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Preface

If you're looking to write responsive Android and web applications using
Kotlin 2.0, this book's got you covered with some great examples. The book
starts by showing you how to install Kotlin 2.0 on Linux and configure
IntelliJ IDEA so that your Task Tracker project compiles and runs without
hiccups. In the early chapters, you'll dive into the basics of variables, data
types, and control structures like if-else, when, while, and do-while. This'll
lay a solid foundation of logic, while also giving you hands-on experience
storing and manipulating task entries.

There's a chapter on functions that'll teach you to write reusable code, use
higher-order functions, and adopt lambda expressions to streamline
operations in the project. As you move into object-oriented constructs,
you'll learn to define classes, primary and secondary constructors,
inheritance, interfaces, and encapsulation practices that keep internal task
details safe and modular. Then, we'll dive into collection handling, where
we'll use lists, arrays, sets, and maps along with some handy code that'll
filter, transform, and iterate through tasks like a pro.

In the state management section, you'll see how immutable snapshots and
mutable services work together using observers to sync components in real
time. The chapters on functional programming will walk you through
chaining, mapping, and flattening data pipelines. This replaces manual
loops with concise, expressive code. The error handling and type casting
chapters will show you how to catch and log exceptions, apply safe casts,
and recover from unexpected conditions without crashing.

If one wants to get really into JSON serialization, it's possible to learn how
to parse JSON into Kotlin objects, serialize tasks back into JSON, and use
libraries like kotlinx.serialization or Moshi for nested structures. In the
RESTful API design segment, you'll learn about resource-oriented
endpoints, HTTP methods, versioning, and content negotiation. Finally,
Ktor integration teaches you to initialize a coroutine-based server, define
routes, install middleware, secure endpoints with authentication, and test
your components thoroughly.



This book won't turn you into a Kotlin master overnight, but it'll give you
the confidence and hands-on experience you need to build real-world
Android and web apps with Kotlin 2.0 right from the start.

In this book we will learn to:

e Build strong foundation in Kotlin 2.0 syntax to write clear,
concise code.

e Absorb strong designing principles including classes,
constructors, inheritance, and encapsulation for robust
design.

e Gain practical mastery in using lists, arrays, sets, and maps to
store, filter, and transform the data efficiently.

e AStrong hold on coroutine-based state management and
observer patterns for responsive, synchronized application
behavior.

e Develop fluency in functional programming alongwith
lambdas to process data pipelines succinctly.

e Manage error handling and safe casts, ensuring your
application recovers gracefully from runtime issues.

e Perform JSON parsing and serialization  using
kotlinx.serialization, Moshi, and Jackson.

e Practical implementation of Ktor’s routing, plugins,
middleware, and testing for web server development.

e Streamlined testing and debugging workflow, combining in-
memory tests, logging, and profiling to catch issues.



Prologue

From the very start of my professional journey, I have been amazed by how
rapidly technology advances, and how frequently developers are compelled
to master fresh tools without compromising their expertise. The latest
version of Kotlin is packed with cutting-edge features, and it's incredible
how much progress has been made. Many books on the subject could
benefit from a bit of a speed boost. They tend to start off slow, going over
basic syntax, and it takes them a while to dive into real-world applications.
You're going to love this book! It's a fast-paced journey that covers every
essential aspect of Kotlin 2.0. My goal is to present each topic so you can
immediately apply it to a working sample project—no waiting until the end
to see code come alive!

I built my own tooling and projects using Kotlin, and I saw that
practitioners want both conceptual clarity and hands-on implementation
without pages of dry theory. In "Kotlin 2.0 Crash Course," I speak directly
to you, the developer who needs to solve problems today while laying a
solid foundation for tomorrow. As you follow along, you'll learn how to
install Kotlin on Linux, configure your development environment, and start
writing code that compiles without hiccups. I'm thrilled to guide you
through the fascinating world of variables, data types, and control
structures. I'll use clear examples that immediately demonstrate how Task
Tracker stores and manipulates tasks.

Next, I'm thrilled to introduce functions, where you'll discover how to avoid
repetitive code by writing reusable helpers, embracing lambdas, and
leveraging higher-order patterns. We're thrilled to dive into object-oriented
constructs, where you'll witness the incredible power of classes and
constructors as they beautifully model real entities. With interfaces and
inheritance, we'll explore the amazing way they streamline our work,
reducing duplication and enhancing efficiency. I'm thrilled to explain access
modifiers and encapsulation so you can maintain strong boundaries between
your core logic and external components. I'm thrilled to share the details of
collection handling, which showcases the incredible power of lists, arrays,



sets, and maps. These essential tools become the foundation for storing,
filtering, and traversing data in your applications.

And the best part is that state management receives special attention
because real applications must respond to user actions, background
processes, and asynchronous events. I'm thrilled to show you how to blend
immutable snapshots with mutable references and use observer patterns to
keep every component in sync. And then, we'll dive into the exciting world
of functional programming with lambdas! You'll learn to chain operations,
compose transformations, and write declarative data pipelines that replace
boilerplate loops.

There's nothing more critical than handling errors, and I devote a whole
chapter to the most effective techniques: try-catch patterns, safe casts, and
centralized logging. You'll learn how to catch exceptions early, log them
consistently, and recover from failures without crashing. Once we dive into
JSON serialization, I'll guide you on how to parse and encode data using
Kotlinx.serialization, Moshi, or Jackson, and how to map nested JSON
structures into Kotlin types.

After that, I'll guide you through the exciting world of RESTful API design,
where I'll reveal how resource-oriented URIs, HTTP methods, and
versioning team up to deliver endpoints that you can count on. You'll build
incredible endpoints that will allow you to create, read, update, and delete
tasks with ease. And you'll learn to integrate with a database via Exposed
and H2 — sounds exciting, right? By the time you reach chapter twelve,
you'll be ready to dive into the exciting world of Ktor server setup, defining
routes, and installing middleware for logging and validation. And of course,
you'll be testing every component systematically, ensuring everything is up
to par.

With this book, I'm making a single, streamlined path from zero to a
production-ready Kotlin application. Prepare to be amazed, because you
won't find unrelated detours here! Instead, you'll see an exciting, focused
progression of chapters, each building on what came before, all tied to a
practical Task Tracker project. I wrote every sentence as if I were sitting
beside you, pointing out key details and common pitfalls. By the time you
finish, you'll have not only a solid understanding of Kotlin 2.0 but also a



real, working web and Android-capable service that you can extend,
customize, and deploy!
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Prerequisites

This book is a fast-paced practical learning for developers, programmers,
application engineers who demands a fast learning and that too practical
touchbase to every aspect of Kotlin that can be put into use. Prior
knowledge of object oriented programming is all you need to begin with
this book.

Codes Usage

Are we in need of some helpful code examples to assist we in our
programming and documentation? Look no further! Our book offers a
wealth of supplemental material, including code examples and exercises.

Not only is this book here to aid we in getting our job done, but we have
our permission to use the example code in our programs and
documentation. However, please note that if we are reproducing a
significant portion of the code, we do require we to contact us for
permission.

But don't worry, using several chunks of code from this book in our
program or answering a question by citing our book and quoting example
code does not require permission. But if we do choose to give credit, an
attribution typically includes the title, author, publisher, and ISBN. For
example, "Kotlin 2.0 Crash Course by Elara Drevyn".

If we are unsure whether our intended use of the code examples falls under
fair use or the permissions outlined above, please do not hesitate to reach
out to us at support@gitforgits.com.

We are happy to assist and clarify any concerns.
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CHAPTER 1: UP AND
RUNNING WITH KOTLIN
2.0



Chapter Overview

We'll start by taking a look at why Kotlin 2.0 has become so important in
modern development. First, we will start with its roots at JetBrains, then see
how it made its way into Android, and finally, how big companies like
Pinterest and Uber used it to great success. Then, we will see how features
like null-safety, coroutines, and concise syntax really shine in the real
world.

We then get our Linux workstation ready for Kotlin development, starting
with installing the OpenJDK "17, set up SDKMAN to handle the Kotlin
"2.0.20 compiler, and then making sure our environment can reliably
compile and run Kotlin code. Once you've set up the environment, we will
need to configure Intelli] IDEA Community Edition as our main
development hub. We will be integrating essential plugins like Gradle
Kotlin DSL support for building scripts, EditorConfig for consistent styling,
Detekt and Ktlint for static analysis and formatting, and optional tools like
Arrow Meta and Swagger/OpenAPI for advanced metaprogramming and
API documentation. For each plugin installation, we'll walk we through the
process step-by-step, and we will get to confirm that everything's working
by importing and running the TaskTracker starter project.

After all the necessary tools in place, we will dive into Kotlin 2.0's modern
syntax enhancements. We will apply context-receivers to get rid of
repetitive parameters, define value classes to model domain types without
runtime cost, and refactor our REPL loop to use sealed interfaces and
exhaustive when-expressions. We will use contracts to improve flow
analysis and adopt new standard library extensions for collection
transformations. Throughout, we will be refactoring the Task Tracker code
base as it happens, and we will see how each improvement makes the code
cleaner, safer, and easier to maintain.



Kotlin 2.0 Overview

You may recall when Java reigned supreme on the JVM, yet verbose syntax and null-pointer
pitfalls often slowed we down. In 2011, JetBrains introduced a new language that aimed to
streamline code and eliminate common errors. By 2017, Google gave Kotlin first-class status
for Android development, and a surge of adoption followed. We might observe that, today,
more than half of active Android projects include Kotlin code. Companies such as Pinterest
reported a 20 percent drop in crash rates after migrating key modules to Kotlin, thanks to
null-safety and improved type inference. Uber moved core microservices to Kotlin
coroutines, achieving 15percent lower latency under peak loads. These successes
demonstrate how Kotlin’s features deliver tangible improvements in developer productivity,
stability, and performance.

What makes Kotlin 2.0 Different?

We now stand at the threshold of Kotlin 2.0—a release focused on expressiveness, safety,
and speed. We will see context-receivers that let us write domain-specific languages with
minimal ceremony, so our code reads more like natural instructions than boilerplate. We will
benefit from value classes, which model domain concepts without the runtime overhead of
object allocation. We will notice faster compile times—up to 30 percent improvements on
large codebases in JetBrains benchmarks—so our feedback loop stays tight. We will
encounter stronger flow analysis that catches more logic errors at compile time, sparing we
from elusive bugs later on. Such enhancements move Kotlin beyond a Java replacement
toward a multi-paradigm tool for Android, server-side, web, and native development.

Following features makes Kotlin Outstanding;:
1. Android Apps with Null-Safety

We build an app that processes user-generated content. Kotlin’s type system ensures that
nullable data is handled explicitly, preventing unexpected crashes when network responses
omit fields. Pinterest saw crash-rate reductions by enforcing non-null properties in critical
view models.

2. High-Throughput Microservices

We design services that handle thousands of requests per second. Kotlin coroutines let us
write asynchronous code in a sequential style, avoiding thread-blocking and boosting
throughput. Uber reported 15 percent lower latency after rewriting Java threads as
coroutines.

3. Domain-Specific Languages (DSLs)

We create a configuration DSL for build scripts or UI layouts. Context-receivers in
Kotlin 2.0 remove repetitive qualifiers, making our DSL concise and self-documenting.
Teams at Gradle have explored Kotlin DSL improvements to simplify build configuration.



4. Cross-Platform Projects

We share business logic between Android, iOS, and web clients. Kotlin Multiplatform
compiles common code into JVM, JavaScript, and native binaries. We maintain one
codebase for validation rules, data models, and algorithms, reducing duplication and
ensuring consistency.

Introducing Task Tracker Sample Project

We will use Kotlin 2.0 to our simple command-line Task Tracker project. At first, it supports
adding, listing, and removing tasks in memory. We follow along, writing basic Kotlin
constructs—variables, control flow, and functions—to manage tasks. As chapters progress,
we integrate value classes for Taskld and TaskDescription, ensuring type safety without
performance penalties. We will adopt context-receivers to separate command parsing from
business logic, yielding a neat, domain-specific API for new commands. When we add
JSON serialization, Kotlin 2.0 contracts guarantee exhaustive handling of data models. Later,
coroutines empower non-blocking periodic reminders or network-backed persistence.
Finally, we’ll build a Ktor-based HTTP server that exposes RESTful endpoints for remote
task management.

How Kotlin 2.0 elevates our app?

Feature Benefit to Task Tracker

Value Classes Represent TaskId without runtime overhead, enforcing type
safety.

Context-Receivers Cleanly inject shared dependencies (parsers, loggers) into
commands.

Faster Compilation Shorten development cycles as we iterate on Task Tracker
features.

Enhanced Flow || Catch missing when branches on task statuses at compile time.

Analysis

Coroutines Introduce non-blocking reminders or persistence without thread
hacks.

You define

@Jvmlnline value class TasklId(val id: UUID)

so that our compiler treats TaskId as a simple UUID at runtime. No extra objects, no boxing
overhead—yet the type system prevents us from mixing up IDs with descriptions.



Let us imagine a command handler:

context(CommandParser, TaskService)

fun addTask(description: String) { ... }

With this, we no longer pass parser and service instances manually. The compiler
understands context, yielding code that reads like plain English: “with parser and service,
perform addTask.”

Also, when we tweak the JSON format or adjust a coroutine timeout, compile times remain
snappy. We spend less time waiting and more time coding, testing, and refining.

Let us sat engage ourselves with our project right away. We can simply begin by cloning the
starter repo, opening it in our IDE, and running the bare-bones Task Tracker with commands
like:

> add “Write chapter on Kotlin overview”

> list

1: Write chapter on Kotlin overview

> remove 1

This immediate feedback cements our understanding of Kotlin’s REPL-style execution. As

we progress through Chapter 1, we will refactor the main loop to use when expressions,
inline functions, and enhanced data types.



Installing Kotlin Toolkit and
Dependencies

We will begin by readying our Ubuntu system for Kotlin development.
Keeping our operating system current prevents unexpected errors when
installing new software. Open a terminal and type sudo apt update & &
sudo apt upgrade -y to fetch the latest package information and apply
security fixes. This single command ensures our system libraries and
package indexes remain aligned with upstream repositories. While that
runs, consider how a stable base enables us to focus on coding rather than
troubleshooting mismatched dependencies. When the process finishes, our
machine stands prepared to host the Java Development Kit, the Kotlin
compiler, and IntelliJ IDEA—the trio we need to breathe life into the
Task Tracker sample project.

Installing JDK

Kotlin targets the Java Virtual Machine, so a modern JDK must be in place.
We install the default JDK provided by Ubuntu, which typically maps to
OpenJDK 17 or later—perfectly compatible with Kotlin 2.0.

We simply type:

sudo apt install default-jdk -y

When the prompt returns, we then verify by:
java -version

You can expect an output similar to:
openjdk version "17.0.x" ...

This confirms that our JVM is ready to execute Kotlin bytecode and that the
Kotlin compiler can generate class files targeting a supported Java
version_DigitalOceanAsk Ubuntu.


https://www.digitalocean.com/community/tutorials/how-to-install-java-with-apt-on-ubuntu-22-04?utm_source=chatgpt.com
https://www.digitalocean.com/community/tutorials/how-to-install-java-with-apt-on-ubuntu-22-04?utm_source=chatgpt.com
https://askubuntu.com/questions/1204202/how-to-install-the-jdk-on-ubuntu-linux?utm_source=chatgpt.com

Managing Kotlin Versions with SDKMAN!

Now here, to keep the Kotlin compiler aligned with our examples, we
employ SDKMAN!, a version manager for JVM-based tools. It installs,
switches, and updates SDKs without manual path juggling.

To do this, we run:

curl -s "https://get.sdkman.io" | bash
source "$HOME/.sdkman/bin/sdkman-init.sh"

The SDKMAN! initializes itself in our shell. We can confirm by typing sdk
version. To install Kotlin 2.0.20—the exact release used in our
Task Tracker examples—enter:

sdk install kotlin 2.0.20

When prompted to set it as default, type Y. Finally, check the compiler
version:

kotlinc -version
You should be able to see:
info: kotlinc-jvm 2.0.20

With this, our environment consistently invokes Kotlin 2.0.20, matching
every code snippet and ensuring reproducible results_Kotlin.

Exploring Environment Variables
The SDKMAN! places the Kotlin binaries under the following path:

~/.sdkman/candidates/kotlin/current/bin

Here, our shell’s PATH is updated automatically when SDKMAN!
initializes. If we ever face a “command not found” error for kotlinc or
kotlin, add the following lines to our ~/.bashrc or ~/.zshrc:

export SDKMAN_DIR="$HOME/.sdkman"
source "$SDKMAN_DIR/bin/sdkman-init.sh"


https://kotlinlang.org/docs/command-line.html?utm_source=chatgpt.com
https://kotlinlang.org/docs/command-line.html?utm_source=chatgpt.com

After this, save and reload our shell with source ~/.bashrc (or source
~/.zshrc). This guarantees that each new terminal session locates the Kotlin
compiler, so we never lose precious coding time chasing missing
executables.

Installing IntelliJ IDEA Community Edition via Snap

You'll be crafting, compiling, and debugging Kotlin code inside IntelliJ
IDEA, which is known for its deep Kotlin integration. If you're into
simplicity, you'll love how easy it is to install and update with Snap.

sudo snap install intellij-idea-community --classic

The --classic flag grants IntelliJ full system access akin to a traditional
package. After installation, launch with intellij-idea-community. On first
run, accept default settings or import any existing preferences. IntelliJ
bundles a Kotlin plugin compatible with version 2.0.20, so no manual
plugin updates are required_Snapcraft.

Configuring IntelliJ

When IntelliJ opens, first select New Project > Kotlin > JVM | IDEA. In the
build-system step choose Gradle with the Kotlin/JVM DSL. Set Kotlin
version to 2.0.20. Our generated build.gradle.kts will include:

plugins {
kotlin("jvm") version "2.0.20"
}
repositories {
mavenCentral()
}
dependencies {

implementation(kotlin("stdlib™))
}


https://snapcraft.io/intellij-idea-community?utm_source=chatgpt.com
https://snapcraft.io/intellij-idea-community?utm_source=chatgpt.com

After this, click Finish. The IntelliJ automatically syncs the Gradle project.
You can watch the Event Log at the bottom right; a successful import
appears within seconds. With this, we now have an IDE project configured
to compile against Kotlin 2.0.20 and target the standard library.

Importing Task Tracker Starter Code

To do this, within IntelliJ, choose File > Open, then navigate to the
unzipped TaskTracker folder. The IntelliJ detects the Gradle build and
prompts to import. Just click agree and let the IDE index all files. In the
Gradle panel, expand Tasks > application and double-click run. The Run
console displays:

> [ist
No tasks found.

> add "Initialize environment"

Task added: 1

This immediate feedback loop shows the minimal starter in action,
confirming that our environment, compiler, and IDE are correctly aligned.

Examining Project Structure
Now if you look in the Project tool window, you'll see:

TaskTracker/
build.gradle.kts
settings.gradle.kts
gradlew, gradlew.bat, gradle/
src/
L— main/
L— kotlin/
L tracker/
L— Main.kt

Here, you open Main.kt to see the simple REPL loop that reads commands,
matches them using when, and manipulates an in-memory list of tasks. We
will enhance this file immediately in the next topic. Because Kotlin 2.0



compiles quickly on modern hardware—often in under a second for small
changes—every edit we make will be validated almost instantly.

Troubleshooting Common Issues

If kotlinc reports an unexpected version, we simply double-check sdk
current kotlin. If IntelliJ fails to sync Gradle, open the Build tool window
and click Refresh all Gradle projects. For Snap-related permission errors,
run sudo snap connect intellij-idea-community:... as suggested in the
error message. Should we encounter a missing JDK error inside the IDE,
confirm that Project SDK under File > Project Structure points to the
system’s Java 17 installation.

With JDK, Kotlin 2.0.20, SDKMAN!, and IntelliJ IDEA operational, our
Linux workstation has transformed into a Kotlin playground. We see the
Task Tracker prompt in our Run console; we can edit Main.kt, press
Ctrl + Shift + F10, and observe the updated behavior. This instant
gratification cements the link between code and outcome, fueling our
motivation to explore Kotlin’s modern features. In the next topic—
Variables, Data Types, and Basic Operations—you will declare typed
properties in Main.kt, replace raw strings with value classes, and witness
how Kotlin’s type system assists us toward safer, more maintainable code.




Configuring IDE

We have a working Kotlin 2.0.20 compiler and IntelliJ IDEA Community
Edition. Now we enhance our workflow by adding plugins that streamline
coding, enforce best practices, and accelerate debugging. Each plugin we
install becomes a teammate: one suggests code completions, another
highlights performance pitfalls, a third formats our code to a consistent
style. As we build the Task Tracker, these plugins catch errors before they
happen, document our APIs automatically, and integrate testing tools so we
can verify new features within seconds.

Kotlin Plugin

The IntelliJ bundles the Kotlin plugin, which provides syntax highlighting,
code completion, refactorings, and immediate inspections for Kotlin code.
We already saw how IntelliJ recognized build.gradle.kts and offered to
import. That functionality comes from this plugin.

Now, how to verify? Well, in IntelliJ’s main menu, choose File > Settings >
Plugins. Under the Installed tab, search for “Kotlin.” We should see
“Kotlin” marked as Enabled. Its version matches our IDE build, and it
ensures full support for Kotlin 2.0.20 source files. No further action is
required here, but knowing it is active gives confidence that every Kotlin
construct—whether a value class or context-receiver—receives correct
editor support.

Gradle Kotlin DSI. Support

When we author build.gradle.kts, this plugin supplies code completion,
type-checking, and quick navigation for Gradle’s Kotlin DSL. We can
import dependencies, configure tasks, and refactor build logic with the
same tooling advantages us enjoy in application code.

How to install?

e In Settings » Plugins, click the Marketplace tab.
e Search for “Gradle Kotlin DSL.”
e Click Install, then Restart IDE when prompted.



First, open the build.gradle.kts and begin typing kotlin("jvm") version.
The IDE suggests completions, shows available versions, and flags
mistakes such as missing parentheses. As we add plugins for serialization or
Ktor, autocompletion ensures our Gradle script remains correct and up to
date.

.editorconfig Support

An .editorconfig file at the project root defines indentation, line endings,
naming conventions, and more. The plugin applies these rules automatically
as we type or reformat.

To install:

e In Settings > Plugins, search “EditorConfig.”
e Install and restart.

At our project root, just create a file named .editorconfig and add rules:

root = true

[*.{kt,kts}]

indent_style = space
indent_size = 4
continuation_indent_size = 8
insert_final newline = true
max_line_length = 120

charset = utf-8

After this, the IntelliJ highlights any deviation from these rules. When we
press Ctrl + Alt+ L (Reformat Code), our Kotlin files conform
automatically.

Arrow Meta

The Arrow Meta brings meta-programming capabilities to Kotlin. We can
define custom compiler plugins, lint rules, or DSL transforms. For the
Task Tracker, we might use Arrow Meta later to generate boilerplate for



command handlers or to enforce that every when expression over task
statuses remains exhaustive.

To install:

e In Settings > Plugins, search “Arrow Meta.”
e Install and restart.

To put into use, just add the following to our Gradle build:
plugins {
id("arrow.meta") version "1.3.2"

}

Then write a simple lint rule in src¢/main/kotlin that flags any
non-exhaustive when on our TaskStatus sealed class. We see warnings in
the editor before we compile. This proactive feedback guards against logic
holes.

RESTful Toolkit / Swagger Ul Integration

When we begin defining REST endpoints in Ktor, this plugin assists by
generating OpenAPI (Swagger) specifications and embedding an interactive
UI. We can test CRUD operations on our Task Tracker API without leaving
the IDE.

To install, search “Swagger” or “OpenAPIL.” Now to use, add the OpenAPI
feature in our Ktor module:

install(OpenAPIGen) {
swagger {
forwardRoot = true

}

}

Then just reload the project. Then, in IntelliJ’s HTTP client or embedded
browser, navigate to http://localhost:8080/swagger-ui. You will see our



http://localhost:8080/swagger-ui

Task Tracker endpoints documented and can exercise them with sample
JSON bodies.

Code Quality and Linting Plugins
Detekt

It is a static code analysis for Kotlin. It finds complexity hotspots, unused
code, potential bugs, style violations, and security issues.

Simply search for “Detekt.”, install it and restart. Now to integrate, write
the following in build.gradle.kts:

plugins {
id("io.gitlab.arturbosch.detekt™) version "1.21.0"
}
detekt {
config = files("$rootDir/detekt-config.yml")
buildUponDefaultConfig = true

}

Then run ./gradlew detekt to generate an HTML report. In IntelliJ, the
Detekt tool window highlights issues inline. We will run this after adding
new modules to ensure code quality remains high.

Ktlint

This one enforces Kotlin style guide. It automatically formats code on save
or commit. Just install as you did the previous ones and then to integrate,
write the following in build.gradle.kts:
plugins {

id("org.jlleitschuh.gradle.ktlint") version "11.0.0"
}
ktlint {



version.set("0.48.2")

enableExperimentalRules.set(true)

}

After this, the./gradlew ktlintFormat automatically reformats code. We
can add a pre-commit hook so every git commit triggers ktlintCheck and
ktlintFormat.

Database and Serialization Helpers

When we add JSON serialization and later integrate a lightweight
embedded database (e.g. H2 or SQLite), these plugins help as below:

e SQL Delight — generates typesafe Kotlin APIs from SQL statements.
o Kotlinx Serialization — assists in JSON, ProtoBuf, and CBOR
serialization.

To integrate, just install it as we did the other plugind and then to integrate,
write the following in build.gradle.kts:

plugins {
id("com.squareup.sqgldelight") version "1.5.4"
kotlin("plugin.serialization") version "2.0.20"
}
sgldelight {
database(""TaskDatabase") {
packageName = "tracker.db"
}
}
dependencies {
implementation("org.jetbrains.kotlinx:kotlinx-serialization-json:1.6.0")

implementation("com.squareup.sqldelight:sqlite-driver:1.5.4")

}



This will define our tasks.sq file under src/main/sqldelight/tracker/db,
and SQL Delight generates a TaskDatabase API we call from service
classes. After installing and configuring each of the above plugins, go to
File > Invalidate Caches / Restart, choose Invalidate and Restart.

Once IntelliJ restarts, open the Event Log and Problems tool windows to
confirm no plugin errors appear. Now in Gradle pane, trigger a full rebuild:

./gradlew clean build

In Run console, re-execute the Task Tracker:

J/gradlew run

Now here, we have to ensure that the commands still function as before:
> add "Verify plugins"

Task added: 1

> list

1: Verify plugins

By doing this, we've turned IntelliJ IDEA into a super powerful Kotlin 2.0
tool. Every code sample after this one—whether it's a LINQ-style collection
filter, an inline lambda callback, or a Ktor routing block—will get real-time
feedback, automated formatting, and static analysis. Now, we're all set to
dive into the heart of Kotlin syntax, knowing our IDE will support every
keystroke, spot every misstep, and help us build a solid Task Tracker
application.



Modern Kotlin Syntax and
Enhancements

We know you've worked with Kotlin in the past, but we know that there
have still been times when boilerplate or awkward constructs have gotten in
your way. Kotlin 2.0 has some cool new features. It gets rid of ceremony,
makes sure things are more reliable when you compile, and makes it easier
to show what you mean. As we continue to improve the Task Tracker, these
changes will make refactoring smoother and every new feature more
concise. We'll see how context-receivers get rid of repetitive parameters,
how value classes model domain types without overhead, and how
upgraded when expressions, contracts, and standard-library extensions
reduce friction in everyday coding. By when we're done with this topic,
we'll see why Kotlin 2.0 seems more like expressive prose than traditional
code.

Context-Receivers

In earlier Kotlin versions, we passed shared services or utilities into every
function that needed them. Our addTask function might look like:

fun addTask(parser: CommandParser, service: TaskService, input: String)

{

val description = parser.parse(input)
service.createTask(description)

}

You found yourself threading parser and service through multiple layers.

One most important thing isd that, the Context-receivers let us declare that
certain types are available in the function’s context, without explicit
parameters:

context(CommandParser, TaskService)

fun addTask(input: String) {



val description = parse(input)  // parser.parse under the hood

createTask(description) // service.createTask implicitly

}

The compiler injects this@CommandParser and this@TaskService so we
can call their members directly.

Now, to apply to our appl, we need to first open Main.kt and locate the
command-dispatch section. Here, we need to replace the existing signature:

fun handleAdd(parser: CommandParser, service: TaskService, args:
String) { ... }

with:
context(CommandParser, TaskService)
fun handleAdd(args: String) {
val description = parse(args)
val id = createTask(description)
println("Task added: $id")
}

In our REPL loop, call it like:

with(parser, service) { handleAdd(input) }

After this, you remove parameter clutter, and our code reads as if we wrote
a mini-DSL: “with parser and service, handleAdd.”

