

Kickstart
Modern Android
Development with
Jetpack and Kotlin

Enhance your applications by integrating Jetpack and
applying modern app architectural concepts

Catalin Ghita

BIRMINGHAM—MUMBAI

Kickstart Modern Android Development with
Jetpack and Kotlin
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Vaideeshwari Muralikrishnan
Senior Editor: Hayden Edwards
Content Development Editor: Abhishek Jadhav
Technical Editor: Simran Udasi
Copy Editor: Safis Editing
Project Coordinator: Rashika Ba
Proofreader: Safis Editing
Indexer: Rakha Nair
Production Designer: Shankar Kalbhor
Marketing Coordinator: Elizabeth Varghese and Teny Thomas

First published: May 2022

Production reference: 1200522

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-107-1

www.packt.com

http://www.packt.com

To my mother, Stefania Ghita, and my father, Nicolae, for their sacrifices
made to support, encourage, and allow me to become what I am today –

your affection and inspiration will always remain in my heart.

To my beloved wife, Ana, for being there for me mentally, spiritually, and
emotionally – I'm surprised you haven't broken up with me after all the

time I spent on this book.

To my great friend, Daniel Bälz, for constantly helping me review, arrange,
and improve the contents of this book – your help should be engraved

in stone.

To my devoted counselor, Thomas Künneth, for consistently
providing insights and tips on technical writing and the concepts

presented in the book.

Finally, to the awesome team at Packt, for making my dream of writing
a book become reality.

– Catalin Ghita

Contributors

About the author
Catalin Ghita is a Udemy instructor and an Android engineer proficient in native
Android development, while also being active in cross-platform development with React
Native and Flutter. He has successfully built, deployed, and maintained huge scalable apps
with millions of downloads and active users for industry giants. He is responsible for
architecting applications into scalable, maintainable, and testable forms and shapes.

As the Android lead at Airtouch New Media, the owner of the Coding Troops blog, and a
Udemy instructor, Catalin is an avid open source contributor and has written articles and
taught courses reaching tens of thousands of students, thereby exposing and clarifying
concepts and subtleties on hot topics in Android.

About the reviewer
Daniel Bälz is a keen Android developer who enjoys developing maintainable,
high-quality apps with well-structured architecture. He works as a freelance developer
and helps his customers in building and evolving their Android apps. His personal
Android journey dates back to the Android 2.x days. Since then, he has worked on
several large-scale apps with millions of installations. Daniel is active in the community
by organizing the mobile development meetup in his hometown, Karlsruhe, as well as
occasionally giving talks and writing articles.

Preface

Part 1: Exploring the Core Jetpack Suite and
Other Libraries

1
Creating a Modern UI with Jetpack Compose

Technical requirements 4
Understanding the core
concepts of Compose 5
Describing UIs with composable
functions 6
The paradigm shift in creating UIs
on Android 8
Favoring composition over inheritance 10
Unidirectional flow of data 12
Recomposition 14

Exploring the building blocks
of Compose UIs 16
Setting content and previewing
composables 17
Exploring core composables 20
Customizing composables
with modifiers 25

Layouts in Compose 27

Building a Compose-based
screen 32
Creating your first Compose project 32
Building a restaurant element layout 38
Displaying a list of restaurants with
Compose 42

Exploring lists with Compose 44
Adding scrolling to the Column
composable 45
Introducing lazy composables 46
Using LazyColumn to display
restaurants 47

Summary 48
Further reading 49

Table of Contents

viii Table of Contents

2
Handling UI State with Jetpack ViewModel

Technical requirements 52
Understanding the Jetpack
ViewModel 53
What is a ViewModel? 53
Why do you need ViewModels? 54
Introducing Android Jetpack ViewModel 55
Implementing your first ViewModel 58

Defining and handling state
with Compose 60
Understanding state and events 60
Adding state to our Restaurants app 63

Hoisting state in Compose 66
Recovering from
system-initiated process death 75
Summary 82
Further reading 83
Exploring ViewModel with
runtime-provided arguments 83
Exploring ViewModel for Kotlin
Multiplatform projects 83
Understanding how to minimize the
number of recompositions 84

3
Displaying Data from REST APIs with Retrofit

Technical requirements 86
Understanding how apps
communicate with remote
servers 87
Creating and populating your
database with Firebase 88
Exploring Retrofit as an HTTP
networking client for Android 93
Using Retrofit 94

Adding Retrofit to the Restaurants
application 95
Mapping JSON to model classes 96
Executing GET requests to the
Firebase REST API 100

Improving the way our app
handles network requests 106
Summary 111
Further reading 112

4
Handling Async Operations with Coroutines

Technical requirements 114
Introducing Kotlin coroutines 115
What is a coroutine? 115
The features and advantages of
coroutines 116

How do coroutines work? 117

Exploring the basic elements
of coroutines 118
Creating suspending functions 119
Launching coroutines 120

Table of Contents ix

Using coroutines for
async work 131
Implementing coroutines instead
of callbacks 132

Improving the way our app
works with coroutines 135

Summary 144
Further reading 144

5
Adding Navigation in Compose With Jetpack Navigation

Technical requirements 146
Introducing the Jetpack
Navigation component 146
Creating a new Compose-based
screen 149
Defining the HTTP request for the
contents of a restaurant 150

Getting the contents of a specific
restaurant 154
Building the restaurant details screen 158

Implementing navigation with
Jetpack Navigation 161
Adding support for deep links 172
Summary 177

Part 2: A Guide to Clean Application
Architecture with Jetpack Libraries

6
Adding Offline Capabilities with Jetpack Room

Technical requirements 182
Introducing Jetpack Room 183
Exploring the caching mechanism on
Android 183
Introducing Jetpack Room as a solution
for local caching 184

Enabling offline usage by
implementing Room 186
Applying partial updates to the
Room database 197

Making local data the single
source of truth for app content 203
Refactoring the Restaurants app to
have a single source of truth for data 205
Removing the logic of persisting state
in the case of process recreation 212

Summary 215

x Table of Contents

7
Introducing Presentation Patterns in Android

Technical requirements 218
Introducing MVC, MVP,
and MVVM as presentation
patterns 218
MVC 222
MVP 223
MVVM 225

Refactoring our Restaurants
app to fit a presentation
pattern 227
Adding more functionality inside
our Restaurants app 227
Refactoring our Restaurants
app to MVVM 230

Improving state encapsulation
in ViewModel 243
Summary 247

8
Getting Started with Clean Architecture in Android

Technical requirements 250
Defining the Domain layer
with Use Cases 251
Separating the Domain model
from Data models 263

Creating a package structure 272
Decoupling the Compose-based
UI layer from ViewModel 277
Summary 281
Further reading 281

9
Implementing Dependency Injection with Jetpack Hilt

Technical requirements 286
What is DI? 286
Why is DI needed? 290
Write less boilerplate code 290
Write testable classes 292

Implementing DI with Hilt 295

Understanding the basics
of Dagger Hilt 296
Setting up Hilt 300
Using Hilt for DI 302

Summary 313
Further reading 313

Table of Contents xi

10
Test Your App with UI and Unit Tests

Technical requirements 316
Exploring the fundamentals
of testing 316
Understanding the benefits of testing 316
Exploring types of tests 317

Learning the basics of testing
your Compose UI 319

Covering the basics of
unit-testing your core logic 337
Testing the functionality of
a ViewModel class 338
Testing the functionality of
a UseCase class 359

Summary 362
Further reading 362

Part 3: Diving into Other Jetpack Libraries

11
Creating Infinite Lists with Jetpack Paging and Kotlin Flow

Technical requirements 366
Why do we need pagination? 367
Importing and exploring the
Repositories App 370
Using Kotlin Flow to handle
streams of data 376

Exploring pagination with
Jetpack Paging 379
Implementing pagination with
Jetpack Paging 382
Implementing loading and error
states plus retry functionality 391

Summary 403
Further reading 403

12
Exploring the Jetpack Lifecycle Components

Technical requirements 406
Introducing the Jetpack
Lifecycle components 407
ViewModel 412
LiveData 415

Adding a countdown
component in the
Repositories app 419
Creating your own
lifecycle-aware component 426

xii Table of Contents

Making our countdown
component aware of the
lifecycle of composables 435

Summary 440
Further reading 440

Index
Other Books You May Enjoy

Preface
With Jetpack libraries, you can build and design high-quality, robust Android apps that have
an improved architecture and work consistently across different versions and devices. This
book will help you understand how Jetpack allows developers to follow best practices and
architectural patterns when building Android apps while also eliminating boilerplate code.

Developers working with Android and Kotlin will be able to put their knowledge to
work with this condensed practical guide to building apps with the most popular Jetpack
libraries, including Jetpack Compose, ViewModel, Hilt, Room, Paging, Lifecycle, and
Navigation. You'll gain an overview of relevant libraries and architectural patterns,
including popular libraries in the Android ecosystem such as Retrofit, Coroutines, and
Flow while building modern applications with real-world data.

By the end of this Android app development book, you'll have learned how to leverage
Jetpack libraries and your knowledge of architectural concepts to build, design, and test
robust Android applications for various use cases.

Who this book is for
This book is for junior and intermediate-level Android developers looking to level up
their Android development skills to develop high-quality apps using Jetpack libraries and
other cutting-edge technologies. Beginners with basic knowledge of Android development
fundamentals will also find this book useful. Familiarity with Kotlin is assumed.

What this book covers
Chapter 1, Creating a Modern UI with Jetpack Compose, covers the new declarative way of
building a UI on Android with the Jetpack Compose toolkit, while also starting to build
an application from scratch with this new framework.

Chapter 2, Handling UI State with Jetpack ViewModel, explores the concept and usage of
the ViewModel architecture component, as well as the concept of UI state in Compose
apps and how the ViewModel can handle and cache such state.

xiv Preface

Chapter 3, Displaying Data from REST APIs with Retrofit, covers what Retrofit is and how
it can be used as a networking client for Android inside the project developed throughout
the book.

Chapter 4, Handling Async Operations with Coroutines, covers the core concepts behind
Kotlin coroutines. The chapter explores what a coroutine is, what suspend functions are,
and other important components of coroutines.

Chapter 5, Adding Navigation in Compose with Jetpack Navigation, covers the basics of
navigation between Compose-based screens with the help of the Jetpack Navigation
library, while also exploring how to support deep links to your Compose UI.

Chapter 6, Adding Offline Capabilities with Jetpack Room, introduces Room as a solution
for storing structured data and explores data persistence on Android as an architectural
decision in building robust apps.

Chapter 7, Introducing Presentation Patterns in Android, explores architectural
presentation patterns and why they are needed while also analyzing MVC, MVP,
and MVVM.

Chapter 8, Getting Started with Clean Architecture in Android, explores how clean
architecture translates into Android and how you can separate business logic by
implementing Use Cases in the project developed throughout the book.

Chapter 9, Implementing Dependency Injection with Jetpack Hilt, explores what
dependency injection is, why it's needed, and the advantages that it brings. This chapter
also explores the basics of Dagger and introduces Jetpack Hilt.

Chapter 10, Test Your App with UI and Unit Tests, explores why tests are important and
splits them into two main categories: UI and unit tests. In this chapter, you will learn how
to test the Compose UI and application logic by creating unit tests.

Chapter 11, Creating Infinite Lists with Jetpack Paging and Kotlin Flow, explores the
concept of pagination and explains how to integrate pagination on Android with the help
of Jetpack Paging, while also using Kotlin Flow.

Chapter 12, Exploring the Jetpack Lifecycle Components, explores the inner workings of
components that are part of Jetpack Lifecycle such as ViewModel and LiveData. In this
chapter, you will also learn how to create your own lifecycle-aware component.

Preface xv

To get the most out of this book
You will need a version of Android Studio installed on your computer – the 2020.3.1
version or newer.

All code examples have been tested using Kotlin 1.6.10 and Android Studio 2020.3.1 on
macOS and Windows.

Familiarity with Kotlin and the basics of Android is assumed.

For part of Chapter 3, Displaying Data from REST APIs with Retrofit, it's expected that you
have a Google account.

For part of Chapter 6, Adding Offline Capabilities with Jetpack Room, it's expected that you
have minimal knowledge of SQL databases and queries.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin. If there's an update to the code,
it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801811071_ColorImages.pdf.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801811071_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801811071_ColorImages.pdf

xvi Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Text is the Compose version of our old and beloved TextView."

A block of code is set as follows:

@Composable

fun FriendlyMessage(name: String) {

 Text(text = "Greetings $name!")

}

When we wish to draw your attention to a particular part of a code block meaning that a
portion of code has been added or modified, the relevant lines or items are set in bold:

@Composable

fun ColoredBox() {

 Box(modifier = Modifier.size(120.dp))

}

Any command-line input or output is written as follows:

npm install component_name

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "In the Phone
and tablet template section, select Empty Compose Activity and then choose Next."

Tips or Important Notes
Appear like this.

Preface xvii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read In-Memory Analytics with Apache Arrow, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/1-801-07103-9

Part 1:
Exploring the Core
Jetpack Suite and

Other Libraries

In this part, we will build a modern and robust Android app with the help of Jetpack
libraries such as Compose, ViewModel, and Navigation, as well as other popular libraries,
including Coroutines and Retrofit.

This section comprises the following chapters:

• Chapter 1, Creating a Modern UI with Jetpack Compose

• Chapter 2, Handling UI State with Jetpack ViewModel

• Chapter 3, Displaying Data from REST APIs with Retrofit

• Chapter 4, Handling Async Operations with Coroutines

• Chapter 5, Adding Navigation in Compose with Jetpack Navigation

1
Creating a Modern

UI with Jetpack
Compose

Jetpack libraries enable you to build and design high-quality, robust Android apps that
have a reliable architecture and work consistently across different versions and devices. At
the same time, the Jetpack suite allows you to eliminate boilerplate code and ultimately
focus on what matters – building the necessary features.

In this chapter, we will tackle one of the most popular Jetpack libraries for building user
interfaces (UIs), called Compose. Simply put, Jetpack Compose is a powerful modern
toolkit that allows you to build a native UI in Android directly with Kotlin functions
and APIs.

Compose accelerates and greatly simplifies UI development as it harnesses the power
of declarative programming, combined with the ease of use of the Kotlin programming
language. The new toolkit solely relies on Kotlin APIs when allowing you to construct UIs
through declarative functions.

By the end of this chapter, you will know how building UIs on Android can be done with
less code, powerful tools, intuitive APIs, and without the need for additional languages
such as XML.

4 Creating a Modern UI with Jetpack Compose

In the first section, Understanding the core concepts of Compose, we will explore the
fundamental concepts behind Compose and understand how they are beneficial in
helping us write better and cleaner UIs. We will see how UIs can be described with
composable functions while also understanding how the new declarative way of building
UIs on Android works. We will also explore how composition is favored over inheritance
and how the data flow works in Compose. Finally, we will cover what recomposition is
and see how essential it is to our declarative UI.

In the second section, Exploring the building blocks of Compose UIs, we will study the most
important composable functions that Compose provides out of the box. Afterward, we
will see how we can preview our Compose UI and how activities render it.

We will then put our knowledge to good use by creating our first Compose project about
restaurants in the Building a Compose-based screen section. In the last section, entitled
Exploring lists with Compose, we will learn how to correctly show more content in
Compose with the help of lists.

To summarize, in this chapter, we're going to cover the following main topics:

• Understanding the core concepts of Compose

• Exploring the building blocks of Compose UIs

• Building a Compose-based screen

• Exploring lists with Compose

Note
As Compose is a dedicated native UI framework, we will only briefly cover the
core concepts, common components, and usages of the toolkit without going
into advanced topics.

Technical requirements
When building Compose-based Android projects, you usually require your day-to-day
tools for Android development. However, to follow along smoothly, make sure you have
the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds but note that the IDE interface and
other generated code files might differ from the ones used throughout this book.

Understanding the core concepts of Compose 5

• The Kotlin 1.6.10 or newer plugin must be installed in Android Studio.

• Jetpack Compose 1.1.1 or greater. You should follow this chapter and use the
projects with this version. You can explore newer versions if you wish, though API
differences might arise.

You can find the GitHub repository containing the source code for this book here:
https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/.

To access the code presented in this chapter, navigate to the Chapter_01
directory. The code snippets presented in the first two sections can be found in the
ExamplesActivity.kt file, which is located in the root directory. The project coding
solution for the Restaurants app, which we will develop in the last few sections of this
chapter, can be found in the chapter_1_restaurants_app Android project directory.

Understanding the core concepts of Compose
Jetpack Compose dramatically changes the way we write UIs on Android. UIs are now
developed with Kotlin, which enables a new declarative paradigm of writing layouts with
widgets called composables.

In this section, we will understand what composable functions are and how they are
used to write UIs. We will learn how the programming paradigm has shifted and how
composition is now enforced, thereby increasing flexibility in the way we define UIs. We
will also discuss the flow of data within UIs and what recomposition is while trying to
understand the benefits that are brought by these new concepts.

To summarize, we will be covering the following topics:

• Describing UIs with composable functions

• The paradigm shift in creating UIs on Android

• Favoring composition over inheritance

• Unidirectional flow of data

• Recomposition

So, let's get started.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_01
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_01

6 Creating a Modern UI with Jetpack Compose

Describing UIs with composable functions
Compose allows you to build UIs by defining and calling composable functions.
Composable functions are regular functions annotated with the @Composable
annotation that represent widgets on the screen.

Compose works with the help of a Kotlin compiler plugin in the type checking and code
generation phase of Kotlin. The Compose compiler plugin makes sure that you can create
composables.

For example, a composable that displays a piece of text may look like this:

@Composable

fun FriendlyMessage(name: String) {

 Text(text = "Greetings $name!")

}

In the preceding code block, we've defined the FriendlyMessage composable function
by annotating it with the @Composable annotation. Looking at the function definition
and body, we can easily deduce that it displays a greeting message.

It's important to note that any function annotated with @Composable can be rendered
on the screen as it will produce a piece of UI hierarchy that displays content. In their true
sense, composable functions emit UI widgets based on their definition.

In our case, the previous function should display a greeting message by concatenating
the String value it receives as a parameter with a predefined message. As the function
relies on its input parameters to show different messages on every usage, it's correct to say
that composable functions are functions of data (presented as F(data) in the following
diagram) that are converted into pieces of UI or widgets:

Figure 1.1 – In Compose, UI is a function of data

Understanding the core concepts of Compose 7

Later, in the Unidirectional flow of data subsection, we will understand why having
functions to describe UI widgets is beneficial to our projects as it leads to a less
bug-prone UI layer.

Getting back to our example, you might be wondering what the Text functional call
represents. As with every other framework, Compose provides composable functions such
as Text out of the box that we can use.

As its name suggests, the Text composable allows you to display some text on the screen.
We will cover other composable functions provided by Compose in the Exploring the
building blocks of Compose UIs section.

Until then, let's have another look at the previous code example and highlight the most
important rules when it comes to defining a composable function:

• It should be a regular function marked with the @Composable annotation.

• Its UI output is defined by the data that's received through its input parameters.
Composable functions should return Unit as they emit UI elements and do not
return data as regular functions do. Most of the time, we omit defining the Unit
return type or even returning Unit – as Kotlin marks it as redundant – just like in
the previous example.

• It can contain other composable functions or regular Kotlin code. In the previous
example, the FriendlyMessage composable function makes use of another
composable, called Text, but it could also call regular Kotlin code (we will tackle
that in the upcoming sections).

• It should be named as a noun or a noun preceded by a suggestive adjective (but
never a verb). This way, composable functions envision widgets and not actions.
Additionally, its name should respect the PascalCase naming convention, meaning
that the first letter of each compound word in a variable is capitalized.

• It's recommended that the function is public and not defined within a class but
directly within a Kotlin file. This way, Compose promotes the reuse of composable
functions.

Now that we understand what a composable function is and how one is defined, let's move
on and explore the paradigm shift that Compose brings to Android UI development.

8 Creating a Modern UI with Jetpack Compose

The paradigm shift in creating UIs on Android
Compose brings a new approach to Android UI development and that is providing a
declarative way of describing your UI. Before trying to understand how the declarative
approach works, we will learn how the traditional View System relies on a different
paradigm – the imperative one.

The imperative paradigm
When describing your UI with XML, you represent the view hierarchy as a tree of
widgets that are commonly known as views. Views, in the context of the traditional View
System, are all the components that inherit from the android.view.View class, from
TextView, Button, or ImageView to LinearLayout, RelativeLayout, and so on.

Yet what's essential for the View System is the imperative paradigm that it relies on.
Because your application must know how to react to user interactions and change the
state of the UI accordingly, you can mutate the state of your views by referencing them
through findViewById calls and then update their values through calls such as
setText(), setBackgroundResource(), and so on.

