

C++ PROGRAMMING

Step-by-Step Instructions for Creating a Robust
Program from Scratch

(Computer Programming Crash Course 2022)

Troy Carter

TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1:

SETTING UP A C++ DEVELOPMENT ENVIRONMENT

CHAPTER 2:

BASICS OF C++, PRINCIPLES OF PROGRAMMING

CHAPTER 3:

VARIABLES AND DATA TYPES

CHAPTER 4:

OPERATIONS IN C++

CHAPTER 5:

DECISION MAKING IN C++

CHAPTER 6:

CREATING FUNCTIONS

CONCLUSION AND FINAL NOTES

GLOSSARY

INTRODUCTION
This book is good for people who are new to programming and for

people who want to learn more about backend programming. Even though
C++ is sometimes seen as a ghost from the past, the language is still alive
and well, and it still plays a big role in some of the most important
technologies we use today. In the past, it has been one of the most important

languages in the world. It isn't going anywhere, and learning it will open up
your world.

C++ is often used as a backend language for big data because it takes
very little time to process the data. You'll soon see why companies like
Spotify, Adobe, YouTube, and Amazon use C++ to run their backends, and
you'll start to see why soon enough.

C++ is also used to make powerful game engines. Gamming engines
let programmers make a game without having to write everything from
scratch. They also make it easier to show the content in a game. A game
engine that runs on C++ is Unity Game Engine or Unreal Engine.

This is why C++ is a beautiful and efficient language: it has a good
power-to-hardware ratio. It uses very little hardware for the power it gives
us. They love it because they learned how to do it. This is why.
In this book we will cover the following topics:

Programming terminology and principles in programming
Setting up a C++ environment
Getting Started: Syntax, Data Types, and Variables
Power of C++: Operations, Loops, Switches, and Decision Making
Creating custom functions in C++

You will also find a useful glossary at the end so that you can use the

book as a reference once you get cracking.

CHAPTER 1:

SETTING UP A C++

DEVELOPMENT ENVIRONMENT

At its most basic, programming is writing a list of instructions in code
that the machine can understand. The code resides in executables files.
These files come with file extensions that tell a compiler what language is

in the file. These extensions are the suffixes you often see at the end of the
file, like “.js”. “.cpp” or “.hpp”.

To write code and save it in an executable file you need the following
things:

A text editor: this will allow you to write and edit the code.
A language compiler: This program takes the code you have written

and translates it into machine language that your computer can understand
and follow.

All programming languages work like this except HTML, CSS, and
JavaScript - these programs are interpreted and executed by the browser
(“Introduction,” n.d.). This means browser languages like JavaScript are
software-based, while C++ is compiled and then run directly on your
machine, not in a software environment.

This means C++ is an assembly language. Assembly languages are
low-level programming languages that need a compiler so they can run on a
machine (Lithmee, 2018). In this context, the word low- level does not carry
a bad connotation; it is descriptive, meaning that the language is closer to the
machine or just a step away from it.

As you can probably guess, C++ is a general-purpose language that
can run almost anywhere. This means it can be assembled and compiled in
several different ways. This will largely depend on your operating system
and the creation utilities you are using.

Our C++ exercises will be compiled on an online IDE. IDE stands for
Integrated Development Environment and it is used to edit and compile
code. I bet that description sounds familiar. Yes, an IDE is an example of
a text editor, but unlike a plain text editor, it has extra features that are
important to the programming process. An IDE can do things like compile
code, debug code, highlight code, warn you of syntax errors, and more.

In this book, we will use a Geeks for Geeks web-based IDE, but you

should learn to set up a local IDE. For the majority of your
programming career, that is where you will be working. Plus, you can
customize the IDE to fit your needs and spruce up your code.

Setting up Your Text Editor

IDE
environments that are focused on programming always have to have a text
editor and a compiler within them. Non-IDE environments separate
compilers and plain text editors. The text editor serves as a programming
interface in non-IDE setups; this simply means the text editor will be the
place you tinker with the code.

When looking for a text editor, you need one with syntax highlighting
and indenting as all programming languages follow their syntax. This is
because you want to be able to read your code easily and you want
collaborators to be able to do so, too. These text editors help by
improving readability. This is especially important because coding is no
longer and has never been a solitary task. There is no one-man genius like in
the movies.

Github and Pastebin are code aggregators that have syntax
highlighting add-ons enabled. Github will allow you to host your entire
project on their site, while Pastebin only allows code snippets. On these
platforms, you can save code in a variety of languages.

They are very useful to
programmers because they allow programmers to share code, collaborate,
test, and so forth. Learning how to deploy a project to Github is one of the
most important things in programming because it has become so
standardized. So, maintaining a Github profile has also become important,
as it holds all the projects you are working on, have worked on, and your
activity (Peshev, 2017). To a potential employer or collaborator, this
information is invaluable.

C++ Code Syntax Example
This is a screenshot from Paste Bin with syntax highlighting enabled

(“C++ Code,” 2015). Syntax highlighting and tabbed spacing help with
making the code more comprehensible. All text editors with syntax
highlighting will use this scheme: libraries in green, and functions, data
types, and data in blue. Strings will show up as red.

https://www.zotero.org/google-docs/?MBrR1L

When you are working locally you will
not have luxuries like these readily available. The first text editor you will
find on your system if you are using windows is Notepad. Wordpad is
another one that has more GUI features. What you will notice as you open
these programs is how plain and boring they are. They are like Word but
worse, because they shouldn’t be simple word processors if writing
efficient, elegant code is important to us. Their word processor-like aspects
make them more suitable for writing words in them, not code,
although you can code in them.

Side-by-side comparison of Windows’ Notepad utility and Wordpad
utility

This is a screenshot that features two of Windows’ built-in utilities,
Notepad on the left and Wordpad on the right. Wordpad has more Microsoft
suite GUI features that may be more recognizable to you, including
Microsoft's quick access bar located above the highlighted "File" tab.
Notepad is very bare-bones in comparison. Both utilities, unlike word
processors, allow you to save in different file extensions. However,
Wordpad is more similar to a word processor than Notepad, saving files in
rich text format (.rtf). Wordpad will warn you that you will lose formatting
if you save in an extension other than rich text format.

What makes Notepad and Wordpad unique is that they can save

files in a variety of file extensions, while word processors cannot. File
extensions are important because they tell the compiler how to interpret
what is written in the file, and that leads to the machine having a set of
instructions it can understand and execute.

Despite their abilities, these two programs lack crucial text editor
features like syntax highlighting. You might think this is no big deal, but it
is; the same words in code can mean different things because of how and
when they appear, so highlighting helps us distinguish what they refer to.
So if everything is plain, black and white, you have to work harder to
figure out what a piece of code refers to. It sounds complex now, but once
you code this will become obvious and necessary.

Notepad++, not to be confused with Windows ’Notepad, has
highlighting features but you will have to activate them like so:

Screenshot of Notepad ++ with C++ Syntax
Notepad ++ is free and, as the name suggests, was programmed in

C++. This screenshot illustrates how to enable language syntax. C++
syntax can specifically be enabled by going to language >"C"

> and navigating to C++. Notepad++ is only available on the
Windows platform (Orin, n.d.).

Bluefish is a more advanced text editor that comes with more

features (“Bluefish Editor: Features,” n.d.). Unlike Notepad++, Bluefish
is available on multiple platforms other than Windows. But I would not
recommend Bluefish for beginners because it has a lot of features that can
be overwhelming to a complete beginner. If you are not new to

programming you can go give it a shot; you will find it has many of the
GUI features typical of an IDE text editor.

Once in the text editor, you must select a compiler. Now let me show
you how you would set up your local environment on three platforms:
Windows, Linux, and Mac.

Windows IDE Installation and Setup
All you need to do is to install an IDE. Just remember that it has to

have a text editor and a compiler within it. Code::Blocks is a useful, open-
source IDE made for C++ and it easily fits with a variety of compilers
including Microsoft's Visual C++. Installing Code::Block is easy. You just
have to go to their downloads page at
http://www.codeblocks.org/downloads/26 and select the latest version.

Code::Blocks Download Page
As of this writing, Code::Blocks has version 20.03 for Windows and Linux
distributions. The page also includes helpful notes for installation.

Once the program is installed, you are set. You can use it to write

C++ programs. To do so you have to follow three steps: creating a file,
building the program, and running the program.

http://www.codeblocks.org/downloads/26

Creating a new file is a bit more nuanced. Here is what you have to
do:

Go to File > New
Select “Create an empty file” and input your code
Save the file with a “.cpp” extension
And, needless to say, you have to build a program before you can run

it. You can do this by going to Build > “Build and Run” in the menu.

Screenshot of “Hello World” in Code::Blocks
This is a live screenshot of our "Hello World" program in code

blocks. After this program is run, an error shows up in the Build Messages
of the code. Code::Blocks highlights the error on line 6. Given your
knowledge of C++ syntax from the earlier section, you should see how to
repair the code. How can we repair the code?

Hint: Data and functions are supposed to show up in blue .

By the way, this program is very lightweight for the amount of work

it allows you to do. Code::Block is available on Windows and Linux, but
there is no Mac version.

Mac OS IDE Installation and Setup

For Mac, you will need to get Xcode . It is a free IDE
software development suite for macOS. You can get it on the Mac App
Store. Xcode supports a variety of other languages like Java, Python, and
Ruby.

It is geared toward developing software for macOS operating
systems; this can be for the tvOS for AppleTV, watchOS for Apple watches,
and the iPadOS for iPad tablets (“What’s New in Xcode 9,” n.d.). Xcode
offers a variety of software development kits (SDKs) for different
MacOS platforms to help programmers through Apple’s proprietary
programming schemes. SDKs are a set of tools, provided by hardware and
software vendors, used for developing applications for specific platforms
(“What’s New in Xcode 9,” n.d.). SDKs allow developers to be fully
integrated within a development community, like Apple’s or Android’s.

Mac uses proprietary compilers that will only work with Xcode, so if
you are on Mac you have little choice but to develop with C++ using
Xcode. You can download and install Xcode by following this link:

https://apps.apple.com/us/app/xcode/id497799835?mt=12
Once the file is downloaded and installed, open Xcode and click on

the “Create a new Xcode Project” icon. Then select “New Project” in the
initial window.

https://apps.apple.com/us/app/xcode/id497799835?mt=12

Initial Screen for Xcode: Select a new project
These screenshots feature an Xcode build from version 8.3.3 (Patel,

2017). Therefore, our examples might look different from a more up-to-date
build. As of this writing, the most current version is 12.1, which mostly
includes updates to the various macOS platform SDKs (“ Xcode,” n.d.).
Despite these differences, these screenshots will still help you orient
yourself in the more current build. Our instruction will still yield results.

After you do this, a prompt window will appear that will ask you to
choose a template. This window will guide you through the rest of the
setup. Select the macOS sections and go to the Application section; in there,
choose the Command Line Tool.

It looks something like this:

1. Project Selection Screen: macOS > Application > Command Line
Tool

Xcode has many built-in code utilities for running programs on
various Apple platforms. Therefore, to run a test program you would have
to select macOS for it to run on your program. Further,

to access assembly language software development needed for C++,
you would have to use Xcode’s command-line tool. This command-line
tool can handle Objective-C and C languages as well.

After you select a template, the guide will present options for the
command-line tool. Here, you can name the project, add your organization’s
name, use a bundle identifier, and select a programming language.

2. Command Line Tool Options: Language > Select C++
Xcode’s command-line tool can handle Microsoft’s proprietary

languages like Swift. This program can run alongside C-based languages in
Mac compilers, including C++. Swift is selected by default.

In the same window, you will be required to add an organization

identifier. Remember that Xcode’s command-line tool is a programming
template for proprietary macOS operating systems, so the organization
identifier is used to create a unique idea for your program in Apple
databases: the Apple Developer Website and

iCloud Container, iTunes connect portal in the Appstore. This will
streamline your app into a proprietary macOS framework.

3. Command Line Tool Options: Organization Identifier > “cpp”
The organization's identifier is a naming convention that helps

programmers integrate their projects into Apple’s proprietary software
development scheme. Here, we are using “cpp” as our identifier, which
generates “cpp.HelloWorld” as our bundle identifier. Once we indicate an
identifier, the guide allows us to proceed to the next step.

Now, save your project in a directory of your choice. On the left-hand

side pane, Xcode will be able to open the file. You will have to select
main.cpp to access the global C++ file for your program in Xcode. If you so
desire, you can upload cpp files into the directory, and edit them.

3. Xcode Command Line Tool: “main.cpp”
This screenshot features the IDE style Xcode Command Line Tool

workspace. It has the opened in the text editor (Patel, 2017).

Once you have written some code and you want to run it, you select
Product and click on Run. Also, you can run and build the program by
selecting the button.

4. Xcode Command Line Tool: “Hello World” Build and Run

Similar to the Code::Blocks IDE, you will also have to build
and then run your program. This screenshot also features the results of

“Hello World” and the return value (Patel, 2017).

If you are a programmer who sees themselves working with Apple
devices, working and practicing in Xcode is a good investment. For
instance, Apple has a healthy share of the market in a wide variety of
consumer goods and services like streaming services and devices. With that
said, you should keep in mind that C++ is used mostly as a server-side
language. Server-side programming is code that controls how content is
delivered to a dynamic website like YouTube. Most server-side
programming is done on Linux machines.

Linux Compiler Installation
Linux is a console-based operation system, so it does not need a

text editor. Instead, we will focus on installing and setting up a
programming compiler. Mac and Windows automatically initialize a
compiler within the IDE, but in Linux, a more hands-on approach is
required. You will be required to execute a backend initialization. It might
seem like a lot of work, but in the great scheme of things, it allows those
working with Linux to have full control of the development procedure and
unlock more computing power.

Because Linux is an operating system that uses a console interface, it
will be strange to beginners or anyone who is used to Windows or Mac.
This is because users are often used to a GUI. The GUI- lessness of Linux
allows more computing power to be freed for programming – a GUI takes
some computing power to produce and maintain. This is why many servers
and other programming environments have console interfaces. Also, many
of them use Linux distributions.

A Linux distribution (distro) is an operating system made from Linux
kernel-based software collection and package management system for
installing additional software.

The following are instructions for installing and initializing a
compiler. This will be for Ubuntu, a popular Linux distro for beginners.
These installations will be similar in any Linux distro you will be using.

Note : There are many distributions of Linux that provide a GUI
based desktop experience that many users love. Most of these are open-
source and free to download and install. You can explore these distros and
create console interfaces to practice on. One free distro to consider is
CentOS, which is based on Red Hat for server management (“Centos-faq |
Open Source Community,” n.d.). Red Hat Enterprise Linux (RHEL) is
used in many server management setups and is not free. However, CentOS
uses many of its components and is an excellent distro for preparing to
work in Red Hat environments.

In this example, we will use the GNU Collection Compiler on
Linux. The GNU Collection Compiler is a Linux-based compiler that
supports C++ and other various languages like Fortran, Ada, and Java
(“GCC 7 Release Series—Changes, New Features, and Fixes

https://www.zotero.org/google-docs/?xc5bIM

—GNU Project—Free Software Foundation (FSF),” n.d.). To install
GNU GCC, follow these steps:

In the console, enter the following commands:
Check first if there is a version already installed on your machine by

entering this command: gcc –v

A. Check for GNU GCC in
Ubuntu Console

You should check your system for a copy of the GCC. This
screenshot features a system with GCC already installed (Patel, 2014).
After using the command, if there is no copy of GCC in your system, it
will be missing this line. If there is a copy, it will have a similar line. Most
likely, your version will be more recent.