Value Classes

The representation of a task’s identifier as a String or UUID works, but we
risk mixing IDs with other strings accidentally. The Kotlin2.0’s
@Jvmlnline value class wraps a single property yet compiles down to the
underlying type at runtime—no extra object allocation. In model.kt, write:

@JvmlInline



value class TasklId(val underlying: UUID)

We cannot pass a TaskDescription where a Taskld is expected. At
runtime, TaskId is just a UUID. We then refactor our in-memory store from
Map<UUID, String> to Map<Taskld, TaskDescription>. The compiler
enforces correct usage and we gain self-documenting code.

Enhanced When Expressions

Stronger Exhaustiveness Checking

The Kotlin 2.0 flags missing when branches on sealed types more reliably.
If we have:

sealed interface Command
object ListAll : Command
data class Add(val desc: String) : Command

object Remove : Command
and we write:

when(cmd) {

is ListAll -> ...
isAdd ->...
}

the compiler warns us that Remove is unhandled.

Pattern-Based Matching

You can now use arbitrary conditions in when without requiring else. For
example:

when {
input.startsWith("add ") -> handleAdd(input.drop(4))

input == "list" -> handleList()



input.matches(Regex("\\d+")) -> handleRemove(input.toInt())
}

This form reads as clean conditional logic, and the compiler enforces that
all paths are considered if we opt in to exhaustive when via —Xassertions.

Refactoring Task Tracker Loop

Here, we replace our REPL’s chain of if-else with:

when {

input.startsWith("add ") -> with(parser, service) {
handleAdd(input.drop(4)) }

input == "list" -> with(service) { handleList() }

input.startsWith("remove ") -> with(service) {
handleRemove(input.drop(7).toInt()) }

input == "exit" -> return
else -> println("Unknown command")
}

Your loop now reads like a table of commands, improving readability and
maintainability.

Contracts and Improved Flow Analysis

What Are Contracts?

The Contracts let library authors inform the compiler about function
behavior—such as null checks or invocation counts—so that flow analysis
becomes smarter.

For example, the standard library’s require(value != null) uses a contract to
tell the compiler that after this check, value is non-null.

Custom Contract in Task Tracker

Suppose we write a helper:



import kotlin.contracts.*

fun requireNonEmpty(input: String) : String {
contract { returns() implies (input.isNotEmpty()) }
require(input.isNotEmpty()) { "Input cannot be empty" }

return input

}

When we call val desc = requireNonEmpty(raw), the compiler knows
desc is non-empty thereafter. We avoid redundant null-or-empty checks
later.

Sealed Interfaces and Hierarchies

Kotlin 2.0 allows sealed interface Command so we can implement
commands across multiple files or modules, not just nested inside one class.

To apply, we define in commands.kt:
sealed interface Command

data class Add(val desc: String): Command
object ListAll : Command

data class Remove(val id: Int): Command

You can implement new commands in separate files—say,
UpdateCommand.kt—and the compiler still enforces exhaustive when
checks.

Standard-Library Extensions

The Kotlin2.0 adds extensions like List<T>.splitWhen { } or
Map<K,V>.getOrThrow(key) so we handle error cases idiomatically.

So for example, let us say that to partition tasks by status, we might have to
write:

val (completed, pending) = tasksList.splitWhen { it.isDone }



println("Pending: ${pending.size}, Completed: ${completed.size}")

This single line replaces earlier verbose loop-and-filter code.



Summary

To sum it up, we looked at how Kotlin 2.0 had changed because of how it's
been used in the industry, how well it works, and the language-level safety
features it's got. When we installed OpenJDK "17, SDKMAN!, and the
Kotlin "2.0.20 compiler on Linux, we also configured IntelliJ] IDEA with
Gradle Kotlin DSL, EditorConfig, Detekt, Ktlint, and other plugins. We
confirmed that the Kotlinc and Gradle targeted version was 2.0.20, that the
Task Tracker starter was imported, and that the basic REPL loop
functioned.

You saw how Kotlin's 2.0 context-receivers got rid of parameter clutter,
value classes delivered zero-overhead domain types, enhanced when
expressions enforced exhaustiveness, and contracts improved flow analysis.
We split up command parsing into different parts, used standard library
extensions for collection operations, and saw how these features worked
together to create short, clear code. Finally, we ran the refactored Task
Tracker, and we verified that each modern syntax enhancement produced
clearer, safer, and more maintainable code.



CHAPTER 2: VARIABLES,
DATA TYPES, AND BASIC
OPERATIONS



Chapter Overview

After chapter 1, we move on to this chapter wherein we explore how Kotlin
distinguishes immutable and mutable variables—val versus var—and why
that choice shapes program safety and clarity. We will declare the
Task Tracker’s in-memory store and ID counter, then experiment with
primitive number types and Char values to handle identifiers, counters, and
priority flags.

Next, we will explore arrays, lists, sets, and maps—practically applying
each to store tasks, maintain insertion order, and enforce uniqueness. We
will use Pair to return multiple values and destructure them for cleaner
code. Afterward, we will dive into Boolean logic and operators to validate
user input, combine conditions for filtering tasks, and implement commands
that respond only when specific criteria are met.

And finally, we will become a string master—trimming, splitting with
limits, case normalization, substring previews, string templates, and multi-
line formatting. We will be able to sanitize input and generate polished
console output. By the time we reach the end of this chapter, we will totally
get how the data types and operations in Kotlin form the base for solid
decision-making and data presentation in our TaskTracker application.



Variable Declarations and Mutability

We will now get into defining how our Task Tracker stores data in memory.
At the core of any app, it needs a place to keep tasks—unique identifiers,
descriptions, and status flags. Kotlin offers two fundamental ways to
declare variables: val for immutable references and var for mutable ones.
The choice between them shapes the safety and predictability of our code.
So here, we will explore both, then apply them to establish the initial
in-memory data structures that hold our tasks.

Understanding ‘val’ and ‘var’

When we declare a variable with val, we create a read-only reference. Once
assigned, it cannot point to a different object. Think of val as a constant
handle: the data it refers to might be mutable internally, but the reference
itself never changes. In contrast, var produces a mutable reference. We can
reassign it at any time, pointing it to a new object or value.

val x: Int=5  // x always refers to 5
vary: Int =10 //y can be reassigned

y =15 // now y refers to 15

We can use val whenever possible to signal intent: “I do not plan to reassign
this.” This practice prevents accidental reassignments and helps the
compiler optimize code. Reserve var for cases where we genuinely need to
update the variable to refer to a new value or object.

Immutable vs. Mutable Collections

Kotlin’s standard library distinguishes between immutable and mutable
collection interfaces. An immutable List<T> does not allow adding or
removing elements; a MutableList<T> does. We choose the interface
according to how we intend to use the collection.

val readOnlyTasks: List<String> = listOf("A", "B")
val editableTasks: MutableList<String> = mutableListOf("A", "B")



editableTasks.add("C") // allowed
// readOnlyTasks.add("C") // compiler error

The exposure of immutable interfaces in APIs prevents external code from
unexpectedly altering our data structures, thereby increasing robustness.

Establishing Task Store

At first, open the Main.kt in src¢/main/kotlin/tracker/. At the top of the
main function, declare the in-memory store for tasks. We want to map task
identifiers to descriptions. Later we will replace raw types with value
classes; for now, use basic types to focus on val and var.

fun main() {
// Immutable reference to a mutable map
val tasks: MutableMap<Int, String> = mutableMapOf()
var nextld: Int = 1

// REPL loop begins here...
}

Here,

3 tasks is declared with val, meaning the reference to the map never
changes.

e The map itself is mutable, so we can add and remove entries.

e And, the nextld is a var because we will increment it each time we
add a new task.

Mutability in Action

Inside the REPL loop, we handle "add" commands by inserting into the
tasks map and then incrementing nextId.

while (true) {
print(">"

val input = readLine().orEmpty()



when {
input.startsWith("add ") -> {
val description = input.removePrefix("add ")
tasks[nextld] = description  // mutating the map
println("Task added: $nextId")
nextld++ // mutating the reference
}
input == "list" -> {
tasks.forEach { (id, desc) ->
println("$id: $desc")

}
input == "exit" -> break

else -> println("Unknown command")

}

In the above:

e Youread user input into an immutable val input.

o On "add ...", we mutate the tasks map via tasks[nextld] =
description.

e You mutate nextld itself by writing nextId++.

By minimizing var usage—only for nextld—you make the code’s mutation
points explicit.

Refactoring with Immutable Interfaces

Now to reinforce safe APIs, we need to expose tasks as an immutable Map
when listing or passing to other components. Inside main, we still hold a




MutableMap, but when we call a function to display tasks, require a
Map<Int, String> parameter.

fun displayTasks(readOnlyTasks: Map<Int, String>) {
if (readOnlyTasks.isEmpty()) println("No tasks found.")
else readOnlyTasks.forEach { (id, desc) -> println("$id: $desc") }

}

Then in our loop:
input == "list" -> displayTasks(tasks)

This pattern prevents accidental mutation within displayTasks. Even if that
function grows more complex, the compiler enforces that it cannot change
the task store.

Converting to Value Classes

Although we will dive deeper into value classes in Chapter4, we can
already start migrating primitive types to domain types. Replace Int with a
TasklId value class and String with TaskDescription.

In a new file model.kt:

@JvmlInline value class TasklId(val id: Int)

@JvmlInline value class TaskDescription(val text: String)
Back in Main.kt, we then update the declarations:

val tasks: MutableMap<Taskld, TaskDescription> = mutableMapOf()
var nextld = TaskId(1)

Here, the mutation remains the same:

tasks[nextld] = TaskDescription(description)
nextld = Taskld(nextld.id + 1)



The use of val for tasks and var for nextld confirms that only the identifier
generator changes, while the task collection reference stays fixed.



Primitive and Complex Data Types
Number Types

Kotlin offers six primitive number types: Byte, Short, Int, Long, Float,
and Double. Each type balances range and memory footprint. For task
identifiers and simple counters, we typically use Int, which spans from —23!
to 231-1. When we need to record timestamps in milliseconds or very large
counters, Long becomes appropriate. If we later add estimated completion
times with fractional minutes, Double handles decimal precision.

So here, we modify our nextld declaration within our Main.kt to
demonstrate different number types:

var nextIntld: Int =1 // default counter
var nextLongld: Long = 1L // explicit Long counter
val piApprox: Float = 3.14F // sample Float value

val eApprox: Double = 2.718281828  // high-precision Double
If we run the REPL and add tasks, we can print both counters side by side:

tasks[nextIntld] = description
println("Int ID: $nextIntld, Long ID: $nextl.ongld")
nextIntld++

nextLongld++

This shows how Kotlin enforces correct usage. It is appending L for Long
and F for Float—while letting we mix types safely in expressions with
automatic conversions where allowed.

Characters and String Interplay

A single character uses the Char type, enclosed in single quotes. Although
we rarely store isolated characters in a Task Tracker, we might validate




command prefixes or parse status flags. For example, we can check if the
user’s input begins with the character '!" to denote a high-priority task.

Just simply add the following snippet to our command parser:
val raw = readLine().orEmpty()
if (raw.firstOrNull() =="") {

val highPriority = true

val commandText = raw.drop(1)

println("High-priority command detected: $commandText")

}

In the above, the firstOrNull() returns a Char?, and comparing it to '!'
leverages Kotlin’s null-safe operators. We avoid a crash when the input is
empty because firstOrNull() yields null rather than throwing an exception.

Arrays

An Array<T> holds a fixed number of elements of type T. We might use
an array if we know in advance the maximum number of tasks we wish to
support, or if we want to benchmark performance differences between
arrays and lists.

In Main.kt, try inserting a temporary experiment as below:
val maxTasks = 100

val taskArray = arrayOfNulls<String>(maxTasks) // initially all null
When we add a task, place it into the next free slot:

if (nextIntld <= maxTasks) {
taskArray[nextIntld - 1] = description
println("Stored in array slot ${nextIntld - 1}")

} else println("Maximum tasks reached")



After you run this code, it will show that arrays require manual bounds
checking. We will later prefer MutableList for dynamic sizing, but this
exercise highlights how arrays work under the hood and why Kotlin
distinguishes them from more flexible collections.

Lists, Sets, and Maps

A List<T> represents an ordered collection that we can traverse by index.
Its mutable variant, MutableList<T>, lets us add and remove elements. In
our Task Tracker, you’ve already used a MutableMap to pair IDs with
descriptions. We can also maintain a separate MutableList<TaskId> to
record insertion order or support undo operations.

Add after our map declaration:
val insertionOrder: MutableList<Int> = mutableListOf()

Inside the "add" branch:

tasks[nextIntld] = description
insertionOrder.add(nextIntId)

println("Task IDs in order: $insertionOrder")

After printing insertionOrder, we see how the list grows dynamically,
unlike the fixed-size array.

Next, a Set<T> enforces uniqueness. If we want to track which task
descriptions have appeared before, declare:

val uniqueDescriptions: MutableSet<String> = mutableSetOf()
Then in "add":

if (uniqueDescriptions.add(description)) {
println("New description recorded")

} else println("Duplicate description ignored")

This use-case prevents identical tasks from cluttering our tracker.



Pairs and Triples for Compound Values

Kotlin’s Pair<A,B> and Triple<A,B,C> group two or three values without
defining a custom class. We might use a Pair to return both a TaskId and
its timestamp from a function.

For this, let us define a helper:

fun addTaskWithTimestamp(desc: String): Pair<Int, Long> {
tasks[nextIntld] = desc
val timestamp = System.currentTimeMillis()
insertionOrder.add(nextIntId)

return Pair(nextIntld, timestamp)
}

In our loop, we then call:

val (id, time) = addTaskWithTimestamp(description)
println("Task $id added at $time")

nextIntld++

The destructuring of declarations let us unpack the pair into id and time
variables, keeping code concise.

All these types in our app are used to internalize how data is categorized by
Kotlin and why each collection interface exists. The subsequent topic will
elaborate on these foundations by introducing Boolean logic and operators,
thereby empowering us to filter, query, and manipulate our task collections
with precision.



Booleans and Logical Operators

Now that you have set up storage for tasks and experimented with numbers,
characters, and collections, we will turn to decision logic. Boolean values
(true/false) and logical operators (& &, ||, !) lie at the heart of any
interactive program. They let us test conditions, branch execution, and filter
data.

Boolean Type and Comparison Operators

When we declare a Boolean in Kotlin, we write:

val flag: Boolean = true
var isActive: Boolean = false

The comparison operators yield Boolean results. Common forms include:

e == and != for equality and inequality
e <, > <=, >=for numeric comparisons

In Main.kt, we can add a quick check to ensure nextIntld never exceeds a
threshold:

val maxTasks = 100

if (nextIntld > maxTasks) println("Cannot add more tasks")

In the above, the nextIntld > maxTasks evaluates to a Boolean. The if
expression uses that value to decide whether to print the warning.

Logical Operators

We often come across a situation wherein we need to test multiple
conditions at once. The Kotlin provides:

e AND: && returns true only if both operands are true.
e OR: || returns true if at least one operand is true.
e NOT: ! inverts a Boolean.

Let us take an example on Input Validation. Here, we ensure that an “add”
command has non-empty description and does not exceed length limits:



val desc = input.removePrefix("add ").trim()
if (desc.isNotEmpty() && desc.length <= 50) {
addTask(desc)

} else println("Description must be 1-50 characters")

The expression desc.isNotEmpty() && desc.length <= 50 combines two
Boolean tests. If either fails, the entire condition is false, and the task is
rejected.

Null-Safe Boolean Expressions

When reading user input with readLine(), we get a String?. We must guard
against null before calling methods on it. Kotlin’s safe-call operator and the
Elvis operator help:

val rawInput: String? = readLine()

mnmn

val input = rawInput?.trim().orEmpty() // converts null to

Now input is non-null, so we can apply Boolean checks without risking a
null-pointer exception.

Boolean Logic in Task Filtering

Imagine adding a “filter” command to display only tasks whose
descriptions contain a keyword and whose IDs fall within a range. Here, we
parse two parameters: a keyword and a maximum ID.

We can extend our REPL loop to recognize:
input.startsWith("filter ")
We then extract arguments and convert the second to an integer safely:

val parts = input.removePrefix("filter ").split(" ")
val keyword = parts.getOrNull(0).orEmpty()
val maxId = parts.getOrNull(1)?.toIntOrNull() ?: Int. MAX_VALUE

Next, we then filter the tasks map:



val filtered = tasks.filter { (id, desc) ->
desc.contains(keyword, ignoreCase = true) && id <= maxId

}
displayTasks(filtered)

In the above, the lambda’s Boolean expression desc.contains(...) & & id <=
maxId uses both string-matching and numeric comparison to decide which
entries to include.

Boolean Flags

Suppose we adopt a convention: prefixing a description with ! marks it high
priority. We can store a Boolean flag in a data class. For this, we define in
model.kt:

data class Task(val id: Taskld, val description: TaskDescription, val
highPriority: Boolean = false)

We then modify our add logic:

val rawDesc = input.removePrefix("add ").trim()

val isHigh = rawDesc.firstOrNull() =="I"

val descText = if (isHigh) rawDesc.drop(1).trim() else rawDesc
val task = Task(nextld, TaskDescription(descText), isHigh)
service.createTask(task)

println("Task added: $nextld (high priority: $isHigh)")

Here, we used the Boolean expression rawDesc.firstOrNull() == '!" to set
the flag. Later we can filter high-priority tasks with:

val highTasks = service.getAllTasks().filter { it.highPriority }
displayTasks(highTasks.associate { it.id.id to it.description.text })

Logical Operator Short-Circuiting




The Kotlin’s && and || operators are short-circuiting. In A && B, if A is
false, B is not evaluated. This lets us chain null checks safely:

if (rawInput != null && rawlInput.startsWith("add ")) { ... }
If rawInput is null, the second check is skipped, avoiding an exception.

Composing Complex Conditions

You can group Boolean expressions with parentheses for clarity. For
instance, only allow “remove” when ID is valid and the task is not
high-priority:

val idToRemove = parts.getOrNull(0)?.toIntOrNull()

if (idToRemove != null && tasks.containsKey(idToRemove) &&
Iservice.isHighPriority(idToRemove)) {

service.removeTask(idToRemove)
println("Task $idToRemove removed")

} else println("Cannot remove task")

The combined condition uses && and ! to express: ID exists and task is not
high priority. Grouping is implicit here, but we can add parentheses for
readability.

We can carry all these skills into the next topic—string manipulation and
formatting—where we refine how task descriptions appear to the user.



Manipulating Strings and Formatting
Data

You begin by treating every user input as raw text that often includes extra
spaces, inconsistent casing, or unexpected characters. In Kotlin, calling
trim() on a String removes leading and trailing whitespace, so "add task"
becomes "add task".

Due to this, we write:

val rawInput = readLine().orEmpty/()

val input = rawInput.trim()

When we normalize input at the start of our REPL loop, every subsequent
parsing step can assume a clean input, preventing subtle bugs. If we only
want to remove leading spaces, we call trimStart(), or trimEnd() for
trailing only. These methods ensure commands like " list" and "list"
behave identically.

In Kotlin, the splitting of a String into meaningful parts uses split with a
limit. We want to separate the command verb from its arguments only once.
Here, we write:

val (command, args) = input.split(" ", limit = 2).let { it[0] to
it.getOrNull(1).orEmpty() }

With limit = 2, we guarantee that args retains spaces inside descriptions.
When we type add Buy milk and eggs, we see command == "add" and
args == "Buy milk and eggs". Later, joining a list of tags back into a

" "

comma-separated string uses joinToString(", ").

We can experiment with:

val tags = listOf("urgent", "home")
printIn("Tags: ${tags.joinToString()}")



Seeing “Tags: urgent, home” confirms that splitting and joining work
seamlessly.

You then tackle case normalization so that filtering commands ignore letter
case. By invoking equals(other, ignoreCase = true), we match keywords
regardless of how users type them. For example:

if (description.equals(filterKeyword, ignoreCase = true))
displayTasks(tasks)

You also capitalize the first character of display titles with
replaceFirstChar { it.uppercaseChar() }, turning "task tracker" into
"Task tracker". To preview long descriptions, we call take(20) and
append an ellipsis when length > 20. We code:

val preview = description.take(20).let { if (description.length > 20)

"$it..." else it }

println("Preview: $preview")

This approach ensures that our command-line output never becomes

overwhelming. Now in preparing reports, we can leverage Kotlin’s
multi-line strings as shown below:

val report =
|=== Task Report ===
ID: $id
|Description: $preview
|Priority: ${if (highPriority) "High" else "Normal"}
""" trimMargin()
println(report)
Here, the starting of each line with | and calling trimMargin(), the block

aligns neatly. We then format timestamps using Java’s DateTimeFormatter
for human-readable time:



val timestamp = DateTimeFormatter.ofPattern("yyyy-MM-dd
HH:mm:ss")

.withZone(Zoneld.systemDefault())
.format(Instant.now())

println("Added at: $timestamp")

Seeing a clean, aligned report printed in our console reinforces how string
manipulation and formatting combine to produce professional-grade CLI
output.

Now we apply these techniques in a quick exercise for you, where you add
a search command that finds tasks containing a keyword ignoring case,
then prints results in an aligned two-column layout. Use padStart() to align
IDs, contains(..., ignoreCase = true) for matching, and multi-line strings
for headers. As we implement and run this feature, we witness firsthand
how string operations transform raw input into structured, readable output
—elevating our Task Tracker from a simple loop into a polished tool.



Summary

To review what we learned, we established in-memory storage for tasks
using a val reference to a MutableMap and a var counter for IDs, making
mutation points explicit. We distinguished between val and var, favoring
immutable references wherever possible and limiting mutable references to
clearly defined cases. We explored primitive number types—Int, Long,
Float, Double—and used them to track task IDs, counters, and sample
values.

Next, we handled single characters via Char to detect high-priority
commands, and we experimented with fixed-size Array versus dynamic
MutableList and MutableSet, observing how each collection type behaved
when adding, iterating, and enforcing uniqueness. We grouped multiple
return values with Pair to return both task ID and timestamp, then
destructured the result for concise code. We applied Boolean logic and
operators—==, !=, <, > &&, ||, !—to validate input, filter tasks by
keyword and ID range, and guard against invalid or high-priority removals.
And finally, we manipulated strings with trim(), split(limit=2), take(), and
multi-line """...""".trimMargin() constructs to sanitize commands,
extract arguments, preview long descriptions, and produce aligned,
human-readable reports with embedded timestamps. Each of the technique
reinforced how Kotlin’s type system and standard-library functions
collaborate to create safe, expressive, and maintainable code in our project.



CHAPTER 3: CONTROL
STRUCTURES AND
PROGRAM FLOW



Chapter Overview

To begin with, we start to explore how Kotlin’s if-else constructs enable
precise decision-making in our Task Tracker, using both statement and
expression forms to validate input, enforce limits, and generate unified
messages. We will then adopt the more scalable when expression to map
user commands and conditions to actions in a clear, maintainable dispatch
table.

After that, we will implement while loops to drive the REPL loop and
nested validation prompts, ensuring continuous responsiveness and robust
input handling. We will see how background tasks—such as periodic
reminders—use while with delays to avoid busy-waiting. Finally, we will
employ do-while loops to guarantee that confirmation prompts and menus
execute at least once before checking exit conditions, reducing code
duplication and improving user experience. The whole chapter aims to
transform our project’s control flow into a concise, expressive set of
constructs that handle every interaction reliably and readably.



If-Else Constructs

Decision logic is relied on in every layer of an application: when validating
user input in forms, routing HTTP requests in web services, toggling feature
flags in production, or selecting algorithms at runtime. The simplest
building block for such decisions is the if-else construct. By evaluating a
Boolean expression, if-else directs execution down one path or another,
ensuring that only the intended code runs under specific conditions. In our
Task Tracker, if-else governs whether to add a task, list existing tasks,
remove a task, or exit the program. If we master both statement-style and
expression-style if-else, it can guarantee that each branch remains clear,
testable, and maintainable.

Statement vs. Expression Form

Statement Form

When side effects are performed directly in each branch, use if-else as a
statement.

if (tasks.isEmpty()) {
println("No tasks available.")
} else {
println(""You have ${tasks.size} tasks.")

}

This form executes one of the two println calls based on the condition but
does not return a value.

Expression Form

If-else should be treated as an expression that yields a value. This approach
separates decision logic from side effects.

val message = if (tasks.isEmpty()) {



"No tasks available."

} else {

"You have ${tasks.size} tasks."

}

println(message)

By computing message first, then printing once, we reduce duplication and
clarify intent.

Refactoring “list”

First locate the branch handling input == "list". Then replace the nested
statement-style code with expression-style:

if (input == "list") {
val output = if (tasks.isEmpty()) {
"No tasks found."
} else {
tasks.entries.joinToString("\n") { (id, desc) -> "$id: $desc" }
}
println(output)
}

How this helps you?

e You compute display text in one place.
e You print once, avoiding repeated I/O calls.
e You make the decision logic easy to unit-test by extracting it later.

Chaining Conditions with ‘Else-If’

When multiple exclusive checks are needed—such as enforcing a maximum
task count and validating description length, it is good to chain else if:

if (tasks.size >= maxTasks) {



println("Cannot add more tasks: limit reached.")
} else if (desc.isBlank() || desc.length > 50) {

println("Description must be 1-50 characters.")
} else {

tasks[nextld] = desc

println("Task added: $nextId")

nextld++
}

Following are the key benefits of it:

e Conditions evaluated top to bottom.
e Early branches prevent unnecessary checks.
e Mandatory braces maintain readability.

Nested L.ogic with Combined Booleans

The deep nesting can obscure intent, which is why it is important to be
mindful of the connections between sentences. Put together Boolean tests
into one condition and use expression form to handle results:

val valid = desc.isNotBlank() && desc.length <= 50 &&
luniqueDescriptions.contains(desc)

val feedback = if (valid) {
tasks[nextld] = desc
uniqueDescriptions.add(desc)
println("Task added: $nextId")
nextld++
"Success"

} else {

when {



desc.isBlank() -> "Description cannot be empty."
desc.length > 50 -> "Description too long."

else -> "Duplicate description."

}
println(feedback)

Why we do this?

e You isolate validation logic in valid.

. You compute a single feedback message via if-else and nested
when.

. You perform side-effects (adding, printing) inside the branch that
succeeded, then print feedback only once.

Early Exit with ‘Elvis’

Try using the Elvis operator (?:) for concise null checks in place of small
if-else blocks. In our REPL loop:

val line = readLine()?.trim() ?: return // exit on EOF or null
This single line replaces:

val raw = readLine()

val line = if (raw != null) raw.trim() else return

By leveraging ?:, we maintain explicit control flow while keeping code
succinct.

“stats”

A "stats" command should be implemented to report counts of pending and
high-priority tasks. The use of if-else is for the decision of the output
message:

if (input == "stats") {



val pending = tasks.count { !completedSet.contains(it.key) }
val high = highPrioritySet.size
val message = if (pending == 0 && high == 0) {
"No pending or high-priority tasks."
} else {
"Pending: $pending, High-priority: $high"
}
println(message)

}

By applying these patterns throughout our Task Tracker’s REPL loop, we
make every decision point explicit, testable, and maintainable. In the next
topic, we will elevate our branching logic with when expressions—
scalable, pattern-matching constructs that generalize if-else if chains.



‘When’ for Conditional Handling

You have seen how if-else chains route commands in the Task Tracker, but
as conditions multiply, those chains grow verbose and harder to maintain.
The Kotlin’s when expression provides a clear, pattern-matching alternative
that maps specific conditions to actions. Rather than evaluating multiple
Boolean tests in sequence, we declare each case alongside its handling
code. This structure reads like a dispatch table: each branch describes
“when this occurs, do that.”