Since views maintain their internal state and expose setters and getters, you must
imperatively set new states for each component, as the following diagram suggests:

Figure 1.2 – The Android View System features in the imperative paradigm

Understanding the core concepts of Compose 9

Manually manipulating views' states increases the chance of bugs and errors in your
UI. Because you end up treating multiple possible states and because chunks of data are
displayed in several such states, it's relatively easy to mess up the outcome of your UI.
Illegal states or conflicts between states can also arise relatively easily when your UI grows
in complexity.

Moreover, since the layouts are defined in an additional component – that is, an XML
file – the coupling between Activity, Fragment, or ViewModel and the XML-based
UI increases. This means that changing something on the UI in the XML file will often
lead to changes in Activity, Fragment, or ViewModel classes, which is where state
handling happens. Not only that but cohesion is reduced because of language differences:
one component is in Java/Kotlin, while the other one is in XML. This means that for the
UI to function, it needs not only an Activity or Fragment but also XML.

The declarative paradigm
To address some of the issues within the standard View System, Compose relies on
a modern declarative UI model, which drastically simplifies the process of building,
updating, and maintaining UIs on Android.

If, in the traditional View System, the imperative paradigm described how the UI should
change, in Compose, the declarative paradigm describes what the UI should render at a
certain point in time.

Compose does that by defining the screen as a tree of composables. As in the following
examples, each composable passes data to its nested composables, just like the
FriendlyMessage composable passed a name to the Text composable in our code
example from the previous section:

Figure 1.3 – Visualizing a tree of composable widgets and how data is passed downwards

10 Creating a Modern UI with Jetpack Compose

When the input arguments change, Compose regenerates the entire widget tree from
scratch. It applies the necessary changes and eliminates the need and the associated
complexity of manually updating each widget.

This means that in Compose, composables are relatively stateless and because of that,
they don't expose getter and setter methods. This allows the caller to react to interactions
and handle the process of creating new states separately. It does that by calling the same
composables but with different argument values. As we discussed in the Describing UIs
with composable functions section, the UI in Compose is a function of data. From this, we
can conclude that if new data is passed to composables, new UI states can be produced.

Lastly, compared to the View System, Compose only relies on Kotlin APIs, which means
that UIs can now be defined with a single technology, in a single component, thereby
increasing cohesion and reducing coupling.

Now, let's look at another shift in design brought by Compose and discuss how
composition yields more flexible ways of defining UIs than inheritance does.

Favoring composition over inheritance
In the Android View System, every view inherits functionality from the parent View
class. As the system relies solely on inheritance, the task of creating custom views can only
be done through defining elaborate hierarchies.

Let's take the Button view as an example. It inherits functionality from TextView,
which, in turn, inherits from View:

Figure 1.4 – The class inheritance hierarchy for the Button view

This strategy is great for reusing functionality, but inheritance becomes difficult to scale
and has little flexibility when trying to have multiple variations of one view.

Say you want the Button view to render an image instead of text. In the View System,
you would have to create an entirely new inheritance hierarchy, as shown in the following
hierarchy diagram:

Understanding the core concepts of Compose 11

Figure 1.5 – The class inheritance hierarchy for the ImageButton view

But what if you need a button that accommodates both a TextView and an ImageView?
This task would be extremely challenging, so it's easy to conclude that having separate
inheritance hierarchies for each custom view is neither flexible nor scalable.

These examples are real, and they show the limitations of the View System. As we've
previously seen, one of the biggest reasons for the lack of flexibility is the inheritance
model of the View System.

To address this issue, Compose favors composition over inheritance. As shown in the
following diagram, this means that Compose builds more complex UIs by using smaller
pieces and not by inheriting functionality from one single parent:

Figure 1.6 – Inheritance versus composition

Let's try to briefly explain our previous comparison between inheritance and composition:

• With inheritance, you are limited to inheriting your parent, just like Button
inherits only from TextView.

• With composition, you can compose multiple other components, just like the
Button composable contains both an Image composable and a Text composable,
thereby giving you much more flexibility in building UIs.

12 Creating a Modern UI with Jetpack Compose

Let's try to build a composable that features a button with an image and text. This was a
huge challenge with inheritance, but Compose simplifies this by allowing you to compose
an Image composable and a Text composable inside a Button composable:

@Composable

fun SuggestiveButton() {

 Button(onClick = { }) {

 Row() {

 Image(painter =

 painterResource(R.drawable.drawable),

 contentDescription = "")

 Text(text = "Press me")

 }

 }

}

Now, our SuggestiveButton composable contains both Image and Text
composables. The beauty of this is that it could contain anything else. A Button
composable can accept other composables that it renders as part of its button's body.
Don't worry about this aspect or about that weird composable called Row for now. The
Exploring the building blocks of Compose UIs section will cover both of these aspects in
more detail.

What's important to remember from this example is that Compose gives us the flexibility
of building a custom UI with ease. Next, let's cover how data and events flow in Compose.

Unidirectional flow of data
Knowing that each composable passes data down to its children composables, we can
deduct that the internal state is no longer needed. This also translates into a unidirectional
flow of data because composables only expect data as input and never care about their state:

Understanding the core concepts of Compose 13

Figure 1.7 – Visualizing the unidirectional flow of data and events

Similarly, with data, each composable passes down callback functions to its children
composables. Yet this time, the callback functions are caused by user interactions, and
they create an upstream of callbacks that goes from each nested composable to its parent
and so on. This means that not only the data is unidirectional but also events, just in
opposite ways.

From this, it's clear that data and events travel only in one direction, and that's a good
thing because only one source of truth – ideally, ViewModel – is in charge of handling
them, resulting in fewer bugs and easier maintenance as the UI scales.

Let's consider a case with another composable provided by Jetpack Compose called
Button. As its name suggests, it emits a button widget on the screen, and it exposes a
callback function called onClick that notifies us whenever the user clicks the button.

In the following example, our MailButton composable receives data as an email
identifier, mailId, and an event callback as a mailPressedCallback function:

@Composable

fun MailButton(

 mailId: Int,

 mailPressedCallback: (Int) -> Unit

) {

 Button(onClick = { mailPressedCallback(mailId) }) {

 Text(text = "Expand mail $mailId")

 }

}

14 Creating a Modern UI with Jetpack Compose

While it consumes the data it receives via mailId, it also sets the
mailPressedCallback function to be called every time its button is clicked, thereby
sending the event back up to its parent. This way, data flows downwards and the callback
flows upwards.

Note
It is ideal to construct your Compose UI in such a way that data provided by
the ViewModel flows from parent composables to children composables and
events flow from each composable back up to the ViewModel. If you're not
familiar with the ViewModel component, don't worry as will cover it in the
upcoming Chapter 2, Handling UI State with Jetpack ViewModel.

Recomposition
We have already covered how composable functions are defined by their input data and
stated that whenever the data changes, composables are rebuilt as they render a new UI
state corresponding to the newly received data.

The process of calling your composable functions again when inputs change is called
recomposition. When inputs change, Compose automatically triggers the recomposition
process for us and rebuilds the UI widget tree, redrawing the widgets emitted by the
composables so that they display the newly received data.

Yet recomposing the entire UI hierarchy is computationally expensive, which is why
Compose only calls the functions that have new input while skipping the ones whose
input hasn't changed. Optimizing the process of rebuilding the composable tree is a
complex job and is usually referred to as intelligent recomposition.

Note
In the traditional View System, we would manually call the setters and getters
of views, but with Compose, it's enough to provide new arguments to our
composables. This will allow Compose to initiate the recomposition process for
parts of the UI so that the updated values are displayed.

Before jumping into an actual example of recomposition, let's have a quick look at the
lifecycle of a composable function. Its lifecycle is defined by the composition lifecycle, as
shown here:

Understanding the core concepts of Compose 15

Figure 1.8 – The composition lifecycle of a composable function

This means that a composable first enters composition, and before leaving this process, it
can recompose as many times as needed – that is, before it disappears from the screen, it
can be recomposed and rebuilt many times, each time possibly displaying a different value.

Recomposition is often triggered by changes within State objects, so let's look at an
example to explore how seamlessly this happens with little intervention from our side. Say
you have a TimerText composable that expects a certain number of elapsed seconds
that it displays in a Text composable. The timer starts from 0 and updates every 1 second
(or 1,000 ms), displaying the number of seconds that have elapsed:

var seconds by mutableStateOf(0)

val stopWatchTimer = timer(period = 1000) { seconds++ }

 ...

@Composable

fun TimerText(seconds: Int) {

 Text(text = "Elapsed: $seconds")

}

In the Defining and handling state with Compose section of Chapter 2, Handling UI State
with Jetpack ViewModel, we will define the state in Compose in more detail, but until then,
let's think of seconds as a simple state object (instantiated with mutableStateOf())
that has an initial value of 0 and that its value changes over time, triggering a
recomposition each time.

16 Creating a Modern UI with Jetpack Compose

Every time stopWatchTimer increases the value of the seconds state object, Compose
triggers a recomposition that rebuilds the widget tree and redraws the composables with
new arguments.

In our case, TimerText will be recomposed or rebuilt because it receives different
arguments – the first time, it will receive 0, then 1, 2, and so on. This, in turn, triggers the
Text composable to also recompose and that's why Compose redraws it on the screen to
display the updated message.

Recomposition is a complex topic. As we will not be able to go into too much depth
on it now, it's important to also cover more advanced concepts, as described in the
documentation: https://developer.android.com/jetpack/compose/
mental-model#any-order.

Now that we've covered what recomposition is and the core concepts behind Compose,
it's time to have a better look at the composables that are used to build a Compose UI.

Exploring the building blocks of Compose UIs
We've only had a brief look at the Text and Button composables so far. That's why, in
this section, we will not only understand how activities can render composables instead
of XML and how we can preview them, but we will also have a better look at the most
important and commonly used composable functions: from the ones we've seen, such as
Text and Button, to new ones such as TextField, Image, Row, Column, and Box.

To summarize, this section will cover the following topics:

• Setting content and previewing composables

• Exploring core composables

• Customizing composables with modifiers

• Layouts in Compose

Let's jump in and understand how to render composable functions on the screen.

https://developer.android.com/jetpack/compose/mental-model#any-order
https://developer.android.com/jetpack/compose/mental-model#any-order

Exploring the building blocks of Compose UIs 17

Setting content and previewing composables
We had a quick look at some composable functions, but we didn't quite touch on the
aspect of making the application display Compose UIs.

Setting the composable content can easily be achieved and is encouraged
to be done in your Activity class by simply replacing the traditional
setContentView(R.layout.XML) call with setContent() and passing
a composable function to it:

import androidx.activity.compose.setContent

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 Text("Hello world")

 }

 }

}

Because Compose no longer needs the AppCompat API for backward compatibility, we
made our MainActivity inherit the base ComponentActivity class.

In the previous example, we called the setContent method in the onCreate callback
of MainActivity and passed a Text composable function to it. If we run the app, we
will see the "Hello world" message.

The setContent method is an extension function for ComponentActivity that
composes the given composable into the given activity. It only accepts a @Composable
function as a trailing lambda. The input composable function will become the root view of
the activity and act as a container for your Compose hierarchy.

Note
You can add composable functions into fragments or activities that have an
XML UI already defined with the help of the ComposeView class, but we
will not go into too much detail as far as interoperability goes.

As XML provided us with a preview tool, a good question would be whether Compose
also has one. Compose brings an even more powerful preview tool that allows us to skip
running the application on the emulator or real devices every time we want to see how
our UI evolves.

18 Creating a Modern UI with Jetpack Compose

Previewing your composable is easy; just add the @Preview annotation to it:

@Preview(showBackground = true)

@Composable

fun FriendlyMessage() {

 Text(text = "Greetings!")

}

The IDE will automatically pick up that you want to preview this composable and show it
on the right-hand side of the screen. Make sure that you rebuild your project and have the
Split option enabled:

Figure 1.9 – Previewing composable functions in Android Studio

Optionally, you can specify for the preview to show a background for better visibility by
passing the showBackground parameter with a value of true.

Note
Make sure that the composable function you are trying to preview has no input
parameters. If it has, supply the default values for them so that the preview
tools can work.

Exploring the building blocks of Compose UIs 19

Yet this preview tool is much more powerful than this as it supports Interactive mode,
which allows you to interact with the UI, and Live Edit of literals, which, if enabled,
causes the preview to reload every time you change widths, heights, or others, just like a
real UI would. You can see these two options in the following screenshot:

Figure 1.10 – Using the Preview feature in Compose

Note
To enable Interactive mode on Android Studio Arctic Fox, go to File | Settings
| Experimental (Windows) or Android Studio | Preferences | Experimental
(macOS).

Additionally, you can have multiple previews simultaneously if you annotate each function
with the @Preview annotation. You can add names for each preview through the name
parameter and even tell the preview tool which device it should display it on through the
device argument:

@Preview(

 name = "Greeting preview",

 showSystemUi = true,

 device = Devices.PIXEL_2_XL

)

@Composable

fun FriendlyMessagePreview() { Text(text = "Greetings!") }

@Preview(

20 Creating a Modern UI with Jetpack Compose

 showSystemUi = true,

 device = Devices.NEXUS_5)

@Composable

fun FriendlyMessagePreview2() { Text(text = "Goodbye!") }

Make sure that you also set showSystemUi to true to see the entire device.

Note
@Preview functions should have different names to avoid preview conflicts.

Now that we have learned how to set and preview Compose UI, it's time to explore
new composables.

Exploring core composables
We've already had a quick look at some of the most basic composable functions: Text,
Button, and Image. In this subsection, we will spend a bit more time exploring not only
those composables but also new ones such as TextField.

Text
Text is the Compose version of our old and beloved TextView. Text is provided by
Compose and achieves the most basic and yet important functionality in any application:
the ability to display a piece of text. We've already used this composable in several examples:

Text(text = "Greetings $name!")

You might be wondering how we can customize it. Let's check out the source code or the
documentation for Text to find the most basic and commonly used arguments for it:

• text is the only required argument. It expects a String and sets the output text.

• color specifies the color of the output text and expects a Color object.

• fontSize of type TextUnit, fontStyle of type FontStyle, fontFamily
of type FontFamily, and fontWeight of type FontWeight all allow you to
customize the look and appearance of your text.

• textAlign specifies the horizontal alignment of the text. It expects a
TextAlign object.

• maxLines expects an Int value that sets the maximum number of lines in the
output text.

Exploring the building blocks of Compose UIs 21

• style expects a TextStyle object and allows you to define and reuse styles
through themes.

Instead of going through all the arguments for Text, let's check out an example where we
can customize the look of our Text composable function:

@Composable

fun MyAppText() {

 Text(

 text = stringResource(id = R.string.app_name),

 fontStyle = FontStyle.Italic,

 textAlign = TextAlign.Center,

 color = Color.Magenta,

 fontSize = 24.sp,

 fontWeight = FontWeight.ExtraBold)

}

Instead of passing some hardcoded text, we passed a string resource with the help of the
built-in stringResource function and obtained the following result:

Figure 1.11 – Exploring a customized Text composable

Now that we've learned how to display text with the Text composable, let's move on
to buttons.

Button
Displaying text is essential in any application, yet having clickable buttons allows it to be
interactive. We've used the Button composable (previously known in the View System
as Button too) before and its main characteristic was the onClick callback function,
which notified us when the user pressed the button.

While Button features plenty of customizing arguments, let's check out the most
used parameters:

• onClick is a mandatory parameter and it expects a function that will be called
whenever the user presses the button.

• colors expects a ButtonColors object that defines the content/background
colors.

22 Creating a Modern UI with Jetpack Compose

• shape expects a custom/Material theme Shape object that sets the shape of
the button.

• content is a mandatory parameter that expects a composable function that
displays the content inside this Button. We can add any composables here,
including Text, Image, and more.

Let's try to build a Button function that makes use of these core arguments:

@Composable

fun ClickableButton() {

 Button(

 onClick = { /* callback */ },

 colors = ButtonDefaults.buttonColors(

 backgroundColor = Color.Blue,

 contentColor = Color.Red),

 shape = MaterialTheme.shapes.medium

) { Text("Press me") }

}

We've also passed a predefined MaterialTheme shape. Let's preview the resulting
composable:

Figure 1.12 – Exploring a customized Button composable

With that, we've seen how easy it is to create a custom button with the Button
composable. Next up, let's try to play around with another composable function –
TextField.

TextField
Adding buttons is the first step toward having an interactive UI, but the most important
element in this area is the TextField composable, previously known in the View System
as EditText. Just like EditText did, the TextField composable allows the user to
enter and modify text.

Exploring the building blocks of Compose UIs 23

While TextField has many arguments, the most important ones that it features are
as follows:

• value is a mandatory String argument as it's the displayed text. This value
should change as we type inside it by holding it in a State object; more on
that soon.

• onValueChange is a mandatory function that triggers every time the user inputs
new characters or deletes existing ones.

• label expects a composable function that allows us to add a descriptive label.

Let's have a look at a simple usage of a TextField that also handles its own state:

@Composable

fun NameInput() {

 val textState = remember { mutableStateOf("") }

 TextField(

 value = textState.value,

 onValueChange = { newValue ->

 textState.value = newValue

 },

 label = { Text("Your name") })

}

It achieves this by defining a MutableState that holds the text displayed by
TextField. This means that textState doesn't change across recompositions,
so every time the UI updates because of other composables, textState should be
retained. Moreover, we've wrapped the MutableState object in a remember block,
which tells Compose that across recompositions, it should not revert the value to its
initial value; that is, "".

To get or set the value of a State or MutableState object, our NameInput
composable uses the value accessor. Because TextField accesses a MutableState
object through the value accessor, Compose knows to retrigger a recomposition every
time the textState value changes – in our case, in the onValueChange callback. By
doing so, we ensure that as we input text in our TextField, the UI also updates with the
new characters that have been added or removed from the keyboard.

Don't worry if these concepts about state in Compose don't make too much sense
right now – we will cover how state is defined in Compose in more detail in Chapter 2,
Handling UI State with Jetpack ViewModel.

24 Creating a Modern UI with Jetpack Compose

Note:
Unlike EditText, TextField has no internal state. That's why we've
created and handled it; otherwise, as we would type in, the UI would not
update accordingly.

The resulting NameInput composable updates the UI correctly and looks like this:

Figure 1.13 – Exploring a TextField composable

Now that we've learned how to add input fields within a Compose-based app, it's time to
explore one of the most common elements in any UI.

Image
Displaying graphical information in our application is essential and Compose provides
us with a handy composable called Image, which is the composable version of the
ImageView from the View System.

While Image features plenty of customizing arguments, let's check out the most used
parameters:

• painter expects a Painter object. This argument is mandatory as it sets the
image resource. Alternatively, you can use the overloaded version of Image to
directly pass an ImageBitmap object to its bitmap parameter.

• contentDescription is a mandatory String that's used by accessibility
services.

• contentScale expects a ContentScale object that specifies the scaling of
the picture.

Let's add an Image composable that displays the application icon using
painterResource:

@Composable

fun BeautifulImage() {

 Image(

 painter =

 painterResource(R.drawable.ic_launcher_foreground),

Exploring the building blocks of Compose UIs 25

 contentDescription = "My app icon",

 contentScale = ContentScale.Fit

)

}

Finally, let's preview the BeautifulImage function and then move on to the
next section:

Figure 1.14 – Exploring the Image composable

We've also tried displaying images with Compose, yet you may still be wondering, how
can we customize all these composable functions?

Customizing composables with modifiers
All the composables we've covered so far feature an argument that we haven't covered yet:
modifier. This expects a Modifier object. In simple terms, modifiers tell a composable
how to display, arrange, or behave within its parent composable. By passing a modifier,
we can specify many configurations for a composable: from size, padding, or shape to
background color or border.

Let's start with an example by using a Box composable and specifying a size modifier
for it:

@Composable

fun ColoredBox() {

 Box(modifier = Modifier.size(120.dp))

}

We will cover the Box composable later but until then, you can think of it like a container
that we will use to draw several shapes on the screen. What's important here is that we
passed the Modifier.size() modifier, which sets the size of the box. It accepts a dp
value that represents both the width and the height of the composable. You can also pass
the width and height as parameters within the size() modifier or separately with the
help of the height() and width() modifiers.

