the list of supported platforms that
you wish to target. As mentioned in Chapter 1, The Importance of Mobile
App Development, and Chapter 2, Xamarin and Microsoft in the Mobile App
Market, this book only focuses on Android and iOS, so make sure that these
two platforms are selected. Finally, click on Create. After a few seconds, the
project will be ready in Visual Studio.

Understanding the project structure

If you look at Solution Explorer (see Figure 5.23), you can see how a
Xamarin.Forms solution is made of three projects (they would have been four
if you had also selected UWP as a target):

Figure 5.23: The structure of a Xamarin.Forms solution

The MobileApp project is also referred to as shared project because it is the
real place where you write code, logic, and the user interface. Its main
dependencies are the Xamarin.Forms library and the .NET Standard Library,

whereas Xamarin.Essentials is an additional library that is added to support
common tasks. Then, you can find two native projects, MobileApp.Android
and MobileApp.iOS, which have the same structure and behavior you learned
previously in this chapter, and both have a reference to the shared project.
The shared project can be thought of as a connection point between native
projects and the Xamarin libraries, so they are still the place where you
customize app information, as you learned in the previous sections.

Introducing XAML, App.xaml, and MainPage.xaml
In Solution Explorer, you will also see two files, App.xaml and
MainPage.xaml. The App.xaml file contains resources that are globally
available in the app and allows for managing the application lifecycle events
in its code-behind C# file, called App.xaml.cs, that you can see if you
expand the App.xaml node. On the other hand, MainPage.xaml represents the
auto-generated root page. It contains the visual elements of the user interface
and navigation where required. Its code-behind file, MainPage.xaml.cs, is
used to handle user actions over the user interface and to manage the page
lifecycle. Especially in the next two chapters, you will learn how to work
with multiple pages. The .xaml extension means that the file contains XAML
markup code. XAML stands for eXtensible Application Markup Language, a
markup language that derives from XML and that allows for creating the user
interface.

As a general rule, a C# code-behind file exists for every XAML file.
There can be exceptions, but this is the most common situation.

If you click on MainPage.xaml, you will see some sample XAML markup
generated by Visual Studio in the code editor (see Figure 5.24):

Figure 5.24: Defining the user interface via XAML

XAML is based on the XML syntax. More specifically, an XML node
represents a visual element, whereas XML attributes represent properties of a
visual element. In the sample code, there are the following relevant elements:

ContentPage is an object that represents an individual page.
xmlns tags can be compared to C# namespaces and allow for importing
objects from a library or built-in schema, like in the case of Xamarin
types.
StackLayout is a layout, which can be thought of as a container of
visual elements.
Frame and Label are visual elements, normally referred to as views in
mobile app development terminology, or as controls in .NET and C#
terminology.

All the layouts and views will be discussed in the upcoming chapters; for
now, you just need to focus on how XAML allows for defining the user

interface. Figure 5.24 also shows the ToolBox window, where you can find a
list of supported visual elements that you can drag onto the XAML code. You
could also write the user interface entirely in C#, and sometimes, this is
useful when you need to create visual elements at runtime. However, XAML
has the following benefits:

It makes it simpler to define the user interface with a hierarchical
approach.
It allows for completely separating the user interface definition
(declarative code) from the actions (imperative code).

Separation also means that professional designers can use specific tools to
edit the XAML markup without touching the imperative code. Previously,
Visual Studio included a tool called Xamarin.Forms Previewer, which
enabled getting a visual representation of the XAML code within device
simulator. However, this tool has been deprecated in favor of a new one
called Xamarin Hot Reload. With this approach, you first write your XAML
and C# and then run the app for debugging and make changes in the code at
runtime. Hot Reload will be shown as we move further. Luckily enough,
IntelliSense for the XAML editor is very powerful, so declaring the user
interface will be quite simple. The C# code-behind for the page is very
simple; it only contains a constructor that invokes a method called
InitializeComponent, which is inherited from the base Page class. App.xaml
is a container of resources that are shared across the app. Resources in
Xamarin.Forms are a specific topic, which is discussed in Chapter 9:
Resources and Data Binding. The App.xaml.cs file usually contains any
code that needs to be initialized when the app starts up. In addition, it allows
for handling the application lifecycle events (OnStart, OnSleep, OnResume).
These are all quick hints that will be described in detail in Chapter 11,
Managing the Application Lifecycle.

Running and debugging apps
When you have written some code and want to run your app, you first need to
select a startup project, which can either be the Android project or the iOS
one. For example, in Solution Explorer, right-click on the
MobileApp.Android project and then select Set as Startup Project. The
name of the project will be highlighted in bold. Now, you will be able to run

the app as you already know, for example, in the emulator of choice. Figure
5.25 shows the sample app running in the Android emulator. The reason why
you see Visual Studio behind the emulator is to highlight the fact that you can
make changes to your XAML code while debugging, and these will be
immediately reflected into the user interface once you save the code file (Hot
Reload):

Figure 5.25: Running a Xamarin.Forms project

Remember the following things:

You will write cross-platform code in the shared project. This is what
you will do most of the time.
You will manage native resources (build options, application artwork,
etc.) directly in each native project.

All these general concepts will be covered often in the upcoming chapters, so
do not be scared if something is not clear.

Preparing apps for publication
When you complete the development and testing of your apps, you likely
want to publish them. Publishing apps to Google Play and the Apple App
Store requires paid subscriptions, and the details are not covered in this book.
However, you will now learn how to prepare an app for distribution.

Preparing Android packages
Let’s consider Android first. Select Release configuration, and then right-
click on the project name in Solution Explorer and select Archive. Visual
Studio will prepare a so-called archive, whose summary is shown in Figure
5.26:

Figure 5.26: Archiving a package for publication

The Archive Manager tool that you see in Figure 5.26 also contains the list
of previously archived packages. The next step is to click on Distribute.
You will be asked which channel you want to use, as shown in Figure 5.27:

Figure 5.27: Selecting a distribution channel

The Ad Hoc distribution channel allows you to create a signed .apk file that
you can freely share with others. If you select Google Play instead, Visual
Studio will ask for your Google Play credentials and guide you through the
process of publishing the app to the store. However, you can always go for
the Ad Hoc option and manually upload the generated .apk to Google Play at
a later stage. Click on Ad Hoc. You will be asked to Create an Android
keystore, as shown in Figure 5.28:

Figure 5.28: Creating an Android keystore

This is a certificate that you will use to sign the app package. Mandatory
fields are Alias, Password and Full Name. The alias is just a friendly name
for your records. Click on Create when ready, and then, in the Archive
Manager, click on Distribute. When the generation of the .apk file is
completed, you will be able to click on the Open Folder button to see the file
in Windows Explorer. You can then share your app package with other
people or manually upload it to Google Play.

Preparing iOS packages
For iOS, things work quite similarly. You will still select the Release
configuration for a project, but you will need to select the iPhone flavor

and a physical device. In addition, you will still need to be connected to a
Mac. You will then right-click on the project name in Solution Explorer
and select Archive. Visual Studio will search for an appropriate provisioning
profile on the Mac. If not found, you can create one by following these steps:

1. Open Xcode on the Mac
2. Create a new Swift project with any of the templates.
3. When Xcode asks you to specify a bundle identifier, enter exactly the

same identifier you added to the Xamarin.iOS project.
4. Select a target device (either simulator or physical) and start the

application via the Start button on the toolbar.

These steps will generate a provisioning profile on the Mac side. When done,
go back to Visual Studio and repeat the previous steps. Remember that the
generated .ipa file is located on the Mac, so you will need to pick it up from
there. Apple allows you to distribute apps to internal testers via the TestFlight
tool before you publish them to the regular App Store. TestFlight cannot be
covered here, so it is recommended that you read the official documentation
(https://developer.apple.com/testflight/).

Conclusion
In this chapter, you learned how native projects are made and why they are so
important inside a Xamarin.Forms solution. You also learned how to set up
the development environment to work with cross-platform projects. You
acquired all the necessary basic knowledge to start developing mobile apps
with Xamarin.Forms. Starting with the next chapter, you will seriously start
writing code, and you will learn many more concepts about Xamarin.Forms
and mobile app development in general.

Points to remember
With Xamarin.Forms, you share the user interface and the logic across
projects.
You set up app information in the native projects’ properties.
In Xamarin.Forms, the user interface is usually written with XAML
markup.

https://developer.apple.com/testflight/

Key terms
App manifest: A file that specifies properties of an app.
XAML: Markup language you use to define the user interface with a
declarative approach.
Imperative code: C# code you use to implement actions for your app.
Archive: A signed app package ready for distribution.

CHAPTER 6
Organizing the User Interface with

Layouts

Introduction
You cannot predict the mobile devices your apps will work on; they can be
smartphones, tablets, and even desktop computers. This means many possible
screen sizes and form factors. Applications should also work with both
landscape and portrait orientations. Based on these considerations, the user
interface in mobile apps must be adaptive. This means that visual elements
will automatically and dynamically resize to adapt to the device, screen size,
and form factor. To accomplish this, Xamarin.Forms provides layouts, which
is the topic of this chapter.

Across the book, you will often find terms like layout, view, control,
visual element. A layout, as you learn in this chapter, can contain one
or more views. A view is an individual piece of the user interface (for
example, a text box, a button, and so on) and the view term is often
used in native Android and iOS development. Control has the same
meaning as view, but it is more often used in the Microsoft terminology.
A visual element can be any element of the user interface, including
layouts and views. Control and view are used in this book
interchangeably.

Structure
In this chapter, we will cover the following topics:

Understanding the concept of layout
Organizing the user interface with Xamarin.Forms layouts
Styling the user interface with cascading style sheets

Objectives
After completing this chapter, you will be able organize visual elements in a
dynamic way, and you will be able to decide which layout suits better your
needs in a specific scenario. The chapter comes with a companion
Xamarin.Forms solution that you can open in Visual Studio to quickly follow
the examples. The shared project contains several pages, each with an
example about a specific layout, with self-explanatory name. The startup
page is assigned in the App.xaml.cs file, passing a page instance to the
MainPage property, as follows:
MainPage = new StackLayoutExample();

The preceding line shows an example of how to run the StackLayoutExample
page.

Understanding the concept of layout
The user interface of your apps should be dynamic in most cases. This means
that it should be automatically adapt to the device type, screen size, and user
settings like large fonts. For this reason, the visual elements you add to the
user interface should never have a fixed size or position, except in situations
where fixed positioning provides the proper user experience. Xamarin.Forms
makes it possible to implement dynamic user interface by arranging controls
inside containers known as layouts or panels. This chapter provides a detailed
description of all the available layouts, and it explains how to add controls in
a dynamic approach. In addition, you will also learn that the user interface in
Xamarin.Forms is built in a hierarchical way, which means that one layout
can contain one or more nested layouts and create sophisticated user
interfaces. Table 6.1 describes available layouts in Xamarin.Forms.

Layout Description

StackLayout Visual elements are placed one after the other, either horizontally
(from left to right) or vertically (from top to bottom).

FlexLayout Like the StackLayout, but visual elements are wrapped to the next
row or column if there is not enough space on the page.

Grid Visual elements are positioned inside rows and columns of a virtual
table.

AbsoluteLayout Allows for placing the child element at a specified position.

RelativeLayout Places child elements in a position that depends on constraints
established by the relationship with other elements.

ScrollView Implements scrolling capabilities over the child visual elements.

Frame Adds colored border, round corners, and drop shadow to the child
visual element.

ContentView Allows form implementing custom, reusable XAML views.

Table 6.1: Layouts in Xamarin.Forms

In Xamarin.Forms, there is usually at least one root layout in each page,
which is declared in the page’s Content property. Such a root layout typically
contains the hierarchy of visual elements in the page, which can also include
other layouts.

Alignment and spacing options
In Xamarin.Forms, every visual element can be aligned horizontally or
vertically in the user interface by setting the HorizontalOptions and
VerticalOptions properties, respectively. Allowed values are exposed by
the LayoutOptions structure and are listed in Table 6.2. For example, if you
only have the root layout in a page, you can assign VerticalOptions with
FillAndExpand so that it will fill all the available space:

Alignment Description

Center The visual element is aligned at the center.

CenterAndExpand The visual element is aligned at the center and fills all the available
space.

Start If assigned to HorizontalOptions, the visual element is aligned at the
left. If assigned to VerticalOptions, the visual element is aligned at
the top.

StartAndExpand If assigned to HorizontalOptions, the visual element is aligned at the
left. If assigned to VerticalOptions, the visual element is aligned at
the top. In both cases, the visual element fills all the available space.

End If assigned to HorizontalOptions, the visual element is aligned at the
right. If assigned to VerticalOptions, the visual element is aligned at
the bottom.

EndAndExpand If assigned to HorizontalOptions, the visual element is aligned at the
right. If assigned to VerticalOptions, the visual element is aligned at
the bottom. In both cases, the visual element fills all the available

space.

Fill The visual element has no spacing around its child elements, and it
does not expand.

FillAndExpand The visual element has no spacing around its child elements, and it
fills all the available space.

Table 6.2: Alignment options

When arranging the user interface, it is also important to properly manage
spacing between visual elements and layouts, and inside individual views.
This is accomplished by leveraging the following three properties: Padding,
Spacing, and Margin. Table 6.3 describes them in further detail:

Property Description

Margin Of type thickness, this is the space between a visual element and its
adjacent views.

Padding Of type thickness, this is the space between a visual element and its
child elements.

Spacing Of type double, it is only available in the StackLayout and specifies
the spacing between each child element. The default is 6.

Table 6.3: Spacing options

Properties of type thickness can have a fixed value or different values for
each side. For example, consider the following assignment:
Margin = “10"

It adds the same distance to all the sides of a view from its adjacent visual
elements. Instead, consider the following assignment:
Margin = “10,5,10,5"

It adds a different distance to each side of the view in the following order:
left, top, right, bottom.
Spacing and distances might not be so immediate to implement, so it is
recommended that you make some experiments for better, practical
understanding.

Understanding the visual tree
In all the technologies based on XAML, such as Xamarin.Forms, Windows
Presentation Foundation, and Universal Windows Platform, you will often

hear about a concept known as visual tree. The visual tree is the hierarchy of
visual elements that make the user interface and their primitive elements. For
example, consider the following code:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Layouts.MainPage">

<StackLayout Orientation="Vertical">

<Label Text="Example" />

<StackLayout>

</StackLayout>

</StackLayout>

</ContentPage>

This code generates a page with some visual elements inside, and its visual
hierarchy is represented by the visual tree. At the top of the visual tree, there
is a ContentPage, which represents an individual page. The next level of the
hierarchy is a StackLayout (explained in the upcoming sections). Then, there
are two objects on the same level: a Label and a StackLayout. If you have
some programming experience, you know that usually visual elements also
have a name to uniquely identify them. But in the preceding XAML code, no
visual element has a name. Behind the scenes, the Xamarin.Forms runtime
can identify and handle each visual element even if they have no names. This
will be particularly useful when working with databinding in Chapter 9,
Working with Resources and Data Binding. You will need to specify a name
if you want to interact with a visual element in C# code or when you need to
reference it from another visual element in XAML. You assign a name via
the x:Name tag, like in the following example:
<Label x:Name="WelcomeLabel" />

This allows you to handle the Label in C#, like in the following code:
WelcomeLabel.Text="Example";

In the next few pages, you will seldom provide a name for visual elements,
but you will do this more often starting with the next chapter.

.NET objects hierarchy
In terms of .NET objects, all the layouts described in the next section derive
from the Xamarin.Forms.Layout class, which exposes properties and
structure that are common to each layout. The Layout class derives from
Xamarin.Forms.View, a class that defines the infrastructure for layouts and

views. View inherits from Xamarin.Forms.VisualElement, a class that
defines the basic structure of any visual element. For example, the
HorizontalOptions and VerticalOptions properties whose values were
summarized in Table 6.2 are defined in the View class. In practice, even if it
is good for your knowledge, it is not necessary to remember the inheritance
level of each property. You can quickly use the Go to Definition tool and
the Object Browser window to dissect an object’s structure. For this reason,
members derived via inheritance will be highlighted only when necessary.

Organizing the user interface
This section describes how to create a sample project, with concepts that you
will use multiple times across the book, and it shows how to organize
elements of the user interface with the layouts summarized in Table 6.1.

Creating a Sample Project
As stated previously, the chapter comes with a companion Xamarin.Forms
solution that you can open with Visual Studio to better follow the examples.
However, if you wish to create a project from scratch, you can follow these
steps:

By following the lesson learned in the previous chapter, create a new
Xamarin.Forms solution called Layouts for consistency with the sample
solution.
Do not edit or remove the auto generated MainPage.xaml file; it will be
used later.
For each layout discussed in the book, add a new item of type Content
Page (XAML). To accomplish this, right-click on the shared project
name and then click on Add New Item in the context menu.
In the Add New Item dialog, click on the Xamarin.Forms node on the
left and then select the Content Page (XAML) item template.
Assign to the new XAML file a name that matches the discussed layout,
such as StackLayoutExample.xaml, and click on Add.

This is also a useful exercise to get familiar with creating and managing
Xamarin.Forms solutions.

The StackLayout
With the StackLayout layout, child views are positioned near each other.
Child views can be oriented both horizontally and vertically; the vertical
orientation is the default. The following code demonstrates how to arrange
order child views horizontally and vertically, and how a StackLayout can
contain nested layouts:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Layouts.StackLayoutExample">

<StackLayout Orientation="Vertical">

<StackLayout Orientation="Horizontal" Margin="5">

<Label Text="Sample controls" Margin="5"/>

<Button Text="Test button" Margin="5"/>

</StackLayout>

<StackLayout Orientation="Vertical" Margin="5">

<Label Text="Sample controls" Margin="5"/>

<Button Text="Test button" Margin="5"/>

</StackLayout>

</StackLayout>

</ContentPage>

The result of this XAML is shown in Figure 6.1, where you can see both the
Android and iOS simulators in action.

All figures representing the user interface as a result of some code will
show both the Android and iOS simulators so that you can have a
better idea of how your code is working cross-platform. If a feature is
only available in one of the systems, only the related device will be
shown.

Figure 6.1: Arranging views with the StackLayout

The Orientation property can be assigned with Horizontal or Vertical;
the latter is the default. In terms of user interface dynamicity, child views of a
StackLayout are proportionally resized depending on the orientation. You
can also assign child views a fixed size by assigning the WidthRequest and
HeightRequest properties of each child view. These represent the width and
height, respectively, but it is preferable to not assign a fixed size. As
mentioned in Table 6.3, you can also decide the spacing between child views
with the Spacing property.

The FlexLayout
Like for the StackLayout, child views in the FlexLayout are positioned near
each other, horizontally or vertically, but they are wrapped to a new row or
column (depending on the orientation) if there is not enough space on screen.
In its simplest form, you declare a FlexLayout as follows:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

Padding="0,20,0,0"

x:Class="Layouts.FlexLayoutExample">

<FlexLayout Wrap="Wrap" JustifyContent="SpaceAround"

Direction="Row">

<Label Text="This is a sample label in a page"

FlexLayout.AlignSelf="Center"/>

<Button Text="Tap here to get things done"

FlexLayout.AlignSelf="Center" x:Name="Button1"/>

</FlexLayout>

</ContentPage>

Tip: The Padding property has been assigned to the ContentPage object
in order to add some distance between the top of the screen and the
root visual element. This is usually required in iOS only, but for now, it
applies to both platforms. You will learn how to handle properties by
OS in the upcoming chapters.

The FlexLayout exposes several exclusive properties:

Direction: This property specifies whether child views should be
arranged in a single row or column. It is of type FlexDirection, and
supported values are Row (default), Column, RowReverse, and
ColumnReverse. The last two will cause child views to be in the reverse
order.
Wrap: This property, of type FlexWrap, specifies whether child views
must be wrapped to the next row or column (depending on the value of
Direction) if there is not enough space in the first one. Allowed values
are Wrap (wraps to the next row/column), NoWrap (forces the view
content to stay in one row/column), and Reverse (wraps to the next
row/column but in the reverse order).
JustifyContent: This property, of type FlexJustify, specifies how
child views should be organized in case there is extra space around

them. Possible values are start, center, end, SpaceAround,
SpaceBetween, and SpaceEvenly. While start, center, and end are self-
explanatory, the others deserve a more thorough explanation. With
SpaceAround, the spacing between elements is set at one unit of space at
the beginning and end, and at two units between them, so the elements
and the space fill the row. With SpaceBetween, the space between views
is equal between units, and there is no additional space at either the end
of the row. With SpaceEvenly, the space between child elements is the
same between each other and from the bounds of the parent view to the
other elements.

Child views in the FlexLayout can be aligned via the FlexLayout.AlignSelf
attached property, whose value can be Start, Center, End, and Stretch.
Figure 6.2 shows the result of the code example and demonstrates how child
views wrapping works:

Figure 6.2: Arranging views with the FlexLayout

You can also try to assign the Wrap property with NoWrap to see how child
views will be organized on the same row. Depending on the screen size of
your device, views will overlap each other if not enough space is available.
The FlexLayout is very versatile, because it is easy to use like a
StackLayout, and it simplifies the way you implement child views for which
you don’t know the size in advance.

The Grid

The Grid is the best layout in terms of rendering performance, and it allows
you to organize child views within rows and columns, like in a virtual table.
You can define only rows, only columns or both rows and columns to create
virtual cells. Rows, columns, and cells can contain an individual view or
another layout, which gives you great flexibility in designing a sophisticated
user interface. The following code snippet shows how to define a Grid that is
divided into two rows and two columns, creating four virtual cells:
<Grid>

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition />

<ColumnDefinition />

</Grid.ColumnDefinitions>

</Grid>

RowDefinitions is a collection of RowDefinition objects, and
ColumnDefinitions is a collection of ColumnDefinition objects, where each
object represents a row or a column, respectively. You can also specify the
Width or Height property to size rows and columns. If the Width and Height
are not specified, both rows and columns will proportionally take the
maximum space available, and this also makes it possible for rows and
columns to be automatically resized if the parent view is resized. The
previous code snippet shows how to create a virtual table with four cells. To
add views to a Grid, you need to specify in which row and column the view
needs to stay. This can be done by assigning the Grid.Row and Grid.Column
properties, also referred to as attached properties, on the view declaration.

As a general rule, attached properties make it possible to assign
properties of another visual element from the current visual element.

The index of rows and columns is zero-based, so 0 represents the first column
from the left and the first row from the top. Rows, columns, and virtual cell
can certainly contain nested layouts for more complex visual hierarchies. The
following code demonstrates this, nesting grids:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Layouts.GridSample">

<ContentPage.Content>

<Grid>

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition />

<ColumnDefinition />

</Grid.ColumnDefinitions>

<Button Text="First Button" />

<Button Grid.Column="1" Text="Second Button"/>

<Grid Grid.Row="1">

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition />

<ColumnDefinition />

</Grid.ColumnDefinitions>

<Button Text="Button 3" />

<Button Text="Button 4" Grid.Column="1" />

</Grid>

</Grid>

</ContentPage.Content>

</ContentPage>

Note that the Grid.Row="0" and Grid.Column="0" values can be omitted for
simplicity. The result of this code is shown in Figure 6.3:

Figure 6.3: Tabular layout with a Grid

Spacing, proportions and spans for rows and columns
Rows and columns in a Grid should have dynamic height and width when
possible. By default, rows and columns take all the available space, but you
can additionally control the height of rows and the width of columns. The
Height property of each RowDefinition and the Width property of each
ColumnDefinition can be assigned with values from the GridUnitType
enumeration so that you can manage their size, proportions and spacing.

Possible values are follows:

Auto: Columns and rows are automatically sized to fit their content.
Star: Columns and rows are proportionally sized to the remaining
available space.
Absolute: Columns and rows have fixed height and width.

In XAML, you use the * for star, and a numeric value for absolute, like in the
following snippet:
<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto"/>

<ColumnDefinition Width="*"/>

<ColumnDefinition Width="20"/>

</Grid.ColumnDefinitions>

You can also force visual elements in a cell to span across multiple rows or
columns. This is accomplished via the Grid.RowSpan and Grid.ColumnSpan
attached properties, assigned with the number of rows and columns that a
view should take.

The AbsoluteLayout
The AbsoluteLayout layout allows for the so-called absolute positioning,
which means specifying the exact size and position of your visual elements
based on their bounds. Let’s look at an example for easier understanding:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Layouts.AbsoluteLayoutExample" Padding="0,20,0,0">

<AbsoluteLayout>

<Label Text="First Label"

AbsoluteLayout.LayoutBounds="0, 0, 0.25, 0.25"

AbsoluteLayout.LayoutFlags="All" TextColor="Red"/>

<Label Text="Second Label"

AbsoluteLayout.LayoutBounds="0.20, 0.20, 0.25, 0.25"

AbsoluteLayout.LayoutFlags="All" TextColor="Orange"/>

<Label Text="Third Label"

AbsoluteLayout.LayoutBounds="0.40, 0.40, 0.25, 0.25"

AbsoluteLayout.LayoutFlags="All" TextColor="Violet"/>

<Label Text="Fourth Label"

AbsoluteLayout.LayoutBounds="0.60, 0.60, 0.25, 0.25"

AbsoluteLayout.LayoutFlags="All" TextColor="Yellow"/>

</AbsoluteLayout>

</ContentPage>

As you can see from the code, you specify the position of the child elements
via the AbsoluteLayout.LayoutBounds and AbsoluteLayout.LayoutFlags
attached properties. More specifically, the LayoutBounds property allows you
to specify the position of the four bounds of your view with values of type
double, separated by a comma. The LayoutFlags property accepts values
from the AbsoluteLayoutFlags enumeration and allows you to deeper
control the child view’s position. The following is a list of possible values:

All: All dimensions of child elements are proportional.
HeightProportional: The height of the child element is proportional to
the layout.
WidthProportional: The width of the child element is proportional to
the layout.
None: No interpretation is done.
SizeProportional: Combines WidthProportional and
HeightProportional.
XProportional: X property is proportional to the layout.
YProportional: Y property is proportional to the layout.
PositionProportional: Combines XProportional and
YProportional.

Figure 6.4 shows the result of the preceding code:

Figure 6.4: Fixed layouts with the AbsoluteLayout

The RelativeLayout
The RelativeLayout layout places child elements relative to each other or to
the containing view. The position of child elements in a RelativeLayout is
determined via so-called constraints, represented by the
ConstraintExpression markup extension. This is responsible for specifying
the size and position of a child view, considering the relationship of the child
view to its parent or another named view.

Markup extensions allow for obtaining a value that is not a primitive or
a specific XAML type. The syntax requires an opening curly brace { to
enter the markup extension scope, and a closing curly brace } to exit.
Inside curly braces, you point to the desired type, which can be a
resource or an object for databinding. You will see many more
examples in Chapter 9, Resources and Data Binding.

The RelativeLayout class exposes the XConstraint and YConstraint

properties. The following code snippet demonstrates how to assign these
properties with values coming from other visual elements, via attached
properties. For the sake of simplicity, the example is based on the BoxView
element, which basically draws a colored area:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Layouts.RelativeLayoutExample">

<ContentPage.Content>

<RelativeLayout>

<BoxView Color="Yellow" x:Name="YellowBoxView"

RelativeLayout.YConstraint="{ConstraintExpression

Type=RelativeToParent,

Property=Height,Factor=.15,Constant=0}"

RelativeLayout.WidthConstraint="{ConstraintExpression

Type=RelativeToParent,Property=Width,Factor=1,Constant=0}"

RelativeLayout.HeightConstraint="{ConstraintExpression

Type=RelativeToParent,Property=Height,Factor=.8,Constant=0}"

/>

<BoxView Color="Green"

RelativeLayout.YConstraint="{ConstraintExpression

Type=RelativeToView,

ElementName=YellowBoxView,Property=Y,Factor=1,Constant=20}"

RelativeLayout.XConstraint="{ConstraintExpression

Type=RelativeToView,

ElementName=YellowBoxView,Property=X,Factor=1,Constant=20}"

RelativeLayout.WidthConstraint="{ConstraintExpression

Type=RelativeToParent,Property=Width,Factor=.5,Constant=0}"

RelativeLayout.HeightConstraint="{ConstraintExpression

Type=RelativeToParent,Property=Height,Factor=.5,Constant=0}"

/>

</RelativeLayout>

</ContentPage.Content>

</ContentPage>

Figure 6.5 shows the result of this code:

Figure 6.5: Relative positioning of views

The official documentation recommends avoiding the RelativeLayout layout
when possible due to poor rendering performance. If you really need to use it,
try to at least avoid multiple RelativeLayout layouts in the same page.

The ScrollView
Sometimes you might have a user interface that is made of a long list of
visual elements that cannot fit on one screen, so they should be scrolled. To

accomplish this, you include visual elements inside the ScrollView layout. It
is very simple to use:
<ScrollView x:Name="Scroll1">

<StackLayout>

<Label Text="My favorite color:" x:Name="Label1"/>

<BoxView BackgroundColor="Green" HeightRequest="600" />

</StackLayout>

</ScrollView>

In short, a ScrollView adds scrolling capabilities to your visual hierarchy. In
this example, because the height of the BoxView is quite big, it would not fit
in one screen, so it will be possible to scroll the content. A common scenario
with mobile apps is hiding the scroll bars, whose visibility can be changed by
assigning the HorizontalScrollbarVisibility and
VerticalScrollbarVisibility properties with the Always, Never, and
Default values. So, you could assign Never to both properties. You can also
control the scroll orientation via the Orientation property. Supported values
are Horizontal and Vertical, so you can set the ScrollView to scroll only
horizontally or only vertically. The action of scrolling is certainly not static,
so providing a figure here that could not demonstrate the scrolling gesture
would not make much sense. You can quickly run the companion code and
see how it works on your own.

Controlling the ScrollView programmatically
Sometimes, you might need to scroll a view in C# code; for example, you
might need to focus on a particular visual element after the user has made a
selection in the app. The ScrollView class exposes the ScrollToAsync
method, which has two overloads. For a better understanding, consider the
following two lines:
Scroll1.ScrollToAsync(0, 100, true);

Scroll1.ScrollToAsync(Label1, ScrollToPosition.Start, true);

In the first line, the method ensures that the content at 100 points from the top
of the ScrollView is visible. In the second line, the method forces the
ScrollView to move the specified visual element at the top of the view and
ensures that the current position for the ScrollView is the same of the
position of the specified view. The ScrollToPosition enumeration supports
the following values:

Center: Scrolls the child element to the center.

End: Scrolls the child element to the end.
MakeVisible: Makes the element visible within the view.
Start: Scrolls the child element to the start.

Avoid nesting ScrollView layouts, and avoid adding views with built-in
scrolling (CollectionView, WebView, ListView, and so on) to a
ScrollView because this might result in scrolling conflicts.

The Frame
The purpose of the Frame is to draw a colored border around the child visual
element, and optionally, some shadow and circular corners. The following
snippet provides an example:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Layouts.FrameExample">

<Frame OutlineColor="Red" CornerRadius="3" HasShadow="True"

Margin="20">

<Label Text="Label in a frame"

HorizontalOptions="Center"

VerticalOptions="Center"/>

</Frame>

</ContentPage>

Here’s a list and description of the most relevant properties:

OutlineColor: Allows for specifying the color for the frame’s border.
CornerRadius: Allows for drawing round corners around the Frame.
HasShadow: When true, displays a drop shadow under the Frame.

Figure 6.6 provides an example:

Figure 6.6: Surrounding views with a Frame

The ContentView
The ContentView layout is typically used to create custom, reusable controls
because it makes it possible to combine multiple visual elements into a single
view. To create a ContentView, in Solution Explorer, right-click on the
shared project and then click on Add New Item. When the Add New Item
dialog appears, click on the Xamarin.Forms node on the left, and then select
the Content View item, as represented in Figure 6.7. Note that Visual

Studio also provides the Content View (C#) item template, but this
generates a new class, where you will need to define your visual elements in
C# rather than XAML:

Figure 6.7: Adding a new item to the project

The Add New Item dialog is also the tool you use to add any new file to
the project, including pages and classes.

At this point, the new item is added to the project. In the XAML editor, you
can see how Visual Studio has added default visual elements, specifically, the
ContentView root element, a StackLayout and a Label. Now, you can
customize the ContentView by adding your own visual hierarchy, as shown
in the following code. Then, the ContentView can be consumed like any
other control or layout:
<?xml version="1.0" encoding="UTF-8"?>

<ContentView xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Layouts.ContentViewExample">

<ContentView.Content>

<StackLayout>

<Label Text="Enter your email address:" />

<Entry x:Name="EmailEntry"

TextChanged="EmailEntry_TextChanged" />

</StackLayout>

</ContentView.Content>

</ContentView>

It is worth mentioning that a ContentView XAML file always has a code-
behind C# file where you can manage the individual visual elements, such as
handling events. If you look at the Entry definition, a view that allows for
entering text, the TextChanged event is also being handled. In the C# code-
behind, you could have the following code:
private void EmailEntry_TextChanged(object sender,

TextChangedEventArgs e)

{

_emailAddress = e.NewTextValue;

}

private string _emailAddress;

public string EmailAddress

{

get => _emailAddress;

}

There are some key points here that you can reuse for your daily work:

A private field stores the string typed by the user.
The content of the private field is exposed to the external world by a
readonly property called EmailAddress.
Having a public readonly property and a private field allows for
consuming data from caller views without the possibility of direct
access to the data.

This approach is best practice, but you can always give callers the option to
edit data with a classic read/write property.

Using a ContentView
Using a ContentView requires three steps:

1. Adding an XML namespace declaration in the XAML file using the
ContentView.

2. Declaring an instance of the ContentView.
3. Assigning properties and handling the ContentView in code.

For a practical example, open the ContentViewExample.cs file and locate the
namespace declaration. The namespace identifier is what you need to add to
the XAML of the calling page, and in this case, it is Layouts. Now, open the
MainPage.xaml file, assuming that you will use the custom view here. In the
page declaration, add the following XML namespace:
xmlns:local="clr-namespace:Layouts"

The namespace identifier is up to you, but local is used quite often when
referring to the first-level app namespace. The syntax for referring to the
namespace that defines one or more custom controls is clr-namespace:.
Then, you can simply add an instance of the view, as follows:
<local:ContentViewExample />

You can then assign properties, handle events, and do everything that you
would do with any other Xamarin.Forms control. Figure 6.8 shows how the
sample ContentView looks:

Figure 6.8: Adding a ContentView to the user interface

If you assign a name to the view, you will be able to access its members from
code; for example, the EmailAddress property defined previously.

Styling the user interface with cascading style sheets
Cascading style sheets (CSS) allow for implementing different styles over
the visual elements defined in a markup language like HTML.
Xamarin.Forms supports a specific subset of CSS but not all the CSS
elements and syntax. For this reason, this feature should be considered only

as a complement to XAML, and it is recommended that you prefer XAML
styles. Xamarin.Forms allows you to implement and consume CSS styles in
your projects, two in XAML and one in C#.

Defining CSS styles as a XAML resource
The first way you can implement and consume CSS styles in Xamarin.Forms
is in XAML. You can add a StyleSheet object to the Resources collection
of a page. The following code snippet demonstrates this:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Layouts.CSSsample">

<ContentPage.Resources>

<ResourceDictionary>

<StyleSheet>

<![CDATA[

^contentpage {

background-color: lightblue; }

stacklayout {

margin: 20; }

]]>

</StyleSheet>

</ResourceDictionary>

</ContentPage.Resources>

</ContentPage>

In this scenario, the CSS stylesheet definition is placed inside a CDATA
section. You basically supply property values for each visual element in the
form of key/value pairs. The syntax requires the visual element name and,
enclosed within brackets, the property name followed by a colon, and the
value followed by a semicolon, such as stacklayout { margin: 20; }.
Note how the root element, contentpage in this case, must be preceded by
the ^ symbol. You do not need to do anything else, as the style will be
applied to all the visual elements specified in the CSS. Figure 6.9 shows how
the CSS style listed above changes the background color of the page into
light blue, and how a margin is applied to the StackLayout:

Figure 6.9: Styling the user interface with CSS

Names of visual elements inside the CSS definition must be lowercase.

Consuming CSS files in XAML
The second available option to consume a CSS style in XAML is from an
existing .css file. First, you need to add your .css file to the Xamarin.Forms
shared project and set its BuildAction property as EmbeddedResource. The
.css file must follow the syntax supported by Xamarin.Forms. For example,

you could copy and paste the content of the CDATA section, shown in the
previous paragraph, into a new .css file. The next step is to add a
StyleSheet object to a ContentPage object’s resources and assign its Source
property with the .css file name, like in the following example:
<ContentPage.Resources>

<ResourceDictionary>

<StyleSheet Source="/mystyle.css"/>

</ResourceDictionary>

</ContentPage.Resources>

Obviously, you can organize your .css files into subfolders; for example, the
value for the Source property could be /Assets/mystyle.css. The
companion code contains a sample .css file that is suitable for
Xamarin.Forms.

Creating and implementing CSS styles in C#
The last option for consuming CSS styles in Xamarin.Forms is C# code. You
can create a CSS style from a string (through a StringReader object), or you
can load an existing style from a .css file. However, in both cases, the key
point is that you still need to add the style to a page’s resources. The
following code snippet demonstrates the first scenario, where a CSS style is
created from a string and manually included in the Resources collection of
the page:
using (var reader =

new StringReader

(“^contentpage { background-color: lightblue; }

stacklayout { margin: 20; }"))

{

// “this" represents a page

// StyleSheet requires a using Xamarin.Forms.StyleSheets

directive

this.Resources.Add(StyleSheet.FromReader(reader));

}

For the second scenario, load the content of a CSS style from an existing file;
an example is provided by the following code snippet:
var styleSheet = StyleSheet.FromResource

(“Layouts.Assets.mystyle.css",

IntrospectionExtensions.GetTypeInfo(typeof(CSSExample)).Assembly);

this.Resources.Add(styleSheet);

The second snippet is more complex, since the file is loaded via reflection (it
requires using a System.Reflection directive in order to import the

IntrospectionExtensions object). Note how you provide the file name,
including the project name (Layouts) and the subfolder (if any) name that
contains the .css file.

Reflection is one of the most complex yet interesting parts of developing
for .NET. In short, it allows for investigating, reverse-engineering,
creating, executing types and members in any .NET language. The
official documentation for Reflection is available at
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-
codedom/reflection.

Conclusion
The user interface of a mobile app should always be able to automatically
adapt to the screen size of different device form factors. In Xamarin.Forms,
you accomplish this with layouts. The StackLayout arranges controls near
one another, both horizontally and vertically. The FlexLayout does the same,
but it is also capable of wrapping visual elements. The Grid arranges controls
within rows and columns. The AbsoluteLayout allows for placing controls at
an absolute position. The RelativeLayout arranges controls based on the size
and position of other visual elements. The ScrollView allows for scrolling
the content of visual elements that do not fit in a single page. The Frame can
draw a border and shadow around a visual element. Finally, the ContentView
allows for creating reusable controls. Xamarin.Forms also supports a subset
of CSS stylesheets, which should only be considered as a complement to
XAML, not a replacement. Layouts are containers for elements of the user
interface, and the Xamarin.Forms codebase provides many, as you will learn
in the next chapter.

Points to remember
The user interface of a mobile application should always be dynamic.
In Xamarin.Forms, you use layouts to create dynamic user interfaces.
You interact in C# with visual elements by assigning them a name via
the x:Name tag.
You can change the startup page in every Xamarin.Forms project by

assigning the MainPage property in the App.xaml.cs file.
Avoid nesting controls with built-in scrolling into a ScrollView.
You can add pages and content views to the shared project by right-
clicking on the project name and then selecting Add New Item.

Key terms
Layout: A container for other visual elements.
View or Control: Individual visual element with specific
functionalities.

CHAPTER 7
Understanding Common Views

Introduction
Views are the building blocks of the user interface in any mobile application,
and they represent how the user performs activities in the app. For example,
the date selector, a text box, and a calendar are all examples of views.
Xamarin.Forms provide many views that are ready to use and that are
described in this chapter. An important clarification is also necessary from
the point of view of terminology. The word view generically refers to what
you would call control in Microsoft terminology, widget in Android
terminology, and view in Apple terminology. Though these could all be used
interchangeably, for the sake of consistency with the official documentation,
the view word will be used as the standard. All the concepts covered in the
previous chapter will be very useful now because the views discussed in this
chapter will be organized within layouts.

Some of the views provided by Xamarin.Forms will be discussed in
Chapter 9, Resources and Data Binding, rather than in this chapter. The
reason is that such views work only with data-bound collections, so you
first need to understand concepts behind databinding.

Structure
In this chapter, we will cover the following topics:

Common properties
Working with text
User interaction with buttons
Selecting dates and time
Displaying HTML contents
Selecting Boolean and numerical values

Implementing search functionalities
Handling long-running tasks
Displaying images
Adding interactivity to views
Understanding visual states

Objectives
After completing this chapter, you will be able to create basic mobile
applications with Xamarin.Forms, display information to the user, implement
the selection of different kind of values, and handle user interaction.

Creating a sample project
This chapter comes with a companion Xamarin.Forms solution that you can
open with Visual Studio to better follow the examples. If you wish to create a
project on your own from scratch, you can follow these steps:

1. Create a new Xamarin.Forms solution called CommonViews for
consistency with the sample solution.

2. Do not edit or remove the auto generated MainPage.xaml file; it will be
used later.

3. For each layout discussed in the book, add a new item of type Content
Page (XAML). To accomplish this, right-click on the shared project
name and then click on Add New Item in the context menu.

4. In the Add New Item dialog, click on the Xamarin.Forms node on the
left and then select the Content Page (XAML) item template.

5. Assign to the new XAML file a name that matches the discussed view,
for example, WorkingWithText.xaml, and click on Add.

6. For each page you add to the project, add an empty StackLayout to the
ContentPage and assign its VerticalOptions property with
CenterAndExpand. Unless where expressly specified, this will be the
layout of choice for the code examples in the next pages.

Common properties

All views derive from the Xamarin.Forms.View class, so they share a number
of properties that are also of common use. The most relevant and most used
properties in this book are described in Table 7.1.

Property Description

HorizontalOptions Allows for specifying the horizontal alignment of a view. Supported
values are the same as for layouts described in Table 6.2 of Chapter 6,
Organizing the User Interface With Layouts.

VerticalOptions Allows for specifying the vertical alignment of a view. Supported
values are the same as for layouts described in Table 6.2 of Chapter 6,
Organizing the User Interface With Layouts.

HeightRequest Allows for specifying the height of a view. It is of type double.

WidthRequest Allows for specifying the width of a view. It is of type double.

IsVisible Of type bool, allows for specifying whether a view should be visible
in the visual tree. The default is true.

IsEnabled Of type bool, enables or disables a view. Disabling a view means it is
visible, but the user cannot interact with it. The default is true.

GestureRecognizers This property allows for adding interaction to views that do not
support this natively. It is discussed in further detail in the Adding
Interactivity to Views section later in this chapter.

Table 7.1: Most relevant views’ common properties

It is important to have knowledge of these shared properties because they will
be used often in the chapter.

Working with text
Displaying and entering text is probably the most common operation within
mobile apps. Xamarin.Forms provide three views about text: the Label, the
Entry, and the Editor.

Displaying text with the label
You use a Label view to display read-only text, such as headings, messages,
and general contents. The following code snippet demonstrates how to
declare a Label by assigning its most common properties:
<Label Text="Welcome to Xamarin for JobSeekers!"

TextColor="Blue"

LineBreakMode="WordWrap"

HorizontalTextAlignment="Center"

VerticalTextAlignment="Center" FontSize="Medium"/>

The Text property is certainly the most important because it contains the text
you want to display. You can set a color for the text via the TextColor
property, and you can even assign the BackgroundColor property if you want
the label to have a specific background color. The LineBreakMode property
sets the way text should be truncated or wrapped to a new line. Supported
values are described in Table 7.2:

Value Description

WordWrap Wraps long text to a new line, ensuring that a full word is displayed
before wrapping (default setting).

NoWrap No wrapping or truncation is applied.

HeadTruncation Truncates long text at its beginning.

TailTruncation Truncates long text at its end.

MiddleTruncation Truncates long text in the middle.

CharacterWrap Wraps long text to a new line without ensuring a full word is
displayed before wrapping, then only based on character boundaries.

Table 7.2: Text truncation mode for the LineBreakMode enumeration

HorizontalTextAlignment and VerticalTextAlignment set the alignment
of text, not of the Label. Supported values are Start, Center, and End. You
can also specify the size of the text by assigning the FontSize property. This
is further explained in the managing fonts paragraph shortly. Additional
useful properties are the following:

CharacterSpacing: allows for specifying spacing between individual
characters of the text.
TextType: By default, a Label displays regular text, but you can assign
this property with HTML and display HTML content.
TextTransform: This property can convert the whole text into
lowercase (LowerCase) and uppercase (UpperCase). No transformation
is applied if this property is not expressly assigned.
FlowDirection: Common to several views, this property makes it
possible to support right-to-left text direction. Supported values are

LeftToRight (default), RightToLeft, and MatchParent. The latter
inherits the direction from the parent view.

The Label view can also display formatted text, as you will see in the
upcoming sections. Figure 7.1 shows how the previous Label appears on
both Android and iOS:

Figure 7.1: A Label and an Entry

Accepting user input with entry and editor
Xamarin.Forms provides two views to accept the user input: the Entry and the

Editor. The main difference is that the Entry allows for entering a single line
of text, while the Editor allows for entering multiple lines. The following
code snippet demonstrates how to declare an Entry:
<Entry x:Name="Entry1" Placeholder="Enter some text..."

TextColor="Green" Keyboard="Chat" ReturnType="Done"

Completed="Entry1_Completed"/>

Table 7.3 summarizes the most relevant properties of the Entry.
All the properties and events described for the Entry also apply to the
Editor.

Property Description

Text Of type string, stores the text entered by the user.

Placeholder Of type string, shows a description in the Entry that only appears
when it is empty.

TextColor Of type color, sets the color of the entered text.

Keyboard Allows for displaying one of the built-in device keyboard types
depending on the purpose of the view. Supported self-explanatory
values are Chat, Default, Email, Numeric, Plain, Text, Telephone and
URL.