Syntax and Expression Form

A when without an argument tests arbitrary Boolean expression:

when {
input.startsWith("add ")  -> handleAdd(input.drop(4))
input == "list" -> handleList()

input.startsWith("remove ") ->
handleRemove(input.drop(7).toIntOrNull())

input == "exit" -> return
else -> println("Unknown command")

}

You write a series of conditions on the left, separated by new lines, and the
arrow points to the action. Kotlin evaluates each condition top to bottom,
executing the first matching branch. Because when is an expression, it can
produce a value:

val result = when {
tasks.isEmpty() -> "No tasks available"

else -> "You have ${tasks.size} tasks"



println(result)
This replaces nested if-else blocks with a single, unified construct.
Replacing ‘If-Else’ Chains

Art first, we need to go to when-style branch which we introduced earlier.
And then confirm that each command maps to exactly one branch:

while (true) {
print(">"
val input = readLine().orEmpty().trim()
when {

input.startsWith("add ") -> with(parser, service) {
handleAdd(input.drop(4)) }

input == "list" -> with(service) { handleList() }

input.startsWith("remove ") -> with(service) {
handleRemove(input.drop(7).toIntOrNull()) }

input == "stats" -> with(service) { handleStats() }
input == "exit" -> break
else -> println("Unknown command: \"$input\"")

}

What we achieve?

e Single construct handles all commands.
e No nested braces for each branch.
e Readable mapping from condition to action.

‘when’ with Argument for Exact Matching

When we compare a single variable against constants, supply it as the
argument:




when (command) {
"add" -> handleAdd(args)
"list" -> handleList()
"remove" -> handleRemove(args.toIntOrNull())
"stats" -> handleStats()

else  -> println("Unknown command: $command")
}

In the above, the command is a String derived by splitting input. Kotlin
checks equality against each branch’s constant. This form avoids repeating
input == on every line, focusing attention on the variable being dispatched.

‘when’ for Type and Range Checks

The Kotlin allows pattern matching beyond simple equality. We can test
types, ranges, or collections of values:

when (val id = args.toIntOrNull()) {
null -> println("Invalid ID format")
in 1..tasks.size -> handleRemove(id)

else -> println("ID out of range")
}

Here, the null branch handles parsing failures, in 1..tasks.size covers valid
IDs, and. The else catches anything outside those ranges.

Sealed Class Commands and Exhaustive ‘when’

When we model commands as a sealed interface, when ensures we handle
every subtype. In commands.kt:

sealed interface Command

data class Add(val desc: String): Command



object ListAll: Command
data class Remove(val id: Int?): Command
object Stats: Command

object Exit: Command
The parsing yields a Command instance and then we dispatch:

fun execute(cmd: Command) = when (cmd) {
is Add -> handleAdd(cmd.desc)
is ListAll -> handleList()
is Remove -> handleRemove(cmd.id)
is Stats  -> handleStats()
is Exit  ->return

}

If we omit a branch, the compiler warns that when is not exhaustive. This
guarantee prevents unhandled commands, boosting reliability.

Returning Values from ‘when’

You can use when to compute values as well as control flow. For example,
building user feedback after removal:

val message = when {
id == null -> "Invalid ID."
I'tasks.containsKey(id) -> "Task $id not found."
highPrioritySet.contains(id) -> "Cannot remove high-priority task."
else -> {
tasks.remove(id)

"Task $id removed."



}

println(message)

This pattern centralizes all removal logic in one expression, making it easier
to test and modify.

Combining Conditions in Single Branch

The multiple conditions can share the same action by separating with
commas:

when (input) {

"q'|’ |'quit", "eXit" _> break

else -> println("Type \"exit\" to quit.")
}

We can group synonyms or aliases without repeating the action.

‘when’ without Else

When when operates on a sealed class or enum, we can omit else if we
cover every case:

when (cmd) {

is Add, is Remove, is ListAll, is Stats, is Exit -> execute(cmd)
}

The compiler enforces exhaustiveness. The omission of else surfaces
missing branches at compile time, rather than letting unexpected values slip
through.



‘While’ Loops for Repetition

There are scenarios in which a block of code must repeat until a condition
changes. The Kotlin’s while loop checks its condition before each iteration,
running the loop body only when that condition holds true. Think of it as a
gatekeeper: before entering the loop, Kotlin asks, “Does this condition
remain valid?” If the answer is true, the code inside executes; if false, the
loop ends immediately. This pre-check behavior makes while ideal for tasks
where we cannot predict the number of iterations in advance—reading user
input until it meets criteria, polling a resource until data arrives, or iterating
until an external flag flips. Because the condition is evaluated every time
before looping, our application can remain responsive to changes in
variables, user actions, or system state. We avoid infinite loops by ensuring
the condition eventually becomes false, usually by mutating a variable
inside the loop.

Implementing REPL T.oop

Our Task Tracker uses a read—eval-print loop to interact with users
continuously. So, we write:

while (true) {
p[‘int("> mn

val input = readLine().orEmpty().trim()

when {
input.startsWith("add ") -> handleAdd(input.drop(4))
input == "list" -> handleList()

input.startsWith("'remove ") ->
handleRemove(input.drop(7).toIntOrNull())

input == "stats" -> handleStats()
input == "exit" -> break

else -> println("Unknown command")



}

This while (true) creates an endless loop that only stops when we call
break. Each iteration prompts the user, reads and trims input, and
dispatches commands via when. Because the loop immediately reevaluates
after each command, our application stays ready for the next instruction.
The users perceive a responsive interface: as soon as they press Enter, the
loop processes the command and returns control to them without delay.

Validating Input with Nested ‘While’

Before proceeding, you often need to ensure that certain commands include
valid arguments. For instance, when removing a task, a numeric ID is
required. Rather than handling invalid input with a one-off error, we can use
a nested while loop to insist on correct input.

if (input.startsWith("remove ")) {
var id: Int? = input.drop(7).toIntOrNull()
while (id == null) {
print("Please enter a valid numeric ID: ")
id = readLine()?.toIntOrNull()

}
handleRemove(id)

}

In the above, the inner while (id == null) loop repeats the prompt until id
becomes non-null. Each time the user types a non-numeric string, the loop
runs again, preventing the removal logic from executing on invalid data.
This pattern keeps our main REPL loop simple while encapsulating the
validation in its own repetitive block.

Looping Over Task Collections




Beyond user input, we can apply while to internal processes. Suppose we
want the Task Tracker to automatically remind users of overdue tasks every
minute. We might spawn a background thread:

thread {
while (true) {
val now = System.currentTimeMillis()
tasks.filter { it.value.dueTimestamp < now && lit.value.completed }
forEach { println("Reminder: Task ${it.key} is overdue!") }
Thread.sleep(60_000) // wait one minute

}

In this snippet, the while (true) loop runs indefinitely in a separate thread.
Each cycle filters the tasks map for overdue, incomplete entries, prints
reminders, then sleeps. The pre-condition check at the top of each iteration
ensures that if we later introduce a flag to stop reminders—say, var
remindersEnabled = false—you can change the loop header to while
(remindersEnabled) and break out cleanly when needed.

Responsiveness and Busy-Waiting

A common pitfall with while loops is busy-waiting—continuously checking
a condition without pause, which wastes CPU cycles. We avoid this by
including delays (Thread.sleep) or by yielding control (delay in
coroutines). In the REPL loop, we implicitly yield while waiting for
readLine(). In background loops, always include a sleep interval or
integrate suspendable functions in coroutines:

GlobalScope.launch {
while (remindersEnabled) {
delay(60_000)
checkOverdueTasks()



}
}

By suspending rather than blocking, we keep threads free for other work.



‘Do-While’ Loops for Guaranteed
Execution

The running of a block of code at least once is often necessary before
checking whether to repeat it. In interactive applications, the display of a
menu, prompt for confirmation, or performance of an initial setup step is
desired regardless of state. A simple while loop tests its condition before
running; therefore, if the condition is initially false, the loop never executes.
In contrast, a do-while loop ensures that the body runs once
unconditionally, and then repeats only if the condition remains true. This
pattern stops code duplication and makes sure that setup or validation steps
always occur at least one time.

‘do-while’ Syntax

The Kotlin’s do-while syntax places the loop body before the condition
check:

do {
// code that runs at least once
} while (condition)
You can treat it as a post-condition loop. The body executes, then Kotlin
evaluates condition. If condition is true, the body runs again; if false,

execution continues after the loop. This ensures a guaranteed initial
execution, followed by conditional repeats.

Implementing Confirmation Prompts

In our app, we may want to confirm destructive actions, such as removing
all tasks. We prompt the user at least once, then repeat if they provide
invalid input. So here, we replace a simple if confirmation with a do-while
loop:

input == "clear" -> {



var response: String
do {
print("Are we sure we want to delete all tasks? (y/n): ")
response = readLine().orEmpty().trim().lowercase()
} while (response !="y" && response !="n")
if (response =="y") {
tasks.clear()
println("All tasks removed.")
} else {

println("Clear cancelled.")

}

In the above, we declare response outside the loop. Here, the do block runs
once, prompting the user, and the while condition checks if response is
neither "y" nor "n". If the user types anything else—empty string, typo—
the loop repeats until we get a valid answer. By placing the prompt inside
do, we avoid writing the prompt once before a while loop and again inside

it,
At Least One Task Display

Imagine adding a “show menu” command that always displays choices
once, then repeats until the user selects “back.” So here, we implement:

input == "menu" -> {
var choice: String
do {
println(
|Task Tracker Menu:



|1. Add task
|2. List tasks
|3. Remove task
|4. Back to REPL
""" trimMargin())
print("Enter choice (1-4): ")
choice = readLine().orEmpty().trim()
when (choice) {
"1" -> handleAdd(promptDescription())
"2" -> handleList()
"3" -> handleRemove(promptForld())
}
} while (choice !="4")
}

As per the above, the Menu always appears at least once. The invalid
choices (e.g. "5", "abc") trigger redisplay, and the Loop exits only when
user selects "4". Your REPL loop remains responsive: after exiting the
menu loop, control returns to the main while, waiting for the next top-level
command.

Combining ‘do-while’ with Context-Receivers

It is possible to incorporate context-receivers within the do-while body,
thereby ensuring the maintenance of both our service and parser within the
intended scope. For example:

input == "bulk-add" -> with(parser, service) {
var entries: List<String>

do {



print("Enter tasks (comma-separated): ")

entries = readLine().orEmpty().split(",").map { it.trim() }.filter {
it.isNotEmpty() }

} while (entries.isEmpty())
entries.forEach { handleAdd(it) }

}

In the above, we guarantee that at least one non-empty task description is
entered. The loop repeats until entries contains at least one valid string.



Summary

To quickly summarize, we got strongly with the Kotlin’s primary control
structures. We used if-else both as statements and expressions to branch on
user commands, validate input lengths, enforce task limits, and produce
unified feedback messages. We learned to chain else if for multiple
exclusive conditions, combine Boolean checks to flatten nested logic, and
leverage the Elvis operator for concise null handling.

Next, we replaced lengthy if-else if sequences with when expressions,
mapping command patterns to handler functions in a clear, table-like form.
We saw how when with and without arguments supports constant matching,
range tests, and sealed-class exhaustiveness, reducing boilerplate and
catching unhandled cases at compile time. We explored while loops to keep
our REPL responsive—prompting, reading, and dispatching commands
continuously—and nested loops to validate removal IDs until users
provided correct input. We even sketched a background reminders thread
using while (true) with sleep intervals to illustrate polling without
busy-waiting.

Finally, we introduced do-while loops for confirmation prompts and
guaranteed menu displays, ensuring that critical code segments executed at
least once before checking exit conditions.



CHAPTER 4: FUNCTIONS
AND MODULAR
PROGRAMMING

TECHNIQUES



Chapter Overview

This chapter is where we start putting together separate behaviors into
reusable functions, turning raw code blocks into named units with
well-defined inputs and outputs. We will define parameters and return types
explicitly—using default and named arguments—to enforce type-safe
interfaces in our TaskTracker. Next up, we will dive into higher-order
functions and create custom wrappers for logging, retry logic, and event
callbacks that can accept other functions as parameters. It's pretty cool to
see how inline functions get rid of the lambda-allocation overhead while
allowing mini-DSLs for batch processing.

Finally, we will get a handle on lambda expressions and collection pipelines
—filter, map, sort, and forEach. That'll let us express data transformations
in a concise, readable style. When we are done with the chapter, our
TaskTracker code will have clear sections, reusable pieces, and clear
functional constructs. This will get we ready for more advanced stuff like
classes, constructors, and object-oriented design.



Creating Functions for Reusable Code

As logic grows, embedding everything in a single main function becomes
unwieldy. The functions let us encapsulate discrete behaviors—parsing
input, validating data, displaying results—into named units. Each function
becomes a reusable building block, so when we need to change parsing
rules or output formatting, we update one location rather than hunting
through dozens of lines. This modular approach mirrors how libraries work:
we call well-defined APIs instead of rewriting logic. Functions also
improve readability by abstracting complex steps behind descriptive names.
When we read handleAdd(description), we instantly know what happens,
without parsing implementation details. Furthermore, smaller functions
simplify testing: we can verify that isValidDescription() works correctly in
isolation before integrating it into the REPL loop.

Defining and Invoking Simple Functions

In Kotlin, we declare a function with the fun keyword, a name, optional
parameters with types, and a return type. For example, extract the logic that
displays tasks into its own function. In Main.kt, above main(), we write:

fun displayTasks(tasks: Map<Int, String>) {
if (tasks.isEmpty()) {
println("No tasks to display.")
} else {
tasks.entries.forEach { (id, desc) -> println("$id: $desc") }

}

We then replace the inline listing code inside the REPL loop with a call to
displayTasks(tasks). This single change moves four lines of logic into a
named unit, instantly decluttering our loop.



When we run the program and type list, the behavior remains identical—
but our main function now reads:

if (input == "list") displayTasks(tasks)
The readability soars because the intent (“display tasks™) appears directly.

Extracting Input Parsing into Functions

The parsing of raw user input into a command and its arguments occurred
inline previously. We need to factor that into a function returning a
Pair<String,String>:

fun parselnput(input: String): Pair<String, String> {
val parts = input.split(" ", limit = 2)
val command = parts[0]
val args = parts.getOrNull(1).orEmpty/()

return command to args

}
In our REPL loop, replace splitting logic with:
val (command, args) = parselnput(input)
when (command) {

"add" -> handleAdd(args)

"list" -> displayTasks(tasks)

...
}

By isolating parsing, we can refine splitting rules—such as supporting
quoted arguments—inside parseInput without touching the loop.

Returning Values and Expression-Body Functions




The functions can compute and return values. For simple one-liner logic,
the Kotlin supports expression-body syntax:
fun isValidDescription(desc: String): Boolean =

desc.isNotBlank() && desc.length <= 50 &&

luniqueDescriptions.contains(desc)

Here, we replace the inline validation in handleAdd with a call to
isValidDescription(desc). The function name conveys intent, and its body
concisely expresses the rule. We can now write:

if (isValidDescription(desc)) { addTask(desc) } else { println("Invalid
description.") }

This abstraction also aids testing: we write unit tests for isValidDescription
covering edge cases without invoking our app’s REPL.

Functions with Default and Named Parameters

Now here, when we create tasks, we often supply the description but rarely
override priority or timestamp. We make use of default parameters so
callers omit common values:

fun createTask(
description: String,
highPriority: Boolean = false,
timestamp: Long = System.currentTimeMillis()
): Int {
val id = nextld++
tasks[id] = Task(description, highPriority, timestamp)
return id

}

In our "add" handling, we simply call createTask(desc). Later, if we
detect a ! prefix, we call createTask(desc, highPriority = true). The



named parameters clarify which argument we are overriding.

Modularizing Command Handlers

Now we move each command’s logic into its own function. To do this, we
define above main():

fun handleAdd(args: String) {
val desc = args.trim()
if (isValidDescription(desc)) {
val id = createTask(desc)
println("Task added: $id")
} else {

println("Invalid description.")

}
fun handleRemove(args: String) {

val id = args.toIntOrNull()

// removal logic...
}

Then our loop condenses to:

when (command) {
"add" -> handleAdd(args)
"remove" -> handleRemove(args)

/...
}

Here, each handler focuses solely on its concern. We can later move these
functions into a separate file—Commands.kt—organizing code by feature.



Higher-Order Functions

The Kotlin treats functions as first-class citizens. We can write functions
that accept other functions. For example, we can log every command

execution:

fun withLogging(commandName: String, action: () -> Unit) {
println("Executing $commandName...")

action()

println("$commandName completed.")

}

We then wrap handler calls:

when (command) {
"add" -> withLogging("add") { handleAdd(args) }
"list" -> withLogging("list") { displayTasks(tasks) }
/...

}

This higher-order function prints pre- and post-messages around any action,
without modifying each handler. We have implemented a cross-cutting

concern (logging) in a reusable way.



Defining Parameters and Return
Types

Although we know that functions encapsulate behavior, their power comes
from well-defined inputs and outputs. The parameters allow us to pass data
into a function, and return types indicate what the function yields.
Specifying parameter and return types explicitly creates clear contracts:
“give me a String; I will return an Int.” The compiler enforces those
contracts, preventing inadvertent type mismatches and making our code
more  predictable. In the Task Tracker, functions such as
createTask(description: String): Int accept a description and return the
new task’s identifier. Consumers of that function know exactly what to
supply and what to expect.

Declaring Parameters

The Kotlin syntax for parameters places them in parentheses after the
function name, each with a name and type:

fun handleAdd(description: String, highPriority: Boolean) { ... }
Here, the description: String ensures only text flows in, and the

highPriority: Boolean signals a two-state flag.

Parameters are val by default—you cannot reassign them within the
function—guaranteeing the input remains stable.

Let us take an example of parsing the input. Here, we refactor our inline
parsing into a function with two parameters: the raw input and the
delimiter:

fun splitCommand(input: String, delimiter: String =" "):
Pair<String,String> {

val parts = input.split(delimiter, limit = 2)
val cmd = parts[0]
val args = parts.getOrNull(1).orEmpty()



return cmd to args
}

In this, we used a default parameter delimiter: String = " ", so callers can
omit it. The function signature documents exactly what inputs it handles.

Next, in our REPL loop, we now write:
val (command, args) = splitCommand(input)

This call works whether we supply one or two arguments.

Optional and Named Parameters

When functions have multiple parameters, the Kotlin’s named-argument
syntax enhances readability:

fun createTask(
description: String,
highPriority: Boolean = false,

timestamp: Long = System.currentTimeMillis()
):Int{ ...}
The calling code can override only the parameter we care about:

createTask(description = desc, highPriority = true)

This clarity prevents mixing up Boolean flags or forgetting the meaning of
positional arguments.

Specifying Return Types

Kotlin requires us declare a function’s return type when it is not Unit
(void). The syntax follows the parameter list:

fun calculateStats(tasks: Map<Int, Task>): Pair<Int,Int> { ... }

In the above, the Pair<Int,Int> indicates two integers returned, for
example pending and high-priority counts.



For example, think of computing the statistics, wherein we move our inline
stats logic into:

fun computeStats(tasks: Map<Int, Task>): Pair<Int,Int> {
val pending = tasks.count { !it.value.completed }
val high = tasks.count { it.value.highPriority }
return pending to high

}
In the REPL loop:

val (pendingCount, highCount) = computeStats(tasks)

The compiler enforces that we destructure exactly two values of type Int. If
we attempt to assign to three variables, we get a compile-time error.

Expression-Body Functions

Now when a function body is a single expression, we can combine its
definition and return type succinctly:

fun isValidId(id: Int?, tasks: Map<Int, Task>): Boolean =
id != null && tasks.containsKey(id)

This form makes the parameter and return contract prominent and reduces
boilerplate.

Unit Return and Side-Effect Functions

The functions that perform actions without returning a value use the Unit
return type, which we may omit:

fun displayMenu(): Unit { ... }
fun displayMenu() { ... } // same effect

the above ones can be used for printing, logging, or modifying shared state.
By contrast, functions that compute data always declare non-Unit returns.



Type Safety in Handlers

This is done by defining our command handlers with precise signatures to
prevent misuse:

fun handleRemove(id: Int?, tasks: MutableMap<Int, Task>): Boolean {
if (id == null || tasks.containsKey(id)) return false
tasks.remove(id)

return true

}

The return Boolean indicates success or failure. Also, the caller can react:
val removed = handleRemove(parsedld, tasks)

println(if (removed) "Removed." else "Failed to remove.")

The separation of concerns and explicit types shield our REPL loop from
low-level details.

Higher-Order Functions with Typed Parameters

We also know that Kotlin allows parameters that are functions themselves.
For example, we might abstract retry logic:

fun <T> retry(
times: Int,
block: () -=> T
): T? {
repeat(times - 1) {
try { return block() } catch (_: Exception) {}

}
return try { block() } catch (_: Exception) { null }



Here, the block: () -> T declares a parameter of function type. The return
type T? captures possible failure.

Apart from this, we can use the following when saving tasks:

val result = retry(3) { saveTasksToDisk(tasks) }

printIn(if (result != null) "Saved." else "Save failed.")

The functions become self-documenting contracts, compile-time checks

catch mismatches, and our code gains modularity and clarity—preparing we
for advanced topics such as higher-order functions and coroutines.



Implementing Higher-Order
Functions

As you have seen previously, named functions encapsulate discrete
behaviors in the Task Tracker, such as parsing input, validating
descriptions, and handling commands. Higher-order functions build on this
modularity by enabling us to pass functions as parameters or return them as
results. This capacity transforms functions into top-tier elements: we can
construct reusable frameworks that incorporate custom logic, implement the
same control flow for different operations, and consolidate overarching
concerns without replicating code. For example, instead of writing logging
calls before and after every handler, we create a single higher-order function
that wraps any action with logging. So, when our application is growing
and we're adding features like bulk updates, network saves, or transaction
management, higher-order functions let us inject behavior dynamically.
This keeps the core logic clean and focused.

Function Types and Syntax

In Kotlin, a function type is written as (A, B) -> R, where A and B are
parameter types and R is the return type. For example, a simple predicate
on task descriptions uses the type (String) -> Boolean. In the following, we
declare a parameter of that type inside another function:

fun filterTasks(
tasks: Map<Int, String>,
predicate: (String) -> Boolean
): Map<Int, String> {
return tasks.filterValues { predicate(it) }

}

Here, the predicate is a parameter that accepts any function matching
(String) -> Boolean. Within filterTasks, we call predicate(it) to decide



which tasks to keep. This abstraction decouples filtering logic from the
storage structure, enabling we to reuse filterTasks with different criteria.

Retry Mechanism with Higher-Order Functions

Just imagine saving tasks to a disk or remote server where failures
occasionally occur. We can write a generic retry function that accepts any
suspending or regular block.

fun <T> retry(
times: Int = 3,
block: () -=> T
): T? {
var currentAttempt = 0
while (currentAttempt < times) {
try {
return block()
} catch (e: Exception) {
currentAttempt++

println("Attempt $currentAttempt failed: ${e.message}")

}

return null
}

We can use the following when exporting tasks to JSON:

val success = retry(3) { saveTasksToJson(tasks) }

printIn(if (success != null) "Export succeeded" else "Export failed after
retries")



This pattern pushes retry logic into one place and lets us apply it to any
operation that might throw, from database writes to network calls.

Event Hooks and Callbacks

We might allow clients of our Task Tracker to register hooks that run when
tasks change. To do this, we simply define as below:

typealias TaskListener = (taskId: Int, description: String) -> Unit

val onTaskAddedListeners = mutableListOf<TaskListener>()

fun addTaskListener(listener: TaskListener) {
onTaskAddedListeners.add(listener)

}

fun notifyTaskAdded(id: Int, desc: String) {
onTaskAddedListeners.forEach { it(id, desc) }

}

In createTask, invoke notifyTaskAdded(id, description). Elsewhere, we
register behavior:

addTaskListener { id, desc ->
println("Listener: new task $id -> $desc")

}

This callback style—functions passed into registration methods—enables
extensibility without changing core logic.

Combining Higher-Order Functions with [.ambdas

The Kotlin’s concise lambda syntax makes higher-order functions
effortless. When calling filterTasks, we pass a lambda directly:

val urgentTasks = filterTasks(tasks) { desc -> desc.startsWith("!") }
displayTasks(urgentTasks)



Or even more succinct:
filterTasks(tasks) { it.length > 20 }

After this, we can see how inline lambdas, combined with a generic
filtering function, let us express complex queries in a single line while
reusing the same filterTasks implementation.



Lambda Expressions for Concise Code

The encapsulation of parsing, validation, and command handling in our app
is achieved through the use of named functions. However, many modern
programming frameworks and libraries rely heavily on small, anonymous
functions—known as lambdas—to express logic inline without ceremony.
Lambda expressions changed the way developers write event handlers,
callbacks, and collection transformations. In UI toolkits, for example, we
attach a lambda to a button click rather than defining a separate listener
class. In reactive streams, we pass lambdas to filter, map, and reduce data
flows. Lambdas let us add behavior exactly where we need it. This makes
our code easier to read. When reading code that uses lambdas, the
transformation logic is visible right where the data is processed, eliminating
the need to jump across multiple function definitions.

Lambda Syntax and Inline Function

In Kotlin, we write a lambda by placing parameters, the arrow token ->, and
the body inside curly braces. For example, a function type (Int) -> Boolean
can be represented by a lambda:

val isEven: (Int) -> Boolean = { number -> number % 2 == 0 }

You can omit parameter types when they can be inferred:
val isOdd: (Int) -> Boolean ={ it % 2 !=0 }

In the above, the it refers to the single implicit parameter. Functions that
accept lambdas as parameters are called higher-order functions. We have
already used filterTasks(tasks) { desc -> desc.startsWith("!") }. Kotlin
also lets us mark a function inline, instructing the compiler to substitute the
lambda’s bytecode directly at the call site, avoiding the overhead of object
creation for each lambda.

For example:

inline fun <T> measure(actionName: String, block: () ->T): T { ... }



By inlining, we maintain the abstraction without runtime cost.

Applying L.ambdas to Collections

You maintain a MutableMap<Int, Task> in memory. To list only
high-priority tasks, we once wrote:

val highPriority = tasks.filter { entry -> entry.value.highPriority }
highPriority.forEach { (id, task) -> println("$id: ${task.description}") }

With lambdas and method chaining, this becomes a one-liner:

tasks.filterValues { it.highPriority }
forEach { (id, t) -> println("$id: ${t.description}") }

You see the lambda { it.highPriority } right at the filtering step, and the
print logic inline in forEach. No need for temporary lists or separate loops.
When we implement a search by keyword, we write:

tasks.filterValues { it.description.contains(keyword, ignoreCase = true) }
forEach { (id, t) -> println("$id: ${t.description}") }

This pattern applies to sorting, mapping to CSV lines, or grouping by due
date:

tasks.entries
.sortedBy { it.value.dueTimestamp }
.map { (id, t) -> "$id,${t.description},${t.dueTimestamp}" }
forEach(::println)

Each transformation step uses a lambda, making the pipeline explicit and
readable.

Custom Inline Functions and DSI.-L.ike

Our own inline functions can be defined that accept lambdas so repetitive
patterns can be factored out. For example, you could log the execution time
of any code block.




inline fun <T> timed(label: String, block: () -> T): T {
val start = System.nanoTime()
val result = block()
val duration = (System.nanoTime() - start) / 1_000_000
println("$label took ${duration}ms")
return result

}

We can use it when loading or saving tasks:
timed("Saving tasks") { saveTasksToDisk(tasks) }

Because we marked timed as inline, there’s no lambda-object allocation at
runtime. We can also create a mini-DSL for batch operations on tasks:

fun tasksBatch(process: MutableMap<Int, Task>.() -> Unit) {

tasks.process()

}
Then call:

tasksBatch {
filterValues { !it.completed }.forEach { (id, _) -> remove(id) }
println("Cleared pending tasks")

}

Now here, inside the lambda, this refers to our tasks map. The code reads
like a domain-specific language: “in a batch, remove pending tasks and then
print.”

So, if we adopt lambda expressions and inline functions, we'll be able to cut
down on all that boilerplate code, keep the business logic right where it's
needed, and build flexible, composable pipelines in our TaskTracker. Our



code will resemble a clear description of transformations more than
plumbing, unlocking the full power of Kotlin’s functional features.



Summary

So, to sum things up, we took the repeated logic and put it into some well-
named functions, and we took our app and split it into some smaller parts.
We defined functions with clear parameters and return types—using default
and named arguments—to create tasks, parse input, and compute statistics
with type-safe contracts. You've used higher-order functions that accept
lambdas, like logging wrappers, retry mechanisms, and custom filtering,
which makes it possible to have cross-cutting concerns and generic
pipelines without duplicating code.

Next, we then used lambda expressions and inline functions to process
collections in a concise way—filtering, mapping, sorting, and batching
tasks through chained calls. Then we built mini-DSLs for batch operations
and measured execution time with inline lambdas, reducing boilerplate and
focusing on business logic. With destructuring, expression-body functions,
and function types, you've got a codebase where each module does one
thing well, handlers read like direct instructions, and shared behaviors live
in reusable abstractions.