26 Creating a Modern UI with Jetpack Compose

Specifying only one modifier for composables is usually not enough. That's why modifiers
can be chained. Let's chain multiple modifiers by adding several other configurations to
our Box:

@Composable

fun ColoredBox() {

 Box(modifier = Modifier

 .size(120.dp)

 .background(Color.Green)

 .padding(16.dp)

 .clip(RoundedCornerShape(size = 20.dp))

 .background(Color.Red))

}

As we mentioned previously, chaining modifiers is simple: start with an empty Modifier
object and then chain new modifiers one after the other. We've chained several new
modifiers, starting with background, then padding, clip, and finally another
background. The modifiers, when combined, produce an output consisting of a green
rectangle that contains a nested rounded corner rectangle that's red:

Figure 1.15 – Exploring chained modifiers

Note
The order of the modifiers in the chain matters because modifiers are applied
from the outer layer to the inner layer. Each modifier modifies the composable
and then prepares it for the upcoming modifier in the chain. Different modifier
orders yield different results.

Exploring the building blocks of Compose UIs 27

In the previous example, because modifiers are applied from the outermost layer to
the innermost layer, the entire rectangular box is green because green is the first color
modifier that's applied. Going inner, we applied a padding of 16 dp. Afterward, still going
inner, the RoundedCornerShape modifier is applied. Finally, in the innermost layer, we
applied another color modifier – this time, of the color red – and we got our final result.

Now that we've played around with the most common composables, it's time to start
building actual layouts that make use of multiple composable functions.

Layouts in Compose
Often, building even a simple screen cannot be achieved by following the previous
examples since most of them feature only one composable. For simple use cases,
composable functions contain only one composable child.

To build more complex pieces of UI, layout components in Compose give you the option
to add as many children composables as you need.

In this section, we will cover those composable functions that allow you to place children
composables in a linear or overlayed fashion, such as the following:

• Row for arranging children composables in a horizontal fashion

• Column for arranging children composables vertically

• Box for arranging children composables on top of each other

Following these definitions, let's envision the layout composables with the following
diagram:

Figure 1.16 – Exploring Column, Row, and Box

It's clear now that arranging children composables in different ways can easily be achieved
with Column, Row, and Box, so it's time to look at them in more detail.

28 Creating a Modern UI with Jetpack Compose

Row
Displaying multiple widgets on the screen is achieved by using a Row composable that
arranges its children composables horizontally, just like the old LinearLayout with
horizontal orientation did:

@Composable

fun HorizontalNumbersList() {

 Row(

 horizontalArrangement = Arrangement.Start,

 verticalAlignment = Alignment.CenterVertically,

 modifier = Modifier.fillMaxWidth()

) {

 Text("1", fontSize = 36.sp)

 Text("2", fontSize = 36.sp)

 Text("3", fontSize = 36.sp)

 Text("4", fontSize = 36.sp)

 }

}

We've set Row to only take the available width and added several Text functions as
children composables. We specified a horizontalArrangement of Start so that
they start from the left of the parent but also made sure that they are centered vertically
by passing a CenterVertically alignment for the verticalAlignment argument.
The result is straightforward:

Figure 1.17 – Exploring the Row composable

Largely, the essential arguments for a Row composable are related to how children are
arranged or aligned:

• horizontalArrangement defines how the children are positioned
horizontally both relative to each other and within the parent Row. Apart from
Arragement.Start, you can also pass Center or End or SpaceBetween,
SpaceEvenly, or SpaceAround.

• verticalAlignment sets how the children are positioned vertically within the
parent Row. Apart from Alignment.CenterVertically, you can pass Top or
Bottom.

Exploring the building blocks of Compose UIs 29

Now that we've arranged the children composables horizontally, let's try to arrange
them vertically.

Column
Displaying a vertical list on the screen can be achieved by using a Column composable
that arranges its children composables vertically, just like the old LinearLayout with
vertical orientation did:

@Composable

fun NamesVerticalList() {

 Column(verticalArrangement = Arrangement.SpaceEvenly,

 horizontalAlignment = Alignment.CenterHorizontally,

 modifier = Modifier.fillMaxSize()

) {

 Text("John", fontSize = 36.sp)

 Text("Amanda", fontSize = 36.sp)

 Text("Mike", fontSize = 36.sp)

 Text("Alma", fontSize = 36.sp)

 }

}

We've set Column to take all the available space and added several Text functions
as children composables. This time, we specified a verticalArrangement of
SpaceEvenly so that children are spread out equally within the parent, but we
also made sure they are centered horizontally by passing a CenterHorizontally
alignment as horizontalAlignment:

Figure 1.18 – Exploring the Column composable

30 Creating a Modern UI with Jetpack Compose

Similar to Row, the essential arguments for a Column are also related to how children are
arranged or aligned. This time, though, the arrangement is vertical instead of horizontal,
and the alignment is horizontal instead of vertical:

• verticalArrangement defines how the children are vertically positioned
within the parent Column. The values are the same as the row's
horizontalArrangement.

• horizontalAlignment defines how the children are aligned within the parent
Column. Apart from Alignment.CenterHorizontally, you can pass Start
or End.

Note
If you're feeling brave, this is a great time for you to explore different
alignments and arrangements and see how the UI changes. Make sure that you
preview your composable functions with the @Preview annotation.

Box
So far, we've learned how to arrange children horizontally and vertically, but what if we
want to place them on top of each other? The Box composable comes to our rescue as
it allows us to stack children composables. Box also allows us to position the children
relatively to it.

Let's try to build our own Floating Action Button (FAB) with the help of Box. We will
stack two composables inside Box:

• One green circle, which will be created with the help of Surface. The Surface
composable allows you to easily define a material surface with a certain shape,
background, or elevation.

• One plus sign (+) added as text inside the Text composable, which is aligned in the
center of its parent Box.

This is what the code will look like:

@Composable

fun MyFloatingActionButton() {

 Box {

 Surface(

 modifier = Modifier.size(32.dp),

 color = Color.Green,

Exploring the building blocks of Compose UIs 31

 shape = CircleShape,

 content = { })

 Text(text = "+",

 modifier = Modifier.align(Alignment.Center))

 }

}

The Surface composable is defined with a mandatory content parameter that accepts
another composable as its inner content. We don't want to add a composable inside of it.
Instead, we want to stack a Text composable on top of it, so we passed an empty function
to the content parameter.

The result is similar to the FAB we are all used to:

Figure 1.19 – Exploring the Box composable

To take advantage of Box, you must keep the following in mind:

• The order in which composables are added within Box defines the order in which
they are painted and stacked on top of each other. If you switch the order of
Surface and Text, the + icon will be painted beneath the green circle making
it invisible.

• You can align the children composables relative to the Box parent by passing
different values for each of the child's alignment modifiers. That's why, apart
from Alignment.Center, you can also position children composables with
CenterStart, CenterEnd, TopStart, TopCenter, TopEnd, BottomStart,
BottomEnd, or BottomCenter.

Now that we covered the basics, it's time to roll up our sleeves and create our first
Compose project!

32 Creating a Modern UI with Jetpack Compose

Building a Compose-based screen
Let's say we want to build an application that showcases some restaurants. We will build
the UI with Compose and go through the steps of creating a new Compose project. We
will then build a list item for such a restaurant and finally display a dummy list of such
items.

To summarize, in this section, we will build our first Compose-based application: a
restaurant explorer app! To achieve that, we must display some restaurants, which we will
do by covering the following topics:

• Creating your first Compose project

• Building a restaurant element layout

• Displaying a list of restaurants with Compose

Now that we have a clear path, let's get started.

Creating your first Compose project
To build a restaurant app, we have to create a new Compose-based project:

1. Open Android Studio and select the New Project option:

Figure 1.20 – Starting a new project with Android Studio
If you already have Android Studio open, go to File, then New, and finally New
Project.

Note
Make sure that you have Android Studio version Arctic Fox 2020.3.1 or newer.
If you're using a newer version though, some files might have differences in the
generated code.

Building a Compose-based screen 33

2. In the Phone and tablet template section, select Empty Compose Activity and then
choose Next:

Figure 1.21 – Starting a new project with Android Studio

3. Next, enter some details about your application. In the Name field, enter
Restaurants app. Leave Kotlin as-is for Language and set Minimum SDK to
API 21. Then, click Finish.

Important note
The upcoming step is an essential configuration step. It makes sure that
the project Android Studio has configured for you the same versions of
dependencies (from Compose, to Kotlin and other dependencies) that we use
throughout the book. By doing so, you will be able to follow the code snippets
and inspect the code source without any API differences.

4. Inside the newly generated project, before inspecting the code, make sure that
the generated project uses the versions of dependencies that are used throughout
the book.

34 Creating a Modern UI with Jetpack Compose

To do so, first go to the project-level build.gradle file and inside the
dependencies block, make sure that the Kotlin version is set to 1.6.10:

buildscript {

 […]

 dependencies {

 classpath "com.android.tools.build:gradle:7.0.2"

 classpath "org.jetbrains.kotlin:kotlin-gradle-

 plugin:1.6.10"

 […]

 }

}

Alternatively, if you're using a newer version of Android Studio, you might find the
Kotlin version used in this project inside the plugins block, like so:

plugins {

 […]

 id 'org.jetbrains.kotlin.android' version '1.6.10'

 apply false

}

If you haven't already, you might need to install the 1.6.10 plugin version of Kotlin
in Android Studio. To do that, click on the Tools option of Android Studio on the
Kotlin and on the Configure Kotlin Plugin Updates options. In the newly opened
window, you can update your Kotlin version to 1.6.10.

Still in the project-level build.gradle file, because Compose is tied to the Kotlin
version used in our project, make sure that the Compose version is set to 1.1.1
inside the ext { } block:

buildscript {

 ext {

 compose_version = '1.1.1'

 }

 repositories {…}

 dependencies {…}

}

Building a Compose-based screen 35

Then, move into the app-level build.gradle file. First check that the
composeOptions { } block looks like this:

plugins { ... }

android {

 [...]

 buildFeatures { compose true }

 composeOptions {

 kotlinCompilerExtensionVersion compose_version

 }

 packagingOptions { ... }

}

In some versions of Android Studio, the composeOptions { } block would
add an outdated kotlinCompilerVersion '1.x.xx' line that should
be removed.

Finally, make sure that the dependencies block of the app-level build.gradle
file includes the following versions for its dependencies:

dependencies {

 implementation 'androidx.core:core-ktx:1.7.0'

 implementation 'androidx.appcompat:appcompat:1.4.1'

 implementation 'com.google.android.material:

 material:1.5.0'

 implementation "androidx.compose.ui:ui:

 $compose_version"

 implementation "androidx.compose.material:

 material:$compose_version"

 implementation "androidx.compose.ui:ui-tooling-

 preview:$compose_version"

 implementation 'androidx.lifecycle:lifecycle-

 runtime-ktx:2.4.1'

 implementation 'androidx.activity:activity-

 compose:1.4.0'

 testImplementation 'junit:junit:4.+'

 androidTestImplementation

 'androidx.test.ext:junit:1.1.3'

36 Creating a Modern UI with Jetpack Compose

 androidTestImplementation

 'androidx.test.espresso:espresso-core:3.4.0'

 androidTestImplementation "androidx.compose.ui:ui-

 test-junit4:$compose_version"

 debugImplementation "androidx.compose.ui:ui-

 tooling:$compose_version"

}

If you had to make any changes, synchronize your project with its Gradle files
by clicking on the Sync your project with Gradle files button in Android Studio
or by pressing on the File menu option and then by selecting Sync Project with
Gradle Files.

Now we're set. Let's return to the source code generated by Android Studio.
And here we are – our first Compose project has been set up! Let's check out the source
code by navigating to the MainActivity.kt file. We can conclude that it consists of
three main parts:

• The MainActivity class

• The Greeting composable function

• The DefaultPreview composable function

The MainActivity class is where content is passed to the setContent method in
the onCreate callback. As we know by now, we need to call setContent to set up a
Compose UI and pass composable functions as our UI:

setContent {

 RestaurantsAppTheme {

 Surface(color = MaterialTheme.colors.background) {

 Greeting("Android")

 }

 }

}

The IDE template has already implemented a Greeting composable that is wrapped
into a Surface that uses the theme's background color. But what is that
RestaurantsAppTheme function that was passed as the parent composable to the
setContent method?

Building a Compose-based screen 37

If you press Ctrl + B or Command + B on the function name, you will be taken to the
Theme.kt file, which is where our theme is generated. RestaurantsAppTheme is a
composable function that was auto-generated by the IDE as it holds the app's name:

@Composable

fun RestaurantsAppTheme(

 darkTheme: Boolean = isSystemInDarkTheme(),

 content: @Composable() -> Unit

) {

 ...

 MaterialTheme(

 colors = colors,

 typography = Typography,

 shapes = Shapes,

 content = content)

}

The app's theme is a wrapper over MaterialTheme and if we pass it to the
setContent call, it allows us to reuse custom styles and color schemes defined
within the app's theme. For it to take effect and reuse custom styles, we must pass our
composables functions to the content parameter of our theme composable – in
our case, in MainActivity, the Greeting composable wrapped in the Surface
composable is passed to the RestaurantsAppTheme composable.

Let's go back inside the MainActivity.kt file to have a look at the other parts
generated by Android studio. We can see that the Greeting composable displays text
through Text, similar to our composable functions from the previous examples.

To preview the Greeting composable, the IDE also generated a preview composable
for us called DefaultPreview, which allows us to preview the content that
MainActivity displays; that is, Greeting. It also makes use of the theme composable
to get the consistently themed UI.

Now that we've achieved a big milestone in that we've created a Compose-based
application, it's time to start working on our Restaurants App!

38 Creating a Modern UI with Jetpack Compose

Building a restaurant element layout
It's time to get our hands dirty and start building the layout for a restaurant within
the app:

1. Create a new file by left-clicking the application package and selecting New and
then Kotlin Class/File. Enter RestaurantsScreen for the name and select the
type as File.

2. Inside this file, let's create a RestaurantsScreen composable function for our
first Compose screen:

@Composable

fun RestaurantsScreen() {

 RestaurantItem()

}

3. Next, inside the RestaurantsScreen.kt file, let's define the
RestaurantItem composable, which features a Card composable with elevation
and padding:

@Composable

fun RestaurantItem() {

 Card(elevation = 4.dp,

 modifier = Modifier.padding(8.dp)

) {

 Row(verticalAlignment =

 Alignment.CenterVertically,

 modifier = Modifier.padding(8.dp)) {

 RestaurantIcon(

 Icons.Filled.Place,

 Modifier.weight(0.15f))

 RestaurantDetails(Modifier.weight(0.85f))

 }

 }

}

Make sure that every import you include is part of the androidx.compose.*
package. If you're unsure what imports to include, check out the source code for the
RestaurantsScreen.kt file at the following URL:

Building a Compose-based screen 39

https://github.com/PacktPublishing/Kickstart-Modern-
Android-Development-with-Jetpack-and-Kotlin/blob/main/
Chapter_01/chapter_1_restaurants_app/app/src/main/java/
com/codingtroops/restaurantsapp/RestaurantsScreen.kt

Getting back to the previous code snippet, we could say that the Card composable
is similar to Cardview from the old View System as it allows us to beautify the UI
piece that represents a restaurant with border or elevation.

In our case, Card contains a Row composable whose children composables are
centered vertically and are surrounded by some padding. We used Row since we will
show some details about the restaurant in a horizontal fashion: an icon and some
text details.

We passed the RestaurantIcon and RestaurantDetails composables as
children of the Row composable but these functions are not defined so we have
compilation errors. For now, don't worry about the weight modifiers. Let's define
the RestaurantIcon composable first!

4. Still inside the RestaurantsScreen.kt file, create another composable function
entitled RestaurantIcon with the following code:

@Composable

private fun RestaurantIcon(icon: ImageVector, modifier:
Modifier) {

 Image(imageVector = icon,

 contentDescription = "Restaurant icon",

 modifier = modifier.padding(8.dp))

}

The RestaurantIcon composable sets an ImageVector icon to an
Image composable – in our case, a predefined Material Theme icon called
Icons.Filled.Place. It also sets a contentDescription value and
adds padding on top of the modifier it receives.

However, the most interesting part is the fact that RestaurantIcon receives
a Modifier as an argument from its parent Row. The argument it receives is
Modifier.weight(0.15f), which means that our Row assigns weights to each of
its horizontally positioned children. The value – in this case, 0.15f – means that this
child RestaurantIcon will take 15% of the horizontal space from its parent Row.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_01/chapter_1_restaurants_app/app/src/main/java/com/codingtroops/restaurantsapp/RestaurantsScreen.kt
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_01/chapter_1_restaurants_app/app/src/main/java/com/codingtroops/restaurantsapp/RestaurantsScreen.kt
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_01/chapter_1_restaurants_app/app/src/main/java/com/codingtroops/restaurantsapp/RestaurantsScreen.kt
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_01/chapter_1_restaurants_app/app/src/main/java/com/codingtroops/restaurantsapp/RestaurantsScreen.kt

40 Creating a Modern UI with Jetpack Compose

5. Now, still inside the RestaurantsScreen.kt file, create a
RestaurantDetails function that displays the restaurant's details:

@Composable

private fun RestaurantDetails(modifier: Modifier) {

 Column(modifier = modifier) {

 Text(text = "Alfredo's dishes",

 style = MaterialTheme.typography.h6)

 CompositionLocalProvider(

 LocalContentAlpha provides

 ContentAlpha.medium) {

 Text(text = "At Alfredo's … seafood dishes.",

 style = MaterialTheme.typography.body2)

 }

 }

}

Similarly, RestaurantDetails receives a Modifier.weight(0.85f)
modifier as an argument from Row, which will make it occupy the remaining 85%
of the horizontal space.

The RestaurantDetails composable is a simple Column that arranges two
Text composables vertically, with one being the title of the restaurant, and the
other being its description.

But what's up with CompositionLocalProvider? To display the description
that's faded out in contrast to the title, we applied a LocalContentAlpha
of ContentAlpha.medium. This way, the child Text with the restaurant
description will be faded or grayed out.

CompositionLocalProvider allows us to pass data down to the composable
hierarchy. In this case, we want the child Text to be grayed out, so we passed a
LocalContentAlpha object with a ContentAlpha.medium value using the
infix provides method.

6. For a moment, go to MainActivity.kt and remove the DefaultPreview
composable function as we will define our own a @Preview composable up next.

Building a Compose-based screen 41

7. Go back inside the RestaurantsScreen.kt file, define a @Preview
composable:

@Preview(showBackground = true)

@Composable

fun DefaultPreview() {

 RestaurantsAppTheme {

 RestaurantsScreen()

 }

}

If you have chosen a different name for your app, you might need to update the
previous snippet with the theme composable defined in the Theme.kt file.

8. Rebuild the project and let's inspect the RestaurantsScreen() composable
by previewing the newly created DefaultPreview composable, which should
display a restaurant item:

Figure 1.22 – Previewing a restaurant item

9. Finally, go back to MainActivity.kt and remove the Greeting composable.
Also, remove the Surface and Greeting function calls in the setContent
method and replace them with RestaurantScreen:

setContent {

 RestaurantsAppTheme {

 RestaurantsScreen()

 }

}

By passing RestaurantScreen to our MainActivity's setContent method,
we ensure that the application will render the desired UI when built and run.

10. Optionally, you can now Run the app to see the restaurant directly on your device
or emulator.

Now that we have built a layout for a restaurant, it's time to learn how to display more
of them!

42 Creating a Modern UI with Jetpack Compose

Displaying a list of restaurants with Compose
So far, we've displayed a restaurant item, so it's time to display an entire list of them:

1. First, create a new class in the root package, next to MainActivity.kt, called
Restaurant.kt. Here, we will add a data class called Restaurant and add
the fields that we expect a restaurant to have:

data class Restaurant(val id: Int,

 val title: String,

 val description: String)

2. In the same Restaurant.kt file, create a dummy list of Restaurant items,
preferably at least 10 to fill up the entire screen:

data class Restaurant(val id: Int,

 val title: String,

 val description: String)

val dummyRestaurants = listOf(

 Restaurant(0, "Alfredo foods", "At Alfredo's …"),

 [...],

 Restaurant(13, "Mike and Ben's food pub", "")

)

You can find the pre-populated list in this book's GitHub repository, inside the
Restaurant.kt file:

https://github.com/PacktPublishing/Kickstart-Modern-
Android-Development-with-Jetpack-and-Kotlin/blob/main/
Chapter_01/chapter_1_restaurants_app/app/src/main/java/
com/codingtroops/restaurantsapp/Restaurant.kt.

3. Go back inside the RestaurantsScreen.kt file and update your
RestaurantItem so that it receives a Restaurant object as an argument,
while also passing the restaurant's title and description to the
RestaurantDetails composable as parameters:

@Composable

fun RestaurantItem(item: Restaurant) {

 Card(...) {

 Row(...) {

 RestaurantIcon(...)