ReturnType Sets the text that is displayed on the Enter key of the device keyboard
based on the following supported values: Default, Done, Search, Go,
Next, Send. The text appears in the language set on the device.

IsSpellCheckEnabled Of type bool, enables spell check over the input text if supported by
the device culture.

IsTextPredictionEnabled Of type bool, enables suggestions by the device keyboard.

Table 7.3: Most relevant properties for Entry and Editor views

The Entry also allows for setting properties like CharacterSpacing,
HorizontalTextAlignment, and VerticalTextAlignment just like you
would do with a Label. This is an interactive view, so it exposes events that
you can handle to work with the entered text. The events you will more often
handle are as follows:

TextChanged: Fired at every keystroke.
Completed: Fired when the system detects that the user is no longer
typing.

You might have noticed that the definition of Entry earlier specifies a name

for the view via the x:Name tag, and the reason is to make it possible to
handle the view’s events. The following code snippet demonstrates how to
handle both events:
private void Entry1_Completed(object sender, EventArgs e)

{

string enteredText = Entry1.Text;

}

private void Entry1_TextChanged(object sender,

TextChangedEventArgs e)

{

string enteredText = e.NewTextValue;

string previousText = e.OldTextValue;

}

With the Completed event, you retrieve the input via the Text property. With
TextChanged, you can still do that, and you can also use the NewTextValue
and OldTextValue properties of the TextChangedEventArgs class to
understand which text was newly entered and compare it to the previous one.
Figure 7.1 shows the current Entry in action.
The Editor has the exact same behavior, properties, and events, but it allows
for entering longer text over multiple lines.

Entering passwords
The Entry exposes a useful property called IsPassword. When true, the user
input is masked so that you can use the Entry to enter passwords. The result
is still stored inside the Text property, and all the other behaviors and
members remain unchanged.

Applying and managing fonts
All the views that display text allow for customizing fonts, also known as
typefaces. So, this not only applies to Label, Entry and Editor but to all the
other views supporting text, like the button. For such views, the following
properties allow you to manipulate fonts:

FontFamily: Specifies the font to be used via its name.
FontAttributes: Allows for formatting text as italic or bold via the
same-named values, Italic and Bold.
FontSize: Specifies the size of the text. This can be done either with

numeric values or with the so-called named size such as micro, small,
medium, body (default), header, title, subtitle, caption, and large.
TextDecoration: Allows for adding underline or strikethrough
decorations via the same-named underline and strikethrough values.

When it comes to font size, it is recommended to use the named size over
numeric values because using numeric values could have different results on
devices with different OS and screen factor. A named size is consistent across
platforms. The following line demonstrates how to display underlined text in
bold and with header size:
<Label FontAttributes="Bold" FontSize="Header" Text="Bold

header"

TextDecorations="Underline" />

Implementing custom fonts
In the real world, it is extremely common to implement custom fonts. These
can be either official fonts, such as from the Google Material design, or
created by professional designers. In both cases, you need the .ttf font file.
Once you have this, you can follow the given steps:

1. Add the .ttf files to the Assets folder of the Xamarin.Android project
and to the Resources folder of the Xamarin.iOS project.

2. Set the Build Action property of the .tts file to AndroidResource for
Xamarin.Android and to BundleResources for Xamarin.iOS.

3. In XAML, assign the new font to the FontFamily property of your
views. The following code snippet provides an example with a Label:
<Label Text="Custom Font">

<Label.FontFamily>

<OnPlatform x:TypeArguments="x:String">

<On Platform="iOS" Value="MyFont"/>

<On Platform="Android" Value="MyFont#MyFont.ttf"/>

</OnPlatform>

</Label.FontFamily>

</Label>

This is the first time you see the OnPlatform tag. This will be thoroughly
discussed later in the book, but for now, it is important to understand that this
allows for differentiating the behavior of the same property on different
platforms. The x:TypeArguments property specifies the .NET type for the
property, which is string because this is the type for the FontFamily property.

Next, for the iOS platform, the value of the property is assigned with the
name of the font file without the .ttf extension. If you want to try with a real
font, you can download some from Google (https://fonts.google.com/). All
these fonts go well with Android and iOS devices, so you can have a more
precise idea of how they work.

Complex text formatting with FormattedString
The Label view provides the option to display text with more sophisticated
string formatting. This is accomplished with the FormattedText property, of
type FormattedString. Such a property is populated with a collection of
Span objects, and each Span represents an area of the formatted string. The
following code provides an example:
<Label Margin="10"

HorizontalOptions="Center"

VerticalOptions="CenterAndExpand">

<Label.FormattedText>

<FormattedString>

<FormattedString.Spans>

<Span FontSize="Large" FontAttributes="Bold"

ForegroundColor="Black"

Text="Xamarin for JobSeekers" />

<Span FontSize="Medium" FontAttributes="Italic"

ForegroundColor="Blue" Text="published by BPB Publishing"

/>

<Span FontSize="Small" FontAttributes="Bold"

ForegroundColor="Gray"

Text="Written by Alessandro Del Sole" />

</FormattedString.Spans>

</FormattedString>

</Label.FormattedText>

</Label>

The result of the preceding code is shown in Figure 7.2:

Figure 7.2: Implementing complex string formatting

Span objects support text manipulation properties that you already saw when
discussing the Label view, so you will be familiar with the FormattedString
property.

User interaction with buttons
The Button is probably the most used view for implementing user
interaction. In a common flow of an app, a task starts to be performed after
the user presses (or taps, in the mobile terminology) a button. The following

code demonstrates how to invite the user to press a Button that is declared
and designed via XAML:
<StackLayout Spacing="10" Margin="10"

VerticalOptions="CenterAndExpand">

<Label Text="Tap the button"

VerticalOptions="CenterAndExpand"

HorizontalOptions="CenterAndExpand" />

<Button x:Name="Button1" Text="Tap here!"

BackgroundColor="DarkBlue"

TextColor="White" BorderColor="LightBlue" BorderWidth="2"

CornerRadius="4"

Clicked="Button1_Clicked" />

</StackLayout>

Table 7.4 summarizes the most important properties for a Button:

Property Description

Text The text displayed in the button.

TextColor The color for the text.

BorderColor Adorns the button with a colored border.

BorderWidth Specifies the thickness for the border around the button.

CornerRadius Specifies the radius of the button’s corners.

Image Allows for specifying an image that is placed close to the button text.

BackgroundColor The background color for the button.

Table 7.4: Most relevant Button properties

The preceding XAML code will produce the result shown in Figure 7.3:

Figure 7.3: Implementing user interaction with buttons

Note how the Button declaration includes a name for the view and a Clicked
event that points to an event handler called Button1_Clicked. This is the
place in the C# code-behind file where you start the action that is activated
when the user taps the button. The event handler looks like this:
private void Button1_Clicked(object sender, EventArgs e)

{

// Start an action here…

}

For example, you could move to another page in the app and download some

data or anything that is relevant to do in the context of your application. Once
you have full knowledge of what you can do with Xamarin.Forms, it will be
easier for you to understand which actions best suit a specific context.

Tip: Because the Button displays text, it also exposes properties like
FontFamily, FontSize, FontAttributes, TextTransform. You use them
exactly as you would use a Label.

Xamarin.Forms also provide the ImageButton view, which works exactly like
the Button but shows an image instead of text. The image you want to display
is assigned to the Source property of the ImageButton, as follows:
<ImageButton Source="AnImage.png" x:Name="AnImageButton"

Clicked="AnImageButton_Clicked"/>

All the other options to control the corner radius and border are still available,
and you can still handle the Clicked event to raise an action. The Source
property is of type ImageSource, and the way you assign images via an
instance of this object is thoroughly discussed in the Displaying images
section later in this chapter, so it is recommended that you keep that section
as a reference.

Selecting dates and time
In Xamarin.Forms, you can leverage each system’s user interface to select
dates and time via the DatePicker and TimePicker views, respectively.
These are discussed in this section.

Selecting dates with the DatePicker
The DatePicker is declared as follows:
<DatePicker x:Name="DatePicker1" MinimumDate="01/01/2021"

MaximumDate="12/31/2021"

DateSelected="DatePicker1_DateSelected"/>

You can specify an interval of valid dates with the MinimumDate and
MaximumDate properties, both of type DateTime. Dates are represented with
the MM/DD/YYYY format. The Date property contains the selected date and, if
not specified in XAML, defaults to the system’s current date. When the user
selects a date, the DateSelected event is raised, and you can handle it as
follows:
private void DatePicker1_DateSelected(object sender,

DateChangedEventArgs e)

{

DateTime selectedDate = e.NewDate;

}

The DateChangedEventArgs class provides the NewDate property, which
contains the newly selected date, and the OldDate property, which contains
the previous date. Figure 7.4 shows how the DatePicker looks on both
platforms:

Figure 7.4: The DatePicker showing the system UI to pick up a date

Selecting a time with the TimePicker
Conceptually similar to the DatePicker, the TimePicker allows users to
select a time of the day by leveraging the system user interface for this. A
TimePicker can be declared as follows:
<TimePicker x:Name="TimePicker1"

PropertyChanged="TimePicker1_PropertyChanged"/>

This view exposes a property called Time, of type TimeSpan, which represents
the selected time. However, it does not expose an event that is raised when
the user makes a selection, so the workaround is intercepting the
PropertyChanged event, common to all views, checking for value changes
over the Time property. This is accomplished by the following simple code:
private void TimePicker1_PropertyChanged(object sender,

System.ComponentModel.PropertyChangedEventArgs e)

{

if (e.PropertyName == TimePicker.TimeProperty.PropertyName)

{

TimeSpan selectedTime = TimePicker1.Time;

}

}

TimeProperty is a dependency property, and dependency properties will be
discussed in Chapter 9: Resources and Data Binding. For now, you just need
to know that PropertyName represents the name of the property that you want
to intercept. Figure 7.5 shows how the TimePicker appears on both Android
and iOS:

Figure 7.5: Selecting a time of the day

Displaying HTML content
Sometimes, you might need to open a website or display an HTML static
document directly inside the app. To do this, you can implement a WebView
view. In its simplest form, you declare a WebView as follows:
<WebView x:Name="WebView1" Source="https://bpbonline.com"/>

The result of this code is shown in Figure 7.6, where you can see the WebView
displaying a website:

Figure 7.6: Opening a website with the WebView

Tip: On Android, if you use the WebView to open a website, remember
to include the Internet permission in the app manifest.

The WebView exposes the navigating event, which is raised when the
navigation starts, and Navigated, which is fired when the navigation
completes. Navigation can also be controlled programmatically via the
GoBack and GoForward methods, which you invoke after checking that the
CanGoBack and CanGoForward bool properties return true. The Source
property of the WebView not only allows for specifying the source of the

HTML content, but it can also be assigned with different types. It is of type
WebViewSource, an object that can receive URIs or strings containing HTML
markup. For example, you can assign Source with static HTML content, as
follows:
WebView1.Source = “<div><h1>Header</h1></div>";

The best way to use a WebView is by including it inside a Grid for fully
dynamic auto-sizing. If you add it inside a StackLayout, you will need to
explicitly set the WidthRequest and HeightRequest properties.

Selecting Boolean and numerical values
Xamarin.Forms provides several views to implement user input based on
Boolean (true/false) and numerical values. These views are Switch,
CheckBox, Slider, and Stepper.

Turning options on and off with the switch
The Switch is a view that offers a toggled value and that you use to typically
enable or disable options, and that in general you use to select true or false
values. The value of the switch is set via the IsToggled property, whereas the
Toggled event is fired when the user moves the Switch to a different
position. It is important to mention that this view has no label, so you
manually need to add one. The following example shows how to implement a
Switch:
<StackLayout>

<Label Text="Enable notifications"/>

<Switch x:Name="Switch1" IsToggled="True"

Toggled="Switch1_Toggled"

Margin="5,0,0,0"/>

</StackLayout>

The user selection is stored inside an instance of the ToggledEventArgs
object, which you retrieve by handling the Toggled event as follows:
private void Switch1_Toggled(object sender, ToggledEventArgs e)

{

bool isToggled = e.Value;

}

Figure 7.7 shows how the Switch looks:

Figure 7.7: Turning options on and off with the Switch

You can optionally supply a different color for the switch selector when it’s
turned on to the OnColor property.

User choices with the CheckBox
The CheckBox is used to enable or disable user choices. Like the Switch, it
does not have a built-in property to show text, so you need to do it yourself.
The IsChecked property contains the true or false value of the selection, and
the CheckedChanged event is raised when the user interacts with the view.
The following code shows an example:

<StackLayout Orientation="Horizontal">

<CheckBox x:Name="PrivacyBox" IsChecked="False"

Color="Red" VerticalOptions="Center"

CheckedChanged="PrivacyBox_CheckedChanged"

Margin="5,0,0,0"/>

<Label Text="I have read the privacy policy"

VerticalOptions="Center"/>

</StackLayout>

Note how you can set the Color property with a specific color. The event
handler for the CheckedChanged event will receive the information on the
new value via the CheckedChangedEventArgs class, whose Value property
contains the current value:
private void PrivacyBox_CheckedChanged(object sender,

CheckedChangedEventArgs e)

{

bool newValue = e.Value;

}

Figure 7.8 shows the result of the previous code:

Figure 7.8: Implementing user choices with the CheckBox

Multiple choices with RadioButton
The RadioButton is a special view that allows for implementing mutually
exclusive choices from a series. For better understanding, before looking at
some code, consider Figure 7.9 to see how the user can select one option
from a list:

Figure 7.9: Selecting an option from a list with the RadioButton

When you select one option, all the others are disabled. You do not need to
handle anything manually, and this is what mutually exclusive means. The
following code implements the user interface in Figure 7.9:
<StackLayout Spacing="10" VerticalOptions="CenterAndExpand">

<Label Text="Select your age:"/>

<RadioButton Content="0 - 15" x:Name="FirstAgeRangeButton"

CheckedChanged="FirstAgeRangeButton_CheckedChanged" />

<RadioButton Content="16 - 40" x:Name="SecondAgeRangeButton"

IsChecked="True"

CheckedChanged="SecondAgeRangeButton_CheckedChanged"/>

<RadioButton Content="41 or more" x:Name="ThirdAgeRangeButton"

CheckedChanged="ThirdAgeRangeButton_CheckedChanged"/>

</StackLayout>

RadioButton views automatically work in groups. You can manually select
one by assigning the IsChecked property with true, and this is also the
property you use to get the status of a choice. The Content property is of type
object and can contain either a string, like in the current example, or a view.
For example, you could assign the Content property with an image:
<RadioButton Value="Option1">

<RadioButton.Content>

<Image Source="Option1Image.jpg" />

</RadioButton.Content>

</RadioButton>

When the Content is assigned with a view, it is convenient to also assign a
string value to the RadioButton via its Value property. Though not
mandatory, this makes it possible to work against the value of a RadioButton
rather than its display content. When a RadioButton is selected, the
CheckedChanged event is fired. The event handler method stub looks like the
following:
private void FirstAgeRangeButton_CheckedChanged(object sender,

CheckedChangedEventArgs e)

{

// if e.Value is true, the option was selected. Apply your

logic here

}

You check the value of the Value property from the
CheckedChangedEventArgs class to get the status of the RadioButton. If true,
this was selected; otherwise, the selection was removed. If the Content
property is assigned with a string, you can apply all the properties that you
learned with the Label, such as TextColor, TextTransform, FontFamily,
FontSize, and FontAttributes. On iOS, the BorderColor property also
allows for drawing a colored border around the whole view.

Implementing multiple groups
RadioButton views work in groups. When you add some, a group is
automatically added and handled by the runtime. However, you might want
to have multiple groups. For example, one group about the user age, another
group to select a job title from a list, and so on. You have two options to
specify a group name: the first option is adding a
RadioButtonGroup.GroupName attached property to the parent layout of your

RadioButton views; the second option is assigning the GroupName property
on each RadioButton. The following code demonstrates how to implement
two different groups of options (for the sake of simplicity, names and event
handlers have not been specified):
<StackLayout Spacing="10" VerticalOptions="CenterAndExpand">

<StackLayout RadioButtonGroup.GroupName="Age">

<Label Text="Select your age:"/>

<RadioButton Content="0 - 15" />

<RadioButton Content="16 - 40" />

<RadioButton Content="41 or more" />

</StackLayout>

<StackLayout RadioButtonGroup.GroupName="Job">

<Label Text="Select your job:"/>

<RadioButton Content="Entrepreneur" />

<RadioButton Content="Consultant" />

<RadioButton Content="Employee" />

</StackLayout>

</StackLayout>

If you try to run this code, you will see how the views in the first group do
not interfere with the views in the second group, still being mutually
exclusive between views in the same group.

Value selection with the Slider
The Slider allows for selecting a value on a range delimited by a minimum
and a maximum, represented by the Value, Minimum, and Maximum properties,
of type double. The following code shows how to implement a Slider:
<StackLayout VerticalOptions="CenterAndExpand"

HorizontalOptions="FillAndExpand" Spacing="10">

<Label Text="Select a value: “/>

<Slider x:Name="Slider1" Maximum="200" Minimum="10" Value="50"

ValueChanged="Slider1_ValueChanged" ThumbColor="Blue"

MinimumTrackColor="Red" MaximumTrackColor="Green"/>

<Label Text="You selected: “ x:Name="ValueLabel" />

</StackLayout>

Tip: With the Slider, the order of properties matters. In fact, you must
specify the Maximum before the Minimum; otherwise, an exception will be
thrown.

Custom colors are totally optional; however, you can specify a color for the
selector (ThumbColor), a color for the slider on the minimum side

(MinimumTrackColor), and a color for the slider on the maximum side
(MaximumTrackColor). When the selector moves to a different value, the
ValueChanged event is fired, and the new value is stored inside the NewValue
property from the ValueChangedEventArgs object. You can retrieve it in the
event handler, as follows:
private void Slider1_ValueChanged(object sender,

ValueChangedEventArgs e)

{

double value = e.NewValue;

ValueLabel.Text = $"You selected: {value}";

}

Figure 7.10 shows the result of the preceding code:

Figure 7.10: Selecting values with the Slider

It is worth mentioning that a better way to update the Label with the value of
the Slider is by binding the Text property of the Label to the Value property
of the Slider; however, you will get the necessary knowledge about data
binding in Chapter 9, Resources and Data Binding, so, for now, direct
assignment is the way to do it.

Incremental value selection with the Stepper
The Stepper is a view that allows for increasing or decreasing a value via
built-in + and – buttons, by a specified increment. For better understanding,
suppose you want to allow users to select their age. This can be accomplished
with a Stepper, as follows:
<StackLayout VerticalOptions="CenterAndExpand"

HorizontalOptions="FillAndExpand">

<Label Text="Select your age: “/>

<Stepper x:Name="Stepper1" Increment="1"

Maximum="95" Minimum="13"

Value="30" ValueChanged="Stepper1_ValueChanged"/>

<Label Text="You selected: “ x:Name="StepperValue"/>

</StackLayout>

The Maximum and Minimum properties specify the numerical limits for the
Stepper, whereas Value represents the currently selected value. The last
Label is updated in the ValueChanged event handler, whose code is as
follows:
private void Stepper1_ValueChanged(object sender,

ValueChangedEventArgs e)

{

double value = e.NewValue;

StepperValue.Text = $"You selected: {value}";

}

Figure 7.11 shows the result of the preceding code:

Figure 7.11: Selecting values with the Stepper

Implementing search functionalities
Xamarin.Forms allow you to quickly implement search functionalities in your
apps with the SearchBar view. This shows the system search box, which
includes the system search icon that users tap to start searching. It is worth
mentioning that the SearchBar provides the user interface for searching, but
the logic behind handling the search result relies completely on your work.
For example, you could filter a list of elements with a LINQ query based on
the entered search terms, or you could redraw the user interface to display
only the visual elements that match the search criterion. You can declare a

SearchBar as follows:
<SearchBar x:Name="SearchBar1" Placeholder="Enter you search

key..."

SearchButtonPressed="SearchBar1_SearchButtonPressed"

TextChanged="SearchBar1_TextChanged" />

The SearchButtonPressed event is raised when the user taps the search icon,
whereas TextChanged is fired at every keystroke. The logic you apply for
searching should be handled when SearchButtonPressed is raised and
handled by the following handler stub:
private void SearchBar1_SearchButtonPressed(object sender,

EventArgs e)

{

// Implement logic based on the SearchBar’s Text property...

}

Figure 7.12 shows the result of the preceding code:

Figure 7.12: Implementing searching features

Tip: Behind the scenes, the SearchBar is an evolved Entry. This means
you can manage all the properties related to the text in the way that
was previously described for the Entry view, including font
management and text transformations.

In terms of customization, you can assign the PlaceholderColor, TextColor,
BackgroundColor, and CancelButtonColor properties to change colors of the
placeholder, search text, search bar’s background, and the color of the Cancel
button that is displayed inside the search bar when typing.

Handling long-running tasks
There are operations that could last for a potentially long time, and you
cannot exactly predict how long they will last. For example, downloading
data from the internet, invoking Web API, complex queries over a database.
In such situations, it is best practice to inform the user that a potentially long-
running operation is in progress so that they are not surprised if nothing is
happening in the app. For this purpose, you can leverage the
ActivityIndicator view. The ActivityIndicator displays an animated
spinner whose purpose is to indicate that something is in progress. Declaring
and enabling an ActivityIndicator is very simple, as shown here:
<ActivityIndicator x:Name="ActivityIndicator1" IsVisible="true"

IsRunning="true" />

Actually, the spinner starts when you assign the IsRunning property with
true, but you might also want to explicitly set the visibility (IsVisible) for
behavior consistency across platforms. The reason why the view has a name
in the previous line is that you will need to stop the indicator from running in
code, for instance, with the following C# snippet:
private void DisableIndicator()

{

this.ActivityIndicator1.IsRunning = false;

this.ActivityIndicator1.IsVisible = false;

}

You will call this code once the long-running task has been completed.
Obviously, you can also enable the ActivityIndicator programmatically
whenever you need it. Figure 7.13 shows how the progress indicator looks:

Figure 7.13: Waiting for a long-running task to complete

The spinner look and feel is based on the system color theme, but you can
assign a different color by assigning the Color property.

Tip: Page objects, including the ContentPage, expose a property called
IsBusy. When true, this displays an activity indicator on the device
status bar. You might also consider this option, for example, with
background tasks that do not interfere with the user interface of the
app.

Displaying images
As a mobile app developer, one of your goals is to create beautiful and
engaging apps. For this purpose, you will often include media contents, such
as images, videos, and audio. Media is discussed in Chapter 10, Brushes,
Shapes, and Media; this chapter describes how to display images. These are
very common in any mobile app, and there are many reasons to use some.
From a company logo to content enrichment, images are a crucial part of the
user interface. Xamarin.Forms exposes a view called Image, which allows for
displaying both local and remote images. Supported formats are .jpg, .png,
.gif (including animated GIFs), and .tif. The path of the image you want to
display is assigned to the Source property. For example, the following code
displays a royalty-free picture from a remote URL (the Aspect property is
described in further detail in the next section, Handling the aspect):
<Image Source="https://images.freeimages.com/images/large-

previews/72c/fox-1522156.jpg" Aspect="AspectFit"/>

Figure 7.14 shows the result of this XAML. In this case, the picture is the
only element of the user interface, and it is positioned at the center of the
screen, but in your applications, you will certainly show images with a
different arrangement:

Figure 7.14: Displaying images

The Source property is of type ImageSource. This can receive an URL, the
name of a local file, or the address of an image stored inside the app’s
resources. Assigning a file name is very easy, like in the following example:
<Image Source="SampleImage.jpg" Aspect="AspectFit"/>

Xamarin.Forms searches for the image file inside each platform project’s
resources, which means the Resources folder for the Xamarin.iOS project
and the mipmap subfolders of the Resources folder in the Xamarin.Android
project. As you learned in the Managing image files section, the same image
must be supplied in different resolutions to satisfy several screen factors, and
the runtime will resolve the most appropriate one. It is also common to assign

the Source property in C#, for example, if you need to display different
images according to the context. You can do this by invoking static methods
from the ImageSource class, as follows:
Image1.Source = ImageSource.FromUri(new

Uri(“https://mysite.com/myimage.jpg"));

Image1.Source = ImageSource.FromFile(“MyImage.jpg");

Image1.Source =

ImageSource.FromResource(“ProjectName.Folder.ImageFileName.jpg");

The FromUri method assigns a remote image as the source, and you just saw
this in the previous example. The FromFile method assigns a local image file
as the source. The FromResource method assigns an embedded resource as
the view’s source. In order to include an image as an embedded resource, you
follow these steps:

1. Add the image file to the shared project. You can certainly copy the file
into a subfolder.

2. Set its Build Action property with EmbeddedResource.
3. In the third line of previous code, replace ProjectName with the name of

your project, Folder with the name of the subfolder where you copied
the image file to (optional), and the file name.

Embedding images in the app resources eliminates the need to manage
image files multiple times and in multiple projects, but it will increase
the app package size. This technique should be limited only to a strict
number of situations.

Assigning the Image.Source property in XAML with an embedded resource
is very tricky, unless you have strong knowledge of XAML and resources in
Xamarin, which you might not have at the moment. For this reason, the best
and simplest approach is using the ImageSource.FromResource method in
C#.

Handling the aspect
The Aspect property specifies the size and stretching of an image within the
space it occupies. You assign one of the values from the Aspect enumeration:

Fill: The image is stretched to fill the display area exactly and
completely.

AspectFill: The image is clipped to fill the display area while keeping
the original aspect.
AspectFit: Makes the entire image fit into the display area. If the image
is not wide or tall enough, some blank space is also added to the sides.

It is also possible to adjust an image width and height via the WidthRequest
and HeightRequest properties.

Managing image files
Adding images as local files is platform-specific, so the behavior is different
for iOS and Android. On iOS, the same image must be supplied in three
different resolutions. Supposing you have an image file called MyImage.png,
you will need the following files: MyImage.png, MyImage@2x.png, and
MyImage@3x.png. In the real world, it is the responsibility of a professional
designer to export an image into the required file formats (and discussing
design tools that can do this is out of the scope of this book), so you do not
need to worry about generating them on your own. Examples of tools that are
capable of exporting images into iOS and Android assets are Adobe Xd and
Figma (https://www.figma.com). Files must be copied into the Resources
folder of the Xamarin.iOS. Visual Studio should automatically set the Build
Action property of each file with BundleResource, but make sure you
double-check this. For Android, you will need six different resolutions. If you
expand the Resources folder of the Xamarin.Android project in Visual
Studio, you will see the following subfolders:

mipmap-anydpi-v26
mipmap-hdpi
mipmap-mdpi
mipmap-xhdpi
mipmap-xxhdpi
mipmap-xxxhdpi

Your designer will supply files in the appropriate resolution, which you will
copy, from the lowest to the highest, into the aforementioned subfolders in
the order that they have been mentioned. By the way, the Microsoft
documentation has a page about managing images in Xamarin.Forms

https://www.figma.com

solutions, which you are encouraged to read: https://docs.microsoft.com/en-
us/xamarin/xamarin-forms/user-interface/images.

Adding interactivity to Views
Not all the views in Xamarin.Forms natively support user interaction. For
example, you cannot tap a Label, but sometimes you might want to provide
users the option to tap a view that is not a button, or you might want to ask
for the user confirmation before a task starts. This section describes how to
add interactivity to views that do not support this option directly.

Implementing GestureRecognizers
Views that do not support user interaction directly, such as all the layouts or
the Label and the Image, expose the GestureRecognizers property, of type
IList<GestureRecognizer>. The GestureRecognizer object is the base
class for the following gesture recognizers:

TapGestureRecognizer: This adds tap capabilities to a view.
PinchGestureRecognizers: This adds support for detecting the
movement of fingers on screen.
PanGestureRecognizers: This adds support for dragging objects.
SwipeGestureRecognizer: This adds tap capabilities to a view.
DragGestureRecognizers: This adds support for the pinch-to-zoom
gesture.

As a Xamarin jobseeker focusing on general purpose code, the one you really
need to know is the TapGestureRecognizer, which is certainly the most used
gesture inside real-world apps. Though useful, the other gestures are less
used, and in most cases, there are more recently added views that implement
the same gestures (such as the SwipeView). The following code shows how to
add tap support to a Label view using a TapGestureRecognizer:
<Label Text="Tap Here!" HorizontalOptions="CenterAndExpand"

VerticalOptions="CenterAndExpand">

<Label.GestureRecognizers>

<TapGestureRecognizer x:Name="LabelTap"

NumberOfTapsRequired="1" Tapped="LabelTap_Tapped"/>

</Label.GestureRecognizers>

</Image>

The NumberOfTapsRequired property allows you to specify how many taps
are required to enable interaction, whereas the Tapped event is raised when
the user taps the view. The event handler looks like the following:
private void LabelTap_Tapped(object sender, EventArgs e)

{

// The Label has been tapped

}

If you wish to read more about the other gesture recognizer, the
documentation has a dedicated page available at
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-
fundamentals/gestures. In this book, you will find details about specific
views that you can use to accomplish the same kinds of gestures in a more
structured way.

Displaying and handling alerts
Alerts are small system dialogs that are used to send messages to the user and
ask for user confirmation about an operation that requires attention before it
is executed. In Xamarin.Forms, every Page object exposes an asynchronous
method called DisplayAlert that you can invoke for this purpose. The
following code shows how to display a one-way alert when a button is
tapped:
private async void Button1_Clicked(object sender, EventArgs e)

{

await DisplayAlert(“Warning", “The battery level is low",

“OK");

}

The first parameter of the method is the title for the dialog, the second
parameter is the content, and the third parameter is the text for the only
button that appears. In addition, an overload of DisplayAlert can be used to
accept the user input. The following code demonstrates this:
bool result =

await DisplayAlert(“Warning", “Do you wish to continue?", “OK",

“Cancel");

The third and fourth parameters of the method represent confirmation and
cancellation options, and you can add any text you like for these. If the user
selects the confirmation option, DisplayAlert returns true; otherwise, it
returns false. Figure 7.15 shows the result of the code:

Figure 7.15: Displaying alerts

Understanding visual states
Views have states that describe their current condition. For example, a view
can have a Normal state, Disabled state, or Focused state. You can change
the appearance of a view depending on its state in C# code by implementing
your logic, or you can take advantage of a feature called Visual State
Manager. This feature allows you to change the appearance of a view, based
on its state, completely in XAML. For instance, you can change some of a
view’s colors depending on the state. The following XAML shows how to
change the background color of an Entry, according to the state:

<Entry VerticalOptions="Center"

HorizontalOptions="FillAndExpand"

Placeholder="Enter some text here...">

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="CommonStates">

<VisualState x:Name="Normal">

<VisualState.Setters>

<Setter Property="BackgroundColor" Value="White" />

</VisualState.Setters>

</VisualState>

<VisualState x:Name="Focused">

<VisualState.Setters>

<Setter Property="BackgroundColor"

Value="LightBlue" />

</VisualState.Setters>

</VisualState>

<VisualState x:Name="Disabled">

<VisualState.Setters>

<Setter Property="BackgroundColor" Value="Gray" />

</VisualState.Setters>

</VisualState>

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

</Entry>

The VisualStateManager object exposes a VisualStateGroups collection,
where you place a root object that contains as many VisualState objects as
the number of states you want to represent. For each VisualState, you
specify a VisualState.Setters group, where you change the value of the
properties of your interest, on a given state. In this example, the code is only
setting the BackgroundColor property, and this is done via an object called
Setter that receives the property name and its new value. Figure 7.16 shows,
from left to right, how the Entry appears based on its state. For the Disabled
state, you usually enable or disable views depending on your own logic, but
for the current example, you can explicitly assign the IsEnabled property
with false:

Figure 7.16: Managing visual states: Normal, Focused, Disabled

The Normal, Disabled, Focused, and Selected states are common to every
view in Xamarin.Forms. Some additional, specific states are available to the
views listed in Table 7.5:

View Specific visual states

Button Pressed

CheckBox IsChecked

CarouselView DefaultItem, NextItem, PreviousItem, CurrentItem. (The
CarouselView is discussed in Chapter 9, Resources and Data
Binding).

ImageButton Pressed

RadioButton Checked and Unchecked

Switch On and Off

Table 7.5: Specific visual states

The Visual State Manager is certainly useful to developers, but its real power
is in allowing professional designers to work on visual states all in

declarative code without the need for implementing C# logic.

Conclusion
Views are the building blocks of the user interface, which you implement to
add functionalities to your applications. This chapter described the so-called
common views and primitive controls that allow for the most common user
interaction and input, such as displaying and entering text, working with
dates and time, selecting values, and enriching the UI with images. You saw
views working inside an individual page, but in the real world, this is not
certainly how mobile apps work. The next chapter will describe another
important part of the user interface implementation, which is navigating
between pages.

Key terms
View: An individual primitive control that implements a functionality in
your app.
Typeface: The synonym of font, it represents the size, weight, and style
of text.
Content Page: An individual page in a Xamarin.Forms shared project.
Gesture recognizer: An object that identifies finger gestures on screen.
Visual state: The condition of a view in a specific moment of its
lifecycle.

Suggested readings
Microsoft official Xamarin.Forms reference for the user interface
(https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-
interface).

CHAPTER 8
Pages and Navigation

Introduction
So far, you have seen how to implement layouts and views inside a single,
blank page, represented by a ContentPage object. However, mobile
applications rely on different kinds of pages, which allow for different user
experiences on multiple pages. This chapter explains the available page types
in Xamarin.Forms and how they work cross-platform, and it also explains
how to implement navigation between pages, including a common app
infrastructure represented by the Shell. The approach will be based on the
point of view of the Xamarin jobseeker, which means focusing on new
projects while keeping an eye on what you might encounter with existing
applications.

Structure
In this chapter, we will cover the following topics:

Introducing available pages
Navigating between pages
Common app features: The Shell

Objectives
After completing this chapter, you will have full knowledge of the building
blocks of the user interface in Xamarin.Forms, and you will be able to
implement the appropriate pages and navigation structure according to the
business requirements. This will also provide you with the foundation to
understand the concepts described in the upcoming chapters.

Introducing available pages

Mobile applications can have side menus and navigation bars, and contents
might be organized within tabs. For the best user experience possible,
Xamarin.Forms provide many pages that represent, in a cross-platform
approach, how a native app displays contents. In terms of code, all the
available pages inherit from the Page abstract class, and each page is a root
element in the visual tree. The ContentPage is the one you have used so far
to represent an individual, blank page, but there are five pages available in
Xamarin.Forms, as described in Table 8.1.

Page type Description

ContentPage Represents an individual page.

FlyoutPage Represents a page with master-details view.

TabbedPage Groups multiple ContentPage pages by tabs.

CarouselPage Allows for swiping between ContentPage objects.

NavigationPage Implements the infrastructure for navigating between pages.

Table 8.1: Page types in Xamarin.Forms

As a general rule, every page can contain only one root visual element,
typically, a layout that is then articulated with a more sophisticated
implementation of the user interface based on child layouts. This section
describes the available page types, explaining when it is best to use them.

Individual pages: The ContentPage
You already used the ContentPage many times in the previous chapter. This
page not only works as a standalone page but can also be the child element
for other pages, as you see in this chapter. For this reason, it is important to
underline its Title property, which identifies the currently active page within
parent pages, like the TabbedPage or the CarouselPage. In addition, it is
useful to know that the Content tag can be omitted. Based on this, the
following code is completely legal (also note the Title property declaration):
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

xmlns:local="clr-namespace:IntroducingPages"

Title="Main page"

x:Class=" IntroducingPages.MainPage">

<Label Text="A content page with title"/>

</ContentPage>

The ContentPage can be used individually or as the content of other pages
discussed in the upcoming sections.

Master-details views: The FlyoutPage
You have certainly used mobile apps that implement a side-menu, typically
on the left of the screen, that you can open or close with a swipe gesture and
that allows for selecting one item from multiple options, and when you select
an item, specific content is shown on the right side of the screen. This kind of
user interface is also known as master-details. In the previous versions of
Xamarin.Forms, a page called MasterDetailPage was available, but then it
was made obsolete in favor of a new page called FlyoutPage. This allows for
implementing a master-details view in a more modern way, starting from the
terminology. In fact, the flyout is the side menu that can be shown or hidden
by the user. For better understanding, consider Figure 8.1, where you can see
the flyout:

Figure 8.1: The flyout in a FlyoutPage

Figure 8.2 shows you its details:

Figure 8.2: The details in a FlyoutPage

In both figures, you can see an example based on a list of items in the flyout
and the details content changes depending on the selection. The following
code demonstrates how to replicate the result you see in the figures, and it
also represents the idea behind the flyout:
<?xml version="1.0" encoding="utf-8" ?>

<FlyoutPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="IntroducingPages.FlyoutPageSample">

<FlyoutPage.Flyout>

<ContentPage Title="Main page" BackgroundColor="LightSalmon">

<StackLayout Spacing="10" Margin="0,20,0,0">

<Label Text="Select an item:" FontSize="Title"

Margin="20,0,0,0" FontAttributes="Bold"

HorizontalOptions="Start"/>

<Label Text="First item" x:Name="Item1" Margin="20,0,0,0"

FontAttributes="Bold">

<Label.GestureRecognizers>

<TapGestureRecognizer x:Name="Item1Tapped"

Tapped="Item1Tapped_Tapped"/>

</Label.GestureRecognizers>

</Label>

<Label Text="Second item" x:Name="Item2" Margin="20,0,0,0"

FontAttributes="Bold">

<Label.GestureRecognizers>

<TapGestureRecognizer x:Name="Item2Tapped"

Tapped="Item2Tapped_Tapped"/>

</Label.GestureRecognizers>

</Label>

</StackLayout>

</ContentPage>

</FlyoutPage.Flyout>

<FlyoutPage.Detail>

<ContentPage BackgroundColor="LightYellow">

<StackLayout VerticalOptions="Center"

HorizontalOptions="Start">

<Label Margin="20,0,0,0"

Text="You have selected the first item"

x:Name="Item1Details"/>

<Label Margin="20,0,0,0"

Text="You have selected the second item"

x:Name="Item2Details"

IsVisible="False"/>

</StackLayout>

</ContentPage>

</FlyoutPage.Detail>

</FlyoutPage>

Here’s a list of relevant points about the FlyoutPage and the preceding code:

The FlyoutPage.Flyout object allows you to implement the flyout.
The content of the Flyout is typically a ContentPage but this is not a
rule; it can be any object deriving from Page.
When the user opens the flyout, the IsPresented property from the
FlyoutPage is set to true. When it is hidden, IsPresented is set with
false. You can programmatically control the flyout by assigning
IsPresented as per your convenience.

Following from the previous point, when the user changes the visibility
of the flyout, an event called IsPresentedChanged is also fired.
In the example, a list of items is supplied with a StackLayout that
contains a few Label views. Interaction is enabled via the
TapGestureRecognizer object.
The Flyout.Detail object implements the details part of the
FlyoutPage. The visual tree of the details is made of a StackLayout
with two Label views, whose visibility changes depending on the user
selection in the flyout.

The interaction with labels in the flyout and the visibility change for labels in
the details is handled by the following C# code:
private void Item1Tapped_Tapped(object sender, EventArgs e)

{

Item1Details.IsVisible = true;

Item2Details.IsVisible = false;

}

private void Item2Tapped_Tapped(object sender, EventArgs e)

{

Item1Details.IsVisible = false;

Item2Details.IsVisible = true;

}

For the sake of clarity, this example is working with a ContentPage in the
details part, and with only one ContentPage. However, the details could be
any object deriving from Page. In addition, instead of handling the visibility
of individual views, you could assign a different Page object to the Flyout
property. For instance, suppose you had a ContentPage called
CustomerListPage; this could be assigned to the detail as follows:
Detail = new CustomerListPage();

Obviously, you are not limited to implement item selection in the flyout
because this contains a page where you can implement your own user
experience. Later in the chapter, when talking about the Shell, you will see a
different approach to build a flyout.

Tip: Specifying and assigning the Title property on the page assigned
to the Flyout is mandatory; otherwise, an exception is thrown.

The behavior of the flyout can also be controlled via a property called
FlyoutLayoutBehavior property. Table 8.2 describes the supported values.

Value Description

Default Both the flyout and detail parts are rendered based on each platform’s
default layout.

Popover Forces the flyout to cover the detail.

Split Both the flyout and detail have equal size.

SplitOnLandScape Similar to Split, but it is applied only when the device is in
landscape orientation.

SplitOnPortrait Similar to Split, but it is applied only when the device is in portrait
orientation.

Table 8.2: Changing the Flyout behavior

Organizing contents within tabs: The TabbedPage
Xamarin.Forms provides an easy way to organize contents within tabs,
represented by the TabbedPage object. The TabbedPage allows you to
implement several tabs, where each tab contains a ContentPage for simpler
navigation. Figure 8.3 shows an example of TabbedPage:

Figure 8.3: Organizing contents within a TabbedPage

The TabbedPage can be considered as a container of Page objects, where each
one can be accessed by selecting a tab. If you look at Figure 8.3, you can see
how tabs are rendered according to the target system’s design guidelines,
which means at the top on Android devices and at the bottom on iOS devices.
The good news is that you do not need to handle navigation between tabs
because it is a built-in feature. You just need to supply the content pages. The
following code demonstrates how to build the user interface you see in
Figure 8.3:
<?xml version="1.0" encoding="utf-8" ?>

<TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="IntroducingPages.TabbedPageSample">

<TabbedPage.Children>

<ContentPage Title="First">

<Label Text="This is the first page"

HorizontalOptions="Center"

VerticalOptions="Center"/>

</ContentPage>

<ContentPage Title="Second">

<Label Text="This is the second page"

HorizontalOptions="Center"

VerticalOptions="Center"/>

</ContentPage>

<ContentPage Title="Third">

<Label Text="This is the third page"

HorizontalOptions="Center"

VerticalOptions="Center"/>

</ContentPage>

</TabbedPage.Children>

</TabbedPage>

There are two key points to underline:

The TabbedPage.Children collection must be populated with Page
objects, in this case, ContentPage objects.
Each ContentPage must specify the Title property, which is also the
text displayed on the corresponding tab.

There is no limit to the number of tabs you can add, but the recommendation
is no more than three or four, especially if your app will work on smaller
screens (like phones).

Scrolling pages: The CarouselPage
One of the most common gestures in the user experience of mobile apps is
scrolling content with an action called swiping. An example could be
swiping through a gallery of pictures. In Xamarin.Forms, there are views that
allow for swiping their own child contents, but you can also do so with pages
using the CarouselPage object. For better understanding, consider the
example shown in Figure 8.4:

Figure 8.4: Swiping contents with the CarouselPage

The example in Figure 8.4 shows a CarouselPage while swiping is
happening. When the swipe gesture is completed, the selected ContentPage
gets the focus. You can swipe both left and right. The way you declare a
CarouselPage is just like you saw with the TabbedPage. In fact, you still need
to populate the Children collection with ContentPage objects. The following
code demonstrates how to produce the preceding example:
<CarouselPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="IntroducingPages.CarouselPageSample">

<CarouselPage.Children>

<ContentPage Title="Pizza">

<StackLayout VerticalOptions="CenterAndExpand">

<Image Source="pizza.png"/>

<Label Text="Order your pizza" HorizontalOptions="Center"

VerticalOptions="Center"/>

</StackLayout>

</ContentPage>

<ContentPage Title="Ice cream">

<StackLayout VerticalOptions="CenterAndExpand">

<Image Source="icecream.png" />

<Label Text="Order an ice cream" HorizontalOptions="Center"

VerticalOptions="Center"/>

</StackLayout>

</ContentPage>

<ContentPage Title="Seafood">

<StackLayout VerticalOptions="CenterAndExpand">

<Image Source="seafood.png" />

<Label Text="Order some seafood" HorizontalOptions="Center"

VerticalOptions="Center"/>

</StackLayout>

</ContentPage>

</CarouselPage.Children>

Tip: The images used in the sample code can be found in the
companion solution, under the Resources folder of the native projects.

You can then add actions and handle events in C# according to the structure
of your user interface; for example, adding buttons or gesture recognizers.

Navigating between pages
More often than not, mobile applications are based on multiple pages, and
each page offers specific contents. Generally speaking, this is achieved by
implementing page navigation. Xamarin.Forms makes it easy to implement
page navigation via a built-in navigation framework exposed, at the highest
level, by a special page called NavigationPage. Xamarin.Forms’ navigation
framework contains a stack of pages; when a new page is opened, it is added
to the stack, and when it is closed, it is removed from the stack, in a Last-In,
First-Out (LIFO) approach. Practically speaking, you typically wrap the
root page of your use interface inside an instance of the NavigationPage
object, in the App.xaml.cs file, as follows:
public App()

{

InitializeComponent();

// NavigationSample is a ContentPage object

MainPage = new NavigationPage(new NavigationSample());

}

This could also be done in XAML, but the NavigationPage is the only page
that is intended to be normally used in C#. The NavigationPage enables the
following:

The navigation stack in the built-in navigation framework.
The soft navigation bar on all the supported operating systems (with the
exception of modal pages described shortly).
The physical back button on Android. While this is always enabled,
instead of closing an app, it will make the app go back to the previous
page with navigation.

From the root page in the navigation stack, you can navigate to a second page
by invoking the PushAsync method:
await Navigation.PushAsync(new SecondaryPage());

The Push prefix stands for pushing to the stack. From the secondary page,
you can go back to the previous page by invoking the PopAsync method, as
follows:
// SecondaryPage is popped from the stack and the app goes back

to the previous page

await Navigation.PopAsync();

The Pop prefix stands for popping from the stack. As an alternative, you
could use the PushModalAsync and PopModalAsync methods to implement
modal pages:
await Navigation.PushModalAsync(new SecondaryPage());

await Navigation.PopModalAsync();

Tip: In short, modal pages take the full screen and do not enable the
navigation bar. Use them when you want to have the highest level of
control over user actions against page navigation.