CHAPTER 5: OBJECT-
ORIENTED
CONSTRUCTS AND
CLASS DESIGN




Chapter Overview

We begin this chapter by defining a Task class with a primary constructor
to group related properties—ID, description, priority, completion flag, and
timestamp—into a cohesive entity. We will try to add secondary
constructors and init blocks to support alternate initialization scenarios and
enforce invariants at creation time. Next, we will introduce a
CommandHandler interface and implement concrete handlers for each
command, then use polymorphic dispatch to decouple our main loop from
specific command logic.

After that, we will factor shared behavior into an abstract base class, using
protected methods to share logging and error handling only with
subclasses. We will then apply Kotlin’s visibility modifiers—private,
internal, and public—to hide implementation details in TaskService and
expose only stable, read-only APIs. Overall, we can have our app well
structured with object-oriented principles that ensure code reuse, clear
separation of concerns, and robust data security for future extension.



Defining Classes and Initializing
Properties

We have so far managed tasks as raw maps of integers to strings, but the
changed needs like tracking priority flags, timestamps, completion status, or
tags, we will need a structured way to group related data and behavior. The
Object-oriented programming gives us that structure by letting we define
classes: blueprints for entities that bundle properties and functions together.
In Kotlin, the classes provide a clear contract for what each object contains
and how it behaves. If we try to model our Task Tracker’s tasks as instances
of a Task class rather than loose map entries, we gain stronger type safety,
self-documenting code, and the ability to attach methods directly to the data
they operate on. We no longer pass around unstructured parameters; instead,
we work with well-defined objects whose constructors ensure that every
instance begins life in a valid state.

Declaring Kotlin Class with Primary Constructor

So here, we can try to declare a class and its primary constructor in a single
line. For this, we create src/main/kotlin/tracker/Task.kt and define the
following:

package tracker
data class Task(
val id: Int,
val description: String,
val highPriority: Boolean = false,
var completed: Boolean = false,

val createdTimestamp: Long = System.currentTimeMillis()
)

Now, in the above:



. The data modifier signals that this class is primarily for holding
data. Kotlin automatically generates equals(), hashCode(),
toString(), and copy() methods.

3 val id: Int and val description: String define read-only properties
initialized by the constructor. Once set, they cannot change, ensuring
the identity and core text of a task remain stable.

e val highPriority: Boolean = false uses a default value so that callers
need only specify priority when it differs from normal.

e var completed: Boolean = false declares a mutable property we will
toggle when users mark tasks done.

. val createdTimestamp: Long = System.currentTimeMillis()
captures the creation moment automatically, without extra code in
main.

After grouping all five properties in the primary constructor, we have a
concise, self-documenting definition of what constitutes a Task.

‘init’ Block for Validation

Sometimes we need to enforce additional invariants or compute derived
properties when an object is created. The Kotlin’s init block runs
immediately after the primary constructor.

For example, to ensure descriptions are non-empty, we extend Task.kt as
below:

init {

require(description.isNotBlank()) { "Task description cannot be blank."

}
}

If someone attempts to create Task(id = 1, description = ""), the
constructor throws an Illegal ArgumentException with our message. This
early validation moves error checking into the class itself, so other code can
assume any Task instance is valid.

Instantiating and Managing Task Objects




Within the Main.kt, we replace our existing map of MutableMap<Int,
String> with MutableMap<Int, Task>. At the top of main(), we then
declare the following:

val tasks: MutableMap<Int, Task> = mutableMapOf()

var nextld = 1

Next, we update our "add" handler to create a Task object instead of a raw
string:
val task = Task(
id = nextld,
description = desc,
highPriority = desc.startsWith("!"),
)
tasks[nextld] = task
println("Task added: $task™)

nextld++

Now here, when we print the task, Kotlin’s generated toString() yields
something like Task(id=1, description=Buy milk, highPriority=false,
completed=false, createdTimestamp=162243...), giving we rich insight
without manual formatting.

Accessing and Modifying Properties

Later, when the users mark a task complete, we retrieve the object and
update its mutable property:

val task = tasks[id]
if (task !=null) {
task.completed = true

println("Marked complete: $task™)



}

Because completed is a var, we can toggle it in place. We preserve the
same object identity in the map, and other code that holds a reference to this
Task sees the updated state immediately. By means of this topic, we
converted two-dimensional data structures into complex objects,
establishing the basis for inheritance, interfaces, and encapsulation in the
upcoming subjects.



Primary and Secondary Constructors

We have already used the primary constructor in Kotlin’s concise data class
Task(...) declaration to bundle properties into objects. The primary
constructor defines the core way to instantiate every object, setting up all
essential properties at once. Secondary constructors—declared with
constructor(...) inside the class—give we alternate ways to create
instances, perhaps supplying default values, performing extra setup, or
supporting legacy code patterns. While primary constructors shine for
straightforward initialization, secondary constructors let us encapsulate
more complex creation logic without cluttering the main signature.

Defining Secondary Constructor

To do this, inside our Task.kt, after the primary constructor and any init
blocks, we add a secondary constructor to support creating a high-priority
task from only an ID and description string prefixed with !.

Following is the syntax:

data class Task(
val id: Int,
val description: String,
val highPriority: Boolean = false,
var completed: Boolean = false,
val createdTimestamp: Long = System.currentTimeMillis()
) {
// Secondary constructor delegates to primary
constructor(id: Int, rawDescription: String) : this(
id = id,
description = rawDescription.trimStart('!"),

highPriority = rawDescription.startsWith("!")



)
}

In the above:

e The secondary constructor takes (id, rawDescription).

. It delegates to the primary constructor via : this(...), computing
description and highPriority based on the raw string.
. You keep all property initialization centralized in the primary

constructor and init block, while the secondary constructor focuses on
parsing logic.

Using Both Constructors

In Main.kt, when handling "add" commands, we previously wrote:

val desc = args.trim()

val task = Task(id = nextld, description = desc, highPriority =
desc.startsWith("!"))

Here, we replace that with a call to the secondary constructor, handing it the
raw argument (with or without !):

val task = Task(nextld, args) // uses secondary constructor
tasks[nextld] = task
println("Task added: $task™)

nextld++

Now, whether args begins with ! or not, the secondary constructor parses
and delegates correctly,. Our REPL loop remains clean—just one
constructor call—while all parsing logic lives inside Task.kt.

Chaining Multiple Secondary Constructors

We can also define additional secondary constructors for other common
patterns. For instance, if we often create tasks with a preset due date, add:

constructor(id: Int, description: String, dueInHours: Long) : this(



id = id,

description = description,
highPriority = false,
completed = false,

createdTimestamp = System.currentTimeMillis() + dueInHours *
3_600_000

)

We then call it with:

val timedTask = Task(nextld, "Submit report", dueInHours = 24)

tasks[nextld] = timedTask

By overloading constructors, we support multiple creation scenarios
without duplicating initialization code.

Through primary and secondary constructors, we now support flexible,
type-safe creation of Task objects in multiple scenarios, keeping our class
design robust and our application code concise.



Implementing Inheritance and
Interfaces

The way in which functions and data classes organize our TaskTracker's
logic has been seen, yet as features are multiplied—such as different storage
backends, multiple command types, or notification behaviors—the risk of
similar code being duplicated across modules is increased. The solution to
this problem is provided by inheritance and interfaces, which enable the
definition of common behavior once and its sharing across multiple types.
When we inherit from a base class, we reuse its properties and methods
without rewriting them. When we implement an interface, we commit to a
set of required methods while retaining flexibility in each implementation.
Together, these object-oriented mechanisms reduce boilerplate code,
centralize maintenance, and enable us to extend functionality with minimal
friction. We can add a new command type or storage strategy simply by
subclassing or implementing an interface, knowing that the shared behavior
is centralized. This helps us make our code better and faster.

Defining CommandHandler Interface

In our REPL loop, each command—add, list, remove, stats—was handled
by a separate function. To unify this, define an interface
CommandHandler that declares a single method for executing a
command:

package tracker.commands
interface CommandHandler {
val commandName: String

fun execute(args: String)
}

Here, the commandName identifies which input this handler responds to.
And, the execute runs the action with given arguments. By coding against



this interface, our main loop need only look up handlers in a map and
invoke execute, without knowing details of each command.

Implementing Handlers via Inheritance

To do this, we create concrete classes that implement CommandHandler.
For “add” and “remove,” we write:

class AddHandler(
private val service: TaskService
) : CommandHandler {
override val commandName = "add"
override fun execute(args: String) {
val task = Task(service.nextld(), args.trim())
service.addTask(task)
println("Added: $task")

}

class RemoveHandler(
private val service: TaskService
) : CommandHandler {
override val commandName = "remove"
override fun execute(args: String) {
val id = args.toIntOrNull()
if (service.removeTask(id)) println("Removed $id")

else println("Cannot remove $id")



Here, both classes share no duplicated logic: parsing args, printing results,
and delegating to service. Yet they each implement the same interface.

Dispatching via Polymorphism

In Main.kt, we then register handlers in a list and dispatch dynamically:

val service = TaskService()

val handlers: List<CommandHandler> = listOf{(
AddHandler(service),
RemoveHandler(service),
ListHandler(service),
StatsHandler(service)

)

while (true) {
print("> "
val input = readLine().orEmpty().trim()
val (cmd, args) = parselnput(input)
handlers.find { it.commandName == cmd }?.execute(args)

?: println("Unknown command: $cmd")
}

By this, we no longer maintain a when or if-else chain. Adding a new
handler means creating a class implementing CommandHandler and
adding it to handlers. The dispatch logic remains untouched.

Abstract Base Classes for Shared [.ogic

Sometimes handlers share more than just an interface—perhaps they all
need logging or error handling. To do this, we define an abstract base class
that implements CommandHandler and provides common behavior:

abstract class BaseHandler(



override val commandName: String,
private val service: TaskService
) : CommandHandler {
override fun execute(args: String) {
try {
println("Executing $commandName")
handle(args)
} catch (e: Exception) {

println("Error in $commandName: ${e.message}")

}
protected abstract fun handle(args: String)

}

Then refactor AddHandler to inherit from BaseHandler:

class AddHandler(service: TaskService) : BaseHandler("add", service) {
override fun handle(args: String) {
val task = Task(nextld(), args.trim())
service.addTask(task)
println("Added: $task")

}

Here, we moved logging and exception-catching into BaseHandler. All
subclasses inherit that behavior automatically, eliminating repeated
try/catch blocks.

Modeling Storage with Interfaces




Beyond commands, we may support different storage backends—memory,
JSON file, or database. To do this, we define an interface TaskRepository:

interface TaskRepository {
fun save(tasks: Map<Int, Task>)
fun load(): Map<Int, Task>

}

Then implement two versions:

class InMemoryRepository : TaskRepository {
private var store = mutableMapOf<Int, Task>()

override fun save(tasks: Map<Int, Task>) { store =
tasks.toMutableMap() }

override fun load() = store.toMap()
}
class JsonFileRepository(private val path: String) : TaskRepository {
override fun save(tasks: Map<Int, Task>) {
File(path).writeText(serializeToJson(tasks))
}
override fun load(): Map<Int, Task> =

deserializeFromJson(File(path).readText())
}

Our TaskService depends on TaskRepository, not a concrete class:

class TaskService(private val repo: TaskRepository) {
private val tasks = repo.load().toMutableMap()
fun addTask(task: Task) { tasks[task.id] = task; repo.save(tasks) }
/...



}

Switching storage does not require changing the service or handlers. The
only necessary change is to inject a different repository implementation.

This establishes clear extension points for commands and storage. The
reuse of shared logic via base classes and adherence to contracts via
interfaces by our app modules ensures that the addition of new features
involves minimal code changes and maximal reuse.



Enforcing Encapsulation and Data
Security

So, as our app went from just maps and basic functions to more complex
services, handlers, and repositories, we started to run into problems. It was
like, if we didn't keep a close eye on access to our internal data structures, it
could lead to inconsistencies and hidden bugs. The mutable state and helper
logic are confined behind controlled interfaces by encapsulation, ensuring
that every change to tasks is validated, persisted, and logged. By using
Kotlin’s visibility modifiers—private, protected, internal, and public—
you draw clear boundaries between what parts of our code are
implementation details versus public API. This separation prevents
accidental misuse, simplifies reasoning about invariants, and makes future
refactoring safe: we know exactly which methods and properties outside a
class may call.

Applying ‘private’ to Guard Internal State

In TaskService.kt, we previously declared

class TaskService(private val repo: TaskRepository) {
val tasks = repo.load().toMutableMap()
/...

}

We then change tasks to private:
private val tasks = repo.load().toMutableMap()

Now no code outside TaskService can read or modify the map directly. All
access must go through the service’s public methods—addTask,
removeTask, getAllTasks—which enforce validation and save changes.

Likewise, helper methods that should remain internal implementation
details belong behind private visibility. If we have



fun validateDescription(desc: String) = desc.isNotBlank() && desc.length
<=50

we then make it private:
private fun validateDescription(desc: String) = ...

This ensures that only TaskService methods invoke validation—command
handlers cannot bypass the rule.

Exposing Read-Only Views with Map Copies

Now here, to let callers inspect tasks without granting mutation rights, we
simply change:

fun getAllTasks(): Map<Int, Task> = tasks.toMap()

By returning a fresh Map copy, we prevent clients from casting back to
MutableMap and altering our internal store.  Attempting
service.getAllTasks() as MutableMap now fails at runtime or compile
time.

Using ‘protected’ for Subclass-Only Methods

In BaseHandler, we factored common logging into methods. Mark these
protected so only subclasses see them:

abstract class BaseHandler(...) : CommandHandler {
protected fun logStart() { ... }
protected fun logEnd() { ...}
override fun execute(args: String) {
logStart(); handle(args); logEnd()
}
protected abstract fun handle(args: String)

}



If we try calling logStart() from outside the class hierarchy, the compiler
rejects it. This enforces that logging remains an inherited concern, not a
general utility.

Leveraging internal for Module-Level Hiding

If we split code into modules—say, core and cli—mark classes in core not
meant for public consumption as internal. In core/src/main/kotlin:

internal class AuditLogger { ... }

internal fun recordAudit(entry: String) { ... }

The cli module cannot see these symbols, reducing API surface and
preventing misuse.

With all this, we guaranteed that every interaction with our Task Tracker’s
core state passes through vetted, stable APIs. This clear separation of
concerns protects invariants, simplifies maintenance, and paves the way for
safe extension as our application grows.



Summary

So, to sum up our understanding, we learned to model tasks as a Task data
class with read-only and mutable properties, ensuring each instance carried
its own identity, description, priority flag, completion status, and creation
timestamp. We then used the primary constructor for concise property
initialization and added secondary constructors to support alternate creation
paths—parsing raw strings or scheduling due-date tasks—while centralizing
validation in init blocks.

Next, we then defined a CommandHandler interface and concrete handler
classes, then dispatched commands polymorphically, replacing brittle when
chains with a flexible list of handlers. We abstracted shared behavior into an
abstract base class, inheriting logging and error-handling logic and marking
helper methods protected to restrict access. We hid internal state in
TaskService by marking the task store and helper methods private, and
exposed only read-only views via toMap(). We then applied internal
visibility to module-specific utilities, preventing external misuse. All of
these object-oriented techniques like classes, constructors, inheritance,
interfaces, and encapsulation helped together to transform our Task Tracker
app into a extensible system where new commands, storage backends, or
features integrate seamlessly without risking internal invariants.



CHAPTER 6:
COLLECTION HANDLING
AND ITERATION
PATTERNS



Chapter Overview

Until now, we learned a lot. We now begin with declaring and manipulating
dynamic lists to preserve task insertion order, appending IDs and iterating
over them with for loops and withIndex(). We will explore fixed-capacity
arrays, locating empty slots, storing tasks by index, and iterating over
indices to display non-null entries.

Next, we will enforce uniqueness using MutableSet for descriptions and
tags, using add() to prevent duplicates. Here, we will define and update a
MutableMap<String, MutableList<Task>> to categorize tasks by status,
demonstrating constant-time lookups and dynamic updates. After that, we
will practice traversing collections with for loops over lists, arrays, and
numeric ranges—using step, downTo, and indices—to process and display
tasks sequentially. Finally, we will unlock declarative pipelines by applying
filter, map, groupBy, and flatMap to select, transform, and group tasks,
creating summary lists, CSV exports, and category reports. By the end of
this chapter, we will be able to command both imperative and functional
collection techniques to manage, traverse, and transform task data in our
application.



Managing Lists and Arrays

So far, we have seen how maps associate task IDs with Task objects, but
many scenarios call for ordered, sequential data structures. The Lists and
arrays provide that order: List<T> and Array<T> let us store elements in a
specific sequence, iterate by index, and enjoy built-in operations such as
filtering, mapping, and slicing. In Kotlin, an immutable List<T> exposes
read-only operations—no additions or removals—while MutableList<T>
lets us change the contents dynamically. Arrays, by contrast, are fixed in
size once created; we use Array<T> or specialized variants like IntArray
to hold a predetermined number of elements. Each choice balances
flexibility, performance, and intent: use lists when we expect to grow or
shrink collections at runtime, arrays when we know capacity ahead of time
or need tight control over memory layout. Throughout our app project, we
will leverage lists to record insertion order, support undo stacks, and
maintain history logs, and we will experiment with arrays for fixed-capacity
storage or performance comparisons.

MutableList for Dynamic Task Sequences

Here, you begin by declaring a MutableList to track task IDs in the order
they were added. Alongside our tasks map, we add:

// Tracks insertion order for tasks

private val insertionOrder: MutableList<Int> = mutableListOf()

When a task is created, we append its ID to this list:

fun handleAdd(args: String) {
val task = Task(nextld, args.trim())
service.addTask(task)
insertionOrder.add(nextId) // record the order
println("Task added: $task")

nextld++



}

By maintaining insertionOrder, we enable features such as undoing the
last addition or replaying tasks in chronological sequence. Now, to display
tasks in the order added rather than by ID sorting, we write:

fun handleListByOrder() {
if (insertionOrder.isEmpty()) {
println("No tasks found.")
} else {
insertionOrder.forEach { id ->
val task = service.getTask(id)

println("$id: ${task.description}")

}

Here, we replaced the tasks.entries.joinToString approach with index-
based iteration over insertionOrder, preserving the exact sequence of user
actions. Because MutableList grows dynamically, we never worry about
running out of capacity when users add an arbitrary number of tasks.

The use of MutableList also simplifies implementing undo or redo
patterns. For example, to remove the most recently added task, we write:

fun handleUndo() {
if (insertionOrder.isNotEmpty()) {
val lastld = insertionOrder.removeAt(insertionOrder.lastIndex)
service.removeTask(lastld)
println("Undid task $lastId")
} else println("Nothing to undo.")



}

This code clearly communicates intent: take the last element and remove
both from the history list and the task repository.

Arrays for Fixed-Capacity Storage

Suppose we want to limit our app to a maximum of 100 entries for
performance or memory reasons. An array provides a fixed buffer we can
index directly. At the top of Main.kt, declare:

private const val MAX_TASKS = 100
private val taskArray: Array<Task?> = arrayOfNulls(MAX_TASKS)

Each slot in taskArray initially holds null. When adding a task, we find the
first empty slot:

fun handleAdd(args: String) {

val index = taskArray.indexOfFirst { it == null }

if (index !=-1) {
val task = Task(nextld, args.trim())
taskArray[index] = task
insertionOrder.add(nextId)
println("Task added at slot $index: $task")
nextld++

} else println("Task limit of $MAX_TASKS reached.")
}

In the above, the indexOfFirst returns the position of the first null, letting
we place the new task without scanning the entire map. This approach
trades dynamic resizing for faster slot lookup in predictable memory.

When listing tasks via the array, we loop through indices and skip null:

fun handleListArray() {



taskArray.forEachIndexed { i, task ->
task?.let { println("[$i] ${it.id}: ${it.description}") }

}

By using forEachIndexed, we gain both the index and the element in the
lambda, letting we display the slot number alongside task details. This
pattern demonstrates how arrays support positional semantics that differ
from list iteration.

Lists and Arrays Conversion

Now here, you may need to move data between arrays and lists. The Kotlin
offers toTypedArray() on List<T> and toList() on Array<T> (or toList()
on primitive arrays via specialized functions).

For example, to capture the current insertion order as an array of IDs:

val orderArray: Array<Int> = insertionOrder.toTypedArray()
orderArray.forEach { println("Ordered ID: $it") }

And conversely, to seed a list from the first ten slots of taskArray, we
write:

val firstTenTasks: List<Task> = taskArray.sliceArray(0 until 10)
.mapNotNull { it }
firstTenTasks.forEach { println("Preview: ${it.id} -> ${it.description}") }

With the use of sliceArray and mapNotNull, we can extract a subarray and
remove empty slots. This interconversion flexibility helps us choose the
right tool for each context while reusing data safely.

We now control both dynamic and fixed-size data structures in our app.
This is because we have mastered lists and arrays. This enables ordered
iteration, slot management, and efficient data access patterns. Our
application becomes both adaptable for general use and optimized for
situations where predictability and performance are important.



Organizing Storage using Sets and
Maps

We have used lists and arrays to maintain ordered sequences of tasks, but
many requirements call for collections that enforce uniqueness or associate
keys with values. A Set<T> ensures that each element appears only once,
perfect for tracking which task descriptions have been seen or which tags a
user has applied. A Map<K, V> pairs keys with values, letting we look up
tasks by custom identifiers, group tasks by status, or cache results for fast
retrieval. In Kotlin, immutable interfaces (Set<T> and Map<K, V>)
expose read-only operations, while MutableSet<T> and MutableMap<K,
V> let us change contents dynamically. By choosing the right collection
type, we express our intent clearly—“I want no duplicates” or “I need key-
based lookup”—and gain efficient storage and retrieval semantics for our

app.
Tracking Unique Descriptions with MutableSet

Let us say that we want to prevent duplicate task descriptions. We declare a
MutableSet<String> to record each description as it arrives:

private val uniqueDescriptions: MutableSet<String> = mutableSetOf()
For this, inside our "add" handler, we check and update the set:

fun handleAdd(args: String) {
val desc = args.trim()
if (uniqueDescriptions.add(desc)) {
val task = Task(nextld, desc)
service.addTask(task)
insertionOrder.add(nextId)
println("Task added: $task™)

nextld++



} else {

println("Duplicate description ignored.")

}

In the above, the add(desc) returns true only if desc was not already
present. When a duplicate is entered, we inform the user and skip creation.
This pattern uses MutableSet’s constant-time add and contains operations
to enforce uniqueness with minimal overhead.

You can also use a set to manage tags that users apply to tasks. Define:
private val allTags: MutableSet<String> = mutableSetOf()

When a user tags a task—say "tag 3 urgent"—you parse the tag and
update both the task’s tag list and the global set:

fun handleTag(args: String) {

val (idStr, tag) = args.split(" ", limit = 2).let { it[0] to
it.getOrNull(1).orEmpty() }

val id = idStr.toIntOrNull()
if (id != null && service.getTask(id) != null) {
service.addTag(id, tag)
allTags.add(tag)
println("Added tag ‘$tag’ to task $id")
} else println("Invalid task ID or tag.")
}

Later, we can list all available tags quickly by iterating
allTags.forEach(::printin).

Key-Value Pairing with MutableMap




Your core tasks store already uses a MutableMap<Int, Task>, letting we
look up tasks by ID in constant time. To extend map usage for
categorization, we might group tasks by status—pending, completed, or
high priority.

For this, we declare:

private val tasksByStatus: MutableMap<String, MutableList<Task>> =
mutableMapOf(

"Pending" to mutableListOf(),
"Completed" to mutableListOf(),
"HighPriority" to mutableListOf()

)

Whenever a task changes state, we update both the main tasks map and this
status map. For example, in handleAdd:

tasksByStatus["Pending"]?.add(task)
if (task.highPriority) tasksByStatus["HighPriority"]?.add(task)

When a user marks a task complete:

fun handleComplete(args: String) {

val id = args.toIntOrNull()

val task = service.getTask(id)

if (task != null && !task.completed) {
task.completed = true
tasksByStatus["Pending"]?.remove(task)
tasksByStatus["Completed"]?.add(task)
println("Task $id marked complete.")

} else println("Invalid ID or already completed.")



The retrieval of tasks by status becomes as simple as
tasksByStatus["Pending"]?.forEach(::println), offering a clear
separation of concerns between task storage and categorized views.

Iterating Maps with ‘forEach’

The Kotlin’s Map interface provides forEach with a lambda that receives
each key-value pair. In the below, we can destructure the pair for clarity:

tasks.forEach { (id, task) ->
println("$id: ${task.description} [${task.status}]")
}

When iterating tasksByStatus, we can show category headings and their
tasks:

tasksByStatus.forEach { (status, list) ->

println("=== $status ===")

list.forEach { println("${it.id}: ${it.description}") }
}

This nested iteration reads like a structured report, grouping tasks by key
and listing related values.

‘mapKeys’ and ‘mapValues’

If we need a transformed view without altering the original map, Kotlin’s
mapKeys and mapValues help. Suppose we want a map of IDs to
descriptions only:

val idToDesc: Map<Int, String> = tasks.mapValues { it.value.description

}

Or we want to uppercase all status keys for display:

val upperStatusMap: Map<String, List<Task>> = tasksByStatus.mapKeys
{ it. key.uppercase() }



These functions return new maps, preserving immutability of the originals
while letting we adapt data for specific contexts.

Handling_ Missing_Keys with ‘getOrDefault’ and
‘getOrPut’

When updating maps, we often check if a key exists or provide a fallback.
Kotlin offers:

e getOrDefault(key, defaultValue) returns defaultValue when key is
absent.

e  getOrPut(key) { defaultValue } returns existing value or inserts &
returns the result of the lambda.

Now here, to add a tag list per task ID without pre-initializing all entries,
we write:

private val tagsByTask: MutableMap<Int, MutableList<String>> =
mutableMapOf()

fun handleTag(args: String) {

val (idStr, tag) = args.split(" ", limit = 2).let { it[0] to
it.getOrNull(1).orEmpty() }

val id = idStr.toIntOrNull()

if (id != null && service.getTask(id) != null) {
val tagList = tagsByTask.getOrPut(id) { mutableListOf() }
if (tagList.add(tag)) println("Tagged task $id with $tag")
else println("Task $id already has tag $tag")

} else println("Invalid ID.")

}

getOrPut ensures we never encounter NullPointerException when adding
to a nested collection.

So overall, we now categorize tasks efficiently—enforcing uniqueness of
descriptions and tags, grouping tasks by status or date, and performing key-



based lookups with constant-time performance. These patterns equip our
app to handle growing complexity while maintaining organized, intention-
revealing code.



‘For’ Loops for Data Traversal

So far, we rely on sequential processing whenever we work with ordered
collections. The Kotlin’s for loop lets us traverse arrays, lists, ranges, and
other iterable types with concise syntax. At its simplest, we write for
(element in collection) { ... }, and the loop body runs once for each item.
Under the hood, Kotlin calls the collection’s iterator, fetching elements until
no more remain. This pattern abstracts away index management and
boundary checks, so we focus on the logic we want to apply, not on counter
increments or overflow errors. When we need the position alongside the
element, Kotlin offers for ((index, element) in collection.withIndex()). We
can also iterate numeric ranges—for (i in 1..10)—or step through them with
step or reverse them with downTo.

Iterating over List Collections

We are so far maintaining a MutableList<Int> called insertionOrder to
reflect the order tasks were added. To display tasks in that exact sequence,
we use a for loop:

fun handleListByOrder() {
if (insertionOrder.isEmpty()) {
println("No tasks found.")
} else {
for (id in insertionOrder) {
val task = service.getTask(id)

println("$id: ${task?.description}")



This loop emphasizes readability: we iterate id by name, fetch the
corresponding Task, then display its description. Because for handles
iteration for you, there’s no need to check insertionOrder.size or manage
an index variable.

When we want both the position in the list and the value—perhaps to
number tasks differently—you use withIndex():

for ((position, id) in insertionOrder.withIndex()) {

val task = service.getTask(id)

println("${position + 1}. [ID:$id] ${task?.description}")
}

In the above, the withIndex() yields IndexedValue pairs, and we
destructure them into position and id. This pattern eliminates manual index
tracking (var i = 0), making code more concise and less error-prone.

Traversing Array Elements by Index and Slot

When we stored tasks in a fixed-size Array<Task?> named taskArray, we
work with slots that may be empty. To iterate by index, we use
forEachIndexed, which provides both index and element:

fun handleListArray() {
for ((slot, task) in taskArray.withIndex()) {
if (task !=null) {
println("Slot $slot: ${task.id} -> ${task.description}")

}

Alternatively, to manipulate slots directly, we can loop over indices:

for (i in taskArray.indices) {

val task = taskArray[i]



if (task != null) println("[$i] ${task.id}: ${task.description}")
}

The use of taskArray.indices removes magic numbers and automatically
adapts if the array size changes. We avoid out-of-bounds errors and keep
our loops robust against future capacity adjustments.