The following commands will install GCC on your system (Agarwal,

2017b):
sudo apt-get update
sudo apt-get install GCC

https://www.zotero.org/google-docs/?Bxua2v

A. Install GNU GCC in
Ubuntu Console

In the screenshot, a GNC GCC is already present. Running the
highlighted command will install the GNU GCC on your system if it isn’t
there (Patel, 2014). The console will prompt you to type “Y” for it to begin
the installation. You also are offered package management features like the
ability of the terminal to inform you of outdated or unnecessary packages. It
will also suggest commands that will make your system more efficient.
This explains the popularity of Linux with programmers; although wordy,
it allows them to troubleshoot with ease, gives them more control, and it is
easy to navigate when compared to GUIs. This is because programmers are
more likely to remember a line of code than where something resides in the
GUI.

The following command will install all the libraries required to
compile code and eventually run C++:

sudo apt-get install build-essential

A. Install GNU GCC in
Ubuntu Console

This screenshot shows a system with the build-essential libraries
installed and inputting the highlighted installation command (Patel, 2014).
Just as with installing the GCC, after using the command and finding
there is no copy of the build-essential libraries in your system, it will
prompt you to install. Type in “Y” and the terminal will install libraries.

Check the installation with the following command: g++ --version
If all went well it will tell you what version of GCC is installed.
Because Linux has a built-in text editor you will have to use

the following command to access the GUI for the text editor:
gedit
You will be free to write your program as you see fit. Remember to

save the programs with the “.cpp” extension so that they will be compiled
correctly.

Gedit in Ubuntu
This screenshot features Linux’s built-in text-editor, Gedit ([Running

C, C++ Programs in Linux] Ubuntu 16.04 (Ubuntu Tutorial for Beginners),
n.d.). Gedit is a Linux programming text editor utility that has syntax
highlighting and tabbed spacing features for a diverse array of
programming languages. Be sure to have “C++” selected from the
highlighted dropdown menu. You can save your program file in the GUI by
clicking the “save” button. Be sure to list which directory you have your
file saved, as you will have to point the compiler to that directory to
compile and run the code.

To test and run your code you must follow these instructions:
Lead the terminal to the files directory
To do this use this command. Enter it in the directory repeatedly until

the .cpp file is revealed.
ls
Compile and test the program file Use these commands to do so:

If there are any errors this command will tell you which line contains
the error just like you would expect from an IDE. Then you can open the
program file through “gedit [filename.cpp]” and fix the line of code.

Run the program file

The compiler will create an executable file called “test” that will run
the program. You can execute it by entering “. /test” in the terminal.

Testing, Compiling and Running a .cpp file in Ubuntu
This screenshot features the terminal testing, compiling, and running

the example code written in gedit ([Running C, C++ Programs in Linux]
Ubuntu 16.04 (Ubuntu Tutorial for Beginners), n.d.).

Linux distros are verbose console-based systems and most of them

can handle programming in any language through the terminal. Learning to
work in the Linux environment is beneficial as it exposes you to server-side
programming.

Note : The
process for installing GCC and compiling on CentOs is similar. To
install, you instead use “

 .
This command automatically installs the needed libraries as well.

The steps for composing, compiling, testing, and running the program are all
the same.

Creating your own programming environment helps prepare you for
real-world scenarios in a way that online coding spaces cannot. In this
book, we will be using an online IDE. This is because everyone will have
the same learning environment with standardized outputs and interfaces. It
simplifies things.

CHAPTER 2:

BASICS OF C++, PRINCIPLES OF

PROGRAMMING

Like any other language, programming languages have a structure, syntax,

and set of rules that make them easy to learn and use. In order to be a good person,
you need to know the words of another language. Knowing how to use them and
how they work in that language is an important part of communicating well in that
language. They all work the same way, but the communication they care about is
between humans and machines. Even though machines aren't as smart or capable
as we are today, there is still so much they can learn that we don't understand. They
can do this at a rate and in a way that isn't possible for us. All programming is a set
of steps. These can be rules, actions you want the machine to do, or something
else. In other words, we are able to communicate with each other because we
follow the rules of a programming language.

Programming rules, or syntax, are a set of symbols used to communicate
things like functions and variables in a program. These symbols are called
delimiters. So, how a code looks is important to the compiler. It tells them what
instructions to give to a machine.

Keep these things in mind before we start: C++ is not as easy to understand
as Python or other high-level programming languages. High-level languages, like
JS, Python, and C#, are made this way because it makes them easier to read and
manage. This is why they are made this way. C++, even though it is this way, is
easier for machines to understand because it isn't so abstracted. This is why. This is
why when you work with C++, you only need a compiler and a text editor, but
languages like Python need their own environments set up.

Principles of Programming
C++ has many ways of completing the same task. Just like with human

languages, there are many ways of saying the same thing, but some ways are best
suited for certain occasions and some aren’t. C++ is the same way; some methods
are great because they reduce program overhead. Many developers will want that
because it increases the performance of the entire application, and that is the first
principle of programming: complete a task with the least amount of functions as
possible. Do not make things more complicated than they need to be. In most
cases, this means using a loop or a switch statement in a frugal way.

The best way to do this is by understanding the nature of the problem first
and how best to implement the solution. In other words, you will need to write an

algorithm – a list of instructions that you want the machine to follow to fix the
problem.

Your designs should always begin with the thing you want the program to
do. This will also include your algorithm, or at least the problem that your
algorithm will fix. The algorithm will always look something like this:

Input: data coming, where applicable
Processing: operations performed on the data and declaration of variables
Output: the results, or the action you want performed.
Here is a verbose example of a C++ program for displaying “Hello

World”. This is to illustrate how C++ programs are composed:
// Simple C++ program to display "Hello World"
// Header file for input output functions #include<iostream>
using namespace std;
// main function -
// where the execution of program begins int main()
{
// prints hello world cout<<"Hello World"; return 0;
}
Here is the structure:
Call header file for input and output functions
Call the main function where the execution happens
Print “Hello World”
Terminating statement that indicates the state of the machine
We can see how verbose C++ is, because most of the steps regard the

backend aspects of C++ that are needed to execute the code, such as calling the
library files. Your algorithms don’t need to be this detailed most of the time.

Despite being simple, this algorithm illustrates how developers take tasks
and translate them into code. In the next chapter, we will use this algorithm to
write our program.

As you have noticed in the example, there are comments in the code that
explain what each part of the code does. These comments are preceded by “//”.
The compiler will not read any lines of code preceded by // because they don’t do
anything but help other people working on the code read what the code does. It is
good practice to include comments in your code so people know what each line of
code does.

Overview of the C++ Syntax
We have talked about the importance of syntax for the compiler, but it is

also important to understand the syntax of a programming language because it will
allow you to debug the code. Just like with human languages, if you know the rules
of a language you can correct yourself easily when you make mistakes.
Debugging is the process of finding and removing errors and abnormalities in the
code, also known as “bugs” (“What is Debugging?” n.d.). It is a process of
correction.

IDEs have debugging tools that highlight where errors occur in the code, but
these features aren’t always reliable. For instance, leaving out a semicolon to
terminate a line of code is a common error, but the debugger will highlight the
error in the (.h) file instead of the code where the mistake happens in the
program file (.cpp). Most debuggers are not intelligent enough to detect an absence
of something and will throw the verbose error that the compiler gives when the
unterminated line violates a rule in the library. However, a programmer will
pick up the error simply when they notice the red semicolon line delimiter is
missing from one of the lines.

“Hello World” program in GeeksforGeeks IDE without a line delimiter
This screenshot features “Hello World” with a missing delimiter.

Immediately you will notice that the IDE has different syntax highlighting for
C++ than the programming environments we explored

in the previous chapter. Syntax can vary from platform to platform. This is
why we are standardizing the process with GeeksforGeeks IDE. In our chosen

IDE, semicolons are not highlighted. However, the IDE can make up for this
by recognizing and annotating missing semicolons, as highlighted in the
screenshot. You can practice and explore this program by going to its generated
URL: https://ide.geeksforgeeks.org/mzbuPP46Sl.

It is easy to see this when the code is small, but when working on a larger
project the task can be difficult. I have heard of programmers who spend a
week and or more trying to find or fix a line in their code only to discover it is
something very minuscule like a missing letter or mismatch in case. To make
debugging easier, it is advised that you separate code into smaller modules (“What
is Debugging?” n.d.). Many errors can be found and easily dealt with in this way.

Let us look at the “Hello World” program and study its syntax in detail.
While syntax highlighting may vary across different platforms, these aspects of
code are consistently highlighted on all platforms.

Comments: As I said, these are the lines of code that the compiler will
ignore. They are used to annotate code and leave helpful explanations for other
programmers. This is great because normally when we code we collaborate with
others. It advised that you leave comments in your algorithm to simplify it for
others. In most platforms comments will be highlighted green. Comments are
always preceded with (//).

Header File Library: Lines that start with (#) are used by the compiler to
call library functions. These lines are very essential, so they appear in every
program. In the “Hello World” example we call a library that is used to manage
strings. These lines of code will be highlighted in different colors across different
platforms. In GeeksforGeeks the color is purple.

Statements: Statements describe the beginning of a line of code with
instructions that the compiler recognizes. This includes declaration handling
instructions, like “ using… ” or “ return... ” in our Hello World program. They
are also highlighted differently across multiple platforms. On GeeksForGeeks
they are highlighted purple.

Functions: This is
code that encapsulates instructions. It may take inputs and output a result. Every

https://ide.geeksforgeeks.org/mzbuPP46Sl

function is written like this: “[function_name] () “followed by curly braces {}.
Anything in the curly braces is the set of instructions that will be executed. In our
example, main () is the function that initiates the instructions that will output
“Hello World” with cout<<. In a “.cpp” program, int main () must always appear
for the program to function .

Data: These are
variables and other kinds of data functions and statements. In the GeeksforGeeks
IDE, they are highlighted blue.

Earlier we saw a Code::Block example with an error in it. Below is the

very same code next to one that is corrected. Immediately you can begin to
appreciate the syntax and what went wrong in the Code::Block example.

I will admit that it is not as impressive in a few code lines like this, but being
able to notice errors and explain them is one of the most important skills for
programmers. At this point you should not worry much about being able to do this.
The more you code and learn, the better equipped you will be to notice and fix
errors. Software and web development are industries with a high failure rate
because of this. To succeed as a developer you need to solve problems quickly,
find bugs more efficiently, and fix them. This also applies on the administrative
side, because being able to find, fix, and explain bugs is a large part of desk service
level agreements.

In tech, Service Level Agreements (SLAs) are agreements between a
service provider and a client. They agree upon aspects of the service, like support,
quality, availability, and responsibilities (Wieder, Butler, Theilmann, & Yahyapour,
2011). Comprehensive SLAs offer a debugging debriefing, where every error is
logged and listed with its cause, workaround, and solution. This is the best way to
do it in technology management firms and development stages. However,
administrators have more resources to dedicate to debugging than developers
themselves. They are compensated at a higher rate as well. For instance, web
developers make approximately $60,000 a year in the US; web administrators,
those in charge of SLAs, make about 1/3 more at $90,000 a year (“15-1199.03—

Web Administrators,” n.d.). This level of expertise is valuable because it
understands how the compiler translates C++.

First Program: Output and Basic Strings
“Hello World” is every programming language’s beginner project; its aim

is to show the learner the basic syntax of the program and how it functions. As you
learn more languages you will write many “Hello World” programs. In the
previous section, we used it to explore topics like algorithms, syntax, and C++
programming environments. In this section we will go further: we will manipulate
the code.

C++ uses the cout object from the iostream library. An object is a method
that a computer uses to manage data. In our example, cout was used to tell the
compiler to print “Hello World with the >> operator. Don’t freak out; we will
discuss operators and objects in later chapters. For now, it’s enough to
understand that the compiler reads cout as specific instructions because that
instruction is defined in the iostream library that we declared.

Now, let’s look at “Hello World” and the cout object by changing the print
out. Find the original code here so you can use it as a reference:

https://ide.geeksforgeeks.org/eA8ZMEKiDO

“Hello World” program in GeeksforGeeks IDE
This screenshot is the successful run of “Hello World” in split-screen mode.

As we begin to use the IDE for coding exercises, note the input and output
boxes. While there are no inputs for this program, you will input data into
the top box labeled “Input Goes Here…”

https://ide.geeksforgeeks.org/eA8ZMEKiDO

when prompted by the program in the output below.
You can access this program in the saved

IDE here: https://ide.geeksforgeeks.org/eA8ZMEKiDO.
You can also view a copy of the code in the index.

https://ide.geeksforgeeks.org/eA8ZMEKiDO

Using Cout
The cout object uses the << operator to print values and text, and we can

have as many of them as we like. Using the IDE in your browser, change the
code to print out:

Hello World
I am learning C++
Like this:

Adding cout objects
This screenshot is the successful run of our edited “Hello World” program

in split-screen mode. While the program ran without any errors, it didn’t produce
the result we wanted. Observing the output, the printed text is missing a new
line. We will have to instruct the compiler to add the new line to get the desired
result.

Adding lines can be done in several ways: we can add delimiters

within the strings or use another manipulator object from the iostream library.
Using Escape Sequences
Although it might be tempting to write a string within cout and enter a line,

it will not work. It will break the code and it will not run. Don’t believe me? Test
it!

You can add a new line by using an escape sequence. Escape sequences
are used in many instances where you need to introduce special characters
within strings and character streams. It can also add lines, like so:

Using in-string escape sequences to delimit and manipulate the
output

This screenshot is the successful run of our edited “Hello World”

program in split-screen mode. Using , we were able to get our
expected output.

As you look at the code, you can see that doubles quotes are used. So,

if you want to add double quotes in a string, you will have to use an escape
sequence so that the compiler knows that is not a part of the code. Not doing
so may cause unforeseen errors or bugs. This is why escape sequences matter.
Here is a list of the many instances where they can be used (“Escape sequences
—Cppreference.com,” n.d.):

“ ”: Used for single quotes “ ”: Used for double quotes “ ”: Used

for question marks “ ”: Used for backslashes

“ ”: Stands for “form feed” and is used to go to the next “page” “ ”:

Stands for “line feed” and is used to go to the next line “ ”: Stands for
“horizonatal tab” and adds 5 spaces horizontally

“ ”: Stands for “veritical tab” and is used for spacing in vertical
languages

Note : If you decide to try different Escape sequences As text
delimiters, be sure to only use the

button to save your work at another URL to return to later. To return to our
exercise, you can use our saved IDE workspace URL
(https://ide.geeksforgeeks.org/PsgBLSHE4h).

You can also access this code in the
index.

Using Endl: Input/Output Manipulators
Like we have said, programming languages are as versatile as human

language. You can express one instruction in many ways, and terminating a string
is no exception. The difference between an escape sequence and endl is that
endl flushes and refreshes the buffer used to store the string. Programmers use
endl to clear memory after printing a lot of text. You can see why this is useful
in memory management. Endl is an example of an input/output manipulator.
Input/Output manipulators are functions that allow you to control
input/output streams using the “<<” operator or the “>>” operator
(“Input/output manipulators—Cppreference.com,” n.d.).

