
Why
Learn C

Go Behind the Curtain of Modern
Systems with C23
—
Paul J. Lucas

Why Learn C

Paul J. Lucas

Why Learn C
Go Behind the Curtain of Modern Systems
with C23

Paul J. Lucas
Oakland, CA, USA

ISBN-13 (pbk): 979-8-8688-1596-6

https://doi.org/10.1007/979-8-8688-1597-3

ISBN-13 (electronic): 979-8-8688-1597-3

Copyright © 2025 by Paul J. Lucas

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of

the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,

recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or

information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol

with every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only

in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the

trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are

not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject

to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for

any errors or omissions that may be made. The publisher makes no warranty, express or implied, with

respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Melissa Duffy

Coordinating Editor: Gryffin Winkler

Cover Photo by Pawel Czerwinski on Unsplash (unsplash.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York

Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505,

e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a

California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM

Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,

paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and

licenses are also available for most titles. For more information, reference our Print and eBook Bulk

Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to

readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/

source-code.

If disposing of this product, please recycle the paper

https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
http://www.apress.com/bulk-sales
http://www.springeronline.com
https://doi.org/10.1007/979-8-8688-1597-3

To my mentors and colleagues throughout my
career who taught me much and made the
journey more fun:

Richard Acevedo, Tameem Anwar, Mitch Blank,
Andrew Brown, Mike Carey, Iuri Chaer,
Thomas Chimento, James Coplien, Henry Corin,
Kevin Densmore, Jon Detert, Jack Dixon,
Steve Eick, Brad Euhus, Dana Florescu,
Rich Gaushell, Bob Graham, Tom Green,
Jon Handler, Chris Hillery, Joseph Huckaby,
Jeff Isenberg, Ivan Jager, Gordon Kotik,
Andrew Lippai, Nicky Masjedizadeh,
Richard McKeethen, Abhinav Nekkanti,
Mike Nelson, Tommy Nguyen, Fredrik Nygaard,
John Oyston, Randy Paquette, Vishal Patel,
Linda Pinck, Nathan Pope, Chris Pride,
Fabio Riccardi, Sai Sajja, Jeff Schmidt,
Pratiksha Shah, Logan Shaw, Helen Stewart,
Igor Stojanovski, and Sundar Vasan.

Contents

Part I Learning C 1
1 A Tour of C 3

1.1 A First Program . 3
1.2 Copying Input to Output . 5
1.3 Strings . 9
1.4 Functions . 12
1.5 Memory . 14
1.6 Pointers . 15
1.7 const . 17
1.8 Dynamic Memory . 20
1.9 Structures . 23
1.10 Epilogue . 25

2 Comments, Names, and Types 27
2.1 Comments . 27
2.2 Names . 29
2.3 Namespaces . 30
2.4 Scope . 30
2.5 Built-In Types . 31

2.5.1 Modifiers . 31
2.5.2 bool . 32
2.5.3 char . 33
2.5.4 int . 34
2.5.5 _BitInt . 34
2.5.6 float, double, and long double 35
2.5.7 _Decimal32, _Decimal64, and _Decimal128 36
2.5.8 Complex Numbers . 36
2.5.9 Imaginary Numbers . 37

2.6 typedef . 37
2.7 Fixed-Width Integer Types . 38
2.8 Unicode Character Types . 38
2.9 Other Standard Types . 39
2.10 Numeric Limits . 39
2.11 Signed Integer Overflow . 40

vii

viii CONTENTS

2.12 Choosing an Appropriate Integer Type 41
2.13 Type Conversions . 42
2.14 Epilogue . 43

3 Operators 45
3.1 Associativity vs. Evaluation Order 45
3.2 Arithmetic Operators . 46
3.3 Unary Plus and Minus Operators 47
3.4 Increment and Decrement Operators 47
3.5 Relational Operators . 48
3.6 Logical Operators . 48
3.7 Conditional Operator . 48
3.8 Bitwise Operators . 49
3.9 Assignment Operators . 52
3.10 Function Call Operator . 52
3.11 Array Indexing Operator . 52
3.12 Address-of and Dereference Operators 53
3.13 Member Access Operators . 53
3.14 Casting Operator . 54

3.14.1 Casting to void . 55
3.14.2 Casting Away const . 55
3.14.3 Casting Pointers . 56

3.15 Comma Operator . 56
3.16 sizeof Operator . 57
3.17 alignof Operator . 58
3.18 Epilogue . 58

4 Declarations 61
4.1 Multiple Declarations . 62
4.2 auto . 62
4.3 Storage Classes . 63

4.3.1 auto . 64
4.3.2 extern . 65
4.3.3 static . 65
4.3.4 register . 66

4.4 constexpr . 67
4.5 const . 67
4.6 typeof . 67

4.6.1 Declarations without Initializers 68
4.6.2 Clarifying Complicated Declarations 68

4.7 typeof_unqual . 69
4.8 alignas . 69
4.9 Attributes . 70

4.9.1 deprecated . 70
4.9.2 fallthrough . 70

CONTENTS ix

4.9.3 maybe_unused . 71
4.9.4 nodiscard . 71
4.9.5 noreturn . 72

4.10 Epilogue . 72

5 Statements 73
5.1 Expression Statement . 73
5.2 Compound Statement . 73
5.3 if-else . 74
5.4 while . 75
5.5 do-while . 75
5.6 for . 76
5.7 break and continue . 76
5.8 switch . 77
5.9 return . 79
5.10 goto . 79
5.11 Empty Statement (;) . 80
5.12 Epilogue . 80

6 Arrays and Pointers 83
6.1 Array Declaration . 83
6.2 Array Initialization . 83
6.3 Array Indexing . 84
6.4 Multidimensional Arrays . 84
6.5 void Pointers . 86
6.6 Pointers to Pointers . 87
6.7 Arrays and Pointers . 88
6.8 Arrays vs. Pointers . 89
6.9 Arrays of Pointers . 89
6.10 Pointers to Function . 90
6.11 Array Compound Literals . 92

6.11.1 Compound Literal Lifetime and Storage Class 93
6.12 Multidimensional Arrays vs. Pointers 93
6.13 Dynamically Allocating 2D Arrays 94
6.14 Variable Length Arrays . 96
6.15 Epilogue . 97

7 Enumerations 101
7.1 Declarations . 102
7.2 Name Collisions . 102
7.3 Underlying Type . 103
7.4 Implicit Conversion . 103
7.5 Enumeration Constant Values . 104

7.5.1 Externally Imposed Values 104
7.5.2 Serializing Values . 105

x CONTENTS

7.5.3 Duplicate Values . 105
7.5.4 “None” Values . 106
7.5.5 Checking Values . 106
7.5.6 “Count” Values . 107
7.5.7 Bit Flag Values . 108

7.6 Epilogue . 109

8 Preprocessor 111
8.1 Compilation Phases . 111
8.2 Language . 112
8.3 Object-Like Macros . 112
8.4 Predefined Macros . 113
8.5 Conditional Compilation . 113

8.5.1 defined . 115
8.5.2 __has_c_attribute . 116
8.5.3 __has_include . 116

8.6 File Inclusion . 116
8.7 Function-Like Macros . 117

8.7.1 Parameters . 117
8.7.2 Arguments . 117
8.7.3 Variable Numbers of Arguments 118
8.7.4 Stringification . 119
8.7.5 Concatenation . 120
8.7.6 # and ## Pitfalls . 120

8.8 Multiple Statements . 122
8.9 X Macros . 122

8.9.1 Serializing Enumeration Values 123
8.9.2 Counting Enumeration Values 124

8.10 Filename and Line Information 124
8.11 Errors and Warnings . 124
8.12 Not Expanding a Macro . 125
8.13 Paste Avoidance . 125
8.14 Undefining a Macro . 126
8.15 Embedding . 126
8.16 Pragmas . 127
8.17 Useful Macros . 128
8.18 Epilogue . 132

9 Functions 135
9.1 Declarations vs. Definitions . 135
9.2 Parameters . 135
9.3 No Overloading . 136
9.4 “Array” Parameters . 136

9.4.1 Non-Null Array Syntax for Parameters 138
9.4.2 Qualified Array Syntax for Parameters 138

CONTENTS xi

9.4.3 Variable Length Array Syntax for Parameters 139
9.4.4 Multidimensional Array Syntax for Parameters 139
9.4.5 Multidimensional VLA Parameters 140
9.4.6 Array Syntax for Parameters Pitfalls 141

9.5 Return Values . 141
9.6 Error Handling . 142
9.7 main . 143

9.7.1 Declaration and Parameters 143
9.7.2 Return Value and Exit Status 144

9.8 Static Functions . 144
9.9 Static Local Variables . 145

9.9.1 __func__ . 145
9.10 Inline Functions . 146

9.10.1 Differences from Macros 146
9.10.2 Only a Hint . 147
9.10.3 When (and When Not) to Inline 147
9.10.4 Inline Definition . 148

9.11 Variadic Functions . 149
9.11.1 Variadic Pitfalls . 150
9.11.2 Calling Other Variadic Functions 152

9.12 Epilogue . 153

10 Structures 157
10.1 Definition . 157
10.2 No Nesting . 158
10.3 Initialization . 159
10.4 Structure Compound Literals . 160
10.5 Padding . 162
10.6 Flexible Array Members . 162
10.7 Bit-Fields . 165
10.8 Epilogue . 167

11 Unions 169
11.1 Definition . 169
11.2 Initialization . 170
11.3 Union Compound Literals . 170
11.4 Which Member? . 171
11.5 Type Punning . 171
11.6 Restricted Class Hierarchies . 172

11.6.1 Safeguards . 175
11.7 Epilogue . 176

12 Input, Output, and Files 179
12.1 Output . 179

12.1.1 Formatted Printing . 181

xii CONTENTS

12.2 Files . 183
12.2.1 Open Modes . 186
12.2.2 File Information . 186
12.2.3 File State . 187
12.2.4 File Position . 188
12.2.5 Low-Level File I/O . 189
12.2.6 Memory as a File . 190
12.2.7 A File as Memory . 191
12.2.8 Deletion . 191
12.2.9 Temporary Files . 192

12.3 Directories . 192
12.4 Input . 194

12.4.1 Formatted Reading . 194
12.4.2 String-to-Number Conversion 197
12.4.3 Line Reading . 198
12.4.4 Environment Variables 200

12.5 Epilogue . 201

13 Program Organization 203
13.1 Include Guards . 203
13.2 Opaque Types . 205
13.3 Self Sufficient Headers . 206

13.3.1 Including Headers in a Header 206
13.3.2 Include Everything Necessary 207
13.3.3 Interdependencies . 207

13.4 Cooperating with C++ . 208
13.5 Including Headers in a .c File . 209
13.6 Initialization and Clean-Up . 210
13.7 Header Example . 211
13.8 File Organization . 212
13.9 Build Tools . 213
13.10 Epilogue . 214

14 Multithreading 215
14.1 Creating and Joining Threads . 217
14.2 Detaching Threads . 218
14.3 “Atomic” . 219

14.3.1 A Bad Example . 219
14.4 Mutexes . 221

14.4.1 Timed Mutexes . 224
14.4.2 Deadlocks . 224
14.4.3 Recursive Mutexes . 226

14.5 Condition Variables . 226
14.5.1 Timed Condition Variables 229

14.6 Doing Something Once . 229

CONTENTS xiii

14.7 thread_local . 230
14.8 Thread-Specific Storage . 231
14.9 Epilogue . 232

Part II Selected Topics 233
15 Undefined Behavior 235

15.1 Implications and Example . 236
15.2 Two Parts to Undefined Behavior 237
15.3 Optimization Can Make Things Worse 238
15.4 Undefined Behavior in Other Languages 239
15.5 Epilogue . 240

16 Assertions 241
16.1 Sample Implementation . 241
16.2 Assertions vs. Errors and Exceptions 242
16.3 Disabling Assertions in Production Code 243
16.4 Adding a Message . 244
16.5 Static Assertions . 244
16.6 Epilogue . 245

17 _Atomic 247
17.1 Alternative to a Mutex . 248
17.2 Atomic Functions . 248
17.3 Memory Barriers . 250

17.3.1 memory_order_seq_cst 250
17.3.2 memory_order_relaxed 251
17.3.3 memory_order_acquire and memory_order_release . 253
17.3.4 memory_order_consume 254
17.3.5 memory_order_acq_rel 255

17.4 Compare and Swap . 255
17.5 Lock-Free Operations . 258
17.6 The “ABA Problem” . 259
17.7 Versioned Pointers . 261
17.8 False Sharing . 262
17.9 Epilogue . 263

18 Debugging 265
18.1 Printing Values . 265
18.2 Debug Information . 266
18.3 Optimization . 266
18.4 Core Dumps . 266
18.5 Signals . 267
18.6 Common Bugs . 268

18.6.1 Array Bounds . 268

xiv CONTENTS

18.6.2 Buffer Overflow . 268
18.6.3 Double Free . 269
18.6.4 Null Pointer Dereference 269
18.6.5 Off-by-One . 269
18.6.6 Use After Free . 269
18.6.7 Memory Leak . 270
18.6.8 Uninitialized Variable 271

18.7 Warnings . 272
18.7.1 Recommended Warnings 272
18.7.2 Disabling Warnings . 276

18.8 The Curious Case of the Disappearing if 276
18.9 Profiling . 281
18.10 Epilogue . 281

19 _Generic 283
19.1 Motivating Example . 283
19.2 A printf Example . 284
19.3 const Overloading . 286
19.4 Static if . 287
19.5 No SFINAE (Substitution Failure is not an Error) 288
19.6 Type Traits . 289
19.7 Epilogue . 297

20 setjmp and longjmp 299
20.1 Basics . 299
20.2 setjmp Restrictions . 300
20.3 volatile Variables . 301
20.4 longjmp Details . 301
20.5 Exceptions in C? . 302
20.6 Epilogue . 302

21 restrict 305
21.1 The Problem . 305
21.2 The Solution . 306
21.3 Pitfalls . 306
21.4 When (and When Not) to Use restrict 307
21.5 Miscellaneous . 308
21.6 Epilogue . 308

22 volatile 309
22.1 Optimization Suppression . 309
22.2 Signal Handling . 310
22.3 setjmp . 311
22.4 volatile in Other Languages 311
22.5 Wrong Uses . 312
22.6 Epilogue . 312

CONTENTS xv

Part III Extended Examples 313
23 Strings 315

23.1 string 2.0 . 315
23.1.1 More put Variants . 315
23.1.2 Formatted Printing . 316
23.1.3 Taking Ownership . 317

23.2 strbuf: A String Buffer Type . 318
23.2.1 Reserving Space . 319
23.2.2 Putting . 319
23.2.3 Formatted Printing . 320
23.2.4 Taking Ownership . 321
23.2.5 Resetting . 321

23.3 Epilogue . 323

24 Lists 325
24.1 Initialization and Clean-Up . 326
24.2 Pushing . 326
24.3 Front, Back, and Empty . 328
24.4 Popping . 328
24.5 Removing from the Middle . 329
24.6 Iterating . 331
24.7 Epilogue . 332

25 Maps 333
25.1 Hash Tables . 334
25.2 Hash Table Types . 336
25.3 Initialization and Clean-Up . 338
25.4 Insert . 339
25.5 Growing . 340
25.6 Finding . 341
25.7 Deleting . 342
25.8 Iteration . 342
25.9 Epilogue . 343

26 Dynamic Dispatch 345
26.1 Pointers to Function . 346
26.2 Function Tables . 347
26.3 Fat Pointers . 348
26.4 Epilogue . 350

27 Exceptions in C 351
27.1 Requirements . 351
27.2 try . 352
27.3 throw . 353
27.4 catch . 356

xvi CONTENTS

27.5 finally . 357
27.6 Restrictions . 358
27.7 Epilogue . 359

A Standard Headers 361

B Standard Functions 363
B.1 ctype.h . 363
B.2 string.h . 364
B.3 time.h . 366

C C23 Differences 371
C.1 Aggregate Initialization . 371
C.2 alignas and alignof . 371
C.3 Attributes . 372
C.4 auto . 372
C.5 Binary Literals . 372
C.6 bool . 372
C.7 constexpr . 373
C.8 Declarations After Labels . 373
C.9 Digit Separators . 374
C.10 #embed . 374
C.11 Fixed-Type Enumerations . 374
C.12 Function Definition Unnamed Parameters 374
C.13 K&R-Style Function Declarations and Definitions 374
C.14 noreturn . 376
C.15 nullptr . 376
C.16 static_assert . 377
C.17 Storage Classes for Compound Literals 377
C.18 thread_local . 377
C.19 typeof and typeof_unqual . 378
C.20 __VA_OPT__ . 378
C.21 Variadic Functions . 378
C.22 #warning . 379

Index 381

don’t.

Preface

“Should I still learn C?”

That’s a question I see asked by many beginning (and some intermediate) program-
mers. Since you’re reading this preface, perhaps you have the same question. Con-
sidering that C was created in 1972 and that manymore modern languages have been
created since, it’s a fair question.

Somewhat obviously (since this book exists), I believe the answer is “Yes.”Why?
A few reasons:
1. Modern languages have many features for things like data structures (e.g., dy-

namic arrays, lists, maps), flow control (dynamic dispatch, exceptions), and al-
gorithms (e.g., counting, iteration, searching, selection, sorting) as part of the
language (either directly built-in or readily available via their standard libraries).
While convenient, the way in which those features are implemented “behind the
curtain” has to be done in a general way to be applicable to a wide variety of
programs. Most of the time, they work just fine. However, occasionally, they

C is a fairly minimal language and has almost none of those things. If you
want any of them, you’re likely going to have to implement them yourself.While
onerous, you’ll be able to tailor your implementations to your circumstances.
Knowledge of how to implement such features from scratch and understanding
the trade-offs will serve you well even when programming in other languages
because you’ll have insight as to how their features are implemented.

2. Many systems and some scripting languages (e.g., Python) provide C APIs for
implementing extensions. If you ever want to write your own, you’ll need to
know C.

3. Many open-source software packages uponwhichmodern computers and the In-
ternet still depend are written in C including Apache, cURL, Exim, Git, the GNU
compiler collection, Linux, OpenSSL, Postfix, PostgreSQL, Python, Sendmail,
Wireshark, Zlib, and many others. If you ever want either to understand how
those work or contribute to them, you’ll need to know C.

xvii

4. Embedded systems are largely developed in C (or C++, but with restrictions). If
you ever want to work on embedded systems, you’ll likely need to know C.

5. C has influenced more languages than any other (except ALGOL). If, in addition
to programming, you also have an interest in programming languages in general
or from a historical perspective, you should know C.

xviii Preface

I’m not suggesting that you should learn C intending to switch to it as your pri-
mary programming language nor that you should implement your next big project
in C. Programming languages are tools and the best tool should always be used for
a given job. If you need to do any of the things listed in reasons 2–4 above, C will
likely be the best tool for the job.

“Wouldn’t learning C++ be good enough?”
“I already know C++. Isn’t that good enough?”

Since C++ has supplanted C in many cases, both of those are fair questions. The
answer to both is “No.” Why? A couple of reasons:

1. Even though C++ is based on C, their similarities are superficial. Aside from
sharing some keywords, basic syntax, and toolchain, they are very different lan-
guages. The ways in which you get things done in C is necessarily different from
C++ due to C’s minimal features.

2. From the perspective of learning how features are implemented behind the cur-
tain, C++ is already too high-level since the language has modern features and
its standard library contains several data structures and many algorithms.

“Why this book?”

If all that has convinced you that C is still worth learning, the last question is “Why
this book?” Considering that The C Programming Language† (by Brian Kernighan
and Dennis Ritchie, C’s creator, known as “K&R”) is the classic book for learning
C, that too is a fair question.

The second (and last) edition of K&R was published in 1988 based on the then
draft of the first ANSI standard of C (C89). C has evolved (slowly) since with the
C95, C99, C11, C17, and C23 standards. This book covers them all.

This book is split into three parts:

†The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, AT&T Bell
Laboratories, Prentice-Hall, Englewood Cliffs, New Jersey, 1978 (1st ed.), 1988 (2nd ed.).

≈

Preface xix

1. Learning C: teaches the C23 standard of C, includes many additional notes on
C’s history and philosophy, and also includes best-practices I’ve learned over
my thirty-five year career.

2. Selected Topics: explains several additional advanced or obscure parts of C that
I’ve found not to be explained well elsewhere, if at all.

3. Extended Examples: gives detailed examples with full source code of how fea-
tures in other languages might be implemented including discussion of the trade-
offs involved so you can understand what’s really going on behind the curtain
in whatever language you program in.

Additionally, there’s an appendix that lists differences between C23 and C17, the
previous version of C.

Notes to the Reader

This book is intended for professional programmers, computer science students, or
serious computer hobbyists who either want to learn C or get up-to-date on C23.

Consequently, this book assumes familiarity with programming language con-
cepts such as variables, statements, loops, functions, arrays, classes, objects, etc.
Though no knowledge of any particular programming language is assumed, a few
concepts from C++ are alluded to (not surprisingly).

This book also assumes familiarity with algorithm characterization given in “big
O” notation in terms of n, the size of the input, the most common of which are:

O(1) Constant time: same amount of time regardless of n.
O(lgn) Logarithmic time: base-2 logarithm (lg n) time, e.g., lg 10000 13.
O(n) Linear time: time proportional to n.

This book’s content is presented as follows:

• Concepts that are essential for learning C are presented normally like this.
• Commentary, explanations for why something is the way it is, historical con-
text, and personal opinion, i.e., things not essential for learning C, but nonethe-
less interesting (hopefully), are presented as inline notes that are indented and
bracketed by little squares.

■ Like this. □
• Unless otherwise noted, cross references like §X, §X.Y, or §X.Y.Z, refer to chap-
ter or appendix X, section X.Y, or subsection X.Y.Z, respectively, of this book.

• Footnotes† are used for references to other sources.

†Like this.

• Italics are used for one of emphasis (e.g., “. . . is not the same . . .”), for the first
occurrences of important concepts (e.g., pointer), an excerpt from or the title of
another work (e.g., The C Programming Language), or for Unix manual pages
when followed by a digit in parentheses that specifies its section (e.g., grep(1)).

• Anything followed by a superscripted asterisk like this∗ means zero or more of
the preceding item; anything followed by a superscripted plus like this+ means
one or more.

• C constructs are often presented like this:

Prefacexx

for (init-expropt; cond-expropt; next-expropt)

statement

Within such a presentation:

– The Courier typeface like this is used for literal text that’s part of a C
program. Courier Bold like this is used for C keywords.

– Italics like this are also used as placeholders (formally, “non-terminals”) for
concepts that are to be replaced by more literal text.

– Anything followed by a subscripted opt means it’s optional.

• Occasionally, brackets [like this] are used instead of a subscripted opt to enclose
something optional.

The source code for many of the examples in this book is freely available online at
https://github.com/Apress/Why-Learn-C.

Some Preliminary Notes on C

The standard for C23 is ISO/IEC 9899:2024† that describes both the C23 program-
ming language and its standard library. There’s also the related standard of IEEE Std
1003.1-2024, aka, POSIX.1-2024‡ (portable operating system interface), henceforth
POSIX (“pahz-icks”), that describes a Unix-like operating system, command-line
interpreter (aka, “shell”), and common utility programs.

POSIX extends the C standard library with both additional functions and ad-
ditional semantics for existing functions. Various operating systems are POSIX-
certified or at least “mostly” POSIX-compliant. While this book primarily teaches
standard C, it would be a disservice to ignore POSIX due to its significance. The
few places in this book that are POSIX-specific are tagged with “[POSIX].”

†Information technology — Programming languages — C, International Organization for
Standardization (ISO), ISO/IEC 9899:2024, 2024,
https://www.iso.org/standard/82075.html

‡POSIX.1-2024, aka, IEEE Std 1003.1-2024, IEEE and The Open Group, 2001-2024,
https://pubs.opengroup.org/onlinepubs/9799919799/

https://pubs.opengroup.org/onlinepubs/9799919799/
https://www.iso.org/standard/82075.html
https://github.com/Apress/Why-Learn-C

• “Make it fast, even if it’s not guaranteed to be portable.”

“C is quirky, flawed, and an enormous success.”

Preface xxi

As described in K&R, C is a general-purpose programming language with a sim-
ple syntax. Part of C’s philosophy† includes things like:

• “Trust the programmer.”
That means the compiler assumes you know what you’re doing (even when

you don’t). Sometimes, this leads to a core dump. (If you don’t know what that
is, you will.)

C prioritizes generating efficient code. Bymany benchmarks, a programwrit-
ten in C runs faster than equivalent programs written in other languages. One of
the ways C achieves speed is by leaving many facets of the language implemen-
tation defined meaning that each C compiler generates code for what works best
(is fastest) for a particular CPU. Examples include the number of bits comprising
an integer and whether characters are signed or unsigned. Consequently, it can
be too easy to write non-portable code. That is, it may work perfectly on your
machine, but if compiled and run on another machine, it may fail in surprising
ways.

Despite these things, there are best practices for avoiding bugs and writing portable
C code.

— Dennis M. Ritchie

Indeed, despite its quirks and flaws, the fact that you’re considering learning C over
half a century after its creation should demonstrate its success.

Acknowledgments

I would like to thank Andrew Brown, Dana Florescu, Mark Musante, Vishal Patel,
and especially Simon Tatham for their thoughtful comments, gentle criticisms, and
helpful suggestions on drafts of this book.

Now, let’s begin.

Paul J. LucasApril 2025

†Rationale for International Standard—Programming Languages—C, Revision 5.10, April, 2003,
https://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf

https://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf

About the Author

i
i

Paul J. Lucas started programming on
Commodore PETs at his high school.
Courtesy of his parents, the first computer
he owned was an Apple][plus that he pro-
grammed in BASIC, Pascal, Fortran, and
6502 Assembly language. At some point,
he upgraded to aMacintosh. During his un-
dergraduate studies, he taught himself C.
He’s been programming in C (on and off)
ever since. He’s also programmed in Bash,
Go, Java, Perl, and Python. Of all those, C
and C++ are still his favorites.

He started his career at AT&TBell Labs
n telephony, log file visualization, test-
ng cfront (the original C++ compiler), and
wrote the The C++ Programmer’s Hand-
book.† He’s also worked at NASA Ames
Research Center, various start-ups, and
lastly at Splunk. He holds patents on data
visualization class libraries, visual log file
analysis, programming language type sys-
tems, skewing of scheduled search queries,
and cache-aware searching.

He developed open-source projects in-
cluding CHSM, a finite state automata
compiler and run-time system, used by
both telecommunications companies and
CERN for managing complex reactive
systems; and maintains cdecl (“see-deh-
kull”), the C and C++ gibberish-to-English
translator.‡

†The C++ Programmer’s Handbook, Paul J. Lucas, AT&T Bell Laboratories, Prentice-Hall,
Englewood Cliffs, New Jersey, 1992.

‡cdecl: Composing and deciphering C (or C++) declarations or casts, aka “gibberish,” Paul J.
Lucas, https://github.com/paul-j-lucas/cdecl

xxiii

https://github.com/paul-j-lucas/cdecl

About the Technical Reviewers

t

t

Simon Tatham is the author of multi-
ple free-software projects in C, most no-
ably PuTTY. He also maintains the Si-
mon Tatham’s Portable Puzzle Collection
series of games, and was the original au-
hor of NASM. He has published articles
on creative uses of the C preprocessor. In
his day job, he develops C compilers and
C libraries.

i

t

r

German Gonzalez-Morris is a poly-
glot software architect/engineer with
20+ years in the field, with knowledge
n Java, Spring-Boot, C/C++, Julia,
Python, Haskell, and Javascript, among
others. He works with cloud (architec-
ure) web-distributed applications and
micro-services. German loves math puz-
zles (including reading Knuth, and is
proud of solving some of Don’s puzzles),
swimming, and table tennis. Also, he has
eviewed several books, including books
on application containers (WebLogic)
and languages (C, Java, Spring, Python,
Haskell, Typescript, WebAssembly, Math
for coders, regexp, Julia, data structures
and algorithms, Kafka).

xxv

Part I
Learning C

const

constexpr const typeof alignas

do while for break continue switch return goto

inline

scanf

Part I covers the core of the C23 standard of C:

1. A Tour of C: Gives a “tour” of C’s major features to give you a feel for the
language including main, I/O, arrays, strings, functions, memory organization,
pointers, , dynamic memory management, and structures.

2. Comments, Names, andTypes: Covers comments, names, scope, built-in types,
typedef, standard library types, signed integer overflow, choosing an appropri-
ate integer type, and type conversions.

3. Operators: Covers C’s arithmetic, unary plus and minus, increment, decre-
ment, relational, logical, conditional, bitwise, assignment, function call, array
indexing, address, dereference, member access, casting, comma, sizeof, and
alignof operators.

4. Declarations: Covers the C declaration syntax, multiple declarations, auto,
storage classes, , , , , and attributes.

5. Statements: Covers C’s statements of expression, compound, if-else, while,
- , , , , , , , and empty.

6. Arrays and Pointers: Covers array declaration, initialization, indexing, mul-
tidimensional arrays, void pointers, pointers to pointers, arrays and pointers,
arrays vs. pointers, pointers to function, multidimensional arrays vs. pointers,
compound literals, and variable length arrays.

7. Enumerations: Covers enumerations, declaration, name collisions, their under-
lying type, implicit conversion, and values.

8. Preprocessor: Covers the C preprocessor, its language, compilation phases,
object-like macros, predefined macros, conditional compilation, file inclusion,
function-like macros, X macros, and gives some useful macros.

9. Functions: Covers function declarations, definitions, parameters, array param-
eters, return values, error handling, main, static functions, static local variables,
and and variadic functions.

10. Structures: Covers structure definitions, initialization, compound literals, pad-
ding, flexible array members, and bit fields.

11. Unions: Covers union definitions, initialization, compound literals, type pun-
ning, and restricted class hierarchies.

12. Input, Output, and Files: Covers output, printf, files, directories, input,
, environment variables, and other related functions.

13. Program Organization: Covers include guards, opaque types, self sufficient
headers, cooperating with C++, program initialization and clean-up, how to or-
ganize program source files, and build tools.

14. Multithreading: Covers creating, joining, and detaching threads, “atomic,” mu-
texes, condition variables, thread_local, and thread-specific storage.

Chapter 1

 A Tour of C

To begin, the first chapter gives you a “tour” of C’s major features to give you a feel
for the language including the main function, I/O, arrays, strings, functions, memory
organization, pointers, const, dynamic memory management, and structures.

1.1 A First Program

The canonical first program shown in any programming language is “hello, world,”
a simple program that prints that phrase. In C, it’s:

#include <stdio.h>

int main() {

printf(”hello, world\n”);

}

■ The first “hello, world” program was written by Kernighan as part of his
A Tutorial Introduction to the Language B.† (As you might guess, B is a
precursor to C. B never gained widespread use.) When K&R was written,
“hello, world” was the first C program shown. It’s since become the canon-
ical first program shown for any programming language. □

C program source files conventionally end with a “.c” extension, so, assuming
this program is in a file hello.c, it must be compiled (converted from source code
into an executable) with a C compiler. On most Unix systems, the C compiler is
named “cc” (short for “C compiler”). To compile a program, at a shell prompt ($),
type cc followed by the name of the source file to compile:

†A Tutorial Introduction to the Language B, Brian W. Kernighan, Bell Laboratories Computing
Science Technical Report, #8, Murray Hill, New Jersey, Jan. 1973.

© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_1

3

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_1&domain=pdf

main

()

4 1 A Tour of C

$ cc hello.c

■ If cc is not on your system, popular alternatives are “gcc” and “clang.”
To compile all of the examples in this book, you may need to specify a
-std=c23 or a -std=c2x option since, as of this writing, C23 is not yet the
default C language version for some compilers. □

If there are no errors, nothing will be printed (no news is good news), but an exe-
cutable file named “a.out” will have been created in the same directory.

■ Originally, C compilers produced assembly language source code for the
CPU of the computers they were being run on. The assembly source was
then fed into an assembler that assembled (converted from assembly source
into machine code) producing the file a.out (by default) for “assembler
output.” Many modern C compilers generate machine code directly yet still
produce executables named a.out for continuity. □

To run the executable, simply type its name (following ./ since it’s in the current
directory):

$./a.out

at which point it will print:

hello, world

In C, a program begins execution in a function named “main” (§9.7). All function
declarations:

1. Begin with the type of the value returned — its return type. By definition, main
must return int (a signed integer type, §2.5.4) whose value indicates the status,
either the success or failure, of the program. By convention, zero means “suc-
cess” and any non-zero value means “failure” where the value is a code for the
type of failure.

■Why not zero for failure? Because there is only one way to succeed
by having zero failures, but there are many ways to fail and many non-
zero integers. □

2. Followed by the name of the function (here,).
3. Followed by a list of zero or more parameters (§9.2) between .
4. Followed by a sequence of zero or more statements (§5) between {} comprising

the function’s body.

C is liberal when it comes to formatting and whitespace is largely insignificant.

■ In particular, C doesn’t care if you use either spaces or tabs to indent, nor
by how much, nor if the { of a function is on the same line as its name or
the next line so that it lines up vertically with its corresponding }.

.c

//

1.2 Copying Input to Output 5

On the one hand, not having to memorize and obey a rigid set of for-
matting rules is nice; on the other hand, insufferable debates have raged for
decades about which is the “one true style.” This book uses my style. □

C has no built-in input/output (I/O) facilities (§12). Instead, they’re provided by
C’s standard library. The statement:

printf(”hello, world\n”);

calls a function named printf (for “print formatted,” §12.1.1) from the standard
library passing ”hello, world\n” as an argument.

A sequence of characters between double quotes is known as one of character
string, string literal, or simply string. The sequence \n is C’s notation for represent-
ing the newline character that, when printed, prints subsequent output on the left
edge of the next line.

The:

#include <stdio.h>

says to include the text (§8.6) of the file stdio.h (part of the C standard library) that
declares functions for performing I/O such as printf.

There are actually two types of C program source files:

1. files contain definitions of functions (and other things).
2. .h files (known as header files or simply headers) contain declarations of func-

tions (and other things) providing the API for the corresponding .c file. The C
standard library has a few dozen headers (§A), but you can also create your own.

You might be wondering:

If main returns an int, where is it?

Normally, every function declared as returning int (or any type)must return a value.
But main is special (§9.7.2) in that if no return value is given, it’s equivalent to
returning zero (success).

1.2 Copying Input to Output

The next program in listing 1.1 will simply copy its input to its output verbatim by
reading, then writing, one character at a time. This program shows a number of new
things about C:

• Comments (§2.1) can be specified either between /* and */ that may span mul-
tiple lines or after that spans until the end of the line.

• Line 7 defines a local variable c to hold the value of the character read to be of
type int. In C, variables must be declared prior to their first use.

1 A Tour of C6

1 #include <stdio.h>

2
3 /*

4 Copy input to output, v1.

5 */

6 int main() {

7 int c; // declare variable ’c’ as int

8 c = getchar(); // get char. from ”standard input”

9 while (c != EOF) { // while it’s not end-of-file ...

10 putchar(c); // print it to ”standard output”

11 c = getchar(); // read the next character

12 } // and repeat

13 }

Listing 1.1: Copy input, version 1

• Line 8 calls the standard I/O library function getchar that reads a single char-
acter from standard input and assigns the character to c.

■ By default, standard input comes from your keyboard, but can alter-
natively come from a file or even from another program.

In a Unix shell, you can redirect standard input and output for a
command from files using < and >, respectively:

$ command < input.txt > output.txt

In an IDE (integrated development environment, §13.9), there’s typi-
cally a configuration setting for standard input and output. □

In addition to returning characters, getchar also returns a special “EOF” value to
indicate that the “end of file” has been reached. Necessarily, EOFmust be distinct
from any actual character, so its type is int, not char; hence, c is declared int
to match.

• Line 9 makes use of a while loop (§5.4). It evaluates the expression between
() and, as long as it remains true, the loop body (the statements enclosed by {})
is executed repeatedly. In C, != is the not-equal-to operator (§3.5).

• Line 10 calls putchar that prints the character to standard output (by default,
the terminal).

• Line 11 gets the next character from standard input, if any, or EOF.
• After the last statement in the loop body has been executed, the program “loops”
back to the while and the expression is re-evaluated.

Let’s tweak themain part of the program to be as shown in listing 1.2. This version
is equivalent to the first, but it shows more idiomatic C:

• The first change is that the assignment and comparison to EOF have been com-
bined into a single expression. In C, an assignment is itself an expression. The
extra () are needed since != has a higher precedence (§3) than =. Without them,

71.2 Copying Input to Output

int main() {

int c;

while ((c = getchar()) != EOF)

putchar(c);

}

Listing 1.2: Copy input, version 2, using idiomatic C

c would be assigned the “truth” value of whether the result of getchar is not
equal to EOF.

• The second change is that the {} have been elided from the while loop. This
can be done whenever there is only a single statement. Of course, you can keep
the {} if you want.

While the first two versions of the program are fine for illustrative purposes,
they’re not production-quality because copying input a character at a time is ineffi-
cient. While calling the functions getchar and putchar is fast, it’s not zero-cost.
Better would be to read and write “chunks” of characters as shown in listing 1.3.

1 #include <stdio.h>

2 #include <stdlib.h>

3
4 constexpr size_t BUF_SIZE = 4096;

5
6 int main() {

7 char buf[BUF_SIZE];

8 size_t bytes;

9
10 do {

11 bytes = fread(buf, 1, BUF_SIZE, stdin);

12 if (ferror(stdin))

13 goto error;

14 if (fwrite(buf, 1, bytes, stdout) < bytes)

15 goto error;

16 } while (bytes == BUF_SIZE);

17 return EXIT_SUCCESS;

18
19 error:

20 perror(”copy”);

21 return EXIT_FAILURE;

22 }

Listing 1.3: Copy input, version 3: production-quality

This version also illustrates more things about C:

• Line 4 defines a constant for the size of a buffer into which we’ll read a chunk
of characters. Using constants rather than “magic values” is a good practice. In
C, it’s conventional to name constants in all capital letters.

The type of size_t (§2.9) is a standard library unsigned type used when
dealing with numbers of bytes.

1 A Tour of C8

■ Any name that ends with _t is a standard library type. You should
avoid naming anything of your own with that suffix. □

■ The ideal buffer size would match your system’s memory page size.
It’s always a power of two and likely either 4096 or 8192. While there
is a way to obtain the actual value at run-time, we’ll just use 4096 to
keep the example simpler. □

• Line 7 declares an array (§6.1) of BUF_SIZE char, that is a contiguous set of
characters. In C, [] denotes an array.

• Line 8 declares a variable to hold the number of bytes read.
• Lines 10 and 16 introduce an alternate do-while loop (§5.5). Unlike while that
evaluates its condition at the start of the loop (and therefore may not execute
its body at all), a do-while loop evaluates its condition at the end of the loop
(and therefore always executes its body at least once). It’s useful here because
we don’t know whether to loop until after we’ve attempted to read some bytes.

• Line 11 calls the standard function fread (§12.4) that reads bytes into buf of
1 chunk of size BUF_SIZE from stdin (a global variable that refers to standard
input) and returns the number of bytes read and assigns it to bytes.

• Since fread returns the number of bytes read, it can’t also return whether an er-
ror occurred. Hence, line 12 calls the standard function ferror to check whether
there was an error while reading: if so, it uses goto (§5.10) to go to the statement
labeled error on line 19.

• Line 14 calls the standard function fwrite (§12.1) to write the bytes from buf

for 1 chunk of size bytes to stdout (a global variable that refers to standard
output) and returns the number of bytes written. Unlike fread, if its return value
is less than the number of bytes requested to be written, it means there was an
error, so it also uses goto to go to the statement labeled error on line 19.

• Line 16 checks if bytes equals BUF_SIZE: if so, it loops back to the do; if not,
the loop will exit. (The only times bytes will not be equal to BUF_SIZE is when
the last chunk of the input has been read and written or when there was an error.)

In C, == is the equal-to operator (§3.5) — not to be confused with = that’s
the assignment operator (§3.9).

• Unlike previous examples, line 17 explicitly returns a “success” value from main

because we don’t want the code to “fall through” into the error code below.
• Line 19 is the label for the target of both goto statements. While overuse of
goto is a bad practice in that it can lead to “spaghetti code,” having shared
error-handling code is better than duplicating it, and is a common practice in C.

• Line 20 calls the standard function perror that prints the text of the most re-
cent error. The argument will be printed before the error message to identify the
program that printed the message.

• Line 21 returns EXIT_FAILURE that’s a standard error value. Both it along with
EXIT_SUCCESS are defined in the stdlib.h standard header.

91.3 Strings

1.3 Strings

Before the next example, we need to digress on strings in C. In listing 1.3, there is:

char buf[BUF_SIZE];

that declares buf to be an array of BUF_SIZE char. There, it’s only being used as a
buffer for the raw bytes read and written. It’s not a “string.” In C, strings also use
arrays of char with the convention that the last character must be a null character
(having the value zero). The following string declarations are equivalent:

char msg1[6] = ”hello”;

char msg2[] = ”hello”;

char msg3[] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’\0’ };

The declaration for msg1 explicitly specifies the size of the array and initializes it
with ”hello”. Even though “hello” has 5 characters, a string literal like ”hello”
implicitly has a null character appended by the compiler, hence 6 in total.

Having to count the number of characters and remember to add one for the null
character is both tedious and error-prone. As shown in the declaration for msg2,
you can omit the explicit size in which case the compiler will count the number of
characters in the string literal for you, add 1 for the null character automatically, and
make that the size of the array.

Finally, the declaration for msg2 is simply “syntactic sugar”† for the declaration
for msg3where the individual characters (between single quotes) are explicitly given
between {}. When being explicit, the compiler does not append a null character —
you have to do it yourself. The sequence \0 (zero) is C’s notation for representing
the null character similar to \n for the newline character.

The next program in listing 1.4 is a special-case of copying in that it only copies
sequences of four or more consecutive printing ASCII characters similar to the Unix
strings(1) command. It does this by saving characters into a buffer until at least four
have been encountered.

• Line 7, as in previous examples, defines a variable c to hold the value of the
character read.

Not mentioned previously, however, is that, by default, local variables are not
initialized. That means their value is indeterminate. Attempting to read an unini-
tialized variable results in undefined behavior (§15). However, if you ensure that
an uninitialized variable is written to before it’s read (as all the examples have
done), then everything is fine.

■ Leaving a local variable uninitialized is an instance of the compiler
assuming you know what you’re doing. Uninitialized variables can be

†The mechanical evaluation of expressions, P. J. Landlin, The Computer Journal, 6(4), Jan. 1964,
pp.308–320.

1 A Tour of C10

1 #include <ctype.h>

2 #include <stdio.h>

3
4 constexpr size_t STRING_MIN = 4;

5
6 int main() {

7 int c;

8 char str_buf[STRING_MIN] = { };

9 size_t str_len = 0;

10
11 while ((c = getchar()) != EOF) {

12 if (isprint(c)) {

13 if (str_len < STRING_MIN - 1) {

14 str_buf[str_len++] = (char)c;

15 continue;

16 }

17 if (str_len == STRING_MIN - 1) {

18 str_buf[str_len++] = ’\0’;

19 fputs(str_buf, stdout);

20 }

21 putchar(c);

22 }

23 else {

24 if (str_len == STRING_MIN)

25 putchar(’\n’);

26 str_len = 0;

27 }

28 } // while

29 }

Listing 1.4: Print only strings of 4 or more characters

a source of bugs (§18.6.8). Some compilers in some cases may be able
to warn you when you attempt to read an uninitialized variable, but you
can’t rely on the compiler doing so.

Why not automatically initialize local variables? It takes time. Not
initializing them is another way C achieves its speed. If you’re going to
write to the variables before reading them anyway, why bother? □

• Line 8 declares str_buf as an array of STRING_MIN char and initializes each
to the null character via the = { } syntax (§6.2). When the braces are empty, it
means initialize the entire array to zero or equivalent.

• Line 9 defines str_len and initializes it to zero.
To emphasize what was written earlier, in C, strings are only arrays of char

ending with a null character. Arrays don’t “know” how big they are, so neither
do strings — you have to keep track separately, hence str_len.

• Line 12 calls the standard library function isprint declared in the ctype.h

standard header (§B.1), hence the #include on line 1. It returns true only if a
character is “printable,” that is one of a space, a punctuation symbol, a letter, or
a digit.

str_buf

• If c is a printable character, then line 13 checks whether we’ve encountered
fewer than 3 printable characters. If so:

1. Line 14 appends c to str_buf by storing it at position str_len. In C, all
arrays start at an index of zero, hence the valid indices for are 0–3.

1.3 Strings 11

The ++ is the post-increment operator (§3.4) that increments a variable
by one after returning its old value. There’s also a pre-increment operator
version that also increments a variable by one, but before returning its new
value. For example:

int x = 0;

int y = x++; // post-increment: y = 0, x = 1

int z = ++y; // pre-increment : z = 1, y = 1

is equivalent to:

int x = 0;

int y = x;

x = x + 1;

y = y + 1;

int z = y;

but more concise. There’s also -- that is both a pre- and post-decrement
operator that decrements by one. Idiomatic C invariably uses ++ and --.

■ This is the origin of C++’s name. It’s kind-of tongue-in-cheek
implying that C++ is an incremental improvement upon C. □

The (char) before the c is a type cast or simply cast (§3.14), that is the
name of a type enclosed by (). It converts (“casts”) an expression to the
given type. In this case, since c is not EOF, it must be an ordinary character.
However, in order to store it into str_buf, it should be cast from an int to
a char.

■ You can actually omit the cast and the character will be stored
just the same, but the compiler will likely warn you that you are
storing the value of a larger type int into a smaller type char and
may lose information.With the cast, you’re telling the compiler that
you’re aware of the possible loss of information and it’s intentional,
i.e., you know what you’re doing, so it won’t warn you. □

2. After appending c, line 15 performs a continue statement (§5.7) that jumps
back to the start of the loop.

• Line 17 checks whether we’ve encountered exactly 3 printable characters. If so:

1. Line 18 both null-terminates the string (as all strings must be) and incre-
ments str_len so it will now be 4 (important for line 24).

int

2. Line 19 prints str_buf by calling the standard function fputs (for “file put
string,” §12.1).

• Line 21 unconditionally prints c since we’ve encountered at least 3 printable
characters previously.

• Line 23 shows that an if statement may have an optional else statement that
is executed only if the condition for the if is false.

• If c is not a printable character, then line 24 checks whether we’ve reached the
minimum of 4 printable characters and have been printing them. If so, we must
now print a newline (line 25).

• Additionally, we also reset str_len to zero (line 26).

1 A Tour of C12

1.4 Functions

Except for the most trivial, programs in C are composed of multiple functions that
allow a large, complicated program effectively to be broken down into smaller, sim-
pler mini-programs.

Consider the function putubin in listing 1.5 that prints an unsigned integer in
binary and returns the number of characters printed.

1 #include <stdio.h>

2
3 unsigned putubin(unsigned n) {

4 if (n == 0) {

5 putchar(’0’);

6 return 1;

7 }

8 unsigned digits = 0;

9 for (unsigned bit = ~(~0u >> 1); bit != 0; bit >>= 1) {

10 bool const is_1 = (n & bit) != 0;

11 if (is_1 || digits > 0) {

12 putchar(’0’ + is_1);

13 ++digits;

14 }

15 }

16 return digits;

17 }

Listing 1.5: Function to print an integer in binary

It does this by starting out with bit equal to the integer where only the left-most bit
is 1, print the corresponding bit in n, then for the next iteration, “shift” it to the right
by 1, and repeat for however many bits comprise n.
• Line 3 declares the function to take and return unsigned, a non-negative version
of .

In C, unsigned is a modifier (§2.5) that makes a declaration of an integer
type be unsigned, for example:

digits

variables is limited to the loop’s body.

1.4 Functions 13

unsigned char uc;

unsigned int ui; // same as: unsigned ui;

When the type is int, it can be omitted and usually is.
• Line 4 checks for the degenerate case of n being zero: if it is, simply print 0 and
return 1.

■ In general, it’s a good practice to handle easy, degenerate, or special
cases first and return early. This allows the rest of the code not to be
concerned with such cases thus making it simpler. □

• Line 8 declares that will count the number of digits printed.
• Line 9 introduces yet another loop statement: for (§5.6). It’s a generalization of
a while loop:

for (init-expropt; cond-expropt; next-expropt)

statement

where:

1. The init-expr performs any initialization once before the loop. Optionally,
it can also declare the variables it’s initializing. The scope (§2.4) of such

2. The cond-expr is the same as in the while loop.
3. The next-expr performs any steps necessary to go to the next iteration of the

loop. It is performed after the last statement in the loop body or a continue
statement (§5.7).

A for loop is roughly equivalent to:

init-expr;
while (cond-expr) {

body
next-expr;

}

but more concise. All expressions are optional, but the ;s must remain. If cond-
expr is omitted, it’s equivalent to true.

For this for loop:

– The init-expr expression starts with ~0u >> 1 that uses the bitwise-not, aka,
one’s-complement operator (§3.8) on 0 to yield all 1s to which the right-shift
operator shifts right by 1 bit to yield an integer with the left-most bit of 0
and the rest all 1s. Finally, ~ is used again to yield the desired integer where
only the left-most bit is 1.

By default, integer literals are of type int, i.e., signed. The u suffixmakes
it an unsigned literal.

– The cond-expr simply checks that bit is not 0.

bit n

1 A Tour of C14

– The next-expr of bit >>= 1 uses the right-shift-assign operator (§3.9) to
right-shift bit by 1. In C, any assignment with an expression using any
operator op of the form:

x = x op expr;

can be rewritten using the assignment version of the same operator like:

x op= expr;

hence bit >>= 1 is equivalent to bit = bit >> 1 but more concise.

• Line 10 introduces the bool type (short for Boolean, §2.5.2) for storing either
of the “truth” values true or false. In this case, is_1 is assigned whether n
& bit, the bit-wise and of n and bit, is not zero, i.e., a 1 — that is whether the

’th bit of is a 1.
• On line 11, the || (logical-or, §3.6) and > (greater-than, §3.5) operators are
used to check whether either is_1 is true or digits > 0 so that we print a 0
only if we’ve previously printed a 1 so as not to print leading zeros. If true:

1. Line 12 prints a ’0’, or a ’1’ if is_1 is true. In C, you can perform arith-
metic on characters the same as on integers. (They are tiny integers behind
the curtain.) Since the ASCII code for ’1’ is one greater than that of ’0’,
this works.

2. Line 13 increments digits.

• Line 16 returns digits.

As this function demonstrates, C is particularly good at working with individual bits
comprising integers.

1.5 Memory

Before continuing the tour, we need to digress on computer memory. It’s basically
a (very long) sequence of bytes, each having a unique integer address. In C, a byte
maps to the char type.

■ This is an oversimplification due to both register and cache memory, but
those can be safely ignored for now. □

y is a set of post office boxes, e.g., P.O. Box 1000, as shown in figAn analog ure 1.1.
Assuming 8 bits, a byte is large enough to store any ASCII character, any signed

integer −127 to 128, or any unsigned integer 0 to 255. To store larger values, multiple
consecutive bytes are used. The number of bytes used is an object’s size.

With the exception of char whose size is 1 by definition, C does not mandate
specific sizes for any other type, only minimum sizes. On modern 64-bit computers,

1.6 Pointers 15

.

1000 1001 1002 1003 1004 1005 1006 1007 1008

Fig. 1.1:Memory as a sequence of bytes

int is typically 32 bits and therefore has a size of 4 bytes. In the post office box
analogy, you would need to rent a larger box to store an int. For example, storing
the integer value 1941 would be done as shown in figure 1.2 where its address is the
number of its first box, here 1000.

. . . 1941 . . .

1000 1001 1002 1003 1004 1005 1006 1007 1008

Fig. 1.2: Storing a 4-byte int

Once an object has been created at an address, it stays at that address forever
unless explicitly moved. Moving it to some other address requires that the bytes
comprising it be read from its current addresses and written to its new addresses.
It’s best to avoid moving larger objects (size≥ 16 bytes) whenever possible. Rather
than moving objects around, you can simply pass their addresses around instead.

1.6 Pointers

In C, a pointer is a variable that contains the address of some other object— it points
to where in memory the object is. In the post office box analogy, a pointer would have
its own box like any other variable, but inside the box would be a slip of paper with
the address of the object to which it points written on it.

Like the types of variables we’ve already seen, such as int and char, pointers
have types corresponding to the type of the objects to which they’re pointing, e.g.,
pointer to int and pointer to char.

To declare a pointer, put the type to which it will point and a * before the name:

int *p; // pointer to int

To initialize a pointer to point at no int in particular, use the special nullptr literal:

p = nullptr; // p points to no int

One way to make a pointer point at something is by using the & (address-of) operator
(§3.12):

16 1 A Tour of C

int i = 1941;

p = &i; // p points to i

The expression &i gets the memory address of i that = then assigns to p as shown
in figure 1.3.

1000
p

1941
i

1000 1001 1002 1003

Fig. 1.3: Pointer to int

To get the value of the int to which p points, use the * (dereference) operator (§3.12):

int j = *p; // j = 1941

■ Note that C “overloads” some operators. In listing 1.5 (p.12), & was the
bitwise-and operator, but here it’s the address-of operator. Similarly, the *
is the multiplication operator, but here it’s the dereference operator. The
compiler knows which ones you mean based on context. □

In the post office box analogy, to dereference p would be to go to p’s box, open it,
take out the slip of paper having the int’s address on it, read it (here, 1000), go to
the box having that address, and finally read the int’s value (here, 1941).

For a use for pointers, consider the program in listing 1.6 that intends to swap the
values of two integers.

1 #include <stdio.h>

2
3 void swapi(int a, int b) { // v1 -- WRONG

4 int temp = a;

5 a = b;

6 b = temp;

7 }

8
9 int main() {

10 int x = 1, y = 2;

11 swapi(x, y);

12 printf(”x=%d, y=%d\n”, x, y); // prints: x=1, y=2

13 }

Listing 1.6: Swapping integers, version 1 (the wrong way)

• Line 3 declares a function swapi:

– The use of void instead of a return type means this function returns nothing.
– The function has two parameters, the values to swap.

• Line 10 shows multiple variables can be declared in the same declaration sepa-
rated by commas.

• Line 11 calls swapi passing x and y.
• Line 12 prints the values.

171.7 const

This example also shows how printf can be used to print things other than
string literals. When printf prints, it scans its first argument (the format string)
looking for % characters. When one is encountered, it looks at the characters that
follow that specify what is to be printed and how. Every % in the format argument
must correspond to a subsequent argument (except when followed by another %
that means to print a % literally).

In this example, each % is followed by d that means its corresponding argu-
ment is an int and to print it in decimal.

If you were to compile and run this program, it would print x and y with their
original values — not swapped. Why not? Because C functions pass arguments by
value that means the value of an argument is copied into the local parameter (vari-
able) of a function. When main calls swapi, the value of x is copied into a and the
value of y is copied into b. The function will then swap a and b (the copies), not x
and y (the originals). The correct way to write swapi is shown in listing 1.7.

3 void swapi(int *pa, int *pb) { // v2 -- correct

4 int temp = *pa;

5 *pa = *pb;

6 *pb = temp;

7 }

8
9 int main() {

10 int x = 1, y = 2;

11 swapi(&x, &y); // note ’&’

12 printf(”x=%d, y=%d\n”, x, y); // prints: x=2, y=1

13 }

Listing 1.7: Swapping integers, version 2 (the right way)

• Line 3 now declares the two parameters as pointers to int.
• Lines 4–6 now swap the values of the integers to which the pointers point.
• Line 11 passes the addresses of x and y instead.

1.7 const

In addition to constexpr first shown in §1.2, C also has const. Before continuing
the tour, we need to digress on their differences.

• As shown previously, the purpose of constexpr is to give names to constant
values rather than using magic values directly.

• The purpose of const is to mark an object immutable after it’s been initialized,
not constant, hence it’s a misnomer.

1 A Tour of C18

The details of each would be too much of a digression, so they will be deferred
until §4.4 and §4.5. For now, the rules for when to use constexpr vs. const can be
summarized as:

• Use constexpr to give names to things that otherwise would be magic values:

constexpr size_t BUF_SIZE = 4096;

constexpr char GREETING[] = ”hello, world”;

• Use const to mark an object immutable after initialization. For example, we
can revise listing 1.7 to use const as shown in listing 1.8.

void swapi(int *pa, int *pb) { // v3 -- with const

const int temp = *pa; // temp won’t change

*pa = *pb;

*pb = temp;

}

Listing 1.8: Swapping integers, version 3, with const

Using const in such a small function doesn’t really matter; but in larger functions,
an object marked const:

1. Prevents accidentally changing its value. (If you try, the compiler will warn you.)
2. Documents to programmers that an object will not change rather than having to

scrutinize the code to see if the value is ever changed.

It’s a good practice to make objects constwhenever possible. This is known as const
correctness. Subsequent examples will all be const correct.

■ Admittedly, having to sprinkle const all over your programs is both te-
dious and verbose. Ideally, const would be the default and you’d have to
specifically declare an object as, say, mutable to modify it. Unfortunately,
C didn’t originally have const so you can’t simply add a mutable keyword
and retroactively make all other declarations immutable by default without
breaking every C program in existence. Hence, adding const to Cwasmuch
less disruptive and better than not adding it. □

When it comes to pointers, there are two things that can be const: the object
pointed to and the pointer itself. Listing 1.9 summarizes const pointer declarations.
A few declarations need further explanation:

• On line 5, even though pcc is a pointer to const char, it can point at a non-
const char. This means you can’t modify the char via that pointer. Whether
the char is actually const is irrelevant. The same is true for cpc1 on line 11.

• On lines 8, 9, 11, and 12, the pointers are const as indicated by a const to the
right of the *. Since they’re const, they must be initialized in their declarations.
For such declarations, reading them right-to-left helps, for example cpc1 is a
“constant pointer to a char that is constant.”

191.7 const

1 char nc = ’x’; // non-const

2 const char c = nc; // const

3
4 const char *ncpc; // non-const to const

5 ncpc = &nc; // ... OK

6 ncpc = &c; // ... OK

7
8 char *const cpnc1 = &nc; // const to non-const: OK

9 char *const cpnc2 = &c; // ... error

10
11 const char *const cpc1 = &nc; // const to const: OK

12 const char *const cpc2 = &c; // ... OK

Listing 1.9: Pointer declarations with const

• On line 9, the declaration is illegal because a pointer to non-constmay not point
to a const.

One final stylistic thing about const is that C doesn’t care where you put it within a
declaration. For example, the following declarations are equivalent:

const char x = ’a’; // ”west” const

char const y = ’b’; // ”east” const

The latter is known as “east const” because the const is to the right or “east” of
the type it’s making const. For declarations that don’t involve pointers, there’s no
benefit; but for pointer declarations, the benefit is that const is always east of what
it’s making const. For example, in:

char const *const cpcc = &x; // const is always ”east”

the first const makes the char to its left const; the second const makes the *

to its left const. Hence, it’s consistent. Again, reading right-to-left helps: cpcc is
a “constant pointer to a constant char.” Subsequent examples will all use the east
const style.

An example that illustrates many of the things presented so far is an implemen-
tation of the strcpy standard function (§B.2) that copies a string from src to dst

and returns dst is shown in listing 1.10.

char* strcpy(char *dst, char const *src) {

char *const dst_orig = dst;

while (true) {

*dst = *src;

if (*dst == ’\0’)

return dst_orig;

++dst;

++src;

}

}

Listing 1.10: strcpy implementation, version 1

strcat

”, world”

1 A Tour of C20

By now, the code should be fairly straightforward. It copies a string a character at a
time. If the last character copied was the null character, the function returns. Other-
wise, it increments both dst and src and continues.

While this function works efficiently, a much more idiomatic version is shown in
listing 1.11.

char* strcpy(char *dst, char const *src) {

char *const dst_orig = dst;

while ((*dst++ = *src++))

;

return dst_orig;

}

Listing 1.11: strcpy implementation, version 2, using idiomatic C

All the work of assigning *src to *dst, checking that result for zero (in this case,
the null character), and incrementing both dst and src, is done within the while
expression, so nothing is needed for the body, hence an empty statement (§5.11) of
just ;. The extra () are used to suppress a warning about using = when you might
have meant ==. It’s necessary to use the post version of ++ here since we need to
copy the first character before incrementing the pointers.

Such conciseness is a hallmark of C. While it may seem like gibberish now, it
will eventually become second nature.

1.8 Dynamic Memory

Compared to modern languages, strings in C are primitive. As mentioned in §1.3,
strings are only arrays of char. When you declare an array, you must specify a size.

Suppose you have a string, but want to append another to it as in listing 1.12.

1 #include <stdio.h>

2 #include <string.h>

3
4 int main() {

5 char greeting[13] = ”hello”; // 5 + 7 + 1 = 13

6 strcat(greeting, ”, world”);

7 puts(greeting);

8 }

Listing 1.12: String concatenation (the hard way)

• Line 2 includes the string.h standard header (§B.2) that declares several string
functions including used on line 6.

• Line 5 declares greeting so it’s big enough to hold its initial contents ”hello”
(5), plus the string to be appended (7), and the null character (1).

• Line 6 concatenates the second string onto the end of the first. The array for the
first must be big enough to hold their combined lengths. If not, it would result

1.8 Dynamic Memory 21

in a buffer overflow that is a source of many bugs (§18.6.2). The C compiler
will not warn you when the program is compiled nor will the C runtime alert
you when a buffer overflow occurs except perhaps via a core dump (§18.4) —
if you’re lucky.

• Line 7 calls the standard function puts that prints the string and a newline.

Fortunately, there is a better way. But first, a digression on memory kinds.
In any running program (written in any language), there are three broad kinds of

memory:

1. Global, aka, static memory: holds all of a program’s global variables. Its size
is determined by the compiler and is fixed.

2. Stack memory: holds all of a function’s local variables on a “stack” while that
function is executing. Its size is determined by the compiler based on the number
of local variables, but the size of the stack grows as functions are called and
shrinks as they return.

3. Heap, aka, dynamic memory: holds anything you want for as long as you want
on a “heap” independent of functions. Its size is determined by you. However,
in addition to you allocating such memory, in C, you must free it explicitly.

Rather than guess how big to make an array, you can dynamically allocate exactly
how much you need and make a pointer point to it. This can be done to concatenate
strings with no chance of a buffer overflow. In listing 1.13, we define a function
mstrcat (a dynamic memory version of strcat) to do exactly that.

1 #include <stdio.h>

2 #include <stdlib.h> // for malloc & free

3 #include <string.h>

4
5 char* mstrcat(char const *s1, char const *s2) {

6 size_t const s1_len = strlen(s1);

7 char *const s12 = malloc(s1_len + strlen(s2) + 1);

8 strcpy(s12, s1);

9 strcpy(s12 + s1_len, s2);

10 return s12;

11 }

12
13 int main() {

14 char *const msg = mstrcat(”hello”, ”, world”);

15 puts(msg);

16 free(msg);

17 }

Listing 1.13: String concatenation (the better way)

• Line 5 declares that mstrcat takes two constant strings (pointers to constant
arrays of char) and returns a new concatenated string.

• Line 6 calls the standard function strlen (§B.2) that gets the length of s1 and
assigns it to s1_len since we’ll need it twice.

• Line 7 calls the standard function malloc that dynamically allocates the given
number of bytes (in this case, s1_len, plus the length of s2, plus 1 for the null
character) and returns a pointer to the first byte.

• Line 8 calls the standard function strcpy (§B.2) to copy the characters com-
prising s1 (including its terminating null character) to the start of s12.

• Line 9 calls strcpy again to copy the characters comprising s2 to the start of
s12 plus s1_len that’s at the end of the string as shown in figure 1.4. C allows
arithmetic on pointers (§6.7). The null character is overwritten with the first
character of s2 followed by the rest of its characters and a new null character.

• Line 10 returns a pointer to the new, concatenated string.
• Line 15 calls the standard function puts that prints the string and a newline.
• Line 16 calls the standard function free that frees the memory.

1 A Tour of C22

1000
s12

’h’ ’e’ ’l’ ’l’ ’o’ \0 . . .

+ s1_len

1000 1001 1002 1003 1004 1005

Fig. 1.4: mstrcat: copy s2 to s12 + s1_len

C doesn’t have garbage collection, hence every call to malloc should be bal-
anced by a call to free eventually, but generally as soon as the memory is no longer
needed. A memory leak (§18.6.7) occurs when the value of a pointer to allocated
memory is somehow lost thus making it impossible to pass to free. Repeated leaks
will eventually exhaust memory. For listing 1.13, if mstrcatwere called fromwithin
a loop and the concatenated strings returned by it were not freed, then each iteration
would leak more memory.

As an exception, if some memory is allocated once, it’s actually OK not to free it.
When any program terminates, all memory used by it is reclaimed by the operating
system.

If at this point you’re thinking that’s a lot of work just to concatenate two strings
together, you’re right. However, modern languages that have proper strings that can
be concatenated easily are doing the samework behind the curtain to give the illusion
that strings “just work.” There are several ways to implement proper strings, each
with their own storage and performance trade-offs. In a language with proper strings,
you’re generally stuck with whatever trade-offs the language implementers made. In
C, you get to decide for yourself (§23).

1.9 Structures 23

1.9 Structures

Whereas an array is many objects of one type, a structure (§10) is one object of
(potentially) many types. Suppose you want to create a proper string object that can
grow automatically. You can declare a structure using struct followed by its name:

struct string {

char *contents; // pointer to actual contents

size_t len; // length (not including null at end)

};

This structure has two members: the first for a pointer to the actual characters com-
prising the contents of the string and the second for its length.

You can declare a variable of a structure type and optionally initialize it using
{} where the order of the values corresponds to the order that the members were
declared (§10.3):

struct string str = { ”hello”, 5 };

Alternatively, you can use designated initializers (§10.3), that is use the member
names preceded by . (dot) and followed by =:

struct string str = { .contents = ”hello”, .len = 5 };

Designated initializers can be given in any order. To access a member, use a .

(member-access operator, §3.13) followed by the name of the member:

puts(str.contents);

To access a member via pointer:

struct string *pstr = &str;

puts((*pstr).contents);

You need the () since . has a higher precedence (§3) than *. Fortunately, C provides
a -> (pointer-member-access aka, “arrow”) operator variant of the dereference op-
erator that’s a shorthand:

puts(pstr->contents); // same as: (*pstr).contents

However, we don’t want to manipulate the members manually; we want to write
functions that manipulate the members on our behalf. One such function is to put
(append) a string as shown in listing 1.14.

• Line 3 uses the standard function realloc that’s similar to but unlike malloc in
that realloc takes an existing pointer and reallocates the pointed-to memory
to make it have the new length and returns a new pointer. (If the original pointer
is null, then realloc allocates fresh memory.)

free

24 1 A Tour of C

1 void string_puts(struct string *str, char const *s) {

2 size_t const new_len = str->len + strlen(s);

3 str->contents = realloc(str->contents, new_len + 1);

4 strcpy(str->contents + str->len, s);

5 str->len = new_len;

6 }

Listing 1.14: string_puts function

• Line 4 uses strcpy to copy s to the memory address str + str->len similarly
to listing 1.13 (p.21), line 9.

We also need a function to clean up a string by freeing its contents as shown in
listing 1.15.

1 void string_cleanup(struct string *str) {

2 free(str->contents);

3 *str = (struct string){ };

4 }

Listing 1.15: string_cleanup function

• Line 2 calls to free the memory used by the string’s contents.
• Line 3 uses a compound literal (§10.4) that’s used to create a literal for a struct
by putting the name of a struct between () (similar to a cast) followed by the
values between {}. As with initializing arrays, if the {} are empty, it means
initialize every member to zero or equivalent. Initializing the struct to zero
isn’t strictly necessary here, but it’s a good practice.
■ This function isn’t named string_free because my personal style is to
name a function with a _cleanup suffix if it cleans-up an object’s resources
but does not free the object itself and with a _free suffix only if it also frees
the object. □

Given those two functions, we can now write code as shown in listing 1.16.

int main() {

struct string str = { };

string_puts(&str, ”hello”);

string_puts(&str, ”, world”);

puts(str.contents);

string_cleanup(&str);

}

Listing 1.16: Using string

Writing functions that take a pointer to a structure to manipulate it is what any
object-oriented language does behind the curtain via an implicit “this“ or “self”
pointer. In C, you simply have to be explicit about the pointer. (You could rename str
in all the examples to this if you wanted.) Similarly, in C++, an object’s resources
get cleaned-up automatically via a suitably defined “destructor.” In C, you simply
have to be explicit about calling cleanup functions.

251.10 Epilogue

1.10 Epilogue

This concludes the tour of C covering the core of the language: variables, functions,
constants, loops, pointers, strings, arrays, and structures. Using these features, it’s
possible to build pretty much anything from Apache to Zlib. The next several chap-
ters will fill in some features and details not covered in the tour.

At this point, you may be thinking that digressing on topics such as memory,
pointers, and dynamic memory management in the first chapter seems surprisingly
low-level. Modern languages are generally designed so that you don’t need to think
— or even know — about the details of how memory is organized or how data is
stored in it. You’re only supposed to write code that implements some semantics
and such details are none of your business. In contrast, C’s perspective is that such
details are your business.†

You may also be wondering why C is this way. The answer is because reality
is this way. Fundamentally, computers execute instructions, interpret sequences of
bytes as particular data types like int, and access data via pointers. C was designed
to be “close to the machine” to work with such details directly.‡

Even though modern languages often hide such details, they’re dealing with them
nonetheless behind the curtain. Indeed, in order for them to do what they do, some
have their core components written in C. For example, you can’t implement the
Java Virtual Machine (JVM) in Java because a Java program needs a JVM to run.
Similarly, you can’t write the Python interpreter in Python.

Consequently, you will eventually need to understand such details to do anything
non-trivial in C. But fear not: the details aren’t that complicated.

“This is your last chance. After this, there is no turning back. You take the
blue pill: the story ends, you wake up in your bed, and believe whatever you
want to believe. You take the red pill: you stay in Wonderland and I show
you how deep the rabbit-hole goes.”
—Morpheus§

Exercises

1. The strings program in listing 1.4 (p.10) has a minor printing issue in that if the
input ends with 4 or more printing characters not followed by a newline, then

†The Descent to C, Simon Tatham, 2013,
https://www.chiark.greenend.org.uk/~sgtatham/cdescent/

‡The Development of the C Language, Dennis M. Ritchie, History of Programming Languages,
2nd ed., ACM Press, New York, and Addison-Wesley, Reading, Mass, 1996.

§Laurence Fishburne (Morpheus), The Matrix, Lana Wachowski and Lilly Wachowski (directors),
Warner Bros. and Village Roadshow Pictures, March 24, 1999.

https://www.chiark.greenend.org.uk/~sgtatham/cdescent/

1 A Tour of C26

the last string printed won’t have a newline printed after it. Aesthetically, the
output would look better if it did.

Modify the program so that a newline is always printed after 4 or more print-
ing characters. Hint: you can use str_len to determine if a final newline needs
to be printed after the while loop.

2. Even though strlen is part of C’s standard library, it would be good to solidify
your understanding of strings to write it yourself. Therefore, write a function:

size_t strlen(char const *s);

that returns the length of s (the number of non-null characters, if any, before the
null character).

3. Write a function:

size_t strnlen(char const *s, size_t n);

that’s similar to strlen, but returns Ln, the smaller of n and the length of s. To
be efficient, your solution should not examine more than Ln characters, i.e., not
call strlen.

4. Write a function:

void string_putsn(struct string *str,

char const *s, size_t n);

that puts at most n characters of s onto the end of str. The size of the reallocated
memory should be str->len plus the smaller of n and the length of s. Hint: use
your solution to the previous exercise as part of your solution to this exercise.

5. Write a function:

void string_putc(struct string *str, char c);

that puts c onto the end of str. Hint: use your solution to the previous exercise
as part of your solution to this exercise.

6. Write a function:

void string_paths(struct string *str,

char const *comp);

that appends comp, a path component, ensuring exactly one / character separates
it from the existing string, e.g., for a Unix path ”/a” or ”/a/” and component
”b” or ”/b”, the result would be ”/a/b”. Hint: use your solutions to the previous
exercises as part of your solution to this exercise.

Chapter 2

 Comments, Names, and Types

Likemany other programming languages, C is a typed language having distinct types
for Boolean, character, integer, and floating-point numbers. Since C was designed
to be “close to the machine,” it has many variations of its types to suit particular
situations. There are many detailed rules for conversions among types and also many
ways to express literals for types.

Consequently, but necessarily, this chapter has a high information density. It’s
therefore recommended to skim it and refer back to it when necessary.

2.1 Comments

As first shown in listing 1.1 (p.6), there are two ways to include comments in C:

• Between /* and */ that may span multiple lines. Such comments cannot nest
(but see §8.5).

• After // that spans until the end of the line.

Here’s some advice for writing comments:

• Don’t comment what the code already says, for example:

++i; // increment ’i’

Such comments are pointless at best. Instead, say why something is being done:

++i; // ensure room for null character

• For files as a whole, include a comment stating what the purpose of the declara-
tions contained within it have in common:

// Declares a string type that grows when necessary

// and functions for manipulating such strings.

27© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_2

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_2&domain=pdf

nullptr

28 2 Comments, Names, and Types

• Include a copyright notice and license information.
• For functions:

– Briefly state the purpose of the function.
– For each parameter, if there are any preconditions, e.g., whether an argument
can (or cannot) be — and what happens if it is.

– For non-void functions, what the function returns under normal conditions
and under error conditions (§9.6), if any. When returning a pointer, whether
the caller is responsible for freeing it.

– What related functions exist, if any.
• If code was based on code or algorithm in a book, cite it:

// See ”Introduction to Algorithms,” 4th ed.,

// 13.2, p. 336.

• If code was based on code online, include a URL:

// From <https://gist.github.com/badocelot/5331587>

• Comment assumptions made and anything else non-obvious.
• If you update code, update its comments to match. Wrong comments are worse
than no comments.

Unlike some other languages, C doesn’t have a standard documentation comment
format. However, Doxygen† has emerged as the de facto standard format and tool
for documenting C (and C++) code. For example, the function mstrcat from listing
1.13 (p.21) might be documented using Doxygen as shown in listing 2.1.

/**

* Concatenates \a s1 and \a s2 together into a new string.

*

* \param s1 The first string to concatenate; must not be

* ‘nullptr‘.

* \param s2 The second string to concatenate; must not be

* ‘nullptr‘.

* \return Returns a new string of \a s2 concatenated onto

* \a s1.

* The caller is responsible for freeing it.

*/

char* mstrcat(char const *s1, char const *s2);

Listing 2.1: mstrcat documented using Doxygen

†https://www.doxygen.nl/

https://gist.github.com/badocelot/5331587

XID_Continue

2.2 Names 29

2.2 Names

The names of variables, constants, functions, and everything else (collectively, iden-
tifiers) have a few rules. An identifier:

1. Must start with a letter, underscore, or Unicode character from the XID_Start†
class.

2. May continue with letters, underscores, digits, or Unicode characters from the
class.

3. Can be of any length.
4. Considers upper case and lower case letters as distinct.
5. Must not be the same as a C keyword.
6. Must not begin with an underscore if it has external linkage (§4.3).
7. Must not begin with an underscore followed by either a capital letter or another

underscore.

■ To evolve C, the C committee occasionally adds new keywords. The
problem is that every new keyword has the potential to break existing
programs because some may already use the same identifier. To help
minimize this possibility, the committee decided that new keywords
would generally start with an underscore followed by a capital letter
(e.g., _Bool, §C.6), at least for a transition period to allow people time
to update their programs. Such keywords may look odd, but it’s better
than breaking programs.

Names that begin with double underscore are reserved for use by
the implementation. □

8. If compatibility with C++ is desired (§13.4), must not contain a double under-
score anywhere.

Generally, the names of most things are in all lower case, except the names of con-
stants (§4.4), enumeration constants (§7), and macros (§8.3, §8.7) are in all upper
case; underscores separate words.

■ This is another topic of insufferable debates that have raged for decades
about which is the “one true style” for naming things. This book largely uses
K&R’s style. □

†Properties for Lexical Classes for Identifiers, Unicode Standard Annex #31, Unicode Identifiers
and Syntax, table 2.

30 2 Comments, Names, and Types

2.3 Namespaces

C also has a set of predefined namespaces: names in one namespace are distinct from
names all other namespaces.

■ Aside from names in different namespaces being distinct, namespaces
in C are nothing like namespaces in C++. Their respective standards both
happen to use the term “namespaces.” In C++, namespaces are explicitly
named, e.g., std, you can create your own, and you explicitly put names
into them. In C, namespaces have no name (ironically), are fixed, i.e., you
can’t create your own, and names are implicitly put into them based on the
kind of name and context of its declaration.

C++ has all of C’s namespaces as well; it’s just that the C++ standard
doesn’t call them “namespaces” or anything. □

The fixed namespaces in C are:

• Attribute: For attribute names (§4.9). Every attribute prefix also has its own
namespace.

• Member: Every structure (§10) or union (§11) creates a namespace for all of its
members.

• Label: For goto labels (§5.10).
• Tag: For all enumeration (§7), structure, and union names.
• Ordinary: For everything else: variable names, constant names (§4.4), function
names (§9), typedef names (§2.6), and enumeration values (§7.5).

2.4 Scope

C also has a set of scopes:

• File: For all names declared within a file outside any function.
• Block: A compound statement (§5.2). Blocks can nest.
• Function: Every function creates a scope for its goto labels (§5.10).
• Function Prototype: Every function declaration creates a scope for its param-
eters (§9.1).

For an example of file scope, recall listing 1.3 (p.7) that declared BUF_SIZE:

constexpr size_t BUF_SIZE = 4096; // file scope

int main() {

// ...

Variables can also be declared at file scope and is done typically when more than
one function needs access to some shared information, for example:

2.5 Built-In Types 31

// in testing mode?bool is_testing;

Unlike local variables, all file-scope variables that are not explicitly initialized are
automatically initialized to zero or equivalent. File-scope variables are also known
as global variables. For listing 1.5 (p.12) repeated here in listing 2.2:

1 unsigned putubin(unsigned n) {

2 if (n == 0) {

3 putchar(’0’);

4 return 1;

5 }

6 unsigned digits = 0;

7 for (unsigned bit = ~(~0u >> 1); bit != 0; bit >>= 1) {

8 bool const is_1 = (n & bit) != 0;

9 if (is_1 || digits > 0) {

10 putchar(’0’ + is_1);

11 ++digits;

12 }

13 }

14 return digits;

15 }

Listing 2.2: Repeat of putubin to illustrate scope

• putubin (line 1) is in file scope.
• n (line 1) and digits (line 6) are in the block scope {} between lines 1–15. Even
though n is declared before the { on line 1, it’s “injected” into the subsequent
block scope.

• bit (line 7) and is_1 (line 8) are in the block scope {} between lines 7–13. Even
though bit is declared before the { on line 7, it’s injected into the subsequent
block scope.

2.5 Built-In Types

Table 2.1 shows the complete set of built-in types in C. The types bool, char, int,
and _BitInt, comprise the integer types. The types above the line are used most
often; the types below are used only in special circumstances. Each is covered in a
subsequent section of this chapter.

2.5.1 Modifiers

In addition to the built-in types, there aremodifiers for some of those types as shown
in table 2.2.

unsigned Unsigned char, int, or _BitInt.
short Short int.

32 2 Comments, Names, and Types

bool Boolean (§2.5.2).
char Single character (§2.5.3).
int Signed integer (§2.5.4).
float Single-precision floating-point (§2.5.6).
double Double-precision floating-point (§2.5.6).
_BitInt(n) Bit-precise integer (§2.5.5).
_Decimal32 32-bit decimal floating-point (§2.5.7).
_Decimal64 64-bit decimal floating-point (§2.5.7).
_Decimal128 128-bit decimal floating-point (§2.5.7).

Table 2.2:Modifiers

Table 2.1: Built-in types

signed Signed char, int, or _BitInt.

long Long int or double.
long long Very long int.
_Complex Complex float, double, or long double (§2.5.8).
_Imaginary Imaginary float, double, or long double (§2.5.9).

Additionally, the modifiers unsigned and either short or long can be combined:

unsigned short us;

unsigned long long ull;

Themodifier signed is generally useful only for signed char (§2.5.3) since signed
is the default for integers (except §10.7). As a reminder, when at least one modifier
is used, int is understood and typically omitted.

2.5.2 bool

As first shown in listing 1.5 (p.12), the type bool is used to store a “truth” value of
either true or false. For historical reasons (§C.6), C considers any non-zero value
“true” and only zero “false”:

int i = .5; // i = 0 (truncates)

bool b = .5; // b = true

Even though only one bit is needed to store either true or false, the size of a bool
is invariably the same size as char because char is the smallest object that offers
unique memory addresses.

332.5 Built-In Types

2.5.3 char

The type char is used to store a single character, hence is generally synonymous
with a byte.

■ In 1972 when C was created, the notion of what a character is was
ASCII, hence C’s char type is only capable of holding at best characters
from American and western European character sets. Unicode wouldn’t be
invented for nearly another 20 years.

So as to remain backwards compatible, char is exactly the same today as
it was in 1972. Eventually, both new character types and Unicode encodings
would be invented and used in C. □

■ A byte is generally 8 bits, but some specialized computers use different
values. The actual value for a given computer is provided by the CHAR_BIT
constant defined in the limits.h standard header. □

Curiously, char has three versions:

char Signed or unsigned character (implementation defined).
signed char Signed character.
unsigned char Unsigned character.

You should use char by default; signed char only when you need small, signed
integers (rare, and int8_t is better, §2.7); and unsigned char when dealing with
raw byte values (but uint8_t is better).

Literals for characters are of the form ’c’, that is a character enclosed by single
quotation marks where c is any character, or an escaped character, one of \’ (single
quote), \” (double quote), \\ (backslash), \a (alert, aka, bell), \b (backspace), \f
(form feed), \n (newline), \r (carriage return), \t (tab), \v (vertical tab), \ooo (1–3
octal digits, 0–7), or \xhh (1–2 hexadecimal digits, 0–9, a–f, or A–F).

Literals for character strings are of the form ”c∗”, that is zero or more characters
enclosed by double quotation marks where c is the same as for char literals.

For an example of character literals, a program that expands tab characters to their
equivalent number of spaces based on tab-stops is shown in listing 2.3.While most of
the program should be understandable by now, a few things need some explanation:

• Using len, line 9 calculates the number of spaces away the next tab-stop is, i.e.,
the number of spaces the current tab needs to expand into. The % is the modulus
operator (§3.2).

• Line 10 use a particular feature of printf (§12.1.1) to print a specific number
of spaces. The %s conversion specifier prints a string, here ””, the empty string.
Between the % and s is normally an integer that specifies a “field” width to print
the string within: if the length of the string is less than that, it’s padded with
spaces. The * instead of an integer means to use the next int argument as the
width, in this case, spaces, rather than a fixed number. Printing an empty string
will pad it with spaces spaces.