Numeric Ranges for Fixed Iterations

Beyond collections, we may also need to run code a fixed number of times
or within numeric bounds. Kotlin supports ranges:

for (i in 1..5) { println("Countdown: $i") }
for (i in 10 downTo 1 step 2) { println("Even step: $i") }

for (i in O until insertionOrder.size) { println("Index $i - ID
${insertionOrder[i]}") }

Here, we might also preview only the first three tasks:
for (i in 0 until minOf(3, insertionOrder.size)) {

val id = insertionOrder[i]

println("Top ${i+1}: ${service.getTask(id)?.description}")
}

This loop ensures we never exceed the list’s length and cleanly expresses
“iterate three times or less.

Conditions within I.oops

For advanced traversal, we can include if inside a loop or combine ranges
and collections. For example, to print only high-priority tasks by order:

for (id in insertionOrder) {
val task = service.getTask(id) ?: continue

if (task.highPriority) println("! ${task.id}: ${task.description}")



}

Using continue, we skip non-priority tasks without deep nesting. The loop
remains straightforward: iterate, retrieve, check, and act.

Knowing the for loop variants—collection iteration, indexed traversal, and
numeric ranges—you will write Task Tracker code that processes sequences
succinctly, avoids common pitfalls, and expresses our intentions directly.



Filtering and Mapping Data

So far, we have learned the basics of using lists, sets, and maps in our app.
Now we will unlock the true power of Kotlin’s standard library by
leveraging higher-order operations—filter, map, flatMap, groupBy—to
transform collections declaratively. Rather than writing manual loops with
if statements and accumulating results, we compose concise chains of
operations that read like a data pipeline. Each step—filtering or mapping—
returns a new collection, leaving the original intact. This immutability-first
approach ensures predictable behavior and simplifies reasoning: we see
exactly which elements flow into each stage. In our app, we will filter tasks
by priority, completion status, or matching keywords; then map tasks to
summary strings, CSV lines, or export formats. We will group tasks by
categories, flatten nested tag lists, and combine operations to create
powerful one-liners that replace dozens of lines of imperative code.

Filtering Tasks by Conditions

The filtering extracts only those elements that satisfy a predicate. In our
app, we maintain a Map<Int,Task> called tasks. To show only high-
priority tasks, we write:

val highPriorityTasks: Map<Int, Task> = tasks.filterValues {
it.highPriority }

if (highPriorityTasks.isEmpty()) {

println("No high-priority tasks.")
} else {

highPriorityTasks.forEach { (id, t) -> println("$id: ${t.description}") }
}

Within the lambda { it.highPriority }, it refers to each Task. filterValues
preserves the map’s keys and values, returning a new Map containing only
those entries. We avoid manual loops and if checks, achieving the same
result in a single line.



To filter by keyword in the description—case-insensitively—you compose:

val keyword = "report"

val matching = tasks.filterValues {
it.description.contains(keyword, ignoreCase = true)

}

println("Tasks matching '$keyword":")

matching.forEach { (id, t) -> println("$id: ${t.description}") }

The swapping helps to reuse filterValues across multiple filters—priority,
status, or text patterns—without rewriting loop logic.

Mapping Tasks to New Forms

The mapping transforms each element of a collection into a new form,
producing a list of results. Let us say that we need a list of summary strings
for export:

val summaries: List<String> = tasks.map { (id, t) ->

"Task $id: ${t.description.take(30).let { if (t.description.length > 30)
"$it..." else it }}"

}

summaries.forEach(::println)

In the above, the map operates on the Map’s entries, destructuring each (id,
t) pair. We build a formatted string, previewing the first 30 characters of
each description, appending an ellipsis when necessary. The result is a
List<String> of summaries, ideal for sending to a log or writing to a file.

When exporting to CSV, we map to lines with comma-separated values and
escape quotes:

fun escapeCsv(value: String) = "\"${value.replace("\"", "\"\"") }\""
val csvLines: List<String> = tasks.map { (id, t) ->

listOf(id.toString(), escapeCsv(t.description), t.status).joinToString(",")



}
println("ID,Description,Status")

csvLines.forEach(::println)

This pipeline covers escaping, joining, and mapping—all within a fluent
chain.

Combining Filter and Map in Pipelines

Often, we filter first, then map the surviving elements. For example, to list
only pending tasks as user-friendly messages:
tasks.filterValues { !it.completed }
.map { (id, t) -> "Pending: $id — ${t.description}" }
.forEach(::println)
This one-liner conveys intent immediately: “from tasks, pick those not

completed, convert each to a formatted string, then print each.” No
temporary variables or loops obscure the flow.

If we need both keys and values, use mapValues to keep the map structure
while transforming values:

val idToDesc: Map<Int, String> = tasks.mapValues {
it.value.description.uppercase() }

idToDesc.forEach { (id, desc) -> println("$id -> $desc") }

The mapValues leaves the keys untouched, returning a new Map<Int,
String> that we can pass to other functions expecting that type.

Advanced Grouping and Flat-Mapping

Now here, to categorize tasks by status—Pending, Completed, HighPriority,
we can simply use groupBy:

val grouped: Map<String, List<Task>> = tasks.values.groupBy { task ->

when {



task.completed  -> "Completed"
task.highPriority -> "HighPriority"

else -> "Pending"

}
grouped.forEach { (status, list) ->

println("=== $status ==="
list.forEach { println("${it.id}: ${it.description}") }
}

The groupBy returns a map whose keys are the category strings and whose
values are lists of tasks in each category. This replaces manual population
of tasksByStatus, centralizing grouping logic in one expressive call.

If our Task class included a list of tags—tags: List<String>, you could use
flatMap to collect all tags across tasks into a single list:

val allTags: List<String> = tasks.values.flatMap { it.tags }

val uniqueTags = allTags.toSet()

println("Unique tags: $uniqueTags")

The flatMap maps each task to its tags list, then flattens the sublists into

one master list. The conversion to a set then removes duplicates, giving we
a quick tag inventory.



Summary

To quickly revise our Irarnings, we first introduced MutableList to track
task insertion order, appending each new Task ID and iterating over the list
to display tasks chronologically. We experimented with fixed-size
Array<Task?>, locating empty slots via indexOfFirst, storing tasks by
slot, and iterating by index to show occupied entries. We converted between
lists and arrays using toTypedArray() and sliceArray(), demonstrating
how to extract subcollections safely. We then created a
MutableSet<String> to enforce unique task descriptions and tag
collections, using add() to conditionally accept or reject duplicates. With
MutableMap<String, MutableList<Task>>, we grouped tasks by status
—Pending, Completed, HighPriority—updating the appropriate lists on
state changes to support rapid category-based lookups.

We then applied getOrPut to manage nested maps like tagsByTask,
ensuring tag lists initialized on demand. Numeric ranges and for loops
processed fixed iterations and previewed slices of insertionOrder, utilizing
withIndex(), step, downTo, and until for flexible traversal. Finally, we
then adopted higher-order operations—filterValues, map, groupBy,
flatMap—to declaratively select high-priority or keyword-matched tasks,
transform tasks into summary strings or CSV lines, and group or flatten
nested collections. Each of the collection type and operation was applied to
the Task Tracker code, reinforcing how sequential, set, and mapping
patterns yield concise, maintainable, and intention-revealing code for real-
world needs.



CHAPTER 7: MANAGING
APPLICATION STATE
AND BEHAVIOR



Chapter Overview

Here, in this chapter, we will begin with how we can represent application
state using immutable data classes and confined mutable containers,
enforcing contracts that keep our Task entities and ID generator
predictable. Here, we will implement an observer interface and register
console, logging, and reminder observers in our TaskService so that all
interested components synchronize immediately when tasks are added,
updated, or removed.

Next, we will then define operational modes with a sealed AppState
hierarchy—Running, ReadOnly, Maintenance—and learn to guard
command execution through explicit state checks or a shared withState
helper. We will be introduced to feature flags such as autoSaveEnabled
and tie them into our mutating methods to conditionally persist changes.
Finally, we will enhance the user interface by reflecting current state in the
REPL prompt and by providing commands to switch modes and toggle
flags. By the time we reach the end of this chapter, we will have a sturdy,
responsive state management system that leads to logical, context-aware
behavior throughout our app.



Understanding Mutable and
Immutable States

Every app's functionality depends on the data it holds and how that data
changes over time. State management is all about organizing, tracking, and
updating that data. It helps our app behave predictably, even when users are
interacting with it. In a command-line Task Tracker, state includes the list of
tasks, each task's completion flag, priority status, and any configuration
toggles such as reminder settings. If we let the state change without limits—
like any code updating tasks or nextld without boundaries—you risk data
races, inconsistent displays, and bugs that are hard to reproduce. If we think
about which parts of our state can't change and which ones can, we'll have a
better understanding. Data that can't change prevents accidental changes
and makes it easier to reason, while things that can change let us deal with
behavior that's always changing. Good state management balances all these
factors, making sure that only the right code paths perform updates and that
we can trace every change back to a single, well-defined source.

Immutable State with Data Classes and Snapshots

Here in Kotlin, the data classes are excellent for representing immutable
snapshots of state. Once we create an instance, its val properties never
change. For example, our Task class had val id, val description, and val
createdTimestamp. We treated completed as var previously, but we can
instead model each task’s state transition by producing a new instance via
copy(), leaving the original untouched. This approach encourages us to
think in terms of state snapshots.

To do this, we go to TaskService, and replace in-place mutation of
completed with:

fun markComplete(id: Int) {
val old = tasks[id] ?: return

val updated = old.copy(completed = true)



tasks[id] = updated
}

In the above, we treat tasks—a MutableMap<Int, Task>—as the single
mutable reference, but each Task remains immutable. This pattern ensures
that any code holding a reference to the old Task sees the original state, and
any new reads fetch the updated snapshot. We avoid unintended side-effects
in functions that merely read tasks.

When we need to present the entire state—say, printing a report—you can
take an immutable snapshot of the map and pass it around safely:

fun snapshotTasks(): Map<Int, Task> = tasks.toMap()

The other modules consume this read-only view without fear of mutation.

Mutable State with Explicit Constructs

Sometimes, our application demands true mutability—counters that
increment, flags that toggle, or caches that update in place. Kotlin offers
var for variables that change reference, and mutable collections—
MutableList, MutableMap, MutableSet—for dynamic contents. In
Main.kt, we maintain var nextld as a mutable integer generator. We also
have a MutableMap<Int, Task> and a MutableList<Int> for insertion
order. When we add a task, we explicitly mutate these constructs:

val id = nextId++

tasks[id] = Task(id, desc)

insertionOrder.add(id)

By confining these mutability points to a single service class or module, we

know exactly where and when changes occur. We avoid scattering var
declarations throughout our code, which could lead to state inconsistencies.

If we introduce a feature flag—such as enabling periodic reminders—you
might declare:

var remindersEnabled; Boolean = true



Because this flag genuinely toggles at runtime, we choose var. In our
reminder loop, we check this flag each cycle:

while (remindersEnabled) {
// send reminders
delay(60_000)

}

This explicit mutability contrasts with our immutable Task instances,
highlighting where state is meant to evolve.

Blending Immutable and Mutable Approaches

We maintain a single mutable tasks map to hold the latest snapshots of each
task, and we update entries only through controlled methods in
TaskService. Each Task object remains immutable, so reading modules
never see half-updated state. Our ID generator and feature flags use var
where practical, but we group them in a single location. When presenting
data, we convert mutable collections to immutable views—tasks.toMap(),
insertionOrder.toList()—before passing to display functions. This practice
ensures that once a view is generated, it cannot change unexpectedly during
rendering or logging.

For example, in our "list" command, we write:

fun handleList() {
val snapshot = service.snapshotTasks().toList()
snapshot.forEach { (_, t) ->
println("${t.id}: ${t.description} [${t.status}]")

}

You call toList() on the map’s entries to freeze the state at that instant. Even
if another thread or background job updates tasks, our listing remains
consistent from start to finish.



The idea is to use permanent snapshots and clearly defined temporary
constructs. This will help us keep track of task status and application
behavior, creating a solid foundation for the reactive and event-driven
patterns that we'll cover next.



Propagating State across Application
Components

We have learned to confine mutable state inside TaskService—tasks map,
ID generator, feature flags—but a real-world application comprises multiple
modules, such as command handlers, Ul layers, background jobs, and
persistence adapters. When a user adds, updates, or removes a task, every
interested component must receive that change to stay in sync. If our
reminder scheduler, CLI output, and audit logger operate on stale data, we
risk inconsistent behavior and confusing user experience. The propagating
state changes ensures that all parts of our app react immediately and
coherently to user actions, maintaining a unified view of the application.

Defining Observer Contract

Here, we implement a simple observer pattern. First, declare an interface
that all listeners must follow. In TaskService.kt, define:

interface TaskObserver {
fun onTaskAdded(task: Task)
fun onTaskUpdated(task: Task)
fun onTaskRemoved(taskld: Int)

}

This contract specifies three callbacks. Any component interested in state
changes implements one or more of these methods.

Registering Observers

Inside TaskService, we maintain a list of observers and provide registration
methods. We add the following to TaskService.kt:

private val observers: MutableList<TaskObserver> = mutableListOf()

fun addObserver(observer: TaskObserver) {



observers.add(observer)

}

fun removeObserver(observer: TaskObserver) {

observers.remove(observer)
}

This encapsulates these lists as private, thereby we guarantee that only
TaskService controls who receives notifications.

Notifying Observers on State Changes

Whenever state mutates like adding, copying on update, or removing, it
invoke the relevant callbacks. So here, we refactor our methods:

fun addTask(task: Task): Int {
tasks[task.id] = task
save()
observers.forEach { it.onTaskAdded(task) }
return task.id
}
fun markComplete(id: Int) {
val old = tasks[id] ?: return
val updated = old.copy(completed = true)
tasks[id] = updated
save()
observers.forEach { it.onTaskUpdated(updated) }
}
fun removeTask(id: Int): Boolean {

val removed = tasks.remove(id) != null



if (removed) {
save()
observers.forEach { it.onTaskRemoved(id) }

}

return removed

By doing this, each mutation now triggers notifications immediately after
persistence, ensuring that every observer sees the latest state.

Building CLI Observer for Real-Time Display

To refresh the console view as tasks change, we implement a
TaskObserver that prints updates:

class ConsoleObserver : TaskObserver {
override fun onTaskAdded(task: Task) {

println("">>> [Observer] Task added: ${task.id} ->
${task.description}")

}
override fun onTaskUpdated(task: Task) {

println(">>> [Observer] Task updated: ${task.id}
completed=${task.completed}")

}

override fun onTaskRemoved(taskld: Int) {

println(">>> [Observer] Task removed: $taskld")

}

We first register it at startup in Main.kt:

val service = TaskService(JsonFileRepository("tasks.json"))



val consoleObserver = ConsoleObserver()

service.addObserver(consoleObserver)

Now, when we execute add, complete, or remove commands, we
immediately see observer messages interleaved with our normal output,
confirming that state propagation works.

Logging Observer for Audit Trails

You may need to record every state change to a file for audit or undo
functionality. To do this, we create a LoggingObserver:

class LoggingObserver(private val logPath: String) : TaskObserver {
override fun onTaskAdded(task: Task) {

File(logPath).appendText("ADDED:
${task.id},${task.description}\n")

}
override fun onTaskUpdated(task: Task) {

File(logPath).appendText("UPDATED:
${task.id},completed=${task.completed}\n")

}

override fun onTaskRemoved(taskld: Int) {

File(logPath).appendText("REMOVED: $taskId\n")

}

In Main.kt, we then register it alongside the console observer:
service.addObserver(LoggingObserver("audit.log"))

Now every mutation appends a line to audit.log, giving we a permanent
record of operations.



Background Reminder Observer

Here, we combine state propagation with our reminder loop. Rather than
polling the tasks map, we push updates to a ReminderObserver that tracks
due dates:

class ReminderObserver(private val channel: Channel<Task>) :
TaskObserver {

override fun onTaskAdded(task: Task) {
if ('task.completed) channel.offer(task)
}
override fun onTaskUpdated(task: Task) {
if (task.completed) channel.remove { it.id == task.id }
}
override fun onTaskRemoved(taskld: Int) {

channel.remove { it.id == taskld }

}

In our coroutine setup:

val reminderChannel = Channel<Task>(Channel. UNLIMITED)
val reminderObserver = ReminderObserver(reminderChannel)
service.addObserver(reminderObserver)
GlobalScope.launch {
for (task in reminderChannel) {
delay(60_000)
println("Reminder: Task ${task.id} is still pending.")



}

This reactive design pushes new tasks into the channel as they appear and
removes them when they complete or are removed. Our background
coroutine processes only current state, avoiding expensive periodic scans.

By propagating state through observers, we were able to decouple
components while ensuring real-time synchronization. Tasks like command-
line output, logging, and background jobs all remain in harmony as the Task
Tracker’s state evolves.



State-Based Logic for Operational
Control

The truth about real-world applications is that they need logic that can adapt
behavior based on the current state and context. They don't just need simple
add, remove, or update operations. With state-based logic, you write
conditional code that checks one or more state variables before proceeding.
This makes sure that operations happen only when they're valid and
prevents any unexpected side-effects. You can make business rules more
predictable and user-friendly by putting them in writing. For example, you
could say that you don't allow task additions when storage is full or that you
don't allow removals during batch operations. Plus, centralizing state checks
keeps our handlers lean: each command first verifies preconditions, then
executes core logic, and finally updates state. This pattern makes our app
stronger and more resistant to misuse, as well as easier to expand as new
requirements come up.

Modeling Operational Modes with Sealed Classes

One way to implement state-based control is to define discrete operational
modes. In State.kt, we then create:

sealed class AppState {
object Running : AppState()
object ReadOnly  : AppState()
object Maintenance : AppState()

}

Here,

e Running: normal operations—add, remove, list.
e ReadOnly: additions and removals disabled, listing allowed.
e Maintenance: only removal of all tasks permitted.

In TaskService, we then add a mutable property to track mode:



var state: AppState = AppState.Running
private set

fun setState(newState: AppState) { state = newState }

The private setter ensures only TaskService changes mode, preserving
encapsulation.

Guarding Handlers with State Checks

Now before executing command logic, each handler verifies the current
state. In AddHandler:

override fun execute(args: String) {
if (service.state != AppState.Running) {
println("Cannot add tasks while in ${service.state} mode.")
return
}
// existing add logic...
}

In RemoveHandler:

override fun execute(args: String) {
when (service.state) {
AppState.Running, AppState.Maintenance -> {
// allow removal
handleRemove(args)

}

AppState.ReadOnly -> println("Removal disabled in read-only
mode.")

}



}

By front-loading state checks, we prevent invalid operations early, reducing
nested if blocks inside core logic.

Toggling Modes via Commands

It gives users commands to switch modes. We can define ModeHandler:

class ModeHandler(private val service: TaskService) : CommandHandler

{

override val commandName = "mode"
override fun execute(args: String) {
val mode = args.trim().lowercase()
service.setState(when (mode) {
"running"  -> AppState.Running
"readonly” -> AppState.ReadOnly
"maintenance" -> AppState.Maintenance
else ->{
println("Unknown mode: $mode")

return

}
1)

println("'State set to ${service.state}")

}

This registers ModeHandler like other handlers. Now, typing mode
readonly immediately prevents additions and removals, illustrating
dynamic behavior control.



Combining Feature Flags and State Checks

Beyond modes, we use Boolean flags to gate specific features. Suppose we
introduce a flag autoSaveEnabled. In TaskService:

var autoSaveEnabled: Boolean = true
fun savelfNeeded() {

if (autoSaveEnabled) save()

}

In each mutating method, we then replace direct save() calls with
savelfNeeded(). The users can toggle autosave with autosave on|off
commands, implemented via a handler:

class AutoSaveHandler(private val service: TaskService) :
CommandHandler {

override val commandName = "autosave"
override fun execute(args: String) {
service.autoSaveEnabled = (args.trim().lowercase() == "on"

println("Auto-save ${if (service.autoSaveEnabled) "enabled" else
"disabled"}.")

}
}

This conditional save behavior demonstrates how feature flags complement
mode checks, enabling fine-grained operational control.

Centralizing Preconditions in Helper

To avoid repeating state checks in each handler, we then define a higher-
order function in TaskService:

fun withState(vararg allowed: AppState, action: () -> Unit) {

if (state in allowed) action()



else println("Operation not allowed in $state mode.")
}
The handlers then simplify to:

override fun execute(args: String) {
service.withState(AppState.Running) {
handleAdd(args)

}

This pattern encapsulates state-based gating in one place, boosting code
reuse and clarity.

Dynamic Ul Prompts Based on State

For a more interactive CLI, we adjust the prompts to reflect state. To do
this, in our main loop:

while (true) {
print("[${service.state}]> ")
val input = readLine().orEmpty().trim()
// parsing and dispatch...

}

The users immediately see the current mode in the prompt, reducing
confusion about which commands will succeed.

By embedding state-based logic through sealed modes, feature flags, and
centralized precondition checks, our app adapts smoothly to user actions
and configuration changes.



Summary

To quickly summarize, we learned to treat each Task as an immutable
snapshot by using data class and copy() for updates, ensuring that only the
tasks map itself remained mutable. We confined all mutable state—ID
counters, feature flags, and the tasks map—within TaskService, exposing
only controlled methods and read-only snapshots to callers. We then
implemented an observer pattern by defining TaskObserver, registering
observers in TaskService, and notifying them on additions, updates, and
removals. We then built concrete observers—console logging, audit-file
logging, and a reminder channel—that synchronized their behavior in real
time with state changes.

Later, we modeled operational modes with a sealed AppState hierarchy and
guarded each command handler with state checks or a shared withState
helper, enabling read-only, maintenance, and running modes. We
successfully introduced feature flags like autoSaveEnabled and toggled
behavior dynamically. We then refined our main loop prompt to display
current mode, enhancing user awareness. Through these practices—
immutable snapshots, confined mutability, observer notifications, sealed-
state gating, and feature-flag checks—we were able to ensure that our app’s
behavior adapted smoothly to user actions and configuration changes.



CHAPTER 8:
FUNCTIONAL
PROGRAMMING WITH
LAMBDAS



Chapter Overview

This chapter is going to start with a look at lambda syntax in Kotlin. You'll
learn how to define anonymous functions using curly braces, arrows, and
the implicit it parameter, and how inline functions improve performance by
inlining lambda bodies.

Next, we will apply lambdas to collection manipulation: using filter, map,
fold, and flatMap to select, transform, and aggregate Task objects in
concise pipelines without manual loops. We will create extension functions
to name and reuse transformation steps, improving readability. Then, we
will explore function chaining and composition, linking multiple lambdas
into fluent data-processing pipelines that sort, group, and combine task data,
and leverage onEach for in-line side-effects. Finally, we will integrate
lambdas into event handling, defining a helper to register inline callbacks
for task additions, updates, and removals, and build asynchronous, reactive
flows with coroutines, SharedFlow, and channels.

By the time we reach the end of the chapter, we'll be using Kotlin's
functional features to write clear, efficient, and scalable Task Tracker code.
This code will react to state changes and data transformations with minimal
boilerplate.



Lambda Syntax and Structure

We've already seen functions as first-class citizens in higher-order wrappers
and observers, but lambda expressions take that concept further by
embedding anonymous functions directly where we need them. When the
logic is simple and there's only one instance of it, lambdas do away with the
need for named helper methods. Our app lets us supply small bits of code to
collection operations, event dispatchers, and utility functions without
messing up our namespace. Lambdas make code easier to read by keeping
behavior close to its context, getting rid of boilerplate class definitions for
single-method interfaces, and letting us compose operations smoothly. Once
we get lambda syntax and how it works with inline and extension functions,
we'll be able to write task filtering, mapping, sorting, and callbacks in a
clear, step-by-step way, instead of the more complex procedural style.

Basic [.ambda Syntax

As learned previously, the lambda literal appears inside curly braces, with
parameters (optional) on the left of -> and the body on the right. For
example, a predicate checking even numbers looks like:

val isEven: (Int) -> Boolean = { number -> number % 2 == 0 }
When a lambda has exactly one parameter, we can use the implicit it name:
val isOdd: (Int) -> Boolean ={ it % 2 !=0 }

In the above, the it represents the single Int passed in, shaving off extra
syntax.

Omitting Parentheses for Trailing [.ambdas

If a function’s last parameter is a function type, we can move the lambda
outside the parentheses. For example, calling filter on a list of tasks:

val urgentTasks = tasks.filterValues { it.highPriority }



Under the hood, the filterValues is declared as fun <K,V>
Map<K,V> filterValues(predicate: (V)->Boolean): Map<K,V>. Because
predicate is last, we write the lambda after the method call, improving
readability.

Inline I.ambdas and Performance Benefits

If we mark our higher-order functions with inline, we tell the compiler to
copy lambda bytecode directly at the call site, eliminating the cost of
creating function objects. For instance:

inline fun <T> measure(name: String, block: () -> T): T {
val start = System.nanoTime()
val result = block()
println("$name took ${(System.nanoTime()-start)/1_000_000}ms")
return result

}

When we invoke measure("filtering") { tasks.filterValues { it.completed
} }, no additional allocation occurs for the outer or inner lambdas, keeping
performance tight even in loops or hot code paths.

Destructuring I.ambdas for Clarity

When operating on maps or indexed lists, we often need both key and value
or index and element. The lambdas support destructuring directly in the
parameter list:

tasks.forEach { (id, task) ->
println("$id: ${task.description}")
}

or

insertionOrder.withIndex().forEach { (index, id) ->

println("${index+1}. Task ID $id")



}

The destructuring eliminates manual unpacking inside the body, focusing
on the logic rather than boilerplate.

Quick Hands-On with [.ambdas
Filtering and Mapping in One Line

You can combine filterValues and map to select and transform tasks in a
single expression:

val pendingDescriptions: List<String> = tasks
filterValues { !it.completed }

.map { (_, t) -> t.description }

This chain yields a list of pending task descriptions without any mutable
accumulation.

Sorting with Lambdas

To list tasks by creation time in descending order, use:

val recentTasks = tasks.values
.sortedByDescending { it.createdTimestamp }
.take(5)
for (task in recentTasks) println("${task.id}: ${task.description}")

sortedByDescending { it.createdTimestamp } expresses sorting intent
directly.

Inline Callbacks for Event Handling

When we registered observers, we used concrete classes. With lambdas, we
can subscribe on the fly for one-off behavior:

service.addObserver(object : TaskObserver {



override fun onTaskAdded(task: Task) {
println("Lambda observer: task ${task.id} added")
}

// other methods omitted for brevity
D
You can simplify this with a helper accepting lambdas for each callback:

fun TaskService.onTaskEvents(
added: (Task) -> Unit = {},
updated: (Task) -> Unit = {},
removed: (Int) -> Unit = {}
) {
addObserver(object : TaskObserver {
override fun onTaskAdded(task: Task) = added(task)
override fun onTaskUpdated(task: Task) = updated(task)
override fun onTaskRemoved(id: Int) = removed(id)
D
}
service.onTaskEvents(
added = { println(">>> Added ${it.id}") },

removed = { id -> println(">>> Removed $id") }
)

This pattern uses lambdas to inject only the behavior we need, without
defining separate listener classes.

After practicing the lambda syntax—parameter declarations, it shorthand,
trailing lambdas, destructuring, and inline functions—you will remove
boilerplate, concentrate logic where it belongs, and create expressive,



maintainable Task Tracker code that reads like a series of clear data
transformations.



Collection Manipulation using
Lambdas

Integrating Inline Functions with [.ambdas

So far, we have seen how inline higher-order functions like measure reduce
allocation overhead by copying lambda bodies at call sites. Now we apply
that principle to collection operations. In Kotlin, functions such as filter,
map, fold, and reduce are already marked inline, so every lambda we pass
to them in our app executes with minimal runtime cost. When we write

val urgentTasks = tasks.values.filter { it.highPriority }

the filter call inlines our predicate { it.highPriority } directly, avoiding the
creation of a Functionl object. This tight integration means we can chain
operations—filtering, = mapping, sorting—without worrying about
performance. In our application, we will use these inline lambdas to sculpt
task collections into the exact shape we need: selecting items that match
criteria, transforming them into summaries or export formats, and
aggregating data such as counts or timestamps.