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_01/chapter_1_restaurants_app/app/src/main/java/com/codingtroops/restaurantsapp/Restaurant.kt
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_01/chapter_1_restaurants_app/app/src/main/java/com/codingtroops/restaurantsapp/Restaurant.kt
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_01/chapter_1_restaurants_app/app/src/main/java/com/codingtroops/restaurantsapp/Restaurant.kt
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_01/chapter_1_restaurants_app/app/src/main/java/com/codingtroops/restaurantsapp/Restaurant.kt

Building a Compose-based screen 43

 RestaurantDetails(

 item.title,

 item.description,

 Modifier.weight(0.85f)

)

 }

 }

}

4. We have passed the restaurant's title and description to the
RestaurantDetails composable as parameters. Propagate these changes in
the RestaurantDetails composable and pass the title into the first Text
composable and the description into the second Text composable:

@Composable

fun RestaurantDetails(title: String, description: String,
modifier: Modifier){

 Column(modifier = modifier) {

 Text(text = title, ...)

 CompositionLocalProvider(…) {

 Text(text = description, ...)

 }

 }

}

5. Go back to the RestaurantsScreen composable and update it to display a
vertical list of Restaurant objects. We already know that we can use a Column to
achieve this. Then, iterate over each restaurant in dummyRestaurants and bind it
to a RestaurantItem:

@Composable

fun RestaurantsScreen() {

 Column {

 dummyRestaurants.forEach { restaurant ->

 RestaurantItem(restaurant)

 }

 }

}

44 Creating a Modern UI with Jetpack Compose

This will create a beautiful vertical list that we can preview through our
DefaultPreview composable.

6. Rebuild the project to see the updated preview generated by the DefaultPreview
composable:

Figure 1.23 – Previewing RestaurantsScreen with the Column composable
Alternatively, you can Run the app to see the restaurants directly on your device
or emulator.

We've finally created our first list with Compose! It looks very nice and beautiful, yet it has
one huge issue – it doesn't scroll! We'll address this together in the next section.

Exploring lists with Compose
In the previous section, we built a Compose-based screen that features a list of restaurants.
However, if you run the application or preview the screen in interactive mode, you will
notice that the list doesn't scroll. This is a huge inconvenience that we will address in this
section by adding scroll capabilities to our Column composable.

Exploring lists with Compose 45

Next, we will specify why Column is suited for static content, whereas if the list is
large and its size is dynamic or dictated by the server's response, we should use lazy
composables. We will explore a variety of lazy composables and understand why they are
better suited for large lists.

To summarize, this section will cover the following topics:

• Adding scrolling to the Column composable

• Introducing lazy composables

• Using LazyColumn to display restaurants

Let's start by adding scrolling capabilities to our RestaurantsScreen composable.

Adding scrolling to the Column composable
Our list of restaurants is long, and it can't scroll. This is a bad user experience, so let's fix it.

Let's make the Column scrollable by passing a Modifier.verticalScroll modifier
that receives a ScrollState:

@Composable

fun RestaurantsScreen() {

 Column(Modifier.verticalScroll(rememberScrollState())) {

 ...

 }

}

We want the scrolling position to be retained across recompositions. That's why, by
passing rememberScrollState to the verticalScroll modifier, we ensure
that every time the UI recomposes, the scroll state is remembered and retained. The
rememberScrollState persistence mechanism is similar to the remember { }
block, which we used previously to retain the TextField's state across recompositions.

Now, you can Run the app or preview it in Interactive mode and check out the
scrolling effect.

However, we have one final issue with our Column that is related to how Column lays and
composes its elements. Let's dive into that now and try to find a better alternative.

46 Creating a Modern UI with Jetpack Compose

Introducing lazy composables
Let's take a short break from our restaurant app and try to think of a better way of
handling large lists. Using Row or Column for displaying long lists of items, or maybe
a list of unknown size, can prove detrimental to your UI and impact your app's
performance. This happens because Row and Column render or lay all their children out,
whether they are visible or not. They are good for displaying static content, yet passing a
large list can cause your UI to become laggy or even unusable.

Two lazy composables called LazyColumn and LazyRow come to your rescue since they
only compose or output those items that are currently visible on the screen, hence the
term lazy. So, as you can see, they are somehow similar to the old RecyclerView.

As the only difference between Row and Column was the way children were laid out
on the screen – horizontally or vertically – the same thing applies with LazyRow and
LazyColumn. These lazy composables lay their children out horizontally or vertically
and provide scrolling capabilities out of the box. As they only render the visible items, lazy
composables are a much better fit for large lists.

Yet, lazy composables are different than the regular composables that we've used so
far. That's mainly because instead of accepting @Composable content, they expose a
domain-specific language (DSL) defined by a LazyListScope block:

@Composable

fun LazyColumn(

 ...

 content: LazyListScope.() -> Unit

) { … }

The LazyListScope DSL allows us to describe the item contents that we want to be
displayed as part of the list. The most commonly used ones are item() and items().
Such example usage of LazyColumn that makes use of DSL is as follows:

LazyColumn {

 item() {

 Text(text = "Custom header item")

 }

 items(myLongList) { myItem ->

 MyComposable(myItem)

 }

Exploring lists with Compose 47

 item(2) {

 Text(text = "Custom footer item")

 }

}

item() adds a single composable element to the list, while items() can receive not
only a standalone list of content such as myLongList but also an Int, which will add
the same item multiple times.

The code that we featured previously should render a vertical list that contains the
following:

• A header Text composable

• A list of MyComposable composables that are the same size as myLongList

• Two Text footer composables

Returning from the DSL world, a noteworthy argument for the lazy composables is
contentPadding, which allows you to define horizontal/vertical padding surrounding
your list. This argument expects a PaddingValues object – we will use it soon; don't
worry!

Now, we will soon receive the restaurants from a remote server, which means we
don't know the size of the list, so it's time to implement such a lazy composable in our
Restaurants application as well.

Using LazyColumn to display restaurants
We are currently using Column to display our dummyRestaurants list. We know why
that's not the best practice, so to optimize our UI for dynamic content, we will replace it
with LazyColumn so that we can continue displaying the restaurants vertically.

Go back to the RestaurantsScreen.kt file and, inside of the RestaurantScreen
composable, replace the Column composable with LazyColumn:

@Composable

fun RestaurantsScreen() {

 LazyColumn(

 contentPadding = PaddingValues(

 vertical = 8.dp,

 horizontal = 8.dp)) {

48 Creating a Modern UI with Jetpack Compose

 items(dummyRestaurants) { restaurant ->

 RestaurantItem(restaurant)

 }

 }

}

We've used its DSL and specified the items properties that should populate our
LazyColumn by passing the dummyRestaurants list. We obtained access to each
item as a restaurant of type Restaurant and rendered it through a RestaurantItem
composable.

We also added additional padding through the contentPadding argument to our
LazyColumn by passing a PaddingValues object where we configured the vertical
and horizontal padding.

You can now Run the app and check out the scrolling effect. In our case, the output is
the same, yet if we were to test the app with a very long list of restaurants, we would have
a much smoother scroll effect and a better UI experience with LazyColumn than with
Column.

We've done it! We've built our first Compose-based app from scratch while exploring tons
of composable functions. We've added a list that scrolls beautifully, and we can now be
proud of the result!

Summary
In this chapter, we learned how to build modern UIs on Android directly in Kotlin
by using the Jetpack Compose toolkit. You learned how, in Compose, everything is a
composable function and how this new declarative way of defining UIs improves and
makes the way we build UIs much easier and less prone to bugs.

We learned that Compose accelerates and greatly simplifies UI development with the help
of concise Kotlin APIs and without the need for XML or other additional languages. We
then covered the basic concepts behind Compose and the core components that allow you
to build UIs.

Finally, we saw how easy it is to build UI with Compose by creating a Compose-based
screen that displays a list of restaurants.

Further reading 49

In Chapter 2, Handling UI State with Jetpack ViewModel, we will use the fundamentals
we've learned in this chapter to revisit the concept of state in Compose and learn how it
is represented, as well as how we can correctly manage it with the help of another Jetpack
component: ViewModel.

First, we will understand what ViewModel is and why such a component is needed.
Then, by continuing working on the Restaurants application that we started in this
chapter, we will learn how to define and lift the UI's state in our own ViewModel class.

Further reading
Exploring a library with the magnitude of Compose is nearly impossible in a single
chapter. That's why you should also explore other topics that are of great importance when
building your UI with Compose:

• We've briefly mentioned how Compose works with the help of a Kotlin compiler
plugin. To better how this compiler plugin helps us define composable functions,
check out this great article written by the official Android developer team:
https://medium.com/androiddevelopers/under-the-hood-of-
jetpack-compose-part-2-of-2-37b2c20c6cdd.

This article also covers the internals of Compose, so if you are curious about the
execution model of Compose or what the compiler plugin does behind the scenes,
make sure to check it out.

• Building UIs with Compose is simple, yet Compose is a very powerful framework
that enables you to write highly reusable UIs. To take advantage of that, every
Composable should receive a Modifier object that defines how it is arranged
inside its caller parent. See what this means by checking out this great article, and
then try to practice a bit: https://chris.banes.dev/always-provide-a-
modifier/.

• Your layout should be adaptive and flexible for devices with different screen sizes
or forms. You can learn more about this and try experimenting a bit by looking at
the official documentation: https://developer.android.com/jetpack/
compose/layouts/adaptive.

https://medium.com/androiddevelopers/under-the-hood-of-jetpack-compose-part-2-of-2-37b2c20c6cdd
https://medium.com/androiddevelopers/under-the-hood-of-jetpack-compose-part-2-of-2-37b2c20c6cdd
https://chris.banes.dev/always-provide-a-modifier/
https://chris.banes.dev/always-provide-a-modifier/
https://developer.android.com/jetpack/compose/layouts/adaptive
https://developer.android.com/jetpack/compose/layouts/adaptive

2
Handling UI State

with Jetpack
ViewModel

In this chapter, we will cover one of the most important libraries in Jetpack: ViewModel.
In the first section, Understanding the Jetpack ViewModel, we will explore the concept
and usages behind the ViewModel architecture component. We will see what it is, why
we need it in our apps, and how we can implement one in our Restaurants app, which
we started in the previous chapter.

In the next section, Defining and handling state with Compose, we will study how state is
managed in Compose and exemplify usages of state inside our project. Afterward, in the
Hoisting state in Compose section, we will understand what state hoisting is, why we need
to achieve it, and then we will apply it to our app.

Finally, in the Recovering from system-initiated process death section, we will cover what a
system-initiated process death is, how it occurs, and how essential it is for our applications
to be able to recover from it by restoring the previous state details.

52 Handling UI State with Jetpack ViewModel

To summarize, in this chapter, we're going to cover the following main topics:

• Understanding the Jetpack ViewModel

• Defining and handling state with Compose

• Hoisting state in Compose

• Recovering from system-initiated process death

Before jumping in, let's set up the technical requirements for this chapter.

Technical requirements
When building Compose-based Android projects with Jetpack ViewModel, you usually
require your day-to-day tools. However, to follow along smoothly, make sure you have
the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds but note that IDE interface and other
generated code files might differ from the ones used throughout this book.

• Kotlin 1.6.10 or newer plugin installed in Android Studio.

• The Restaurants app code from the previous chapter.

The starting point for this chapter is represented by the Restaurants app that we
developed in the previous chapter. If you haven't followed the implementation side
by side, access the starting point for this chapter by navigating to the Chapter_01
directory of this book's GitHub repository and importing the Android project entitled
chapter_1_restaurants_app.

To access the solution code for this chapter, navigate to the Chapter_02 folder:

https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_02/
chapter_2_restaurants_app.

The project coding solution for the Restaurants app that we will develop throughout this
chapter can be found in the chapter_2_restaurants_app Android project folder,
which you can import.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_02/chapter_2_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_02/chapter_2_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_02/chapter_2_restaurants_app

Understanding the Jetpack ViewModel 53

Understanding the Jetpack ViewModel
While developing Android applications, you must have heard of the term ViewModel. If
you haven't heard of it, then don't worry – this section aims to clearly illustrate what this
component represents and why we need it in the first place.

To summarize, this section will cover the following topics:

• What is a ViewModel?

• Why do you need ViewModels?

• Introducing Android Jetpack ViewModel

• Implementing your first ViewModel

Let's start with the first question: what is this ViewModel that we keep hearing about
in Android?

What is a ViewModel?
Initially, the ViewModel was designed to allow developers to persist UI state across
configuration changes. In time, the ViewModel became a way to also recover from edge
cases such as system-initiated process death.

However, often, Android apps require you to write code that is responsible for getting
the data from the server, transforming it, caching it, and then displaying it. To delegate
some work, developers made use of this separate component, which should model the UI
(also called the View) – the ViewModel.

So, we can perceive a ViewModel class as a component that manages and caches
the UI's state:

Figure 2.1 – ViewModel stores the state and receives interactions

As we can see, ViewModel not only handles the UI state and provides it to the UI but
also receives user interaction events from View and updates the state accordingly.

54 Handling UI State with Jetpack ViewModel

In Android, the views are usually represented by UI controllers such as Activity,
Fragment, or Composable since they are intended to display the UI data. These
components are prone to being recreated when configuration changes occur, so
ViewModel must find a way to cache and then restore the UI state – more on this in the
next section, Why do you need ViewModels?.

Note
ViewModel oversees what data is sent back to the UI controllers and how the
UI state reacts to user-generated events. That's why we can call ViewModel
as a master of the UI controller – since it represents the authority that performs
decision-making for UI-related events.

We can try to enumerate some core activities that a ViewModel should perform.
ViewModel should be able to do the following:

• Hold, manage, and preserve the entire UI state.

• Request data or reload content from the server or other sources.

• Prepare data to be displayed by applying various transformations (such as map,
sort, filter, and so on).

• Accept user interaction events and change the state based on those events.

Even though you now understand what a ViewModel is, you might be wondering, why
do we need a separate class that holds the UI state or that prepares data to be displayed?
Why can't we do that directly in the UI, in Activity, Fragment, or even inside the
Composable? We'll address this question next.

Why do you need ViewModels?
Imagine that we put all the state-handling logic inside the UI classes. Following this
approach, we may soon add other logic for handling network requests, caching, or any
other implementation details – everything will be inside the UI layer.

Obviously, this is not a great approach. If we do that, we will end up with an Activity,
Fragment, or composable function that has way too many responsibilities. In
other words, our UI components will become bloated with so much code and so many
responsibilities, thus making the entire project difficult to maintain, fix, or extend.

ViewModel is an architecture component that alleviates these potential issues. By adding
ViewModel components to our projects, we are taking the first step toward a solid
architecture since we can delegate the responsibilities of a UI controller to components
such as ViewModel.

Understanding the Jetpack ViewModel 55

Note
ViewModel should not have a reference to a UI controller and should
run independently of it. This reduces coupling between the UI layer and
ViewModel and allows multiple UI components to reuse the same
ViewModel.

Preventing multiple responsibilities in UI controllers is the cornerstone of a good system
architecture since it promotes a very simple principle called separation of concerns.
This principle states that every component/module within our app should have and
handle one concern.

If, in our case, we add the entire application logic inside Activity, Fragment,
or composable, these components will become huge pieces of code that violate the
separation of concerns principle, simply because they know how to do everything: from
displaying the UI to getting data and serving their UI states. To alleviate this, we can start
implementing ViewModels.

Next, we'll see how ViewModels are designed in Android.

Introducing Android Jetpack ViewModel
Creating a ViewModel class to govern the UI state of a View is doable and straightforward.
We can simply create a separate class and move the corresponding logic there.

However, as we mentioned previously, UI controllers have their own lifecycle: the
Activity or Fragment objects have their own lifecycles, while composables have
a composition cycle. That's why UI controllers are usually fragile and end up being
recreated when different events occur, such as a configuration change or a process death.
When this happens, any UI state information is lost.

Moreover, UI controllers usually need to make async calls (to obtain data from the
server, for example) that have to be managed correctly. This means that when the system
destroys UI controllers (such as by calling onDestroy() on an Activity), you need to
manually interrupt or cancel any pending or ongoing work. Otherwise, your application
can leak memory since your UI controller's memory reference cannot be freed up by the
system. This is because it's still trying to finish some asynchronous work.

To preserve the UI state and to manage async work easier, our ViewModel class should
be able to get around these downsides. But how?

Jetpack ViewModel comes to the rescue! Because the Android ViewModel is lifecycle
aware, this means that it knows how to outlive events such as configuration changes,
which are triggered by the user.

56 Handling UI State with Jetpack ViewModel

It does that by having a lifecycle scope tied to the lifecycle of its UI controller. Let's see how
the lifecycle of an Activity and a composable are defined as opposed to the one of
ViewModel:

Figure 2.2 – The ViewModel's lifecycle in comparison to UI controller's lifecycle

Important note
When the ViewModel is used in Compose, it lives by default for as long as
the parent Fragment or Activity does. For the ViewModel to live as
long as a top-level composable (or screen composable) function does, as shown
in the previous diagram, the composable must be used in conjunction with
a navigation library. More granular composables can have smaller lifetimes.
Don't worry, we will cover the aspect of scoping the lifetime of a ViewModel
to the lifetime of a screen composable in Chapter 5, Adding Navigation in
Compose with Jetpack Navigation.

When the UI is recreated or recomposed because of such events, the ViewModel's
lifecycle awareness allows it to outlive those events and avoid being destroyed, thus
allowing the state to be preserved. When the entire lifecycle is finalized, the ViewModel's
onCleared() method is called to allow you to easily clean up any pending async work.

Yet one question arises: how can the Jetpack ViewModel do that?

Understanding the Jetpack ViewModel 57

By design, the ViewModel classes outlive specific instantiations of LifecycleOwners.
In our case, UI controllers are LifecycleOwners since they have a designated lifecycle,
and they can be Activity or Fragment objects.

To understand how ViewModel components are scoped to a specific Lifecycle, let's
have a look at a traditional way of getting a reference to a ViewModel instance:

val vm = ViewModelProvider(this)[MyViewModel::class.java]

To obtain an instance of MyViewModel, we pass a ViewModelStoreOwner
to the ViewModelProvider constructor. We used to get our ViewModel
like this in Activity or Fragment classes, so this is a reference to the current
ViewModelStoreOwner.

To control the lifetime of the instance of our MyViewModel, ViewModelProvider
needs an instance of ViewModelStoreOwner because when it creates an
instance of MyViewModel, it will link the lifetime of this instance to the lifetime of
ViewModelStoreOwner – that is, of our Activity.

The Activity or Fragment components are LifecycleOwners with a lifecycle,
meaning that every time you get a reference to your ViewModel, the object you receive is
scoped to the LifecycleOwner's lifecycle. This means that your ViewModel remains
alive in memory until the LifecycleOwner's lifecycle is finished.

Note
We will explain the inner workings of ViewModel components and how they
are scoped to the lifecycle of a LifecycleOwner in more detail in Chapter
12, Exploring the Jetpack Lifecycle Components.

In Compose, the ViewModel objects are instantiated differently by using a special
inline function called viewModel(), which abstracts all the boilerplate code that was
needed previously.

Note
Optionally, if you need to pass parameters whose values are decided at runtime
to your ViewModel, you can create and pass a ViewModelFactory
instance to the viewModel() constructor. ViewModelFactory
is a special class that allows you to control the way your ViewModel is
instantiated.

Now that we have provided an overview of how the Android ViewModel works, let's
create one!

58 Handling UI State with Jetpack ViewModel

Implementing your first ViewModel
It's time to create a ViewModel inside the Restaurants application that we created in the
previous chapter. To do this, follow these steps:

1. First, create a new file by left-clicking the application package, selecting New, and
then selecting Kotlin Class/File. Enter RestaurantsViewModel as the name
and select File as the type. Inside the newly created file, add the following code:

import androidx.lifecycle.ViewModel

class RestaurantsViewModel(): ViewModel() {

 fun getRestaurants() = dummyRestaurants

}

Our RestaurantsViewModel inherits from the ViewModel class
(previously referenced as the Jetpack ViewModel) that's defined in
androidx.lifecycle.ViewModel, so it becomes lifecycle aware of the
components that instantiate it.

Moreover, we've added the getRestaurants() method to our ViewModel,
allowing it to be the provider of our dummyRestaurants list – a first and shy step
toward giving it responsibility for governing the UI state.

Next, it's time to prepare to instantiate our RestaurantsViewModel. In
Compose, we can't use the previous syntax for instantiating ViewModel objects,
so we will use a special and dedicated syntax instead.