34 2 Comments, Names, and Types

1 #include <stdio.h>

2
3 constexpr unsigned TAB_STOP = 8; // chars per tab-stop

4
5 int main() {

6 unsigned len = 0; // length of line so far

7 for (int c; (c = getchar()) != EOF;) {

8 if (c == ’\t’) {

9 unsigned const spaces = TAB_STOP - len % TAB_STOP;

10 printf(”%*s”, spaces, ””);

11 len += spaces;

12 continue;

13 }

14 putchar(c);

15 if (c == ’\n’)

16 len = 0;

17 else

18 ++len;

19 }

20 }

Listing 2.3: Expand tabs to spaces

2.5.4 int

The type int is for storing integer values. As mentioned in §2.5.1, the modifiers
short, long, or long long may be used in conjunction with unsigned.

Literals for integers are of form:

• d+: decimal, where d starts with 1–9 and followed by zero or more of 0–9; or:
• 0bb+ or 0Bb+: binary, where b is one or more of 0–1; or:
• 0o∗: octal, where o is zero or more of 0–7; or:
• 0xh+ or 0Xh+: hexadecimal, where h is one or more of 0–9, a–f, or A–F.

For example, 42 (decimal) can be alternatively written as 0b101010 (binary), 052
(octal), or 0x2A (hexadecimal). Additionally, ’ (single quotes) may be interspersed
as separators to aid readability.

Integer literals may optionally have suffixes, one of l or L for long, ll or LL for
long long, or u or U for unsigned that may be combined with any of the others.

Examples of integer literals are: -40, 299’792’458, 0644, and 0xFFFFFFFFul.

2.5.5 _BitInt

The type _BitInt(n), where n is a positive constant integer expression, is for stor-
ing integer values having n bits — a bit-precise integer. Some examples:

352.5 Built-In Types

unsigned _BitInt(24) rgb24; // 24-bit RGB color

unsigned _BitInt(256) sha256; // SHA-256

The rules for _BitInt are:

• It may be either signed (the default) or unsigned.
• If signed, n includes the sign bit.
• Values are limited to the number of bits, n. For unsigned, values are modulo n:

unsigned _BitInt(3) x = 7;

++x; // x = 0, not 8

Without _BitInt, values would have to be constrained manually via masking
(§3.8) that you could forget to do:

unsigned x = 7;

x = (x + 1) & 0b111; // same, but more verbose

• The maximum bits for n is at least as many as for unsigned long long.
• _BitInt types do not participate in integer promotions (§2.13 #3, p.43).

_BitInt is also useful for bit-fields (§10.7).
Literals for _BitInt are the same as for integers (§2.5.4) except instead have the

optional suffixes wb or WB for signed types and uwb or UWB for unsigned types.

2.5.6 float, double, and long double

The types float, double, and long double are for storing floating-point values.

■ Obviously, “float” comes from storing floating-point values. Perhaps
less obviously, “double” comes from storing floating-point values with
double the precision of float. The term “double precision” dates back to
Fortran in the mid-1960s (as does “single precision”).

Back then, when computers were a lot slower and memory was a lot
more expensive, single precision was the default since it was faster than and
half the storage of double precision. However, some calculations required
extra precision despite the performance and storage penalties, hence double
precision. You therefore used single precision by default unless you needed
double precision. The single vs. double precision distinction has pervaded
most every programming language since, including C.

These days, when performance is much better and memory is much
cheaper, the situation has largely reversed in that you should generally use
double by default unless you have storage constraints in which case you
should use float. □

×

36 2 Comments, Names, and Types

Literals for double have a significand optionally followed by an exponent optionally
followed by a suffix:

• The significand is an optional + or -, followed by zero or more digits, optionally
followed by a decimal point (.), optionally followed by a fractional part.

• The exponent is one of e, E, p, or P, optionally followed by a + or -, followed
by one or more digits. Exponents using e or E are 10n; exponents using p or P
are 2n.

Digit sequences may alternatively be specified in hexadecimal (start with 0x or 0X).
Additionally, ’ (single quotes) may be interspersed as separators to aid readability.

Examples of floating-point literals are: 42. (note the trailing .), 3.14, 1.21E9
(1.21×109), 6.626070150e-34 (6.62607015×10−34), and 0x1.2p3 (0x1.2 = 1.125
decimal 23 = 9.0).

Literals for float are the same as literals for double except with either a f or
F suffix. Literals for long double are the same as literals for double except with
either a l or L suffix.

2.5.7 _Decimal32, _Decimal64, and _Decimal128

The types _Decimal32, _Decimal64, and _Decimal128 (collectively, the decimal-
floating types) are alternative floating-point types to float, double, and long

double (collectively, the standard-floating types). Decimal-floating types are sup-
ported only if the __STDC_IEC_60559_DFP__ macro is predefined (§8.4).

Decimal-floating types are better for calculations involving money (dollars, eu-
ros, pounds, etc.) because they’re not subject to the same rounding errors that the
standard-floating types are. The standard-floating types are still better for general
floating-point calculations.

Literals for the decimal-floating types are the same as for the standard-floating
types except instead have the suffixes df or DF for _Decimal32, dd or DD for
_Decimal64, and dl or DL for _Decimal128.

2.5.8 Complex Numbers

The _Complexmodifier when used with one of float, double, or long double, is
for storing complex numbers, that is floating-point numbers with real and imaginary
parts. Complex numbers are generally used only for special applications in math or
physics. Complex numbers are supported only if the __STDC_NO_COMPLEX__macro
is not predefined (§8.4).

The complex.h standard header defines math functions and macros (§8.3) for
working with complex numbers. It also does:

372.6 typedef

#define complex _Complex

so you can use the more natural-looking complex.
For example, the function in listing 2.4 implements Euler’s formula (where I is

a constant defined in complex.h for the imaginary number i).

#include <complex.h>

double complex euler(double x) {

return cexp(I * x);

}

Listing 2.4: Example of complex numbers

2.5.9 Imaginary Numbers

The _Imaginarymodifier when used with one of float, double, or long double,
is for storing imaginary numbers, that is only the imaginary part of complex num-
bers (§2.5.8). Like complex numbers, imaginary numbers are generally used only
for special applications in math or physics. Imaginary numbers are supported only
if the __STDC_NO_COMPLEX__ macro is not predefined (§8.4) and the complex.h

standard header defines the macros imaginary (as a more natural-looking synonym
for _Imaginary) and _Imaginary_I (for the imaginary number i).

2.6 typedef

C allows the creation of aliases to existing types via typedef. For example:

typedef unsigned short process_id;

process_id pid;

defines an alias called process_id that can subsequently be used anywhere the orig-
inal type can be. Syntactically, a typedef declaration is exactly like a normal dec-
laration except prefixed by typedef. Instead of declaring a variable of that type, it
declares an alias for that type.

typedef char int32_buf[4]; // type: array 4 of char

int32_buf buf; // variable: as if char buf[4]

Note that typedef does not create a distinct type. For example:

typedef unsigned short user_id;

user_id uid = pid; // wrong, but legal

Table 2.3: Fixed-width integer types

38 2 Comments, Names, and Types

Even though process IDs and user IDs are conceptually different things, C allows
assignment from one to the other without error or even warning because they’re both
aliases for unsigned short. In C, the only ways to create new, distinct types are
via one of enumerations (§7), structures (§10), or unions (§11).

Despite this caveat, typedef declarations are useful for a number of reasons:

1. Even though the compiler doesn’t care about alias names, a name like user_id
documents to programmers what it’s for.

2. Allow easy modification of the underlying type. If at some point you need to
make user_id instead be an alias for unsigned long, you only have to change
the typedef in one place rather than everywhere unsigned shortwas used for
user IDs throughout your program.

3. Allow elimination of having to use enum, struct, or union before enumeration,
structure, or union type names, respectively:

typedef struct string string;

string s; // don’t need ”struct” now

2.7 Fixed-Width Integer Types

In addition to the built-in types (§2.5), the C standard library also defines several
fixed-width integer types having a specific number of bits in the stdint.h standard
header shown in table 2.3. The fixed-width types should be used only if if you need
to represent a value contained within a specific number of bits (§2.12).

int8_t signed 8-bit int. uint8_t unsigned 8-bit int.
int16_t signed 16-bit int. uint16_t unsigned 16-bit int.
int32_t signed 32-bit int. uint32_t unsigned 32-bit int.
int64_t signed 64-bit int. uint64_t unsigned 64-bit int.
intmax_t largest signed int. uintmax_t largest unsigned int.
intptr_t pointer-sized signed int. uintptr_t pointer-sized unsigned int.

2.8 Unicode Character Types

The C standard library also defines other integer types specifically for either “wide”
or Unicode characters shown in table 2.4 defined in the headers shown.

The type char8_t is used for storing an octet of a multi-byte Unicode character
or string using the UTF-8 encoding. Literals for char8_t are the same as for char
or strings (§2.5.3), but prefixed by u8:

constexpr char8_t SMILEY_FACE[] = u8”\xF0\x9F\x99\x82”;

Table 2.4:Wide character types

Table 2.5: Other standard types

392.10 Numeric Limits

char8_t Unicode octet, UTF-8 encoding. uchar.h

char16_t Unicode character, UTF-16 encoding. uchar.h

char32_t Unicode character, UTF-32 encoding. uchar.h

wchar_t Wide character. wchar.h

The types char16_t and char32_t are used for storing Unicode characters in the
UTF-16 or UTF-32 encoding, respectively. Literals for char16_t are the same as
for char or strings, but prefixed by u; literals for char32_t are prefixed by U.

The type wchar_t is an older type is used for storing “wide characters,” that
is characters beyond ASCII, but not necessarily Unicode. These days, most pro-
grams that work with Unicode do so using the UTF-8 encoding that works just fine
with char; or one of char8_t, char16_t, or char32_t. However, programs for Mi-
crosoft Windows use wchar_t for Unicode. Literals for wchar_t are the same as for
char or strings, but prefixed by L.

2.9 Other Standard Types

The C standard library also defines other types that you are likely to encounter as
shown in table 2.5 defined in the headers shown.

max_align_t Maximum alignment type. stddef.h

nullptr_t Type of nullptr. stddef.h

ptrdiff_t Pointer difference. stddef.h

size_t Unsigned size in bytes. stddef.h

ssize_t Signed size in bytes. stddef.h

time_t Signed time relative to epoch. time.h

wint_t Integer corresponding to wchar_t. wctype.h

■ An epoch is a fixed date and time (invariably midnight) used as a refer-
ence from which a computer measures the current date and time. For Unix
systems (and others that implement the C standard library), that date is Jan-
uary 1, 1970, i.e., Unix epoch; for Microsoft Windows, that date is January
1, 1601, i.e., Windows epoch. □

2.10 Numeric Limits

The C standard library also defines constants for the minimum and maximum val-
ues for numeric types as shown in table 2.6 defined in the headers shown. See also
INT_MAX_EXPR and INT_MIN_EXPR (p.295).

40 2 Comments, Names, and Types

Table 2.6: Numeric limits
CHAR_MIN CHAR_MAX char limits.h

SCHAR_MIN SCHAR_MAX signed char limits.h

SHRT_MIN SHRT_MAX short limits.h

INT_MIN INT_MAX int limits.h

LONG_MIN LONG_MAX long limits.h

LLONG_MIN LLONG_MAX long long limits.h

UCHAR_MIN UCHAR_MAX unsigned char limits.h

USHRT_MAX unsigned short limits.h

UINT_MAX unsigned int limits.h

ULONG_MAX unsigned long limits.h

ULLONG_MAX unsigned long long limits.h

INTMAX_MIN INTMAX_MAX intmax_t stdint.h

UINTMAX_MAX uintmax_t stdint.h

INTPTR_MIN INTPTR_MAX intptr_t stdint.h

UINTPTR_MAX uintptr_t stdint.h

PTRDIFF_MIN PTRDIFF_MAX ptrdiff_t stdint.h

SIZE_MAX size_t stdint.h

WCHAR_MIN WCHAR_MAX wchar_t stdint.h

WINT_MIN WINT_MAX wint_t stdint.h

FLT_MIN FLT_MAX float float.h

DBL_MIN DBL_MAX double float.h

LDBL_MIN LDBL_MAX long double float.h

2.11 Signed Integer Overflow

Signed integer expressions can overflow (or underflow) when a value is larger (or
smaller) than can be represented by a particular signed integer type resulting in un-
defined behavior (§15). A trivial example is:

int i = INT_MAX;

++i;

A more subtle example is:

int abs(int n) {

return n < 0 ? -n : n; // possibly UB

}

While it looks correct, the problem is that calling abs as written with a value of
INT_MIN results in undefined behavior. Why? Because in two’s complement arith-
metic (that’s typically the way signed integers are implemented), for any signed in-
teger type T :

min(T) = −max(T)− 1

// undefined behavior

−

412.12 Choosing an Appropriate Integer Type

Assuming 32-bit integers, max = 232−1 − 1 = 2147483647, hence min =
−2147483648. The absolute value of min = 2147483648, but that’s one greater
than max which means it can’t be represented by int. There is no perfect solution
for this. The best you can do is to avoid the undefined behavior:

int abs(int n) {

return n < 0 ? -(unsigned)n : n; // no UB

}

Casting (§3.14) to unsigned first eliminates the undefined behavior since overflow
(and underflow) for unsigned integers is well-defined, specifically, a value will “wrap
around,” i.e.,max+ 1 = 0 and 0 1 = max.

Unary - can be applied to unsigned types (§3.3). In the case of INT_MAX, abs
returns −2147483648. Since it’s negative, it’s obviously wrong (again, there is no
perfect solution), but at least it avoids the undefined behavior.

2.12 Choosing an Appropriate Integer Type

When Ritchie created C, he made int be the default type. The size (number of bits)
of an intwas deliberately not specified. Even when C was standardized, all that was
guaranteed was a minimum size. The rationale was that the size of int should be
the “natural” (most efficient) size for an integer on a given CPU.

If you needed only smaller signed integers and wanted to save a bit of space,
Ritchie gave us short; or, if you needed bigger integers, he gave us long. (C99
gave us even bigger integers with long long.) If you only needed unsigned integers,
you could include unsigned in a declaration. C99 also gave us specific-sized signed
integer type aliases (e.g., int32_t) and unsigned type aliases (e.g., uint32_t).

However, in programming, negative integers (thus requiring a signed integer
type) aren’t needed most of the time. The length of strings, count of objects, size
of objects, size of files etc., are all unsigned integers. Specific-sized type aliases are
needed even less than signed integers.

A lot of C code uses integer types inappropriately. Such code can convey ei-
ther underspecified or misleading information to programmers (including yourself
in several months’ time). It’s best to choose the right integer type for the right pur-
pose. Here are guidelines for choosing an integer type:

• When representing a count of bytes in memory, use the size_t standard type
alias (§2.9). This is the type used by the C standard libraries, e.g., by memcpy,
strlen, etc. (§B.2), so there’s plenty of precedent.

• When representing either the size of or a position within a file on disk, use the
off_t POSIX type alias (if available).

42 2 Comments, Names, and Types

■ If you’re dealing with very large files, on some Unix systems, you
may need to compile with -D_FILE_OFFSET_BITS=64 command-line
option (§8.3) to get a 64-bit version of off_t. □

• When representing a count of objects in memory, use size_t also. This is the
type used by the C standard libraries, e.g., by fread (§12.4) and fwrite (§12.1).

• Only if you need to represent a value contained within a specific number of bits
or you need to conform to a specific API, use one of the int8_t, int16_t,
int32_t, or int64_t type aliases for signed types; or one of the uint8_t,
uint16_t, uint32_t, or uint64_t type aliases for unsigned types.

The only times you typically need a fixed-size integer is when you “serialize”
a value, e.g., write it to disk or send it over a socket. Using a fixed-size integer
when you don’t actually need a specific number of bits conveys misleading in-
formation to programmers.

Furthermore:

• When representing an integer value that must be the exact size of a pointer, use
either the standard intptr_t or uintptr_t type alias.

• Only if you need negative values, use one of short, int, long, or long long

with int being preferred unless you need either smaller or larger values.

Lastly:

• Otherwise use one of unsigned short, unsigned int, unsigned long, or
unsigned long long similarly with unsigned int being preferred unless
you need either smaller or larger values.

Choosing the right integer type conveys correct information to programmers. Pre-
ferring unsigned types eliminates run-time checks (because you don’t have to check
if a value of an unsigned type is < 0) and the possibility of undefined behavior (due
to signed integer overflow).

One case where you need a signed integer type is when iterating from a positive
number down to zero:

for (int i = n; i >= 0; --i) // ’i’ needs to be signed

// ...

If i were unsigned, i >= 0 would always be true. (See also the tautological-type-
limit-compare warning, §18.7.1).

2.13 Type Conversions

When any operator (§3) has operands of different types, they are converted to a
common type. Determining the common type involves a lot of detailed rules:

6 long long int unsigned long long int

3 short int unsigned short int

/* */ //

2.14 Epilogue 43

1. If both operands are floating-point types, their common type is the larger type.
2. Otherwise, if one operand is a floating-point type, the other is converted to it.
3. Otherwise, both operands are integer types. For each operand, integer promotion

is first performed:

• An operand of char, short, bit-field (§10.7), all either signed or unsigned,
or enumeration (§7), is promoted to int if int can represent all the values
of the original type or unsigned int if not.

4. Then, if both types are the same, that is the common type.
5. Otherwise, if their signedness is equal, but their sizes are not, the smaller type

is converted to the larger type.
6. Otherwise, the operands have different signedness. If the signed type has a rank

(table 2.7) less than or equal to the rank of the unsigned type, the operand with
the signed type is converted to the unsigned type.

5 long int unsigned long int

4 int unsigned int

2 signed char unsigned char

Table 2.7: Integer ranks, high to low

char

1 bool

7. Otherwise, the unsigned type has a rank less than that of the signed type. If the
signed type can represent all the value of the unsigned type, the operand with
the unsigned type is converted to the signed type.

8. Otherwise, both operands are converted to the unsigned version of the signed
operand’s type.

Despite the long list of rules, the upshot is that, generally, C does “the right thing.”
For every-day use, the rules can be simplified as:

• Integer types are converted to floating-point types when necessary.
• Smaller types are converted to larger types when necessary.

assuming you enable at least number-related warnings (§18.7.1).

2.14 Epilogue

Here’s some key points about and some advice for comments:

• Comments are either between and , or after .
• Don’t comment what the code already says; do comment why the code does it.

OrThis

• Comment files, functions (including their parameters, return value, and their pre-
and post-conditions), citations, assumptions, anything non-obvious, and keep
the comments up-to-date.

44 2 Comments, Names, and Types

Here’s some advice for naming things:

• Pick a naming style, such as “snake case” like_this, or “camel case” likeThis
, and be consistent.

• With the exception of for-loop variables like i, give things meaningful names.

Here’s some advice for types:

• Use the appropriate type for each situation. For integers, prefer unsigned types.
• Use typedef both to add meaning to types (e.g., user_id) and to make future
changes easier.

Exercises

1. Write a program that does the reverse of the tabs-to-spaces program shown in
listing 2.3 (p.34), that is converts sequences of TAB_STOP spaces to tabs. Fewer
than TAB_STOP spaces should remain spaces.

For example, given a sequence of 20 spaces, the first 16 should be converted
to two tabs and the remaining four spaces should be left as-is.

2. Write a program that reads standard input and capitalizes the first letter of each
word before printing it. Other text should be printed as-is.

A “word” is defined as a sequence of one or more alphabetic characters at the
beginning of the input or immediately following one of a space, tab \t, newline
\n, left parentheses (, left bracket [, or left brace {. You will need the standard
functions strchr (§B.2) and toupper (§B.1).

Chapter 3

 Operators

C has a plethora of operators as shown in table 3.1. Operators are listed in prece-
dence order from highest to lowest separated by horizontal lines. Operators in the
same cell have the same precedence. An operator in a given cell will be bound more
tightly to its operands than any operator in any cell below it. For example, *p++ is
treated as *(p++) and not (*p)++ because ++ (post-increment, §3.4) is higher than *
(dereference, §3.12). Despite the large number of precedence levels, the precedence
of operators in expressions is generally what you’d expect (with the unfortunate ex-
ception of the bitwise operators, §3.8).

3.1 Associativity vs. Evaluation Order

Associativity has only to do with how expressions are parsed, for example:

s = a - b + c; // left-to-right; as if: (a - b) + c

x = y = z; // right-to-left; as if: x = (y = z)

Left-to-right or right-to-left associativity is not the same as left-to-right or right-to-
left evaluation. In C, the order of evaluation is generally unspecified. For example:

s = f() - g() + h(); // parsed as: (f() - g()) + h()

Even though the value of f() - g() will be calculated first, then the value of h()
added, the order in which the functions themselves are called is unspecified, e.g.,
h() could be called first. The values could be calculated like this:

h_val = h();

g_val = g();

f_val = f();

s = f_val - g_val + h_val;

45© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_3

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_3&domain=pdf

∗

3 Operators46

Table 3.1: Operator precedence and associativity
++ -- Post-increment, post-decrement. left-to-right
()

[]

.

->

Function-call.
Array-indexing.
Structure and union member-access.
Structure and union member-access via pointer.

++ -- Pre-increment, pre-decrement. right-to-left
+ - Unary-plus, unary-minus.
! ~ Logical-not, bitwise-not (aka, one’s complement).
(type) Cast.
* Dereference.
& Address-of.
alignof Align-of.
sizeof Size-of.
* / % Multiplication, division, modulus. left-to-right
+ - Addition, subtraction.
<< >> Left-shift, right-shift.
< <= Less-than, less-than-or-equal-to.
> >= Greater-than, greater-than-or-equal-to.
== != Equal-to, not-equal-to.
& Bitwise-and.
^ Bitwise-exclusive-or.
| Bitwise-or.
&& Logical-and.
|| Logical-or.
?: Conditional (aka, ternary). right-to-left
= Assign.
+= -= Assign with addition, subtraction.
= /= %= Assign with multiply, divide, modulus.
<<= >>= Assign with left-shift, right-shift
&= |= ^= Assign with bitwise-and, or, exclusive-or.
, Comma left-to-right

or any other permutation. Hence, you must not rely on multiple functions used in the
same expression to be called in a specific order. The only operators that are guar-
anteed to have their operands evaluated in left-to-right order are: && (logical-and,
§3.6), || (logical-or, §3.6), ?: (conditional, §3.7), and , (comma, §3.15).

3.2 Arithmetic Operators

The arithmetic operators are + (addition), - (subtraction), * (multiplication), / (divi-
sion), and % (modulus). They may be applied to integer (§2.5), floating-point (§2.5.6,

473.4 Increment and Decrement Operators

§2.5.7, §2.5.8), or enumeration (§7) types — except % that is not for floating-point.
(For floating-point modulus, the standard function fmod declared in math.h can be
used instead.) The + and - operators may also be applied to pointer (§6.7) types.

Despite its plethora of operators, C doesn’t have an exponentiation (aka, to-the-
power) operator. While C does have a ^ operator, it’s the bitwise-exclusive-or oper-
ator (§3.8). For floating-point types at least, the standard function pow declared in
math.h can be used instead.

3.3 Unary Plus and Minus Operators

The + and - operators can also be used in unary form, e.g., -i to negate i. They may
be applied to integer (§2.5), floating-point (§2.5.6, §2.5.7, §2.5.8), or enumeration
(§7) types. The + is rarely used as unary plus since +expr is the same as expr. (But
see §8.9.2 for a use.)

Perhaps surprisingly, - can be applied to expressions of unsigned integer types.
It behaves as if the value were subtracted from 2n where n is the number of bits
comprising the type. Assuming 32-bit integers:

unsigned n = 42;

int a = -n; // as if: (int)(232 − 42 → 4294967254) → −42

because 4294967254 is 0b1111’1111’1111’1111’1111’1111’1101’0110 that,
when interpreted as a 32-bit signed integer expressed in two’s complement, is −42.

3.4 Increment and Decrement Operators

As first shown in §1.3, ++ and -- are the increment and decrement operators, respec-
tively. They may be applied to integer (§2.5), enumeration (§7), or pointer (§6.7)
types.

Both operators have pre- (e.g., --i) and post- forms (e.g., i++). The pre- form
returns the new value after the operation whereas the post- form returns the old value
before the operation. Neither form is more efficient than the other, so use whichever
is needed in a particular case or preference.

Note that if these operators are used on the same variable more than once in the
same expression, the result is even worse than implementation defined — it’s unde-
fined behavior (§15):

j = i++ + ++i; // undefined behavior

f(i++, i++); // also undefined behavior

3 Operators48

3.5 Relational Operators

The relational operators are == (equal-to), != (not-equal-to), < (less-than), <= (less-
than-or-equal-to), > (greater-than), and >= (greater-than-or-equal-to). They may be
applied to integer (§2.5), floating-point (§2.5.6, §2.5.7, §2.5.8), enumeration (§7),
or pointer (§6.7) types.

Relational operators are binary operators and may not “chain.” For example, to
check whether i is between min and max requires two separate <= conjoined by &&:

if (min <= i <= max) // as if: (min <= i) <= max

if (min <= i && i <= max) // correct

The first condition tests whether the result of min ≤ i (either 0 or 1) is ≤ max.

3.6 Logical Operators

The logical operators are && (logical-and), || (logical-or), and ! (logical-not). They
may be applied to integer (§2.5), floating-point (§2.5.6, §2.5.7, §2.5.8), enumeration
(§7), or pointer (§6.7) types.

For && and ||, C guarantees left-to-right evaluation, not only left-to-right asso-
ciativity. Additionally, && and || “short circuit,” that is:

expr1 && expr2 If expr1 is false, expr2 is not evaluated.
expr1 || expr2 If expr1 is true, expr2 is not evaluated.

The precedence of && and || is very low so () are not needed. From listing 1.5
(p.12):

if (is_1 || digits > 0) { // is_1 || (digits > 0)

Of course you can (and should) add () in complicated expressions to aid readability.
The ! converts either a false (or 0) value to true (or 1), or a true (non-zero) value

to false. An idiom of !!expr (two ! in a row) converts a non-zero value to 1.

3.7 Conditional Operator

If you ever write code of the form:

if (cond-expr)

result = true-expr;
else

result = false-expr;

493.8 Bitwise Operators

C provides a shorthand via the “?:” conditional (aka, ternary) operator:

cond-expr ? true-expr : false-expr

For example:

max = i > j ? i : j; // maximum of i, j

Specifically, cond-expr is evaluated first: if true (non-zero), then (and only then) is
true-expr evaluated and that is the result; otherwise, then (and only then) is false-expr
evaluated and that is the result. C guarantees left-to-right evaluation. In particular,
for an expression like:

r = x > y ? ++i : f();

C guarantees that iwill be incremented only if x > y and f() called only if not (the
same as if if-else were used).

The type of cond-expr may be integer (§2.5), floating-point (§2.5.6, §2.5.7,
§2.5.8), enumeration (§7), or pointer (§6.7) type.

Note that an expression using ?: can be used anywhere, even inside another ?:.
For example:

r = i < j ? -1 : i > j ? 1 : 0;

sets r to -1 if i < j, 1 if i > j, or 0 if i == j. Even though the precedence and
associativity of ?: yield the correct result here, such expressions are clearer if you
insert ():

r = i < j ? -1 : (i > j ? 1 : 0); // same, but clearer

There can be cases where the precedence is not what you might expect, for example:

r = x + add_dx ? dx : 0; // means: (x + add_dx) ? dx : 0

While the intent is to add dx and x only if add_dx is true, the reality is that, because
+ has a higher precedence than ?:, the result is dx if the sum of x and add_dx is true
(non-zero). (A good compiler will warn you about the precedence here.) In such
cases, () are necessary.

3.8 Bitwise Operators

The bitwise operators are of the form:

3 Operators50

expr1 & expr2 Bitwise-and.
expr1 | expr2 Bitwise-or.
expr1 ^ expr2 Bitwise-exclusive-or.
expr1 << expr2 Left-shift.
expr1 >> expr2 Right-shift.

~ expr Bitwise-not (one’s complement).

They may be applied to integer (§2.5) or enumeration (§7) types.
The & operator is used to “mask off” bits (force them to 0) or find the conjunction

of two sets of bits (a bit in the result will be 1 only if the corresponding bit in both
operands is 1). For example, to ensure c is 7-bit ASCII, we can mask off all but the
lower 7 bits:

lower_7 = c & 0b0111’1111; // ensure 7-bit ASCII

The | operator is used to force bits to 1 or find the disjunction of two sets of bits
(a bit in the result will be 1 only if the corresponding bit in either operand is 1).

Unlike the && and || logical operators (§3.6) that short-circuit evaluation, both
operands of & and | are always evaluated, but in an unspecified order. Additionally,
the precedence of & and | is unfortunately too low, specifically lower than == and
!=. This means that () are invariably needed. For example, from listing 1.5 (p.12):

bool const is_1 = (n & bit) != 0; // () are needed here

■The & and | bitwise operators are confusingly similar to the && and || log-
ical operators. In B (the grandparent of C), the & and | operators performed
both logical and bitwise operations depending on context. Ritchie believed
this “overloading” was difficult to explain and use, so he introduced && and
|| for the logical operators.† □

The ^ operator is like | except that a bit in the result will be 1 only if the corre-
sponding bit in either operand is 1, but not both.

As was first shown in listing 1.5 (p. 12), the ~ operator is used to change 0 bits
to 1 and vice versa. For another example, first consider a function rup that rounds
a positive integer n up to some multiple m, e.g., rup(3,5) = 5, rup(5,5) = 5,
rup(6,5) = 10, etc. It could be implemented as shown in listing 3.1.

size_t rup(size_t n, size_t m) {

size_t const remainder = n % m;

return remainder == 0 ? n : n + m - remainder;

}

Listing 3.1: Round up to multiple

†The Development of the C Language, Dennis M. Ritchie, History of Programming Languages,
2nd ed., ACM Press, New York, and Addison-Wesley, Reading, Mass, 1996.

513.8 Bitwise Operators

Ifm is guaranteed to be a power of 2, an optimization is possible that avoids the
use of % (a comparatively expensive operation) as shown in listing 3.2.

size_t rup2(size_t n, size_t m2) {

return (n + m2 - 1) & ~(m2 - 1);

}

Listing 3.2: Round up to power of 2

To illustrate, let n = 5 (0b0101) and m2 = 8 (0b1000):

• The first parenthesized expression evaluates to 12 (0b1100).
• The second parenthesized expression evaluates to ~7 or ~0b0111 or 0b1000.
• The final expression of 0b1100 & 0b1000 evaluates to 0b1000 or 8, the correct
answer.

The << shifts a value one bit to the left with the new bit on the right becoming 0.
It effectively multiplies by 2.

The >> shifts a value one bit to the right. The new bit on the left becomes 0
only for unsigned types. It effectively divides by 2. For signed types, whether the
new bit becomes 0 or 1 is implementation defined, hence you should right-shift only
unsigned types (unless you’re writing code for a particular CPU where you know
the behavior).

For an example, functions that swap the byte order of both 16- and 32-bit integers
are shown in listing 3.3.

1 uint16_t swap16(uint16_t n) {

2 return (uint16_t)((n >> 8) | (n << 8));

3 }

4
5 uint32_t swap32(uint32_t n) {

6 return (uint32_t) swap16((uint16_t)(n >> 16))

7 | (uint32_t)(swap16((uint16_t) n) << 16);

8 }

Listing 3.3: Functions to swap byte order

For explaining how these work, it’s simpler to use values specified in hexadecimal.

• For swap16, let n be 0x0A’0B. On line 2, the n >> 8 makes a temporary value
of 0x00’0A and the n << 8 makes a temporary value of 0x0B’00. The | then
bitwise-ors the temporary values together to yield 0x0B’0A.

• For swap32, let n be 0x0A’0B’0C’0D. On line 6, the n >> 16makes a temporary
value of 0x00’00’0A’0B it then passes to swap16 to yield 0x00’00’0B’0A.

On line 7, the (uint16_t)n “crams” the 32-bit value into 16 bits chopping
off the high-order (left-most) 16 bits that makes a temporary value of 0x0C’0D it
then passes to swap16 to yield 0x0D’0C that << 16makes into 0x0D’0C’00’00.

The | then bitwise-ors the temporary values together to yield 0x0D’0C’0B’0A.

3 Operators52

3.9 Assignment Operators

The assignment operators are = (assignment), += (increment-assign), -= (decrement-
assign), *= (multiply-assign), /= (divide-assign), %= (modulus-assign), <<= (left-
shift-assign), >>= (right-shift-assign), &= (bitwise-and-assign), |= (bitwise-or-assign),
and ^= (bitwise-exclusive-or-assign). The = operator works for any type including
structures (§10) and unions (§11); it does not work for arrays (§6). The other assign-
ment operators work for the same types their respective non-assignment counterparts
work for.

Assignment operators yield expressions and associate right-to-left, so they may
be “chained” to assign multiple variables to the same value:

x = y = 0; // same as: x = (y = 0)

As shown in §1.4, for any variable var and assignment operator op, a statement of
the form:

var op= expr;

is shorthand for:

var = var op (expr);

except var is evaluated only once.

3.10 Function Call Operator

The () is the function-call operator and is of the form:

func-expr(arg-expr-listopt)

where func-expr is either the name of any function or a pointer to function (§6.10)
expression and arg-expr-list is a comma-separated list of expressions comprising
the arguments corresponding to the number and types of the function’s parameters
(§9.2).

3.11 Array Indexing Operator

The [] is the array-indexing operator and is of the form:

expr[index-expr]

533.13 Member Access Operators

where expr can be of an array (§6) or pointer (§6.7) type and index-expr can be of
any integer type (§2.5), the value of which specifies an element offset relative to expr
(§6.3). Though rare, index-expr can be negative to access elements before expr. For
example, consider:

char msg[] = ”hello”;

char *const end = msg + strlen(msg);

char last = end[-1]; // ’o’

where end is set to point to the end of the string at its terminating null character and
indices are relative to it as shown in figure 3.1. Relative to end, -1 refers to the last
character ’o’.

’h’ ’e’ ’l’ ’l’ ’o’ \0

msg end

−5 −4 −3 −2 −1 0

Fig. 3.1: Negative indexing

3.12 Address-of and Dereference Operators

As first shown in §1.6, & and * are the address-of and dereference operators, respec-
tively. The address-of operator can be applied to any object or function (§6.10) to
yield a pointer to it. The dereference operator can be applied to any pointer (except
void*) to yield the object or function to which the pointer points.

3.13 Member Access Operators

As first shown in §1.9, the structure (§10) and union (§11) member-access operators
are of the form:

expr.member Accesses member of structure or union expression expr.
expr->member Accesses member of structure or union via pointer expr.

where -> is syntactic sugar for:

expr->member ≡ (*expr).member

int char

const

54 3 Operators

3.14 Casting Operator

As first shown in listing 1.4 (p.10), an expression of the form:

(type)expr

is a cast that converts the value of expr to type. There are several cases for casting:

1. To suppress a warning when converting a value of some type to a smaller type,
e.g., to (as in listing 1.4, p.10, line 14).

2. To suppress a warning when converting a signed value to an unsigned type, e.g.:

size_t pos = (size_t)-1; // typical sentinel value

Since size_t is an unsigned type, assigning a negative value to it will necessar-
ily change its signedness. A compiler may warn you about this unless you use
a cast. (In two’s complement math, -1 would become the largest possible value
for size_t.)

3. Converting an integer value to a floating-point type so an expression is evaluated
using floating-point math. For example, assuming x and y are integer types, in:

double c = (double)x / y;

if the (double) were not there, the / would perform integer division truncating
the value. The (double) “coerces” x to double so then the / operator will
automatically convert y to double (§2.13 #2, p.43) and / will instead perform
floating-point division. (It doesn’t matter if y were cast instead: the result would
be the same.)

4. Either to truncate or round a floating-point value to an integer type. For example:

int round_half_up(double d) {

return (int)(d + .5);

}

returns d rounded (for a particular definition of round) to the nearest integer.
To discard the value of an expression by casting to void (§3.14.1).5.

6. To cast away (§3.14.2).
7. To cast the underlying bits of a value to a type via a pointer (§3.14.3).

When using a cast, you’re telling the compiler that you know what you’re doing, so
don’t warn you (which means you really had better know what you’re doing).

553.14 Casting Operator

3.14.1 Casting to void

As a special case, any expression can also be cast to void. It tells both programmers
and the compiler that the value of an expression is intentionally being discarded (so
for the compiler, not to warn you). There are two cases for doing this:

1. To state that you don’t need the value of an expression. See listing 16.1 (p.241)
for an example.

2. In older code, to state that a function parameter is intentionally not being used
and suppress a warning about it:

bool visit(void *node_data, void *user_data) {

(void)user_data; // suppress ”not used” warning

// ...

In C23, you can simply omit the parameter’s name (§9.2) in the definition.

3.14.2 Casting Away const

To “cast away const” means to remove the “const-ness” from what a pointer to
const (first shown in §1.7) is pointing to by using a cast. Before getting to the cases
where casting away const is OK, the one case that is never OK is casting away
const to something that is actually constant with the intent of modifying it:

constexpr char MSG[] = ”hello, world”;

char *s = (char*)MSG; // cast away const

*s = ’H’; // undefined behavior

Values that are either constexpr (§4.4) or const (§4.5) may actually be placed into
a read-onlymemory segment. Attempting tomodify such a value results in undefined
behavior (§15), but likely will result in a seg-fault (§18.4).

It’s neverOK to cast away const to something that was declared constexpr; but
there are cases where it’s sometimes OK to cast away const to something that was
declared const:

1. You want a variable to be immutable after being initialized and for the duration
of its lifetime, but need to clean it up before the end of its lifetime.

char const *s = mstrcat(s1, s2);

// ...

free((char*)s); // casting away const is OK here

2. You have a function that has a pointer to const parameter and returns the same,
but you actually want to pass a pointer to non-const and get the same back. (For
an example, see §19.3.)

56 3 Operators

3.14.3 Casting Pointers

It’s possible and sometimes necessary to “reinterpret” the underlying bits comprising
a value in memory as a type different from its declared type. For example, given:

char int32_buf[4];

(int32_t)int32_buf = 1941;

The (int32_t*) casts the address of the 4-byte char buffer int32_buf to be a
pointer to uint32_t instead. The first * then dereferences that address and the =

writes the bytes as if they really were a uint32_t. Such casts are platform specific
— in this case, the endianness of the integer value.

■ Endianness refers to the order of the individual bytes in memory compris-
ing a multi-byte value, usually an integer.† There are two dominant kinds
of endianness:

• Big-Endian:When read from left-to-right, bytes comprising a value are
in increasing addresses. (The “big end” of an integer is first in memory.)

• Little-Endian: When read from left-to-right, bytes comprising a value
are in decreasing addresses. (The “little end” of an integer is first in
memory.)

For example, the 4-byte decimal integer 123’456’789 stored in thememory
range 0x1000–0x1003 would have the individual bytes stored in the order
0x07’5B’CD’15 when big-endian and 0x15’CD’5B’07 when little-endian.
(While big-endian might seemmore intuitive to humans, neither endianness
is more “correct” than the other to CPUs.)

The word “endian” itself comes from Gulliver’s Travels‡ wherein con-
flict arose between two sects of Lilliputians: those who broke the shell of
a boiled egg from the big end versus those who did so from the little end.
The inconsequential nature of such a choice makes endianness apt for byte
order. □

Such casts are necessary when either reading or writing data from or to disk or over
a socket.

3.15 Comma Operator

The comma operator has form:

†On Holy Wars and a Plea for Peace, Danny Cohen, Internet Experiment Note, 137, April 1, 1980.
‡A Voyage to Lilliput, Jonathan Swift, The Works of the Rev. Jonathan Swift, 6(4), Oct. 28, 1726.

3.16 sizeof Operator 57

expr1, expr2

It evaluates expr1 and discards the result; it then evaluates expr2 and that is the
result. C guarantees left-to-right evaluation. About the only place it’s used is in the
next-expr of a for statement (§5.6) when there is more than one next-expr:

for (int i = 0, j = 0; i < m && j < n; ++i, ++j)

Commas separating declarations and function arguments are not the comma opera-
tor — they’re simply ordinary commas. Above, only the last comma is the comma
operator.

3.16 sizeof Operator

The sizeof operator has two forms:

sizeof expr Gets size of the type of expr.
sizeof(type) Gets size of type.

Both forms return the size of their argument in bytes as a value of type size_t (§2.9).

■ Strictly speaking, they return the size as a multiple of char units since
sizeof(char) is defined to be 1. □

Unlike most other operators, sizeof is a compile-time operator, that is, the com-
piler evaluates it at compile-time (except for VLAs, §6.14).

The sizeof operator is useful with malloc when you want to dynamically allo-
cate objects other than char. For example, to allocate n ints and strings:

int *pi = malloc(n * sizeof(int));

struct string *ps = malloc(n * sizeof(struct string));

The sizeof operator is also useful to get the number of elements of a previously
declared array:

char buf[4096];

// ...

size_t n = sizeof buf / sizeof buf[0]; // 4096

When applied to an array, sizeof returns the number of bytes of the entire array,
hence the need to divide by the size of an element. If you don’t want to have to
remember when to use () with sizeof, you can simply always use ().

()

& | ()

3 Operators58

3.17 alignof Operator

The alignof operator is of the form:

alignof(type) Gets alignment of type in bytes.

It returns the minimum alignment for type in bytes as a value of type size_t (§2.9).
Unlike most other operators, alignof is a compile-time operator, that is, the com-
piler evaluates it at compile-time.

Many CPU architectures require that objects be aligned in memory based on their
type such that their address must be evenly divisible by their size. For example, an
int on an x86–64 CPU is 32 bits (4 bytes) which means it can reside only at memory
addresses evenly divisible by 4. (For an example use, see §6.13.)

3.18 Epilogue

Here are some key points about and some advice for operators:

• The = is assignment and the == is equal-to.
• The && is logical-and and the & is bitwise-and.
• The || is logical-or and the | is bitwise-or.
• Be mindful of operator precedence and associativity. When in doubt, insert .
• Associativity is not the same as evaluation order.
• The only operators that are guaranteed to have their operands evaluated in left-
to-right order are &&, ||, ?: (conditional), and , (comma); for all others, the
order is unspecified, so don’t rely on it.

• Only && and || “short circuit” (do not necessarily evaluate both operands).
• The precedence of and is too low so are invariably necessary.
• When casting, make sure you know what you’re doing because the compiler
assumes you do.

n casting away const, make sure the object isn’t really constant.•
•
Whe
When casting pointers among very different types, endianness might matter.

Exercises

1. Using the functions in listing 3.3 (p.51) as a starting point, write a function:

uint64_t swap64(uint64_t n);

≤

3.18 Epilogue 59

that swaps the byte order of a 64-bit integer to convert big-endian to little-endian
or vice versa.

2. Assuming an unsigned integer value n has exactly one bit set b, e.g., 0b1000,
write a function:

unsigned bits_lt(unsigned n);

that returns all and only the bits < b set, e.g., 0b0111.
3. Using your solution to the previous exercise, write a function:

unsigned bits_le(unsigned n);

that returns all and only the bits b set, e.g., 0b1111.
4. Using your solution to the previous exercise, write a function:

unsigned bits_gt(unsigned n);

that returns all and only the bits > b set, e.g., 0b1111111111110000. Your solu-
tion should work regardless of the number of bits comprising an integer.

5. Using your solution of any of the three previous exercises, write a function:

unsigned bits_ge(unsigned n);

that returns all and only the bits ≥ b set, e.g., 0b1111111111111000. Your so-
lution should work regardless of the number of bits comprising an integer.

api [

Chapter 4
Declarations

“I’m still uncertain about the language declaration syntax,
where in declarations, syntax is used that mimics the use of the
variables being declared. It is one of the things that draws
strong criticism, but it has a certain logic to it.”
— Dennis M. Ritchie

“I consider the C declarator syntax an experiment that failed.”
— Bjarne Stroustrup

While we’ve seen many examples of declarations of constants and variables already,
this chapter fills in the details. (Function declarations are deferred until §9.)

■ As part of designing a programming language, you generally need to de-
sign a separate syntax for declaring things (variables, constants, functions,
etc.). The advantage of a separate syntax is that it’s usually clear; the (slight)
disadvantage is that a separate syntax doesn’t tell you how to use the thing
being declared. For example, to declare api as an array of pointers to integer
in Pascal:

api: array[0..4] of ^integer;

That reads left-to-right and is crystal clear; but to use the variable in an
expression, you’d write something like:

api[0]^ := 42;

Notice that:

• In the declaration, and are not adjacent (whereas in use they are).
• In the declaration, ^ is prefix (whereas in use it’s postfix).

As the epigraph suggests, Ritchie took a different approach. To declare any-
thing in C, you write the name of what you’re declaring as if it were being
used in an expression (part of the main syntax for the language) to yield a
value of the base type that you prepend to the whole thing— the type of the
“expression.” Hence, the equivalent declaration of api in C is:

int *api[4]; // array of pointer to integer

That does not read left-to-right (nor right-to-left). Instead, api when used
in an expression like *api[i] yields a value of an int (the type on the left).
Though a bit strange, it does, as Ritchie noted, have a certain logic to it.

61© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_4

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_4&domain=pdf

62 4 Declarations

While such declarations may not seem that bad, once they get more
complicated — and once things like const (§4.5) and function prototypes
(§9.1) were added to C (neither of which existed in the original version of
C) — declarations infamously get harder to read which is the reason behind
Bjarne’s comment. □

4.1 Multiple Declarations

In C, multiple things can be declared in the same declaration, so long as they have
the same base type. For example:

char c, *s, buf[4], *fgets(char*, int, FILE*);

declares c as char, s as pointer to char, buf as array 4 of char, and fgets as
function returning pointer to char.

■ You may encounter code that puts the * adjacent to the type in pointer
declarations:

char* s; // as opposed to: char *s

While such declarations work since the C compiler doesn’t care about
whitespace, the * still “binds” to the name, not the type. Hence:

char* s, t; // s is pointer to char; t is char

declares s to be char* and t to be char— likely not what you meant. □

4.2 auto

When initializing a variable in its declaration from an expression, you ordinarily
have to knowwhat the type of the expression is in order to knowwhat type to declare
the variable as. For example, from listing 1.14 (p.24):

size_t const new_len = str->len + strlen(s);

you have to know that the type of str->len and strlen are size_t in order to
know what type to declare new_len as. The thing is the compiler already knows
what type that is. It would be nice to be able to say “declare new_len as whatever
type the expression is.” That’s precisely what auto does, so you can instead do:

auto const new_len = str->len + strlen(s);

u unsigned

634.3 Storage Classes

The advantages of auto are:

• You don’t have to try to figure out the type of an initializing expression.
• If that type ever changes, you don’t have to update the type of all variables
initialized from an expression of that type.

• For pointers, preserves the “const-ness” of the pointed-to type. For example, if
pc is of type char* and pcc is of type char const*, then:

auto p1 = pc; // char *p1 = pc;

auto p2 = pcc; // char const *p2 = pcc;

• It’s useful for writing type-generic macros (§8.7).
• It’s useful with _Generic (§19).

However, auto should not be used when a variable is being initialized by a literal:

auto count = 0; // int -- need 0u for unsigned

auto c = ’?’; // int -- char literals are int

In C:

• Unadorned integer literals are of type int, so if you want a type other than int,
you need to use a suffix (§2.5.4) such as for .

• Oddly, character literals are of type int and not char as you might expect.

Hence, use explicit types when initializing from a literal.

4.3 Storage Classes

In C, there are the concepts of duration and linkage of an object or function. A
duration denotes when and for how long an object exists. There are three durations:

1. Automatic: exists only within blocks (§2.4). Objects declared within a block
exist only within that block, that is they automatically come into existence upon
their declaration and cease to exist at the end of the block (the }). For example,
from listing 1.5 (p.12):

unsigned putubin(unsigned n) {

// ...

unsigned digits = 0;

both function parameters (such as n) and local variables (such as digits) have
automatic duration. (Even though n is declared before the {, it’s “injected” into
the subsequent block scope.)

2. Static: objects exist for the entire duration of the program (§9.9).
3. Thread: objects exist so long as their thread does (§14.7).

64 4 Declarations

A linkage denotes where an object is visible. There are three types of linkage:

1. External: objects are visible to the entire program.
2. Internal: objects are visible only within a single .c file, hence it’s like “private”

for that file.
3. None: objects are visible only within their current scope. For example, all local

variables have no linkage.

A storage class specifies both a duration and linkage.

4.3.1 auto

The auto keyword originally meant something completely different from what’s
described in §4.2. It originally meant “automatic storage duration.” For example,
from listing 1.5 (p.12):

unsigned putubin(unsigned n) {

// ...

auto unsigned digits = 0; // same as without ”auto”

The local variable digits could have been declared with auto, but it would mean
exactly the same thing as without it. It was used only if the programmer wanted to
be explicit.

Which meaning auto has depends on whether there’s a type specified in the dec-
laration: if it’s auto by itself, it deduces a type; if a type is also specified, it’s the
storage class. For example:

auto len = strlen(s); // deduces type of size_t

auto unsigned digits = 0; // unsigned; auto is redundant

Both because auto as a storage class is always redundant and has a new meaning,
you therefore shouldn’t use auto this way in any new C code.

■ If auto as a storage class is always redundant and its use as such could
be confused with §4.2, why is it also a storage class? The auto keyword
actually predates C. It first appeared in B (the grandparent of C) for use
when declaring automatic variables (meaning “automatically created in the
stack frame of the enclosing function”).

B is a typeless language in that all variables are integers, so, for example,
the following declared some variables in B:

auto a, b, c;

Since C is a typed language, to make migration of code from B to C easier,
Ritchie:

4.3 Storage Classes 65

1. Adopted auto into C to be a storage class like static (§4.3.3).
2. Made int the default type (meaning if a type were omitted in a decla-

ration, it was understood to be int).

Hence, the above declaration means the same thing in C as it does in B.
Since int requires typing one fewer character than typing auto, being

explicit about int eventually became common. (In C99, int stopped being
the default.) Hence there was no reason to specify auto explicitly in new
code and its use faded away.

Eventually, C++11 repurposed auto to mean “automatically deduced
type” where the type of the variable being declared is deduced based on the
type of its initializer. As of C23, the repurposed auto of C++ was adopted
into C (more or less, but mostly less). In C++, the original meaning of auto
was dropped, but kept in C presumably out of an abundance of caution for
backwards compatibility. □

4.3.2 extern

The extern storage class declares the name of an object that has external linkage
defined elsewhere so that it can be used in the current scope. It’s used in programs that
have more than one .c file (§13). From the previous example where is_testing is
defined at file scope in some .c file (§2.4, p.30), a declaration like:

extern bool is_testing;

in another .c file allows it to be used there as well. For any object, there can be any
number of extern declarations, but only one definition (without extern).

You may encounter code that declares functions extern like:

extern char* mstrcat(char const *s1, char const *s2);

For non-inline functions (§9.10), external linkage is the default, so extern is re-
dundant.

4.3.3 static

The static storage class makes a file-scope (§2.4) object or function (§9.8) have
internal linkage. For example, a variable declared at file scope in a .c file like:

static unsigned obj_count;

4 Declarations66

is “private” to that file. Another .c file either in your own program or a library could
have a static variable with the same name and the two variables would be distinct.
Unless you want to make a file-scope variable “public,” declare it static.

■ The static keyword is the most over-used in C. It has three unrelated
meanings:

• Internal linkage (this section).
• Static duration (§9.9).
• Non-null array syntax for parameters (§9.4.1).

C++ added even more unrelated meanings. □

4.3.4 register

The register storage class makes a variable have automatic duration and no link-
age. It allows you to give the compiler a “hint” that a certain variable is used heavily
within a function and would thereby likely benefit from being stored in a CPU regis-
ter as opposed to ordinary memory. For example, the putubin function from listing
1.5 (p.12) can be modified to use register as shown in listing 4.1.

unsigned putubin(register unsigned n) {

// ...

for (register unsigned bit = ~(~0u >> 1); bit != 0;

bit >>= 1) {

// ...

Listing 4.1: Function using register

Only parameters and local variables may be declared register. Note that it’s
only a hint that the compiler is free to ignore.

■ Early C compilers had primitive optimizers, hence register was a way
for you to help optimize your code by hand. Modern compilers have much
better optimizers and can therefore decide for themselves which variables
would benefit from being placed into registers. You are very unlikely to do
a better job than a modern optimizer. You therefore shouldn’t use register
in any new C code. □

■ C++ has gone even further: register is now only a reserved word
stripped of meaning. C will likely eventually follow suit. □

674.6 typeof

4.4 constexpr

As a reminder, use constexpr to give names to things that otherwise would bemagic
values. The rules for constexpr are simple:

• It must be initialized in its declaration.
• The expression it’s initialized with must be a constant expression calculated
at compile-time involving only literals, enumeration values (§7.5), file-scope
const values, or constexpr values.

• It can be used everywhere a literal can be.

4.5 const

As a reminder, use const to mark an object immutable after initialization. The rules
for const are more complicated than those for constexpr:

• Like constexpr, it must be initialized in its declaration.
• Unlike constexpr, the expression it’s initialized with can be any expression
including one calculated at run-time, but only within a function; at file scope,
the expression must be a constant expression.

• It can not be used everywhere a constexpr can be, specifically not as either a
case value for a switch statement (§5.8) nor a dimension of an array (§6.1).

const is what’s known as a qualifier because it “qualifies” some other type, e.g.,
not only int, but a constant int. C also has _Atomic (§17), restrict (§21), and
volatile (§22) qualifiers.

The term cv-qualified is a shorthand for const and/or volatile qualified; the
term cvr-qualified is a shorthand for const, and/or volatile, and/or restrict
qualified.

4.6 typeof

Similar to auto (§4.2), C also has typeof that has two forms:

typeof(expr)
typeof(type)

For the first form, expr is not evaluated. Like sizeof (§3.16), typeof is a compile-
time operator. It standardizes the long-existing gcc extension.† For example:

†Referring to a Type with typeof, Free Software Foundation, Using the GNU Compiler
Collection, §6.7, 1988–2025, https://gcc.gnu.org/onlinedocs/gcc/Typeof.html

https://gcc.gnu.org/onlinedocs/gcc/Typeof.html

typeof

4 Declarations68

// int (obviously)

// also int

int x;

typeof(x) y;

■ If you know C++, typeof is like its decltype. Why isn’t typeof called
decltype in C also? (Or why isn’t decltype in C++ called typeof?) The
short answer is that C++ has references and C doesn’t — and that affects the
type deduced.† □

Since C has auto, why is typeof needed?

• Variables declared with don’t need initializers (§4.6.1).
• It can clarify complicated declarations (§4.6.2).
• It can be useful with _Generic (§19.6).

4.6.1 Declarations without Initializers

Using auto always requires an initializer since the compiler deduces the type of the
object from the type of the initializer expression; using typeof does not:

double f();

auto x = f(); // double

typeof(f()) y; // double, but without initializer

Depending on what you’re doing, you may not want to initialize upon declaration,
for example if a variable is initialized only conditionally or you need to defer initial-
ization (§18.6.8). Of course you still can use an initializer with typeof if you want
to guarantee a type based on something other than the initializer:

typeof(f()) y = g(); // type is what f() returns, not g()

4.6.2 Clarifying Complicated Declarations

The other way that typeof can be used is to clarify complicated declarations:

char *s1, *s2; // both pointer to char

typeof(char*) t1, t2; // same

Using typeof effectively provides an alternate declaration syntax that’s more in line
with other programming languages.

†Not-so-magic — typeof for C, JeanHeyd Meneide and Shepherd’s Oasis LLC, ISO/IEC
JTC1/SC22/WG14: Programming Language — C, N2927, §3.3, Feb. 2, 2022,
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2927.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2927.htm

694.8 alignas

4.7 typeof_unqual

Similar to typeof (§4.6) is typeof_unqual that removes all top-level qualifiers
(§4.5). Given the declarations at the top of listing 4.2, the differences between
typeof and typeof_unqual are shown. For an example using typeof_unqual,
see the listing for IS_SAME_TYPE (p.296).

extern int i; // int

extern int const ci; // const int

extern int *pi; // pointer to int

extern int const *pci; // pointer to const int

extern int *const cpi; // const pointer to int

extern int const *const cpci; // const pointer to const int

typeof (i) i2; // int

typeof_unqual(i) i2u; // int

typeof (ci) ci2; // int const

typeof_unqual(ci) ci2u; // int

typeof (pi) pi2; // int *

typeof_unqual(pci) pci2u; // int const*

typeof (cpi) cpi2; // int *const

typeof_unqual(cpi) cpi2u; // int *

typeof (cpci) cpci2; // int const *const

typeof_unqual(cpci) cpci2u; // int const *

Listing 4.2: Result of typeof_unqual on various types

4.8 alignas

The alignas specifier has two forms:

alignas(const-expr) Aligns to const-expr bytes.
alignas(type) Aligns the same as type.

It aligns the memory for a variable to the specified number of bytes. The second form
is shorthand for alignas(alignof(type)) (§3.17). For example, the declaration of
int32_buf (p.56) should be declared like:

alignas(int32_t) char int32_buf[sizeof(int32_t)];

so it ensures that it’s aligned the same as an int would be. For another example, see
DECL_UNUSED (p.130).

4 Declarations70

4.9 Attributes

An attribute is an optional piece of additional information attached to most any-
thing in C: a type, variable, statement, or function using the [[attribute-list]] syntax
where attribute-list is a comma-separated list of attribute. In addition to the standard
attributes given in the following sections, compiler vendors may offer their own at-
tributes prefixed by prefix::, e.g., gnu::hot.

An attribute can be declared anywhere and either before or after a declaration.
What it applies to depends on where it’s declared. For example:

[[maybe_unused]] int a, b; // applies to both

int x, y [[maybe_unused]], z; // applies only to ’y’

4.9.1 deprecated

The deprecated attribute has two forms:

[[deprecated]] Marks a name deprecated and warns when
used.

[[deprecated(”reason”)]] Same, but includes reason in warnings.

Marking a name with deprecated causes the compiler to print a warning whenever
the name is used. For the second form, reason is included in the warning. The at-
tribute allows you to provide a transition period while updating an API. For example,
given a declaration like:

[[deprecated(”use get_utoken”)]]

char* get_token();

and a use like:

char *token = get_token();

would generate a warning like:

parser.c:42:13: warning: ’get_token’ is deprecated:

use get_utoken

4.9.2 fallthrough

This attribute is used only with the switch statement (§5.8). For an explanation and
example, see listing 5.2 (p.78).

714.9 Attributes

4.9.3 maybe_unused

The compiler can warn you when one of a variable, static function (§9.8), or label
(§5.10) is unused. (For clang and gcc, you need to specify the -Wunused command-
line option.) Normally, this is a good thing, but sometimes you might want to keep
unused variables or functions around in case you’re currently unsure whether you
need them. The maybe_unused attribute can be used to mark unused variables or
functions so that the compiler won’t warn you. For example:

[[maybe_unused]]

static bool dag_has_cycle(struct dag_node *node);

For another example, see §16.6 (p.245).

4.9.4 nodiscard

Some functions in the standard library return values that aren’t needed most of the
time. For example, strcpy (§B.2) is declared as:

char* strcpy(char *dst, char const *src); // returns dst

It returns dst that generally isn’t needed since you already have it. For such func-
tions, it’s OK simply to discard the return value. The compiler will never warn you
for doing so.

Other functions, however, return values that are needed and therefore should not
be discarded. Such functions can be marked with nodiscard. If the return value of
such a function is discarded, the compiler will warn you. For example, from listing
1.13 (p.21), the function mstrcat should be marked nodiscard because it returns
a pointer to newly allocated memory that, if discarded, would be a memory leak:

[[nodiscard]]

char* mstrcat(char const *s1, char const *s2);

■ Admittedly, having to sprinkle [[nodiscard]] all over your programs
is both tedious and verbose. Ideally, nodiscard would be the default and
you’d have to specifically declare a function as, say, [[okdiscard]] to
discard its return value without warning. Unfortunately, C didn’t origi-
nally have nodiscard (or attributes at all) so you can’t simply add an
okdiscard attribute and make all other declarations nodiscard by default
without causing warnings for every C program in existence. Hence, adding
nodiscard to C was much less disruptive and better than not adding it. □

-Wunreachable-code

void

*

extern .c

static

register

constexpr

const

72 4 Declarations

4.9.5 noreturn

The noreturn attribute should be used to mark functions that never return. For ex-
ample, the standard function exit (§9.7.2) terminates a program as if it returned
from main. It’s declared as:

[[noreturn]] void exit(int status);

The reasons for marking a function noreturn include:

• It allows the compiler to warn you that code following a call to such a func-
tion will never be executed. (For clang and gcc, you need to specify the

command-line option.)
• It documents to programmers that it doesn’t return.

A function marked noreturn:

• Must have a return type of .
• Must never actually return. If it does, the result is undefined behavior (§15).

4.10 Epilogue

Here are some key points about and some advice for declarations:

• Multiple things may be declared in the same declarations. When doing so, re-
member that the for pointers binds to the name, not the type.

• Use auto when declaring a variable that you are initializing in its declaration
from an expression (but not a literal).

• Use to share global variables among multiple files.
• Use to declare objects that are “private” to a file.
• Don’t use .
• Use to declare constants.
• Use to mark objects immutable.
• Use attributes whenever possible.

Chapter 5

 Statements

C code is fundamentally a series of statements where each generally performs some
action. Many statements control the “flow” of execution of a program by condi-
tionally executing some statements and not others, by looping, or unconditionally
jumping to other statements. While we’ve seen most statement types already, this
chapter will give the details of the complete set.

5.1 Expression Statement

An expression statement is any expression followed by a semicolon. As mentioned
in §3.9, y = 0 is an expression that assigns 0 to y, but is still an expression having
the value of zero that can be used anywhere an expression can be. Appending a
semicolon makes it a statement.

5.2 Compound Statement

A compound statement (aka, block) is of the form:

{ statement∗ }

that is, zero or more statements enclosed between {}. It can be used anywhere a
single statement can be and can nest.

73© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_5

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_5&domain=pdf

74 5 Statements

5.3 if-else

The basic version of the if statement is:

if (expr)

statement

It executes statement only if expr is true. Reminder: in C, any non-zero value is
considered true (§2.5.2).

■ Idiomatic C tends to rely on this. For example, if count is an int you’ll
often see code like:

if (count) // means: if (count != 0)

// ...

Personally, I find that unclear since it looks like count could be bool. (Did
we count anything? Was a count even performed?) Hence, you have to find
the declaration for count to see if it’s really bool. Being explicit with != 0

here makes it clearer that count is much more likely a numeric type. □

If statement needs to be multiple statements, they’re enclosed between {}. The full
version of the if statement adds an optional else clause:

if (expr)

if-true-statement
else

if-false-statement

Note that an else associates with the most recent if. For example, in:

if (expr1)

if (expr2)

// ...

else // indentation belies reality

// ...

the else associates with expr2 despite it being indented to match the if of expr1.
To fix it, simply use {}:

if (expr1) {

if (expr2)

// ...

}

else // {} make indentation match reality

// ...

If either the if or else uses {}, it’s also widely considered good style to make both
use {}, i.e., omit {} only when there is an if having a single statement and no else,
or both the if and else have single statements.

755.5 do-while

As shown in listing 1.4 (p. 10), a statement for an else can be another if
statement. A sequence of if-else-if statements may “chain” up to some large
implementation-defined limit.

if (expr1) {

// ...

} else if (expr2) {

// ...

} else if (expr3) {

// ...

5.4 while

The while statement is the simplest of the looping statements and is of the form:

while (expr)

statement

As long as expr remains true, it executes statement repeatedly. As with if, if state-
ment needs to be multiple statements, they’re enclosed between {}.

To write an “infinite loop,” make expr be true:

while (true) // or, idiomatically: while (1)

statement

Infinite loops can be broken out of via break (§5.7), return (§5.9), goto (§5.10),
or longjmp (§20.4).

5.5 do-while

The do-while statement is a variation on while and is of the form:

do {

body
} while (expr);

Unlike while, do-while evaluates its condition at the end of the loop and so always
executes its body at least once. As first shown in listing 1.3 (p.7), it’s occasionally
useful, though in practice used much less frequently than either while or for.

Unlike either while or for, do-while is invariably used with {} even when there
is only a single statement (otherwise the while looks like an ordinary one). It’s also
considered good style to put the while on the same line as the } so the while looks
like the end of a do-while loop rather than the start of a while loop.

76 5 Statements

5.6 for

As first shown in listing 1.5 (p.12), the for statement is a generalization of a while
statement and is of the form:

for (init-expropt; cond-expropt; next-expropt)

statement

where:

1. The init-expr performs any initialization once before the loop. Optionally, it can
also declare the variables it’s initializing. The scope of such variables are limited
to the loop’s body.

2. The cond-expr is the same as in a while statement.
3. The next-expr performs any steps necessary to go to the next iteration of the

loop. It is performed after the last statement in the loop body or a continue

(§5.7) statement.

A for statement is roughly equivalent to:

init-expr;
while (cond-expr) {

statement
next-expr;

}

but more concise. All expressions are optional, but the ;s must remain. If cond-expr
is omitted, it’s equivalent to true, hence the following is another idiomatic way to
write an infinite loop:

for (;;) // infinite loop

statement

5.7 break and continue

The break statement simply breaks out of any loop or switch (§5.8) statement, for
example:

for (;;) {

// ...

if (cond-expr)

break;

}

As first shown in listing 1.4 (p. 10), the continue statement jumps back to the
start of a loop. It’s equivalent to a goto (§5.10) to a label at the end of the loop:

default

5.8 switch 77

while-or-for (. . .) {

if (cond-expr)

goto next; // equivalent to ”continue”

// ...

next:

;

}

5.8 switch

A switch statement is a multi-way if and is of the form:

switch (cond-expr) {

case const-expr:
statement∗

case const-expr:
statement∗

// ...

default: // optional

statement
}

A switch works as follows:

1. The cond-expr is evaluated.
2. Its value is then compared against a const-expr:

• If it matches, the statements following the const-expr are executed.
• Otherwise, if there is another const-expr, the value is compared against that
in turn.

The order in which the cases are tried is unspecified. It doesn’t necessarily match
the order in which the cases are declared. (The order shouldn’t matter; if it does,
use an if-else chain instead.)

3. If no const-expr matches:

• If there is a case, the statements following it are executed.
• Otherwise, the control flow “falls out the bottom” of the switch without
executing any statements.

Note that a default case need not be last.

For example, the program that expands tabs to spaces from listing 2.3 (p. 34)
rewritten using switch is shown in listing 5.1. For this program, whether you use
if-else or switch is only a matter of preference. As the number of cases increases,
switch is often preferable. Using switch with enumerations (§7.5.5) is particularly
good.

5 Statements78

1 #include <stdio.h>

2
3 constexpr unsigned TAB_STOP = 8; // chars per tab-stop

4
5 int main() {

6 unsigned len = 0; // length of line so far

7 while (true) {

8 int const c = getchar();

9 switch (c) {

10 case EOF:

11 return 0;

12 case ’\t’:

13 unsigned const spaces = TAB_STOP - len % TAB_STOP;

14 printf(”%*s”, spaces, ””);

15 len += spaces;

16 continue;

17 case ’\n’:

18 len = 0;

19 break;

20 default:

21 ++len;

22 }

23 putchar(c);

24 }

25 }

Listing 5.1: Expand tabs to spaces, version 2, using switch

A controversial feature of C is that, once a case matches and the statements fol-
lowing it start executing, execution “falls through” into to the subsequent case or
default, if any, unless you explicitly break, continue (but only if inside a loop),
goto (§5.10), return (§5.9), or longjmp (§20.4). In listing 5.1, if the break on line
19 were not there, then after matching \n on line 17 and setting len = 0 on line
18, control would fall through into the default case and ++len would occur — not
what we want there.

You can request that the compiler warn you if you fall through. For clang and
gcc, it’s done via the -Wimplicit-fallthrough command-line option. Then if you
really want to fall through, use a fallthrough attribute (§4.9.2) so the compiler
won’t warn you as shown in listing 5.2. If goodness is 2, the program will print
very good.

1 switch (goodness) {

2 case 2:

3 printf(”very ”);

4 [[fallthrough]]; // fallthrough is intentional

5 case 1:

6 printf(”good”);

7 }

Listing 5.2: Use of fallthrough attribute

5.10 goto 79

5.9 return

The return statement has two forms:

return; Returns from a void function.
return expr; Returns from a non-void function.

Both unconditionally return from a function immediately. For the second form, the
type of expr should match the return-type of the function. If it’s not an exact match,
expr is automatically converted to match, if possible; if not, a cast (§3.14) can also
be used. Note that () are not needed to enclose expr.

5.10 goto

The goto statement is of the form:

goto label;
// ...

label: statement

where label is an identifier followed by a : preceding a statement. A goto uncondi-
tionally goes to the statement with the given label (that may be either before or after
the goto). A goto is useful in a few situations:

• When going to shared error-handling code as first shown in listing 1.3 (p.7).
• When similarly going to shared cleanup code.
• When inside a nested loop, to break out of all loops.
• To break out of a loop from within a switch as shown in listing 5.3.

for (int i = 0; i < n; ++i) {

switch (s[i]) {

// ...

case ’?’:

goto done; // break out of ”switch” and ”for”

}

}

done:

;

Listing 5.3: goto out of a loop from within switch

A few notes about labels:

• Labels are local to functions, so labels with the same name may appear in mul-
tiple functions yet are distinct.

• That implies that you can’t goto a label in a different function (but see §20).

else if

switch

• Label names are in their own namespace, so it’s perfectly legal to have a label
and a variable with the same name in the same function (though it’s not recom-
mended) as shown in listing 5.4.

5 Statements80

bool error; // variable ...

// ...

if (error)

goto error;

// ...

error: // ... and label with same name

// ...

Listing 5.4: Label and variable with same name

5.11 Empty Statement (;)

The empty statement is simply a semicolon. It’s useful as an empty body of a while
(§5.4) or for (§5.6) statement. The sample implementation of the strcpy standard
function (§B.2) from listing 1.11 (p.20) used an empty statement.

5.12 Epilogue

Here are some key points about and some advice for certain statements:

• For if-else:

– Remember that associates with the most recent .
– If either uses {}, make both use {}.

• For do-while, always use {} and place the while on the same line as the }.
• For for:

Remember that all expressions are optional, but the ;s must remain.–
– Its init-expr may also declare a variable.
– If its cond-expr is omitted, it’s equivalent to true.

• Whenmultiple constant expressions are being compared against, consider .
• For switch:

– The order the cases are tried is unspecified.
– By default, cases “fall through,” so you’ll typically need break statements
between cases.

– If falling through is intentional, use the [[fallthrough]] attribute.

• Use goto either to go to shared code or to break out of a loop when break is
insufficient.

5.12 Epilogue 81

Exercises

1. Write a program that reads standard input and prints each word on a line by itself.
A “word” is defined as a sequence of one or more alphanumeric characters. For
example, given the line of text:

C is quirky, flawed, and an enormous success.

the program should print:

C

is

quirky

flawed

and

an

enormous

success

Additional requirements:

• The program must print only alphanumeric and newline characters.
• The program must always print a newline after each word even if the input
ends with an alphanumeric character.

• The program must never print a blank line.
• If no input is given, the program must not print anything.

Hint: an optimal solution doesn’t need to treat any of those requirements as
special cases. You will need the standard function isalnum (§B.1).

Chapter 6

 Arrays and Pointers

As first shown in listing 1.3 (p.7), an array is a contiguous set of objects in memory
of the same type, e.g., array of char or array of int. As first described in §1.6,
a pointer is an object that contains the memory address of some other object. Not
described previously is the curious relationship between arrays and pointers in C that
is unlike most other languages.

6.1 Array Declaration

An array is declared by appending [n] where n is a constant positive integer ex-
pression whose value is the size (number of elements) of the array. As first shown
in listing 1.3 (p.7):

char buf[BUF_SIZE];

declares an array BUF_SIZE of char. In C, array elements are always 0 through n−1.

6.2 Array Initialization

As first shown in listing 1.4 (p.10), an array can be initialized to all zeros or equiv-
alent via the = { } syntax:

char str_buf[STRING_MIN] = { };

Arrays can also be initialized with values. The following declarations are equivalent:

char msg1[6] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’\0’ };

char msg2[] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’\0’ };

char msg3[] = ”hello”;

83© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_6

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_6&domain=pdf

6 Arrays and Pointers84

The msg1 array is initialized with explicit values. If the number of values is less than
the size of the array, the remaining elements are initialized to zero or equivalent. If
the number of explicit values equals the size of the array that you want, you can omit
the size as was done for msg2 and the compiler will count the elements for you. As
a special case, arrays of char can be initialized with string literals as was done for
msg3. Remember that string literals implicitly have a null character appended by the
compiler.

Alternatively, you can use designated initializers, that is use a non-negative, con-
stant integer index surrounded by [] and followed by = to initialize specific values:

int a[9] = { [3] = 1, [4] = 2, [5] = 3 };

The array has elements 3, 4, and 5 initialized to 1, 2, and 3, respectively, and the
remaining elements are initialized to zero. Designated initializers can be given in
any order.

6.3 Array Indexing

As first shown in listing 1.4 (p.10), an array element is accessed by appending [i]
(§3.11) where i is an integer expression that specifies the offset of the desired ele-
ment.

Unlike many other languages, C doesn’t do bounds checking, meaning it doesn’t
check at run-time if i is within the “bounds” 0 to n− 1 where n is the declared size
of the array. Accessing an element outside its bounds results in undefined behavior
(§15).

■ Not doing bounds checking is an instance of the compiler assuming
you know what you’re doing. Bounds violations can be a source of bugs
(§18.6.1).

Why not do bounds checking? It takes time, especially in loops. Not
doing bounds checking is another way C achieves its speed. In cases where
you know the bounds are correct, why bother checking? □

6.4 Multidimensional Arrays

Like other programming languages, C supports multidimensional arrays (aka, matri-
ces). Unlike some other languages, C uses one pair of [] per dimension. For example,
to declare a 3 × 2 array of double:

double a2d[3][2]; // not: a2d[3,2]

856.4 Multidimensional Arrays

Conceptually, think of a 2D matrix as an array of arrays. In C, all the elements are
allocated contiguously such that a2d[i][0] and a2d[i][1] are adjacent in memory
for a given row i (row-major order) as shown in figure 6.1.

[0][0][0][1][1][0][1][1][2][0][2][1]

Fig. 6.1:Memory layout of a 3 × 2 array

Behind the curtain, memory is (always) one-dimensional as described in §1.5. To
implement the syntactic sugar of two-dimensional arrays, the compiler actually does:

double *const a1d = &a2d[0][0];

a2d[i][j] = 0; // really: a1d[i * 2 + j]

That is, to access a2d[i][j], the compiler multiplies i by the row size 2 then adds
j and uses that as if it were the index into a one-dimensional array a1d.

Multidimensional arrays can be initialized similarly to one-dimensional arrays as
shown in listing 6.1, lines 4–13.

1 #include <math.h> // for sqrt()

2 #include <stdio.h>

3
4 constexpr double PLANET_AU[][2] = {

5 { 0.31, 0.47 }, // Mercury

6 { 0.72, 0.73 }, // Venus

7 { 0.98, 1.02 }, // Earth

8 { 1.38, 1.67 }, // Mars

9 { 4.95, 5.45 }, // Jupiter

10 { 9.01, 10.07 }, // Saturn

11 { 18.28, 20.09 }, // Uranus

12 { 29.80, 30.32 }, // Neptune

13 };

14
15 double orbital_period(unsigned p) {

16 auto const a = (PLANET_AU[p][0] + PLANET_AU[p][1]) / 2;

17 return sqrt(a * a * a);

18 }

19
20 int main() {

21 for (unsigned p = 0; p < 8; ++p) {

22 auto const period = orbital_period(p);

23 if (period < 1.0) // < 1 Earth year: print in days

24 printf(”%u %6.2fd\n”, p, period * 365.25);

25 else

26 printf(”%u %6.2fy\n”, p, period);

27 }

28 }

Listing 6.1: Print orbital period of planets

86 6 Arrays and Pointers

PLANET_AU is an 8 × 2 array: one row per planet, each of which has two elements,
perihelion and aphelion in Astronomical Units (AU). When initializing a multidi-
mensional array, the left-most dimension can be omitted and the compiler will con-
veniently count the rows for you. Each row is enclosed between {} and separated
by commas. (If you want to initialize all elements to non-zero values, you can omit
the {} for the rows if you want. The compiler knows how many columns per row
because it has to be specified explicitly.)

6.5 void Pointers

As stated in §1.6, pointers have types corresponding to the type of the objects to
which they’re pointing, e.g., pointer to int. Also stated, void is used instead of a
return type when a function returns nothing.

In C, void is also used with pointers to get void*— a void pointer — a generic
pointer that can point to any type. For example, the standard function memmove (§B.2)
that copies n bytes from one area of memory to another is declared as:

void* memmove(void *dst, void const *src, size_t n);

A void* can never be dereferenced since void objects don’t exist; hence, in order
to access the object to which a void* points requires that it be cast to a specific type
of pointer (§3.14.3), then dereferenced. As a special case, void* implicitly casts to
or from any other type of pointer.

Since C doesn’t have templates or generics, another use for void* is in data struc-
tures where the void* points to user-supplied data of any type. For example, a singly
linked list structure might be declared as shown in listing 6.2.

struct slist {

struct slist *next;

void *data;

};

Listing 6.2: Singly linked list structure with void* member

The data member allows you to store a pointer to anything you want. As an opti-
mization to avoid dynamically allocating your data in addition to allocating an slist
link, if the size of the data you want to store ≤ sizeof(void*), you can cram your
data into data directly via a cast (§3.14.1). For example, if i is an int you want to
store, you can do:

head->data = (void*)i; // cram int in

// ...

i = (int)head->data; // pull int out

Remember, the compiler assumes you know what you’re doing when using a cast.

phead slist*

876.6 Pointers to Pointers

6.6 Pointers to Pointers

Since pointers are objects like any other, pointers can also point to pointers, e.g.,
pointer to pointer to int or int**. There can be any number of *, but the number
of pointer levels rarely exceeds two in practice.

Similar to the swapi function in listing 1.7 (p. 17), you can use a pointer to a
pointer parameter to change the value of a pointer itself. For example, listing 6.3
implements the operations “push,” “peek,” and “pop” for an slist.

1 [[nodiscard]] struct slist* slist_push(struct slist *head,

2 void *data) {

3 struct slist *const new_head =

4 malloc(sizeof(struct slist));

5 new_head->next = head;

6 new_head->data = data;

7 return new_head;

8 }

9
10 [[nodiscard]] void* slist_peek(struct slist *head) {

11 return head != nullptr ? head->data : nullptr;

12 }

13
14 [[nodiscard]] void* slist_pop(struct slist **phead) {

15 auto const head = *phead;

16 if (head == nullptr)

17 return nullptr;

18 *phead = head->next;

19 auto const data = head->data;

20 free(head);

21 return data;

22 }

Listing 6.3: Singly linked list functions

The functions slist_push and slist_peek are straightforward; slist_pop needs
explanation:

• Line 14 declares as a pointer to an , the current head of the list.
• Line 15 dereferences phead to get a copy of the head.
• Line 18 sets the original head to be head->next effectively popping the head
off the list.

• Line 19 copies a pointer to the old head’s data.
• Line 20 frees the old head’s slist structure.
• Line 21 returns the old head’s data.

88 6 Arrays and Pointers

6.7 Arrays and Pointers

There are a couple of quirky features of C when it comes to arrays and pointers:

1. The name of an array in an expression “decays” into a pointer to its first element.
For example:

2. The a[i] syntax is simply syntactic sugar for *(a+i). The compiler multiplies
i × sizeof(int), then adds that to a (the address of its first element) to yield
the address of the ith element, then dereferences that address. This means that
[] does no bounds checking (§18.6.1).

3. Equivalently for any pointer p, *p can be written as p[0] which is the same as
*(p+0). This means arithmetic can be done on pointers. More generally, *(p+i)
is the element at the memory address p plus the offset of i × sizeof(type),
which is the same as p[i]. This equivalence allows a one-dimensional array to
be dynamically allocated and have the [] syntax still work:

int a[3];

int *p = a; // as if: p = &a[0]

int *const p = malloc(3 * sizeof(int));

// ...

p[i] = 42; // as if: *(p + i) = 42

While the syntactic sugar and equivalences are often convenient, the convenience
comes at a price, specifically:

• There is no way to tell if a pointer points to a single object or multiple objects.
• Since the name of an array decays into a pointer in expressions, there is no way
to tell how many elements an array has either (unless its declaration is in scope
in which case you can use the sizeof operator, §3.16).

Both of these things mean it’s too easy to attempt to access an object beyond what
either a pointer points to or the number of elements in an array resulting in undefined
behavior (§15) and bugs (§18.6.1), sometimes with serious consequences.

As a special case, it’s perfectly OK for a pointer to point to one past the last
element of an array. For example, given:

int buf[4];

int *const end = buf + 4; // one past last element is OK

it’s OK to have end point to one past the last element of buf as shown in figure 6.2
for comparing against that enables code like this to be written:

for (int *p = buf; p < end; ++p)

Of course, dereferencing such a pointer still results in undefined behavior.

6.9 Arrays of Pointers 89

[0] [1] [2] [3]buf

end
buf

+ 4

Fig. 6.2: Pointer to one past last array element is OK

6.8 Arrays vs. Pointers

Even though arrays and pointers work similarly, they are entirely different things.
Given these two declarations:

char const amsg[] = ”hello”;

char const *pmsg = ”hello”;

they are in memory as shown in figure 6.3. The variable amsg is an array.

’h’ ’e’ ’l’ ’l’ ’o’ \0amsg

1000 1001 1002 1003 1004 1005

2000pmsg ’h’ ’e’ ’l’ ’l’ ’o’ \0

2000 2001 2002 2003 2004 2005

Fig. 6.3: Array vs. pointer

In memory, only the characters comprising ”hello” exist. The total memory used is
6 bytes. When needed in an expression, the compiler uses the address of the array’s
first element, but it doesn’t exist as a separate pointer object.

In contrast, pmsg is a pointer that points to the characters comprising ”hello”

somewhere else in memory. Assuming 64-bit pointers, the total memory used is 6
bytes for the string plus 8 bytes for the pointer for a total of 14 bytes. Another dif-
ference is that pmsg can be reassigned to point elsewhere whereas amsg can not.

6.9 Arrays of Pointers

Of course it’s possible to have arrays of pointers, for example an array of pointers to
char (strings):

90 6 Arrays and Pointers

char const *const COLORS[] = {

”black”, ”white”, ”blue”, ”green”, ”red”

};

An array of strings could alternatively be declared as a true two-dimensional array:

char const COLORS_2D[][6] = {

”black”, ”white”, ”blue”, ”green”, ”red”

};

but it’s inconvenient because, although the compiler will count the number of rows
for you, you’d have to specify the length of the longest string plus the terminating
null character yourself (in this case, 6).

The other difference for COLORS_2D is that strings less than 6 characters would
waste bytes, in this case, ”blue” would waste 1 and ”red” would waste 2, since
the total space is always 30 bytes. On the other hand, while COLORS would require
only exactly 27 bytes for the strings, it would also require 40 bytes for the pointers
(assuming 64-bit pointers) for a total of 67 bytes.