Filtering Tasks with [.ambdas

Rather than iterating manually and appending matching tasks to a new list,
we write concise filter expressions. Suppose we want only incomplete,
high-priority tasks that contain the word “report.” We compose:

val criticalReports = tasks.values
filter { !it.completed }
filter { it.highPriority }
filter { it.description.contains("report", ignoreCase = true) }
Each filter call applies our lambda to every Task in turn, returning a new

list. Because these methods are inline, there is no hidden overhead beyond
the predicate itself. We then display the results with another lambda:



criticalReports.forEach { println("${it.id}: ${it.description}") }

With this, we express multi-step selection logic declaratively. Any change
in criteria requires adjusting only one lambda, keeping our code DRY and
focused solely on the conditions that matter to our app’s business rules.

Mapping and Transforming Collections

Once we have filtered a collection, we often need to transform each
element. Mapping lambdas let us convert a Task into any other form—a
formatted string, a CSV line, or a simplified data class for export. For
example, to prepare pending tasks for JSON serialization, we write:

val pendingJson = tasks.values
filter { !it.completed }
.map { task ->

" tid": ${task.id}, "desc": "${task.description}", "time":
${task.createdTimestamp} }"""

}

Each map lambda runs inline and returns a new List<String>. We then join
lines for file output:

File("pending.json").writeText(pendingJson.joinToString(prefix = "[",
postfix = "]", separator = ","))

This pipeline replaces dozens of lines of loop logic with a clear, three-step
chain: filter, map, write. The code reads like a description of our intent
rather than procedural plumbing.

Reducing and Aggregating with [.ambdas

Beyond one-to-one transformations, we can collapse collections into single
values using reduce or fold. To compute the total number of completed
tasks, we use:

val totalCompleted = tasks.values.count { it.completed }



But if we need more complex aggregation—say, summing estimated
durations—you define a duration property on Task and write:

val totalEstimate = tasks.values
.map { it.estimatedMinutes }

.fold(0) { acc, minutes -> acc + minutes }

In the above, the fold takes an initial accumulator (0) and an inline lambda
that adds each element. Because fold is inline, this numeric accumulation
runs in a tight loop. We avoid mutable variables entirely, gaining thread-
safe behavior if we later parallelize operations.

Crafting Pipelines for Batch Operations

The true power of inline lambdas emerges when we build multi-stage
pipelines that both filter and transform. For archiving old tasks, we might
write:

val archiveLines = tasks.values

filter {
Instant.of EpochMilli(it.created Timestamp).isBefore(Instant.now().minus(
30, ChronoUnit.DAYYS)) }

.map { task -> serialize(task) }

.onEach { line -> File("archive.log").appendText(line + "\n") }

onEach applies a side-effect inline without breaking the pipeline, letting we
write file output cleanly between filter and map. This style keeps our app
code expressive: each lambda focuses on a single operation, and the overall
pipeline reads like a sequence of transformations and actions.

With hands-on through inline lambdas for collection manipulation like

filtering, mapping, reducing, and piping, you are able to build highly
readable, performant code that adapts seamlessly.



Function Chaining and Composition
Techniques

You have learned how individual lambdas power filtering, mapping, and
aggregation. Function chaining builds on that by linking multiple operations
into a fluent pipeline, so data flows through each transformation step
without intermediate variables or loops. In Kotlin, every collection
operation—filter, map, flatMap, onEach, groupBy, sortedBy—returns a
new collection or value, letting we invoke the next method directly. This
style reads like a chain of commands: “from this collection, keep these
elements, then convert them, then group them,” mirroring our mental model
of the data transformation. By composing small, focused functions, we
avoid boilerplate, reduce cognitive load, and make each pipeline self-
documenting.

Building a Simple Pipeline

So here, we start with a list of all Task objects. Suppose we need a list of
descriptions for tasks that are high priority and pending, sorted by creation
time. We write:

val pipeline = tasks.values
filter { it.highPriority && !it.completed }
.sortedBy { it.createdTimestamp }
.map { it.description }
In the above, the filter selects only tasks with both highPriority and not

completed. The sortedBy orders them from oldest to newest based on
timestamp, and the map extracts the description string for each.

When we call pipeline.forEach(::println), we see exactly those
descriptions in order. This one-liner replaces nested loops, conditional
checks, and temporary lists, making the logic transparent and maintainable.

Composing Custom Transformations




You can extract reusable transformations into extension functions and chain
them. For example, define in TaskExtensions.kt:

fun Collection<Task>.pendingHighPriority(): List<Task> =
filter { it.highPriority && !it.completed }
fun List<Task>.sortByCreation(): List<Task> =

sortedBy { it.createdTimestamp }
Then our pipeline becomes:

tasks.values
.pendingHighPriority()
.sortByCreation()
.map(Task::description)

forEach(::println)

By naming each stage, we clarify intent: we first narrow tasks to those both
pending and critical, then sort them, then extract descriptions. The change
of criteria or order requires editing only the corresponding extension, not
the entire pipeline.

Flattening Nested Structures with ‘flatMap’

When tasks include multiple tags (tags: List<String>), we often need to
process all tags across tasks. Chaining flatMap with other operations
produces concise results. To list unique tags used by pending tasks, we
write:

val pendingTags: Set<String> = tasks.values
filter { !it.completed }
flatMap ({ it.tags }
.toSet()



In the above, the filter limits tasks to those pending, the flatMap flattens
each task’s tag list into a single stream of tags, and the toSet removes
duplicates. By chaining these lambdas, we avoid manual loops and maintain
clarity on each transformation’s responsibility.

Injecting Side-Effects with ‘onEach’

Sometimes we want to observe data flowing through the pipeline without
breaking it. The onEach operator executes a lambda for each element, then
returns the unmodified collection. For real-time logging of tasks being
processed, we chain:

tasks.values
filter { !it.completed }
.onEach { println("Processing task ${it.id}") }
.map { it.description.uppercase() }

.forEach(::println)

The onEach logs each task ID before mapping its description. Because it
returns the same list, mapping proceeds uninterrupted. This pattern keeps
logging or metrics close to the data flow without separate loops.

Combining Multiple Pipelines

You can define several pipelines and then merge their results. For example,
to produce a combined report of overdue and upcoming tasks:

val now = System.currentTimeMillis()
val overdue = tasks.values
filter { !it.completed && it.dueTimestamp < now }
.sortedBy { it.dueTimestamp }
.map { "OVERDUE: ${it.id} due ${formatTime(it.dueTimestamp)}" }

val upcoming = tasks.values



filter { !it.completed && it.dueTimestamp in now until now +
DAY_MS }

.sortedBy { it.dueTimestamp }

.map { "UPCOMING: ${it.id} due ${formatTime(it.dueTimestamp)}"
}

(val overdue + upcoming).forEach(::println)

By separating pipelines for different categories and then concatenating their
results, we create a unified report without tangled loops or interleaved logic.

Parallelizing Pipelines Safely

The function chaining lends itself to parallel execution when we need
performance. By converting a collection to a Kotlin sequence—
asSequence()—you defer evaluation and avoid intermediate allocations
until we call a terminal operation (toList(), forEach). For large task sets,
we write:

tasks.values.asSequence()
filter { !it.completed }
.map { transformTask(it) }
.sortedBy { it.createdTimestamp }
.toList()
.forEach(::println)

The pipeline runs lazily, applying each transformation only as needed,
which can offer efficiency gains in long chains.

Safe Composition with Null-Aware Functions

When some lambdas may return null, we can compose with mapNotNull
to filter and transform in one step:

tasks.values

.mapNotNull { task ->



if (task.description.contains("!")) task.description.removePrefix("!")

else null

}
.forEach { println("Cleaned: $it") }

This pattern applies a mapping that might drop elements, then processes
only the non-null results, preventing null values from propagating.

This approach turns our app into a functional powerhouse, where each stage
in the chain focuses on a single responsibility, and the overall behavior
reads like a natural sequence of data manipulations.



Optimizing Event Handling

So far, we have built an observer pattern with concrete TaskObserver
implementations, but each new listener required a separate class or object.
Lambdas let us replace that boilerplate with inline callbacks, binding event
logic directly at the registration point. By supplying anonymous functions
for onTaskAdded, onTaskUpdated, and onTaskRemoved, we keep our
event-handling code close to where the service is configured, improving
readability and maintainability. The lambdas also integrate seamlessly with
coroutine-based flows, channels, and callbacks, enabling asynchronous
reactions to state changes without introducing additional classes or
cluttering our codebase.

Registering [.ambda-Based Observers

Rather than implementing TaskObserver manually, we define a helper
extension on TaskService that accepts lambdas for each event:

fun TaskService.onTaskEvents(
added: (Task) -> Unit = {},
updated: (Task) -> Unit = {},
removed: (Int) -> Unit = {}
) {
addObserver(object : TaskObserver {
override fun onTaskAdded(task: Task) = added(task)
override fun onTaskUpdated(task: Task) = updated(task)
override fun onTaskRemoved(id: Int) = removed(id)
D
}

At startup, we attach inline handlers:



service.onTaskEvents(
added = { println("p> Task ${it.id} added: ${it.description}") },

updated = { println("4 Task ${it.id} updated:
completed=${it.completed}") },

removed = { println("¥ Task $it removed") }
)

This registration replaces three separate classes with a single lambda-based
call. We see immediately which actions correspond to each event, without
scrolling through unrelated code.

Asynchronous Updates with [.ambdas and Flows

For real-time Uls or background processing, we can expose a StateFlow of
events from TaskService. Inside TaskService, define:

private val _events = MutableSharedFlow<TaskEvent>()
val events: SharedFlow<TaskEvent> = _events
sealed class TaskEvent {
data class Added(val task: Task): TaskEvent()
data class Updated(val task: Task): TaskEvent()
data class Removed(val id: Int): TaskEvent()
}

Then we emit events in mutation methods:

suspend fun addTask(task: Task): Int {
tasks[task.id] = task; save()
_events.emit(TaskEvent. Added(task))

return task.id

}



Next, in our main coroutine context, collect events with lambdas:

GlobalScope.launch {
service.events.collect { event ->

when (event) {

is TaskEvent.Added -> println("‘l [Flow] Added
${event.task.id}")

is TaskEvent.Updated -> println("_| [Flow] Updated
${event.task.id}")

is TaskEvent.Removed -> println(" & [Flow] Removed
${event.id}")

}

}

By passing a lambda to collect, we handle events asynchronously as they
arrive, decoupled from the REPL loop. Our application remains responsive
because event handling occurs in its own coroutine.

Integrating I.ambdas in Reminder System

Previously, we polled overdue tasks in a loop. Now we react to additions
and completions via lambdas and channels. Use our onTaskEvents helper
alongside a Channel<Task>:

val reminderChannel = Channel<Task>(Channel. BUFFERED)
service.onTaskEvents(
added = { if (!it.completed) reminderChannel.offer(it) },

updated = { if (it.completed) reminderChannel.removelf { task ->
task.id ==it.id } }

)
GlobalScope.launch {



for (task in reminderChannel) {
delay(60_000)
println(" ) Reminder: Task ${task.id} is still pending.")

}

You inline both the event logic—filtering added tasks and removing
completed ones—and the asynchronous processing in a coroutine. LLambdas
keep the code concise, and channels ensure backpressure and ordered
delivery.

Composing Event-Driven Pipelines

The combine of SharedFlow and functional operators helps us to create
pipelines that transform events before handling;:

GlobalScope.launch {
service.events
filterIsInstance<TaskEvent.Added>()
.map { it.task }
[filter { it.highPriority }
.collect { printIn(" &3 Priority task added: ${it.id}") }
}

In the above, we filter only Added events, extract the Task, then filter for
highPriority. Each stage uses inline lambdas (filterIsInstance, map,
filter), building a reactive pipeline that responds only to the events we care
about.



Summary

To sum up, we explored how lambda expressions serve as concise,
anonymous functions in Kotlin, defining them with { parameters -> body }
syntax and using the implicit it for single-parameter cases. We learned how
inline functions eliminate lambda-object allocations by copying bodies at
call sites, ensuring high-performance callbacks.

We then applied lambdas to collection operations—chaining filter, map,
and fold calls—to select incomplete, high-priority tasks, transform them
into summary strings or JSON lines, and aggregate estimated durations
without manual loops or temporary lists. We discovered flatMap for
flattening nested tag lists, onEach for injecting side-effects such as logging
within pipelines, and lazy sequences via asSequence() for efficient, on-
demand evaluation.

Finally, we streamlined event handling by defining a onTaskEvents helper
that accepts lambdas for added, updated, and removed callbacks, replacing
boilerplate observer classes. We integrated coroutines with SharedFlow
and channels, using lambdas in collect, filterIsInstance, and map operators
to build reactive pipelines for logging, reminders, and audit trails.



CHAPTER 9: ERROR
HANDLING AND TYPE
CASTING



Chapter Overview

This chapter starts teaching us to enclose code that might throw exceptions
within  try-catch  blocks, catching specific types such as
NumberFormatException and IOException to provide immediate
feedback and avoid crashes. We will explore using try as an expression to
return fallback values and finally blocks to guarantee resource cleanup,
ensuring that file streams and connections close reliably. Next, we will
apply safe cast operators (as?) when processing dynamic data—metadata
maps or manual JSON parsing—to prevent ClassCastException and
handle invalid types elegantly.

After that, we will implement a centralized logging component—
ErrorLogger—to record errors uniformly with timestamps, context, and
stack traces, replacing ad-hoc prints with a single file-based log. We will
then create a higher-order safeExecute function that wraps risky operations,
automatically logs exceptions, and returns safe defaults, refactoring our
load, save, and dispatch logic to use it for robust recovery. Finally, we will
integrate our error-handling framework with observers and optional remote
reporting—emitting error events to listeners and sending telemetry—so that
our app maintains control flow, assists the user when things go wrong, and
supplies developers with clear diagnostics for troubleshooting.



Exception Management with “Iry-
Catck’

We have heard so far that the developers encounter unforeseen errors:
invalid input, missing files, serialization failures, or unexpected null
references. Without proper handling, our application crashes, leaving users
frustrated and data at risk. The Kotlin’s try-catch blocks let us intercept
exceptions at runtime, respond gracefully, and maintain control flow. By
wrapping risky operations in try blocks and catching specific exceptions,
we ensure that even when something goes wrong, our app can log the error,
notify the user, and continue operating. So here, we will look towards to use
try-catch as both a statement and an expression, implement cleanup logic
with finally, and apply these patterns in our app to improve reliability and
user experience during unforeseen events.

‘try-catch’ Syntax and Flow

A try block encloses code that may throw. Following it, one or more catch
clauses specify exception types to handle. Optionally, a finally block runs
whether or not an exception occurred as below:

try {
// risky operation
} catch (e: SpecificException) {
// handle known issue
} catch (e: Exception) {
// fallback for other errors
} finally {
// cleanup actions

}



Kotlin also treats try as an expression returning a value, enabling we to
assign its result directly:

val result = try {
parselnput(input)

} catch (e: NumberFormatException) {
println("Invalid number.")

null

}

In the above, the result is either the parsed value or null if parsing failed.

Handling User Input Safely

You parse task IDs from user commands, turning strings into integers.
Without guards, invalid input crashes the app:

val id: Int = input.removePrefix("remove ").tolnt() // throws on non-
numeric

Wrap parsing in try-catch to catch NumberFormatException:
val id = try {

input.removePrefix("remove ").tolnt()
} catch (e: NumberFormatException) {

println("Please enter a numeric ID.")

return

}
handleRemove(id)

By returning early when parsing fails, we prevent downstream errors and
keep the REPL loop alive.

Protecting File I/O and JSON Serialization




When saving and loading tasks via JSON, we depend on file system and

serialization  libraries. Errors such  as IOException or
SerializationException can occur. We encapsulate file operations in a try-
catch block:

fun loadTasks(): Map<Int, Task> {

return try {
val text = File("tasks.json").read Text()
json.decodeFromString(text)

} catch (e: FileNotFoundException) {
println("No existing data found; starting fresh.")
emptyMap()

} catch (e: SerializationException) {
println("Data corrupted; resetting tasks.")

emptyMap()

}

When writing;:

fun saveTasks(tasks: Map<Int, Task>) {
try {
val text = json.encodeToString(tasks)
File("tasks.json").writeText(text)
} catch (e: IOException) {

println("Failed to save tasks: ${e.message}")



This ensures that disk errors or format issues do not crash the application,
and users understand what happened.

Using ‘finally’ for Resource Cleanup

When working with resources like file streams or database connections, we
need to close them regardless of success or failure. So here, we often use
use for auto-closing, but for demonstrations:

val reader = File("config.txt").bufferedReader()
try {
val settings = reader.read Text()
// parse settings
} catch (e: IOException) {
println("Error reading configuration.")
} finally {
reader.close()

}

In the above, the finally guarantees that reader.close() executes, preventing
resource leaks even if an exception interrupted readText().

Catching Multiple Exception Types

When a try block may throw different exceptions, catch them separately to
provide tailored responses:

try {
val id = args.toInt()

val task = service.getTask(id) ?: throw NoSuchElementException("ID
not found")

markComplete(task)

} catch (e: NumberFormatException) {



println("Enter a valid task ID.")
} catch (e: NoSuchElementException) {

println(e.message)
}

This pattern distinguishes between parsing errors and business-logic errors,
enhancing UX with precise feedback.

By systematically applying try-catch blocks around parsing, 1/0, and high-
level dispatch, we dramatically improved our app’s resilience, ensuring that
unforeseen events do not interrupt the user’s workflow.



Utilizing Safe Cast Operators

There are a few things you often work with that have values whose types
aren't guaranteed at compile time. Some examples are JSON payloads
parsed into Any?, dynamic plugin data, or user-supplied maps of settings.
The regular cast operator (as) on an incompatible type triggers a
ClassCastException and crashes our app. Kotlin’s safe cast operator (as?)
prevents this by attempting the cast and returning null on failure instead of
throwing.

For example, if we have a mixed map of properties—val props:
Map<String, Any?>—and we expect a list of tags under "tags", we cast
safely:

val raw = props|["tags"]
val tags: List<String>? = raw as? List<String>

If raw isn’t a List<String>, tags becomes null, and we can handle that case
gracefully—no exception. We wrap the result in an if or an Elvis fallback:

val safeTags = tags ?: emptyList()

This pattern ensures that our app continues operating even when external
data doesn’t match expectations.

Applying Safe Casts to User Input Parsing

In our REPL loop, we parse commands into any-typed parameters or read
dynamic configuration values. Suppose we allow users to supply custom
metadata as key-value pairs in a map of Map<String, Any?>.

When handling a "setPriority" command, we fetch the priority value and
safe-cast it to an integer:

fun handleSetPriority(args: String, metadata: Map<String, Any?>) {
val key = args.trim()

val raw Value = metadata[key]



val priority: Int = (rawValue as? Int) ?: run {
printIn("Priority for $key must be a number.")
return

}

// proceed with a valid Int priority

service.setPriority(key, priority)

println("Priority of $key set to $priority")

}

In the above, the rawValue as? Int avoids a ClassCastException if the
user supplied a string or boolean by mistake. By checking for null, we
detect invalid types, inform the user, and exit the handler.

Safe Casting in Collection and JSON

When loading tasks from a JSON file without a serializer—say, manually
parsing a nested Map<String, Any?>—you need to extract fields safely.
Consider a fragment of deserialization:

fun parseTask(data: Map<String, Any?>): Task? {
val id = (data["id"] as? Double)?.toInt() ?: return null
val desc = data["description"] as? String ?: return null
val high = data["highPriority"] as? Boolean ?: false
val completed = data["completed"] as? Boolean ?: false

val timestamp = (data["createdTimestamp"] as? Double)?.toLong() ?:
System.currentTimeMillis()

return Task(id, desc, highPriority = high, completed = completed,
createdTimestamp = timestamp)

}

By chaining safe casts and Elvis fallbacks, we convert loosely-typed JSON
values into our Task data class. Numeric JSON values often arrive as



Double from a generic parser, so we cast to Double, then convert to Int or
Long. If any required field is missing or of the wrong type, we bail out
safely—returning null and skipping that entry rather than crashing.



Centralized Error Logging and
Recovery

You'll run into different kinds of errors while building the Task Tracker.
There are a few things that can cause parsing errors. It can happen when
user input doesn't match the expected formats. So, for example, if the user
enters a non-numeric ID or malformed command. You'll get I/O errors
when you're reading or writing the JSON file. These could be due to
missing permissions, a disk full error, or broken paths. If the JSON
structure changes without warning or fields vanish, you'll run into
serialization errors. Errors that happen when different coroutines access
shared state without coordinating can be called concurrency errors. And
finally, there are unexpected runtime exceptions—null pointers, index out
of bounds, or arithmetic failures—that can interrupt program flow. If we
catalog these categories from the start, we can handle each one with the
right logging, recovery strategies, and clear user feedback. That way we can
avoid letting the app crash unpredictably.

Designing Central Error [.ogger

Instead of scattering println statements or ad-hoc file writes across the
codebase, we create a single ErrorLogger to capture all exceptions
consistently.

To do this, we then definethe following in ErrorLogger.kt:

object ErrorLogger {
private val logFile = File("error.log")
fun log(e: Throwable, context: String = "") {
val timestamp = DateTimeFormatter.ISO_INSTANT
.format(Instant.now())
val entry = buildString {
append("$timestamp ERROR")



if (context.isNotBlank()) append(" in $context")
append(": ${e::class.simpleName} - ${e.message}\n")
e.stackTrace.take(5).forEach {

append("at $it\n")

}
logFile.appendText(entry)

}

Here, you use a timestamped, one-entry-per-exception format that includes
a brief stack trace. By centralizing logging, we ensure uniform log entries
and one file to inspect—making debugging more efficient.

You leverage a higher-order function to wrap any code block that may
throw, automatically logging and recovering. In TaskService.kt, add:

inline fun <T> safeExecute(context: String, block: () -> T): T? {
return try {
block()
} catch (e: Throwable) {
ErrorLogger.log(e, context)

null

}

You then refactor methods to use safeExecute:

fun loadTasks(): Map<Int, Task> = safeExecute("loadTasks") {



val text = File("tasks.json").read Text()
json.decodeFromString(text)
} ?: emptyMap()
fun saveTasks(tasks: Map<Int, Task>) {
safeExecute("saveTasks") {
val text = json.encodeToString(tasks)

File("tasks.json").writeText(text)

}

With wrapping the core logic, we catch any exception, log it, and return a
safe fallback (null or Unit). This pattern scales to parsing, network calls, or
any module we add later.

Integrating with Command Dispatch

You also guard the top-level dispatch loop to log unexpected errors without
exposing stack traces to the user:

while (true) {
pring("> "
val input = readLine().orEmpty().trim()
safeExecute("dispatchCommand") {

dispatchCommand(input)

}

If dispatchCommand throws due to a bug, safeExecute logs the error
context and returns null, letting the loop continue. Users see no crash, and
we have a record of what went wrong.

Recovery Strategies




The logging alone isn’t enough, we want the Task Tracker to recover
gracefully. For parsing IDs:

val id = safeExecute("parseld") {
args.tolnt()
} ?: run {
println("Invalid ID format. Please enter a number.")

return

}

In the above, if ©parsing fails, safeExecute logs the
NumberFormatException, and we handle the null return by prompting the
user. For file I/O, we can retry once before giving up:

fun saveWithRetry(tasks: Map<Int, Task>) {
repeat(2) { attempt ->
if (safeExecute(""saveTasks attempt ${attempt+1}") {
File("tasks.json").writeText(json.encodeToString(tasks))
} '=null) return
Thread.sleep(500)
}

println("Failed to save tasks after retries. Check error.log.")

}

From above, if we combinelogging with retries and user messages, we can
deliver a more resilient application.

Alerting Observers on Fatal Errors

For severe failures—such as database corruption or unrecoverable state—
you inform all parts of the application via an error event. To do this, within
TaskService, we can extend our observer pattern with an error callback:




interface TaskObserver {
fun onError(e: Throwable, context: String)
// existing methods...

}
fun addObserver(observer: TaskObserver) { /*...*/ }

When safeExecute catches an exception, we notify observers:

catch (e: Throwable) {
ErrorLogger.log(e, context)
observers.forEach { it.onError(e, context) }

return null
}

A UIObserver can then display an alert to the user:

class UIObserver: TaskObserver {
override fun onError(e: Throwable, context: String) {

println("An error occurred in $context. Please retry or contact
support.")

}
/...

}

This immediate feedback helps users understand when operations fail and
prevents silent data loss.

Harmonizing L.ogs with Monitoring Tools

If we integrate with external monitoring—such as sending logs to a remote
server—you adapt ErrorLogger.log to include an HTTP POST:

fun log(e: Throwable, context: String = "") {



// existing file append

try {
HttpClient.post("https://monitor.gitforgits.com/log") {

body = mapOf("timestamp" to timestamp, "context" to context,
"error" to e.toString())

}

} catch (_: Exception) { /* ignore network failures */ }
}

By centralizing this logic, we ensure consistent telemetry without sprinkling
network calls across our code. Through systematic categorization of error
types, a centralized logger, safe-execution wrappers, recovery strategies,
observer notifications, and optional remote reporting, we build a Task
Tracker that provides clear diagnostics and user guidance, thereby
transforming errors from crashes into manageable incidents.



Summary

To sum up, we learned to wrap the risky operations in try-catch blocks to
intercept exceptions including parsing errors, 1/0O failures, and serialization
issues. We then used try as an expression to return fallback values when
parsing IDs or loading JSON, and we applied finally to close resources
reliably. We adopted safe casts (as?) when converting loosely typed data—
metadata maps or generic JSON objects—so that invalid types yielded null
instead of ClassCastException, letting we handle unexpected values
gracefully. We introduced a centralized ErrorLogger singleton to record
timestamps, exception details, and stack traces to a log file, replacing
scattered println statements with a uniform logging mechanism.

We created a higher-order safeExecute wrapper that logged any thrown
exception and returned safe defaults, then refactored file I/O and command
dispatch to use it, preserving control flow and user experience during
failures. We implemented recovery strategies—such as retry loops for save
operations—and extended our observer pattern to notify listeners of fatal
errors, driving UI alerts and background responses. We even sketched
remote telemetry by posting error data to a monitoring endpoint, all through
centralized logic. These practices transformed uncaught exceptions into
managed incidents, bolstered application resilience, and provided clear
diagnostics for debugging without interrupting the user’s workflow.



CHAPTER 10: HANDLING
JSON AND DATA
SERIALIZATION



Chapter Overview

In this new chapter, we begin with exploring to parse JSON strings into
Kotlin objects using kotlinx.serialization, annotating our Task class with
@Serializable and configuring Json to ignore unknown keys so that
evolving schemas do not break our parser.

Next, we will reverse the process by serializing Task instances back into
JSON text with encodeToString, exploring both compact and pretty-
printed formats and centralizing file writes in our service layer for
consistent persistence. After that, we will compare alternative libraries—
Moshi and Jackson Kotlin module—integrating each into our build,
generating adapters, and benchmarking their performance to determine
which offers the best throughput for our app’s needs. Then, we will tackle
nested JSON structures by defining layered DTO classes with
@SerialName mappings, parsing hierarchical API responses into
TaskResponse, Meta, and TaskDto objects, and mapping those DTOs into
our domain Task entities.

Finally, we will handle dynamic or deeply nested fields with JsonObject,
and write custom serializers for special types such as ISO-format
timestamps, ensuring that every element in complex JSON payloads maps
accurately into our application model before validation and business-logic
integration.



Parsing JSON

There are a few things that you'll need to do with data interchange. First,
you'll need to connect our app with external services. You'll also need to use
it to persist state between sessions and integrate with other tools. JavaScript
Object Notation—or JSON—is now the go-to for web APIs, configuration
files, and lightweight data storage. Its human-readable text format, support
across languages, and simple object and array structure make JSON great
for sending task lists to a mobile client or reading user preferences at
startup. When we correctly parse JSON into Kotlin objects, we gain type
safety and eliminate the need for manual string manipulation. Instead of
splitting on braces or indexing quotes, we let a JSON library handle escape
sequences, nested structures, and missing fields. When you convert raw
JSON into domain classes—Ilike our Task data class—you focus on
business logic instead of error-prone parsing code. It's great for handling
JSON, and when our app reads a file or gets API responses, it turns strings
into fully formed Task instances with minimal boilerplate, robust error
checking, and consistent behavior whenever the JSON schema changes.