The aforementioned methods are invoked over a property called Navigation,
which is exposed by every Page object and is the .NET representation of the
navigation stack. Figure 8.5 shows the result of the code in the companion
solution. Note how the navigation bar is also enabled on Android and iOS:

Figure 8.5: Implementing navigation between pages

Users can either tap the soft back button at the left side of the navigation bar
or, on Android, press the physical back button. The only exception is with
modal pages because they do not enable the navigation bar, and therefore,
handling the back action is your responsibility.

Tip: Transition between pages can be animated, which is the default
behavior. Both PushAsync and PushModalAsync have an overload that
receives a bool parameter that represents whether the transition
between pages should be animated. If you pass false, the animation

will not be applied.

Sharing data between pages
Pages often need to exchange objects. You have two options to pass an object
from one page to another. The first way is to add an overload of the page’s
constructor that receives a parameter. The following example shows how to
implement a constructor overload that receives an object of type int, which is
stored inside a field:
public partial class SecondaryPage : ContentPage

{

public SecondaryPage()

{

InitializeComponent();

}

private int receivedNumber;

public SecondaryPage(int oneNumber)

{

InitializeComponent();

receivedNumber = oneNumber;

}

}

With this approach, you can call the page either passing a number or nothing.
In case you implement a constructor overload to receive data, remember to
always add an invocation to InitializeComponent, and this must precede
any other code. The second option is to just add one constructor that receives
data, which means the preceding code would become as follows:
public partial class SecondaryPage : ContentPage

{

private int receivedNumber;

public SecondaryPage(int oneNumber)

{

InitializeComponent();

receivedNumber = oneNumber;

}

}

This approach is good if the target page must necessarily receive data. For
both options, you pass data in the PushAsync (or PushModalAsync)
invocation, as follows:
await Navigation.PushAsync(new SecondaryPage(1000));

In this line of code, 1000 is an integer, which is also the type required by the

page constructor. In your scenarios, you will pass the appropriate object
based on your constructor implementation.

Implementing custom titles
When you assign the Title property of a page that is wrapped inside a
NavigationPage, the navigation bar will also display the title text. You can
customize the title to use a view instead of displaying text by adding a
NavigationPage.TitleView attached property to a page. The following code
shows an example:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="IntroducingPages.SecondaryPage">

<NavigationPage.TitleView>

<StackLayout Orientation="Horizontal">

<Image Source="icon.png"/>

<Label Text="Page title" />

</StackLayout>

</NavigationPage.TitleView>

</ContentPage>

In the example, the title is made of a layout that contains an image and some
text.

Understanding pages lifecycle
The lifecycle of a page relies on the following two events:

OnAppearing, which is fired just before the page is rendered.
OnDisappearing, which is fired when the page is being removed from
the navigation stack.

They are exposed by any object deriving from Page, and they do not need to
be declared explicitly, unless you want to implement custom actions in those
specific moments. If this is the case, their basic code looks as follows:
protected override void OnAppearing()

{

// Replace with your code…

base.OnAppearing();

}

protected override void OnDisappearing()

{

// Replace with your code…

base.OnDisappearing();

}

Tip: IntelliSense can be of great help here. Just type override, and then
select one of the two method names and press Tab. The code editor will
generate the necessary basic code.

The flow can be summarized as follows:

When a page is opened for the first time, the constructor is invoked and
OnAppearing is fired.
When another page is being opened via navigation, OnDisappearing is
invoked on the current page, but the instance of the current page is
neither destroyed nor removed from the stack.
When the page opened via navigation is closed with the invocation to
PopAsync or PopModalAsync, OnDisappearing is invoked, and the page
instance is removed from the stack.
When the navigation goes back to the first page, the constructor is not
invoked because the instance was not removed from the stack, but
OnAppearing is fired again.

You can, therefore, take advantage of OnAppearing to write code that you
wish to be executed every time a page is opened, whereas in the constructor,
you can write code that will be executed only once. Inside OnDisappearing,
you can write code that will be executed every time the current page is
leaving, either because it is being closed or because you are navigating to a
different page.

Intercepting the physical back button
Android devices have a physical Back button that simplifies the navigation
between apps or between features in one app. Unlike the software back
button on the navigation bar, the physical Back button suspends the current
app by default. However, you might want to allow users to go back to the
previous page when they press the physical back button. To accomplish this,
you can handle the OnBackButtonPressed event as follows:
protected override bool OnBackButtonPressed()

{

return base.OnBackButtonPressed(); // replace with your logic

here

}

The base.OnBackButtonPressed method invokes the default behavior, so
you might change it as follows:
protected override async bool OnBackButtonPressed()

{

await Navigation.PopAsync();

return true;

}

When you implement your custom logic, the method should return true,
which means the back button was handled. Additionally, note that the method
has been marked with the async operator because it is invoking PopAsync via
the await operator. Handling this event will have no effect on iOS.

Common app features: The Shell
The Shell is a special root layout that simplifies the way you can implement
features that are common to a number of mobile apps, such as a flyout menu,
a search bar, navigation features, and a navigation bar. The biggest benefit of
the Shell is that all these common features are implemented in one place as
part of the Shell itself, instead of doing all the work yourself. The Shell is a
very sophisticated layout, so in this chapter, you will learn how to get the
most out of it following an approach that is based on real-world experience,
which is what you need to know as a Xamarin jobseeker. In the meantime,
take a look at Figure 8.7 and Figure 8.8, where you can see a navigation bar
and a flyout menu. You will be guided to create such a user interface in this
section. Visual Studio offers a project template to create projects based on the
Shell, called Flyout (see Figure 8.6).

Figure 8.6: The Flyout project template enables the Shell

Using this project template eliminates the need to manually add the necessary
code to implement the Shell. However, this project template generates code
that is already too complex if you have never seen the Shell before, so you
are encouraged to open the ShellDemo companion solution instead, as it
allows for implementing features step by step. Assuming that you have
opened the companion solution, it is now time to understand how the Shell
works.
The Shell is a very articulated object and would require more than one
dedicated chapter of a book. This section walks through the Shell with the
approach of real-world experience, meaning that you will find all the
necessary information you need to work with the Shell in a variety of
applications. For more information, you can keep the official documentation
as a reference (https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/app-fundamentals/shell).

Understanding the structure of the Shell
The Shell is represented by an object called AppShell, whose declaration can
be found in the AppShell.xaml file. This file will contain all the necessary
markup to implement the features discussed in this chapter. The Shell can
contain one or more of the following elements:

A so-called tab bar: Also referred to as the navigation bar, it provides
buttons with images and text that allow users to navigate between
pages. It is automatically placed at the bottom of the Shell (see Figure
8.7):

Figure 8.7: Building apps with the Shell

A flyout menu: This is similar to what you can get with a FlyoutPage,
but it is all in the same root layout. So, it supports swiping and is
normally used to provide shortcuts to other contents. Figure 8.8 shows
an example:

Figure 8.8: Implementing a flyout

A search bar: This implements a user interface for searching contents,
and you can handle it to display search results.

These visual elements do not have a relationship with one another, so you are
not obliged to implement all of them. In addition, they support styles so that
you can completely change the appearance of shell items, as you will see in

the last section of this chapter. In the upcoming paragraphs, you will learn
how to implement all the listed items. You will first learn how to implement a
flyout and a tab bar individually, and then you will learn how to implement
both with a simplified syntax.

Adding a Flyout menu
Adding a flyout to the Shell is very easy. In fact, for each item you want to
add to the flyout, you declare an object of type FlyoutItem under the Shell
root node. To accomplish this, open the AppShell.xaml file in Visual Studio.
Now, imagine that you want to create a flyout menu with shortcuts to three
pages. The following code demonstrates this:
<Shell … >

<FlyoutItem Title="Home" Icon="home.png">

<ShellContent ContentTemplate="{DataTemplate

pages:HomePage}"/>

</FlyoutItem>

<FlyoutItem Title="About" Icon="about.png">

<ShellContent ContentTemplate="{DataTemplate

pages:AboutPage}"/>

</FlyoutItem>

<FlyoutItem Title="Contact" Icon="contact.png">

<ShellContent ContentTemplate="{DataTemplate

pages:ContactPage}"/>

</FlyoutItem>

</Shell>

The Title and Icon properties of each FlyoutItem object represent the text
displayed in the menu and an icon, respectively. Icons follow the same rules
as described in the previous chapter about images. The content of each
FlyoutItem is an object of type ShellContent, which allows for navigating
to a different page, but still inside the Shell. The syntax used to specify the
target page assigns the ContentTemplate property with a special object called
DataTemplate. Data templates are one of the topics covered in the next
chapter, so for now, just memorize this syntax. Figure 8.8 shows the result of
this code. Table 8.3 summarizes other interesting properties that you can
assign to customize the flyout appearance and behavior.

Property Description

FlyoutIcon Specifies a custom icon file for the flyout menu.

FlyoutHeader

Allows for adding a view at the top of the flyout.

FlyoutBackgroundImage Assigns a background image to the flyout.

FlyoutBackgroundImageAspect Sets the stretching of the background image. Supported values are
Fill, AspectFit, and AspectFill for the Image view.

FlyoutIsPresented Specifies whether or not the flyout should automatically be
opened.

Table 8.3: Properties to customize the flyout in the Shell

Leveraging built-in navigation: The Tab bar
The Shell provides a built-in navigation framework based on tabs. If you look
at Figure 8.7 and Figure 8.8, you can see the tab bar at the bottom of the
shell, with icons and text. The tab bar is represented by the TabBar object,
and each tab is represented by a Tab object. Like for the TabbedPage, there is
no limit to the number of tabs you add, but the recommendation is no more
than three or four in order to make sure they fit in whatever screen size. The
TabBar is also added to the Shell object, like the Flyout, and for each tab, you
add a ShellContent object, just like you did in the Flyout definition. The
following code demonstrates how to create the tab bar you see in Figure 8.7
and Figure 8.8:
<Shell … >

<TabBar>

<Tab Title="Home" Icon="home.png">

<ShellContent ContentTemplate="{DataTemplate

pages:HomePage}"/>

</Tab>

<Tab Title="About" Icon="about.png">

<ShellContent ContentTemplate="{DataTemplate

pages:AboutPage}"/>

</Tab>

<Tab Title="Contact" Icon="contact.png">

<ShellContent

ContentTemplate="{DataTemplate pages:ContactPage}"/>

</Tab>

</TabBar>

</Shell>

The text displayed on each tab is specified via the Title property. It is worth
mentioning that you do not need to write any code to implement page
navigation because everything is handled by the Shell (though you have
options to do so, which will be covered in the upcoming sections).

Implementing both the Flyout and Tab bar
Many mobile apps provide the same shortcuts to other pages in both a flyout
menu and the tab bar. This allows a better user experience; for example, it
allows for accessing a page from the flyout when the shortcut on the tab bar
is covered by the flyout itself. If you wish to have the same navigation
shortcuts in both a flyout and tab bar, you can write the following code:
<Shell … >

<FlyoutItem FlyoutDisplayOptions="AsMultipleItems">

<Tab Title="Home" Icon="home.png">

<ShellContent ContentTemplate="{DataTemplate

pages:HomePage}"/>

</Tab>

<Tab Title="About" Icon="library.png">

<ShellContent ContentTemplate="{DataTemplate

pages:AboutPage}"/>

</Tab>

<Tab Title="Contact" Icon="contact.png">

<ShellContent

ContentTemplate="{DataTemplate pages:ContactPage}"/>

</Tab>

</FlyoutItem>

</Shell>

In summary, you add Tab objects as children of a FlyoutItem object, and you
must also assign the FlyoutDisplayOptions property with
AsMultipleItems. This property value makes it possible for one flyout item
to display multiple child elements.

Implementing the Search bar
The Shell also includes a built-in search user interface, which requires some
preliminary work. First, you need to create a class that inherits from the base
SearchHandler class, where you implement your own search logic. Suppose
you have an application that works with a list of contacts and that you have
the following objects to represent people:
public class Person

{

public string FirstName { get;set; }

public string LastName { get;set; }

}

public class PersonViewModel

{

public ObservableCollection<Person> People { get; set;}

public PersonViewModel()

{

People = new ObservableCollection<Person>();

People.Add(new Person { LastName="Del Sole",

FirstName="Alessandro"});

People.Add(new Person { LastName = “White", FirstName =

“Robert" });

People.Add(new Person { LastName = “Sonny", FirstName =

“John" });

}

}

Now, also imagine that the PersonViewModel class is instantiated somewhere
in the app and that its People property is populated with a list of Person
objects. At this point, you can implement a class the searches the collection
for specific items based on a search criterion. In the current example, the
search criterion is the person’s last name. The following code demonstrates
how to accomplish this:
// Requires a using System.Linq directive

public class PeopleSearchHandler : SearchHandler

{

PersonViewModel { get; set; }

protected override void OnQueryChanged(string oldValue, string

newValue)

{

base.OnQueryChanged(oldValue, newValue);

if (string.IsNullOrWhiteSpace(newValue))

{

ItemsSource = null;

}

else

{

ItemsSource = PersonViewModel.People

.Where(p =>

p.LastName.ToLower().Contains(newValue.ToLower()))

.ToList();

}

}

protected override async void OnItemSelected(object item)

{

base.OnItemSelected(item);

Person person = item as Person;

if(person != null)

{

await (Application.Current.MainPage as Shell).

GoToAsync($"PersonDetails?name={person.LastName}");

}

}

}

The OnQueryChanged event is fired when the user types in the search field.
Here, there is a LINQ query that filters the collection of People object based
on what the user typed. The query result is assigned to a property of the
search handler class called ItemsSource. This property can contain a
collection of objects, which is displayed under the search bar as you type.
Note how OnQueryChanged also exposes the oldValue and newValue strings,
representing the previous text in the search bar and the current value in the
search bar, respectively. The other event you need to handle is called
OnItemSelected, which is raised when the user selects an item in the search
results. Normally, the target action consists of retrieving the instance of the
object that was selected from the search results and opening a new page that
can process the retrieved data type. In the current example, this target page is
called PersonDetails. When your logic is complete, you can add the search
bar to the user interface. Unlike other features, such as the flyout or tab bar,
the search bar is not declared in the XAML code of the Shell but at the page
level. For example, in the HomePage.xaml file, you could add the following
XAML before the definition of the Content property:
<Shell.SearchHandler>

<local:PeopleSearchHandler Placeholder="Enter search term"

ShowsResults="true" SearchBoxVisibility="Expanded"

DisplayMemberName="LastName" />

</Shell.SearchHandler>

Figure 8.9 shows how the search user interface appears:

Figure 8.9: The search bar

When the user selects an item from the list, the corresponding class instance
is retrieved, and a new page is opened. It is worth mentioning the
DisplayMemberName property, which specifies the property that is used to
display the contents of the search box.

Programmatically interacting with the Shell
You can interact with the Shell via C# and set its properties as you would do
in XAML or if you need to change something at runtime. The Shell is
represented by the Shell class, which is available as a singleton class (one
instance only) that you access via the Current property. For example, the
following line of code demonstrates how to programmatically set the

background image of the flyout:
Shell.Current.FlyoutBackgroundImage =

ImageSource.FromFile(“background.png");

You will be able to access all the properties of the objects inside the Shell
with the same approach, and IntelliSense will help you understand the
available members. The following line of code demonstrates how to
programmatically navigate to a different page:
await Shell.Current.GoToAsync(“about");

The GoToAsync method allows for opening a different page, but this requires
defining a so-called route. This can be done by assigning the Route property
of a ShellContent object with an identifier of your choice, like in the
following line:
<ShellContent ContentTemplate="{DataTemplate pages:AboutPage}"

Route="about"/>

Other objects that support routes are the FlyoutItem, the Tab and the TabBar.
You can also invoke GoToAsync to navigate to a page that is not included in
the Shell’s visual hierarchy. To do this, you first register a route for the target
page, as follows:
Routing.RegisterRoute(“TargetPage", typeof(TargetPage));

Where TargetPage is the name of the destination page that is not included in
the visual hierarchy.

The limited number of C# examples in this section is intentional.
Remember, one of the major benefits of XAML is allowing professional
designers to work on the user interface without touching any C# code.
You should limit your C# interactions with the Shell to the situations
highlighted in this section and leave the design changes in XAML.

Changing the Shell styles
By default, the Shell takes the theme colors of the target operating system.
However, it is possible to customize elements like the flyout and the tab bar
with different colors and typefaces. In Xamarin.Forms, this is done via
resources. These are thoroughly discussed in the next chapter, but a preview
is offered here. The following code demonstrates how to change colors on the
Shell and the tab bar:
<Shell.Resources>

<ResourceDictionary>

<Style x:Key="BaseStyle" TargetType="Element">

<Setter Property="Shell.BackgroundColor" Value="LightGreen"

/>

<Setter Property="Shell.ForegroundColor" Value="Blue" />

<Setter Property="Shell.TitleColor" Value="White" />

<Setter Property="Shell.DisabledColor" Value="LightGray" />

<Setter Property="Shell.UnselectedColor" Value="Gray" />

<Setter Property="Shell.TabBarBackgroundColor"

Value="LightBlue"/>

<Setter Property="Shell.TabBarForegroundColor" Value="Red"/>

<Setter Property="Shell.TabBarUnselectedColor"

Value="Orange"/>

<Setter Property="Shell.TabBarTitleColor" Value="Red"/>

</Style>

<Style TargetType="ShellContent" BasedOn="{StaticResource

BaseStyle}"/>

</ResourceDictionary>

</Shell.Resources>

As you can see, property names are self-explanatory. You assign them using
a Setter object for each property, where name and value are represented by
Property and Value, respectively. They are enclosed inside a
ResourceDictionary resource container, wrapped inside a Shell.Resources
collection. Note how a style is also added for the ShellContent object, which
is the core of the Shell and is based on the previous style. The result of this
styling is shown in Figure 8.10, which gives you an idea of how the different
colors are applied:

Figure 8.10: Restyling the Shell

Conclusions
The user experience in mobile apps can be different and more complex,
depending on the purpose of the app. In Xamarin.Forms, you can define
sophisticated user interfaces by leveraging different kinds of pages. The
ContentPage represents an individual page; the FlyoutPage represents a
master-details view with a flyout menu; the TabbedPage groups individual
pages within tabs; the CarouselPage allows for implementing the swipe
gesture over a series of individual pages. It is also very common to
implement navigation between pages, which is accomplished via the
NavigationPage class and that offers a built-in navigation framework,

including handling a back gesture. In addition, it is possible to use the Shell, a
convenient feature that makes it simple to create apps with features like
flyout, navigation, and search from a single place. Now you have very good
knowledge of how to build the user interface in Xamarin.Forms, you are
ready for the next step: working with data.

Key terms
Page: A root visual element that contains one view, such as a layout,
and whose purpose is offering a specific functionality.
Flyout: A side menu that can be shown and hidden with a swipe
gesture.
Navigation stack: A system object that contains the list of open pages
and that works with a Last-in, First-out (LIFO) approach.
Shell: A root container that implements common app features in one
place to simplify the architecture of an app.

Suggested readings
The official Xamarin.Forms documentation about pages and navigation:
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-
fundamentals/navigation
The official Xamarin.Forms documentation about the Shell:
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-
fundamentals/shell

CHAPTER 9
Resources and Data Binding

Introduction
In real-world mobile app development, you will often need to follow a
graphic design that forces you to repeat colors, fonts, and size over the same
type of views. Instead of assigning the same properties to each view every
time, you can leverage resources. The syntax for using resources is similar to
the one you use to leverage another powerful feature called data binding,
which allows connecting views to .NET objects so that they automatically
exchange information without your manual intervention. For example,
selecting a date from a DatePicker and storing the selection result into a
DateTime variable can be an automated process, and this approach becomes
even more important when you work with data collections and databases.
This chapter describes both resources and data binding, providing you with a
crucial part of the knowledge about Xamarin.Forms.

Data access, data binding and topics-related views you use for these
scenarios can be very complex. Therefore, the goal of this chapter is not
to describe all the available properties and possible uses of all the
objects. Instead, as a Xamarin jobseeker, the goal is to give you all the
necessary knowledge you need to immediately be productive on existing
projects for both maintenance and implementation of new features.

Structure
In this chapter, we will cover the following topics:

Understanding and defining resources
Binding data to the user interface
Advanced data binding: The Model-View-ViewModel pattern
Local data access with SQLite databases

Objectives
After completing this chapter, you will be able to define and reuse styles and
data templates, and you will be able to automate the communication between
the user interface and data collections, passing through advanced
programming patterns and local data access with the SQLite database.

Creating a sample project
This chapter comes with three different Xamarin.Forms solutions that you
can open with Visual Studio to better follow the examples. If you wish to
recreate the projects on your own, you can follow these steps:

1. Create three new Xamarin.Forms solutions called Resources,
DataBinding and MvvmSample, respectively. For the local data access
part, you will extend the MvvmSample project.

2. For each shared project, do not edit or remove the auto generated
MainPage.xaml file as it will be used later.

3. For each view discussed in the book, especially about data binding, add
a new item of type Content Page (XAML). To accomplish this, right-
click on the shared project name and then click on Add New Item in the
context menu.

4. In the Add New Item dialog, click on the Xamarin.Forms node on the
left and then select the Content Page (XAML) item template.

5. Assign a name that matches the discussed view, for example
CollectionViewSample.xaml, to the new XAML file and click on Add.

For each page you add to the project, add an empty StackLayout to the
ContentPage and assign its VerticalOptions property with
CenterAndExpand. Unless where specified, this will be the layout of choice
for the code examples in the next pages.

Understanding and Defining Resources
In software development, resources represent reusable objects. In .NET
development, resources are typically represented by .resx files where you
can define reusable strings or images. Instead, in Xamarin.Forms, and more
generally in all XAML-based development platforms like WPF and UWP,

resources represent reusable sets of properties defined in XAML that you can
apply to multiple visual elements. Xamarin.Forms supports several types of
resources: styles, data templates and object references. Styles will be
discussed in the upcoming paragraphs, whereas data-templates and object
references will be discussed when talking about data binding because this is
where they are used. But first, you need to know how to declare resources
and their visibility scope.

Defining resources
The Application class, pages and layout all expose a collection called
Resources. This is a collection of ResourceDictionary objects, where each
can contain different resources. In practice, you do not really need to define
multiple ResourceDictionary instances, but this can be useful if you want to
group resources logically. You can define a collection of resources as
follows:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Resources.Page1">

< ContentPage.Resources>

<ResourceDictionary>

</ResourceDictionary>

</ ContentPage.Resources>

</ ContentPage >

In this code snippet, resources are being declared at the page level. In the
following example, resources are being defined at the layout level:
<Grid>

<Grid.Resources>

<ResourceDictionary>

</ResourceDictionary>

</Grid.Resources>

</Grid>

In the following code snippet, resources are defined at the app

level:

<Application xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Resources.App">

<Application.Resources>

<ResourceDictionary>

</ResourceDictionary>

</Application.Resources>

</Application>

The reason why these three examples have been provided is the resources’
scope, which can be summarized as follows:

Resources defined in the App.xaml file are available across the app.
Resources defined in a page are only available to views and layouts
included in the page itself and not outside.
Resources defined in a layout are only available to views and layouts
included in the layout itself and not outside.

Now that you know where resources are defined and how their scope works,
you are ready to start defining resources in practice.

Defining and assigning styles
Styles are the most common type of reusable resource and the easiest way to
get started with this topic. A style can be thought of as a reusable set of
properties and values that can be applied to visual elements of the same type.
For example, you might need to apply the same background color, font size,
and text color to all the buttons on a page. Another example could be
applying the same typeface to all the labels in your app. Without styles, you
would need to assign the same properties to all the desired views manually,
multiple times. A style is represented by the Style object. It requires an
x:Key tag that contains a unique identifier for the style and that you will use
to assign the style; the key can be thought of as a name. It also requires
specifying the view to which the style can be applied, and this is specified via
the TargetType property of the style. Each property you want to be part of
the style is represented by the Setter object, which has two properties:
Property, which specifies the target property, and Value, which represents
the property value. The following code demonstrates how to define a style
that targets the Button view and assigns the BackgroundColor, TextColor,
FontAttributes and FontSize properties:
<?xml version="1.0" encoding="utf-8" ?>

<Application xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="Resources.App">

<Application.Resources>

<ResourceDictionary>

<Style x:Key="PrimaryButtonStyle" TargetType="Button">

<Setter Property="BackgroundColor" Value="Blue"/>

<Setter Property="TextColor" Value="White"/>

<Setter Property="FontAttributes" Value="Bold"/>

<Setter Property="FontSize" Value="Medium" />

</Style>

</ResourceDictionary>

</Application.Resources>

</Application>

Consuming a style is then very easy. Views expose a Style property that you
can assign with a style that targets the view of interest. The following code
snippet demonstrates how to assign the style defined above to three buttons
so that they can all have the same look:
<StackLayout VerticalOptions="CenterAndExpand"

HorizontalOptions="FillAndExpand"

Spacing="20" Margin="20,0,20,0">

<Button Text="Button one" Style="{StaticResource

PrimaryButtonStyle}" />

<Button Text="Button two" Style="{StaticResource

PrimaryButtonStyle}" />

<Button Text="Button three" Style="{StaticResource

PrimaryButtonStyle}" />

</StackLayout>

The syntax for assigning the style requires a markup extension enclosed
between brackets, made of the StaticResource object, followed by the key
to the style.

Tip: As you can see as you type, IntelliSense will not only show a list of
styles to make you write code faster, but, in particular, it will show only
those styles that can be applied to the view you are editing.

Actually, there is another way to assign a style, which is as follows:
<Button Text="Button one" Style="{DynamicResource ButtonStyle}"

/>

You can use DynamicResource instead of StaticResource if you plan to
modify the style’s properties at runtime and want to make the target views
automatically update to reflect changes. Figure 9.1 shows the result of the
assignment of the style defined previously:

Figure 9.1: Assigning a style to three different buttons

Obviously, you can have multiple styles that target the same view and then
choose the most appropriate one depending on the page definition and
context. The following code demonstrates how to implement multiple styles
for the Button view and how they can be differentiated by specifying a
different x:Key:
<Style x:Key="PrimaryButtonStyle" TargetType="Button">

<Setter Property="BackgroundColor" Value="Blue"/>

<Setter Property="TextColor" Value="White"/>

<Setter Property="FontAttributes" Value="Bold"/>

<Setter Property="FontSize" Value="Medium" />

</Style>

<Style x:Key="SecondaryButtonStyle" TargetType="Button">

<Setter Property="BackgroundColor" Value="LightGray"/>

<Setter Property="TextColor" Value="Blue"/>

<Setter Property="FontAttributes" Value="Bold"/>

<Setter Property="FontSize" Value="Medium" />

</Style>

Implementing style inheritance
Styles support inheritance makes it possible to define a base style and then
customize the style according to your specific needs. A style can be inherited
from another one by specifying the BaseOn property, which takes a
StaticResource markup extension as the value. The following code
demonstrates how to define a style for all the objects deriving from View,
such as views and layouts, where the alignment options are provided. Next, a
style for the Label view is defined and inherits from the previous one. This
new style will have the properties of the ViewStyle style, plus the new ones
defined in the LabelStyle style:
<Style x:Key="ViewStyle" TargetType="View">

<Setter Property="HorizontalOptions" Value="Center" />

<Setter Property="VerticalOptions" Value="Center" />

</Style>

<Style x:Key="LabelStyle" TargetType="Label"

BasedOn="{StaticResource ViewStyle}">

<Setter Property="TextColor" Value="Green" />

<Setter Property="FontSize" Value="Large" />

</Style>

<Style x:Key="RedLabelStyle" TargetType="Label"

BasedOn="{StaticResource LabelStyle}">

<Setter Property="TextColor" Value="Red" />

</Style>

The third style, RedLabelStyle, demonstrates how to redefine one property
of the style it inherits from. This will allow the style to have all the properties
defined in the base style, plus the changes implemented here.

Implementing implicit styling
Suppose you want to apply the same style to all the target views defined in
the resources’ scope. It is possible to leverage a feature called implicit
styling. Consider the following code:
<Style TargetType="Button">

<Setter Property="BackgroundColor" Value="Blue"/>

<Setter Property="TextColor" Value="White"/>

<Setter Property="FontAttributes" Value="Bold"/>

<Setter Property="FontSize" Value="Medium" />

</Style>

As you can see, there is no x:Key tag specified. If this style is defined in the
application resources, it will be automatically applied to all buttons in the
application, without the need to explicitly assign the Style property.
Similarly, if it is defined in the page’s resources, it will be applied to all
buttons in the page, and if it is defined in a layout’s resources, it will be
applied to all buttons inside the layout. You can still define additional styles
by specifying an x:Key tag and manually assigning them to the individual
view that you do not want to be implicitly styled.

Binding data to the user interface
In software development, data binding is a mechanism that connects a view
to a data object for implementing automatic information exchange between
the two. This makes it possible for the view to automatically update its
content when the data changes, and vice versa. For better understanding,
consider the scenario where the user enters some text into an Entry and the
input string should be stored inside the property of a class. Without data
binding, what you should manually do is handle the TextChanged event for
every keystroke and store the string into the data property. What you would
also need to do is write code that updates the content of the Entry when the
value of the data property changes at runtime, for example when data is
loaded from a database. If this approach does not seem problematic with one
entry, it really is with data collections and, in general, with amount of data
that you do not know in advance (except for the structure of the class
representing the data). Data binding brilliantly solves these problems,
implementing automatic communication and content updates between views
and other .NET objects (including other views). In the following paragraphs,
you will learn how to successfully work with data binding in Xamarin.Forms,
leveraging all the power of XAML.

Getting started with data binding
Because of the complexity and importance of data binding, you will learn this
feature in a step-by-step approach, starting with small pieces. Suppose you
have the following Contact class:
public class Contact

{

public string LastName { get; set; }

public string FirstName { get; set; }

public DateTime DateOfBirth { get; set; }

public bool IsFamilyMember { get; set; }

}

Imagine that you have an instance of this class and that you want users to
enter data into the class instance via appropriate views in the user interface.
You could have a page with two Entry views, a DatePicker and a CheckBox
(SimpleBindingPage.xaml in the sample solution). Instead of manually
handling events and data storage for each property, you can use data binding.
The XAML code for the page could be the following:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="DataBinding.SimpleBindingPage">

<ContentPage.Content>

<StackLayout Orientation="Vertical" Padding="20">

<Label Text="First Name:" />

<Entry Text="{Binding FirstName}"/>

<Label Text="Last Name:" />

<Entry Text="{Binding LastName}"/>

<Label Text="Date of birth:"/>

<DatePicker Date="{Binding DateOfBirth, Mode=TwoWay}"/>

<StackLayout Orientation="Horizontal">

<Label Text="Is family member?:"

VerticalOptions="Center"/>

<CheckBox IsChecked="{Binding IsFamilyMember}"

VerticalOptions="Center"/>

</StackLayout>

</StackLayout>

</ContentPage.Content>

</ContentPage>

As you can see, for each view, the property that receives the user input
(Entry.Text, DatePicker.Date, and CheckBox.IsChecked) is assigned with
a markup extension represented by the binding literal plus the target property
in the data object.

Tip: The full syntax for binding to a property would be {Binding
Path=PropertyName}, but in simple expressions like the previous ones,
Path can be omitted.

Xamarin.Forms supports the five types of data binding described in Table

9.1, which can be specified via the Mode property of the binding expression:

Type Description

TwoWay Data binding works in read-write mode (views can read from and
write to the bound object).

OneWay Data binding works in read-only mode, and views can only read from
the bound object.

OneWayToSource Data binding works in write-only mode, and views can only write to
the bound object.

OneTime Data binding works in read-only mode, but views can only read data
once.

Default The most appropriate type is automatically assigned by Xamarin,
depending on the current view. This is also the default behavior if no
type is specified.

Table 9.1: Supported types of data binding

If you look at the previous code, you can see how no mode is specified for
the Entry views. This assumes Mode=Default, and Xamarin automatically
resolves TwoWay as the most appropriate one for this kind of view. The
DatePicker is an exception, because it requires specifying the TwoWay mode
even if it natively supports read-write binding. All the properties of a view
cannot be data-bound to another property, only the so-called bindable
properties can be.

In this book, you will learn how to consume bindable properties, but
their implementation is left to you for further studies. Reasons for this
are their complexity and the fact that, as a Xamarin jobseeker, you will
realize that bindable properties are commonly only implemented in
custom views. The official documentation offers further guidance and is
available at https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/xaml/bindable-properties.

The power of bindable properties is the fact that they cannot only write their
value into the target object, but they are also automatically updated if the
target object’s value is updated outside of the data binding. To clarify this,
consider a scenario where data is read from a database and then stored inside
.NET objects. Data is read, the value is written into properties of a .NET
class, and properties of views that are data-bound to such a class

automatically update their value. However, bindable properties can
automatically refresh their content only if the bound .NET object sends a so-
called property changed notification, which means informing the user
interface that one or more of its values have changed. To accomplish this, the
bound class must implement the
System.ComponentModel.INotifyPropertyChanged interface.

Property change notifications: INotifyPropertyChanged
Bindable properties, which are the source of the data binding, continuously
listen for an event called PropertyChanged, which is raised by objects that
implement the INotifyPropertyChanged interface. When such an event is
raised, the bindable property value is automatically refreshed. With this in
mind, the Contact class shown previously should be rewritten as follows:
using System;

using System.ComponentModel;

using System.Runtime.CompilerServices;

namespace DataBinding

{

public class Contact : INotifyPropertyChanged

{

private string _lastName;

public string LastName

{

get

{

return _lastName;

}

set

{

_lastName = value;

OnPropertyChanged();

}

}

private string _firstName;

public string FirstName

{

get

{

return _firstName;

}

set

{

_firstName = value;

OnPropertyChanged();

}

}

private DateTime dateOfBirth;

public DateTime DateOfBirth

{

get

{

return dateOfBirth;

}

set

{

dateOfBirth = value;

OnPropertyChanged();

}

}

private bool _isFamilyMember;

public bool IsFamilyMember

{

get

{

return _isFamilyMember;

}

set

{

_isFamilyMember = value;

OnPropertyChanged();

}

}

public event PropertyChangedEventHandler PropertyChanged;

private void OnPropertyChanged([CallerMemberName]

string propertyName = null)

{

PropertyChanged?.Invoke(this,

new PropertyChangedEventArgs(propertyName));

}

}

}

The following is a list of key points about the code above:

The set methods of each property invoke a method called
OnPropertyChanged every time their value changes. This enables for
sending a change notification.
The OnPropertyChanged method has been defined in order to simplify
the invocation for change notification with a single method call.

The CallerMemberName attribute automatically resolves the name of the
caller member, in this case, the property name that is calling the
method. This eliminates the need to specify the property name in the
method invocation every time.
Several objects in the Xamarin.Forms libraries expose a method called
OnPropertyChanged with the same implementation, so doing the same
thing in your objects helps you ensure consistency.

The next step is connecting the object to views and making the data binding
alive.

Assigning the binding context
You have previously created a data object, written some user interface, and
prepared views for data binding; the last step is to establish a connection
between views and objects. This is accomplished by assigning a property
called BindingContext of the object type. This property is available in many
objects, for example, pages and layouts, and it represents the data source for
the view. With regard to the previous example, you could write the following
code in the page’s code-behind file:
private Contact NewContact { get; set; }

public SimpleBindingPage()

{

InitializeComponent();

NewContact = new Contact

{

FirstName = “Alessandro",

LastName = “Del Sole",

DateOfBirth = new DateTime(1977, 05, 10),

IsFamilyMember = false

};

BindingContext = NewContact;

}

A new instance of the Contact class is created and assigned to a property
called NewContact of the Contact type. The approach of defining a property
is recommended because the data binding engine is optimized for working
with properties rather than with fields or local variables, and it also makes the
object accessible from elsewhere in the page. The NewContact instance is
assigned to the BindingContext property of the page. This is what really
enables data binding. Behind the scenes, child views will look for an object

instance inside the BindingContext property of their parent container and
will bind to the properties specified in the binding expressions. If you now
run the sample code, you will see how the user interface of the page is
automatically filled in with values from the Contact class instance, as shown
in figure 9.2:

Figure 9.2: Binding an object instance to views

Any changes that you make to the data will be sent to the bound object. You
can easily demonstrate this by placing a breakpoint on the
OnPropertyChanged method definition in the Contact class. You will see
how this is invoked every time a property value changes depending on the
user input. What you have seen so far is a basic implementation of data

binding, which is useful with individual pages, for example, in data-entry
scenarios. However, the power of data binding is unleashed when you work
with data collections.

Working with data collections
Displaying and editing data collections in the user interface is another
common scenario when it comes to data binding. Xamarin.Forms provides
several views that allow for displaying data collections, as summarized in
Table 9.2:

View Description

ListView Displays a list of items from a bound collection.

CollectionView Displays a list of items from a bound collection with a more modern
and efficient approach.

CarouselView Allows for scrolling through a list of items from a collection, keeping
the focus on the selected item.

TableView Displays items from a collection in a tabular view.

Picker Allows for selecting one item from a collection, based on the system
user interface.

Table 9.2: Views that support data collections

Two important considerations need to be made about the views listed in
Table 9.2:

The ListView was the only view available to display and edit lists until
Xamarin.Forms 4.5, which introduced the CollectionView. Though
less efficient and more complex to manage, in the real-world you will
still find tons of projects relying on the ListView. This is why it will be
discussed in detail, like any other view.
Using the TableView makes sense when you want to implement a series
of settings or options. More sophisticated results can be achieved with
the CollectionView, so you will be introduced to the TableView
without going into unnecessary details.

All the views described in Table 9.2 share one characteristic: they all expose
a property called ItemsSource, of the object type, which receives an instance

of the collection you want to bind. The collection must implement the
IEnumerable interface. With Xamarin.Forms, you typically use collections of
the System.Collections.ObjectModel.ObservableCollection<T> type.
This special collection works exactly like a List<T>, but it also sends a
change notification when items are added or removed from the collection so
that bound views can automatically refresh their content.

As the ObservableCollection sends change notification when items are
added or removed, if you want to notify the user interface of changes
over an existing item in the collection, you must ensure that the data
object implements the INotifyPropertyChanged interface discussed
previously.

Displaying data: The ListView
For years, the ListView has been the only available view to display data
collections, so it is important to understand how it works, especially if you
will need to work on maintaining existing projects in the future. If you want
to follow the companion sample solution, you can open the
ListViewSample.xaml page. Suppose you have a collection of Contact
objects and you want to display the property values of each contact in a list.
The following code demonstrates how to declare an appropriate ListView:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="DataBinding.ListViewSample">

<ContentPage.Content>

<StackLayout>

<ListView x:Name="ContactList" ItemsSource="{Binding}"

ItemSelected="ContactList_ItemSelected"

HasUnevenRows="True">

<ListView.ItemTemplate>

<DataTemplate>

<ViewCell.View>

<Frame HasShadow="False" BorderColor="Blue"

Margin="10">

<StackLayout>

<Label Text="Last name:"/>

<Entry Text="{Binding LastName}"/>

<Label Text="First name:"/>

<Entry Text="{Binding FirstName}"/>

<Label Text="Date of birth:"/>

<DatePicker Date="{Binding DateOfBirth,

Mode=TwoWay}"/>

<StackLayout Orientation="Horizontal">

<Label Text="Is Family Member?:"

VerticalOptions="Center"/>

<CheckBox IsChecked="{Binding

IsFamilyMember}"

VerticalOptions="Center"/>

</StackLayout>

</StackLayout>

</Frame>

</ViewCell.View>

</DataTemplate>

</ListView.ItemTemplate>

</ListView>

</StackLayout>

</ContentPage.Content>

</ContentPage>

There are several key points in this code, and some of them are also shared
across views, i.e., they are not limited to the ListView. The first
consideration is the ItemsSource property, which receives the instance of the
data-bound collection. When the binding expression is simply {Binding},
like in the previous example, the view takes the data source from the
BindingContext property of its parent. This is going to be assigned in C#,
and the reason for doing this in imperative code is that the most common
approach is loading data in C# and then assigning data to the view. In the
code-behind of the page, you could write the following code:
private ObservableCollection<Contact> Contacts { get; set; }

public ListViewSample()

{

InitializeComponent();

Contacts = new ObservableCollection<Contact>();

Contact contact1 = new Contact

{

FirstName = “Alessandro",

LastName = “Del Sole",

DateOfBirth = new DateTime(1977, 05, 10),

IsFamilyMember = false

};

Contact contact2 = new Contact

{

FirstName = “Robert",

LastName = “White",

DateOfBirth = new DateTime(1980, 02, 03),

IsFamilyMember = true

};

Contact contact3 = new Contact

{

FirstName = “Angela",

LastName = “Green",

DateOfBirth = new DateTime(1982, 09, 01),

IsFamilyMember = true

};

Contacts.Add(contact1);

Contacts.Add(contact2);

Contacts.Add(contact3);

BindingContext = Contacts;

}

Assigning the collection instance to the BindingContext property will make
such a collection the data source of the whole page. The ListView, via
binding, will populate its ItemsSource property from the first container in the
visual tree that has data in its BindingContext property. This means that the
StackLayout is inheriting the BindingContext from the ContentPage, and
the data passes through the visual tree.

In the coming section about Model-View-ViewModel, you will learn a
more efficient and logical approach to expose and bind data. For now,
it is important to understand how binding collections works.

The second consideration is an event called ItemSelected, which is fired
when the user selects one of the items in the list. The event handler would
look as follows:
private void ContactList_ItemSelected(object sender,

SelectedItemChangedEventArgs e)

{

var contact = e.SelectedItem as Contact;

if(contact != null)

{

// Further code goes here

}

}

When the event is fired, an instance of the SelectedItemChangedEventArgs
object is created and its SelectedItem property, of the object type, contains
the selected item. This must be converted into the expected type. It is good
practice to make the conversion via the as operator and then check whether
the result is not null in order to avoid exceptions in case the conversion fails.
The HasUnevenRows property set as true makes the height of rows dynamic.

The next key point is related to the fact that the ListView, as well as other
views, does not know how you want to present the data. So, you need to
implement a DataTemplate, which represents the set of visual elements you
want to use to display data according to your needs. In the ListView, the
DataTemplate always starts with a cell. Xamarin.Forms supports the cell
types described in Table 9.3:

Cell type Description

TextCell Displays two Label views: one with free text and one with a data-
bound value.

EntryCell Displays a Label with free text and an Entry with a data-bound string
value.

ImageCell Displays a Label with free text and an Image with a data-bound
image.

SwitchCell Displays a Label with free text and a Switch with a data-bound bool
value.

ViewCell Allows displaying data with custom visual elements, such as layouts.

Table 9.3: Supported cell types

The current example is based on a ViewCell because other cells would not be
enough to present the information of the Contact class, so a custom layout is
necessary. For example, if you only wanted to display (and edit) the last
name, you could use an EntryCell type, as follows:
<StackLayout>

<ListView x:Name="PeopleList" ItemsSource="{Binding}">

<ListView.ItemTemplate>

<DataTemplate>

<EntryCell Label="Last name:" Text="{Binding LastName}"/>

</DataTemplate>

</ListView.ItemTemplate>

</ListView>

</StackLayout>

Only one cell can be added to the DataTemplate, which means that you could
not even combine multiple EntryCell types. This is another reason why the
ViewCell is the most used cell. If you run the sample page, you will get the
result shown in Figure 9.3:

Figure 9.3: Displaying and editing collections with the ListView

As you can see, the ListView is presenting each instance of the Contact class
in a separate row, and it allows for editing data via the views that you have
specified in the data template. For example, if you tap on the date of birth
field, you will see the DatePicker view in action. All the data that you enter
will be automatically stored in the bound class.

Tip: All the views that have built-in scrolling, like the ListView and the
other views discussed in the next section, should never be enclosed
inside a ScrollView; this is to avoid scrolling conflicts.

The DataTemplate as a resource
Views that allow for presenting lists expose the ItemTemplate property,
which you assign with a DataTemplate, like in the previous example.
However, data templates can be defined as reusable resources. For example,
you could move the DataTemplate shown previously to the page’s resources
as follows:
<ContentPage.Resources>

<ResourceDictionary>

<DataTemplate x:Key="ContactTemplate">

<ViewCell>

<ViewCell.View>

<Frame HasShadow="False" BorderColor="Blue" Margin="10">

<StackLayout>

<Label Text="Last name:"/>

<Entry Text="{Binding LastName}"/>

<Label Text="First name:"/>

<Entry Text="{Binding FirstName}"/>

<Label Text="Date of birth:"/>

<DatePicker Date="{Binding DateOfBirth,

Mode=TwoWay}"/>

<StackLayout Orientation="Horizontal">

<Label Text="Is Family Member?:"

VerticalOptions="Center"/>

<CheckBox IsChecked="{Binding IsFamilyMember}"

VerticalOptions="Center"/>

</StackLayout>

</StackLayout>

</Frame>

</ViewCell.View>

</ViewCell>

</DataTemplate>

</ResourceDictionary>

</ContentPage.Resources>

You can then consume the data template by assigning in-line the
ItemTemplate property of the view, as follows:
<ListView x:Name="ContactList" ItemsSource="{Binding}"

ItemSelected="ContactList_ItemSelected"

HasUnevenRows="True" ItemTemplate="{StaticResource

ContactTemplate}" />

As you can see, you use the same syntax you saw with styles. There are
several reasons to move data templates to reusable resources (following the
same scope rules described in the Understanding and defining resources
section), such as making them reusable across different views, or even

different apps if written in a library, or making code more organized and
easier to read.