2. To gain access to this special syntax, go to the build.gradle file in the app
module and inside the dependencies block, add the ViewModel-Compose
dependency:

dependencies {

 […]

 debugImplementation "androidx.compose.ui:ui-

 tooling:$compose_version"

 implementation "androidx.lifecycle:lifecycle-

 viewmodel-compose:2.4.1"

}

After updating the build.gradle file, make sure to sync your project with its
Gradle files. You can do that by clicking on the File menu option and then by
selecting Sync Project with Gradle Files.

Understanding the Jetpack ViewModel 59

3. Going back to the RestaurantsScreen file, we want to instantiate
our RestaurantsViewModel inside our RestaurantsScreen
composable function. We can do this using the viewModel() inline
function syntax and specifying the type of ViewModel that we expect; that is,
RestaurantsViewModel:

@Composable

fun RestaurantsScreen() {

 val viewModel: RestaurantsViewModel = viewModel()

 LazyColumn(…) {

 items(viewModel.getRestaurants()) { restaurant->

 RestaurantItem(restaurant)

 }

 }

}

Behind the scenes, the viewModel() function gets the default
ViewModelStoreOwner for our RestaurantsScreen() composable. Since
we haven't implemented a navigation library, the default ViewModelStoreOwner
will be the calling parent of our composable – the MainActivity component.
This means that for now, even though our RestaurantsViewModel has been
instantiated inside a composable, it will live for as long as our MainActivity does.

In other words, our RestaurantsViewModel is scoped to the lifecycle of our
MainActivity, thereby outliving our RestaurantsScreens composable,
or any other composable we would pass to the setContent() method call from
within MainActivity.

To make sure that our ViewModel lives for as long as the composable function
that needs it does, we will implement a navigation library in Chapter 5, Adding
Navigation in Compose with Jetpack Navigation.

We also made sure that we now get the restaurants to be displayed from our
RestaurantsViewModel by calling getRestaurants() on the viewModel
variable.

60 Handling UI State with Jetpack ViewModel

Note
From this point on, on certain older Compose versions, the Compose
Preview functionality might not work as expected anymore. As
the RestaurantsScreen composable now depends on a
RestaurantsViewModel object, Compose can fail to infer the data that
is passed to the previewed composable, thereby not being able to show us the
content. That's why directly referencing a ViewModel inside your screen
composable isn't a good practice. We will fix this in Chapter 8, Getting Started
with Clean Architecture in Android. Alternatively, to see any changes in your
code, you can just run the application on your emulator or physical device.

Getting back to our Restaurants app, we have successfully added a ViewModel, yet
our RestaurantsViewModel doesn't handle any state for our UI. It only sends
a hardcoded list of restaurants, which has no state. We envisioned that its purpose
is to govern the state of the UI, so let's take a break from ViewModel and work on
understanding state.

Defining and handling state with Compose
State and events are essential to any application since their existence implies that the UI
can change over time as you interact with it.

In this section, we will cover the concept of state and events and then integrate them into
our Restaurants app.

To summarize, this section will cover the following topics:

• Understanding state and events

• Adding state to our Restaurants app

Let's start by exploring the basic concepts of state and events in Android applications.

Understanding state and events
State represents a possible form of the UI at a certain point in time. This form can change
or mutate. When the user interacts with the UI, an event is created that triggers a change
in the state of the UI. So, an event is represented by different interactions that are initiated
by the user that target the app and that consequently cause its state to update.

Defining and handling state with Compose 61

In simple terms, state changes over time because of events. The UI, on the other hand,
should observe the changes within the state so that it can update accordingly:

Figure 2.3 – UI update flow

In Compose, composable functions are, by default, stateless. That's why, when we tried to
use a TextField composable in the previous chapter, it didn't present anything to the UI
that we typed in with the keyboard. This happened because the composable had no state
defined and it didn't get recomposed with the new values that had to be displayed!

This is why, in Compose, it's our job to define state objects for our composables. With
the help of state objects, we make sure that recomposition is triggered every time a state
object's value is changed.

To make such a TextField display the text that we are typing in, remember that
we added a textState variable. Our TextField needed such a state object that holds
a String value. This value represents the text that's written by us, which can change as
we keep on typing:

@Composable

fun NameInput() {

 val textState: MutableState<String> =

 remember { mutableStateOf("") }

 TextField(…)

}

62 Handling UI State with Jetpack ViewModel

Let's have a closer look at how we defined a state object for our TextField:

• First, we created a variable to hold our state object and made sure that its value
can change over time by making it MutableState. We did that by defining
a textState variable that is of type MutableState, which, in turn, holds data
of type String.

At its core, textState is a androidx.compose.runtime.State object,
yet since we want to be able to change its value over time, we directly used
a MutableState that implements State.

• We instantiated textState with the mutableStateOf("") constructor
to create a state object and passed an initial value of the data that it holds: an
empty string.

We also wrapped the mutableStateOf("") constructor inside
a remember { } block. The remember block allows the state value to be
preserved across recompositions. Every time the UI is recomposed because other
composables received new data or maybe because of an animation, this state value
will be the same because of the remember block.

Now that we've covered how state objects are defined, some questions remain: how can
we alter the state to retrigger recomposition and how can we make sure our TextField
accesses the updated values from our textState? Let's add these missing pieces:

@Composable

fun NameInput() {

 val textState = remember { mutableStateOf("") }

 TextField(

 value = textState.value,

 onValueChange = { newValue ->

 textState.value = newValue

 },

 label = { Text("Your name") })

}

Defining and handling state with Compose 63

Let's have a closer look at how we wired everything up inside TextField:

• For TextField to always have access to the latest value of the textState
state object, we obtained the current state value with the .value accessor using
textState.value. Then, we passed it to the TextField's value parameter
to display it.

• To change the state value, we made use of the onValueChange callback, which
can be portrayed as an event. Inside this callback, we updated the textState state
value by using the same .value accessor and set the new value that was received,
called newValue. Since we updated a State object, the UI should recompose and
our TextField should render the new input value from the keyboard. This will
repeat for as long as we keep on writing.

Now that we have got the hang of defining and altering state in Compose, it's time to add
such state functionality to our Restaurants app.

Adding state to our Restaurants app
Let's imagine that the user can scroll through the list of restaurants and then tap
a particular one, thereby marking it as a favorite. For this to be more suggestive, we will
add a heart icon for each restaurant. To do this, follow these steps:

1. Inside the RestaurantsScreen.kt file, add another composable inside
RestaurantItem called FavoriteIcon. Then, pass a weight of 0.15f to make
it occupy 15% of the parent Row:

@Composable

fun RestaurantItem(item: Restaurant) {

 Card(...) {

 Row(...) {

 RestaurantIcon(..., Modifier.weight(0.15f))

 RestaurantDetails(..., Modifier.weight(0.7f))

 FavoriteIcon(Modifier.weight(0.15f))

 }

 }

}

We have also made sure to decrease the weight of RestaurantDetails from
85% to 70%.

64 Handling UI State with Jetpack ViewModel

2. Still inside the RestaurantsScreen.kt file, define the missing FavoriteIcon
composable, which receives an imageVector as a predefined icon with
Icons.Filled.FavoriteBorder. Also, make it receive a Modifier object
with 8.dp of padding:

@Composable

private fun FavoriteIcon(modifier: Modifier) {

 Image(

 imageVector = Icons.Filled.FavoriteBorder,

 contentDescription = "Favorite restaurant icon",

 modifier = modifier.padding(8.dp))

}

3. If we try to refresh the preview or run the app, we can see several
RestaurantItem composables similar to the following:

Figure 2.4 – The RestaurantItem composable with a favorite icon
Our RestaurantItem composable now has a favorite icon. However, when
we click it, nothing happens. Clicking it should change the heart icon into a filled
one, marking the restaurant as a favorite. To fix this, we must add a state that allows
us to hold the favorite status of a restaurant.

4. Add state to the FavoriteIcon composable by adding the following code:

@Composable

private fun FavoriteIcon(modifier: Modifier) {

 val favoriteState = remember {

 mutableStateOf(false) }

 val icon = if (favoriteState.value)

 Icons.Filled.Favorite

 else

 Icons.Filled.FavoriteBorder

Defining and handling state with Compose 65

 Image(

 imageVector = icon,

 contentDescription = "Favorite restaurant icon",

 modifier = modifier

 .padding(8.dp)

 .clickable { favoriteState.value =

 !favoriteState.value

 }

)

}

To hold the state of being a favorite or not and to trigger a change in this state value,
we've done the following:

1. We added a favoriteState variable that holds a MutableState
of type Boolean with an initial value of false. As usual, we wrap the
mutableStateOf constructor inside a remember block to preserve the state's
value across recompositions.

2. We defined an icon variable that can hold a value of Icons.Filled.Favorite,
which means that the restaurant is your favorite, or a value of
Icons.Filled.FavoriteBorder, which means that the restaurant
is not your favorite.

3. We passed the value of icon value to the imageVector parameter of our
Image composable.

4. We added a clickable modifier that's chained after the padding one. In this
callback, we made sure to update favoriteState with the .value accessor by
obtaining it and writing the previously negated value.

Note
When defining state objects in Compose, you can replace the assignment
(=) operator with property delegation, which can be achieved with the by
operator: val favoriteState by remember { … }. By doing
this, you will not need to use the .value accessor anymore as it is delegated.

66 Handling UI State with Jetpack ViewModel

When we're running or live previewing the application, we can see that upon clicking the
empty heart icon of each restaurant, it becomes filled, marking the restaurant as a favorite:

Figure 2.5 – The RestaurantsScreen composable with a favorite state for its items

Most of the time, keeping state and state handling logic inside composable functions is not
recommended. Let's explore why this is not the best practice and how we can improve the
way we manage state with the help of state hoisting.

Hoisting state in Compose
Composable functions are usually categorized in terms of state handling in two
main categories:

• Stateful, which allows the composable to hold and manage its state. Stateful
composables are those functions where the caller (or parent composable) doesn't
need to manage the state. They model basic UI interactions such as animations
or expanding content, and they are usually okay to be stateful and hold
a State object.

Hoisting state in Compose 67

• Stateless, which allows the composable to delegate the state management and to
forward event callbacks to its parent composable. Composables that not only impact
the UI as their state changes but are also of interest to the presentation or business
logic are usually ok to be stateless. This way, the ViewModel component can be
the only source of truth for their state to control and manage UI changes but also to
avoid illegal states.

In our case, state changes when a restaurant is marked as a favorite or not. Since we
want to control this interaction at the presentation level in the ViewModel class to keep
track of which restaurants have been favorited, we need to move the state up from the
FavoriteIcon composable.

The pattern of moving state up from a composable to its caller composable is called state
hoisting. To achieve this, we must replace the State object with two parameters:

• One value parameter for the data that defines the current state

• A callback function that is triggered as an event when a new value is emitted

By receiving data as input and forwarding events to the parent composable, we make sure
that our Compose UI obeys the previously introduced concept of the unidirectional flow
of state and events. This concept defines how state values and events should only flow in
one direction: the events upwards and the state downwards, and with state hoisting,
we enforce just that.

The benefits of state hoisting are as follows:

• Single source of truth for the state: The state of our Compose UI can have a single
source of truth: the parent composable or, even better, ViewModel. Composables
can be decoupled from their state to avoid illegal states in your UI.

• Reusability: Since composables only render the data that's received as input,
it's much easier to reuse them within other composables as you can simply pass
different values.

• Encapsulation limitation: Only stateful composables can change their state
internally. This means that you can limit the number of composables that handle
their state, which could lead to illegal UI states.

68 Handling UI State with Jetpack ViewModel

Now that we've briefly covered what state hoisting is and why it is beneficial, it's time to
hoist the state within our Restaurants application:

1. First, lift the state from the FavoriteIcon composable by removing the existing
favoriteState and icon variables along with their instantiation logic from
the top of the body of the function. At the same time, update the FavoriteIcon
composable to accept an icon parameter for receiving input data and also an
onClick event callback for forwarding upwards events:

@Composable

private fun FavoriteIcon(icon: ImageVector,

 modifier: Modifier,

 onClick: () -> Unit) {

 Image(

 imageVector = icon,

 contentDescription = "Favorite restaurant icon",

 modifier = [...]

 .clickable { onClick() })

}

Additionally, we passed icon to the imageVector parameter of the Image
composable and triggered the onClick callback function whenever the
clickable event is triggered. By applying these changes, we lifted the state up and
transformed FavoriteIcon from a stateful composable into a stateless one.

2. Now, move the favoriteState variable in the RestaurantItem parent
composable of FavoriteIcon. The RestaurantItem composable provides the
state to FavoriteIcon and is also in charge of updating its state over time:

@Composable

fun RestaurantItem(item: Restaurant) {

 val favoriteState = remember {

 mutableStateOf(false) }

 val icon = if (favoriteState.value)

 Icons.Filled.Favorite

 else

 Icons.Filled.FavoriteBorder

Hoisting state in Compose 69

 Card(...) {

 Row(...) {

 [...]

 FavoriteIcon(icon, Modifier.weight(0.15f)) {

 favoriteState.value =

 !favoriteState.value

 }

 }

 }

}

The corresponding icon for each state is now passed to FavoriteIcon.
Additionally, RestaurantItem is now listening for onClick events in the
trailing lambda block, where it mutates the favoriteState object, triggering
recomposition upon every click.

Yet, looking at FavoriteIcon and RestaurantIcon, we can see many
similarities. Both are stateless composables that receive an ImageVector as
a parameter. Since they are stateless and perform similar functions, let's reuse one
of them and delete the other.

3. Inside RestaurantIcon, add a similar onClick function parameter (just like
FavoriteIcon has) and bind it to the clickable modifier's callback:

@Composable

private fun RestaurantIcon(icon: ImageVector, modifier:
Modifier, onClick: () -> Unit = { }) {

 Image([...],

 modifier = modifier

 .padding(8.dp)

 .clickable { onClick() }

)

}

Since we don't want to execute anything on click events for the restaurant profile
icon, we provided a default empty function ({ }) value to the onClick parameter.

Once you've done this, you can delete the FavoriteIcon composable since
we won't need it anymore.

70 Handling UI State with Jetpack ViewModel

4. Inside the RestaurantItem composable, replace FavoriteIcon with
RestaurantIcon:

@Composable

fun RestaurantItem(item: Restaurant) {

 val favoriteState = ...

 Card(...) {

 Row(...) {

 RestaurantIcon(…)

 RestaurantDetails(...)

 RestaurantIcon(icon, Modifier.weight(0.15f)) {

 favoriteState.value = !favoriteState.value

 }

 }

 }

}

You have now hoisted the state from RestaurantIcon to the RestaurantItem
composable.

Let's keep on hoisting the state even further uphill, into the RestaurantsScreen
composable. However, we cannot keep individual State objects for each
RestaurantItem inside this composable, so we will have to change the
State object to hold a list of Restaurant objects, each having a separate
isFavorite value.

5. Inside the Restaurant.kt file, add another property for Restaurant called
isFavorite. It should have a default value of false since, by default, restaurants
are not marked as favorites when the application starts:

data class Restaurant(val id: Int,

 val title: String,

 val description: String,

 var isFavorite: Boolean = false)

val dummyRestaurants = listOf(…)

Hoisting state in Compose 71

6. Going back inside the RestaurantsScreen.kt file, hoist the state up again, this
time from RestaurantItem, by adding an onClick function parameter that's
triggered inside the RestaurantIcon's callback function parameter. We won't
add a new argument for the input data since we already have the item argument of
type Restaurant, and you can also safely remove the favoriteState variable
since we won't be needing it anymore:

@Composable

fun RestaurantItem(item: Restaurant,

 onClick: (id: Int) -> Unit) {

 val icon = if (item.isFavorite)

 Icons.Filled.Favorite

 else

 Icons.Filled.FavoriteBorder

 Card(...) {

 Row(...) {

 ...

 RestaurantIcon(…)

 RestaurantDetails(…)

 RestaurantIcon(…) {

 onClick(item.id)

 }

 }

 }

}

This time, the item parameter will be our Restaurant object. Restaurant now
holds an isFavorite: Boolean property that states whether the restaurant is
favorited or not. That's why we set the correct value for the icon variable based on
the item's field by checking the item.isFavorite value.

Now, RestaurantItem is a stateless composable, so it's time to add a State
object to its parent.

72 Handling UI State with Jetpack ViewModel

7. Inside RestaurantsScreen, add a state variable that will hold our list of
restaurants. Its type will be MutableState<List<Restaurant>> and we will
set the restaurants from viewModel as it initial value, finally passing the state's
value to the items constructor of LazyColumn:

@Composable

fun RestaurantsScreen() {

 val viewModel: RestaurantsViewModel = viewModel()

 val state: MutableState<List<Restaurant>> =

 remember {

 mutableStateOf(viewModel.getRestaurants())

 }

 LazyColumn(...) {

 items(state.value) { restaurant ->

 RestaurantItem(restaurant) { id ->

 val restaurants = state.value.toMutableList()

 val itemIndex =

 restaurants.indexOfFirst { it.id == id }

 val item = restaurants[itemIndex]

 restaurants[itemIndex] =

 item.copy(isFavorite = !item.isFavorite)

 state.value = restaurants

 }

 }

 }

}

Inside RestaurantItem's onClick trailing lambda block, we must toggle the favorite
status of the corresponding restaurant and update the state. Because of this, we did the
following:

1. We obtained the current list of restaurants by calling state.value and
converting it into a mutable list so that we could replace the item whose
isFavorite field's value should be updated.

2. We obtained the index of the item whose isFavorite field should be updated
via the indexOfFirst function, where we matched the id property of the
Restaurant objects.

Hoisting state in Compose 73

3. Having found itemIndex, we obtained the item object of type Restaurant and
applied the copy() constructor, where we negated the isFavorite field. The
resulting value replaced the existing item at itemIndex.

4. Finally, we passed the updated restaurants list back to the state object with
the .value accessor.

Note
For Compose to observe changes within a list of objects of type T called
List<T>, where T is a data class, you must update the memory
reference of the updated item. You can do that by calling the copy()
constructor of T so that when the updated list is passed back to your
State object, Compose triggers a recomposition. Alternatively, you
can use mutableStateListOf<Restaurant>() to have easier
recomposition events triggered.

If we try to run the app, we should notice that the functionality is the same, yet the state
was hoisted and that we can now reuse composables such as RestaurantItem or
RestaurantIcon much easier.

But what happens if we toggle a couple of restaurants that are favorites and then rotate the
device, thereby changing the screen orientation?

Even though we used the remember block to preserve the state across recompositions,
our selections were lost, and all the restaurants are marked as not favorites again. This is
because the MainActivity host of our RestaurantsScreen composable has been
recreated, so any state was also lost when the configuration change occurred.

To fix this, we can do the following:

• Replace the remember block with rememberSaveable. This will allow the state
to be automatically saved across configuration changes of the host Activity.

• Hoist the state to ViewModel. We know that RestaurantsViewModel is not
scoped to the lifecycle of our RestaurantsScreen yet since no navigation
library was used, so this means it's scoped to MainActivity, which allows it to
survive configuration changes.

74 Handling UI State with Jetpack ViewModel

You can try replacing the remember block with rememberSaveable and then rotate
the screen to see that the state is now preserved across configuration changes. However,
we want to take the high road and make sure ViewModel is the only source of truth for
our state. Let's get started:

1. To lift the state to ViewModel, we must move the State object from the
RestaurantsScreen composable to the RestaurantsViewModel and
we must also create a new method called toggleFavorite that will allow the
RestaurantsViewModel to mutate the value of the state variable every time
we try to toggle the favorite status of a restaurant:

class RestaurantsViewModel() : ViewModel() {

 val state = mutableStateOf(dummyRestaurants)

 fun toggleFavorite(id: Int) {

 val restaurants = state.value.toMutableList()

 val itemIndex =

 restaurants.indexOfFirst { it.id == id }

 val item = restaurants[itemIndex]

 restaurants[itemIndex] =

 item.copy(isFavorite = !item.isFavorite)

 state.value = restaurants

 }

}

The new method called toggleFavorite accepts the id property of the targeted
restaurant. Inside this method, we moved the code from the RestaurantItem's
onClick trailing lambda block, where we toggle the favorite status of the
corresponding item and update its state.

By this time, you can safely remove the getRestaurants() method from the
RestaurantsViewModel class since we won't be needing it anymore.

Note
The State object that's contained within the ViewModel should not
be publicly available for other classes to modify it, since we want it to be
encapsulated and allow only the ViewModel to update it. We will fix this in
Chapter 7, Introducing Presentation Patterns in Android.