That said, unless space is at a premium (such as it might be in embedded appli-
cations), using an array of pointers to strings is simply more convenient.

6.10 Pointers to Function

In addition to pointing to an object, a pointer can also point to a function because the
compiled machine code for functions is in memory like objects are. Just as pointers
to objects are typed, e.g., pointer to int, pointers to functions are also typed, e.g.,
pointer to function taking two void pointers to const as parameters and returning
an int. For example, the standard function qsort that sorts an array is declared as:

void qsort(void *array, size_t n, size_t esize,

int (*cmp_fn)(void const*, void const*));

where array points to the array of any type to be sorted, n is the number of elements,
esize is the element size, and cmp_fn is a pointer to the function to use to perform
comparisons of two elements i and j returning an integer < 0, 0, or > 0 if array[i]
is <, =, or > array[j], respectively.

By using both void* and a pointer to function, qsort implements only the algo-
rithm and has delegated element comparisons (that are independent of the algorithm)
to the pointed-to function. Hence, a pointer to function is like an interface in either
Go or Java or an abstract class in C++ having a single method — but without the
interface or class envelope.

For the declaration of cmp_fn itself, the () are necessary because it would be a
function returning a pointer to int without them. As noted in §4, declarations in C
can get infamously complicated.

char const*

916.10 Pointers to Function

■ To help decipher complicated declarations, you can use cdecl† that can
parse a C or C++ declaration (aka, “gibberish”) and explain it in English:

cdecl> explain int (*cmp_fn)(void const*, void const*)

declare cmp_fn as pointer to function (pointer to

const void, pointer to const void) returning

integer

You can also type declare followed by a declaration in English and cdecl
will print it in C or C++. □

For example, sorting the COLORS array would be done as shown in listing 6.4.

1 int strcmp_for_qsort(void const *ips, void const *jps) {

2 return strcmp(*(char const**)ips, *(char const**)jps);

3 }

4
5 void sort_colors() {

6 qsort(COLORS, sizeof COLORS / sizeof COLORS[0],

7 sizeof COLORS[0], &strcmp_for_qsort);

8 }

Listing 6.4: Use qsort to sort an array of strings

• As shown in §3.16, the first sizeof on line 6 returns the total size of the array,
the second returns the size of an individual element, and their quotient is the
number of elements in the array.

• On line 7, the third sizeof returns the size of an individual element to sort
and strcmp_for_qsort is the function to use to perform the comparisons of
elements.

• When qsort calls a comparison function, it passes it two pointers to the el-
ements to compare. Since COLORS is an array of char const*, qsort passes
two pointers to .

On line 2, each cast casts a void const* parameter (§3.14.3) to the char
const**we know it to be. Each such pointer is then dereferenced via the leading
* to yield actual pointers to the strings to be compared. Those are passed to the
standard function strcmp (§B.2) that compares two strings returning an integer
< 0, 0, or > 0 if the first string is <, =, or > the second string, respectively.

To call a function via pointer explicitly:

int cmp1 = (*cmp_fn)(s1, s2); // call via pointer

int cmp2 = cmp_fn(s1, s2); // same

For cmp1, the pointer to function cmp_fn is dereferenced via * (§3.12) to yield a func-
tion that is then called. The first set of () are necessary otherwise it would instead be

†cdecl: Composing and deciphering C (or C++) declarations or casts, aka “gibberish,” Paul J.
Lucas, https://github.com/paul-j-lucas/cdecl

https://github.com/paul-j-lucas/cdecl

92 6 Arrays and Pointers

calling a function named cmp_fn that returned a pointer that the * dereferenced. For
cmp2, C allows you to elide the (*...) as a shorthand and call a pointer to function
directly.

■ Personally, I prefer using the explicit (*...) form since it makes it clear
that cmp_fn is a pointer to function and not a function named cmp_fn. □

6.11 Array Compound Literals

Listing 6.5 shows str_is_any, a function where the parameters are a string to find
(the “needle”) and an array of strings to compare against (the “haystack”). The con-
vention here is that the last element of the arraymust be a null pointer to be a sentinel.

bool str_is_any(char const *needle,

char const *const haystack[]) {

for (unsigned i = 0; haystack[i] != nullptr; ++i) {

if (strcmp(needle, haystack[i]) == 0)

return true;

}

return false;

}

Listing 6.5: Function to see if a string is among a set

You can call it like:

if (str_is_any(answer, (char const*[])

{ ”true”, ”yes”, nullptr }))

// ...

Similar to a compound statement that is multiple statements enclosed by {} (§5.2), a
compound literal for an array is multiple literals enclosed by {} prefixed by (type[])
similar to a cast (§3.14) that specifies the type of the literals, in this case char

const* for array of constant pointer to char (strings). A compound literal for an
array allows you to specify an array “inline.” Without compound literals, you’d need
to use a separate array:

char const *const AFFIRM[] = { ”true”, ”yes”, nullptr };

if (str_is_any(answer, AFFIRM))

// ...

For a less verbose way to pass a compound literal for an array as an argument, see
§8.12.

936.12 Multidimensional Arrays vs. Pointers

6.11.1 Compound Literal Lifetime and Storage Class

By default, the lifetime of a compound literal is the scope (§2.4) that encloses it.
For example, as shown in listing 6.6, the scope of the compound literal on line 4 is
limited to line 4.

1 void f(int const *a) {

2 int *p;

3 if (a == nullptr) {

4 p = (int[]){ 0 }; // int[] exists only on this line

5 }

6 int n = p[0]; // undefined behavior

7 // ...

Listing 6.6: Compound literal lifetime

Outside of that scope, p becomes a dangling pointer (a pointer to an object that no
longer exists), hence any attempt at access, such as on line 6, results in undefined
behavior (§15).

The (type) for a compound literal may optionally include a storage class (§4.3),
but only one of constexpr (§4.4), register (§4.3.4), static (§4.3.3), or thread_local
(§14.7). To fix the lifetime in listing 6.6, you can either remove the {} on lines 3 and
5 (hence, the scope of the compound literal will be the entire function) or include
static like:

p = (static int[]){ 0 }; // (int[]) exists forever

The caveat of using static is that the compound literal can then be initialized only
with constants or literals at compile-time as opposed to arbitrary values at run-time.

6.12 Multidimensional Arrays vs. Pointers

Given these two declarations:

double a2d[3][2]; // array 3 x 2 of double

double *ap[3]; // array 3 of pointer to double

The variable a2d is in memory as was shown in figure 6.1, that is it has 6 double

values comprising a true two-dimensional array. Assuming 64-bit doubles, the total
memory used is 48 bytes.

In contrast, ap is an array of 3 pointers to double. Assuming 64-bit pointers, the
total memory used is 24 bytes. If ap were initialized like this:

double *ap[3] = { a2d[0], a2d[2], a2d[4] };

×

94 6 Arrays and Pointers

then the expression ap[i][j]would refer to the same double as a2d[i][j] for all i
and j. Even though ap is a one-dimensional array, the expression ap[i] gets the ith
pointer to which the [j] can be applied via the p[j] equivalence to *(p+j) (§6.7
#3, p.88).

6.13 Dynamically Allocating 2D Arrays

As we saw in §6.7 #3 (p.88), a one-dimensional array can be dynamically allocated
and have the [] syntax still work. But can the same be done for a two- or higher-
dimensional array? The previous section hinted that the answer is “yes.”

The trick is to allocate an array of i pointers where each pointer points at exactly
the right element within an elements array. This would be like ap in the previous
section. To be more efficient, the array of pointers and the array of elements can be
allocated in one chunk of memory as shown in figure 6.4.

*[0] *[1] *[2] [0][0][0][1][1][0][1][1][2][0][2][1]

Fig. 6.4:Memory layout of a dynamically allocated 3 × 2 array

One slight caveat is shown as the shaded area between the row pointers and the
elements. This is padding that may be necessary to ensure that the elements are
properly aligned (§3.17). A function to allocate a 2D array is shown in listing 6.7.

1 void** alloc2d(size_t esize, size_t align,

2 size_t r, size_t c) {

3 // ensure &elements[0][0] is suitably aligned

4 auto const ptr_size = rup2(sizeof(void*) * r, align);

5 auto const row_size = esize * c;

6 // allocate the row pointers followed by the elements

7 void **const rows = malloc(ptr_size + r * row_size);

8 char *const elements = (char*)rows + ptr_size;

9 for (size_t i = 0; i < r; ++i)

10 rows[i] = &elements[i * row_size];

11 return rows;

12 }

Listing 6.7: Dynamically allocate i j 2D array

• Lines 1–2 declare the parameters esize for the element size, align for the
alignment, and r and c for the rows and columns of the 2D array to allocate.
The function returns a pointer to the pointers. You’d use the function like:

≥

956.13 Dynamically Allocating 2D Arrays

double **const a2d = (double**)

alloc2d(sizeof(double), alignof(double), 3, 2);

a2d[0][0] = 3.14; // [i][j] syntax works

free(a2d);

The (double**) cast (§3.14.3) is necessary because, unlike void* that implic-
itly casts to any pointer type, void** does not.

• To ensure &elements[0][0] is suitably aligned, line 3 calculates the size of the
pointers rounded up to align bytes so it includes any necessary padding using
the rup2 function from listing 3.2 (p.51).

• Line 6 allocates rows that is a pointer to the entire chunk of memory containing
both the array of pointers and the array of elements.

• Line 7 sets elements to point to the first element that is the address rows plus
ptr_size that includes any necessary padding. The (char*) cast is necessary
because arithmetic can’t be done on void pointers because void objects don’t
exist, hence have no size.

• Lines 8–9 set rows[i] to point to the zeroth column of each row (the arrows in
figure 6.4).

Not only does this need only one call to malloc, but also only one call to free. Had
the array of elements been allocated separately from the array of pointers, another
function of free2d would have been necessary to free both.

Another caveat is that, unlike a statically allocated 2D array, a dynamically al-
located 2D array uses additional memory for the row pointers. Therefore whenever
possible for an array with dimensions i×j, make i ≤ j so you get the most elements
per pointer. On the other hand, if you only need a triangular matrix, then it’s possible
to write a variant of alloc2d that allocates only i elements for row i. This will only
use memory for n(n+1)/2 elements plus n pointers. For a triangular matrix where
n 4, this yields a memory savings.

If the cost of the additional row pointers is too much for your circumstances, you
can eliminate them, but you have to sacrifice the use of the [][] syntax and write
your own accessor function that does what the compiler does behind the curtain,
something like:

void* a2d_ij(void *a2d, size_t esize, size_t c,

size_t i, size_t j) {

return &((char*)a2d)[(i * c + j) * esize];

}

then use it like:

double *const a2d = malloc(sizeof(double) * 3 * 2);

(double)a2d_ij(a2d, sizeof(double), 2, i, j) = 3.14;

But that’s pretty ugly. Like many other things in computer science, it’s a trade-off.

96 6 Arrays and Pointers

6.14 Variable Length Arrays

Usually, all arrays have to be declared to be of a fixed length (known at compile-
time). A variable length array (“VLA” for short) can be declared to be of a variable
length (not known until run-time). For example, a function that prints a histogram
for an array of integers is shown in listing 6.8.

1 void print_hist(unsigned nvals, unsigned const vals[],

2 unsigned buckets, char marker) {

3 unsigned hist[buckets + 1] = { };

4 for (unsigned i = 0; i < nvals; ++i) {

5 if (vals[i] <= buckets)

6 ++hist[vals[i]];

7 }

8 for (unsigned b = 0; b <= buckets; ++b) {

9 auto h = hist[b];

10 if (h == 0)

11 continue;

12 printf(”%3u: ”, b);

13 while (h-- > 0)

14 putchar(marker);

15 putchar(’\n’);

16 }

17 }

Listing 6.8: Function using a VLA to print a histogram

The parameter nvals is the size of the array vals containing the values, buckets
is the number of “buckets” the values should fall into, and marker is the character
to print for the histogram. For example, to print a histogram of 25 student grades in
the range 0–100 using ’+’:

print_hist(25, grades, 100, ’+’);

Line 3 declares hist as a VLA by using buckets + 1 (a value not known until
run-time) for its size rather than a constant expression.

While VLAs work and seem convenient, one serious caveat to VLAs is that, if the
length is too big, it will silently overflow the stack resulting in undefined behavior
(§15). Additionally, unlike malloc returning nullptr upon failure, there’s no way
to detect when a VLA overflows the stack. Hence, if the size can be “too big,” your
code has to guard against it:

constexpr unsigned HIST_BUCKETS_MAX = 1024;

// ...

if (buckets > HIST_BUCKETS_MAX)

// ... do something else ...

But if you know that HIST_BUCKETS_MAX is the maximum safe size, then you might
as well simply declare hist to be of that size and not use a VLA.

Incidentally, you could do small size optimization as shown in listing 6.9.

−

976.15 Epilogue

void print_hist(unsigned nvals, unsigned const vals[],

unsigned buckets, char marker) {

unsigned hist[HIST_BUCKETS_MAX + 1];

unsigned *const phist = buckets <= HIST_BUCKETS_MAX ?

hist : malloc((buckets + 1) * sizeof(unsigned));

// ... use only ”phist” to access array ...

if (phist != hist)

free(phist);

}

Listing 6.9: Function using small size optimization to print a histogram

That is, if buckets isn’t too big, use the (fixed sized) array on the stack; otherwise,
use a dynamically sized array in the heap. This has the advantage of saving on the
calls to malloc and free for “small” buckets yet still works for “large” buckets.
But notice that a VLA is not being used.

Hence, the moral is: use VLAs onlywhen you don’t know the size at compile time
but can guarantee that it won’t be “too big.” However, this is pretty much never true.
In hindsight, VLAs, though they seem convenient at times, are problematic, so much
so that C11 made VLAs an optional feature.

■ C++ never adopted VLAs from C. □

6.15 Epilogue

Here are some key points about and some advice for arrays and pointers:
• For any array declared as a[n], the elements are always 0 through n 1.
• Arrays may be initialized using the = { } syntax:

– If empty, all elements are initialized to zero or equivalent.
– If values are given, the size becomes optional: the compiler will count the
number of values and use that for the size.

– If the size is given, but the number of values is less than that, the remaining
elements are initialized to zero or equivalent.

– Designated initializers [i] = v can be used to initialize specific elements
in any order.

– Arrays of char may be initialized with string literals.

• When indexing an array, C doesn’t do bounds checking so accessing an element
outside its bounds results in undefined behavior (§15).

• Multidimensional arrays are arrays of arrays. C uses row-major order.
• void pointers are used as generic pointers that can point to any type, but never
be dereferenced.

• Although arrays and pointers are very different things, they have a quirky rela-
tionship in C:

([]){ }

– The name of an array “decays” into a pointer to its first element.
– For an array, a[i] is simply syntactic sugar for *(a+i).
– For a pointer, *p can be written as p[0] which is the same as *(p+0). More
generally, *(p+i) is the same as p[i].

– It’s OK for a pointer to point to one past the last element of an array.

• Pointers to function can be used to allow one general function (such as qsort)
to delegate specifics (such as comparisons) to another.

• Compound literals like type . . . can be used to create arrays “inline.”
• Multidimensional arrays can be simulated using arrays of pointers.
• Don’t use VLAs (except as parameters, §9.4.3, §9.4.5).

98 6 Arrays and Pointers

Exercises

1. Write a function:

int slist_cmp(struct slist const *i_list,

struct slist const *j_list,

int (*cmp_fn)(void const *i_data,

void const *j_data));

to compare two lists using cmp_fn to compare the data at each pair of elements
returning an integer < 0, 0, or > 0 if i_list is <, =, or > j_list, respectively.

2. Write a function:

struct slist* slist_dup(struct slist const *list,

void (*dup_fn)(void const*));

to duplicate list using dup_fn to duplicate the data at each element. Return a
pointer to the head of the new list.

3. As mentioned in §6.13, if you need a triangular matrix, it’s possible to write a
variant of alloc2d that allocates only i elements for row i. Write a function:

void** alloc_tri(size_t esize, size_t align,

size_t n);

that allocates a triangular matrix of n rows, 0 . . . n−1, where row i has i + 1
elements, e.g., row 0 has 1 element [0], row 1 has 2 elements [0] and [1], and
so on. If n is 0, return nullptr.

4. Rather than have a single function print_hist (listing 6.8, p.96) that both cre-
ates and prints a histogram, split it into two functions, the first:

6.15 Epilogue 99

unsigned* new_hist(unsigned nvals,

unsigned const vals[],

unsigned buckets);

that dynamically allocates a new histogram, fills in its values, and returns it; and
the second, a new version of:

void print_hist(unsigned buckets,

unsigned const hist[],

char marker);

that prints the histogram returned by new_hist.

Chapter 7

 Enumerations

As their simplest, enumerations are a small step up from either constants (§4.4) or
object-like macros (§8.3). Suppose you want to define constants for a set of colors.
Rather than doing something like:

constexpr unsigned COLOR_BLACK = 0;

constexpr unsigned COLOR_WHITE = 1;

constexpr unsigned COLOR_BLUE = 2;

constexpr unsigned COLOR_GREEN = 3;

constexpr unsigned COLOR_RED = 4;

you can instead do:

enum color {

COLOR_BLACK,

COLOR_WHITE,

COLOR_BLUE,

COLOR_GREEN,

COLOR_RED, // extra ’,’ here is OK

};

As a nicety, the compiler allows you to include a comma after the last value thus
making it a tiny bit easier to add more values at the end. Once declared, you can
then use color as a type and the enumerated constants as values:

enum color c = COLOR_BLACK;

The basic idea of enumerations is that you use them to express a set of related values.

101© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_7

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_7&domain=pdf

7 Enumerations102

7.1 Declarations

Formally, an enumeration declaration is of the form:

enum tagopt {

enum-constantsopt
} declarationsopt;

that is the keyword enum optionally followed by a tag name followed by a set of one
or more enumeration constants between {} optionally followed by declarations of
the enumeration. An enumeration constant is at minimum simply an identifier.

In C, the names of enumerations, structures (§10), and unions (§11) are collec-
tively put into a tags namespace (§2.3). To refer to an enumeration name, it must be
preceded by enum:

enum color c;

If you forget to include it, you’ll get an error:

color c; // error: must use ”enum” tag

Alternatively, you can use typedef (§2.6) to “inject” a tag name into the surrounding
scope so you no longer need to use enum:

typedef enum color color; // inject into surrounding scope

color c; // no ”enum” needed now

As a second alternative, you can typedef an enumeration declaration directly:

// or: typedef enum color {typedef enum {

COLOR_BLACK,

COLOR_WHITE,

COLOR_BLUE,

COLOR_GREEN,

COLOR_RED,

} color;

7.2 Name Collisions

For the color enumeration, you might be wondering why verbose constant names
were used. Why not more simply:

enum color { BLACK, WHITE, BLUE, GREEN, RED };

Unfortunately, despite appearances, enumeration constants aren’t scoped, which
means they’re all “injected” into the surrounding scope.

1037.4 Implicit Conversion

If there were another enumeration like:

enum rb_color {

BLACK,

RED,

};

// Red-Black tree node color

// error: redefinition of ”BLACK”

// error: redefinition of ”RED”

you’d get redefinition errors. Hence, it’s a good practice to name all constants of
the same enumeration with a common prefix and hope they don’t collide with other
names elsewhere.

■ This problem was fixed in C++with the addition of scoped enumerations,
but that has yet to be adopted into C, if ever. □

7.3 Underlying Type

Every enumeration has an underlying type, that is the type that’s actually used at
the machine level to represent it. It’s typically int, but can be any integer type big
enough to hold the largest value of the enumeration. If you don’t specify a type,
the one used is implementation defined. In many cases, you don’t care; but if you
do, you can specify a fixed underlying type explicitly by following the name of the
enumeration by a : and the underlying type such as:

enum color : unsigned char {

// ...

This is useful if you want to guarantee a size smaller or larger than int and control its
sign in expressions. An underlying type can be any integer or character type (signed
or unsigned) or a typedef (§2.6) thereof.

7.4 Implicit Conversion

Enumeration constants and variables implicitly convert to values of their underlying
type in expressions. Additionally, values of the underlying type also implicitly con-
vert to enumerations. While these conversions can sometimes be convenient, they
allow nonsensical code to be written with neither errors nor warnings:

enum color c = COLOR_BLACK + COLOR_WHITE * 2; // ?

Fortunately, there are better uses for implicit conversion (§7.5.7).

104 7 Enumerations

7.5 Enumeration Constant Values

The values enumeration constants have are assigned by the compiler (by default)
starting at zero and increasing by one for each constant. Often, you don’t particularly
care about what those values actually are. However, you can explicitly specify any
values you want to all or only some constants. You can even specify negative values
(unless you specified an unsigned underlying type). If omitted, the value of a constant
is assigned by the compiler as the previous value plus one as shown in listing 7.1.

enum color {

COLOR_NONE = -1,

COLOR_BLACK = 0,

COLOR_WHITE = 1,

COLOR_BLUE, // value is 2 ...

COLOR_GREEN, // ... 3

COLOR_RED, // ... 4

};

Listing 7.1: Enumeration with explicit values

That said, you should not explicitly specify values unless:
• The values are “externally imposed” (§7.5.1) or otherwise have meaning; or:
• You need to “serialize” the values (§7.5.2) either to disk or over a socket; or:
• You are representing bit flags (§7.5.7).

7.5.1 Externally Imposed Values

Sometimes, enumeration values are externally imposed from the real world. For ex-
ample, if you were writing software for a graphics terminal where the hardware uses
specific values† for specific colors as shown in listing 7.2.

enum ansi_color {

ANSI_FG_BLACK = 30, ANSI_FG_RED = 31,

ANSI_FG_GREEN = 32, ANSI_FG_YELLOW = 33,

ANSI_FG_BLUE = 34, ANSI_FG_MAGENTA = 35,

ANSI_FG_CYAN = 36, ANSI_FG_WHITE = 37,

};

Listing 7.2: Enumeration with externally imposed values

Thanks to implicit conversion to integer, you can use the values directly:

printf(”\33[%dm”, ANSI_FG_RED); // will print in red

†Select Graphic Rendition, Ecma International, Control Functions For Coded Character Sets,
ECMA-48, 5th ed., June 1991.

1057.5 Enumeration Constant Values

7.5.2 Serializing Values

If you write values to disk (presumably to read them back at some later time), you
want to ensure that, say, 3 will always correspond to COLOR_GREEN even if you add
more colors. If the values weren’t explicitly specified and you added a new color
anywhere but at the end, the subsequent values would silently shift by 1 as shown in
listing 7.3.

enum color {

COLOR_BLACK,

COLOR_WHITE,

COLOR_YELLOW, // New color is now 2.

COLOR_BLUE, // This used to be 2, but is now 3 ...

COLOR_GREEN, // ... and so on.

COLOR_RED

};

Listing 7.3: Enumeration with new constant inserted

Of course you could have the policy always to add new values at the end, but
that relies on programmers following the policy. If you specify values explicitly, the
compiler can help you enforce unique values, but not in the way you might assume
(§7.5.3).

Alternatively, you can serialize values as strings as shown in listing 7.4.

void print_color(color c) {

switch (c) {

case COLOR_BLACK: fputs(”black”, stdout); return;

case COLOR_WHITE: fputs(”white”, stdout); return;

case COLOR_BLUE : fputs(”blue” , stdout); return;

case COLOR_GREEN: fputs(”green”, stdout); return;

case COLOR_RED : fputs(”red” , stdout); return;

}

}

Listing 7.4: Serializing an enumeration value as a string

While serializing to text is more expensive, if you’re serializing the rest of your data
to a text format like JSON anyway, then it doesn’t matter. The other advantage is that
changes to the underlying values don’t matter. (For another way to serialize values,
see §8.9.)

7.5.3 Duplicate Values

It’s perfectly legal to have two constants of the same enumeration with the same
underlying value:

7 Enumerations106

enum color {

// ...

COLOR_GREEN,

COLOR_CHARTREUSE = COLOR_GREEN,

// ...

};

They’re synonyms. In this case, it’s clearly intentional. However, it’s possible to
introduce synonyms by accident, especially in an enumeration with lots of explicitly
supplied values. Since synonyms are legal, the compiler often can’t help you detect
accidental synonyms — until you switch on them since it’s illegal to have more
than one case with the same value as shown in listing 7.5.

switch (c) {

// ...

case COLOR_GREEN:

// ...

break;

case COLOR_CHARTREUSE: // error: duplicate case value

// ...

Listing 7.5: switch on enumeration with duplicate value

7.5.4 “None” Values

If an enumeration can have a “default,” “OK,” “none,” “not set,” “‘unspecified,” or
similar value, it should be declared first so:

1. It will get assigned the value of 0 by default by the compiler which is easily
recognizable in a debugger.

2. File-scope (§2.4) enumeration variables will be initialized to it (0) automatically.

For example:

enum eol { EOL_UNSPECIFIED, EOL_UNIX, EOL_WINDOWS };

7.5.5 Checking Values

If you need to check an enumeration variable for one value, using an if is fine:

if (file_eol == EOL_UNSPECIFIED)

return;

But if you need to check for more than one value, you should always use a switch
as shown in listing 7.6.

1077.5 Enumeration Constant Values

switch (file_eol) {

case EOL_WINDOWS:

putchar(’\r’);

[[fallthrough]];

case EOL_UNIX:

case EOL_UNSPECIFIED: // default to Unix-style

putchar(’\n’);

break;

}

Listing 7.6: Using switch for enumeration variable

Why? Because if you omit a case for a value, the compiler will warn you. This is
extremely helpful if you add a new enumeration value: the compiler can tell you
where you forgot to add a case to your switch statements.

You should avoid using default when switching on enumerations because it
prevents the compiler from being able to warn you when you omit a case for a
value. It’s better to include a case for every value even if those cases do nothing.

7.5.6 “Count” Values

You may encounter code that adds a “count” value at the end as shown in listing 7.7.

enum color {

COLOR_BLACK,

COLOR_WHITE,

COLOR_BLUE,

COLOR_GREEN,

COLOR_RED,

NUM_COLOR // = number of colors (here, 5)

};

Listing 7.7: Enumeration with “count” value at end

The intent is that the underlying integer value of NUM_COLOR will be the number of
colors since the compiler will automatically assign 5 to it in this case which is the
number of actual colors. This is then used to marginally simplify serialization to text
by using the underlying value as an index into an array assuming the value of the
first constant is 0) as shown in listing 7.8.

The caveat is that it adds a “pseudo color” value that you’d need to include as a
case in every switch on color to prevent the compiler warning about the unhandled
case even though the value will never match. (For a better way to count values, see
§8.9.2.)

7 Enumerations108

static char const *const COLORS[] = {

”black”, ”white” ”blue”, ”green”, ”red”

};

void print_color(color c) {

if (c < NUM_COLOR) // defensive check

fputs(COLORS[c], stdout);

}

Listing 7.8: Serializing an enumeration with a “count”

7.5.7 Bit Flag Values

Another way to use enumerations is to declare a set of bit flags where each value is
a unique power of 2 as shown in listing 7.9.

enum c_int_fmt {

CIF_NONE = 0,

CIF_SHORT = 1 << 0,

CIF_INT = 1 << 1,

CIF_LONG = 1 << 2,

CIF_UNSIGNED = 1 << 3,

CIF_CONST = 1 << 4,

CIF_STATIC = 1 << 5,

};

Listing 7.9: Enumeration with bit-flag values

■ Rather than specify power-of-2 values explicitly, e.g., 0, 1, 2, 4, 8, etc.,
a common trick is to use 1 << n where n is the nth bit from 0 to however
many bits are needed and let the compiler do the calculation for you. □

You can then bitwise-or (§3.8) various flags together:

enum c_int_fmt fmt = CIF_CONST | CIF_UNSIGNED | CIF_INT;

This results in a value (0b011010) that isn’t among the declared values — but that’s
perfectly legal. Debuggers are smart enough to notice this and print accordingly:

(gdb) p fmt

$1 = CIF_INT | CIF_UNSIGNED | CIF_CONST

You can also test for inclusion of particular bits as shown in listing 7.10.

if ((fmt & CIF_STATIC) != CIF_NONE)

puts(”static ”);

if ((fmt & CIF_CONST) != CIF_NONE)

puts(”const ”);

// ...

Listing 7.10: Testing for inclusion of bits in enumeration

default switch

1097.6 Epilogue

Or test for sets of bits, for example, does fmt have two specific bits set:

if ((fmt & (CIF_SHORT | CIF_LONG)) ==

CIF_SHORT | CIF_LONG) {

goto illegal_format;

}

The caveat, of course, is that a switch on such an enumeration may not match any
case. Despite that, enumerations are often used for bitwise flags. This is a case where
implicit conversion to int is convenient because the bitwise operators “just work.”

7.6 Epilogue

Here are some key points about and some advice for enumerations:

• Use enumerations only to specify a set of related values.
• Enumeration constant names are injected into the surrounding scope, so name
them so they are unlikely to collide with others (typically with a common prefix).

• Use “none” constants when appropriate.
• Don’t explicitly specify values unless necessary.
• Don’t specify “count” values.
• Enumerations have an implementation defined underlying integer type. You can
specify one explicitly, but do so only if necessary.

• Enumeration values implicitly convert to their underlying type.
• Use a switch statement when comparing an enumeration value against more
than one constant.

• Avoid using in statements on enumerations.
• Enumerations can be used for a set of related bit flag values.

Exercises

1. Write a function:

enum color parse_color(char const *s);

that does the inverse of print_color in listing 7.4 (p.105), that is parses a color
name from the null-terminated string s and returns its corresponding enumera-
tion value, e.g., parsing ”red” would return COLOR_RED. If the value of s is not
a known color name, return (enum color)-1 instead.

110 7 Enumerations

2. Write a function:

void print_int_fmt(enum c_int_fmt fmt);

that prints the value of fmt as gdb does, this is, for all bits that are 1, print their
corresponding names separated by ” | ”.

i

\n becomes a newline.

Chapter 8

 Preprocessor

One of C’s quirks is that it has a separate preprocessor that’s called by the C compiler
to “preprocess” source files before compiling them — hence the name.

■ The reason C has a preprocessor unlike most other languages is that it
seemed like a good idea at the time at Bell Labs due to the use of prepro-
cessors in general such as m4 and the Troff suite of preprocessors. □

Modern C compilers have the preprocessor integrated, though there are often options
to control it specifically as if it were still a separate program. For clang and gcc at
least, the -E option causes a file only to be preprocessed that can often be illuminating
as to what the preprocessor is doing. For Microsoft C, the option is /E.

8.1 Compilation Phases

Compilation happens in a number of phases, the first few of which are relevant to
preprocessing:

1. Every escaped newline (a \ immediately followed by a newline) is deleted
thereby splicing the lines together.

2. The sequence of individual characters comprising the text of a source file are
coalesced into a sequence of tokens. For example, the sequence of characters ++i
(two adjacent pluses followed by the letter i) are coalesced into the sequence of
tokens plus-plus followed by the identifier .

3. Preprocessing directives (§8.2) are performed and macros (§8.3, §8.7) are ex-
panded. All preprocessing directives are then deleted.

4. Escaped character sequences are converted to the characters they represent, e.g.,

5. Adjacent string literals are concatenated, e.g., ”A” ”B” becomes ”AB”.

111© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_8

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_8&domain=pdf

112 8 Preprocessor

8.2 Language

The preprocessor has its own mini-language that is very different from C:

• A directive in the preprocessor corresponds to a statement in C. Directives are
line-based and begin with # (that must be the first token on a line) and end with
an end-of-line (on Unix systems, the newline character) — unless escaped via \
in which case a directive ends with the first unescaped newline.

• Following the # may be zero or more whitespace characters followed by a di-
rective name, hence all the following are equivalent:

#ifndef NDEBUG

ifndef NDEBUG

#ifndef NDEBUG

■ Some people, myself included, prefer the style where the # is always
in the first column to make preprocessor lines stand out. □

• Other than the set of tokens that comprise C (identifiers, operators, punctuation,
literals, comments), the preprocessor knows very little about C. In particular, it
knows nothing about scope (§2.4).

8.3 Object-Like Macros

Object-like macros are the simplest: they replace a macro name with zero or more to-
kens comprising its replacement list wherever the name occurs (except within string
literals).

To define an object-like macro, use the #define directive followed by the name
of the macro followed by the set of tokens it should be replaced by. For example:

#define WS ” \n\t\r\f\v”

defines a WS macro that will be replaced by the given string literal wherever WS sub-
sequently occurs in the source file.

Most compilers also allow you to define a macro via an option. For clang and
gcc, the -D command-line option can be used to define a macro having an optional
value via an argument of the form name[=value]. For Microsoft C, the option is /D.
If value is omitted, it defaults to 1. For example:

$ cc -DDEBUG hello.c # as if: -DDEBUG=1

$ cc -DMSG=’”hello, world”’ hello.c # shell needs ’...’

■ Originally, C didn’t have either enumerations (§7) or constexpr (§4.4),
so object-like macros were the only way to give constants names. □

Table 8.1: Predefined macros

1138.5 Conditional Compilation

8.4 Predefined Macros

The preprocessor pre-defines several object-like macros shown in table 8.1. For
clang and gcc, the -std=version command-line option sets what the current C (or
C++) version is, e.g., -std=c23. For Microsoft C, the option is /std:version.

__cplusplus The current C++ version expressed as an integer
of the year of standardization plus a revision, e.g.,
202302L— defined only when compiling with a
C++ compiler.

__DATE__ The local date in the form ”Mmm dd yyyy”.
__FILE__ The current filename. (See also §8.10.)
__LINE__ The current line number. (See also §8.10.)
__STDC__ If 1, compiling with a C compiler.
__STDC_ENDIAN_BIG__ Implementation defined value for big-endian.
__STDC_ENDIAN_LITTLE__ Implementation defined value for little-endian.
__STDC_ENDIAN_NATIVE__ Either of the above two values or some other

value if the CPU’s endianness is mixed.
__STDC_IEC_60559_DFP__ If not defined, the decimal floating-point types

(§2.5.7) are not supported.
__STDC_NO_ATOMICS__ If 1, the _Atomic keyword (§17) is not supported.
__STDC_NO_COMPLEX__ If 1, complex types (§2.5.8) and the complex.h

standard header are not supported.
__STDC_NO_THREADS__ If 1, standard threads (§14) are not supported.
__STDC_NO_VLA__ If 1, VLAs (§6.14) are not supported.
__STDC_VERSION__ The current C version expressed as an integer of

the year of standardization plus a revision, e.g.,
202311L for C23 — defined only when compil-
ing with a C compiler.

__TIME__ The local time in the form ”hh:mm:ss”.

8.5 Conditional Compilation

Conditional compilation allows lines of code either to be passed through from the
preprocessor to the compiler or filtered out depending on conditions.

The #if directive is of the form:

#if const-expr
// ...

#else

// ...

#endif

// optional

Table 8.2: Preprocessor #if and #else directive variants

114 8 Preprocessor

Only if const-expr is true, then the lines between #if and #endif (or #else, if
present) are passed through to the compiler. Otherwise, if the optional #else is
present, then the lines between it and #endif are passed through instead.

The const-expr can be any integer constant expression, may reference only names
known to the preprocessor via either #define or either the -D (Unix) or /D (Mi-
crosoft) options, and may use any of C’s operators (§3) except cast (§3.14). It can’t
reference C types, constants, variables, or functions. If const-expr references an
object-like macro name that hasn’t been defined, it’s as if it were defined to 0.

In addition to #if and #else, there are few variants as shown in table 8.2.

This . . . Is as if . . .
#ifdef name #if defined name
#ifndef name #if !defined name
#elif #else #if

#elifdef #else #ifdef

#elifndef #else #ifndef

The reason the variants exist is because you can’t actually put multiple directives on
the same line (but you could easily put them on the next line). The #elif variants
don’t offer any additional functionality; they only make their use a bit more concise.

Conditional compilation has a number of uses:
1. To write semi-portable code for various platforms. C compilers define many

object-like macros so code can discriminate based on compiler (e.g., __GNUC__,
__clang__, _MSC_VER), operating system vendor (e.g., __APPLE__, __linux__,
_WIN32), CPU architecture (e.g., __aarch64__, __x86_64__), and many other
things. For example, the following shows how to write code specific to various
operating systems:

#if __APPLE__

// macOS-specific

#elif __linux__

// Linux-specific

#elif _WIN32

// Windows-specific

#else

// generic

#endif

2. To enable or disable features based on a program’s configuration options:

#if ENABLE_TERM_SIZE

// ...

#endif /* ENABLE_TERM_SIZE */

3. To test for the availability of non-standard functions and falling back to doing
something else if not available:

8.5 Conditional Compilation 115

#if HAVE_GETLINE

static size_t cap;

ssize_t const len = getline(&line, &cap, fin)

if (len == -1)

// ...

#else // fall back to using fgets

char line[LINE_CAP];

if (fgets(line, sizeof line, fin) == nullptr)

// ...

#endif /* HAVE_GETLINE */

(The definition of amacro like HAVE_GETLINE requires using a build tool (§13.9)
that can test the platform for the availability of functions.)

4. To try out new code to see if it works better without deleting the original code:

#if USE_NEW_CODE

// ... new code ...

#else

// ... original ...

#endif

Then either #define USE_NEW_CODE (or don’t), or, on Unix systems, compile
with a -DUSE_NEW_CODE command-line option (or don’t).

5. Since /* . . . */ comments (§2.1) don’t nest, conditional compilation can “com-
ment out” code regardless of comments it may contain by using #if 0:

#if 0

// ... code not compiled ...

#endif

6. For include guards (§13.1).

8.5.1 defined

The preprocessor has a defined built-in function that returns true only if the given
macro name is defined. The only use for defined is if you want to distinguish be-
tween a macro not being defined from being defined to false:

#define N false

#if N // false

// ...

#endif

#if defined N // true

// ...

#endif

116 8 Preprocessor

8.5.2 __has_c_attribute

The preprocessor has a __has_c_attribute built-in function that returns true only
if the given attribute (§4.9) is supported by the compiler. For example:

#if __has_c_attribute(gnu::hot)

define ATTRIBUTE_HOT [[gnu::hot]]

#else

define ATTRIBUTE_HOT /* nothing */

#endif

8.5.3 __has_include

The preprocessor has a __has_include built-in function that returns true only if the
given header exists. For example:

#if __has_include(<readline/readline.h>)

define WITH_READLINE true

#endif

8.6 File Inclusion

The preprocessor has the #include directive in two forms:

#include <path> Includes path from a set of pre-defined system paths.
#include ”path” Includes path relative to the current directory.

Both include the text from path verbatim into the current file then preprocessed re-
cursively. Invariably, files included have a .h extension and are known as header
files or simply headers. They containmacro, type, variable, and function declarations
comprising an API.

• The <> form looks for the requested file from one of a set of pre-defined paths
(the include path) and is largely used to include files from the C standard library
or third-party libraries.

• The ”” form looks for the requested file starting relative to the current directory
first, then the include path, and is used to include files from your program.

There are compiler-specific ways to augment the include path. On Unix systems, this
is done via the -Ipath command-line option of the compiler. For Microsoft C, the
option is /I.

1178.7 Function-Like Macros

8.7 Function-Like Macros

Function-like macros can have zero or more parameters. For example, a common
macro to get the number of elements of a statically allocated array is:

#define ARRAY_SIZE(ARRAY) \

(sizeof(ARRAY) / sizeof(ARRAY[0]))

Unlike a C function, when defining a function-like macro, the (that follows the
macro’s namemust be adjacent, i.e., not have any whitespace between them. (If there
is whitespace between them, then it’s an object-like macro where the first character
of the replacement list is (.)

8.7.1 Parameters

Macro parameters, when used within the replacement list, invariably should be en-
closed within parentheses. Additionally, if the replacement list is an expression, all
of it should be enclosed within parentheses as well. For example:

#define MAX(X,Y) ((X) > (Y) ? (X) : (Y))

Why? Because substitution can result in undesired operator precedence (§3). Sup-
pose MAX were instead defined like:

#define BAD_MAX(X,Y) X > Y ? X : Y

then called like:

int max = BAD_MAX(n & 0xFF, 8);

The problem is the precedence of the operators is >, &, ?:, so it would be as if:

int max = n & ((0xFF > 8) ? n & 0xFF : 8);

that very likely isn’t what you want.

8.7.2 Arguments

A macro argument can be any sequence of tokens, not only identifiers (like n) or
valid expressions (like ++i), for example:

118 8 Preprocessor

#define A_OR_B(A,OP,B) ((A) OP (B) ? (A) : (B))

#define MAX(X,Y) A_OR_B((X), >, (Y))

The > token is a perfectly valid preprocessor argument even though it would be a
syntax error as an ordinary C function argument. Remember: the normal C rules do
not apply to the preprocessor. Macros employing such “anything goes” arguments
should generally be avoided.

Arguments that have side-effects (like ++i) should also be avoided since, de-
pending on a macro’s implementation, they may be evaluated more than once. For
example, if ++i is passed to MAX, i may be incremented twice.

8.7.3 Variable Numbers of Arguments

Function-likemacros can take a variable number of arguments (including zero). Such
a macro is known as variadic. To declare such a macro, the last (or only) parameter
is ... (an ellipsis). For example, given a fatal_error variadic function (§9.11)
that prints an error message formatted in a printf-like way and exits with a status
code, you might want to wrap that with an INTERNAL_ERROR() macro that includes
the file and line whence the error came as shown in listing 8.1.

#define INTERNAL_ERROR(FORMAT, ...) \

fatal_error(EXIT_INTERNAL, \

”%s:%d: internal error: ” FORMAT, \

__FILE__, __LINE__, __VA_ARGS__)

Listing 8.1: Variadic INTERNAL_ERROR macro, version 1

The __VA_ARGS__ token expands into everything that was passed for the second (in
this case) and subsequent arguments (if any) and the commas that separate them.

You may have noticed a possible problem with INTERNAL_ERROR, specifically
this line:

__FILE__, __LINE__, __VA_ARGS__)

What if the macro were called like:

INTERNAL_ERROR(”oops”);

passing zero additional arguments? Then __VA_ARGS__ would expand into nothing
and the , after __LINE__ would cause a syntax error since C functions don’t accept
blank arguments. What’s needed is a way to include the , in the expansion only if
__VA_ARGS__ is not empty. That’s precisely what __VA_OPT__ does. You can rewrite
the macro using it as shown in listing 8.2. Tokens to include in the expansion are
enclosed with () immediately following __VA_OPT__.

1198.7 Function-Like Macros

#define INTERNAL_ERROR(FORMAT, ...) \

fatal_error(EXIT_INTERNAL, \

”%s:%d: internal error: ” FORMAT, \

__FILE__, __LINE__ \

__VA_OPT__(,) __VA_ARGS__)

Listing 8.2: Variadic INTERNAL_ERROR macro, version 2, with __VA_OPT__

8.7.4 Stringification

The preprocessor actually has two of its own operators. The first is (confusingly) #
that “stringifies” its single argument:

#define STRINGIFY(X) #X

STRINGIFY(a) // results in: ”a”

Specifically, # followed by a parameter name stringifies the set of tokens comprising
the corresponding argument for that parameter. Note that:

• More than one token can comprise an argument.
• An argument’s leading and trailing whitespace is eliminated.
• Intervening whitespace between an argument’s tokens (if it has more than one)
is collapsed to a single space.

For example:

STRINGIFY(a b) // ”a b”

STRINGIFY(a b) // ”a b”

STRINGIFY(a b) // ”a b”

One place where stringification is typically used is with error-reporting macros
to include the textual representation of a condition that was violated. For example,
the assert macro (§16) is implemented something like:

#define assert(EXPR) ((EXPR) ? (void)0 : \

__assert(__func__, __FILE__, __LINE__, #EXPR))

For a use like:

assert(p != nullptr);

the literal text of ”p != nullptr” is included in the error message as a string.

120 8 Preprocessor

8.7.5 Concatenation

The second preprocessor operator is (confusingly, again) ## that concatenates (or
pastes) its two arguments together:

#define PASTE(A,B) A ## B

PASTE(x, y) // results in: xy

Specifically, ## between two parameter names concatenates the set of tokens com-
prising the corresponding arguments for those parameters. Additionally, there can
be multiple ## in a row:

#define PASTE3(A,B,C) A ## B ## C

Arguments can be omitted resulting in empty arguments. For example:

PASTE(,) // (nothing)

PASTE(x,) // x

PASTE(,y) // y

This is even true for one argument:

STRINGIFY() // ””

8.7.6 # and ## Pitfalls

One curious (and often annoying) thing about arguments for either # or ## is that
neither expands its arguments even when they’re themselves macros. For example,
the previous definition of PASTE can be insufficient:

PASTE(var_, __LINE__) // results in: var___LINE__

What you want is a result like var_1941, that is the prefix var_ followed by the cur-
rent line number. (Such names are typically used to help ensure unique names.) The
problem is that, while PASTE expands its parameter B into the argument __LINE__,
if the argument is itself a macro that ordinarily would expand (in this case, to the
current line number), it won’t be expanded.

To fix it (as with many other problems in software) requires an extra level of
indirection:

8.7 Function-Like Macros 121

#define PASTE_HELPER(A,B) A ## B

#define PASTE(A,B) PASTE_HELPER(A,B)

PASTE(var_, __LINE__) // var_1941

This fixes the problem because __LINE__ will be expanded by PASTE (because it’s
not an argument of ##) and then the result of that expansion (the current line number,
here, 1941) will be passed to PASTE_HELPER that will simply concatenate it as-is. The
same indirection fix should also be used with STRINGIFY:

#define STRINGIFY_HELPER(X) #X

#define STRINGIFY(X) STRINGIFY_HELPER(X)

■ Why does the preprocessor work this way, i.e., why do # and ## not
expand arguments that are macros? Because if it did expand them, then it
would be impossible either to quote or paste arguments as-is.

For example, consider a macro that defines the C language version
where __LINE__ starts being supported:

#define LANG___LINE__ 199409L

and a function lang_is that checks whether the current language is equal
to or later than its argument:

if (lang_is(LANG___LINE__))

// ...

Rather than having to type both lang and LANG which is redundant, you
define a convenience macro like:

#define LANG_IS(X) lang_is(LANG_ ## X)

and can now instead write:

if (LANG_IS(__LINE__))

// ...

In this case, you want LANG_IS to paste LANG_ and __LINE__ together to
get LANG___LINE__ which is exactly what happens. If ## expanded its ar-
guments, you’d instead get something like LANG_1941 which is not what
you want in this case. □

122 8 Preprocessor

8.8 Multiple Statements

When multiple statements comprise a macro, it’s best to enclose them within a do-
while loop (§5.5) as shown in listing 8.3.

#define INTERNAL_ERROR(FORMAT, ...) \

do { \

fprintf(stderr, \

”%s:%d: internal error: ” FORMAT, \

__FILE__, __LINE__ __VA_OPT__(,) __VA_ARGS__ \

); \

exit(EXIT_INTERNAL); \

} while (0)

Listing 8.3:Macro using do-while to enclose multiple statements

Note that there is no ; after the while — that’s supplied by the caller. Why use a
do-while? If it were not part of the macro and it was used like:

if (n < 0)

INTERNAL_ERROR(”n = %d”, n);

then, when expanded, it would be as shown in listing 8.4.
if (n < 0)

fprintf(stderr,

”%s:%d: internal error: ” ”n = %d”,

”bad.c”, 1941 , n

);

exit(EXIT_INTERNAL);

Listing 8.4:Macro expansion without do-while

Since no {} were used, only the fprintf is executed conditionally and the exit
is always executed because it’s a separate statement. Using a do-while will keep
multiple statements grouped together as a compound statement and execute exactly
once. (The compiler will optimize away the check for 0.)

8.9 X Macros

Xmacros aren’t part of C, but they’re a powerful technique to helpwritemaintainable
code. For example, when serializing enumerations (§7.5.2), having to remember to
add a case to a switch whenever you add a new enumeration value is error-prone.
Instead, you can use an X macro by first declaring a macro containing all of an
enumeration’s values as shown in listing 8.5.

Each value is given as an argument to X that itself will be a macro. (It’s for this
reason that X macros are also known as higher-order macros.) Next, declare a macro
that, given a value, appends a comma:

8.9 X Macros 123

#define FOR_ALL_COLORS(X) \

X(COLOR_BLACK) \

X(COLOR_WHITE) \

X(COLOR_BLUE) \

X(COLOR_GREEN) \

X(COLOR_RED)

Listing 8.5: Defining an X macro

#define VALUE_COMMA(V) V,

(The comma will separate values.) Finally, to declare the enumeration itself:

enum color {

FOR_ALL_COLORS(VALUE_COMMA)

};

The trick is that you pass the name of some other macro for X that FOR_ALL_COLORS
will expand for each value. In this case, the end result of all the macro expansion is
a comma-separated list of values.

■ The X macros technique predates C by a few years and works in any
language with a decent macro facility. □

■Why are they called “X macros?” The reason is lost to time, but it’s likely
that they’re simply named for the use of X to mean “placeholder.” □

8.9.1 Serializing Enumeration Values

X macros can also be used to serialize enumeration values (§7.5.2). The trick is to
pass a different macro for X, one that will generate a case and string literal for each
value inside a switch as shown in listing 8.6.

#define CASE_VALUE_RETURN_STRING(V) case V: return #V;

char const* color_string(color c) {

switch (c) {

FOR_ALL_COLORS(CASE_VALUE_RETURN_STRING)

}

}

void fput_color(color c, FILE *f) {

fputs(color_string(c), f);

}

Listing 8.6: Serializing enumeration values with X macros

124 8 Preprocessor

For a given value V, #V will cause the preprocessor to stringify it, e.g., COLOR_RED
will become ”COLOR_RED”. If you can live with the serialized names exactly match-
ing the values (”COLOR_RED” vs. ”red”), X macros are a great technique.

8.9.2 Counting Enumeration Values

X macros can also be used to count the number of values of an enumeration rather
than using “count” values (§7.5.6). For example:

#define PLUS_ONE(...) +1

constexpr unsigned NUM_COLORS = FOR_ALL_COLORS(PLUS_ONE);

FOR_ALL_COLORS(PLUS_ONE) will expand to +1 for each value or +1 +1 +1 +1 +1

that the compiler will simply sum to get 5. As with all X macros, PLUS_ONE must
take an argument (here, the enumeration value), but doesn’t need it, hence the use
of ... to indicate “don’t care.”

8.10 Filename and Line Information

The preprocessor has the #line directive in two forms:

#line line Sets the current line number to line.
#line line ”filename” Same as above, but also sets the current filename

to filename.

that affect the value of the __FILE__ and __LINE__ predefined macros (§8.4). It’s
typically used by programs that generate C source code such as lex† and yacc.‡

8.11 Errors and Warnings

The preprocessor has the directives:

#error ”message” Prints message and terminates.
#warning ”message” Prints message and continues.

†Lex — A Lexical Analyzer Generator, Michael E. Lesk and Eric Schmidt, Computer Science
Technical Report, 39, Bell Laboratories, Murray Hill, New Jersey, July 21, 1975.

‡Yacc: Yet Another Compiler Compiler, Stephen C. Johnson, Computer Science Technical Report,
32, Bell Laboratories, Murray Hill, New Jersey, July 21, 1975.

8.13 Paste Avoidance 125

to print either an error or warning message, respectively. In the case of #error,
preprocessing (and thus compilation) is then terminated. For example:

#ifndef WITH_READLINE

#error ”Don’t include this unless WITH_READLINE defined.”

#endif /* WITH_READLINE */

8.12 Not Expanding a Macro

A macro will not expand if either:

• It references itself (either directly or indirectly); or:
• A function-like macro is not followed by (. (See §19.3 for an example.)

From §6.11, calling str_is_any with a compound literal array is both verbose and
error-prone (since you could forget to append nullptr). You can enlist the help of
the preprocessor to solve both problems via a function-like macro (§8.7):

#define str_is_any(NEEDLE, ...) \

str_is_any((NEEDLE), \

(char const*[]){ __VA_ARGS__, nullptr })

This defines a macro with the same name as the str_is_any function. When ex-
panded, the preprocessor will encounter str_is_any again, but since it references
itself, the str_is_any will not be expanded again avoiding infinite expansion.

The macro adds the boilerplate of both the array compound literal (§6.11) and the
nullptrwith the variadic arguments inserted for the array elements via __VA_ARGS__
(§8.7.3). Given that, the function can be called much more simply like:

if (str_is_any(answer, ”true”, ”yes”))

// ...

8.13 Paste Avoidance

As mentioned (§8.1), the preprocessor tokenizes the input. New (or different) tokens
can only ever be created via ## (§8.7.5). In all other cases where a new (or different)
token would be created, the preprocessor inserts a space to avoid it. For example:

#define EMPTY /* nothing */

#define AVOID1 -EMPTY-

AVOID1 // - -, not --

126 8 Preprocessor

Because EMPTY is defined to have zero tokens (comments don’t count), when it’s
expanded into AVOID1, you’d think that nothing should be there — except the left -
and right -would then come together and form -- (a different token of the decrement
operator, §3.4) so the preprocessor inserts a space between them to preserve the
original, separate - tokens.

The preprocessor largely doesn’t care whether it’s preprocessing C or C++ code
except when it comes to paste avoidance. For example:

#define AVOID2(X) X*

AVOID2(->) // in C : ->*

AVOID2(->) // in C++: -> *

The reason the results differ is because ->* isn’t an operator in C: it’s simply the ->
and * operators next to each other. However, ->* is a distinct operator in C++, so the
preprocessor avoids pasting -> and * together to form the different token of ->* by
inserting a space.

8.14 Undefining a Macro

The preprocessor has the #undef directive:

#undef name Undefines macro name.

It un-defines the previously definedmacro name. (If name isn’t defined, #undef does
nothing.) Why would you ever want to un-define a macro?

• If you defined macros only for temporary use like those used for X macros
(§8.9), it’s a good practice to undefine them when you no longer need them:

#undef CASE_VALUE_RETURN_STRING

• Some 3rd-party libraries define a macro having too-generic of a name that you
don’t use and that clashes with amacro youwant to define for your own program:

#undef VERSION

8.15 Embedding

The preprocessor has the #embed directive in two forms:

#embed <path> Embeds path from a set of pre-defined system paths.
#embed ”path” Embeds path relative to the current directory.

Table 8.3: #embed parameters

1278.16 Pragmas

that reads the raw bytes from path and converts them into a comma-separated list
of integer literals corresponding to the binary values. The use of <> and ”” matches
#include (§8.6). Its purpose is to embed binary data into programs such as text,
image, or sound files that programs will use in some way. For example:

constexpr unsigned char ALARM_SOUND[] = {

embed ”sounds/alarm.wav”

};

After preprocessing, it would be something like this:

constexpr unsigned char ALARM_SOUND[] = {

82, 73, 70, 70, ...

};

where the integer literals comprise the byte values of the file.
Additionally, #embed may have one or more trailing parameters from table 8.3.

if_empty(tokens) Embeds tokens only if contents of path is empty.
limit(n) Limits the number of objects to n, a constant expression.
prefix(tokens) Inserts tokens before contents of path only if not empty.
suffix(tokens) Appends tokens after contents of path only if not empty.

For example:

constexpr char ERROR_MSG[] = {

embed ”message.txt” if_empty(’N’, ’/’, ’A’, ’\n’)

, ’\0’

};

8.16 Pragmas

The preprocessor has the #pragma directive in two forms:

#pragma pragma-params Issues compiler-specific command.
_Pragma(”pragma-params”) Same, but from within macro.

Pragmas are away to issue compiler-specific commands. For example, using #pragma,
listing 8.7 tells gcc to disable a specific warning for a particular block of code.

_Pragma does the same, but from within a macro. For example, using _Pragma,
listing 8.8 tells gcc to disable a specific warning via a BEGIN / END pair of macros.
Note that, for _Pragma, quotes must be escaped since pragma-params are given as
a string literal.

A common non-standard pragma is #pragma once that’s an alternative to using
include guards (§13.1). It yielded faster compilation speeds because the preprocessor

8 Preprocessor128

#ifdef __GNUC__

pragma GCC diagnostic push

pragma GCC diagnostic ignored ”-Wformat-nonliteral”

#endif /* __GNUC__ */

// ...

#ifdef __GNUC__

pragma GCC diagnostic pop

#endif /* __GNUC__ */

Listing 8.7: #pragma example

#ifdef __GNUC__

#define NOWARN_UNINITIALIZED_BEGIN \

_Pragma(”GCC diagnostic push”) \

_Pragma(”GCC diagnostic ignored \”-Wuninitialized\””)

#define NOWARN_UNINITIALIZED_END \

_Pragma(”GCC diagnostic pop”) \

#else

#define NOWARN_UNINITIALIZED_BEGIN /* nothing */

#define NOWARN_UNINITIALIZED_END /* nothing */

#endif /* __GNUC__ */

Listing 8.8: _Pragma example

only checked filenames to determine whether a header was already included.Modern
preprocessors implicitly do what #pragma once does with ordinary include guards,
so #pragma once isn’t really needed any more.

8.17 Useful Macros

Here’s a collection of macros that are particularly useful in most any program. These
macros work in either C or C++.

ARRAY_SIZE

Gets the number of elements of a statically allocated array (repeated here from §8.7):

#define ARRAY_SIZE(A) (sizeof(A) / sizeof(A[0]))

See also IS_ARRAY_EXPR (p.290) for an improved ARRAY_SIZE.

8.17 Useful Macros 129

FLPRINTF

Calls either fprintf or printfwith the file and line number prepended to the format
string:

#define FLFPRINTF(FOUT, FORMAT, ...) \

fprintf((FOUT), ”%s:%d: ” FORMAT, __FILE__, __LINE__ \

__VA_OPT__(,) __VA_ARGS__)

#define FLPRINTF(FORMAT, ...) \

FLFPRINTF(stdout, FORMAT __VA_OPT__(,) __VA_ARGS__)

These are useful when debugging (§18.1) so you know exactly what file and line a
message was printed from.

BLOCK

Wraps multiple statements within a do-while loop:

#define BLOCK(...) do { __VA_ARGS__ } while (0)

Using BLOCK is a bit less verbose than using do-while (§8.8). For example, listing
8.3 (p.122) is rewritten using BLOCK and FLFPRINTF as shown in listing 8.9.

#define INTERNAL_ERROR(FORMAT, ...) \

BLOCK(\

FLFPRINTF(stderr, ”internal error: ” FORMAT \

__VA_OPT__(,) __VA_ARGS__); \

exit(EXIT_INTERNAL); \

)

Listing 8.9:Macro using BLOCK to enclose multiple statements

NAME2

Concatenates two tokens together:

#define NAME2(A,B) NAME2_HELPER(A,B)

#define NAME2_HELPER(A,B) A ## B

For example, NAME2(x,y) will expand into xy.

■ It actually will concatenate any two tokens together, but concatenation is
invariably used for identifiers. □

Why is this useful? See the next macro.

130 8 Preprocessor

UNIQUE_NAME

Constructs a “unique” name:

#define UNIQUE_NAME(PREFIX) \

NAME2(NAME2(PREFIX,_),__LINE__)

Well, unique enough for most cases. Specifically, it forms a unique name only for
the line it’s on. For example, UNIQUE_NAME(var)would expand into something like
var_42.

Why is this useful? Having a unique name allows you to use the same macro
multiple times in the same scope and not get “already declared” errors, or in nested
scopes and not get “shadows” warnings. For an example, see the next macro.

DECL_UNUSED

Declares an unused member as an array of N objects of type T for use within a struc-
ture (§10.1):

#define DECL_UNUSED(T,N) \

alignas(T) char UNIQUE_NAME(unused)[sizeof(T) * (N)]

The use of alignas (§4.8) ensures the char buffer is aligned to match a real object
of type T.

Occasionally when declaring structures, you either need to conform to a particu-
lar memory layout such that some members are at specific offsets or the size of the
structure includes reserved space for possible future additions. Typically, this is done
by simply declaring “reserved” members of the right sizes. For example, Microsoft
Windows’ API declares the following structure in wdm.hwhere the Reservedmem-
ber, according to the documentation, is “reserved for future use”:

typedef struct _SCATTER_GATHER_LIST {

ULONG NumberOfElements;

ULONG_PTR Reserved;

SCATTER_GATHER_ELEMENT Elements[];

} SCATTER_GATHER_LIST;

Some programmers sometimes “cheat” and use such members for their own pur-
poses such as storing their additional data there. This hinders future considerations.
If DECL_UNUSED were used instead, it would give the member an effectively “ran-
dom” hidden name intentionally making it harder to use. For example:

DECL_UNUSED(ULONG_PTR,1); // better than Reserved

For a more complete example, see listing 11.7 (p.174).

8.17 Useful Macros 131

OK_DISCARD

Explicitly marks a function such that it’s OK to discard its return value:

#define OK_DISCARD /* nothing */

For example, the putubin function from listing 1.5 (p.12) could be declared as:

OK_DISCARD unsigned putubin(unsigned n);

For functions not marked [[nodiscard]] (§4.9.4), discarding a function’s return
value is OK (at least as far as the compiler is concerned). If you’re fastidious
about declaring functions [[nodiscard]] (as you should be), marking a function
where it’s actually OK to discard its return value as OK_DISCARD both documents
to programmers that this is so and reminds you that you didn’t forget to mark it
[[nodiscard]]. Since there is actually no attribute for this, a macro defined to
nothing serving only as a visual cue is better than nothing.

STRLITLEN

Gets the length of a string literal:

#define STRLITLEN(S) (ARRAY_SIZE(S) - 1)

Since string literals are only arrays of char, ARRAY_SIZE gets the size of the array
then 1 is subtracted for the terminating null character. This macro is better than call-
ing strlen on a string literal since this can be used in constant expressions whereas
strlen can not. (See also IS_C_STR_EXPR, p.292, for an improved STRLITLEN.)

VA_ARGS_COUNT

Counts the number of variadic arguments (up to at most 10):

#define VA_ARGS_COUNT(...) \

ARG_11(__VA_ARGS__ __VA_OPT__(,) \

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

#define ARG_11(_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,_11,...) _11

• The ARG_11 macro always returns its 11th argument of at least 11 arguments.
The _1, _2, . . . , _10 are used only to discard the first 10 arguments. Remember
that identifiers may start with _ (§2.2).

1

\

#define

#include

• The VA_ARGS_COUNT macro calls ARGS_11 passing __VA_ARGS__ followed by
the numbers 10 . . . 0. If the number of arguments comprising __VA_ARGS__ is:

0. Then __VA_ARGS__ and __VA_OPT__(,) both expand into nothing and the
11 arguments of 10 . . . 0 are passed to ARG_11 that returns its 11th argument
of 0.

1. Then __VA_ARGS__ expands into that argument, say ”A”, followed by , (ex-
panded from __VA_OPT__(,) since __VA_ARGS__ is not empty) followed
by 10 . . . 0 comprising 12 arguments that are passed to ARG_11 that returns
its 11th argument of 1 because the 10 . . . 0 was “shifted” right by ”A”, so
the is now the 11th argument.

2. And so on.

132 8 Preprocessor

Note that these macros can be extended to support any maximum number of argu-
ments. (See §9.11, p.150, for an example use.)

8.18 Epilogue

Here are some key points about and some advice for the preprocessor:

• The preprocessor “preprocesses” source files before they’re compiled.
• A directive is to the preprocessor what a statement is to C.
• Directives are line-based and begin with # and end with an end-of-line unless
escaped by a .

• The directive is used to define either object-like or function-likemacros.
• The preprocessor pre-defines several object-like macros that reflect the current
compilation environment including macros for the current file, line, whether the
compiler is C or C++, and whether certain language features are supported.

• The #if and related directives can be used to compile conditionally based on
the compiler, operating system, CPU architecture, whether certain features are
enabled or functions are available, and many other things.

• The directive is used for file inclusion.
• Function-like macros can have parameters, are similar to C functions, and are of-
ten useful to do things like reduce boilerplate code or hide ugly implementation
details.

• Function-like macros can also take a variable number of arguments.
• The preprocessor has the operators of # (stringification) and ## (concatenation).

8.18 Epilogue 133

Exercises

1. Modify your solution of string_paths for exercise 1.6 (p.26) to use conditional
compilation (§8.5) such that if it were compiled onMicrosoftWindows, it would
use Windows’ directory separators of \ instead of Unix directory separators of
/, e.g., for a Windows path ”C:\a” or ”C:\a\” and component ”b” or ”\b”,
the result would be ”C:\a\b”.

2. Write a function-like macro:

#define ARRAY_END(ARRAY) /* ... */

that returns a pointer to the “end” of an array ARRAY, i.e., one past the last element
as shown in figure 6.2 (p.89). Given that macro, you could write code as shown
below that would print 1 2 3.

int const a[] = { 1, 2, 3 };

for (auto p = a; p < ARRAY_END(a); ++p)

printf(”%d ”, *p);

puts(””);

3. Using your solution to the previous exercise, write a function-like macro:

#define FOREACH_ARRAY_ELEMENT(VAR,ARRAY) /* ... */

that could be used as a short-hand for iterating through an array like:

FOREACH_ARRAY_ELEMENT(p, a)

printf(”%d ”, *p);

■ In addition to helping decipher complicated declarations, you can use
cdecl (§6.10) to help develop and debug function-like macros since cdecl
understands #define preprocessor directives and can expand them step-by-
step so you can see what’s going on. For example:

cdecl> #define NAME2_HELPER(A,B) A ## B

cdecl> #define NAME2(A,B) NAME2_HELPER(A,B)

cdecl> expand NAME2(var_, __LINE__)

NAME2(var_, __LINE__) => NAME2_HELPER(A,B)

| A => var_

| B => __LINE__

| | __LINE__ => 42

| B => 42

NAME2(var_, 42) => NAME2_HELPER(var_,42)

| NAME2_HELPER(var_, 42) => A ## B

| NAME2_HELPER(var_, 42) => var_ ## 42

| NAME2_HELPER(var_, 42) => var_42

NAME2(var_, 42) => var_42

□

Chapter 9
Functions

As stated in §1.4, except for the most trivial, programs in C are composed of multiple
functions that allow a large, complicated program effectively to be decomposed into
smaller, simpler mini-programs.

9.1 Declarations vs. Definitions

A function declaration is done via a prototype, that is a function’s name and sig-
nature, that is its parameter types (if any), and return type (or void), but without a
body. For example, from listing 13.6 (p.212), these are function declarations:

void string_puts(struct string *str, char const *s);

void string_cleanup(struct string *str);

The function string_puts has a signature of struct string*, char const* for
its parameters and void instead of a return type. Parameter names are neither neces-
sary for nor considered part of a signature (since the compiler needs only the types),
but are sometimes included anyway for documentation as in listing 2.1 (p.28). Func-
tions that have exactly the same parameters and return type have the same signature.
A function must be at least declared before another function can use it. Function
declarations are often put into .h files.

A function definition repeats its declaration, but also includes its body. Function
definitions are put into .c files (mostly; see §9.10).

9.2 Parameters

Before discussing function parameters, the terms parameter and argument need
proper definitions since those two are often (wrongly) used interchangeably:

135© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_9

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_9&domain=pdf

9 Functions136

• Parameters: The list of types of objects a function requires when called. (These
are also known as formal parameters.)

• Arguments: Values copied into a function’s parameters when called. (These are
also known as actual parameters.)

Hence:

void swapi(int *pa, int *pb); // pa, pb: parameters

swapi(&x, &y); // &x, &y: arguments

As first explained in §1.6, in C, all arguments are passed by value, that is they
are copied into their respective parameters. If you want to change the value of the
original (not the copy), the parameter needs to be a pointer.

In definitions, names for unused parameters may be omitted. Why would you
have a function with a parameter that you don’t use? In some cases, a function’s
signature needs to conform to a specific API.

In older code, you may see declarations and definitions like:

// means: zero parameterspid_t getpid(void);

where void is not declaring an unnamed parameter of type void (since void objects
don’t exist), but instead is declaring that the function has zero parameters (§C.13).

9.3 No Overloading

Unlike C++, functions in C can’t be overloaded, that is have more than one function
with the same name, but different signatures.

■ This is why many similar functions in the C standard library have sim-
ilar names, but with additional letters tacked on, e.g., sqrtf and sqrtl in
addition to sqrt. (But see §19.) □

9.4 “Array” Parameters

Array syntax can be used to declare function parameters. For example, a declaration
for a function that prints an array of n integers as comma-separated values might be:

void print_csi(size_t n, int const vals[]);

Since it can be called with an array of any size, vals is declared with only [] and
no size; hence the need for n that gives the size.

1379.4 “Array” Parameters

Another quirky feature of C is that the use of [] for function parameters is just
syntactic sugar since the compiler rewrites such parameters as pointers. It’s as if you
declared the function as:

void print_csi(size_t n, int const *vals); // reality

In fact, you can do so explicitly with no change in meaning. Hence, despite appear-
ances, array parameters don’t exist in C.

■ Array syntax for parameters in C is a “living fossil” of how pointers are
declared in New B (the parent of C).† □

As mentioned in §6.7, the name of an array in an expression “decays” into a pointer
to its first element. This happens for function argument expressions just the same.

In the definition of print_csi shown in listing 9.1, either array syntax of [] or
pointer syntax of * can be used regardless of which was used in the declaration. This
works because, as also mentioned in §6.7, the a[i] syntax is just syntactic sugar for
*(a+i). Use whichever syntax is easier for a particular case or preference.

void print_csi(size_t n, int const *vals) {

if (n == 0)

return;

printf(”%d”, vals[0]);

for (size_t i = 1; i < n; ++i)

printf(”, %d”, vals[i]);

}

Listing 9.1: print_csi

The only potential benefit of using array syntax for parameters is that it conveys
to programmers that vals is presumed to be a pointer to at least one int rather than
exactly one int. But it’s only a presumption and not a guarantee since you can call
such a function with nullptr:

print_csi(0, nullptr); // ”vals” will be nullptr

Note that even if you were to change the signature to print an array of, say, exactly
10 ints:

void print_csi_10(int const vals[10]); // int *vals

it wouldn’t change anything since the compiler still rewrites such parameters as
pointers discarding any size in the process. The only potential benefit of including
the 10 is that, again, it conveys to programmers that vals is presumed to be an array
of 10 ints.

†The Development of the C Language, Dennis M. Ritchie, History of Programming Languages,
2nd ed., ACM Press, New York, and Addison-Wesley, Reading, Mass, 1996.

138 9 Functions

9.4.1 Non-Null Array Syntax for Parameters

You can specify that an “array” function parameter can not be nullptr and must be
of a minimum size, for example:

void print_csi_10(int const vals[static 10]);

That means “declare vals as a pointer for which nullptr can not be given as an ar-
gument andmust point to at least 10 constant ints.” If you try to pass either nullptr
or an array that has fewer than 10 ints, the compiler will warn you.

■ This marks another overloading of the static keyword in C since this
static has nothing to do with either linkage (§4.3.3) or duration (§9.9). □

■ C++ never adopted this syntax from C. □

9.4.2 Qualified Array Syntax for Parameters

To drive home that parameters declared with array syntax really are pointers, you
can change them:

int ra[10]; // real array

void f(int pa[]) { // int *pa

++ra; // error (as expected)

++pa; // OK (surprisingly)

You can also qualify the rewritten pointer:

void f(int pa[const]) { // int *const pa

++pa; // error now

In addition to const, you can also qualify the pointer with _Atomic (§17), restrict
(§21), and volatile (§22). Note that neither of these:

void f(int const pa[]); // pointer to const int

void f(const int pa[]); // same

is the same thing: the const outside the [] refers to the int and not pa.

■Why doesn’t the compiler convert parameters with array syntax to point-
ers to const? Because const didn’t exist when Ritchie invented C and
retroactively making such pointers be const when const was added to C
would have broken programs. □

■ C++ never adopted this syntax from C either. □

1399.4 “Array” Parameters

9.4.3 Variable Length Array Syntax for Parameters

You can also use VLA (§6.14) syntax for parameters:

void print_csi(size_t n, int const vals[n]);

That is, the size of the “array” is given by an integer parameter that precedes it.
Note that vals is still a pointer. Despite having the size information at run-time,
sizeof(vals) will still return the size of the pointer. Hence, this “feature” serves
only to document to programmers that n is the presumed size of the “array.”

9.4.4 Multidimensional Array Syntax for Parameters

Array syntax can also be used for parameters for multidimensional arrays (§6.4):

void f(int a[10][20]); // int (*a)[20]

The quirk where the compiler rewrites array syntax for a function parameter as a
pointer happens only for the first (left-most) dimension; the remaining dimension(s)
keep their “array-ness.” Hence, a is a pointer to a real array of 20 ints. Note that
the parentheses shown in the comment are necessary: without them, it would be an
array of 20 pointers to int.

Pointers to array don’t often occur in C programs since the name of an array
“decays” into a pointer to its first element (§6.7). In most cases, that’s good enough
even though the size information is lost. But a pointer to an array retains the array’s
size as part of the type, so assignments between pointers to arrays of different size
are warned about:

int (*p3)[3]; // pointer to array 3 of int

int (*p5)[5]; // pointer to array 5 of int

p5 = p3; // warning: incompatible pointers

In particular, given:

int a[10];

int *pi = a; // pointer to int (via decay)

int (*pa)[10] = &a; // pointer to array 10 of int

both pi and pa point to the same location in memory (here, &a[0]), but a “pointer
to array” is an entirely different thing from a pointer that results from array decay.
For pi, the compiler “forgets” the size of the array to which it points; for pa, it
“remembers” the size.

Part of the reason pointers to array aren’t used much is because it’s clunky to
access array elements since you have to dereference the pointer first:

140 9 Functions

// must dereference p3 firstint e1 = (*p3)[1];

But you can dereference the pointer once into another pointer then use that pointer:

int *p = *p3;

int e1 = p[1]; // same as: (*p3)[1]

9.4.5 Multidimensional VLA Parameters

Multidimensional array syntax for parameters can be used for VLAs. For example,
a declaration for a function that prints a matrix ofm×n integers as rows of comma-
separated values might be:

void print_mcsi(size_t m, size_t n, int vals[m][n]);

The compiler rewrites only the first dimension as a pointer, so the above is really:

void print_mcsi(size_t m, size_t n,

int const (*vals)[n]);

hence vals is a pointer to a VLA of n ints. In this case, the VLA is actually a useful
feature since the n allows the compiler to know the length of each row of the array.
Additionally, sizeof (the first one below) once again becomes a run-time operator:

size_t size = sizeof *vals / sizeof **vals; // size = n

Unlike VLAs in general, VLAs used for function parameters are safe since the
actual arrays passed to the function can be (and often are) normal arrays:

int matrix[10][20] = { /* ... */ };

print_mcsi(10, 20, matrix);

There’s no new VLA being created at run-time here, so it can’t overflow the stack.
When declaring (as opposed to defining) functions, C allows you to omit the

parameter names; however, if you do that, then there’s no name to specify the size
of a VLA; but C has a special syntax for this case:

void print_mcsi(size_t, size_t, int const[][]); // err

void print_mcsi(size_t, size_t, int const[*][*]); // OK

That is, use * to denote aVLA of an unnamed size. Since the first dimension is always
converted to a pointer, the * is needed only starting with the second dimension:

void print_mcsi(size_t, size_t, int const[][*]); // same

Hence, you never need * when using single dimension array syntax.

1419.5 Return Values

9.4.6 Array Syntax for Parameters Pitfalls

Using array syntax for function parameters can lead to code that looks correct, but
isn’t. For example, given:

void print_csi_10(int const vals[10]) { // int *vals

for (size_t i = 0; i < sizeof vals / sizeof vals[0];

++i) {

// ...

Using sizeof (§3.16) to calculate the number of elements in the array, the intention
here is to iterate over all the elements of the array. But, despite the sizeof expression
being correct for an array, vals is still a pointer; so sizeof here will get the size of
a pointer (likely 8) divided by the size of an int (likely 4) and the entire array won’t
be iterated over. Fortunately, most compilers will warn about this.

This is a reason against using array syntax for parameters: such parameters look
like arrays, but aren’t.

9.5 Return Values

Functions can return enumerations (§7), structures (§10), or unions (§11) like any
other type. Unlike some languages, C can return at most one value from a function.
But structures can be created and used as return types when more than one value
needs to be returned.

For example, consider a function ht_insert that attempts to insert data into a
hash table (§25.1). It returns a pointer to either a new entry containing the inserted
data or an existing entry containing the existing data. To distinguish those two cases,
it also needs to return an inserted flag that’s true only if the data was inserted. A
structure to contain both an entry and a flag is shown in listing 9.2.

struct ht_insert_rv { // insert return value

struct ht_entry *entry; // existing or inserted entry

bool inserted; // entry inserted?

};

struct ht_insert_rv ht_insert(struct hash_table *ht,

void const *key,

size_t value_size) {

// ...

return (struct ht_insert_rv){

.entry = entry, .inserted = true

};

}

Listing 9.2: Function returning a structure

bool false

int -1

nullptr

listing 9.2 (p.141).
• If the function returns void, it can print an error message to a file (§12.2).

142 9 Functions

Youmight think that returning structures is inefficient because the entire structure
would need to be copied twice: once from the stack frame of a function to a temporary
variable, and a second time from the temporary to the destination variable in the
caller’s stack frame. But the compiler can perform return value optimization (RVO)
by rewriting the function to take a pointer to the destination variable that the function
can write to directly without using a temporary as shown in listing 9.3.

void ht_insert(struct ht_insert_rv *rv,

struct hash_table *ht,

void *key, size_t value_size) {

// ...

*rv = (struct ht_insert_rv){

.entry = entry, .inserted = true

};

}

void caller() {

struct ht_insert_rv rv;

ht_insert(&rv, ht, key, sizeof(int));

// ...

Listing 9.3: Function “returning” a structure via RVO

9.6 Error Handling

C doesn’t have exceptions (but see §27), nor is there a standard way to communicate
errors from functions to their callers. But there are several ways that are typically
used in practice:

• If the function returns , it returns on error.
• If the function returns , it returns (or some other invalid value) on error.
• If the function returns a pointer, it returns on error.
• The function can return an error flag or code as part of a structure similar to

• If the error is fatal (meaning there’s no easy way to recover and continue), the
function can print an error message and call either exit (§9.7.2) or abort to
dump core (§18.4).

In any case, the standard global variable errno declared in errno.hmay also be set
to a standard error code (also declared in errno.h) if one is applicable. If none of
the standard error codes is applicable, you can use your own global variable to be
set to a custom error code. (See also §14.7.)

Regardless of which method is used to communicate errors, the documentation
for the function should specify how errors, if any, are handled.

1439.7 main

9.7 main

As first shown in §1.1, a C program begins execution in a function named main.
Additionally, main serves as the “interface” between the “outside” (typically, the
operating system) and your program via arguments and its return value.

9.7.1 Declaration and Parameters

In addition to main being declared with no parameters, it may alternatively be de-
clared with two specific parameters for passing arguments to it from the “outside”
(on Unix systems, another process, typically a shell). For example, the program in
listing 9.4, if executed from a shell, will print each of its arguments, if any, preceded
by its index as shown in run 9.1.

int main(int argc, char const *const argv[]) {

for (int i = 0; i < argc; ++i)

printf(”%d %s\n”, i, argv[i]);

}

Listing 9.4: main with parameters that prints its arguments

$ cc -o args args.c

$./args hello, world

0 args

1 hello,

2 world

Run Output 9.1: args output

The parameter argc is the argument count and argv is an “array” of argument
values where argv[0] is the executable’s pathname, argv[1] is the first argument,
argv[argc-1] is the last argument, and argv[argc] is guaranteed to be nullptr.
(You can name the parameters anything you want, but “argc” and “argv” are con-
ventional.)

■ On non-Unix systems, it’s implementation defined as to what the values
of argv correspond to, if anything. □

Alternatively, main may be declared as:

int main(int argc, char const *const *argv) {

That is, argv may be declared as a pointer (which it really is) to pointers rather than
an “array” of pointers (§9.4). In this and the original declaration, const is optional,
but recommended.

The executable’s filename being in argv[0] allows a program to alter its behavior
based on the name. For example, cdecl (§6.10) starts in C++ mode if the basename
of argv[0] is c++decl.

144 9 Functions

9.7.2 Return Value and Exit Status

As mentioned in §1.1, main must return int (§2.5.4) whose value indicates the sta-
tus, either the success or failure, of the program. By convention, zero means “suc-
cess” and any non-zero value means “failure” where the value is often a code for the
type of failure. As a special case, returning a value from main is optional. If omitted,
it’s equivalent to returning zero (success).

When main returns, it calls the standard function exit that terminates the pro-
gram. Alternatively, you can call exit yourself at any time. It’s for this reason that
a program’s return value is also known as its exit status.

Except for zero, there are no other standard values for exit codes. However, the
standard does define EXIT_SUCCESS as a synonym for zero and EXIT_FAILURE for
any failure, though its specific value is implementation defined. Some programs that
search for things (like grep(1)) return 1meaning they ran successfully, but there were
no matches.

■ BSD-derived systems have the sysexits.h header that defines 15 or so
values for various errors. Unfortunately, it’s not standard, choosing an ap-
propriate exit value can often be non-obvious, and their use has been dep-
recated in new programs since 2020. □

For your own programs, you can use any values you like. A minimal approach is
simply to return either 1 or EXIT_FAILURE for any error. If you want to use specific
values for specific errors, you can use an enumeration (§7) as shown in listing 9.5.
Even though an exit status is an int, values should be constrained to be in the range
−128–127.

enum {

EXIT_USAGE = 1, // command-line usage error

EXIT_CONFIG, // configuration file error

EXIT_NOFILE, // no such file

EXIT_DATAERR, // invalid data

EXIT_IO, // I/O error

EXIT_NOPERM, // insufficient permission

EXIT_INTERNAL, // internal error (bug)

// ...

};

Listing 9.5: Possible exit status codes for your program

9.8 Static Functions

A function declared static gives it internal linkage (§4.3), that is it will be “private”
to the .c file it’s defined in. Within a .c file, static functions are used as private
“helper” functions to other functions. For example, if print_mcsi were the only
public function, we could still have print_csi as a helper function for print_mcsi

1459.9 Static Local Variables

by declaring it static as shown in listing 9.6. Decomposing a larger function into a
few smaller functions is a good practice since each is more readily understandable.

static void print_csi(size_t n, int const vals[n]) {

if (n == 0)

return;

printf(”%d”, vals[0]);

for (size_t i = 1; i < n; ++i)

printf(”, %d”, vals[i]);

}

void print_mcsi(size_t m, size_t n,

int const vals[m][n]) {

for (size_t j = 0; j < m; ++j) {

print_csi(n, vals[j]);

putchar(’\n’);

}

}

Listing 9.6: A static helper function

9.9 Static Local Variables

A variable declared static inside a function gives it static duration (§4.3), that is
it will be initialized to zero or equivalent and exist for the entire duration of the
program. For example, the function shown in listing 9.7 will return a new value for
every call.

unsigned long get_new_id() {

static unsigned long next_id;

return ++next_id;

}

Listing 9.7: Function with static local variable

The declaration of next_id could have been at file scope (§2.4) and have the same
behavior. Inside the function, the variable is “private” to the function. It’s a good
practice to make objects as private as possible.