Like escape sequences, there are many more input/output
manipulators that give programmers more control over data types or strings.
Many of them will make sense once we talk about data types and structuring
classes. Here are some of them (“Input/output manipulators—
Cppreference.com,” n.d.):

”: Switches between using “0/1” to “false/true” for Boolean values

“ “”:
For mathematical outputs, controls whether a prefix is used to indicate a

numeric base

https://ide.geeksforgeeks.org/PsgBLSHE4h

“ ” sign is used to
indicate non-negative numbers

“ ”: Controls the usage of uppercase
characters with particular output formats

“ ”

“ ”: Flushes the output stream “

” and flushes the output stream “ ”:
Receives an input as a monetary value

“ ”: Formats and outputs a monetary value

“ ”: Receives an input as a date/time value according to a
specified format

“ ”: Receives an input as a date/time value according to a
specified format

Note : Recall our conversation about C++11 and C++14. As of this
writing, most programming IDEs use C++11 as their default version. The
“get/put…” functions are all in C++11. If you receive an error trying to use
these manipulators, check to see if your setup is using C++11.

Additionally, “ ” is a manipulator that is in C++14 only. This
manipulator allows you to insert and extract quoted strings with embedded

spaces (“Input/output manipulators—Cppreference.com,” n.d.).

Omitting Namespace

We have already spoken about using namespace statements. We said it
helps declare strings globally, but when it comes to a small program like “Hello
World” it is not so important. For larger programs that use several functions, it is
good practice to use the statement to declare each string separately. This saves
memory space in the compiler, or you will find yourself in a situation where the
compiler is bogged down unnecessarily, having to pull the entire string
namespace library to print code. Declaring each string separately might make
your code wordier, but it will reduce compiler overhead, and it focuses your
instructions. Std namespace has multiple objects and definitions that can make

https://www.zotero.org/google-docs/?6OhBz2

it difficult for the computer to find the appropriate way to manipulate and define
a string. The namespace convention is important when you have functions that
are going to be called by multiple programs. So putting it in there
unnecessarily has the potential of making your functions poorly defined and
causing recognition errors between them.

Let’s make our code more efficient by removing the using namespace
from our code.

Testing Stability: Using a comment to
remove “using namespace”

This screenshot is an unsuccessful test run of the “Hello World” program
with removed. You can access this saved IDE
space through the following URL: https://ide.geeksforgeeks.org/VgobOAOdiX.

“Commenting out” lines of code is a highly efficient way of testing
the stability of code. You can delete the double forward slashes to remove the
comment and restore the line of code at any time. This allows you to test the
code without destroying it. Once you have completed testing, it is good practice
to delete any unwanted lines of code. During your testing, you can always return
to this saved instance by using the URL above. You can also access the
raw code in the index.

https://ide.geeksforgeeks.org/VgobOAOdiX

When you remove using namespace std the following error occurs:

prog.cpp: In function 'int main()':
prog.cpp:13:2: error: 'cout' was not declared in this scope cout<<"Hello

World!" << endl;
^
prog.cpp:13:2: note: suggested alternative: In file included from

prog.cpp:4:0:
/usr/include/c++/5/iostream:61:18: note: 'std::cout' extern

ostream cout; /// Linked to standard output
^
prog.cpp:13:26: error: 'endl' was not declared in this scope cout<<"Hello

World!" << endl;
^
prog.cpp:13:26: note: suggested alternative:
In file included from /usr/include/c++/5/iostream:39:0, from prog.cpp:4:
/usr/include/c++/5/ostream:590:5: note: 'std::endl'

ndl(basic_ostream<_CharT, _Traits>& os)
^

Looking closely, the compiler tells us that we need to declare cout
and endl . It even makes suggestions, like declaring them as std . Let’s do as the
compiler asks and see what happens.

Declaring the iostream objects and manipulators
This screenshot is a successful test run of the “Hello World” program

with removed. Once the iostream objects and
manipulators were successfully declared, the unneeded line was removed.

If you would like to practice, you can use this URL:
https://ide.geeksforgeeks.org/VgobOAOdiX

Note : If you are having multiple errors during your practice, we will
always provide a saved IDE workspace with a successful run of the program to
help you troubleshoot. To begin the troubleshooting session, open up another
window, and navigate to the successful run. Compare your current workspace
with the successful run workspace. You can find a successful run of “Declaring
the iostream objects and manipulators” at this link:
https://ide.geeksforgeeks.org/a5zOdSWoQU.

https://ide.geeksforgeeks.org/VgobOAOdiX
https://ide.geeksforgeeks.org/a5zOdSWoQU

CHAPTER 3:

VARIABLES AND DATA TYPES

We have talked about how low-level programming is similar to machine

language, but they are different because they still use things like syntax, structures,
and variables that are similar to human languages. Variables are a mathematical
concept that humans use to tell machines what they mean. Speech is made up of a
lot of mathematical ideas, which is a big part of computer science. All of these are
called AND and OR gates, and they let machines make decisions on a single data
bit at a time. People who do a lot of computing work use bitwise functions at a
very small level. They can help with everything from controlling displays to
switching traffic on a server. Later in Chapter 4, we'll talk about these more
advanced topics. For now, let's learn more about C++ by looking at variables.

There are many important things about any programming language, but
variables are one of the most important. Functions and other operations in a
programming language work on variables. Some programs don't need input or
output, but all programs have some variable that they are working on or there's
nothing to work on, so that's what we said. The result of a function is always a
change in the state it is in at the end. There is a state change when a machine
moves from one decision or operational phase to the next one. In old mainframe
computers, this term was used to talk about how things worked. It's still used in
computer science to talk about how programs work, though. In our example, the

IDE started with the main() state already set up before the program started. Then, it
changed states so that it could run the output command.

Because lower-level languages are so close to machine language, state
changes are talked about a lot because they are so important. They are also called
compiled languages because they are turned into machine language when they are
written down at a low level. High-level languages like Python don't have to be
written in this way. When we talked about how higher-level languages don't need
variables to be named with their data types because they have built-in libraries, you
might remember that we said that. You can see this in Python, for example. The
Python environment lets it know about variables and their data types. C++ has to
be written in a way that makes it clear what things are and how they work. There
are different types of data. A data type tells the compiler how to deal with it.
Vectors in math help us understand data types better. Instead of integers, which
show us how much something costs, vectors show us how big or small a space is.
Because vectors are different from integers, they are not the same thing. Properties
like these are used in programs like Photoshop to help with how things look when
they're being drawn.

Note : Vector-based images can be manipulated without losing the quality
of the image. This is because files like .jpeg or .png store pixel location of an
image as integers on a grid. Vector files such as svg or .pdf use vectors to describe
their pixel locations. Therefore, when the image is made larger, the vectors indicate
how the colors should expand while the regular image files do not. This is what
causes the pixelation and distortion when manipulating non-vector image files.

Input and Output: Declaring Variables

In the previous chapter, we declared some things as we were learning how to
use cout . In this section, we are going to look at examples of data types and how
they are declared. Below are examples of variable declarations and what they stand
for (“C++ Variables,” n.d.). Keep in mind that variables essentially store types of
data:

“ ”: Keyword is short for “integer” and stores whole numbers, without
decimals. This keyword includes positive and negative integers.

“ ”: Stores numbers with decimals, both positive and negative
numbers.

“ ”: Keyword is short for “character” and stores single characters
regardless of their capitalization. Char values are single quoted.

“ ”: Stores text, such as in our "Hello World" example. String values
are double quoted.

“ ”: Keyword is short for “Boolean” and stores values with two states:
true or false. As previously discussed, these values can be expressed as either “0/1”
or “false/true.”

In the next section, we will discuss them in detail. Now let us look at
examples of these. To create a variable you have to assign it a value after the “=”
operator. Their syntax looks like this:

[Datatype][Variable_name] = [value] ;

Note: Each must be unique within your function.
Otherwise, it will cause an error.

Now let us create a variable called “ myNum” with the int data type and a
value of 10, then have our program print it out.

Declaring int numbers
This screenshot is a successful test run of the “myNum” program. You can

access the saved IDE workspace with the following URL:
https://ide.geeksforgeeks.org/t4P6qCVfkg.

This code was implemented without as it's
the best practice. You should practice implementing the same code successfully
with the namespace. Remember that you can reset the workspace to a successful
state by using the URL.

We had our share of cout examples in our code. Let’s use the input box in
the top right and the cin object so our program takes in inputs and operates on

https://ide.geeksforgeeks.org/t4P6qCVfkg

them.
We can do this by writing programs that take two numbers and adds them

together. To do this, we have to declare two variables that will store our inputs for
our program to operate on.

We will declare multiple variables:
Two int variables named x and y ,
One int variable named sum.
We can also tell the program to prompt the user to give two inputs.

Note: In our IDE, you must enter the inputs before you run the program. Each
input should be on its own line.

Summing inputs and printing the result
This screenshot is a successful test run of our “Summing” program. You can

access the saved IDE workspace with the following URL:
https://ide.geeksforgeeks.org/xDXaHjutDO. This exercise had to be modified for
our IDE’s input system. Therefore, we included

additional lines that confirm our inputs.

This code was implemented without as it's the
best practice. You should practice implementing the same code successfully with
the namespace. Remember that you can reset the workspace to the successful
state by using the URL.

https://ide.geeksforgeeks.org/xDXaHjutDO

Basic Data Types
Data types specify the size and types of information stored in a variable.

Each has its own keyword and an associated size (“C++ Data Types,” n.d) :

“ ”: Keyword is short for “integer” and stores whole numbers. Has a size
of 4 bytes.

“ ”: Stores decimal numbers with 7 decimal digits. Has a size of 4
bytes.

“ ”: Stores decimals numbers with 15 decimal digits. Has a size of 8
bytes.

“ ”: Keyword is short for “character” and stores single characters
regardless of their capitalization. Has a size of 1 byte.

“ ”: Keyword is short for “boolean” and stores values that have a state
of either being true or false. Has a size of 1 byte.

Note : Recall the “ ” data type. We have worked with this special
datatype extensively. String values can vary in size. Due to this, they are handled
in the iostream library to apply more flexibility for text handling. We’ll return to
strings and discuss some advanced topics in the next section.

These sizes matter for data handling. For instance, when you use int with
float / double all those numbers will be converted to int . It is because the
compiler uses 4 bytes to calculate integers which have the allocation for
decimals. The program will still run but your calculations will not be accurate.
Let’s explore this more by modifying our program and looking at the results. We
are going to be using a long-popular decimal number (pi):

.

It will test the limits of float and double.

To get the result we are looking for, it would be best to change the variable data
types. Will using float data types differ from double data types? Can we expect a
different result? Remember you can reset by going to a successful state of the
workspace using the URL.

Comparing Float and Double
This screenshot is a successful test run of our modified program calculating
We have removed the input statements and rearranged our data types. We

highly suggest creating this program for yourself using the previous

program located at this URL:
https://ide.geeksforgeeks.org/a8Mw6tmyf8. This exercise will give you practice in
some previous coding topics we discussed, including:

 “ ” data type keyword
“ ” input-output manipulator
It will also give you some experience with a logical operator. We will

discuss the logical operators in detail in the next chapter. Once you have
manipulated the program, open a new window, and compare this to the successful
run of the screenshot above. You can find the saved IDE workspace with the
successful run at this URL: https://ide.geeksforgeeks.org/dNIUdYtN7M.

https://ide.geeksforgeeks.org/a8Mw6tmyf8
https://ide.geeksforgeeks.org/dNIUdYtN7M

Power of C++: Advanced Strings
Another data type we are going to look at is strings. Strings are one of the

most popular data types in computer science; they are sequences of characters. It
might be helpful to think of them as sentences, but not every sentence
represents a string. We have seen how they work with our “Hello World” app.
Strings are a separate data type with their own library. To manipulate and work
with them a program needs an appropriate header – the string library. These
libraries have methods and features that allow the program to manipulate strings.

Operation: String Concatenation
String concatenation is when different strings are put together into one

string. It is combining strings. This is one of the most common functions of a
program. For instance, when you enter your name at a website or a game and then
you switch to another page and the screen greets you “Hello, [your_name]!”, the
program has used concatenation to do that. It has combined “Hello,” with your
name and “!” in the end.

In C++, string concatenations are performed through the “+” operator.
Let’s see this in action by making a program that prints an imputed string with a
greeting. For this to work, we must include the

<string> library, which contains objects and statements needed for
handling strings.

Open a fresh instance of the IDE we have been using and follow these
steps:

In addition to

library

Omit

Remove the current filler code within
Declare and set the variables

Declare and calculate

” operator
Print out the result as “Hello John Doe.” It should look something like this:

String Concatenation
This screenshot is a successful test run of our string concatenation

program. We encourage you to open up this program in another window and
compare it to your program. You can access the successful run
at this URL: https://ide.geeksforgeeks.org/B7XErpI9OE.

Note : Be sure to annotate your code. You can shorthand the instructions
and use them as an impromptu algorithm to annotate your code. This will help
you keep the program in order.

Usually, in forums, the concatenated text input is kept small as possible and
the formatting is done by the program. In the example, we manually have to add
space after “Hello” and “John”, but the program adds space. Now that you have
seen how the “+” operator works, how might you add space? See if you can
figure it out by playing with the code in your editor. If things fall apart
you can always return to our successful IDE workspace by clicking on the URL.

Note:

https://ide.geeksforgeeks.org/B7XErpI9OE

The “+” operator is used for both adding numbers and concatenating
strings.Trying to use the operator to add a string and a number will produce an
error.You can test this on your own using a modified program from the previous
chapter.You can also check out a successful run of the program here that shows
how to concatenate numbers as strings at this URL:

https://ide.geeksforgeeks.org/glPmslDwF7.Uncomment the
declarations to try to add numbers and strings to see the error for yourself.The
error is very long and verbose,as it conflicts across the

< iostream > and < string >libraries.
String Objects: Length() Attribute
We know from real-world experience that strings, like many things, can

come in different sizes. This is unlike other data types we have xplored so far.
C++ makes this possible because it construes strings as objects with attributes.
C++ defines a string length under the Length () attribute as you would expect in
an object. To access length, the string must be attached to a variable and you
must use the “.” syntax. It should look something like this:

[string_name]. length ()
Let’s return to our program and retrieve the length of fullName . We will

need to modify our code by adding a new line with the syntax above and another
cout , like this:

Print fullName.Length()
This screenshot is a successful test run of our modified string

concatenation program. We encourage you to modify the program at this URL:
https://ide.geeksforgeeks.org/B7XErpI9OE.

https://ide.geeksforgeeks.org/B7XErpI9OE

Once you have modified the program, you can compare it to this
successful test run by opening it in another window. You can access this saved
IDE window at the following URL: https://ide.geeksforgeeks.org/xbjO6Pg3Nh.

String Indexes and Arrays
Recall our conversation on objects. Vector arrays are also a special

mathematical phenomenon with their own special attributes. An array is an
orderly arrangement of objects – often rows, columns, or a matrix – where each
has its own specific location. Strings are stored in arrays made up of characters.
Therefore, a string array is orderly arrangements of characters where each
character in a string is indexed in its own location. Arrays are accessed by using [
] to find a character or any other items in an array. String indexes start with [0].
Let’s see this in action by changing our program so that it prints out the 3rd

character in fullName .
Note:
Remember that the index starts with [0].Therefore the 3rd character in the

string array would be at [2], not 3.
We are going to use this syntax to do so:
fullName [x]
The x stands for the index of the character we would like to print out.

Remember to also edit the cout to properly print the letter. You will also need to
use escape sequences like this:

https://ide.geeksforgeeks.org/xbjO6Pg3Nh

Access fullName String Array
This screenshot is a successful test run of our modified string attributes

program. We encourage you to modify the program at this URL:
https://ide.geeksforgeeks.org/xbjO6Pg3Nh.
Once you have modified the program, you can compare it to this

successful test run by opening it in another window. You can access this saved
IDE window at the following URL:
https://ide.geeksforgeeks.org/JWSG7HB2Ms.