Binding different types: Value converters
Sometimes, you might need to bind data of a certain type but display them in
another format. For better understanding, consider the current sample code
(or follow the ConverterSamplePage.xaml file in the companion solution).
Suppose you want to change the color of the Is Family Member? text in a
Label based on the bool value of the IsFamilyMember property. You could
bind the TextColor property of the Label to the IsFamilyMember property of
the Contact class, but the first one is of type Color and the second one is of
type bool. In these situations, you can use a value converter. This class
implements the IValueConverter interface, which converts the input type
into another type, returning the result to the user interface. Implementing a
value converter is straightforward. Continuing the example, add a new code
file to the shared project called BoolToColorConverter.cs. By convention,
names of value converters, with the Converter suffix and their name, should
make it easy to understand their purpose. The goal is to show the Is Family
Member? text in red if the IsFamilyMember property is true or with the
default system color if false. The following code demonstrates how to
accomplish this (comments following):
using System;

using System.Globalization;

using Xamarin.Forms;

namespace DataBinding

{

public class BoolToColorConverter : IValueConverter

{

public object Convert(object value, Type targetType,

object parameter, CultureInfo culture)

{

try

{

bool originalValue = (bool)value;

switch (originalValue)

{

case true:

return Color.Red;

default:

return Color.Default;

}

}

catch (Exception)

{

return Color.Default;

}

}

public object ConvertBack(object value, Type targetType,

object parameter, CultureInfo culture)

{

throw new NotImplementedException();

}

}

}

The IValueConverter interface requires a converter class to implement two
methods: Convert and ConvertBack. Convert allows you to convert the
source type into another type that the view expects, whereas ConvertBack
does exactly the opposite. In this case, the code first converts the value
parameter from object to bool and then, depending on its value, returns a
different color. You do not need to implement ConvertBack if your binding
direction is read-only, like in this case, where your views do not edit the
converted value, they just use it. Both methods receive the following four
parameters, even if only the first and third ones are supplied by the
developer:

value: The source object that needs to be converted.
targetType: The expected type of the source, as detected by the
compiler.
parameter: An additional parameter that you can pass from the binding
expression to supply data to the converter.
culture: This is also inferred by the compiler and is represented by an
instance of the CultureInfo class containing the localization
information for the current system.

The next step is to consume the converter in XAML. You first need to add an
XML namespace declaration in order to reference the C# namespace that
exposes the converter class, like in the following example:
xmlns:local="clr-namespace:DataBinding"

The next step is adding a resource that references the converter, as follows:
<ContentPage.Resources>

<ResourceDictionary>

<local:BoolToColorConverter x:Key="BoolToColorConverter" />

……

</ResourceDictionary>

<ContentPage.Resources>

Now, the converter is assigned to the Converter property of the binding
expressions of interest, as shown in the following code:
<StackLayout Orientation="Horizontal">

<Label Text="Is Family Member?:"

TextColor="{Binding IsFamilyMember, Converter=

{StaticResource

BoolToColorConverter}}"

VerticalOptions="Center"/>

<CheckBox IsChecked="{Binding IsFamilyMember}"

VerticalOptions="Center"

Color="{Binding IsFamilyMember, Converter={StaticResource

BoolToColorConverter}}"/>

</StackLayout>

As the converter is a resource, the reference is added using the
StaticResource markup extension. In both views, properties of the Color
type are bound to the IsFamilyMember property, which is of the bool type,
but the converter returns an object of the Color type based on the bool value.
If you run the code, you will see the result shown in Figure 9.4:

Figure 9.4: Consuming value converters

As you can see, the text and the checkbox are shown in red if the
IsFamilyMember property of the bound Contact class is true. Additionally,
you can remove the flag and see how everything returns to the default color,
which also demonstrates that data binding is also working. If you need to
pass a parameter to the converter for further logic implementation, the syntax
you use is as follows:
{Binding PropertyName, Converter={StaticResource ConverterName},

ConverterParameter=value}}

The following is a list of example scenarios where you might need to
implement value converters:

Formatting DateTime objects into custom string representations.
Displaying HTML string values into a WebView.
Converting a byte array into an ImageSource to display an image.
Converting an integer value to a Boolean true/false representation.

Value converters are a powerful feature, and they are widely used in real-
world development. You will use them very often, and other examples will
be provided in the upcoming sections.

Displaying Collections efficiently
With the most recent versions of Xamarin.Forms, several views have been
added to display collections with different user experiences. This section
describes such additional views, and it also discusses how to show lists
within the built-in system picker.

Displaying lists with the CollectionView
In the past, displaying and binding lists of data in Xamarin.Forms was only
possible with the ListView. Starting with version 4.0, Xamarin.Forms
provides a new view to display and bind lists: CollectionView. This view
has the following advantages over the ListView:

It has a simpler API surface.
It does not need cells to implement data templates, rendering the user
interface a lighter process than before.
It exposes properties that allow the customizing of some layout points
without the need to write native code, unlike the ListView.

The CollectionView is a powerful and modern view that should be
considered as an alternative to the ListView, rather a replacement.

If you consider the same collection of Contact class, you could rewrite the
user interface using the CollectionView as follows:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="DataBinding.CollectionViewSample"

Padding="0,20,0,0">

<ContentPage.Content>

<StackLayout>

<CollectionView x:Name="ContactList"

ItemsSource="{Binding Contacts}" Margin="15"

SelectionMode="Single"

SelectionChanged="ContactList_ SelectionChanged"

VerticalScrollBarVisibility="Never"

HorizontalScrollBarVisibility="Never">

<CollectionView.ItemTemplate>

<DataTemplate>

<StackLayout Margin="10">

<Label Text="Full name:"/>

<Entry Text="{Binding LastName}"/>

<Label Text="First name:"/>

<Entry Text="{Binding FirstName}"/>

<Label Text="Date of birth:"/>

<DatePicker Date="{Binding DateOfBirth,

Mode=TwoWay}"/>

<StackLayout Orientation="Horizontal">

<Label Text="Is Family Member?:"

VerticalOptions="Center"/>

<CheckBox IsChecked="{Binding IsFamilyMember}"

VerticalOptions="Center"/>

</StackLayout>

</StackLayout>

</DataTemplate>

</CollectionView.ItemTemplate>

<CollectionView.EmptyView>

<Label Text="No data is available" TextColor="Red"

FontSize="Large"

VerticalOptions="Center" VerticalTextAlignment="Center"

HorizontalOptions="Center"

HorizontalTextAlignment="Center"/>

</CollectionView.EmptyView>

</CollectionView>

</StackLayout>

</ContentPage.Content>

</ContentPage>

In the definition of the CollectionView, you can see how the bound
collection is still assigned via the ItemsSource property. In addition, you find
the following elements:

SelectionMode: A property that specifies if the user can select one
(single) or more (multiple) items. If set to None, the selection is
disabled. In the ListView, you need to write a custom renderer to
disable the selection.

HorizontalScrollBarVisibility and
VerticalScrollBarVisibility: These properties allow for setting the
visibility of the horizontal and vertical scrollbars. Supported values are
Always, Never, and Default. The latter takes the target OS default
behavior.
SelectionChanged: An event that is raised when the user selects one or
more items in the list, depending on the value of SelectionMode.

The way items are presented is provided via the DataTemplate, like for the
ListView, but in this case, you no longer need cells, and you can go for a
layout. At the bottom of the previous XAML you can also see how the
CollectionView exposes another useful property: EmptyView. This can be
assigned with an individual view or layout that is automatically shown when
the bound collection is null or empty. This is extremely useful because it
eliminates the need for you to write a custom user interface that is displayed
when the collection is empty, which is something you need to do when
working with the ListView. Before running the example, you need to data-
bind a collection to the user interface in the code-behind file for the page, as
follows:
private ContactViewModel ViewModel { get; set; }

public CollectionViewSample()

{

InitializeComponent();

ViewModel = new ContactViewModel();

BindingContext = ViewModel;

}

Figure 9.5 shows the result of the current code:

Figure 9.5: Displaying data with the CollectionView

In terms of appearance, there are additional benefits to using the
CollectionView. By default, items are presented vertically, and each row
contains one item, but you can quickly change this behavior. For example,
you can easily define a horizontal list view as follows:
<CollectionView.ItemsLayout>

<LinearItemsLayout Orientation="Horizontal"/>

</CollectionView.ItemsLayout>

The ItemsLayout property can be set with two objects: LinearItemsLayout
and GridItemsLayout. With LinearItemsLayout, you can make the
CollectionView display one item per row, either vertically or horizontally.
When LinearItemsLayout is not specified, vertical orientation is assumed,

like in the previous code listing. The GridItemsLayout object makes it
possible to create a grid view, as follows:
<CollectionView.ItemsLayout>

<GridItemsLayout Orientation="Vertical" Span="3"/>

</CollectionView.ItemsLayout>

You just need to specify the Orientation (Horizontal or Vertical) and the
number of items per row, via the Span property. Obviously, you need to
consider the size of each item you need to present and the available space on
screen. Figure 9.6 shows an example of vertical grid view:

Figure 9.6: Implementing a grid view

It is also necessary to comment on how you handle the SelectionChanged
event. The following code demonstrates this:

private void ContactList_SelectionChanged(object sender,

SelectionChangedEventArgs e)

{

// In case of single selection

var selectedPerson = this.ContactList.SelectedItem as Contact;

// In case of multi-selection:

var singlePerson = e.CurrentSelection.FirstOrDefault() as

Contact;

var selectedObjects = e.CurrentSelection.Cast<Contact>();

foreach (var person in selectedObjects)

{

// Handle your object properties here...

}

}

If SelectionMode is assigned with Single; you just need the first line of code
in the event handler, which is something you already saw for the ListView. If
SelectionMode is assigned with Multiple, you need to invoke a generic
method called Cast over the CurrentSelection property (of the
IReadOnlyList<object> type) of the SelectionChangedEventArgs object
instance, passing the target type as the type parameter. Cast converts each
object in the collection into a collection of the appropriate type. Being a
modern and simple-to-use data view, the CollectionView has quickly
entered the code base of thousands of projects, and it is also recommended
that you use this with new projects.

Scrolling lists with the CarouselView
The CarouselView is another view that allows for scrolling lists, with
additional members that specifically support swipe gestures. Behind the
scenes, the CarouselView is built on top of the CollectionView, and it
allows for scrolling lists both horizontally and vertically. For a better
understanding, first consider Figure 9.7, where you can see items being
scrolled inside a CarouselView by swiping the view:

Figure 9.7: Swiping items in a CarouselView

The following code demonstrates how to implement a CarouselView:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="DataBinding.CarouselViewSample"

Padding="0,20,0,20">

<ContentPage.Content>

<StackLayout Orientation="Vertical">

<CarouselView x:Name="PeopleList" ItemsSource="{Binding

Contacts}"

CurrentItemChanged="PeopleList_CurrentItemChanged"

PositionChanged="PeopleList_PositionChanged"

CurrentItem="{Binding SelectedContact}">

<CarouselView.ItemsLayout>

<LinearItemsLayout Orientation="Horizontal"

SnapPointsAlignment="Center"

SnapPointsType="Mandatory"/>

</CarouselView.ItemsLayout>

<CarouselView.ItemTemplate>

<DataTemplate>

<Frame HasShadow="False" BorderColor="Blue" Margin="20">

<StackLayout>

<Label Text="Last name:"/>

<Entry Text="{Binding LastName}"/>

<Label Text="First name:"/>

<Entry Text="{Binding FirstName}"/>

<Label Text="Date of birth:"/>

<DatePicker Date="{Binding DateOfBirth,

Mode=TwoWay}"/>

<StackLayout Orientation="Horizontal">

<Label Text="Is Family Member?:"

VerticalOptions="Center"/>

<CheckBox IsChecked="{Binding IsFamilyMember}"

VerticalOptions="Center"/>

</StackLayout>

</StackLayout>

</Frame>

</DataTemplate>

</CarouselView.ItemTemplate>

</CarouselView>

</StackLayout>

</ContentPage.Content>

</ContentPage>

There are a few differences when compared to the CollectionView. First of
all, the PositionChanged event is raised when the view is scrolled. The
position is returned as an int, exposed by the CurrentPosition property of
the PositionChangedEventArgs object:
private void PeopleList_PositionChanged(object sender,

PositionChangedEventArgs e)

{

int currentPosition = e.CurrentPosition;

int previousPosition = e.PreviousPosition;

}

It is also easy to retrieve the previous position via the PreviousPosition
property of the int type. Instead, the CurrentItemChanged event is raised
when the user selects an item in the view. You can retrieve the related
information as follows:
private void PeopleList_CurrentItemChanged(object sender,

CurrentItemChangedEventArgs e)

{

var currentItem = e.CurrentItem as Contact;

var previousItem = e.PreviousItem as Contact;

}

Both the CurrentItem and PreviousItem properties are of type object, so
you need to convert them to the expected type. You have further control over
the view’s appearance via the ItemsLayout property and its
LinearItemsLayout member, whose value can be Horizontal (default) or
Vertical. You can also control snap points via the SnapPointType property.
These represent how the scrolled items should behave, for example, by
making them scroll naturally with inertia (Mandatory) or by making them
scroll one at a time (MandatorySingle). Snap points can be disabled by
assigning None. Instead, the SnapPointsAlignment property specifies how
snap points are aligned to items, and it can be assigned with Start, Center,
or End. The CarouselView allows for implementing a very common user
experience, but most of the times, it is also recommended to display
indicators that show how many items are in the list and what is the current
item. In the past, you had to do all this manually, but with the latest versions
of Xamarin.Forms, you can take advantage of the IndicatorView.

Displaying item indicators with the IndicatorView
The IndicatorView allows for displaying the number of items and the
current item in a CarouselView. For better understanding, look at the
indicator at the bottom of the page in Figure 9.8:

Figure 9.8: Displaying indicators with the IndicatorView

Implementing the IndicatorView is very simple. You can add one in your
visual tree with a simple declaration like the following:
<IndicatorView x:Name="PersonIndicatorView"

IndicatorColor="LightGray"

SelectedIndicatorColor="DarkGray"

HorizontalOptions="Center" />

Note how you specify colors of the general indicator with the
IndicatorColor property and the color of the current indicator with the
SelectedIndicatorColor property. It is important to mention that a name
must be assigned to the view because you will add a reference to the
IndicatorView by passing its name to the IndicatorView property of the

CarouselView, as follows:
<CarouselView x:Name="PeopleList" ItemsSource="{Binding

Contacts}"

CurrentItemChanged="PeopleList_ CurrentItemChanged"

PositionChanged="PeopleList_PositionChanged"

IndicatorView="PersonIndicatorView"

CurrentItem="{Binding SelectedContact}">

There is nothing else you must do. The CarouselView and the
IndicatorView will stay connected, and the latter will be able to display the
current indicator based on the current item of the CarouselView.

Selecting items with the Picker
The Picker is a Xamarin.Forms view that allows for selecting an item from a
list and that maps the target system’s selector control. For better
understanding, consider Figure 9.9, which demonstrates how to select one
fruit from a list with the Picker:

Figure 9.9: Item selection with the Picker

As you can see, the Picker invokes the system’s selector. It exposes an
ItemsSource property, like the previously discussed views, that is assigned
with a collection that implements the IEnumerable interface. The following
XAML code shows how to implement the sample Picker:
<StackLayout VerticalOptions="FillAndExpand">

<Label Text="Select your favorite fruit:"/>

<Picker x:Name="FruitPicker" ItemDisplayBinding="{Binding

Name}"

SelectedIndexChanged="FruitPicker_SelectedIndexChanged"/>

</StackLayout>

The appropriate comments will help you understand how the bound
collection is implemented. In the constructor of the page, you can have the

following code:
public PickerSample()

{

InitializeComponent();

var apple = new Fruit { Name = “Apple", Color = “Green" };

var strawberry = new Fruit { Name = “Strawberry", Color = “Red"

};

var orange = new Fruit { Name = “Orange", Color = “Orange" };

var fruitList = new ObservableCollection<Fruit>()

{ apple, strawberry, orange };

this.FruitPicker.ItemsSource = fruitList;

}

As you can see, the code defines some objects of the Fruit type, a class
declared as follows:
public class Fruit

{

public string Name { get; set; }

public string Color { get; set; }

}

Next, a new ObservableCollection<Fruit> is declared and populated with
all the objects. Finally, the ItemsSource property of the Picker is assigned
with such a collection. Each Fruit object has two properties, Name and
Color, but the Picker does not know which to display in the selection view.
For this reason, the ItemDisplayBinding property of the Picker is assigned
with the name of the property of the bound object that will be used to display
values in the list (see the preceding XAML code). When the user selects an
item in the list, the Picker fires an event called SelectedIndexChanged. The
name of the event makes it clear that this view works with the item position
rather than with the item instance. However, you do not have to deal with
indexes and item positions. In fact, you can quickly get the selected item, as
follows:
private async void FruitPicker_SelectedIndexChanged(object

sender, EventArgs e)

{

var currentFruit = this.FruitPicker.SelectedItem as Fruit;

if (currentFruit != null)

await DisplayAlert(“Selection",

$"You selected {currentFruit.Name}", “OK");

}

In short, you convert the value of the Picker.SelectedItem property into an
object of the expected type, Fruit in this case. It is good practice to make the

conversion via the as operator so that a failing conversion will return null
instead of throwing an exception, and you will be able to check whether the
conversion result is not null with a simple if block. Once you have the
converted object, you can manipulate it according to your needs.

Introducing bindable layouts
Xamarin.Forms allows any layout to support data binding via the so-called
bindable layouts feature. Suppose you want to bind to a StackLayout the
same collection of Contact objects used in the previous examples about the
ListView and CollectionView. You can write the following XAML:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="DataBinding.BindableLayoutsSamplePage">

<ContentPage.Content>

<StackLayout BindableLayout.ItemsSource="{Binding Contacts}">

<BindableLayout.ItemTemplate>

<DataTemplate>

<StackLayout Margin="10">

<Label Text="Full name:"/>

<Entry Text="{Binding LastName}"/>

<Label Text="First name:"/>

<Entry Text="{Binding FirstName}"/>

<Label Text="Date of birth:"/>

<DatePicker Date="{Binding DateOfBirth,

Mode=TwoWay}"/>

<StackLayout Orientation="Horizontal">

<Label Text="Is Family Member?:"

VerticalOptions="Center"/>

<CheckBox IsChecked="{Binding IsFamilyMember}"

VerticalOptions="Center"/>

</StackLayout>

</StackLayout>

</DataTemplate>

</BindableLayout.ItemTemplate>

<BindableLayout.EmptyView>

<Label Text="No data is available" TextColor="Red"

FontSize="Large"

VerticalOptions="Center" VerticalTextAlignment="Center"

HorizontalOptions="Center"

HorizontalTextAlignment="Center"/>

</BindableLayout.EmptyView>

</StackLayout>

</ContentPage.Content>

</ContentPage>

Here’s a summary of the most relevant points:

Layouts can leverage properties from the BindableLayout object, which
enables collection data binding on layouts.
The BindingLayout.ItemsSource property is assigned to a data
collection, exactly as you would do with a ListView or
CollectionView.
You use the BindingLayout.ItemTemplate property to define a data
template to display items in the collection, again, exactly as you would
do with ListView or CollectionView.
With the BindableLayout.EmptyView, you can specify a view that will
be displayed if the bound collection is empty.

Data binding then works exactly like in other views described previously.

Bindable layouts have very poor rendering performance. For this
reason, you should avoid them when possible and prefer the
CollectionView or ListView views, even with very short lists. Based on
the experience about fixing performance issues in several projects, a
CollectionView can render in less than 1 second, what a bindable
layout can render in up to 7 or 8 seconds.

Advanced data binding: The Model-View-
ViewModel pattern
The Model-View-ViewModel pattern, or MVVM, is an architectural pattern
used with XAML-based development platforms, like Xamarin.Forms, WPF,
and UWP. It provides strong and clear separation between the layers of an
application. For the sake of simplicity, you will transform the example
provided previously about a collection of Contact objects displayed inside a
CollectionView into code based on MVVM. The model is the data. The
viewmodel represents the business logic. The view is the user interface.
Based on these assumptions, the Contact class is the model. The business
logic will be encapsulated inside a new viewmodel class, which will expose a
collection of Contact objects and actions over the data. The view part will be
defined inside an XAML page. With MVVM, XAML pages and their code-

behind files can only contain code that is related to the user interface and data
binding assignments, nothing else. There are several benefits of using
MVVM, especially in large projects. The following are the most important
ones:

Changes can be made to the user interface, in XAML, without affecting
any code that works against data.
The business logic in the viewmodel should be able to work with
objects without knowing where they come from. This makes it possible
to change the data access layer (for example, from an SQLite database
to a remote data service) without changing the logic.

MVVM can be quite complex, but the more you work with it, the more you
will appreciate its benefits. There are several libraries in the market that
simplify the way you implement MVVM, and they will be listed at the end of
this section. That said, you need to know the principles behind MVVM, so
you will not use them here.

Tip: It is good practice to keep the code well organized by placing
models into a subfolder called Models, viewmodels into a subfolder
called ViewModels, and views into a subfolder called Views. You can
also create additional subfolders to better organize models, viewmodels,
and views by area.

Defining the data model
In MVVM, the model represents the data. In C#, the data is represented by a
class. For example, the Contact class used earlier is the model for the current
example. Its code is relisted here for your reference:
public class Contact : INotifyPropertyChanged

{

private string _lastName;

public string LastName

{

get

{

return _lastName;

}

set

{

_lastName = value;

OnPropertyChanged();

}

}

private string _firstName;

public string FirstName

{

get

{

return _firstName;

}

set

{

_firstName = value;

OnPropertyChanged();

}

}

private DateTime dateOfBirth;

public DateTime DateOfBirth

{

get

{

return dateOfBirth;

}

set

{

dateOfBirth = value;

OnPropertyChanged();

}

}

private bool _isFamilyMember;

public bool IsFamilyMember

{

get

{

return _isFamilyMember;

}

set

{

_isFamilyMember = value;

OnPropertyChanged();

}

}

public event PropertyChangedEventHandler PropertyChanged;

private void OnPropertyChanged([CallerMemberName]

string propertyName = null)

{

PropertyChanged?.Invoke(this,

new PropertyChangedEventArgs(propertyName));

}

}

What you need to remember is that your models should implement the
INotifyPropertyChanged interface in order to support change notifications.
By default, when a new instance of the class is created, the DateOfBirth
property is assigned the 1st of January 1900. You might want to change the
default to a different date by adding a constructor that looks like this:
public Contact()

{

DateOfBirth = DateTime.Today;

IsFamilyMember = true;

}

The default date is assigned with today’s date, and the IsFamilyMember is
also assigned with true for every new instance. The reason is that you will
implement queries that only return family members, as described in the
upcoming section.

Implementing the business logic: Commands and
ViewModels
Viewmodels are a crucial part of the pattern. A viewmodel class only knows
the data type of the model, but it does not know where the data comes from
and, most importantly, it does not know which view will use the viewmodel
itself. This means that a viewmodel must work in the most abstract way
possible. A viewmodel has two main purposes: exposing data objects to
views and implementing actions that will manipulate data based on your
business logic. The reason why views pass through viewmodels to access
data, instead of accessing data directly, is to filter actions and make sure data
is processed by an intermediate layer that knows your business logic. The
first thing you need to do is create a viewmodel class whose name ends with
ViewModel by convention, such as ContactViewModel. This class must also
implement the INotifyPropertyChanged interface.

Exposing data
The first part of the sample viewmodel class exposes a collection, a single
instance of the current Contact class, and implements change notification:
public class ContactViewModel: INotifyPropertyChanged

{

public ObservableCollection<Contact> Contacts { get; set; }

private Contact _selectedContact;

public Contact SelectedContact

{

get

{

return _selectedContact;

}

set

{

_selectedContact = value;

OnPropertyChanged();

}

}

public event PropertyChangedEventHandler PropertyChanged;

private void OnPropertyChanged([CallerMemberName] string

propertyName = null)

{

PropertyChanged?.Invoke(this,

new PropertyChangedEventArgs(propertyName));

}

The next step is loading data. In the current example, data is created in code.
In the last section of this chapter, you will learn how to load data from an
SQLite database. The following method demonstrates this:

private void LoadSampleData()

{

Contacts = new ObservableCollection<Contact>();

// sample data

Contact person1 =

new Contact

{

FirstName = “Alessandro",

LastName="Del Sole",

IsFamilyMember = false,

DateOfBirth = new DateTime(1977, 5, 10)

};

Contact person2 =

new Contact

{

FirstName = “Robert",

LastName="White",

IsFamilyMember = false,

DateOfBirth = new DateTime(1960, 2, 1)

};

Contact person3 =

new Contact

{

FirstName = “Joseph",

LastName = “Green",

IsFamilyMember = true,

DateOfBirth = new DateTime(1980, 4, 2)

};

Contacts.Add(person1);

Contacts.Add(person2);

Contacts.Add(person3);

}

There is nothing difficult in this code, which creates new contacts and
populates the collection.

Defining actions with Commands
The next step is defining the actions that any caller view will be able to
invoke. For example, adding or deleting items from the collection can be
considered actions. To accomplish this, you define commands. A command is
an object of the Command type, and views can access it via data binding, as
you will see in the upcoming sections. Commands must be defined as
properties, like in the following example that defines two commands: one for
adding and one for deleting contacts in the collection:
public Command AddCommand { get; set; }

public Command DeleteCommand { get; set; }

As a second step, command properties must be assigned with an instance of
the Command class, whose constructor needs the action that must be executed
when the command is invoked, and optionally, a bool condition that specifies
whether the action can be executed. The following code for the constructor of
the viewmodel demonstrates this. Note that the code also invokes the
LoadSampleData method to load data and includes the closing bracket for the
class:
public ContactViewModel()

{

LoadSampleData();

AddCommand =

new Command(() => Contacts.Add(new Contact()));

DeleteCommand =

new Command<Contact>((contact) => Contacts.Remove(contact),

(contact) => contact != null);

}

}

An instance of the Command class takes at least one argument, Execute, of the
Action<T> type representing the action that is executed when the command is
invoked. Optionally, you can specify the CanExecute parameter, of type bool,
which determines whether the command can be executed. Consider the
AddCommand object first. It is assigned with an instance of the Command class,
whose first parameter is an Action<T>, representing the action that is
executed against the data. More specifically, the Action<T> is syntactically
represented by a lambda expression, whose body adds a new Contact
instance to the collection. For the DeleteCommand object, there is one more
step. In fact, a bool condition is specified to address the CanExecute
parameter. In this case, the action will be executed only if an instance of the
Contact class is passed to the command. Now, you have a fully functional
viewmodel that needs to be invoked by some views.

Designing the user interface
The sample user interface will be made of two major components: a
CollectionView that displays the list of contacts, and a toolbar with two
buttons that invoke the commands defined in the viewmodel. The following
XAML demonstrates this:
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="MvvmSample.MainPage" Padding="0,20,0,0">

<StackLayout>

<CollectionView x:Name="ContactsList"

ItemsSource="{Binding Contacts}"

SelectionMode="Single"

SelectedItem="{Binding SelectedContact}"

VerticalScrollBarVisibility="Never"

HorizontalScrollBarVisibility="Never">

<CollectionView.ItemTemplate>

<DataTemplate>

<StackLayout Margin="10">

<Label Text="First name:"/>

<Entry Text="{Binding FirstName}"/>

<Label Text="Last name:"/>

<Entry Text="{Binding LastName}"/>

<Label Text="Date of birth:"/>

<DatePicker Date="{Binding DateOfBirth,

Mode=TwoWay}"/>

<StackLayout Orientation="Horizontal">

<Label Text="Is Family Member?:"

VerticalOptions="Center"/>

<CheckBox IsChecked="{Binding IsFamilyMember}"

VerticalOptions="Center"/>

</StackLayout>

</StackLayout>

</DataTemplate>

</CollectionView.ItemTemplate>

</CollectionView>

<StackLayout Orientation="Horizontal">

<Button Text="Add" Command="{Binding AddCommand}"/>

<Button Text="Delete" Command="{Binding DeleteCommand}"

CommandParameter="{Binding Source={x:Reference

ContactsList},

Path=SelectedItem}"/>

</StackLayout>

</StackLayout>

</ContentPage>

All the bound views point to objects defined in the viewmodel. As you can
see, the CollectionView is still defined like in the dedicated example, and it
still points to data via Binding expressions. At the bottom of the code, you
can see how, for the two Button views, the Command property is assigned with
a Binding expression that points to a command in the viewmodel. This way,
no Click event is defined and handled in the view’s code-behind, which
perfectly satisfies the separation principles of MVVM. Note how, for the
second button, a CommandParameter is also specified. This property allows
for passing an object as a parameter to the bound Command. In this case, the
parameter is the currently selected item (Path=SelectedItem) in the
CollectionView (x:Reference ContactsList). The last part involves
assigning an instance of the viewmodel as the data source for the page, which
can be done in the code-behind as follows:
private ContactViewModel ViewModel { get; set; }

public MainPage()

{

InitializeComponent();

ViewModel = new ContactViewModel();

BindingContext = ViewModel;

}

If you run the code now, you will see a result similar to what you see in
Figure 10.9:

Figure 9.10: Data binding with Model-View-ViewModel

Everything is working via data binding, and the viewmodel is working in an
abstract way. Note how the Delete button is disabled until you select an item
in the list; this happens because, behind the scenes, the view’s IsEnabled
property is automatically bound to the result of the CanExecute logic
implemented for the command. As you can imagine, MVVM is much more
than this, but what you have seen in this chapter is what you need to do to get
started with this pattern and to be able to put your hands on existing MVVM
implementations.

A common task is opening another page from the current page, but in
MVVM, this cannot be done directly (a view can only talk to its

viewmodel), and a viewmodel cannot open a view. There is a way to
accomplish this via the MessagingCenter class, which is described in
Chapter 11, Managing the Application Lifecycle, so you will still hear
about MVVM.

MVVM frameworks
MVVM is a popular pattern, and many libraries have been created to make it
simpler to work with, including support for much more complex tasks. The
most popular ones are listed here:

FreshMvvm (http://www.michaelridland.com/xamarin/freshmvvm-
mvvm-framework-designed-xamarin-forms/).
MVVM Light (http://www.mvvmlight.net/).
Prism (https://github.com/PrismLibrary/Prism).
MvvmCross (https://www.mvvmcross.com/).

FreshMvvm has been specifically designed for Xamarin.Forms, whereas
Prism is backed by Microsoft. In general, they are all good libraries, and each
one fully supports the MVVM pattern and principles.

Pull-to-Refresh gesture: The RefreshView
Most applications allow reloading lists with a simple gesture. You keep a list
pressed, move your finger down, and then release your finger for data to start
reloading, and it shows an activity indicator. This gesture is known as pull-to-
refresh. In Xamarin.Forms, the ListView is the only view with built-in pull-
to-refresh capabilities, but it has not been discussed because there is a more
recent and efficient way to implement pull-to-refresh in any view that
supports scrolling, provided by the RefreshView. The RefreshView works
with Command objects, and that is another reason why pull-to-refresh has not
been discussed so far. Suppose you want to implement pull-to-refresh in the
view defined in the latest example on MVVM. You can enclose the
CollectionView inside a RefreshView, as follows:
<RefreshView RefreshColor="Blue"

IsRefreshing="{Binding IsRefreshing}"

Command="{Binding RefreshCommand}">

<CollectionView x:Name="ContactsList"

…

http://www.michaelridland.com/xamarin/freshmvvm-mvvm-framework-designed-xamarin-forms/
http://www.mvvmlight.net/
https://github.com/PrismLibrary/
https://www.mvvmcross.com/

</CollectionView>

</RefreshView>

There are three important properties that you assign:

RefreshColor, of the Color type, allows you to assign a color to the
activity indicator; otherwise, the system default is used.
IsRefreshing, of the bool type, is assigned with true when you want to
display the activity indicator and with false when you want to stop
displaying the indicator.
Command is assigned with a command that executes the action of
reloading the bound data.

The IsRefreshing object is assigned with a binding expression, and the
reason is that the data refreshing logic is inside the viewmodel, so you should
not assign true or false directly in the view’s code-behind. You will need to
make a few changes to the viewmodel at this point. First, you need to add a
property called IsRefreshing, as follows:
private bool _isRefreshing;

public bool IsRefreshing

{

get

{

return _isRefreshing;

}

set

{

_isRefreshing = value;

OnPropertyChanged();

}

}

Second, you need a new command, as follows:
public Command RefreshCommand { get; set; }

In the constructor of the viewmodel, you then assign the command with some
code that reloads the data. The following code provides an example that
simulates a long-running operation:
RefreshCommand =

new Command(async () =>

{

IsRefreshing = true;

LoadSampleData();

// Simulates a longer operation

await Task.Delay(2000);

IsRefreshing = false;

}

);

Data here is not coming from a database or a web service, so it would be
immediately refreshed, and the Task.Delay method simulates waiting for
some time. Note how the value for IsRefreshing is assigned before and after
loading data and, when this happens, a change notification is raised so that
the IsRefreshing property of the RefreshView is updated accordingly. You
can now run the code again and try to do a pull-to-refresh gesture over the list
of data.

Local data access with SQLite databases
SQLite is a popular local database engine that ships pre-installed as part of
both the Android and iOS operating systems. SQLite is a relational database
that works with tables, columns, keys, indexes, and everything you would
expect from a database. Additionally, it’s perfect for storing application data
in a structured way. SQLite databases are .db3 local files, which live inside
the application’s workspace on the device. This chapter explains how to work
with SQLite databases in a real-world approach by implementing an
appropriate architecture. It is recommended that you open the companion
solution for this section, called LocalDataAccess, in Visual Studio. The topic
is quite complex, and it will simplify the way you learn all the discussed
areas. As an alternative, you can work on the MVVM sample solution, which
is extended with the features discussed here.

Installing the SQLite NuGet package
Before you write code, it is necessary to install a NuGet package that allows
working against SQLite with C# and its advanced features, such as LINQ. A
lot of libraries exist, but the one you need to install is called sqlite-net-pcl
and is produced by Praeclarum, as you can see in Figure 9.11. This is a free
library, also available as an open-source project:

Figure 9.11: Installing the SQLite NuGet Packages

Make sure the package is installed for all the projects in the solution.

Getting the database path
Once the NuGet package has been installed, it is a good idea to define a class
with a static property that contains the path of the database file on disk. In the
companion solution, you can find a file called
DataAccess\DataAccessHelper.cs, whose code is as follows:
using System;

using System.IO;

namespace LocalDataAccess.DataAccess

{

internal class DataAccessHelper

{

public const string DatabaseFilename = “Contacts.db3";

public static string DatabasePath

{

get

{

var basePath = Environment.

GetFolderPath(Environment.SpecialFolder.

LocalApplicationData);

return Path.Combine(basePath, DatabaseFilename);

}

}

}

}

The core part of this code is the DatabasePath property, of the string type,
which returns the path for the database file. It is made of the local application
folder and of the database filename, identified by the DatabaseFilename
field. The folder is retrieved by a method called GetFolderPath, from the
static Environment class, and is identified via the LocalApplicationData
variable from the Environment.SpecialFolder enumeration. This code
allows for retrieving the appropriate path, regardless of the target system; the
path will be used shortly.

Implementing a data model
The goal of the current example is to read from and write to a database
collection of Contact objects. To accomplish this, the existing Contact class
is used as a data model to map a table in the database, but it needs a few
adjustments. First, you need to add a using SQLite; directive to the
Contact.cs file, and the class definition should be changed as follows:
[Table(“Contacts")]

public class Contact : INotifyPropertyChanged

If the Table attribute was not specified, the table on the database would be
created using the class name, so the table would be called Contact. By
convention, table names are usually pluralized, so the Table attribute is used
for this purpose, but in general, it allows for providing a table name that is
different from the class name. The second edit you need to do is add an
integer property that is used by the database as a primary key so that objects
can be indexed and identified quickly. Having that said, you could add the
following property:
[PrimaryKey][AutoIncrement]

public int ID { get; set; }

Note how the PrimaryKey and AutoIncrement attributes are applied to the
property so that it is used as primary key and its value is automatically

incremented and handled by the database engine. These changes could be
enough, but it is also very useful for you to know that SQLite supports data
validation by adding special attributes to data properties. For example, you
could add the following attributes to the LastName property:
[MaxLength(50)][NotNull]

public string LastName

MaxLength determines the maximum length for the string, and NotNull
makes it mandatory to provide a value for this property. Now that you have
made all the minimum necessary changes, it is time to implement a data
access layer.

Implementing a data access layer
In the real world, it is a best practice to implement a data access layer,
typically, a class that exposes methods that perform operations against data
and that is independent of all other parts of the applications. For better
understanding, in the companion solution, consider the
DataAccess\ContactsDataAccess.cs file. The first part of the code defines
an object of the SQLiteConnection type, whose instance allows for accessing
the database and for performing operations against data:
public class ContactsDataAccess

{

public static SQLiteConnection Database;

private static object collisionLock = new object();

public ContactsDataAccess()

{

Database = new

SQLiteConnection(DataAccessHelper.DatabasePath);

Database.CreateTable<Contact>();

}

The collisionLock field, of the object type, will be shortly used to prevent
multiple threads from accessing the database. The constructor of the
SQLiteConnection class takes the database path as an argument that is
exposed by the previously defined DataAccessHelper.DatabasePath

property.

Tip: If a database with the specified name and path is not found, the
SQLite engine creates a new one.

The CreateTable method is required to create a table the first time the

database is created, but if the table already exists, this call will simply be
ignored. Such a method requires you to specify the class that maps the
desired table, in this case, the Contact class that maps a Contacts table. The
SQLiteConnection class also exposes methods to read and write data. The
Table method returns a collection of objects if the table exists, and it creates
one if it is the first time the database is accessed. The benefit of implementing
a data access layer is that you can implement further logic. For example, the
following method returns only the list of contacts who are also family
members:
public List<Contact> GetFamilyMembers()

{

lock (collisionLock)

{

var contacts = Database.Table<Contact>();

var result = contacts.Where(c => c.IsFamilyMember).ToList();

return result;

}

}

As you can see, you can use LINQ and filter a collection based on your
business requirements. Note how the code that accesses the database is
encapsulated inside a lock block. This prevents other threads from accessing
the database when it is already in use. Table is a generic method and takes
the class of interest as the type parameter. This is how the method can
understand which table you want to get the data from. SQLiteConnection
exposes methods that match the so-called C.R.U.D (Create, Read, Update,
Delete) operations. They are Insert, Update, Delete, InsertAll, UpdateAll,
DeleteAll. The first three methods work against an individual instance of an
object, whereas the other methods perform the related operation against all
the items in the specified collection. The following code demonstrates how to
insert, edit, and delete a contact:
public void AddContact(Contact contact)

{

lock (collisionLock)

{

Database.Insert(contact);

}

}

public void DeleteContact(Contact contact)

{

lock(collisionLock)

{

Database.Delete(contact);

}

}

public void EditContact(Contact contact)

{

lock(collisionLock)

{

Database.Update(contact);

}

}

The usage of these methods is very easy. These methods could include
further logic before data is processed, if required. Now, suppose you have
new but unsaved contacts in a collection, and that you have made changes to
the existing contacts. The following code demonstrates how to work with
multiple objects:
public void SaveAll(IEnumerable<Contact> contacts)

{

lock(collisionLock)

{

var existingContacts = contacts.Where(c => c.ID != 0);

var newContacts = contacts.Where(c => c.ID == 0);

Database.UpdateAll(existingContacts);

Database.InsertAll(newContacts);

}

}

The SaveAll method receives the full collection of objects you want to
manipulate, and it will be sent by the viewmodel. The key point of this code
is that value of the primary key, of the int type, is zero until the object is not
saved to the database, so you can distinguish between unsaved objects that
need to be inserted, and existing objects whose value is not zero and that just
need to be updated. You could implement additional queries and logic, but
these methods are enough for the example’s purposes. It is worth mentioning
that the SQLiteConnection class also exposes a method called Query, which
allows the execution of SQL statements directly instead of using LINQ.

Invoking the data access layer
The data access layer must be invoked by the viewmodel, which is an
intermediate object between the data and the user interface. The
ContactViewModel class should first be extended with the following two
properties:

public Command SaveAllCommand { get; set; }

public ContactsDataAccess ContactsDataBase;

The first command adds the option to save all the objects in the collection
based on the SaveAll method described previously. The ContactsDataBase
property, of the ContactsDataAccess type, represents an instance of the data
access layer class. Next, you can define a method that loads data. In the
previous examples of these chapters, data was created manually, but now it is
loaded from the database. The method is called LoadData and looks as
follows:
private void LoadData()

{

Contacts = new ObservableCollection<Contact>

(ContactsDataBase.GetFamilyMembers());

}

Note how the GetFamilyMembers method is called to retrieve only instances
of the Contact class whose IsFamilyMember property is true, and how the
result is translated into an ObservableCollection<Contact> and assigned to
the Contacts property of the viewmodel, which is the real data source. The
final step required to make the viewmodel work against data involves
creating an instance of the data access layer class and implementing the new
command. You can edit the constructor of the viewmodel as follows, adding
the pieces highlighted in bold:
public ContactViewModel()

{

ContactsDataBase = new ContactsDataAccess();

LoadData();

AddCommand =

new Command(() => Contacts.Add(new Contact()));

DeleteCommand =

new Command<Contact>((contact) =>

{

Contacts.Remove(contact);

if(contact.ID != 0)

ContactsDataBase.DeleteContact(contact);

},

(contact) => contact.LastName != null);

SaveAllCommand = new Command(() =>

ContactsDataBase.SaveAll(Contacts));

RefreshCommand =

new Command(async () =>

{

IsRefreshing = true;

LoadData();

// Simulates a longer operation

await Task.Delay(2000);

IsRefreshing = false;

}

);

}

The following is a list of key points:

An instance of the data access layer (ContactsDataAcces class) is
created, and the LoadData method is invoked.
The AddCommand implementation does not change because a new object
only needs to be added in memory.
The DeleteCommand implementation is extended to also delete the
object from the database, but only if its ID is not 0 (which means it
already exists in the table), via the DeleteContact method of the data
access layer class.
The new SaveAllCommand object simply invokes the SaveAll method of
the data access layer, passing the current collection of contacts. The
latter method is responsible for performing the logic over new and
existing items.

Now, it is time to finalize the project by extending the user interface, and
some of the benefits of MVVM will be even clearer.

Extending the user interface
All the changes you have made to load and save data working against a
database have been done in the viewmodel, inside the commands’
implementation, so nothing needs to be changed in the user interface. In fact,
because of data binding and MVVM principles, the user interface is bound to
commands in the viewmodel without knowing what actually happens behind
the scenes, and this is one of the major benefits of MVVM. The only thing
you need to do is add a new button bound to the SaveAllCommand property,
which you can add as follows:
<Button Text="Save All" Command="{Binding SaveAllCommand}"/>

If you now run the application, you will first see an empty list that you can
start populating by clicking on the Add button. You will also see how the
Delete button is disabled until a contact is selected in the list (see Figure

9.12), and this is because you have specified the CanExecute parameter in the
command implementation:

Figure 9.12: Working with a local SQLite database

Clicking on Save All will allow you to see how all new and edited Contact
instances will be saved into table rows. Obviously, there are infinite
possibilities of querying data and of performing business logic over your
objects, but it all depends on the business needs. You now have all the
necessary knowledge to be immediately productive on projects that
implement data binding and local data access, even with complex
architectures like MVVM.

Conclusion
Resources allows you to reuse styles, data templates, and converters, whereas
data binding allows you to automate the communication between data and the
user interface. By implementing patterns like Model-View-ViewModel, you
have complete separation of layers, and you can change the behavior and
logic without affecting the user interface and vice versa. Switching from
sample data supplied in code to a local SQLite database has been a good
example of the benefits of MVVM. Now, you are aware of most of what
Xamarin.Forms offers in terms of development features and techniques. In
the next chapter, you will extend your knowledge and learning about graphics
and media.

Key terms
Resource: A reusable set of XAML properties, like styles and data-
templates.
Style: A resource that makes it easy to apply the same properties to
views of the same type.
Data-template: A resource that determines how an object in a list
should be presented.
Data binding: Automatic information exchange between views and
.NET objects.
Model-View-ViewModel: An architectural pattern that allows for clear
separation between layers, such as data (Model), business logic
(ViewModel), and user interface (View).

CHAPTER 10
Brushes, Shapes, and Media

Introduction
Mobile applications should not just be functional; they should also provide a
beautiful user interface. This might seem like an annoying sentence because
obviously, serving the purpose in the most efficient way should certainly be
the focus of any app. However, the more an app is appealing, the more a user
will likely return and use it repeatedly, which is key for every app producer.
The better the user experience and the user interface, the more users will be
attracted by an app before they get on board with the features. There are
many ways to make beautiful apps in Xamarin.Forms, and this chapter
focuses on recent additions to the code base: brushes, shapes, and support for
multimedia contents. You will learn how to use these objects from a drawing
perspective because you need to know how they technically work. However,
you will also be provided with hints about possible usage in the real-world to
improve the quality of the user interface.

Structure
In this chapter, we will cover the following topics:

Coloring objects with brushes
Drawing shapes
Working with multimedia

Objectives
By completing this chapter, you will be able to add solid colors, gradients,
geometrical and custom shapes, and media playing features to your
applications.

Creating a sample project
This chapter comes with a companion Xamarin.Forms solution that you can
open with Visual Studio to better understand the examples. If you wish to
create a project on your own from scratch, you can follow these steps:

1. Create a new Xamarin.Forms solution called Brushes_Shapes_Media
for consistency with the sample solution.

2. Do not edit or remove the auto generated MainPage.xaml file; it will be
used later.

3. For each layout discussed in the book, add a new item of type Content
Page (XAML). To accomplish this, right-click on the shared project
name and then click on Add New Item in the Context menu.

4. In the Add New Item dialog, click on the Xamarin.Forms node on the
left and then select the Content Page (XAML) item template.

5. Assign to the new XAML file a name that matches the discussed view,
for example, Brushes.xaml, and click on Add.

For each page you add to the project, add an empty StackLayout to the
ContentPage and assign its VerticalOptions property with
CenterAndExpand. Unless specified, this will be the layout of choice for the
code examples in the upcoming segments.

Coloring objects with brushes
Brushes are a recent addition to the Xamarin.Forms code base. They are
objects that derive from the Brush base class and that allow for coloring
specific views with solid colors and gradients. For a better understanding,
consider the following Frame definition, where the BackgroundColor

property is assigned the normal way:
<Frame CornerRadius="5" BackgroundColor="Yellow"

Margin="20" WidthRequest="150"

HeightRequest="150">

</Frame>

The BackgroundColor property supports values of type Color. Most views
now also expose a property called Background, which is of type Brush. You
could rewrite the previous code as follows:
<Frame CornerRadius="5" Margin="20" WidthRequest="150"

HeightRequest="150">

<Frame.Background>

<SolidColorBrush Color="Yellow"/>

</Frame.Background>

</Frame>

Properties of type Brush allow for assigning objects of type
SolidColorBrush, LinearGradientBrush, and RadialGradientBrush.