■ This marks yet another overloading of the static keyword in C since
this static has nothing to do with either linkage (§4.3.3) or non-null array
syntax for parameters (§9.4.1). □

9.9.1 __func__

The identifier __func__ is implicitly declared by the compiler immediately follow-
ing the { of each function definition as if it did:

146 9 Functions

static char const __func__[] = ”function-name”;

For example, the following function would print hello_world when called:

void hello_world() {

puts(__func__);

}

9.10 Inline Functions

The inline keyword can prefix a function definition such as:

inline int maxi(int a, int b) {

return a > b ? a : b;

}

It allows you to give the compiler a “hint” that certain functions are called frequently
and would thereby likely benefit from being inlined.

A function that has been inlined has had its code expanded at every point it’s been
called rather than performing the normal function-call mechanism of:
• Saving CPU registers.
• Either assigning argument values to registers or pushing them onto the stack.
• Executing a “call” assembly language instruction.
• Returning from the function.
• Restoring CPU registers or popping the stack.

For very small functions, inlining can yield a performance gain. But like most ev-
erything else, there are trade-offs.

9.10.1 Differences from Macros

Inline functions are like (and meant to replace many uses of) function-like macros
(§8.7). Generally, this is a good thing because inline functions are functions and have
full function semantics rather than mere text substitution done by the preprocessor
that doesn’t understand C.

A naively equivalent macro to the maxi function is:

#define MAXI(A,B) A > B ? A : B /* bad implementation */

that has the following problems:
• Expanded arguments, e.g., MAXI(n & 0xFF, 8), can result in the wrong oper-
ator precedence.

MAXI(n++, 8)

• The function is recursive.

• Arguments with side effects, e.g., , can havemultiple side effects.
• There’s no type-checking of the arguments at definition.
• Errors are often verbose and hard to read.

1479.10 Inline Functions

Additionally, a macro can modify its arguments (that often is not what you want).
Inline functions have none of these problems yet can yield the same performance
benefit. Use inline functions instead of function-like macros whenever possible.

9.10.2 Only a Hint

As mentioned, specifying inline is only a “hint” to the compiler that the program
overall might benefit in performance from the function being inlined. The compiler
is free to ignore the hint. Why? Because there are cases when it’s either not a good
idea or impossible. A function is either not inlined or typically not inlined when any
one of the following is true:

• The function is “too big.”
• You call the function via a pointer-to-function (§6.10).

• The function has a loop.

There may be other reasons. It’s all highly dependent on the function, its arguments,
the compiler, and whatever options are given to it.

If the compiler either can’t or chooses not to inline a function, it does not warn
you that it hasn’t done so (by default). Some compilers, e.g., gcc, have a -Winline
option that will warn you and give you the reason why a function wasn’t inlined.

Specifying inline is similar to specifying register (§4.3.4) — they’re both
only hints.

9.10.3 When (and When Not) to Inline

For most functions, the bulk of the cost of executing the function is in the function’s
body, not in the function-call mechanism. Hence, in order for a function to be a good
candidate for inlining, it generally has to be:

• Small enough so that the cost of the function-call mechanism dominates.
• Used in places where performance actually matters, e.g., in tight loops.

9 Functions148

When in doubt, profile your code (§18.9). Using inline is not a magic “make me
faster” keyword. Additionally, over-use of inline can lead to code bloat that addi-
tionally makes the performance of your program worse overall.†

Functions that are often good candidates for inlining include:

• “One-liners” such as “getters” and “setters.”
• Simple wrappers around calls to other functions that supply specific values for
arguments or do casts (§3.14).

An ideal inline function both increases performance and decreases code size.
One caveat for any inline function is that if its definition changes, it will require

recompiling all code that uses it.

9.10.4 Inline Definition

In order for the compiler to be able to inline a function, it has to be able to “see” its
definition (not only its declaration) in every .c file it’s used in exactly like a macro.
Hence, an inline function must be defined in a header file.

Normally, a function, like everything else, must have exactly one definition by
adhering to the one definition rule (ODR). However, since the definition of an inline
function is “seen” in multiple .c files, the ODR is suspended for that function.

It is possible to have different definitions for inline functions having the same
name, but this results in undefined behavior (§15) since the compiler has no way to
check that every definition is the same.

In addition to defining a function inline in a header, you additionally must ex-
plicitly tell the compiler into what .o file to put the one definition in the event the
compiler is either unable or unwilling to inline a function via extern inline. For
example, in exactly one .c file, you would declare a function like:

extern inline int maxi(int, int);

That tells the compiler to put the one definition for maxi into its .o file.

■ This is an overloading of the extern keyword in C since this extern has
nothing to do with linkage (§4.3.2). □

Alternatively, you can define an inline function static in the header:

static inline maxi(int a, int b) {

return a > b ? a : b;

}

†The Inline Disease, Linus Torvalds, et al, Linux kernel coding style, §15,
https://www.kernel.org/doc/html/latest/process/coding-style.html

https://www.kernel.org/doc/html/latest/process/coding-style.html

extern inline

.c

va_

nts.
va_start

1499.11 Variadic Functions

If you do this, then:

• You do not have to declare a function anywhere.
• However, if the compiler doesn’t inline a function, it will generate a definition
in every file it’s included into again leading to code bloat.

• If the function has any static local variables (§9.9), every definition will have
distinct copies (that likely isn’t what you want).

9.11 Variadic Functions

Most of the functions shown take a specific number of arguments. However, one
in particular, printf (§12.1.1), is variadic meaning it takes a varying number of
arguments. C allows you to write your own variadic functions.

■ Originally, C had no way for you to write your own variadic functions
portably. When function prototypes were adopted from C++ into C, it in-
cluded syntax for declaring variadic functions. □

For example, a function that sums n additional arguments is shown in listing 9.8.

1 #include <stdarg.h>

2
3 int vnsum(unsigned n, ...) {

4 va_list args;

5 va_start(args);

6 int sum = 0;

7 while (n-- > 0)

8 sum += va_arg(args, int);

9 va_end(args);

10 return sum;

11 }

Listing 9.8: Variadic function to sum n integers

• Line 1 includes the stdarg.h standard header that defines types, functions, and
macros (that all start with “ ”) for working with variadic arguments.

• To declare a variadic function, the last (or only) parameter is ... (an ellipsis) as
is done on line 3.

4 declares args of type va_list to access the variadic argume•
•
Line
Line 5 calls to start iterating over the variadic arguments.

• Line 8 calls va_arg passing args and the presumed type of the next variadic
argument; it returns the value of that argument.

• Line 9 calls va_end to end iterating over the variadic arguments.

Then you can call it like:

int r = vnsum(3, 1, 2, 5); // r = 8

9 Functions150

Note that we are using the explicit parameter to specify how many arguments follow
as our own convention here. The compiler does not infer any meaning from the
explicit parameter. It’s only an ordinary parameter.

To make the count implicit (so you either can’t forget it or get it wrong), you can
use the preprocessor and the VA_ARGS_COUNT macro (p.131):

#define vsum(...) \

vnsum(VA_ARGS_COUNT(__VA_ARGS__), __VA_ARGS__)

For another example, listing 9.9 shows an implementation of vstr_is_any, a
variadic version of str_is_any from listing 6.5 (p. 92). In this version, the argu-
ments are terminated by a null pointer as a sentinel.

bool vstr_is_any(char const *needle, ...) {

va_list args;

va_start(args);

bool found = false;

do {

char const *const hay = va_arg(args, char*);

if (hay == nullptr)

break;

found = strcmp(needle, hay) == 0;

} while (!found);

va_end(args);

return found;

}

Listing 9.9: Variadic function to see if a string is among a set

It can be called like:

if (vstr_is_any(pet, ”cat”, ”dog”, ”bird”, nullptr))

To make the nullptr implicit (so you can’t forget it), you can use the preprocessor
to append it:

#define vstr_is_any(NEEDLE, ...) \

vstr_is_any((NEEDLE), __VA_ARGS__, nullptr)

The original, non-variadic str_is_any is a much better implementation due to the
pitfalls of variadic functions.

9.11.1 Variadic Pitfalls

Variadic arguments have several serious pitfalls:

1519.11 Variadic Functions

• Notwithstanding the VA_ARGS_COUNT macro, there is no standard way to know
how many arguments were given. (Attempting to access more arguments than
were given results in undefined behavior (§15); but accessing fewer is OK.)

• There is no way to require that any argument be of a specific type nor is there
any way to require that all the arguments be of the same type.

• There is no way to know for certain what the type of any argument actually is.
• Because there is no type information, only default argument conversions occur:

– char, signed char, unsigned char, short, and unsigned short are
promoted to either int or unsigned int as appropriate.

– float is promoted to double.
– An array “decays” into a pointer to its first element (§6.7).
– A function name is converted to a pointer to that function (§6.10).

• The ... must always be last.
• When iterating over arguments via va_arg, the given typemustmatch the actual
type. If it doesn’t, the result is undefined behavior.

Hence, the top two problems when implementing a variadic function are:

1. Knowing either the number of arguments or when to stop iterating over them.
2. Knowing their types.

The vnsum implementation “solves” the first problem by using an explicit parameter
to specify how many arguments follow. However, if you were to do (without the
VA_ARGS_COUNT macro):

int r = vnsum(3, 1, 2); // said 3, but only 2

that is specify that there are 3 arguments that follow but there are fewer, the result
would be undefined behavior. Even if you use the VA_ARGS_COUNT macro, vnsum
can still only assume the provided arguments are of type int. If you were to do:

int r = vsum(1, 2.7, 5); // double, not int

that is provide a value of type double (or any other type) where int is expected, the
result would be undefined behavior.

The vstr_is_any function “solves” the first problem by using a sentinel so it
doesn’t care how many arguments there are. But similar to vnsum, it still can only
assume the provided arguments are strings and that the last argument is nullptr. If
either of those are false, the result would be undefined behavior.

The standard printf function (§12.1.1) “solves” both problems by using the one
required argument as the format for what to print: each % within the format is a
conversion specifier and has a one-to-one correspondence with an argument. For
example, given:

printf(”x=%d, y=%d\n”, x, y);

9 Functions152

the printf implementation scans the format string looking for % characters. Upon
encountering one, it fetches the next variadic argument’s value via va_arg using the
type specified by the character(s) that follow the %, e.g., %d specifies int (and prints
it in decimal).

However, as with vnsum, if you either provide fewer arguments than specifiers
or the type of a specifier and its associated argument don’t match the result would
be — you guessed it — undefined behavior. Fortunately, modern compilers have
specific knowledge about printf and so can warn when either the number of types
or arguments don’t match the format string. For your own functions, however, you’re
generally on your own to get it right.

Given all their pitfalls, are variadic functions a good idea? Not really. Their use
was a clever hack stemming from C originally not caring about function arguments
at all (§C.13), so functions like printf and scanf (§12.4.1) took advantage of this.
Even the introduction of stdarg.h did only the minimum amount to make imple-
menting variadic functions portable, but not good.

Should you write your own variadic functions? Generally, no. However, there is
one use for implementing your own variadic functions.

9.11.2 Calling Other Variadic Functions

In a large program that prints many messages, it would be helpful if you could know
what line of code printed a given message so you can determine the state of the
program at the time the message was printed. For example, in a program like cdecl
(§6.10), if you get:

c++decl> explain int &*p

^

13: error: pointer to reference is illegal; did you mean ”*&”?

you might want to know where in the source code that message was printed from. In
many cases, you can simply grep for the text of the message, but only if the message
text appears literally in the code — which isn’t the case for this message.

cdecl has a debug option that, among other things, prints the source code location
whence an error message came:

13: error: [c_ast_check.c:2170] pointer to reference is

illegal ...

The way this is implemented is that there’s an fl_print_error variadic function
that’s a wrapper around fprintf that takes additional file and line arguments whence
it was called. A (slightly simplified) implementation is shown in listing 9.10.

• The functions printf and fprintf have vprintf and vfprintf counterparts
that take a va_list parameter:

• Lines 12 NE__.

1539.12 Epilogue

1 void fl_print_error(char const *file, int line,

2 char const *format, ...) {

3 fprintf(stderr, ”error: ”);

4 if (opt_cdecl_debug != CDECL_DEBUG_NO)

5 fprintf(stderr, ”[%s:%d] ”, file, line);

6 va_list args;

7 va_start(args);

8 vfprintf(stderr, format, args);

9 va_end(args);

10 }

11
12 #define print_error(FORMAT,...) \

13 fl_print_error(__FILE__, __LINE__, (FORMAT), __VA_ARGS__)

Listing 9.10: Simplified fl_print_error implementation

int vprintf(const char *format, va_list args);

int vfprintf(FILE *file, const char *format,

va_list args);

They allow your variadic function to pass along its variadic arguments. Line 8
calls vfprintf passing args.

–13 define a macro that hides the passing of __FILE__ and __LI

A va_list parameter allows one variadic function to pass its variable arguments to
another.

9.12 Epilogue

Here are some key points about and some advice for functions:

• Make functions relatively small and do one thing. Decompose larger functions
into smaller, simpler functions.

• Functions can’t be overloaded.
• For function parameters:

– All arguments are passed by value, i.e., copied. Modifying an argument’s
value affects only its copy. To affect the original, use a pointer.

– Despite appearances, array parameters don’t exist in C. They “decay” to
pointers. Despite this, “array” parameters can be useful to indicate that one
or more values may be given.

– VLA syntax can be used and, for multidimensional arrays, it’s actually use-
ful for the row size.

• A function can return one value of any type including enumerations, structures,
or unions; or none using void.

-1 nullptr

static .c

nullptr

• A function that returns either success or failure typically returns one of false,
, or for failure.

• A function declared is “private” to the file it’s defined in.
• A local variable declared static will be initialized to zero or equivalent and
exist for the entire duration of the program.

• A function can be declared inline and defined in a header file. Inline func-
tions, if used judiciously, can yield performance gains. Generally, only very
small functions are good candidates for inlining.

• Variadic functions in C are basically a hack. Given their serious pitfalls, you gen-
erally should not write your own unless it’s a wrapper around another variadic
function.

• A program must have exactly one function named main that:

– May have either zero parameters, or two parameters, argc (argument count)
and argv (argument values), for command-line arguments (on a Unix sys-
tem) where argv[0] is the executable’s pathname, argv[1] is the first ar-
gument, argv[argc-1] is the last argument, and argv[argc] is guaranteed
to be .

– Must return int where zero indicates success and any non-zero value indi-
cates failure to the operating system. As a special case, an omitted return
value is equivalent to returning zero.

9 Functions154

Exercises

1. Using your solution for new_hist and print_hist for exercise 6.4 (p. 98) as
a starting point, write a program that, given a line of text as command-line ar-
guments, prints a histogram of only the letters comprising the text. Uppercase
letters should be converted to and counted as lowercase. For example:

$./alphahist C is quirky, flawed, and an enormous success.

should print:

a: +++

c: +++

d: ++

e: +++

f: +

i: ++

k: +

l: +

m: +

n: +++

o: ++

q: +

1559.12 Epilogue

r: ++

s: +++++

u: +++

w: +

y: +

You will need the isalpha and tolower functions (§B.1).

Chapter 10

 Structures

A structure is one object of (potentially) many types whose data is related such as a
string’s contents and length as shown in §1.9.

The closest analog in other languages would be a class except a structure has
all members “public,” no “constructors” (automatic initialization), no “destructors”
(automatic cleanup), and no “methods.” You can write such functions, but you have
to be explicit about calling them.

10.1 Definition

Formally, a structure definition is of the form:

struct tagopt {

membersopt
} declarationsopt;

that is the keyword struct optionally followed by a tag name followed by a set of
zero or moremembers optionally followed by declarations of the structure. Members
are in their own namespace specific to their structure, so different structures can have
members with the same name.

■ You may eventually notice that many structures in the C standard library
are named such that they are prefixed by a common abbreviation. For ex-
ample, all the members of the tm structure (listing B.1, p.367) are prefixed
by “tm_.”

You might think that this was simply a style idiosyncrasy of the original
Unix authors. It turns out that early C compilers had only a single, global
symbol table, so they added prefixes to members to avoid name collisions.
Once C compilers improved, this style faded away.

However, the style persists in a few places, e.g., the Solaris’ internal
style guide still recommends this style to this day, even in new code:

157© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_10

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_10&domain=pdf

158 10 Structures

Systematic prefix conventions for . . . structure or union member
names can be useful.

though it doesn’t elaborate as to why. Having common prefixes does make
member names easily grep-able. □

As with enumerations (§7), the names of structures are put into a tags namespace
(§2.3). To refer to a structure name, it must be preceded by struct. If you forget to
include it, you’ll get an error:

string str; // error: must use ”struct” tag

Alternatively, you can use typedef (§2.6) to “inject” a tag name into the surrounding
scope so you no longer need to use struct:

typedef struct string string; // inject string into scope

string str; // no ”struct” needed now

As a second alternative, you can typedef a structure declaration directly:

typedef struct { // or: typedef struct string {

char *contents;

size_t len;

} string;

10.2 No Nesting

To the surprise of some (especially those who know C++), even though you can nest
the declaration of a structure inside another, it’s not meaningful in C. For example,
consider the declaration shown in listing 10.1.

struct geo_loc {

struct coord { // warning: doesn’t declare anything

int deg, min;

float sec;

};

struct coord lat, lng;

};

struct coord c; // OK (surprisingly)

Listing 10.1: Structure nesting belies reality

Even though its perfectly legal C, it’s deceptive because coord is not “inside”
geo_loc. As far as the compiler is concerned, it’s as if coord were declared at file
scope (§2.4) which is how the declaration of c is also legal.

The compiler may also warn you that the declaration of coord doesn’t declare
anything. What it means is that, while it does declare the coord structure, it doesn’t

[0] [1]

15910.3 Initialization

declare any geo_loc members of coord. Had you declared the structures as shown
in listing 10.2, then the compiler wouldn’t have warned you (but coord would still
be as if it were declared at file scope just the same).

struct geo_loc {

struct coord {

int deg, min;

float sec;

} lat, lng; // members of struct coord

};

Listing 10.2: Structure nesting belies reality, version 2

Even so, declaring nested structures in C is confusing — don’t do it.

10.3 Initialization

As first shown in §1.9, a structure can be initialized in its declaration using {}where
the order of the values corresponds to the order that the members were declared:

struct string str = { ”hello”, 5 };

If the {} are empty, then all members are initialized to zero or equivalent. Alterna-
tively, you can use designated initializers, that is use the member names preceded
by . (dot) and followed by =:

struct string str = { .contents = ”hello”, .len = 5 };

Designated initializers can be given in any order.
For another example, let’s rewrite listing 6.1 (p. 85) to use an array of structure

rather than a two-dimensional array as shown in listing 10.3.

• Lines 1–3 add a planet structure containing perihelion_au and aphelion_au
as members.

• Lines 5–14 define PLANET as an array of planet rather than a two-dimensional
array of AUs. Conveniently, the syntax for initializing this array of structures
hasn’t changed from initializing the two-dimensional array shown in listing 6.1.

• Line 17 uses perihelion_au and aphelion_au that is more readily under-
standable than the way it was in listing 6.1 since we’re referring to data by name
rather than the numbers of and .

• Line 23 uses pointer arithmetic directly rather than the slightly more verbose
equivalent of &PLANET[p] (§6.7).

While multidimensional arrays have their uses, if the dimensions are semantically
different (in this case, one is perihelion and the other is aphelion), it’s often better to
use an array of structure instead since:

10 Structures160

1 struct planet {

2 double perihelion_au, aphelion_au;

3 };

4
5 constexpr struct planet PLANET[] = {

6 { 0.31, 0.47 }, // Mercury

7 { 0.72, 0.73 }, // Venus

8 { 0.98, 1.02 }, // Earth

9 { 1.38, 1.67 }, // Mars

10 { 4.95, 5.45 }, // Jupiter

11 { 9.01, 10.07 }, // Saturn

12 { 18.28, 20.09 }, // Uranus

13 { 29.80, 30.32 }, // Neptune

14 };

15
16 double orbital_period(struct planet const *p) {

17 auto const a = (p->perihelion_au + p->aphelion_au) / 2;

18 return sqrt(a * a * a);

19 }

20
21 int main() {

22 for (unsigned p = 0; p < 8; ++p) {

23 auto const period = orbital_period(PLANET + p);

24 if (period < 1.0) // < 1 Earth year: print in days

25 printf(”%u %6.2fd\n”, p, period * 365.25);

26 else

27 printf(”%u %6.2fy\n”, p, period);

28 }

29 }

Listing 10.3: Print orbital period of planets, version 2, using structures

• The code more clearly speaks for itself rather than having to comment that [0]
is perihelion and [1] is aphelion as in listing 6.1.

• Having an array of structure uses the same amount of memory and is as efficient
as a two-dimensional array. (In this case, both are stored in memory in exactly
the same way.)

• The structure allows more members to be added easily (e.g., diameter, mass,
etc.), but this code wouldn’t need to be changed at all.

10.4 Structure Compound Literals

Consider the structure shown in listing 10.4 and a function to compare two user

objects by name. (For simplicity here, we’ll stipulate that last and firstwill never
be nullptr and instead be the empty string ”” for no entry.) Suppose we want to
search a linked list from listing 6.2 (p.86) of user. Let’s add a generic function to
do that as shown in listing 10.5.

16110.4 Structure Compound Literals

struct user {

char *last;

char mi;

char *first;

unsigned short uid;

};

int user_cmp(struct user const *u1,

struct user const *u2) {

int cmp;

if ((cmp = strcmp(u1->last, u2->last)) != 0)

return cmp;

if ((cmp = strcmp(u1->first, u2->first)) != 0)

return cmp;

return (int)u1->mi - (int)u2->mi;

}

Listing 10.4: User structure and comparison function

1 typedef bool (*slist_pred_fn)(void const *list_data,

2 void const *pred_data);

3
4 struct slist* slist_find(struct slist *list,

5 slist_pred_fn pred_fn,

6 void const *pred_data) {

7 while (list != nullptr &&

8 !(*pred_fn)(list->data, pred_data)) {

9 list = list->next;

10 }

11 return list;

12 }

Listing 10.5: Function to search a singly linked list

• Lines 1–2 define a type for a predicate function that slist_find will call for
each list item until the predicate returns true.

• Lines 4–6 declare slist_find that takes a list to search, a predicate function,
and pred_data that’s additional data passed to the predicate.

You can then call it as shown in listing 10.6.

1 bool user_name_equal(struct user const *i_user,

2 struct user const *j_user) {

3 return user_cmp(i_user, j_user) == 0;

4 }

5
6 struct user* find_root(struct slist *user_list) {

7 struct slist *found = slist_find(user_list,

8 (slist_pred_fn)&user_name_equal,

9 &(struct user){ .last = ”root” });

10 // ...

Listing 10.6: Function using a structure compound literal

uid

10 Structures162

• Lines 1–4 define a predicate function that returns true if two user’s names are
equal.

• Lines 7–9 call slist_find passing a list, the user_name_equal predicate, and
the address of a structure compound literal setting last to ”root”.

Similar to compound literals for arrays (§6.11), a compound literal for a structure is
zero or more literals or designated initializers for members enclosed by {} prefixed
by (type) that specifies the type of the structure. Omitted members are initialized
to zero or equivalent. A compound literal for a structure allows you to specify a
structure “inline” and even take its address.

The lifetime of and storage classes for structure compound literals are the same
as for array compound literals (§6.11.1).

10.5 Padding

Assuming pointers are 64-bits, how many bytes is the user structure in listing 10.4?
The answer is 32 bytes because of padding or “holes” in the structure as shown in
listing 10.7:

struct user { // Storage Padding

char *last; // 1000-1007

char mi; // 1008 1009-1015

char *first; // 1016-1023

unsigned short uid; // 1024-1025 1026-1031

};

Listing 10.7: User structure with padding shown

• first has to be aligned at a memory address divisible by its size. Since mi takes
only a single byte, the space between 1009–1015 is padding.

• Similarly, takes two bytes, so the space between 1026–1031 is padding.
Why is there padding at the end? Consider an array of user, u. Since ar-

ray elements are contiguous in memory, u[1] immediately follows u[0], hence
u[1].last has be be aligned exactly like u[0].last which means its address
can not be 1026, but instead must be 1032, hence padding is added at the end.

Padding in structures can be reduced by sorting the members by descending size.
For comparison, the structure shown in listing 10.8 is only 24 bytes.

10.6 Flexible Array Members

The last member of a structure with more than one named member may be a flex-
ible array member (not to be confused with a VLA, §6.14), that is an array of an

10.6 Flexible Array Members 163

struct user_v2 { // Storage Padding

char *last; // 1000-1007

char *first; // 1008-1015

unsigned short uid; // 1016-1017

char mi; // 1018 1019-1023

};

Listing 10.8: User structure, version 2, members sorted descending by size

unspecified size. For example, an intrusive singly linked structure might be declared
as shown in listing 10.9.

struct islist {

struct islist *next;

alignas(max_align_t) char data[];

};

Listing 10.9: Intrusive singly linked list structure

Typically, a structure with a flexible array member serves as a “header” for a
larger region of memory, perhaps containing a binary file read from disk. It’s usually
up to your code to somehow remember how big the array is. (This can, of course, be
stored in a member that precedes the array in the structure.)

In this case, unlike the slist structure shown in listing 6.2 (p. 86), the user-
supplied data is stored with the list node rather than as a pointer to it (hence, intru-
sive). The alignas (§4.8) max_align_t (§2.9) is necessary to ensure that whatever
data is stored there is suitably aligned.

Generally, intrusive data structures have the following advantages:

+ No separate memory allocation for the data is needed.
+ No extra space is needed for the pointer to the data.
+ Accessing the data is faster since it’s most likely on the same cache line as the
node itself.

■When data is read frommemory, it’s actually read into cache memory
first under the reasonable assumption that data accessed once will likely
be accessed again shortly. Additionally, rather than reading only a single
byte, an entire chunk— a cache line—of memory is read that contains
not only the sought after byte, but the surrounding bytes as well under
the also reasonable assumption that nearby data will likely be accessed
shortly. (This is why arrays are faster than linked lists and intrusive data
structures are faster than pointers to data.) The size of cache lines vary
by CPU, but are typically one of 32, 64, or 128 bytes. □

Intrusive data structures also have the following disadvantages:

– If you already have a pointer to the data, inserting it requires that the data be
copied in, not simply copying the pointer.

– Keeping the data when deleting a list node requires that the data be copied out
rather than simply getting a pointer to it.

10 Structures164

Like many other things in computer science, it’s a trade-off. But it’s your trade-
off to make for your circumstance rather than be stuck with whatever trade-offs the
implementers made when programming in a language that provides lists either built-
in or part of its standard library.

Listing 10.10 reimplements the functions for the operations “push,” “peek,” and
“pop” as shown in listing 6.3 (p.87), but for islist.

1 [[nodiscard]]

2 struct islist* islist_push(struct islist *head,

3 size_t size) {

4 struct islist *const new_head =

5 malloc(sizeof(struct islist) + size);

6 new_head->next = head;

7 return new_head;

8 }

9
10 [[nodiscard]] void* islist_peek(struct islist *head) {

11 return head != nullptr ? head->data : nullptr;

12 }

13
14 void islist_pop(struct islist **phead) {

15 auto const head = *phead;

16 if (head == nullptr)

17 return;

18 *phead = head->next;

19 free(head);

20 }

Listing 10.10: Intrusive singly linked list functions

• Line 3 declares islist_push to take the size of the data rather than the data
itself that is then included in the call to malloc on line 5. Inserting the data
requires an extra step, for example:

struct islist *list = islist_push(nullptr, sizeof(int));

(int)islist_peek(list) = 1941;

• Lines 10–12 declare islist_peek that’s exactly the same as slist_peek from
listing 6.3.

• Lines 14–20 declares islist_pop to return void instead of void* since it can’t
return a pointer to the data after it’s been deleted. If you want the data before
popping it, you have to peek it first:

int i = *(int*)islist_peek(list)

islist_pop(&list);

Some additional points about structures with a flexible array member:

16510.7 Bit-Fields

1. Such structures can be either on the stack or a member of another structure,
but the array will have no size. Attempting to access the array would result in
undefined behavior (§15). To have an accessible array, such structures have to
be allocated on the heap.

2. Assignments among such structures do not copy the array (because the compiler
has no idea how big it is):

struct islist *list1, *list2;

// ...

*list2 = *list1; // copies only ”next” member

3. When sizeof is applied to such a structure, it’s as if the array isn’t there (except
there may be some additional padding).

4. C++ hasn’t (yet) adopted flexible array members from C.†

10.7 Bit-Fields

A bit-field is a structure member that takes up only a specified number of bits. It’s
specified by following a member declaration by a : followed by a non-negative in-
teger number of bits.

One use for bit-fields is instead of using bit-flag values for enumerations (§7.5.7).
For example, the enumeration c_int_fmt from listing 7.9 (p.108) can be rewritten
to use bit-fields as shown in listing 10.11 where each bool takes up only 1 bit rather
than the typical 8.

struct c_int_fmt {

bool cif_short : 1;

bool cif_int : 1;

bool cif_long : 1;

bool cif_unsigned : 1;

bool cif_const : 1;

bool cif_static : 1;

};

Listing 10.11: Structure with bit-field members

The caveat is that the compiler sometimes has to generate several more assembly
language instructions to manipulate a bit-field. For example, consider code that tem-
porarily sets fmt->cif_const to true then back such as:

†I got you, FAM — Flexible Array Members for C++, JeanHeyd Meneide, Arvid Gerstmann, and
Nicole Mazzuca, ISO/IEC JTC1/SC22/WG21: Programming Language — C++, Oct. 19, 2018,
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1039r0.html

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1039r0.html

unsigned _BitInt()

g the type.

166 10 Structures

bool const old_const = fmt->cif_const;

fmt->cif_const = true;

// ...

fmt->cif_const = old_const;

The compiler would generate assembly instructions that includes shifts and a mask
(§3.8) necessary to extract only the bit for cif_const as if the code were (assuming
a big-endian CPU):

bool const old_const = (fmt->cif_const >> 3) & 1;

// ...

fmt->cif_const |= old_const << 3;

For example, if *fmtwere 0b1001’1000, setting old_constwould require a shift to
yield 0b0001’0011 and a mask to yield 0b0000’0001. Hence, the compiler would
generate code that does what you would have done manually if using bit-flags for
enumerations. In this particular case, copying the entire structure likely would gen-
erate fewer assembly instructions because copying a byte as-is doesn’t require shifts
or masks:

struct c_int_fmt const old_fmt = *fmt;

// ...

*fmt = old_fmt;

A few notes about bit-fields:

• The type must be one of bool, unsigned int, signed int, int, _BitInt(n),
or n .

• Plain int when used for a bit-field does not imply signed as it normally does.
Instead, it’s implementation defined whether it’s signed or unsigned like char.

number of bits specified must be the number of bits comprisin•
•
The ≤
The endianness (§3.14.3) of the bits is implementation defined.

• Whether bit-fields may straddle a word boundary is implementation defined.
• Accessing more than one bit-field of the same structure concurrently in a multi-
threaded program results in a data race (§14) and thus undefined behavior (§15).

• If the member name is omitted, the bits are used for padding. If the number of
bits is 0, it means the next bit-field member will start at a word boundary.

The other use for bit-fields is when you have to conform to a memory layout for
specific hardware or a protocol. For example, listing 10.12 shows the layout for the
R6000 CPU physical page number structure. Line 3 shows an example of a padding
bit-field.

16710.8 Epilogue

1 struct r6000_ppn { // MIPS R6000 CPU Physical Page Number

2 unsigned pfn : 22; // Page Frame Number

3 int : 3; // unused

4 unsigned cca : 3; // Cache Coherency Algorithm

5 bool nonreachable: 1;

6 bool dirty : 1;

7 bool valid : 1;

8 bool global : 1;

9 };

Listing 10.12: R6000 CPU physical page number structure memory layout

10.8 Epilogue

Here are some key points about and some advice for structures:

• Use structures to group related data into a single object.
• Don’t nest structure declarations.
• A structure variable can be initialized in its declaration using the = { } syntax
optionally with designated initializers.

• Compound literals like (type){ . . . } (where type is a structure type) can be used
to create structures “inline.”

• To minimize padding between members, sort members by descending size.
• The last named member of a structure may be a flexible array member that’s
useful for storing data of an arbitrary or varying size.

• Structure members can be bit-fields, but don’t use them unless there’s a specific
reason for doing so.

Exercises

1. Modify your solution of slist_cmp for exercise 6.1 (p.98) to work with islist
shown in listing 10.9 (p.163):

int islist_cmp(struct islist const *i_list,

struct islist const *j_list,

int (*cmp_fn)(void const *i_data,

void const *j_data));

2. Modify your solution of slist_dup for exercise 6.2 (p.98) to work with islist
shown in listing 10.9 (p.163):

struct islist* islist_dup(struct islist const *list,

void (*dup_fn)(void const*));

168 10 Structures

3. Modify your solution of print_int_fmt for exercise 7.2 (p.109) to work with
the version of c_int_fmt shown in listing 10.11 (p.165):

void print_int_fmt(struct c_int_fmt const *fmt);

Chapter 11
Unions

A union is syntactically like a structure (§10), but is used to store data for any one
of its members at any one time. For example:

union value {

long i;

double f;

char c;

char *s;

};

union value v;

v.i = 1941; // value is now 1941

v.c = ’a’; // value is now ’a’ (no more 1941)

union value *pv = &v;

pv->s = malloc(6); // -> works too

strcpy(pv->s, ”hello”);

All members have the same offset. The size of a union is the size of its largest mem-
ber. A common use for a union would be in a compiler or interpreter where a token is
any one of a character literal, integer literal, floating-point literal, string literal, iden-
tifier, operator, etc. It would be wasteful to use a structure since only one member
would ever have a value.

11.1 Definition

Formally, a union definition is of the form:

union tagopt {

membersopt
} declarationsopt;

169© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_11

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_11&domain=pdf

170 11 Unions

that is the keyword union optionally followed by a tag name followed by a set of
zero or more members optionally followed by declarations of the union. As with
structures (§10), members are in their own namespace specific to their union, so
different unions can have members with the same name. Additionally, the names of
unions are put into a tags namespace (§2.3). To refer to a union name, it must be
preceded by union. If you forget to include it, you’ll get an error:

value v; // error: must use ”union” tag

Alternatively, you can use typedef (§2.6) to “inject” a tag name into the surrounding
scope so you no longer need to use union:

typedef union value value; // inject value into scope

value v; // no ”union” needed now

As a second alternative, you can typedef a union declaration directly:

typedef union { // or: typedef union value {

long i;

double f;

char c;

char *s;

} value;

11.2 Initialization

Since all members of a union have the same offset, their order mostly doesn’t matter
— except that the first member is the one that is initialized when an initializer list is
used so the value given must be the same type:

union value v = { 1941 }; // as if: v.i = 1941

Alternatively, you can use a designated initializer to specify a member:

union value v = { .c = ’a’ };

11.3 Union Compound Literals

Similar to compound literals for structures (§10.4), a compound literal for a union
is a literal or designated initializers for a member enclosed by {} prefixed by (type)
that specifies the type of the union. A compound literal for a union allows you to
specify a union “inline” and even take its address.

The lifetime of and storage classes for union compound literals are the same as
for structure compound literals (§6.11.1).

11.5 Type Punning 171

11.4 Which Member?

One obvious problem with a union is, after you store a value in a particular member,
how do you later remember which member that was? With a union by itself, you
generally can’t. You need some other variable to “remember” the member you last
stored a value in. Often, this is done using an enumeration (§7) and a structure as
shown in listing 11.1.

enum token_kind {

TOKEN_NONE,

TOKEN_INT,

TOKEN_FLOAT,

TOKEN_CHAR,

TOKEN_STR

};

struct token {

enum token_kind kind;

union {

int i;

double f;

char c;

char *s;

};

};

Listing 11.1: Structure with anonymous union

Given that, you’d do something like:

struct token t = { .kind = TOKEN_CHAR, .c = ’a’ };

When a union is used inside a structure, it’s often made an anonymous union, that
is a union without a name. In this case, the union members behave as if they’re direct
members of their enclosing structure except they all have the same offset.

11.5 Type Punning

Type punning is a technique to read or write an object as if it were of a type other than
what it was declared as. Since this circumvents the type system, you really have to
know what you’re doing. In C (but not C++), a union can be used for type punning.
For example, listing 11.2 shows a way to get the value of a 32-bit integer with the
high and low order 16-bit halves swapped.

The union members u32 and u16[2] “overlay” each other allowing you to read
and write a uint32_t as if it were a 2-element array of uint16_t. (You could al-
ternatively write a version that used uint8_t[4] and reverse the entire byte order
depending on your particular need.)

172 11 Unions

uint32_t swap16of32(uint32_t n) {

union {

uint32_t u32;

uint16_t u16[2];

} u = { n };

auto const t16 = u.u16[0];

u.u16[0] = u.u16[1];

u.u16[1] = t16;

return u.u32;

}

Listing 11.2: Swap 16-bit halves of 32-bit integer

You can also use unions to do type punning of unrelated types, for example
int32_t and float allowing you to access the sign, exponent, and mantissa in-
dividually. (However, this is CPU-dependent.)

11.6 Restricted Class Hierarchies

Another use for unions is to implement class hierarchies in C, but only “restricted”
class hierarchies. A restricted class hierarchy is one used only to implement a solu-
tion to a problem where all the classes are known. Users are not permitted to extend
the hierarchy via derivation.

■ This can be partially achieved via final in C++ or fully achieved via
sealed in Java or Kotlin. □

Of course C doesn’t have either classes or inheritance, but restricted class hierarchies
can be implemented via a union of structures.

The token example shown previously is a simple example of this: all the kinds
of tokens are known and there’s one member in the union to hold the data for each
kind. But what if there’s more than one member per kind?

For a larger example, consider cdecl first mentioned in §6.10:

cdecl> explain int *const (*p)[4]

declare p as pointer to array 4 of constant pointer to

integer

During parsing, cdecl creates an abstract syntax tree (AST) of nodes where each
node contains information for a particular kind of declaration. The previous declara-
tion could be represented as an AST as shown in listing 11.3 (expressed in JSON5).

For this example, consider a subset of the kinds of AST nodes in a C++ declaration
(to keep the example shorter) as shown in listing 11.4. Listing 11.5 declares some
structures to contain the information needed for each AST node kind. Notice that, of
the AST structures declared thus far, there are similarities, specifically:

1. Each node points to another and the pointer is declared first.

17311.6 Restricted Class Hierarchies

{

name: ”p”,

kind: ”pointer”,

pointer: {

to: {

kind: ”array”,

array: {

size: 4,

of: {

kind: ”pointer”,

type: ”const”,

pointer: {

to: {

kind: ”built-in type”,

type: ”int” } } } } } } }

Listing 11.3: AST in JSON5 for int *const (*p)[4]

typedef enum {

K_BUILTIN, // e.g., int

K_CLASS_STRUCT_UNION,

K_ARRAY,

K_ENUM,

K_POINTER,

K_TYPEDEF,

K_FUNCTION,

K_OPERATOR,

// ...

} c_ast_kind_t;

Listing 11.4: c_ast_kind declaration

2. Functions and operators both have return types and parameter lists and the pa-
rameter lists are declared second.

3. For nodes that have bit-field widths, the width is alternatively declared second.

The fact that the samemembers in different structures are at the same offset is conve-
nient because it means that code that, say, iterates over the parameters of a function
will also work for the parameters of an operator. Having noticed this, we can make
an effort to keep the same members in any remaining structures at the same offsets.
For example, the information for K_BUILTIN could be declared as shown in listing
11.6 because that’s all the information that’s needed for a built-in type. But then the
bit_width member wouldn’t be at the same offset as the same member in either
c_enum_ast or c_typedef_ast. To fix that so code that accesses bit_width can
do so for any type that has it, we need to insert an unused c_ast_t pointer using the
DECL_UNUSED macro (p.130) as shown in listing 11.7.

If you think inserting unused members might waste space, remember that, once
all these structures are put into the same union, the union will be the size of the
largest member; hence, inserting unused members doesn’t waste space.

We can apply the same fix for c_csu_ast so csu_name is at the same offset as
enum_name in c_enum_ast as shown in listing 11.8.

174 11 Unions

struct c_array_ast {

c_ast_t *of_ast; // array of ...

unsigned size;

};

struct c_enum_ast {

c_ast_t *of_ast; // fixed type?

unsigned bit_width; // width when > 0

char const *enum_name; // enum name

};

struct c_function_ast {

c_ast_t *ret_ast; // return type

c_ast_list_t param_ast_list; // parameters

};

struct c_operator_ast {

c_ast_t *ret_ast; // return type

c_ast_list_t param_ast_list; // parameters

c_operator_t const *operator; // operator info

};

struct c_ptr_ref_ast {

c_ast_t *to_ast; // ptr/ref to ...

};

struct c_typedef_ast {

c_ast_t const *for_ast; // typedef for ...

unsigned bit_width; // width when > 0

};

Listing 11.5: cdecl AST node kind structures

struct c_builtin_ast {

unsigned bit_width; // width when > 0

};

Listing 11.6: Structure for built-in type, version 1

struct c_builtin_ast {

DECL_UNUSED(c_ast_t*,1); // instead of for/to_ast

unsigned bit_width; // width when > 0

};

Listing 11.7: Structure for built-in type, version 2, with reserved space

struct c_csu_ast {

DECL_UNUSED(c_ast_t*,1); // instead of for/to

DECL_UNUSED(unsigned,1); // instead of bit_width

char const *csu_name;

};

Listing 11.8: Structure for class, structure, or union with reserved space

11.6 Restricted Class Hierarchies 175

Given all those declarations, we can now put them all inside an anonymous union
inside a structure for an AST node as shown in listing 11.9.

struct c_ast {

c_ast_kind_t kind;

char const *name;

c_type_t type;

// ...

union {

struct c_array_ast array;

struct c_builtin_ast builtin;

struct c_csu_ast csu;

struct c_enum_ast enum_;

struct c_function_ast func;

struct c_operator_ast oper;

struct c_ptr_ref_ast ptr_ref;

struct c_typedef_ast tdef;

// ...

};

};

Listing 11.9: Structure using union for restricted class hierarchy

In a programming language that has inheritance, c_array_ast, c_builtin_ast,
etc., would be derived from c_ast; using this technique in C, they’ve been “ab-
sorbed” into c_ast. Some example code using c_ast is shown in listing 11.10.

static void c_ast_visitor_english(c_ast_t const *ast) {

// ...

switch (ast->kind) {

case K_ARRAY:

c_array_ast_english(ast->array);

break;

case K_BUILTIN:

c_builtin_ast_english(ast->builtin);

break;

// ...

}

}

Listing 11.10: Using an AST node

After switching on ast->kind, each union member is accessed as if it were “de-
rived” from a common base class.

11.6.1 Safeguards

One problem with this approach is that, if you modify any of the structures, you
might inadvertently change the offset of some member so that it no longer is at the

hierarchies

176 11 Unions

same offset as the samemember in another structure. One way to guard against this is
via the offsetofmacro declared in stddef.h standard header and static_assert
(§16.5) as shown in listing 11.11. Now you’ll get a compile-time error if any of the
offsets change inadvertently.

static_assert(

offsetof(c_operator_ast_t, param_ast_list) ==

offsetof(c_function_ast_t, param_ast_list),

”offsetof param_ast_list in c_operator_ast_t !=

c_function_ast_t”

);

static_assert(

offsetof(c_csu_ast_t, csu_name) ==

offsetof(c_enum_ast_t, enum_name),

”offsetof csu_name != offsetof enum_name”

);

// ... more for other members

Listing 11.11: Use static_assert to safeguard restricted class

11.7 Epilogue

Here are some key points about and some advice for unions:

• A union is for storing data for any one member at any one time.
• A union variable can be initialized in its declaration using the = { } syntax
optionally with designated initializers.

• Compound literals like (type){ . . . } (where type is a union type) can be used to
create unions “inline.”

• Unions can be used for type punning. Don’t forget about endianness (§3.14.3).
• Unions can be used to implement restricted class hierarchies.

Exercises

1. Write a function:

void token_cleanup(struct token *t);

that cleans-up a token (listing 11.1, p.171): if its kind is TOKEN_STR, frees the
s member.

11.7 Epilogue 177

2. Write a function:

uint64_t swap32of64(uint64_t n);

similar to swap16of32 from listing 11.2 (p.172) that gets value of a 64-bit inte-
ger with the high and low order 32-bit halves swapped.

Chapter 12

 Input, Output, and Files

As mentioned in §1.1, C has no built-in input/output (I/O) facilities. Instead, they’re
provided by C’s standard library, chiefly via the standard FILE type and functions
that have a FILE* as a parameter.

As mentioned in the preface, POSIX extends the C standard library with addi-
tional functions. Such functions are are tagged with “[POSIX]” in this chapter.

12.1 Output

Program output goes to standard output by default. On Unix systems, standard out-
put goes to a terminal’s display by default. The global variable stdout declared in
stdio.h is the pre-opened FILE for standard output. Also declared are functions for
printing output:

int fprintf(FILE *file, char const *fmt, ...)

Prints formatted (§12.1.1) to file. Returns the number of characters printed
on success or a negative value on failure.

int fputc(char c, FILE *file)

Prints character c to file. Returns c on success or EOF on error.
int fputs(char const *s, FILE *file)

Prints string s to file. Returns a non-negative integer on success or EOF on
failure.

int putc(char c, FILE *file)

Macro version of fputc. Returns c on success or EOF on error.
int putchar(char c)

Equivalent to putc(c, stdout).
int puts(char const *s)

Equivalent to printf(”%s\n”, s). Returns a non-negative integer on suc-
cess or EOF on failure.

179© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_12

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_12&domain=pdf

180 12 Input, Output, and Files

int printf(char const *fmt, ...)

Prints formatted (§12.1.1) to standard output. Returns the number of charac-
ters printed on success or a negative value on failure.

int vprintf(char const *fmt, va_list args)

Prints variadic args (§9.11) formatted. Returns the number of characters
printed on success or a negative value on failure.

int vfprintf(FILE *file, char const *fmt, va_list args)

Prints variadic args formatted to file. Returns the number of characters
printed on success or a negative value on failure.

int vsnprintf(char const *buf, size_t n, char const *fmt,

va_list args)

Prints variadic args formatted to buf of size n. Returns the number of char-
acters printed on success or a negative value on failure.

size_t fwrite(char const *buf, size_t size, size_t n,

FILE *file)

Writes n objects, each size bytes, from buf to file. Returns n (the number
of objects, not bytes) on success or less than n on failure.

If any function fails, it sets the global variable errno to indicate the error.
The global variable stderr declared in stdio.h is the pre-opened FILE for stan-

dard error— a second output file specifically for error messages. On Unix systems,
standard error also goes to a terminal’s display by default. Hence, to print an error
message, either of these can be done:

fputs(”oops\n”, stderr);

fprintf(stderr, ”usage: %s [infile [outfile]]\n”, prog);

■ Personally, I think that’s too verbose. For my own programs, I define the
following macros as shorthands:

#define EPUTC(C) fputc((C), stderr)

#define EPUTS(S) fputs((S), stderr)

#define EPRINTF(...) fprintf(stderr, __VA_ARGS__)

and use them consistently. □

■ In a Unix shell, you can redirect standard error independently from stan-
dard output with 2>:

$ command > output.txt 2> errors.txt

See §12.2.5 regarding the 2. □

-

12.1 Output 181

12.1.1 Formatted Printing

The standard function printf and related functions all use a format string that is
composed of zero or more directives where a directive is either:

• A sequence of ordinary characters (not containing %) that are copied verbatim
to the output.

• A sequence of characters containing one or more conversion specifications start-
ing with % of the form:

%[flags][width][.[precision]][size]specifier

Each specification results in fetching zero or more subsequent arguments. The
type of each argument (after default argument conversions, §9.11.1)must corre-
spond with the type given by its associated conversion specifier. Some compilers
will warn you (§18.7) if the two disagree.

The components comprising a conversion specification are:

• flags: Zero or more of:

Print in “alternate form.”
0 Left-pad with 0s.
- Left-align.
(space) Space before positive number.
+ Always print sign.

Insert thousands separators for diu or integer part for fF.’

• width: A digit string specifying the minimum field width. If the converted value
has fewer characters, it will be padded with spaces (or 0s if the 0 flag was given)
on the left (or right if the flag was given) to fill out the field width.

• precision: A . (decimal point) followed by an optional digit string. (If omitted,
precision is taken as zero.) For the following specifiers, precision means:

• size: The size of the argument (similar to §2.5.1) and precedes a specifier in
table 12.1 (p. 183). The following modifiers are valid for the specifiers shown
and expect an argument of the given type:

bBdiouwxX Minimum number of digits to print.
aAeEfF Number of digits to print after the decimal point.
gG Maximum number of significant digits.
s Maximum number of characters to be printed.

182 12 Input, Output, and Files

di bBouxX n

h short unsigned short unsigned short*

hh signed char unsigned char unsigned char*

j intmax_t uintmax_t intmax_t*

l long unsigned long unsigned long*

ll long long unsigned long long unsigned long long*

t ptrdiff_t ptrdiff_t ptrdiff_t*

wN intN_t uintN_t intN_t*

z ssize_t size_t size_t*

The wN specifies an integer with a specific width N , e.g., int32_t.

aAeEfFgG c s

l double wint_t wchar_t*

L long double

H _Decimal32

D _Decimal64

DD _Decimal128

• specifier: The type of the argument and how to print it is shown in table 12.1.
Notes:
1. If precision is omitted, it defaults to 6; if 0, no decimal point is printed.

Additional notes:

• A width, precision, or both may be *. The next int argument specifies its value.
For example, from listing 2.3 (p.34), the following prints spaces spaces:

printf(”%*s”, spaces, ””);

• A negative width specifies left-alignment; a negative precision is ignored.

Some example conversion specifications are: %ld (long, decimal), %#llX (unsigned
long long, hexadecimal, with 0X and A-F), %zu (size_t, decimal), %5.1f (double,
5 characters total, 1 after the decimal point), %.2E (double, 2 digits after the deci-
mal point, with E, a sign, and a 2-digit exponent). For %s using the string ”hello,
world” (12 characters), some example conversion specifications and the resulting
output (including >. . .< to highlight widths) are:

>%s< >hello, world<

>%10s< >hello, world<

>%.10s< >hello, wor<

>%-15s< >hello, world <

>%15.10s< >hello, wor<

>%-15.10s< >hello, wor <

18312.2 Files

Table 12.1: printf conversion specifiers
aA double Floating-point in the form [-]0xh.h∗p±d where there is one

digit before the decimal point and precision digits after it. The
exponent is a + or - followed by a decimal number for an ex-
ponent of 2. For A, uses 0X, A-F, and P instead. Also note 1.

bB unsigned For b, unsigned binary integer. If the # flag is specified, 0b is
prepended. For B, uses 0B instead.

c int Character.
di int Signed decimal integer where precision (if any) specifies the

minimum number of digits to print. If the converted value has
fewer digits, it’s padded on the left with zeros.

eE double Floating-point in the form [-]d.d∗e±ddwhere there is one digit
before the decimal point and precision digits after it. For E,
uses E instead for the exponent that always contains at least
two digits. Also note 1.

fF double Floating-point in the form [-]d∗.d∗ where precision specifies
the number of digits after the decimal point. Also note 1.

gG double Similar to e or f (for g) or E or F (for G). Specifier e is used if
the exponent from its conversion < −4 or ≥ precision.

Trailing zeros are removed from the fractional part of the re-
sult. A decimal point is printed only if followed by at least one
digit. The precision specifies the number of significant digits.
If omitted, defaults to 6; if 0, it’s treated as 1.

n int* The number of characters written so far is stored into the int*
(or pointer type specified by size) pointed to by the argument.

o unsigned Unsigned octal integer. If the # flag is specified, increases pre-
cision by 1 to force a leading 0 to be printed.

p void* Pointer as a hexadecimal integer as if %#x or %#lx were given.
s char* String.
u unsigned Unsigned decimal integer.
xX unsigned For x, unsigned hexadecimal integer using a-f. If the # flag is

specified, 0x is prepended. For X, uses 0X and A-F instead.
% Literal %.

12.2 Files

While reading from standard input and writing to standard output is sufficient for
many smaller programs, larger programs often need to read from multiple or write
to specific named files on disk.

■ A filesystem (FS) is the way bytes are organized to comprise files and
directories on a “storage device.” Storage devices include spinning hard
disks (HDDs), solid-state disks (SDDs), RAMdisks, DVDs, and (going way
back) floppy disks. Typically, “disk” is used to mean any of them.

184 12 Input, Output, and Files

There are many filesystems: APFS (macOS), Ext4 (Linux), NFS (Net-
work), NTFS (Microsoft Windows), ZFS (Unix), and many others, each
with its own advantages or niche. The term “filesystem” is often used inter-
changeably with “disk.” □

We can modify the copy-file program from listing 1.3 (p. 7) to accept optional
command-line arguments (§9.7.1) of a pathname to copy from and another to copy
to as shown in listing 12.1.

26 int main(int argc, char const *const argv[]) {

27 if (--argc > 2)

28 usage(argv[0]);

29
30 char buf[BUF_SIZE];

31 size_t bytes;

32 FILE *fin = stdin, *fout = stdout;

33
34 if (argc > 0) {

35 fin = check_open(argv[1], ”r”);

36 if (argc > 1)

37 fout = check_open(argv[2], ”w”);

38 }

39
40 errno = 0;

41 do {

42 bytes = fread(buf, 1, BUF_SIZE, fin);

43 if (ferror(fin))

44 break;

45 if (fwrite(buf, 1, bytes, fout) < bytes)

46 break;

47 } while (bytes == BUF_SIZE);

48
49 fclose(fin);

50 fclose(fout);

51 if (errno != 0)

52 perror_exit();

53 }

Listing 12.1: Copy file, version 4, using files

• Line 27 first decrements argc so its value is more intuitive. (Recall from §9.7.1
that the argument count is inclusive of the program’s name, so the number of
actual arguments is one less.) If it’s > 2, calls usage that prints a usage message
and exits:

[[noreturn]] static void usage(char const *prog) {

fprintf(stderr,

”usage: %s [infile [outfile]]\n”, prog);

exit(1);

}

stdout

12.2 Files 185

If invoked incorrectly, it’s customary for Unix programs to print a usage mes-
sage in the format shown, that is “usage: ” followed by the program’s name,
followed by a synopsis of its arguments using an EBNF-like notation.†

• Line 32 introduces two new variables fin and fout that are initialized to stdin
and , respectively, for a default.

• Lines 34–35 check to see if there’s at least one argument: if so, argv[1] is the
path of the file to read from that we pass to check_open to open it:

18 static FILE* check_open(char const *path,

19 char const *mode) {

20 FILE *const f = fopen(path, mode);

21 if (f == nullptr)

22 perror_exit();

23 return f;

24 }

• Line 20 calls the standard function fopen that “opens” a file in the given mode
(§12.2.1) where ”r” means for reading. If it returns nullptr, it means an error
occurred, so call perror_exit to print an error message and exit:

[[noreturn]] static void perror_exit() {

perror(”copy”);

exit(2);

}

• Lines 36–37 check to see if there are 2 arguments: if so, argv[2] is the path of
the file to write to that we pass to check_open to open it this time with the mode
”w” for writing.

• Line 40 sets the global variable errno to 0 (no error) to ensure it’s zero since
functions that set it upon error do not set it to zero first.

• Lines 41–47 are basically unchanged from the previous version of the program
except that it is now reading from fin and writing to fout.

• Lines 49–50 close the files by calling the standard function fclose. Even though
all files are closed automatically upon normal program termination, you should
explicitly close every file opened as soon as you no longer need it.

By default, files are fully buffered meaning data “written” to a file is accumu-
lated in an internal buffer until some implementation defined capacity is reached,
then actually written — flushed — to minimize slow writes to disk. The last
chunk of data to be “written” won’t actually be written to disk until the file is
closed since it likely didn’t fill the buffer to capacity. If your program were to
terminate abnormally via a crash before closing open files, data could be lost.

†Extended BNF — A generic base standard, R. S. Scowen, Software Engineering Standards
Symposium, 1993.

• Line _exit.

r

ed.
+ rwa

186 12 Input, Output, and Files

Closing fout might fail attempting to flush its buffer. While fclose returns
EOF upon error, we don’t need to check it explicitly since it will also set errno
upon error that we do check for.

51 checks errno to see if an error occurred: if so, calls perror

12.2.1 Open Modes

An open mode is one or more of the characters shown in table 12.2.

Table 12.2: File open modes
Open for reading from the beginning of the file. Fails if the file doesn’t exist.

w Open for writing to the beginning of the file. Creates the file if needed.
a Open for writing to the end of the file (“append”). Creates the file if need

May follow one of that opens the file for both reading and writing.
x May follow w or w+ that causes the open to fail if the file already exists

(“exclusive”).
b May follow one of rwa+ that opens the file in “binary” mode, i.e., bytes are

read and written verbatim. On Unix systems, this is ignored; on Microsoft
Windows, suppresses line-ending conversions.

12.2.2 File Information

You can get information about a file via these functions declared in the sys/stat.h
standard header:

int fstat(int fd, struct stat *s)

[POSIX] Gets file information for the file descriptor (§12.2.5) fd into *s.
int lstat(char const *path, struct stat *s)

[POSIX] Gets file information for path into *s. If path is that of a symbolic
link, gets information about the link whereas stat gets information about the
file linked to.

int stat(char const *path, struct stat *s)

[POSIX] Gets file information for path into *s.

All functions return 0 on success or −1 on failure. If any function fails, it sets the
global variable errno to indicate the error.

The members of the stat structure are shown in listing 12.2. (There are other
esoteric members as well.) The members of the timespec structure are shown in
listing B.2 (p.367). The value of the st_mode member indicates the type of file as
given by the object-like macros shown in listing 12.3.

18712.2 Files

struct stat {

mode_t st_mode; // file mode

nlink_t st_nlink; // number of hard links

uid_t st_uid; // user ID

gid_t st_gid; // group ID

off_t st_size; // file size (bytes)

struct timespec st_atime; // last access time

struct timespec st_mtime; // last modification time

struct timespec st_ctime; // last status change time

// ...

};

Listing 12.2:Members of stat structure

#define S_IFIFO 0010000 // FIFO (named pipe)

#define S_IFCHR 0020000 // character special

#define S_IFDIR 0040000 // directory

#define S_IFBLK 0060000 // block special

#define S_IFREG 0100000 // regular

#define S_IFLNK 0120000 // symbolic link

#define S_IFSOCK 0140000 // socket

Listing 12.3: Values for st_mode

However, don’t use those macros directly; instead use the function-like macros
shown in table 12.3.

Table 12.3:Macros for obtaining file type
S_ISBLK(MODE) Block device?
S_ISCHR(MODE) Character device?
S_ISDIR(MODE) Directory?
S_ISFIFO(MODE) FIFO (named pipe)?
S_ISLNK(MODE) Symbolic link?
S_ISREG(MODE) Regular file?
S_ISSOCK(MODE) Unix domain socket?

An example use of lstat that print’s a file’s information is shown in listing 12.4.

12.2.3 File State

Every FILE object also maintains a “state” of its internal buffer and whether either
EOF has been encountered or an error has occurred. The following functions involve
a file’s state:

void clearerr(FILE *file)

Clears both the end-of-file and error states.

188 12 Input, Output, and Files

#include <sys/stat.h> // for lstat(2)

static char const* mode_str(mode_t mode) {

if (S_ISREG (mode)) return ”file”;

if (S_ISDIR (mode)) return ”directory”;

if (S_ISLNK (mode)) return ”link”;

if (S_ISBLK (mode)) return ”block”;

if (S_ISCHR (mode)) return ”character”;

if (S_ISFIFO(mode)) return ”named pipe”;

if (S_ISSOCK(mode)) return ”socket”;

return ”unknown”;

}

int main(int argc, char const *const argv[]) {

if (--argc != 1)

usage(argv[0]);

struct stat st;

if (lstat(argv[1], &st) == -1)

perror_exit(argv[0]);

printf(”%s %s %llu\n”, argv[1], mode_str(st.st_mode),

(unsigned long long)st.st_size);

}

Listing 12.4: Example use of lstat that prints a file’s information

int feof(FILE *file)

Returns non-zero only if file has encountered EOF.
int ferror(FILE *file)

Returns non-zero only if an error occurred using file.
int fflush(FILE *file)

Flushes the internal buffer of file to disk. If file is nullptr, flushes all
open files. Returns 0 on success or −1 on error. If it fails, sets the global
variable errno to indicate the error.

12.2.4 File Position

When reading or writing a file, there’s a current position — an offset from the be-
ginning of the file — that the next byte will either be read from or written to that
advances automatically. The following functions either get or set the current posi-
tion to an arbitrary offset:

long ftell(FILE *file)

Returns the current file position on success or −1 on failure.
int fseek(FILE *file, long *offset, int whence)

Sets the current file position to offset relative to whence, one of SEEK_SET

12.2 Files 189

(beginning of file), SEEK_CUR (current position), or SEEK_END (end of file).
Returns 0 on success or −1 on failure.

void rewind(FILE *file)

Equivalent to fseek(file, 0, SEEK_SET).

If any function fails, it sets the global variable errno to indicate the error.

12.2.5 Low-Level File I/O

On Unix systems, there’s a lower-level set of I/O functions, a subset of which is:

int open(char const *path, int flags, ...)

[POSIX] Opens path using flags. Returns a non-negative file descriptor on
success or −1 on failure.

ssize_t read(int fd, char const *buf, size_t size)

[POSIX] Reads size bytes from file descriptor fd into buf. Returns the num-
ber of bytes read on success or −1 on failure.

ssize_t write(int fd, char const *buf, size_t size)

[POSIX] Writes size bytes to file descriptor fd from buf. Returns the num-
ber of bytes written on success or −1 on failure.

int close(int fd)

[POSIX] Closes file descriptor fd. Returns 0 on success or −1 on failure.

If any function fails, it sets the global variable errno to indicate the error.
A file descriptor (fd) is an ornate name for simply an int that Unix associates

with an open file. By default, stdin is fd 0, stdout is fd 1, and stderr is fd 2.
Each also has the constants STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO
defined in unistd.h.

■Why are there two sets of functions? These functions are actually system
calls. A system call is a core function provided by an operating system that
implements only basic functionality. For example, there are no system call
counterparts for getchar, getline, or putchar; read, and write don’t do
buffering. Such functionality is provided by the C standard library.

Calling a system call is usually more expensive than calling an ordinary
function because it requires a privilege escalation to switch from user mode
to kernel mode in order to access kernel-owned memory or other resources,
then a privilege de-escalation upon return. (That’s why fread and fwrite
do buffering: to minimize system calls.)

Generally, you should avoid using system calls because your programs
will be more portable to other Unix (or non-Unix) systems that may not
provide the same system calls. In contrast, the C standard library provides

190 12 Input, Output, and Files

the same and easier-to-useAPI regardless of the operating system.However,
system calls typically offer finer-grained control than their standard library
counterparts or offer functionality not provided by the standard library. □

You can convert between a FILE* and a file descriptor via the functions:

FILE* fdopen(int fd, char const *mode)

[POSIX] Returns a FILE* for file descriptor fd on success or nullptr on
failure. The mode is from table 12.2 (p.186) and must be compatible with the
mode what was used when the file was opened (presumably using open).

int fileno(FILE *file)

[POSIX] Returns the underlying file descriptor for the given file.

If any function fails, it also sets the global variable errno to indicate the error.
Hence, you can use FILE* most of the time, and file descriptors only when you

have to.

12.2.6 Memory as a File

You can also “open” a chunk of memory and treat it as if it were a (nameless) file
via a FILE* by using either of these functions:

FILE* fmemopen(char *buf, size_t size, char const *mode)

[POSIX] Opens buf of size as a FILE. The buf pointer can either point to an
existing buffer of size or be nullptr in which case a buffer of size bytes
will both automatically be allocated initially and deallocated when the file is
closed. Returns a non-null FILE* on success or nullptr on error. The mode
is from table 12.2 (p.186).

Even though mode can be w for writing, the capacity of buf is fixed at size.
Consequently, fmemopen is useful only for reading. This is useful if you need
to use an API that uses FILE*, but you want to use memory instead, perhaps
a string read from either the terminal or a socket.

FILE* open_memstream(char **pbuf, size_t *psize)

[POSIX] Opens *pbuf for writing only. The buffer is both allocated and
grows automatically. A null character is maintained at the end of the buffer.
This byte is not included in the value written to *psize. Returns a non-null
FILE* on success or nullptr on error. After closing the file, the buffer must
be freed. The function is typically used as shown in listing 12.5.

If either function fails, it sets the global variable errno to indicate the error.

19112.2 Files

char *buf;

size_t size;

FILE *const file = open_memstream(&buf, &size);

// ... write to file ...

fclose(file);

// ... do something with buf ...

free(buf);

Listing 12.5: Typical use of open_memstream

12.2.7 A File as Memory

Conversely, you can open a file and treat it as it it were an in-memory buffer via the
functions declared in the sys/mman.h header:

void* mmap(void *addr, size_t size, int prot, int flags,

int fd, off_t off)

[POSIX] “Maps” size bytes at offset off of a file descriptor fd to memory
returning a pointer to it on success or nullptr on error.

int munmap(void *addr, size_t size)

[POSIX] “Unmaps” the memory at addr previously returned by mmap of
size. Returns 0 on success or −1 on error.

nction fails, it sets the global variable errno to indicate the error.If either fu
These are useful if you need to use an API that uses pointers, but you want to use

a FILE* instead. A file mapped with mmap must be unmapped with munmap.

■ This section is provided only so you’re aware that such functions exist
in case you might need to use them. The details of mmap, in particular the
prot and flags arguments, are beyond the scope of this book, but readily
available in the mmap(2) manual page on most Unix systems or online. □

12.2.8 Deletion

To delete either a file or directory:

int remove(char const *path)

Deletes the file (last) component of path. Returns 0 on success or −1 on
failure.

If it fails, it sets the global variable errno to indicate the error. When deleting a
directory, it must be empty.

■Onmany filesystems (§12.2), a file can be “linked” to frommore than one
directory, hence it’s literally inmultiple directories simultaneously. Deleting

192 12 Input, Output, and Files

a file is done via a path to it where the next-to-last component of the path
is a directory (of possibly many) that has a link to the file. Deleting a file
“unlinks” it only from that directory. If other directories have a link to the
file, then it still exists. A file isn’t actually deleted until the last link is.

Opening a file creates an in-memory link to it that counts exactly the
same as a directory link. On Unix systems, the number of directory links
can fall to zero by deletion, but the file will continue to exist as long as at
least one program has the file open. On Microsoft Windows, a file may not
be deleted while it’s open. □

12.2.9 Temporary Files

Sometimes you need a file to write data to temporarily and read it back at some later
time. You don’t care about the name of the file, only that it’s unique. Additionally,
you want to ensure that it’s automatically deleted upon program termination.

FILE* tmpfile()

Creates a file having a unique, unspecified name, opens it with mode w+

(§12.2.1), “unlinks” it (§12.2.8) so it will be automatically deleted upon close,
and returns a pointer to it on success or nullptr on failure.

On Unix systems, the file is created in the directory given by the value of
the TMPDIR environment variable (§12.4.4); if unset, defaults to /tmp.

If the function fails, it sets the global variable errno to indicate the error.

12.3 Directories

In addition to opening and reading files, you can also open and read directories to
get the list of files in them.

DIR* opendir(char const *path)

[POSIX] Opens path that refers to a directory for reading and returns a
pointer to a directory structure DIR on success or nullptr on failure.

struct dirent* readdir(DIR *dir)

[POSIX] Reads the next directory entry from dir and returns a pointer to a
dirent (“directory entry”) structure or nullptr if either there are no more
entries or on failure.

int closedir(DIR *dir)

[POSIX] Closes file directory dir. Returns 0 on success or −1 on failure.

”..”

19312.3 Directories

If any function fails, it sets the global variable errno to indicate the error. A program
to print the names of the files in the current directory is shown in listing 12.6.

1 #include <dirent.h>

2
3 static bool is_dot_or_dot_dot(char const *path) {

4 return path[0] == ’.’ && (path[1] == ’\0’ ||

5 (path[1] == ’.’ && path[2] == ’\0’));

6 }

7
8 int main(int, char const *const argv[]) {

9 DIR *const dir = opendir(”.”);

10 if (dir == nullptr) {

11 fprintf(stderr, ”%s: could not open\n”, argv[0]);

12 exit(1);

13 }

14 for (struct dirent const *ent;

15 (ent = readdir(dir)) != nullptr;) {

16 if (!is_dot_or_dot_dot(ent->d_name))

17 puts(ent->d_name);

18 }

19 closedir(dir);

20 }

Listing 12.6: Reading a directory

• Line 1 includes the dirent.h standard header where types and functions for
working with directories are declared.

• Line 9 calls opendir to open the directory given by the path argument returning
a pointer to a DIR object for the directory. On Unix systems, ”.” means “the
current directory” and ”..” means “the parent directory.”

• Lines 14–18 loop as long as readdir doesn’t return nullptr, i.e., there is an-
other entry. The dirent structure contains information about the entry:

struct dirent {

char d_name[N]; // entry name

// ...

};

The only member that’s guaranteed to exist on all Unix systems is d_name, the
directory entry’s name. Its maximum size N is implementation defined.

The order that directory entries are returned is implementation defined; hence,
if you wanted to print them sorted, you’d have to read them into an array first,
sort the array, then print them.

• Line 16 calls is_dot_or_dot_dot to check if the entry’s name is either ”.” or
(the current or parent directory) and prints the entry’s name only if neither.

• Lines 3–6 define the is_dot_or_dot_dot function that checks at most the first
3 characters of path. Alternatively, the function could have made two calls to
strcmp, but this implementation is more efficient.

194 12 Input, Output, and Files

12.4 Input

Program input comes from standard input by default. On Unix systems, standard
input comes from the terminal’s keyboard by default. The global variable stdin

declared in stdio.h is the pre-opened FILE for standard input. Also declared are
functions for reading input:

int fgetc(FILE *file)

Gets the next character from file. Returns the character or EOF on either
end-of-file or error.

int getc(FILE *file)

Macro version of fgetc.
int getchar()

Same as getc(stdin).
int scanf(char const *fmt, ...)

Scans formatted (§12.4.1). Returns EOF only if the end-of-file is encountered
before any conversions. Otherwise returns the number of variables assigned.
If fewer than specified, it means the input didn’t match the format.

int fscanf(FILE *file, char const *fmt, ...)

Scans formatted from file.
int vscanf(char const *fmt, va_list args)

Scans variadic args (§9.11) formatted.
int vfscanf(FILE *file, char const *fmt, va_list args)

Scans variadic args formatted from file.
int vsscanf(char const *str, char const *fmt, va_list args)

Scans variadic args formatted from string str.
size_t fread(void *buf, size_t size, size_t n, FILE* file)

Reads n objects, each size bytes, into buf from file. Returns the number
of objects (not bytes) read.

To distinguish EOF from error, you can use the functions from §12.2.3. If any function
fails, it sets the global variable errno to indicate the error.

12.4.1 Formatted Reading

The standard function scanf along with its related functions are similar to printf
(§12.1.1) and its related functions except in reverse — that is, instead of converting
values to string representations for printing, string representations of values are con-
verted to values of specific types. All use a format string that is composed of zero or
more directives where a directive is either:

12.4 Input 195

• A sequence of ordinary characters (not containing %) that are read and matched
verbatim except that white space (e.g., spaces, tabs, and newlines) will match
any amount of whitespace, including none, from the input.

• A sequence of characters containing one or more conversion specifications start-
ing with % of the form:

%[width][size]specifier

Each specification results in fetching zero or one subsequent pointer arguments
to store the converted values into. The type of each pointer argument must cor-
respond with the type given by its associated conversion specifier. (Some com-
pilers will warn you if the two disagree.)

The components comprising a conversion specification are:

• width: A digit string specifying the maximum field width.
• size: Specifies the size of the argument (similar to §2.5.1) and precedes a spec-
ifier. The following size modifiers are valid for specifiers shown and expect an
argument of the given type:

bBdinouxX aAeEfFgG cs

*

h short*

hh char*

H _Decimal32*

D _Decimal64*

DD _Decimal128*

j intmax_t*

l long* double* wchar_t*

ll long long*

L long double*

t ptrdiff_t*

wN intN_t*

z size_t*

The * causes the conversion to happen just the same, but the converted value is
discarded and no pointer argument is used nor value stored. The wN specifies a
pointer to an integer with a specific width N , e.g., int32_t (§2.7).

• specifier: The type of the argument to scan and type of pointer to store the con-
verted value into is shown in table 12.4.
Notes:

1. The usual skipping of leading white space is suppressed.
2. Scanning stops at a white-space character or when width (if any) is reached,

whichever occurs first.

3. The array must be large enough to hold the entire sequence and the termi-
nating null character.

196 12 Input, Output, and Files

Table 12.4: scanf conversion specifiers
aAeFfFgG float* Floating-point number.
c char* Sequence of width characters (default of 1). Also

notes 1, 3.
C wchar_t* Same as lc.
d int* Signed decimal integer.
i int* Signed decimal integer. If the integer begins with 0,

it’s in octal; 0b or 0B, it’s in binary; 0x or 0X, it’s in
hexadecimal.

n int* No conversion. Instead, the number of characters
parsed so far is stored into the pointed-to int.

o unsigned* Unsigned octal integer.
p void* Pointer value as if printed by %p for printf (§12.1.1).
s char* Sequence of non-white-space characters. Also notes

2, 3.
u unsigned* Unsigned decimal integer.
xX unsigned* Unsigned hexadecimal integer.
[char* Begins a set of characters to match one or more of and

ends with the] character. If the first character after [
is ^, then the set of characters to match is all but the
given set.

To include] in the set, make it the first character
after [or ^. To include a range of characters, place
- between the first and last character in the range. To
include -, make it the last character before].

The string ends when a character not in (or, with ^,
in) the set is encountered or width (if any) is reached,
whichever occurs first. Also notes 1, 3. For example,
[^]0-9-] means “everything except], 0-9, and -.”

% Literal %.

The scanf and related functions return the number of successful conversions or EOF.
For an example using fscanf, let’s rewrite listing 10.3 (p.160) to add a function

to read the planetary data from a FILE as shown in listing 12.7 rather than hard-code
it into the program.

Despite its seeming convenience, scanf and related functions aren’t generally
suitable for production-quality programs because of lack of sufficient error handling.
For example, if the fscanf in listing 12.7 returns fewer than 2 converted values, you
have no idea why a value wasn’t converted whereas a production-quality program
would likely print only the invalid value and highlight specifically which character
was the invalid one.

12.4 Input 197

void read_planet_data(FILE *f) {

for (unsigned p = 0; p < 8; ++p) {

if (fscanf(f, ”%lf,%lf\n”,

&PLANET[p].perihelion_au,

&PLANET[p].aphelion_au) != 2) {

fprintf(stderr, ”data error for planet %u\n”, p);

exit(1);

}

}

}

Listing 12.7: Read planet data from FILE using fscanf

12.4.2 String-to-Number Conversion

Although not strictly I/O-related, functions that convert strings to numbers are rel-
evant since reading input often involves reading strings of characters and convert-
ing them to numbers to do better error handling instead of using scanf and related
functions. Declared in the stdlib.h standard header, the standard string-to-number
conversion functions are:

long strtol(char const *str, char **pend, int base)

Converts string to long.
long long strtoll(char const *str, char **pend, int base)

Converts string to long long.
intmax_t strtoimax(char const *str, char **pend, int base)

Converts string to intmax_t.
unsigned long strtoul(char const *str, char **pend, int base)

Converts string to unsigned long.
unsigned long long strtoull(char const *str, char **pend,

int base)

Converts string to unsigned long long.
uintmax_t strtoumax(char const *str, char **pend, int base)

Converts string to uintmax_t.
float strtof(char const *str, char **pend)

Converts string to float.
double strtod(char const *str, char **pend)

Converts string to double.
long double strtold(char const *str, char **pend)

Converts string to long double.

• For all functions, if the string is empty, returns zero and sets errno to EINVAL.
• Otherwise, there may be leading white space that’s ignored, followed by an op-
tional + or -, followed by the digits comprising the number.

• For functions that have a pend parameter, if it’s not nullptr, the functions store
the address of the first invalid character in str into *pend. If there were no
digits at all, the functions store str into *pend. (Hence, if *str is not ’\0’, but
**pend is ’\0’ on return, the entire string was valid.)

• For the functions that have a base parameter, it specifies the base of the number
to parse, typically one of 2 (binary), 8 (octal), 10 (decimal), or 16 (hexadecimal).
If base is 0, then the base will be determined by the first one or two characters
of str: if 0b or 0B, binary; if 0x or 0X, hexadecimal; if 0, octal; if 1–9, decimal.

• If the converted value is either less than the minimum or greater than the max-
imum value for the type, then either the minimum or maximum value for the
type, respectively, is returned instead and the global variable errno is set to
ERANGE.

198 12 Input, Output, and Files

For example, the code in listing 12.8 attempts to convert the string s into a long
integer, checks for errors, and, if an invalid character is encountered, prints the value
of s with a ^ under the offending character.

1 long check_strtol(char const *s) {

2 char *end;

3 errno = 0;

4 auto const n = strtol(s, &end, 10);

5 if (errno == EINVAL)

6 fprintf(stderr, ”\”%s\”: invalid string\n”, s);

7 else if (errno == ERANGE)

8 fprintf(stderr, ”\”%s\”: range error\n”, s);

9 else if (*end != ’\0’)

10 fprintf(stderr, ”%s\n%*s^\n”, s, (int)(end - s), ””);

11 return n;

12 }

Listing 12.8: Calling strtol and checking for errors

The format string on line 10 can be broken down into: %s\n prints the string s fol-
lowed by a newline; %*s repeats the feature of printf to print a specific number of
spaces shown in listing 2.3 (p.34), in this case the difference end - s is the offset
of the offending character; and ^\n that prints a literal ^ and newline.

12.4.3 Line Reading

The functions that read entire lines are:

char* fgets(char const *buf, int buf_size, FILE *file)

Reads at most buf_size−1 characters into buf from file. Reading stops
short upon encountering a newline, EOF, or error. The newline, if any, is kept.
Returns buf on success or nullptr upon either EOF or error.

19912.4 Input

ssize_t getdelim(char **pline, size_t *pcap, int delim,

FILE *file)

[POSIX] Reads a line delimited by delim into *pline of capacity *pcap

from file. The delim character is kept. Returns the number of characters
written or −1 upon encountering EOF or error.

Initially, *plinemay either be a pointer to a malloc’d buffer or nullptr
and *pcap its capacity. In either case, getdelim will automatically grow the
buffer as needed by calling realloc and updating both *pline and *pcap.

char* getline(char **pline, size_t *pcap, FILE *file)

[POSIX] Same as getdelim with ’\n’ for delim.

To distinguish EOF from error, you can use the functions from §12.2.3. If any function
fails, it sets the global variable errno to indicate the error.

For an example using fgets, let’s rewrite listing 12.7 (p.197) to read the planetary
data from a FILE using it as shown in listing 12.9.

1 double parse_double(char const **ps,

2 char const *term_chars) {

3 char *end;

4 errno = 0;

5 auto const n = strtod(*ps, &end);

6 if (errno == ERANGE) {

7 fprintf(stderr, ”\”%s\”: value out of range\n”, *ps);

8 exit(3);

9 }

10 if (strchr(term_chars, *end) == nullptr) {

11 fprintf(stderr, ”’%c’: invalid character\n”, *end);

12 exit(4);

13 }

14 *ps = *end == ’\0’ ? end : end + 1;

15 return n;

16 }

17
18 void read_planet_data(FILE *f) {

19 char line[128];

20 for (unsigned p = 0; p < 8; ++p) {

21 char const *s = fgets(line, sizeof line, f);

22 if (s == nullptr) {

23 if (ferror(f)) {

24 perror(”orbits”);

25 exit(2);

26 }

27 break;

28 }

29 PLANET[p].perihelion_au = parse_double(&s, ”,\n”);

30 PLANET[p].aphelion_au = parse_double(&s, ”,\n”);

31 }

32 }

Listing 12.9: Read planet data from FILE using fgets

200 12 Input, Output, and Files

• Line 19 declares line, a buffer to read a line of characters into. The size is
arbitrary, but is more than big enough for this program.

• Lines 21–23 call fgets that returns a pointer to the line read or nullptr upon
either EOF or error.

• Lines 29–30 call parse_double passing a pointer to s and a set of characters
that are acceptable to terminate the conversion, in this case, either a comma (that
separates perihelion and aphelion on a line) or a newline (that separates lines).

• Lines 1–16 expand upon listing 12.8 (p.198) to parse a double from a string.
• Line 10 calls the standard function strchr (§B.2) that returns a pointer to a
character in term_chars that *end matches or nullptr if none. In this case,
either the aforementioned comma or newline.

• If it’s not one of those, lines 11–12 print an errormessage including the offending
character and exits.

• Line 14 updates *ps so that it points to the first character after the character
that terminated the conversion (unless it’s the null character) so the next time
parse_double is called, it’ll start parsing at the correct place for the next num-
ber. For example, the first time parse_double is called for a line, it will update
*ps to point to the character after the comma.

Compared to listing 12.7 (p. 197) that uses fscanf (9 lines), the fgets version
(31 lines) requires over 3 times as much code. While it’s more involved, it does a
better job of error reporting, something that users of programs appreciate. Doing a
better job of anything invariably requires more code.

We could have used getline instead of fgets, but the problem with getline

is that it grows the line buffer as needed automatically. While convenient, it’s vul-
nerable to attack because a malicious user could input a multi-gigabyte file with no
newline in it: getline would keep calling realloc to make the line bigger and it
will eventually fail. One of the foundational rules of programming is: never trust
your input.†

12.4.4 Environment Variables

Onmost systems, there are environment variables: a set of key-value pairs containing
configuration settings. On Unix systems, environment variables include HOME (user’s
home directory), PATH (set of directories containing executable programs), TMPDIR
(directory for temporary files), and many others. You are also free to create your
own. Environment variables can be read by your programs as another way to input
information in addition to either command-line options or files.

†How One Bad CrowdStrike Update Crashed the World’s Computers, Lily Hay Newman, Matt
Burgess, and Andy Greenberg, Wired, July 19, 2024.

from check_open, it doesn’t print the filename that had the error.

12.5 Epilogue 201

char* getenv(char const *name)

Returns the value of the environment variable having name or nullptr if no
such variable exists.

If the function fails, it sets the global variable errno to indicate the error.

12.5 Epilogue

Here are some key points about and some advice for input, output, and files:
• C has no built-in input/output (I/O) facilities. Instead, they’re provided by C’s
standard library.

• POSIX extends the C standard library with additional functions.
• Use standard C library functions instead of system calls whenever possible.
• In addition to stdout (standard output), there’s also stderr (standard error) for
print error messages to.

• When opening and reading files, you should always check for errors and print
informative error messages.

• Avoid using scanf for production-quality programs. It’s better to read text files
a line at a time and parse them individually.

• Environment variables offer another way to input information to your programs.