In our examples we have relied a lot on cout capabilities, but, as I have
alluded to, there are other strings handling capabilities used by programmers to
field content from different sources. These are cin objects and the getline ()
function.

Cin and getline() function
In examples from the previous chapter, we have used cin . Like cout , cin

is an object in the < iostream > library and it allows a program to receive input
using the “>>” operator. Like cout , cin objects must be defined with the std
data type. Let’s modify our concatenation programs so that it receives the input
of “John Doe”. You can use your name if you like, as it can be fun to do so.
You will need to follow these instructions:

Navigate to the string concatenator program at the following URL:
https://ide.geeksforgeeks.org/B7XErpI9OE
Declare the variables
Prompt the user for their name

Calculate the
operation by using the following code snippet:

Print the results
If you find yourself stuck, here is how it should look:

https://ide.geeksforgeeks.org/xbjO6Pg3Nh
https://ide.geeksforgeeks.org/JWSG7HB2Ms
https://ide.geeksforgeeks.org/B7XErpI9OE

String Concatenation with cin
This screenshot is a successful test run of our modified string
concatenation program using . We encourage you to open up this

program in another window and compare it to your program. You can access the
successful run at this URL: https://ide.geeksforgeeks.org/KyuLgBoicA.

Note: Be sure to annotate your code. You can shorthand the instructions
and use them as an impromptu algorithm to annotate your code. This will help
you keep the program in order.

The program will work only when the user enters their first and last
name separately. But most peoples ’names are stored or put in as one single
string. Let’s change our program so that it greets the user when they enter their
full name. You will need to follow these steps:

If not there already, or you need to reset the workspace, go to the previous
workspace at the following URL:

https://ide.geeksforgeeks.org/KyuLgBoicA

Declare only the variable

Prompt the user for their full name using

Greet the user using

https://ide.geeksforgeeks.org/KyuLgBoicA
https://ide.geeksforgeeks.org/KyuLgBoicA

String Termination with cin
This screenshot is an unsuccessful test run of our modified string
concatenation program using . While the program completed with no

errors, we did not get an expected result. If your program had errors after your
modifications or did not get a similar result, we encourage you to use our
successful run to troubleshoot your workspace. Open up this successful run in
another window and compare it to your program. You can access the successful
run at this URL: https://ide.geeksforgeeks.org/aU6GZpAxwn.

You have witnessed typical cin behavior. When cin encounters a space it
reads it as a string terminator and stops. This is why “Doe” is not added to the
output. To get it to read the entire string with spaces, we must use the getline ()
function from the <string> library; it extracts all characters from the input and
turns them into a string array.

Note :
getline ()is usually preferred over cin to ensure that programs can

read fielded text from secondary sources,particularly since getline ()
can read and aggregate different sorts of characters without errors.

Here is an example of getline () functions used well:
https://www.geeksforgeeks.org/getline-string-c/

In this chapter, we have done quite a bit. We have looked at specialized
functions, accessing objects, text manipulators, and operators. We will cover
them in more detail in the coming chapters. I hope you have seen the role of

https://ide.geeksforgeeks.org/aU6GZpAxwn
http://www.geeksforgeeks.org/getline-string-c/

operators in directing data and lending program functionality. In the following
chapter, we are going to be looking at operators and how they give programs
decision- making capabilities.

CHAPTER 4:

OPERATIONS IN C++

We talked about how C++ is mostly a back-end, server-side language that

can be used to control servers and other tools for delivering content. Finally, we
looked at how C++ deals with data by looking at strings. There, we saw that
operations play a very important role in the world around us. Operations let us
control the loops and decisions in programs, so we can make sure they work the
way they should. We can add more functionality to our programs if we know
more about how things work. Functionality is how programmers use the tools
and methods of a language to reach their goal. They work, but it would be better
to use these features in a way that allows us to reach our goal, like content
management, instead.

Note : “Operand” describes the value or variable being operated on.
“Operator” describes the symbol indicating the sort of operation being carried
out (“C++ Operators,” n.d.).

The following is a list of operators in C++ (“Operators-In-C.png
(800×533),” n.d.):

https://www.zotero.org/google-docs/?7v1273

This table lists the operator symbols and categorizes them by (1) how
many operands they accept at a time > (2) the type of operation they implement.
For example, most arithmetic operators operate on two operands at a time.

All operators are characterized by how many operands they can operate on
at a time and the types of operations they can execute. They are divided into
three types:

Unary - operators that only accept 1 operand at a time
Binary - operators that only accept 2 operands at a time
Ternary - operators that accept more than 2 operands, or conditional

operators with several arguments
They are further divided into 6 more types:
Arithmetic
Relational
Logical
Bitwise
Assignment operators
Other operators such as a conditional, address, and redirection
In this chapter, we will look at 5 types of operators and their

functionalities.
Note: Operators have precedence, just as in mathematical equations. For

example, parentheses, which are used to call a function, have higher precedence
than addition or subtraction. However, you should try to keep your lines of code
as simple as possible. This makes your programs easier to edit and debug.
Having clean, uncomplicated code avoids bugs.

Binary Operators
Binary operators are the majority of operands you find in C++. They

include 5 of the 6 types of operators. This makes them the perfect place to
start. As the name suggests, binary operators compare two operands. They are
perfect for decision-making and controlling switches.

Arithmetic Operators
They are the most common and well understood of all operators because of

how much we use them even outside programming, since they are primarily
mathematical. We use them to perform mathematical operations.

Note : In the string concatenation example, the “ ” used to
concatenate was not an arithmetic function . Instead, it was a function of the

 library that handled the concatenation.
Most operators in this category require two operands. The only exceptions

are the unary “++” and “ - -“ operators which we use to increase or decrease
within a loop. The binary operators are (Jaggi, 2015a):

“ ”: the addition operator that adds two operands

“ ”: the subtraction operator that subtracts one operand from another “

”: the multiplication operator that multiplies two operands

“ ”: the division “forward slash” operator that divides the first operand
into the second

“ ”: the modulus operator that returns the remainder from dividing the
first operand into the second

Let’s make a cout program that demonstrates all of these 5 arithmetic
operands. Create a new C++ workspace in the IDE and follow these instructions:

Declare two variables as integers
Declare a variable,

Print the variables
 Add and print the result

Subtract and print the result
Multiply and print the result

Divide and print the result
Calculate the remainder from dividing and print the result Here is

how that looks.

Arithmetic Routine Program
This screenshot is a successful run of the arithmetic routine program

displaying all the arithmetic functions. You can access a copy of the raw code in
the index.

If you get errors, I encourage you to use our successful run to troubleshoot

your workspace. Open it up to compare the code. Here is where to find it:
https://ide.geeksforgeeks.org/vDcCH7f5EQ
Relational Operators
Most programs, not just in C++, use conditionals and loops to control flow.

Operators in this section are used to perform conditional switching. For instance,
in games, the game engine adapts to how the player interacts with the game. It
gives the gamer more of an engaging and dynamic experience.

If the gamer completes challenges quickly, it might mean they find the
game too easy. As a result, the game adjusts by increasing difficulty, but not too
much. If the game is too hard, the engine might respond to that by making it a
little easier to play. This is called dynamic gameplay, and it happens because
coding languages have conditional switching. Conditional switching, the
adaptation, happens through relational operators that compare two values. All
relational operators are binary (Jaggi, 2015b). Here they are:

“ ”: “Equal” operator that checks whether two given operands are
equal. If the operands are equal, it returns a Boolean “true”; if not, it returns
false.

“ ”: “Not-Equal” operator that also checks whether two given
operands are equal or not. However, this operator returns a Boolean true if the

https://ide.geeksforgeeks.org/vDcCH7f5EQ

operands are not equal and returns false if the operands are equal.

“ ”: “Greater-than” operator that checks if the operand on the left is
greater than the operand on the right. If so, this operator returns a Boolean true.
Otherwise, it returns false.

“ ”: “Less-than” operator that checks if the operand on the left is less
than the operand on the right. If so, this operator returns a Boolean true. It
returns Boolean false otherwise.

“ ”: “Greater-than or equal-to” operator that checks if the operand
on the left is greater than or equal to the operand on the right. If so, this
operand returns a Boolean true. If not, it returns a Boolean false.

“ ”: “Lesser-than or equal-to” operator that checks whether the
operand on the left is less than or equal to the operand on the right. If so, this
operand returns a Boolean true. If not, it returns false.

Like we did with the arithmetic operators, let’s create a cout program
which demonstrates relational operators, We are going to be using conditional
if () statements in our code. An if () statement executes the code within its curly
braces when a specified condition is met. If the condition is not met it will
execute the code in the else {} statement. The else does not have a condition to
check; it executes when the specified condition in if () is not met. Conditional
statements always use a relational operator to test a condition.

Note:
The if () and else statement is case sensitive.Both “if” and “else” must

be lowercase.Additionally,while if() can be executed without an else,the missing
else statement can cause an error if the condition is false.else statements also
cannot be implemented without an if()statement.We will describe if()...else
statements in more detail in later chapters

To create our program we have to follow the following steps.
Open and edit the arithmetic routine program using this URL:
https://ide.geeksforgeeks.org/vDcCH7f5EQ
Use the same variables from the arithmetic routine. Be sure to clean the

code of any unneeded variables.

https://ide.geeksforgeeks.org/vDcCH7f5EQ

Print an explanation of the program

Test and print the result
Create an if statement printing out the result if greater than
Create a nested else statement printing out the result if false

Note : For each for
all possibilities. For our simple program, it is only two possibilities for each
statement.

Test and print the result

Test and print the result

Test and print the result

Test and print the result

Test and print the result

Relational Routine Program
This screenshot is a successful run of the relational routine program

displaying all the relational functions.

If you did not get similar results, go look at our code here:

https://ide.geeksforgeeks.org/dFD3cEk85y. Compare and figure out where you
went wrong. An exercise like this one will equip you with debugging skills.

https://ide.geeksforgeeks.org/dFD3cEk85y

Also, take your time to appreciate the code and understand it.
Logical Operators
Logical operators add more complexity to relational operators. These are

comparable to human ideas of “and” or “or”. They also have qualities that switch
the meaning of the relational operator. Logical operators are used in
conjunction with relational operators to combine two or more conditions to
describe a constraint. They make us catch a lot more and do a lot more with
our conditionals. There are three logical operators (Jaggi, 2015b):

“”: the logical “AND” operator returns a Boolean true when both the
conditions are met and false if they aren’t.

“ ”: the logical “OR” operator returns a Boolean true when one (or both)
of the conditions are met, and false if none of the conditions are met.

“ ”: the logical “NOT” operator returns a Boolean true if the conditions
in consideration are not satisfied. If one of the conditions is true, then it returns a
Boolean false.

Logical operators are used a lot in machines. Imagine a “NOT” operator
in the security system of a bank. Let’s say locked doors are “0”[false], and
unlocked doors are “1”. Because the bank should stay secure, our default value is
“0.” This is called a failed closed system, because if things go wrong the doors
will be closed (the default). All signals that go to the door are controlled by a
“NOT” signal: If nothing is going on, the doors should remain locked, and if
there is robbery they should also remain locked. Doors that open during a
robbery will get a “NOT” signal to fail-close. But in a fire, these doors should
open, so the fail-closed “NOT” signal will return true to open doors.

Let’s explore logical operators by building a logical routine program.
Follow these instructions:

Open and edit the relational routine program using this URL:
https://ide.geeksforgeeks.org/dFD3cEk85y

Edit these additional
variables to test the logical operators:

Print an explanation of the program
Test if(a>b && c==d) and print the result
Create an if statement printing out the result if greater than

https://ide.geeksforgeeks.org/dFD3cEk85y

Create a nested else statement printing out the result if false
Test (a>b || c==d) and print the result
Test (!b) and print the result
Clean the code of any unnecessary lines Here is how it looks:

Logical Routine Program
This screenshot is a successful run of the logical routine program

displaying examples of all the logical functions. You can access this workspace
with this URL: https://ide.geeksforgeeks.org/x9ixjUYDBG

As you can see, the “AND” function may be difficult to print with just one

statements. Modify this exercise to create a program that can explain itself
better!

Hint: You only need one additionalstatement. You can check your work
against ours with this URL -- https://ide.geeksforgeeks.org/nh8yYV9Kjy.

https://ide.geeksforgeeks.org/x9ixjUYDBG
https://ide.geeksforgeeks.org/nh8yYV9Kjy

Let’s take a break from routines and explore other ways we can use logical

operators. Logical operators are based on machine logic, especially logical gates.
Logical gates are electronic circuits that have one or more inputs while having
one output. Logical gates have the same function as logical operators. “AND”
gates only pass “1” when all inputs are “1”; “OR” gates pass “1” when they
receive a “1” from any of their inputs; “NOT” passes “1” when they receive a
“0” as their input.

Logical gates can control the flow of data in a circuit, the same as our
logical operations when combined with a conditional statement. It is called a
conditional short-circuit in logical operators.

Logical AND operators and OR operators short-circuit. Recall how logical
AND returns a true Boolean value when both relational operators are
conditionally true. What’s more, relational operators are assessed in the order
that they appear in a conditional statement – if the first one is false the second
one will not be evaluated, so it short circuits.

OR operators do this differently. Only one relational operator has to return
true for it passes a true Boolean value. So if the first relational operator returns
true, it won't check the next one.

This is very useful because we can give more complex instructions to a
program about how to behave in what circumstances. OR and AND are short-
circuit opposites. Let’s use this to write a program that tells when a condition
short-circuits AND and OR gates.

Follow these instructions:

Open a new IDE workspace

Declare two variables:
Print an explanation of the program
This program will test if the OR gate or the AND gate shorts when a is

equal to b.
Print current values of a and b

Declare and calculate two variables:
resAND = ((a == b) && std::cout << "OR circuit shorted")
resOR = ((a == b) || std::cout << "AND circuit shorted") This is how it

looks:

Short Circuit Detection Program
This screenshot is a successful run of our short circuit detection program.

Using our knowledge of logical AND, logical OR, and their relationship to each
other, we were able to develop a way to detect short circuits. You can access this
workspace with this URL: https://ide.geeksforgeeks.org/uBLGtLbnnY

Try different values of to see if you can trip the different “circuits.”

Consider a short circuit detection program. How would we use it
in the real world? I have alluded to systems like these playing a role in bank
security. The question is how it would achieve those things? You can tell your
program that if a condition is not (“NOT”) met to refuse access, like if the
password does not match.

An understanding of logical operators gives a good idea of how machines
and systems make their decisions. Relational and logical operators give us more
control over what happens in the program and how it relates to everything around
it. We do this through various libraries, statements, and objects. So far we have
written small programs, but in bigger programs using objective control like these
can cause overhead for the compiler. That has a noticeable effect in programming
environments and industries like gaming engines, content delivery, and others.
Think about the servers at YouTube that have to deliver gigabytes of data per
second and gaming engines that need to render in real-time: they have to reduce

https://ide.geeksforgeeks.org/uBLGtLbnnY

the amount of overhead while being able to utilize these control features.
Thankfully, that can be achieved by using bitwise operators.

Bitwise Operators
On the circuit level, machines communicate by using AND and OR gates.

It gives them decision-making capabilities at a single bit data level. Bitwise
operators use those microscopic level calculations to access computing
processes at the machine level, bypassing objective programming. In other
words, they are logical operators operating on numbers at a binary level.