The purpose of brushes is to fill a view’s background, so this is the
reason why Background is the property of type Brush you work the most
with.

A SolidColorBrush object fills a view with an individual color, and you
assign its Color property (of type Color) with the color of interest. When
working with individual colors, you can also use the following, compact
syntax:
<Frame CornerRadius="5" Background="Yellow" Margin="20"

WidthRequest="150"

HeightRequest="150">

</Frame>

You can also create linear gradients, both vertical and horizontal, with the
LinearGradientBrush objects and circular gradients with the
RadialGradientBrush object.

Tip: The only reason for using an individual color by assigning a
property of type Brush instead of a property of type Color is that you
can replace the brush at runtime with a different one, such as
gradients. Otherwise, the choice would make no difference.

Defining linear gradients
The second brush to mention is the LinearGradientBrush. This allows for
creating horizontal, vertical, and diagonal gradients. Linear gradients are
drawn based on two-dimensional coordinates, called StartPoint and
EndPoint, respectively. StartPoint represents the top-left corner of the
view, and the default value is 0,0 (which is also its minimum). EndPoint
represents the view’s bottom-right corner, and the default value is 1,1 (which
is also its maximum). In the following code, you can see how to fill the
background of a Frame with a horizontal linear gradient:
<Frame CornerRadius="5" Margin="20" WidthRequest="150"

HeightRequest="150">

<Frame.Background>

<LinearGradientBrush EndPoint="1,0">

<GradientStop Color="Blue" Offset="0.1" />

<GradientStop Color="Violet" Offset="0.5" />

<GradientStop Color="Red" Offset="1.0" />

</LinearGradientBrush>

</Frame.Background>

</Frame>

As you can see, each color in the gradient is set with a GradientStop object,
which also represents the position of the color in the gradient (OffSet
property, of type double). There is no limit to the number of colors you can
add. You control the direction of the gradient via the StartPoint and
EndPoint values. Figure 10.1 shows the result of this code:

Figure 10.1: Adding a linear gradient

Given their values, if you do not specify StartPoint and EndPoint, the linear
gradient will be drawn diagonally, from top-left to bottom-right.

Defining circular gradients
The last available brush is called RadialGradientBrush and allows for filling
views with a circular gradient. It still works with GradientStop objects like
the LinearGradientBrush to represent colors and their position, and it
exposes two new properties: Radius, of type double, which determines the

radius of the circle, with a default value of 0.5 in a range of 0 to 1; and
Center, of type Point, whose default value is 0.5, 0.5 and that represents the
center of the circle for the gradient. The following code shows an example:
<Frame CornerRadius="5" Margin="20" WidthRequest="150"

HeightRequest="150">

<Frame.Background>

<RadialGradientBrush>

<GradientStop Color="Blue"

Offset="0.1" />

<GradientStop Color="Violet"

Offset="0.5" />

<GradientStop Color="Red"

Offset="1.0" />

</RadialGradientBrush>

</Frame.Background>

</Frame>

The result for this code is shown in the Figure 10.2:

Figure 10.2: Adding a circular gradient

In the real-world, you will likely use linear gradients more than radial
gradients, but it is always good to know about this possibility.

As you can see in figure 10.2, the circle is not appearing the same on
Android and iOS. This is one of those cases where the look of a view
depends on each system, screen size and form factor.

Drawing shapes

Shapes are special views that allow you to draw geometries in your pages that
derive from the base Shape class. Shape objects in Xamarin.Forms can render
both regular and custom shapes. When talking about regular shapes, the
following are available: Ellipse, Rectangle, Line, Polygon. As you can see,
they all have self-explanatory names. When it comes to custom shapes, you
will use the Polyline object. Before going into the details of each shape, it is
worth mentioning that they share several properties, summarized in Table
10.1:

Property Type Description

Aspect Stretch Determines how the shape fills the surrounding space.
Supported values are None, Fill, Uniform, and
UniformToFill.

Fill Brush The brush used to fill the shape.

Stroke Brush The brush used to draw the shape’s outline.

StrokeThickness double Represents the width of the outline. The default is 0,
which means an invisible outline.

StrokeDashArray DoubleCollection A collection of double values that represent the pattern
used to draw dashes and gaps for a shape’s outline.

StrokeDashOffset double Represents the distance between dashes.

Table 10.1: Common shape properties

While working with shapes, you will see how easy it is to learn about these
properties. It is worth mentioning that, for the sake of design clarity, an
outline will always be added to all the code examples, but this is completely
optional.

Drawing circles and ellipses
The simplest shape available is the Ellipse, which can be used to draw
circles and ellipses. The following code demonstrates how to draw a simple
ellipse:
<Ellipse Fill="Yellow" Stroke="Green" StrokeThickness="3"

WidthRequest="250"

HeightRequest="100" HorizontalOptions="Center"

Margin="0,50,0,0"/>

The Fill property contains a Brush object that fills the shape, so you are not

limited to an individual color. The same holds for the Stroke property, which
is the brush used to draw the outline. You can control the size of the ellipse
via its WidthRequest and HeightRequest. When they have the same value,
the ellipse will appear as a circle. Figure 10.3 shows how the ellipse appears:

Figure 10.3: Drawing an ellipse

One useful way to take advantage of the Ellipse in the real world could be
creating avatars, with Ellipse views filled in with Image views, such as for
profile pictures.

Drawing rectangles
The next shape is another easy one: the Rectangle. The following code
demonstrates how to draw a rectangle:
<Rectangle Stroke="Green" StrokeThickness="4"

StrokeDashArray="1,1"

StrokeDashOffset="6" WidthRequest="250" HeightRequest="100"

Margin="0,50,0,0"

HorizontalOptions="Center">

<Rectangle.Fill>

<LinearGradientBrush>

<GradientStop Color="Yellow" Offset="0"/>

<GradientStop Color="Red" Offset="0.5"/>

<GradientStop Color="Orange" Offset="1"/>

</LinearGradientBrush>

</Rectangle.Fill>

</Rectangle>

If you look back at Table 10.1, you can recall how the StrokeThickness
property determines how thick the outline is, whereas StrokeDashArray and
StrokeDashOffset represent the pattern and distance of dashes, respectively.
Figure 10.4 shows the resulting shape:

Figure 10.4: Drawing a rectangle

Drawing lines
It is very easy to draw lines with the Line shape. Consider the following
code:
<Line X1="0" Y1="30" X2="250" Y2="20" StrokeLineCap="Round"

Stroke="Violet"

StrokeThickness="12" Margin="0,50,0,0"

HorizontalOptions="Center"/>

The relevant properties are X1, Y1, X2, and Y2, all of type double. X1 and X2

represent the starting and ending points of the line on the X axis, whereas Y1
and Y2 represent the lowest and highest points of the line on the Y axis. The
StrokeLineCap property, which is totally optional, allows for adding a shape
at the end of the line. You can choose one between Flat (default, no shape),
Square (rectangle with the same thickness and height of the line), and Round
(semicircle with a diameter equal to the thickness of the line).

There is a known bug in the latest version of Xamarin.Forms that
causes an app to crash on iOS when rendering a Line object. Therefore,
figure 10.5 only shows the Android version. You can follow the
development of the issue on GitHub at
https://github.com/xamarin/Xamarin.Forms/issues/14986.

Figure 10.5 shows the result of the code:

https://github.com/xamarin/Xamarin.Forms/issues/14986

Figure 10.5: Drawing a line

Drawing polygons
Polygons are generically complex shapes, and Xamarin.Forms offers the
Polygon object to draw them. The most important property of a Polygon is
Points, which is a collection of Point objects. Each Point represents the
coordinate of a delimiter in the polygon. The following code demonstrates
how to draw a triangle, with the delimiter coordinates specified in the Points
property:
<Polygon Points="50,20 80,60 20,60" Fill="Yellow" Stroke="Green"

StrokeThickness="4" StrokeDashArray="1,1" StrokeDashOffset="6"

VerticalOptions="Center" HorizontalOptions="Center"/>

Figure 10.6 shows the result of this code:

Figure 10.6: Drawing a polygon

Note how you still use the other properties described earlier to draw and
control the outline. There is no limit to the number of coordinates, so you can
create complex polygons.

Drawing custom shapes
Xamarin.Forms gives you great flexibility over shapes and allows you to
create custom shapes. More specifically, the Polyline is a special type of
shape made of several lines, all interconnected with one another, but the last
line does not connect to the first point of the shape. For simpler
understanding, consider the following code:

<Polyline Margin="0,50,0,0" HorizontalOptions="Center"

Points="0 48, 0 144, 96 150, 100 0, 192 0, 192 96, 50 96, 48

192, 150 200 144 48"

Fill="Yellow" Stroke="Red" StrokeThickness="3"/>

As you can see, the way you define a Polyline is very close to the way you
define a Polygon, since you still set its Points property with a collection of
coordinates. However, the last line of the shape does not connect with its first
point. This is demonstrated in Figure 10.7:

Figure 10.7: Drawing a complex shape with the Polyline

Focus on the red lines, rather than on the yellow fill, to understand how it
works. The Polyline is a very powerful Shape object, but it requires more
experimenting to get the most out of it. This is left to you as an exercise.

Further studies: Path and geometries
For very complex shapes, including curves, Xamarin.Forms provides the
Path class and several Geometry objects. Their usage can be useful in game
development and in applications that need to represent mathematical
calculations, but they are also complex to implement. The Path class inherits
the properties described in Table 10.1 and defines a shape via its Data
property. The following code example is taken from the official
documentation (https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/user-interface/shapes/path) and is an appropriate one to understand
the Path class:
<Path Data="M 10,100 L 100,100 100,50Z" Stroke="Black"

Aspect="Uniform"

HorizontalOptions="Start" />

The Data property includes some commands, better described as follows:

M, known as the move command, represents the coordinates of the
absolute starting point for the path.
L, known as the line command, draws a line that connects the M point to
the specified end point.
Z, known as the close command, connects the current point to the M
point.

The preceding code draws a triangle, as shown in Figure 10.8:

Figure 10.8: Drawing custom shapes with the Path

The Path class can draw much more complex shapes, and its Data property
can also be assigned with Geometry objects. These are special objects that are
optimized to draw 2D shapes and allow for drawing both simple and complex
geometries. Among the simple geometries, there are the EllipseGeometry,
LineGeometry, and RectangleGeometry, whose names are self-explanatory.
For example, the following code draws an ellipse, a line, and a rectangle:
<Path Fill="Yellow" Stroke="Red">

<Path.Data>

<EllipseGeometry Center="50,50" RadiusX="50" RadiusY="50" />

</Path.Data>

</Path>

<Path Stroke="Black">

<Path.Data>

<LineGeometry StartPoint="10,20" EndPoint="100,130" />

</Path.Data>

</Path>

<Path Fill="Yellow" Stroke="Red">

<Path.Data>

<RectangleGeometry Rect="10,10,150,100" />

</Path.Data>

</Path>

The following list summarizes the key properties:

For the EllipseGeometry object, you control the center of the ellipse
with the Center property, a coordinate of type Point, and the radius
with the RadiusX and RadiusY properties of type double.
For the LineGeometry object, you define the line boundaries via the
StartPoint and EndPoint properties, but the position of the line is
determined by the Path position.
For the RectangleGeometry object, the Rect property defines the
boundaries of the rectangle.

There is another Geometry object called PathGeometry, which makes it
possible to create extremely complex shapes, including curves and arcs. This
is not covered in this chapter due to its usage in very specific scenarios, but
the official documentation provides a good overview with examples and can
be found at https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/user-interface/shapes/geometries.

Working with multimedia
Playing videos and audio is another common requirement, not only with
media-oriented applications but also inside user interfaces that want to
engage users with appealing content. The Xamarin.Forms code base does not
include a cross-platform media player, but Microsoft recently developed one
called MediaElement and included it in the Xamarin Community Toolkit
(https://docs.microsoft.com/en-us/xamarin/community-toolkit), an open
source library that contains many reusable views, converters, behaviors, and
so on. In this book, the Community Toolkit will only be mentioned a few
times, but an exception is made for the MediaElement because the demand to
have this view has always been very high, and because including media is

really a common requirement in mobile apps. Free and paid third-party
components also exist, but this book focuses only on what is available in the
family of Microsoft libraries.

Installing the Xamarin Community Toolkit
The first thing you need to do is install the Xamarin Community Toolkit as a
NuGet package into your solution. To accomplish this, in Solution

Explorer, right-click on the solution name and then select Manage NuGet
Packages for Solution. This will open the NuGet Package Manager, a tool
that allows for installing additional libraries and that automatically resolves
dependencies for each of the libraries that you want to install. In the search
box of the Browse tab, type Xamarin Community Toolkit (see Figure 10.9).

Figure 10.9: Installing the Xamarin Community Toolkit

On the left side, select the Xamarin.CommunityToolkit package and on the
right side of the package manager, make sure that the shared Android and
iOS projects are selected as targets. By default, NuGet proposes the latest
version of a package, and, at the time of writing this book, the latest version
available of the Toolkit is 1.3.1. When ready, click on Install and accept the
necessary license agreements when prompted. The installation will take just a

few seconds.

Implementing the MediaElement
In the page where you want to use the MediaElement, you first need to add an
XML namespace definition as follows:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

xmlns:toolkit="clr-

namespace:Xamarin.CommunityToolkit.UI.Views;assembly=Xamarin.CommunityToolkit"

x:Class="CommonViews.MediaElementExample">

The MediaElement supports streaming media files from remote URIs, from
the local device library, from embedded resources, and from local folders.
The following example shows how to play a remote, free, and public video
about Xamarin from Microsoft:
<toolkit:MediaElement ShowsPlaybackControls="True"

x:Name="Media1"

Source="https://sec.ch9.ms/ch9/5d93/a1eab4bf-3288-4faf-81c4-

294402a85d93/XamarinShow_mid.mp4"/>

The video or audio file you want to play is assigned to the Source property.
The MediaElement invokes the platform-specific media players, so you can
assign the ShowPlaybackControls property with true and leverage the play,
pause, stop, and transport controls from the native players. If you set this
property to false, you will have the chance to design your own buttons and
invoke the Play, Pause, and Stop methods that the MediaElement exposes.
By default, the media file starts playing as soon as it is loaded (or as soon as
buffering starts, in case of remote files). You can assign the AutoPlay
property with false if you want to avoid this behavior. Figure 10.10 shows
the MediaElement in action.

Figure 10.10: Playing media files

If screen rotation is enabled on the device, the video will also rotate for wider
view. Because the MediaElement relies on the native players, supported
media formats also depend on the target system.

Controlling the media file
The MediaElement exposes several members that you can use to manage and
control the media file. These are summarized in Table 10.2:

Member Description

Volume Of type double, this property controls the media volume with a value
between 0 and 1.

Position Of type double, this property returns the current position over the
duration. It is updated every 200ms. It can be changed in C# to move
the video to another position.

CurrentState Of type MediaElementState, this property returns the state of the
player. Self-explanatory values are closed, opening, buffering,
playing, paused, and stopped.

MediaOpened An event that is raised when the media file was successfully opened.

MediaEnded An event that is raised when the media reproduction ended.

MediaFailed An event that is raised if opening the media file fails.

Play A method that allows for manually playing a media file.

Pause A method that allows for pausing the media reproduction.

Stop A method that stops the media reproduction.

ShowPlaybackControls Of type bool, this property shows or hide the system controls.

AutoPlay Of type bool, this property sets automatic start of playing.

Duration Of type TimeSpan, this property returns the duration of the media
content.

Aspect Of type Aspect, it allows for sizing and stretching the video with the
same values (AspectFit, AspectFill, Fill) and behaviors described
for the Image view.

Table 10.2: Most relevant members of the MediaElement

For example, suppose you have set the AutoPlay property as false. When you
assign the Source property of the MediaElement, the video starts loading but
you need to play it manually. You could write the following code:
private void Media1_MediaOpened(object sender, EventArgs e)

{

Media1.Play();

}

private async void Media1_MediaFailed(object sender, EventArgs

e)

{

await DisplayAlert(“Error", “There was a problem while opening

your media",

“OK");

}

The preceding code shows how to leverage the MediaOpened and

MediaFailed events. In the first case, the Play method is invoked to start
playing the media. In the second case, a warning message is shown to the
user.

Playing local files
The source of the MediaElement can be an embedded video, a local file, and a
URI. For the last, you just saw an example. In the case of a file embedded in
the app resources, you will use the following syntax:
<MediaElement Source="ms-appx:///YourVideo.mp4" />

You basically add the ms-appx:/// prefix to the filename. With a similar
syntax, you can also play media files stored in the app’s local or temporary
folder. You can include files in the local app folder by copying them into the
Resources folder of the Xamarin.iOS project and into the Assets folder of
the Xamarin.Android project. For example:
<MediaElement Source="ms-appdata:///local/YourVideo.mp4" />

Plays a video in the app folder, whereas <MediaElement Source="ms-
appdata:///temp/YourVideo.mp4" /> plays a video in the temporary folder.
They have in common the ms-appdata:/// prefix, followed by the folder
name. Finally, it is possible to play media stored in the device’s library. To
accomplish this, you first need a user interface that picks up the content from
the library. The Xamarin Community Toolkit implements shared access to
the device specific folders, so you could write the following C# code, for
example, inside the Clicked event handler of a Button:
string mediaName = await DependencyService.Get<IVideoPicker>

().GetVideoFileAsync();

if (!string.IsNullOrWhiteSpace(mediaName))

{

MediaElement1.Source = new FileMediaSource

{

File = mediaName

};

}

The DependencyService class will be detailed in Chapter 13: Working With
Native API, but for now, what you need to know is that it allows for invoking
platform-specific code from the shared project. Because the system API that
allows for picking up contents from the device are certainly different on iOS
and Android, there are separate implementations of the GetVideoFileAsync
method, whose purpose is showing a file picker and allowing users to select a

media file. The resulting name, if not null, is assigned to the Source property
of the MediaElement via an instance of the FileMediaSource class. Like for
the Image, you can also programmatically set the source of the MediaElement
via the FromFile and FromUri methods, exposed by the MediaSource class.

Conclusion
Making applications appealing is crucial for a mobile app developer.
Xamarin.Forms provide brushes and shapes that not only allow for creating
gradients and geometries but that can be also used to implement interesting
user experiences. Think of the example of an avatar, with an image inside an
ellipse. Another crucial point in mobile apps today is providing the ability to
play audio and videos. In Xamarin.Forms, support for this has been added
recently with the MediaElement view, offered through the Community
Toolkit, an open-source library backed by Microsoft and that you might want
to bookmark for further studies. Creating beautiful applications is important,
but it is not enough. In fact, you need to learn how an application works from
start to end, which is the topic of the next chapter.

Key terms
Gradient (for app development): A scalar background made of several
colors.
Geometry: An object that represents both simple and composite
geometrical shapes.
Dependency service: A class that allows for accessing native code from
the shared project.

Suggested readings
Microsoft official documentation about brushes
(https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-
interface/brushes/)
Microsoft official documentation about shapes
(https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-
interface/shapes/)

Microsoft official documentation about the Xamarin Community
Toolkit (https://docs.microsoft.com/en-us/xamarin/community-
toolkit/)

CHAPTER 11
Managing the Application Lifecycle

Introduction
Simple things an application does, or simple gestures of the user done on an
app, have a reaction in the so-called application lifecycle. This represents
moments in time in which the app is working or when it is being closed.
When the user opens an app, the startup is the first moment of the application
lifecycle. When the user closes an app, it is the last moment of the application
lifecycle. When the app is sent to the background, for example, when it is not
shut down and the user just switches to another app, this is yet another
moment in the application lifecycle. Understanding and properly managing
the application lifecycle is crucial in mobile app development because you
need to know how to keep the information of key importance for the user. For
example, suppose your app has a data form where the user is entering many
details. If the app is sent to the background, you need to ensure that the
information is shown again once the app is reopened. This chapter explains
the application lifecycle events from a Xamarin perspective, and it also
enhances your knowledge of the Model-View-ViewModel pattern with
techniques that are still considered part of the application lifecycle, such as
working with broadcast messages.

Structure
In this chapter, we will cover the following topics:

The Application class
Events of the Application lifecycle
Sending messages through the app

Objectives
After completing this chapter, you will be able to fully manage the

application lifecycle, understanding where and when to persist user settings
and preferences before the app shuts down.

Creating a sample project
This chapter comes with a companion Xamarin.Forms solution that you can
open with Visual Studio to better follow the examples. If you wish to create a
project on your own from scratch, you can follow these steps:

1. Create a new Xamarin.Forms solution called ApplicationLifecycle
for consistency with the sample solution.

2. Do not edit or remove the auto generated MainPage.xaml file; it will be
used later.

3. For each layout discussed in the book, add a new item of type Content
Page (XAML). To accomplish this, right-click on the shared project
name and then click on Add New Item in the Context menu.

4. In the Add New Item dialog, click on the Xamarin.Forms node on the
left and then select the Content Page (XAML) item template.

5. Assign to the new XAML file a name that matches the discussed view,
for example, ApplicationEvents.xaml, and click on Add.

For each page you add to the project, add an empty StackLayout to the
ContentPage and assign its VerticalOptions property with
CenterAndExpand. Unless specified, this will be the layout of choice for the
code examples in the next pages.

The Application class
The Application class represents the running instance of the application
from a coding perspective. It is responsible for the application lifecycle and
responds to events such as app startup and page opening. Every
Xamarin.Forms solution contains an App class that derives from
Application, and you actually work against App rather than Application.
The definition of this class is inside the App.xaml.cs file; it also defines
resources that are available across the application.

With regard to resources, in Chapter 9: Resources and Data Binding,
you learned how you place all the resources you want to share across

the app in the App.xaml file. Behind the scenes, resources are handled
by the App class and its Resources property. So, XAML simply provides
an easier interface to define and consume resources.

Because the App class is singleton, which means that only one instance can
exist, it exposes a property called Current, of the App type, which you use to
interact with the class itself. The following line shows how to use Current to
retrieve the device’s graphical theme:
var theme = App.Current.UserAppTheme;

Many types and members of the App class are for the platform’s internal
usage, but a few are extremely important for you. For example, the MainPage
property, of the Page type, represents the root page for the application. You
already used this property several times in this book, but it is important to
remember that it is part of the application lifecycle. When you create a
project, the assignment looks like the following:
public App()

{

InitializeComponent();

MainPage = new MainPage();

}

Not only can you change the root page here, but you can also reassign the
main page later, simulating an application restart. In this case, you can
change the root page as follows:
App.Current.MainPage = new SecondaryPage();

The App class is also useful to make changes that impact the application and
to store fields and properties that you want to make available everywhere.
The following sections discuss these scenarios.

Working with themes
Android and iOS have graphical themes, and they share the existence of a
dark and a light theme. You can easily retrieve which theme is currently
active on the user’s device, and you can even set a different theme for the app
through the App class. The following code demonstrates how to retrieve the
theme:
var currentTheme = App.Current.UserAppTheme;

switch(currentTheme)

{

case OSAppTheme.Light:

break;

case OSAppTheme.Dark:

break;

default:

break;

}

The UserAppTheme property specifies the theme and is of the OSAppTheme
type, an enumeration that exposes three values: Light, Dark, and
Unspecified. The following code demonstrates how you can force the app to
use a specific theme instead:
App.Current.UserAppTheme = OSAppTheme.Light;

Defining global variables
In some situations, you might need to store values or references into variables
that you want to make available across the app. To accomplish this, you can
define static fields or properties in the App class, like in the following
example:
public partial class App : Application

{

internal static string SharedProperty { get; set; }

…

}

In this case, the SharedProperty property is marked as internal so that it is
only accessible from within the shared project. In addition, it is marked as
static because there can only be one instance of the App class. This is a
particular situation because you access these members without invoking the
Current property; so, you would use it as follows:
App.SharedProperty = “Some text”;

Variables that you can access from anywhere in the app are known as global
variables.

Tip: Global variables are useful and convenient in some situations, but
keep in mind that they take up allocated space in memory even when
you are not using them. For this reason, you should avoid global
variables when possible and prefer local variables, which are destroyed
when no longer used.

Events of the Application lifecycle

The Application class exposes .NET events that represent the most
important moments in the lifecycle of an application. This section discusses
events that are strictly related to the working time of the app and events that
are raised when some actions are taken by the user.

Understanding and using Application events
The Application class exposes the following three events:

OnStart, which is fired when the app has started (and it was previously
shut down).
OnSleep, which is fired when the app is sent to the background or when
it is shut down.
OnResume, which is fired when the app is brought back to the
foreground.

You can handle these events to execute actions in those specific moments of
the app lifecycle; for example, loading user settings when OnStart is fired or
persisting user settings when OnSleep is fired. The event handlers are not
added by Visual Studio, so you need to add them manually to the
App.xaml.cs file, as follows:
protected override void OnStart()

{

}

protected override void OnSleep()

{

}

protected override void OnResume()

{

}

You will now learn a real usage of these events, which is common to many
applications.

A real-world example: Storing and retrieving data
A common usage of the application events is retrieving and storing the last
time the user has accessed the application. Reasons for doing this can be
infinite; for example, you might want to ask the user to log in again after a
certain amount of time has passed with the application being in the
background. To accomplish this, you will use the Xamarin.Essentials

library, which is automatically added by Visual Studio to a new solution and
will be covered in further detail in Chapter 13: Working with Native API.
This library exposes a class called Preferences, which allows for saving
primitive information to the app’s local storage. You can use the Get method
of the class to retrieve information and the Set method to save it. The
following code demonstrates this:
private DateTime _lastActivityTime;

protected override void OnStart()

{

_lastActivityTime = Preferences.Get(“LastActivityTime”,

DateTime. MinValue);

}

protected override void OnSleep()

{

Preferences.Set(“LastActivityTime”,

DateTime.Now.ToUniversalTime());

}

protected override void OnResume()

{

_lastActivityTime = Preferences.Get(“LastActivityTime”,

DateTime. MinValue);

}

When the app starts and OnStart is fired, the code searches for a variable
called LastActivityTime in the app’s local storage. If found, it returns the
stored value. If not found, for example, because it is the first time the app is
running, a default value is returned. When the app is sent to the background
or is shut down, OnSleep is fired, and the current date and time is saved to the
app’s local storage. When the app is resumed from the background, OnResume
is raised, and the code searches for the same date and time value and returns a
default value if nothing is found. Another possible usage of the application
events is saving all the data the user has entered into the app in a database
before it is sent to the background or shut down so that when the app is
resumed, nothing is lost. This is not just a best practice; it is how an app
should work to offer the proper user experience.

A real-world scenario: Restoring data forms
There are applications that provide data forms and that show pending data at
the next startup if the data was not saved before the app was closed or
suspended. This is not a mandatory behavior, and it depends on the
requirements and design for the app. If you must address this scenario, you

have plenty of ways to do it, depending on how complex the data structure is.
For example, if you have one instance of an object that you need to persist,
you could save it to a local JSON file that is serialized back to a .NET object
when the application starts up again. If you are also working with a local
SQLite database, you could create a specific table for temporary data and
save it when the application is suspended or closed. Then, at startup, you can
load data back from the temporary table, which you will clean once data is
finally saved to the proper table. Usually, the approach you use is shared with
the development team, and it depends on your requirements. In many
applications, it is enough to warn the user about the fact that pending data
will be lost if not saved before the app is closed or suspended.

Responding to page events
Sometimes, you might want to know when a page is opened or closed. In
such cases, the Application class exposes the events described in Table
11.1:

Member Description

PageAppearing Raised when a page is being rendered onscreen

PageDisappearing Raised when a page is being removed from screen

ModalPushing Raised when a modal page is being added to the navigation stack

ModalPushed Raised when a modal page has been rendered onscreen

ModalPopping Raised when some code has invoked PopModalAsync over a modal
page

ModalPopped Raised when a modal page is removed from the navigation stack

Table 11.1: Events related to page navigation

When working with these events, you need to explicitly subscribe to them,
like in the following example:
App.Current.PageAppearing += Current_PageAppearing;

For PageAppearing and PageDisappearing, the event handler gets the
instance of the page:
private void Current_PageAppearing(object sender, Page e)

{

if(e is MainPage)

{

}

}

In this code snippet, the code checks whether the page is the MainPage object.
For the other events, the event handlers’ signatures work with objects of the
ModalPushingEventArgs, ModalPushedEventArgs, ModalPoppingEventArgs,
and ModalPoppedEventArgs types, respectively. All these classes expose the
Modal property, of the Page type, which refers to the instance of the modal
page that raised the event. The following snippet provides an example:
private void Current_ModalPopping(object sender,

ModalPoppingEventArgs e)

{

if(e.Modal is SecondaryPage)

{

}

}

Tip: Remember the OnAppearing and OnDisappearing events raised by
individual pages when you need to work at the page lifecycle level.

Sending messages through the app
It happens very often that objects in different parts of your apps need to
communicate with one another. For example, a method in a viewmodel needs
to communicate to a view that an operation was completed so that the view
can take the appropriate actions. This happens via broadcast messages,
which, in Xamarin.Forms, you manage via the static MessagingCenter class.
This class works with a publisher/subscriber model, meaning that an object,
the publisher, sends a broadcast message without knowing which other object
is going to receive the message, and other objects, the subscribers, listen to a
specific message to take the necessary actions when intercepted. The
MessagingCenter class exposes three main methods: Send, Subscribe, and
Unsubscribe. In its simplest form, a message is sent with this syntax:
MessagingCenter.Send(this, “MESSAGE”);

Send takes two parameters: the instance of the object that is sending the
message, and a string containing the message. The message string is
completely your choice. Typically, the instance of the object that sends the
message is the same that is invoking Send. A subscriber registers for a
message as follows:
MessagingCenter.Subscribe<MainPage>

(this, “MESSAGE”, (sender) =>

{

// Do something here

});

The Subscribe message takes a type parameter that represents the object that
is sending the message; in the example, it is MainPage. The first method
parameter is then the instance of the object that is subscribing to the message,
the message that the object is subscribing to, and an action that receives the
instance of the sender as an argument. Remember to unsubscribe from
messages when no longer needed, with the following code:
MessagingCenter.Unsubscribe<MainPage>(this, “MESSAGE”);

Unsubscribe needs you to specify the type of the sender, and then it takes the
instance of the subscriber and the message as parameters.

Tip: Unsubscribing from messages is extremely important. If you
dispose of an object instance without unsubscribing from the messages
it was listening to, and then you create a new instance of the same
object, there might be runtime conflicts, and messages might not be
subscribed again as expected.

There are many scenarios in which you can use broadcast messages, but
Model-View-ViewModel is certainly the most common. Now, you will learn
how to improve MVVM architectures.

Broadcast messages with MVVM
Suppose you have a method in a viewmodel that completes an action, and
that you want to show a message to the user by displaying an alert or a new
page. Based on the MVVM principles, a viewmodel cannot open a view or an
alert and a data-bound view should only implement code that is related to the
user interface, without direct interaction with the viewmodel. In such
situations, when a viewmodel completes an action, it can send a message.
Views can subscribe to that message and take the appropriate actions such as
displaying an alert or a new page, when it is sent. For better understanding
and practical work, in Visual Studio, reopen the LocalDataAccess sample
solution discussed in Chapter 9: Resources and Data Binding. When ready,
open the ContactViewModel.cs file and locate the following code:
SaveAllCommand = new Command(() =>

ContactsDataBase.SaveAll(Contacts));

As you might remember, this command invokes the SaveAll method that
stores all pending changes to a list of contacts in the SQLite database. Now,
imagine that you want to notify users of the completion with an alert. You
can extend the code given earlier as follows:
SaveAllCommand = new Command(() =>

{

ContactsDataBase.SaveAll(Contacts);

MessagingCenter.Send(this, “ContactsSaved”);

});

A message is sent when the save operation is completed. Now, open the
MainPage.xaml.cs file and change the constructor as follows:
public MainPage()

{

InitializeComponent();

MessagingCenter.Subscribe<ContactViewModel>(this,

“ContactsSaved”,

async (sender)=> {

await DisplayAlert(“Information”, “Contacts saved!”, “OK”);

});

ViewModel = new ContactViewModel();

BindingContext = ViewModel;

}

The Subscribe method is invoked to register for the ContactsSaved message
sent by the ContactViewModel class, and the action that is taken is displaying
an alert. With this approach, your code is fully adhering to the MVVM
principles and is implementing a common feature, that is, displaying
additional user interface when an action in the viewmodel is completed.
Figure 11.1 shows how the alert appears, thanks to the message exchange:

Figure 11.1: Displaying an alert via message exchange

You are working with only one page in the sample solution, so invoking
Unsubscribe is not necessary as destroying the page instance means closing
the app. However, if you were on a different page that is closing, invoking
Unsubscribe is important.

MessagingCenter tips and tricks
There are some best practices and suggestions that you should know about
broadcast messages. The first suggestion is to invoke Subscribe before
creating an instance of the object that sends the message. If you look back at

the constructor of the MainPage object, you can see this. This is not
mandatory, but if the constructor of the sender object already sends messages,
you would lose them. A second suggestion is about message strings. If you
want to avoid typos and take advantage of Visual Studio’s code editor
feature, you can define message strings as constants in a separate class, as
follows:
internal static class MessageConstants

{

public const string ContactsSaved = “ContactsSaved”;

}

You can then refer to the message via the constant, which enables
IntelliSense in Visual Studio, speeding up adding the string and avoiding
typos. The following line is an example:
MessagingCenter.Send(this, MessageConstants.ContactsSaved);

The last tip is about the actions that are executed by the subscriber. In the
previous code examples, the action is encapsulated inside a lambda
expression. However, if you have more complex code to execute, you can
rewrite the subscriber as follows:
MessagingCenter.Subscribe<ContactViewModel>(this,

“ContactsSaved”,

ShowCompletionMessageAsync);

You are basically passing the name of a method that must be invoked when
the message is received. Consider the following example:
private async void ShowCompletionMessageAsync(ContactViewModel

contactViewModel)

{

await DisplayAlert(“Information”, “Contacts saved!”, “OK”);

}

This approach makes it clearer how the instance of the sender object is also
received by the subscriber, and it provides a better view of the code, which is
recommended when you have more lines to handle.

Conclusion
Managing the application lifecycle is very important when developing mobile
apps. Not only does this give you full control over the application, but it also
allows you to implement the proper user experience according to the moment
of the life of an app. In this chapter, the application lifecycle events have
been useful to extend your knowledge about working with local data.

However, most mobile apps work with remote data and services. So, in the
next chapter, you will work with Web API services and enhance your
understanding of C#, .NET, and Xamarin.Forms.

Key terms
Application lifecycle: Represents the working time of the app, from
when it starts to when it is shut down or sent to the background.
Global variables: Variables that are available to all the objects in the
app.
Broadcast message: A string message that is exchanged between
objects in the app.

Suggested readings
Microsoft official documentation about the application lifecycle
(https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-
fundamentals/app-lifecycle).

CHAPTER 12
Working with Web API

Introduction
In the previous chapters, you have seen how to work with local data and local
SQLite databases to read and write information. However, in the real world,
most data-driven applications also work with remote data sources. In a
typical architecture, a web service is invoked to read from and write data to a
remote database, and both the web service and the database can be hosted
either on a server or on a cloud service. In a perfect world, applications and
web services should be able to communicate with each other regardless of the
development technology and programming languages used to create them, so
the data they exchange should be provided in a universal format. In this
chapter, you will learn how to create and consume web services with the
most modern Microsoft technologies, exchanging data with a mobile
application using standard data exchange formats.

Structure
In this chapter, we will cover the following topics:

Chapter prerequisites
Understanding web services and Web API
JSON: A standard data exchange formats
Creating Web API in Visual Studio
Publishing Web API services
Consuming Web API with Xamarin.Forms

Objectives
After completing this chapter, you will extend your knowledge with
important concepts related to data-driven development, and you will be able

to implement data exchange with remote data sources in your Xamarin.Forms
projects.

Unlike the previous chapters, where the companion solution is made of
one project, for this chapter, the solution is made up of multiple
projects. For this reason, the steps for creating projects will be
described in the dedicated sections. You can open the companion
BookService sample solution if you wish to follow the explanations
without manual steps.

Chapter prerequisites
In the first part of this chapter, you will learn how to create and publish a
Web API service to a remote server. It is not possible to predict the
environment you are using, so, in order to offer the same possibilities to all
readers, this chapter will use Microsoft Azure as the remote destination,
which is also useful to understand how easy it is to publish and manage a
Web API service on the cloud. Instead, if you prefer to publish your services
to an on-premises server, you will likely need to contact the system
administrator of the company, who will help you set up and configure the
necessary infrastructure. In addition, you will use a tool called Postman to
test the API calls you will implement, because it is a very popular tool used
by many companies.

Getting a Free Azure subscription
Azure is the cloud platform from Microsoft that provides a wide range of
services. Azure is not free, but it is possible to obtain a free trial at
https://azure.microsoft.com/en-us/free if you do not already have one. A
free trial subscription is enough to complete the steps described later. You
will just need to follow the steps described on the website, signing in with a
Microsoft account. You might be asked to enter a valid credit card, which is
only used to verify that you are a real entity (but everything is explained
clearly). By visiting the website, you will also be able to discover the full
offer of cloud services, though here you will just use the web application
service.

Downloading Postman
Postman (https://www.postman.com) is a free tool that developers use to
build and test API calls. It is a very powerful tool, and it supports many data
exchange formats, environments, and security standards. It is probably the
most popular tool that developers use to work with web API, and even the
Visual Studio debugger can detect if an API call is made by Postman and will
allow you to use the usual debugging tools accordingly. For now, download
and install Postman; the installer is based on a one-click approach, so it is
very easy. Later in this chapter, you will use it to test your work.

https://www.postman.com

Understanding web services and Web API
A web service is a software that allows for communication between a source
and a client application, and vice versa, over a network. A web service is
made available to clients by publishing it to a remote server. By remote
server, we mean both an on-premises server and a cloud service like
Microsoft Azure. The communication is made possible by functions that a
web service exposes to the public and that clients can invoke as they would
do with any .NET method. The result of such invocations is the data that the
client and service exchange. Web services can be written with different
technologies and should be architected in a way that they can be consumed
by different types of client applications (for example, desktop apps, mobile
apps, and so on). From a Microsoft perspective, .NET has always made it
possible to create and publish web services with C# (and the other .NET
languages) through different technological flavors: ASP.NET and ASP.NET
Core, Windows Communication Foundation (WCF) and, more recently,
ASP.NET Web API.

Web API can be created with any development platform that supports
REST. However, in this chapter, any reference to Web API means
ASP.NET Core Web API and, therefore, to services built with the
Microsoft stack.

WCF, in particular, has represented an important milestone in the .NET
evolution, because it is a technology that allows to leverage all the power of
.NET on the server side, it supports a large number of communication
protocols and the connection between clients and services is simplified by
specific tools in Visual Studio. On the other side, WCF implements services
and communication in a way that derives from the Simple Object Access
Protocol (SOAP) format, but that is only supported by applications built
with .NET. In mobile development, this is not the recommended approach,
and you should prefer web services that can be consumed by clients written
with different technologies. To accomplish this, you use Web API services.
Generally speaking, a Web API is a web service that you access through the
HTTP and HTTPS protocols; functions they expose are identified by a static
URL called endpoint. For example, if a Web API called CustomerService is
hosted on a server called Server01, the address for the Web API will be as
follows:

https://server01/CustomerService

If the service exposes a function used to retrieve a list of customers, called
GetCustomers, the endpoint (that is, the address of the function) will be as
follows:
https://server01/CustomerService/GetCustomers

Functions support parameters, but this will be discussed later in the chapter.
Applications send requests to a web API service through the so-called
REpresentational State Transfer (REST) approach, and .NET provides
objects that allow to send and manage requests in an object-oriented way.
REST is an architectural style for designing web software based on
constraints. It is not necessary to delve into the details of REST, but it is
important to underline that every request is identified by a specific HTTP
verb. The most common HTTP verbs represent operations against data and
are described in Table 12.1:

HTTP Verb Description
GET Reads and returns data from the data source.
POST Writes new data to the remote source.
PUT Modifies existing data in the remote source.
PATCH Partially modifies existing data in the remote source.
DELETE Deletes data from the remote source.

Table 12.1: Common HTTP verbs

Actually, HTTP verbs do not execute operations directly. The Web API that
receives a request detects the HTTP verb specified in the request and reacts
accordingly. This means you could use a POST to retrieve data instead of GET,
which is also very common because POST supports encrypting the request. As
you will see in the upcoming sections, Microsoft Visual Studio provides full
support to creating, developing, and publishing Web API services. Actually,
when implementing communication between a service and a client, you need
to know the exchange format and implement your architecture accordingly.

JSON: A standard data exchange format
The JavaScript Object Notation (JSON) format is the de facto standard for
implementing data exchange between Web API services and mobile
applications. There are several reasons for its popularity, but the following

are certainly the most important:

It has a very simple structure
It has no dependencies
It is basically plain text that can represent complex data
It is used as a markup language with extremely simple syntax.

For better understanding, suppose you have an app that needs to exchange
information about contacts with a Web API service. The Contact instances
are represented by the following C# Contact class:
public class Contact

{

public string FirstName { get; set; }

public string LastName { get; set; }

public DateTime DateOfBirth { get; set; }

public int Age { get; set; }

public bool IsFamilyMember { get; set; }

}

In JSON, a contact would be represented as follows:
{

“firstName”: “Alessandro”,

“lastName”: “Del Sole”,

“dateOfBirth”: “1977-05-10T00:00:00”,

“age”: 44,

“isFamilyMember”: false

}

As you can see, a simple object is defined within brackets, and each
property/value pair is separated by a colon. Note how numbers are not
enclosed in quotes.

Tip: By convention, property names in JSON follow the Camel-casing
notation (where the first letter is lowercase). However, defining
property names with the Pascal-case notation (where the first letter is
uppercase) is very common, especially among .NET developers who are
used to defining properties this way.

JSON can also represent data collections. The following markup shows an
example based on multiple contacts:
{

“contacts”: [

{

“firstName”: “Alessandro”,

“lastName”: “Del Sole”,

“dateOfBirth”: “1977-05-10T00:00:00”,

“age”: 44,

“isFamilyMember”: false

},

{

“firstName”: “Robert”,

“lastName”: “White”,

“dateOfBirth”: “1990-01-01T00:00:00”,

“age”: 32,

“isFamilyMember”: true

}

]

}

Any JSON markup must be enclosed between brackets. Square parentheses
represent an array, and individual objects (enclosed between brackets) are
enclosed inside the array and separated by a comma. You could have a root
object with its own properties and a collection. For example, consider the
following C# code:
public class People

{

public List<Contact> Contacts { get; set; }

public int ID { get; set; }

public string Owner { get; set; }

}

It is represented by the following JSON:

{

“contacts”: [

{

“firstName”: “Alessandro”,

“lastName”: “Del Sole”,

“dateOfBirth”: “1977-05-10T00:00:00”,

“age”: 44,

“isFamilyMember”: false

},

{

“firstName”: “Robert”,

“lastName”: “White”,

“dateOfBirth”: “1990-01-01T00:00:00”,

“age”: 32,

“isFamilyMember”: true

}

],

“id”: 0,

“owner”: “System administrator”

}

In the previous examples, the JSON markup represents a number of objects
of the same type, but you can have different objects under the same node.
JSON is not only used to format the data response that a Web API service
returns to clients but also to package the request information from the client
that makes an API call to the service. This is better explained in the
upcoming sections with the actual implementation of Web API, but for now,
what you just need to know is that requests from client to service will contain
the following headers:
Content-Type: application/json

Accept: application/json

When clients receive data from a Web API, they need to convert the resulting
JSON into C# objects. Luckily enough, there are libraries that allow you to
do this very quickly. This is also explained in the upcoming sections.

Creating Web API in Visual Studio
You will now learn how to create a Web API service with C# and ASP.NET
Core, and in the next sections, you will learn how to consume this service
from a Xamarin.Forms solution. The sample Web API will simulate a remote
bookshelf, where you read book information from and where you can add
new books. As you can imagine, it is not possible to summarize the
ASP.NET Core and Web API technologies in one chapter, so the explanation
will focus on the most important concepts about development of Web API
services with Visual Studio. For consistency with the Microsoft
documentation about consuming Web API from Xamarin.Forms
(https://docs.microsoft.com/en-us/aspnet/core/mobile/native-mobile-
backend) and in order to provide the most abstract implementation possible,
data will be made available through an in-memory collection instead of a
database.

In the real world, companies use relational databases to store remote
information, such as Microsoft SQL Server, MySQL, PostgreSQL, or
SQL on Azure. It is not possible to predict here all the possible
scenarios, so the data store will really depend on the company you join.
However, the way data is exchanged will be the same. For more
information, you can read about Microsoft Entity Framework, the
technology used to access databases in a .NET-oriented way

(https://docs.microsoft.com/en-us/ef/).

When ready, in Visual Studio, open the Create a new project dialog and
locate the ASP.NET Core Web API project template, as shown in Figure
12.1. You can help yourself by typing Web API in the search box:

Figure 12.1: Creating a new Web API project

When done, click on Next. In the next screen, specify BookService as the
name for the new project (see Figure 12.2) and then click on Next again:

Figure 12.2: Specifying the project name

In the Additional information dialog (see Figure 12.3), you will see how
Visual Studio proposes the latest version of .NET installed on your machine
as the Framework. If you have .NET 6 installed, make sure this is the version
selected, or make sure the highest version possible is selected:

Figure 12.3: Specifying project properties

In the Authentication type field, you can specify one of the following
authentication modes:

None: This is the anonymous authentication type and allows clients to
access information without authentication.
Microsoft identity platform: This is an evolution of the Microsoft
Active Directory authentication technology, and it is based on the
OAuth 2.0 standard.
Windows: This is used within a Windows domain and allows for
authenticating clients via the user credentials used to log in to Windows.