Exercises

1. The perror_exit function (p. 185) is somewhat lacking in that, when called

To print the filename, modify perror_exit to have the signature:

[[noreturn]]

static void perror_exit(char const *what);

that prints to standard error as before and if what is:

• Not nullptr, prints “copy: ” as before, followed by what, followed by a
colon and the error message that perror would have printed.

• nullptr, calls perror as before.

With this modification, what the error message is about will be printed, e.g.,
check_open can pass path. You will need the standard function strerror

(§B.2) that you can pass errno to.
2. Modify listing 12.4 (p. 188) to print a file’s size using units, one of bytes (B),

kilobytes (KB), megabytes (MB), or gigabytes (GB) depending on its size.

3. Combine listings 12.4 (p.188) and 12.6 (p.193) to print a file’s name, type, and
size for every file in the current directory.

4. Modify your solution to the previous exercise to use a width in a printf con-
version specification (§12.1.1) so that a file’s name, type, and size are printed in
aligned columns.

202 12 Input, Output, and Files

5. Listing 12.9 (p.199) includes the line:

21 char const *s = fgets(line, sizeof line, f);

A problem with this is that if the length of a line > sizeof line−1, the line is
too long and line will not end with a newline.

Modify listing 12.9 to check for this case and print an error message and exit
if encountered.

Chapter 13

 Program Organization

For all but the most trivial programs, a typical C program is composed of several
source (.c) files and header (.h) files. For example, the source files of ad† are:

ad.c color.h match.c options.h unicode.c util.h

ad.h dump.c match.h pjl_config.h unicode.h

color.c dump_c.c options.c reverse.c util.c

Often, .c and .h files come in pairs where the .c implements some functionality
and the .h provides the “public” API for using it. All the functions comprising a
program are spread among pairs of files with each pair specializing in some particular
aspect of the program. One or more pairs roughly approximates a “module” in other
languages. For example, color.c contains the definitions of functions for printing
text in color to a terminal and its corresponding color.h contains their declarations
so that other files may #include it to use those functions.

13.1 Include Guards

Compared to a proper module facility, #include (§8.6) is rather simple because it
includes the full text of a header file as-is. In C, it’s an error to declare enumera-
tions (§7), structures (§10), or unions (§11) more than once, even if the declarations
are identical. Given that, you can get “redefinition errors” when a header contain-
ing a declaration is included more than once. For example, color.h contains the
declaration:

enum color_when { // ...

†ad: ASCII or UTF-8 file dump that can also search for and highlight strings or numbers, Paul J.
Lucas, https://github.com/paul-j-lucas/ad

203© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_13

https://github.com/paul-j-lucas/ad
https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_13&domain=pdf

204 13 Program Organization

It’s included by options.h and ad.c that also includes it:

options.h ← color.h

ad.c ← color.h, options.h

Given that, the declaration for color_when would be seen twice and be an error. To
fix this, an include guard should be used in every header file. It has the form:

#ifndef name
#define name
// ... declarations ...

#endif

That is, all the declarations should be between an #ifndef name, #define name,
. . . #endif sequence where name is a unique name within a program. Generally,
making the names be the name of the file prefixed by the name of the program is
sufficient. A properly included-guarded color.h is shown in listing 13.1.

#ifndef ad_color_H

#define ad_color_H

enum color_when { // ...

#endif /* ad_color_H */

Listing 13.1: A properly include-guarded color.h

■ Putting comments after #endif isn’t necessary, of course, but it’s gen-
erally considered good style to repeat the condition used in the #ifndef,
#ifdef, or #if. □

Assuming ad.c contains:

#include ”color.h”

#include ”options.h”

when it’s being compiled, the following happens:

1. The preprocessor opens ad.c and starts processing text, line by line.
2. It encounters #include ”color.h”, so it opens that file and begins processing:

a. It encounters #ifndef ad_color_H: since ad_color_H hasn’t been de-
fined, it continues processing text.

b. It encounters #define ad_color_H and defines that name. (That it’s de-
fined to nothing doesn’t matter; what matters is that the name itself is de-
fined.)
then continues processing text passing it through verbatim to the cc.

d.
It ompiler.
It encounters the #endif corresponding to the #ifndef and reaches the
end-of-file.

3. Returning to ad.c, it encounters #include ”options.h”, so it opens that file
and begins processing:

a. It encounters #include ”color.h”, so it opens that file and begins pro-
cessing it.

b. It again encounters #ifndef ad_color_H: this time since ad_color_H has
been defined, it continues processing text, but discards it instead.

c. It encounters the #endif corresponding to the #ifndef and reaches the
end-of-file.

d. Returning to options.h, it processes the rest of that file.

4. Returning to ad.c, it processes the rest of that file.

13.2 Opaque Types 205

13.2 Opaque Types

As an alternative to putting structure definitions in headers, you can put only dec-
larations; the definitions are put into .c files. For example, instead of defining the
entire string structure, only declare that string is a structure:

struct string; // ”string” is a struct (no details)

This is known as an opaque type (aka, incomplete type). C allows pointers to such
structures exactly the same as pointers to those that are defined since all pointers are
the same size (on modern computers). The advantages of opaque types include:

+ Prevents programmers from “cheating” by accessing members they shouldn’t,
i.e., undocumented members or members documented as private. If program-
mers cheat, making changes to members can break programs.

+ Adding or removing members does not require that any dependent code be re-
compiled thereby providing binary compatibility. This is especially important
for libraries since it allows updated versions to be “drop-in” replacements for
older versions.

+ That means fewer dependencies between files that translates into both fewer and
faster recompilations.

The disadvantages of opaque types include:

– All objects of an opaque type in user code must be dynamically allocated and
deallocated that is less efficient than objects on the stack.

– Doing anything with an opaque type requires using non-inline functions that are
slower than either simply accessing members directly or using inline functions
(§9.10).

206 13 Program Organization

13.3 Self Sufficient Headers

Before continuing, what it means for a header file to be self-sufficient needs to be
defined:

• Self-sufficient header: a header where if it were included by itself into a .c

file, that file would compile without errors (specifically, without “undeclared”
errors).

For example, a trivial program like:

#include ”color.h”

int main() { }

will compile without errors only if color.h is self-sufficient.

13.3.1 Including Headers in a Header

Typically, a header file will need to include other header files because the declarations
make use of other declarations in those other header files. Within a header file:

• Include other local headers first (with ””), if any, followed by standard headers
(with <>), if any.

For example, color.h has its includes like:

#include ”config.h” // Good: include local headers ...

#include ”util.h”

#include <stdio.h> // ... before standard headers.

// ...

Why put local headers first? Because this helps ensure that every header file is self-
sufficient. For example, if you put standard headers first like:

#include <stdio.h> // Bad: include of standard headers ...

#include ”util.h” // ... before local headers.

then it’s possible for declarations in util.h to use declarations in stdio.h by “ac-
cident” without util.h itself including stdio.h. This will continue to work indefi-
nitely, but if at some point you no longer need stdio.h in color.h and so delete its
#include, then you’ll get “undeclared” errors in util.h. Up until this time, you’ll
never have noticed that util.h isn’t self-sufficient. Once you notice, it’s easily fixed,
but it’s better to avoid the problem in the first place by always including local headers
before standard headers.

20713.3 Self Sufficient Headers

13.3.2 Include Everything Necessary

Within a header file:

• You must include every other header it needs to be self-sufficient.

Never force users of your header to have to include some other header(s) before
yours in order to compile without errors.

■ BSD-derived operating systems have historically tended to violate this
guideline. The rationale for doing so is that it’s an alternate way to help
maximize compilation speed. It does this by forcing you to be a “human
include guard.” For example:

#include <sys/types.h>

#include <pwd.h> // needs <sys/types.h>

#include <unistd.h> // needs <sys/types.h> too

Rather than pwd.h and unistd.h each including sys/types.h, both rely
on you to do the include yourself.

How does that help? It eliminates the step whereby the preprocessor has
to open types.h, read the file, encounter the include guard, and omit the
rest of the contents if the guard has been seen before (as would be the case
for unistd.h).

While it does help, the price is that it forces users to have to remember
to include files manually that can lead to having unnecessary includes that
slow down compilation. For example, if at some point you removed the
includes for pwd.h and unistd.h, that might result in types.h no longer
being needed, but you might forget to remove it.

Like many other things in computer science, it’s a trade-off. BSD-
derived systems have been moving away from this practice and making
headers self-sufficient. □

13.3.3 Interdependencies

Larger programs typically contain many type definitions, specifically structure defi-
nitions (§10). Sometimes those definitions contain interdependencies. Consider list-
ing 13.2 showing two headers, c_alignas.h and c_ast.h, each declaring its own
structure.

The c_alignas structure contains a c_ast*, so c_alignas.h would need to
include c_ast.h. The c_ast structure contains a c_alignas*, so c_ast.h would
need to include c_alignas.h. They can’t successfully include each other.

One common way to break the interdependency is to create a third header like
types.h that contains only structure declarations as shown in listing 13.3. Such
declarations state that c_alignas and c_ast are structures and allow pointers to

208 13 Program Organization

struct c_alignas { // declared in c_alignas.h

// ...

struct c_ast *type_ast; // aligned as this type

};

struct c_ast { // declared in c_ast.h

struct c_alignas *align; // alignment, if any

// ...

};

Listing 13.2: Interdepenent headers

// types.h

struct c_alignas;

struct c_ast;

// ...

Listing 13.3: “Types” header to break header interdependencies

them to be used, but the definitions aren’t important now and will be defined later.
While similar to opaque types (§13.2), they’re only temporarily opaque since the
definitions are still in headers.

13.4 Cooperating with C++

Libraries written in C are often used by C++ programs, so header files for such li-
braries are included by both C and C++ programs. C++ has the concept of language
linkage that is specified by a variant of extern (§4.3.2) having two forms:

extern ”C” declaration Gives declaration C linkage.
extern ”C” { declarationsopt} Gives declarations C linkage.

Declarations marked extern ”C” have “C linkage.”

■ Producing executables for C programs involves using several programs
comprising a toolchain in sequence:

preprocessor→ compiler→ assembler→ linker→ a.out

A linker is a program that takes one or more .o files and the C standard
and other libraries and “links” them together into a single executable file —
a.out by default.

Traditional Unix linkers have only a single namespace. Since C++ sup-
ports function overloading, the compiler has to “mangle” every function’s
name to encode its signature (§9.1) to yield a unique name. Mangling algo-
rithms are implementation defined, but are along the lines of:

20913.5 Including Headers in a .c File

void foo(); // _Z3foov

void foo(int); // _Z3fooi

The prefix “_Z” marks the start of a mangled name followed by the length
of the function’s name followed by the name followed by an encoding of its
parameter types, here “v” for void and “i” for int.

Since C doesn’t support function overloading (§9.3), mangling isn’t nec-
essary. A function foo() in C is simply foo. For a C++ compiler to be able
to compile and link with C code, there needs to be a way to turn off mangling
while compiling C declarations in header files (since the compiler doesn’t
know they’re C and not C++ declarations). That’s what extern ”C” does.

In C++, ”C” and ”C++” are the only standard language linkages (though
you never need to use ”C++” explicitly since that’s the default). Additional
language linkages are implementation defined. For example, IBM’s XL
C/C++ compiler also supports ”COBOL”, ”FORTRAN”, and ”PLI”. □

Since extern ”C” is C++ only, such declarations have to be seen only when
compiling with a C++ compiler. The preprocessor can be used to check whether
__cplusplus (§8.4) is defined and declare an EXTERN_C macro appropriately as
shown in listing 13.4. The EXTERN_C macro can then be used on a declaration-by-
declaration basis.

#ifdef __cplusplus

define EXTERN_C extern ”C” // compiling with C++

#else

define EXTERN_C /* nothing */ // compiling with C

#endif /* __cplusplus */

EXTERN_C void string_puts(struct string *str,

char const *s);

EXTERN_C void string_cleanup(struct string *str);

Listing 13.4: Using extern ”C” via a macro

Alternatively, and more commonly because it’s simpler, the preprocessor can be
used to “wrap” the entire contents of a header file with extern ”C” { . . . } as shown
in listing 13.5.

13.5 Including Headers in a .c File

For a .c file, all the guidelines for including headers in a header file also apply, but
with one tweak for including local headers:

• For a given .c file, e.g., color.c, include its matching header, color.h, first.

Why? Two reasons:

210 13 Program Organization

#ifdef __cplusplus

extern ”C” {

#endif /* __cplusplus */

void string_puts(struct string *str, char const *s);

void string_cleanup(struct string *str);

#ifdef __cplusplus

} // extern ”C”

#endif /* __cplusplus */

Listing 13.5: Using extern ”C” { ... } conditionally

1. It helps ensure the header is self-sufficient.
2. It ensures the function declarations in a .h match their definitions in a .c file.

Calling functions viamismatched signatures results in undefined behavior (§15).

13.6 Initialization and Clean-Up

If your .c file requires that some initialization is done prior to use, you can define
an “init” function and document that it must be called first. Similarly, if your .c file
requires that some cleanup is done prior to normal program termination, you can
define a “cleanup” function and document that it be called last.

■ C doesn’t have a standard naming convention for such functions, but
naming them module_init and module_cleanup is what I do for my own
programs. □

C does offer a mechanism for registering functions that are called automatically
upon normal program termination after exit is called via the standard function
atexit declared in stdlib.h:

int atexit(void (*function)());

That is, you pass atexit a pointer to a function (§6.10) having neither parameters
nor a return value. The best place to call atexit is from an init function:

void colors_init() {

atexit(&colors_cleanup);

// ...

Any function can call atexit to register a cleanup function, but no cleanup func-
tion should be registeredmore than once. The number of times atexitmay be called
is implementation defined, but guaranteed to be at least 32. Upon normal program
termination, registered functions are called in reverse order of registration. A regis-
tered function can do any necessary cleanup, but if it encounters an unrecoverable
error, it must not call exit; instead, it should call _Exit.

quick_exit

quick_exit

defines size_t (among other things) used on line 12.

21113.7 Header Example

C also offers an alternate way to terminate a program via:

[[noreturn]] void quick_exit(int status);

The difference between it and exit is that quick_exit does slightly less cleanup
than exit. The intent is to provide a way for a program to exit quickly perhaps in
response to a signal (§18.5).

Correspondingly, C offers a way to register functions that are called automatically
upon quick_exit being called via the standard function at_quick_exit:

int at_quick_exit(void (*function)());

Functions registered with at_quick_exit should perform only the bare minimum
of cleanup and do so quickly. The specific differences between it and exit are:
• Functions registered with at_quick_exit are not called automatically upon
normal program termination; instead, must be called explicitly.

• Similarly, functions registered with atexit are not called automatically upon
calling .

• If a cleanup function should be called upon either normal program termination
or quick_exit, it can be registered with both atexit and at_quick_exit.

Advice: use atexit by default unless you have a reason to use at_quick_exit.

13.7 Header Example

A complete, self-sufficient wlc_string.h header file for the string structure and
associated functions given in §1.9 is shown in listing 13.6. (It’s not named simply
string.h so it’s not confused with the string.h standard header.)
• Lines 1, 2, and 22 comprise the header’s include guard (§13.1).
• In order to be self-sufficient, line 4 includes stddef.h, a standard header that

It’s a good practice to add a comment at the end of a #include line saying
what you’re including the header for. (When a file includes lots of headers, it
can be easy to forget.)
nes 15–16 declare the functions provided for the string structur•

•
Li e.
Lines 6–8 and 18–20 ensure the functions have C linkage (§13.4) when compiled
with a C++ compiler.

The corresponding wlc_string.c file would simply #include it followed by the
function definitions:

#include ”wlc_string.h”

// ... definitions of functions ...

212 13 Program Organization

1 #ifndef wlc_string_H

2 #define wlc_string_H

3
4 #include <stddef.h> /* for size_t */

5
6 #ifdef __cplusplus

7 extern ”C” {

8 #endif /* __cplusplus */

9
10 struct string {

11 char *contents; // pointer to actual contents

12 size_t len; // length (not including null at end)

13 };

14
15 void string_puts(struct string *str, char const *s);

16 void string_cleanup(struct string *str);

17
18 #ifdef __cplusplus

19 } // extern ”C”

20 #endif /* __cplusplus */

21
22 #endif /* wlc_string_H */

Listing 13.6: wlc_string.h header

13.8 File Organization

Unlike some modern languages, C has no requirements for how files are organized
in directories. Small programs typically have all their files in a single directory;
medium-sized programs typically have their files organized by type (source files,
test files, documentation files, etc.). For example, the files of ad are organized as
shown in table 13.1. This organization of files and directories is typical for open-
source programs.

Table 13.1: File and directory organization
AUTHORS Doxyfile NEWS configure.ac man/

COPYING INSTALL README.md lib/ src/

ChangeLog Makefile.am bootstrap m4/ test/

• AUTHORS: List of authors and their major contributions.
• COPYING: The software license file.
• ChangeLog: List of changes to other files by date and author.
• Doxyfile: Doxygen (§2.1) configuration file.
• INSTALL: Instructions for compiling and installing the program.
• Makefile.am: automake† (part of Autotools) configuration file.

†https://www.gnu.org/software/automake/

https://www.gnu.org/software/automake/

• NEWS: Description of user-visible changes.
• README.md: Description of the program, examples of use, specific compilation
or installation instructions, and anything else of interest, i.e., anything the user
should read beforehand.

• bootstrap: Shell script to “bootstrap” building the program.
• configure.ac: autoconf† (part of Autotools) configuration file.
• lib/: Directory containing source code for 3rd-party libraries the program re-
quires, if any.

• m4/: Directory containing automake macros.
• man/: Directory containing program documentation (manual pages).
• src/: Directory containing source code of the program.
• test/: Directory containing test files.

13.9 Build Tools 213

Within src, small to medium-sized programs typically have all their .c and .h

files in the same directory; larger programs typically further divide files into subdi-
rectories by “subsystem,” where each subsystem focuses on one aspect of the pro-
gram. For example, a compiler might be broken down into subsystems like: lexer,
parser, symtable, codegen, optimizer, and util.

13.9 Build Tools

Unlike some modern languages, C has no official build tools beyond the compiler
and linker, specifically tools for building sets of files comprising any non-trivial C
program. You could always simply do something like:

$ cc -o ad *.c # works, but inefficient

that would compile all the .c files and link them into an executable named ad, but
that would recompile all files needlessly every time you recompiled. If you change
some files, you ideally want to recompile those files and only those other files that
depend on (via #include, §8.6) the ones you changed.

The oldest build tool is Make. To use it, you create a Makefile containing both
lists of dependencies (which files depend on which other files) and list of commands
needed to build files when the file on which they depend have changed (have a later
time-stamp), e.g., how to build a .o file from a .c file.

In addition to Make, there’s also Ninja. Both are “low-level” build tools. There
are also several “higher-level” build tools like Autotools, CMake, GN, Meson, and
others, that are easier to use, cross-platform, have more capabilities, or a combina-
tion, that generate one or more of Make, Microsoft Visual Studio C, Ninja, or Xcode
files as output. The details of any of the low- or high-level build tools are beyond

†https://www.gnu.org/software/autoconf/

https://www.gnu.org/software/autoconf/

• Include your own headers before standard headers.

extern ”C”

214 13 Program Organization

the scope of this book — entire other books and web sites have been written about
them.

Alternatively, you can use an IDE like CLion, Code::Blocks, Eclipse, Microsoft
Visual Studio C, Xcode, and others, that handle the building for you.

■ For my own projects (including this book written using LATEX), I use
Autotools as my build tool (to build not only the PDF for the book, but all
of the larger C examples to ensure they compile and pass tests so I know
they’re correct) and vim as my editor. But I’ve been programming a long
time, so I’m likely set in my ways. Don’t let my choices bias yours. □

13.10 Epilogue

Here are some key points about and some advice for organizing your programs:

• Split your program into “modules” where each specializes in some aspect of
your program.

• Use include guards.
• Make all your headers be self sufficient.

• If you have mutually dependent headers, use a “types” header to break the de-
pendency cycle.

• Use if your headers can also be used in a C++ program.
• Consider using opaque types if you need any of their advantages and can live
with their disadvantages.

• Consider using atexit or at_quick_exit for module clean-up.

Chapter 14
Multithreading

Operating systems, with the exception of those for early home computers, are able
to run multiple programs, aka, processes, simultaneously. Each process runs inde-
pendently and concurrently, typically on its own CPU (in multi-CPU systems) and
has its own memory space meaning that one process can’t access the memory of
another (by default). In turn, processes are able to run multiple threads concurrently
where each thread is typically running a different function (or the same function,
but on different data) independently at any given time for improved throughput thus
performance.

Every process starts out having only one thread, aka, is single-threaded, known as
either “thread 1” or the “main thread.” Any thread can create or “spawn” new threads
at which point the process becomesmultithreaded. Eventually, after the work threads
were doing has completed, they must be joined prior to program termination. This
is illustrated in figure 14.1.

create join
thread 1 (main)

thread 2

Fig. 14.1: Creating and joining a thread

■ In the late 1960s, early 1970s, programs (running on computers such as
the PDP-7 and later the PDP-11) were:

• Single-threaded. (While nascent “threads” appeared in 1966, POSIX
threads didn’t appear until 1995.)

• Executed sequentially. (That is, machine code instructions generated
by compilers were executed one at a time and in the same order as the
original statements in your program were written.)

• Running in flat (non-hierarchical) memory. (CPU caches didn’t exist
until the late 1970s and didn’t go mainstream until 1993 with the Intel
Pentium.)

215© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_14

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_14&domain=pdf

216 14 Multithreading

While CPUperformancewas increasing rapidly,memory performance lagged.
By as early as the late 1980s, processor performance was already an order
of magnitude faster than memory. In order not to have overall performance
constrained by memory, CPU designers had to employ mitigation tactics of:

• Memory caching.
• Instruction parallelization.
• Speculative execution.
• Multiple CPUs/cores.

All of these tactics are done entirely by the hardware. You as the program-
mer have no way either to know or really influence what’s going on behind
the curtain. Additionally, compiler implementers also employ their ownmit-
igation tactics of:

• Constant folding.
• Copy elision.
• Statement hoisting.
• Instruction scheduling.
• Loop unrolling.
• . . . and many more.

The compiler is free to do any optimization so long as it makes no change
to the observable behavior of your program.

As long as your program has only a single thread, you can remain bliss-
fully unaware of either the hardware or compiler tactics being employed.
But once you have multiple threads, you must become acutely aware of
what’s going on behind the curtain. □

Because different threads are typically running different functions, each may take
a different amount of time and so reach the “finish line” in an order that’s different
than either expected or in different runs of the same program. This is known as a
race condition that results in undefined behavior (§15).

Unlike processes, all threads share the same memory space. While efficient, one
serious pitfall is that a data race, a kind of race condition, can occur when multiple
threads share the same memory, say of a variable. Mechanisms to prevent data races
must be used consistently to prevent subtle bugs that are often hard to reproduce. A
variable or function is said to be thread-safe only if accessing the variable or calling
the function from multiple threads concurrently will not cause a data race.

C supports writing multithreaded programs, specifically by providing mecha-
nisms to create and join threads, and to access data in thread-safe ways.

■ Originally, C didn’t support multithreading at all. As mentioned, POSIX
threads, aka, pthreads (“pea-threads”), didn’t appear until 1995 in the form
of a library. Pthreads is widely available on any Unix system and even Mi-
crosoft Windows ports exist.

14.1 Creating and Joining Threads 217

Sixteen years after pthreads was introduced, C11 finally added standard
library support for threads via the threads.h header with the following
caveats:

• Threads are an optional feature. If the __STDC_NO_THREADS__ macro
(§8.4) is pre-defined to be 1, then standard threads are not supported.
Consequently, pthreads is more likely to be supported than standard
threads.

• Standard threads offer only a small subset of the functionality provided
by pthreads. If your program needs only that subset, then the choice
of which threads you use can be a matter of availability or preference.
More complex multithreaded programs or those that need wide porta-
bility may require pthreads.

Because of its smaller API, this chapter uses standard threads. Entire other
books have been written about pthreads.† Fortunately, except for one small
difference of the standard thread’s start function returning int whereas
pthreads’ returns void*, the two APIs are otherwise entirely compatible
and translated easily from standard to pthreads. □

14.1 Creating and Joining Threads

A small example program that creates and joins a thread is shown in listing 14.1.

1 static int print_msg(void *thread_data) {

2 char const *const msg = thread_data;

3 fputs(msg, stdout);

4 return 0;

5 }

6
7 int main() {

8 thrd_t t;

9 thrd_create(&t, &print_msg, (void*)”hello, world\n”);

10 // ...

11 thrd_join(t, /*pretval=*/nullptr);

12 }

Listing 14.1: Creating and joining a thread

• Line 8 declares an object of type thrd_t, an opaque type for a “handle” object
to a thread.

• Line 9 creates a thread by calling thrd_create passing &t, where to deposit
the thread’s handle, &print_msg, the address of the start function the thread will

†Programming with POSIX Threads, David R. Butenhof, Addison-Wesley, Reading,
Massachusetts, 1993.

14 Multithreading218

start execution in, and an optional pointer to arbitrary data passed to the function,
here a message to print. The cast is necessary to cast away const (§3.14.2) since
string literals are char const*.

Upon successful return, the thread is created and starts execution immediately
in the given function.

• Line 11 calls thrd_join to join the thread:

– If the thread’s function has already returned, thrd_join returns immedi-
ately.

– Otherwise thrd_join will wait indefinitely for the function to return.

thrd_join takes an optional int* for where to store the return value of the
thread’s start function.

• Meanwhile, print_msg starts executing on line 2 by converting thread_data
to char*, the message to print on line 3.

• Line 4 returns an integer as the thread’s return value. Unlike main (§9.7), the
value 0 has no significance to the operating system. The value is stored at the ad-
dress given by thrd_join’s second argument (if not nullptr). When a thread’s
start function returns, the thread terminates and awaits to be joined (if not de-
tached, §14.2).

Alternatively, you can terminate a thread at any time from any function by calling
thrd_exit passing an integer for the thread’s return value as if it had been returned
by the thread’s start function.

14.2 Detaching Threads

By default, every thread created must be joined. Failure to join threads will result
in a “thread leak.” Eventually, resources for creating new threads will be exhausted.
Alternatively, a thread can be detachedmeaning that when it terminates, its resources
will be cleaned-up automatically. A thread can be detached by calling:

thrd_detach(thread);

on thread any time after its creation (typically, shortly after) by either the creating
thread (as above) or the created thread by doing:

thrd_detach(thrd_current());

Once a thread has been detached, it can’t be joined. Detaching threads has the fol-
lowing caveats:

– It’s impossible to get the return value of a thread’s start function.
– It’s harder to know when the thread has terminated.

14.3 “Atomic” 219

And one serious pitfall:

– It’s possible for the main thread to terminate (thus terminating the program) out
from under the detached thread that may still be running leading to undefined
behavior (§15).

While the caveats can be ignored, the pitfall can’t. There are other ways for the main
thread to wait for detached threads to terminate, but then the threads might as well
not have been detached in the first place.

14.3 “Atomic”

When doing multithreaded programming, you’ll hear the term atomic used. What,
exactly, is meant by “atomic” anyway? There are three related, but distinct, mean-
ings:

1. A value operation (read or write) completes with no possible intervening oper-
ation by another thread, e.g., writing single-byte values on any CPU, or 16- or
32-bit values on a 32-bit CPU, or 64-bit values on a 64-bit CPU.

2. An updated value is visible to every CPU.
3. Multiple value operations complete with no possible intervening operation by

another thread, e.g., updating A and B together (“transactional”).

“Atomic” always means #1; it usually also means #2; or all three.

14.3.1 A Bad Example

Consider the code shown in listing 14.2 where the main thread creates another. Both
threads run so long as shutdown remains false. To shut down, the main thread sets
shutdown to true. In response, both while loops will exit and the main thread will
join the other thread. Unfortunately, the code is wrong.

■More unfortunately, I’ve seen such code in production. □

It’s wrong because shutdown is shared among multiple threads improperly. Some
programmers mistakenly think along the lines of:

It’s only a bool, a single byte, so of course it’s thread-safe because you
can’t read or write half a byte, so it must be atomic.

The problem is that, while that’s actually true, it’s insufficient. A bool is atomic only
by meaning #1; it’s not atomic by meaning #2. That is, just because a bool is updated
by one thread does not mean that updated value is visible to other threads (running
on other CPUs).

14 Multithreading220

bool shutdown;

static int worker_main(void*) {

while (!shutdown) {

// ...

}

return 0;

}

int main() {

thrd_t t;

thrd_create(&t, &worker_main, nullptr);

while (!shutdown) {

// ...

if (cond-expr)

shutdown = true;

}

thrd_join(t, nullptr);

}

Listing 14.2: A bad example

■ Even though all modern CPUs implement cache coherency, registers
among CPUs are not coherent (by design). Often, values are copied from
the cache into a register in order to be operated on, e.g., decremented. Ad-
ditionally, even a simple statement like --countmay be compiled into sev-
eral assembly language instructions. For example, the optimized assembly
for ARMv8 looks something like:

adrp x8, count ; x8 = &count

ldr w9, [x8] ; w9 = *x8

sub w9, w9, #1 ; w9 = w9 - 1

str w9, [x8] ; *x8 = w9

If another thread updates count after the ldr (load into register) but before
the str (store from register) completes, then that value will be overwritten
by the str. □

■ I’ve also seen code where programmers knew they had to do something
to make such code thread-safe. Unfortunately, that something was:

bool volatile shutdown; // Thread-safe now? No!

That is, they inserted volatile (§22) because they kind-of understand what
it does, but not what it’s for. The use of volatile to attempt to make some-
thing thread-safe is always wrong in C. □

22114.4 Mutexes

14.4 Mutexes

One thread-safe way to share data among threads is to ensure that all accesses are
mutually exclusivemeaning that only one thread is allowed access at a time— others
must wait their turn. Amutex (a portmanteau of “mutual exclusion”) is an object that
is used to coordinate access.

To access shared data, a thread first locks amutex (“holds the lock”), then accesses
the data, and finally unlocks the mutex. A mutex enables data accesses to be atomic
(all meanings). One way to fix the bad example shown in listing 14.2 is by using a
mutex as shown in listing 14.3.

1 bool shutdown;

2 mtx_t shutdown_mtx;

3
4 static bool load_bool_mtx(bool *src, mtx_t *mtx) {

5 mtx_lock(mtx);

6 bool const value = *src;

7 mtx_unlock(mtx);

8 return value;

9 }

10
11 static void store_bool_mtx(bool *dst, bool value,

12 mtx_t *mtx) {

13 mtx_lock(mtx);

14 *dst = value;

15 mtx_unlock(mtx);

16 }

17
18 static int worker_thread(void*) {

19 while (!load_bool_mtx(&shutdown, &shutdown_mtx)) {

20 // ...

21 }

22 return 0;

23 }

24
25 int main() {

26 mtx_init(&shutdown_mtx, mtx_plain);

27 thrd_t t;

28 thrd_create(&t, &worker_thread, nullptr);

29
30 while (!load_bool_mtx(&shutdown, &shutdown_mtx)) {

31 // ...

32 if (cond-expr)

33 store_bool_mtx(&shutdown, true, &shutdown_mtx);

34 }

35 thrd_join(t, nullptr);

36 mtx_destroy(&shutdown_mtx);

37 }

Listing 14.3: The bad example, fixed using a mutex

shutdown_mtx shutdown

14 Multithreading222

• Line 2 declares to be a mutex to guard accesses to .
• Line 26 initializes shutdown_mtx using the standard function mtx_init before
its first use. The mtx_plain specifies that the mutex is to be of the “plain” type.

• Rather than read shutdown directly, lines 19 and 30 call load_bool_mtx to read
it using shutdown_mtx.

• Lines 4–9 declare load_bool_mtx, a useful function to read the value of a bool
guarded by a mutex by first locking it, copying the data, and unlocking it.

• Similarly, rather than assign to shutdown directly, line 33 calls store_bool_mtx
to write it using shutdown_mtx.

• Lines 11–16 declare store_bool_mtx, a useful function to write the value of a
bool guarded by a mutex by first locking it, writing the data, and unlocking it.

• Line 36 destroys shutdown_mtx using the standard function mtx_destroy. All
mutexes must be destroyed when no longer needed.

For another way to fix the bad example, see listing 17.2 (p.248).

■ In programs like the one shown in listing 14.3 where only one thread ever
writes to a variable like shutdown and all other threads only ever read it,
the readers block each other unnecessarily because locking a mtx_t blocks
all accesses.

Pthreads has another kind of mutex, a read-write lock, where threads
can request either a read-only lock that allows any number of threads to
read the variable concurrently without blocking each other, or a read-write
lock that allows only one thread exclusive access to the variable. In cases
where a variable is read frequently but updated infrequently, read-write
locks are better. Unfortunately, standard threads don’t yet implement read-
write locks. □

For another example, thread-safe versions of the slist functions from listing
6.3 (p.87) are shown in listing 14.4. The code is virtually the same as before except
that calls to mtx_lock and mtx_unlock were inserted where necessary and almost
doesn’t need explanation.

• In slist_push_mtx, mtx_lockwas not inserted at the very start of the function
on line 3 because the code on lines 3–4 can (and should) be done without holding
the lock. Line 6 locks the mutex only when absolutely necessary, i.e., when we
need to read and update *phead.

• Similarly in slist_pop_mtx, mtx_unlockwas not inserted immediately before
the last return on line 33 because the code on lines 31–32 can (and should) be
done without holding the lock. Line 30 unlocks the mutex as soon as possible,
i.e., after *phead has been updated.

You might be wondering why thread-safe versions of the functions are needed
at all: why not simply lock a mutex before calling any one of the original functions
and unlock it after? While that would work, it wouldn’t be as efficient since the
locks would be held longer than necessary. By implementing separate thread-safe

14.4 Mutexes 223

1 void slist_push_mtx(struct slist **phead, void *data,

2 mtx_t *mtx) {

3 struct slist *const new_head =

4 malloc(sizeof(struct slist));

5 new_head->data = data;

6 mtx_lock(mtx);

7 new_head->next = *phead;

8 *phead = new_head;

9 mtx_unlock(mtx);

10 }

11
12 [[nodiscard]] void* slist_peek_mtx(struct slist *head,

13 mtx_t *mtx) {

14 mtx_lock(mtx);

15 auto *const data = head != nullptr ?

16 head->data : nullptr;

17 mtx_unlock(mtx);

18 return data;

19 }

20
21 [[nodiscard]] void* slist_pop_mtx(struct slist **phead,

22 mtx_t *mtx) {

23 mtx_lock(mtx);

24 auto const head = *phead;

25 if (head == nullptr) {

26 mtx_unlock(mtx);

27 return nullptr;

28 }

29 *phead = head->next;

30 mtx_unlock(mtx);

31 auto const data = head->data;

32 free(head);

33 return data;

34 }

Listing 14.4: Thread-safe versions of slist functions

functions, we can lock and unlock a mutex at exactly the right points to minimize
the time the lock is held.

In general, but especially for high-performance code, keep the following in mind
about mutexes:

“I’ve often joked that instead of picking up Dijkstra’s cute acronym, we
should have called the basic synchronization object “the bottleneck.” Bot-
tlenecks are useful at times, sometimes indispensable — but they’re never
good. At best, they’re a necessary evil. Anything, anything that encourages
anyone to overuse them, to hold them too long, is bad.”
—David R. Butenhof†

†“Re: recursive mutexes,” David R. Butenhof, comp.programming.threads, May 17, 2005.

14 Multithreading224

14.4.1 Timed Mutexes

In addition to mtx_lock, there’s also mtx_timedlock that will only wait until a
time in the future to lock a mutex. If it can’t lock the mutex by then, it’ll return
thrd_timeout. A caveat is that the mutex must be initialized with mtx_timed that
specifies the “timed” type. For example, code to create a timed mutex and try to lock
it for at most 10 seconds is shown in listing 14.5.

mtx_t mtx;

mtx_init(&mtx, mtx_timed); // must use mtx_timed

// ...

struct timespec timeout;

timespec_get(&timeout, TIME_UTC); // get current time

timeout.tv_sec += 10; // seconds from now

auto const rv = mtx_timedlock(&mtx, &timeout);

if (rv == thrd_timeout)

// ... do something else ...

Listing 14.5: Using mtx_timedlock

To get the current time, use the standard function timespec_get (§B.3).

14.4.2 Deadlocks

A deadlock typically occurs when threads need to lock more than one mutex at the
same time, but do so in a different order from each other as shown in table 14.1.

Table 14.1: Deadlock
Time Thread 1 Thread 2
t1 mtx_lock(mtx1); mtx_lock(mtx2);

t2 mtx_lock(mtx2); mtx_lock(mtx1);

At time t1, thread 1 locks mtx1 and thread 2 locks mtx2. At time t2, thread 1 attempts
to lock mtx2, but it’s already been locked by thread 2, so it waits. Meanwhile, thread
2 attempts to lock mtx1, but it’s already been locked by thread 1, so it waits. The
result is that both threads wait forever — deadlock.

Different data guarded by different mutexes won’t be a problem if the data are
truly independent, i.e., if no code will ever need to access them simultaneously.
Where the data are not independent, there are common ways to avoid deadlock:
1. Use a fixed locking order, i.e., always lock mtx1 first and mtx2 second. Some

situations have a natural order, e.g., a thread-safe linked list would have a mutex
for the list as a whole and might have a mutex for each element. You’d naturally
always lock the list’s mutex first followed by an element’s mutex. In cases where
there’s no natural order, you can simply create an arbitrary one.

whole thing again (unless it’s thrd_error).

2. Use mtx_lock for the first mutex and mtx_trylock for additional mutexes.
Using mtx_trylock, attempting to lock a locked mutex will return thrd_busy.
If any are locked, unlock them all and try again.

14.4 Mutexes 225

For #2, we can write mtx_lockall as shown in listing 14.6.

1 int mtx_lockall(size_t n, mtx_t *mtx[n]) {

2 if (n == 0)

3 return thrd_success;

4 int status = thrd_success;

5 do {

6 if (mtx_lock(mtx[0]) == thrd_error)

7 break;

8 for (size_t n_lock = 1; n_lock < n; ++n_lock) {

9 status = mtx_trylock(mtx[n_lock]);

10 if (status != thrd_success) {

11 while (n_lock > 0) {

12 if (mtx_unlock(mtx[--n_lock]) == thrd_error)

13 status = thrd_error;

14 }

15 goto try_again;

16 }

17 }

18 return thrd_success;

19
20 try_again:

21 thrd_yield();

22 } while (status != thrd_error);

23 return thrd_error;

24 }

Listing 14.6: mtx_lockall implementation

• Lines 6–7 attempt to lock the first mutex: if an error occurs, abort; if it’s locked,
simply wait.

• Otherwise, lines 8–17 attempt to lock the remaining mutexes:

– Line 9 calls mtx_trylock instead of mtx_lock: if it’s anything other than
thrd_success, unlock all the mutexes we’ve locked so far and try the

– If we get to line 18, it means all mutexes were locked without error and we
can return thrd_success.

• Before trying again, line 21 calls thrd_yield to “yield” the CPU to other
threads to give them a chance to progress and hopefully unlock mutexes they’ve
locked before we retry.

To make mtx_lockall easier to use, we can enlist the help of the preprocessor:

226 14 Multithreading

#define mtx_lockall(...) \

mtx_lockall(VA_ARGS_COUNT(__VA_ARGS__), \

(mtx_t*[]){ __VA_ARGS__ })

This macro uses the VA_ARGS_COUNTmacro (p.131) to count the number of variadic
arguments (§8.7.3) and constructs a compound array literal (§6.11) of the arguments
for the mtx_lockall function. The upshot is that mtx_lockall can be called with
a comma separated list of mutexes:

mtx_lockall(&mtx1, &mtx2);

14.4.3 Recursive Mutexes

By default, mutexes initialized with either mtx_plain or mtx_timed are not re-
cursive — meaning if a thread locks a mutex it’s already locked, the thread will
deadlock. A recursive mutex is one that allows it to be locked more than once by
the same thread. To create a recursive mutex, bitwise-or mtx_recursive into the
second argument of mtx_init:

mtx_init(&m, mtx_plain | mtx_recursive);

While recursive mutexes may sound like a good idea even to the point where perhaps
you’re wondering why mutexes aren’t recursive by default, it’s not:

“The biggest of all the big problems with recursive mutexes is that they
encourage you to completely lose track of your locking scheme and scope.
This is deadly. Evil. It’s the “thread eater.” You hold locks for the abso-
lutely shortest possible time. Period. Always. If you’re calling something
with a lock held simply because you don’t know it’s held, or because you
don’t know whether the callee needs the mutex, then you’re holding it too
long. You’re aiming a shotgun at your application and pulling the trigger.
You presumably started using threads to get concurrency; but you’ve just
prevented concurrency.”
—David R. Butenhof†

14.5 Condition Variables

A typical use for multithreaded programs is a more elaborate version of listing 14.3
(p. 221), specifically one thread creating one or more “worker” (aka, “consumer”)

†“Re: recursive mutexes,” David R. Butenhof, comp.programming.threads, May 17, 2005.

14.5 Condition Variables 227

threads to work concurrently. If the work isn’t constant, there needs to be a way for
the original (aka, “producer”) thread to communicate to the consumer threads that
new work is available. One way to do this would be for the consumer threads to
check a global work_avail flag repeatedly as shown in listing 14.7.

static int consumer_main(void*) {

while (!load_bool_mtx(&shutdown, &shutdown_mtx)) {

for (bool work_copy = false; !work_copy;

thrd_yield()) {

mtx_lock(&work_avail_mtx);

work_copy = work_avail;

mtx_unlock(&work_avail_mtx);

}

// ... do work ...

Listing 14.7: Any work?

The problem with this is that all the consumer threads are spiking the CPUs re-
peatedly checking the flag. This is known as a spin lock because the CPU is “spin-
ning its wheels.” There are uses for spin locks (§17.3.3), but this isn’t one of them.
What we want here is a way for the consumer threads to sit idle until work becomes
available. This is precisely what condition variables are for.

A condition variable allows one or more threads to sit idle waiting for some “con-
dition” to be “signaled.” Another thread can then “signal” one or more of the waiting
threads and they can proceed. An example is shown in listing 14.8.

1 static bool work_avail;

2 static cnd_t work_avail_cnd;

3 static mtx_t work_avail_mtx;

4
5 static int consumer_main(void*) {

6 while (!load_bool_mtx(&shutdown, &shutdown_mtx)) {

7 mtx_lock(&work_avail_mtx);

8 while (!work_avail)

9 cnd_wait(&work_avail_cnd, &work_avail_mtx);

10 work_avail = false;

11 mtx_unlock(&work_avail_mtx);

12 // ... do work ...

13 }

14 return 0;

15 }

Listing 14.8: Condition variable example, consumer thread perspective

• Lines 1–3 declare work_avail to indicate whether work is available, a mutex
to guard it, and a condition variable for waiting for and signaling when work is
available.

Though not shown in the listing, condition variables must be initialized and
destroyed similarly to a mutex via:

14 Multithreading228

cnd_init(&work_avail_cnd);

// ...

cnd_destroy(&work_avail_cnd);

• Line 7 locks work_avail_mtx first before checking work_avail on line 8.
• If there is no work available:

– Line 9 calls cnd_wait that implicitly unlocks the mutex and waits indefi-
nitely for the condition variable to be signaled.

– When cnd_wait returns, it implicitly re-locks the mutex and we loop back
to line 8 to check work_avail again.

• Otherwise, there is work available and we can proceed.
• Line 10 sets work_avail to false since this thread will do the current batch of
work.

• Line 11 unlocks the mutex to allow the producer thread to signal to the consumer
threads that there is more work.
Why does cnd_wait unlock the mutex prior to waiting only to re-lock it upon

return? Code that signals the conditional variable from the producer thread is shown
in listing 14.9.

1 static int producer_main(void*) {

2 while (!load_bool_mtx(&shutdown, &shutdown_mtx)) {

3 // ... prepare work ...

4 mtx_lock(&work_avail_mtx);

5 work_avail = true;

6 cnd_signal(&work_avail_cnd);

7 mtx_unlock(&work_avail_mtx);

8 }

9 return 0;

10 }

Listing 14.9: Condition variable example, producer thread perspective

• In order to set work_avail to true on line 5, the thread must hold the lock —
which means no consumer thread can hold the lock while waiting. If it did, the
result would be a deadlock.

• Line 6 calls cnd_signal to signal one of the waiting consumer threads. (Which
thread it sends the signal to is arbitrary since it doesn’t matter.)

• Line 7 unlocks the mutex so the consumer thread’s cnd_wait can re-lock it.
In addition to cnd_signal that signals one thread arbitrarily, there is also the

function cnd_broadcast that signals all waiting threads.
Why is line 8 in listing 14.8 a while and not an if? Two reasons:

1. If cnd_broadcastwere used, it’s possible that by the time a particular consumer
thread checks work_avail, other threads will have already grabbed all the work
and so work_avail will be false.

2. Due to intricacies in some thread implementations, it’s possible that cnd_wait
can receive a “spurious” signal and wake up even when no work is available.

22914.6 Doing Something Once

Hence, you should always use while when checking a condition.

14.5.1 Timed Condition Variables

In addition to cnd_wait, there’s also cnd_timedwait that will only wait until a time
in the future for a condition to be signaled. If the condition hasn’t been signaled by
then, it’ll return thrd_timeout. For example, code to wait for at most 10 seconds
is shown in listing 14.10.

while (!work_avail) {

struct timespec timeout;

timespec_get(&timeout, TIME_UTC); // get current time

timeout.tv_sec += 10; // seconds from now

auto const rv = cnd_timedwait(&word_avail_cond,

&work_avail_mtx,

&timeout);

if (rv == thrd_timeout)

// ... do something else ...

Listing 14.10: Using cnd_timedwait

14.6 Doing Something Once

Occasionally, you need to do some initialization at most once. In a single threaded
program, a simple bool will work as shown in listing 14.11.

struct logger* logger() {

static struct logger instance;

static bool init;

if (!init) {

// ... initialize instance ...

init = true;

}

return &instance;

}

Listing 14.11: Initializing once in a single threaded program

In a multithreaded program, you have to guarantee that any thread that calls logger
either won’t initialize instancemore than once or start to use it before initialization
has completed. A simple bool (or even an _Atomic bool, §17) is insufficient.

One way to fix this is by doing all initialization before spawning any threads.
However, sometimes you want to initialize objects only when necessary that may

230 14 Multithreading

be after spawning them. Another way to fix this is by using call_once as shown in
listing 14.12.

1 static struct logger logger_instance;

2
3 static void logger_init() {

4 // ... initialize logger_instance ...

5 }

6
7 struct logger* logger() {

8 static once_flag init = ONCE_FLAG_INIT;

9 call_once(&init, &logger_init);

10 return &logger_instance;

11 }

Listing 14.12: Initializing once in a multithreaded program

• Line 8 declares a variable of type once_flag that must be initialized with
ONCE_FLAG_INIT. In order to call a function at most once, the once_flag vari-
able used must be the same once for that function, hence the use of static
(§9.9) exactly as for the bool in listing 14.11.

• Line 9 calls the standard function call_once that takes pointers to the once_flag
to use and the function to call once.

14.7 thread_local

A variable declared thread_local has a distinct instance per thread. It can be used
only either at file or block scope (§2.4); if used at block scope, it must also explicitly
be declared either extern (§4.3.2) or static (§4.3.3).

Thread-local variables automatically come into existence when a thread is created
and cease to exist when a thread terminates. One use for thread_local is to have
a global variable to communicate error codes like errno (§9.6) per thread:

thread_local int error_code;

Or to keep a linked list of active try blocks per thread (listing 27.2, p.352):

static thread_local

struct cx_impl_try_block *cx_impl_try_block_head;

One caveat is that there’s no way to clean up thread_local variables automati-
cally when a thread terminates. Hence, dynamically allocated memory pointed to by
thread_local pointers must be freed explicitly.

buf_tss nullptr

specific key’s data to point to any data, in this case a 1K buffer.

23114.8 Thread-Specific Storage

14.8 Thread-Specific Storage

An alternative to thread_local is thread-specific storage as shown in listing 14.13.

1 static tss_t buf_tss;

2
3 static int thread_main(void*) {

4 tss_set(buf_tss, malloc(1024));

5 // ...

6 return 0;

7 }

8
9 int main() {

10 // ...

11 if (tss_create(&buf_tss, &free) != thrd_success) {

12 FLFPRINTF(stderr, ”tss_create failed\n”);

13 return 0;

14 }

15 // ... create & join threads ...

16 tss_delete(buf_tss);

17 }

Listing 14.13: Thread-specific storage example

• Line 1 declares a global variable of type tss_t.
• In the main thread, line 11 calls tss_create to create a thread-specific storage
“key” and store it in . The key’s value is initialized to .

Optionally, the second argument can be a pointer to a “destructor” func-
tion (§6.10) that is called automatically upon thread termination to clean up the
pointed-to data. In this case, we simply passed the address of the standard func-
tion free, though you can pass a pointer to any function that takes a void* and
returns nothing (void).

• Like mutexes and condition variables, thread-specific keys must also be de-
stroyed, hence the call to tss_delete on line 16.

• Within the thread’s start function (or any function called from the thread’s start
function), tss_set can be called as it is on line 4 to set the value of the thread-

Even though all threads share the same key, in this case buf_tss, each thread
has a distinct pointer to the key’s value.

To get the value of thread-specific data, call tss_get, for example:

char *const buf = tss_get(buf_tss);

The value returned is specific to the thread that called it.

while

call_once

14 Multithreading232

14.9 Epilogue

Here are some key points about and some advice for multithreading:

• Always join every thread you create. Don’t detach threads.
• Even single-byte types like bool are not atomic in the sense that matters.
• Even simple operations like increment or decrement are not atomic in any sense.
The compiler may generate several assembly language instructions for even a
trivial C statement that, together, are not atomic.

• Do not think for one second that volatile has anything to dowith thread-safety.
• To make accessing variables thread-safe, use mutexes.
• Always lock a mutex only for the shortest time possible.
• To avoid a deadlock, don’t lock more than one mutex at a time on the same
thread. But if you must, always lock them in the same order and unlock them in
the reverse order.

• Even if available, don’t use recursive mutexes.
• Use condition variables to communicate among threads.
• Always uses a when checking a condition.
• If you need to do something exactly once, use .
• If you need to have different data per thread, use thread_local. If you need
that data automatically cleaned-up, use thread-specific storage.

Exercises

1. Write a function:

int mtx_unlockall(size_t n, mtx_t *mtx[n]);

that’s the opposite of mtx_lockall from listing 14.6 (p. 225), i.e., it unlocks
all the mutexes in the mtx array and returns thrd_success only if all mutexes
were unlocked successfully or thrd_error if one or more mutexes could not
be unlocked.

2. Since mtx_timedlock requires an absolute time, write a function:

int mtx_durtimedlock(mtx_t *mtx,

struct timespec const *duration);

that takes a duration and returns the same values as mtx_timedlock.

Part II
Selected Topics

goto volatile

when to use it.

Part II covers several additional advanced or obscure parts of C that aren’t explained
well elsewhere, if at all:

15. UndefinedBehavior: Covers what undefined behavior is, why it exists, and how
optimization can make it worse.

16. Assertions: Covers the assert macro for aiding in writing bug-free programs,
a sample implementation, assertions vs. errors and exceptions, use in production
code, adding a message, and static_assert.

17. _Atomic: Covers the _Atomic keyword as an alternative to a mutex, atomic
library functions, memory barriers, compare-and-swap, lock-free operations, the
“ABA Problem,” versioned pointers, and false sharing.

18. Debugging: Covers debugging programs, printing values, how optimization af-
fects debugging, core dumps, signals, common bugs, warnings, profiling, and a
case study of a particularly bizarre bug and how it was fixed.

19. _Generic: Covers the _Generic keyword, its motivation, using it to do const
overloading, static if, and implement type traits.

20. setjmp and longjmp: Covers the setjmp and longjmp standard functions
for doing non-local s and their relationship to variables.

21. restrict: Covers the restrict keyword, the problem it solves, pitfalls, and

22. volatile: Covers the volatile keyword, optimization suppression, signal
handling, use with setjmp, and wrong uses.

Chapter 15

 Undefined Behavior

Prior to the first C standard in 1989, there were two “flavors” of C:

• Unportable C: a step up from assembly language used to program operating
systems using any technique that worked for the particular hardware.

• Semi-portable C: use of #ifdef (§8.5) made many programs “semi-portable”
so they’d compile and run the same on all the hardware and operating systems
considered.

As C’s popularity grew, it was becoming clear that a standard was needed. While
K&R was the definitive description of C for over a decade, it was insufficiently
precise to be a standard. For a standard, you ideally want it to specify precisely what
happens in every circumstance for every aspect of a language.

However, by the mid-1980s, there were many unportable and semi-portable pro-
grams that worked. The problem was that doing X on computer 1 with compiler 1
yielded result R1 whereas doing X on computer 2 with compiler 2 yielded result
R2 and their respective programs relied on those results. A standard would ordinar-
ily have to mandate that only one of either result R1 or R2 was correct. Updated
standard-conforming compilers would have broken many programs.

To not do this, the concepts of implementation defined behavior, unspecified be-
havior, and undefined behavior were invented as part of the standard to serve as “es-
cape hatches” to allow many working programs to continue to work with standard-
conforming compilers. While this may not seem completely satisfying, definitively
stating that X is one of implementation defined, unspecified, or undefined is an im-
provement over stating nothing at all about X.

The differences between the three somewhat related “bad” behaviors in C are
explained in the comp.lang.c FAQ, question 11.33:†

• Implementation defined behavior: The implementation must pick some be-
havior, it must be consistent, and it must be documented.

†comp.lang.c Frequently Asked Questions, Steve Summit, Jan. 1995,
https://c-faq.com/ansi/undef.html

235© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_15

https://c-faq.com/ansi/undef.html
https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_15&domain=pdf

const

• Unspecified behavior: Like implementation defined, except it need not be doc-
umented.

• Undefined behavior: Anything at all can happen. The program may execute
incorrectly (either crash or silently generate incorrect results), or it may fortu-
itously do exactly what the programmer intended.

236 15 Undefined Behavior

An example of unspecified behavior is:

new_offset = ftell(f) + fread(buf, 1, n, f);

■ This is unspecified behavior because, as mentioned in §3.1, the order in
which the operands of + are evaluated (left, then right; or right, then left) is
not specified by the C standard. □

While implementation defined and unspecified behaviors are bad, at least they’re
consistent for the same expression (using the same platform, compiler, and compiler
options). Undefined behavior is worse in that:

ifferent runs of the same executable can produce different results!•
•
D
The same run of an executable can produce different results at different times!

C lists hundreds of things that result in undefined behavior. Examples of the common
ones, most of which have been mentioned in this book, include:

• Signed integer overflow and underflow (§2.11).
• Object is referred to outside of its lifetime.
• Dereferencing a pointer to an object that no longer exists (§6.11.1).
• Reading from an uninitialized object (§18.6.8).
• Addition and subtraction of pointers of unrelated arrays.
• Indexing beyond the end of an array (§18.6.1).
• Modifying a object (§3.14.2).
• Data races (§14).
• Anything not explicitly listed as one of defined behavior, implementation de-
fined behavior, or unspecified behavior is undefined behavior!

15.1 Implications and Example

But what are the implications of undefined behavior? The compiler is allowed to
assume undefined behavior never happens, hence all programs are valid. This allows
the compiler to generate very efficient code, especially in tight loops. (This is the only
good thing about undefined behavior.)

.

15.2 Two Parts to Undefined Behavior 237

A simple example that can result in undefined behavior is:

bool no_overflow(int x) {

return x+1 > x;

}

■ Normally, you’d never write silly code like this; but such code can some-
times happen from macro expansion, so the compiler should do a good job
of optimizing it. □

The compiler will unsurprisingly create the following optimized x86–64 assembly:

no_overflow:

mov eax, 1 ; return true

ret

because x+1 is always > x — or it is in pure math. But computer math has limited
precision, so there are two possible cases:

!= INT_MAX: Behavior of + is well-defined; must return true1.
2.

x

x == INT_MAX: Behavior of + is undefined; can do anything.

The compiler is allowed to assume that case 2 never happens. Why? Because the
only reason for considering that case would be if the compiler could check for and
do something about it such as rewrite the code as if it were:

return x != INT_MAX && x+1 > x; // compiler doesn’t do this

But that would be inserting a check you didn’t ask for; and it would be less effi-
cient for the majority of cases. Programmers write in C typically for performance,
so inserting such code would be antithetical.

15.2 Two Parts to Undefined Behavior

There are actually two parts to undefined behavior:

1. Actually performing undefined behavior at run-time; examples:
• Dereferencing a null pointer.
• Indexing beyond the end of an array.

2. The compiler being allowed to assume undefined behavior never happens (a
false premise) allows it to generate sometimes surprising code. In logic, if you
accept a false premise, you can draw any conclusion. For example:

• If the streets are wet, it has rained recently. (False premise.)
• The streets are wet.

true

i 4

i < 4

• Therefore, it has rained recently. (Conclusion: logically valid, but wrong.)

238 15 Undefined Behavior

It’s the second part that causes the most surprise. For another example, consider the
code in listing 15.1.

extern int table[4];

bool exists_in_table(int v) {

for (int i = 0; i <= 4; ++i) {

if (table[i] == v)

return true;

}

return false;

}

Listing 15.1: Undefined behavior example

The compiler will surprisingly generate the following optimized x86–64 assembly:

exists_in_table:

mov eax, 1 ; return true

ret

How is that possible? Where did the for loop and if go? The problem stems from
the fact that the code has a bug. (Did you notice it?) The bug is i <= 4 should be
i < 4. Even so, how does the compiler generate return true? The “rationale” is:

1. The first four times through the loop, the function might return .
2. If iwere 4, the code would perform undefined behavior (by attempting to access

an element beyond the end of the array).
3. The compiler is allowed to assume undefined behavior never happens (all pro-

grams are valid); therefore:
• The variable can “never” be . (False premise.)
• Implies we must have found a match when .
• Therefore, we can always return true. (Conclusion: logically valid, but
wrong.)

This is not a compiler bug. Given the choice between assuming the programmer
wrote a valid program versus an invalid program, we’ve told the compiler to choose
the former — and it optimizes accordingly.

15.3 Optimization Can Make Things Worse

Consider the function in listing 15.2. Line 2 is dead code. (Presumably, the function
used to do something with old_v, but the code was rewritten and this line was left
in by mistake. These kinds of things happen in the real world.) You’d think such

old_v

if *p

p

23915.4 Undefined Behavior in Other Languages

1 void assign_not_null(int *p, int v) {

2 int old_v = *p;

3 if (p == nullptr)

4 return;

5 *p = v;

6 }

Listing 15.2: Optimization example, unoptimized

dead code would be harmless, but, depending on what optimizations the compiler
performs — and in what order — this can cause undefined behavior.

Assume there are at least two optimizations that the compiler performs:

1. Dead Code Elimination: code that isn’t used is eliminated.
2. Redundant Null Check Elimination: if the compiler can deduce that a given

pointer can’t possibly be null on a given line, it eliminates the if check for null.

Assume the compiler does the optimizations in the above order. It therefore would:

1. Eliminate line 2 because is not used.
2. Do nothing else since the if on line 3 is a necessary check before the *p = v

on line 4 and so can’t be eliminated.

So far, so good. But what if the compiler does the optimizations in the reverse order?
It then instead would:

1. Knowing that dereferencing a null pointer is undefined behavior and being al-
lowed to assume that undefined behavior never happens, it means that:
• If the code gets to the , the on the previous line must have succeeded.
• That means is never null.
• Therefore, the null check is unnecessary and so the if can be eliminated.

2. Now it performs dead code elimination and eliminates line 2.

The resulting code would be as shown in listing 15.3. It’s logically valid, but wrong.

void assign_not_null(int *p, int v) {

*p = v;

}

Listing 15.3: Optimization example, optimized

15.4 Undefined Behavior in Other Languages

At this point, you might be wondering whether undefined behavior exists in other
languages. Other than C++ that inherits all of C’s undefined behavior (and adds some
of its own), the answer is generally “no” — with two exceptions:

240 15 Undefined Behavior

1. If a language provides a mechanism to perform “unsafe” operations, those typ-
ically can perform undefined behavior.

2. Data races (§14) are always undefined behavior.

■ Ada has a similar, but weaker concept of bounded errors. □

But for languages with always-defined behavior, the price paid is in performance:

• Always initializing variables.
• Always checking array indices.
• Garbage collection.
• Etc.

15.5 Epilogue

Here are some key points about and some advice for undefined behavior:

• The concepts of implementation defined, unspecified, and undefined behavior,
were a way to standardize C without breaking existing programs.

• Undefined behavior means anything is possible.
• The compiler is allowed to assume that undefined behavior never happens. This
allows the compiler to generate very efficient, but sometimes surprising code.

• Optimization can make the consequences of undefined behavior worse.

■ To drive home that undefined behavior means anything is possible, John
Woods posted the following in the Usenet newsgroup comp.lang.c:

From: John F. Woods

Newsgroups: comp.lang.c

Date: Feb 25, 1992, 11:51:52 AM

> * Undefined behavior -- behavior, upon use of a

> nonportable or erroneous program construct, ... for

> which the standard imposes no requirements. Permissible

> undefined behavior ranges from ignoring the situation

> completely with unpredictable results, to having demons

> fly out of your nose.

In short, you can’t use sizeof() on a structure whose

elements haven’t been defined, and if you do, demons may

fly out of your nose.

OK, OK; so the Standard doesn’t *ACTUALLY* mention demons

or noses. Not as such, anyway.

Someone else followed up coining the term “nasal demons” that stuck. □

Chapter 16

 Assertions

The assert macro, part of the C standard library defined in assert.h, has been
around since the early days of C as a mechanism to aid in writing less buggy code. It
allows you to “assert” that some condition must be true in order to continue. If not,
the programwill print an error message (including the assertion that was violated and
the source file and line of the assert), calls the standard function abort that termi-
nates the program, and typically provides a core dump (§18.4) as a debugging aid.
Conditions include preconditions, postconditions, and invariants for implementing
design by contract.

16.1 Sample Implementation

To demystify assert, a basic implementation is shown in listing 16.1.

1 #ifndef NDEBUG

2 # define assert(EXPR) (\

3 (EXPR) ? (void)0 : (\

4 printf(”%s:%d: failed assertion ’%s’\n”, \

5 __FILE__, __LINE__, #EXPR \

6), \

7 abort() \

8))

9 #else

10 # define assert(EXPR) ((void)0)

11 #endif /* NDEBUG */

Listing 16.1: Sample assert implementation

• The first thing to notice on line 1 is that assert is defined only if the macro
NDEBUG is not defined. The consequence is that if you include assert.h and do
nothing else, assertions will be enabled, that is they will actually assert what you
are asserting.

241© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_16

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_16&domain=pdf

16 Assertions242

But if you define NDEBUG (the value doesn’t matter), then assert is defined
to a do-nothing expression and assertions will be disabled (“No Debug”), that is
they will not do anything at all. You might want to do this for production code
(§16.3).

• Line 3 tests EXPR:
– If true (non-zero), the result is simply 0. (The (void) discards the value.)
– If false, an error message is printed containing the file and line (§8.4) of
the assert plus the stringified (§8.7.4) EXPR.

• Line 6 uses the comma operator (§3.15) as a trick to cram both the printf and
abort statements into a single expression.

While this sample implementation uses a macro, any implementation invariably
will since it needs to obtain the file and line number of the assert as well as the
stringification of the expression — things only the preprocessor can give. While
some implementations use a function to call printf and abort instead, they call a
function only if the check fails; the check itself needs to be fast via inlining.

16.2 Assertions vs. Errors and Exceptions

Errors, exceptions, and assertions are related in that they’re all used to catch and
report an invalid state; but they’re for different purposes:

• Errors are for conceivable invalid states, but there may be a way to recover and
continue.

• Exceptions are for errors that are “exceptional” (in the “unlikely” sense, not in
the “outstanding” sense), but there still may be a way to recover and continue.

In C++ having exceptions, the line between errors and exceptions can sometimes
get blurry. For example, if you attempt to open a file that doesn’t exist, should that be
an error or exception? It’s debatable. (Since C doesn’t have exceptions, that debate
can be deferred to another time.)

Assertions, however, are only for inconceivable† states that should “never” hap-
pen — but if one does anyway, it means there’s a bug and either:

1. While there may be a way to recover and continue, it’s better to crash and pro-
duce a core dump (§18.4) as an aid to debug and fix the bug; or:

2. There’s no way to recover, so you have no choice but to crash.

Case 2 typically happens in a function that’s at the bottom of the call stack and there’s
no way to report the error, to return the error all the way up the call stack (but see

†Wallace Shawn (Vizzini), The Princess Bride, Rob Reiner (director), Act III Communications
and Buttercup Films, Sep. 25, 1987.

24316.3 Disabling Assertions in Production Code

§20), or, even if you could, the caller wouldn’t know how to handle the error. In
such a case, it’s better to crash in a controlled way rather than have the program
limp along possibly doing irreparable damage, e.g., overwriting data in a file with
garbage, before possibly crashing anyway and possibly far from where the assertion
was violated making debugging harder.

A simple example of using assert to ensure we don’t write beyond the end of
an array (§18.6.1) used to implement a fixed-size stack is shown in listing 16.2.

static unsigned lineno_stack[64];

static int lineno_stack_top = -1;

void lineno_stack_push(unsigned lineno) {

++lineno_stack_top;

assert(lineno_stack_top < ARRAY_SIZE(lineno_stack));

lineno_stack[lineno_stack_top] = lineno;

}

Listing 16.2: Example use of assert

16.3 Disabling Assertions in Production Code

As mentioned, if NDEBUG is defined, then assertions are disabled — and you might
want to do this for production code. The arguments for disabling assertions include:

1. They take a small, but non-zero amount of time to perform the checks that can
add up, especially in hot code.

2. Assertion failures are typically caught by unit tests.
3. Having your program crash generally results in unhappy customers.
4. An attacker has found a way to put your program into an invalid state failing an

assertion and causing it to crash that can result in a denial-of-service attack.

The arguments against disabling assertions include:

1. Since the time to perform the checks is small, it’s likely small enough to be
negligible. The way to know for sure is to profile your program (§18.9). If your
assert checks are inconsequential, then you can leave them enabled.

2. While assertion failures are typically caught by unit tests, passing a test suite
can never prove that no bugs exist, so better to leave assertions enabled to detect
invalid states.

3. Having your program not crash but yield incorrect results (that customers may
not even realize are incorrect) or cause lasting damage also generally results in
unhappy customers and can be even worse for your reputation.

4. You should never use assertions to validate any input anyway (§16.6).

■ Personally, I think assertions should be left enabled. If you want to disable
assertions only in hot code, you can use assert there and define NDEBUG, but

244 16 Assertions

then define your own macro similar to the sample implementation in listing
16.1 (p.241) that is unaffected by NDEBUG and use it everywhere else:

#define always_assert(EXPR) /* ... */

Still: disabling any assertions means you’re running a higher risk of un-
caught bugs and possibly damage to both data and your reputation. □

16.4 Adding a Message

Sometimes you might want to include an additional string in the error message pro-
duced by assert. Unfortunately the assert macro can not optionally take a string
to add to the error message, but there is a commonly used trick to work around this:

assert((expr) && ”message”);

That is put the message after a && operator (§3.6): the string literal decays into a
char* that is not nullptr, hence is always true thus will be discarded (in terms of
the value of the expression, but still included in the error message) and the result will
be the value of expr.

16.5 Static Assertions

In addition to assert that performs checks at run-time, there is also static_assert
that performs checks at compile-time. Unlike assert that’s amacro, static_assert
is a keyword. It has two formswhere exprmust be a constant expression andmessage
must be a string literal since it’s evaluated at compile-time:

static_assert(expr) Asserts that expr is true.
static_assert(expr,message) Same, but prints message if expr is false.

A static_assert is legal anywhere a declaration is. Use static_assert to:

• Ensure assumptions about the platform your program requires are actually true,
for example, that pointers are 64 bits if your program doesn’t support 32-bit
platforms:

static_assert(sizeof(void*) == 8,

”64-bit pointers required”);

• Ensure offsets of structure members are what your program requires. See listing
11.11 (p.176) for an example.

• Ensure macro arguments are of a specific type. See listing 19.11 (p.291) for an
example.

24516.6 Epilogue

Being able to use static_assert in an expressionwould also be useful. To do so,
the trick is to realize that static_assert can be used inside a structure declaration
that’s an argument to sizeof that makes the whole thing an expression:

#define STATIC_ASSERT_EXPR(EXPR,MSG) \

(!!sizeof(struct { static_assert((EXPR), MSG); int i; }))

If EXPR is true, sizeof will return non-zero that !! (§3.6) will convert to 1; if EXPR
is false, then you’ll get a compile-time error that the assertion failed. (The int is
there only so the structure isn’t empty.)

16.6 Epilogue

Here are some key points about and some advice for assertions:

• Use assert to check for invalid conditions and abort your program in a con-
trolled way.

• Ensure that assertions do not cause side-effects:

assert(--count > 0); // No!

Why not? Because if assertions are disabled, the statement doesn’t happen at all.
In some cases, you might need to add a variable only to assert on:

bool const colors_ok = colors_parse();

assert(colors_ok);

Doing so, however, can cause “unused variable” warnings when assertions are
disabled. To fix that, add the maybe_unused attribute (§4.9.3):

[[maybe_unused]] bool const colors_ok = colors_parse();

assert(colors_ok);

• Do not use assertions to validate input from a human (e.g., via keyboard), ma-
chine (e.g., via socket), or file — even trusted humans, machines, or files. Your
program should not crash because a human made a typo or you received or read
corrupted or otherwise unexpected data.

• In assert conditions, you should not use && to conjoin unrelated expressions:

assert(n > 0 && n < N_MAX); // OK

assert(n > 0 && p != nullptr); // Meh

246 16 Assertions

Why not? Because for the second assert, you won’t know which assertion
failed: was n≤ 0 or p == nullptr? Separate assertions should be used instead:

assert(n > 0);

assert(p != nullptr);

// Better

• To include a message in an assertion, use the && ”message” trick.
• Keep assertions enabled in production code.
• Use static_assert to check for required conditions at compile-time.

Chapter 17
_Atomic

C has the _Atomic keyword that has two forms:

_Atomic type Atomic qualifier.
_Atomic(type) Atomic specifier.

The qualifier form can be included in a declaration of any type (except arrays and
functions) andmay be used like any other qualifier of const (§4.5), volatile (§22),
or restrict (§21). Listing 17.1 shows some example declarations.

_Atomic int ai; // atomic int

int _Atomic ia; // same

int _Atomic *pai; // pointer to atomic int

int *_Atomic api; // atomic pointer to normal int

int _Atomic *_Atomic apai; // atomic pointer to atomic int

int _Atomic const *pcai; // pointer to const atomic int

// ...

Listing 17.1: Example _Atomic declarations

The specifier form is for compatibility with C++23 that defines the following
macro in the stdatomic.h standard header:

#if __cplusplus >= 202302L // C++23 or later?

define _Atomic(T) std::atomic<T>

#endif

In either form, an _Atomic variable is “atomic” in meanings #1 and #2 (§14.3),
specifically the increment and decrement operators (§3.4) as well as the assignment
operators (§3.9) that work on an object of type T will also work on an object of type
_Atomic T except do so atomically. Other differences are that the size, alignment,
or both for _Atomic T may be different than for T.

247© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_17

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_17&domain=pdf

17 _Atomic248

Even though _Atomic may be applied to structure (§10) and union (§11) types,
it’s not useful since accessing a member of either results in undefined behavior (§15).

The _Atomic keyword and the stdatomic.h standard header are supported only
if the __STDC_NO_ATOMICS__ macro is not predefined (§8.4).

17.1 Alternative to a Mutex

Another way to fix the bad example shown in listing 14.2 (p. 220) is by using an
_Atomic variable as shown in listing 17.2.

1 bool _Atomic shutdown; // Thread-safe now? Yes!

2
3 static int worker_thread(void*) {

4 while (!shutdown) {

5 // ...

6 }

7 return 0;

8 }

9
10 int main() {

11 thrd_t t;

12 thrd_create(&t, &worker_thread, nullptr);

13
14 while (!shutdown) {

15 // ...

16 if (cond-expr)

17 shutdown = true;

18 }

19 thrd_join(t, nullptr);

20 }

Listing 17.2: The bad example, fixed using _Atomic

This version is almost exactly the same as the bad example except for the addition
of _Atomic. This version is a much simpler fix than the one using a mutex shown in
listing 14.3 (p.221).

In general, when sharing independent variables among threads, _Atomic is not
only simpler, but more efficient than locking, unlocking, and potentially waiting for
a mutex. If you need to be “atomic” in meaning #3 (“transactional,” §14.3), e.g., you
need to read or write more than one variable atomically, then you need a mutex.

17.2 Atomic Functions

The following functions are _Generic (§19) in that they accept any _Atomic-
qualified object of type A, e.g., _Atomic int; T is the non-_Atomic version of A,

24917.2 Atomic Functions

e.g., int. Functions that are not named with _explicit use the memory-order-seq-
cst memory order (§17.3.1); functions with _explicit use the given memory or-
der. (Memory orders are covered in the next section; volatile is covered in §22.
The volatile is part of the functions’ signatures only so they will also work with
volatile variables. You can safely ignore it here.)

T atomic_load(A const volatile *pv);

T atomic_load_explicit(A const volatile *pv, memory_order m);

Atomically loads and returns the value of *pv.
void atomic_store(A volatile *pv, T new);

void atomic_store_explicit(A volatile *pv, T new,

memory_order m);

Atomically stores new into *pv.
T atomic_exchange(A volatile *pv, T new);

T atomic_exchange_explicit(A volatile *pv, T new,

memory_order m);

Atomically stores new into *pv and returns its old value.
T atomic_fetch_add(A volatile *pv, T arg)

T atomic_fetch_add_explicit(A volatile *pv,

T arg, memory_order m);

Atomically adds arg to *pv and returns its old value.
T atomic_fetch_sub(A volatile *pv, T arg)

T atomic_fetch_sub_explicit(A volatile *pv, T arg,

memory_order m);

Atomically subtracts arg from *pv and returns its old value.
T atomic_fetch_and(A volatile *pv, T arg)

T atomic_fetch_and_explicit(A volatile *pv, T arg,

memory_order m);

Atomically bitwise-ands arg with *pv and returns its old value.
T atomic_fetch_or(A volatile *pv, T arg)

T atomic_fetch_or_explicit(A volatile *pv, T arg,

memory_order m);

Atomically bitwise-ors arg with *pv and returns its old value.
T atomic_fetch_xor(A volatile *pv, T arg)

T atomic_fetch_xor_explicit(A volatile *pv, T arg,

memory_order m);

Atomically bitwise-exclusive-ors arg with *pv and returns its old value.

Functions that are not named with _explicit are equivalent to their operator coun-
terparts, e.g.:

atomic_fetch_add(&v, 1); // equivalent to: v++

except the old value of v is returned instead of the new value.

17 _Atomic250

■While using the normal C operators instead of the verbose functionsmight
be convenient, I always use the functions to make it obvious that the variable
being manipulated is _Atomic. □

17.3 Memory Barriers

Atomic (by any meaning) is not enough to ensure thread-safety because the order of
memory operations does not necessarily match the order of statements in a program.
Why not? Because the hardware, the compiler, or both, may reorder memory op-
erations to improve performance. Not making a change to the observable behavior
(§14) applies only from the perspective of a single thread.

Memory barriers (aka, “memory fences”) help ensure thread-safety by selectively
prohibiting reordering of memory operations across the barrier. They also provide
some synchronization among threads. C provides the memory_order enumeration
containing six memory order values explained in the following sections.

The sometimes confusing thing about memory barriers is that they’re about con-
trolling the order of operations relative to each other, not the operations themselves.

17.3.1 memory_order_seq_cst

Sequential consistency is the safest memory order which is why it’s the default. It’s
also the least performant because it establishes a global constraint (bottleneck) of
memory ordering across all threads. In specific cases, the constraint can be relaxed
to make the code be more performant.

■Writing thread-safe code even with ordinary mutexes is hard to get right,
even for experts. Writing thread-safe code using atomics with memory or-
ders other than sequential consistency is even harder! Before considering
them, you should:

• Remember that using efficient algorithms matters far more than lock-
ing technique. For example, an n lg(n) algorithm with slower mutexes
will still very likely be more performant than an n2 algorithm using
_Atomic.

• Profile your code (§18.9) to see if it’s spending too much time either
locking or waiting for locks. (Remember: results are CPU-dependent!)

• Only if locking and waiting for those locks takes a significant percent-
age of time, then consider the following techniques.

Bugs caused by improper use of memory ordering are hard to reproduce and
hard to debug. □

25117.3 Memory Barriers

17.3.2 memory_order_relaxed

Relaxed is the most basic and least safe memory order in that it does not guaran-
tee operation order or synchronization, but still guarantees modification order. For
example, given the following ordinary code running in a single thread where x =

y = 0 to start:

int r = y; // r = 0

x = r; // x = 0

int s = x; // s = 0

y = 4; // y = 4

then r = s = 0 and y = 4 — no surprises there. However, doing the same thing
running in two threads using relaxed:

// thread 1

r = atomic_load_explicit(&y, memory_order_relaxed); // 1A

atomic_store_explicit(&x, r, memory_order_relaxed); // 1B

// thread 2

s = atomic_load_explicit(&x, memory_order_relaxed); // 2A

atomic_store_explicit(&y, 4, memory_order_relaxed); // 2B

can result in y = r = x = s = 4 because, even though the statement order in
thread 1 is 1A, 1B, and in thread 2 is 2A, 2B, it’s possible that the memory order is
2B, 1A, 1B, 2A.What good is that? For independent variables, eliminating the global
constraint (bottleneck) of memory ordering improves performance. A practical use
for relaxed is incrementing reference counts.

Suppose we want to implement a reference-counted shared object such that when
the last pointer to the object goes away, the object is automatically freed. Types for
this are shown in listing 17.3.

1 struct shrd_obj;

2 typedef void (*shrd_free_fn)(struct shrd_obj*);

3
4 struct shrd_obj {

5 size_t _Atomic ref_cnt;

6 shrd_free_fn free_fn;

7 alignas(max_align_t) char data[];

8 };

Listing 17.3: Shared object types

• Line 1 simply forward-declares shrd_obj so that it can be used to declare
shrd_free_fn on line 2, a function to call to free the object when the refer-
ence count gets decremented to zero.

• Lines 4–8 declare shrd_obj that contains ref_cnt, an _Atomic reference
count, free_fn, and data as a flexible array member (§10.6) for the object as
was done for islist in listing 10.9 (p.163).

To create a new shrd_obj, the function shrd_new is shown in listing 17.4.

ref_cnt

252 17 _Atomic

1 struct shrd_obj* shrd_new(size_t data_size,

2 shrd_free_fn free_fn) {

3 struct shrd_obj *const so =

4 malloc(sizeof(struct shrd_obj) + data_size);

5 atomic_init(&so->ref_cnt, 1);

6 so->free_fn = free_fn;

7 return so;

8 }

Listing 17.4: Shared object creation

• Lines 1–2 declare the function to take the size of the data to allocate additional
space for and an optional shrd_free_fn to clean up the object when the refer-
ence count falls to zero.

• _Atomic objects at either file or block scope (§2.4), can be initialized by ordinary
assignment; _Atomic objects that are dynamically allocated must be initialized
via the standard function atomic_init as is done on line 5.

We can now implement incrementing the reference count as shown in listing 17.5.

inline struct shrd_obj* shrd_inc(struct shrd_obj *so) {

atomic_fetch_add_explicit(&so->ref_cnt, 1,

memory_order_relaxed);

return so;

}

Listing 17.5: Shared object reference count increment

At this point, you might ask something along the lines of:

If there’s no synchronization, how can this possibly work? Couldn’t thread
1 increment the value from n to n+1 and thread 2 also increment the value
from n to n+ 1?

The answer is “no” for two reasons:

1. Each increment is still atomic (by meanings #1 and #2) so each thread always
sees the latest value. What relaxed does is allow the hardware to reorder other
operations having nothing to dowith ref_cnt either before or after its increment
to improve overall performance, not the performance of specifically.

2. When updating the value and not using it in an expression, then use of relaxed
is safe. For example, using the value in an expression for an if is not safe.

An example of when relaxed is not safe is when decrementing reference counts
(§17.3.5).

Now that you hopefully understand relaxed you should never use it — unless you
can prove your use of it is correct and it actually significantly improves performance
via profiling (§18.9). Use of relaxed in the general case is hard to get right.

25317.3 Memory Barriers

17.3.3 memory_order_acquire and memory_order_release

Acquire and release memory orders are safer than relaxed and are typically used in
pairs:

• Release (used with _store) is used to “publish” information: no memory ac-
cesses can be reordered after.

• Acquire (used with _load) is used to “subscribe” to information: no memory
accesses can be reordered before.

For example, given the following declarations:

struct islist *work_list; // listing 10.9, p. 163

bool _Atomic work_avail;

a producer thread can prepare work by doing, say:

work_list = islist_push(work_list, sizeof(char*));

*(char**)islist_peek(work_list) = path;

atomic_store_explicit(&work_avail, true,

memory_order_release);

The shared data (work_list) neither needs to be _Atomic nor guarded by a mutex.
This is particularly useful for data that can’t be made _Atomic and for functions that
can’t be retrofitted to use a mutex. You can also prepare any amount of data, then
“publish” all of it simultaneously. What the “no memory accesses can be reordered
after” means is that no memory accesses done before the release in your code can be
reordered after it by the hardware, i.e., you won’t signal that data is ready before it
actually is.

Meanwhile, a consumer thread can wait for and receive work by doing:

while (!atomic_load_explicit(&work_avail,

memory_order_acquire))

; // wait

char *const path = *(char**)islist_peek(work_list);

that is, the consumer thread repeatedly checks work_avail until it becomes true.
What the “no memory accesses can be reordered before” means is that no mem-
ory accesses done after the acquire in your code can be reordered before it by the
hardware i.e., you won’t access data before it’s ready.

Yes, what the consumer is doing is another instance of a spin lock first mentioned
in §14.5. Spin locks are useful when the work is continuous and when the waits are
short — shorter than the time it would take to lock and unlock a mutex.

254 17 _Atomic

17.3.4 memory_order_consume

Consume is a special case of acquire that allows operations to be dependency-
ordered that can be more performant on weakly-ordered CPUs.

■ A weakly-ordered CPU (a weak memory model) is one where one core
can see values change inmemory in a different order than another core wrote
them as is what happens via relaxed (§17.3.2). Weakly-ordered CPUs in-
clude those from Apple (e.g., A and M Series), ARM (e.g., Neoverse Se-
ries), and IBM (e.g., PowerPC); but not Intel (e.g., x86).

Weakly-ordered CPUs are simpler to design, implement, use less power
(important for mobile applications), and allow for a higher degree of paral-
lelism (performance) because independent memory operations are uncon-
strained by a total ordering. The caveat is that the burden of ensuring mem-
ory operations are correct shifts to the programmer.