To use them,
you will need to know about binary. Humans conceptualize numbers using base-
10 numbers, also known as the decimal system. For instance, a number like 543
is understood as five-hundreds, three tens, and 4 single units. In base 10 it looks
like this:

In binary the same number would look like this 0b1000010110 – the “0b”
is just for us humans to understand it is a binary number. Binary numbers are
base-2, they just look different. All binary numbers are presented as a stream of
bits, which can either be in two states: 1 or 0. Like in base-10, the position of
the number determines its value. The

534 example shows a binary
number that is 10 bits long. Looking closely at the 534 streams we can see that
the 2nd, 3rd, 4th, and 10th bits are on (moving right to left), and all the other bits
are off (1 is on, 0 is off). In base 2 we calculate this as:

It is not easy for us humans to calculate it, but this is how computers
communicate, in streams of data bits. They are more adept at recognizing and
counting these numbers just as easily as if they were base-10 numbers to
humans. Therefore, using bitwise operators that function at the computer’s
natural level improves speed and performance (Killian, 2012) because it skips the
translation of objective programming into machine language. This is why you
will find bitwise operations are often used in competitive programming. Below
is a list of C++ bitwise operators (“Bitwise Operators in C/C++,” 2014):

“”: Bitwise AND takes two numbers (operands) and runs AND on every
bit within the stream of those numbers. The results of the AND stream will be 1
if both are 1.

https://www.zotero.org/google-docs/?w3RGU2

“ ”: Bitwise OR takes two numbers(operands) and runs OR on every bit
within the stream of those numbers. The results of the OR stream is 1 if any of
the two is 1.

“ ” Bitwise XOR that takes two numbers as operands and does
XOR on every bit within the stream of the two numbers. The result stream of
XOR is 1 if the two bits are different.

“ ” Left shift operator takes two numbers and left shifts the bits of
the first operand. The second operand is used to determine the number of places
to shift.

“ ” Right shift operator takes two numbers and right shifts the bits
of the first operand. The second operand is used to determine the number of
places to shift.

“ ” Bitwise NOT operator that takes one number and switches the
state of all the bits (1s to 0s, 0s to 1s).

Note: Machines use registers and buffers to store the bits for calculation. A
register is just an array of storage, where each bit gets its own place in the array.
If you think of these data streams as an array, it will help you rationalize many of
the bitwise operators, particularly the shift operators.

Let’s write a bitwise routine program. First, we will need to create a bit
register and study bit streams. This requires the bitset<x>() function for the
< bitset > library. It allows you to print a binary stream with a length of <x>.
Follow the instructions:

Open a new IDE C++ workspace
In addition to

library as well

Declare the
operand variables and their values

Declare register c for the calculations

Print operand values and their registers:

Note : Since all numbers are less than 255, we will then use a bit stream
of for the entire exercise.

Calculate Bitwise AND for

Print the result and the register in

Note : Since we are using bitwise functions, it is better to use to
terminate our lines. This is because this function clears the buffer and prevents
overflow. This makes the program a little slower, but it ensures that our registers
are clear. The speed difference is made up by using bitwise functions.

Calculate Bitwise OR for

Print the resulting value and the register in

Calculate Bitwise XOR for

Print the resulting value and the register in

Calculate Bitwise NOT for

Print the resulting value and the register in

Print a comparison register for
This will make it easier to compare with the shifting bitwise operations

Calculate Bitwise Left Shift for

Print the result and the register in

Calculate Bitwise Left Shift for

Print the result and the register in

Bitwise Routine with Register Printing
This screenshot is a successful run of our bitwise routine program.

The output features visuals of the register array. This will allow you to

see how each bitwise is calculated and how it changes the register. This is a long
program with a very long output. To study it fully, you can access it on our saved
workspace using this URL: https://ide.geeksforgeeks.org/JgnAlVwONe

Note :
This program uses usingnamespacestd ; to simplify the program.It would

be good practice to omit the namespace and declare each cout and bitwise object
separately.

The last binary operators we will discuss are assignment operators.
Assignment operators are used for assigning value and dynamically changing
values. In principles of programming, we talked about programs needing to be as
efficient as possible while using a few instructions as possible. Advanced
assignments operators combine with equal assignments and other various
operations to reduce lines of code. They are all atomic operations, meaning they
allow programmers to manipulate stored values within variables, and
reassign them. Below is a list of common assignment operators (Prabhu, 2018):

“ ”: Equal assignment operator assigns the value on the right to the
variable on the left.

“

’
operators. This operator adds the value of the variable on the left to the

value on the right. Then it saves the result to the variable on the left.

For
example,

without having to use a separate arithmetic operator. “

https://ide.geeksforgeeks.org/JgnAlVwONe

’
operators. This operator subtracts the value of the variable on the left from

the value on the right. Then it saves the result to the variable on the left.

“

’

operators. This operator multiplies the value of the variable on the left
with the value on the right and saves the result to the variable on the left.

“

without having to use a separate arithmetic operator.
Note : There are also bitwise atomic

assignment operations: “

 ”. We will focus on the arithmetic-atomic
functions for now.

Let’s create an assignment operator routine program to see how these
assignment operations work. Follow these steps:

Open a new IDE workspace
Declare and initialize our variable int a = 10;
Print an explanation of the program and the starting value
Note : When making programs that print, always make them easy to

read! Make sure your program can explain itself.
Atomically add 10 and print the result
Atomically subtract 10 from our variable and print the result
Atomically multiply 10 and print the result
Atomically divide our variable by 10 and print the result Here is how it

looks:

Assignment Routine
This screenshot is a successful run of our assignment routine program.

This program has a sequential output, which means that each instruction impacts
the result of the next instruction. This means

if we were to change the order of the atomic operations applied to that
the output would be different. To study it fully, you can access it on
our saved workspace using this URL:
https://ide.geeksforgeeks.org/Fbc63b0u1E

These binary assignment operators combine assignments and arithmetic
functions. They work well when controlling loops and conditional statements,

https://ide.geeksforgeeks.org/Fbc63b0u1E

too. Atomic assignment operators are closely related to unary arithmetic
operators. Both are frequently used to control loops. Let’s take a look at unary
operations.

Unary Operations
Before we discuss unary operations, let’s look at code that uses them.

While Loop featuring a Unary Operator

This screenshot is of a
simple while loop that prints the value of the Counter, will cause an error as the
while loop would not be able to advance. We will talk about loops extensively in
the decision making chapter. To study it fully, you can access it on our saved
workspace using this URL: https://ide.geeksforgeeks.org/MgMUtZdlpb

The i = 1 + i is the same

as i ++. Using the unary form makes the code neater because it precludes the +
arithmetic operator and the = assignment operator. We can also use an atomic
addition operator to complete the code: i +=1 is the same as i ++. But a format

https://docs.google.com/document/d/1rfTukE008PScFE0mgrN2m-UKMEAv4Y8VYrXHB3BjvOU/edit#heading%3Dh.4bvk7pj
https://ide.geeksforgeeks.org/MgMUtZdlpb

like that would require the compiler to store and operate on an additional
operand.

Unary operators are there to simplify code by only having one operand.
Remember, unary operators are those operators that use one operand. Here are
some of the other examples of unary operators (Kumar, 2017) :

“ ”: Increment operator used to increase the value of an integer by 1.
It can be placed in front of a variable to increment the value immediately or after
to temporarily save the value before increment.

“ ”: Decrement operator used to decrease the value of an integer by 1.
Similar to the increment, programmers can also implement pre- decrement and
post-decrement instructions.

“ ”: Unary minus operator that is used to change the sign of a variable
or argument. Performing a unary minus operation on a negative integer will make
it positive and vice versa.

“!”: NOT
operator is used to reverse the Boolean logical state of an operand.
For example, if a variable

.
“”: Address of operator that is used to point to the address of a

variable.
Let’s make a unary operator routine to see how the pre- and post-

instructions work. Follow these instructions:
Open a new IDE workspace
Declare and initialize our variable and a buffer int a = 10, buf
Print an explanation of the program and the starting value
Calculate a post-increment equal to the buffer and print the result
Calculate a post-decrement equal to the buffer and print the result
Calculate a pre-increment equal to the buffer and print the result
Calculate a pre-decrement equal to the buffer and print the result

Unary Operator Routine with Post- and Pre-Operations
This screenshot is of our unary operator routine program. To study it

fully, you can access it on our saved workspace using this URL:
https://ide.geeksforgeeks.org/mvcYtky6C4

The program operates on a and while it calculates, it stores the value in a

buffer we can observe. Comparing a with the buffer, the post- operation delays
changing the value of a; in contrast, pre-operations change the value
immediately.

On top of all this, we have the sizeof () operator. It looks like a
function but it is categorized as an operator. It checks the size of an object and
returns the size in bytes.

Recall our conversation about bit streams. What I didn’t say is that they are
often divided into a group of 8. One byte is a single 8-bit stream that can present
255 numbers. In our bitwise routine, our registers were 1 byte long, that was
because we were working with numbers that were less than 255.

Let’s write a program that can get the size of an array using sizeof (). Here
we go:

Open a new C++ IDE workspace

Declare
and initialize our array

Print an explanation of the program and the array
Note: To print the array you will have to create a for loop. We will discuss

for loops in the next chapter. For now, just use these lines of code:

https://ide.geeksforgeeks.org/mvcYtky6C4

Calculate
the size of the array

Print the size of the array

Array Size Reporting Program
This screenshot is of our array size reporting program. We encourage you

to compare your result to ours. To study it fully, you can access it on our saved
workspace using this URL: https://ide.geeksforgeeks.org/HwpcLYB4P0.

That was a good example of two unary operations: sizeof () and the

address pointer &. The for (){} loop we used to print the array is called a copy
constructor call. Constructor copy calls consist of a for () loop with an index

https://ide.geeksforgeeks.org/HwpcLYB4P0

variable, an Addressof operator, and a container object with an index. The copy
constructor sets up [0]: [the size of arr] by using the Addressof pointer to
automatically deduce the [size of arr] and print its contents. In simple words,
a copy constructor uses Addressof to reduce the size of the program.

The sizeof () operator is an objective operation and it uses a single
operand, the arr array object. They both have disadvantages and advantages. The
sizeof () operator uses one operand and is easier to spot without esoteric memory
registers. The call combination had to use an additional object (e), to print the
array but it would have done with less incrementing operators. We are going
to discuss loops and decision making features of C++ in more detail in the next
chapter. For now, let’s turn our attention to ternary operators.

Ternary Operators

C++ only has one ternary operator. Ternary operators, also called
conditional operators, take 3 or more operands – they are Boolean logic-based
operators. The result is always determined by whether or not the first
expression is true, then the second will be evaluated; if the first expression is
false, the third expression will be evaluated. If you recall our if () …else
statement in the relational program routine, it had three parts: an initial expression
that the function evaluates, an expression it evaluates if the initial expression is
true, and an else statement which is evaluated when the initial expression is not
true. Conditional operators have the same components as an if () …else
statement. They are just more compact.

Let’s make a program that illustrates these similarities:
Open a new IDE C++ workspace
To use the conditional operator you will have to call the

 library
Print an explanation for the conditional operator
This program will pick the greatest one using two methods: a conditional

operator and an statement
We expect a result of 5.
Declare the variable and execute the conditional operator int

arsize=sizeof(arr)/sizeof(arr[0]);

Print an explanation for the

 then print 2
then print 5

Conditional Operations Demo
This screenshot is of our conditional operations demo. This program has

no real practical functionality. However, for our purposes, it does demonstrate

the similar structures between conditional operators and
statements. To study it fully, we suggest that you access the copy of our saved
workspace using this URL: https://ide.geeksforgeeks.org/9kJBAAqJtK.

In this chapter, we looked at 3 types of operators: unary, binary, and
ternary. As you have seen, these operators allow programmers to apply powerful
aspects of C++. For instance, binary operators allow machines to make logical
decisions, compute values, and control processes by changing functions. Unary
functions help us shrink and simplify complicated code. Ternary operators allow
us to be more succinct in our code. They are all central to making decisions and
switching in C++.

https://ide.geeksforgeeks.org/9kJBAAqJtK

CHAPTER 5:

DECISION MAKING IN C++

In this class, we're going to talk about decision-making tools. These

tools are like if-else loops. In chapter 4, we saw how operators can be used
in logical expressions. When we make decisions, we use these expressions to
help us think about them. People write programs for machines that make
decisions based on what they want them to do. Decision-making functions
and logical expressions make this possible.

This is what happened in Chapter 4. We used a for() loop in a copy
constructor to field the array and print all the indices. To make the for() loop
work, we used the unary operator Addressof with an auto data type. This
meant that we didn't need to make a separate counter for the loop. If you
haven't had to start and finish loops yourself, the copy constructor's
simplicity isn't as clear as it should be.

Loops
Programmers spend a lot of time automating mundane, repetitive tasks

through scripts and routines. What allows scripts and routines to achieve this
are loops. As the name suggests, loops repeat the same instructions as long
as a certain condition is met (“C++ While Loop,” n.d.). Loops are often used
to navigate aggregated objects with indices like arrays and vectors. For
instance, you might write a loop that keeps searching an array until a specific
item is found. There are two types of loops: entry-controlled loops and exit
loops.

In our unary arithmetic example, we had a while () loop with a
counter. The counter is an arbitrary variable that is used with a unary
operator to increment an indicated expression. It is an example of an entry
controlled loop – it tests a condition before it executes code. Let’s modify
that example into a while () loop to explore its components. We will use it to
print out “Hello World” 10 times. Follow these instructions:

Open the following IDE C++ workspace:
https://ide.geeksforgeeks.org/MgMUtZdlpb

Print explanation of the program This program will number
and print 10 lines--

Change the conditional test to
Print “Hello World” 10 times with numbered lines

https://ide.geeksforgeeks.org/MgMUtZdlpb

While Loop Demo
This screenshot is of our while loop demo. You can access a copy of

our saved workspace using this URL:
https://ide.geeksforgeeks.org/0WjOL6TSh4.

This program shows us how incremental counters work. For it to work, the

number must start with 1, not 0. Most people are used to numbers working that
way. To do this, we initialized the counter at 1. Yet if we set the condition to 10
it will give us 9 print outs. To get 10 we have to increase the number to 11.

Another example of a controlled loop is the for() loop function; it requires
three expressions as inputs (Agarwal, 2017a):

An initialization expression that declares a data type and a
variable. This variable can be either a counter or an indexing variable.

A test expression that produces a Boolean . If the condition is
true then the for loop will continue to loop its specified block of code.

An update expression that increments the counter or the indexing variable
Let’s see how they work by writing a program similar to our while () loop

example. Follow these instructions:
Open the following IDE C++ workspace:

https://ide.geeksforgeeks.org/0WjOL6TSh4
Print explanation of the program
This program will number and print 10 lines of Hello World

Implement the for() loop
Print “Hello World” 10 times with numbered lines
Clean the data of any unneeded code and comments

https://ide.geeksforgeeks.org/0WjOL6TSh4
https://ide.geeksforgeeks.org/0WjOL6TSh4

For Loop Demo
This screenshot is of our for loop demo. You can access a copy of our

saved workspace using this URL:
https://ide.geeksforgeeks.org/Dj2gyW02av.

Note : Make sure you clean your code of unnecessary lines and update your
comments. While this does not impact the performance of your code, it can make
things confusing for other programmers on your team that have to implement your
code. Do you see a mistake here?

Now that we see how for () loops work and
how they are constructed, let’s look at the copy constructor we used earlier. The
expression used for the copy constructor call was:

“ E ” being the indexing variable and “ arr ” the variable array. We saw that
the for() loop needs three expressions to work: the initialization, the test
expression, and the update expression.

The copy constructor has an initializing function (const auto& e). When
you look closely, you can see this expression also works as a test expression,
because the & is an Addressof operator that points to e which stands for indices in
the arr array. The : is an operator to break into class. It allows the attributes of
the container arr array to pass to the e variable. The for() loop will print the e
until the end of the array is reached.