Like for the data store, for the sake of simplicity and because it is not
possible to predict any real scenario you will work on, the None
authentication is used here. Many companies also implement their own
authentication mechanism based on username and password, which is not
uncommon at all. Leave all the options as they are and click on Create.
After a few seconds, the project will be ready. Visual Studio automatically
generates code that simulates a weather forecast service. This code will not

be used in this chapter so that you can learn step-by-step how to implement
the necessary components manually, but it is not necessary that you remove
any file.

Understanding the project structure
There are some relevant points that you need to know about the structure of
Web API projects. The first point is controllers. A controller is a class that
can be considered as a container of API calls exposed to the public, where
API calls are .NET methods that can be invoked from client applications and
that return a result. When you create a Web API project, a default sample
controller called WeatherForecastController is added to the
WeatherForecastController.cs file. You will learn more about controllers
when creating a new one, but what you need to know now is that controllers
contain the methods you want clients to be able to invoke. The second point
you need to know is about is the configuration information of the service,
which is stored in two JSON files: appsettings.json and
launchSettings.json.

JSON is now widely used also to define projects’ configuration,
especially in the latest versions of Visual Studio, replacing XML. So, it
is not only used for data exchange, but also for local object definition.

Both files are influenced by the way you set project properties, but when a
new project is created, they have a standard structure. The appsettings.json
file determines how the runtime flow is traced by the logging system,
whereas the launchSettings.json file stores the startup and publishing
information set up in the project properties. It is not necessary to change them
directly because you will work with the dedicated Visual Studio windows.
What you need to know is that those files are the physical places where
Visual Studio stores some configuration. Looking at their content is left to
your choice. The next point to discuss is the Program.cs file.

With .NET 6, the Program.cs file contains code that is implicitly defined
inside a Program class. This means that there is no class Program { }
block, but only the body of the class. With lower versions, the class
Program { } block is still defined explicitly.

This file contains the Program class and all the necessary startup code and,
when a new project is created, has the following content:
var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddControllers();

// Learn more about configuring Swagger/OpenAPI at

https://aka.ms/aspnetcore/swashbuckle

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

app.UseSwagger();

app.UseSwaggerUI();

}

app.UseHttpsRedirection();

app.UseAuthorization();

app.MapControllers();

app.Run();

The builder variable is of type WebApplicationBuilder and is responsible
for defining the services exposed by the Web API via a collection called
Services, of type IServiceCollection. Its AddControllers method adds
the controllers found in the project to the list of exposed services; the
AddEndpointsApiExplorer method exposes metadata that contain the list of
controllers and other services so that clients can know what a service offers;
the AddSwaggerGen method adds support for Swagger (https://swagger.io/), a
tool that automates the generation of Web API documentation. Swagger is
not part of .NET and is automatically added to the solution by Visual Studio
as a NuGet package. You will see the result produced by Swagger in the
section called Testing the Web API Locally. The app variable is of type
WebApplication and represents a running instance of the Web API service.
This is an important point: a Web API service is a static service, which means
that an instance is created only when it is invoked. The next lines of code
detect if the service is running on a development machine, like yours; if so, it
enables the service to display the documentation generated by Swagger.
Next, it enables the so-called HTTPS redirection via the
UseHttpsRedirection method. This is important, especially when
debugging, because local communications happen via HTTP and not HTTPS,
so this mechanism makes sure HTTP calls are interpreted as HTTPS. The last
two methods, MapControllers and Run, finalize the exposure of controllers

https://swagger.io/

and start an instance of the Web API service, respectively. You will still work
with the Program.cs file. In fact, you will need to specify the instance of the
class that will handle your data as one of the services. This is done in the next
section.

Creating a data model
The goal of the sample project is to expose calls that make it possible to work
with a virtual bookshelf, so you need a class that represents an individual
book. It can be very simple, like the following definition:
public class Book

{

public int ID { get; set; }

public string Title { get; set; }

public DateTime PublicationDate { get; set; }

public string ISBN { get; set; }

}

The ID property is important because it allows for uniquely identifying an
object and because it is going to be used by the API methods to retrieve such
unique objects. You now need a service that can handle the data. The Web
API projects require you to first define an interface, called service, that
establishes a set of methods and properties to work with data. The following
code shows how to define a service interface to work with books:
public interface IBookRepository

{

bool DoesItemExist(int id);

IEnumerable<Book> All { get; }

Book Find(int id);

void Insert(Book item);

void Update(Book item);

void Delete(int id);

}

Tip: The Repository suffix is not mandatory, but it is used for
consistency with project examples in the official Web API
documentation.

Member names are self-explanatory: DoesItemExist checks if a Book object
already exists given the id; all is a property that returns the full list of Book
objects; find returns a specific instance given the id; and Insert, Update, and
Delete allow for adding, modifying, and removing an instance of the Book

class. At this point, you need a class that implements the IBookRepository
interface. In the real world, such a class would implement methods that
access a database, but in this example, it will work with a sample in-memory
collection. It is called BookRepository and is defined as follows:
public class BookRepository : IBookRepository

{

private List<Book> Books;

public IEnumerable<Book> All => Books;

public BookRepository()

{

InitializeData();

}

public void Delete(int id)

{

Books.Remove(this.Find(id));

}

public bool DoesItemExist(int id)

{

return Books.Any(item => item.ID == id);

}

public Book Find(int id)

{

return Books.FirstOrDefault(item => item.ID == id);

}

public void Insert(Book item)

{

Books.Add(item);

}

public void Update(Book item)

{

var book = this.Find(item.ID);

var index = Books.IndexOf(book);

Books.RemoveAt(index);

Books.Insert(index, item);

}

private void InitializeData()

{

Books = new List<Book>();

var book1 = new Book

{

ID = 1,

ISBN = “9789391392871”,

Title = “Practitioner’s Guide to Data Science”,

PublicationDate = new DateTime(2022, 1, 1)

};

var book2 = new Book

{

ID = 2,

ISBN = “9789355510068”,

Title = “IoT for Beginners”,

PublicationDate = new DateTime(2021, 12, 1)

};

var book3 = new Book

{

ID = 3,

ISBN = “9789355511102”,

Title = “iOS 15 Application Development for Beginners”,

PublicationDate = new DateTime(2021, 12, 1)

};

Books.Add(book1);

Books.Add(book2);

Books.Add(book3);

}

}

The previous code uses techniques you already know. It invokes the Add and
Remove methods over the Books collection to insert and delete Book instances,
and it invokes the FirstOrDefault method to retrieve a specific Book
instance given the id. The All property simply returns the content of the
Books collection, whereas the Update method first removes the existing
instance of the Book object from the collection and adds a new one containing
any edits. The Insert, Update, and Delete methods will be mapped to the
POST, PUT, and DELETE HTTP verbs in a controller, and the All property will
be mapped to the GET verb. The InitializeData method generates some
sample data, simulating a database table.

Tip: In the real world, it is not recommended to physically delete an
item from a database (or another data source). Instead, a better
approach is to add a bool column to the database called IsDeleted (or
similar) and set its value to true when an object is deleted. This will also
require you to change the method that returns the list of data by
filtering out those whose IsDeleted value is true.

Before the data service can be used, it needs to be added to the collection of
services exposed by the Web API. To accomplish this, you need to add the
line of code highlighted in bold to the Program.cs file:
var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddSingleton<IBookRepository, BookRepository>

();

builder.Services.AddControllers();

The AddSingleton methods adds a unique instance of the specified data
service. You need to specify the service interface and one specialized
implementation.

Implementing controllers
The next step is to implement methods that clients can invoke to perform
operations against the data, and this must be done inside a controller. Visual
Studio offers tools that simplify the generation of controller classes. To
accomplish this, right-click on the project name in Solution Explorer and
select Add | New Scaffolded Item.

Tip: In the Visual Studio terminology, scaffolding means generating
code files that are already set up to work by including the necessary
references, namespaces, and minimal code.

In the Add New Scaffolded Item dialog (see Figure 12.4), select the API
Controller – Empty item and then click on Add.

Figure 12.4: Adding a new empty API controller

At this point, you will be able to specify a name for the controller file (see
Figure 12.5), so enter BooksController.cs and finally, click on Add:

Figure 12.5: Specifying the controller’s name

When the new code file is ready, you will first notice the following class
definition:
[Route(“api/[controller]”)]

[ApiController]

public class BooksController : ControllerBase

{

…

}

The Route attribute is of extreme importance because it defines the URL for
the controller. In this case, this controller will be invoked as follows:
https://serverName/BookService/api/Books

The Route attribute is adding the api suffix to the service URL, and it makes
it possible to invoke the controller by only specifying the name, without the
Controller suffix. This will be clearer in the next section, when testing the
service. The ApiController attribute makes sure that .NET recognizes the
class as a Web API controller, and the inheritance from ControllerBase
provides specific objects for controllers, which are discussed in the upcoming
section.

Retrieving data
The first code you need to add is the class’s constructor, plus a field that
stores the instance of the data context. You can write it as follows:
private readonly IBookRepository bookRepository;

public BooksController(IBookRepository _bookRepository)

{

bookRepository = _bookRepository;

}

When the service starts up, the AddSingleton method you saw in the Program
class will also invoke the constructor of the controller, passing the instance of
the data context object. Now, you can write the simple code that returns the
full list of books:
[HttpGet]

public IActionResult List()

{

try

{

return Ok(bookRepository.All);

}

catch (Exception)

{

return BadRequest(ErrorCodes.CouldNotGetItems.ToString());

}

}

The name of the method, List in this case, is not relevant because the service
will intercept the GET verb specified with the HttpGet attribute, regardless of
the method name. List returns an object of type IActionResult, which
specifies a successful call along with data, or an error state. Ok is a method
that returns a successful status code, and all the objects in the
bookRepository instance. In case of error, the code returns a Bad Request
status code via the BadRequest method. This method takes a string as a
parameter, in this case, the result of the invocation of ToString, over values
of an enumeration called ErrorCodes, defined as follows:
public enum ErrorCodes

{

InvalidBookData,

BookIDInUse,

RecordNotFound,

CouldNotCreateItem,

CouldNotUpdateItem,

CouldNotDeleteItem,

CouldNotGetItems

}

This enumeration is completely custom and allows for sending your own
error codes.

Creating and updating data objects
The next step is to write code that adds and updates Book objects. The first
method you add is called create, and it maps the POST verb as follows:
[HttpPost]

public IActionResult Create([FromBody] Book item)

{

try

{

if (item == null || !ModelState.IsValid)

{

return BadRequest(ErrorCodes.InvalidBookData.ToString());

}

bool itemExists = bookRepository.DoesItemExist(item.ID);

if (itemExists)

{

return StatusCode(StatusCodes.Status409Conflict,

ErrorCodes.BookIDInUse.ToString());

}

bookRepository.Insert(item);

}

catch (Exception)

{

return BadRequest(ErrorCodes.CouldNotCreateItem.ToString());

}

return Ok(item);

}

The first thing to underline is that the method receives the Book object to add
as a parameter, which is also decorated with the FromBody attribute. This
means that the object is inside the body of the HTTP request and .NET will
decode the data from there. The code is then quite simple to understand: if the
object is null or the data model is not in a valid state (!ModelState.IsValid),
a BadRequest is sent; if an object with the same ID already exists in the
collection, the StatusCode method is invoked to send a HTTP error with
code 409, which means data conflict (StatusCodes.Status409Conflict); if
everything is fine, the Insert method is invoked to add the new object to the
collection.

Tip: Remember that, in the real-world, checks over data and the
invocation to methods like Insert would be done against a data access
layer, like the Entity Framework, instead of an in-memory collection.

When updating existing items, you could write the following method that
maps the PUT verb:
[HttpPut]

public IActionResult Edit([FromBody] Book item)

{

try

{

if (item == null || !ModelState.IsValid)

{

return BadRequest(ErrorCodes.InvalidBookData.ToString());

}

var existingItem = bookRepository.Find(item.ID);

if (existingItem == null)

{

return NotFound(ErrorCodes.RecordNotFound.ToString());

}

bookRepository.Update(item);

}

catch (Exception)

{

return BadRequest(ErrorCodes.CouldNotUpdateItem.ToString());

}

return NoContent();

}

The difference with the previous method here is that the code checks if an
item with the specified ID exists and, if so, it invokes the Update method of
the data service; otherwise, it sends an error code.

Deleting data objects
The last part of the controller is related to implementing an action that deletes
the specified object from the data context and that maps the DELETE verb. The
following code demonstrates this:
[HttpDelete(“{id}”)]

public IActionResult Delete(int id)

{

try

{

var item = bookRepository.Find(id);

if (item == null)

{

return NotFound(ErrorCodes.RecordNotFound.ToString());

}

bookRepository.Delete(id);

}

catch (Exception)

{

return BadRequest(ErrorCodes.CouldNotDeleteItem.ToString());

}

return NoContent();

}

You might have immediately noticed a couple of differences with the
previous methods. First, the HttpDelete attribute requires the specification of
an ID. This means that the ID of the object is sent along with the URL of the
invocation, like this:
https://serverName/BookService/api/Books/1

Here, 1 is a sample ID. The second difference is that the method parameter is
no longer passed via FromBody; instead, it is taken from the URL of the
invocation. If an object with the specified ID is found, the Delete method
from the data service class is invoked. Now that you have written all the
necessary code, you can test the service locally before publishing it to a
remote server.

Testing Web API services
As you would do with any other application, the Web API service must be
debugged and tested before it is released to the general audience. Testing and
debugging the service on your development machine is very easy because the
Visual Studio Installer also sets up an execution environment called Internet
Information Services Express (or simply, IIS Express), which allows you to
run Web API as well as other web applications. IIS Express is not discussed
here in detail, so you can check the documentation
(https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-
express/iis-express-overview) for more information. You can start the
service by simply pressing F5. If you have never launched a similar kind of
application, you will be first asked permission to trust an auto-generated SSL
certificate that is necessary to work locally (see Figure 12.6):

Figure 12.6: Trusting an auto-generated SSL certificate

You can safely click on Yes. You will then be asked for a final confirmation
about installing the auto-generated certificate into the local list of trusted
authorities, as shown in Figure 12.7. You can also accept this:

Figure 12.7: Installing the auto-generated SSL certificate

After the certificate is installed, your Web API service will start up, and your
default browser will show the Swagger user interface, as shown in Figure
12.8:

Figure 12.8: Installing the auto-generated SSL certificate

The addition of Swagger to the Web API projects is quite recent, and it is a
very nice addition because this library automatically generates the
documentation of your Web API with a very nice user interface. You can
browse API calls, see their parameters, try the API directly by clicking on the
Try it out button close to each call, and enter the appropriate parameters
where necessary. While the included tools work very well to test the API
calls, most companies use more advanced testing and debugging tools, like
Postman, which you downloaded and installed previously.

Making API calls with Postman
Postman is a very powerful tool and, in this chapter, you will use its most
common features to support API calls with JSON requests and responses.

When you open Postman, the first thing you need to do is configure the
request headers to include support for JSON content. Click on the Headers
tab (see Figure 12.9), scroll the list of pre-populated headers and add a new
one called Content-Type (a built-in word completion engine will help you
here). The value for this header is application/json:

Figure 12.9: Setting up Postman

Once you have done this, in the address bar, write the URL of the Web API
service, which can be taken from your browser’s address bar, followed by the
api/Books suffix. You might recall how this suffix was set up by the Route
attribute in the BooksController class definition.

Tip: Your Web API service is hosted on the local server, called
localhost, at the address specified by the port number specified after
the colon. In the current example, it is https://localhost:7123. You
can change it by selecting Debug | ProjectName Debug Properties and
then locating the App URL field of the Launch Profiles dialog.

Make sure the GET verb is selected on the left side of the address bar, as
shown in Figure 12.10, and then click on Send. At the bottom of the window,
you will see the list of Book objects in JSON format (see Figure 12.10).
Additionally, note how Postman shows the HTTP status code (Status 200 OK)
and the time in milliseconds required to receive the request and send a
response:

Figure 12.10: Retrieving data with a GET call

You do not need anything else because the Web API service is simply
responding to a HTTP GET request. If you needed to pass parameters, for
example, to filter a query result, you could use the same approach used over
the DELETE verb. Writing new data requires a POST call, so make sure you
change from GET to POST in the combo box at the left side of the address bar.
You also need to pass the information of a new Book object. To accomplish
this, click on the Body tab (see Figure 12.11) and then select the raw content
type. This allows for providing the object information directly in JSON. You
could choose a different way, but this is out of scope here. Provide the new
object information as you like, and then click on Send. If everything goes
fine, the Web API service returns an instance of the new object, which is
displayed at the bottom of the window:

Figure 12.11: Writing data with a POST call

If you wish to update an existing object, change from POST to PUT as the
HTTP verb and in the JSON of the object, first specify the ID of an existing
item and then change the other properties as desired; finally, click on Send.
The last API call maps the DELETE verb, so change the selection from PUT to
DELETE and then, in the address bar, add a slash followed by the ID of the
object you want to remove (see Figure 12.12). If everything works as
expected, the Web API service returns a 204 status code (No Content).

Figure 12.12: Deleting items with a DELETE call

After working with Postman, in the real world, you will likely call API from
your mobile app to see if everything works fine and debug it as necessary
before you publish everything to a remote server. However, for instructional
purposes only, the Web API service will now be first published to Azure and
finally, consumed from a Xamarin.Forms project.

Publishing Web API services
Web API services, and in general, web services and web applications, can be
published to different targets such as on-premises servers, cloud platforms,
local development servers, shared remote folders, and even to ZIP packages
that will later be handled by a system administrator. Visual Studio has
integrated support for all these scenarios, so publishing from within the IDE
is a simplified task (assuming that you have all the necessary credentials and
permissions to publish to the desired target). Assuming that you have already
set up an Azure trial subscription, in Solution Explorer, right-click on the
project name and then click on Publish. When the Publish dialog appears

(see Figure 12.13), select Azure as the target and click on Next.

Figure 12.13: Selecting a publish profile

Publishing to Azure requires you to set up two building blocks: an app
service, which acts as a container of services, and a Web API service. You
might be asked to enter the credentials of the Microsoft account that is
associated to your Azure subscription. In the next dialog, select Azure App
Service (Windows) as the system infrastructure and click on Next. The next
step is to define a hosting plan, which means choosing a data center region
and the size of the service. If you look at Figure 12.14, you can see how
Visual Studio generates a name for the hosting plan, which you can leave
unchanged. The Location combo box allows you to select a region. Choose
the closest one to your Country of residence to reduce bandwidth and
latency. In the Size combo box, make sure you select the Free plan. This
plan offers less computational resources than all the other plans, but it is
more than enough for the purposes of this chapter. When everything is set up,
click on OK:

Figure 12.14: Selecting a hosting plan

In the App Service (Windows) dialog (see Figure 12.15), enter a name for
the service, or leave unchanged the one proposed by Visual Studio. This will
be used to identify the service in the Azure management portal. Make sure
that the selected Subscription name is assigned with your subscription and, if
no resource group exists, create a new one by clicking on the New button. In
the Hosting Plan combo box, ensure that the hosting plan created previously

is selected. When ready, click on Create:

Figure 12.15: Configuring Azure service resources

At this point, you will be prompted with the summary information of the
Web API, in particular, the name, as shown in Figure 12.16. Visual Studio
automatically provides a name, in this case BookServiceapi, which is
acceptable, so leave it as it is. Ensure that Location, Organization, and
Administrator email contain valid values, and then click on OK:

Figure 12.16: Setting up the Web API name

In the last step, a summary of the Web API service is provided, as shown in
Figure 12.17. Check that every field is assigned with what you have decided
previously and, when ready, click on Create:

Figure 12.17: Configuring Web API properties

When the dialog closes, Visual Studio generates a new publish profile that
can also be reused later and offers the Publish button (see Figure 12.18).
When you click on it, Visual Studio starts packaging and publishing the Web
API service to your Azure subscription. The time required for publication
depends on the complexity of your project, so in this case, it should be very
quick

Figure 12.18: Reviewing publish options

When the publication process is completed, Visual Studio will open an
instance of your default web browser pointing to the address of your Web
API service. However, this will likely result in a 404 – Not found error
because the sample service has no user interface defined and because, by
default, Azure automatically configures Web API services so that any call
should include a subscription key for security reasons. The current sample
service is based on anonymous authentication, so you need to disable the
inclusion of a subscription key; otherwise, no client will be able to invoke the
API (unless you obviously include the subscription key). To accomplish this,
open the Azure Management Portal website (https://portal.azure.com) and
sign in with your credentials. When the portal appears, click on the
BookServiceapi resource (or the name you previously specified) in the list of
most recent resources. This will open a management page for the Web API.
On the left side of the screen, click on APIs in the toolbar and then click on
the service name in the column placed between the tool bar and the details’
view (see Figure 12.19). When the details appear in the right-side of the

https://portal.azure.com

screen, click on the Settings tab and, at the bottom of the page, locate and
unselect the Subscription required field.

Tip: You can always include a subscription key for more secure Web
API access by including the Ocp-Apim-Subscription-Key header in the
API request, like you did for the Content-Type header in Postman,
passing the subscription key that can be retrieved by clicking on
Subscriptions in the toolbar. You will get an example of adding
headers in C# in the next section.

Figure 12.19: Accessing Web API properties on Azure

When ready, click ib Save. Keep note of the service URL, which you can find
in the Web service URL field. This will be used shortly. You can close the
Management Portal if you wish. Before consuming the service from a
Xamarin.Forms project, it is a good idea to test it from Postman to make sure
everything is set up properly. To accomplish this, follow these steps:

1. Open Postman.

2. In the address bar, replace the local address of the service with the one
you copied from the Azure management portal.

3. Repeat the steps described in the previous section to make API calls to
read, insert, and delete data.

When you have checked that everything is working as expected, you are
ready to move to the last part of the exercise: consuming the remote service
from a Xamarin.Forms project.

Even if Azure subscriptions have a spending limit enabled by default,
and even if you selected a free hosting plan, it is recommended to delete
resources you no longer use, especially when you are experimenting, in
order to avoid the risk of charging your bank account. Shutting down
services is not enough; you need to fully delete unused resources and
services. This might be the case of the current sample service.

Consuming Web API with Xamarin.Forms
In this section, you will learn how to invoke Web API services from
Xamarin.Forms and interact with data from your native mobile apps. Most of
your gained knowledge will be reused here, so we will focus only on new
concepts. You can add a new Xamarin.Forms project to the existing solution
so that you have all the sample code in one place. To accomplish this, in
Solution Explorer, right-click on the solution name and then click on Add |
New Project. By reusing your existing skills, create a new Xamarin.Forms
project called BookClient. When the project is ready, the first thing to do is
to add support for JSON to .NET and C#. The latest versions of .NET Core
include native support for JSON via a namespace called System.Text.Json,
but this is not available in Xamarin.Forms (it is instead available in .NET
MAUI). Moreover, there is a library called Newtonsoft.Json which has
become the de-facto standard over the years to work against JSON data, so
you will learn how to work with it, becoming ready to also work on existing
projects that leverage this library. In Solution Explorer, right-click on the
BookClient project name (only the shared project) and then select Manage
NuGet Packages. When the NuGet user interface is shown, you will see the
Newtonsoft.Json package already in the list of the most popular libraries
(see Figure 12.20). Select the package and click on Install. Installing the

package will only take a few seconds:

Figure 12.20: Installing the Newtonsoft.Json package

Now that you have added support for JSON data, you can create the
necessary infrastructure based on the Model-View-ViewModel pattern.

Creating a data model
In terms of code, the first thing you need is a class that represents a book.
However, both this class and the viewmodel that you will create in the next
section need to send change notifications, so it is a good idea to create a base
class that implements the INotifyPropertyChanged interface and that will be
used by both the model and the viewmodel. You can call the class
NotifyBase and define it as follows:
using System.ComponentModel;

using System.Runtime.CompilerServices;

namespace BookClient.Model

{

public class NotifyBase : INotifyPropertyChanged

{

public event PropertyChangedEventHandler PropertyChanged;

public void OnPropertyChanged([CallerMemberName] string

propertyName = null)

{

PropertyChanged?.Invoke(this,

new PropertyChangedEventArgs(propertyName));

}

}

}

At this point, you can define a class called Book, which has the same
properties of the Book class defined in the Web API service, but with the
addition of property change notification, so that the user interface will be able
to automatically refresh according to changes. The following is the simple
code for the Book class:
using System;

namespace BookClient.Model

{

public class Book : NotifyBase

{

private int _id;

public int ID

{

get { return _id; }

set { _id = value; OnPropertyChanged(); }

}

private string _title;

public string Title

{

get { return _title; }

set

{

_title = value; OnPropertyChanged();

}

}

private DateTime _publicationDate;

public DateTime PublicationDate

{

get { return _publicationDate; }

set { _publicationDate = value; OnPropertyChanged(); }

}

private string _isbn;

public string ISBN

{

get { return _isbn; }

set { _isbn = value; OnPropertyChanged(); }

}

}

}

Now that you have a data model, it is time to write the viewmodel and learn
how to communicate with the Web API service.

Creating the ViewModel
The viewmodel will be responsible for exposing data to the user interface and
commands that execute actions over data. You can call the viewmodel class
BookViewModel and make it derive from NotifyBase. The class needs to
expose a collection of Book objects and an individual Book instance that will
be later bound to the selected item in a CollectionView in the user interface.
The definition can start as follows:
using BookClient.Model;

using Newtonsoft.Json;

using System;

using System.Collections.Generic;

using System.Collections.ObjectModel;

using System.Linq;

using System.Net.Http;

using System.Text;

using System.Threading.Tasks;

using Xamarin.Forms;

namespace BookClient.ViewModel

{

public class BookViewModel : NotifyBase

{

private ObservableCollection<Book> _books;

public ObservableCollection<Book> Books

{

get { return _books; }

set { _books = value; OnPropertyChanged(); }

}

private Book _selectedBook;

public Book SelectedBook

{

get { return _selectedBook; }

set { _selectedBook = value; OnPropertyChanged(); }

}

private const string baseAddress = “https://yourapiservice.

azurewebsites.net/api/books”;

public BookViewModel()

{

Books = new ObservableCollection<Book>();

}

Note how the constructor creates an instance of the Books collection in order

to avoid null references. Additionally, note how a constant called
baseAddress is defined and contains the address of your Web API service.
The value of this constant must be replaced with the URL you previously
retrieved in the Azure Management Portal or, if you are using an on-premise
server, the address of the Web API service on your server machine. The next
step is to define commands that add, edit, and delete data. Data can be added
as follows:

public Command AddCommand

{

get

{

return new Command(async () =>

{

var newBook = new Book();

newBook.ID = Books.Max(b => b.ID) + 1;

Books.Add(newBook);

await PostBookAsync(newBook);

});

}

}

This command creates an instance of the Book class and automatically assigns
its ID property with a value that is higher than the highest existing ID value in
the collection, retrieved by the Max extension method from the IEnumerable
interface. This is done to provide a valid ID without having the user to do this
manually. The command finally invokes a method called PostBookAsync,
which will be defined in the upcoming sections, so ignore any error squiggles
in the code editor. The command for deleting an object has simpler
implementation:

public Command DeleteCommand

{

get

{

return new Command(async () =>

{

Books.Remove(SelectedBook);

await DeleteBookAsync(SelectedBook);

});

}

}

In short, the object that is currently selected in the user interface is removed
from the collection first and then removed remotely via a method called
DeleteBookAsync, which will also be described in the upcoming sections.

Updating an existing Book instance is even simpler and is accomplished via
the following command definition:

public Command UpdateCommand

{

get

{

return new Command(async () =>

{

await PutBookAsync(SelectedBook);

});

}

}

A method called PutBookAsync will send the instance of the currently
selected object to the Web API, but nothing else needs to be done because
edits are already in the Books collection. At this point, you need to define all
the aforementioned methods that allow for interacting with a Web API
service.

Calling Web API services from C#
In the .NET development, there are many options to work with remote
services, but the HttpClient class from the System.Net.Http namespace is
the most common option, especially with Web API services and certainly in
Xamarin.Forms. The HttpClient class easily allows for working against
REST-based services, like Web API, by exposing, among other things,
methods that map the HTTP verbs, such as GetAsync, PostAsync, PutAsync,
and DeleteAsync. Its BaseAddress property, of type Uri, can be used to store
the root address of the web service. While not necessary in the current
example, it also exposes a collection called DefaultRequestHeaders that you
can populate with objects of type MediaTypeWithQualityHeaderValue, each
representing a request header in the form of a key/value pair. If look back at
Figure 12.9, where you saw request headers in Postman, you can better
understand the purpose of this collection. For the current example, you will
create instances of the HttpClient where appropriate, set its BaseAddress
property, and invoke the aforementioned asynchronous methods. For more
information, you can refer to the official documentation at
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.
The first operation you want to implement is to retrieve a list of books from
the Web API. To do this, write the following method (comments will follow):

public async Task GetBooksAsync()

{

using (var client = new HttpClient())

{

client.BaseAddress = new Uri(baseAddress);

var result = await client.GetAsync(client.BaseAddress);

if (result.IsSuccessStatusCode)

{

var resultContent = await result.Content.

ReadAsStringAsync();

var deserializedBooks =

JsonConvert. DeserializeObject<List<Book>>

(resultContent);

foreach (var book in deserializedBooks)

{

Books.Add(book);

}

}

}

}

Unless you need to share the same instance of the HttpClient class across
multiple methods, it is recommended to create one with a using block, which
ensures that it is disposed after usage. As you can see, the BaseAddress
property is assigned with the root address of the web service, assigned to the
baseAddress field. No address customizations are needed in this case, but
you will see an example when deleting data. The next step is calling the
GetAsync method pointing to the service address. This method returns an
object of type HttpResponseMessage, which not only contains the data but
also other information sent from the service. For example, the
IsSuccessStatusCode property returns true if the call was successful,
whereas the StatusCode property returns a value from the HttpStatusCode
enumeration that represents the HTTP status code sent by the service; for
example, a NotFound represents the 404 error, or BadRequest represents the
400 error, whereas Success represents the 200 status code. In the
preceding code, if a response is sent with success, the value of the Content
property of the HttpResponseMessage class is read in the form of a string via
the ReadAsStringAsync. Content includes the part of the response that is
strictly related to data, and ReadAsStringAsync retrieves the JSON of the
data. Based on the current sample data returned by the web service, the result
of ReadAsStringAsync is the following JSON:
[{“id”:1,”title”:”Practitioner’s Guide to Data

Science”,”publicationDate”:”2022-01-

01T00:00:00”,”isbn”:”9789391392871”},{“id”:2,”title”:”IoT for

Beginners”,”publicationDate”:”2021-12-

01T00:00:00”,”isbn”:”9789355510068”},{“id”:3,”title”:”iOS 15

Application Development for Beginners”,”publicationDate”:”2021-

12-01T00:00:00”,”isbn”:”9789355511102”}]

Obviously, you cannot use JSON directly in C#, so this is where the
Newtonsoft.Json library comes in. The JsonConvert class exposes a static
method that allows converting JSON to C# objects (known as
deserialization) and converting C# objects to JSON (known as
serialization). The response from the Web API is a JSON array of Book
objects, so the JsonConvert.DeserializeObject method converts the string
into a List<Book> instance. You should not convert to an
ObservableCollection directly because DeserializeObject is intended to
work with primitive types only. In fact, the last part of the method iterates
over the retrieved List and adds each Book object to the Books collection.
Writing objects works a bit differently from retrieving data, but the approach
is the same for both POST and PUT requests. Consider the following
PostBookAsync and PutBookAsync methods:

public async Task PostBookAsync(Book data)

{

using (var client = new HttpClient())

{

client.BaseAddress = new Uri(baseAddress);

string json = JsonConvert.SerializeObject(data);

var content = new StringContent(json, Encoding.UTF8,

“application/json”);

var result = await client.PostAsync(client.BaseAddress,

content);

}

}

public async Task PutBookAsync(Book data)

{

using (var client = new HttpClient())

{

client.BaseAddress = new Uri(baseAddress);

string json = JsonConvert.SerializeObject(data);

var content = new StringContent(json, Encoding.UTF8,

“application/json”);

var result = await client.PutAsync(client.BaseAddress,

content);

}

}

In both, after creating an instance of the HttpClient class, you first need to
convert to a JSON string the instance of the Book you want to send to the

Web API. This is accomplished by invoking the
JsonConvert.SerializeObject method, which receives the object you want
to convert as the parameter. Both PostAsync and PutAsync need to send
JSON content that is adapted to HTTP communications. For this purpose,
you can use the StringContent class, passing the JSON data, the encoding
format (UTF8 is the appropriate encoding), and the application/json
specification to the constructor. The resulting object is passed to both
PostAsync and PutAsync, along with the service address. The last method is
called DeleteBookAsync. It first removes the specified Book instance from the
collection and then invokes DeleteAsync on the HttpClient instance to send
a DELETE request to the Web API. The way you set up the request is like for
the previous two methods, but the difference is in the target address. In fact,
the Web API requires clients to append the ID of the object to the service
address. You can do this in many ways, but in the current example, the ID is
appended to the value of the BaseAddress property:

public async Task DeleteBookAsync(Book data)

{

Books.Remove(data);

using (var client = new HttpClient())

{

client.BaseAddress = new Uri(baseAddress);

string json = JsonConvert.SerializeObject(data);

var content = new StringContent(json, Encoding.UTF8,

“application/json”);

var result = await client.

DeleteAsync($”{client.BaseAddress}/{data.ID}”);

}

}

}

}

The viewmodel is now complete, and you are ready to write a minimal user
interface that allows for displaying and editing data.

As an exercise, you could implement error handling with try..catch
blocks and make methods return a value depending on the status code
sent by the Web API. You could also move the GetBooksAsync,
PostBookAsync, PutBookAsync and DeleteBookAsync, methods to a
separate service class.

Designing the user interface
The purpose of the user interface is to display a list of books inside a
CollectionView view and provide buttons to add, edit, and remove data. All
the necessary XAML markup can be written inside the MainPage.xaml file.
In addition, all the XAML markup is based on techniques you learned in
Chapter 9, Resources and Data Binding, so they will not be explained again
here. The following is the XAML code for the sample user interface:
<?xml version=”1.0” encoding=”utf-8” ?>

<ContentPage xmlns=”http://xamarin.com/schemas/2014/forms”

xmlns:x=”http://schemas.microsoft.com/winfx/2009/xaml”

x:Class=”BookClient.MainPage”>

<Grid>

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition Height=”Auto” />

</Grid.RowDefinitions>

<CollectionView x:Name=”BookList” SelectionMode=”Single”

SelectedItem=”{Binding SelectedBook}”>

<CollectionView.ItemTemplate>

<DataTemplate>

<StackLayout Orientation=”Vertical”>

<Entry Margin=”10,10,10,0” Text=”{Binding Title}”

FontSize=”16” FontAttributes=”Bold”/>

<Entry Margin=”10,0,10,0” Text=”{Binding ISBN}”

FontSize=”12”

FontAttributes=”Italic”/>

<DatePicker Margin=”10,0,10,0” Date=”{Binding

PublicationDate}” FontSize=”14” />

</StackLayout>

</DataTemplate>

</CollectionView.ItemTemplate>

</CollectionView>

<StackLayout Grid.Row=”1” Orientation=”Horizontal”>

<Button x:Name=”AddButton” Text=”Add new” Command=”{Binding

AddCommand}”

Margin=”10,0,0,0”/>

<Button x:Name=”DeleteButton” Text=”Delete”

Command=”{Binding DeleteCommand}” Margin=”5,0,0,0” />

<Button x:Name=”UpdateButton” Text=”Update”

Command=”{Binding UpdateCommand}” Margin=”5,0,0,0”/>

</StackLayout>

</Grid>

</ContentPage>

The very last part of the sample project is to create an instance of the

viewmodel and assign it to the binding context of the page, as follows:
using BookClient.ViewModel;

using Xamarin.Forms;

namespace BookClient

{

public partial class MainPage : ContentPage

{

private BookViewModel ViewModel { get; set; }

public MainPage()

{

InitializeComponent();

ViewModel = new BookViewModel();

BindingContext = ViewModel;

BookList.ItemsSource = ViewModel.Books;

}

protected override async void OnAppearing()

{

base.OnAppearing();

await ViewModel.GetBooksAsync();

}

}

}

Note that the GetBooksAsync method from the viewmodel is invoked in the
OnAppearing method because this allows for asynchronous method calls.
Now, you have everything you need to get the result of this long work in both
Android and iOS devices.

Testing the application
If you run the client application, you will see the list of books returned by the
Web API, as shown in Figure 12.21, where you can also see an empty record
added by clicking the Add new button. This button causes the bound
command to insert a new object into the data store, so if you make changes to
it, you will click the Update button:

Figure 12.21: Consuming a Web API from mobile apps

If you want to test the Delete button, select a book in the list first.

Conclusion
It is very common for mobile apps to communicate with remote services to
exchange data and information. Applications you build with Xamarin.Forms
can interact with any REST-based services, but the most common way to
build services with the Microsoft stack is by working with Web API. This
chapter explained the basics of the different data exchange formats, focusing

on JSON, and then explored how to create and publish a Web API service
that exposes calls that can be invoked to perform operations against data. In
the second part of the chapter, you learned how to call Web API from a
Xamarin.Forms project and how to connect data to the user interface reusing
existing skills. In the next chapter, you will work with native platform API
for a full programming experience.

Key terms
REST: The acronym for REpresentational State Transfer, an
architectural style that drives development of web software through
constraints.
JSON: The acronym for JavaScript Object Notation, a standard format
used to exchange data between services and client applications.
Web API: A web service that exposes methods that can be invoked to
perform operations over a network via HTTP verbs.
HttpClient: A class that makes it possible to invoke Web API calls in
.NET.

Suggested readings
Microsoft ASP.NET Web APIs documentation
(https://dotnet.microsoft.com/en-us/apps/aspnet/apis).
Publishing Web API services to Azure (https://docs.microsoft.com/en-
us/aspnet/core/tutorials/publish-to-azure-api-management-using-
vs).
Publishing Web apps to Internet Information Services
(https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-
iis).
Consuming REST services from Xamarin.Forms
(https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-
cloud/web-services/rest).
Using Web API with Entity Framework
(https://docs.microsoft.com/en-us/aspnet/web-
api/overview/data/using-web-api-with-entity-framework/).

CHAPTER 13
Working with Native API

Introduction
One of the first concepts you have learned about Xamarin.Forms is that, as a
cross-platform technology, it provides a common way to access features that
are available on all the supported systems. However, sometimes you might
need to make a step forward and leverage specific features that require
accessing native APIs via Xamarin.iOS and Xamarin.Android code. As an
example, that is very common in the real-world development, removing the
border of an Entry view requires accessing the native API of the view itself
on all the target platforms. In this chapter, you will learn how to access native
APIs and features of the iOS and Android systems from C# and understand
how you can call native features with a cross-platform approach using the
Xamarin.Essentials library. As you can imagine, it is not possible to discuss
the entire native API and codebase of iOS and Android in one chapter, so you
will be put in the conditions to extend your knowledge on your own after
learning the crucial concepts. This is also the last technical chapter of the
book, which will complete the foundations of mobile app development with
Xamarin.Forms.

Structure
In this chapter, we will cover the following topics:

Working with the device class
Advanced view customizations: Custom renderers
Managing native properties with effects
Displaying native views
Customizing views with platform-specifics
Cross-platform access to native API: Xamarin.Essentials

Objectives
After completing this chapter, you will be able to run code blocks only on
specific devices, and you will know how to change the structure and behavior
of views. In addition, this chapter will help you learn how to include native
iOS and Android views inside Xamarin.Forms code and how to access native
features without using native APIs, with the help of the Xamarin.Essentials
library.

Preparing a sample project
This chapter comes with two companion solutions that you can open with
Visual Studio to better follow the examples. One is called NativeAccess and
relates to accessing device and system features, and one is called
XamarinEssentials, which is about the usage of the Xamarin.Essentials
library.
If you wish to create new project on your own, follow these steps:

1. Create two new Xamarin.Forms solutions called NativeAccess and
XamarinEssentials, respectively, for consistency with the sample
solution.

2. Do not edit or remove the auto generated MainPage.xaml file; it will be
used later.

3. For each new feature discussed in the chapter, add a new item of type
Content Page (XAML). To accomplish this, right-click on the shared
project name and then click on Add New Item in the Context menu.

4. In the Add New Item dialog, click on the Xamarin.Forms node on the
left and then select the Content Page (XAML) item template.

5. Assign to the new XAML file a name that matches the discussed topic
and click on Add.

For each page you add to the project, add an empty StackLayout to the
ContentPage and assign its VerticalOptions property with
CenterAndExpand. Unless specified, this will be the layout of choice for the
code examples in the upcoming pages.

Working with the device class

Sometimes, you might need to run some code only on a specific system or on
a specific device, such as phone, tablet, or desktop computer. You can do this
through a class called Device. Among other things, it exposes two properties
called RuntimePlatform and Idiom, where the first property returns the
system, the application is running on, and the second one returns the type of
device. For better understanding, consider the following code:
// SampleLabel is a Label view in the UI

switch(Device.RuntimePlatform)

{

case Device.iOS:

SampleLabel.FontSize = Device.GetNamedSize(NamedSize.Large,

SampleLabel);

break;

case Device.Android:

SampleLabel.FontSize = Device.GetNamedSize(NamedSize.Medium,

SampleLabel);

break;

case Device.UWP:

SampleLabel.FontSize = Device.GetNamedSize(NamedSize.Medium,

SampleLabel);

break;

case Device.macOS:

SampleLabel.FontSize = Device.GetNamedSize(NamedSize.Large,

SampleLabel);

break;

case Device.WPF:

SampleLabel.FontSize = Device.GetNamedSize(NamedSize.Large,

SampleLabel);

break;

}

RuntimePlatform is of type string and returns a value that represents the
current system, among iOS, Android, UWP (Windows 10 and higher),
macOS, and WPF. The GetNamedSize method returns the named size of the
current font from the target system and is another way to retrieve device-
specific information. For system colors, you can instead call the
GetNamedColor method. Another common use of RuntimePlatform is inside
a simple if block, like the following:
if(Device.RuntimePlatform == Device.Android)

{

// Executes the code here only on Android devices

}

Sometimes, it is also useful to understand the form factor of the current
device, which can be accomplished as follows:

switch(Device.Idiom)

{

case TargetIdiom.Desktop:

// UWP desktop

break;

case TargetIdiom.Phone:

// Phones

break;

case TargetIdiom.Tablet:

// Tablets

break;

case TargetIdiom.Unsupported:

// Unsupported devices

break;

}

The Idiom property, of type TargetIdiom, allows you to understand the
current type of device. It can be useful if you need to make UI adjustments
based on the device type, and it can be combined with RuntimePlatform.

Working with Timers
In Xamarin.Forms, the Device class is also used to create timers. A timer is
an object that allows executing code only at the specified interval of time.
This is accomplished with the StartTimer method, which takes an object of
type TimeSpan and the action to be executed as parameters. The following
code shows an example:
public MainPage()

{

InitializeComponent();

Device.StartTimer(TimeSpan.FromSeconds(30), ShowMessage);

}

private bool ShowMessage()

{

DisplayAlert(“Info”, “30 seconds have passed”, “OK”);

return true;

}

In the example, the ShowMessage method is invoked every 30 seconds. When
you want to stop the timer, your method should return false; otherwise, it
should return true until you want the timer to run.

Running thread-safe code

With advanced programming techniques, you might face situations where
code started from the user interface thread will work on a separate new
thread. If the code running on a separate thread needs to interact with the
elements of the user interface, the runtime will throw an exception for cross-
thread violation. In such situations, you can invoke the
Device.BeginInvokeOnMainThread method, which takes the action to be
executed on the UI thread as parameter. This is an example:
Device.BeginInvokeOnMainThread(ActionToExecute);

…

private void ActionToExecute()

{

// This runs on the UI thread

}

There is also an asynchronous alternative called InvokeOnMainThreadAsync,
which you can use with the await operator, as follows:
await Device.InvokeOnMainThreadAsync(ActionToExecute);

…

private async Task ActionToExecute()

{

// This runs on the UI thread

}

Many developers realize that they need to use the aforementioned
methods only when the debugger throws a thread violation exception,
which is quite normal when you are focused on coding. Especially at the
beginning of your career, this is likely to be your case too. Do not
worry; always debug with attention, and you will be able to fix your
code accordingly.

Device-based content orientation
If you plan to build apps that will be distributed globally, you need to support
different content orientation. In fact, there are cultures that require orienting
content from left to right and cultures that require orienting content from right
to left. The Device class helps you accomplish this directly in XAML by
assigning the FlowDirection property as follows:
<ContentPage FlowDirection=”{x:Static Device.FlowDirection}”>

Generally speaking, the FlowDirection property (available to each view)
allows for specifying content orientation in order to support different

cultures. Pointing to the static, same-named property of the Device class
(x:Static allows for calling static properties from XAML), you will be able
to support orientation based on the device settings.

Conditional XAML: OnPlatform and OnIdiom
Every object is deriving from the VisualElement class, so all views and
layouts allow for specifying different behaviors according to the target
system or device idiom. For example, in most examples so far, you have
added a Padding with value 0,20,0,0 to the pages, and this applies to both
Android and iOS (and it would also apply to other supported platforms like
UWP). However, specifying a padding is only relevant to iOS. For this
reason, you can leverage a markup extension called OnPlatform, which
allows for setting different property values depending on the target system. In
the following example, different padding is applied to different systems:
<ContentPage.Padding>

<OnPlatform x:TypeArguments=”Thickness”

iOS=”0, 20, 0, 0”

Android=”0, 5, 0, 0”

UWP=”0, 10, 0, 0” />

</ContentPage.Padding>

The following is a list of the key points:

The property you wish to assign with a value that is different on each
platform needs to be declared using the extended syntax.
You must specify the OnPlatform markup extension and supply the data
type for the current property via the x:TypeArguments tag. In this
example, Padding is of type Thickness, so the latter is what you need to
specify.
You need to specify one or more supported platforms, like iOS,
Android, and UWP (the latter is shown in the code only for educational
purposes).
OnPlatform also has an expanded syntax that you can leverage if you
want to assign the same value to multiple platforms, like this:
<ContentPage.Padding>

<OnPlatform x:TypeArguments=”Thickness”>

<On Platform=”iOS” Value=”0,20,0,0”/>

<On Platform=”Android, UWP” Value=”0,5,0,0”/>

</OnPlatform>

</ContentPage.Padding>

OnPlatform is commonly used to tweak visual elements that have different
alignment and stretching options on different platforms. You can also assign
different property values depending on the device idiom using the OnIdiom
markup extension. The following example shows how to set the orientation
of a StackLayout depending on the device type:
<StackLayout.Orientation>

<OnIdiom x:TypeArguments=”StackOrientation”>

<OnIdiom.Tablet Value=”Horizontal” />

<OnIdiom.Phone Value=”Vertical” />

</OnIdiom>

</StackLayout.Orientation>

You still need to set x:TypeArguments with the supported data type, and then
you set one or more idioms via OnIdiom.Tablet, OnIdiom.Phone, and
OnIdiom.Desktop.