Recovering from system-initiated process death 75

2. Inside the RestaurantsScreen composable, remove the state variable and
pass the restaurants from RestaurantsViewModel by accessing the value of its
state through the .value accessor with viewModel.state.value:

fun RestaurantsScreen() {

 val viewModel: RestaurantsViewModel = viewModel()

 LazyColumn(...) {

 items(viewModel.state.value) { restaurant ->

 RestaurantItem(restaurant) { id ->

 viewModel.toggleFavorite(id)

 }

 }

 }

}

We also removed the old code from the RestaurantItem's onClick
trailing lambda block and replaced it with a call to our ViewModel's
toggleFavorite method.

If you run the application, the UI should perform as expected, so you should be able
to toggle any restaurants as favorite and your selections should be saved upon events
like orientation change.

The only difference is that now, RestaurantsViewModel is the only source of
truth for the state of RestaurantsScreen and we no longer need to hold or save
the UI state inside the composables themselves.

We now know how to hoist the state up into the ViewModel. Now, let's cover a very
important scenario in the world of Android that's related to process death.

Recovering from system-initiated process
death
We've already learned how, whenever a configuration change occurs, our Activity is
recreated, which can cause our UI to lose its state. To bypass this issue and to preserve
the UI's state, we ended up implementing a ViewModel component and hoisted the UI
state there.

But what would happen in the case of a system-initiated process death?

76 Handling UI State with Jetpack ViewModel

A system-initiated process death happens when the user places our application in the
background and decides to use other apps for a while – in the meantime, though, the
system decides to kill our app's process to free up system resources, which initiates
process death.

Let's try to simulate such an event and see what happens:

1. Start the Restaurants app using the IDE's Run button and mark some restaurants
as favorites:

Figure 2.6 – The RestaurantsScreen composable with favorite selections made

2. Place the app in the background by pressing the Home button on the
device/emulator.

Recovering from system-initiated process death 77

3. In Android Studio, select the Logcat window and then press the red square button
on the left-hand side to terminate the application:

Figure 2.7 – Killing the process in Logcat to simulate system-initiated process death

78 Handling UI State with Jetpack ViewModel

4. Relaunch the application from the application drawer:

Figure 2.8 – The RestaurantsScreen composable with favorite selections lost

We have now simulated a situation where the system would kill our process. When we
return to the app, we can see that our selections are now gone and that the restaurants that
were favorited are now in their default states.

To restore state upon system-initiated process death, we used to use the Saved State
module, which allowed us to save state-related details in the
onSaveInstanceState() callback of our activity.

Similarly, every ViewModel that uses the default ViewModelFactory (like we did with
the viewModel() inline syntax previously) can access a SavedStateHandle object
through its constructor. If you use a custom ViewModelFactory, make sure that it
extends AbstractSavedStateViewModelFactory.

The SavedStateHandle object is a key-value map that allows you to save and then
restore objects that are crucial to your state. This map survives the event of process death
when this event is initiated by the system, which allows you to retrieve and restore your
saved objects.

Note
When we're saving state-related data, it's crucial to save lightweight objects that
define the state and not the entire data that is described on the screen. For large
data, we should use local persistence.

Recovering from system-initiated process death 79

Let's try to do this in our application by saving a list of id values of the restaurants that
were toggled as favorites in SavedStateHandle. Saving the id values is better than
saving the entire list of restaurants since a list of Int values is lightweight. And since
we can always get the restaurant list back at runtime, the only thing that's missing is to
remember which of them were favorited.

Note
Usually, SavedStateHandle is used for saving transient data like sorting
or filtering selections performed by the user, or other selections that you need
to restore upon system-initiated process death. In our case though, favorited
restaurants should be restored not only upon system-initiated process death
but also upon a simple application restart. That's why we will save these
selections as part of the domain data of the app inside a local database later in
Chapter 6, Adding Offline Capabilities with Jetpack Room.

Let's use a SavedStateHandle object to recover from system-initiated process death:

1. Add the SavedStateHandle parameter to your RestaurantsViewModel:

class RestaurantsViewModel(

 private val stateHandle: SavedStateHandle) :

 ViewModel() {

 …

}

2. Call a storeSelection method whenever we toggle the favorite status of
a restaurant inside the toggleFavorite method and pass the respective
restaurant:

class RestaurantsViewModel(…) {

 fun toggleFavorite(id: Int) {

 …

 restaurants[itemIndex] = item.copy(isFavorite =

 !item.isFavorite)

 storeSelection(restaurants[itemIndex])

 state.value = restaurants

 }

 ...

}

80 Handling UI State with Jetpack ViewModel

This code won't compile though because we haven't yet defined the
storeSelection method. Let's do that up next.

3. Inside RestaurantsViewModel, create a new storeSelection method that
receives a Restaurant object whose isFavorite property has just been altered,
and saves that selection inside the SavedStateHandle object provided by the
RestaurantsViewModel class:

private fun storeSelection(item: Restaurant) {

 val savedToggled = stateHandle

 .get<List<Int>?>(FAVORITES)

 .orEmpty().toMutableList()

 if (item.isFavorite) savedToggled.add(item.id)

 else savedToggled.remove(item.id)

 stateHandle[FAVORITES] = savedToggled

}

companion object {

 const val FAVORITES = "favorites"

}

This new method will try to save the id value of a restaurant in our stateHandle
object every time we toggle its favorite status. It does this as follows:

I. It obtains a list containing the IDs of the previously favorited restaurants from
stateHandle by accessing the FAVORITES key inside the map. It stores the
result in a savedToggle mutable list. If no restaurants were favorited, the
list will be empty.

II. If this restaurant was marked as favorite, it adds the ID of the restaurant to the
savedToggle list. Otherwise, it removes it.

III. Saves the updated list of favorited restaurants with the FAVORITES key inside
the stateHandle map.

We have also added a companion object construct to the
RestaurantsViewModel class as a static extension object. We used this
companion object to define a constant value for the key used to save the
restaurant's selection inside our stateHandle map.

Now, we've made sure to cache the selections of favorite restaurants before process
death, so our next step is to find a way to restore these selections after the app
recovers from a system-initiated process death event.

Recovering from system-initiated process death 81

4. Call a restoreSelections() extension method on the dummyRestaurants
list that we are passing as an initial value to our state object. This call should
restore the UI selections:

class RestaurantsViewModel(

 private val stateHandle: SavedStateHandle):

 ViewModel() {

 val state = mutableStateOf(

 dummyRestaurants.restoreSelections()

)

 ...

}

This code won't compile though because we haven't yet defined the
restoreSelections method. Let's do that up next.

5. Inside RestaurantsViewModel, define the restoreSelections extension
function that will allow us to retrieve the restaurants that were favorited upon
process death:

private fun List<Restaurant>.restoreSelections():

 List<Restaurant> {

 stateHandle.get<List<Int>?>(FAVORITES)?.let {

 selectedIds ->

 val restaurantsMap = this.associateBy { it.id }

 selectedIds.forEach { id ->

 restaurantsMap[id]?.isFavorite = true

 }

 return restaurantsMap.values.toList()

 }

 return this

}

82 Handling UI State with Jetpack ViewModel

This extension function will allow us to mark those restaurants that were marked
by the user previously as favorites upon system-initiated process death. The
restoreSelections extension function achieves that in the following way:

I. First, by obtaining the list with the unique identifiers of the previously favorited
restaurants from stateHandle by accessing the FAVORITES key inside the
map. If the list is not null, this means that a process death occurred, and it
references the list as selectedIds; otherwise, it will return the list without any
modifications.

II. Then, by creating a map from the input list of restaurants with the key being the
id value of the restaurant and the value the Restaurant object itself.

III. By iterating over the unique identifiers of the favorited restaurants and for
each of them, by trying to access the respective restaurant from our new list and
sets its isFavorite value to true.

IV. By returning the modified restaurants list from restaurantMap. This list
should now contain the restored isFavorite values from before the death
process occurred.

6. Finally, build the app and then repeat steps 1, 2, 3, and 4 from when we simulated
a system-initiated process death.

The application should now correctly display the UI state with the previously
favorited restaurants from before the system-initiated process death.

With that, we've made sure that our application not only stores the UI state at the
ViewModel level but that it also can recover from extraordinary events, such as
system-initiated process death.

Summary
In this chapter, we learned what a ViewModel class is, we explored the concepts that
define it, and we learned how to instantiate one. We tackled why a ViewModel is useful
as a single source of truth for the UI's state: to avoid illegal and undesired states.

For that to make sense, we explored how a UI is defined by its state and how to define
such a state in Compose. We then understood what state hoisting is and how to separate
widgets between stateless and stateful composables.

Finally, we put all these new concepts into practice by defining state in our Restaurants
app, hoisting it, and then lifting it even higher into the newly created ViewModel.

Further reading 83

Finally, we learned how system-initiated process death occurs and how to allow the app to
recover by restoring the previous state with the help of SavedStateHandle.

In the next chapter, we will add real data to our Restaurants app by connecting it to
our database using Retrofit.

Further reading
Working with ViewModels and handling state changes in Compose represent two
essential topics for reliable projects. Let's see what other subjects revolve around them.

Exploring ViewModel with runtime-provided
arguments
In most cases, you can declare and provide dependencies to your ViewModel inside
the constructor, at compile time. In some cases, though, you might need to initialize
a ViewModel instance with a parameter that's only known at runtime.

For example, when we're adding a composable screen that displays the details of
a restaurant, instead of sending the ID of the target restaurant from the composable
to ViewModel through a function call, we can provide it directly to the ViewModel
constructor through ViewModelFactory.

To explore the process of building a ViewModelFactory, check out the following
Codelab: https://developer.android.com/codelabs/kotlin-android-
training-view-model#7.

Exploring ViewModel for Kotlin Multiplatform projects
While this chapter covered the Jetpack ViewModel for Compose in pure Android apps,
if you're aiming to build cross-platform projects using Kotlin Multiplatform (KMP)
or Kotlin Multiplatform Mobile (KMM), the Jetpack ViewModel might not be your
best option.

When we're building cross-platform projects, we should try to avoid platform-specific
dependencies. The Jetpack ViewModel is suited for Android and therefore is an Android
dependency, so we might need to build or define a ViewModel.

To learn more about KMM and platform-agnostic ViewModels, check out the following
GitHub example: https://github.com/dbaroncelli/D-KMP-sample.

https://developer.android.com/codelabs/kotlin-android-training-view-model#7
https://developer.android.com/codelabs/kotlin-android-training-view-model#7
https://github.com/dbaroncelli/D-KMP-sample

84 Handling UI State with Jetpack ViewModel

Understanding how to minimize the number of
recompositions
In this chapter, we learned how to trigger recompositions by using State objects. While
in Compose, recompositions happen often, we haven't had a chance to optimize the
performance of our Compose-based screens.

We can reduce the number of recompositions by ensuring that the input of the
composables is deeply stable. To learn more about how to achieve this, go to https://
developer.android.com/jetpack/compose/lifecycle?hl=bn-IN&skip_
cache=true#skipping.

https://developer.android.com/jetpack/compose/lifecycle?hl=bn-IN&skip_cache=true#skipping
https://developer.android.com/jetpack/compose/lifecycle?hl=bn-IN&skip_cache=true#skipping
https://developer.android.com/jetpack/compose/lifecycle?hl=bn-IN&skip_cache=true#skipping

3
Displaying Data
from REST APIs

with Retrofit
In this chapter, we'll be taking a break from the Jetpack libraries and focusing on adding
real data within our Restaurants application by using a very popular networking library
on Android called Retrofit.

Retrofit is an HTTP client library that lets you create an HTTP client declaratively and
abstracts most of the underlying complexity associated with handling network requests
and responses. This library allows us to connect to a real web API and retrieve real data
within our app.

In the Understanding how apps communicate with remote servers section, we will focus
on exploring how mobile applications retrieve and send data to remote web APIs. In the
Creating and populating your database with Firebase section, we will create a database for
our Restaurants application with the help of Firebase and fill it with JSON content.

In the Exploring Retrofit as an HTTP networking client for Android section, we will
learn what Retrofit is, and how it can help us create network requests within our
Restaurants app.

86 Displaying Data from REST APIs with Retrofit

Lastly, in the Improving the way our app handles network requests section, we will tackle
some common issues that occur when Android applications create async work to retrieve
data from web APIs. We will identify those issues and fix them.

To summarize, in this chapter, we're going to cover the following main topics:

• Understanding how apps communicate with remote servers

• Creating and populating your database with Firebase

• Exploring Retrofit as an HTTP networking client for Android

• Improving the way our app handles network requests

Before jumping in, let's set up the technical requirements for this chapter.

Technical requirements
Building Compose-based Android projects with Retrofit usually requires just your
day-to-day tools. However, to follow along smoothly, make sure you have the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds but note that IDE interface and other
generated code files might differ from the ones used throughout this book.

• Kotlin 1.6.10 or newer installed in Android Studio.

• The Restaurants app code from the previous chapter.

• A Google account to create a Firebase project.

The starting point for this chapter is the Restaurants application that we developed in
the previous chapter. If you haven't followed the coding steps from the previous
chapter, access the starting point for this chapter by navigating to the Chapter_02
directory of this book's GitHub repository and importing the Android project entitled
chapter_2_restaurants_app.

To access the solution code for this chapter, navigate to the Chapter_03 directory:

https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_03.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_03
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_03

Understanding how apps communicate with remote servers 87

Understanding how apps communicate with
remote servers
Modern applications need to show real content that can change over time and need to
avoid hardcoding data, as we did in the previous chapters. Let's briefly cover how they
do that.

Most network-connected apps use the HTTP protocol to send or receive data in the
format of JSON from REST web services through a REST API.

That's a lot of words we've just thrown at you, so let's break them down:

• Hypertext Transfer Protocol (HTTP) is a protocol for asynchronously fetching
various resources from web servers. In our case, the resources are the data that our
application needs to display.

• JavaScript Object Notation (JSON) is the data format of the content that's
transferred in HTTP requests. It's structured, lightweight, and human-readable as
it consists of key-value pairs that are easy to parse and commonly used as a suitable
format for data exchange between apps and web servers. In our app, we will receive
the data from the web server in such JSON format.

• REST web services are those sources that contain the requested data and that
conform to the representational state transfer (REST) architecture. REST means
that the web server uses the HTTP protocol to communicate resources and that its
resources are manipulated with the common HTTP methods: GET, PUT, POST,
DELETE, and so on.

• A REST API is an application programming interface (API) that conforms to
the constraints of the REST architecture and allows you to interact with REST web
services. The REST API is the contract and the entry point that's used by apps to
obtain or send data to and from the backend.

Let's try to visualize the relationship between these entities:

Figure 3.1 – Overview of HTTP communication between apps and web servers

88 Displaying Data from REST APIs with Retrofit

We want to implement something similar for our Restaurants application. For this to
work, we will need a REST server. For the sake of simplicity, we will use the Firebase
Realtime Database and create a database.

Creating and populating your database with
Firebase
So far, we've only used hardcoded data as the source of content for our Restaurants app.
Since almost every real application uses dynamic data that comes from a backend server
through a REST API, it's time to step up our game and create a database that simulates
such a remote API.

We can do this for free with the help of Firebase. Firebase is backed by Google and
represents a Backend-as-a-Service (BaaS), which allows us to build a database very
easily. We will use the Realtime Database service from Firebase without using the Firebase
Android SDK. Even though such a database is not a proper REST web service, we can
use its database URL as a REST endpoint and pretend that that is our REST interface,
therefore simulating a real backend.

Note
As we mentioned in the Technical requirements section, make sure that you
have an existing Google account or that you create one beforehand.

Let's start creating a database:

1. Navigate to the Firebase console and log into your Google account by going to
https://console.firebase.google.com/.

2. Create a new Firebase project:

Figure 3.2 – Creating a new Firebase project

https://console.firebase.google.com/

Creating and populating your database with Firebase 89

3. Input the name of your project (it should be about restaurants!) and press
Continue.

4. Optionally, in the next dialog, you can opt out from Google Analytics since we
won't be using the Firebase SDK. Press Continue again. At this point, the project
should be created.

5. From the left menu, expand the Build tab, search for Realtime Database, and then
select it:

Figure 3.3 – Accessing Realtime Database

6. On the newly displayed page, create a new database by clicking Create Database.
7. In the Set up database dialog, select a location for your database and then

click Next:

Figure 3.4 – Setting up a Realtime Database

90 Displaying Data from REST APIs with Retrofit

Note
If later on any network calls to your Firebase Database fail for no apparent
reason, you might find yourself in a Firebase restricted location – as I am
writing this chapter, because of the current situation caused by the eastern war,
all internet providers from Romania are restricted and any network calls to
Firebase Database are failing. If this happens to you, try selecting a different
location for your Realtime Database instance.

8. In the same dialog, define your security rules by selecting Start in test mode and
then clicking Enable.

Figure 3.5 – Setting up the security rules of your database

Important Note
The default security rules for test mode allow anyone to view or modify the
content within your database for the next 30 days since creation. After these
30 days, if you want to keep using the database in test mode, you will need to
update the security rules by changing the timestamp values for the ".read"
and the ".write" fields with greater timestamp values. To skip this, we will
just set the ".read" and the ".write" fields to true in the next steps.
However, Firebase might still restrict your access if you leave the database open
for access without any rules indefinitely – that's why I recommend you visit the
Firebase console and check the security rules for your database often to make
sure that access was not revoked.

Creating and populating your database with Firebase 91

At this point, you should be redirected to your database's main page in the Data tab:

Figure 3.6 – Observing the Realtime Database main page
You will now notice your URL for this database: https://restaurants-db-
default-rtdb.firebaseio.com/.

Your URL should be similar but may differ, depending on the name you have
chosen for your database.

Note that the database seems to be empty; we only have an empty root node being
called after our database: restaurants-db-default-rtdb. It's time to add
data to our database.

9. Access the solution code for this chapter by navigating to the
Chapter_03 directory of this book's GitHub repository. Then, select
the restaurants.json file. You can also access it by following this link:
https://github.com/PacktPublishing/Kickstart-Modern-
Android-Development-with-Jetpack-and-Kotlin/blob/main/
Chapter_03/restaurants.json.

From here, download the restaurants.json file as we will need it shortly. To
do that, press on the Raw button provided by the Github website and then right
click the document that has been opened and download the JSON file by selecting
Saves As.

10. Go back to the Firebase console, press on the three-dots menu to the right of the
database URL, and select Import JSON:

Figure 3.7 – Importing JSON content into Realtime Database

https://restaurants-db-default-rtdb.firebaseio.com/
https://restaurants-db-default-rtdb.firebaseio.com/
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_03/restaurants.json
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_03/restaurants.json
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/blob/main/Chapter_03/restaurants.json

92 Displaying Data from REST APIs with Retrofit

Make sure that you select the restaurants.json file that you've previously
downloaded from the book's GitHub repository.

11. Wait for the page to refresh and check out the content that is populated in the
database:

Figure 3.8 – Observing the content's structure in our database
Here, we can see that our database contains a list of restaurants. Each restaurant
has attributes that are similar to the ones in our Restaurant class: an ID, title,
and description. The restaurants in our database also contain other fields that we
will not need right now, so let's ignore them.

Note
If you compare the structure of the content in our database with the one
from the JSON file we've uploaded, we can see that it is very similar: we have
a restaurants node that contains an array of objects, each containing
consistent key-value pairs. The only exception is the presence of the indexes
(0, 1, 2, and so on) for each restaurant, which were automatically created by
Firebase. We should ignore these as they won't affect us.

Now, even though we set the security rules to Test Mode previously, let's revisit
them.

Exploring Retrofit as an HTTP networking client for Android 93

12. Move away from the Data tab and select the Rules tab. Here, to make sure that
we can always read data from this database, change the ".read" key's value
to "true":

Figure 3.9 – Updating security rules in Realtime Database

13. Press Publish to save the changes.

Note
The security rules that we've set should not be used in a production application.
We are hardcoding our security rules to true since we are testing and not
publishing anything to production.

Now, we can access the database URL as a simple REST endpoint, simulating a real
REST server that we can connect to. To experiment, copy the URL of your newly created
database, append restaurants.json, and paste it into your browser.

Accessing this URL should return the JSON response of our restaurants, whose structure
we will cover shortly. Until then, we need to instruct our application to create HTTP
requests to obtain that data from our newly created database. So, let's do that next.

Exploring Retrofit as an HTTP networking
client for Android
For the application to obtain data from our database, we need to implement an HTTP
client that will send network requests to the REST API of the database.

Instead of working with the HTTP library provided by default by Android, we will use
the Retrofit HTTP client library, which lets you create an HTTP client that is very easy
to work with.