The copy constructor call is good for a situation where the size of the
container is unknown and you want all items printed out. For() loops define the
number of iterations that have to take place from the get-go, while copy
constructors calls are defined by the size of the container. While() loops are best
for the situation where the condition can change at any time, during which you
want the iterations to stop.

The do{}…while() loop is for
situations where the while() code may impact the test. Do{}..while() loops are
exit controlled, meaning code is executed until a condition is met. The code is
executed at least once before checking the test condition. Think back to that bank
security example. The door will always fail-close, receiving a NOT signal, except
when there is a fire. Here is how a do{}..while loop will look for that:

https://ide.geeksforgeeks.org/Dj2gyW02av

The door will remain closed as long as fire is not detected. Do{}..while()
loops are useful for many fail-close systems. Other applications include data
correction in servers where a correction routine is run when an error is detected.
Let’s code our first do while loop by changing our while() program. Follow these
instructions:

Open the following IDE C++ workspace:
https://ide.geeksforgeeks.org/0WjOL6TSh4

Initialize counter to
Implement the do{} code block

Set
Clean the data of any unneeded code and comments

https://ide.geeksforgeeks.org/0WjOL6TSh4

Check the results

Do While Loop Demo exhibiting an exit controlled loop
This screenshot is of our do while loop demo. You should notice that, despite

code block was executed. This is because the loop is an exit control loop: the
condition is tested after the code block is executed. The code has the potential to
execute. You can access a copy of our saved workspace using this URL:

https://ide.geeksforgeeks.org/t6zcNK2Wj7.
See how the message was printed despite the conditions being false. You can

apply it to data corrections in streams. Many error detection services pause the
stream of data and a request for retransmission is sent. A do{}…while loop will
allow the data stream to continue until an error is detected. These are the types of
routines used by YouTube in server buffers. This shows how useful they are in
controlling data. For single switching, we would use an if()…else .

If()…Else
So far we have used if () …else functions in our examples. They are easy to

understand and their structure is pretty self-explanatory. An if ()
…else statement tests a condition and based on the result it executes one

block of code or another. They are a combination of two separate distinct

https://ide.geeksforgeeks.org/t6zcNK2Wj7

statements.
You can execute the if () function alone but the compiler expects an else

statement. An else statement contains the code that accompanies the if ()
expression. An else statement can never be executed without the if () statement.

An else if () statement specifies another condition to test. It creates a chain
of statements called nested if-else statements. If you are testing a lot of conditions,
it is best to use a switch which we will discuss in the next section. Let’s make our
first nested if-else statement. Follow these instructions (“C++ | Nested Ternary
Operator,” 2018):

Open a new IDE C++ workspace
Print an explanation for the conditional operator
This program will go through a sequential list of numbers 2 through 4 and

pick the greatest one using a nested statement
We expect a result of 4.

Implement a nested if-else then print 2

 then print 3

print
4

Nested If-Else Demo

This screenshot is of our nested if-else demo. Just like our other
demos, this program has no functionality. However, for our purposes, this is an
excellent exercise for implementing and understanding still requires code blocks
for each statement. The code blocks should also correspond to the condition in
order to create a functional program that fulfills its stated purpose. You can access
a copy of our saved workspace using this URL:
https://ide.geeksforgeeks.org/89MlNvRWYU.

Let’s examine the exercise further. The nested if-else can be divided into
two parts: the if () and else – if () statement that contains conditions and
execution code. You notice that the blocks of code logically follow the state goal of
the program, which is to find the largest number. It makes sense to print numbers
in ascending order in case we change the conditional statement. Conditions within
the if () statements and the blocks of code they contain are arranged in a way that
allows the program to flow to the answer. For instance, if (2 > 3) is hardcoded to
the next nested statement. The structure followed the nested conditional operator
deliberately.

Nested Ternary If Else Operator
In the previous chapter, we talked about conditional operators, ternary

operators that test conditions and execute an expression based on the results. We
said the structure it uses is similar to an if ()... else statement but more succinct.
For instance, an if () statement tests a condition and executes one of the two
blocks of code depending on the result of the test. If () …else statements can be
nested, and conditional operators can also be nested. Let's compare the structures
of both. Follow these steps to participate (“C++ | Nested Ternary Operator,” 2018):

If you had closed the nested if-else demo, open up the saved IDE C++
workspace with our program at this URL:
https://ide.geeksforgeeks.org/89MlNvRWYU

Print an explanation for the program
This program will go through a sequential list of numbers 2 through 4 and

pick the greatest one using two methods: a conditional operator and a nested
 statement

We expect a result of 4.
Add a printed notification of the nested if-else
Print a notification for the conditional statement
Add the conditional operator code: declare the variable and execute the

conditional operator
int a = 2 > 3 ? 2 : 3 > 4 ? 3 : 4;

https://ide.geeksforgeeks.org/89MlNvRWYU
https://ide.geeksforgeeks.org/89MlNvRWYU

Clean the code of any unnecessary lines and correct any annotations

Nested If-Else and Nested Ternary Operation Comparison
This screenshot is of our modified nested if-else demo. We modified our

demo by implementing a nested ternary operator for side-by-side comparison. As
you may have experienced, the ternary operator was much easier to implement,
using fewer statements. You can access a copy of our saved workspace using this
URL: https://ide.geeksforgeeks.org/BdfgWVg8uc.

Let’s talk about what we have just done there. In our previous discussion, we

broke down the nested if-else statement into its components and a list of possible
results. Even in the case where “2” and “3” were arbitrary values, if-else
statements have to list all possible results to ensure great functionality regardless of
the conditional statements results.

To see how
conditional statement results of a nested if-else match with components of ternary
operator, we have to take a close look at the ternary operator. Here is the syntax:

Var is the variable used to print the result. The result of the nested if- else

match expression before the ? indicators of the operator. The second expression
executes when the first expression is false and corresponds to the else if () in
the nested if-else. You can already see advantages to the compactness of ternary

https://ide.geeksforgeeks.org/BdfgWVg8uc

operators, but by their nature ternary operators are not suited for code blocks.
With three or more expressions both get cluttered, so we need something else to
handle multiple expressions: the switch statement.

Switch

As I have said, programmers need to strive for efficient, easily
understandable code. It makes work easier for you and everyone else. Using switch
over if ().. else is one way you can achieve this, especially in circumstances where
we are handling a lot of expressions. Ternary operators reduce lines of code, and it
is because of this that they are not suited for situations where the code needs to
span more than one line.

Switch statements offer a solution for both problems. Switch
statements are multibranch statements that provide a clean way to execute a
different block of code on one variable. Here is the syntax (Awasthi, n.d.):

{

}
Note : A switch can only evaluate an integer against case numbers. To add

the conditional component, you must change the variable with an operation.
The operator must produce an integer.

Let’s create a switch demo practice the components of a switch:
Open a new IDE C++ workspace

Initialize a variable
Print an explanation of the program

Initialize the switch
Print out “Choice is 1” for case 1
Print out “Choice is 2” for case 2
Print out “Choice is 3” for case 3
Print out “Program Exit” for the default;

Switch Demo
This is a screenshot of our switch demo. You can access a copy of

our saved workspace using this URL:
https://ide.geeksforgeeks.org/dSehFXULz5. We highly suggest using this demo to
convert one of our previous exercises into a switch. One excellent candidate is our
relational routine program. It had 6 if()... else statements! This comes out to 12
different scenarios. How could you convert this program into a switch? Hint:
Consider creating a menu for each relational routine using the input function. You
can study the relational routine for yourself at this URL:
https://ide.geeksforgeeks.org/dFD3cEk85y.

Now that we have seen what decision making functions are and how they
work, let’s turn our attention to functions and their role in

programming.

https://ide.geeksforgeeks.org/dSehFXULz5
https://ide.geeksforgeeks.org/dFD3cEk85y

CHAPTER 6:

CREATING FUNCTIONS

 It's a way to
figure out what's wrong with a problem and figure out how your code will help
fix it. Algorithms get inputs, do things, and then give a result that changes a state.
A function is a piece of code that you can use many times without having to
write the code again. The code is usually something that does what it's supposed
to and can be used again and again. A function is made up of a header and a main
body. Here is how the syntax of a function looks:

{

}
Like you have seen, and like many other programming languages, C++ is

mostly just a series of functions, statements, and operators with objects and other
data-holding elements for in-between. Everything we have written so far has
used the main () function which uses syntax similar to the one above. So
functions aren’t new to you.

Every function must return a data type, just like the main () function
returns the int 0. If a function does not do this, (void) is used as the parameter
return type. As you might have guessed, the return is the statement that
terminates the function.

The inputs that the functions receive are called parameters or arguments.
Not all functions will take inputs as we have seen with main (); regardless
of this, you can still pass parameters into the function for it to run. This is
how libraries pass objects into main ().

Create and Call a Function
To begin calling a function, you must declare it and define it before

main (). This is because C++ executes sequentially. C++ practices take
precedence and functions get priority. This is why you must declare them before
main () so you can call them. They are also called this way because they make
code more organized. Once a function is declared, we can define it anywhere
outside of main ()

Let’s write a simple printing function so we can appreciate them more.
Follow these instructions:

Open a new IDE C++ workspace
Declare your function void myFunction();
Call your function in main () myFunction()

Define your
function outside of main

Separating the declaration and the definition falls under good programming
practices. It makes it so you know all defined functions in the code that are
available for calling. Having definitions at the bottom makes it easy to parse for
errors within functions. Now let's turn our attention to parameter passing.

Parameter Passing
Functions are scripts that are given to the compiler. To complete the task

and be useful, these functions need inputs to compute. To remind you, these
inputs are called arguments or parameters. Programmers describe parameters
differently based on where they originate or appear. Parameters that go into a
defined function are called actual parameters. For instance, if you have a
summing function called mySum (x,y), when main () passes 2 and 3 into the
functions those parameters are actual parameters. Conversely, x and y are
formal parameters because they are variables that the data is going to be bound to.
This applies to all other parameters before actual parameters are passed. There are
two ways to pass parameters to functions (“Functions in C/C++,” 2015):

Pass by Value : Values of actual parameters are copied into and stored in
the function’s formal parameters. Any changes made inside main () do not
impact the actual parameters that were passed.

Pass by Reference: Both actual and formal parameters refer to the same
locations. Therefore, any changes made inside the main () function will impact
the actual parameters that were passed.

Let’s practice parameter passing by writing our own code. Follow these
instructions:

Open a new IDE C++ workspace

Declare your function int max(int x, int y)
Call your function in main ()

Initialize two actual variables
Initialize a variable and call the function int m = max(a, b);
Print the result
End main()
Define your function outside of main
This function should use an if() statement to check if x is greater than y.
If x is greater than y, then return x
Otherwise, return y.

Functions with Parameter Passing
This screenshot is of our function demo. You can access a copy of

our saved workspace using this URL:
https://ide.geeksforgeeks.org/NnsZczhX15. If you want more practice, we
suggest using this exercise as a template to turn one of our past

exercises into a function! Consider our exercise using and passing
parameters to it. We’ll discuss how to pass parameters in the next section, but
trying it first on your own will help you grasp the concept.

https://ide.geeksforgeeks.org/NnsZczhX15

In our example, we have used value passing well. The variables used
for main (a,b) are in a different location than those used in max (), (x, y).
You can see how this can be very useful in larger programs where several
complicated computations might take place in main (). It is preferred to pass
values because it ensures that actual variables remain present until the function is
called again.

Using a reference to pass arguments has its own advantages, especially in
larger programs. References to pass inessential values may speed up the program
and make it responsive. Scripting for automating functions is more likely to use
references to pass parameters since automated processes are likely to happen
repeatedly and quickly. These qualities are a selling point for reference-based
structures. Let’s now turn our attention to condensing and optimizing code.

Function Overloading
All defined objects and classes must have unique names. You cannot run a

program that has two variables that have the same name or an error will be
thrown. You might have seen this earlier while we're working on our routines and
demos, especially when we had to modify a program. So keep this in mind:
variables that are declared twice cause errors. But weirdly, multiple functions can
have the same name as other functions as long as they have different parameters.
This is only allowed in circumstances where the functions return different data
types. It is better, given that, to overload a function to return multiple data
types. This is what is called function overloading ; a process where
programmers combine functions to receive multiple data types. Why? Because it
simplifies and consolidates the code. Take a look at the following code (“C++
Function Overloading,” n.d.):

Program without function overloading
You can access a copy of our saved workspace using this URL:

https://ide.geeksforgeeks.org/qkpHhZsqq5. The functions are declared and
defined at the top of the file so that we can observe them better. You will be
using this file to perform function overloading on your own. Remember that you
can return to this workspace at any time if your code is damaged during editing.

https://ide.geeksforgeeks.org/qkpHhZsqq5

The program above declares two separate functions that do similar
computations. In a big program that is a waste of real estate and it is inefficient.
It makes it harder to edit the code since either one of the functions are unlikely to
be in the same place in a larger program. To make things more efficient, we
should consolidate these functions under one name, and “stack” the data types.
Here’s how you can do this:

Open the saved IDE workspace at the following URL:
https://ide.geeksforgeeks.org/qkpHhZsqq5

Change double plusFuncdouble...to double plusFunc...
Call double plusFuncdouble... in place of double plusFunc...

Program function overloading
You can access a copy of our saved workspace using this URL:

https://ide.geeksforgeeks.org/e1qLzi3aGo. We kept the functions at the top of the
file for easier editing. This overloading exercise requires a few small minute
detail changes in order for this file to work. Use our workspace to compare your
file in the event you get any long-standing errors. Remember that you can return
to the original workspace at any time if your code is damaged during

diting. You can access the original workspace at this URL:
https://ide.geeksforgeeks.org/qkpHhZsqq5.

https://ide.geeksforgeeks.org/qkpHhZsqq5
https://ide.geeksforgeeks.org/e1qLzi3aGo
https://ide.geeksforgeeks.org/qkpHhZsqq5

When you consolidate
similar functions, you clean up your code. It is important, especially when you
have to debug the code, since the compiler will likely point to functions when
errors occur. The compiler does this because it is pointing to multiple libraries in
the C++ code. Consolidating and overloading functions ensures that your
compiler will have fewer functions to reference, making it easier for you to
debug. Keep in mind that C++ is constantly updating so it becomes even easier to
work with. New features are constantly added, and libraries are condensed and
further organized. So an error is C+++7 would look different than an error in
C++14. Updates bring new, easy ways to perform mundane tasks. For instance,
the copy constructor call combinations are considered more modern for indexing
containers such as arrays. To stay updated and reap the benefits of new C++
developments, you have to keep practicing, testing yourself, and asking
questions.

CONCLUSION AND FINAL NOTES
Learning how to code is a mental journey that can be fun, exciting,

and sometimes frustrating. In the end of this book, we should go over some
of the important things we learned. Because of this, they're also going to
come with some final thoughts and suggestions that are meant to help you
keep growing in this field.
Expanding Your Practice: Preparing Your Coding Environment

We have used an online IDE to make sure everyone has the same
experience, so we can all write the same code. Use the Run+URL button to
save your work in a different place. You can also save these for later by
using your saved IDE workspace and the URLs in this book. Use them as a
guide or to fix bad code. I have tried to show you the best ways to code in
all of the exercises we did. Make use of the many ways to do things in C++.
Don't be afraid to try new things and learn how to do things you want to do.
In his book, there aren't any definitive answers to any of the questions.
Programming doesn't have that kind of thing. So, come to this book for help
and look at other ways to do something. This book has a list of our codes at
the top, so you can find them quickly.