Advanced view customization: Custom renderers
As you know, Xamarin.Forms provides visual elements that are available on
all the supported platforms, and for such visual elements, it implements
properties and characteristics that are available on all platforms. However,
there are situations where you might need access properties that are only
available in the native API of a view. There can be plenty of reasons to do
this, and most of them are related to the design and implementation of the
user experience. For example, suppose you need to implement an extremely
common requirement: an Entry that has no border. There is no built-in
property that allows you to do this directly, so the only way to accomplish
this is by controlling the backing native view via the so-called custom
renderers. A renderer is a C# class that wraps a native view into a .NET
object. For instance, Xamarin.Forms provides the Label to display static text.
Behind the scenes, a class called LabelRenderer translates the Android’s
TextView and the iOS’ UILabel into the Label you know. For each visual
element, there is a renderer in all the supported platforms, which means that
both iOS and Android implement a LabelRenderer class that translates into a
unified, shared view (the Label), the native views. The built-in renderers are
developed in a way that they expose to the Xamarin.Forms codebase all the
objects that are available cross-platform. This is why your own renderers are
referred to as custom renderers. In the next section, you will learn how to

implement a custom renderer that removes the border from an Entry view.

Defining a custom view
Custom renderers are globally applied to the type they target, so it is always a
good idea to define a new view that derives from the one you want to modify
before creating a new renderer. In the shared project, add a new class called
BorderlessEntry with the following code:
using Xamarin.Forms;

namespace NativeAccess

{

public class BorderlessEntry: Entry

{

}

}

This class is a copy of the Entry view and will be backed by a custom
renderer. This makes it possible to maintain regular Entry views while using
custom ones. You will retake this class after defining the custom renderers.

Defining the Android renderer
In Solution Explorer, right-click on the Android project and then select Add
| Class. Add a new class called BorderlessEntryRenderer.

Tip: You are free to choose the names for your custom renderer
classes; the convention is to combine the name of the custom shared
view with the Renderer suffix. This will help you with code maintenance
and will make it simpler for other developers to understand how
renderers are implemented.

Write the following code, which will be commented below:
using Android.Content;

using Android.Graphics.Drawables;

using Android.OS;

using NativeAccess;

using NativeAccess.Droid.Renderers;

using Xamarin.Forms;

using Xamarin.Forms.Platform.Android;

[assembly: ExportRenderer(typeof(BorderlessEntry),

typeof(BorderlessEntryRenderer))]

namespace NativeAccess.Droid.Renderers

{

public class BorderlessEntryRenderer : EntryRenderer

{

public BorderlessEntryRenderer(Context context) :

base(context)

{

}

protected override void

OnElementChanged(ElementChangedEventArgs<Entry> e)

{

base.OnElementChanged(e);

if (Control != null)

{

Control.Background =

new ColorDrawable(Android.Graphics.Color. Transparent);

}

}

}

}

Every custom renderer overrides the OnElementChanged method, which is the
place where you get the instance of the native view, represented by the
Control property. In this case, the native view is the Android’s
FormTextView. Once you have the instance of the native view, you can
customize its properties and behavior as required. In this case, the entire
background of the view is assigned with a transparent color. It is always
important to enclose the code inside a null check (if(Control != null)) or
inside a try..catch block because a renderer might be invoked before the
view is drawn on screen, especially at the application startup. The next
relevant point in the code is the ExportRenderer attribute. It is responsible
for telling Xamarin.Forms that, across the entire app (assembly specification),
views of type BorderlessEntry must be rendered using this custom renderer
instead of the built-in system renderer (which would be the EntryRenderer in
this case). Now, you can better understand why you created a new
Xamarin.Forms view: if you did not, your renderer would have been globally
applied to all the Entry views in your app, which is not ideal. The next step is
defining a custom renderer for iOS.

Defining the iOS renderer
Following the same steps, add a new class called BorderlessEntryRenderer
to the iOS project in the solution. This time, the code is as follows:

using NativeAccess;

using NativeAccess.iOS;

using System.ComponentModel;

using UIKit;

using Xamarin.Forms;

using Xamarin.Forms.Platform.iOS;

[assembly: ExportRenderer(typeof(BorderlessEntry),

typeof(BorderlessEntryRenderer))]

namespace NativeAccess.iOS

{

public class BorderlessEntryRenderer : EntryRenderer

{

protected override void

OnElementChanged(ElementChangedEventArgs<Entry> e)

{

base.OnElementChanged(e);

if (Control != null)

{

// Clips sublayers to the bounds of the root layer of the

view

Control.Layer.MasksToBounds = true;

// No corner radius

Control.Layer.CornerRadius = 0;

// No border

Control.BorderStyle = UITextBorderStyle.None;

// Minimum border width

Control.Layer.BorderWidth = 1;

// Assign transparent colours

Control.Layer.BorderColor = Color.Transparent.ToCGColor();

}

}

}

}

On iOS, you still apply the ExportRenderer attribute, and you still override
the OnElementChanged method, but this time, the control is an iOS’
UITextField, with its own methods and properties. Now that you have your
custom renderers, you can test them in your user interface.

Applying custom renderers to views
Now that you have defined custom renderers, you need to explicitly use
them. In a page of your shared project, you first need to declare an XML
namespace that references the project and a namespace where the target view
is defined. If you follow the companion solution, the BorderlessEntry class

is defined in the root namespace, which you reference as follows:
<ContentPage xmlns=”http://xamarin.com/schemas/2014/forms”

xmlns:x=”http://schemas.microsoft.com/winfx/2009/xaml”

xmlns:local=”clr-namespace:NativeAccess”

x:Class=”NativeAccess.CustomRenderersPage”>

Now, you can use the view as you would use any other view, declaring it as
follows:
<ContentPage.Content>

<StackLayout Orientation=”Vertical” Padding=”20”>

<Label Text=”Regular Entry:” />

<Entry WidthRequest=”150” BackgroundColor=”Yellow”/>

<Label Text=”Borderless Entry:”/>

<local:BorderlessEntry WidthRequest=”150”

BackgroundColor=”Yellow” />

HorizontalOptions=”FillAndExpand”/>-->

</StackLayout>

</ContentPage.Content>

If you run this code, the runtime will apply the appropriate custom renderer
depending on the platform the app is running on. Figure 13.1 shows the result
of the example, with a regular Entry and a BorderlessEntry:

Figure 13.1: Applying a custom renderer

More information on custom renderers
Because every visual element in Xamarin.Forms relies on renderers and on
native Android and iOS views, and creating custom renderers totally depends
on your requirements, it is not possible to discuss custom renderers further,
but it is convenient to summarize a few key points that will be useful for you
as a developer:

It is best practice to define a dedicated view in the shared project.
Custom renderers for all platforms are applied via the ExportRenderer

attribute.
In most cases, you override the OnElementChanged method to get the
instance of the native view on all supported platforms.
You can create custom renderers even for third-party components.
Referring to the Xamarin.iOS (https://docs.microsoft.com/en-
us/xamarin/ios/user-interface/controls/) and Xamarin.Android
(https://docs.microsoft.com/en-us/xamarin/android/user-
interface/controls/) native views documentation is the most important
thing to do when you need to address a requirement that has no cross-
platform implementation.

Having that said, it is also important to bookmark the official documentation
page about custom renderers, which is https://docs.microsoft.com/en-
us/xamarin/xamarin-forms/app-fundamentals/custom-renderer/.

Managing native properties with effects
Sometimes, you might want to implement customizations on native views,
but you only need to change some of their properties, without redefining the
overall behavior of the view itself. In this case, you can avoid custom
renderers and take advantage of effects. An effect is a class that derives from
Xamarin.Forms.RoutingEffect in the shared code, with platform-specific
implementations that derive from
Xamarin.Forms.Platform.Android.PlatformEffect and
Xamarin.Forms.Platform.iOS.PlatformEffect, respectively. For better
understanding, suppose you want to specify a maximum length for the text
inside an Entry. At this purpose, consider the following XAML code:
<Label Text=”Entry with an effect:” />

<Entry WidthRequest=”120” x:Name=”DataEtry”>

<Entry.Effects>

<local:MaxLengthEffect MaxLength=”8” />

</Entry.Effects>

</Entry>

Tip: For convenience, the preceding code can be added after the two
Label/Entry groups of the example about custom renderers.

Every view exposes a collection called Effects and can contain one or more
effects. In this example, an effect called MaxLengthEffect is applied, and a

property called MaxLength is assigned with an integer. Now, the goal is to
implement the effect and the platform-specific code for both Android and
iOS.

Declaring effects
In your shared project, add a new class called MaxLengthEffect with the
following code:
public class MaxLengthEffect : RoutingEffect

{

public MaxLengthEffect() : base($”MyCompanyName.

{nameof(MaxLengthEffect)}”)

{

}

public int MaxLength { get; set; }

}

The class inherits from RoutingEffect so that Xamarin.Forms knows that it
is an effect. The constructor contains a reference to a so-called resource
group. A resource group can be considered as a container of effects, so you
define a root prefix (MyCompanyName in this case) followed by a dot, and then
you supply an identifier for the effect. By convention, you use the name of
the effect itself. Defining a resource group and an effect identifier is
important because it is used by Xamarin.Forms to identify and apply an
effect. Then, you can define all the properties and methods your effect needs.
For the current example, you only need an int property that can be assigned in
XAML, as you saw at the beginning of this section. There is nothing else to
do on the side of the shared code unless you want to customize the effect
further.

Implementing platform-specific effects
Like custom renderers, effects also have a platform-specific implementation,
which is necessary to set the native view’s properties. Starting with the
Android implementation, add a new class called MaxLengthEffectPlatform
to the Droid project with the following code:
using Android.Widget;

using NativeAccess;

using NativeAccess.Droid;

using System;

using System.Linq;

using Xamarin.Forms;

using Xamarin.Forms.Platform.Android;

[assembly: ResolutionGroupName(“MyCompanyName”)]

[assembly: ExportEffect(typeof(MaxLengthEffectPlatform),

nameof(MaxLengthEffect))]

namespace NativeAccess.Droid

{

public class MaxLengthEffectPlatform : PlatformEffect

{

protected override void OnAttached()

{

try

{

var sharedEffect = (MaxLengthEffect)

Element.Effects.FirstOrDefault(e => e is

MaxLengthEffect);

TextView editEntry = Control as TextView;

editEntry?.SetFilters(new Android.Text.IInputFilter[]

{

new Android.Text.

InputFilterLengthFilter(sharedEffect.MaxLength)

});

}

catch (Exception ex)

{

//Catch any exception

}

}

protected override void OnDetached()

{

}

}

}

The namespace block must be decorated with the ResolutionGroupName
attribute, which specifies the resolution group that the current effect belongs
to. Similarly, to custom renderers, where you apply the ExportRenderer
attribute, you also need to apply the ExportEffect attribute, passing the
name of the platform-specific implementation and the shared effect name as
parameters. Deriving from the PlatformEffect class requires implementing
two methods: OnAttached and OnDetached. The first method is invoked when
the effect is being applied, whereas the second one is invoked when the effect
is being removed. OnDetached is only necessary when you have code that
explicitly removes the effect from the collection. What OnAttached does in
the previous code is listed here:

It retrieves the first effect of type MaxLengthEffect from the caller view
(Element).
It retrieves the native Android TextView, converting Control, of type
object, into a specialized instance.
It adds a new filter of type InputFilterLengthFilter to the TextView
via the SetFilters method.

With this code, it will not be possible to write more than the specified number
of characters. This will be demonstrated further on in the chapter, but first
you need to add the platform-specific implementation for iOS. Add a
MaxLengthEffectPlatform class to the iOS project and write the following
code:
using Foundation;

using NativeAccess.iOS;

using System;

using System.Linq;

using UIKit;

using Xamarin.Forms;

using Xamarin.Forms.Platform.iOS;

[assembly: ResolutionGroupName(“MyCompanyName”)]

[assembly: ExportEffect(typeof(MaxLengthEffectPlatform),

“MaxLengthEffect”)]

namespace NativeAccess.iOS

{

public class MaxLengthEffectPlatform : PlatformEffect

{

protected override void OnAttached()

{

try

{

var sharedEffect =

(MaxLengthEffect)Element.Effects.

FirstOrDefault(e => e is MaxLengthEffect);

UITextField nativeEntryView = Control as UITextField;

if (nativeEntryView != null)

{

nativeEntryView.ShouldChangeCharacters = (UITextField

textField,

NSRange range, string replacementString) =>

{

var length = textField.Text.Length - range.Length +

replacementString.Length;

return length <= sharedEffect.MaxLength;

};

}

}

catch (Exception ex)

{

//Catch any exception

}

}

protected override void OnDetached()

{

}

}

}

In iOS, the UITextField native view does not include the capability to
directly add filters, so the code assigns the ShouldChangeCharacters

property with an anonymous method that replaces the original content of the
view with a string whose length is limited by the MaxLength property of the
effect.

Testing the code
If you run the sample application, you will get a result similar to what you
see in Figure 13.2:

Figure 13.2: Applying an effect

If you type inside both Entry views, you will be prevented from adding more
than the specified number of characters. Effects can be useful in many
situations, but their usage makes sense only when you do not need to redefine
the behavior of the native view.

Displaying native views
Xamarin.Forms also gives you the option to embed native Android and iOS
views in your XAML. Assuming that you have a page where you want to test
this scenario, you must declare the following XML namespaces:
<?xml version=”1.0” encoding=”utf-8” ?>

<ContentPage xmlns=”http://xamarin.com/schemas/2014/forms”

xmlns:x=”http://schemas.microsoft.com/winfx/2009/xaml”

xmlns:ios=”clr-namespace:UIKit;assembly=Xamarin.

iOS;targetPlatform=iOS”

xmlns:androidWidget=”clr-namespace:Android.

Widget;assembly=Mono.Android;targetPlatform=Android”

xmlns:formsandroid=”clr-namespace:Xamarin.

Forms;assembly=Xamarin.Forms.Platform.

Android;targetPlatform=Android”

x:Class=”NativeAccess.NativeViewsPage”>

<ContentPage.Content>

</ContentPage>

For iOS, you need to import the UIKit namespace from the Xamarin.iOS
library. For Android, you need two namespaces: Android.Widget, which
allows embedding native views, and the partial Xamarin.Forms namespace
from the Xamarin.Forms.Platform.Android library, which is necessary to
retrieve the context of the user interface. Once you have these namespaces,
you can quickly embed native views. The following example demonstrates
how to show native labels (TextView for Android and UILabel for iOS):
<StackLayout>

<ios:UILabel Text=”Native Text”

View.HorizontalOptions=”Start”/>

<androidWidget:TextView Text=”Native Text”

x:Arguments=”{x:Static formsandroid:Forms.Context}” />

</StackLayout>

As you can see, for Android, you need to pass the UI context to the
constructor of the view, with the x:Staticformsandroid:Forms.Context
syntax. You can then assign properties, invoke methods and handle events
exactly as you would do with any other Xamarin.Forms view.

Tip: Knowing how to embed native views in your shared code is part of
your knowledge, but it is something that you might want to avoid when
possible. You should only take advantage of this feature when you must
include a view for which there is no Xamarin.Forms counterpart. Also,
do not forget that the XAML editor has limited support for this feature.

Customizing views with platform-specifics
The biggest benefit of Xamarin.Forms is that it allows consuming, from a
shared codebase, views with their properties that are available on all the
supported platforms. Previously, you saw how you can take advantage of

custom renderers to expose to Xamarin.Forms features that are not cross-
platform. For simpler situations, Xamarin.Forms provides the so-called
platform-specifics. This feature simplifies consuming functionalities that are
only available on a given platform. This means that a platform-specific
available for Android might not be available for iOS and vice versa. For
example, the separator in the ListView on iOS is not full width. Instead of
creating a custom renderer, you can leverage a platform specific. This is
accomplished with the following code:
<?xml version=”1.0” encoding=”utf-8” ?>

<ContentPage xmlns=”http://xamarin.com/schemas/2014/forms”

xmlns:x=”http://schemas.microsoft.com/winfx/2009/xaml”

xmlns:ios=”clr-namespace:Xamarin.Forms.

PlatformConfiguration.iOSSpecific;assembly=Xamarin.

Forms.Core”

x:Class=”NativeAccess.ExamplePlatformSpecifics”>

<ContentPage.Content>

<StackLayout>

<ListView ios:ListView.SeparatorStyle=”FullWidth”

x:Name=”FullSeparatorListView”>

</ListView>

</StackLayout>

</ContentPage.Content>

</ContentPage>

On iOS, you need to import the
Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, whereas
on Android, you need to import the
Xamarin.Forms.PlatformConfiguration.AndroidSpecific namespace. In
order to consume a platform-specific, you type the namespace identifier
followed by a colon and the property you want to customize. The following
Android platform-specific instead demonstrates how to enable zooming
contents on a WebView:
<?xml version=”1.0” encoding=”utf-8” ?>

<ContentPage xmlns=”http://xamarin.com/schemas/2014/forms”

xmlns:x=”http://schemas.microsoft.com/winfx/2009/xaml”

xmlns:android=”clr-namespace:Xamarin.Forms.

PlatformConfiguration.

AndroidSpecific;assembly=Xamarin.Forms.Core”

x:Class=”NativeAccess.PlatformSpecificsPage”>

<ContentPage.Content>

<StackLayout>

<WebView Source=”https://www.microsoft.com”

android:WebView.EnableZoomControls=”true”

android:WebView.DisplayZoomControls=”true” />

</StackLayout>

</ContentPage.Content>

</ContentPage>

The code is easy to understand. The real point is that the first platform-
specific is only available on iOS, whereas the second one is only available on
Android, but they both avoid implementing custom renderers for these simple
situations. The official documentation provides a long list of platform-
specifics for both Android (https://docs.microsoft.com/en-
us/xamarin/xamarin-forms/platform/android/) and iOS
(https://docs.microsoft.com/en-us/xamarin/xamarin-forms/platform/ios/).
You also have the option to apply platform-specifics in C# code. This can be
accomplished by invoking the On extension method, as follows:
WebView1.On<Android>

().EnableZoomControls(true).DisplayZoomControls(true);

You specify the target platform as the method’s type parameter, and then,
with the help of IntelliSense, you can walk through the list of available
platform-specifics. This is another way to discover what is available if you do
not want to read the documentation. Obviously, you first need to add
appropriate using directives pointing to the platform-specific namespaces
before you can invoke the On method and its members.

Accessing device features: The DependencyService
class
So far, you have seen how to access native API in order to customize
elements of the user interface, but this is only a part of what you can do. In
fact, sometimes you will need to access platform-specific features from the
device hardware or the operating system, which need to be consumed from
the shared project. Xamarin.Forms provides the DependencyService class to
work with these scenarios. The programming pattern based on this class
requires you to define an interface in the shared project, with one or more
members that will need a platform-specific implementation and will do the
real work. For better understanding, imagine that you need to retrieve the
language set on the operating system. Add the following interface to the
shared project:
public interface IDeviceInfo

{

string GetSystemLanguage();

}

The shared code will invoke a GetSystemLanguage method to retrieve the
system language, and the implementation is demanded to the platform-
specific projects. In the Android project, add a new class called DeviceInfo
with the following code:
using System.Globalization;

namespace NativeAccess.Droid

{

public class DeviceInfo : IDeviceInfo

{

public string GetSystemLanguage()

{

return CultureInfo.CurrentCulture.ToString();

}

}

}

On Android, you can simply retrieve the current OS language via the
CultureInfo.CurrentCulture object. On iOS, things work differently,
which is why you need two different implementations of the interface. Add a
DeviceInfo class to the iOS project with the following code:
using Foundation;

namespace NativeAccess.iOS

{

public class DeviceInfo : IDeviceInfo

{

public string GetSystemLanguage()

{

return NSLocale.PreferredLanguages[0];

}

}

}

On iOS, you retrieve the OS language by getting the first item in the
PreferredLanguages collection of the NSLocale class, which is an object that
allows for accessing the local culture information. Now that you have both
the implementations, you need a way to consume the information from the
shared project regardless of the target operating system. This can be
accomplished with the following line:
string osLanguage = DependencyService.Get<IDeviceInfo>

().GetSystemLanguage();

The Get method requires the interface as type parameter to retrieve the
instance of the appropriate implementation, depending on the current system.

Once you have the instance, you can invoke the members (in this case,
GetSystemLanguage) and get the desired results. In the past, the
DependencyService class was intensively used to access many native
features, such as file information, SMS user interface, screen information,
and sensors. This is certainly powerful but implies studying and remembering
hundreds of native API. Luckily enough, in the last 3 years, Microsoft has
been working hard on a library called Xamarin.Essentials, which simplifies
accessing native features from shared code, eliminating the need for
DependencyService in many cases. This is the reason why no other examples
are offered about this pattern, in favor of simpler yet effective native access
from shared code.

Cross-platform access to native API:
Xamarin.Essentials
Xamarin.Essentials is a .NET library specifically designed for
Xamarin.Forms; it exposes objects that allow for accessing native, platform-
specific features from a shared project without the need for implementing the
dependency service pattern. When you create a new Xamarin.Forms solution,
Xamarin.Essentials is automatically added to the project dependencies.
You can quickly verify this by expanding the Dependencies node in
Solution Explorer. If you need to work on existing projects that do not
have this library referenced and want to add it, you can install it via NuGet.

The purpose of Xamarin.Essentials is to make it simpler to access
native features that are available on all platforms. For example, you
can access the GPS sensor without using the dependency service
pattern, but you will be able to leverage sensor features that are
commonly available on both Android and iOS (which is usually enough,
by the way). If you need further control, you will still need to
implement the dependency service.

Xamarin.Essentials provides hundreds of objects, so in this section, you
will learn how to be ready for the real-world development by focusing on
those features that most apps need to implement. You can follow the code
examples opening the XamarinEssentials companion solution in Visual
Studio. Remember to add the following directive to the code files that use

Xamarin.Essentials: using Xamarin.Essentials;.

Checking the network connection
If your application works over a network, such as the internet or a local
intranet, you must implement a check of the connection status before
launching any operation that needs a connection. If you do not do this, your
application will raise unhandled errors and will provide a very poor user
experience. To solve this, you can use the Connectivity class and subscribe
its ConnectivityChanged event, as follows:
Connectivity.ConnectivityChanged +=

Connectivity_ConnectivityChanged;

You should subscribe to this event in the constructor of a page or in the App
class definition. The event handler for ConnectivityChanged takes an object
of type ConnectivityChangedEventArgs as the second parameter, which
provides information on the network connection status:
private async void Connectivity_ConnectivityChanged

(object sender, ConnectivityChangedEventArgs e)

{

switch (e.NetworkAccess)

{

case NetworkAccess.Internet:

// App is connected to the Internet:

break;

case NetworkAccess.Local:

// App is connected to a local newtwork

break;

case NetworkAccess.ConstrainedInternet:

// App has limited connection to the Internet

break;

case NetworkAccess.None:

// App is not connected

break;

default: // Unknown

break;

}

}

More specifically, the NetworkAccess enumeration returns the status of the
network connection. When None or Unknown, or when your code necessarily
requires the Internet and NetworkAccess returns a different value, you should
inform the user about the lack of connectivity and cancel the requested
operation. You can also quickly detect the so-called connection profile that

allows you to understand if the device is connected via ethernet cable
(common on UWP desktop apps), Wi-Fi, cellular network, or Bluetooth. The
following code shows an example:
if(Connectivity.NetworkAccess != NetworkAccess.None)

{

var profiles = Connectivity.ConnectionProfiles;

if(profiles.Contains(ConnectionProfile.WiFi) ||

profiles.Contains(ConnectionProfile.Ethernet))

{

// Ethernet or WiFi connection, all good

}

else if(profiles.Contains(ConnectionProfile.Cellular))

{

// Inform the user about possible charges of their data plan

}

else if (profiles.Contains(ConnectionProfile.Bluetooth))

{

// Bluetooth is also available

}

else

{

// Handle unknown status

}

}

The ConnectionProfiles collection is populated with a list of values that
represent currently active connections on the device. For example, if Wi-Fi,
cellular data, and Bluetooth are all enabled on the device, the collection will
contain the ConnectionProfile.WiFi, ConnectionProfile.Cellular, and
ConnectionProfile.Bluetooth values. The ConnectionProfiles property
is extremely useful; for example, if it only contains the Cellular value, you
should inform your users that they might be charged for the usage of their
data plan by their carrier. You are not responsible for their data plan, but you
are informing them.

Tip: On Android, remember to add the ACCESS_NETWORK_STATE

permission to enable retrieving the connection status.

Checking the battery status
One of the biggest differences between mobile app development and desktop
or web development is that mobile apps run on devices powered by a battery.

This is an important point because you must handle situations where the
battery power is low, especially if your app manages data. By default, both
Android and iOS show an alert to the user when the battery level reaches
20%, so it is not necessary to show additional warning messages and bore the
user. However, when the battery level is critically down, you must find a way
to save data or give the user an option to choose what to do. The
Xamarin.Essentials library provides the Battery class, which exposes,
among others, the EnergySaverStatusChanged event, which is fired when the
device enters the energy saving mode. An example will be provided, but it
involves other objects. More specifically, the Battery class exposes the
following members:

ChargeLevel, of type double, that returns the current battery level
between 0 and 1, where 0 means discharged and 1 means fully charged.
BatteryState, an enumeration of type BatteryState, that returns the
state of the battery represented by one of the values described in Table
13.1:

State Description

Charging The battery is charging.

Discharging The battery is discharging. This is also the current status once the
device is disconnected from a power source.

NotCharging The battery is not being charged.

NotPresent Battery not found (for example, on a desktop computer).

Unknown The battery status could not be detected.

Table 13.1: The BatteryState enumeration

PowerSource, of type BatteryPowerSource, which returns information
about how the device is being powered with one of the values
summarized in Table 13.2:

Power source value Description

Battery The device is powered by the battery.

AC The device is connected to an AC unit.

Usb The device is receiving power through a USB cable.

Wireless The device is powered via wireless charging.

Unknown The power source could not be detected.

Table 13.2: The BatteryState enumeration

Tip: On Android, remember to add the BATTERY_STATS permission to
enable access to the battery info.

The most efficient way to handle battery status changes is to subscribe to the
EnergySaverStatus event in the constructor of the App class, as follows:
Battery.EnergySaverStatusChanged +=

Battery_EnergySaverStatusChanged;

The event handler needs to check whether the battery level is less than 20%
and if energy saving is on:
private void Battery_EnergySaverStatusChanged(object sender,

EnergySaverStatusChangedEventArgs e)

{

MessagingCenter.Send(this, “BatteryEvent”, e.EnergySaverStatus

==

EnergySaverStatus.On && Battery.ChargeLevel <= 0.2);

}

As the App class cannot do anything on the user interface, when the event is
intercepted and handled, a broadcast message is sent to any object that has
subscribed for it. For example, a view could subscribe for such a message, as
follows:
MessagingCenter.Subscribe<App, bool>(this, “BatteryEvent”,

ManageBatteryLevelChanged);

Additionally, in the ManageBatteryLevelChanged method, the view could
save data locally or do anything else that could be required in order to
prevent data loss in case the battery suddenly goes down very fast.
Remember that handling the battery status with applications that allow users
to enter data is not an option. You are responsible for keeping user data in a
good state and make them safe at all times.

Sending emails and SMS messages
It is not uncommon for mobile apps to offer the possibility to send emails and
SMS messages. An example is providing contact options. This section
describes both scenarios and shows how easy it is to send both kind of
messages with Xamarin.Essentials.

Sending emails
Xamarin.Essentials exposes the Email class, which exposes the
ComposeAsync method, among others. When invoked, this method launches
the system default email client, so there is no need to build your own user
interface. This is the recommended approach for at least two reasons:

Users are comfortable with an email client they already know.
You do not take responsibility over security of the email exchange.

In order to send an email, you first create an instance of the EmailMessage
class and populate its self-explanatory properties, as follows:
EmailMessage message = new EmailMessage();

message.Subject = “Contact request”;

message.To = new List<string> { “support@yourcompany.com” };

message.Cc = new List<string> { “marketing@mycompany.com” };

message.BodyFormat = EmailBodyFormat.PlainText;

message.Body = “We would need to meet your developers to suggest

features.”;

Note how you can add multiple recipients via a List<string>. Note how the
EmailBodyFormat enumeration allows for specifying PlainText or Html as
the email format. In the case of HTML, you will need to pass the body as a
string containing HTML. The last step is the following simple invocation:
await Email.ComposeAsync(message);

This will launch the default email client on the target device, supplying a pre-
configured email message. It is also possible to specify attachments. Every
attachment is represented by an instance of the EmailAttachment class,
which is added to the Attachments collection as follows:
string attachmentPath = Path.Combine(Environment.GetFolderPath(

Environment.SpecialFolder.MyPictures),

“attachedImage.jpg”);

EmailAttachment attachment = new

EmailAttachment(attachmentPath);

message.Attachments = new List<EmailAttachment>();

message.Attachments.Add(attachment);

In the previous code, an image file residing in the local photo gallery is
attached to the email message. It will be responsibility of the client to upload
and send the attachment along with the message.

Sending SMS messages

In the era of free messaging apps working over the internet, SMS messages
might seem anachronistic. However, there are plenty of reasons to still use
them, and the most important one is that they work even if there is no internet
connection. The Sms class allows for sending SMS messages, and you have a
few options. The following line of code shows the system user interface to
send SMS messages with empty fields:
Sms.ComposeAsync();

You could also prepare an SMS message as follows:

var message = new SmsMessage();

message.Body = “Text of the message”;

message.Recipients = new List<string>{“Alessandro Del Sole”};

Sms.ComposeAsync(message);

In this second example, you create an instance of the SmsMessage class,
assigning the text for the message to the Body property and the list of
recipients to the Recipients property. The latter is any collection that
implements IEnumerable<string>, and obviously, you must ensure that the
name of the recipient matches a name in the contact list of the device. You
could pass the body and the list of recipients to the constructor of the
SmsMessage class, but then you would be forced to pass both. With the
proposed approach, you can just create the body and make the user select
recipients from the more convenient system user interface.

Opening contents
Another common option with mobile apps is opening external contents, such
as websites or applications on the device. This section describes how to
handle both scenarios.

Opening the web browser
For websites or any web hosted content, you can open the default web
browser. Though Xamarin.Forms provides the WebView to display web and
HTML contents, this is not the recommended approach at times. For
example, if your app needs to display advice from a medical website, opening
the content with a WebView gives the user the perception that the information
is provided by you. Instead, the information is provided by third parties, and
this should be very clear to the user, especially when you display sensitive
information such as medical data and payout information on e-commerce
sites. Opening the default web browser is possible with just one line of code,

as follows:
await Browser.OpenAsync(“https://www.microsoft.com”);

The OpenAsync method from the Browser class simply takes the target
address as the parameter. For example, if no changes have been made, this
will open Chrome on Android and Safari on iOS.

Opening default apps
It is also possible to open specified resources with the dedicated, default apps
on the device. For instance, you can open a remote PDF document with the
default viewer on the target device as follows:
string url = “https://www.someproducts.com/usermanual.pdf”;

if(await Launcher.CanOpenAsync(url))

await Launcher.OpenAsync(url);

The Launcher class exposes the CanOpenAsync method, which you should
first invoke to make sure that the device has viewers for the specified
resources. If it returns true, you can then invoke OpenAsync to open the
resource.

Storing user preferences
You already got an example of storing local preferences and settings in
Chapter 11: Managing the Application Lifecycle, so you will get more details
in this section. The Preferences class allows for locally storing and
retrieving key/value pairs, where the key uniquely identifies the information,
and the value can be one of the .NET primitive types. The following code
shows an example:
// Stores an integer

Preferences.Set(“NumberOfTapsPerAction”, 2);

// Stores a DateTime

Preferences.Set(“LastDateTimeAccess”, DateTime.Now);

// Checks if the key exist

if (Preferences.ContainsKey(“NumberOfTapsPerAction”))

// Returns the value for the key, and a default value

// if the key is not found

Preferences.Get(“NumberOfTapsPerAction”, 0);

The Get method allows you to specify a default value in case the key does not
exist, so checking with ContainsKey is not mandatory. However, this method
can just be useful to detect the existence of the key. It is also possible to

remove individual keys or everything with the Remove and Clear methods,
respectively, as follows:
// Remove an individual key

Preferences.Remove(“NumberOfTapsPerAction”);

// Remove all preferences

Preferences.Clear();

On Android, preferences are stored in the system’s shared preferences
(https://developer.android.com/training/data-storage/shared-
preferences). On iOS, preferences are stored in the User Defaults system
database (https://docs.microsoft.com/en-us/xamarin/ios/app-
fundamentals/user-defaults). Preferences are a convenient way to quickly
store small pieces of information, but they are not secured. For a more secure
way to store local information, you can use the secure storage, which will be
discussed in the next section.

When an app is uninstalled, local preferences are also removed.

Storing secure settings
Sometimes, it is necessary to store settings locally, in a secured way; for
example, in the case of passwords or any sensitive information that could
identify the user. For this purpose, both Android and iOS provide secure local
storages. On Android, this is represented by the KeyStore
(https://developer.android.com/training/articles/keystore), whereas on
iOS, it is represented by the KeyChain
(https://developer.apple.com/documentation/security/keychain_services).
There are important differences between preferences and secure storage:

Preferences are stored in a space that is reserved for the app and are
removed when the app is uninstalled.
Secure storages are at the system level, which means information stored
in the secure storage is not removed when an application is uninstalled
and require a few more checks from the developer.
Preferences support any .NET primitive type, but the secure storage
only supports the string type.

Having that said, Xamarin.Essentials offers the SecureStorage class,
which you use as follows:

https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/articles/keystore
https://developer.apple.com/documentation/security/keychain_services

// Add a key/value pair to the secure storage

await SecureStorage.SetAsync(“UserID”, “123456”);

// Get a key/value pair from the secure storage

string userIDValue = await SecureStorage.GetAsync(“UserID”);

// Removes the specified key from the secure storage

SecureStorage.Remove(“UserID”);

In summary, SetAsync saves the specified string value under the assigned
key, whereas GetAsync retrieves the string value of the specified key and
returns null if no key is found. The Remove method removes the specified key
from the storage. Another method, RemoveAll, removes all the keys from the
secure storage; you should completely avoid using it.

Tip: You can certainly trust the secure storage. However, if you want
an additional level of security, you can use one of the .NET encryption
algorithms to encrypt a string and save this one to the secure storage,
and then you can decrypt the string when you read it back from the
secure storage. This can be a good approach when your app manages
very sensitive data, such as bank accounts or medical data.

Secure settings with app version tracking
As mentioned earlier, keys are not removed from the secure storage when an
app is uninstalled because the secure storage is shared at the OS level. An app
can be uninstalled and then reinstalled at a later stage; so, if it uses the secure
storage, it is important to provide a fresh environment. To accomplish this,
you can combine the SecureStorage class with the VersionTracking class
(this is also offered by Xamarin.Essentials). The latter provides members
that allow for version tracking, including a way to understand whether the
app is running for the first time on the device. Consider the following code:
private async Task<bool> IsAppRunningForFirstTime()

{

if (VersionTracking.IsFirstLaunchEver)

{

string userID = await SecureStorage.GetAsync(“userID”);

if (userID != null)

SecureStorage.Remove(“userID”);

return true;

}

return false;

}

The VersionTracking.IsFirstLaunchEver method returns true if the app is

running on the device for the very first time. In this case, the goal would be to
provide a fresh environment so that the code checks whether the specified
key already exists and removes the key if so. In order to enable version
tracking, you need to add the following line of code to the constructor of the
App class:
VersionTracking.Track();

Other useful members from the VersionTracking class are listed here:

IsFirstLaunchForCurrentVersion returns true if the current version of
the app is running for the first time on the device.
IsFirstLaunchForCurrentBuild returns true if the current build of the
app is running for the first time on the device.
VersionHistory is an IEnumerable<string> object that contains the
list of versions of the app that have been installed on the device.
CurrentVersion contains the version number of the app.
CurrentBuild contains the build number of the version.

The VersionTracking class can be extremely useful when you want to
implement a mechanism for providing mandatory updates or offer updated
content that needs to be downloaded before people can use the app.

More essentials API
Xamarin.Essentials has dramatically improved, especially over the last
year: many new cross-platform APIs have been added to the library. This
chapter has described objects that are of common usage in a variety of
applications, but there is certainly much more. For example,
Xamarin.Essentials makes it simpler to access hardware devices such as
gyroscope, accelerometer, orientation sensor, and GPS services. The full list
of supported APIs, which grows with every new release, with code examples
is available in the official Microsoft documentation
(https://docs.microsoft.com/en-us/xamarin/essentials/). In addition, keep
in mind the following three considerations every time you implement features
that collect personal data, such as geolocation: you must explicitly ask the
user for permission to enable sensors and collect data, you must supply a
clear privacy policy that explains why you need one or more sensors enabled
and which data you collect (and what you do with it), and you must provide

users with a way to remove their consent at any time. These are mandatory
things to do according to the publishing guidelines for both the Apple Store
and the Google Play. Moreover, most countries have laws that protect users’
privacy, so whenever you are in doubt, check with a lawyer.

Hints about plugins
The goal of unifying access to native APIs into shared code has always been
important to the developer community worldwide. So, during the years,
individual developers, including Microsoft employees, have built the so-
called plugins, libraries that enable for accessing native iOS and Android
features from the Xamarin.Forms project. Xamarin.Essentials was actually
born long after plugins, with the same idea in mind, but with many features in
one place. A lot of plugins still exist, and many of them can still be found in
real-world projects. They can be installed from NuGet, and almost all of them
are free. Figure 13.3 shows a list of plugins in NuGet:

Figure 13.3: A list of Xamarin.Forms plugins

For example, the Xam.Plugin.Media plugin makes it easy to capture pictures
and videos from the device’s camera in a cross-platform approach, whereas
the Plugin.Fingerprint plugin enables quick implementation of biometric
authentication. Every plugin has its own documentation, which you can find
by clicking on the link that appears every time you select a plugin in the list.
Some plugins are no longer maintained, and some of them have been
embedded into Xamarin.Essentials, so you should avoid plugins when
possible and rely on Xamarin.Essentials. If you need to implement

functionalities that Xamarin.Essentials does not support but plugins do,
make sure they are maintained by checking the release history on the plugin
support page.

Conclusion
The biggest benefit of Xamarin.Forms is that it provides a unified, cross-
platform way to access features that are available on different systems.
However, sometimes you need to access native views and device features.
When it comes to views, you can use custom renderers for deep view
customizations and behavioral changes, whereas you can use effects for
customizations that do not require changing the behavior of the view. You
can also embed native views directly in your XAML markup, or you can use
platform-specifics to assign native properties to Xamarin.Forms views. When
it comes to accessing device and system features, you can use the
DependencyService class and the same-named pattern. However, a more
modern approach is to use the Xamarin.Essentials library, which provides a
large set of .NET API to access native system features from Xamarin.Forms
code. The discussion about accessing native APIs also marks the end of the
technical chapters of this book. Now that you have all the necessary
knowledge, you need to either start working on new projects or on existing
projects. In the next two chapters, you will find a lot of useful advice about
finding a good job and how to stay successful in the software industry.

Key terms
Thread-safe: Code that lives inside a thread, along with the resources it
uses.
Renderer: A C# class that makes it possible to expose a native Android
and iOS view to Xamarin.Forms.
Platform-specifics: A feature that allows assigning native properties to
Xamarin.Forms views directly in XAML.
Dependency service: A Xamarin.Forms programming pattern based on
native implementations of an interface, whose members are invoked in
the shared project regardless of the target system.

Suggested readings
Custom renderers documentation (https://docs.microsoft.com/en-
us/xamarin/xamarin-forms/app-fundamentals/custom-renderer/).
Effects documentation (https://docs.microsoft.com/en-
us/xamarin/xamarin-forms/app-fundamentals/effects/).
Dependency service documentation (https://docs.microsoft.com/en-
us/xamarin/xamarin-forms/app-fundamentals/dependency-
service/introduction).
Xamarin.Essentials documentation (https://docs.microsoft.com/en-
us/xamarin/essentials/).

CHAPTER 14
Finding a Job

Introduction
As a Xamarin jobseeker, you will probably want to practice what you have
learned from a technical point of view by getting a job that requires you to
use your skills. In this chapter, you will find many useful suggestions about
searching for jobs that are related to your skills and profile, and you will also
find information about preparing for job interviews. Obviously, these
suggestions not only apply to Xamarin-related jobs but to various positions in
information technology. Finally, as you might have noticed, the word
suggestions is used because there are literally no rules. Every person can have
a different approach to searching for a job and applying for a position, but
some general recommendations can be useful to everyone.

Structure
In this chapter, we will cover the following topics:

Preparing your resume
Finding jobs, the modern way: Using LinkedIn
A step forward: Attracting jobs
Preparing for job interviews

Objectives
After completing this chapter, you will have learned about modern ways for
finding jobs as a mobile app developer working with Xamarin. You will have
discovered ways to not only search for jobs but also to attract them.

Preparing your resume
The resume is a crucial document when it comes to finding a job. It

summarizes who you are, what your experience is, what studies you have
completed, and what value you can bring to the company that is hiring you.
On the internet, you can find thousands of resume templates and choose one
that best fits your taste; however, it is important that you make the following
considerations:

Keep it concise: Two pages are more than enough. A recruiter needs to
focus on key information, not on the story of your life (at least in a first
contact).
Add a profile picture: It gives the perception of reading the resume of
a real person, especially in today’s times of remote connections.
Contact information: Add your basic contact information and date of
birth.
Add an honest and realistic list of your technical skills: This is the
first thing that an employer will look at. Do not lie when it comes to
this.
Add your highest school degree only: If you have attended university,
add your university degree; otherwise, add your high school degree.
There is no need to add all your scholar story, unless it is relevant to the
position you apply for.
Certified expertise: Add any certifications or courses that are relevant
to the position you are applying for.
Existing experience: If you have prior work experience, add a
summary with a short description of what you have done in each job.
Make it consistent: If you apply for a job that requires experience with
Xamarin, only add details of your skills about Xamarin, .NET and
technologies you generally use with Xamarin (for example, Web API,
SQL, Azure). For other skills, write a short summary in one line.
Online presence: Add links to professional social media profiles, such
as LinkedIn, and to public code repositories you might have, such as
GitHub. For some companies, this really makes a difference.
Personal life: Write one or two lines about your personal interests and
hobbies outside of work.

Most employers and recruiters know you will send your resume to multiple
companies, so it is generally appreciated when they understand you wrote

one that is tailored to their needs. In general, always be honest. Do not say
you have experience in something only to address a company’s requirements
and attract interest. Saying something false is not the best way to start
establishing a trustworthy relationship between you and a company. In
addition, do not over evaluate skills that are the basis for working in the IT
world. For example, even if you are the best in using Excel, do not write that
you are Excel’s god. Simply mention that you have strong knowledge of the
Office package. Honesty and simplicity are keys to a good start. Finally,
update the date on your resume every time you send it to a different
company, print it, add your signature, scan it, and send it as a PDF. Updating
the date and adding a signature means you want to demonstrate that they can
trust you. Producing a PDF document is important because it can be read
even on mobile devices, so any employer is free to read it anytime and
anywhere.

Finding jobs, the modern way: Using LinkedIn
The classic approach to finding a job is looking for postings by companies on
newspapers, university bulletin boards, or sending your resume directly to
companies you know. This is still something you can do, but the appropriate
approach to finding a job in the IT industry today is using LinkedIn
(https://www.linkedin.com). For years, LinkedIn has been the most
important and the most popular professional social network. So, if you do not
already have an account on LinkedIn, you should create one
(https://www.linkedin.com/signup). When you create an account, you will
be able to enter all your contact and personal details, and it is recommended
that you add a profile picture. There are a few sections in your profile that
you should always keep up to date; you can access these by clicking on Me in
the upper-right corner of the page and then on View Profile. The first
section contains your picture and a summary of your current activities, as
shown in Figure 14.1, where you can see the profile page for the author of
this book.

Figure 14.1: Summary of your LinkedIn profile

The next part you should keep up to date is your work experience, if any,
even if you have not been working for a while. Figure 14.2 shows an
example:

Figure 14.2: Keeping your work experience up to date

Tip: Every section of the LinkedIn profile can be updated by clicking
on the pencil icon.

Next, there are other two key sections: Licenses & certifications and
Skills. Here, you can add any official certifications you have gained with
studies and exams, and you can add a list of your technical skills (see Figure
14.3):

Figure 14.3: Certifications and skills

For the skills, you can add what you feel more prepared about, and other
people on LinkedIn who know you can confirm what you say. This is
beneficial because any recruiter looking at your profile can see how strong
your knowledge is on specific topics, confirmed by other professionals. This
is an important point, and it needs specific considerations, which will be
covered in the next section, A step forward: Attracting jobs.

Searching for a job

If you click on Jobs on the toolbar at the top of the page, you will be able to
search for a job on LinkedIn. Figure 14.4 shows an example:

Figure 14.4: Searching for a job

LinkedIn will propose a series of job postings according to the skills,
certifications, location, and current position you have added to your profile.