In contrast, a strongly-ordered CPU (a strong memory model) is one
where every core sees values change in memory in the same order that
another core wrote them. Strongly-ordered CPUs include those from Intel
(e.g., x86). The advantage (for programmers) is that the burden of ensuring
memory operations are correct shifts to the CPU designer. □

From the previous example:

struct islist *work_list; // listing 10.9, p. 163

bool _Atomic work_avail;

There’s no actual dependency between work_list and work_avail other than
what’s in our minds — which the compiler has no way to know. To create an ac-
tual dependency that the compiler can use to keep things in dependency order, we
can use the following declaration for work_avail instead:

struct islist *_Atomic work_avail;

Using that, a producer thread can prepare work by doing:

work_list = islist_push(work_list, sizeof(char*));

*(char**)islist_peek(work_list) = path;

atomic_store_explicit(&work_avail, work_list,

memory_order_release);

and a consumer thread can wait for and receive work by doing:

while (!atomic_load_explicit(&work_avail,

memory_order_consume))

; // wait

char *const path = *(char**)islist_peek(work_avail);

25517.4 Compare and Swap

Now, we’ve created an actual dependency using a pointer and a pointed-to value in
that the value of the pointer must be loaded before the pointer can be dereferenced.
The compiler can preserve this order without using the less performant acquire.

17.3.5 memory_order_acq_rel

As mentioned in §17.3.2, relaxed is not safe is when decrementing reference counts.
Instead, acquire-release is needed to perform a read-modify-write operation atomi-
cally (all meanings). For example, to decrement the reference count of a shrd_obj
from listing 17.3 (p.251), the function shrd_dec is shown in listing 17.6.

1 bool shrd_dec(struct shrd_obj *so) {

2 if (atomic_fetch_sub_explicit(&so->ref_cnt, 1,

3 memory_order_acq_rel) == 1) {

4 if (so->free_fn != nullptr)

5 (*so->free_fn)(so);

6 return true;

7 }

8 return false;

9 }

Listing 17.6: Shared object reference count decrement

• Lines 2–3 decrement ref_cnt and return its old value: if that value is 1, it means
so was the last pointer pointing to the shrd_obj, so it should be freed.

17.4 Compare and Swap

Compare-and-swap (CAS), as its name suggests, is both a compare and a swap op-
eration done together atomically (all meanings). Conceptually, it’s implemented as
shown in listing 17.7 except done atomically (where A is any _Atomic type and T is
the non-atomic version of A).

bool compare_and_swap(A *obj, T *expected, T desired) {

if (memcmp(obj, expected, sizeof(T)) == 0) {

memcpy(obj, &desired, sizeof(T));

return true;

}

memcpy(expected, obj, sizeof(T));

return false;

}

Listing 17.7: Conceptual implementation of compare-and-swap

The idea is that you check the value of an _Atomic variable and:
• If it’s the value you expect, then (and only then) set it to the desired value; or:

• If it’s not the value you expect, it means some other thread changed the value,
so do nothing. (You are free to reattempt setting the value.)

256 17 _Atomic

Like the functions in §17.2, the actual functions are _Generic (§19) in that they
accept any _Atomic-qualified object of type A; T is the non-_Atomic version of A.
Functions that are not named with _explicit use the sequential consistency mem-
ory order (§17.3.1); functions with _explicit use the given memory orders.

bool atomic_compare_exchange_strong(A volatile *pv,

T *expected, T want);

bool atomic_compare_exchange_strong_explicit(A volatile *pv,

T *expected, T want,

memory_order succ,

memory_order fail);

Compares *pv with *expected: if they’re equal, does *pv = want (per-
forms a read-modify-write operation) and returns true; otherwise, does
*expected = *pv (performs a load operation) and returns false — all
atomically (all meanings).

For the _explicit version, succ is used for the memory order in the
success case and fail is used for the failure case.

bool atomic_compare_exchange_weak(A volatile *pv, T *expected,

T want);

bool atomic_compare_exchange_weak_explicit(A volatile *pv,

T *expected, T want,

memory_order succ,

memory_order fail);

Same as the strong versions except that, similarly to cnd_wait (§14.5),
weak versions can spuriously fail, that is act as if *pv != *expected and
return false even if they’re equal.

■ Why is the concept known as “compare-and-swap” yet the functions
are named “compare-exchange?” There was no deliberate decision for the
names not to match. Some assembly languages, e.g., Intel, have xchg and
cmpxchg instructions, so there is precedent there for “exchange.” Addition-
ally, std::swap in the C++ standard library:

std::swap(x, y); // auto t = x; x = y; y = t;

replaces each object with the contents of the other and there is no return
value. In contrast, std::exchange:

auto x0 = std::exchange(x, y);

// auto x0 = x; x = y; return x0;

17.4 Compare and Swap 257

replaces only x with y, does not replace y with x, and returns the old value
of x. Hence, the semantics of the compare-exchange functions are closer to
exchange than swap. □

Conceptually, the compare-exchange functions are implemented as shown in listing
17.8.

1 enum cas_result {

2 CAS_EQUAL, CAS_NOT_EQUAL, CAS_SPURIOUS_FAILURE

3 };

4
5 enum cas_result cas_weak_impl(A *pv, T *expected,

6 T want);

7
8 inline bool atomic_compare_exchange_weak(A *pv,

9 T *expected,

10 T want) {

11 return cas_weak_impl(pv, expected, want) == CAS_EQUAL;

12 }

13
14 bool atomic_compare_exchange_strong(A *pv, T *expected,

15 T want) {

16 enum cas_result cr;

17 do {

18 cr = cas_weak_impl(pv, expected, want);

19 } while (cr == CAS_SPURIOUS_FAILURE);

20 return cr == CAS_EQUAL;

21 }

Listing 17.8: Conceptual implementation of weak and strong CAS

Assume there’s only cas_weak_impl that implements a weak version of CAS:

• Lines 8–12 implement atomic_compare_exchange_weak, a simple wrapper
around cas_weak_impl.

• Lines 14–21 implement atomic_compare_exchange_strong that’s simply a
wrapper around cas_weak_impl with a loop that filters out spurious failures.
The important thing to remember here is that there’s a loop.

Given that, the benefits of atomic_compare_exchange_weak include:

+ Spurious failures tend not to happen all that often.
+ When your code is using a loop anyway, the weak version will yield better per-
formance on weakly-ordered CPUs and no worse on strongly-ordered CPUs.

+ Detects the ABA Problem (on weakly-ordered CPUs; §17.6).

So then why does atomic_compare_exchange_strong exist?

• If you have a loop only to filter out spurious failures, don’t: use the strong version
because it conceptually uses a loop internally as shown in listing 17.8.

• But if you have a loop anyway, use the weak version.

_Atomic

• Lines 5–6 set new_head->next to the old head value.

• However, if handling spurious failures is expensive (for example, if you have to
discard and reinitialize a new object), use the strong version.

• But the strong version doesn’t detect the ABA Problem.

258 17 _Atomic

17.5 Lock-Free Operations

One of the primary uses for CAS is that it allows you to implement lock-free opera-
tions on data structures.

■Operations fall into two broad categories: blocking and non-blocking. The
former can occur when attempting to lock a mutex that’s already locked, for
example.

Non-blocking also has two categories: lock-free and wait-free. Intu-
itively, lock-free operations never lock a mutex. Using _Atomic and the
appropriate memory orders, data can still be shared in a thread-safe way.
Lock-free operations are generally more performant than blocking ones.
However, while you won’t have to lock, you may still have to wait (as we’ll
see). □

For example, a lock-free version of islist_push from listing 10.10 (p. 164) is
shown in listing 17.9.

1 void islist_lfpush(struct islist *_Atomic *plist,

2 size_t size) {

3 struct islist *const new_head =

4 malloc(sizeof(struct islist) + size);

5 new_head->next =

6 atomic_load_explicit(plist, memory_order_relaxed);

7
8 while (!atomic_compare_exchange_weak_explicit(plist,

9 &new_head->next, new_head,

10 memory_order_release, memory_order_relaxed));

11 }

Listing 17.9: Singly linked list lock-free push

• The function’s signature on line 1 has changed: it now takes a pointer to an
pointer to the head of the list so that it can be updated atomically.

• Lines 8–10 try to update *plist (the current head):

– If it’s still equal to new_head->next (the original value of *plist), update
*plist to point to new_head.

– If it’s not equal, it means another thread sneaked in and updated *plist

to point to different new node, so do nothing and reattempt. (Note that
new_head->next has been updated to be the updated *plist pointing to
the different node.)

.

• Lines 6 and 10 (in the failure case) can use memory-order-relaxed because
*new_head is an object pointed to only by this function, i.e., it’s not (yet) shared
with any other thread, so there’s no issue with thread-safety.

• Line 10 must at least use memory-order-release to ensure that the write to the
next pointer can’t be reordered after the update to *plist.

25917.6 The “ABA Problem”

17.6 The “ABA Problem”

Suppose thread 1 performs the following steps:

1. Read a memory location: the value is “A”.
2. Do some work.
3. Read the same memory location again: the value is still “A”
4. Compare the original and recent values: they’re equal.
5. Conclusion: nothing has changed.

The problem is suppose thread 2 performs the following steps while thread 1 is doing
its step 2:

1. Write “B” to the same memory location.
2. Do some work.
3. Write “A” to the same memory location.

By the time thread 1 does its step 3, it reads “A” and believes nothing has changed
— even though it has. You might now ask:

If the value of “A” is the same, why does it matter?

The answer is: sometimes it doesn’t — but sometimes it does. This is known as the
ABA Problem.

Consider the islist_lfpush function from listing 17.9 (p. 258). Figure 17.1
illustrates the steps comprising a push.

L A B

N
(a)

L X A B(b)

L N A B(c)

Fig. 17.1: ABA analysis of singly linked list lock-free push

State (a) shows shows the initial conditions where A and B are nodes on the list,
*plist (L) points to A, and new_head (N) has its next also point to A. The dot-
ted box contains *plist (L) and new_head->next that are being compared. State

260 17 _Atomic

(c) shows the desired final state where *plist (L) points to new_head (N) and
new_head->next points to A.

But what if another thread sneaks in before the while loop is entered, pushes
a new node X shown by state (b), then immediately pops it? Both *plist (L) and
new_head->next still point to A, so *plist will be set to new_head — which is
correct. In this case, the ABA Problem isn’t actually a problem.

Now consider a lock-free version of islist_pop from listing 10.10 (p. 164) as
shown in listing 17.10.

1 struct islist*

2 islist_lfpop(struct islist *_Atomic *plist) {

3 struct islist *head =

4 atomic_load_explicit(plist, memory_order_relaxed);

5
6 while (head != nullptr &&

7 !atomic_compare_exchange_weak_explicit(plist,

8 &head, head->next, memory_order_release,

9 memory_order_relaxed));

10
11 return head;

12 }

Listing 17.10: Singly linked list lock-free pop, version 1

• Lines 3–4 load the current head of the list.
• Line 5 checks head for nullptr meaning the list is empty that will cause the
loop either never to be entered (if the list was empty initially) or exit if becomes
empty (if another thread popped the last element).

• Line 7–9 try to update *plist (the current head):

– If it’s still equal to head (the original value of *plist), update *plist to
point to head->next.

– If it’s not equal, it means another thread sneaked in and updated *plist

to point to different node (via either pushing or popping), so do nothing
and reattempt. (Note that head->next has been updated to be the updated
*plist, the current head.)

Figure 17.2 illustrates the steps comprising a pop.

L A B C

H
(a)

L C(b)

L A C(c)

L B(d)

L B C(e)

Fig. 17.2: ABA analysis of singly linked list lock-free pop

T* void*

17.7 Versioned Pointers 261

State (a) shows shows the initial conditions where A, B, and C are nodes on the
list, *plist (L) points to A, and head (H) also points to A. The dotted box contains
*plist (L) and head (H) that are being compared. State (e) shows the desired final
state where *plist (L) points to B.

But what if another thread sneaks in before the while loop is entered, pops A and
B shown by state (b), then pushes A shown by state (c)? Both *plist (L) and head
(H) still point to A, so *plist will be set to head->next—which is wrong!

Why? Originally, head pointed to Awhose next pointed to B, hence head->next
(the desired argument in the compare) is B. But B was popped in (b), so we’ll end
up in state (d) with *plist (L) being a dangling pointer to B. In this case, the ABA
Problem is really a problem! (It wasn’t a problem for islist_lfpush because the
desired value of new_head could never become stale since new_head isn’t shared.)

Even worse, there’s no easy fix for this. In this case, the problem is that part of the
desired value expression (here, head->next) can change. Detecting ABA Problems
is hard, even for experts. Now what? There are a few choices:

1. Give up and use a mutex (§14.4).
2. Implement versioned pointers (§17.7).
3. Implement hazard pointers.†

17.7 Versioned Pointers

A versioned pointer is a pointer plus a “version number” where every time the value
of the pointer changes, the version number is incremented, something like:

struct vers_ptr {

void *ptr; // pointer to object

uintptr_t vers; // version number

};

The type of vers is uintptr_t (§2.7) so it’s the same size as a pointer. Assuming
64-bit pointers, the size of vers_ptr would be 16 bytes. Modern CPUs support 16-
byte atomic CAS, e.g., as Intel does with its cmpxchg16b instruction. We can then
use a vers_ptr to write a lock-free islist_lfpop as shown in listing 17.11.

• Line 1 defines a convenience macro to declare a versioned pointer having a ptr
of type rather than to eliminate casting.

• Line 3 uses VERS_PTR to typedef islist_vptr that will always be used to
point to the head of a list.

†Lock-Free Data Structures with Hazard Pointers, Andrei Alexandrescu and Maged Michael, Dr.
Dobb’s, Dec. 1, 2004,
https://www.drdobbs.com/lock-free-data-structures-with-hazard-po/184401890

https://www.drdobbs.com/lock-free-data-structures-with-hazard-po/184401890

vers_ptr

new_next vers

262 17 _Atomic

1 #define VERS_PTR(T) struct { T *ptr; uintptr_t vers; }

2
3 typedef VERS_PTR(struct islist) islist_vptr;

4
5 struct islist* islist_lfpop(islist_vptr _Atomic *plist) {

6 islist_vptr head =

7 atomic_load_explicit(plist, memory_order_relaxed);

8
9 while (head.ptr != nullptr) {

10 islist_vptr const new_next =

11 { head.ptr->next, head.vers + 1 };

12 if (atomic_compare_exchange_weak_explicit(plist,

13 &head, new_next, memory_order_release,

14 memory_order_relaxed))

15 break;

16 }

17
18 return head.ptr;

19 }

Listing 17.11: Singly linked list lock-free pop, version 2

• The function’s signature on line 5 has changed: it now takes a pointer to a
rather than an ordinary pointer to the head of the list.

• Lines 6–7 load the current head of the list. Unlike before, head is a versioned
pointer.

• Line 10–11 constructs new_next, what we want the head’s updated next ver-
sioned pointer to be. Notice that ’s is one more than before.

• Lines 12-14 try to update *plist (the current head):

– If it’s still equal to head (the original value of *plist), update *plist to
be new_next. Even though both *plist (L) and head (H) still point to A as
before in figure 17.2(a), they won’t compare equal because the respective
values of vers in *plist and head are different.

– If it’s not equal, it means another thread sneaked in and updated *plist to
point to either a different node or the same node but with a different next
pointer (via either pushing or popping), so do nothing and reattempt. (Note
that head has been updated to be the updated *plist, the current head.)

17.8 False Sharing

As mentioned in §10.6, when data is read from memory, rather than reading only a
single byte, an entire chunk — a cache line — of memory is read that contains not
only the sought after byte, but the surrounding bytes as well. For code that exhibits
locality of reference, the chunking yields a performance gain. However, in some
cases, it can yield a performance loss. Consider a lock-free linked list that contains
both head and tail pointers:

17.9 Epilogue 263

struct lf_islist {

struct islist *_Atomic head, *_Atomic tail;

};

Assume that your code has one thread pushing items onto the tail of the list (repeat-
edly updating tail) and a second thread popping items from the head of the list
(repeatedly updating head). With lf_islist defined as it is, head and tail will
very likely reside on the same cache line. This means updating one will invalidate
the entire cache line adding otherwise unnecessary contention for the other. This is
known as false sharing.

To eliminate false sharing, you want head and tail to reside on different cache
lines so updating one doesn’t affect the other. You can achieve that by using alignas
(§4.8) as shown in listing 17.12.

1 #if defined(__aarch64__) || defined(__powerpc__)

2 constexpr unsigned CACHE_LINE_SIZE = 128;

3 #elif // ... other CPU architectures ...

4 // ...

5 #else

6 constexpr unsigned CACHE_LINE_SIZE = 64;

7 #endif

8
9 struct lf_islist {

10 alignas(CACHE_LINE_SIZE) struct islist *_Atomic head,

11 *_Atomic tail;

12 };

Listing 17.12: Using alignas to eliminate false sharing

• Lines 1–7 define CACHE_LINE_SIZE in bytes using conditional compilation
(§8.5) based on object-like macros defined for the CPU by the compiler. Aside
from a few exceptions, the cache line size for most modern CPUs is 64 bytes so
that’s a reasonable default to use on line 6 if none of the #ifs match.

• Lines 10–11 use alignas to align both head and tail to be on cache-line-size
boundaries by intentionally introducing padding (§10.5). This wastes a little bit
of memory, but ensures that head and tail reside on different cache lines and
eliminates false sharing between them.

17.9 Epilogue

Here are some key points about and some advice for _Atomic:

• _Atomic is syntactically a qualifier like const, like volatile, and restrict.
• For pointers, the pointer, the object pointed to, or both, can be _Atomic.
• In some cases, _Atomic can be used as an alternative to a mutex.

• Deciding whether to use _Atomic instead of a mutex is a choice between a pos-
sible performance gain and simpler and relatively safer code. Like many other
things in computer science, it’s a trade-off. But it’s your trade-off to make for
your circumstances rather than be stuck with whatever trade-offs the imple-
menters made when programming in a language that provides data structures
either built-in or part of its standard library.

orithm matters far more than the choice between _Atomic and a•
•
Your alg mutex.
Thread-safety in general and using _Atomic with memory barriers specifically
is very hard to get right, even for experts.

• Before using _Atomic, profile your code (§18.9) to see if it’s spending too much
time either locking or waiting for locks.

are of the ABA Problem. Versioned pointers are a technique to solve it.•
•
Be aw
Be aware of false sharing.

264 17 _Atomic

Use wisely.

Exercises

1. Using listing 17.9 (p.258) as a starting point, write an updated islist_lfpush
that uses vers_ptr like islist_lfpop does in listing 17.11 (p.262).

Chapter 18

 Debugging

Inevitably, you’re going to have to debug your program. The top two ways to do so
are to:

1. Temporarily add statements to print values of interest.
2. Use a debugger such as either gdb† or lldb‡ (on Unix systems) or the one that’s

bundled with an IDE.

The first is relatively straightforward; the second requires that you learn some de-
bugger commands or application. There are times, however, when neither method
works. Fortunately, there are other tools available. In §18.8, a case study for a bizarre
bug and how it was diagnosed and fixed is presented.

18.1 Printing Values

When temporarily adding statements to print values of interest, you should print to
standard error rather than standard output because standard error is generally un-
buffered meaning all output is printed immediately rather than being buffered be-
fore printing whereas standard output is generally buffered. If debugging a crash
and you’re printing to standard output, it’s possible that your program will crash
before values of interest are printed.

Additionally, if your program prints to both standard output and standard error,
the output can become unsynchronized due to the difference in buffering. If available
on your system, the stdbuf command can change the buffering of standard output
for your program by running:

$ stdbuf -o0 command

†https://www.sourceware.org/gdb/
‡https://lldb.llvm.org/

265© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_18

https://lldb.llvm.org/
https://www.sourceware.org/gdb/
https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_18&domain=pdf

266 18 Debugging

If stdbuf isn’t available on your system, you can add the following line of code
in your main function before you print anything that will make standard output un-
buffered:

setvbuf(stdout, nullptr, _IONBF, 0);

18.2 Debug Information

Debug information consists of the names of functions and variables, and a mapping
from assembly language instructions back to their corresponding C source files and
line. While names are meaningful and line number mappings are useful to program-
mers, they’re unnecessary for compiled programs. All that’s needed are memory ad-
dresses of functions to call or variables to access. Consequently, when a C compiler
generates an executable, it doesn’t contain any debug information by default.

To use a debugger, having debug information is extremely helpful. Both clang

and gcc accept the -g command-line option to generate debug information in the
executable. For Microsoft C, the option is /DEBUG. The caveat is that your program
will be bigger both on disk and in memory (but usually not problematically so).

18.3 Optimization

A compiler typically does not perform a simple translation from C statements to
sets of assembly language instructions. It also performs many kinds of optimization
resulting in assembly code that can be very different from what you might expect
a direct translation from C statements to be, or in a different order, or eliminated
completely (“optimized out”). This can confound using a debugger to step through
the execution of a program because the assembly instructions don’t cleanly map back
to C statements.

Both clang and gcc accept the -O0 (“oh zero”) command-line option to set the
optimization level to zero, i.e., no optimization. For Microsoft C, the option is /Od
(“oh dee”). Therefore before debugging, it’s much better if you recompile your pro-
gram with optimization disabled. The caveat is that your program will typically run
slower.

18.4 Core Dumps

A core dump is a file containing a snapshot of memory of a program when execution
caused a serious error. A core dump usefully contains the entire stack frames of your
program including both local variables and heap memory. Core dump files can be

aligned (§4.8).

next opcode.

18.5 Signals 267

read by debuggers so you can see exactly where a program crashed (file and line),
go up the call stack, and print the values of variables or memory.

■ The name core dump comes from magnetic-core memory, aka, core, the
leading type of RAM until the 1970s. A core is a very small (roughly .5mm)
ferrite ring that, via the direction of an inducedmagnetic field, stored either a
0 or 1. Hence, a core dump was literally a dump of the state of core memory.
Even though core memory has long since been obsoleted, the term core
dump persists. □

On Microsoft Windows, the equivalent is a minidump, a file ending with a .dmp

extension.

18.5 Signals

On Unix systems, when certain errors occur during the execution of a program, the
operating system sends the program a signal interrupting it. (Signals are assigned
integers and are defined in the signal.h standard header.) Some signals trigger a
core dump by default. The ones you’re most likely to encounter are:

• SIGABRT (abort): Caused because either a program explicitly called abort or it
was called by a violated assert (§16).

• SIGBUS (bus error): A bus is a communication system among components of a
computer. A system bus is the bus between the CPUs and main memory. Some
CPUs can access memory for types (§2.5) only at addresses that are suitably

A bus error occurs when an attempt is made to access either a nonexistent
memory address or a type via an unaligned address.

• SIGILL (illegal instruction): At the lowest level, a program is a sequence of byte
values where each corresponds to a CPU opcode that is a CPU instruction. (For
example, on an x86–64 CPU, C6 is the opcode for the 8-bit mov instruction.)
When a CPU is executing a program, it reads a value for an opcode, then exe-
cutes it. Afterwards, it simply proceeds to the next byte in memory to read the

An illegal instruction error occurs when a CPU reads a value that doesn’t cor-
respond to an opcode. This can happen if a program calls a function via pointer
(§6.10), but the pointer points to somewhere in memory that doesn’t contain
opcodes.

• SIGSEGV (segmentation violation, aka, “segmentation fault” or “seg-fault”): A
segmentation fault occurs when a program attempts to access a memory address
that it doesn’t have permission to access.

18 Debugging268

18.6 Common Bugs

There are types of bugs that happen more frequently than others. Some have already
been discussed: data races (§14), thread leaks (§14.2), and undefined behavior (§15).
In this section, additional bugs you are likely to encounter are presented.

18.6.1 Array Bounds

As mentioned in §6.3, accessing an element of an array outside its bounds results
in undefined behavior (§15). If you’re lucky, you’ll get a segmentation fault (§18.5)
followed by a core dump (§18.4); if you’re unlucky, your program may appear to
work correctly — some of the time.

For example, given the code shown in listing 18.1, the use of <= rather than <

when iterating through arrays is invariably wrong.

bool rv = false;

char buf[1024];

for (unsigned i = 0; i <= 1024; ++i) // should be <

buf[i] = /* ... */;

// ...

return rv; // may return random value

Listing 18.1: Array bounds violation

In this case, when i is 1024, assigning a value to buf[i] may overwrite rv if it’s
located in memory immediately after buf in the function’s stack frame. (The order in
which local variables are laid out in memory is implementation defined.) The value
of rvmay become true if buf[1024] is odd and false if even. The function would
appear to return true randomly.

18.6.2 Buffer Overflow

A buffer overflow is kind of an array bounds violation, but is usually caused differ-
ently, typically by calling a function that writes beyond the end of a buffer rather than
you doing so explicitly via an array index. Standard functions that can do this far too
easily include scanf (§12.4.1), strcat (§B.2), and strcpy because they don’t have
the capacity of the buffer as a parameter.

In production-quality programs, scanf with strings shouldn’t be used; the non-
standard but common safer functions strlcat and strlcpy should be used instead
of strcat and strcpy, respectively. Even safer functions like memcpy (§B.2) can
cause a buffer overflow if you get the capacity of the buffer wrong. Whenever using
a buffer, always know its capacity.

the same object.

26918.6 Common Bugs

18.6.3 Double Free

A double free bug is when you freememory via a pointer, then attempt to free the
same memory again. This typically happens because either:

1. You call free on the same pointer more than once, e.g., an error occurred, so
your error-path code freed an object, but then your normal-path code also freed

As an alternative, after freeing an object, you can set its pointer to nullptr.
Calling free on a nullptr is guaranteed to do nothing.

2. You have two or more owning pointers to an object and freewas called on more
than one. (An owning pointer is a pointer that you decided “owns” the object to
which it points. Before disposing of such a pointer, you must free the owned
object.) For any object, there should only ever be at most one owning pointer
(or use a shared pointer like in listing 17.3, p.251).

18.6.4 Null Pointer Dereference

A null pointer dereference is simply an attempt to dereference a pointer whose value
is nullptr. As to why it’s null when you’re assuming it shouldn’t be, there can
be any number of reasons ranging from you never setting it to a non-null value or
resetting it to a null value. Generally, it’s one of the simplest bugs to diagnose and
fix (except when it isn’t — see §18.8).

18.6.5 Off-by-One

The array bounds error (§18.6.1) is a particular case of the more general off-by-
one error where a calculated value is either one less or one more than it should be.
Such miscalculations often occur when dealing with either strings or buffers. For an
example, recall the mstrcat function from listing 1.13 (p.21) that contains the line:

char *const s12 = malloc(s1_len + strlen(s2) + 1);

A common mistake is to forget the + 1 for the terminating null character.

18.6.6 Use After Free

A use-after-free bug is when you free a pointer to an object, then attempt to deref-
erence the pointer to the (now non-existent) object.

18 Debugging270

Recalling the slist structure from listing 6.2 (p.86), consider a function to free
an entire slist as shown in listing 18.2.

1 void slist_free(struct slist *list,

2 void (*free_fn)(void*)) {

3 for (; list != nullptr; list = list->next) {

4 (*free_fn)(list->data);

5 free(list);

6 }

7 }

Listing 18.2: Function to free an entire list (the wrong way)

While it may look correct, the problem is that the free frees the slist object pointed
to by list, but then reads list->next that no longer exists. Since this results in
undefined behavior (§15), the function may even work some of the time.

18.6.7 Memory Leak

As first mentioned in §1.8, amemory leak occurs when the value of a pointer to allo-
cated memory is somehow lost thus making it impossible to pass to free. Repeated
leaks will eventually exhaust memory.

Recall the token structure from listing 11.1 (p. 171). Since the s member is a
pointer to a dynamically allocated string, then, if t1 and t2 are variables of token,
simply assigning one to the other like:

t1 = t2; // overwrites t1.s leaking it

will overwrite t1.s leaking it. What’s needed for this and any other structure that
contains an owning pointer is a function to copy it as shown in listing 18.3.

1 void token_cpy(struct token *dst,

2 struct token const *src) {

3 if (dst == src)

4 return;

5 if (dst->kind == TOKEN_STR)

6 free(dst->s);

7 if (src->kind == TOKEN_STR) {

8 *dst = (struct token){

9 .kind = TOKEN_STR, .s = strdup(src->s)

10 };

11 } else {

12 memcpy(dst, src, sizeof *dst);

13 }

14 }

Listing 18.3: Function to copy a token containing an owning pointer

*dst

strdup

18.6 Common Bugs 271

• Lines 3–4 check for self-copying, e.g., t1 = t1, and do nothing. While you’d
never intentionally write code like that, you should still guard against it.

• Lines 5–6 check if is a token for a string: if so, frees the string.
• Lines 7–10 check if *src is a token for a string: if so, copies the string using the
standard function (§B.2).

• Otherwise, line 12 simply uses memcpy (§B.2) to copy *src.

18.6.8 Uninitialized Variable

As first mentioned in §1.3, attempting to read from an uninitialized variable results in
undefined behavior (§15). One way to avoid this would be always to initialize vari-
ables when declared “just in case.” The pitfall is that doing so can cause a different
bug. How? Consider the code in listing 18.4.

1 int x_min = 0, x_max = 0;

2 int y_min = 0, y_max = 0;

3 // ...

4 x_min = MIN(x1, x2);

5 y_min = MIN(y1, y2);

6 x_max = MAX(x1, x2);

7 x_max = MAX(y1, y2);

8 draw_rect(x_min, y_min, x_max, y_max);

Listing 18.4: Initializing “just in case” pitfall

This code will compile without warning despite the bug. (Did you notice it?) The
bug is the x_max on line 7 is a typo: it should be y_max. It goes unnoticed because
the compiler has no way to know it’s a typo. Because y_max was initialized on line
2, the code is “fine” as far as the compiler is concerned. Had you left all of x_min,
x_max, y_min, and y_max uninitialized in their declarations, the compiler could have
warned you with the -Wuninitialized command-line option (§18.7.1):

rect.c:8:34: warning: ’y_max’ uninitialized when used here

8 | draw_rect(x_min, y_min, x_max, y_max);

| ^~~~~

and you’d have realized you made a typo. In this case, the better solution would
have been to declare and assign the variables together on the same lines, but there
are cases where you do need to pre-declare variables. In such cases, it’s sometimes
better not to initialize “just in case.”

272 18 Debugging

18.7 Warnings

The best way to avoid debugging is not to put bugs into your programs in the first
place. By default, most compilers automatically give some warnings, but not all. By
enabling more warnings, the compiler can help you catch bugs before committing
your code.

■ If warnings are so helpful, why aren’t they errors instead? Because some-
times you really want to do something and you know what you’re doing.
Then why aren’t all warnings at least enabled by default? Because some
warnings are quite pedantic; others are considered pedantic by some pro-
grammers. Recall that part of C’s philosophy includes “trust the program-
mer,” hence many warnings are disabled by default, but are available and
can be enabled if desired. □

18.7.1 Recommended Warnings

In the warnings that follow, not all are supported by all compilers. They’re a union of
those supported by both clang and gcc. Warnings are invariably specified via build
tools, not manually on the command-line. During an initial “configure” step, the
compiler is probed to see which warning command-line options it accepts. Microsoft
C has equivalent warnings, but they’re specified by number, e.g., C4018.

-Wall

Enables “all” warnings that many users think are a good idea. (You should
enable this.)

-Wcast-align

Warn when a pointer is cast to a type that has a stricter alignment. For ex-
ample, warn if a char* is cast to an int* on CPUs where integers must be
aligned (§3.17) only at two- or four-byte boundaries.

-Wcomma

Warn about possible misuses of the comma operator (§3.15). For example,
although it’s legal to combine multiple expressions into a single statement
using the comma operator:

x = -1, y = 0; // same as: x = -1; y = 0;

it’s a bad practice because it’s confusing to many programmers. The only
exceptions are either the init-expr or the next-expr in a for loop (§5.6).

-Wconditional-uninitialized

Warn when a variable may be uninitialized when used on a certain code path
as shown in listing 18.4 (p.271) if y_max were not initialized.

18.7 Warnings 273

-Wconversion

Warn when an implicit conversion may alter a value, e.g.:

unsigned n = -1; // better: n = (unsigned)-1

To suppress such warnings, use a cast (§3.14).
-Wduplicate-enum

Warnwhen an enumeration constant (§7) has been implicitly assigned a value
that another constant has been assigned. For example:

enum color {

COLOR_BLACK, COLOR_WHITE, // COLOR_WHITE = 1

COLOR_NONE = COLOR_BLACK,

COLOR_GREEN, COLOR_RED // COLOR_GREEN = 1

};

will generate a warning that COLOR_GREEN has been implicitly assigned the
value 1 that COLOR_WHITE already has.When using implicit enumeration val-
ues, it’s best to declare duplicate values (§7.5.3) at the end.

-Wenum-enum-conversion

Warn when two or more constants from different enumerations (§7) are used
in the same expression.

-Wextra

Enables even more warnings than -Wall. (You should enable this.)
-Wfloat-equal

Warn if floating-point values are compared for equality or inequality. Many
floating-point values can’t be accurately represented using finite precision,
e.g., 10/3 or π: there will always be imprecision due to either truncation or
rounding. (This is true for computers in general, not only C.) Consequently,
it’s a bad idea to compare the result of a floating-point calculation for ei-
ther equality or inequality. For example, summing an array of floating-point
values and seeing whether they sum to zero:

bool sum_to_zero(size_t n, double const v[n]) {

double sum = 0.0;

for (size_t i = 0; i < n; ++i)

sum += v[i];

return sum == 0.0; // will hardly ever work

}

If sum ends up being 0.00000001 or even less, it will not compare equal to
zero because it’s not exactly zero. For floating-point equality, you generally
need to compare against ε that is some very small number such that when
sum < ε, it’s “close enough” to zero to be considered “zero.”

-Wfor-loop-analysis

Warn if a variable is either incremented or decremented in one of the for

274 18 Debugging

expressions and in the loop’s body, or used in the loop condition expression
but not modified in the body. For example:

for (size_t i = 0; i < n; ++i) {

// ...

++i; // warning: incremented above also

}

-Wformat-nonliteral

Warn if the format string to either printf (§12.1.1), scanf (§12.4.1), or one
of their variants, is not a string literal. Generally, the format string should
always be a string literal since the number of % in it specify the number and
types of expected arguments that follow. Any mismatch results in undefined
behavior (§15).

-Wformat-signedness

Warn if the format string to either printf (§12.1.1), scanf (§12.4.1), or one
of their variants, contains a specification where its sign does not agree with
that of its corresponding variable, e.g., the specifier is %d, but the variable is
unsigned.

-Wformat-type-confusion

Similar to -Wformat-signedness, but warn when the type of the specifica-
tion does not agree with that of its corresponding variable, e.g., the specifier
is %s, but the variable is int.

-Wimplicit-fallthrough

Warnwhen the case of a switch (§5.8) “falls through” into to the subsequent
case or default without the [[fallthrough]] attribute (§4.9.2).

-Wlogical-op-parentheses

Warn when && is used within || expressions. For example (assuming all vari-
ables are bool):

if (a || b && c || d) // a || (b && c) || d

Because && has a higher precedence than || (table 3.1, p. 46), the && binds
more tightly. Assuming you didn’t mean that, adding parentheses fixes it:

if ((a || b) && (c || d))

If you really meant the original, then add parentheses both to suppress the
warning and for clarity:

if (a || (b && c) || d) // addition of () clarifies

-Wshadow

Warn whenever a variable or type declaration in an inner scope “shadows”
(has the same name as) another variable, parameter, or type in an outer scope.
For example:

27518.7 Warnings

static unsigned count;

void f() {

unsigned count = 0; // legal, but a bad practice

It’s a bad practice to have multiple things with the same name since it can
lead to confusion and consequently bugs.

-Wshift-sign-overflow

Warn when shifting a signed integer and the sign bit becomes negative.
-Wsometimes-uninitialized

Warn when a variable is sometimes used before being initialized, e.g., when
a condition is true or false, or a loop is entered or exited. For example:

int min;

if (i < j)

min = i;

printf(”%d\n”, min); // sometimes uninitialized

-Wtautological-type-limit-compare

Warn if the result of a comparison is always either true or false. For ex-
ample, if n is unsigned, then the following is always true:

if (n >= 0) // always true for unsigned n

-Wuninitialized

Warn when a variable is used before being initialized.
-Wunreachable-code

Warn when lines of code are unreachable. Typically, it’s because one of
break or continue (§5.7), goto (§5.10), return (§5.9), or longjmp (§20.4)
is performed unconditionally beforehand.

-Wunused

Warn if a variable, function (§9), function parameter (§9.2), or label (§5.10)
is unused. While unused variables are generally harmless, if one has a name
similar to another such as y_max is to x_max in listing 18.4 (p. 271), it can
mean you made a typo and aren’t using a variable you should be.

Asmentioned in §16.6, variables can sometimes be unusedwhen disabling
assertions. To suppress warnings for such variables, add the maybe_unused
attribute (p.245).

-Wwrite-strings

Warn when assigning a string literal to a variable of type char*. Since const
(§4.5) wasn’t originally part of C, the type of a string literal is char* and
not char const*. Since it’s not const, the following will compile without
warning yet result in undefined behavior (§15):

18 Debugging276

char *s = ”hello, world”;

*s = ’H’; // undefined behavior

The -Wwrite-strings command-line option changes the type of string lit-
erals to char const* so assigning a string literal to a variable of type char*
will generate a warning.

Generally, there are no other consequences, but it does affect the type de-
duced for the controlling expression of _Generic (§19.1) for string literals.
This is one reason why the definition of the IS_C_STR_EXPR macro (p.292)
has both char* and char const*.

-Wzero-as-null-pointer-constant

Warn if 0 is used as the null pointer instead of nullptr (§C.15).

18.7.2 Disabling Warnings

Even though enabling warnings is a good idea, occasionally you might need to dis-
able a particular warning for a block of code because you reallywant to do something
despite the warning. For example, as mentioned for the -Wformat-nonliteral

warning, the format string for printf and its variants should always be a string
literal. One exception is when wrapping the function with another variadic function
(9.11.2). In such a case, you want to pass the format string argument along verbatim.

Using pragmas (§8.16), you can disable a warning for a block of code, then re-
enable it afterwards. However, you want to re-enable it only if it was enabled in the
first place. Both clang and gcc†maintain a set of enabledwarnings. Using additional
pragmas, you can “push” the current set onto an internal stack, disable a warning for
a block of code, then pop the stack to restore the previous set of enabled warnings
as shown in listing 18.5.

18.8 The Curious Case of the Disappearing if

In June, 2022, I discovered a test-case that crashed cdecl first mentioned in §6.10:

c++decl> explain int operator new(size_t)

Assertion failed: (ast != NULL), c_ast_unpointer_qual,

file c_ast_util.c, line 404.

abort (core dumped)

†Diagnostic Pragmas, Free Software Foundation, Using the GNU Compiler Collection, §6.67.13,
1988–2025, https://gcc.gnu.org/onlinedocs/gcc/Diagnostic-Pragmas.html

https://gcc.gnu.org/onlinedocs/gcc/Diagnostic-Pragmas.html

cdecl clang

27718.8 The Curious Case of the Disappearing if

#pragma GCC diagnostic push

#pragma GCC diagnostic ignored ”-Wformat-nonliteral”

[[noreturn]] void fatal_error(int status,

char const *format, ...) {

fprintf(stderr, ”%s: ”, prog_name);

va_list args;

va_start(args);

vfprintf(stderr, format, args);

va_end(args);

exit(status);

}

#pragma GCC diagnostic pop

Listing 18.5: Temporarily disabling a warning

■ cdecl parses declarations and constructs an abstract syntax tree (AST)
that is traversed to check for semantic errors. Note that cdecl is written in
C11, not C23, hence its use of NULL rather than nullptr (§C.15). □

The crash was strange for a couple of reasons that I knew initially. The test:

• Crashed only when is compiled using 14.0.5.
• Did not crash when compiled with various versions of gcc on any platform.

The Code

The code with line 404 is shown in listing 18.6.

396 static c_ast_t const*

397 c_ast_unpointer_qual(c_ast_t const *ast,

398 c_tid_t *qual_stids) {

399 ast = c_ast_untypedef(ast);

400 if (ast->kind != K_POINTER)

401 return NULL;

402
403 ast = ast->as.ptr_ref.to_ast;

404 assert(ast != NULL);

405 assert(qual_stids != NULL);

406 *qual_stids = ast->type.stids & TS_ANY_QUALIFIER;

407 // ...

408 return c_ast_untypedef(ast);

409 }

Listing 18.6: c_ast_unpointer_qual

The function c_ast_unpointer_qual takes pointer to an AST node and, if it rep-
resents a pointer in a C declaration, “un-pointers” it to obtain the pointed-to AST
node. It also gets the qualifiers, e.g., const, of the pointed-to AST node.

278 18 Debugging

The first assert on line 404 fails which means ast is NULL which means
as.ptr_ref.to_ast is NULL. That means to_ast wasn’t set when the AST was
being constructed in the parser — or so I thought.

Using a Debugger

First, I tried to use a debugger to set a breakpoint a few lines up. Unfortunately, the
line I wanted was “optimized out” by the compiler, so I tried setting a breakpoint
nearby. Unfortunately again, the value of ast had been optimized out. I recompiled
with -O0, but then the program didn’t crash — a heisenbug!

■ A heisenbug is a software bug that either disappears or alters behavior
when you attempt to debug it. The term is a portmanteau ofWerner Heisen-
berg, the physicist famous for his uncertainty principle (that states there is
a limit to the precision certain pairs of physical properties, such as position
and momentum, can be known simultaneously), and bug.†

Unfortunately, the uncertainty principle is often confused with the re-
lated observer effect (where the act of measuring a system can’t be made
without affecting the system). In programming, it’s the observer effect
you’ll occasionally run into, not the uncertainty principle.

Heisenbugs happen typically because when you recompile with no op-
timization, the generated code is just sufficiently different so as not to cause
the bug to manifest (though it’s still there). □

I set a breakpoint in the function that calls c_ast_unpointer_qual (which I learned
from the backtrace) and it’s c_ast_is_ptr_to_tid_any shown in listing 18.7.

1 c_ast_t const* c_ast_is_ptr_to_tid_any(c_ast_t const *ast,

2 c_tid_t tids) {

3 c_tid_t qual_stids;

4 ast = c_ast_unpointer_qual(ast, &qual_stids);

5 return c_ast_is_tid_any_qual_impl(ast, tids,

6 qual_stids);

7 }

Listing 18.7: c_ast_is_ptr_to_tid_any

This time, the debugger stopped at the breakpoint and I discovered the AST node
is for the built-in type (K_BUILTIN) of int (the declared return type of operator
new) and in particular it’s not K_POINTER. That means the if on line 400 in list-
ing 18.6 (p.277) should have evaluated to true, the function should have returned
NULL, and, most importantly, should not have even executed line 404. It’s as if the
if disappeared.

†A Conversation with Bruce Lindsay: Designing for failure may be the key to success, Steve
Bourne, ACM Queue, 2(8), Nov. 2004, pp. 22–33.

27918.8 The Curious Case of the Disappearing if

Memory Checkers and Sanitizers

My next step was to try valgrind† — nothing useful. I also tried clang’s address‡
and undefined behavior§ sanitizers — also nothing useful. Now what?

Older clang Versions

The failing test didn’t crash previously using clang. (The problem is that, while I do
run my full suite of unit tests using gcc every time I change the source code, I don’t
also do it every time using clang.) So I started downloading older and older versions
of clang and trying them out. I finally found out that the crash didn’t happen using
clang 13.0.1 and started happening using clang 14.0.0. Although highly unlikely
in a compiler as mature as clang, it is possible that I found an optimizer bug.

Viewing the Object Code

So then I thought to look at the generated x86–84 assembly code using objdump:

$ objdump -gSMintel --no-show-raw-insn \

--symbolize-operands c_ast_util.o

Looking at the output for c_ast_is_ptr_to_tid_any, I discovered that the com-
piler inlined the call to c_ast_unpointer_qual, but that the if was there:

; if (ast->kind != K_POINTER)

cmp eax, 256

jne <L3>

I then recompiled using clang 14.0.0 and dumped again: this time, that if was not
there! The likelihood that I found an optimizer bug increased.

Static Analysis

I had started to file a bug against clang when I came across scan-build and tried
it. It flagged undefined behavior (§15) in c_ast_is_ptr_to_tid_any (listing 18.7,

†https://valgrind.org/
‡https://clang.llvm.org/docs/AddressSanitizer.html
§https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://valgrind.org/

280 18 Debugging

p.278). Specifically, qual_stids can be passed to c_ast_is_tid_any_qual_impl
uninitialized on line 6 since c_ast_unpointer_qual doesn’t always set it. How-
ever, I didn’t think it mattered because:

1. The only way qual_stids remains uninitialized is if c_ast_unpointer_qual
returns NULL; and:

2. The code for c_ast_is_tid_any_qual_impl in listing 18.8 does nothing if
ast is NULL— specifically, it does not use (the uninitialized) qual_stids.

static c_ast_t const*

c_ast_is_tid_any_qual_impl(c_ast_t const *ast,

c_tid_t tids,

c_tid_t qual_stids) {

if (ast != NULL) {

c_tid_t ast_tids = c_type_get_tid(&ast->type, tids);

ast_tids = c_tid_normalize(ast_tids);

if (c_tid_tpid(tids) == C_TPID_STORE)

ast_tids |= qual_stids;

if (c_tid_is_any(ast_tids, tids))

return ast;

}

return NULL;

}

Listing 18.8: c_ast_is_tid_any_qual_impl

So what harm can there possibly be that qual_stids is uninitialized? In fact, since
it’s not used in the NULL case, how is that even undefined behavior? The problem is
merely passing qual_stids to a function means it has to be read and, according to
the C11 standard §6.3.2.1¶2, is undefined behavior:

If the . . . object [has] automatic storage duration . . . and . . . is uninitialized
(not declared with an initializer and no assignment to it has been performed
prior to use), the behavior is undefined.

And with undefined behavior, anything is possible. But does it matter in this case?

The Fix

Assuming the undefined behavior is responsible for the if disappearing, the fix is
trivial: initialize qual_stids as shown in listing 18.9 on line 3. Compiling with
clang 14.0.0 and running resulted in cdecl not crashing and the test passing!

28118.10 Epilogue

1 c_ast_t const* c_ast_is_ptr_to_tid_any(c_ast_t const *ast,

2 c_tid_t tids) {

3 c_tid_t qual_stids = TS_NONE;

4 ast = c_ast_unpointer_qual(ast, &qual_stids);

5 return c_ast_is_tid_any_qual_impl(ast, tids,

6 qual_stids);

7 }

Listing 18.9: c_ast_is_ptr_to_tid_any, fixed

18.9 Profiling

If your program works correctly, but slowly, you can profile it to see where the CPU
is spending the most time. Just as there are many choices of build tools (§13.9), there
are many choices for profilers. Typically, a profiler on a Unix system requires one or
more of giving special command-line options to the compiler, linking with special
libraries, setting environment variables (§12.4.4), and perhaps running your program
via a profiling program, to produce profiled output that you can then analyze.

Profilers include callgrind (part of valgrind), DTrace, gperftools, gprof,
perf (Linux only), Tracy, VTune, and others. Some IDEs, such as CLion, Microsoft
Visual Studio C, and Xcode, have integrated profilers. The details of any of the pro-
filers are beyond the scope of this book — entire other books and web sites have
been written about them.

18.10 Epilogue

Here’s some advice for debugging:

• Enable more warnings.
• Enable debug information and disable optimization.
• Try every debugging technique at your disposal:

– Print values.
– Use a debugger.
– Use valgrind (with the caveat that it works only on generated machine
code, not optimized-out code).

– Use address and undefined behavior sanitizers.
– Use a rubber duck.†

• Bugs as a result of undefined behavior can be bizarre and make seemingly im-
possible things happen. If that seems to be the case, look at the generated assem-

†“Re: Not an awk question,” Andrew Errington, linux-users mailing list, Nov. 7, 2002,
http://lists.ethernal.org/oldarchives/cantlug-0211/msg00174.html

http://lists.ethernal.org/oldarchives/cantlug-0211/msg00174.html

282 18 Debugging

bly code. For example, when single-stepping in a debugger, if the next line of
code you step to isn’t where you think it should be, it’s a hint that the compiler
did something unexpected and the assembly code isn’t what you think it is.

Exercises

1. Write a correct version of slist_free shown in listing 18.2 (p.270).
2. In addition to printing values (§18.1), it can sometimes be useful to trace your

program’s execution as it calls functions. For example, if load_config calls
read_file, your program could print:

entering load_config()

entering read_file()

Write a macro:

#define TRACE_FUNC /* ... */

that should be inserted as the first line of every function you want to trace, for
example:

void load_config() {

TRACE_FUNC;

// ...

that prints the function’s name to stderr. Hint: use __func__ (§9.9.1).
3. Modify your solution to the previous exercise to print anything only if the

ENABLE_TRACEmacro is defined to non-zero; if either undefined or zero, nothing
should be printed. Your solution must not incur any run-time overhead.

Chapter 19

 _Generic

C has the _Generic keyword that enables compile-time selection of an expression
based on the type of its argument. The motivation is the ability for library authors to
provide a veneer of C++ function overloading in C.

■ Personally, I think _Generic is too, well, generic of a name. It should
have been called something like _Typeswitch. □

19.1 Motivating Example

The motivating example is the ability of the standard C library, e.g., math.h, to
provide specialized functions for different floating point types (§2.5.6) yet only a
single function in the API. For example, math.h provides these three functions:

double sqrt (double); // square root of double

float sqrtf(float); // ... of float

long double sqrtl(long double); // ... of long double

While you certainly can use those functions as they are, it would be nice if you could
always use simply sqrt and have the compiler select the right function automatically
based on the type of its argument:

double d;

float f;

long double l;

double rv_d = sqrt(d); // calls sqrt()

float rv_f = sqrt(f); // calls sqrtf()

long double rv_l = sqrt(l); // calls sqrtl()

To make this work in C++, you’d simply overload the functions; to make this work
in C, the math library defines a macro using _Generic as shown in listing 19.1.

283© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_19

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_19&domain=pdf

284 19 _Generic

#define sqrt(N) \

_Generic((N), \

float : sqrtf, \

long double: sqrtl, \

default : sqrt \

)((N))

Listing 19.1: sqrt function using _Generic

The _Generic keyword is part of the C language proper, not part of the preprocessor
(§8). However, the only way you can practically use _Generic is via a function-like
macro (§8.7). For the above example, the ((N)) at the end is calling whichever
function _Generic selected and passing N as its argument.

_Generic works as follows:
• It takes a single controlling expression followed by an association list of one or
more type/expression pairs.

• If the type (not the value) of the controlling expression matches a particular type
(before the :) in the association list, then the result of the _Generic expression
is the expression for that type (after the :).

• There can be at most one occurrence of any particular type. (Remember that a
typedef type (§2.6) is an alias, not a distinct type.)

• Optionally, one “type” may instead be default that will match only if no other
type does.

• Expressions are not evaluated; only their type is considered. Hence, _Generic
is strictly compile-time and has zero run-time overhead.

Additionally, when comparing types:
• Top-level _Atomic (§17), const (§4.5), restrict (§21), and volatile (§22)
qualifiers are discarded. For example, an expression of type int const will
match int.

• Array-to-pointer (§6.7) and function-to-pointer conversions happen as usual.
For example, an array char s[8] decays to char* and a function’s name like
free becomes void (*)(void*) (pointer to function taking void*).

• However, no other conversions occur, including the usual arithmetic conver-
sions. For example, short is not promoted to int.

_Generic solves its motivating example (though in a clunky manner), but it turns
out that it’s quite powerful and is capable of solving many other problems.

19.2 A printf Example

When using printf, it’s sometimes difficult to remember the correct format specifier
for particular types. Using _Generic, we can write helper macros as shown in listing
19.2. With those, we can now write this:

28519.2 A printf Example

#define PRINTF_FORMAT(T) \

_Generic((T), \

bool : ”%d”, char : ”%c”, \

signed char : ”%hhd”, unsigned char : ”%hhu”, \

short : ”%hd”, unsigned short : ”%hu”, \

int : ”%d”, unsigned int : ”%u”, \

long : ”%ld”, unsigned long : ”%lu”, \

long long : ”%lld”, unsigned long long: ”%llu”, \

float : ”%f”, \

double : ”%f”, long double : ”%Lf”, \

char* : ”%s”, char const* : ”%s”, \

wchar_t* : ”%ls”, wchar_t const* : ”%ls”, \

void* : ”%p”, void const* : ”%p” \

)

#define PRINTF(X) printf(PRINTF_FORMAT((X)), (X))

Listing 19.2: Helper macros for printf

PRINTF(42); // printf(”%d”, 42)

PRINTF(-273.15); // printf(”%f”, -273.15)

PRINTF(”hello”); // printf(”%s”, ”hello”)

One problem with this macro is that it won’t work for any other kind of pointer.
A way to fix this is shown in listing 19.3.

#define PRINTF_FORMAT(T) \

_Generic((T), \

/* ... */ \

wchar_t* : ”%ls”, \

wchar_t const* : ”%ls”, \

default : PTR_FORMAT(T), \

)

#define PTR_FORMAT(P) \

_Generic(TO_VOID_PTR_EXPR((P)), \

void const*: ”%p”, \

void* : ”%p” \

)

#define TO_VOID_PTR_EXPR(P) (true ? (P) : (void*)(P))

Listing 19.3: Helper macros for printf, version 2

That is, in PRINT_FORMAT, change the void* and void const* cases to a default
case that calls PTR_FORMAT(T) to handle the pointer cases.

The macro TO_VOID_PTR_EXPR seems odd since true is always, well, true, so
the result is always (P). That may seem pointless, but we want the side-effect of the
?: operator (§3.7) which is:

• If either of true-expr or false-expr of ?: is void*, then the type of the result
shall also be void* (plus const if either is const).

286 19 _Generic

Since we’ve explicitly cast P to void* for false-expr, that forces the type of the result
also to be void* (or void const*) regardless of the pointer type.

■ A simple (void*)(P) (cast to void*) won’t work because that would
cast any type to void*. We want the type of the result to be void* only if P
is a pointer. □

19.3 const Overloading

Recall the singly linked list structure from listing 6.2 (p.86):

struct slist {

struct slist *next;

void *data;

};

and the slist_find function from listing 10.5 (p.161):

struct slist* slist_find(struct slist *list,

slist_pred_fn pred_fn,

void const *pred_data);

A problem you can encounter is if you try to pass a pointer to a const slist:

void f(struct slist const *list) {

// ...

struct slist const *found =

slist_find(list, &my_pred, nullptr);

That will generate a “discards const” warning because you’re passing a pointer to
a const slist to a function that takes a pointer to a non-const slist.

While you could ignore the warning, it’s always best to write warning-free code.
But how can it be fixed? You could cast away the const (§3.14.2), but that’s ugly. In
C++, you could overload slist_find that takes slist const*; in C, you’d have
to write a distinctly named function as shown in listing 19.4 and call that instead for
a const slist.

inline struct slist const*

const_slist_find(struct slist const *list,

slist_pred_fn pred_fn,

void const *pred_data) {

return slist_find((struct slist*)list, pred_fn,

pred_data);

}

Listing 19.4: const_slist_find “overload” of slist_find

EXPR !!

EXPR

28719.4 Static if

While it works, it’s also ugly. _Generic can be used to hide the ugliness as shown
in listing 19.5 (assuming you rename the original function to nonconst_slist_find).

#define slist_find(LIST,PRED_FN,PRED_DATA) \

_Generic((LIST), \

struct slist* : nonconst_slist_find, \

struct slist const*: const_slist_find \

)((LIST), (PRED_FN), (PRED_DATA))

Listing 19.5: _Generic via macro for slist_find

Now, you can always call slist_find and it will “just work” for either a pointer to
const or non-const slist.

19.4 Static if

_Generic can also be used to implement a “static if,” that is an if that’s evaluated
at compile-time (similar to C++’s if constexpr) as shown in listing 19.6.

#define STATIC_IF(EXPR,THEN,ELSE) \

_Generic(&(char[1 + !!(EXPR)]){ }, \

char (*)[2]: (THEN), \

char (*)[1]: (ELSE) \

)

Listing 19.6: Static if

This works by:

1. Converting to either 0 or 1 via (§3.6).
2. Creating a compound literal array (§6.11) having one element plus a second

element only if is true.
3. Taking the compound array’s address via & (§3.12), at which point its type is

either “pointer to array 2 of char” (i.e., char(*)[2] if true) or “pointer to array
1 of char” (i.e., char(*)[1] if false).

4. If the type is char(*)[2], the result is THEN; else:
5. If the type is char(*)[1], the result is ELSE.

■ As first mentioned in §9.4.4, a “pointer to array N of T ” (for some size
N of some type T) is not the same as the “pointer to T” that results from
the name of an array regardless of its size “decaying” into a pointer to its
first element (e.g., array A being a shorthand for &A[0]). Pointers to arrays
of different sizes are distinct types. □

Unlike #if (§8.5), STATIC_IF can use any constant expression and may reference
C types, constants, variables, and functions.

288 19 _Generic

We can build on TO_VOID_PTR_EXPR to make IS_PTR_TO_CONST_EXPR as shown
in listing 19.7.

#define IS_PTR_TO_CONST_EXPR(P) \

_Generic(TO_VOID_PTR_EXPR((P)), \

void const* : true, \

default : false \

)

Listing 19.7: Is an expression a pointer to const?

Given those macros, we can write a generalized macro that can const overload any
function as shown in listing 19.8:

#define CONST_OVERLOAD(FN, PTR, ...) \

STATIC_IF(IS_PTR_TO_CONST_EXPR(PTR), \

nonconst_ ## FN, \

const_ ## FN \

)((PTR) __VA_OPT__(,) __VA_ARGS__)

Listing 19.8: const overload any function

19.5 No SFINAE (Substitution Failure is not an Error)

Recall the string structure from listing 1.9 (p.23):

struct string {

char *contents; // pointer to actual contents

size_t len; // length (not including null at end)

};

Suppose you want to write a macro STRLEN that gets the length of either an ordinary
C string or a string. You might write something like what’s shown in listing 19.9.

#define STRLEN(S) \

_Generic((S), \

char const* : strlen((S)) \

struct string*: (S)->len \

)

Listing 19.9: STRLEN, version 1

That is, if the type of S is:

• char const*, call strlen(S); or:
• string*, return (S)->len.

That seems fairly straightforward. There’s just one problem: it won’t compile. In-
stead, you’ll get:

const char*

strlen string*

19.6 Type Traits 289

1. strlen(S): “warning: incompatible pointer types passing string* to a param-
eter of type .”

2. (S)->len: “error: type const char is not a structure or union.”

The problemwith _Generic is that all expressionsmust be valid— even expressions
that are not selected. Specifically for this example:

1. You can’t call on a ; and:
2. You can’t refer to ->len on a char const*.

In C++ with SFINAE, something that isn’t valid when substituted is not an error: it’s
simply ignored; unfortunately, not so in C.

■ SFINAE is an (unpronounceable) acronym for “substitution failure is not
an error.” It’s a principle in C++where a substitution of a template parameter
resulting in an invalid expression is not an error; it’s simply ignored. □

The way to fix this is to make every _Generic expression similar. In this case, we
can add a function:

inline size_t string_len(struct string const *str) {

return str->len;

}

Then rewrite STRLEN as shown in listing 19.10.

#define STRLEN(S) \

_Generic((S), \

char const* : strlen, \

struct string*: string_len \

)((S))

Listing 19.10: STRLEN, version 2

This works because each expression is the name of a function to call and each is
passed a single pointer of the type it expects. Note that it’s necessary to put the
argument S outside the _Generic: if it were inside, then one function call would
always be passing the wrong type.

19.6 Type Traits

Using _Generic, you can define macros similar to C++’s type traits functions. Note
that some macros take expressions and others take types. Having one or the other
(or sometimes both) is useful.

290 19 _Generic

IS_ARRAY_EXPR

Gets whether A is an expression of an array (as opposed to a pointer) type:

#define IS_ARRAY_EXPR(A) \

_Generic(&(A), \

typeof(*(A)) (*)[]: true, \

default : false \

)

This works because if A is actually an array:

1. The &(A) yields “pointer to array of type T.”
2. The A (inside typeof) “decays” into a pointer to its first element yielding

“pointer to T,” i.e., T*.
3. The *A dereferences T* yielding the element type T.
4. Finally, T (*)[] yields “pointer to array of type T” that matches #1 above and

_Generic returns true.

If A isn’t an array, e.g., a pointer, then none of the above works and _Generic

matches the default case and returns false.
As written (p. 128), ARRAY_SIZE can be wrongly used on an “array” parame-

ter (§9.4). For example, in the following code, ARRAY_SIZE returns the size of the
pointer, not the actual array:

void print_csi(size_t n, int const vals[]) {

for (size_t i = 0; i < ARRAY_SIZE(vals); ++i) // WRONG

// ...

To improve ARRAY_SIZE such that it will generate a compile-time error if used
on anything but an array, we can use IS_ARRAY_EXPR with STATIC_ASSERT_EXPR

(p.245):

#define ARRAY_SIZE(A) (\

STATIC_ASSERT_EXPR(IS_ARRAY_EXPR(A), \

#A ” must be an array”) \

* sizeof(A) / sizeof(A[0]))

(The compiler will optimize away the multiplication.)

29119.6 Type Traits

IS_POINTER_EXPR

Gets whether P is an expression of a pointer (as opposed to an array) type:

#define IS_POINTER_EXPR(P) \

_Generic(&(typeof((P))){ }, \

typeof(*(P)) ** : true, \

default : false \

)

Thisworks like STATIC_IF and IS_ARRAY_EXPR. The reason the &(typeof((P))){
} is necessary, instead of simply &(P), is for the case where you take the address of
an object via & to yield a pointer rather than pass a pointer directly as shown in listing
19.11.

#define MEM_ZERO(P) do { \

static_assert(IS_POINTER_EXPR(P), \

#P ” must be a pointer”); \

memset((P), 0, sizeof(*(P))); \

} while (0)

struct S { /* ... */ };

struct S s;

MEM_ZERO(&s);

Listing 19.11: Example use of IS_POINTER_EXPR

If &(P) were used, passing &s (an rvalue) would result in &(&s) which is illegal.
However, when using &(typeof((P))){ }, the typeof((P)){ } results in a com-
pound literal of type pointer to S and compound literals are lvalues that you can take
the address of.

■ The terms lvalue and rvalue are used to describe values of expressions:

• An lvalue is a value, has a name, can appear on the left-hand-side of
= (hence the “l” in lvalue), and can have its address taken via & (the
address-of operator, §3.12).

• An rvalue is a temporary value, has no name, can appear only on the
right-hand-side of = (hence the “r” in rvalue), and can not have its ad-
dress taken via &.

The key thing that distinguishes an lvalue from an rvalue is: if something
has a name, it’s not an rvalue. Some examples are shown in listing 19.12.
Both lvalues and rvalues have more significance in C++ with references. □

292 19 _Generic

int a, b, *p;

a = b; // ”a” and ”b” are both lvalues

a = a + b; // ”a” = lvalue; ”a + b” = rvalue

a + b = 42; // error: rvalue on left-hand-side of =

p = &a; // address of lvalue

p = &(a + b); // error: address of rvalue

Listing 19.12: Examples of lvalues and rvalues

IS_C_STR_EXPR

Gets whether E is an expression of a C string type:

#define IS_C_STR_EXPR(E) \

_Generic((E), \

char* : true, \

char const* : true, \

default : false \

)

This definition doesn’t include the Unicode character types (§2.8) but you can make
it include them if you want to.

As written (p. 131), STRLITLEN can be wrongly used on any char*, not only
string literals. To improve STRLITLEN such that it will generate a compile-time error
if used on anything but a string literal, we can use the improved ARRAY_SIZE (p.290),
STATIC_ASSERT_EXPR (p.245), and IS_C_STR_EXPR:

#define STRLITLEN(S) (ARRAY_SIZE((S)) - \

STATIC_ASSERT_EXPR(IS_C_STR_EXPR((S)), \

#S ” must be a string literal”))

IS_SIGNED_TYPE and IS_UNSIGNED_TYPE

Gets whether T is a signed or unsigned integer type:

#define IS_SIGNED_TYPE(T) !IS_UNSIGNED_TYPE(T)

#define IS_UNSIGNED_TYPE(T) ((T)-1 > 0)

Note that IS_SIGNED_TYPE should not be ((T)-1 < 0) because some compilers
will give an “expression is always false” warning for unsigned types.

19.6 Type Traits 293

IS_SIGNED_EXPR and IS_UNSIGNED_EXPR

Gets whether E is an expression of a signed integer type:

#define IS_SIGNED_EXPR(E) \

_Generic((E), \

bool : false, \

char : IS_SIGNED_TYPE(char), \

signed char: true, \

short : true, \

int : true, \

long : true, \

long long : true, \

default : false \

)

Gets whether E is an expression of an unsigned integer type:

#define IS_UNSIGNED_EXPR(E) \

_Generic((E), \

bool : true, \

char : IS_UNSIGNED_TYPE(char), \

unsigned char : true, \

unsigned short : true, \

unsigned int : true, \

unsigned long : true, \

unsigned long long: true, \

default : false \

)

As a reminder, it’s implementation defined whether char is signed or unsigned
(§2.5.3).

IS_INTEGRAL_EXPR

Gets whether E is an expression of an integer type:

#define IS_INTEGRAL_EXPR(E) \

(IS_SIGNED_EXPR(E) || IS_UNSIGNED_EXPR(E))

For example uses, see TO_SIGNED_EXPR (p.296) and TO_UNSIGNED_EXPR (p.296).

294 19 _Generic

IS_FLOATING_POINT_EXPR

Gets whether E is an expression of a floating-point type:

#define IS_FLOATING_POINT_EXPR(E) \

_Generic((E), \

float : true, \

double : true, \

long double : true, \

default : false \

)

This definition doesn’t include decimal-floating (§2.5.7), _Complex (§2.5.8), or
_Imaginary (§2.5.9) types; but you can make it include them if you want to.

IS_ARITHMETIC_EXPR

Gets whether E is an expression of an arithmetic type:

#define IS_ARITHMETIC_EXPR(E) \

(IS_INTEGRAL_EXPR(E) || IS_FLOATING_POINT_EXPR(E))

IS_TYPE_EXPR

Gets whether E is an expression of a specific type T:

#define IS_TYPE_EXPR(T,E) \

_Generic((E), \

T : true, \

default : false \

)

19.6 Type Traits 295

INT_MAX_EXPR and INT_MIN_EXPR

For an integer expression N, gets the maximum value for its type (§2.10):

#define INT_MAX_EXPR(N) \

_Generic((N), \

bool : 1, \

signed char : SCHAR_MAX, \

char : CHAR_MAX, \

short : SHRT_MAX, \

int : INT_MAX, \

long : LONG_MAX, \

long long : LLONG_MAX, \

unsigned char : UCHAR_MAX, \

unsigned short : USHRT_MAX, \

unsigned int : UINT_MAX, \

unsigned long : ULONG_MAX, \

unsigned long long: ULLONG_MAX \

)

For an integer expression N, gets the minimum value for its type (§2.10):

#define INT_MIN_EXPR(N) \

_Generic((N), \

bool : 0, \

signed char : SCHAR_MIN, \

char : CHAR_MIN, \

short : SHRT_MIN, \

int : INT_MIN, \

long : LONG_MIN, \

long long : LLONG_MIN, \

unsigned char : 0, \

unsigned short : 0, \

unsigned int : 0, \

unsigned long : 0, \

unsigned long long: 0 \

)

Note that neither of these macros needs to use IS_INTEGRAL_EXPR(N) since the
compiler will generate an error if the type of N doesn’t match one of the types in the
association list.

296 19 _Generic

IS_SAME_TYPE

Gets whether T and U are the same type similar to C++’s std::is_same:

#define IS_SAME_TYPE(T,U) \

_Generic(*(T*)nullptr, \

typeof_unqual(U): true, \

default : false \

)

The *(T*)nullptr is needed to convert T (a type) into an expression required by
_Generic. (Reminder: the expression isn’t evaluated, so it doesn’t matter that it’s
dereferencing a null pointer.)

The typeof_unqual(U) (§4.7) is necessary to remove qualifiers, otherwise it
would never match if U had qualifiers. (Reminder: _Generic discards qualifiers from
the type of the controlling expression.)

An example use for IS_SAME_TYPE is to write a generic SWAPmacro as shown in
listing 19.13.

#define SWAP(A,B) do { \

static_assert(IS_SAME_TYPE(typeof(A), typeof(B)), \

”SWAP() arguments must have same type”); \

auto const UNIQUE_NAME(tmp) = (A); \

(A) = (B); \

(B) = UNIQUE_NAME(tmp); \

} while (0)

Listing 19.13: Generic swap macro

TO_SIGNED_EXPR and TO_UNSIGNED_EXPR

Casts an integer expression N to a signed type of the same size:

#define TO_SIGNED_EXPR(N) (\

STATIC_ASSERT_EXPR(IS_INTEGRAL_EXPR((N)), \

#N ” must be integral”) * \

STATIC_IF(sizeof(N) == sizeof(char), \

(signed char)(N), \

STATIC_IF(sizeof(N) == sizeof(short), \

(short)(N), \

STATIC_IF(sizeof(N) == sizeof(int), \

(int)(N), \

STATIC_IF(sizeof(N) == sizeof(long), \

(long)(N), \

(long long)(N))))))

19.7 Epilogue 297

Casts an integer expression N to an unsigned type of the same size:

#define TO_UNSIGNED_EXPR(N) (\

STATIC_ASSERT_EXPR(IS_INTEGRAL_EXPR((N)), \

#N ” must be integral”) * \

STATIC_IF(sizeof(N) == sizeof(char), \

(unsigned char)(N), \

STATIC_IF(sizeof(N) == sizeof(short), \

(unsigned short)(N), \

STATIC_IF(sizeof(N) == sizeof(int), \

(unsigned int)(N), \

STATIC_IF(sizeof(N) == sizeof(long), \

(unsigned long)(N), \

(unsigned long long)(N))))))

UNDERLYING_TYPE

Gets the underlying type of an enumeration (§7.3) similar to std::underlying_type
in C++:

#define UNDERLYING_TYPE(ENUM_TYPE) \

typeof(STATIC_IF(IS_SIGNED_TYPE(ENUM_TYPE), \

TO_SIGNED_EXPR((ENUM_TYPE)0), \

TO_UNSIGNED_EXPR((ENUM_TYPE)0)))

19.7 Epilogue

Here are some key points about _Generic:

• _Generic allows C library authors to provide a veneer of C++ function over-
loading in C by selecting among several expressions based on the type of a con-
trolling expression.

• However, _Generic is capable of more including const overloading and C++-
style type traits that allow more type-safe macros to be written.

• Even though _Generic is part of the C language proper, the only way you can
practically use it is via a function-like macro.

Exercises

1. Modify your solution of ARRAY_END for exercise 8.2 (p.133) to check that ARRAY
really is an array as opposed to a pointer. Hint: use IS_ARRAY_EXPR (p.290) and
STATIC_ASSERT_EXPR (p.245).

setjmp.h setjmp longjmp

setjmp longjmp

env

load_config read_file

int

load_config

Chapter 20
setjmp and longjmp

Unlike C++, C#, Java, or Python, C doesn’t have exceptions. However, C does have
two functions, setjmp and longjmp, that can be used together to return through
more than one level of the call stack, typically as an error-handling mechanism when
there’s no other way for a deeply nested function to stop and return an error.

20.1 Basics

Let’s jump (no pun intended) right in with an example given in listing 20.1.

• Line 1 includes the standard header needed to use and .
• Line 5 declares a global instance of jmp_buf that will be shared between the
functions that call and .

• In main, line 21 calls setjmp that saves a copy of the current “execution context”
into and returns 0 that means “proceed normally.”

• Line 22 calls that in turn calls .
• Now in read_file on line 9, we were unable to open the file so we call longjmp
on line 10 passing env as the first argument. The second argument can be any

value. It’s used to communicate a code of some kind, typically an error code.
• The program execution “jumps” back to the exact point where the setjmp was
called on line 21 “returning” a second time with the value passed to longjmp,
in this case 1. Note that control has returned from read_file directly to main
bypassing .

• Since 1 is not 0, execution transfers to the else on line 23.

That’s it. While that doesn’t seem complicated, the devil, as ever, is in the details.

299© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_20

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_20&domain=pdf

30 20 setjmp and longjmp

1 #include <setjmp.h>

2 #include <stdio.h>

3 #include <stdlib.h> // for exit()

4
5 static jmp_buf env;

6
7 void read_file(char const *path) {

8 FILE *f = fopen(path, ”r”);

9 if (f == nullptr)

10 longjmp(env, 1); // ”throw”

11 // ...

12 }

13
14 void load_config() {

15 // ...

16 read_file(”.config”);

17 // ...

18 }

19
20 int main() {

21 if (setjmp(env) == 0) { // ”try”

22 load_config();

23 } else { // ”catch”

24 fprintf(stderr, ”error loading configuration\n”);

25 exit(EXIT_FAILURE);

26 }

27 }

Listing 20.1: setjmp and longjmp example

0

20.2 setjmp Restrictions

Calls to setjmp must be done only in one of the following ways:

(void)opt setjmp(env)

control-flow-keyword (!opt setjmp(env) relop-expropt)

1. A plain call to setjmp (optionally cast to void); or:
2. For control-flow-keyword, one of for, if, switch, or while followed by:

a. An optional !; followed by:
b. The call to setjmp; followed by:
c. An optional relational operator and an integer constant expression.

Additionally, the call to setjmpmust constitute the entire controlling expression
of the for, if, switch, or while which means you can’t use && or ||.

Additionally, you may not save the return value from setjmp:

int sj = setjmp(env); // not allowed

Calling setjmp in any other way results in undefined behavior (§15).

count

setjmp

++count

30120.4 longjmp Details

20.3 volatile Variables

Any variables local to the function in which setjmp is called that are modified be-
tween the calls to setjmp and longjmp must be declared volatile (§22). For ex-
ample:

int volatile count = 0;

if (setjmp(env) == 0) {

++count;

}

Why? One of the things setjmp does is to save the values of all the CPU registers.
If a local variable is put into a register by the compiler, then if longjmp is called and
setjmp returns for the second time, it restores the values of the registers. For the
above example, if count were not declared volatile, then:
1. The initial value of (in a register) is 0.
2. saves this value.
3. The code then does setting its value to 1.
4. If longjmp is called, setjmp returns for the second time restoring the values of

all registers — including the register used by count whose value is 0.
The use of volatile prevents the compiler from storing the value of a variable in a
register (among other things), hence it’s stored in the local stack frame instead and
so is unaffected by register value restoration.

20.4 longjmp Details

Calling longjmp returns to the function that called setjmp. That function must still
be on the call stack. For example, you can’t “wrap” calls to setjmp as shown in
listing 20.2.

int wrap_setjmp(jmp_buf env) { // don’t wrap setjmp

if (setjmp(env) == 0)

return 0;

return 1;

}

void read_file(char const *path) {

if (wrap_setjmp(env) == 0) {

// ...

Listing 20.2: Don’t wrap setjmp

The reason you can’t is because longjmp jumps back to the setjmp — but in this
case, that was inside wrap_setjmp that has already returned. This results in unde-
fined behavior (§15).

302 20 setjmp and longjmp

The second argument to longjmp can be any non-zero value you want. It becomes
the second return value of setjmp. For example, you can use it for error codes like
in listing 20.3.

constexpr unsigned EX_FILE_IO_ERROR = 0x0101;

constexpr unsigned EX_FILE_NOT_FOUND = 0x0102;

void read_file(char const *path) {

switch (setjmp(env)) {

case 0:

read_file(path);

break;

case EX_FILE_IO_ERROR:

// ...

break;

case EX_FILE_NOT_FOUND:

// ...

break;

}

}

Listing 20.3: Using error codes with setjmp

Incidentally, you can’t meaningfully pass 0 as the second argument to longjmp: if
you do, it will silently be changed to 1.

Lastly, variable length arrays (§6.14) must not be used at all when using longjmp.
If there are VLAs anywhere in the call stack between the longjmp and the setjmp,
those likely will cause a memory leak (§18.6.7).

20.5 Exceptions in C?

Now that you know how setjmp and longjmp work, you might be wondering
whether they can be used to implement exceptions in C. The answer can be best
summed up as:

“Ooh . . . Short answer: yes, with an if; long answer: no, with a but.”
— Rev. Timothy Lovejoy, Jr.†

For a more detailed answer, see §27.

20.6 Epilogue

Here are some key points about and some advice for setjmp and longjmp:

†Harry Shearer (Rev. Timothy Lovejoy, Jr.), “Hurricane Neddy,” The Simpsons, 8(8), Matt
Groening (creator), Gracie Films, Dec. 29, 1996.

30320.6 Epilogue

• Together, setjmp and longjmp can be used to “jump” back through multiple
function calls, effectively a non-local goto, as an error-handing mechanism.

• Use setjmp to mark the point to jump back to and longjmp to perform the jump.
• Both setjmp and longjmp have many restrictions that you must adhere to.
• You may need to use volatile variables (§22).

Chapter 21
restrict

Among other things, C99 added the restrict keyword as a way for a programmer
to specify that a pointer is the only pointer to a given object in a scope and, con-
sequently, give the compiler a “hint” that it may perform additional optimizations
when accessing the object via that pointer.

21.1 The Problem

To illustrate the problem that restrict solves, consider the function in listing 21.1.

void update_ptrs(int *p, int *q, int const *v) {

*p += *v;

*q += *v;

}

Listing 21.1: Function to update pointers, version 1

The compiler will generate x86–64 assembly for it like:

1 mov eax, [rdx] ; tmp = *v

2 add [rdi], eax ; *p += tmp

3 mov eax, [rdx] ; tmp = *v

4 add [rsi], eax ; *q += tmp

You might wonder why it generates line 3 since it seems redundant with line 1. The
problem is the compiler can’t know you didn’t do something like this:

int x = 1, v = 2;

update_ptrs(&v, &x, &v); // x = 5, v = 4

In update_ptrs, p and v would alias the same int, so the compiler has to play it
safe and assume that the value of *v can change between reads, hence the additional
mov instruction.

305© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_21

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_21&domain=pdf

306 21 restrict

In general, pointers in C confound optimization since the compiler can’t know
whether two pointers alias each other. In performance critical code, eliding memory
reads could be a huge win if the compiler could do it safely.

21.2 The Solution

To solve the aforementioned problem, restrict was added to C to allow you to
specify that a given pointer is the only pointer to an object in the pointer’s scope,
i.e., no other pointer in the same scope aliases it.

To use restrict, insert it between the * and the pointer’s name in a declaration
(like a const pointer, §1.7). An update_ptrs rewritten to use restrict is shown
in listing 21.2.

void update_ptrs_v2(int *p, int *q,

int const *restrict v) {

*p += *v;

*q += *v;

}

Listing 21.2: Function to update pointers, version 2, with restrict

(Read from right-to-left, e.g., v is a restricted pointer to a constant int.) By adding
restrict, the compiler can now generate assembly like:

1 mov eax, [rdx] ; tmp = *v

2 add [rdi], eax ; *p += tmp

3 add [rsi], eax ; *q += tmp

The compiler was able to elide the previous line 3 of the additional mov instruction.
Perhaps the best-known example where restrict is used is the standard function

memcpy (§B.2):

void* memcpy(void *restrict dst,

void const *restrict src, size_t n);

It’s the fastest way to copy memory if the src and dst addresses do not overlap.
The slightly slower memmove (§B.2) exists for use when the addresses do overlap.

21.3 Pitfalls

Misuse of restrict results in undefined behavior (§15), for example, by passing
pointers that alias each other to update_ptrs_v2 or memcpy. In some cases, the
compiler can warn you, but not in all cases, so don’t rely on the compiler to catch
misuses.

30721.4 When (and When Not) to Use restrict

Note that restrict is for a given scope. Assigning one restricted pointer to an-
other in the same scope results in undefined behavior:

void f(int *restrict d, int *restrict s) {

int *restrict p = s; // undefined behavior

However, you can assign a restricted pointer to an unrestricted pointer just fine:

void f(int *restrict d, int *restrict s) {

int *p = s; // OK

Even though p is unrestricted, the compiler can still perform the same optimizations.
It’s also OK to assign a restricted pointer in an inner scope to another in an outer

scope (but not the other way around):

void f(int *restrict d, int *restrict s) {

{ // inner scope

int *restrict p = s; // OK

// ...

s = p; // undefined behavior

}

}

21.4 When (and When Not) to Use restrict

First, you should definitely profile your code (§18.9) and perhaps even look at the
generated assembly code to see if using restrict actually makes a significant per-
formance gain to justify risking the potential pitfalls. Diagnosing bugs caused by
misuse of restrict is very hard to do.

Second, if use of restrict is confined to a function where the memory accessed
via restricted pointers was allocated by you, then it’s safer. For example, given:

void safer(unsigned n) {

n += n % 2 != 0; // make even by rounding up

unsigned *const array = malloc(n * sizeof(unsigned));

unsigned *restrict half_1st = array;

unsigned *restrict half_2nd = array + n/2;

// ...

free(array);

}

the code could operate on the first and second halves of array safely because they
don’t overlap (assuming you never access half_1st[n/2] or beyond).

Third, if restrict is used in a function’s parameters, then it’s potentially less
safe. For example, contrast safer with update_ptrs_v2 where the caller controls
the pointers. For all you know, the caller got it wrong and passed pointers that alias.

restrict _Atomic const volatile

restrict

restrict

308 21 restrict

21.5 Miscellaneous

Only pointers to objects (or void) can be qualified with restrict:

restrict int x; // can’t restrict non-pointer

int restrict *pi; // can’t restrict non-pointer

int (*restrict pf)(); // can’t restrict pointer to function

You can use restrict for structure members as shown in listing 21.3.

struct node {

void *restrict data;

struct node *restrict left, *restrict right;

};

Listing 21.3: restrict with structure members

That says data will be the only pointer to that data and left and right will never
point to the same node. Using restrict for structure members is very uncommon.

■C++ never adopted restrict from C.Why not? The answer is fairly long
and complicated, but the short version is that:

• restrict can be a source of hard-to-find bugs that the C++ committee
didn’t want to adopt from C.

• C++’s increased use of pointers, e.g., this, make using restrict safely
even harder.

However, many C++ compilers offer __restrict__ as an extension.† □

21.6 Epilogue

Here are some key points about and some advice for restrict:

• restrict exists to tell the compiler that a pointer is the only pointer to a given
object in a scope so it can generate more efficient code.

• is syntactically a qualifier like , , and .
• Unlike the other qualifiers, can be used only for pointers.
• In limited cases, using can lead to performance gains.
• Diagnosing bugs caused by misuse of restrict is very hard to do.
• Before even considering using restrict, profile your code first (§18.9).

Use wisely.