There are a lot of programming environments and text editors that
can work with the C++ language. Some people will have more than one
version of C++. A C++17 computer isn't going to work with a C++14
computer. People who use C++ 14 can understand more of its features
because they are easier to understand. This version of C++ is easier for
people to understand than the one before it, and this trend is likely to keep
going. C++11 is the oldest version of C++ that most people can find in most
programming environments.

I want you to set up your own IDE and work on it. It will help you
grow more quickly and get used to real-world situations faster, so you can
learn faster. We have talked about Code:: In this picture there are blocks for
Microsoft and the Mac's Xcode. If you have Linux, there are options that
are the same across all of them. Linux is a console-based environment that
is very popular with software developers because console-based
environments have a lot of built-in features that work with programs.

You can find many distros that have a GUI-based desktop that many
people like better. Most of them are open source, which means they can be
downloaded and set up for free. CentOS is a free Linux distro that can be
used to manage servers. Several parts of Red Hat Enterprise Linux (RHEL)
are used by CentOS. It is the best way to learn how to work with Red Hat
servers.

Coding Best Practices: Ownership of Learning and Collaboration

In our time together we have seen many techniques and best practices
for software development. In the first chapter, we talked about how
programs should fulfill their tasks with as little code as possible.
Thankfully, with each new version of C++, more ways of doing this are
added. The majority of beginner programming courses teach older, less
efficient methods of implementing common programming tasks like parsing
arrays, conditional statements, and calling functions. You will find most of
these techniques are never used in actual programming situations. Most
beginner courses are focused on equipping beginners with a strong grasp of
the basics – the foundation of your knowledge is often as important as how
you are going to progress. As you grow you will find more efficient ways of
solving problems with your code, but this can only happen if you practice
and study.

If you want to improve as a programmer you have to take ownership
of your learning. Learn pre-development tools like algorithms. It is all about
learning to fix problems. There are other pre-development tools you
can try, like diagraming. Diagraming is good for individuals who are visual
learners. All of these are great for growing as a programmer; it does not
matter which you choose, as long as pre- developments tools are something
you take advantage of.

Turning back to algorithms, more detailed algorithms will explain all
sorts of data types required for inputs, outputs, and other data. The
advantage of algorithms is that you can use them as a shorthand. You can
also annotate and manage your code. These habits will help keep your code
ordered and coherent to your team members. All these practices will help
enhance how you see and think about programs.

Software developers work in teams, with several people working on
the same piece of code at the same time. The importance of annotating your

code becomes very apparent in such situations.
It also happens that working with others will accelerate your growth.

When coding with others you learn from their experience and knowledge.
As we have said, C++ has a variety of library objects, statements, and other
tools. It is as rich as vocabulary in human languages because there are many
ways of doing the same things. Your way of fixing a problem will
depend on your ability to see efficient ways of doing so. But ultimately
all programming and software developments are creative endeavors.
Working with others will increase your programming “vocabulary” – you
will learn from how creatively they fix problems and you will find
insights of your own in the process. You should always keep in mind that
everyone can contribute something and what they contribute is heavily
influenced by the amount of experience they have. So even if you are
new to C++, you still have a unique experience and approach to solving
problems that other people don’t have because you think differently. That in
itself is valuable to any team, particularly if you learn to communicate your
ideas well. I highly recommend you use the glossary as one of the ways to
help you communicate clearly.

In addition to annotations, it is good practice to make your code as
clean as possible. I have demonstrated how to comment lines of code to
prevent breaking the code during editing. In your exercises, when you break
the code beyond repair, you can always start over from our saved IDEs, or
you can simply refresh the browser to start over (this will depend on the
state you ran and generated the code). Only generate URLs when you
need to save your code, not while you are developing.

We also stressed the importance of code structure. For instance, we
talked about the importance of declaring and defining functions: the best
practice is to declare your functions on the top and define them after the
main() function. It is similar to declaring integers. The techniques ensure
you have an inventory of functions, variables, and objects right at the
beginning. It works like an index and can help you avoid definition errors.

Formatting and editing your code of unnecessary lines reduces the
possibility of errors during development. You should always update your
comments when you make a change. Unformatted code will not impact
performance, the logic of the code will. It is a collaboration courtesy to
format your code, not to mention how much easier it makes things for you.

Other programmers on your team will be able to implement your code, or
even improve it, and they will leave comments.

But these types of practices are not just good for you. As the world
moves forward it is becoming more and more complicated, so it is good for
programs to explain themselves to the user. If your program prints, make
sure it is easy to read. We have seen how this can be done in this book. Use
escape sequences like \n to create new lines and \t to create horizontal table
so there is enough whitespace to your code. But as a back-end programmer
working with servers and other equipment, you may not have to print out as
often as a front- end programmer who serves content to the client. The only
users who may need to see your print outs are other technicians and
administrators managing those machines through the terminal. Formatting
practices are often underused in backend programming, but it is still a good
practice to have. It is valuable to administrators and technicians, who do not
have the resources to navigate esoteric compiler-generated errors that
programmers are used to when debugging. So a program that is formatted
and gives this information clearly in the terminal or consoles is important.

Take Away: Computer Science Concepts in C++

In addition to programming, we also explored some basic computer
science concepts. We looked at the behavior of machines and their
language. We talked about how learning programming is like learning a
new language: both have syntax and rules that ensure communication is
possible. C++ is a back-end server language that is used for managing
servers that control oceans of data. Unlike high- level languages like
Python, which are more human, C++ wants programmers to be more
detailed in their code. Each variable must be unique in a function or we
will have an error. All functions and statements are case sensitive and have
specific rules that govern them. We have implemented many if () …else
statements and made nested if-else statements. We saw that conditional
statements like if () can be executed without the else , but a missing else
statement can cause an error if the condition is false. And just as a missing
verb indicates a sentence is incomplete, else statements cannot be
implemented without an if ().

We saw how computers communicate in binary numbers using
logical math. We saw bitwise function work at the bit level, completing

logical math computations like AND, OR, and NOT. All the other C++
functions that are object-based must be translated by the compiler into
machine language. But bitwise functions are faster because they skip that
step and communicate directly to the machine. They are often
deployed in competitive programming to make highly agile programs and
routines. Outside of competitive programming, bitwise functions have some
functionality in managing big data.

The challenge with bitwise functions is that they are very difficult
for humans to understand because they are binary. To see what computers
see we had a brief computer science lesson on binary and binary math. We
made a “byte-sized” stream of register with our bitwise routine program
and we made dynamic buffers to store bits for bitwise computations. Those
virtual buffers and registers are how servers manage terabytes of data.
Think about this; our buffers and registers were all one byte long, but a
terabyte is

bytes). It was serving over 3.25 billion hours of content (“How much data

does YouTube store? - Quora,” n.d.). Bitwise functions give these servers the
ability to work with this load without interruption or massive delays. This is
one of the best examples of the power of C++ and its ability to handle big
complex systems. It is a useful language for programmers to learn. If you
visualize these data streams as arrays of 8 slots, it will be easier for you to
rationalize many bitwise operators, especially shift operators.

In addition to binary programming, we worked with different kinds of data
and explored different aspects of object programming. We did plenty of
exercises where we dealt with strings, for example. In fact, we used and
deployed strings in every one of our exercises. We saw that strings are also arrays
of data, and can be manipulated like objects except in a few ways. Strings have
a length, size and can be parsed with various objects in the <string> library.
Think of the copy constructor call combination we learned. To parse a container
of any type, vector or array, you need a for ()loop with an Addressof operator
element. That task has a dedicated function in the <string> library where all you
need is the index of the item you are parsing. If there is one thing you should take
away from this book it is proficiency in handling strings: breakout escape
sequences, handling strings through array indexing, and passing strings to
different functions.

We also learned and discussed functionality and design considerations.
We talked, for instance, about how and when to use loops. Our bank security
example was best illustrated by our exit controlled loop example in a fail-close

system. Banks, as we said, should always have their doors locked and closed;
they fail-close.

ost events in the bank require doors and exits to fail-close and the only
time they should open it in a fire. The system should keep everything in check,
where a condition is tested AFTER the routine. The exit control loops are also
useful in other areas, like in data control. YouTube does data corrections as a
secondary routine of normal operations. This makes sure the system is
always running, not hunkered by resend-data requests.

As C++ is a backend-language it has to handle and work with multiple
types of data. We have had a brief discussion about this when we spoke of
vector-based images as an object class and their other object properties. Photo
manipulation software like Photoshop is programmed in C++ where aspects like
image manipulation take full use of the program’s power. Vectors allow image
manipulation without loss of quality, unlike .jped or .png that are arrays of pixels.
Vectors like .svg or .pdf use vector containers to describe their pixel locations,
which has more class features in C++ that allows preservation of the image.

This book is also meant to be reference, so I encourage you to use the
glossary and the index to review topics. The glossary has all the terms bolded
and some of the code snippets we looked at. It also includes the section where
the terms are discussed in more detail.

GLOSSARY

Term Definition Section

"+",

Binary, arithmetic operation that sums two
variables. Also used to concatenate strings in
the <string> library

Operation:String
Concatenation

"++"

Increment operator used to increase the value of
an integer by 1. This unary operator is often
used to increase a variable within a loop.

Unary Operators

“--”

Unary operator that decreases a variable within
a loop. This unary operator is often used to
increase a variable within a loop.

Unary Operators

Arithmetic Operator

“-”,

Binary operator that subtracts one operand from
another

Arithmetic Operators

Unary Operator

 “-”,

Unary minus operator that is used to change the
sign of a variable or argument.

Performing a unary minus operation on a
negative integer

Unary Operators

 will make it positive and vice versa.

“-=”

The atomic subtraction used to combine the ‘-’
and ‘=’ operators. This operator first subtracts
the current value of the variable on the left from
the value on the right. It then assigns the result
to the variable on the left. For example, x-=y
would be a shorter way of writing x=x-y
without having to use a separate arithmetic
operator.

Assignment Operators

Binary Operator

 “!”,

Binary logical “NOT” operator that returns a
Boolean true if the conditions in consideration
are not satisfied. If one of the conditions is true,
then it returns a Boolean false.

Logical Operators

“!”, NOT operator is used to reverse the Boolean
logical state of an operand. For example, if a
variable x has a

Unary Operators

 Boolean value of false, !x will be true.

“!=”

“Not-Equal” operator that also checks whether
two given operands are equal or not.

However, this operator returns a Boolean true if
the operands are not equal and returns false if
the operands are equal.

Relational Operators

“*”

Binary operator that multiplies two operands.
The order of the operands does not matter.

Arithmetic Operators

“*=”

Operator for the atomic multiplication, used to
combine the ‘*’ and ‘=’ operators.

This operator first multiplies the current value
of the variable on the left to the value on the
right and then assigns the result to the
variable on the left. For example, x*=y would
be a shorter way of writing x=x*y

Assignment Operators

 without having to use a separate
arithmetic operator.

“/”

Binary division “forward slash” operator that
divides the first operand into the second.

Arithmetic Operators

“/=”

Atomic division operator is a combination of
‘/’ and ‘=’ operators.

Assignment Operators

This operator first divides the current value of
the variable on the left by the value on right
and then assigns the result to the variable on
the left. For example, x/=y would be a shorter
way of writing x=x/y without having to use a
separate arithmetic operator.

“\?” Escape
Sequence

Used for question marks. Using Escape
Sequences

“\’” Escape
Sequence

Used for single quotes. Using Escape
Sequences

“\”” Escape
Sequence

Used for double quotes. Using Escape
Sequences

“\\” Escape
Sequence

Used for backslashes. Using Escape
Sequences

“\f” Escape
Sequence

Stands for “form feed” and is used to Using Escape
Sequences

 go to the next “page”.

Escape Sequence

“\n”

Stands for “line feed” and is used to go to the
next line.

Using Escape
Sequences

Escape Sequence

 “\t”

Stands for “horizontal tab” and adds 5
spaces horizontally.

Using Escape

Sequences

Escape Sequence

 “\v”

Stands for “vertical tab” and is used for spacing
in vertical languages.

Using Escape
Sequences

Unary Operator

 “&”

Address of operator that is used to point to the
address of a variable.

Unary Operators

Binary Operator

“&”,

Bitwise AND that takes two numbers as
operands and does AND on every bit within the
stream of the two numbers. The result stream
of AND is 1 only if both bits are 1.

Bitwise Operators

“&&”

Binary logical “AND” operator that returns a
Boolean true when both the conditions in
consideration are satisfied.

Otherwise, it returns false.

Logical Operators

“%” Binary modulus Arithmetic

 operator that returns the remainder from
dividing the first operand into the second.

Operators

“^”

Bitwise XOR that takes two numbers as
operands and does XOR on every bit within the
stream of the two numbers. The result stream
of XOR is 1 if the two bits are different.

Bitwise Operators

“+=”

Operator for atomic addition, used to combine
the ‘+’ and ‘=’ operators. This operator first
adds the current value of the variable on the left

Assignment Operators

to the value on the right. It then stores the
result to the variable on the left. For example,
x+=y would be a shorter way of writing x=x+y
without having to use a separate arithmetic
operator.

“<” “Less-than” operator that checks whether the
first operand is less than the second

Relational Operators

 operand. If so, this operator returns a boolean
true.

Otherwise, it returns false.

“<<”

Left shift operator that takes two numbers and
left shifts the bits of the first operand. The
second operand is used to determine the
number of places to shift.

Bitwise Operators

“<=”

“Lesser-than or equal-to” operator that checks
whether the first operand is less than or equal
to the second operand. If so, this operand
returns a Boolean true. Otherwise it returns
false.

Relational Operators

“=” Equal assignment operator, used to assign the
value on the right to the variable on the left.

Assignment Operators

“==”

“Equal” operator that checks whether two
given operands are equal. If the operands are
equal, it returns a Boolean “true”, if not it
returns false.

Relational Operators

“>”

“Greater-than” operator that checks whether the
first operand is greater than the second
operand. If so, this operator returns a Boolean
true. Otherwise, it returns false.

Relational Operators

“>=”

“Greater-than or equal-to” operator that
checks whether the first operand is greater than
or equal to the second operand. If so, this
operand returns a Boolean true. Otherwise, it
returns a Boolean false.

Relational Operators

“>>”

Right shift operator that takes two numbers and
right shifts the bits of the first operand. The
second operand is used to determine the
number of places to shift.

Bitwise Operators

“|”

Bitwise OR that takes two numbers as
operands and does OR on every bit within the
stream of two numbers. The result stream of
OR

Bitwise Operators

 is 1 if any of the two bits is 1.

“||”

Binary logical “OR” operator that returns a
Boolean true when one (or both) of the
conditions in consideration are satisfied. If
none of the conditions are satisfied, it returns
false.

Logical Operators

“~”

Bitwise NOT operator that takes one number
and switches the state of all the bits (1s to 0s, 0s
to 1s).

Bitwise Operators

“bool” Keyword Datatype keyword that is short for “Boolean” Basic Data Types

and stores values with two states: true or false.
Has a size of 1 byte. these values can be
expressed as either “0/1” or “false/true" with a
manipulator.

“boolalpha/noboolapha”
Manipulator

Input-Output manipulator that switches
between using “0/1” to “false/true” for Boolean
values.

Using Endl:
Input/Output
Manipulators

“char” Keyword Data type keyword that is short for “character”
and stores single characters regardless of their
capitalization. Has a size of 1 byte.

Char values are surrounded by single quotes.