In addition, you can manually search for open jobs by typing in the search bar
in the upper-right corner or by selecting a location (entering remote is also
supported). On the left side of the page, there is a menu with options that will
help you get the most out of LinkedIn. For example, you can upload your
resume to your profile, or you can watch an instructional video about the best
practices for finding jobs. You can click on an open position to see its full
details. If you think it is a good opportunity for you, click on the Apply button
and follow the steps. As you can imagine, with LinkedIn, you have an infinite
number of possibilities, and you will be able to focus on open positions that
better fit with your skills and expectations. However, LinkedIn has another
benefit: being a social media platform, it also allows recruiters to find the best
people for their needs. This is the topic of the next section.

A step forward: Attracting jobs
One of the biggest benefits of using LinkedIn is that it makes it easy to attract
jobs. Attracting a job means that recruiters will discover your profile based
on what you publish and share, and they will be able to connect with you to
offer a job if your profile matches their needs. This means you might be able
to find a job without even applying for a position. However, this can only
happen if the LinkedIn search algorithm can find your profile when recruiters
search, which does not happen with no effort. The next sections discuss how
you can attract jobs, opening your mind to a wider range of possibilities.
However, always keep in mind: success does not come for free; it requires
commitment.

Connecting with the right contacts
LinkedIn can be of great help in finding a job, but this requires building an
appropriate contact network. Remember that this is not a fun social media, so
you should not focus on adding to your network any person you have met in
your life. To start, send contact requests only to people who you know from a
professional point of view. If you are new to the professional world, or as a
second step, if you already added people to your network, in the search bar of
LinkedIn enter terms related to the technology you are interested in, for
example, Xamarin. A list of people, companies, and groups matching your
criterion will appear. Start following companies and groups, and then look at

the people who might have an interest to connect with you, such as common
interests, companies you both follow, and so on. If you have a new account, it
might happen that person you want to connect to will not accept your invite,
but this should not be discouraging. This is something that the next sections
will help improve. As your network and activities on LinkedIn grow, your
rule should be connecting with people with the same technical interests as
yours and with people from the human resources departments. You will
discover on your own that this is not difficult at all.

Sharing contents from others
The key to attracting a job is making your profile more discoverable. This
can be easily accomplished by writing posts about your interests or sharing
content. As a first step, you can share contents published by other people,
groups, or companies that you have started following with the suggestions
explained in the previous paragraphs. Locating content that can be shared is
easy: you can find it when scrolling your timeline or by opening the profile
page of a company or person you follow. For each piece of content they have
posted, LinkedIn enables a Share button. Figure 14.5 shows how to share a
post from a company:

Figure 14.5: Sharing content from companies or other people

This simple action has several outcomes:

The author of the content can see that you have shared it, so they might

follow you back.
The content you have shared appears to other people in your network,
so they can see what you are more interested in.
The LinkedIn search algorithm starts understanding your interests better
and suggests your post to other people with the same interests, making
your profile more easily discoverable.

However, this is not enough to attract a job. Recruiters and other people are
interested in what you have to say, which means sharing your knowledge.

Sharing your knowledge
You are one in a million. Making yourself and your profile easily
discoverable is the key to attracting a job. The best way to do this is to share
your knowledge, which is fundamental in the IT world today. Publicly
showing what you know is the best way to make yourself discoverable and
the best way to create trust in your knowledge (if what you write is
technically accurate). Sharing your knowledge means writing articles,
recording instructional videos, starting a technical blog, and/or publishing
open-source projects. You do not need to become a book author or a
conference speaker; there are things you can do from the comfort of your
home that will make a difference. Sharing content online already makes you
discoverable, and LinkedIn can help boost your visibility by publishing posts
that make your network know what you are doing for the developer
community.

Writing articles and other content
The first type of content you can publish is technical articles. As a new
publisher, the suggestion is to start with websites that offer free space and
have reviewers. The best place to start is C# Corner (https://www.c-
sharpcorner.com/). This is one of the most popular websites that allow the
publishing of technical articles, and every time you publish something, your
content is first reviewed for approval by a person in their team. You do not
need to write long pieces; the important thing is that you write accurate
content. The more you publish accurate content, the more your reputation
grows. What you can do is study a topic or take examples from your real-life
experience and write an article on it. When you article is live, go to LinkedIn,

https://www.c-sharpcorner.com/

create a new post, share the link to your article and add a caption that says
that you have published a new article. LinkedIn also allows you to add
hashtags to posts, which will help make them more visible. The same
concepts apply to recording instructional videos that you can publish on
YouTube. This probably requires more self-confidence, but it will be of help
in the long term.

Joining online communities
Online communities are another great place to share your knowledge, and
they offer another possibility to find jobs outside of LinkedIn. These
communities often rely on a website with content, forums, and other options
to participate and share your knowledge. There are thousands of communities
in the World, so try to run a search on Google to see if any is located close to
your area of living. In fact, most times, they also organize in-person events,
which is important to strengthen your relationships with others.

Sharing your code
Sharing the code you write should not be underestimated. For example, you
can create small libraries or applications that demonstrate how to accomplish
a few tasks and publish the source code to popular online websites, such as
GitHub (https://github.com) or Bitbucket (https://bitbucket.org). This
helps improve your reputation and discoverability, and there are some
companies that require public code repositories as part of your resume. The
steps to publish code on an online repository are out of the scope of this
book, but there are plenty of online guides that explain how to accomplish
this. The important thing is that this is another kind of content that you can
share with LinkedIn posts, where you can add the link to the resource and a
brief description (do not forget to use hashtags).

Tip: Websites such as C# Corner and GitHub are so popular that not
only is their content easy to find through a Google search, but they are
also considered by millions of developers as container of resources with
their own life, and that can boost your visibility even without LinkedIn.
Especially if you are new to software development, it would be a good
idea to find someone who can review your articles and code before they
go live, until you are confident with your skills.

https://github.com
https://bitbucket.org

Final considerations about LinkedIn
If you follow the suggestions provided so far, your LinkedIn profile will stay
tremendously active and will be easy to discover among other millions of
profiles. This will make it easier for recruiters to find your profile, and it will
help you create a strong, consistent network of professional contacts. Setting
up your LinkedIn page might seem annoying at the beginning, but you should
consider it as a long-term investment. Obviously, LinkedIn can be of help to
find a job by both searching and attracting connections, but the real first step
to get a job is cracking interviews.

Preparing for job interviews
Whether an interview happens physically or virtually, a few considerations
are always valid. As a Xamarin jobseeker, you are applying for technical
positions, so there will likely be more interviewers, typically, the manager of
the team you should work with, a developer on the team, and a representative
of the human resources department, at least in the first contacts. First, listen
carefully to what they have to say about what the company does and what
you should do as a developer working on their products. If possible, ask
questions so that interviewers understand that you have real interest in the
job.

Technical interviews
Technical questions will usually be asked to understand whether your skills
are okay to work on the company’s products and not to put you in trouble or
to understand how cool you are about software development. Remember that
a company makes a huge investment when hiring people, so they must make
sure that your technical skills and experience will benefit them. It might also
happen, especially with very large businesses with complex hierarchies and
regulations, that you will be asked to complete some technical exercises.
Obviously, it is not possible to predict or discuss technical questions in detail;
these depend on the interviewer, on the job position, and on the products that
the company builds.

Personal interviews

Managers and representatives of the human resources department might ask
questions that are more related to understanding you as a person, whether you
could integrate with the existing team, your expectations, ambitions, and so
on. A question that is often asked is where do you see yourself in 10 years?.
Though there is no effective answer to this question, it is always a good idea
to reply in a way that gives the impression that you want to grow, both
personally and technically, in the company. For example, if you apply for a
position as a software developer, in 10 years, you could want to see yourself
as the technical lead of a team of software developers. They perfectly know
that there is no precise answer to this question, but they want to understand
how you think about your growth inside the company. The first interview is
generally about meeting each other, so never ask for salary information,
unless the interviewers want to talk about this. It is obvious that gaining a
salary is the motivation for working for every person on the planet, but the
perception you should give is that you are interested in the job regardless of
the salary. This is usually the topic of a second, or even third interview. So,
you will always have an option to discuss the salary level and benefits; there
is no need at all to do this during the first interview. At least for the first
meeting to discuss the position, when possible, accept even if they are set up
late in the evening or early in the morning. This might be intentionally done
to see how flexible you are, and it does not mean it will happen in your
regular working days. In addition, before an interview, try to understand if
the company has a dress code. If so, dress in a way that makes them
understand that you have no problem with their rules. Finally, a recurring yet
fundamental recommendation is to always be honest about your skills,
personal needs, and expectations. Not only interviewers appreciate and prefer
this approach, but it is also important for them to trust you.

Conclusion
In today’s world, finding a job is no longer something you can do the old-
fashioned way. Modern jobs require modern ways of finding an occupation,
especially for careers in the IT industry, and because recruiters work in a
modern way, it is very important to share your knowledge on public
channels, including LinkedIn, so that it will be easier for you to attract the
interest of employers who are searching for skilled developers. But once you
have gained your job, you need to stay successful in your role so that you can

maintain your position and grow professionally. This is the topic of the next
chapter.

Points to remember
Your resume should be concise, and it should highlight the skills that
are required for the position you are applying for.
At interviews, always be honest. A job is a long-term investment for
you and the company that hires you, so trust is fundamental.
Use LinkedIn to search for jobs based on your skills and knowledge.
Publish contents, write articles, and join a community when possible, to
build an online reputation.
Attracting a job is the best option for you, so share on LinkedIn what
you do online.

CHAPTER 15
Succeeding as a Mobile App Developer

Introduction
Gaining technical knowledge and finding a job are the two major things for
starting a career in the world of mobile app development, but you will want
to keep your role over time and possibly evolve to new, higher positions.
Though this can be personal, all developers can do a few things to improve
themselves and be more successful in the software industry. This chapter
describes some best practices that will help you not only maintain your role
but also help you make a difference in the daily work of your team.

Structure
In this chapter, we will cover the following topics:

Developing your passion and curiosity
Learning to be a team player
Staying up to date with development technologies

Objectives
By completing this chapter, you will learn the importance of keeping your
passion and curiosity at high levels, how to work in team, and how to stay up
to date with the relevant technologies you will use in your daily work.

All the topics discussed in this chapter should be considered as
suggestions, not rules. In addition, they should be applied according to
your work/life balance and availability. The best suggestion is to not
overcharge yourself and always ensure time to relax.

Developing your passion and curiosity

The more you work on projects, the more you learn. However, your daily
work can sometimes be repetitive. For example, you might work on the same
project for years, and even if you work on adding new features, you might
stay on the same topics for a while. This should certainly not be a problem
but keeping your passion and curiosity high and looking at something else are
very important things.

Experiment on custom projects
One of the better ways to nurture your passion for writing code is still writing
code. Take some time to create simple apps outside of your regular job and
outside of business requirements. This should not be seen as a second job or
as another commitment in life, of course. You can dedicate the amount of
time you want and whenever you want, but it is important to focus on
something that makes you feel free to experiment without the pressure of
your daily work, with the technology you have studied and that you use every
day. Set a goal, for example, the type of application you would like to build
according to your time and its features, and then start. You can do this even if
you do not know in advance how to implement the features you desire. This
can be a very good exercise to improve your knowledge by studying the
development platform, and the more obstacles you overcome, the more you
will feel motivated and passionate. As an implication, experimenting will
give you knowledge that you will also be able to reuse in your daily work.
This will make you smarter and faster in making technical decisions. With
regard to working on custom projects, a good exercise is to use GitHub
(https://github.com) as a remote repository for your code. The reason is that
other developers can see your code, give suggestions on how to improve it,
and raise problems; in other words, they can interact and share ideas, which is
of great value. So, feel free to experiment. It is a great way to keep doing
what you like with no pressure, and it will really help you nurture your
passion for coding.

Experimenting with third-party components
Several software companies produce libraries and components that target
different development platforms and help save time in implementing custom
features. For example, if you need to implement charts in your

https://github.com

Xamarin.Forms project, you will likely want to use a third-party component
rather than writing your own views and logic. There are costs to choosing
licenses and subscriptions, but the time and effort to build components on
your own would probably cost much more, so it is something to consider.
Consequently, many companies use third-party components produced by
others. If you find some time to experiment with such components, you will
also be able to make more appropriate technical suggestions or decisions in
your daily work. The most important library vendors that target
Xamarin.Forms are listed here:

Infragistics (https://www.infragistics.com): They provide a very
powerful suite of data-oriented views for Xamarin.Forms and native
platforms. This suite lacks general purpose views, but it is one of the
most powerful and appreciated. It is possible to use a free trial before
purchasing a license.
Progress, formerly Telerik (https://www.telerik.com): They offer
dozens of views for Xamarin.Forms and native platforms. They provide
a free trial that you can use before purchasing a license.
Syncfusion (https://www.syncfusion.com): They not only offer one of
the most popular and efficient suites of components and libraries for
Xamarin.Forms and native platforms, but they also provide a free
community license, which allows for building commercial products
within certain conditions. Refer to their website for more details.
DevExpress (https://www.devexpress.com): They provide a series of
both paid and free views for Xamarin.Forms. Free components are all
designed to work with data, but they work very well, and they are
certainly worth a try.

Finding some time to experiment with third-party components is also useful
when you have job interviews with teams that use such components. And
even if you apply for a position in a team that uses components that are
different from the ones you have experimented with, the fact that you had an
approach to using third-party libraries will certainly be appreciated.

Learning to be a team player
Building software is teamwork because several roles are involved, from

https://www.infragistics.com
https://www.telerik.com
https://www.syncfusion.com
https://www.devexpress.com

graphic designers to developers, testers, translators, and managers such as
product owners. When you join a company, you will likely work on a team.
This is of great value for you because you can learn how processes work and
how to interact with people who work on the same project but have different
backgrounds. Learning the workflow of the team is fundamental; you will
need some time to adapt to people and procedures, but then everything will
become like a good habit. However, there is a big difference between being a
member of a team and being a team player. Remember that, at least with the
most modern work methodologies such as Agile, success or failures happen
as a team; it is never the success or the fault of an individual. This means that
everyone in the team, including you, should do their best to contribute to the
project. If your work environment is smart enough, you can keep in mind the
following suggestions:

Be proactive: Do not wait for others to ask for ideas or feedback; if you
see something that needs improvement in an app, share your thoughts
and solutions with the other members.
Speak: Share thoughts, doubts, and ideas with the others. In most cases,
you will not make decisions on which features to implement, but you
can give feedback that can fine-tune the impact they have on the end
user.
Raise your hand: Nobody is perfect, and no developer knows 100% of
a development technology. So, you might have troubles, for example,
when you need to work on a feature for the first time. If this happens,
raise your hand; do not be ashamed of asking for help. Asking questions
and asking for help is much better than writing code that you are
doubtful about.
Be open to changes: Not just technology, even business requirements
and organizational needs evolve. The best approach you can keep is
seeing such changes as value and not as problems.
Look at things with the eye of the team: Even if a team is made of
individuals, the worst thing that can happen is when every person thinks
individually about their job instead of looking at the project outcome as
a whole. Remember that it is the team that wins or fails, not individuals.
Your customers or stakeholders will not care who has failed; they will
consider a team’s failure and a team’s success.

Staying up-to-date with development technologies
In Chapter 1, The Importance of Mobile App Development, you got
suggestions on how to stay up to date with new releases of devices and
operating systems from the major vendors in the market. Those suggestions
remain valid, but they can be enriched with additional considerations now
that you also have more technical skills. It is always important to take a look
at new releases, especially about the development technologies you use daily.
If you consider all the Microsoft technological stack discussed in the book,
there are at least two technologies that you might want to analyze in further
detail.
.NET Multiplatform Application User Interface, also known as .NET
MAUI (https://docs.microsoft.com/en-us/dotnet/maui/), which is the new
development platform from Microsoft that you will use to build mobile
applications. Remember that all the skills you have learned in this book
remain valid and fundamental with MAUI, but it is important that you read
something about it. Figure 15.1 shows how the welcome page of the official
MAUI website looks:

Figure 15.1: The .NET MAUI welcome page

.NET 6 (https://dot.net), released in November 2021, that finally reaches the
goal of providing one API that targets all development areas. Figure 15.2
shows how the welcome page of the official .NET site appears:

https://dot.net

Figure 15.2: The .NET official website

Generally, you can look at what Microsoft is building and releasing on their
Microsoft Developer website (https://developer.microsoft.com/), which
targets all supported development platforms. Here, you can find news,
information, and shortcuts to the technologies you use every day as a
Xamarin developer. Figure 15.3 shows how the home page for the Microsoft
Developer website looks:

Figure 15.3: The Microsoft Developer website

It is really important to know what’s coming next for several reasons. For
example, if you need to start a new project, you can contribute to better
decision-making about the technology to use. Another example is that you
will be a point of reference to all the other colleagues who do not like to stay
informed frequently. This will make a huge difference. This discussion can
be connected to the suggestions about experimenting, discussed earlier in this
chapter. Usually, Microsoft provides early builds (known as previews) of the
products they are building, which you can use to start experimenting and look
at what’s new.

Tip: Development teams are made of human beings, with their
strengths and weaknesses. In your professional life, you will find people
who like to stay up to date with technology and people who wait for
others to get news about what’s happening. Try to be in the first

category as you can benefit from it.

In addition, this approach can be useful if you want to apply for new
positions. The key point is not to have deep knowledge about each new
technology, which would not be possible; it is to remember what a
technology is about.

Attending conferences and meetups
Developer communities across the world often organize free conferences,
meetups, and webinars to discuss new technologies and development
platforms or tools. The COVID-19 pandemic has boosted the availability of
online conferences and meetups, so you can find those of your interest and
attend sessions that discuss technologies that are closer to your daily work,
from the comfort of your home. This is an incredible opportunity as until
only a few years ago, developers could only attend paid, on-site conferences.
It is important to take advantage of the good things that the internet offers,
and this is one of them.

Conclusion
Every developer can write code, but only a few developers will really make a
difference. If you want to be one of them, you should nurture your passion
and curiosity for technology and software development. There are several
ways to do this, but the easiest and most attractive way is to experiment with
new and early releases, third-party components, and your own projects
outside of the daily work routine. Additionally, developing the way you work
in a team will help keep motivation high, so it is recommended to learn to
become a team player and not just work as a team member.

Points to remember
Developers are people with passion for technology. Keep this passion
always on by never getting annoyed. Write your own code, try different
things, and experiment.
Successes and failures happen as a team. Help your team grow by
becoming a team player. Be proactive, stay engaged, and raise your

hand when necessary.
Staying up to date with technology is a must for a software developer.
The more you know, the more you can do. You can also help in
decision-making about technologies to use in a company’s projects.

Suggested readings
How to be a great team player
(https://www.mindtools.com/pages/article/newTMM_53.htm).
How to make programming exciting and more fun
(https://www.freecodecamp.org/news/how-to-make-programming-
more-exciting-and-funnier/).
The Agile Coach (https://www.atlassian.com/agile).

https://www.mindtools.com/pages/article/newTMM_53.htm
https://www.freecodecamp.org/news/how-to-make-programming-more-exciting-and-funnier/
https://www.atlassian.com/agile

Index

Symbols
.NET 6

architecture 38, 39
URL 430

.NET Core 37
advantages 37
architecture 38
components 37

.NET Framework 32
architecture 34
assemblies 36
Base Class Library (BCL) 36
Common Language Runtime (CLR) 34
compilers 35, 36
for Windows 33
locating, on disk 33, 34
to .NET Core 37

.NET MAUI 21, 22
URL 429

.NET primitive types 72
value types, versus reference types 74, 75
variables, consuming 73, 74
variables, declaring 73

A
abstract classes 99, 100
access modifiers, in C# 89
advanced C# programming 109

asynchronous programming 112-114
generics type 109, 110
Language INtegrated Query (LINQ) 111, 112
nullable type 109-111

advanced data binding
Model-View-ViewModel pattern 278

advanced view customization, native API
Android renderer, defining 384-386
custom renderers 383, 384
custom renderers, applying to views 387
custom view, defining 384
iOS renderer, defining 386, 387

Android
URL 12

anonymous types 74
Apple

mobile device updates, obtaining from 11, 12
URL 11

Application class 320, 321
global variables, defining 322
themes, working with 321, 322

application events
data forms restoring, real-world example 325
data retrieving, real-world example 324
data storing, real-world example 324
handling 323
OnResume 323
OnSleep 323
OnStart 323
page events, responding to 325, 326

application lifecycle 319
events 323
sample project, creating 320

Application Programming Interface (API) 7
applications, with Visual Studio

building 39, 40
first C# project, creating 45-47
Microsoft Account, signing in 40, 41
projects, creating with C# 43-45
solution 43
Start window 42
synchronized settings, Microsoft Account 41

apps
Android packages, preparing for publication 145-147
iOS packages, preparing for publication 147
preparing, for publication 145

arrays, in C# 87
jagged arrays 88
multi-dimensional arrays 87, 88
single-dimensional arrays 87

assembly, .NET 36
asynchronous programming 112-114
auto-implemented properties 91
Azure 332

free subscription 332

B
Base Class Library (BCL) 34-36
Battery class 402
bindable layouts 276-278
Bitbucket

URL 422
Boolean and numerical values

incremental value selection, with Stepper 199
multiple choices, with RadioButton 194-196
on and off options, with switch 192, 193
RadioButton multiple groups, implementing 196, 197
selecting 192
Switch, implementing 192
user choices, with CheckBox 193, 194
value selection, with Slider 197, 198

brushes
LinearGradientBrush 301, 302
objects, coloring with 300, 301
RadialGradientBrush 302, 303
SolidColorBrush 301

C
CarouselPage 219-221
CarouselView 270

implementing 271, 272
cascading style sheets (CSS) 172
code debugging 60, 61

breakpoints, adding 63, 64
data tips 64, 65
runtime errors, debugging 65-67
sample project, preparing 61-63

code editing features, Visual Studio IDE
code editor options, changing 57, 58
code editor, zooming 56
IntelliSense 56, 57
syntax colorization 55, 56
working with 55

CollectionView 265-268
command 283
Common Language Runtime (CLR) 34, 35
Common Type System 70
compiler, .NET 35
components, .NET Core

CoreCLR 37, 38
conditional code blocks, C# 85

if conditional code block 85
switch conditional code block 86

ContentPage 212, 213
conversion operators, C# 77

converting types, with Convert class 78
direct type conversion 77, 78

CoreCLR 37
C# programming 69

advanced C# programming 109
arrays 87
common data operators 75

conditional code blocks 85
data types 70
iterations 82
loops 84
object-oriented programming (OOP) 88

cross-platform access, to native API
battery status, checking 401-403
contents, opening 405
default apps, opening 405, 406
emails, sending 403, 404
network connection, checking 399-401
secure settings, storing 407
secure settings, with app version tracking 408, 409
SMS messages, sending 404, 405
user preferences, storing 406
web browser, opening 405

cross-platform approach 7, 8
application performance issues, demystifying 10
application size and performance 9
cross-platform code, limitations 9
native applications 9, 10

cross-platform development 8
technologies 8, 9

cross-platform projects, with Xamarin.Forms 139
apps, debugging 144
apps, running 144
App.xaml 142, 143
creating 139, 140
MainPage.xaml 142, 143
structure 141
XAML 142, 143

CSS styles
creating 174
implementing, in C# 174, 175

custom renderers 388, 389
applying, to view 387, 388

D
data binding 246

advanced data binding 278
binding context, assigning 252, 253
different types, binding with value converters 261-264
implementing 247-249
property change notifications, with INotifyPropertyChanged 249-252
to user interface 246

data collections
data, displaying with ListView 254-259
DataTemplate, as resource 259-261
displaying efficiently 265

item indicators, displaying with IndicatorView 273, 274
items, selecting with Picker 274-276
lists, displaying with CollectionView 265-270
lists, scrolling with CarouselView 270-273
working with 253, 254

data operators, C# 75
arithmetic operators 76, 77
conversion operators 77
equals operator 75, 76
logical operators 79
not equals operator 75, 76
strings, working with 79, 80

data types, C# 70
Common Type System 70, 71
.NET primitive types 72
reference types 71
value types 71

DatePicker
dates, selecting with 188, 189

DependencyService class 397
developer mode 26
development tools

Android devices, configuring for developer mode 26, 27
configuring 22
installing 22
macOS configuration 27, 28
Microsoft Visual Studio 24
on Android device 24
on iOS device 24
system requirements, for Xamarin 23

device class, native API
conditional XAML 382, 383
device-based content orientation 382
thread-safe code, running 381
timers, working with 380, 381
working with 379, 380

do loop 84

E
Error List tool window 51
Events page

URL 14
eXtensible Application Markup Language (XAML) 18
Extensible Markup Language (XML) 43

F
FlyoutPage 213-217

G
GitHub

URL 422
Google

mobile device updates, obtaining from 12
Google Developers

URL 13
Grid 159, 161

proportions, for rows and columns 161
spacing 161
spans, for rows and columns 161

H
HTML content

displaying 191, 192

I
if conditional code block 85
images, Xamarin.Forms.View

Aspect, handling 204
displaying 202-204
managing 205

implicit styling 246
IndicatorView 273

implementing 273, 274
inheritance 96
IntelliSense 56, 57

auto-completion options 57
interactivity, Xamarin.Forms.View

adding 205
alerts, displaying 207
alerts, handling 207
GestureRecognizers, implementing 206

interfaces
defining 97, 98
implementing 98, 99

IsRefreshing 288
iterations 82, 83

J
jagged arrays 88
JavaScript Object Notation (JSON) 334-337
Java Software Development Kit (SDK) 20
job interviews

personal interviews 423

preparing for 422
technical interviews 423

jobs
finding, LinkedIn used 415-418
searching 418, 419

jobs, attracting with LinkedIn 419
articles, writing 421
code sharing 422
contents, sharing from others 419, 420
content writing 421
knowledge sharing 421
LinkedIn considerations 422
online communities, joining 421
right contacts, connecting 419

just-in-time (JIT) compiler 36

L
Language INtegrated Query (LINQ) 111, 112
layouts 150, 151

alignment options 151, 152
.NET objects hierarchy 154
spacing options 152
visual tree 153

LinearGradientBrush 301, 302
loops, C# 84

do loop 84
while loop 84, 85

M
MacInCloud

URL 22
managed code 35
managed environment 35
managed heap 71
master-details user interface 213
messages

broadcasting, with MVVM 327-329
sending, through app 326, 327

MessagingCenter
tips and tricks 329, 330

method 91
Microsoft

URL 13
Microsoft Developer

URL 14
Microsoft Developer website

URL 430
Microsoft, in mobile app ecosystem 18, 19

improved productivity, with Microsoft tools and services 19
Microsoft investments, on Xamarin 19

Microsoft Visual Studio 24
configuring 24, 25
individual components, checking for 26
installing 24
workloads, selecting 25

mobile app developer
conferences and meetups, attending 432
curiosity, developing 426
custom projects, experimenting 426
development technologies, updating 428-432
passion, developing 426
team player 427, 428
third-party components, experimenting 427

mobile app development
career opportunities 5
money making 5, 6
significance 2

mobile apps, for companies
examples 4, 5
significance 4

mobile device 2, 3
for consumers 3, 4
history 3
updates, from Apple 11, 12
updates, from Google 12, 13
updates, from Microsoft 13, 14
updating 10, 11

mobile system
working 6, 7

Model-View-ViewModel pattern 278
actions, defining with commands 283, 284
business logic, implementing 281
data, exposing 281-283
data model, defining 279, 281
frameworks 287
RefreshView 287-289
user interface, defining 284-287
viewmodels 281

MonoDevelop 17
MonoDroid 17
mono project

URL 17
MonoTouch 17
multi-dimensional arrays 87
multimedia

local file, playing 316
MediaElement, implementing 313, 314
media file, controlling 314, 315

working with 312

N
namespaces 100

types and members 100-102
native API

cross-platform, accessing 399
device class, working with 379, 380
device features, accessing 397-399
plugins 409, 410
sample project, preparing 378

native properties
code, testing 394
effects, declaring 389, 390
managing, with effects 389
platform-specific effects, implementing 390-393

native views
customizing, with platform-specifics 395-397
displaying 394, 395

O
object-oriented programming (OOP), in C# 88

abstract classes 97
access modifiers 89
actions, running with methods 91-94
constructors and static classes 94-96
derived types, defining with inheritance 96, 97
enumerations, defining 104, 105
enumerations, using 105
error handling, implementing 106, 107
events, implementing 107-109
information, storing with fields and properties 90, 91
interfaces 97
reference types, defining with classes 89, 90
structure, assigning to variables 104
structures’ members 104
structure visibility 104
types, accessing within namespaces 102, 103
types, organizing within namespaces 100-102
value types, defining with structures 103, 104

OnIdiom 383
OnPlatform 382
Output window 52, 53
overloading 93

P
page navigation 221-223

custom titles, implementing 225
data sharing 223, 224
lifecycle, of page 225, 226
physical back button, intercepting 226, 227

pages 212
CarouselPage 219-221
ContentPage 212, 213
FlyoutPage 213-217
TabbedPage 217-219

Picker 274
P/Invoke 35
Postman

about 333
URL 333

project compilation
code, debugging 58-61
code, running 58, 59
code, testing 60
configurations 58, 59
debug 58
release 59

properties 88
Properties window 51, 52
property changed notification 249
provisioning profiles 135

R
RadialGradientBrush 302, 303
reference types 71
RefreshView 287-289
REpresentational State Transfer (REST) approach 334
resources

defining 241, 242
implicit styling, implementing 246
style inheritance, implementing 245
styles, assigning 242-244
styles, defining 242

resume
preparing 414, 415

S
search functionalities, Xamarin.Forms.View

implementing 200, 201
shapes 304

circles, drawing 304
custom shapes, drawing 308, 309
drawing 304
ellipses, drawing 304, 305

lines, drawing 306, 307
path and geometries 309-311
polygons, drawing 308
rectangles, drawing 305, 306

Shell 227, 228
flyout menu, adding 229, 230
flyout menu, implementing 231, 232
interacting programmatically 235, 236
search bar, implementing 232-235
structure 228, 229
styles, changing 236, 237
tab bar, creating 231
tab bar, implementing 231, 232

Simple Object Access Protocol (SOAP) 333
single-dimensional arrays 87
SolidColorBrush 301
Solution Explorer 48-51
SQLite 289

data access layer, implementing 292-294
data access layer, invoking 295, 296
database path, obtaining 290, 291
data model, implementing 291, 292
local data, accessing with 289
user interface, extending 297, 298

SQLite NuGet package
installing 289, 290

stack 74
string interpolation 80
strings 79

concatenating strings 80, 81
empty string, checking for 80
formatting 81, 82
null string, checking for 80
working with 80

style inheritance
implementing 245

styles
assigning 244
defining 242, 243

swiping 219
switch conditional code block 86
symbols 60
Synchronized Settings, Microsoft Account

Startup settings 41
theme settings 41

syntax colorization 55, 56
system requirements, for Xamarin

on macOS 23, 24
on Windows 23

T
TabbedPage 217-219
text, Xamarin.Forms.View

complex text formatting, with FormattedString 185, 186
custom fonts, implementing 184, 185
displaying, with label 180, 181
fonts, applying 183, 184
fonts, managing 183, 184
passwords, entering 183
user input, accepting with entry and editor 182, 183
working with 180

TimePicker
time, selecting with 189, 190

tool windows, Visual Studio IDE
Error List 51
Output window 52, 53
Properties window 51, 52
Solution Explorer 48-51

U
unmanaged code 35
user interaction

implementing, with buttons 186-188
user interface, organizing with layouts 154

AbsoluteLayout 162, 163
ContentView 168-170
ContentView, using 170, 171
FlexLayout 156-158
Frame 167, 168
Grid 159, 161
RelativeLayout 164, 165
sample project, creating 154
ScrollView 166
ScrollView, controlling programmatically 166, 167
StackLayout 155, 156

user interface, styling with CSS 172
CSS, defining as XAML resource 172, 173
CSS files, consuming in XAML 173, 174

V
value types 71
var keyword 74
views 177
visual states, Xamarin.Forms.View 208-210
Visual Studio 2019 40
Visual Studio IDE

application settings, editing 54, 55

basic code editing features 55
project properties, editing 53, 54
tool windows, working with 47, 48
working with 47

visual tree 153

W
Web API 333

controllers, implementing 346-348
creating, in Visual Studio 337-340
data model, creating 342-345
data objects, creating 349
data objects, deleting 351, 352
data objects, updating 349-351
data, retrieving 348, 349
prerequisites 332
project structure 340-342

Web API services
API calls, making with Postman 354-357
calling, from C# 369-372
publishing 357-363
testing 352-354

Web API, with Xamarin.Forms
client application, testing 375
consuming 363, 364
data model, creating 364-366
user interface, designing 372-374
ViewModel, creating 366-369

web service 333
while loop 84, 85
Windows Communication Foundation (WCF) 333
Windows Compact Edition (CE) 3
Windows Presentation Foundation WPF) 36

X
Xamarin 20

Xamarin.Android 20
Xamarin.Forms 20
Xamarin.iOS 20
Xamarin.Mac 20

Xamarin.Android projects 116
Android app, debugging 123-125
App Manifest, configuring 120-122
build options, configuring 125-127
creating 116, 117
debugging, configuring 125-127
structure 118, 119
user interface, drawing 119

user interface, handling 120
Xamarin, as app development framework 16

mobile app development, with Microsoft skills 16
Xamarin, as company 16, 17

mono project 17
transition, to Xamarin 17, 18

Xamarin Community Toolkit
installing 312, 313

Xamarin.Essentials 399
essentials API 409

Xamarin.Forms 20
advantages 21
layouts 150, 151

Xamarin.Forms.View
Boolean and numerical values, selecting 192
common properties 179
dates, selecting with DatePicker 188, 189
HTML content, displaying 191, 192
images, displaying 202-204
interactivity, adding 205
long-running tasks, handling 201, 202
sample project, creating 178
search functionalities, implementing 200, 201
text, working with 180
time, selecting with TimePicker 189, 190
user interaction, with buttons 186-188
visual states 208-210

Xamarin.iOS projects 127
App Package options, configuring 136-138
creating 127-129
developer accounts 135, 136
iOS app, debugging 133-135
provisioning profiles 135, 136
structure 130, 131
user interface, handling 131, 132

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. The Importance of Mobile App Development
	Introduction
	Structure
	Objectives
	The importance of mobile app development
	Mobile devices and applications
	A brief history of modern mobile devices
	Mobile devices for everyone
	Mobile devices everywhere

	The importance of mobile apps for companies
	Career opportunities with mobile app development
	Making money with mobile app development

	Summarizing how a mobile system works

	The importance of a cross-platform approach
	Limitations of cross-platform code
	Application size and performance
	Understanding native applications
	Demystifying application performance issues

	Staying up to date with new devices and platforms
	Getting updates from Apple
	Getting updates from Google
	Getting news from Microsoft

	Conclusion
	Points to remember

	2. Xamarin and Microsoft in the Mobile App Market
	Introduction
	Structure
	Objectives
	Xamarin as the app development framework
	Mobile App Development with Microsoft Skills
	Xamarin as a company
	Introducing the mono project
	The transition to Xamarin

	Microsoft in the mobile app ecosystem
	The importance of Microsoft investments on Xamarin
	Improved productivity with Microsoft tools and services

	Understanding Xamarin and Xamarin.Forms
	Advantages of Xamarin.Forms
	Hints about .NET MAUI

	Installing and configuring the development tools
	System requirements for Xamarin
	System requirements on Windows
	System requirements on macOS
	Android and iOS Devices

	Installing and configuring Microsoft Visual Studio
	Selecting workloads
	Checking for individual components

	Configuring Android devices for developer mode
	Minimum macOS configuration

	Conclusion
	Questions
	Points to remember

	3. Introducing .NET and Visual Studio
	Introduction
	Structure
	Objectives
	Introducing .NET
	Introducing the .NET framework for Windows
	Locating the .NET framework on disk
	The .NET framework architecture
	The Common Language Runtime (CLR)
	Compilers and the concept of Assembly
	Assemblies in .NET
	The Base Class Library

	From .NET Framework to .NET Core
	Advantages of .NET Core

	.NET 6: One .NET
	Building applications with Visual Studio
	Signing in with a Microsoft account
	Synchronized settings

	Introducing the Start window
	Understanding projects and solutions
	Creating projects with C#
	Creating your first C# project

	Working with the Visual Studio IDE
	Working with tool windows
	Solution Explorer
	The Error List
	The Properties window
	The Output window

	Editing project properties
	Editing application settings

	Basic code editing features
	Syntax colorization
	Zooming the code editor
	Introducing IntelliSense
	Changing the Code Editor options

	Compiling, running, and debugging code
	Understanding configurations
	Running and Debugging Code
	Debugging your code
	Preparing the sample project for debugging
	Breakpoints and data tips
	Detecting and fixing runtime errors

	Conclusion
	Points to remember
	Key terms

	4. The C# Programming Language
	Introduction
	Structure
	Objectives
	Understanding data types
	Meet the Common Type System
	Clarifying value types and reference types
	.NET primitive types
	Declaring and consuming variables
	Clarifying the difference between value and reference types

	Common data operators
	Equals and Not Equals Operators
	Arithmetic operators
	Conversion operators
	Direct type conversion
	Converting types with the Convert class
	String conversion

	Logical operators
	Working with strings
	Checking for Null or Empty strings
	Concatenating strings
	Formatting strings

	Iterating objects
	Understanding loops
	Introducing the do loop
	Introducing the while loop

	Conditional code blocks
	The if conditional code block
	The switch conditional code block

	Introducing arrays
	Single-dimensional arrays
	Multi-dimensional arrays
	Jagged arrays

	Object-oriented programming (OOP)
	Understanding access modifiers
	Defining reference types with classes
	Storing information with fields and properties
	Running actions with methods
	Introducing constructors and static classes
	Defining derived types with inheritance

	Understanding interfaces and abstract classes
	Defining interfaces
	Implementing interfaces
	Introducing abstract classes

	Organizing types within namespaces
	Accessing types within namespaces with using directives

	Defining value types with structures
	Assigning structures to variables
	Visibility of structures and their members

	Defining enumerations
	Using enumerations

	Implementing error handling
	Implementing events

	Advanced C# programming
	Generics and Nullable Types
	Working with Nullable types

	Language INtegrated Query (LINQ)
	Asynchronous programming

	Conclusion
	Suggested readings

	5. Building Apps with Xamarin and Xamarin.Forms
	Introduction
	Structure
	Objective
	Understanding Xamarin.Android Projects
	Understanding the project structure
	Drawing and handling the user interface
	Configuring the App Manifest
	Debugging an Android app
	Configuring debugging and Build options

	Understanding Xamarin.iOS projects
	Understanding the project structure
	Handling the user interface
	Debugging an iOS app
	Understanding provisioning profiles and developer accounts
	Configuring App Package options

	Cross-platform projects with Xamarin.Forms
	Understanding the project structure
	Introducing XAML, App.xaml, and MainPage.xaml

	Running and debugging apps

	Preparing apps for publication
	Preparing Android packages
	Preparing iOS packages

	Conclusion
	Points to remember
	Key terms

	6. Organizing the User Interface with Layouts
	Introduction
	Structure
	Objectives
	Understanding the concept of layout
	Alignment and spacing options
	Understanding the visual tree
	.NET objects hierarchy

	Organizing the user interface
	Creating a Sample Project
	The StackLayout
	The FlexLayout
	The Grid
	Spacing, proportions and spans for rows and columns

	The AbsoluteLayout
	The RelativeLayout
	The ScrollView
	Controlling the ScrollView programmatically
	The Frame
	The ContentView
	Using a ContentView

	Styling the user interface with cascading style sheets
	Defining CSS styles as a XAML resource
	Consuming CSS files in XAML
	Creating and implementing CSS styles in C#

	Conclusion
	Points to remember
	Key terms

	7. Understanding Common Views
	Introduction
	Structure
	Objectives
	Creating a sample project
	Common properties

	Working with text
	Displaying text with the label
	Accepting user input with entry and editor
	Entering passwords

	Applying and managing fonts
	Implementing custom fonts
	Complex text formatting with FormattedString

	User interaction with buttons
	Selecting dates and time
	Selecting dates with the DatePicker
	Selecting a time with the TimePicker

	Displaying HTML content
	Selecting Boolean and numerical values
	Turning options on and off with the switch
	User choices with the CheckBox
	Multiple choices with RadioButton
	Implementing multiple groups

	Value selection with the Slider
	Incremental value selection with the Stepper

	Implementing search functionalities
	Handling long-running tasks
	Displaying images
	Handling the aspect
	Managing image files

	Adding interactivity to Views
	Implementing GestureRecognizers
	Displaying and handling alerts

	Understanding visual states
	Conclusion
	Key terms
	Suggested readings

	8. Pages and Navigation
	Introduction
	Structure
	Objectives
	Introducing available pages
	Individual pages: The ContentPage
	Master-details views: The FlyoutPage
	Organizing contents within tabs: The TabbedPage
	Scrolling pages: The CarouselPage

	Navigating between pages
	Sharing data between pages
	Implementing custom titles
	Understanding pages lifecycle
	Intercepting the physical back button

	Common app features: The Shell
	Understanding the structure of the Shell
	Adding a Flyout menu
	Leveraging built-in navigation: The Tab bar
	Implementing both the Flyout and Tab bar
	Implementing the Search bar
	Programmatically interacting with the Shell
	Changing the Shell styles

	Conclusions
	Key terms
	Suggested readings

	9. Resources and Data Binding
	Introduction
	Structure
	Objectives
	Creating a sample project
	Understanding and Defining Resources
	Defining resources
	Defining and assigning styles
	Implementing style inheritance
	Implementing implicit styling

	Binding data to the user interface
	Getting started with data binding
	Property change notifications: INotifyPropertyChanged
	Assigning the binding context

	Working with data collections
	Displaying data: The ListView
	The DataTemplate as a resource

	Binding different types: Value converters
	Displaying Collections efficiently
	Displaying lists with the CollectionView
	Scrolling lists with the CarouselView
	Displaying item indicators with the IndicatorView
	Selecting items with the Picker

	Introducing bindable layouts

	Advanced data binding: The Model-View-ViewModel pattern
	Defining the data model
	Implementing the business logic: Commands and ViewModels
	Exposing data
	Defining actions with Commands

	Designing the user interface
	MVVM frameworks

	Pull-to-Refresh gesture: The RefreshView

	Local data access with SQLite databases
	Installing the SQLite NuGet package
	Getting the database path
	Implementing a data model
	Implementing a data access layer
	Invoking the data access layer
	Extending the user interface

	Conclusion
	Key terms

	10. Brushes, Shapes, and Media
	Introduction
	Structure
	Objectives
	Creating a sample project
	Coloring objects with brushes
	Defining linear gradients
	Defining circular gradients

	Drawing shapes
	Drawing circles and ellipses
	Drawing rectangles
	Drawing lines
	Drawing polygons
	Drawing custom shapes
	Further studies: Path and geometries

	Working with multimedia
	Installing the Xamarin Community Toolkit
	Implementing the MediaElement
	Controlling the media file
	Playing local files

	Conclusion
	Key terms
	Suggested readings

	11. Managing the Application Lifecycle
	Introduction
	Structure
	Objectives
	Creating a sample project
	The Application class
	Working with themes
	Defining global variables

	Events of the Application lifecycle
	Understanding and using Application events
	A real-world example: Storing and retrieving data
	A real-world scenario: Restoring data forms

	Responding to page events

	Sending messages through the app
	Broadcast messages with MVVM
	MessagingCenter tips and tricks

	Conclusion
	Key terms
	Suggested readings

	12. Working with Web API
	Introduction
	Structure
	Objectives
	Chapter prerequisites
	Getting a Free Azure subscription
	Downloading Postman

	Understanding web services and Web API
	JSON: A standard data exchange format
	Creating Web API in Visual Studio
	Understanding the project structure
	Creating a data model
	Implementing controllers
	Retrieving data
	Creating and updating data objects
	Deleting data objects
	Testing Web API services
	Making API calls with Postman

	Publishing Web API services
	Consuming Web API with Xamarin.Forms
	Creating a data model
	Creating the ViewModel
	Calling Web API services from C#

	Designing the user interface
	Testing the application

	Conclusion
	Key terms
	Suggested readings

	13. Working with Native API
	Introduction
	Structure
	Objectives
	Preparing a sample project
	Working with the device class
	Working with Timers
	Running thread-safe code
	Device-based content orientation
	Conditional XAML: OnPlatform and OnIdiom

	Advanced view customization: Custom renderers
	Defining a custom view
	Defining the Android renderer
	Defining the iOS renderer

	Applying custom renderers to views
	More information on custom renderers

	Managing native properties with effects
	Declaring effects
	Implementing platform-specific effects
	Testing the code

	Displaying native views
	Customizing views with platform-specifics
	Accessing device features: The DependencyService class
	Cross-platform access to native API: Xamarin.Essentials
	Checking the network connection
	Checking the battery status
	Sending emails and SMS messages
	Sending emails
	Sending SMS messages

	Opening contents
	Opening the web browser
	Opening default apps
	Storing user preferences
	Storing secure settings
	Secure settings with app version tracking

	More essentials API
	Hints about plugins

	Conclusion
	Key terms
	Suggested readings

	14. Finding a Job
	Introduction
	Structure
	Objectives
	Preparing your resume
	Finding jobs, the modern way: Using LinkedIn
	Searching for a job

	A step forward: Attracting jobs
	Connecting with the right contacts
	Sharing contents from others
	Sharing your knowledge
	Writing articles and other content
	Joining online communities
	Sharing your code
	Final considerations about LinkedIn

	Preparing for job interviews
	Technical interviews
	Personal interviews

	Conclusion
	Points to remember

	15. Succeeding as a Mobile App Developer
	Introduction
	Structure
	Objectives
	Developing your passion and curiosity
	Experiment on custom projects
	Experimenting with third-party components

	Learning to be a team player
	Staying up-to-date with development technologies
	Attending conferences and meetups

	Conclusion
	Points to remember
	Suggested readings

	Index