JSON Strings into Objects

We can utilize the Kotlin’s official serialization library—
kotlinx.serialization—to parse JSON into objects with concise annotations
and extension functions. To do this, in our Gradle setup, we add the plugin
and dependency:

plugins {
kotlin("plugin.serialization") version "2.0.20"

}

dependencies {
implementation("org.jetbrains.kotlinx:kotlinx-serialization-json:1.6.0")

}

Next, annotate our Task class in Task.kt:



import kotlinx.serialization.Serializable
@Serializable
data class Task(

val id: Int,

val description: String,

val highPriority: Boolean = false,

val completed: Boolean = false,

val createdTimestamp: Long

)

To parse a JSON string into a list of tasks, we call:

import kotlinx.serialization.decodeFromString

import kotlinx.serialization.json.Json

fun parseTasks(jsonString: String): List<Task> {
return Json { ignoreUnknownKeys = true }

.decodeFromString(jsonString)
}

In the above, the ignoreUnknownKeys = true lets us evolve our JSON
structure without breaking parsing when extra fields appear. By wrapping
this logic in a dedicated function, we centralize error handling and schema
management. In our TaskService, we integrate parsing during startup:

val initialTasks = try {
val text = File("tasks.json").read Text()
parseTasks(text)

} catch (e: Exception) {
println("Failed to load tasks: ${e.message}")



emptyList()
}
initial Tasks.forEach { addTask(it) }
This strategy transforms raw JSON into typed Task objects immediately,

ensuring that the rest of our application operates on structured, validated
instances rather than raw strings or untyped maps.



Serializing Kotlin Objects into JSON
Format

Encoding Objects with ‘kotlinx.serialization’

You already transformed JSON text into Task instances; now we reverse
the flow, converting in-memory Task objects back into JSON for
persistence or API communication. With kotlinx.serialization, we avoid
manual string concatenation and ensure that our JSON output matches our
data model automatically. In Task.kt, we have the @Serializable
annotation on our Task data class. To serialize a single task or an entire
collection, invoke the extension function encodeToString.

For example, to convert a list of tasks into a compact JSON array, we write:

import kotlinx.serialization.encodeToString

import kotlinx.serialization.json.Json

fun serializeTasks(tasks: List<Task>): String {
return Json { ignoreUnknownKeys = true }

.encodeToString(tasks)
}

You passed our task list directly to encodeToString, and the library
produced a JSON string representing each object’s properties—ID,
description, priority, completion flag, and timestamp.

If we prefer a more human-readable format when inspecting files, enable
pretty printing:
fun serializeTasksPretty(tasks: List<Task>): String {
return Json {
prettyPrint = true

prettyPrintIndent =



encodeDefaults = true

}.encodeToString(tasks)
}

By specifying prettyPrint, we instruct the serializer to insert line breaks
and indentation, making our tasks.json file legible in editors. The
encodeDefaults flag ensures that properties with default values—such as
completed = false—also appear in the output, which can be helpful for
clients that expect explicit fields.

Writing JSON to Disk and External Endpoints

After producing the JSON string, we commonly write it to a file or send it
over HTTP using the Kotlin’s java.io.File APIs:

fun saveTasksToFile(tasks: List<Task>, path: String = "tasks.json") {
val jsonString = serializeTasksPretty(tasks)

File(path).writeText(jsonString)
}

This function replaces any existing file content with fresh JSON,
guaranteeing that our persistent store always reflects the current in-memory
state. To integrate this into our TaskService, replace the manual
serialization and file-writing code with a single call to saveTasksToFile
inside our save logic:

fun saveTasks() {
safeExecute("saveTasks") {

saveTasksToFile(tasks.values.toList())

}

By funneling all serialization through serializeTasksPretty, we maintain a
single point of configuration for JSON formatting. If we later switch to a



remote storage endpoint, we can adapt saveTasksToFile to perform an
HTTP POST instead of a file write, without changing the core serialization
code.

Integrating Default and Custom Serializers

When our Task class grows—for example, adding an enum for priority
levels or a LocalDate due date—you customize serialization with

contextual serializers. In our module setup, register serializers in the Json
builder:

val customJson = Json {
serializersModule = SerializersModule {
contextual(LocalDate::class, LocalDateSerializer)

}

ignoreUnknownKeys = true
}

Then call customJson.encodeToString(tasks) to handle those new types
automatically. This modular approach keeps our serialization logic robust as
our data model evolves.



Using Serialization Libraries

You already saw how kotlinx.serialization offers first-class support in
Kotlin projects, but the ecosystem includes other mature libraries—Moshi
and Jackson Kotlin module—that excel in specific scenarios. Moshi
provides a straightforward API with annotation-driven adapters, while
Jackson’s Kotlin module delivers powerful schema evolution, streaming,
and polymorphic handling. By understanding the strengths of each, we can
pick the most efficient tool for our app’s JSON workloads—whether we
need zero-reflection runtime performance, extensive configuration options,
or seamless interoperability with Java code.

Integrating Moshi
To add Moshi, we first include the Gradle dependency and codegen plugin:

plugins {
kotlin("'kapt") version "2.0.20"

}

dependencies {
implementation("com.squareup.moshi:moshi:1.15.0")

kapt("com.squareup.moshi:moshi-kotlin-codegen:1.15.0")
}

Then we annotate our Task class for Moshi code generation:

import com.squareup.moshi.JsonClass
@JsonClass(generateAdapter = true)
data class Task(

val id: Int,

val description: String,

val highPriority: Boolean = false,



val completed: Boolean = false,

val createdTimestamp: Long
)

After this, we initialize a Moshi instance with the Kotlin adapter factory:

val moshi = Moshi.Builder()
.add(KotlinJsonAdapterFactory())
.build()

val taskAdapter = moshi.adapter<List<Task>>
(Types.newParameterized Type(List::class.java, Task::class.java))

You can then parse and serialize efficiently:

// Parsing
val tasks: List<Task> = task Adapter.fromJson(jsonString).orEmpty()
// Serializing

val jsonOutput: String = taskAdapter.toJson(taskList)

Because Moshi’s code-generated adapters avoid reflection, these operations
run with minimal overhead—ideal when our app loads or saves large task

collections.

Configuring Jackson with Kotlin Module

When we require advanced features—such as polymorphic types for
different Command subclasses or streaming large data sets—Jackson’s

Kotlin module shines. Add dependencies:

dependencies {

implementation("com.fasterxml.jackson.module:jackson-module-
kotlin:2.15.2")

implementation("com.fasterxml.jackson.core:jackson-databind:2.15.2")

}



We then register the module in our mapper setup:

val mapper = jacksonObjectMapper()
registerKotlinModule()

.configure(DeserializationFeature. FAIL._ON_UNKNOWN_PROPERTIE
S, false)

To parse JSON into tasks:
val tasks: List<Task> = mapper.read Value(jsonString)
And then to write out our in-memory state:

val jsonOutput: String = mapper.writerWithDefaultPrettyPrinter()
.writeValueAsString(taskList)

The Jackson supports incremental parsing via JsonParser for streaming
large arrays without loading everything into memory, and its polymorphic
annotations let us handle subclasses of Command or TaskEvent
seamlessly.

Selecting and Benchmarking Serializer

With multiple options in place, we measure performance to decide our
choice. The Kotlin’s measureTimeMillis helps to compare serialization
and deserialization speeds:

val repetitions = 100
val sampleJson = serializeTasksPretty(tasks)
val kotlinxTime = measureTimeM illis {

repeat(repetitions) { Json.decodeFromString<List<Task>>(sampleJson)

}
}

val moshiTime = measureTimeMillis {



repeat(repetitions) { taskAdapter.fromJson(sampleJson) }

}

val jacksonTime = measureTimeMillis {
repeat(repetitions) { mapper.readValue<List<Task>>(sampleJson) }

}

println("kotlinx: $kotlinxTime ms, moshi: $moshiTime ms, jackson:
$jacksonTime ms")

When we run these benchmarks on our Linux environment, we can see
which library offers the best throughput for our typical task payload size.
This lets us optimize for startup speed, memory footprint, or developer
productivity.

Overall, we centralize configuration in our service layer, allowing we to
switch serializers later with minimal code changes, and we gain confidence
that our app can handle evolving schemas and performance demands
gracefully.



Managing Complex JSON Structures

A lot of APIs give you more than just simple arrays of tasks. You often get
rich, hierarchical payloads that include metadata, data arrays, embedded
objects with user details, and nested lists of comments or tags within each
task. If you want to handle these complex structures robustly, you've got to
map every level of the JSON hierarchy into Kotlin's type system. That way,
your code will work with fully typed objects rather than raw JsonObjects.
We make sure that each JSON field—no matter how deeply nested—Ilands
in the correct property, complete with type safety and null handling, by
defining nested data classes, using annotations like @SerialName, and
employing custom serializers when needed. This method gives you some
pretty powerful IDE support, compile-time schema checks, and seamless
navigation of multi-level data in our app.

Defining Nested Data Classes

Now suppose the API returns a response like this:

{
"status": "ok",
"meta": {
"page": 1,

"pageSize": 20,
"totalCount": 57
g
"tasks": [
{
"id": 42,
"description": "Review PR",

"high_priority": true,



"completed": false,
"created_timestamp": 1672531200000,
"tags": ["code", "review"],
"assignee": {

"userld": 7,

"userName": "alice"

}
}
]
}

You model this with nested @Serializable classes:

@Serializable
data class TaskResponse(
val status: String,
val meta: Meta,
val tasks: List<TaskDto>
)
@Serializable
data class Meta(
val page: Int,
val pageSize: Int,
val totalCount: Int
)
@Serializable
data class TaskDto(



val id: Int,
val description: String,

@SerialName("high_priority") val highPriority: Boolean = false,
val completed: Boolean = false,
@SerialName("created_timestamp") val createdTimestamp: Long,
val tags: List<String> = emptyList(),
val assignee: Assignee

)

@Serializable

data class Assignee(
val userld: Int,

val userName: String

)

Here, the annotations like @SerialName("high_priority") map
snake_case JSON keys to camelCase Kotlin properties. Default values (=
false, = emptyList()) handle missing fields gracefully.

Parsing Nested Structure into Domain Models

After decoding into DTOs, we convert them into our domain Task class. In
TaskService, write:

fun loadFromApi(jsonString: String): List<Task> {
val response = Json { ignoreUnknownKeys = true }
.decodeFromString<TaskResponse>(jsonString)
return response.tasks.map { dto ->
Task(
id = dto.id,

description = dto.description,



highPriority = dto.highPriority,
completed = dto.completed,
createdTimestamp = dto.createdTimestamp
).also { task ->
// attach tags or metadata as needed
dto.tags.forEach { tag -> service.addTag(task.id, tag) }
val assignee = dto.assignee

println("Task ${task.id} assigned to ${assignee.userName}")

}

This two-stage process—decode into DTO classes, then map to domain
entities—keeps JSON concerns isolated from core business logic.

Handling Dynamic Structures

When JSON contains arbitrary key sets or dynamic sub-objects, we can use
JsonElement and JsonObject for parts of the payload. For example, if
each task can have custom fields under "attributes", write:

@Serializable
data class TaskDto(
/* ... previous fields ... */,

val attributes: JsonObject = JsonObject(emptyMap())
)

Then, after parsing:

val priorityLevel =
taskDto.attributes["priorityLevel"]?.jsonPrimitive?.intOrNull ?: 0



This gives us direct access to nested JSON without needing to predefine
every possible field.

Custom Serializers

Sometimes date formats or enum values require custom handling. If
created_timestamp was an ISO string instead of epoch milliseconds, we
create a @Serializer object:

object InstantSerializer : KSerializer<Instant> {

override val descriptor = PrimitiveSerialDescriptor("Instant",
PrimitiveKind.STRING)

override fun deserialize(decoder: Decoder) =
Instant.parse(decoder.decodeString())
override fun serialize(encoder: Encoder, value: Instant) =

encoder.encodeString(value.toString())
}
Then apply it in our DTO:

@Serializable

data class TaskDto(
/¥ .0*,
@Serializable(with = InstantSerializer::class)
@SerialName("created_timestamp")

val created: Instant

)

Our code now parses ISO timestamps into Instant objects automatically,
simplifying downstream date computations.

Validating Nested Data at Runtime




When we need to enforce business rules—such as ensuring every task has
at least one tag—you add checks after parsing:

response.tasks.forEach { dto ->

require(dto.tags.isNotEmpty()) { "Task ${dto.id} must have at least one
tag." }

}

If we fail fast on invalid data, we can prevent inconsistent data from
spreading through our application. This kind of robust modeling makes sure
our app can handle complex stuff, like pagination, metadata, user objects,
and dynamic attributes. This lets us focus on the main logic instead of on
weak parsing code.



Summary

Just to summarize the learnings, we very well transformed raw JSON text
into strongly typed Task objects by annotating our data classes with
@Serializable and using kotlinx.serialization’s decodeFromString,
handling unknown keys and fallback values gracefully. We reversed the
flow with encodeToString, configuring Json for pretty printing and default
inclusion, then centralized file writes in our service for consistent output.
We explored alternative libraries—Moshi for reflection-free adapters and
Jackson Kotlin module for polymorphic and streaming support—measuring
their performance via measureTimeMillis to choose the best fit for our
payload sizes.

We then modeled nested API responses with layered DTO classes—
TaskResponse, Meta, TaskDto, and Assignee—using @SerialName to
map snake_case JSON to camelCase properties, and we mapped DTOs into
our domain Task entities, isolating parsing concerns. We handled dynamic
or deeply nested fields with JsonObject and JsonElement, safely
extracting values without predetermined schema. For special cases like ISO
timestamp strings or custom enum formats, we wrote custom KSerializer
implementations and registered them contextually to convert JSON fields
into Instant or other types. We defined precise serializers, used default
parameters, and validated data post-parsing. This ensured seamless
integration of complex JSON structures from APIs or files into our app's in-
memory model, paving the way for robust communication and persistent
storage.



CHAPTER 11.:
DESIGNING RESTFUL
APIS



Chapter Overview

In this chapter, we're going to start by looking at REST principles—Ilike
resource orientation, statelessness, and standard URI design—to model our
app's entities as HTTP resources under a versioned path. Then, we'll check
out how to apply all this in Ktor's routing DSL, making sure we safely
extract path and query parameters, and decode JSON request bodies into
DTOs for creation and updates. Next, we'll integrate persistent storage by
defining database schemas with Exposed, mapping entities to our domain
Task class, and wiring repository methods into our API endpoints so that
tasks survive restarts. Finally, we'll use JWT-based authentication, TLS
encryption, input validation, rate limiting, CORS/CSRF protections, and
comprehensive request logging to secure our API.



RESTful API Overview

The APIs we design show off what our app can do—Ilike adding tasks,
listing them, and marking them as complete—to outside clients, like web
dashboards or mobile apps. Basically, REST is an architectural style that
focuses on resources identified by URIs. Each task in our system becomes a
resource at a unique path, for example /tasks/42. By thinking in terms of
resources rather than RPC-style commands, we create an intuitive,
discoverable interface. Clients make HTTP requests—GET, POST, PUT,
DELETE—to interact with these resources. REST encourages
statelessness: each request from the client must contain all information
needed to process it. Because the server does not retain session state, our
app endpoints scale more easily, and intermediaries like load balancers can
distribute requests without sticky sessions. We will model our tasks, task
lists, and related entities (such as tags or users) as resources with clear
URIs, ensuring clients navigate our API as they would a website’s pages.

HTTP Methods for CRUD

The mapping CRUD operations to HTTP verbs provides a uniform
interface. When we GET /tasks, we request the collection of all tasks;
clients receive a JSON array of task objects. To create a new task, they
POST a JSON payload to /tasks; the server assigns a new ID and returns
the created resource, often with status 201 Created and a Location header
pointing to /tasks/{id}.

The update of an existing task uses PUT or PATCH on /tasks/{id}:

. PUT replaces the entire resource, so clients send full task
representations.

e PATCH applies partial updates, such as marking only the completed
flag.

When a client sends DELETE /tasks/{id}, we remove the task and respond
with 204 No Content, indicating success without a response body. Through
this, we make our app API predictable: any developer familiar with REST




will immediately recognize how to perform standard operations on our
resources.

Designing Consistent URI Structures and Versioning

We must try to craft clear, hierarchical URIs that reflect resource
relationships. For example:

GET /api/vl/tasks # list or filter tasks

POST /api/vl/tasks # create a new task

GET /api/vl/tasks/{id} # retrieve a specific task

PUT /api/v1/tasks/{id} # replace an existing task

PATCH /api/v1/tasks/{id}/status # update only the status sub-resource
DELETE /api/v1/tasks/{id} # delete a task

By prefixing with /api/vl, we introduce versioning, enabling we to evolve
the API without breaking existing clients. When we add new fields or
change response formats, we increment to /api/v2 while maintaining
/api/vl for backward compatibility. We group related resources—such as
/tasks/{id}/tags for managing a task’s tags—under the parent resource URI.

Handling Representations and Content Negotiation

The REST separates resource identity (the URI) from its representations
(JSON, XML, YAML). We choose JSON as the primary media type with
application/json content-type headers. Our server inspects the Accept
header on incoming requests: if it includes application/json, we respond
accordingly. For clients that request XML—unlikely in this context—you
could implement application/xml support.

Additionally, we include hypermedia links in responses (HATEOAS) to
assist clients:

{
"id": 42,

"description": "Buy milk",



"completed": false,
" links": {
"self": { "href": "/api/v1/tasks/42" },
"complete": { "href": "/api/v1/tasks/42/status", "method": "PATCH" }
}
}

The embedding links lets clients discover available actions dynamically and
fosters a more self-descriptive API.

Status Codes and Error Responses

It's really important to have clear, standardized status codes and error
payloads for reliable client-server interactions. When a request succeeds,
we return:

e 200 OK with a response body for GET, PUT, or PATCH.
e 201 Created with Location header after POST.
e 204 No Content after successful DELETE.

For error conditions, we respond with:

e 400 Bad Request when the client payload is malformed or missing
required fields.

e 404 Not Found when a referenced task ID does not exist.

e 409 Conflict if a duplicate task description is not allowed.

e 500 Internal Server Error for unhandled exceptions.

Each of the above error response includes a JSON body with error and
message fields, for example:

{ "error": "BadRequest", "message": "Task description is required." }

If we standardize our error format, clients can parse and react
programmatically. This gives users clear feedback and enables automated
retries or user prompts.

Enabling Filtering, Pagination, and Sorting




When clients request /tasks, the collection may grow large. We support
query parameters to help them retrieve manageable subsets:

e Filtering: /tasks?completed=false&highPriority=true returns only
matching tasks.

®  Pagination: /tasks?page=2&pageSize=20 returns the second page
of results.

° Sorting: /tasks?sort=createdTimestamp,desc orders tasks by
creation time.

On the server side, we parse these parameters and apply them to our data
store—whether in-memory or database—using filtering, slicing, and sorting
operations. We include pagination metadata in responses:

{
"meta": { "page": 2, "pageSize": 20, "total Count": 57 },
"tasks": [ /* array of task objects */ ]

}

The clients thus manage large data sets efficiently and display paginated
lists in their Uls.



Designing Endpoint and Route
Mapping

Defining Resource Routes

Now here, we begin with choosing Ktor for implementing our app API on
Linux. The Ktor’s routing DSL lets us declare endpoints in code that
mirrors our URI structure. In our Application.module() function, we
configure routes under a versioned prefix:

fun Application.module() {
install(ContentNegotiation) {
json(Json { prettyPrint = true; ignoreUnknownKeys = true })
}
routing {
route("/api/v1l") {
route("/tasks") {
get { /* list or filter */ }
post { /* create */ }
route("/{id}") {
get { /*retrieve */ }
put { /*replace */ }
patch { /* partial update */ }

delete { /* remove */ }



}

You nest route blocks so that every handler lives under /api/vl/tasks
naturally. Path parameters like {id} appear in the block for an individual
task. By grouping endpoints this way, we avoid repeated prefixes and keep
related handlers adjacent.

Extracting Path and Query Parameters

Within a get or post handler, we access parameters via call.parameters or
call.receive. For example, to fetch a specific task by its ID:

get("/{id}") {
val id = call.parameters["id"]?.toIntOrNull()

if (id == null) return@get call.respond(HttpStatusCode.BadRequest,
ErrorResponse("'Invalid ID"))

val task = taskService.getTask(id) ?: return@get
call.respond(HttpStatusCode.NotFound, ErrorResponse('"Task not
found"))

call.respond(task)
}

For filtering and pagination on the collection route, we parse query
parameters:

get {

val completed =
call.request.queryParameters["completed"]?.toBooleanStrictOrNull()

val page = call.request.queryParameters["page"]?.toIntOrNull() ?: 1

val pageSize =
call.request.queryParameters["pageSize"]?.toIntOrNull() ?: 20

val tasks = taskService.findTasks(completed, page, pageSize)



call.respond(TaskListResponse(tasks, page, pageSize,
taskService.total Count(completed)))

}

By converting string parameters into typed values  with
toBooleanStrictOrNull or toIntOrNull, we guard against invalid inputs
and respond appropriately.

Handling Request Bodies

When clients POST a new task, we decode the JSON body into a DTO and
validate it before mapping to our domain model:

post {
val dto = call.receive<CreateTaskRequest>()
if (dto.description.isBlank()) {

return@post call.respond(HttpStatusCode.BadRequest,
ErrorResponse("'Description cannot be blank™"))

}
val task = taskService.createTask(dto.description, dto.highPriority)

call.response.headers.append(HttpHeaders.Location,
"/api/v1/tasks/${task.id}")

call.respond(HttpStatusCode.Created, task)
}

For PUT or PATCH, we similarly receive<UpdateTaskRequest>(), apply
only the provided fields for PATCH, and respond with the updated
resource.

Organizing Routes into Feature Modules

As our API grows, we extract routing into separate functions for clarity. In
TasksRoutes.kt:

fun Route.taskRoutes(service: TaskService) {



route("/tasks") {
getTasks(service)
postTask(service)
route("/{id}") {
getTask(service)
putTask(service)
patchTask(service)

deleteTask(service)

}

Then in Application.module():
routing {
route("/api/v1l") {
taskRoutes(taskService)

tagRoutes(taskService) // future endpoints

}

If you break routes into feature modules, each file will be focused on one
resource, navigation will be simple, and team ownership will be supported.

Applying Consistent Error and Response Model

Across all handlers, we use a shared response model:

@Serializable data class ErrorResponse(val error: String, val message:
String)

@Serializable data class TaskListResponse(



val tasks: List<Task>, val page: Int, val pageSize: Int, val totalCount:
Int

)

Here, you respond uniformly: success payloads with call.respond(data),
errors with call.respond(HttpStatusCode.Xxx, ErrorResponse(...)). This
consistency makes client code simpler, since it can parse every non-2xx
response into an ErrorResponse and every 2xx into the expected data
class.



Integrating Database Operations into
APIs

When you're doing something that can't be interrupted, you need a store
that's going to be there for you. H2 has an embedded, file-based engine that
runs on Linux without extra setup, while PostgreSQL has more robust
production features. Kotlin's Exposed library gives us a typesafe DSL over
JDBC, which lets us define schemas and perform CRUD operations inside
Kotlin code. We combine Ktor, Exposed, and H2 to wire our REST
endpoints directly to persistent storage with minimal boilerplate.

Adding Exposed and H2 Dependencies

In our build.gradle.kts, we first include:

dependencies {
implementation("io.ktor:ktor-server-core:2.0.0")
implementation("io.ktor:ktor-server-netty:2.0.0™)
implementation("org.jetbrains.exposed:exposed-core:0.41.1")
implementation("org.jetbrains.exposed:exposed-dao:0.41.1")
implementation("org.jetbrains.exposed:exposed-jdbc:0.41.1")
implementation("com.h2database:h2:2.1.214")
implementation("ch.qos.logback:logback-classic:1.2.11")

}

This setup gives us Ktor, the Exposed ORM modules, and the H2 driver for
file-backed persistence.

Defining Tasks Table and Entity

Here, we first create src/main/kotlin/db/TasksTable.kt with Exposed’s
DSL.:




package db

import org.jetbrains.exposed.dao.id.IntIdTable
object TasksTable : IntldTable("tasks") {

val description = varchar("description", length = 255)
val highPriority = = bool("high_priority").default(false)
val completed = bool("completed").default(false)

val createdTimestamp = long("created_timestamp")

}

In our src¢/main/kotlin/db/TaskEntity.kt, we map the rows to Kotlin
objects:

package db
import org.jetbrains.exposed.dao.IntEntity
import org.jetbrains.exposed.dao.IntEntityClass
import org.jetbrains.exposed.dao.id.EntityID
class TaskEntity(id: EntityID<Int>) : IntEntity(id) {
companion object : IntEntityClass<TaskEntity>(TasksTable)
var description by TasksTable.description
var highPriority by TasksTable.highPriority
var completed by TasksTable.completed
var createdTimestamp by TasksTable.createdTimestamp
fun toDomain() = Task(
id = id.value,
description = description,

highPriority = highPriority,

completed = completed,



createdTimestamp = createdTimestamp

)
}

After this, you convert each TaskEntity into our domain Task data class
via toDomain().

Initializing Database Connection

In our Application.module() before routing, we connect and create tables:

import io.ktor.server.application.*
import org.jetbrains.exposed.sql.Database
import org.jetbrains.exposed.sql.SchemaUltils
import org.jetbrains.exposed.sql.transactions.transaction
import db.TasksTable
fun Application.module() {
// H2 file “tasks.db” in app directory, persists across restarts

Database.connect(

url = "jdbc:h2:file:./tasks;DB_CLOSE_DELAY=-1",
driver = "org.h2.Driver",

user ="sa",

password = ""

)

// Create the tasks table if it doesn’t exist
transaction {

SchemaUltils.create(TasksTable)
}

// install ContentNegotiation, then routing...



}

By running SchemaUtils.create(...) inside a transaction, we ensure the
schema matches our table definitions.

Implementing CRUD in Service Layer

Here, at first, we need to factor the database operations into a
TaskRepository backed by Exposed:

package service
import db.TaskEntity
import org.jetbrains.exposed.sql.transactions.transaction
class TaskRepository {
fun allTasks(): List<Task> = transaction {
TaskEntity.all().map { it.toDomain() }
}
fun findBylId(id: Int): Task? = transaction {
TaskEntity.findByld(id)?.toDomain()
}
fun addTask(task: Task): Task = transaction {
TaskEntity.new {
description = task.description
highPriority = task.highPriority
completed = task.completed
createdTimestamp = task.createdTimestamp
}.toDomain()

}
fun updateTask(id: Int, patch: TaskPatch): Task? = transaction {



TaskEntity.findByld(id)?.apply {
patch.description?.let { description = it }
patch.highPriority?.let { highPriority = it }
patch.completed?.let { completed = it }

}?.toDomain()

}
fun deleteTask(id: Int): Boolean = transaction {

TaskEntity.findById(id)?.let {

it.delete(); true

} ?: false

}

With this, we wrap every call in transaction { ... } to manage commit and
rollback automatically. TaskPatch is a data class with nullable fields for
partial updates.

Wiring Repository into Ktor Routes

In Application.module(), we then instantiate the repository and inject it
into our routing:

val repository = TaskRepository()
routing {
route("'/api/v1/tasks") {
get {
call.respond(repository.allTasks())
}
post {

val dto = call.receive<CreateTaskRequest>()



val created = repository.addTask(

Task(0, dto.description, dto.highPriority, false,
System.currentTimeMillis())

)

call.response.headers.append(HttpHeaders.Location,
"/api/v1/tasks/${created.id}")

call.respond(HttpStatusCode.Created, created)
}
route("/{id}") {
get {
val id = call.parameters["id"]?.toIntOrNull()
val task = id?.let { repository.findBylId(it) }

if (task == null) call.respond(HttpStatusCode.NotFound) else
call.respond(task)

}
put {
// replace logic similar to patch
}
patch {

val id = call.parameters["id"]?.toIntOrNull() ?: return@patch
call.respond(HttpStatusCode.BadRequest)

val patch = call.receive<TaskPatch>()
repository.updateTask(id, patch)

?.let { call.respond(it) }

?: call.respond(HttpStatusCode.NotFound)



delete {

val id = call.parameters["id"]?.toIntOrNull() ?: return@delete
call.respond(HttpStatusCode.BadRequest)

if (repository.deleteTask(id))
call.respond(HttpStatusCode.NoContent)

else call.respond(HttpStatusCode.NotFound)

}

By calling repository methods directly, our endpoints now persist tasks to
the H2 database, retrieve them, apply updates, and delete records
transparently.

With all such glue between HTTP requests and persistent storage, our app’s
RESTful API achieves durable, reliable operations—clients can trust that
tasks survive restarts and that updates reflect immediately in our database.