94 Displaying Data from REST APIs with Retrofit

If you plan to develop an HTTP client that interfaces with a REST API, you will have to
take care of a lot of things – from making connections, retrying failed requests, or caching
to response parsing and error handling. Retrofit saves you development time and potential
headaches as it abstracts most of the underlying complexity associated with handling
network requests and responses.

In this section, we will cover the following topics:

• Using Retrofit

• Adding Retrofit to the Restaurants application

• Mapping JSON to model classes

• Executing GET requests to the Firebase REST API

Let's start with some basics about Retrofit!

Using Retrofit
Retrofit makes networking simple in Android apps. It allows us to consume web services
easily, create network requests, and receive responses while reducing the boilerplate code
that's usually associated with their implementation.

Note
Retrofit also allows you to easily add custom headers and request types, file
uploads, mocking responses, and more.

To execute network requests with Retrofit, we need the following three components:

• An interface that defines the HTTP operations that need to be performed. Such an
interface can specify request types such as GET, PUT, POST, DELETE, and so on.

• A Retrofit.Builder instance that creates a concrete implementation of the
interface we defined previously. The Builder API allows us to define networking
parameters such as the HTTP client type, the URL endpoint for the HTTP
operations, the converter to deserialize the JSON responses, and so on.

• Model classes that allow Retrofit to know how to map the deserialized JSON objects
to regular data classes.

Enough with the theory – let's try to implement Retrofit and use the components we
introduced previously in our Restaurants application.

Exploring Retrofit as an HTTP networking client for Android 95

Adding Retrofit to the Restaurants application
We want to connect our Restaurants application to the newly created Firebase database
and send HTTP network requests to it. More specifically, when the Restaurants
application is launched and the RestaurantsScreen composable is composed, we
want to get the list of restaurants at runtime and not depend on hardcoded content within
the app.

Let's do that with the help of Retrofit:

1. Inside the build.gradle file in the app module, add the dependency for Retrofit
inside the dependencies block:

implementation "com.squareup.retrofit2:retrofit:2.9.0"

2. After updating the build.gradle file, make sure to sync your project with its
Gradle files. You can do that by clicking on the File menu option and then by
selecting Sync Project with Gradle Files.

3. Create an interface that defines the HTTP operations that are executed between
our app and the database. Do so by clicking on the application package, selecting
New, and then selecting Kotlin Class/File. Enter RestaurantsApiService
as the name and select Interface as the type. Inside the newly created file, add the
following code:

import retrofit2.Call

import retrofit2.http.GET

interface RestaurantsApiService {

 @GET("restaurants.json")

 fun getRestaurants(): Call<Any>

}

Let's break down the code we've just added into meaningful actions:

 � Retrofit turns your HTTP API into a simple Java/Kotlin interface, so we've
created a RestaurantsApiService interface that defines the HTTP actions
we need.

 � We've defined a getRestaurants method inside the interface that returns a
Call object with an undefined response type marked by Kotlin's Any type.
Each Call from RestaurantsApiService can make a synchronous or
asynchronous HTTP request to the remote web server.

96 Displaying Data from REST APIs with Retrofit

 � We've annotated the getRestaurants method with the @GET annotation,
thereby telling Retrofit that this method should execute a GET HTTP action
to obtain data from our web server. Inside the @GET annotation, we passed
the endpoint's path, which represents the restaurants node within
our Firebase database. This means that when we execute this request, the
restaurants.json endpoint will be appended to the base URL of the
HTTP client.

Note
We mentioned that we can use our Firebase Realtime Database URL as a
REST API. To access a specific node, such as the restaurants node of our
database, we also appended the .json format to make sure that the Firebase
database will behave like a REST API and return a JSON response.

Later on, after we instantiate a Retrofit builder, the library will know how to turn our
getRestaurants method into a proper HTTP call.

But before that, you have probably noticed that the getRestaurants HTTP request
from our interface has its response type defined as Any. We expect to receive the JSON
content of our restaurants mapped to data classes that we can use in our code. So, let's
work on that next.

Mapping JSON to model classes
Retrofit lets you automatically serialize request bodies and deserialize response
bodies. In our case, we're interested in deserializing the response body, from JSON
into Java/Kotlin objects.

To deserialize the JSON response, we will instruct Retrofit to use the GSON
deserialization library, but until then, let's have a look at the JSON response that our
database returns. Remember that we imported a JSON file called restaurants.json
when we populated the Firebase database.

Exploring Retrofit as an HTTP networking client for Android 97

Let's open that file with any text editor and observe its structure:

Figure 3.10 – The JSON structure of the Firebase database's content

We can observe the following elements in the JSON response structure:

• It contains an array of JSON objects marked by the [and] identifiers.

• The contents of the JSON array's element are marked by the { and } identifiers
and they enclose the JSON object structure of a restaurant.

• The restaurant JSON object contains four key-value pairs, separated by the ,
separator.

The response from our database will be of type List<?> since the response holds an
array of JSON objects. The main question that remains is, what data type should our
application expect inside that list?

98 Displaying Data from REST APIs with Retrofit

To answer that, we must inspect the structure of the restaurant JSON object a bit closer:

Figure 3.11 – The structure of the restaurant JSON object

Here, we can see that the JSON restaurant has four key-value pairs that refer to the id,
title, description, and shutdown statuses of the corresponding restaurant. This
structure is similar to our Restaurant.kt data class within the project:

data class Restaurant(val id: Int,

 val title: String,

 val description: String,

 var isFavorite: Boolean = false)

Our Restaurant also contains the id, title, and description fields. We are not
interested in the shutdown status for now, so it's tempting to use the Restaurant
class as the model for our response, thus making our getRestaurants() method
in RestaurantsApiService return List<Restaurant> as the response of the
request.

The issue with this approach is that we need to tell Retrofit to match the r_id key's value
with our id field. The same goes for r_title, which should be matched with the title
field and so on. We can approach this in two ways:

• Rename the Restaurant data class fields so that they match the response keys:
r_id, r_title, and so on. In this case, the deserialization will automatically
match our fields with the fields from the JSON objects since the JSON keys are
identical to the fields' names.

• Annotate the Restaurant data class fields with special serialization matchers that
tell Retrofit which keys should be matched with each field. This won't change the
variable names.

The first approach is bad because our Restaurant data class would end up with fields
that contain underscore naming dictated by the server. It would also not comply with
Kotlin's CamelCase guideline for defining field variables anymore.

Exploring Retrofit as an HTTP networking client for Android 99

Let's choose the second approach, where we specify the serialization keys ourselves. To do
that, we will tell Retrofit to deserialize the JSON with the GSON deserialization library,
which is a powerful framework for converting JSON strings into Java/Kotlin objects and
vice versa:

1. First, we need to add the GSON library dependency to mark our fields with custom
serialization keys. Inside the build.gradle file in the app module, add the
dependency for GSON inside the dependencies block:

implementation "com.google.code.gson:gson:2.8.6"

2. After updating the build.gradle file, make sure to sync your project with its
Gradle files. You can do that by clicking on the File menu option and then by
selecting Sync Project with Gradle Files.

3. Inside Restaurant.kt, add the @SerializedName annotation for each field
and specify the corresponding serialization keys from the JSON structure:

import com.google.gson.annotations.SerializedName

data class Restaurant(

 @SerializedName("r_id")

 val id: Int,

 @SerializedName("r_title")

 val title: String,

 @SerializedName("r_description")

 val description: String,

 var isFavorite: Boolean = false)

By doing so, we've made sure that Retrofit will correctly match each of the JSON
key's values with our corresponding field inside the Restaurant data class while
also matching the data type:

 � The r_id key matches the id field. The r_id key has a whole number as its
value in the JSON structure, so we stored this key's value in the id: Int field.

 � The r_title key matches the title field. The r_title key has text as its
value marked with the " and " identifiers, so we stored this key's value in the
title: String field.

 � The r_description key matches the description field. The
r_description key has text as its value marked with the " and "
identifiers, so we stored this key's value in the description: String field.

100 Displaying Data from REST APIs with Retrofit

Note
For now, we are using the Restaurant data model both as the API response
model and as the domain model that's used throughout the application.
Architecturally, this practice is not recommended, and we will cover why this
is the case and fix it in Chapter 8, Getting Started with Clean Architecture in
Android.

4. Update the getRestaurants() method inside RestaurantsApiService so
that it returns a Call object from the server with the type parameter that matches
the response that is expected. In our case, that would be List<Restaurant>:

interface RestaurantsApiService {

 @GET("restaurants.json")

 fun getRestaurants(): Call<List<Restaurant>>

}

With that, our Retrofit API interface has been defined to receive the content of the
Restaurants database from our Firebase database. The only step left is to configure a
Retrofit builder instance and execute the request.

Executing GET requests to the Firebase REST API
Let's configure the last component that's needed to perform requests with Retrofit – the
Retrofit.builder object:

1. First, we need to add the GSON Converter library dependency for Retrofit
so that Retrofit deserializes the JSON response while following the GSON
serialization annotations we added previously. Inside the build.gradle file in
the app module, add the dependency for the Retrofit GSON converter inside the
dependencies block:

implementation "com.squareup.retrofit2:converter-

 gson:2.9.0"

2. After updating the build.gradle file, make sure to sync your project with its
Gradle files. You can do that by clicking on the File menu option and then by
selecting Sync Project with Gradle Files.

Exploring Retrofit as an HTTP networking client for Android 101

3. Inside RestaurantsViewModel, add a restInterface variable of type
RestaurantsApiService and create an init block where we will instantiate
the Retrofit.builder object:

class RestaurantsViewModel(…) : ViewModel() {

 private var restInterface: RestaurantsApiService

 val state = mutableStateOf(

 dummyRestaurants.restoreSelections()

)

 init {

 val retrofit: Retrofit = Retrofit.Builder()

 .addConverterFactory(

 GsonConverterFactory.create()

)

 .baseUrl(

 "https://restaurants-db-default

 -rtdb.firebaseio.com/"

)

 .build()

 restInterface = retrofit.create(

 RestaurantsApiService::class.java

)

 }

 […]

}

We've added all the necessary pieces for our networking client. Let's break this
code down:

 � First, we've defined a restInterface variable of type
RestaurantsApiService that we will call upon to execute
the desired network requests. At this point, the restInterface
variable holds no value.

 � We've added an init block to instantiate the Retrofit builder object. As the
primary constructor can't contain any code, we are placing the initialization
code in an initializer block prefixed with the init keyword.

102 Displaying Data from REST APIs with Retrofit

 � We've instantiated a retrofit: Retrofit variable with the
Retrofit.Builder accessor and specified the following:

 � A GsonConverterFactory to explicitly tell Retrofit that we want the JSON
to be deserialized with the GSON converter, following the @Serialized
annotations we specified in the Restaurant data class.

 � A baseUrl for all the requests that are to be executed – in your case, replace
this URL with the URL of your Firebase database.

 � Finally, we called .create() on the previously obtained
Retrofit object and passed our interface with the desired requests:
RestaurantsApiService. Behind the scenes, Retrofit creates a concrete
implementation of our interface that will handle all the networking logic,
without us having to worry about it. We store this instance from Retrofit inside
our restInterface variable.

Now, we can execute requests – in our case, the request to get the list of restaurants.
4. Inside RestaurantsViewModel, add the getRestaurants method:

fun getRestaurants() {

 restInterface.getRestaurants().execute().body()

 ?.let { restaurants ->

 state.value = restaurants.restoreSelections()

 }

}

We've added all the necessary steps for our networking request to be executed. Let's
break this code down:

I. We've obtained a Call object called Call<List<Restaurant>> from
our Retrofit restInterface variable by calling the getRestaurants()
interface method. The Call object represents the invocation of a Retrofit method
that sends network requests and receives a response. The type parameter of the
Call object matches the response type; that is, <List<Restaurant>>.

II. On the previously obtained Call object, we called execute(). The
execute() method is the most simple approach to starting a network request
with Retrofit as it runs the request synchronously on the main thread (the UI
thread) and blocks it until the response arrives. No network request should block
the UI thread yet, though we will fix this soon.

III. The execute() method returns a Retrofit Response object that allows us to
see if the response was successful and obtain the resulting body.

Exploring Retrofit as an HTTP networking client for Android 103

IV. The body() accessor returns a nullable list of type List<Restaurant>>?.
We apply the Kotlin let extension function and name the list restaurants.

V. We pass the resulting restaurants list to our state object after restoring the
selections in case of system-initiated process death, similar to what we did for the
initial state value.

With that, we've instructed our ViewModel on how to obtain the list of restaurants
from the database and to pass this result to our screen's state. One issue that we
will have to address later is that we are not catching any errors that may be thrown
by Retrofit if the request fails. Until then, let's focus on updating the state with the
new result.

5. Inside RestaurantsViewModel, we need to update the state's initial value so
that it contains an empty list. This is because, when the screen is first displayed, we
no longer have restaurants to render – we will get them later in the network request.
Update the initial value of the state object by removing dummyList and placing
an emptyList() instead:

val state = mutableStateOf(emptyList<Restaurant>())

6. Inside the Restaurant.kt file, remove the dummyRestaurants list since we
will be obtaining the restaurants at runtime through the previously defined request.

7. We want to trigger the network request to obtain the restaurants from the
server. Inside RestaurantsScreen.kt, update the RestaurantsScreen
composable function so that it calls the getRestaurants() method of
viewModel, which will trigger the network request to obtain the restaurants from
the server:

@Composable

fun RestaurantsScreen() {

 val viewModel: RestaurantsViewModel = viewModel()

 viewModel.getRestaurants()

 LazyColumn(…) { … }

}

By calling viewModel.getRestaurants(), we are trying to load the list of
restaurants when the RestaurantsScreen composable is composed for the first
time. This practice is not recommended and we will see in the following steps why
that is and how we can fix it.

104 Displaying Data from REST APIs with Retrofit

8. Add internet permission inside the AndroidManifest.xml file:

<manifest xmlns:android="…"

 package="com.codingtroops.restaurantsapp">

 <uses-permission
android:name="android.permission.INTERNET" />

 <application> … </application>

</manifest>

9. Run the application by clicking the Run button.

Unfortunately, the application will most likely crash. If we check Logcat, we will
notice an exception stack similar to the following:

Figure 3.12 – Crash stack trace for executing a network request on the main thread
The exception that's been thrown here is a NetworkOnMainThreadException
and it's clear what's wrong with our code: we are executing a network request on the
Main thread.

This has happened because with the Android Honeycomb SDK, executing network
requests on the Main thread is forbidden because the UI of the application will
freeze until the response from the server arrives, making the app unusable in that
timeframe. In other words, we can't and shouldn't use the .execute() method
of a Retrofit Call object because the request will run synchronously on the Main
thread.

Instead, we can use an alternative that not only will execute the requests
asynchronously and on a separate thread, but also allow us to handle any errors that
are thrown by Retrofit.

10. In the getRestaurants() method of ViewModel, replace the .execute()
call with .enqueue():

fun getRestaurants() {

 restInterface.getRestaurants().enqueue(

 object : Callback<List<Restaurant>> {

 override fun onResponse(

 call: Call<List<Restaurant>>,

 response: Response<List<Restaurant>>

Exploring Retrofit as an HTTP networking client for Android 105

) {

 response.body()?.let { restaurants ->

 state.value =

 restaurants.restoreSelections()

 }

 }

 override fun onFailure(

 call: Call<List<Restaurant>>, t: Throwable

) {

 t.printStackTrace()

 }

 })

}

When adding the missing imports for the Call, Callback and Response
classes, make sure that you're adding the Retrofit2 imports that start off like this:
import retrofit2.*.

Getting back to the code that we've added, let's look at it in more detail:

 � On the Call object that we obtained from our
restInterface.getRestaurants() method, we called the
.enqueue() function. The enqueue() call is a better alternative to
.execute() since it runs the network request asynchronously on a separate
thread, so it will no longer run on the UI thread and it won't block the UI.

 � The .enqueue() function receives a Callback object as an argument that
allows us to listen for success or failure callbacks. The Callback object's type
parameter defines the expected Response object. Since we expect a response
of type <List<Restaurant>>, the returned Callback type is defined as
Callback<List<Restaurant>>.

 � We've implemented the required object :
Callback<List<Restaurant>> and implemented its two callbacks:

 � onResponse(), which is the success callback that's invoked when the
network request succeeds. It provides us with the initial Call
object, but more importantly the Response object; that is,
Response<List<Restaurant>>. Inside this callback, we get the body
from the response and update the value of the state variable, just like we did
with execute().

106 Displaying Data from REST APIs with Retrofit

 � onFailure(), which is the failure callback. It's invoked when a network
exception occurs while talking to the server or when an unexpected exception
occurs while creating the request or processing the response. This callback
provides us with the initial Call object and the Throwable exception that
was intercepted and whose stack trace we print.

Now, you can run the application. It shouldn't crash anymore since calling enqueue()
allowed the request to run on a separate thread so that we could safely wait for the
response without blocking the UI.

Note
As a good practice, make sure that when you're making requests with Retrofit,
you always call the enqueue() function and not execute(). You want
your users to not experience crashes and to be able to interact with the app
while they're waiting for the network response.

Yet even with this addition, there are still two concerning issues with our code. Were you
able to notice them? Let's try to identify them.

Improving the way our app handles network
requests
Our application now successfully obtains data from the server dynamically, at runtime.
Unfortunately, we have made two major mistakes in our code, and both are related to how
the app handles the requests. Let's identify them:

• First, we are not canceling our network request as a cleanup measure. If our
UI component that is bound to RestaurantsViewModel – in our case,
MainActivity – is destroyed before the response from the server can arrive (for
example, if the user navigates to another activity), we could potentially create a
memory leak. This is because our RestaurantsViewModel would still be tied
to the Callback<List<Restaurant>> object, which waits for the server's
response. Due to this, the garbage collector won't free up the memory associated
with both of their instances.

• Secondly, we are not triggering the network request from a controlled
environment. The viewModel.getRestaurants() method is called
inside the RestaurantsScreen() composable function without any special
considerations. This means that every time the UI is recomposed, the composable
will ask ViewModel to execute network requests, resulting in possible multiple and
redundant requests.

Improving the way our app handles network requests 107

Let's focus on the first issue for now.

Canceling network requests as a cleanup measure
The main problem in our RestaurantsViewModel is that we are enqueueing a Call
object and we're waiting for the response through the Callback object, but we are
never canceling that enqueued Call. We should cancel it when the host Activity or
ViewModel is cleared to prevent memory leaks. Let's do that here:

1. Inside RestaurantsViewModel, define a class variable of type Call with the
List<Restaurant>> type parameter. Call this variable restaurantsCall as
we will use it to hold a reference to our enqueued Call object:

class RestaurantsViewModel(…): ViewModel() {

 private var restInterface: RestaurantsApiService

 val state = […]

 private lateinit var restaurantsCall:

 Call<List<Restaurant>>

 init {…}

 […]

}

We've marked restaurantsCall as a lateinit variable to instantiate it later
when we perform the network request.

2. Inside the getRestaurants() method of RestaurantsViewModel, assign the
Call object that you obtained from the restInterface.getRestaurants()
method call to the restaurantsCall member variable and call enqueue() on
it:

fun getRestaurants() {

 restaurantsCall = restInterface.getRestaurants()

 restaurantsCall.enqueue(object :

 Callback<List<Restaurant>> {…})

}

3. Inside RestaurantsViewModel, override the onCleared() method and call
the cancel() method of the restaurantCall object:

override fun onCleared() {

 super.onCleared()

108 Displaying Data from REST APIs with Retrofit

 restaurantsCall.cancel()

}

The onCleared() callback method is provided by the Jetpack ViewModel and
is called just before ViewModel is destroyed as a consequence of the attached
activity/fragment or composable being destroyed or removed from the composition.

This callback represents the perfect opportunity for us to cancel any ongoing
work – or in our case, to cancel the pending Call object that's enqueued in the
restaurantCall object. This way, we prevent leaking memory and therefore fix
the first issue in our code.

Now, it's time to focus on the second issue, where the RestaurantsScreen()
composable calls the viewModel.getRestaurants() method without any special
considerations.

Triggering network requests from a controlled environment
The viewModel.getRestaurants() method is called because we want to apply a
side effect in our UI. A side effect is a change that's made to the state of the application
that usually happens outside the scope of a composable function. In our case, the side
effect is that we need to start loading the restaurants for the first time when the user enters
the screen.

As a rule of thumb, composables should be side-effect free, but in our application, we need
to know when to trigger the network request, and what better place than the moment
when our UI is initially composed?