†Restricting Pointer Aliasing, Free Software Foundation, Using the GNU Compiler Collection,
§7.2, 1988–2025, https://gcc.gnu.org/onlinedocs/gcc/Restricted-Pointers.html

https://gcc.gnu.org/onlinedocs/gcc/Restricted-Pointers.html

Chapter 22
volatile

C has the volatile keyword that’s a qualifier (§4.5) just like _Atomic (§17), const
(§4.5), and restrict (§21). As with const, volatile can be written to the right
or “east” of the base type (§1.7):

volatile int x; // ”west” volatile

int volatile y; // ”east” volatile

In some code, there are uses of the volatile keyword that are simply wrong.
This unfortunate situation is perpetuated by many articles on the Internet whose ex-
planations of volatile are also simply wrong. So here, hopefully once and for all,
is what volatile in C actually (and only) does.

■ Everything described in this chapter applies equally to C++ that also has
the volatile keyword. □

There are only three legitimate uses of volatile in C:
1. To tell the compiler that objects qualified with it may either be modified or cause

side effects in ways unknown to the compiler; therefore, not to optimize away
accesses to such objects nor reorder their accesses with respect to other opera-
tions that have visible side effects.

2. For use in a signal handler.
3. For use with setjmp (§20).
That’s it. Any other use of volatile is innocuous, inefficient, or simply wrong.

22.1 Optimization Suppression

The C23 standard §6.7.3¶8 says the following about the first use of volatile:
An object that has a volatile-qualified type may be modified in ways un-
known to the implementation or have other unknown side effects.

309© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_22

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_22&domain=pdf

310 22 volatile

This typically means memory-mapped I/O, that is particular memory addresses are
mapped either to specialized hardware or functions, so that reading from such an
address actually reads a current value from such hardware (say, some kind of sensor)
or writing to such an address actually causes a change in such hardware (say, sends
a value over an old-fashioned modem).

For example, consider the code in listing 22.1 that sends all the characters of a C
string over a modem that is mapped to the address 0x1000:

char *const MODEM = (char*)0x1000; // memory-mapped

void modem_send_s(char const *s) {

while (*s)

*MODEM = *s++;

}

Listing 22.1: modem_send

Writing a character to *MODEM sends that character. The problem is that a compiler
might be clever and optimize that code to be:

while (*s++) // compiler-optimized version

;

*MODEM = s[-1];

Under ordinary circumstances, it would bewithin its rights to do so (because if MODEM
were a pointer to ordinary memory, only the last write matters). But in the memory-
mapped I/O case, it would be wrong (because the compiler doesn’t know that address
0x1000 is special).

The C23 standard continues:

Therefore any expression referring to such an object shall be evaluated
strictly according to the rules of the abstract machine . . .

That means no reads from nor writes to such an object will be optimized away nor
instructions reordered by the compiler even if it normally would do so.

The way to tell the compiler not to optimize accesses to an object is by qualifying
it with volatile:

char volatile *const MODEM = (char*)0x1000;

(Read from right-to-left: MODEM is a constant pointer to a volatile character.)

22.2 Signal Handling

The C23 standard §7.14.1.1¶5 says the following about the second use of volatile:

22.4 volatile in Other Languages 311

If the signal occurs . . . , the behavior is undefined if the signal handler
refers to any object with static or thread storage duration that is not a lock-
free atomic object other than by assigning a value to an object declared as
volatile sig_atomic_t . . .

That means if you want to refer to any object outside of a signal handler function,
the type of that object, must be volatile sig_atomic_t as shown in listing 22.2.

sig_atomic_t volatile last_sig_val;

void signal_handler(int sig_val) {

// ...

last_sig_val = sig_val;

}

Listing 22.2: Use of volatile with signal handlers

22.3 setjmp

The C23 standard §7.13.2.1¶3 says the following about the third use of volatile:
. . . the representation of objects of automatic storage duration that are lo-
cal to the function containing the invocation of . . . setjmp . . . that do not
have volatile-qualified type and have been changed between the setjmp
invocation and longjmp call is indeterminate.

That means if you modify a local variable between the time setjmp is called and
longjmp returns (§20), that variable must be declared volatile as shown in listing
22.3.

void f() {

int volatile count = 0;

if (setjmp(jmp_buf) != 0)

g(++count);

// ...

}

Listing 22.3: Use of volatile with setjmp

22.4 volatile in Other Languages

The explanation of volatile here pertains only to C (and C++). The volatile

keyword also appears in other languages, for example C# and Java.
In those languages, volatile provides stronger guarantees regarding operations

and therefore can be used for limited forms of thread-safety (§14). And this can
sometimes cause confusion as to what volatile means in C (and C++).

_Atomic

volatile setjmp

volatile _Atomic const restrict

312 22 volatile

22.5 Wrong Uses

In C, volatile:

• Is not a synonym for (§17).
• Does not use memory barriers (§17.3).
• Therefore, does not guarantee thread-safety.
• Limits only what optimizations the compiler may do (§14).
• Does not limit what the CPU can do (§14).

In particular, the hardware is still free to do things like memory caching, instruction
parallelization, and speculative execution.

22.6 Epilogue

Here are some key points about and some advice for volatile:

• is used only formemory-mapped I/O, signal handlers, or with .
Unless you’re doing one of those things, do not use volatile.•

• is syntactically a qualifier like , , and .
• For pointers, the pointer, the object pointed to, or both, can be volatile.

Part III
Extended Examples

Part III gives detailed examples with full source code of how features in other lan-
guages might be implemented including discussion of the trade-offs involved so you
can understand what’s really going on behind the curtain in whatever language you
program in:

23. Strings: Illustrates proper string and string buffer types.
24. Lists: Illustrates initialization, clean-up, pushing, popping, removing elements,

utility functions, and iterating for linked lists.
25. Maps: Illustrates initialization, clean-up, insertion, growing, finding, deleting,

and iterating for hash tables that implement maps in languages like C++, Go,
Java, Python, and Rust.

26. Dynamic Dispatch: Illustrates how pointers to function, function tables, and fat
pointers are used to implement dynamic dispatch in languages like C++, C#, Go,
Java, Python, Smalltalk, Rust, and Swift.

27. Exceptions in C: Illustrates how to use setjmp and longjmp to implement ex-
ception handling in C.

Chapter 23
Strings

Recall the proper string type that can grow automatically from §1.9:

struct string {

char *contents; // pointer to actual contents

size_t len; // length (not including null at end)

};

plus the functions:

void string_puts(struct string *str, char const *s);

void string_cleanup(struct string *str);

To make the string type more production-quality, it could use a few more functions.
Additionally, a string buffer type is also quite useful.

23.1 string 2.0

Specifically, the string type could use few more “put” variants, formatted printing,
and string ownership management.

23.1.1 More put Variants

The first new function is string_putsn that puts no more than n characters shown
in listing 23.1. (It’s an optimized version of the answer to exercise 1.4, p.26.)

• Line 3 sets n to the smaller of strlen(s) and n using strnlen (the answer to
exercise 1.3, p.26).

• Line 6 calls memcpy (§B.2) to copy exactly n characters rather than however
many characters are in s (that might be > n).

315© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_23

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_23&domain=pdf

316 23 Strings

1 void string_putsn(struct string *str, char const *s,

2 size_t n) {

3 n = strnlen(s, n);

4 auto const new_len = str->len + n;

5 str->contents = realloc(str->contents, new_len + 1);

6 memcpy(str->contents + str->len, s, n);

7 str->len = new_len;

8 str->contents[str->len] = ’\0’;

9 }

Listing 23.1: string_putsn

• Consequently on line 8, we must explicitly null-terminate the string.

Given that, string_puts can be rewritten as an inline function (§9.10) to call
string_putsn and an additional string_putc can be written to append a single
character as shown in listing 23.2.

inline void string_puts(struct string *str,

char const *s) {

string_putsn(str, s, strlen(s));

}

inline void string_putc(struct string *str, char c) {

string_putsn(str, &c, 1);

}

Listing 23.2: string_puts and string_putc

Remember that inline functions need to be defined in a .c file (§9.10.4) like:

extern void string_puts(struct string*, char const*);

extern void string_putc(struct string*, char);

23.1.2 Formatted Printing

In addition to printf, the C standard library contains several variations, such as:

int snprintf(char *buf, size_t cap,

char const *format, ...);

that “prints” the formatted string to the string buffer pointed to by buf having the
capacity cap. The problem is the formatted string might not fit within cap. An im-
plementation of string_printf that grows the string’s size to accommodate the
formatted string is shown in listing 23.3.

• Line 3 declares args and line 4 calls va_start per §9.11.

31723.1 string 2.0

1 int string_printf(struct string *str,

2 char const *format, ...) {

3 va_list args;

4 va_start(args);

5 auto raw_len = vsnprintf(nullptr, 0, format, args);

6 va_end(args);

7 if (raw_len <= 0)

8 return raw_len;

9
10 auto const args_len = (size_t)raw_len;

11 auto const new_len = str->len + args_len;

12 str->contents = realloc(str->contents, new_len + 1);

13 auto const buf = str->contents + str->len;

14
15 va_start(args);

16 raw_len = vsnprintf(buf, args_len + 1, format, args);

17 va_end(args);

18 str->len = new_len;

19 return raw_len;

20 }

Listing 23.3: string_printf

• Line 5 calls vsnprintf (variadic string of length n printf) that, fortunately,
returns the number of characters that would have been printed if buffer were
infinite.

Normally, you pass the char array and its length you want the characters
“printed” into, but herewe pass nullptr and 0 sincewe don’t yet have anywhere
to print the characters, but we still want the number of characters that would have
been printed.

• Alternatively, vsnprintf can return a negative value to indicate an error, so we
check for this and return if necessary.

• Now that we know raw_len > 0, line 10 casts it to size_t.
• Now that the string is big enough to accommodate the formatted string, we call
vsnprintf again on line 16 to print the arguments for real this time.

23.1.3 Taking Ownership

Another function that might be good to have is a way for the user to “take” a string’s
contents away from it in order to do something else with it, e.g., give it to some other
function that will subsequently own it. Such a function is shown in listing 23.4 and
is straightforward.

318 23 Strings

[[nodiscard]] char* string_take(struct string *str) {

auto const contents = str->contents;

*str = (struct string){ };

return contents;

}

Listing 23.4: string_take

23.2 strbuf: A String Buffer Type

The string structure and associated functions as presented in §23.1 are reasonable
for production-quality use when managing the storage for and occasionally append-
ing strings.

Another common use of strings is to append repeatedly while reading either from
a file or socket. For such a use, calling realloc for every append is inefficient. It’s
better to give such strings additional capacity to grow into — a “buffer.” Many lan-
guages provide such functionality. For example, C++ has std::ostringstream, Go
has strings.Builder, Java has StringBuilder, and Python has io.StringIO.

To implement a string buffer in C, a capacity needs to be stored in addition to a
length as shown in listing 23.5.

struct strbuf {

char *contents; // pointer to actual contents

size_t len; // length (not including null at end)

size_t cap; // capacity

};

Listing 23.5: strbuf, version 1

While it’s easy to add cap, it’s not the most efficient in terms of storage. Assuming
8-byte pointers and size_t, sizeof(strbuf) would likely be 32 bytes, not 24, due
to padding (§10.5).

One possible fix for that would be to use uint32_t rather than size_t so both
len and cap would fit into 8 bytes making sizeof(strbuf) be 16 bytes. It’s very
unlikely that you’ll be dealing with strings in excess of 4,294,967,294 (232 − 1)
characters. The updated strbuf declaration is shown in figure 23.6.

1 struct strbuf {

2 char *contents; // pointer to actual contents

3 uint32_t len; // length (not including null at end)

4 uint32_t cap; // capacity

5 };

Listing 23.6: strbuf, version 2, using uint32_t

cap

• Line aracters.

31923.2 strbuf: A String Buffer Type

23.2.1 Reserving Space

In cases where the user knows the length of a string (or sequence of strings) to ap-
pend, it would be efficient to do one realloc in advance to reserve capacity. Such
a function is shown in listing 23.7.

1 bool strbuf_reserve(struct strbuf *sbuf,

2 size_t res_len) {

3 if (res_len < sbuf->cap - sbuf->len)

4 return false;

5 if (sbuf->cap == 0)

6 sbuf->cap = 2;

7 auto const new_len = sbuf->len + res_len;

8 while (sbuf->cap <= new_len)

9 sbuf->cap <<= 1;

10 sbuf->contents = realloc(sbuf->contents, sbuf->cap);

11 return true;

12 }

Listing 23.7: strbuf_reserve

• Lines 3–4 check whether there is already capacity for res_len additional char-
acters: if so, it returns false indicating that no reallocation was necessary, i.e.,
there is already sufficient capacity.

• Lines 5–6 check for the initial case of being 0: if so, sets it to 2.
• Line 7 calculates the new length.
• Lines 8–9 double the capacity while it’s still ≤ new_len. The idea is to double
the capacity every time you need to increase it so each subsequent doublings
will be necessary half as often.

• Line 11 returns true indicating that a reallocation was necessary. (We’ll see
why this is useful shortly.)

23.2.2 Putting

Given strbuf_reserve, listing 23.8 shows strbuf_putsn, strbuf_puts, and
strbuf_putc.

4 calls strbuf_reserve to ensure cap has room for n more ch
• Line 5 now simply copies s into place using memcpy since we null-terminate the
string ourselves on line 7.

23 Strings320

1 void strbuf_putsn(struct strbuf *sbuf, char const *s,

2 size_t n) {

3 n = strnlen(s, n);

4 strbuf_reserve(sbuf, n);

5 memcpy(sbuf->contents + sbuf->len, s, n);

6 sbuf->len += n;

7 sbuf->contents[sbuf->len] = ’\0’;

8 }

9
10 inline void strbuf_puts(struct strbuf *sbuf,

11 char const *s) {

12 strbuf_putsn(sbuf, s, strlen(s));

13 }

14
15 inline void strbuf_putc(struct strbuf *sbuf, char c) {

16 strbuf_putsn(sbuf, &c, 1);

17 }

Listing 23.8: strbuf_putsn, strbuf_puts, and strbuf_putc

23.2.3 Formatted Printing

The strbuf_printf function can be more efficient than string_printf from list-
ing 23.3 (p.317) by using strbuf_reserve as shown in listing 23.9.

1 int strbuf_printf(struct strbuf *sbuf,

2 char const *format, ...) {

3 char *buf = sbuf->contents == nullptr ?

4 nullptr : sbuf->contents + sbuf->len;

5
6 va_list args;

7 va_start(args);

8 auto raw_len =

9 vsnprintf(buf, sbuf->cap - sbuf->len, format, args);

10 va_end(args);

11 if (raw_len <= 0)

12 return raw_len;

13
14 auto const args_len = (size_t)raw_len;

15 if (strbuf_reserve(sbuf, args_len)) {

16 buf = sbuf->contents + sbuf->len;

17 va_start(args);

18 raw_len = vsnprintf(buf, args_len + 1, format, args);

19 va_end(args);

20 assert(raw_len > 0);

21 }

22
23 sbuf->len += args_len;

24 return raw_len;

25 }

Listing 23.9: strbuf_printf

23.2 strbuf: A String Buffer Type 321

• Since strbufmight already have sufficient capacity, the first call to vsnprintf
on line 9might be able to “print” the entire formatted string into sbuf->contents.

But first, lines 3–4 check for the special case of sbuf->contents being
nullptr: if it is, then simply set buf to nullptr the same as in string_printf
(listing 23.3, line 5, p.317).

• Line 15 calls strbuf_reserve. Reminder: if it returns false, there was already
sufficient capacity, so we don’t have to call vsnprintf again, which means
we’re done; if it returned true, simply call vsnprintf again on line 18 now
that there’s sufficient capacity.

23.2.4 Taking Ownership

Similarly to string_take from listing 23.4 (p.318), strbuf should have strbuf_take
as shown in listing 23.10.

[[nodiscard]] char* strbuf_take(struct strbuf *sbuf) {

auto const contents = sbuf->contents;

*sbuf = (struct strbuf){ };

return contents;

}

Listing 23.10: strbuf_take

23.2.5 Resetting

If the same strbuf is being used repeatedly, it’s more efficient simply to “reset”
len to 0, but leave cap alone, i.e., don’t discard the buffer we’ve already allocated.
We can add a strbuf_reset function to do this by assigning a null character to
contents[0] as shown in listing 23.11.

void strbuf_reset(struct strbuf *sbuf) {

if (sbuf->contents != nullptr)

sbuf->contents[0] = ’\0’;

sbuf->len = 0;

}

Listing 23.11: strbuf_reset

One way to use strbuf_reset is in a function that keeps a strbuf between calls
by making it static (§9.9). Consider a function that takes a nullptr-terminated
array of strings and makes a single string out of them in “English list” form such
that if the number of elements of this list is:

thread_local

sep

322 23 Strings

0. E.g., [nullptr] → ””.
1. E.g., [”a”, nullptr] → ”a”.
2. E.g., [”a”, ”b”, nullptr] → ”a or b”.
3. E.g., [”a”, ”b”, ”c”, nullptr] → ”a, b, or c”.

Such a function is shown in listing 23.12.

1 [[nodiscard]]

2 char const* str_list(char const *list[static 1]) {

3 if (list[0] == nullptr)

4 return ””;

5
6 static struct strbuf sbuf;

7 strbuf_reset(&sbuf);

8 strbuf_puts(&sbuf, list[0]);

9
10 for (unsigned i = 1; list[i] != nullptr; ++i) {

11 auto const sep = list[i+1] != nullptr ?

12 ”, ” : i > 1 ? ”, or ” : ” or ”;

13 strbuf_printf(&sbuf, ”%s%s”, sep, list[i]);

14 }

15
16 return sbuf.contents;

17 }

Listing 23.12: str_list

• Line 2 declares list to be an “array” parameter (§9.4) using the non-null array
syntax (§9.4.1) requiring at least 1 element.

–4 check for the trivial case of there being zero elements in li•
•
Lines 3 st.
Line 6 declares a static (§9.9) strbuf that will exist for as long as the program
does. To make it thread-safe, add (§14.7).

• Instead of doing:

sbuf = (struct strbuf){ };

line 7 calls strbuf_reset simply to reset its length to zero, but leave cap alone.
• Line 8 puts the zeroth string in sbuf.
• Lines 10–14 put the remainder of the strings, if any. (The zeroth string is done
outside the loop because if it were done inside, it would need an if (i > 0)

for .)
• Line 11 peeks ahead at list[i+1] to know whether to put one of ”, ”, ”, or

”, or ” or ”.
• Line 16 returns the string’s contents. Because sbuf is static, this won’t result
in a dangling pointer.

Subsequent times str_list is called can re-use the previously allocated buffer in-
side strbuf.

23.3 Epilogue 323

Strictly speaking, the memory used by sbuf is a memory-leak (§18.6.7) since it’s
never freed, but it doesn’t grow indefinitely and, as mentioned in §1.8, its memory
will be reclaimed by the operating system when the program terminates.

23.3 Epilogue

With only a few more core functions added, especially string_printf, string is
now production-quality. Based on string, strbuf with the addition of a capacity,
is efficient for building strings, hence is suitable for production-quality. Additional
functions that could be implemented are left as exercises.

Exercises

1. Write a function:

int string_cmp(struct string const *str1,

struct string const *str2);

that works like strcmp except that it takes advantage of the len member. For
example, two strings can’t be equal unless their lengths are equal.

2. Write a function:

void string_etrim(struct string *str);

that trims whitespace characters from the end of a string. Hint: no characters
need to be moved.

3. Write a function:

void string_strim(struct string *str);

that trims whitespace characters from the start of a string. Hint: use memmove
(§B.2).

4. Modify your solution of string_paths for exercise 8.1 (p. 133) to work with
strbuf shown in listing 23.6 (p.318):

void strbuf_paths(struct strbuf *sbuf,

char const *comp);

Chapter 24

 Lists

Recall the intrusive singly linked list structure from listing 10.9 (p.163):

struct islist {

struct islist *next;

alignas(max_align_t) char data[];

};

To make it more production-quality, it could use a couple of changes:

1. The first is to realize that the flexible array member (§10.6) for data can also
be used to store data non-intrusively by simply making it store a void* to the
actual data.

2. The second is to have separate list and link structures. The new link structure
would be the same as the old list structure; the new list structure would have sep-
arate head and tail pointers. Having a tail pointer makes certain operations
easier as we’ll see.

The new structures are shown in listing 24.1. (Since the new list can be used either
intrusively or not, the “i” prefix has been dropped.)

struct slink {

struct slink *next;

alignas(max_align_t) char data[];

};

struct slist {

struct slink *head, *tail;

};

Listing 24.1: Singly linked list structures, version 2

325© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_24

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_24&domain=pdf

If initialization ever requires more, it can easily be added to the function.

24 Lists326

24.1 Initialization and Clean-Up

The first functions to write are initialization and cleanup as shown in listing 24.2.

typedef void (*slist_free_fn)(void *data);

inline void slist_init(struct slist *list) {

*list = (struct slist){ };

}

void slist_cleanup(struct slist *list,

slist_free_fn free_fn) {

if (list == nullptr)

return;

struct slink *curr = list->head, *next;

if (free_fn == nullptr) {

for (; curr != nullptr; curr = next) {

next = curr->next;

free(curr);

}

} else {

for (; curr != nullptr; curr = next) {

(*free_fn)(curr->data);

next = curr->next;

free(curr);

}

}

slist_init(list);

}

Listing 24.2: Singly linked list initialization and cleanup functions

• The slist_init function isn’t strictly necessary since the user could do what it
does just as easily. But it’s a good practice always to provide an “init” function.

• The slist_cleanup function takes a pointer to a function (§6.10) to free data
for each link if necessary or nullptr if not. The cleanup function hoists the
check for nullptr out of the loop and has two loops, one for each case since it’s
faster at the slight expense of double the code. As a nicety, if list is nullptr,
the function does nothing.

24.2 Pushing

The next functions to write are “push-front” and, by virtue of having the tail

pointer, “push-back” as shown in listing 24.3. The mechanics of manipulating the
pointers should be straightforward to anyone who’s had a data-structures course.

The curious part is that the functions take only a size of the data to push, not the
data itself. Instead, both functions return a pointer to the newly pushed slink: it’s

32724.2 Pushing

[[nodiscard]]

struct slink* slist_push_back(struct slist *list,

size_t size) {

struct slink *const link =

malloc(sizeof(struct slink) + size);

if (list->head == nullptr)

list->head = link;

else

list->tail->next = link;

list->tail = link;

return link;

}

[[nodiscard]]

struct slink* slist_push_front(struct slist *list,

size_t size) {

struct slink *const link =

malloc(sizeof(struct slink) + size);

link->next = list->head;

list->head = link;

if (list->tail == nullptr)

list->tail = link;

return link;

}

Listing 24.3: Singly linked list push functions

then up to the user either to copy the data into the node (if intrusive) or merely copy
a pointer to it (if not). To facilitate accessing the data, we can define two macros:

#define SLIST_DINT(DATA) ((void*)(DATA))

#define SLIST_DPTR(DATA) (*(void**)SLIST_DINT((DATA)))

• SLIST_DINT: Gets a pointer to the data when stored intrusively. The cast to
void* is to silence a warning about converting a char* to a pointer to a type
having stricter alignment.

• SLIST_DPTR: Gets a pointer to the data when stored via pointer. Assuming 64-
bit pointers, the pointer value is stored as char data[8]. As a reminder, when
an array is used in an expression, it “decays” into a pointer to its first element
(§6.7), in this case, the first byte of the pointer to the actual data. The cast to
void** simply casts it to the pointer to the void* it really is. The left-most *
then dereferences that pointer to read those 8 bytes comprising the pointer to the
actual data.

Given those macros, we can either store, say, an int intrusively:

auto data = slist_push_front(list, sizeof(int))->data;

(int)SLIST_DINT(data) = 1942;

or store a pointer to data elsewhere:

328 24 Lists

auto data = slist_push_front(list, sizeof(void*))->data;

SLIST_DPTR(data) = p;

If you think those are verbose, you can enlist the help of a function-like macro (§8.7):

#define SLIST_PUSH_FRONT(LIST,T,V) \

((T))SLIST_DINT(slist_push_front((LIST), \

sizeof(T))->data) = (V)

24.3 Front, Back, and Empty

The next functions to write are “front,” “back,” and “empty” as shown in listing 24.4.

[[nodiscard]] inline

struct slink* slist_front(struct slist *list) {

return list->head != nullptr ? list->head : nullptr;

}

[[nodiscard]] inline

struct slink* slist_back(struct slist *list) {

return list->tail != nullptr ? list->tail : nullptr;

}

[[nodiscard]] inline

bool slist_empty(struct slist *list) {

return list->head == nullptr;

}

Listing 24.4: Singly linked list front, back, and empty functions

All are straightforward. For example, to use slist_front with intrusive data:

int i = *(int*)SLIST_DINT(slist_front(list)->data);

or with a pointer to data:

char *s = SLIST_DPTR(slist_front(list)->data);

24.4 Popping

The next functions to write are “pop-front” and “pop-back” as shown in listing 24.5.
As with the push functions, the mechanics of manipulating the pointers should be
straightforward to anyone who’s had a data-structures course.

Unlike slist_pop_front that runs inO(1) time, slist_pop_back runs inO(n)
time because it has to find the element before tail. The only way to do that inO(1)

32924.5 Removing from the Middle

void slist_pop_front(struct slist *list) {

if (list->head == nullptr)

return;

auto const new_head = list->head->next;

free(list->head);

list->head = new_head;

if (list->head == nullptr)

list->tail = nullptr;

}

void slist_pop_back(struct slist *list) {

if (list->head == nullptr)

return;

auto new_tail = list->head;

while (new_tail->next != list->tail)

new_tail = new_tail->next;

free(list->tail);

new_tail->next = nullptr;

list->tail = new_tail;

}

Listing 24.5: Singly linked list pop functions

time would be to implement a doubly linked list, i.e., dlist with a corresponding
dlink that also had a prev pointer in addition to next. But it’s a big price to pay
due to dlink being twice the size of slink. Given that, slist_pop_back should be
implemented and documented that it runs in O(n) time.

Of course you can implement both slist and dlist where you use slist most
of the time, perhaps with an occasional slist_pop_back. Use dlist only if you
really need to use slist_pop_back frequently.

24.5 Removing from the Middle

Occasionally, you might need to remove a link from the middle of a list. It might
seem that you can’t do this with a singly linked list because, given a pointer to a
link to remove, you can’t get to next of the previous slink to update it to be the
current link’s next. What you can do instead is to write a function like what’s shown
in listing 24.6.

The function slist_free_if performs the mechanics of iterating over the list,
keeping track of the pointers, and updating them, but delegates the decision of
whether to remove a link to a predicate function that, given a pointer to a link, returns
true only if it should be removed.

• For convenience, lines 1–2 declare a type for a predicate function. In addition
to link, it also takes pred_data (so named so it’s not confused with a link’s
data) that’s passed along from slist_free_if possibly to be used to determine
whether a link should be removed.

24 Lists330

1 typedef bool (*slist_pred_fn)(struct slink *link,

2 void const *pred_data);

3
4 size_t slist_free_if(struct slist *list,

5 slist_pred_fn pred_fn,

6 void const *pred_data) {

7 size_t free_count = 0;

8 struct slink **pcurr = &list->head, *prev = nullptr;

9
10 for (;;) {

11 auto const curr = *pcurr;

12 if (curr == nullptr)

13 break;

14 if (!(*pred_fn)(curr, pred_data)) {

15 prev = curr;

16 pcurr = &curr->next;

17 continue;

18 }

19 if (curr == list->tail)

20 list->tail = prev;

21 *pcurr = curr->next;

22 free(curr);

23 ++free_count;

24 }

25
26 return free_count;

27 }

Listing 24.6: Singly linked list remove-from-the-middle function

• Ordinarily, if the link to be removed is head, it requires a special case; this
function uses “good taste” by using a pointer to the pointer (§6.6) pointing to
the current link pcurr declared on line 8 that eliminates the special case.† The
prev pointer is needed only because slist has a tail pointer and if the tail is
the link to be removed.

• Line 14 calls the predicate function: if it returns false (don’t remove), the point-
ers are updated and iteration continues (lines 15–17); if it returns true, the cur-
rent link is to be removed.

• Lines 19–20 handle the special case of updating tail.
• Line 21 updates *pcurr (which is either the previous link’s next, or head) to
be the current link’s next pointer effectively excising the current link.

• To be informative, line 26 returns the number of links removed.

An example predicate function that can be used with slist_free_if on a list of
strings that removes links whose data (a string) does not contain the string given by
pred_data is shown in listing 24.7.

†The Mind Behind Linux, Linus Torvalds, TED Talk, Vancouver, BC, Feb. 2016, 21:20,
https://www.ted.com/talks/linus_torvalds_the_mind_behind_linux

https://www.ted.com/talks/linus_torvalds_the_mind_behind_linux

33124.6 Iterating

bool slist_free_if_not_contains_str(struct slink *link,

void const *pred_data) {

return strstr(SLIST_DINT(link->data),

pred_data) == nullptr;

}

Listing 24.7: Singly linked list not-contains-string predicate function

The strstr standard function (§B.2) searches a string for the occurrence of another
string. An example of using the predicate function to remove links whose strings do
not contain “error:” (effectively grep(1)) is:

slist_free_if(list, &slist_free_if_not_contains_str,

”error:”);

You might be wondering why the predicate function takes an slink* rather than
a pointer to the link’s data directly. The answer is because it’s slightly more flexible.
An example predicate function that removes links whose data (a string) is a duplicate
of its next link’s string assuming the list of strings is sorted (effectively uniq(1)) is
shown in listing 24.8.

bool slist_free_if_dup_str(struct slink *link,

void const*) {

return link->next != nullptr &&

strcmp(SLIST_DINT(link->data),

SLIST_DINT(link->next->data)) == 0;

}

Listing 24.8: Singly linked list is-duplicate-string predicate function

The function can not only look at the current link’s data, but the next link’s data also.

24.6 Iterating

As a convenience, we can write a macro to iterate over a list to reduce boilerplate:

#define FOREACH_SLINK(LINK,LIST) \

for (auto LINK = (LIST)->head; LINK != nullptr; \

LINK = LINK->next)

Using auto here is particularly good because, as mentioned in §4.2, for pointers,
auto will preserve the “const-ness” of the pointed-to slink. That is, if LIST is
slist*, LINK will be slink*; if LIST is slist const*, LINK will be slink

const*.

slist

slist

332 24 Lists

24.7 Epilogue

With the addition of a separate slink structure and a tail member, slist is now
production-quality. Additional functions that could be implemented are left as exer-
cises.

Exercises

1. Add a lenmember to slist to keep track of a list’s length. It’s sometimes useful
to have. Updating it simply requires either incrementing or decrementing it in
push, pop, and free-if operations.

2. Change the slist_pred_fn signature to return an enumeration value:

enum slist_pred_rv {

SLIST_FALSE, SLIST_TRUE, SLIST_BREAK

};

where SLIST_BREAK causes slist_free_if to break out of its loop rather than
always iterate to the end of the list.

3. Modify your solution of slist_cmp for exercise 6.1 (p. 98) to work with the
version of presented in this chapter.

4. Modify your solution of slist_dup for exercise 6.2 (p. 98) to work with the
version of presented in this chapter.

5. Write a function:

void slist_push_list_back(struct slist *dst,

struct slist *src);

to push the links of src onto the back of dst. After, src would be empty.
6. Write a function:

void slist_push_list_front(struct slist *dst,

struct slist *src);

to push the links of src onto the front of dst. After, src would be empty.
7. As mentioned in §24.4, implement dlist, a doubly linked list, also. Other than

the addition of a prev pointer in dlink and some additional pointer manipu-
lation for it, there’s not much else that would be different from slist. There
would be no need for a dlink_free_if function.

Chapter 25
Maps

A map is a data structure that “maps” keys to values, that is, given a key, you can
find its associated value, if one exists. A map has two primary operations: insert and
find; it also may have a third operation of delete. Operations in general have both
average and worst-case running times as a function of the number of elements in a
map, n, given in “big O” notation.

While there are both many uses of and choices for implementation, one way to
decide on an implementation is whether iterating over the keys is:

• Ordered: Keys are iterated over in sorted order. Items must be at least less-
than-comparable. This kind of map is typically implemented using a balanced
binary tree that ensures the path from the root to every leaf is approximately the
same length. The operations insert, find, and delete all run inO(lgn) time in the
average and worst cases. C++ has map; Java has TreeMap; Rust has BTreeMap.

• Unordered: Keys are iterated over in an arbitrary order. Items must be both
hashable and at least equality-comparable. This kind of map is typically imple-
mented using a hash table, aka, hash map, for which the average insert, find, and
delete all run in O(1) time in the average case and O(n) time in the worst case.
C++ has unordered_map; Go has map; Java and Rust have HashMap; Python has
dict.

Hence, if you don’t need to iterate over keys at all or if you don’t care about the
iteration order, an unordered map is the better choice — provided you can both hash
and equality-compare keys, and choose a good hash function (§25.1).

Unlike most modern languages, C has no standard map, so if you want one, you
have to implement it yourself. In this chapter, we’ll use a hash table to implement a
map.

333© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_25

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_25&domain=pdf

25 Maps334

25.1 Hash Tables

A hash table uses a hash function, h(k), that, given some data for a key k, returns
a hash of k, that is an unsigned integer of a fixed size, say 64-bits. The trick is to
derive a “good” hash function that:
• Is fast.
• Given either a wide range of data or nearly identical data, returns integers that
are uniformly distributed over the entire integer range.

• Has a low occurrence of collisions, that is the number of different values of k
that return the same hash.

If you know your data set, you can take advantage of that knowledge and write a
specific hash function for it. A data set that contains unique things like IDs, e-mail
addresses, or time-stamps are easier to create a good hash function for. But if you
don’t know the data set, then you need to write a good general hash function that
meets those criteria anyway.

One hash function that satisfies those criteria and is therefore commonly used
is “FNV–1a” hash function† shown in listing 25.1. The value of hash should be
initialized to FNV1A64_INIT.

constexpr uint64_t FNV1A64_INIT = 14695981039346656037UL;

constexpr uint64_t FNV1A64_PRIME = 1099511628211UL;

uint64_t fnv1a64_mem(uint64_t hash, void const *data,

size_t n) {

for (size_t i = 0; i < n; ++i)

hash = FNV1A64_PRIME *

(hash ^ ((uint8_t const*)data)[i]);

return hash;

}

Listing 25.1: FNV-1a hash function in C

■ Explaining the function and why it’s good is beyond the scope of this
book since it has nothing to do with C. There are many detailed explanations
online.‡ □
Once you have h(k), you then use it as an index into an array of “buckets” B

where k and its associated value v is stored. Of course you can’t use a 64-bit integer
as an index directly since it would require an array with over nine quintillion (9 ×
1018) entries; instead you have to mod it via the modulus operator (§3.2) bym, the
size of the array, to get the actual index i into B to get (k, v), hence the steps are:

†The FNV Non-Cryptographic Hash Algorithm, Glenn Fowler, Landon Noll, and Kiem-Phong
Vo, Comments to IEEE POSIX P1003.2 Committee, Sep. 1991.

‡The FNV Non-Cryptographic Hash Algorithm, Glenn Fowler, Landon Noll, Kiem-Phong Vo,
and Donald Eastlake, Internet Engineering Task Force, Oct. 10, 2024,
https://datatracker.ietf.org/doc/html/draft-eastlake-fnv-29

https://datatracker.ietf.org/doc/html/draft-eastlake-fnv-29

25.1 Hash Tables 335

k → h(k) → %m → i → B[i] → (k, v)

Of course any value for m increases collisions. When a collision occurs, you have
to compare k against every other key that also hashed toB[i]. Hence, it’s a trade-off
between using a largerm (more memory, but fewer collisions) vs. a smallerm (less
memory, but more collisions). If you know n, the expected number of entries, say
2000, and you can live with, say, at most 3 comparisons per key due to collisions,
then m = ⌈2000/3⌉ = 667. However, it’s better for m to be both a prime number
and as far away from a power of 2 as possible; hence a better m for 2000 entries
would be 769.

■ Similarly, explaining why this is the case is also beyond the scope of this
book. But, briefly, if m is not prime and the set of keys are not uniformly
distributed, h(k) %m produces more collisions at i where it’s a factor ofm.
Ifm ≈ 2b, then all but the lower b bits of h(k) are discarded. □

When inserting a key and value and a collision occurs (B[i] is not empty), what
do you do? There are generally two approaches:

1. Open addressing: There are a few kinds including linear probing where you
scan forward looking at B[i + 1], B[i + 2], . . . , in general, B[j] for j in [i +
1 . . .m−1] %m looking for an emptyB[j]. When you find one, put the key and
value there. The advantages of linear probing include:

+ Good cache performance since the entries are directly in the array and there-
fore in the same cache line (§10.6).

The disadvantages of linear probing include:

– The hash table can become full by filling every element of B.
– Deleting entries involves either marking themwith a special “deleted” value
(but this decreases performance as more entries are deleted) or moving ex-
isting entries to replace deleted ones.

2. Chaining: EveryB[i] is a linked list of all the keys that collided and their values.
The advantages of chaining include:

+ The hash table can never become full since new entries can always be in-
serted into the linked lists (but see the first disadvantage).

+ Deleting entries involves only updating a few pointers.

The disadvantages of chaining include:

– Even though the hash table can never become full (in the sense that it’s
impossible to add more entries), its performance degrades from O(1) to
O(n) as the length of the linked lists increases. However, you can “grow”
the hash table.

– Growing a hash table is time-consuming. In time-sensitive applications, you
may not be able to afford it. (OK for compilers; bad for user interfaces.)

– Worse cache performance since the entries are scattered in memory.
– Wasted space due to the unused elements inB and extra space for the point-
ers in the linked lists.

336 25 Maps

For hash tables, there’s a value known as its load factor, α, that’s defined as:

α =
n

m

that is the percentage ofB that’s full. As the load factor increases due to increasing n,
the performance of the hash table decreases because it takes longer to either insert
or find entries. When α exceeds some threshold αmax, you can increase m, but
that requires recalculating h(k) % m → i for all entries. Nevertheless, that’s what’s
typically done. For open addressing, αmax can never exceed 1; for chaining, αmax

represents the maximum number of comparisons that need to be done per operation.
Whether you choose open addressing or chaining depends on your circumstances.

In this chapter, we’ll implement a hash table that uses chaining.

25.2 Hash Table Types

Types for our hash table implementation are shown in listing 25.2.
1 typedef int (*ht_cmp_fn)(void const*, void const*);

2 typedef void (*ht_free_fn)(void*);

3 typedef uint64_t ht_hash_val;

4 typedef ht_hash_val (*ht_hash_fn)(void const*);

5
6 struct ht_entry {

7 struct ht_entry *next;

8 union {

9 ht_hash_val hash; // for fake head entries

10 struct ht_entry *prev; // for real entries

11 };

12 alignas(max_align_t) char data[];

13 };

14
15 struct hash_table {

16 struct ht_entry *buckets;

17 ht_cmp_fn cmp_fn;

18 ht_hash_fn hash_fn;

19 double max_lf; // maximum load factor

20 unsigned size; // number of entries

21 unsigned prime_idx; // index into HT_PRIME

22 };

Listing 25.2: Hash table types

• Line 1 declares the signature for a conventional comparison function returning
an integer < 0, 0, or > 0 for comparing data.

• Line 2 declares the signature for a function to free an entry’s data.
• Line 3 declares a simple alias for a hash table value.
• Line 4 declares the signature for a function to calculate h(k). It takes only a
pointer to ht_entry’s data. To use it with fnv1a64_mem on a user-defined
structure that has a key member such as:

33725.2 Hash Table Types

struct key_val {

char const *key, *val;

};

we’ll need an adapter function like:

ht_hash_val hash_key_val(void const *data) {

struct key_val const *const kv = data;

return fnv1a64_mem(FNV1A64_INIT, kv->key,

strlen(kv->key));

}

• Lines 6–13 declare a structure for a hash table entry. Since this implementation
uses chaining, each entry has a next and prev pointer to point to the next and
previous entries, respectively, in a doubly linked list.

Why a doubly linked list? As we’ll see, having prev makes deletion (§25.7)
trivial: you simply need to update a few pointers. For a singly linked list, deletion
would always require recalculating h(k) to get to the bucket, then iterating over
the list until you find the entry. It’s a trade-off between more memory and fast
deletion vs. less memory but slower deletion. If your circumstance has either
infrequent or no deletions, the singly linked list would be the obvious better
choice.

Why is prev in a union with hash? Since the head entry doesn’t need prev,
we might as well make use of the otherwise wasted space by storing h(k) there
since all keys in the same bucket have the same value. As we’ll see, this elimi-
nates recalculating h(k) when growing (§25.5) the hash table.

• Line 12 declares data the same as for slist in listing 24.1 (p. 325) to allow
entries to store data intrusively or not. Unlike a traditional hash table implemen-
tation where an entry’s key and value are separate, here they’re combined into
data. The advantages are that either the key, value, or both, can either be intru-
sive or not; and that a value is optional, i.e., the hash table can implement a set
rather than a map.

A hash table needs to compare keys only for equality. Hence, the function
could have returned bool instead where truemeans equal. However, that would
rule out using conventional comparison functions like strcmp that return int

where 0 means equal.
• Lines 15–22 declare a structure for a hash table itself. We’ll allow the user to
specify αmax, hence the max_lf member. The prime_idx member is an index
into HT_PRIME, a table of prime numbers not near powers of two as shown in
listing 25.3 to be used for the size of buckets.

≥

338 25 Maps

static constexpr unsigned HT_PRIME[] = {

53, 97, 193, 389, 769,

1543, 3079, 6151, 12289, 24593,

49157, 98317, 196613, 393241, 786433,

1572869, 3145739, 6291469, 12582917, 25165843

};

Listing 25.3: Prime numbers not near powers of 2 for the number of buckets

25.3 Initialization and Clean-Up

The first function to write is initialization as shown in listing 25.4.

1 void ht_init(struct hash_table *ht, double max_lf,

2 unsigned est_size, ht_cmp_fn cmp_fn,

3 ht_hash_fn hash_fn) {

4 unsigned prime_idx = 0;

5 for (; prime_idx < ARRAY_SIZE(HT_PRIME); ++prime_idx) {

6 if (HT_PRIME[prime_idx] * max_lf >= est_size)

7 break;

8 }

9 *ht = (struct hash_table){

10 .buckets = calloc(HT_PRIME[prime_idx],

11 sizeof(struct ht_entry)),

12 .cmp_fn = cmp_fn,

13 .hash_fn = hash_fn,

14 .max_lf = max_lf,

15 .prime_idx = prime_idx

16 };

17 }

Listing 25.4: Hash table initialization function

• Lines 1–3 declare the function’s signature where we allow the user to specify
αmax and an estimated number of elements that will be used to determine the
initial number of buckets.

• Lines 5–8 iterate through HT_PRIME looking for the first prime number times
αmax est_size to use that for the initial number of buckets.

• Line 10 uses the standard function calloc that’s like malloc except that you
specify the number of objects to allocate and the size of an object; calloc also
initializes the memory to zero or equivalent that we need here so that all the
pointers are nullptr.

The next function to write is cleanup as shown in listing 25.5 and is straightforward.

key ht_insert_rv

data_size

33925.4 Insert

void ht_cleanup(struct hash_table *ht,

ht_free_fn free_fn) {

if (ht == nullptr)

return;

for (unsigned b = 0; b < HT_PRIME[ht->prime_idx];

++b) {

for (struct ht_entry *entry = ht->buckets[b].next,

*next;

entry != nullptr; entry = next) {

if (free_fn != nullptr)

(*free_fn)(entry->data);

next = entry->next;

free(entry);

}

}

free(ht->buckets);

*ht = (struct hash_table){ };

}

Listing 25.5: Hash table cleanup function

25.4 Insert

When inserting a key into a hash table, you may find that an entry having the same
key already exists. In that case, you should return a pointer to that entry rather than
create a new one. But now you need to distinguish between returning a new entry and
an existing one, hence a need for an “insert return value” structure ht_insert_rv
as shown in listing 25.6. The ht_insert function itself is shown in listing 25.7.

struct ht_insert_rv {

struct ht_entry *entry; // entry found or inserted

bool inserted;

};

Listing 25.6: Hash table insert function return value structure

• Lines 4–7 calculate hash, n_buckets (the number of buckets,m), b (the index
of the bucket), and sets head to point to the fake first entry of the linked list of
the bucket.

• Lines 9–14 look through the linked list looking for an existing key that matches
: if found, returns an with that entry.

• Otherwise, line 16 allocates memory for a new entry including .
• Lines 17–21 initialize the entry and update the bucket to point to it.
• Lines 23–25 calculate the load factor α: if it’s ≥ max_lf, calls ht_grow to
“grow” the hash table by increasing m and rehashing all entries as shown in
listing 25.8.

• Line 27 returns an ht_insert_rv pointing to the new entry.
Note that ht_insert inserts only an ht_entry, not the data itself. To access the
data, we need macros similar to those used for slist (p.327):

25 Maps340

1 struct ht_insert_rv ht_insert(struct hash_table *ht,

2 void const *key,

3 size_t data_size) {

4 auto const hash = (*ht->hash_fn)(key);

5 auto const n_buckets = HT_PRIME[ht->prime_idx];

6 auto const b = hash % n_buckets;

7 struct ht_entry *const head = &ht->buckets[b], *entry;

8
9 for (entry = head->next; entry != nullptr;

10 entry = entry->next) {

11 if ((*ht->cmp_fn)(key, entry->data) == 0)

12 return (struct ht_insert_rv)

13 { entry, .inserted = false };

14 }

15
16 entry = malloc(sizeof(struct ht_entry) + data_size);

17 *entry =

18 (struct ht_entry){ .next = head->next, .prev = head };

19 if (head->next != nullptr)

20 head->next->prev = entry;

21 *head = (struct ht_entry){ .next = entry, .hash = hash };

22
23 auto const lf = ++ht->size / (double)n_buckets;

24 if (lf >= ht->max_lf)

25 ht_grow(ht);

26
27 return (struct ht_insert_rv){ entry, .inserted = true };

28 }

Listing 25.7: Hash table insert function

#define HT_DINT(ENTRY) ((void*)(ENTRY)->data)

#define HT_DPTR(ENTRY) (*(void**)HT_DINT((ENTRY)))

Given those, you can do something like:

struct key_val kv = { ”hello”, ”world” };

auto rv = ht_insert(ht, &kv, sizeof kv);

if (rv.inserted)

(struct key_val)HT_DINT(rv.entry) = kv;

25.5 Growing

As mentioned, the ht_grow function “grows” the hash table by increasing m and
rehashing all entries as shown in listing 25.8.
• Line 2 increments prime_idx to get the next larger prime number of buckets.
Note that each prime number is roughly double the previous number. The dou-
bling is done for the same reason as was done by strbuf_reserve in listing

25.6 Finding 341

1 static void ht_grow(struct hash_table *ht) {

2 auto const new_n_buckets = HT_PRIME[++ht->prime_idx];

3 struct ht_entry *const new_buckets =

4 calloc(new_n_buckets, sizeof(struct ht_entry));

5
6 for (unsigned b = 0; b < new_n_buckets; ++b) {

7 auto const hash = ht->buckets[b].hash;

8 for (struct ht_entry *entry = ht->buckets[b].next,

9 *next;

10 entry != nullptr; entry = next) {

11 auto const new_head =

12 &new_buckets[hash % new_n_buckets];

13
14 next = entry->next;

15 entry->next = new_head->next;

16 entry->prev = new_head;

17
18 if (new_head->next != nullptr)

19 new_head->next->prev = entry;

20 new_head->next = entry;

21 new_head->hash = hash;

22 }

23 }

24
25 free(ht->buckets);

26 ht->buckets = new_buckets;

27 }

Listing 25.8: Hash table grow function

23.7 (p. 319), i.e., so each subsequent doubling will be necessary half as often
especially since growing is an expensive operation.

• Lines 3–4 allocate a larger new_buckets array that entries will be moved into.
• Lines 6–23 iterate over all the buckets: for each bucket, iterates over each entry
in the bucket’s list to move it to a new linked list in new_bucket.

• Lines 11–12 set new_head to point to the fake first entry of the new linked list
of the new bucket based on the bucket index using new_n_buckets.

• Lines 14–20 simply update all the pointers.
• Finally, lines 25–26 free the old buckets and set it to new_buckets.

A disadvantage of growing a hash table is that it invalidates all iterators (§25.8).

25.6 Finding

The next function to write is ht_find as shown in listing 25.9 and is straightforward.

342 25 Maps

struct ht_entry* ht_find(struct hash_table *ht,

void const *key) {

auto const b =

(*ht->hash_fn)(key) % HT_PRIME[ht->prime_idx];

for (auto entry = ht->buckets[b].next; entry != nullptr;

entry = entry->next) {

if ((*ht->cmp_fn)(key, entry->data) == 0)

return entry;

}

return nullptr;

}

Listing 25.9: Hash table find function

25.7 Deleting

The next function to write is ht_delete as shown in listing 25.10.

void ht_delete(struct hash_table *ht,

struct ht_entry *entry) {

entry->prev->next = entry->next;

if (entry->next != nullptr)

entry->next->prev = entry->prev;

free(entry);

--ht->size;

}

Listing 25.10: Hash table delete function

As mentioned in §25.2, an advantage of using a doubly linked list is that it makes
deletion trivial. Since every entry has a non-null prev pointer, deletion is simply a
matter of updating a few pointers, freeing the entry, and decrementing size.

25.8 Iteration

It’s sometimes useful to iterate over the entire hash table even if it’s not in sorted
order, say to print it for debugging. An iterator type and initialization function are
shown in listing 25.11.

• Line 12 initializes bucket_idx (the index into ht->buckets) to (unsigned)-1
so that the first time ht_next (listing 25.12) is called, it will be “incremented”
to zero by “wrapping around.”

• Rather than using HT_PRIME[ht->prime_idx] directly, line 13 copies its value
to n_buckets. Why? See listing 25.12, line 3.

The ht_next function is shown in listing 25.12. Line 3 uses assert (§16) to ensure
that n_buckets is still equal to the current number of buckets the hash table has. If
it isn’t, it means the hash table has since grown (§25.5) and any existing iterators

34325.9 Epilogue

1 struct ht_iter {

2 struct hash_table *ht;

3 struct ht_entry *next;

4 unsigned bucket_idx;

5 unsigned n_buckets;

6 };

7
8 void ht_iter_init(struct ht_iter *it,

9 struct hash_table *ht) {

10 *it = (struct ht_iter){

11 .ht = ht,

12 .bucket_idx = (unsigned)-1,

13 .n_buckets = HT_PRIME[ht->prime_idx]

14 };

15 }

Listing 25.11: Hash table iterator type and initialization function

1 struct ht_entry* ht_next(struct ht_iter *it) {

2 for (;;) {

3 assert(it->n_buckets == HT_PRIME[it->ht->prime_idx]);

4 if (it->next != nullptr) {

5 auto const entry = it->next;

6 it->next = it->next->next;

7 return entry;

8 }

9 if (++it->bucket_idx == it->n_buckets)

10 return nullptr;

11 it->next = it->ht->buckets[it->bucket_idx].next;

12 }

13 }

Listing 25.12: Hash table iterator next function

are invalid. Not checking this would lead to undefined behavior (§15) on line 11 by
attempting to access it->ht->buckets that would be a dangling pointer.

For the remainder of the code, there are three cases:

1. Lines 4–8 handle the case when there is a next entry in the linked list for the
current bucket.

2. Lines 9–10 handle the case when there are no more entries in the linked list for
the current bucket and there are also no more buckets.

3. Line 11 handles the case when there are no more entries in the linked list for the
current bucket, but there is at least one more bucket.

25.9 Epilogue

As hinted at the outset of this chapter, there are many choices for implementing
maps:

ht_entry prev ht_bucket hash_val

hash_val ht_grow

344 25 Maps

• Binary tree or hash table?
• For a binary tree, which type? AA, AVL, B, red-black, splay, or another? Each
has its own trade-offs.

• For a hash table, which hash function? Open addressing or chaining? For chain-
ing, single or doubly linked lists?

Some choices are influenced by your circumstances:

• Are your keys comparable, i.e., can you write a function c(ki, kj) that returns
an integer < 0, 0, or > 0 if key ki is <, =, or > kj , respectively? And is it fast?
Or can your keys be checked only for equality?

• Do you find most of the time, but insert only occasionally?
• Does key iteration order matter?
• Can you afford to pause everything while growing a hash table?
• Do you need to delete keys?

Covering all these choices in detail could fill a semester-long computer science
course. This chapter only scratched the surface, but hopefully gave you a peek be-
hind the curtain for one implementation.

Exercises

1. Write a variation of fnv1a64_mem from listing 25.1 (p.334) that hashes the char-
acters of a string (except the terminating null character) having a signature:

uint64_t fnv1a64_str(uint64_t hash, char const *s);

2. Currently, doubly linked lists are used for the reasons mentioned in §25.2.
Change the implementation to use a singly linked list. This requires:

a. Deletion of ’s and ’s .
b. Recalculating in (listing 25.8, p.341), line 8.
c. Recalculating hash_val in ht_delete (listing 25.10, p.342) and iterating

through the linked list of a bucket until you find the entry whose pointer
matches the one to be deleted.

Chapter 26

 Dynamic Dispatch

Dynamic dispatch means to select which function is called at run-time based on the
type of some object (aka, polymorphism). It’s one of the defining traits of object-
oriented programming. Different languages that support dynamic dispatch, such as
C++, C#, Go, Java, Python, Smalltalk, Rust, and Swift, implement it differently, each
with its own trade-offs. C doesn’t support dynamic dispatch directly, but you can
implement it in the style of any programming language that does support it.

Recall the token structure from listing 11.1 (p.171). A simple example would be
to have a function that prints a token’s value no matter what type it is as shown in
listing 26.1.

void token_print(struct token const *t) {

switch (t->kind) {

case TOKEN_INT : printf(”%ld”, t->i); break;

case TOKEN_FLOAT: printf(”%lf”, t->f); break;

case TOKEN_CHAR : printf(”%c” , t->c); break;

case TOKEN_STR : printf(”%s” , t->s); break;

}

}

Listing 26.1: Simple dynamic dispatch

While that is dynamic dispatch, it’s fairly restrictive. Why? Suppose you want the
option to print tokens in different ways, e.g., integers in hexadecimal or binary, or
with separators; or floating-point numbers in exponent form. You could addmembers
to token to store all those options and make token_print take them all into account
when printing. The caveats are that all tokens would have that additional data when
only some need it and that printing options are restricted to what you thought of in
advance.

345© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_26

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_26&domain=pdf

346 26 Dynamic Dispatch

26.1 Pointers to Function

Rather than having additional token members storing printing options, you can in-
stead store pointers to function (§6.10) and delegate printing to them as shown in
listing 26.2.

struct token {

// ...

void (*print_int)(long);

void (*print_float)(double);

void (*print_char)(char);

void (*print_str)(char const*);

};

void token_print(struct token const *t) {

switch (t->kind) {

case TOKEN_INT : t->print_int (t->i); break;

case TOKEN_FLOAT: t->print_float(t->f); break;

case TOKEN_CHAR : t->print_char (t->c); break;

case TOKEN_STR : t->print_str (t->s); break;

}

}

Listing 26.2: Dynamic dispatch, version 2, using pointers to function

When a token is created, its pointers would be set to point to a default set of printing
functions. To change the way tokens print, you simply change one or more of the
pointers to point to different printing functions. To print using the pointers, we can
rewrite token_print as also shown.

As a reminder from §6.10, if you know C++, then a statement like:

t->print_float(t->f); // not C++; shorthand for ...

might look like a C++ member function call, but it’s still really C and a shorthand
for calling a pointer to function:

(*t->print_float)(t->f); // ... this

■ Even though I commented in §6.10 that I personally prefer using the ex-
plicit (*...) form, when implementing dynamic dispatch like this, the short-
hand form seems more natural. □

While having one pointer per function is very flexible, it takes 32 bytes for the
pointers (assuming 64-bit pointers), and that triples the total size of token.

34726.2 Function Tables

26.2 Function Tables

To reduce the size of a token, instead of having one pointer per function, you can
have one pointer to a table of functions as shown in listing 26.3.

struct token_fn_tbl {

void (*print_int)(long);

void (*print_float)(double);

void (*print_char)(char);

void (*print_str)(char const*);

};

struct token {

// ...

struct token_fn_tbl const *fn_tbl;

};

static struct token_fn_tbl const TOKEN_FN_TABLE_DEFAULT = {

&print_int, &print_float, &print_char, &print_str

};

void token_print(struct token const *t) {

switch (t->kind) {

case TOKEN_INT:

t->fn_tbl->print_int(t->i);

break;

case TOKEN_FLOAT:

t->fn_tbl->print_float(t->f);

break;

case TOKEN_CHAR:

t->fn_tbl->print_char(t->c);

break;

case TOKEN_STR:

t->fn_tbl->print_str(t->s);

break;

}

}

Listing 26.3: Dynamic dispatch, version 3, using a function table

Notice that all tokens share a single default function table. To change the way to-
kens print, create a different token_fn_table instance with its pointers pointing to
different functions and change fn_tbl to point to it only for those tokens to print
differently. The caveat is that calling a function now requires an extra level of in-
direction through the fn_tbl pointer. Like many other things in computer science,
it’s a trade-off.

Function tables are the way C++, C#, Java, and Swift implement dynamic dis-
patch. In C++ specifically, a token class would have its fn_tbl named vptr (“vee
pointer,” short for “virtual function pointer”) instead and point to an instance of a
token vtbl (“vee table,” short for “virtual function table”) but otherwise would be
the same. A C++ member function call like:

348 26 Dynamic Dispatch

t->print_int(); // C++ member function call ...

is simply syntactic sugar and rewritten by the compiler to be:

t->vptr->print_int(t); // ... is this behind the curtain

passing token to become the function’s this pointer.
There would be one vtbl per class. A derived class that overrides a base class’s

function would have its vtbl pointer pointing to a different table. Non-overridden
functions would have their pointers pointing to the base class’s functions.

The “in-object” way of implementing vptrs has the following disadvantages:

– They increase the object’s size by the size of a pointer (typically, 8 bytes). For
small objects, that’s significant since it means they’ll will likely no longer fit in a
register nor be efficient to pass by value. (For token, its size increased by 50%.)

– They’re intrusive (§10.6). In order to perform dynamic dispatch, an object must
have a vptr. That means objects must be derived from a base object, hence
inheritance is required to get dynamic dispatch. For example, listing 26.4 shows
this for C++.

struct token { // C++ base class

// ...

struct token_vtbl const *vptr;

};

struct derived_token : token { // derived inherits vptr

// ...

};

Listing 26.4: Intrusive vptrs need inheritance for dynamic dispatch in C++

26.3 Fat Pointers

As an alternative to intrusive vptrs, languages like Go and Rust use “fat pointers”
as shown in listing 26.5 where itoken is a fat pointer.

■ In Go, fat pointers are used to implement “interfaces,” hence the “i” in
itoken. In Rust, fat pointers are used to implement “traits” that are essen-
tially the same. In this section, the Go terminology is used. □

A fat pointer is simply a structure that contains two pointer members:

1. A pointer to the object’s function table, i.e., a vptr, that’s the same as it is was
before except that it moved from the object to the fat pointer.

2. A pointer to the object.

34926.3 Fat Pointers

struct itoken { // fat pointer

struct token_vtbl const *vptr;

struct token *token;

};

void token_print(struct itoken const *it) {

auto const t = it->token;

switch (t->kind) {

case TOKEN_INT : it->vptr->print_int (t->i); break;

case TOKEN_FLOAT: it->vptr->print_float(t->f); break;

case TOKEN_CHAR : it->vptr->print_char (t->c); break;

case TOKEN_STR : it->vptr->print_str (t->s); break;

}

}

Listing 26.5: Dynamic dispatch, version 4, using a fat pointer

Because only fat pointers have vptrs now, only fat pointers and not ordinary pointers
can be used to do dynamic dispatch. Hence, the corresponding token_print takes
a fat pointer as a parameter. Using fat pointers to implement dynamic dispatch has
the following advantages:
+ They don’t increase the object’s size.
+ They’re not intrusive. This means dynamic dispatch can be performed for an
object without requiring that it be derived from a base object, hence, inheritance
is not required to get dynamic dispatch. For example, listing 26.6 shows this
for Go. Any object type that implements those four functions would be able to
participate in dynamic dispatch without inheritance.

type IToken interface {

PrintInt(int32)

PrintFloat(float64)

PrintChar(rune)

PrintString(string)

}

Listing 26.6: Interfaces in Go don’t use inheritance for dynamic dispatch
But fat pointers also have the following disadvantages:
– They’re twice as big as ordinary pointers. If you have arrays of fat pointers, you
can fit only half as many in a cache line (§10.6).

– Because they’re not intrusive, once an interface “decays” into a pointer for a
function’s receiver (the object to which the function applies) there’s no way to
do dynamic dispatch again using the pointer in that function.

For example, given the following in Go:

func (t *Token) PrintFloat(n float64) {

// ...

t.PrintInt(int64(n)) // not fat: no dynamic dispatch :(

}

26 Dynamic Dispatch350

Even though this function may have been called via an interface, it received a pointer
(not interface) into t. If the function calls PrintInt via t to print the integer portion
of the floating-point number, it would call Token’s version of PrintInt, not the
dynamic dispatch version, since only interfaces can do dynamic dispatch. Hence,
polymorphism in Go is “shallow” in that it “decays” from an interface one call level
down to a pointer and no further.

In C++, t would point to the token that contains a vptr from which dynamic
dispatch can be done again. Hence, polymorphism in C++ is “deep” in that it can go
any number of call levels down from a pointer.

26.4 Epilogue

As stated at the outset of this chapter, C doesn’t support dynamic dispatch directly,
but you can implement it in the style of any programming language that does support
it — you just have to be explicit about it.

Here are some key points about dynamic dispatch as illustrated in this chapter:

• Regardless of technique, pointers to function are needed.
• Use of function tables (structures with pointers to function members) are used
in many languages.

• Intrusive virtual function pointers increase an object’s size, but allow deep poly-
morphism. They also often require inheritance.

• Fat pointers don’t require inheritance, but only allow shallow polymorphism.

Like many other things in computer science, there are always trade-offs.

Chapter 27
Exceptions in C

Continuing from §20.5, this chapter provides a more detailed answer to whether
setjmp and longjmp can be used to implement exceptions (or at least something
exception-like) in C. While it’s somewhat possible, the restrictions of setjmp and
longjmp unfortunately bleed into using them for exception-like handling in C. De-
spite this, we’ll derive and implement such a mechanism noting the “ifs” and “buts.”
Not surprisingly, this implementation will be modeled after exceptions in C++.

27.1 Requirements

A self-imposed requirement is that a proper exception-like mechanism in C should
look as similar as possible to C++ exceptions. Many exception-like implementations
for C out there require using ugly macros in stilted ways. What we want is to be able
to write “natural looking” code like what’s shown in listing 27.1.

void read_file(char const *path) {

auto f = fopen(path, ”r”);

if (f == nullptr)

throw (EX_FILE_NOT_FOUND);

// ...

}

int main() {

try {

read_file(”.config”);

}

catch (EX_FILE_NOT_FOUND) {

// ...

}

}

Listing 27.1: Natural looking exception-like code in C

351© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3_27

https://crossmark.crossref.org/dialog/?doi10.1007/979-8-8688-1597-3_27&domain=pdf

352 27 Exceptions in C

We also want to be able to nest try blocks, either directly in the same function,
or indirectly in called functions. This means we’ll need multiple jmp_buf variables
and a list linking a try block to its parent, if any. We can declare a structure to hold
this information and a pointer to the head of the linked list as shown in listing 27.2.

struct cx_impl_try_block {

jmp_buf env;

struct cx_impl_try_block *parent; // parent, if any

};

static thread_local

struct cx_impl_try_block *cx_impl_try_block_head;

Listing 27.2: cx_impl_try_block, version 1

The use of thread_local (§14.7) for cx_impl_try_block_head means that each
thread can be in the process of throwing or catching an exception independently of
any other.

27.2 try

To implement try, it will clearly have to be a macro (§8.3); but that expands into
what? What’s needed is something that allows:

1. Storage of a cx_impl_try_block local to the scope of the try.
2. Code to be specified between { } for the try block.

The only thing in C that gives us both is a combination of for and if as shown in
listing 27.3.

#define try \

for (struct cx_impl_try_block cx_tb = { }; ???; ???) \

if (setjmp(cx_tb.env) == 0)

Listing 27.3: try, version 0

But what do we put for the for loop condition and next expressions? The loop needs
to execute only once, so the condition has to return true the first time and false

the second. We can add a “state” to cx_impl_try_block as shown in listing 27.4.
We can then write a function cx_impl_try_cond for the for loop condition ex-

pression as shown in listing 27.5.

• On line 2, we switch on the current state. Initially, it will be CX_IMPL_INIT.
• Lines 4–5 push tb onto the head of the try block list.
• Line 6 sets the state to CX_IMPL_TRY.
• Line 7 returns true for the for loop condition in the try macro.

35327.3 throw

enum cx_impl_state {

CX_IMPL_INIT, // initial state

CX_IMPL_TRY, // no exception thrown

};

struct cx_impl_try_block {

jmp_buf env;

struct cx_impl_try_block *parent;

enum cx_impl_state state; // new exception state

};

Listing 27.4: cx_impl_try_block, version 2, with state

1 bool cx_impl_try_cond(struct cx_impl_try_block *tb) {

2 switch (tb->state) {

3 case CX_IMPL_INIT:

4 tb->parent = cx_impl_try_block_head;

5 cx_impl_try_block_head = tb;

6 tb->state = CX_IMPL_TRY;

7 return true;

8 case CX_IMPL_TRY:

9 cx_impl_try_block_head = tb->parent;

10 return false;

11 }

12 }

Listing 27.5: cx_impl_try_cond, version 1

• The second time cx_impl_try_cond is called, it’ll be in the CS_IMPL_TRY state.
Line 9 will pop tb from the head of the try block list.

• Line 10 returns false so the for loop will exit.

With this, we can augment the definition of try to be as shown in listing 27.6. Given
that, we don’t need anything for the for loop next expression.

#define try \

for (struct cx_impl_try_block cx_tb = { }; \

cx_impl_try_cond(&cx_tb);) \

if (setjmp(cx_tb.env) == 0)

Listing 27.6: try, version 1, with cx_impl_try_cond

27.3 throw

When implementing throw, it will be extremely helpful if the “exception” thrown
contains the file and line whence it was thrown. We therefore can define throw as a
macro to pass said information:

354 27 Exceptions in C

#define throw(XID) \

cx_impl_throw(__FILE__, __LINE__, (XID))

where XID is an integer “exception ID.” But that means we need another data struc-
ture to hold the exception information and a global exception object as shown in
listing 27.7.

struct cx_exception {

char const *thrown_file; // thrown from this file

int thrown_line; // thrown from this line

int thrown_xid; // thrown exception ID

};

static thread_local struct cx_exception cx_impl_exception;

Listing 27.7: cx_exception

Similarly to the declaration of cx_impl_try_block_head in listing 27.2, the use of
thread_local (§14.7) for cx_impl_exception means that each thread will have
its own exception object.

We also need to add more to cx_impl_try_block as shown in listing 27.8.

struct cx_impl_try_block {

jmp_buf env;

struct cx_impl_try_block *parent;

enum cx_impl_state state;

int thrown_xid;

int caught_xid;

};

Listing 27.8: cx_impl_try_block, version 3, with thrown_xid and
caught_xid

Given that, we can write cx_impl_throw as shown in listing 27.9.

1 [[noreturn]] void cx_impl_throw(char const *file,

2 int line, int xid) {

3 cx_impl_exception =

4 (struct cx_exception){ file, line, xid };

5 if (cx_impl_try_block_head == nullptr)

6 cx_terminate();

7 cx_impl_try_block_head->state = CX_IMPL_THROWN;

8 cx_impl_try_block_head->thrown_xid = xid;

9 longjmp(cx_impl_try_block_head->env, 1);

10 }

Listing 27.9: cx_impl_throw, version 1

• Lines 3–4 store the file, line, and exception ID into cx_impl_exception.
• Line 5: if cx_impl_try_block_head is null, it means throw was called, but
there’s no active try block, which means the exception can’t be caught. In this

35527.3 throw

case, there’s no choice but to terminate the program by calling cx_terminate
shown in listing 27.10. (This is similar to what C++ does when it calls its standard
std::terminate function.)

[[noreturn]] static void cx_terminate() {

fprintf(stderr,

”%s:%d: unhandled exception %d (0x%X)\n”,

cx_impl_exception.thrown_file,

cx_impl_exception.thrown_line,

cx_impl_exception.thrown_xid,

(unsigned)cx_impl_exception.thrown_xid

);

abort();

}

Listing 27.10: Function to terminate program when no try in effect

It prints a message to standard error including the file and line of the try and
the exception ID in both decimal and hexadecimal; then calls abort.

• Otherwise, lines 7–9 set state to CX_IMPL_THROWN, thrown_xid to the thrown
exception ID, and call longjmp to “throw” the exception using the current try
block’s env.

CX_IMPL_THROWN and CX_IMPL_CAUGHT are two new states needed to distinguish
the cases. The updated cx_impl_state is shown in listing 27.11.

enum cx_impl_state {

CX_IMPL_INIT, // initial state

CX_IMPL_TRY, // no exception thrown

CX_IMPL_THROWN, // exception thrown, but uncaught

CX_IMPL_CAUGHT, // exception caught

};

Listing 27.11: cx_impl_state, version 2

To handle the new states, the updated cx_impl_try_cond is shown in listing 27.12.

• Lines 1–7 are the same as in listing 27.5 (p.353).
• Lines 9–10 add cases for CX_IMPL_THROWN and CX_IMPL_CAUGHT.
• Line 12 checks if state is CX_IMPL_THROWN which means it wasn’t caught
by the current try/catch block so line 13 rethrows the exception by calling
cx_impl_do_throw split off from cx_impl_throw so it can be called directly
as shown in listing 27.13.

356 27 Exceptions in C

1 bool cx_impl_try_cond(struct cx_impl_try_block *tb) {

2 switch (tb->state) {

3 case CX_IMPL_INIT:

4 tb->parent = cx_impl_try_block_head;

5 cx_impl_try_block_head = tb;

6 tb->state = CX_IMPL_TRY;

7 return true;

8 case CX_IMPL_TRY:

9 case CX_IMPL_THROWN:

10 case CX_IMPL_CAUGHT:

11 cx_impl_try_block_head = tb->parent;

12 if (tb->state == CX_IMPL_THROWN)

13 cx_impl_do_throw(); // rethrow uncaught exception

14 return false;

15 }

16 }

Listing 27.12: cx_impl_try_cond, version 2

[[noreturn]] void cx_impl_do_throw() {

if (cx_impl_try_block_head == nullptr)

cx_terminate();

cx_impl_try_block_head->state = CX_IMPL_THROWN;

cx_impl_try_block_head->thrown_xid =

cx_impl_exception.thrown_xid;

longjmp(cx_impl_try_block_head->env, 1);

}

[[noreturn]] void cx_impl_throw(char const *file,

int line, int xid) {

cx_impl_exception =

(struct cx_exception){ file, line, xid };

cx_impl_do_throw();

}

Listing 27.13: cx_impl_throw, version 2, split into cx_impl_do_throw

27.4 catch

We can #define catch as:

#define catch(XID) \

else if (cx_impl_catch((XID), &cx_tb))

and write cx_impl_catch as shown in listing 27.14.

• The if on line 3 checks for the case when the same exception is thrown from a
catch block. Once an exception is caught at the current try/catch level, it can
never be re-caught at the same level. By returning false on line 4 for all catches
at the current level, the code in cx_impl_try_cond will pop us up to the parent
level, if any, where this check will fail (because the parent’s caught_xid will
be 0) and we can possibly re-catch the exception at the parent level.

35727.5 finally

1 bool cx_impl_catch(int catch_xid,

2 struct cx_impl_try_block *tb) {

3 if (tb->caught_xid == tb->thrown_xid)

4 return false;

5 if (tb->thrown_xid != catch_xid)

6 return false;

7 tb->state = CX_IMPL_CAUGHT;

8 tb->caught_xid = tb->thrown_xid;

9 return true;

10 }

Listing 27.14: cx_impl_catch

• Lines 5–6 check if catch_xid matches the thrown_xid: if not, return false.
• Otherwise, we’re catching thrown_xid: mark state as CX_IMPL_CAUGHT, set
caught_xid, and return true.

27.5 finally

Even though C++ doesn’t have finally like Java does, C doesn’t have destructors
to implement RAII, so having finally would be useful to clean up resources (free
memory, close files, etc.).

■ RAII is an (unpronounceable) acronym for “resource acquisition is ini-
tialization.” It’s a foundational technique in C++ for managing resources
(memory, files, etc.). The basic idea is that a resource is acquired by a local
(stack-based) object via its constructor (“init” function) and is held only as
long as the object exists. When the object gets destroyed, the resource is
released via the object’s destructor (“cleanup” function). □

It turns out that adding finally isn’t difficult. The big difference is that the for loop
has to execute twice: once to run the original try/catch code and a second time to
run finally code. The second time, setjmp must not be called again. This can be
achieved by adding another state of CX_IMPL_FINALLY and an if in the definition
of try as shown in listing 27.15.

1 #define try \

2 for (struct cx_impl_try_block cx_tb = { }; \

3 cx_impl_try_cond(&cx_tb);) \

4 if (cx_tb.state != CX_IMPL_FINALLY) \

5 if (setjmp(cx_tb.env) == 0)

Listing 27.15: try, version 2, for finally

The implementation of finally therefore trivially becomes:

#define finally else /* setjmp() != 0 */; \

else /* cx_tb.state == CX_IMPL_FINALLY */

true for finally

0

358 27 Exceptions in C

where the first else is for the second if (listing 27.15, line 5) and the second else
is for the first if (line 4). The implementation of cx_impl_try_cond also needs to
account for the new CX_IMPL_FINALLY state as shown in listing 27.16.

1 bool cx_impl_try_cond(struct cx_impl_try_block *tb) {

2 switch (tb->state) {

3 case CX_IMPL_INIT:

4 tb->parent = cx_impl_try_block_head;

5 cx_impl_try_block_head = tb;

6 tb->state = CX_IMPL_TRY;

7 return true;

8 case CX_IMPL_CAUGHT:

9 tb->thrown_xid = 0; // reset for finally case

10 [[fallthrough]];

11 case CX_IMPL_TRY:

12 case CX_IMPL_THROWN:

13 tb->state = CX_IMPL_FINALLY;

14 return true;

15 case CX_IMPL_FINALLY:

16 cx_impl_try_block_head = tb->parent;

17 if (tb->thrown_xid != 0)

18 cx_impl_do_throw(); // rethrow exception

19 cx_impl_exception = (struct cx_exception){ };

20 return false;

21 }

22 }

Listing 27.16: cx_impl_try_cond, version 3, for finally

• The CX_IMPL_TRY, CX_IMPL_THROWN, and CX_IMPL_CAUGHT states now return
on lines 7 and 14 to execute the loop once more for the block.

• We need to remember if the exception was caught or not. We could have added a
separate flag for this, but we can alternatively simply reset tb->thrown_xid to
on line 9 and check for non-0 later to know whether to re-throw the exception.

• Lines 15–19 add a case for the CX_IMPL_FINALLY state. Line 17 checkswhether
to re-throw an uncaught exception.

With the addition of finally, we can now write “natural looking” code as shown
in listing 27.17.

27.6 Restrictions

Even though this implementation meets all of our requirements (§27.1), there are
still a number of restrictions:
• The requirement of volatile variables (§20.3) and prohibition of VLAs (§20.4)
still apply. There’s simply no way around these.

• Within a try, catch, or finally block, you must never break unless it’s within
your own loop or switch due to the use of the for loop for the try.

35927.7 Epilogue

void read_file(char const *path) {

auto const f = fopen(path, ”r”);

if (f == nullptr)

throw (EX_FILE_NOT_FOUND);

try {

// ... do something with f ...

}

finally {

fclose(f);

}

}

Listing 27.17: Example C code using exception-handling

• Similarly, within a try, catch, or finally block, you must never either goto
outside the blocks nor return from the function. In addition to the finally

block, if any, not being executed, cx_impl_try_block_head will become a
dangling pointer to the defunct cx_tb variable. (Fortunately, this situation can
be detected.)

• Within a try or catch block, continue will jump to the finally block, if any.
(Perhaps this is a good thing?)

• If you were to use this implementation with your own code, you’d have to use
the compiler options -Wno-dangling-else and -Wno-shadow (or equivalent
for your compiler) to suppress warnings (§18.7). There’s simply no way to use
{} to suppress “dangling else” warnings nor use unique names for cx_tb to
avoid the “shadows” warnings and keep the natural looking code.

Without direct language support, it’s impossible to implement exceptions in C such
that they behave exactly like exceptions in C++ (or any other language).

27.7 Epilogue

What sort of C programsmight benefit from using an exception implementation such
as this? Obviously, smaller, simpler programs can continue to use more traditional
error-handling mechanisms (§9.6). Classes of C programs that might benefit from
exception handling are those that either employ long function call chains or callbacks
where it’s either too difficult or impossible to check for and handle errors all the way
back through the call stack.

Actual projects written in C that use similar macros (or simply setjmp and
longjmp directly) include the Lua and R programming languages, the PostgreSQL
relational database, and the Wireshark network protocol analyzer.

While this particular C exception implementation works, the aforementioned re-
strictions are easily forgotten because wrong code doesn’t look wrong. It’s unclear
whether the utility of being able to throw and catch exceptions with it outweighs the
restrictions. Only actual users of this implementation will be able to answer. Hope-

360 27 Exceptions in C

fully, this implementation has at least been illuminating as to what’s similarly going
on behind the curtain in languages that do support exceptions.

Exercises

Currently, cx_impl_catch (listing 27.14, p. 357) catches only exception IDs that
are equal via the lines:

5 if (tb->thrown_xid != catch_xid)

6 return false;

It would be nice if the user could install a custom “exception ID matcher” function
that could, for example, catch exceptions in a range of IDs.

1. Given:

typedef bool (*cx_xid_matcher)(int thrown_xid,

int catch_xid);

write a function:

cx_xid_matcher cx_set_xid_matcher(cx_xid_matcher fn);

that sets a global “exception ID matcher” pointer-to-function (§6.10) to fn and
returns the previous such function that was set or nullptr if none.

2. Using your solution to the previous exercise, change cx_impl_catch lines 5–6
to call the global exception ID matcher function, if any. Consider the exception
caught only if the function returns true.

Appendix A
Standard Headers

Table A.1 shows summaries of the standard library headers that either have been
mentioned in this book or that you are most likely to use in your programs.

Table A.1: Standard Headers
assert.h Assertions (§16).
complex.h Complex numbers and functions (§2.5.8).
ctype.h Character functions, e.g., isprint (§B.1).
dirent.h Directory types, e.g., dirent and functions (§12.3).
errno.h Global errno variable and constants.
fcntl.h Low-level file I/O (§12.2.5).
limits.h Numeric limits (§2.10).
locale.h Locale related (§B).
math.h Math functions, e.g. fmod.
pthreads.h POSIX threads, aka, pthreads (§14).
setjmp.h setjmp and longjmp (§20).
stdarg.h Variadic argument types and functions (§9.11).
stdatomic.h _Atomic functions (§17).
stdbit.h Bit-level functions, e.g., stdc_leading_zeros.
stddef.h Various types, e.g., max_align_t (§2.9).
stdint.h Fixed-width integer types, e.g., uint64_t, and limits (§2.7).
stdio.h Input and output types and functions (§12).
stdlib.h Miscellaneous types and functions, e.g., malloc.
string.h String functions, e.g., strlen (§B.2).
sys/stat.h File information types and functions, e.g., stat (§12.2.2).
threads.h Standard threads (§14).
time.h Time types, e.g., time_t, and functions (§B.3).
unistd.h Unix types and functions.
wctype.h Wide character types and functions (§2.9).

361© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3

Appendix B
Standard Functions

This appendix lists various standard functions, their signatures, and brief descrip-
tions, by header that you are most likely to use in your programs. For full descrip-
tions, see their respective manual pages either on your system or online.

The standard C library has the concept of a locale, that is a set of cultural conven-
tions used either to classify or format data like numbers, dates, times, and currency.
The default locale is the “C” (aka, “POSIX”) locale. Many functions in the standard
library are locale-sensitive.

B.1 ctype.h

These functions take int rather than char to allow the value of EOF as an argument
(§1.2). They return int rather than bool since they pre-date the addition of a Boolean
type to C (§C.6). As always, zero means false and non-zero means true.

int isalnum(int c)

Returns non-zero only if c is either an alphabetic or numeric character in the
current locale. (See also isalpha, isdigit, isxdigit.)

int isalpha(int c)

Returns non-zero only if c is an alphabetic character in the current locale.
(See also isalnum.)

int isblank(int c)

Returns non-zero only if c is a blank character in the current locale. In the
default locale, only space and tab are considered blank characters. (See also
isspace.)

int iscntrl(int c)

Returns non-zero only if c is a control character, that is either in the range
’\x00’–’\x1F’ or ’\x7F’.

363© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3

364 B Standard Functions

int isdigit(int c)

Returns non-zero only if c is a decimal digit, that is one of 0123456789. (See
also isxdigit.)

int isgraph(int c)

Returns non-zero only if c is one of a decimal digit, alphabetic, punctuation,
or any graphical character in the current locale. (See also isprint.)

int islower(int c)

Returns non-zero only if c is a lower-case alphabetic character in the current
locale. (See also isupper.)

int isprint(int c)

Returns non-zero only if c is one of a decimal digit, alphabetic, punctuation,
or blank character in the current locale. (See also isgraph.)

int ispunct(int c)

Returns non-zero only if c is a punctuation character in the current locale. In
the default locale, !”#$%&’()*+,-./:;<=>?@[\]^_‘{|}~ are punctuation.

int isspace(int c)

Returns non-zero only if c is one of a space (’ ’), carriage return (’\r’),
form feed (’\f’), horizontal tab (’\t’), line feed (’\n’), or vertical tab
(’\v’). (See also isblank.)

int isupper(int c)

Returns non-zero only if c is an upper-case alphabetic character in the current
locale. (See also islower.)

int isxdigit(int c)

Returns non-zero only if c is a hexadecimal digit, that is one of 0123456789,
abcdef, or ABCDEF. (See also isdigit.)

int tolower(int c)

Returns c converted to lower-case according to the current locale. (See also
toupper.)

int toupper(int c)

Returns c converted to upper-case according to the current locale. (See also
tolower.)

B.2 string.h

Some of these functions use the typesQChar orQVoid. (The “Q”means cv-qualified,
§4.5.) These are generic functions (§19) that preserve the “const-ness” of the argu-
ment. For example, the strchr function is documented as:

QChar* strchr(QChar *s, int c)

That means the const-ness of s and the return type match, i.e., if the type of s is:

365B.2 string.h

• char*, then the return type is char*; or:
• char const*, then the return type is char const*.

The same is true for QVoid*, i.e., the return type is either void* or void const*

depending on the const-ness of the argument.
The difference between the mem and str versions of similar functions is that the

latter require their arguments to be null-terminated strings whereas the former don’t.