Basic Data Types

“cout” object C++ programming object part of the

<iostream> library that allows a program to
print out values and text using the "<<"
operator. This object must be defined with a
datatype, usually "std".

Using Cout

“double” Keyword Data type keyword that is used to store numbers Basic Data Types

with decimals with 15 decimal digits. Has a
size of 8 bytes.

This data type can hold more decimal numbers
and is preferred for mathematical calculations.

“else”

Statement is used to specify a code in
the event that its accompanying if() expression
is false.

Else cannot be used without if ().

Loops

“endl”

Manipulator

Input-Output manipulator that outputs
“\n” and flushes the output stream.

Using Endl:

Input/Output
Manipulators

“ends”

Manipulator

Input-Output manipulator that outputs
“\0” [zero].

Using Endl:
Input/Output
Manipulators

“float” Keyword Keyword data type that stores numbers with
decimals with 7 decimal digits.

Has a size of 4 bytes. This data type is
preferred for holding monetary numbers.

Basic Data Types

“flush” Manipulator Input-Output manipulator that flushes the
output stream.

Using Endl:
Input/Output
Manipulators

“get_money” Manipulator Input-Output manipulator that receives an
input as a monetary value. This manipulator
works in C++11 only and may cause errors in
outdated C++ programming environments.

Using Endl:
Input/Output
Manipulators

“get_time” Manipulator Input-Output manipulator that receives an input
as a date/time value according to a specified
format.

This manipulator works in C++11 only and may
cause errors in outdated C++ programming
environments.

Using Endl:
Input/Output
Manipulators

“int” Keyword Data type keyword that is short for Basic Data
Types

 “integer” and stores whole numbers.

Has a size of 4 bytes. This keyword includes
positive and negative integers.

“put_money” Manipulator Input-Output manipulator that formats and
outputs a monetary value.

This manipulator works in C++11 only and may
cause errors in outdated C++ programming
environments.

Using Endl:
Input/Output
Manipulators

“put_time” Manipulator Input-Output manipulator that receives an input
as a date/time value according to a specified
format.

This manipulator works in C++11 only and may
cause errors in outdated C++ programming
environments.

Using Endl:
Input/Ouput
Manipulators

“quoted” Manipulator Input-Output manipulator allows you to insert
and extract quoted strings with embedded
spaces.

This manipulator

Using Endl:
Input/Output
Manipulators

 works in C++14 only.

“showbase/noshowbase”
Manipulator

Input-Output manipulator specifically for
mathematical outputs that controls whether a
prefix is used to indicate a numeric base.

Using Endl:
Input/Output
Manipulators

“showpos/noshowpos”
Manipulator

Input-Output manipulator that controls whether
the “+” sign is used to indicate non- negative

Using Endl:
Input/Output

numbers. Manipulators

“uppercase/nouppercase”
Manipulator

Input-Output manipulator that controls whether
uppercase characters are used with some output
formats.

Using Endl:
Input/Output
Manipulators

“using namespace std;”
Statement

Line of code frequently used to unilaterally
declare the "std" datatype for iostream library
objects and manipulators. This unilateral
declaration makes the code easier to see.
However, this is discouraged outside of practice
because it can make string

Omitting Namespace

 handling ill-defined in programs, thus, causing
errors that are difficult to mitigate. Exercises in
this book will avoid using this statement.

[string_name].length()
Attribute

Coding syntax for calling the "length"
string object attribute .

String Objects:
Length() Attribute

Actual Parameters Parameters coming into a defined function. Parameter Passing

Algorithm An organizational tool used to plot out the
aspects of a program including

(1) data in, if applicable, (2) operations
performed on declared variables, and (3)
the result of running the program.

Principles of
Programming

Arithmetic operators Binary and unary operations that are used to
perform common mathematical operations.

Arithmetic Operators

Assembly language Describes a low- level programming language
that requires a compiler to convert it into
machine code.

Chapter 1: Setting up
a C++ Development
Environment

Assignment Operators Used to assign a value to a variable and change
values on the fly, reducing the number of
instructions in a program.

Assignment Operators

Atomic Operations Operations that combine assignments with other
operations.

Atomic operations allow programmers to
manipulate a value stored within a variable and
reassign it immediately.

Assignment Operators

Base-10 Number system used by human beings assign
place value to numerals.

Base-10 is also known as the decimal system
because a digit's value in a number is
determined by where it lies in relation to the
decimal point. The value is multiplied by a
base power of 10, where each point away from
the left of the decimal is 10^(n+1) and each
point to the right of

Bitwise Operators

 the decimal is 10^(n-1).

Binary Number System See Base-2 Bitwise Operators

Binary Operator

Classification of operators that execute with
two operands.

Chapter 4: Operations
in C++

Bitwise Operators Logic operators that operate on numbers at the
binary level.

Bitwise Operators

Bluefish A free software advanced text editor with a
variety of tools for programming in general and

Setting up the Text
Editor

the development of dynamic websites.

Byte Measurement of data composed of 8 bits. A
byte can represent up to 225 numbers (0b
1111111).

Unary Operators

C++14 Advanced version of C++ that makes this
version slightly more intelligible for humans to
program in. "Standard C++" usually refers to
C++11, also known as C++0x.

Chapter 1: Setting up
a C++ Development
Environment.

CentOS A free, community- supported. Linux
distribution operating system

Linux Compiler
Installation

 that is functionally compatible with Red Hat
Enterprise Linux (RHEL).

Code See Executable file Chapter 1: Setting up
a C++ Development
Environment

Code::Blocks A free open source IDE designed for C++. This
IDE

supports many C++ compilers including GCC,
Clang, and Visual C++ in Microsoft. This IDE
can program in C++, C, and Fortran.

Windows IDE
Installation

Command-Line Interface
(CLI)

Method of interacting with a computer program
where the user controls the program with
entering lines of code.

Setting up a Text
Editor

Comments Lines of code that are ignored by the compiler
and indicated by a double slash at the beginning
of the line in C++.

Comments are used to annotate code and leave

Overview of C++
Syntax

 notes to guide other programmers studying your
code.

Compiled Language See Low-Level Language Chapter 3

Concatenation, String A common programming feature that allows
programmers to dynamically control text by
fielding content from a source and serving it
within their program. In C++ String
Concatenation is done through "+", an
arithmetic operator.

Operation:String
Concatenation

Conditional Operator Boolean logic based operator with three
operand expressions. The outcome of the
conditional operator depends on the first
expression.

Ternary Operators

Conditional Short-Circuit When program developers use logical operators
and conditional statements to control how a
program behaves.

Logical Operators

Copy Constructor Call Method of searching and printing indexes. Unary Operators

 Consists of for() loop with an index variable
with an Addressof operator, and a container
object with an index such as an array.

Counter An arbitrary variable that is used in
conjunction with an arithmetic unary operator to
incrementally loop an indicated expression.

Loops

Data Operands, or the various kinds of data that the
functions and statements are acting on

Overview of Syntax

Data Type Attribute of a variable which tells the compiler
or interpreter how the programmer intends to
use the data. Common data types include real
numbers, integers, and "true-false" Boolean
variables.

Chapter 3

Debugging Process of location and removing computer
program errors and abnormalities, also known
as "bugs." As a general rule,

Overview of Syntax

 smaller, modularized code that calls on
functions is easier to debug than larger files.

Decimal Number System See Base-10 Bitwise Operators

do {}...while() Loop Exit controlled loop that tests a single
condition and loops a block of code until the
condition is met.

Loops

else if() Conditional statement combination used to nest Loops

conditional if()... else statements.

Programmers are advised to use a
switch if there are numerous conditions to test.

Escape Sequence Special in-string character combinations that
are used to represent certain special characters
within strings and character streams.

Escape sequences allow programmers to include
symbols in strings without confusing the
compiler.

Using Escape
Sequences

Executable File List of instructions Chapter 1

 that are used to perform the operations of a
program.

File Extension File suffix that informs the code compiler what
language the executable file is in.

The C++ language is indicated by ".cpp" or
".hpp" extensions.

Chapter 1

First Principal of A program must be designed to complete a task Principles of

Programming in the smallest number of functions possible.
This principle reduces overhead and increases
performance of a program.

Programming

for() Loop Entry controlled loop that has three inputs: an
initialization expression, a test expression and
an update expression.

The for loop will execute its block of code until
the test expression reports false.

Loops

Formal Parameters Variables used to define the initial arguments,
and any

Parameter Passing

 arguments in the function before the actual
parameters are passed.

Function A block of code that takes inputs to perform an
action and runs when called.

Chapter 6: Creating...

Function Overloading Programming technique of consolidating code
through stacking several data types onto one
function.

Function Overloading

Functionality How program features and utilities can be
implemented in a code to achieve a specific
result.

Chapter 4: Operations
in C++

Functions Code that encapsulates instructions that may
take inputs and output some result. Every
function “[function- name]()”, where
[function_name] is some arbitrary function, is
always followed by curly brackets {} and every
explicitly stated instruction within the curly
brackets will be

Overview of Syntax

 executed by the compiler.

Gedit Free, open-source, general-purpose text editor
that includes tools for editing source code and
structured text such as markup languages.

Linux Compiler
Installation

getline() function C++ function from the <string> library that
extracts all characters from an input string into
a string array.

Cin and getline()
function

GNU Collection Compiler
(GCC)

An open source compiler system produced by
the GNU Project supporting various
programming languages. GCC is a key
component of the GNU toolchain and is the
standard compiler for most Linux projects.

Linux Compiler
Installation

Graphical user Interface
(GUI)

Method of interacting with a computer program
that allows users to interact with graphical icons
and visual indicators such as secondary notation
instead of inputting commands.

Setting up Text

Header File Library Lines that start with the pound sign (#) that are
used by the compiler to call library functions.

Overview of Syntax

if() else Statement Conditional statement function combination
that tests a single condition and executes
explicitly stated blocks of code based on the
results of the test.

Loops

if()... else statement A nested function that executes all instructions Relational Operators

within its curly brackets “{}” given a specified
condition is met. Otherwise, it executes the
items with the enclosed else {} statement.

These statements always deploy a relational
operand to test the condition.

Integrated Development
Environment (IDE)

Programming environment used to write code,
test for errors and translate a program.

Chapter 1

Linux distribution (distro) An operating system made from a Linux kernel
based software

Linux Compiler
Installation

 collection and package management system
for installing additional software.

Logic Gates Physical electronic circuits that have one or
more inputs while only having one output.
AND gates only pass a “1” when all inputs are
“1”; OR gates pass a “1” as their output when
they receive a “1” at any of their inputs; NOT
gates pass a “1” when they receive a “0” at
their input.

Logical Operators

Logical Operators Binary operators used in combination with the
relational operators combine two or more
conditions to describe a specific constraint.

Logical Operators

Loops Function that execute a block of code
as long as a specified condition is reached

Loops

Low-Level Language A programming language that closely follows
a computer's instruction set

Chapter 2

 architecture— commands or functions
in the language map closely to processor
instructions. This reduces the overhead for
running the program as the compiler takes
less resources to translate low-level languages
into machine code.

Machine Language Coding language that is directly compiled and
executed by a CPU. See

"Assembler Language"

Chapter 1

Manipulator,
Input/Output

Helper functions within the C++ iostream
library that make it possible to control
input/output streams using the "

<<" operator or the ">>" operator.

Using Endl:
Input/Output
Manipulators

Notepad ++ Text editor and source code editor for use
with Microsoft Windows.

Setting up Text

Object A general computing term that describes a
method that the computer

First Program: Output
and Basic Strings

 uses to manage data.

Operand Operation component that describes
the value, object, or variable being
operated on.

Note: Operand...

Operations Features such as control loops that
implement decision-making in
programs.

Chapter 4: Operations in
C++

Operator Operation component that describes
the symbol indicating the sort of
operation being carried out.

Operators are described by how
many operands they can operate on
at a time: unary, binary, and ternary.

Note: Operand...

Organization Identifier Proprietary Apple naming
convention that is used to create a
unique ID for programs across
various Apple databases: the Apple
Developer Website, and iCloud
Container, iTunes connect portal in
the Appstore. The

Mac IDE Installation

 organization identifier is used as the first
argument of a “reversed domain” that
ensures that all developed projects can be
streamlined into the proprietary macOS
framework.

Parameter Pass by
Reference

Both actual and formal parameters refer to
the same locations.

Therefore, any changes made inside the
main() function will impact the actual
parameters that were passed.

Parameter Passing

Parameter Pass by Value Values of actual parameters are copied into
and stored in the function’s formal
parameters. Any changes made inside
main() does not impact the actual
parameters that were passed.

Parameter Passing

Red Hat Enterprise Linux
(RHEL)

A commercial Linux distribution developed
by Red Hat for the commercial market.

Linux Compiler
Installation> Note: there
are many distributions…

Register An array of binary storage where each

 bit gets its own place in the array.
Registers are used to calculate bitwise
operators.

Bitwise Operators

Relational Operators Binary operators that are used to compare
two values and return a boolean response.

Relational Operators

Script Supplementary list of commands executed
by certain programs or scripting engines.

Chapter 6: Creating...

See Base-2 Number system used by machines to
calculate computations. Also known as the
binary number system. binary numbers
are represented as a stream of bits, where
each singular bit can be one of the two
states: 1 or 0. The position of the 1 bit in
the stream determines the value of the
number.

Bitwise Operators

Server-side programming Writing code that negotiates and delivers
content to a dynamic, or changing website.

Mac IDE Installation

 C++ is, majorly, a server side
language.

Service Level Agreement
(SLA)

Term in IT management that describes a
commitment between the technology
administrator, the one providing the service,
and a client.

Overview of Syntax

sizeof() Unary operation that queries the size of an
object and delivers its size in bytes.

Unary Operators

Software Development
Kit (SDK)

A set of tools used for developing
applications provided by hardware and
software providers.

Mac IDE Installation

Statements General term to describe the beginning line
of code with specific instructions that the
compiler recognizes outside of functions.
How these are highlighted in language syntax
environments depend on the type of the
statement and the

Overview of Syntax

 conventions of the programming
environment.

String Array An orderly arrangement of characters
where each character of the string is
indexed in its own numerical location.

String Indexes and
Arrays

Strings A computer programming data type that
represents a sequence of characters,
either as a literal constant or as some kind
of variable.

Advanced Strings

switch () Statement Multibranch statement used to execute
different code blocks based on the value
of an evaluated expression

Loops

Ternary Operator Classification of operators that
accept more than 2 operands, or
conditional operators with several
arguments.

Ternary Operator

Text Editor Program that enables editing of the code. Chapter 1

Unary Operator Classification of operators that Unary Operator

 execute with a single operand.

Variables A concept borrowed from mathematics
to describe a symbolic value who's
associated value can be changed and
operated upon.

Variables are used to control a program
through operational functions.

Chapter 3

while() Loop Entry controlled loop that tests a single
condition and loops a block of code until
the condition is met.

Loops

Xcode A free IDE software development suite
for the macOS. This IDE has utilities for
developing C++ based programs for
MacOS oriented operating systems like
tvOS for Apple TV, watchOS for Apple
watches, and iPadOS for iPad tablets.

Mac IDE Installation

	INTRODUCTION
	CHAPTER 1:
	SETTING UP A C++ development environment
	CHAPTER 2:
	BASICS OF C++, PRINCIPLES OF PROGRAMMING
	CHAPTER 3:
	VARIABLES AND DATA TYPES
	CHAPTER 4:
	OPERATIONS IN C++
	CHAPTER 5:
	DECISION MAKING IN C++
	CHAPTER 6:
	CREATING FUNCTIONS
	CONCLUSION AND FINAL NOTES
	GLOSSARY