Endpoint Security and API
Communication

Securing Access

The goal is to safely expose our app's API, making sure that only approved
clients can perform sensitive operations. Ktor supports a bunch of different
authentication mechanisms, like Basic, token-based (JWT), and OAuth2.
We'll need to install the authentication feature and configure a JWT
provider to require a valid JWT for most endpoints.

install(Authentication) {
jwt("auth-jwt™) {
realm = "task-tracker"
verifier(JwtConfig.verifier)
validate { credential ->
if (credential.payload.getClaim(""username").asString().isNotBlank())
JWTPrincipal(credential.payload)

else null

}
}
}

We then wrap protected routes in authenticate("auth-jwt") { ... }, so calls
to POST, PUT, PATCH, and DELETE under /api/vl/tasks require a valid
token carrying a username claim. Inside handlers, we retrieve the user’s
identity via call.principal<JWTPrincipal>() and enforce authorization
logic—for example, only allow users to delete their own tasks by matching
principal.payload.getClaim("sub") to the task’s ownerlId.



Encrypting Traffic with HTTPS and TLS

To prevent eavesdropping on credentials or task data, we deploy our Ktor
server behind TLS. On Linux, we generate a certificate—self-signed for
development or from a CA for production—and configure Netty’s SSL
connector in application.conf or code as shown below:

ktor {

deployment {
sslPort = 8443
keyAlias = "tasktracker"
keyStorePath = "keystore.jks"
keyStorePassword = "changeit"

privateKeyPassword = "changeit"

}
}

The clients then connect via https://your.domain:8443/api/v1/tasks, and
all JSON exchanges occur over encrypted channels, preventing man-in-the-
middle attacks.

Validating and Sanitizing Input

Here, the even authenticated requests can carry malformed or malicious
payloads. We validate JSON bodies against our DTO classes—
@Serializable annotations enforce type correctness—but we also perform
business-rule checks: descriptions must be non-empty and under 255
characters; timestamps within reasonable bounds.

So in our POST handler:

post("/tasks") {
authenticate("auth-jwt") {

val req = call.receive<CreateTaskRequest>()



if (req.description.isBlank() || req.description.length > 255) {

return@post call.respond(HttpStatusCode.BadRequest,
ErrorResponse("Invalid description"))

}
/...
}
}

You reject invalid data with 400 Bad Request before persisting anything.
We also sanitize string fields to escape HTML or SQL if we later integrate
with a template engine or direct SQL queries, preventing injection attacks.

Rate Limiting and Throttling

To guard against DoS attacks or accidental floods—such as a bug runaway
loop—you implement simple rate limiting per IP or per user. Ktor doesn’t
include built-in rate limiting, but we can use an in-memory cache like
Caffeine or Redis to track request counts.

So we edit the following in our plugin:

intercept(ApplicationCallPipeline.Features) {
val ip = call.request.origin.remoteHost
if ('RateLimiter.allowRequest(ip)) {

call.respond(HttpStatusCode. TooManyRequests, ErrorResponse("Rate
limit exceeded"))

finish()
}
}

By checking before routing, we ensure abusive clients receive 429 Too
Many Requests, protecting our service’s capacity for legitimate users.

Configuring CORS and CSRF Protections




If we serve a browser-based Ul from the same server or a separate domain,
we enable CORS only for trusted origins:

install(CORS) {
method(HttpMethod.Get); method(HttpMethod.Post)
header(HttpHeaders.ContentType); allowCredentials = true
host("app.yourdomain.com", schemes = listOf("https"))

}

This prevents arbitrary websites from making authenticated requests on
users’ behalf. For state-changing requests (POST, PUT, DELETE), we
also verify CSRF tokens—sending a secure cookie with the JWT or a
custom anti-CSRF header—and validate its presence in a custom header
before proceeding.

Logging, Monitoring, and Auditing Calls

The security relies on visibility into who accessed what. We integrate Ktor’s
CallLogging plugin to record every request path, HTTP method, and
authenticated principal:

install(CallLogging) {

level = Level.INFO

filter { call -> call.request.path().startsWith("/api") }
}

Now here, combined with our ErrorLogger, it produces audit trails
showing successful and failed attempts. We forward these logs to a
centralized monitoring system or SIEM to detect anomalies—such as
repeated 401 responses or spikes in 500 errors—Iletting we respond swiftly
to potential attacks or misconfigurations.



Summary

Overall, we learned very well to define the RESTful resources for tasks
under /api/v1/tasks, mapping CRUD operations to HTTP verbs—GET to
list or retrieve, POST to create, PUT/PATCH to update, and DELETE to
remove—ensuring stateless interactions and discoverable URIs. We
organized routes with Ktor’s DSL, nesting version and resource prefixes,
extracting path and query parameters with type-safe parsing, and handling
request bodies via call.receive into request DTOs.

Next, we then connected these endpoints to persistent storage using
Exposed ORM and H2: declaring TasksTable, mapping rows to
TaskEntity, and wrapping database operations inside transactions in a
TaskRepository. We wired repository methods into Ktor handlers,
transparently persisting task creations, reads, updates, and deletions.
Finally, we secured our API with JWT authentication—installing Ktor’s
Authentication feature, validating tokens, and protecting sensitive routes—
while encrypting traffic over HTTPS, validating and sanitizing input
payloads, rate-limiting requests, configuring CORS, and logging calls via
CallLogging and a centralized ErrorLogger. Each of the above measures
ensured that only authorized clients could perform operations, data
remained confidential in transit, and our service resisted abuse and provided
comprehensive audit trails.



CHAPTER 12: BUILDING
WEB SERVER WITH
KTOR



Chapter Overview

Now, let's dive into the last chapter, where we'll start by learning how to set
up a Ktor-based web server for our app. This'll include installing the Ktor
and serialization plugins in Gradle, setting up a project with the CLI or IDE,
and checking out the directory structure that's been generated. Next, we'll
set up the application entry point by defining the embedded Netty engine,
installing JSON support via ContentNegotiation, and setting up a basic
health-check endpoint.

We will then wire our existing TaskService into the Ktor module and
define clean routing functions for CRUD operations under /api/v1/tasks,
covering path and query parameter parsing, request body handling, status
codes, and versioned URIs. After that, we will incorporate middleware
plugins—CallLogging for request tracing, StatusPages for unified error
handling, and a custom validation feature—to enforce consistent
serialization, logging, and input validation across all routes.

Finally, we will write systematic tests using Ktor’s testApplication, an in-
memory database for integration tests, and manual cURL or Postman
collections to validate our server’s behavior under normal and error
conditions. By chapter’s end, we will have a fully functional, tested, and
debuggable Ktor web server that exposes our app’s functionality to HTTP
clients with clarity and resilience.



Initializing Ktor Project

So far, we've been using command-line interactions, but with the growing
demand for responsive HTTP interfaces in modern apps, we need to switch
things up. Since Ktor's API is defined as Kotlin DSL, we use clear, type-
safe code to define routes, interceptors, and middleware. This code
integrates seamlessly with our existing Task Tracker domain classes. Ktor's
coroutine support is pretty cool because it lets you have a small thread pool
that can handle thousands of connections. This gives you high concurrency
and low latency. We've got top-notch support for HTTP/2, WebSockets, and
asynchronous client calls, which lets us make real-time updates, efficient
streaming, and microservice communication happen. With Ktor, we make
sure that our web server's architecture lines up with our know-how with
Kotlin. This helps us maintain a consistent, idiomatic, and high-
performance codebase.

Configuring_ Build with Ktor and Serialization
Plugins

To bring Ktor into our app project on Linux, we update our Gradle build
script. In build.gradle.kts, we then include the Ktor plugin and JSON
support:

plugins {
kotlin("jvm") version "1.8.20"
application
id("io.ktor.plugin") version "2.3.0"
kotlin("plugin.serialization") version "1.8.20"
}
group = "com.example.tasktracker"
version = "1.0.0"

application {



mainClass.set("com.example.tasktracker. ApplicationKt")

}

repositories { mavenCentral() }

dependencies {
implementation("io.ktor:ktor-server-core-jvm:2.3.0")
implementation("io.ktor:ktor-server-netty-jvm:2.3.0")
implementation("io.ktor:ktor-server-content-negotiation-jvm:2.3.0")
implementation("io.ktor:ktor-serialization-kotlinx-json-jvm:2.3.0")
implementation("ch.qos.logback:logback-classic:1.4.7")
testimplementation("io.ktor:ktor-server-tests-jvm:2.3.0")

testimplementation("org.jetbrains.kotlin:kotlin-test-junit:1.8.20")
}

After saving, we then run ./gradlew build to download Ktor modules and
verify that JSON serialization support is available. The application plugin
and Ktor plugin together simplify running and packaging our server.

Generating Project Skeleton

To jumpstart our web server, we scaffold a new Ktor module. With the help
of Ktor CLI installed via SDKMAN on Linux, we then execute:

ktor generate \
--name TaskTrackerServer \
--artifact-id task-tracker-server \
--package com.example.tasktracker \
--engine netty \

--features ktor-server-content-negotiation,ktor-serialization-kotlinx-json

This produces a directory structure with Application.kt, application.conf,
and Gradle files. If we prefer a graphical flow, IntelliJ] IDEA’s New Project



wizard offers a Ktor template: select Kotlin — Ktor, choose Netty engine,
enable JSON feature, set group/artifact, and click “Create.” Either approach
yields a minimal setup where we focus immediately on implementing our
app endpoints.

Now you can see that the Ktor project follows a clear convention:

task-tracker-server/
build.gradle.kts
settings.gradle.kts
application.conf
src/
— main/
kotlin/
lL— com/example/tasktracker/
L Application.kt
resources/
L— application.conf
— test/
L— Xotlin/

This above layout separates configuration, code, and resources, guiding we
to place routing logic, static assets, and tests in the appropriate locations.

Defining Application Entry Point and JSON Support

To do this, we first open Application.kt and replace sample code with our
app foundation:

package com.example.tasktracker

import io.ktor.server.application.*

import io.ktor.server.engine.*

import io.ktor.server.netty.*

import io.ktor.server.plugins.contentnegotiation.*
import io.ktor.serialization.kotlinx.json.*

import io.ktor.server.routing.*



fun main() = embeddedServer(
Netty, port = 8080, host = "0.0.0.0"
) {
module()
}.start(wait = true)
fun Application.module() {
install(ContentNegotiation) {
json() // kotlinx.serialization
}
routing {
route("/api/v1") {
get("/health") { call.respondText("OK") }

// task routes will attach here

}

With this, we configured the Netty engine on port 8080, installed the
ContentNegotiation plugin with JSON support, and established a versioned
base route. This code forms the backbone of our web server, ready to grow
as we integrate task-specific routes and middleware.

Writing Initial Tests

With our server code in place, we launch it via:

J/gradlew run
The console logs indicate Netty startup. We verify connectivity by running:

curl http://localhost:8080/api/v1/health



If we see “OK”, then it confirms our pipeline from HTTP to Ktor to Kotlin
code. To automate this check, we add a test in src/test/kotlin:

class ApplicationTest {
@Test
fun testHealthCheck() = testApplication {
application { module() }
client.get("/api/v1/health").apply {
assertEquals(HttpStatusCode.OK, status)
assertEquals("OK", bodyAsText())

}

After executing ./gradlew test, it ensures that core server functionality
remains stable as we extend our API. With Ktor installed, configured, and
verified, we have established a coroutine-driven web server ready to host
our app’s RESTful endpoints.

In upcoming topics, we will define detailed task routes, connect the server
to our repository layer, layer in authentication, and introduce real-time
features such as WebSockets—transforming our command-line tool into a
full-featured service accessible by any HTTP client.



Defining Routing and HTTP Handlers

Wiring TaskService into Ktor

Until now, we have a TaskService (or TaskRepository) that performs all
business logic—Iloading, saving, creating, updating, and deleting tasks.
Now before defining routes, we first instantiate and inject this service into
our Ktor module:

fun Application.module() {
install(ContentNegotiation) { json() }

val taskService = TaskService(TaskRepository()) // or however we
construct it

routing {
route("/api/v1") {

taskRoutes(taskService)

}

With the passing of taskService into our routing functions, we keep routing
code focused on HTTP concerns, delegating data operations to our service
layer.

Organizing Routes in Feature Functions

Now here, rather than writing all handlers inline, we group them in a
reusable function. In TasksRoutes.kt, declare:

fun Route.taskRoutes(service: TaskService) {
route("/tasks") {

getAllTasks(service)



getTaskByld(service)
createTask(service)
updateTask(service)
patchTask(service)

deleteTask(service)

}

Each call—getAllTasks, getTaskByld, etc.—is an extension function on
Route that defines one HTTP handler. This separation keeps each handler
isolated and testable.

Implementing GET /tasks and GET /tasks/{id}

To list all tasks or fetch one by ID, we define two handlers:

fun Route.getAllTasks(service: TaskService) {
get {
val tasks = service.getAllTasks()
call.respond(HttpStatusCode.OK, tasks)

}
fun Route.getTaskByld(service: TaskService) {
get("/{id}") {
val idParam = call.parameters["id"]
val id = idParam?.toIntOrNull()
if (id == null) {

call.respond(HttpStatusCode.BadRequest,
ErrorResponse("BadRequest”, "Invalid task ID"))

return@get



}

val task = service.getTask(id)
if (task == null) {

call.respond(HttpStatusCode.NotFound,
ErrorResponse(""NotFound", "Task $id not found"))

} else {
call.respond(HttpStatusCode.OK, task)

}

You parse id safely, respond 400 on parse failure, 404 if no such task, or
200 with the Task object when successful.

Handling POST /tasks to Create Task

We must understand that creating a new task requires a JSON payload. For
this, we define a request DTO for clarity:

@Serializable

data class CreateTaskRequest(val description: String, val highPriority:
Boolean = false)

Then implement:

fun Route.createTask(service: TaskService) {
post {
val req = try {
call.receive<CreateTaskRequest>()
} catch (e: ContentTransformationException) {

call.respond(HttpStatusCode.BadRequest,
ErrorResponse("BadRequest”, "Malformed JSON"))



return@post
}
if (req.description.isBlank()) {

call.respond(HttpStatusCode.BadRequest,
ErrorResponse("BadRequest”, "Description cannot be blank"))

return@post
}
val newTask = service.createTask(req.description, req.highPriority)

call.response.headers.append(HttpHeaders.Location,
"/api/v1/tasks/${newTask.id}")

call.respond(HttpStatusCode.Created, newTask)

}

You catch JSON parsing errors, validate the business rule (non-blank
description), then call our service to persist and respond with 201 Created,
including a Location header.

Implementing PUT /tasks/{id} for Full Replacement

A PUT replaces all updatable fields of a task. We use a DTO mirroring the
full model:

@Serializable

data class UpdateTaskRequest(val description: String, val highPriority:
Boolean, val completed: Boolean)

And the route is as below:

fun Route.updateTask(service: TaskService) {
put("/{id}") {
val id = call.parameters["id"]?.toIntOrNull()



?: return@put call.respond(HttpStatusCode.BadRequest,
ErrorResponse("'BadRequest”, "Invalid ID"))

val req = try { call.receive<UpdateTaskRequest>() }
catch (e: ContentTransformationException) {

call.respond(HttpStatusCode.BadRequest,
ErrorResponse("BadRequest”, "Malformed JSON"))

return@put
}

val updated = service.replaceTask(id, req.description,
reg.highPriority, req.completed)

if (updated == null) {

call.respond(HttpStatusCode.NotFound,
ErrorResponse("NotFound", "Task $id not found"))

} else {
call.respond(HttpStatusCode.OK, updated)

}

We then funnel the validation and persistence through our service, handle
missing tasks, and return the updated resource on success.

Implementing PATCH /tasks/{id} for Partial Updates

When clients want to modify only a subset of fields, PATCH with nullable
DTOs works best:

@Serializable

data class PatchTaskRequest(val description: String? = null, val
highPriority: Boolean? = null, val completed: Boolean? = null)

Following is the route definition:



fun Route.patchTask(service: TaskService) {
patch("/{id}") {
val id = call.parameters["id"]?.toIntOrNull()

?: return@patch call.respond(HttpStatusCode.BadRequest,
ErrorResponse("BadRequest"”, "Invalid ID"))

val req = try { call.receive<PatchTaskRequest>() }
catch (e: ContentTransformationException) {

call.respond(HttpStatusCode.BadRequest,
ErrorResponse("BadRequest”, "Malformed JSON"))

return@patch
}
val patched = service.patchTask(id, req)
if (patched == null) {

call.respond(HttpStatusCode.NotFound,
ErrorResponse("NotFound", "Task $id not found"))

} else {
call.respond(HttpStatusCode.OK, patched)

}

Our service’s patchTask method applies only non-null fields, centralizing
partial-update logic.

Handling DELETE /tasks/{id}

The deletion of the resources is straightforward as shown below:

fun Route.deleteTask(service: TaskService) {

delete("/{id}") {



val id = call.parameters|"id"]?.toIntOrNull()

?: return@delete call.respond(HttpStatusCode.BadRequest,
ErrorResponse("'BadRequest”, "Invalid ID"))

val success = service.deleteTask(id)
if (success) call.respond(HttpStatusCode.NoContent)

else call.respond(HttpStatusCode.NotFound,
ErrorResponse("NotFound", "Task $id not found"))

}
}

You respond 204 No Content on success, 404 when the task does not exist,
and 400 for invalid IDs.

Grouping and Versioning Routes

All task routes live under /api/v1/tasks. When we introduce new features—
such as bulk operations or WebSockets—you can add sibling routes:

route("/api/v1l") {
taskRoutes(service)
route("/bulk™) {
post("/add") { /* handle bulk-add JSON array */ }

}
webSocket("/ws/updates") { /* real-time updates */ }

}

By combining endpoints like this, we keep the API surface nice and tidy,
making it easy to predict what will happen.

Now that we've set up these routing and handler patterns, our app web
server is able to efficiently handle client requests. It can process JSON
payloads, validate them, persist them to the database, and return consistent



responses. All of this is done through clear, type-safe Kotlin code in Ktor's
DSL.



Incorporating Middleware and
Essential Plugins

Here at Ktor, we see middleware as first-class plugins that we install into
our application pipeline. All the plugins handle requests and responses at
specific times—Iike before routing, after serialization, or on errors—so we
can add cross-cutting behavior without messing up our business logic. To
do this, we wuse built-in plugins (ContentNegotiation, CallLogging,
StatusPages) along with custom interceptors. These help us validate
requests, transform data, and monitor performance. When we organize these
concerns as plugins, our routing code can focus on handling Task Tracker
operations. Middleware makes sure that formatting, security, and
observability are consistent across every endpoint.

JSON Serialization via Content Negotiation

We have witnessed that our Task Tracker exchanges JSON with clients. To
parse incoming bodies and serialize responses automatically, we need to
install the ContentNegotiation plugin early in our module:

fun Application.module() {
install(ContentNegotiation) {
json(Json {
prettyPrint = true
ignoreUnknownKeys = true
encodeDefaults = true
1)
}

// other plugins and routing...

}



Here, the prettyPrint makes responses human-readable during
development, the ignoreUnknownKeys prevents failures when clients send
extra fields, and the encodeDefaults includes properties with default values
for completeness.

After installing, any handler using call.receive<MyDto>() or
call.respond(myData) automatically applies JSON conversion based on
our @Serializable data classes.

Capturing Traffic with Call L.ogging

The visibility into requests and responses is critical for debugging. The
CallLogging plugin logs each incoming call with method, path, status, and
execution time. To configure, we can do as below:

install(CallLogging) {
level = Level.INFO
format { call ->
val status = call.response.status() ?: "Unhandled"
val method = call.request.httpMethod.value
val path = call.request.uri
"HTTP $method $path — $status"

}
filter { call -> call.request.path().startsWith("/api") }

e level controls log verbosity.
e format lets us customize each log line.
e filter limits logging to API routes.

With this plugin active, every request to /api/vl/tasks appears in our
console or log file, helping we trace client interactions in real time.

Apart from this, we can make use of the StatusPages plugin to catch
exceptions and map them to HTTP responses as shown below:



install(StatusPages) {
exception<BadRequestException> { call, cause ->

call.respond(HttpStatusCode.BadRequest,
ErrorResponse("BadRequest", cause.message ?: ""))

}

exception<AuthenticationException> { call, _ ->

call.respond(HttpStatusCode.Unauthorized,
ErrorResponse("'Unauthorized", "Invalid credentials"))

}

exception<Throwable> { call, cause ->
ErrorLogger.log(cause, "Unhandled")

call.respond(HttpStatusCode.InternalServerError,
ErrorResponse("'ServerError", "Please try again later"))

}
}

In this, the exception<T> binds specific exception types to status codes,
and the Throwable catch-all ensures no uncaught exception crashes our
server. Now, throwing BadRequestException("Missing field") anywhere
in our route automatically returns a 400 Bad Request with a consistent
JSON error body.

Validating Requests with Interceptor Plugin

While Ktor does not impose a dedicated validation framework, we can
create a small plugin to validate DTOs immediately after deserialization.
Define a custom feature:

val RequestValidation = create ApplicationPlugin("RequestValidation") {
onCallReceive { receiveContext ->

val body = receiveContext.value



if (body is Validatable) {
val errors = body.validate()
if (errors.isNotEmpty()) {

throw BadRequestException(errors.joinToString("; "))

}
}
}
}

Our DTOs implement a simple interface:

interface Validatable {

fun validate(): List<String>
}
@Serializable

data class CreateTaskRequest(val description: String, val highPriority:
Boolean = false) : Validatable {

override fun validate() = buildList {
if (description.isBlank()) add("Description must not be blank")
if (description.length > 255) add(""Description too long")

}

We can also install the plugin before routing:

install(RequestValidation)

Every time Ktor deserializes a body via call.receive<CreateTaskRequest>
(), our plugin invokes validate(). If any errors appear, it throws
BadRequestException, which StatusPages then converts into a 400
response.



Combining Plugins for Robust Operation

Niw if we put it all together, our Application.module() will look like:

fun Application.module() {
install(CallLogging) { /* ... */ }
install(ContentNegotiation) { /* JSON config */ }
install(StatusPages) { /* error mapping */ }
install(RequestValidation)
val taskService = TaskService(TaskRepository())
routing {

route("/api/v1") { taskRoutes(taskService) }

}

If you layer these middleware plugins, you'll get better observability,
enforced data integrity, and simpler route handlers. The result is a Ktor
server that's ready for production, and it'll handle Task Tracker operations
with clarity and resilience.



Testing and Debugging Ktor
Components

Although we're using Ktor's asynchronous pipeline, JSON plugins, and
routing DSL, some minor bugs can still slip in. We might run into handlers
that never fire because of a misplaced route prefix, JSON serialization
failures due to mismatched DTOs, authentication misconfigurations that
silently reject valid tokens, or middleware ordering that bypasses our
validation. We might also see thread-blocking calls inside coroutines, which
could lead to unresponsive endpoints under load. If we list these common
problems at the start, we can catch them early in development instead of
hunting down rare production bugs.

Unit Testing with TestApplication and TestClient

The Ktor provides testApplication { } to run our module in a lightweight
embedded server and exercise routes directly in memory. So here, we begin
by adding testing dependencies in build.gradle.kts:

testimplementation("io.ktor:ktor-server-tests-jvm:2.3.0")
Then, we write a test for the health endpoint and task routes:

class ApiTest {
@Test
fun testHealthEndpoint() = testApplication {
application { module() }
client.get("/api/v1/health").apply {
assertEquals(HttpStatusCode.OK, status)
assertEquals("OK", bodyAsText())



@Test
fun testCreateAndGetTask() = testApplication {
application { module() }
val createResponse = client.post("/api/v1/tasks") {
contentType(ContentType.Application.Json)
setBody("""{"description":"Test task","highPriority":true}""")
}
assertEquals(HttpStatusCode.Created, createResponse.status)

val created = Json.decodeFromString<Task>
(createResponse.bodyAsText())

val getResponse = client.get("/api/v1/tasks/${created.id}")
assertEquals(HttpStatusCode.OK, getResponse.status)

val fetched = Json.decodeFromString<Task>
(getResponse.bodyAsText())

assertEquals('"Test task", fetched.description)

}

By using client inside testApplication, we simulate HTTP calls without
external dependencies, verifying routing, serialization, status codes, and
headers in one place.

Integration Testing with Test Databases

When we connect to a real database via Exposed, we avoid polluting
production data by configuring a test database. In our test module:

@BeforeTest
fun setupTestDatabase() {



Database.connect("jdbc:h2:mem:test;DB_CLOSE_DELAY=-1", driver
= "org.h2.Driver")

transaction { SchemaUltils.create(TasksTable) }
}
@AfterTest
fun cleanup() {

transaction { SchemaUtils.drop(TasksTable) }
}

Within testApplication {}, we call setupTestDatabase() before invoking
module(). This ensures that every test runs against a fresh schema, letting
we create, update, and delete tasks without side effects.

Debugging with [.ogging and Breakpoints

When a test or manual request fails unexpectedly, we enable detailed logs.
Adjust our CallL.ogging in test environment:

install(CallLogging) {
level = Level. DEBUG
filter { true } //log all calls

}

In IntelliJ, we set breakpoints inside route handlers or service methods. We
run the server in debug mode (./gradlew run --debug-jvm or via IDE),
trigger a failing request, and step through the pipeline—observing
parameter parsing, plugin interceptors, and service invocations. By
inspecting call.parameters, call.receive, and database queries, we pinpoint
mismatches between expectations and runtime behavior.

Verifying Middleware Order and Plugin Effects

The middleware ordering matters: for example, StatusPages should install
before routing to catch exceptions, while CallLogging should come early to
log every request. We write tests that deliberately trigger errors—such as




sending malformed JSON or invalid credentials—and assert that
StatusPages returns the proper status code and error format. For instance:

@Test
fun testBadJsonReturns400() = testApplication {
application { module() }
client.post("/api/v1/tasks") {
contentType(ContentType.Application.Json)
setBody("{ invalid json }")
}.apply {
assertEquals(HttpStatusCode.BadRequest, status)
assertTrue(bodyAsText().contains("Malformed JSON"))

}
Now here, such tests confirm that our plugin chain runs as intended.

Performance Profiling and Stress Testing

Under load, we may detect slow serialization or blocking calls. We integrate
Ktor’s MicrometerMetrics plugin with a simple in-memory registry:

install(MicrometerMetrics) {
registry = SimpleMeterRegistry()
}

We can expose metrics at /metrics and use JMeter or hey to simulate
concurrent requests:

hey -n 1000 -c 50 http://localhost:8080/api/v1/tasks

You then inspect the response times and throughput. If we see blocking
warnings in logs, we locate blocking calls—such as file I/O inside



coroutines—and refactor them to withContext(Dispatchers.IO) or use
nonblocking libraries.

Manual Testing with cURL and Postman Collections

Automated tests catch many issues, yet manual exploration uncovers edge
cases. We maintain a Postman collection or a set of cURL scripts:

curl -X POST -H "Content-Type:application/json" -d '{"description":"Fix
bug"}' http://localhost:8080/api/v1/tasks

curl http://localhost:8080/api/v1/tasks?page=1&pageSize=5

curl -X PATCH -H "Content-Type:application/json" -d
'{"completed":true}" http://localhost:8080/api/v1/tasks/1

By experimenting with invalid IDs, missing fields, or oversized payloads,
we validate error messages, status codes, and security constraints.

By combining in-memory unit tests, integration tests against a test database,
detailed logging, debug sessions, performance profiling, and manual API
exploration, we build confidence that our Ktor-based Task Tracker handles
every scenario—normal and error—reliably and efficiently.



Summary

So, we finally reach the end of the book. In this chapter, we set up a Ktor-
based web server. We installed its Gradle plugin and JSON serialization,
and then we used the Ktor CLI or IntelliJ template to scaffold a project.

We explored the directory layout—Application.kt, application.conf,
Gradle scripts—to understand where to place configuration, code, and tests.
We configured the embedded Netty engine on port 8080, installed the
ContentNegotiation plugin for kotlinx.serialization, and created a health-
check route to verify the server. We organized routing by injecting our
TaskService into the Ktor module and grouping HTTP handlers into feature
functions (taskRoutes) that handle GET, POST, PUT, PATCH, and
DELETE under /api/vl/tasks. We installed essential middleware—
ContentNegotiation for JSON, CallLogging for request tracing, StatusPages
for centralized error mapping, and a custom validation plugin—to ensure
consistent serialization, logging, error responses, and request validation.

Finally, we wrote automated tests using testApplication, TestClient, and
an in-memory H2 database to verify route behavior, middleware ordering,
and serialization, while using logging and breakpoints for debugging.
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