QVoid* memchr(QVoid *p, int c, size_t n)

Returns a pointer to the first occurrence of (char)c in p of length n, or
nullptr if not found. (See also strchr, strrchr.)
t memcmp(void const *p1, void const *p2, size_t n)in

Compares at most the first n bytes pointed to by p1 and p2. Returns an integer
< 0, 0, or > 0 if p1[i] is <, =, or > p2[i], respectively. (See also strcmp,
strncmp.)

void* memcpy(void *restrict dst, void const *restrict src,

size_t n)

Copies the first n bytes from src to dst. The memory ranges must not over-
lap. Returns dst. (See also memmove, strcpy, strncpy.)
id* memmove(void *dst, void const *src, size_t n)vo

Copies the first n bytes from src to dst. The memory ranges may overlap.
Returns dst. (See also memcpy, strcpy, strncpy.)

void* memset(void *dst, int c, size_t n)

Sets n bytes starting at dst to (unsigned char)c. Returns dst.
char* strcat(char *restrict dst, char const *restrict src)

Appends a copy of the null-terminated string src onto the end of the null-
terminated string dst. Returns dst.

QChar* strchr(QChar *s, int c)

Returns a pointer to the first occurrence in the null-terminated string s of
(char)c, or nullptr if not found. (See also memchr, strrchr.)

size_t strcmp(char const *s1, char const *s2)

Compares the null-terminated strings s1 and s2. Returns an integer < 0, 0, or
> 0 if s1 is <, =, or > s2, respectively. (See also memcmp, strncmp.)

char* strcpy(char *restrict dst, char const *restrict src)

Copies from the null-terminated string src to dst. Returns dst. (See also
memcpy, strncpy.)

size_t strcspn(char const *s, char const *set)

Returns the length of the maximum initial span of the null-terminated string
s that consists only of characters not comprising (complement of) set. (See
also strspn.)

char* strdup(char const *s)

Returns a duplicate of the null-terminated string s. (See also strndup.)

366 B Standard Functions

char const* strerror(int err_num)

Returns the error message corresponding to the error number err_num.
size_t strlen(char const *s)

Returns the length of the null-terminated string s.
char* strncat(char *restrict dst, char const *restrict src,

size_t n)

Appends at most n characters of a copy of the null-terminated string src onto
the end of the null-terminated string dst. Returns dst. (See also strcat.)

size_t strncmp(char const *s1, char const *s2, size_t n)

Compares at most n characters of the null-terminated strings s1 and s2. Re-
turns an integer < 0, 0, or > 0 if s1 is <, =, or > s2, respectively. (See also
memcmp, strcmp.)

char* strncpy(char *restrict dst, char const *restrict src,

size_t n)

Copies at most n characters from the null-terminated string src to the null-
terminated string dst stopping before n if the null character is encountered.
Returns dst. (See also memcpy, strcpy.)

char* strndup(char const *src, size_t n)

Returns a duplicate of at most n characters of the null-terminated string s.
(See also strdup.)

QChar* strpbrk(QChar *s, char const *set)

Returns a pointer to the first occurrence in the null-terminated string s of any
character comprising set, or nullptr if none are found. (See also strspn.)

QChar* strrchr(QChar *s, int c)

Returns a pointer to the last occurrence in the null-terminated string s of
(char)c, or nullptr if not found. (See also strchr.)

size_t strspn(char const *s, char const *set)

Returns the length of the maximum initial span of the null-terminated string s
that consists only of characters comprising set. (See also strbbrk, strcspn.)

QChar* strstr(QChar *s, char const *sub)

Returns a pointer to the first occurrence in the null-terminated string s of sub,
or nullptr if not found.

B.3 time.h

Many of the functions described in this section take a pointer to a tm structure that
stores a date and time. Its members are shown in listing B.1. (There may be other
esoteric members as well.)

Several functions in the standard library take a pointer to a timespec structure
that stores a number of seconds and nanoseconds. Its members are shown in listing

B.3 time.h 367

struct tm {

int tm_sec; // seconds (0-60)

int tm_min; // minutes (0-59)

int tm_hour; // hours (0-23)

int tm_mday; // day of month (1-31)

int tm_mon; // month of year (0-11)

int tm_year; // year - 1900

int tm_wday; // day of week (0-6, 0 = Sunday)

int tm_yday; // day of year (0-365)

int tm_isdst; // is daylight saving time in effect?

char ∗tm_zone; // timezone name abbreviation

long tm_gmtoff; // offset from UTC (in seconds)

};

Listing B.1:Members of tm structure

B.2. The type T is implementation defined. (There may be other esoteric members
as well.)

struct timespec {

time_t tv_sec; // whole seconds ≥ 0

T tv_nsec; // nanoseconds [0, 999999999]

};

Listing B.2:Members of timespec structure

Note that the order of the members shown here (and in the C standard) is merely
illustrative; the actual order is implementation defined.

■ To define a type equivalent to an implementation defined type such as
timespec’s tv_nsec, you can do:

typedef typeof((struct timespec){}.tv_nsec) nsec_t;

making use of typeof (§4.6) and a structure compound literal (§10.4). □

double difftime(time_t end, time_t start)

Returns the difference between start and end times in seconds.
struct tm* gmtime(time_t const *t)

Converts *t to a tm structure representing its Greenwich Mean Time (UTC).
Returns a pointer to an internal, static tm and is therefore not thread-safe.
(See also gmtime_r, localtime, localtime_r.)

struct tm* gmtime_r(time_t const *t, struct tm *tm)

Converts *t to a tm structure representing its Greenwich Mean Time (UTC).
Returns tm. (See also gmtime, localtime, localtime_r.)

struct tm* localtime(time_t const *t)

Converts *t to a tm structure representing its local time. Returns a pointer
to an internal, static tm and is therefore not thread-safe. (See also gmtime,
gmtime_r, localtime_r.)

368 B Standard Functions

struct tm* localtime_r(time_t const *t, struct tm *tm)

Converts *t to a tm structure representing its local time. Returns tm. (See
also gmtime, gmtime_r, localtime.)

time_t mktime(struct tm *tm)

Returns the time since epoch (§2.9) of *tm representing local time on success
or −1 on failure.

size_t strftime(char *restrict buf, size_t buf_size,

char const *restrict format,

struct tm const *restrict tm)

Similar to printf (§12.1.1), uses a format string that is composed of zero or
more directives where a directive is either:

• A sequence of ordinary characters (not containing %) that are copied ver-
batim to the output.

• A sequence of characters containing one or more conversion specifica-
tions starting with % of the form %specifierwhere the specifiers are shown
in table B.1.

Returns the number of characters written to buf (not including the termi-
nating null character) or zero if buf_size is too small to accommodate the
string.

time_t time(time_t *t)

Returns the current time since epoch (§2.9). If t is not nullptr, then also
stores the time in *t.

int timespec_get(struct timespec *ts, int base)

Puts the current time relative to base into *ts. Returns base on success or
zero on failure. The members of the timespec structure are shown in listing
B.2. The only value for base that’s defined is TIME_UTC.

Z PST

369B.3 time.h

Table B.1: strftime conversion specifiers
Year

C First two digits of year (00–99).
g Last two digits of ISO 8601 week-based year.
G ISO 8601 week-based year.
y Last two digits of year (00–99).
Y Year.

Month
b Localized, abbreviated month name, e.g., Nov.
B Localized, full month name, e.g., November.
h Same as b.
m Decimal month (01–12).

Week
U Week of the year (00–53) where Sunday is the first day of the week.
W Week of the year (00–53) where Monday is the first day of the week.
V ISO 8601 week of the year (01–53).

Day of the Year or Month
d Decimal day of the month (01–31).
e Decimal day of the month (1–31).
j Day of the year (000–366).

Day of the Week
a Localized, abbreviated weekday name, e.g. Fri.
A Localized, full weekday name, e.g., Friday.
u Decimal weekday (1–7, 1 = Monday).
w Decimal weekday (0–6, 0 = Sunday).

Hour, Minute, Second
H Decimal hour (00–23).
I Decimal hour (01-12).
M Decimal minute (00–59).
p Localized a.m. or p.m..
r Localized 12-hour clock time.
R Same as %H:%M.
S Decimal second (00–60).
T Same as %H:%M:%S, the ISO 8601 time format.

Other
c Localized standard date and time, e.g. Tue Sep 09 01:23:45 1941.
D Same as %m/%d/%y.
F Same as %Y-%m-%d, the ISO 8601 date format.
n Newline.
t Horizontal tab.
x Localized date.
X Localized time.
z Offset from UTC in the ISO 8601 format, e.g., -0800.

Localized time zone name or abbreviation, e.g., .
% Literal %.

Appendix C
C23 Differences

As of this writing, C23 is the latest version of C. This appendix lists its differences
from C17, the previous version of C. Because of C23’s newness, many existing C
programs are written in older versions of C. If you need to maintain such programs
and can’t switch to compiling with a C23 compiler, alternatives for C23 features are
given when possible.

C.1 Aggregate Initialization

Prior to C23, array (§6.2) structure (§10.3), and union (§11.2), collectively aggre-
gates, that were initialized via the = { } syntax could not have the {} empty. At a
minimum, you had to do {0}, i.e., include a zero, that you can still do.

C.2 alignas and alignof

Prior to C23, alignas was named _Alignas (§2.2 #7, p.29) and alignof (§3.17)
was named _Alignof. There was also the stdalign.h standard header that did:

#define alignas _Alignas

#define alignof _Alignof

so you could use the lower-case names if you wanted to. Both _Alignas and
_Alignof are still supported and likely will continue to be for many years.

371© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3

372 C C23 Differences

C.3 Attributes

Prior to C23, attribute syntax (§4.9) was either implementation defined or had spe-
cific keywords:

__attribute__((attribute-list)) clang and gcc
__declspec(attribute-list) Microsoft C

The implementation defined syntax for their respective compilers will likely be sup-
ported indefinitely.

C.4 auto

Prior to C23, auto could be used only as a storage class (§4.3.1). Objects had to be
declared to be of a specific type. Use of auto to deduce the type automatically is not
supported. However, both clang and gcc offer __auto_type as an extension.†

C.5 Binary Literals

C23 adopted binary literals from C++. Previously, only decimal, octal, and hexadec-
imal integer literals (§2.5.4) were supported. This includes the standard library func-
tions strtol, strtoll, strtoul, and strtoull (§12.4.2) not supporting either the
0b or 0B prefix. As an alternative, you can write a wrapper around those functions
to accept either prefix. Such a wrapper for strtol is shown in listing C.1.

C.6 bool

Originally, C didn’t have any Boolean type; int was used instead. C99 added one,
but it was called _Bool (§2.2 #7, p.29), so you may see that in older code. However,
the false and true keywords were not added: you still had to use zero or non-zero,
respectively. Alternatively, C99 also added the stdbool.h standard header that did:

#define bool _Bool

#define false 0

#define true 1

†Referring to a Type with __auto_type, Free Software Foundation, GNU C Language Manual,
§20.4, 1988–2025,
https://www.gnu.org/software/c-intro-and-ref/manual/html_node/Auto-Type.html

https://www.gnu.org/software/c-intro-and-ref/manual/html_node/Auto-Type.html

C.8 Declarations After Labels 373

long c23_strtol(char const *s, char **pend, int base) {

s += strspn(s, ” \n\t\r\f\v”); // skip whitespace

int const sign = 1 - 2 * (s[0] == ’-’);

if (sign == -1)

++s;

if ((base == 0 || base == 2) &&

s[0] == ’0’ && (s[1] == ’b’ || s[1] == ’B’)) {

s += 2; // skip binary prefix

base = 2;

}

return strtol(s, pend, base) * sign;

}

Listing C.1:Wrapper for strtol to support binary prefix for integer literals

so you could use the more natural-looking bool, false, and true.
After 24 years, C23 finally renamed _Bool to bool (though _Bool is still sup-

ported and likely will continue to be for many years) and added false and true as
keywords.

C.7 constexpr

Prior to C23, constexpr is not supported. As an alternative, you can simply use
const in most cases with two exceptions. Integer literals declared const:

1. Can not be used to specify array sizes (§6.1). If you do, you’ll get a VLA (§6.14),
not a fixed-sized array:

int const MAX = 10;

int a[MAX]; // VLA

2. Can not be case values within a switch statement (§5.8).

C.8 Declarations After Labels

Prior to C23, declarations after either goto labels (§5.10) or case values (§5.8) are
not supported:

error: int status; // error prior to C23

// ...

case ’x’: int n; // same

374 C C23 Differences

As an alternative, you can include the empty statement (§5.11) after the label:

error:; int status; // OK prior to C23

// ...

case ’x’:; int n; // same

C.9 Digit Separators

Prior to C23, digit separators (’) for numeric literals (§2.5.4, §2.5.6, §2.5.7) are not
supported. Unfortunately, there is no pre-C23 alternative.

C.10 #embed

The #embed preprocessor directive (§8.15) that reads the raw bytes from a file and
converts them into a comma-separated list of integer literals corresponding to the
binary values effectively “embedding” the binary data into a program. Unfortunately,
there is no pre-C23 alternative.

C.11 Fixed-Type Enumerations

Prior to C23, fixed-type enumerations (§7.3) are not supported. Unfortunately, there
is no pre-C23 alternative.

C.12 Function Definition Unnamed Parameters

Prior to C23, function definitions (§9.1) required that unused parameters (§9.2) still
be named and cast to void to suppress a warning (§3.14.1 #2, p.55), for example:

bool visit(void *node_data, void *user_data) {

(void)user_data; // suppress ”not used” warning

// ...

C.13 K&R-Style Function Declarations and Definitions

In K&R (first edition) C, function declarations didn’t have prototypes, hence:

char* strncpy(); // K&R function declaration

375C.13 K&R-Style Function Declarations and Definitions

declared strncpy (§B.2) as a function returning char* without saying anything
about what parameters, if any, it required. You simply had to know by reading the
documentation or source code and get it right. If you didn’t, the compiler wouldn’t
even warn you and your program would likely crash.

■Originally, in addition to cc, there was also lint, a program that did static
analysis of C program source code.† Among other things, lint did much
better type-checking than cc including function arguments matching types
used in definitions and would warn you if anything was amiss. But using
lint was optional, so you could forget to use it to check your programs.
Most modern C compilers subsumed lint, but there are also modern static
analysis tools that are still known as linters.

The name “lint” itself comes from catching dubious constructs in your
programs is similar to how a lint trap in a clothes dryer catches the short
fibers that shed from clothing. □

Function definitions weren’t much better:

char* strncpy(dst, src, n) // K&R function definition

char *dst, *src;

{

// ...

}

Only parameter names were listed between (); their declarations were given sepa-
rately between the) and {. Additionally, if a parameter was of type int, its decla-
ration was optional since int was the default type.

Function prototypes were adopted from C++ into C89 with one addition:

void f(); // K&R: no parameter information

void g(void); // C89: zero parameters

That is, a functionwith only ()was still a K&R-style declaration in that no parameter
information is given; but a function declaration (or definition) with (void) explicitly
means the function takes zero parameters. If you want to write code that means the
same thing in versions of C prior to C23, use (void) for function declarations and
definitions that have zero parameters.

■ For inter-language compatibility, C++ also adopted (void) to mean zero
parameters even though () has always meant that in C++. □

Prior to C23, K&R-style function declarations and definitions were still legal
to remain backwards compatible. Finally, 34 years after function prototypes were
adopted into C, the C committee removed the ability to declare and define functions
in K&R style.

†Lint, a C Program Checker, Stephen C. Johnson, Computer Science Technical Report, 78, Bell
Laboratories, Murray Hill, New Jersey, July 6, 1978.

376 C C23 Differences

C.14 noreturn

Prior to C23, the noreturn attribute (§4.9.5) was _Noreturn (§2.2 #7, p.29), and
didn’t use the [[]] syntax. Instead, _Noreturn was used by itself:

_Noreturn void fatal_error(int status,

char const *format, ...);

_Noreturn is still supported and likely will continue to be for many years.

C.15 nullptr

Prior to C23, nullptr was NULL. While NULL is still supported and likely will con-
tinue to be indefinitely, if you want to use nullptr, but be able to compile with a
C17 or earlier compiler, you could do the following:

#if __STDC_VERSION__ < 202311L && !defined nullptr

include <stddef.h> // for definition of NULL

define nullptr NULL

#endif

■ NULL itself is just a macro, typically:

#define NULL ((void*)0) // one possible definition

However, some platforms define it differently:

#define NULL 0 // alternative definition

#define NULL 0L // ... or this

In C, the integer literal 0 is special in that it can implicitly convert to a
pointer — that happens to be the value used to represent the null pointer.
(No other integer literal implicitly converts to a pointer.) At the time of C’s
creation, using 0 and NULL seemed simple and convenient.

However, both 0 and NULL (regardless of how it’s defined) cause prob-
lems in certain cases. For example, if NULL is defined as only 0, then passing
NULL as an argument to a variadic function such as vstr_is_any from list-
ing 9.9 (p.150) that expects a pointer will result in undefined behavior (§15)
if sizeof(int) is not the same as sizeof(void*) on the platform. It’s for
this and other cases why nullptr was (finally) added to C.† □

†Introduce the nullptr constant, Jens Gustedt and JeanHeyd Meneide, ISO/IEC
JTC1/SC22/WG14: Programming Language — C, N3042, July 22, 2022,
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3042.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3042.htm

C.18 thread_local 377

C.16 static_assert

Originally, C didn’t have static_assert (§16.5). C11 added it, but it was called
_Static_assert (§2.2 #7, p.29), so you may see that in older code. Alternatively,
C11 also added the following to the assert.h standard header:

#define static_assert(EXPR,MSG) \

_Static_assert((EXPR), MSG)

Prior to C11, you could do something like:

#define static_assert(EXPR, MSG) \

typedef int static_assert[(EXPR) ? 1 : ((void)(MSG), -1)]

If EXPR evaluated to false, then it would attempt to declare an array type with a
negative size that’s illegal and you’d get an error message like:

error: ’static_assert’ declared as an array with a

negative size

that might also include MSG. While the error message is a nonsequitur, at least the
macro would fulfill its purpose of not compiling your program.

C.17 Storage Classes for Compound Literals

Prior to C23, storage classes (§4.3) for compound literals (§6.11, §10.4) are not sup-
ported. Unfortunately, there is no pre-C23 alternative.

C.18 thread_local

Originally, C didn’t have thread_local (§14.7). C11 added it, but it was called
_Thread_local (§2.2 #7, p. 29), so you may see that in older code. Alternatively,
C11 also added the following to the threads.h standard header:

#define thread_local _Thread_local

378 C C23 Differences

C.19 typeof and typeof_unqual

Prior to C23, typeof and typeof_unqual are not supported. However, clang, gcc,
and Microsoft C, offer typeof (or __typeof__) as an extension.† Unfortunately,
they do not offer an extension for typeof_unqual.

C.20 __VA_OPT__

Prior to C23, the __VA_OPT__ preprocessor macro (§8.7.3) was not supported, but
some compilers supported it as an extension. As an alternative, clang, gcc, and Mi-
crosoft C, support a non-standard extension‡ to the preprocessor’s ## concatenation
operator (§8.7.5), for example:

#define INTERNAL_ERROR(FORMAT, ...) \

fatal_error(EXIT_INTERNAL, \

”%s:%d: internal error: ” FORMAT, \

__FILE__, __LINE__, ##__VA_ARGS__)

When ## is placed between a comma and __VA_ARGS__, the comma is deleted if
__VA_ARGS__ expands into nothing, hence this equivalence:

Extension Standard C23
, ##__VA_ARGS__ ≡ __VA_OPT__(,) __VA_ARGS__

Note that ##__VA_ARGS__ works only in the specific case of the token before the ##
being a comma, hence __VA_OPT__ is more general.

C.21 Variadic Functions

Prior to C23, variadic functions (§9.11) required at least one non-variadic parameter,
for example:

int printf(char const *format, ...);

and you had to supply that parameter as a second argument to va_start:

va_start(args, format);

†Referring to a Type with typeof, Free Software Foundation, Using the GNU Compiler
Collection, §6.7, 1988–2025, https://gcc.gnu.org/onlinedocs/gcc/Typeof.html

‡Variadic Macros, Free Software Foundation, The C Preprocessor, §3.6, 1987–2025,
https://gcc.gnu.org/onlinedocs/cpp/Variadic-Macros.html

https://gcc.gnu.org/onlinedocs/cpp/Variadic-Macros.html
https://gcc.gnu.org/onlinedocs/gcc/Typeof.html

C.22 #warning 379

Neither is required in C23, though you can still have non-variadic parameters, of
course, and even still supply the last one as an argument to va_start (but it’s ig-
nored).

C.22 #warning

The #warning preprocessor directive (§8.11) prints a message and continues. Un-
fortunately, there is no pre-C23 alternative.

Index

A bold number (like 42) means the page contains a primary reference for a term; a
plain number means the page contains only a mention of a term.

Symbols

! (logical-not operator) — 48
!= (not-equal-to operator) — 6, 48
== precedence — 6

\” (double quote character literal) —
33

\’ (single quote character literal) —
33

() (function-call operator) — 52
* (dereference operator) — 16, 53
* (multiplication operator) — 16,

46–47
/ (end comment of /) — 5, 27
*= (multiply-assign operator) — 52
+ (addition operator) — 46–47
+ (unary-plus operator) — 47, 124
++ (increment operator) — 11, 20,

47–48
+= (increment-assign operator) — 52
, (comma operator) — 56–57
misuse warning — 272
single statement — 242

- (subtraction operator) — 46–47
- (unary-minus operator) — 47
-- (decrement operator) — 11, 47–48
-= (decrement-assign operator) — 52

-> (pointer-member-access
operator) — 23, 53

. (designated initializer) — 23, 159,
170

. (member-access operator) — 23,
53

... (ellipsis)
variadic function — 149
variadic macro — 118

/ (division operator) — 46–47
/* (comment to */) — 5, 27
// (comment to end-of-line) — 5, 27
/= (divide-assign operator) — 52
< (less-than operator) — 48
<< (left-shift operator) — 49–51
bit flag creation — 108

<<= (left-shift-assign operator) — 52,
319

<= (less-than-or-equal-to operator) —
48

= (assignment operator) — 16, 52
== (equal-to operator) — 48
!= precedence — 6

> (greater-than operator) — 12, 14,
48

>= (greater-than-or-equal-to
operator) — 48

381© Paul J. Lucas 2025

P. J. Lucas, Why Learn C, https://doi.org/10.1007/979-8-8688-1597-3

382 INDEX

>> (right-shift operator) — 12, 13,
49–51

>>= (right-shift-assign operator) — 12,
14, 52

?: (conditional operator) — 48–49
void* side-effect — 285

[] (array index operator) — 52–53,
84

[] (designated initializer) — 84
(preprocessor stringification

operator) — see stringification
% (modulus operator) — 33, 46–47,

77, 334, 339–341
%= (modulus-assign operator) — 52
& (address-of operator) — 16, 53
& (bitwise-and operator) — 16,

49–51
&= (bitwise-and-assign operator) —

52
&& (logical-and operator) — 48
& confusion, origin — 50
assert— 245
assert message — 244
warning — 274

\\ (backslash character literal) — 33
\0 (null character literal) — 9
^ (bitwise-exclusive-or operator) —

49–51
hash function — 334

^= (bitwise-exclusive-or-assign
operator) — 52

~ (bitwise-not operator) — 12, 13,
49–51

| (bitwise-or operator) — 49–51,
108
bit flags — 108
mtx_init— 226

|| (logical-or operator) — 12, 14, 48,
274
| confusion, origin — 50

2D array — seemultidimensional array

A

\a (alert, aka, bell, character literal) —
33

a.out— 4, 208
a2d_ij— 95
ABA Problem — 257, 258, 259–261
abort— 142, 267, 276, 355
assert— 241–242

abs— 41
abstract syntax tree — 172
actual parameter — see function,

argument
ad— 203, 212, 213
Ada — 240
Alexandrescu, Andrei — 261
ALGOL— xviii
alignas— 69, 130, 163, 336
C23, prior to — 371
false sharing — 263

alignment (data) — 58, 130
_Atomic— 247
cast — 272
max_align_t— 39, 163
padding (2D array, allocating) — 94
padding (structure) — 162
SIGBUS— 267
warning — 327
-Wcast-align— 272

alignment (printing) — 182
alignof— 58, 69, 95
C23, prior to — 371

alloc2d— 94–95
anonymous union — 171, 175
ansi_color— 104
Apache — xvii
APFS — 184
__APPLE__— 114
argc— 143, 184
argv— 143, 185
ARMv8 — 220
array — 83–99
[] syntactic sugar — 88
bounds checking — 84, 238, 268
declaration — 8, 83
designated initializer — 84
indexing — 52–53, 84
initialization — 9, 83–84
C23, prior to — 371

INDEX 383

multidimensional — see
multidimensional array

non-null parameter syntax — 138,
322

of pointers — 89–90
parameter — see parameter, array
pointer difference — 89
pointer equivalence — 88, 94
pointer, and — 88
pointer, decay to — 88, 139, 151,

290
qualified parameter syntax — 138
variable length — see variable

length array
ARRAY_SIZE— 117, 128, 131, 290,

292, 338
ASCII — 9, 14, 33, 39, 50
assembler — 4
assembly language — 235, 279
ARMv8 pre-decrement — 220
bit-field — 165–166
C compiler output — 4
C statements,

mapping/translation — 266
call function — 146
compare-exchange — 256
return true— 237, 238

assert— 241–246, 267, 277, 278,
342
disabling — 243–244
implementation, possible — 119
implementation, sample — 241–242
message, custom — 244

assert.h— 241, 377
associativity — 45, 48
else with if— 74
evaluation order difference — 45–46

at_quick_exit— 211
atexit— 210–211
_Atomic— 67, 113, 138, 247–264,

284, 312
mutex alternative — 248

atomic (meaning) — 219, 248
atomic_exchange, etc. — 249
atomic_fetch_add, etc. — 249

atomic_fetch_and, etc. — 249
atomic_init— 252
atomic_load, etc. — 249, 251
atomic_store, etc. — 249, 251
attribute — 70–72
C23, prior to — 372
namespace — 30
placement in declaration — 70

__attribute__— 372
AUTHORS— 212
auto

C23, prior to — 372
deduced type — 62–63, 331
history — 64–65
storage class — 64–65
typeof difference — 67–68

__auto_type— 372
autoconf— 213
automake— 213
Autotools — 213, 214

B

\b (backspace character literal) — 33
B (programming language) — 3, 50,

64, 65
big endian — see endianness
big O notation — xix, 328–329, 333,

335
binary compatibility — 205
binary literal — 34
C23, prior to — 372

binary tree — 333
bit-field — 165–166
int signedness — 166

_BitInt— 32, 34–35
BLOCK— 129
block — 73
block scope — 30, 31, 63
_Atomic initialization — 252
thread_local— 230

BNF — 185
bool— 12, 14, 32
atomic read — 222
atomic write — 222
atomic, not — 219

INDEX384

C23, prior to — 372–373
function return type — 142

bootstrap— 213
bottleneck
memory_order_seq_cst— 250,

251
mutex — 223

Bourne, Steve — 278
break— 75, 76, 78
breakpoint — 278
BSD — 207
buffer overflow — 21, 268
bug — 268–271
array bounds — 84, 238, 268
buffer overflow — 21, 268
double free — 269
memory leak — 22, 71, 270–271
null pointer dereference — 269
off-by-one — 269
thread leak — 218
uninitialized variable — 271, 280
use after free — 269–270

build tools — 213–214
warning specification — 272

built-in types — 31–37
bus error — 267
Butenhof, David R. — 217, 223, 226

C

C Programming Language, The—
xviii, xxi, 3, 29, 235, 374

C#— 347
dynamic dispatch — 345
exception — 299
volatile— 311

C++— xviii–xix
abstract class — 90
_Atomic()— 247
auto— 65
binary literal — 372
C code, using — 208
const— 17
constexpr— 17
decltype— 68
destructor — 24

dynamic dispatch — 345
embedded system — xviii
exception — 242, 299, 351, 359
extern ”C”— see extern ”C”

final— 172
flexible array member — 165
function overloading — 136, 283,

286
linker — 208

function prototype adoption — 375
identifier compatibility — 29
if constexpr— 287
language linkage — 208–209
member function call — 348
name mangling — 208
name origin — 11
namespace — 30
non-null array parameter syntax —

138
paste avoidance — 126
polymorphism — 350
qualified array parameter syntax —

138
RAII — 357
reference — 68
register— 66
__restrict__— 308
restrict— 308
scoped enumeration — 103
SFINAE — 289
std::exchange— 256
std::is_same— 296
std::map— 333
std::swap— 256
std::unordered_map— 333
structure nesting — 158
type punning — 171
type trait — 289
variable length array — 97
version — 113
(void)— 375

C++ Programmer’s Handbook, The—
xxiii

c_ast_is_ptr_to_tid_any—
278–280

385INDEX

c_ast_is_tid_any_qual_impl—
278, 280

c_ast_unpointer_qual— 277, 278,
280

c_int_fmt (enumeration) — 108
c_int_fmt (structure) — 165
c23_strtol— 372
cache coherent — 220
cache line — 163
false sharing, and — 262–263
fat pointer, and — 349
hash table, open addressing — 335
size — 263

call stack — 242
call_once— 229–230
callgrind— 281
calloc— 338, 340
case— 77–78, 373
cast — 11, 54–56
away const— 55
implicit conversion warning — 273
pointer — 56
return type, to — 79
unsigned, to — 41
void, to — 55
void*, from — 86

catch— 356–357, 357, 358
cc— 3, 112, 143, 213, 375
cdecl

maintainer — xxiii
cdecl— 91, 280
argv[0]— 143
debugging — 276–280
macros, expanding — 133
restricted class hierarchy —

172–176
cexp— 37
cfront— xxiii
chaining (hash table) — 335–336
ChangeLog— 212
char— 32–33
implementation defined

signedness — 33, 293
literal — 33
signed— 33

unsigned— 33
CHAR_BIT— 33
char16_t— 39
char32_t— 39
char8_t— 38
character
alert, aka, bell — 33
backslash — 33
backspace — 33
carriage return — 33
char— 33
char16_t— 39
char32_t— 39
char8_t— 38
double quote — 33
form feed — 33
hexadecimal literal — 33
literal — 33
newline — 5, 33
null — see null character
octal literal — 33
signed— 33
single quote — 33
string — see string
tab — 33
Unicode — 38–39
unsigned— 33
vertical tab — 33
wchar_t— 39

check_open— 184
clang— 4, 71, 72, 78, 111–113, 266,

276, 277, 279, 280, 372
clearerr— 187
CLion — 214, 281
close— 189
closedir— 192, 193
CMake — 213
cnd_destroy— 228
cnd_init— 228
cnd_signal— 228
cnd_timedwait— 229
cnd_wait— 228–229, 256
COBOL— 209
code bloat — 148, 149
Cohen, Danny — 56

INDEX386

collision (hash table) — 334
color_string— 123
comment — 5, 27–28
comp.lang.c— 240
Frequently Asked Questions— 235

comp.programming.threads— 223,
226

compare-and-swap — 255–258
compilation phases — 111
compiler optimization — 266
disable — 266, 278
Heisenbug — 278
observable behavior — 216
order — 238–239
pointer, and — 306
register, and — 66
restrict, and — 305
return value — 142
undefined behavior — 238–239
volatile— 309–310

_Complex— 32, 36–37
complex.h— 36–37, 113
compound literal
array — 92–93, 226
lifetime — 93
scope — 93
storage class — 93
C23, prior to — 377

structure — 24, 141, 142, 160–162,
270, 317, 321, 338, 339, 342,
354, 355
typeof, with — 367

union — 170
compound statement — 73
concatenation (string) — 20, 21
mstrcat— see mstrcat
strcat— see strcat

concatenation (token) — 120, 129
pitfalls — 120–121

condition variable — 226–229
timed — 229

conditional compilation — 113–116,
263

configure.ac— 213
const— 17–20, 62, 67, 284

casting away — 55
constexpr difference — 18, 67
east — 19
overloading — 286–287

const-ness — 364–365
auto— 63
auto, and — 331
casting away — 55

CONST_OVERLOAD— 288
constexpr— 7, 17, 33, 39, 67, 77
C23, prior to — 373
compound literal — 93
const difference — 18, 67

continue— 9, 11, 13, 33, 76, 77, 78
conversion specification
printf— 181
scanf— 195
strftime— 368

coord— 158–159
COPYING— 212
copying (file) — 184–186
copying (input to output) — 5–8
core dump — xxi, 21, 142, 241, 242,

266–267, 268, 276
origin — 267
signal, triggered by — 267

__cplusplus— 113, 209, 247
CPU
alignment — see alignment (data)
architecture, predefined macro —

114
atomic value operation — 219
cache coherent — 220
cache line — see cache line
compare-and-swap — 261
dependent — 172
endianness — see endianness
illegal instruction — 267
integer size — 41
opcode — 267
performance — 216
process — 215
register — see register (CPU)
right shift of signed type — 51
warning — 275

INDEX 387

spike — 227
strongly-ordered — 254, 257
thrd_yield, and — 225
value visibility — 219
volatile— 312
weakly-ordered — 254, 257

ctype.h— 10, 363–364
Curious Case of the Disappearing if,

The— 276–280
cURL — xvii
cv-qualified — 67, 364
cvr-qualified — 67
cx_exception— 354, 358
cx_impl_catch— 356
cx_impl_do_throw— 355
cx_impl_exception— 354, 355
cx_impl_state— 352, 354, 355
cx_impl_throw— 354, 355
cx_impl_try_block— 230, 352,

353, 354, 355–358
cx_impl_try_block_head— 230,

352, 354, 355, 358
cx_impl_try_cond— 352, 353, 355,

357, 358
cx_set_xid_matcher— 360
cx_terminate— 355
cx_xid_matcher— 360

D

-D (Unix compiler option) — 42, 112,
114

/D (Microsoft compiler option) — 112,
114

d_name— 193
dangling pointer — 93, 261, 343
data race — 216
bit-field — 166

__DATE__— 113
df, DD (_Decimal64 literal suffix) —

36
deadlock — 224–226
/DEBUG (Microsoft compiler option) —

266
debugger — 278
debugging — 265–282

information — 266
printing values — 266
rubber duck — 281

decimal floating-point — 36
decimal literal — 34
_Decimal32, etc. — 32, 36
DECL_UNUSED— 69, 130, 173
declaration — 61–72
empty statement, after, prior to

C23 — 374
label, after, prior to C23 — 373–374
multiple — 62
syntax rationale — 61–62

__declspec— 372
decltype— 68
default

_Generic— 284, 285
switch— 77–78, 274
enumeration values — 107

deprecated— 70
dereference — 16, 53, 56, 87, 88, 91,

92, 255, 290, 327
null pointer — 269
pointer to array — 139
use after free — 269
void*— 86

Descent to C, The— 25
designated initializer
array — 84
structure — 23, 159
union — 170

Development of the C Language,
The— 25, 50, 137

df, DF (_Decimal32 literal suffix) —
36

difftime— 367
digit separators — 34, 36
C23, prior to — 374

Dijkstra, Edsger W. — 223
DIR— 192, 193
directory — 192–193
deletion — 191–192

dirent— 192–193
dirent.h— 193
disk — 183–184

INDEX388

dl, DL (_Decimal128 literal suffix) —
36

do-while— 8, 75, 150, 184
multiple statements in macro — 122

double— 32, 35–36
double free — 269
double precision — 32, 35
Doxyfile— 212
Doxygen — 28, 212
DTrace — 281
dynamic dispatch — 345–350
dynamic memory — 20–22

E

-E (Unix compiler option) — 111
/E (Microsoft compiler option) — 111
east const— 19
EINVAL— 197, 198
else— 12, 74
dangling — 359

#embed— 126–127
C23, prior to — 374

embedded system — xviii
empty statement — 80
declaration after, prior to C23 — 374

end of file — see EOF
endianness — 56
bit-field — 166
origin — 56
__STDC_ENDIAN_BIG__, etc. — 113

enum— 102
enumeration — 30, 38, 101–110, 203
constant — 102–103
collision — 102–103

declaration — 102
fixed type — 103
C23, prior to — 374

function return value — 141
implicit conversion — 103
scoped — 103
tag — 102
underlying type — 103
values — 104–109
bit-flag — 108–109

checking — 106–107
counting — 107
duplicate — 105–106
externally imposed — 104
none, not set, unspecified — 106
serializing — 105

environment variable — 192, 200–201
EOF— 5, 6–7, 11, 77, 179, 186–188,

194, 196, 198, 200, 363
distinguish from error — 194, 199
type — 6

epoch — 39, 368
EPRINTF— 180
EPUTC— 180
EPUTS— 180
ERANGE— 198, 199
Errintgon, Andrew — 281
errno— 142, 180, 184–186, 188–194,

197–199, 201, 230, 361
errno.h— 142
#error— 124–125
error handling — 142
euler— 37
evaluation order
associativity difference — 45–46
case— 77
left-to-right
,— 57
?:— 49
&& and ||— 48

short-circuit of && and ||— 48, 50
unspecified behavior — 45

exception — 142, 351–360
assert and errors, vs. — 242–243
C#— 299
C++— 299, 351
catch— see catch
finally— see finally
Java — 299
Python — 299
requirements — 351–352
restrictions in C — 358–359
try— see try

Exim — xvii
_Exit— 210

INDEX 389

exit— 72, 122, 142, 185, 210
exit status — 144
EXIT_FAILURE— 8, 144
EXIT_SUCCESS— 8, 144
exponent — 36
expression statement — 73
Ext4 — 184
extern— 65
inline— 148–149
thread_local— 230

extern ”C”— 208–209, 211
external linkage — 64–65
leading underscore — 29

F

\f (form feed character literal) — 33
f, F (float literal suffix) — 36
fallthrough— 70, 78, 106, 274, 358
false sharing — 262–263
fat pointer — 348–350
fatal_error— 118, 276, 378
C23, prior to — 376

fclose— 184, 185, 358
fdopen— 190
feof— 187
ferror— 7, 184, 188
fflush— 188
fgetc— 194
fgets— 115, 198–200
__FILE__— 113, 118, 119, 122, 124,

153, 354
file — 183–192
as memory — 191
deletion — 191–192
descriptor — 189
inclusion — see #include
information — 186–187
low-level — 189–190
memory as — 190
open mode — 186
position — 188–189
source organization — 212–213
state — 187–188
temporary — 192

file scope — 30, 65–67, 106, 145, 158,
159, 230
_Atomic initialization — 252
const initializer — 67

FILE_OFFSET_BITS— 42
fileno— 190
filesystem — 183–184, 191
finally— 357–358
Fishburne, Laurence — 25
fl_print_error— 152
flexible array member — 162–165,

251, 325
sizeof— 165

float— 32, 35–36
float.h— 40
floating-point — 35–36
cast to — 54
decimal — 36
equality — 273
modulus — 47
rounding or truncation — 54
type conversion — 43

FLPRINTF— 129
flush (buffer) — 185–186
fmemopen— 190
fmod— 47
FNV–1a hash function — 334
fnv1a64_mem— 334
fopen— 185, 299, 358
for— 12, 13, 76
while equivalence — 13, 76

FOR_ALL_COLORS— 122–123
FOREACH_SLINK— 331
formal parameter — see function,

parameter
Fortran — 209
fprintf— 122, 152, 179, 184, 276
fputc— 179
fputs— 9, 12, 107, 179, 217
fread— 7, 8, 184, 189, 194, 236
free— 21, 22, 24, 95, 97, 164, 231,

270, 326, 328, 329, 338, 340, 342
double — 269
nullptr— 269
use after — 269–270

INDEX390

fscanf— 194
fseek— 188
fstat— 186
ftell— 188, 236
fully buffered — 185
__func__— 145
function — 12–14, 52, 135–155
argument — 5, 135–136
body — 4, 135
call — 52
mechanism — 146
pointer — 91

declaration — 4
declaration vs. definition — 135
error handling — 142
inline — see inline
K&R style — 374–375
main— see main
overloading — 209
linker — 208

parameter — 4, 135–136
array — 136–141
register— 66
unnamed — 135

pointer — 52, 90–92, 147, 151, 210,
231, 284, 326, 346, 360
call — 91

prototype — 62, 135
return value — 4, 141–142
scope — 30
signature — 135
static— 144–145
local variable — 145–146

variadic — see variadic function
fwrite— 7, 8, 180, 184, 189

G

-g (Unix compiler option) — 266
garbage collection — 22
gcc— 4, 71, 72, 78, 111–113, 266,

276, 372
gdb— 108, 265
_Generic— 283–297
const overloading — 286–287
motivation — 283

printf example — 284–286
SFINAE — 288–289
type traits — 289–297

geo_loc— 158–159
getc— 194
getchar— 5–7, 33, 77, 189, 194
getdelim— 199
getenv— 200
getline— 115, 189, 199
Git — xvii
gmtime— 367
gmtime_r— 367
GN — 213
Go
dynamic dispatch — 345
interface — 90, 348–350
decay to pointer — 349

goto— 7, 8, 75, 78, 79–80, 109, 373
label — see label

gperftools— 281
gprof— 281
grep— 152, 158, 331
exit status — 144

Groening, Matt — 302

H

__has_c_attribute— 116
__has_include— 116
hash function — 334
FNV–1a — 334

hash table — 333–344
chaining — 335–336
clean-up — 338
collision — 334
deletion — 342
finding — 341
growing — 340
initialization — 338
insertion — 339
iteration — 342
load factor — 336
open addressing — 335–336

hash_table— 336–338
hazard pointer — 261

INDEX 391

header file — 5, 116
example — 211
include everything necessary — 207
including header file — 206
including in .c file — 209–210
inline function — 148
interdependency — 207–208
self-sufficient — 206–208

heap memory — 21, 97, 165
heisenbug — 278
hello, world — 3
hexadecimal literal
character — 33
floating-point — 36
integer — 34

higher-order macro — see X macro
hint
inline— 147
register— 66
restrict— 305

ht_cleanup— 338
ht_cmp_fn— 336–338, 341
ht_delete— 342
HT_DINT— 340
HT_DPTR— 340
ht_entry— 336–338
ht_find— 341
ht_free_fn— 336–338
ht_grow— 340
ht_hash_fn— 336–338
ht_init— 338
ht_insert_rv— 339
ht_iter— 342
ht_next— 342
HT_PRIME— 338–342

I

-I (Unix compiler option) — 116
I (imaginary number i constant) — 37
/I (Microsoft compiler option) — 116
IDE — 6, 214
identifier — 29
IEEE Std 1003.1-2024 — see POSIX
if— 12, 74–75

if_empty (#embed parameter) — 127
#ifndef— 112
illegal instruction — 267
_Imaginary— 32, 37
implementation defined — 235–236
argc, argv— 143
atexit, number of calls — 210
attributes, prior to C23 — 372
bit-field endianness — 166
bit-field word boundary — 166
C++ name mangling — 208
char signedness — 33, 293
d_name array size — 193
directory entry iteration order — 193
enumeration default underlying

type — 103
EXIT_FAILURE— 144
I/O buffer capacity — 185
if-else, number of chained — 75
int bit-field signedness — 166
language linkage — 209
local variable memory order — 268
rationale — xxi
right shift of signed type — 51
tv_nsec type — 367

#include— 5, 116, 203, 213
include guard — 115, 127, 128,

203–205, 207, 211
include path — 116
incomplete type — 205
infinite loop — 75, 76
recursion — see recursion

inline— 146–149
code bloat — 148, 149
definition — 148–149
hint — 147
macro, difference from — 146–147
static— 148
when to — 147–148

Inline Disease, The— 148
INSTALL— 212
int— 32, 34, 42
bit-field signedness — 166
omission — 13, 32

INT_MAX— 40, 237

392 INDEX

INT_MAX_EXPR— 295
INT_MIN_EXPR— 295
int32_t— 56
int8_t, etc. — 38, 41
choosing appropriate — 42

integer
choosing appropriate — 41–42
fixed-width — 38
int— see int
natural size — 41
numeric limits — 39
overflow — 40–41
promotion — 43
_BitInt— 35

rank — 43
underflow — 40–41

interface — 90, 348–350
internal linkage — 64–66
function — 144–145

INTERNAL_ERROR— 118, 122
intrusive — 163–164
IS_ARITHMETIC_EXPR— 294
IS_ARRAY_EXPR— 290
IS_C_STR_EXPR— 276, 292
IS_FLOATING_POINT_EXPR— 294
IS_INTEGRAL_EXPR— 293, 295
IS_POINTER_EXPR— 291
IS_PTR_TO_CONST_EXPR— 288
IS_SAME_TYPE— 296
IS_SIGNED_EXPR— 293
IS_UNSIGNED_TYPE— 292
IS_TYPE_EXPR— 294
IS_UNSIGNED_EXPR— 293
isalnum— 81, 363
isalpha— 363
isblank— 363
iscntrl— 363
isdigit— 363
isgraph— 364
islist_lfpush— 258
islower— 364
ISO — xx
isprint— 9, 10, 364
ispunct— 364
isspace— 364

l, L (long double literal suffix) — 36
l, L (long literal suffix) — 34
label — 8, 79–80
declaration after, prior to C23 —

373–374
namespace — 30, 80

LANG_IS— 121
language linkage — 208, 211
Lesk, Michael E. — 124
lex— 124
lib (subdirectory) — 213
life, the universe, and everything — 42
limit (#embed parameter) — 127
limits.h— 40
__LINE__— 113, 118–122, 124, 153,

354
#line— 124
linkage — 64
external — see external linkage
internal — see internal linkage
language — see language linkage

isupper— 364
isxdigit— 364

J

Java — 25, 347, 357
dynamic dispatch — 345
exception — 299
interface — 90
Map— 333
sealed— 172
virtual machine — 25
volatile— 311

jmp_buf— 299, 311, 352, 354
Johnson, Stephen C. — 124, 375

K

K&R (book) — xviii, xxi, 3, 235, 374
K&R (style) — 29, 374–375
Kernighan, Brian W. — xviii, 3
Kotlin — 172

L

393INDEX

none — see no linkage
linked list — 163–165, 325–332
iteration — 331

linker — 208
lint— 375
Linux — xvii, 184
kernel coding style — 148

__linux__— 114
literal
binary — 34
_BitInt— 35
bool— 32
char— 33
compound — see compound literal
decimal — 34
_Decimal32, etc. — 36
digit separators — 34, 36
double— 36
float— 36
hexadecimal
floating-point — 36
integer — 34

int— 34
long— 34
double— 36
long— 34

octal — 34
string — 5, 33
unsigned— 34

little endian — see endianness
ll, LL (long long literal suffix) — 34
lldb— 265
load factor (hash table) — 336
load_bool_mtx— 221
local variable
declaration — 5
initialization — 9–10
no linkage — 64
register— 66
register (CPU), longjmp— 301
stack frame — 21
static— 145–146
inline function — 149

volatile— 311
locale — 363

localtime— 367
localtime_r— 368
lock-free — 258
long— 32, 41, 42
double— 35–36
long— 41, 42

long long— 32
longjmp— 75, 78, 299, 301–302, 311,

351, 354, 355, 359
variable length array, and — 302,

358
Lovejoy, Rev. Timothy — 302
lstat— 186–187
Lua — 359
lvalue — 291

M

m4 (macro processor) — 111
m4 (subdirectory) — 213
macOS — 184
macro
argument — 117–118
function-like — 117–121
higher-order — see X macro
inline, difference from — 146–147
multiple statements — 122
not expanding — 125
object-like — 112
parameter — 117
paste avoidance — 125–126
predefined — 113
variadic — see variadic macro
X — see X macro

magic values — 7
main— 3, 4, 143–144, 266
parameters — 143
return type — 144
return value — 144
omission — 5, 144

main thread — 215
Make — 213
Makefile — 213
Makefile.am— 212
malloc— 21–22, 94, 95, 97, 164, 199,

269

394 INDEX

calloc, difference — 338
failure return value — 96
realloc, difference — 23
sizeof, use with — 57, 88, 252,

258, 326, 339
man (subdirectory) — 213
manual pages — 213, 363
map — 333
math.h— 47, 283
Matrix, The— 25
MAX— 117, 271
max_align_t— 39, 163, 336
maybe_unused— 70, 71, 245, 275
MEM_ZERO— 291
member
structure — 157
union — 170

member namespace — 30
structure — 157
union — 170

memchr— 365
memcmp— 255, 365
memcpy— 255, 268, 270, 271, 306,

315, 319, 365
memmove— 86, 306, 323, 365
memory — 14–15
array vs. pointer — 89
dynamic — 21
global — 21
heap — 21, 97, 165
leak — 22, 71, 270–271
VLA— 302

multidimensional array layout — 85
page size — 8
post office box analogy — 14, 15
stack — 21, 97
static — 21

memory barrier — 250–255, 312
memory-mapped I/O — 310
memory_order_acq_rel— 255
memory_order_acquire— 253–255
memory_order_consume— 254–255
memory_order_relaxed— 251–252
memory_order_release— 253
memory_order_seq_cst— 250

memset— 291, 365
Meson — 213
Michael, Maged — 261
Microsoft C — 111, 112, 116, 213,

214, 281
warnings — 272

Microsoft Windows
b (file mode) — 186
epoch — 39
file deletion — 192
NTFS — 184
pthreads — 216
wchar_t— 39
_WIN32— 114

Mind Behind Linux, The— 330
minidump — 267
mktime— 368
mmap— 191
modifier — 12, 31–32
module — 203
Morpheus — 25
mstrcat— 21, 55, 65, 71
documentation — 28

mtx_destroy— 221–222
mtx_init— 221–222, 224, 226
mtx_lock— 221, 225, 227
mtx_lockall— 225–226
mtx_plain— 221–222, 226
mtx_recursive— 226
mtx_t— 221
mtx_timed— 226
mtx_timedlock— 224
mtx_trylock— 225
mtx_unlock— 221, 225, 227
multidimensional array — 84–86
dynamically allocating — 94–95
indexing — 85
initialization — 85, 86
memory layout — 85
parameter — 139–140
VLA — 140

pointer, vs. — 93–94
row-major order — 85

multithreading — 215–232
bad example — 219–220

INDEX 395

condition variable — see condition
variable

mutex — see mutex
munmap— 191
mutex — 221–226
bottleneck — 223
lock — 221
recursive — 226
timed — 224
unlock — 221

N

\n (newline character literal) — 5, 9,
33

NAME2— 129
namespace — 30
nasal demons — 240
NDEBUG— 112, 241, 242, 243–244
New B (programming language) —

137
newline character — 5
NEWS— 213
NFS — 184
Ninja — 213
no linkage — 64
local variable — 64
register— 66

nodiscard— 71, 131, 164, 321, 322,
326, 328

non-null array parameter syntax —
138, 322

_Noreturn— 376
noreturn— 72, 184, 185, 211, 354,

355
C23, prior to — 376

NTFS — 184
NULL— 277, 376
null character — 9, 10, 20, 90, 131,

190, 200
append to string — 9, 84
literal — 9
string, last character — 9, 53, 196,

344
null pointer dereference — 269

nullptr— 15, 28, 92, 93, 119, 125,
150, 151, 160, 164, 190, 193, 198,
199, 218, 219, 221, 231, 238, 245,
246, 248, 260, 266, 277, 317, 321,
326, 338
array parameter — 137
C23, prior to — 376
error indication — 96, 142, 185,

190, 191, 200
free— 269

nullptr_t— 39
numeric limits — 39

O

-O (Unix compiler option) — 266, 278
/O (Microsoft compiler option) — 266
objdump— 279
observable behavior — 216, 250
observer effect — 278
octal literal — 34
off-by-one — 269
off_t— 41
offsetof— 176
OK_DISCARD— 131
once_flag— 230
ONCE_FLAG_INIT— 230
one definition rule — 148
opaque type — 205
open— 189
open addressing (hash table) —

335–336
open source — xvii
open_memstream— 190
opendir— 192, 193
OpenSSL — xvii
operating system
main as interface — 143
memory reclamation — 22, 323
predefined macro — 114
semi-portable C — 235
signal — 267
system call — 189

operator — 45–59
associativity — 45, 48, 49
precedence — 6, 23, 45, 48, 49

INDEX396

& and |— 50
macro substitution — 117

optimization
compiler — see compiler

optimization
return value — 142
small size — 96

ordinary namespace — 30
owning pointer — 269, 270

P

padding
2D array allocation — 94–95
bit-field — 166
flexible array member — 165
structure — 162

parameter
function — see function, parameter
macro — see macro, parameter

Pascal — 61
PASTE— 120, 121
paste avoidance — 125–126
perf— 281
perror— 7, 8, 185, 199
PL/I — 209
PLUS_ONE— 124
pointer — 15–17
alias — 306
arithmetic — 88
array difference — 89
array equivalence — 88, 94
array, decay from — 88, 139, 151,

290
array, to — 139
cast — 56
dangling — 93, 261, 343
declaration — 15
fat — 348–350
function — 52, 90–92, 147, 151,

210, 231, 284, 326, 346, 360
call — 91
dynamic dispatch — 346

hazard — 261
one past last array element, to — 88
owning — 269, 270

pointer, to — 87
self— 24
this— 24
versioned — 261–262
virtual function — 347
void— 86

POSIX — xx
locale — 363
threads — see pthreads

Postfix — xvii
PostgreSQL — xvii
exceptions — 359

#pragma— 127–128
disable warning — 276

prefix (#embed parameter) — 127
preprocessor — 111–134
concatenation — see concatenation

(token)
directive — 112
macro — see macro
rationale — 111
stringification — see stringification

Princess Bride, The— 242
print_color— 105, 107
printf— 5, 17, 180, 181, 284
consecutive spaces — 33, 77, 198
variadic arguments — 151–152

PRINTF_FORMAT— 284
process — 215
profile — 281
assertions — 243
inline— 148
restrict— 307

program organization — 203–214
Programming with POSIX Threads—

217
pthreads — 216–217
PTR_FORMAT— 285
ptrdiff_t— 39
putc— 179
putchar— 5–7, 33, 77, 179, 189
puts— 21, 22, 179
putubin— 12, 31, 63, 64, 66, 131
pwd.h— 207
Python — xvii

397INDEX

dict— 333
dynamic dispatch — 345
exception — 299
interpreter — 25

Q

qsort— 90–91
qualified array parameter syntax —

138
qualifier — 67
quick_exit— 211

R

\r (carriage return character literal) —
33

R (programming language) — 359
race condition — 216
RAII — 357
rank (integer) — 43
read— 189
readdir— 192, 193
README.md— 213
realloc— 315, 316, 318–320
getdelim— 199
malloc, difference — 23

recursion — see infinite loop
recursive mutex — 226
register— 66, 147
compiler optimization — 66
compound literal — 93

register (CPU) — 14, 66, 220, 348
function call — 146
longjmp— 301
setjmp— 301
volatile— 301

Reiner, Rob — 242
remove— 191
resource acquisition is initialization —

357
restrict— 67, 138, 284, 305–308
C++— 308
pitfalls — 306–307
this, and — 308

restricted class hierarchy — 172–176

return— 7, 75, 78, 79
return value optimization — 142
rewind— 189
Ritchie, Dennis M. — xviii, xxi, 25,

41, 50, 61, 64, 137, 138
round_half_up— 54
row-major order — 85
rubber duck debugging — 281
rup— 51
rup2— 51, 94
Rust
BTreeMap— 333
dynamic dispatch — 345
traits — 348

rvalue — 291

S

S_IFREG, etc. — 186
S_ISREG, etc. — 187
scan-build— 279
scanf— 194, 194
buffer overflow — 268

Schmidt, Eric — 124
scope — 30–31, 64, 130
array declaration — 88
enumeration constants — 102
extern— 65
for variable declaration — 13, 76
pointer aliasing — 306
preprocessor — 112
restrict— 305, 307
try— 352
typedef tag injection — 102, 158,

170
scoped enumeration — 103
segmentation fault — 267, 268
self— 24
self-sufficient header — 206–208
semi-portable C — 114, 235
Sendmail — xvii
setjmp— 299, 300, 351–353, 357,

359
restrictions — 300
volatile, and — 301, 311

setvbuf— 266

398 INDEX

SFINAE — 288–289
Shawn, Wallace — 242
Shearer, Harry — 302
short— 32, 41, 42
sig_atomic_t— 311
signal — 267
handler — 310–311

signed— 32
char— 33
int in bit-field — 166

significand — 36
Simpsons, The— 302
single precision — 32, 35
single-threaded — 215, 229
size_t— 18, 26, 39, 51, 62, 86, 90,

95, 141, 142, 158, 190, 211, 289,
306, 317
alignof return type — 58
conversion specification — 182
number of bytes — 41
number of objects — 42
sentinel value — 54
sizeof— 318
sizeof return type — 57
strlen return type — 62, 64
VLA — 140

sizeof— 57, 69, 91, 95, 141
flexible array member — 165
malloc, use with — 57, 88, 252,

258, 326, 339
slist_back— 328
slist_cleanup— 326
SLIST_DINT— 327–328, 330, 331
SLIST_DPTR— 327–328
slist_empty— 328
slist_find— 286
slist_free— 270
slist_free_if— 329
slist_front— 328
slist_init— 326
slist_pop_back— 328
slist_pop_front— 328
slist_push_back— 326
slist_push_front— 326
small size optimization — 96

Smalltalk — 345
snprintf— 316
Solaris — 157
spaghetti code — 8
spawn (thread) — 215
spin lock — 227, 253
spurious failure — 256–258
spurious signal — 229
sqrt— 85, 159, 283
src (subdirectory) — 213
ssize_t— 39
st_mode— 186–187
stack frame — 21, 64, 142, 266, 268,

301
stack memory — 21, 97
standard floating-point — see

floating-point
standard input — 6, 8, 183, 194
standard output — 6, 8, 179, 183,

265–266
stat (function) — 186
stat (structure) — 186
static

compound literal — 93
function — 144–145
inline— 148

local variable — 145–146
inline function — 149

non-null array parameter syntax —
138, 322

storage class — 65–66
thread_local— 230

static_assert— 176, 244–245,
291, 296
C11, prior to — 377
C23, prior to — 377

STATIC_ASSERT_EXPR— 245, 290
STATIC_IF— 287–288
-std (Unix compiler option) — 4, 113
/std (Microsoft compiler option) —

113
std::terminate— 355
std::underlying_type— 297
stdalign.h— 371
stdarg.h— 149, 152

INDEX 399

stdatomic.h— 247, 248
stdbool.h— 372
stdbuf— 266
__STDC__— 113
__STDC_ENDIAN_BIG__, etc. — 113
__STDC_IEC_60559_DFP__— 36, 113
__STDC_NO_ATOMICS__— 113, 248
__STDC_NO_COMPLEX__— 36, 37, 113
__STDC_NO_THREADS__— 113, 217
__STDC_NO_VLA__— 113
__STDC_VERSION__— 113, 376
stddef.h— 39, 176, 211, 376
stderr— 184, 189, 276
STDERR_FILENO— 189
stdin— 8, 185, 189, 194
STDIN_FILENO— 189
stdint.h— 38, 40
stdio.h— 3, 5, 179, 194
stdlib.h— 7, 8, 210
stdout— 8, 179, 185, 189
unbuffered — 266

STDOUT_FILENO— 189
storage class — 63–66
automatic — 63
compound literal — 93
C23, prior to — 377

static — 63
thread — 63, 230

store_bool_mtx— 221
str_is_any— 92, 125, 150
strbuf— 318–323
strbuf_printf— 320, 322
strcat— 20, 365
buffer overflow — 268

strchr— 44, 199, 200, 365
strcmp— 92, 150, 160, 193, 365
strcpy— 22, 24, 71, 169, 365
buffer overflow — 268
implementation — 19

strcspn— 365
strdup— 270, 271, 365
strerror— 201, 365
string — 9–12, 315–317
literal — 5, 33

string_printf— 316

string_putc— 316
string_puts— 316
string_putsn— 315
string_take— 317
string.h— 20, 364–366
stringification — 119, 242
pitfalls — 120–121

STRINGIFY— 119, 120, 121
strlcat— 268
strlcpy— 268
strlen— 21, 53, 62, 64, 131, 269,

288, 289, 337, 366
STRLITLEN— 131, 292
strncat— 366
strncmp— 366
strncpy— 366
strndup— 366
strnlen— 315
strongly-ordered — see CPU,

strongly-ordered
Stroustrup, Bjarne — 62
strpbrk— 366
strrchr— 366
strspn— 366
strstr— 330, 331, 366
strtod— 199
strtol, etc. — 197–198, 372
struct— 23, 157
structure — 23–24, 30, 38, 52,

157–166, 203
bit-field — see bit-field
compound literal — 24, 141, 142,

160–162, 270, 317, 321, 338,
339, 342, 354, 355
typeof, with — 367

definition — 157–158
designated initializer — 23, 159
function return value — 141
initialization — 23, 159–160
C23, prior to — 371

member — 157
access — 23, 53
flexible — see flexible array

member
namespace — 30

INDEX400

nesting — 158–159
opaque type — 205
padding — 162
tag — 157

substitution failure is not an error —
288–289

subsystem — 213
suffix (#embed parameter) — 127
sum_to_zero— 273
Summit, Steve — 235
SWAP— 296
Swift (programming language) — 347
dynamic dispatch — 345

Swift, Jonathan — 56
switch— 77–78, 373
enumeration values — 106–107, 109

syntactic sugar — 9
->— 53
[]— 88
array function parameter — 137
C++ member function call — 348
multidimensional array — 85

sys/mman.h— 191
sys/stat.h— 186
sys/types.h— 207
sysexits.h— 144
system bus — 267
system call — 189

T

\t (tab character literal) — 33
tag
enumeration — 102
typedef, and — 38
namespace — 30, 102, 158, 170
structure — 157
union — 170

Tatham, Simon — 25
temporary file — 192
test (subdirectory) — 213
this— 24, 348
restrict, and — 308

thrd_busy— 225
thrd_create— 217, 219, 221, 248

thrd_current— 218
thrd_detach— 218
thrd_exit— 218
thrd_join— 218, 219, 221, 248
thrd_t— 217, 221, 248
thrd_timeout— 224, 229
thrd_yield— 225
thread — 215–232
create — 217–218
detach — 218–219
join — 217–218
leak — 218
producer and consumer — 226

thread_local— 230, 352, 354
C23, prior to — 377
compound literal — 93
thread-specific storage — 231

thread-safe — 216, 219, 220
gmtime— 367
localtime— 367, 368
volatile, other languages — 311

thread-specific storage — 231
threads.h— 217
throw— 353–355, 358
__TIME__— 113
time— 368
time_t— 39
time.h— 39, 366–368
timespec— 366–367
cnd_timedwait— 229
mtx_timedlock— 224

timespec_get— 224, 229, 368
tm— 366
TMPDIR— 192
tmpfile— 192
TO_SIGNED_EXPR— 296
TO_UNSIGNED_EXPR— 296
TO_VOID_PTR_EXPR— 285, 288
token — 111
token_print— 345
fat pointer — 348
function table — 347

tolower— 364
toolchain — xviii, 208
Torvalds, Linus — 148, 330

INDEX 401

toupper— 44, 364
Tracy — 281
transaction — 219
triangular matrix — 95
troff— 111
try— 352, 352–353, 358
tss_create— 231
tss_delete— 231
tss_get— 231
tss_set— 231
tss_t— 231
Tutorial Introduction to the Language

B, A— 3
two’s complement — 40, 47, 54
two-dimensional array — see

multidimensional array
type cast — see cast
type conversion — 42–43
variadic function argument — 151

type punning — 171–172
typedef— 37–38, 103, 261, 284
tag name injection — 102, 158, 170

typeof— 67–68, 290, 291, 296, 378
C23, prior to — 378

typeof_unqual— 69, 296
C23, prior to — 378

U

u, U (unsigned literal suffix) — 13, 34
uchar.h— 39
uint8_t, etc. — 38, 41
choosing appropriate — 42

uintptr_t— 261
uncertainty principle — 278
#undef— 126
undefined behavior — 235–240
++, --— 47
array indexing — 88
_Atomic structure member — 248
compiler optimization — 238–239
different inline function

definitions — 148
flexible array member — 165
implications — 236–237
main thread termination — 219

modifying constant — 55
nasal demons — 240
other languages — 239–240
pointer dereferencing — 88, 93
race condition — 216
reading uninitialized variable — 9,

271, 280
sanitizer — 279
setjmp— 300, 301
signed integer overflow — 40–42
signed integer underflow — 40–41
specifier mismatch — 152
variadic argument
accessing — 151
type mismatch — 151

UNDERLYING_TYPE— 297
Unicode — 33, 292
character types — 38–39
in identifier — 29

uninitialized variable — 271, 280
union — 30, 38, 52, 169–177, 203, 337
anonymous — 171, 175
compound literal — 170
definition — 169–170
designated initializer — 170
function return value — 141
initialization — 170
C23, prior to — 371

member — 170
access — 53
namespace — 30

restricted class hierarchy —
172–176

safeguard — 175–176
tag — 170
type punning — 171–172
which member — 171

union— 170, 336
uniq— 331
UNIQUE_NAME— 130, 296
unistd.h— 189, 207
unportable C — 235
unsigned— 12, 32, 33, 77
char— 33

unspecified behavior — 235–236

INDEX402

case evaluation order — 77
evaluation order — 45

use after free — 269–270
uwb, UWB (unsigned _BitInt literal

suffix) — 35

V

\v (vertical tab character literal) — 33
va_arg— 149–152
__VA_ARGS__— 118, 122, 125, 132,

150, 180, 226, 288
extension — 378

VA_ARGS_COUNT— 131, 150, 151, 226
va_end— 149–150, 152, 276, 316,

320
va_list— 149–150, 152, 153, 276,

316, 320
__VA_OPT__— 118, 122, 132, 288
C23, prior to — 378

va_start— 149–150, 152, 276, 316,
320
C23, prior to — 378

valgrind— 281
VALUE_COMMA— 123
variable — 5
variable length array — 96–97
C++— 97
longjmp, and — 302, 358

variadic function — 138, 149–153,
286, 296
C23, prior to — 378–379
calling variadic function — 152–153
pitfalls — 150–152

variadic macro — 118
VERS_PTR— 261
versioned pointer — 261–262
vfprintf— 152, 180, 276
vfscanf— 194
vim— 214
virtual function pointer — 347
virtual function table — 347–348
Vizzini — 242
VLA — see variable length array
vnsum— 149–150
void

casting to — 55
pointer — 86
return type, instead of — 16, 135
zero parameters — 136, 375

volatile— 67, 138, 249, 284,
309–312, 358
compiler optimization

suppression — 309–310
east — 309
other languages — 311
setjmp, and — 301, 311
signal handler, and — 310–311
wrong use — 220, 312

Voyage to Lilliput, A— 56
vprintf— 152, 180
vscanf— 194
vsnprintf— 180, 316–317, 320
vsscanf— 194
vstr_is_any— 150–151
VTune — 281

W

Wachowski, Lana and Lilly — 25
wait-free — 258
-Wall (compiler option) — 272
warning — 272–276
0 as nullptr— 276
cast alignment — 272
comma operator misuse — 272
comparison is always true or

false— 275
const, discard — 286
const, modify — 18
deprecated— 70
disable — 276
else, dangling — 359
enumeration constant case— 107
enumeration value, duplicate

assigned — 273
enumeration, different — 273
expression is always false— 292
fallthrough— 78, 274
floating-point equal — 273
format string nonliteral — 274
format string sign mismatch — 274

INDEX 403

format string type mismatch — 274
implicit conversion — 272
implicit fallthrough — 78, 274
incompatible pointer — 289
inline— 147
maybe_unused— 71
nodiscard— 71
non-null array parameter syntax —

138
noreturn— 72
#pragma— 127
printf specification — 181
recommended — 272–276
restrict— 306
scanf specification — 195
shadow — 130, 274, 359
shifting sign overflow — 275
sizeof— 141
string literal to char*— 275
struct, nested — 158
suppress via cast — 54–56
uninitialized variable — 10, 127,

271, 275
conditionally — 272
sometimes — 275

unreachable code — 275
unused variable, function, or

label — 55, 245, 275
#warning— 124–125
C23, prior to — 379

wb, WB (signed _BitInt literal
suffix) — 35

-Wcast-align (compiler option) —
272

wchar_t— 39
wchar.h— 39
-Wcomma (compiler option) — 272
-Wconditional-uninitialized

(compiler option) — 272
-Wconversion (compiler option) —

272
wctype.h— 39
-Wduplicate-enum (compiler

option) — 273

weakly-ordered — see CPU,
weakly-ordered

-Wenum-enum-conversion (compiler
option) — 273

-Wextra (compiler option) — 273
-Wfloat-equal (compiler option) —

273
-Wfor-loop-analysis (compiler

option) — 273
-Wformat-nonliteral (compiler

option) — 127, 274
-Wformat-signedness (compiler

option) — 274
-Wformat-type-confusion

(compiler option) — 274
while— 6, 75
whitespace — 4
in declaration — 62
in function-like macro — 117

-Wimplicit-fallthrough (compiler
option) — 78, 274

_WIN32— 114
Windows — seeMicrosoft Windows
-Winline (compiler option) — 147
wint_t— 39
Wireshark — xvii
exceptions — 359

-Wlogical-op-parentheses

(compiler option) — 274
-Wno-dangling-else (compiler

option) — 359
-Wno-shadow (compiler option) —

359
Woods, John F. — 240
write— 189
-Wshadow (compiler option) — 274
-Wshift-sign-overflow (compiler

option) — 275
-Wsometimes-uninitialized

(compiler option) — 275
-Wuninitialized (compiler

option) — 127, 271, 275
-Wunreachable-code (compiler

option) — 72, 275
-Wunused (compiler option) — 71, 275

404 INDEX

-Wutological-type-limit-compare

(compiler option) — 275
-Wwrite-strings (compiler

option) — 275
-Wzero-as-null-pointer-constant

(compiler option) — 276

X

\xhh (hexadecimal character literal) —
33

X macro — 122–124
enumeration values
counting — 124
serializing — 123–124

x86–64 — 58, 114, 237, 238, 267, 279,
305, 306

Xcode — 213, 214, 281
XL C/C++— 209

Y

yacc— 124

Z

ZFS — 184
Zlib — xvii

	Contents
	Preface
	“Should I still learn C?”
	“Wouldn’t learning C++ be good enough?” “I already know C++. Isn’t that good enough?”
	“Why this book?”
	Notes to the Reader
	Some Preliminary Notes on C
	Acknowledgments
	About the Author
	About the Technical Reviewers

	Part I Learning C
	Chapter 1 A Tour of C
	1.1 A First Program
	1.2 Copying Input to Output
	1.3 Strings
	1.4 Functions
	1.5 Memory
	1.6 Pointers
	1.7 const
	1.8 Dynamic Memory
	1.9 Structures
	1.10 Epilogue

	Chapter 2 Comments, Names, and Types
	2.1 Comments
	2.2 Names
	2.3 Namespaces
	2.4 Scope
	2.5 Built-In Types
	2.5.1 Modifiers
	2.5.2 bool
	2.5.3 char
	2.5.4 int
	2.5.5 _BitInt
	2.5.6 float, double, and long double
	2.5.7 _Decimal32, _Decimal64, and _Decimal128
	2.5.8 Complex Numbers
	2.5.9 Imaginary Numbers

	2.6 typedef
	2.7 Fixed-Width Integer Types
	2.8 Unicode Character Types
	2.9 Other Standard Types
	2.10 Numeric Limits
	2.11 Signed Integer Overflow
	2.12 Choosing an Appropriate Integer Type
	2.13 Type Conversions
	2.14 Epilogue

	Chapter 3 Operators
	3.1 Associativity vs. Evaluation Order
	3.2 Arithmetic Operators
	3.3 Unary Plus and Minus Operators
	3.4 Increment and Decrement Operators
	3.5 Relational Operators
	3.6 Logical Operators
	3.7 Conditional Operator
	3.8 Bitwise Operators
	3.9 Assignment Operators
	3.10 Function Call Operator
	3.11 Array Indexing Operator
	3.12 Address-of and Dereference Operators
	3.13 Member Access Operators
	3.14 Casting Operator
	3.14.1 Casting to void
	3.14.2 Casting Away const
	3.14.3 Casting Pointers

	3.15 Comma Operator
	3.16 sizeof Operator
	3.17 alignof Operator
	3.18 Epilogue

	Chapter 4 Declarations
	4.1 Multiple Declarations
	4.2 auto
	4.3 Storage Classes
	4.3.1 auto
	4.3.2 extern
	4.3.3 static
	4.3.4 register

	4.4 constexpr
	4.5 const
	4.6 typeof
	4.6.1 Declarations without Initializers
	4.6.2 Clarifying Complicated Declarations

	4.7 typeof_unqual
	4.8 alignas
	4.9 Attributes
	4.9.1 deprecated
	4.9.2 fallthrough
	4.9.3 maybe_unused
	4.9.4 nodiscard
	4.9.5 noreturn

	4.10 Epilogue

	Chapter 5 Statements
	5.1 Expression Statement
	5.2 Compound Statement
	5.3 if-else
	5.4 while
	5.5 do-while
	5.6 for
	5.7 break and continue
	5.8 switch
	5.9 return
	5.10 goto
	5.11 Empty Statement (;)
	5.12 Epilogue

	Chapter 6 Arrays and Pointers
	6.1 Array Declaration
	6.2 Array Initialization
	6.3 Array Indexing
	6.4 Multidimensional Arrays
	6.5 void Pointers
	6.6 Pointers to Pointers
	6.7 Arrays and Pointers
	6.8 Arrays vs. Pointers
	6.9 Arrays of Pointers
	6.10 Pointers to Function
	6.11 Array Compound Literals
	6.11.1 Compound Literal Lifetime and Storage Class

	6.12 Multidimensional Arrays vs. Pointers
	6.13 Dynamically Allocating 2D Arrays
	6.14 Variable Length Arrays
	6.15 Epilogue

	Chapter 7 Enumerations
	7.1 Declarations
	7.2 Name Collisions
	7.3 Underlying Type
	7.4 Implicit Conversion
	7.5 Enumeration Constant Values
	7.5.1 Externally Imposed Values
	7.5.2 Serializing Values
	7.5.3 Duplicate Values
	7.5.4 “None” Values
	7.5.5 Checking Values
	7.5.6 “Count” Values
	7.5.7 Bit Flag Values

	7.6 Epilogue

	Chapter 8 Preprocessor
	8.1 Compilation Phases
	8.2 Language
	8.3 Object-Like Macros
	8.4 Predefined Macros
	8.5 Conditional Compilation
	8.5.1 defined
	8.5.2 __has_c_attribute
	8.5.3 __has_include

	8.6 File Inclusion
	8.7 Function-Like Macros
	8.7.1 Parameters
	8.7.2 Arguments
	8.7.3 Variable Numbers of Arguments
	8.7.4 Stringification
	8.7.5 Concatenation
	8.7.6 # and ## Pitfalls

	8.8 Multiple Statements
	8.9 X Macros
	8.9.1 Serializing Enumeration Values
	8.9.2 Counting Enumeration Values

	8.10 Filename and Line Information
	8.11 Errors and Warnings
	8.12 Not Expanding a Macro
	8.13 Paste Avoidance
	8.14 Undefining a Macro
	8.15 Embedding
	8.16 Pragmas
	8.17 Useful Macros
	8.18 Epilogue

	Chapter 9 Functions
	9.1 Declarations vs. Definitions
	9.2 Parameters
	9.3 No Overloading
	9.4 “Array” Parameters
	9.4.1 Non-Null Array Syntax for Parameters
	9.4.2 Qualified Array Syntax for Parameters
	9.4.3 Variable Length Array Syntax for Parameters
	9.4.4 Multidimensional Array Syntax for Parameters
	9.4.5 Multidimensional VLA Parameters
	9.4.6 Array Syntax for Parameters Pitfalls

	9.5 Return Values
	9.6 Error Handling
	9.7 main
	9.7.1 Declaration and Parameters
	9.7.2 Return Value and Exit Status

	9.8 Static Functions
	9.9 Static Local Variables
	9.9.1 __func__

	9.10 Inline Functions
	9.10.1 Differences from Macros
	9.10.2 Only a Hint
	9.10.3 When (and When Not) to Inline
	9.10.4 Inline Definition

	9.11 Variadic Functions
	9.11.1 Variadic Pitfalls
	9.11.2 Calling Other Variadic Functions

	9.12 Epilogue

	Chapter 10 Structures
	10.1 Definition
	10.2 No Nesting
	10.3 Initialization
	10.4 Structure Compound Literals
	10.5 Padding
	10.6 Flexible Array Members
	10.7 Bit-Fields
	10.8 Epilogue

	Chapter 11 Unions
	11.1 Definition
	11.2 Initialization
	11.3 Union Compound Literals
	11.4 Which Member?
	11.5 Type Punning
	11.6 Restricted Class Hierarchies
	11.6.1 Safeguards

	11.7 Epilogue

	Chapter 12 Input, Output, and Files
	12.1 Output
	12.1.1 Formatted Printing

	12.2 Files
	12.2.1 Open Modes
	12.2.2 File Information
	12.2.3 File State
	12.2.4 File Position
	12.2.5 Low-Level File I/O
	12.2.6 Memory as a File
	12.2.7 A File as Memory
	12.2.8 Deletion
	12.2.9 Temporary Files

	12.3 Directories
	12.4 Input
	12.4.1 Formatted Reading
	12.4.2 String-to-Number Conversion
	12.4.3 Line Reading
	12.4.4 Environment Variables

	12.5 Epilogue

	Chapter 13 Program Organization
	13.1 Include Guards
	13.2 Opaque Types
	13.3 Self Sufficient Headers
	13.3.1 Including Headers in a Header
	13.3.2 Include Everything Necessary
	13.3.3 Interdependencies

	13.4 Cooperating with C++
	13.5 Including Headers in a .c File
	13.6 Initialization and Clean-Up
	13.7 Header Example
	13.8 File Organization
	13.9 Build Tools
	13.10 Epilogue

	Chapter 14 Multithreading
	14.1 Creating and Joining Threads
	14.2 Detaching Threads
	14.3 “Atomic”
	14.3.1 A Bad Example

	14.4 Mutexes
	14.4.1 Timed Mutexes
	14.4.2 Deadlocks
	14.4.3 Recursive Mutexes

	14.5 Condition Variables
	14.5.1 Timed Condition Variables

	14.6 Doing Something Once
	14.7 thread_local
	14.8 Thread-Specific Storage
	14.9 Epilogue

	Part II Selected Topics
	Chapter 15 Undefined Behavior
	15.1 Implications and Example
	15.2 Two Parts to Undefined Behavior
	15.3 Optimization Can Make Things Worse
	15.4 Undefined Behavior in Other Languages
	15.5 Epilogue

	Chapter 16 Assertions
	16.1 Sample Implementation
	16.2 Assertions vs. Errors and Exceptions
	16.3 Disabling Assertions in Production Code
	16.4 Adding a Message
	16.5 Static Assertions
	16.6 Epilogue

	Chapter 17_Atomic
	17.1 Alternative to a Mutex
	17.2 Atomic Functions
	17.3 Memory Barriers
	17.3.1 memory_order_seq_cst
	17.3.2 memory_order_relaxed
	17.3.3 memory_order_acquire and memory_order_release
	17.3.4 memory_order_consume
	17.3.5 memory_order_acq_rel

	17.4 Compare and Swap
	17.5 Lock-Free Operations
	17.6 The “ABA Problem”
	17.7 Versioned Pointers
	17.8 False Sharing
	17.9 Epilogue

	Chapter 18 Debugging
	18.1 Printing Values
	18.2 Debug Information
	18.3 Optimization
	18.4 Core Dumps
	18.5 Signals
	18.6 Common Bugs
	18.6.1 Array Bounds
	18.6.2 Buffer Overflow
	18.6.3 Double Free
	18.6.4 Null Pointer Dereference
	18.6.5 Off-by-One
	18.6.6 Use After Free
	18.6.7 Memory Leak
	18.6.8 Uninitialized Variable

	18.7 Warnings
	18.7.1 Recommended Warnings
	18.7.2 Disabling Warnings

	18.8 The Curious Case of the Disappearing if
	18.9 Profiling
	18.10 Epilogue

	Chapter 19_Generic
	19.1 Motivating Example
	19.2 A printf Example
	19.3 const Overloading
	19.4 Static if
	19.5 No SFINAE (Substitution Failure is not an Error)
	19.6 Type Traits
	19.7 Epilogue

	Chapter 20 setjmp and longjmp
	20.1 Basics
	20.2 setjmp Restrictions
	20.3 volatile Variables
	20.4 longjmp Details
	20.5 Exceptions in C?
	20.6 Epilogue

	Chapter 21 restrict
	21.1 The Problem
	21.2 The Solution
	21.3 Pitfalls
	21.4 When (and When Not) to Use restrict
	21.5 Miscellaneous
	21.6 Epilogue

	Chapter 22 volatile
	22.1 Optimization Suppression
	22.2 Signal Handling
	22.3 setjmp
	22.4 volatile in Other Languages
	22.5 Wrong Uses
	22.6 Epilogue

	Part III Extended Examples
	Chapter 23 Strings
	23.1 string 2.0
	23.1.1 More put Variants
	23.1.2 Formatted Printing
	23.1.3 Taking Ownership

	23.2 strbuf: A String Buffer Type
	23.2.1 Reserving Space
	23.2.2 Putting
	23.2.3 Formatted Printing
	23.2.4 Taking Ownership
	23.2.5 Resetting

	23.3 Epilogue

	Chapter 24 Lists
	24.1 Initialization and Clean-Up
	24.2 Pushing
	24.3 Front, Back, and Empty
	24.4 Popping
	24.5 Removing from the Middle
	24.6 Iterating
	24.7 Epilogue

	Chapter 25 Maps
	25.1 Hash Tables
	25.2 Hash Table Types
	25.3 Initialization and Clean-Up
	25.4 Insert
	25.5 Growing
	25.6 Finding
	25.7 Deleting
	25.8 Iteration
	25.9 Epilogue

	Chapter 26 Dynamic Dispatch
	26.1 Pointers to Function
	26.2 Function Tables
	26.3 Fat Pointers
	26.4 Epilogue

	Chapter 27 Exceptions in C
	27.1 Requirements
	27.2 try
	27.3 throw
	27.4 catch
	27.5 finally
	27.6 Restrictions
	27.7 Epilogue

	Appendix A Standard Headers
	Appendix B Standard Functions
	B.1 ctype.h
	B.2 string.h
	B.3 time.h

	Appendix C C23 Differences
	C.1 Aggregate Initialization
	C.2 alignas and alignof
	C.3 Attributes
	C.4 auto
	C.5 Binary Literals
	C.6 bool
	C.7 constexpr
	C.8 Declarations After Labels
	C.9 Digit Separators
	C.10 #embed
	C.11 Fixed-Type Enumerations
	C.12 Function Definition Unnamed Parameters
	C.13 K&R-Style Function Declarations and Definitions
	C.14 noreturn
	C.15 nullptr
	C.16 static_assert
	C.17 Storage Classes for Compound Literals
	C.18 thread_local
	C.19 typeof and typeof_unqual
	C.20 __VA_OPT__
	C.21 Variadic Functions
	C.22 #warning

	Index