The problem with the existing approach of simply calling a method on ViewModel
from the composable layer is that the Compose UI can be recomposed many times on
the screen. For example, when an animation is rendered, the Compose UI is recomposed
many times to execute the animation's keyframes. On every recomposition of the UI, our
composable calls the getRestaurants() method on RestaurantsViewModel,
which, in turn, executes network requests to obtain the restaurants from the server, which
could result in multiple and redundant requests.

To prevent this issue from happening, Compose has the right tool for us to handle
side-effects efficiently: the Effects API.

An effect is a composable function that, instead of emitting UI elements, causes side
effects that run when a composition process completes. Such composables are based on
the Kotlin Coroutine API, which allows you to run async work in their bodies. However,
we will disregard coroutines for now as we will cover them in Chapter 4, Handling Async
Operations with Coroutines.

Improving the way our app handles network requests 109

In Compose, there are many types of effect composables that we can use but we will not go
too deep into that. In our case, though, a suitable effect could be the LaunchedEffect
composable since it allows us to run a task only once when it first enters composition.

The signature of LaunchedEffect is simple – it contains a key1 parameter and
a block parameter where we can execute our code. For now, we should ignore the
Coroutine terminology and just think of the block function parameter as a block
of code that can be executed asynchronously:

Figure 3.13 – The signature of the LaunchedEffect composable

When LaunchedEffect enters the composition process, it runs the block parameter
function, which is passed as an argument. The execution of the block will be canceled if
LaunchedEffect leaves the composition. If LaunchedEffect is recomposed with
different keys that have been passed to the key1 parameter, the existing execution of the
block of code will be canceled and a new iteration of execution will be launched.

Now that we know how LaunchedEffect works, we can agree that it seems a viable
solution for our issue, at least for now: we want to make sure that the call to ViewModel
is only executed once on the initial composition, so LaunchedEffect seems to suffice
our needs.

Let's add a LaunchedEffect to prevent our UI from asking for restaurants from
ViewModel repeatedly on every recomposition:

1. Inside the RestaurantsScreen composable, wrap the
viewModel.getRestaurants() call in a LaunchedEffect composable:

@Composable

fun RestaurantsScreen() {

 val viewModel: RestaurantsViewModel = viewModel()

 LaunchedEffect(key1 = "request_restaurants") {

 viewModel.getRestaurants()

 }

 LazyColumn(…) { … }

}

110 Displaying Data from REST APIs with Retrofit

To implement the LaunchedEffect composable, we did the following:

 � We passed a String hardcoded value of "request_restaurants" to the
key1 parameter. We passed a hardcoded value to the key1 argument because
we want the block of code passed inside the LaunchedEffect composable
to not execute on every recomposition. We could have passed any constant to
key1, yet what's important here is that the value shouldn't change over time.

 � We passed our code that calls the getRestaurants() method on our
ViewModel inside the block parameter of the effect. Since the block
parameter is the last parameter of the LaunchedEffect composable and is a
function, we used the trailing lambda syntax.

2. Run the application. Now, the code inside LaunchedEffect should only be
executed once.

Yet even with this addition, our code still has an issue. If you try rotating the emulator or
device you're testing with, you will trigger a configuration change and another network
will be executed. But we mentioned previously that LaunchedEffect will only execute
the viewModel.getRestaurants() call once, so why is this happening?

LaunchedEffect works fine – the issue lies in the activity being destroyed on
configuration change. If the activity is destroyed, the UI will be composed again from
scratch, and for all it knows, LaunchedEffect will run the code inside the block
parameter for the first time.

Can you think of a better alternative to get around the issue of the activity being destroyed
due to configuration changes?

An alternative would be to use the ViewModel component because it survives
configuration changes. If we trigger the request only once in RestaurantsViewModel,
we no longer care if a configuration change occurs – the request will not be executed
again. Follow these steps:

1. Inside RestaurantsViewModel, locate the init block and inside it, call
getRestaurants():

init {

 val retrofit: Retrofit = Retrofit.Builder().[…].
build()

 restInterface = retrofit.create(

 RestaurantsApiService::class.java

)

Summary 111

 getRestaurants()

}

The init block is called once when an instance of ViewModel is created,
so placing our network request here is a safer bet than at the UI level in any
composable. Make sure you've placed the getRestaurants() call after the
instantiation of the restInterface variable since the getRestaurants()
method depends on that variable being ready to work.

2. Still inside RestaurantsViewModel, navigate to the getRestaurants()
method and mark it as private:

private fun getRestaurants() {

 …

}

We no longer need to expose this method publicly to the UI since it's now only
called inside ViewModel.

3. Inside the RestaurantsScreen composable, remove the LaunchedEffect
composable function with all the code inside it since we no longer need it.

4. Run the application. The network request should not be executed again when a
configuration change is made since the RestaurantsViewModel instance is
preserved and the code inside its init block is not executed again.

We've taken quite a few steps to make sure that our application handles network requests
correctly, and this was a great first step toward creating a modern application.

Summary
In this chapter, we learned how mobile apps communicate with remote web APIs using
HTTP connections and REST APIs. Then, we created a database for our Restaurants
application with the help of Firebase and populated it with content.

After that, we explored what Retrofit is and how it abstracts the complexity associated
with handling network requests and responses within HTTP connections between apps
and web APIs.

Then, we executed a network request with Retrofit in our Restaurants application and
learned how the JSON content that is sent by the server can be parsed or deserialized
by our Retrofit networking client. We also learned how to correctly wait for network
responses and how to notify the application when responses arrive.

112 Displaying Data from REST APIs with Retrofit

Finally, we solved some common issues that occur when our applications communicate
with web APIs asynchronously to retrieve data, especially in the context of Compose.

In the next chapter, we'll explore a very efficient tool in Android for async work that
comes bundled with Kotlin: coroutines!

Further reading
With the help of custom annotations inside the Retrofit interface, this library hides most
of the complexity associated with handling network requests. We've seen that with simple
GET requests in our RestaurantsApiService interface when we annotated our
request with the @GET annotation:

interface RestaurantsApiService {

 @GET("restaurants.json")

 fun getRestaurants(): Call<List<Restaurant>>

}

Yet apart from plain GET operations, such Retrofit interfaces can also handle other request
types, such as PUT, POST, and DELETE.

For example, if you need to define a request that passes some data to the server that is
likely to be stored, you can use a POST request by adding the @POST annotation to your
desired method:

@POST("user/edit")

fun updateUser(@Field("first_name") firstName: String):

 Call<User>

To understand how to use Retrofit for such cases, or more advanced ones, check out the
official documentation: https://square.github.io/retrofit/.

4
Handling Async

Operations with
Coroutines

In this chapter, we're focusing on another library that, although is not in the Jetpack
library suite, is essential for writing solid applications: Kotlin coroutines.

Coroutines represent a more convenient way of handling async work and concurrency
jobs on Android.

In this chapter, we will study how we can replace callbacks with coroutines in our
Restaurants application. In the first section, Introducing Kotlin coroutines, we will gain a
better understanding of what coroutines are, how they work, and why we need them in
our apps.

In the next section, Exploring the basic elements of coroutines, we will explore the core
elements of coroutines, and we will understand how to use them to handle asynchronous
work more concisely.

114 Handling Async Operations with Coroutines

Finally, in the Using coroutines for async work section, we will implement coroutines in our
Restaurants application and let them handle the network requests. Additionally, we will
add error handling and integrate some of the best practices when working with coroutines
in Android apps.

To summarize, in this chapter, we're going to cover the following main topics:

• Introducing Kotlin coroutines

• Exploring the basic elements of coroutines

• Using coroutines for async work

Before jumping in, let's set up the technical requirements for this chapter.

Technical requirements
Building Compose-based Android projects with coroutines usually requires your
day-to-day tools. However, to follow along with this chapter smoothly, make sure you
have the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds but note that IDE interface and other
generated code files might differ from the ones used throughout this book.

• Kotlin 1.6.10, or a newer plugin, installed in Android Studio

• The Restaurants app code from the previous chapter.

The starting point for this chapter is represented by the Restaurants application
developed in the previous chapter. If you haven't followed the implementation from
the previous chapter, access the starting point for this chapter by navigating to the
Chapter_03 directory of the repository and importing the Android project entitled
chapter_3_restaurants_app.

To access the solution code for this chapter, navigate to the Chapter_04 directory:

https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_04/
chapter_4_restaurants_app.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_04/chapter_4_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_04/chapter_4_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_04/chapter_4_restaurants_app

Introducing Kotlin coroutines 115

Introducing Kotlin coroutines
Coroutines are part of the Kotlin API. They introduce a new and easier way of handling
async work and concurrency jobs.

Often, with Android, we need to run or execute different tasks behind the scenes. In
the meantime, we don't want to block the main thread of the application and get an
unresponsive UI.

To mitigate this issue, coroutines allow you to execute async work much easier while
providing main-thread safety for your Android apps. You can use the Coroutines API by
launching one coroutine, or more, depending on your needs.

In this section, we will cover three essential questions about the Coroutines API that
derive from what we stated earlier:

• What is a coroutine?

• What are the features and advantages of coroutines?

• How do coroutines work?

Let's jump in!

What is a coroutine?
A coroutine is a concurrency design pattern for async work. A coroutine represents an
instance of suspendable computation.

In other words, coroutines are sequences or blocks of code that represent a computational
task that can be suspended. We call them suspendable because coroutines can be
suspended and resumed mid-execution, which makes them efficient for concurrent tasks.

When comparing coroutines with threads, we can say the following:

• A coroutine is a lightweight version of a thread but not a thread. Coroutines are
light because creating coroutines doesn't allocate new threads – typically, coroutines
use predefined thread pools.

• Like threads, coroutines can run in parallel, wait for each other, and communicate.

• Unlike threads, coroutines are very cheap: we can create thousands of them and pay
very few penalties in terms of performance.

Next, let's understand the purpose behind coroutines a bit better.

116 Handling Async Operations with Coroutines

The features and advantages of coroutines
By now, we know that on Android, coroutines can help us to move long-running async
work from the main thread into a separate thread. Essentially, coroutines have two
primary possible usages:

• For handling async work

• For handling multithreading

In this chapter, we will only cover how to correctly handle async work with coroutines in
Android apps.

However, before we try to understand how to do that with coroutines, let's explore the
advantages that coroutines bring over other alternatives that we've used in the past:
AsyncTask classes, callbacks, and reactive frameworks. A coroutine is described as the
following:

• Lightweight: We can launch many coroutines on a single thread. Coroutines support
execution suspension on the thread as opposed to blocking it, resulting in less
memory overhead. Additionally, a coroutine is not always bound to a specific thread
– it might start its execution on one thread and yield the result on a different one.

• Easily cancelable: When canceling the parent coroutine, any children coroutines
that were launched within the same scope will be canceled. If you have launched
multiple coroutines that run operations concurrently, cancelation is straightforward
and applies to the entire affected coroutine hierarchy; therefore, this eliminates any
potential memory leaks.

• Easily integrated with Jetpack libraries: By providing a suite of extensions.
For example, coroutines provide custom scopes for many common Android
components such as Activity, Fragment, ViewModel, and more. This means
that you can launch coroutines safely from these components, as they will be
canceled automatically when different lifecycle events occur, so you don't have to
worry about memory leaks.

Note
We have mentioned the word scope several times, and I promise that we will
explain it later. Until then, you can think of the coroutine scope as an entity
that controls the lifetime of launched coroutines.

Now we have an idea of the features of coroutines. Yet, to better understand their purpose,
first, we need to understand why we should offload async work from the main thread to a
separate worker thread.

Introducing Kotlin coroutines 117

How do coroutines work?
In Android runtime, the main thread is responsible for two things:

• Drawing the UI of the application on the screen

• Updating the UI upon user interactions

Simplistically viewed, the main thread calls a drawing method on the screen canvas. This
method might be familiar to you as the onDraw() method, and we can assume that
for your device to render UI at 60 frames per second, the Android Runtime will call this
method roughly every 16 milliseconds.

If, for some reason, we execute heavy async work on the main thread, the application
might freeze or stutter. This happens because the main thread was busy serving our async
work; therefore, it missed several onDraw() calls that could have updated the UI and
prevented the freezing effect.

Let's say that we need to make a network request to our server. This operation
might take time because we must wait for a response, which depends on the web
API's speed and the user's connectivity. Let's imagine that such a method is named
getNetworkResponse() and we are calling it from the main thread:

Figure 4.1 – Blocking the main thread with async work

From the time it launched the network request, the main thread kept waiting for
a response and couldn't do anything in the meantime. We can see that several
onDraw() calls were missed because the main thread was busy executing our
getNetworkResponse() method call and waiting for a result.

118 Handling Async Operations with Coroutines

To mitigate this issue, we've used many mechanisms in the past. Yet, coroutines are much
easier to use and work perfectly with the Android ecosystem. So, it's time to see how they
can enable us to execute async work:

Figure 4.2 – Executing async work on a different thread by using a coroutine

With coroutines, we can offload any nasty blocking calls – such as the
getNetworkResponse() method call – from the main thread onto a coroutine.

The coroutine works on a separate thread and is in charge of executing the network
request and waiting for the response. This way, the main thread is not blocked, and no
onDraw() calls are missed; therefore, we avoid getting any freezing screen effects.

Now that we have a basic understanding of how coroutines work, it's time to explore the
components that coroutines are based on.

Exploring the basic elements of coroutines
A very simplistic approach for getting async work done with coroutines could be
expressed as follows: first, define the suspended functions and then create coroutines that
execute the suspended functions.

Yet, we're not only unsure what suspending functions look like, but we also don't know
how to allow coroutines to perform asynchronous work for us.

Exploring the basic elements of coroutines 119

Let's take things, step by step, and start with the two essential actions that we need to
execute async work with coroutines:

• Creating suspending functions

• Launching coroutines

All of these terms make little sense now, so let's address this, starting with suspending
functions!

Creating suspending functions
The first thing that we need in order to work with coroutines is to define a suspending
function where the blocking task resides.

A suspending function is a special function that can be paused (suspended) and resumed
at some later point in time. This allows us to execute long-running jobs while the function
is suspended and, finally, resume it when the work is complete.

Our regular function calls within our code are mostly executed synchronously on the
main thread. Essentially, suspending functions allow us to execute jobs asynchronously in
the background without blocking the thread where those functions are called from.

Let's say that we need to save some details about a user to a local database. This operation
takes time, so we need to display an animation until it finishes:

fun saveDetails(user: User) {

 startAnimation()

 database.storeUser(user)

 stopAnimation()

}

If this operation is called on the main thread, the animation will freeze for a few hundreds
of milliseconds while the user's details are saved.

Take a closer look at the code presented earlier and ask yourself the following: which
method call should be suspendable?

Since the storeUser() method takes a while to finish, we want this method to be a
suspending function because this function should be paused until the user's details are
saved and then resumed when the job is done. This ensures that we do not block the main
thread or freeze the animation.

120 Handling Async Operations with Coroutines

Yet, how can we make the storeUser() method a suspending function?

A suspending function is a regular function that is marked with the suspend keyword:

suspend fun storeUser(user: User) {

 // blocking action

}

We know that the storeUser() method saves details to a database, which takes a good
while. So, in order to prevent this job from blocking the UI, we've marked the method
with an additional suspend keyword.

However, if we mark a method with the suspend keyword, trying to call it in our code
results in a compilation error:

Figure 4.3 – Calling suspending functions from regular functions results in a compilation error

Suspending functions can only be called from inside a coroutine or from inside another
suspending function. Instead of calling our storeUser() suspending method from a
regular method, let's create a coroutine and call it from there.

Launching coroutines
To execute a suspend function, first, we need to create and launch a coroutine. To do that,
we need to call a coroutine builder on a coroutine scope:

fun saveDetails(user: User) {

 GlobalScope.launch(Dispatchers.IO) {

 startAnimation()

 database.storeUser(user)

 stopAnimation()

 }

}

Exploring the basic elements of coroutines 121

We have just launched our first coroutine and called our suspending function inside it!
Let's break down what just happened:

• We've used a GlobalScope coroutine scope, which manages the coroutines that
are launched within it.

• In the coroutine scope, we called the launch() coroutine builder to create a
coroutine.

• Then, we passed the Dispatchers.IO dispatcher to the coroutine builder. In this
case, we want to save the user details inside the database on a thread reserved for
I/O operations.

• Inside the block that the launch() coroutine builder has provided us with, we call
our storeUser() suspending function.

Now we have successfully moved our blocking work away from the main thread to a
worker thread. Therefore, we have made sure that the UI will not be blocked, and the
animation will run smoothly.

However, now that we have implemented suspending work in our saveDetails()
method, you might be wondering what the order of function calls within this method
will be.

To better understand how the regular synchronous world blends with the suspending
world, let's add some logs to our previous code snippet:

fun saveDetails(user: User) {

 Log.d("TAG", "Preparing to launch coroutine")

 GlobalScope.launch(Dispatchers.IO) {

 startAnimation()

 Log.d("TAG", "Starting to do async work")

 database.storeUser(user)

 Log.d("TAG", "Finished async work")

 stopAnimation()

 }

 Log.d("TAG", "Continuing program execution")

}

Remember, the only suspending function in this block of code that will take some time
to compute is database.storeUser(). Now, let's imagine that we have run the
preceding piece of code.

122 Handling Async Operations with Coroutines

Exercise
Before checking the following output, try to think about the order of the logs
yourself. What do you expect the order of function calls to be?

Let's see the output:

Figure 4.4 – The output order of regular and suspending functions

The order of the function calls is a bit out of order, but it is definitely correct. Let's see
what happened:

1. First, the log function with the Preparing to launch coroutine message
was called. This method call was done on the main (UI) thread.

2. Even though up next, we launched the coroutine, we can see that the second
log function called was the last one in our code: Continuing program
execution.

This is because the coroutine is a bridge to the suspending world, so every function
call from the coroutine will be run on a different thread from the main thread. More
precisely, the operation of switching from the main thread to Dispatchers.IO
will take some time. This means that all of these methods inside the coroutine will
be executed after the method call outside of the coroutine.

3. The next log function call is with the Starting to do async work message.
This method is called inside the coroutine on a thread reserved for I/O operations.
This log marks the start of execution for all suspending work.

4. Finally, after all of the blocking work from the database.storeUser()
suspending function has been finished, the last log function call with the
Finished async work message is called. This log marks the end of the
coroutine execution.

Now that we've understood how the regular world blends with the suspended world in
terms of function calls, there are still many terms and concepts that have been thrown at
you. Mainly, you might be wondering the following:

• What is a coroutine scope?

• What's a coroutine dispatcher?

• What's a coroutine builder?

Exploring the basic elements of coroutines 123

Let's clarify these concepts, starting with coroutine scopes.

Coroutine scopes
Essentially, coroutines run in coroutine scopes. To start a coroutine, first, you need a
coroutine scope because it tracks all of the coroutines launched inside it and has the ability
to cancel them. This way, you can control how long the coroutines should live and when
they should be canceled.

A coroutine scope contains a CoroutineContext object, which defines the
context in which the coroutine runs. In the previous example, we used a predefined
scope, GlobalScope, but you can also define a custom scope by constructing a
CoroutineContext object and passing it to a CoroutineScope() function, as
follows:

val job = Job()

val myScope = CoroutineScope(context = job + Dispatchers.IO)

The CoroutineScope() function expects a CoroutineContext object passed to its
context parameter and knows how to build one out of the box. It does this by receiving
elements with a special plus operator and then constructing the context behind the
scenes.

Most of the time, the two most important elements to construct a CoroutineContext
object are the ones that we just passed:

• A Job object: This represents a cancelable component that controls the lifecycle
of a coroutine launched in a specific scope. When a job is canceled, the job will
cancel the coroutine it manages. For example, if we have defined a job object
and a custom myScope object inside an Activity class, a good place to cancel
the coroutine would be in the onDestroy() callback by calling the cancel()
method on the job object:

override fun onDestroy() {

 super.onDestroy()

 job.cancel()

}

By doing this, we've ensured that our async work done within our coroutine, which
uses the myScope scope, will stop when the activity has been destroyed and will
not cause any memory leaks.

124 Handling Async Operations with Coroutines

• A Dispatcher object: Marking a method as suspended provides no details about
the thread pool it should run on. So, by passing a Dispatcher object to the
CoroutineScope constructor, we can make sure that all suspended functions
called in the coroutine that use this scope will default to the specified Dispatcher
object. In our example, all coroutines launched in myScope will run their work, by
default, in the Dispatchers.IO thread pool and will not block the UI.

Note that the CoroutineContext object can also contain an exception handler object,
which we will define later on.

Apart from the custom scopes that you can define, as we did earlier, you can use
predefined coroutine scopes that are bound to a certain lifecycle component. In such
cases, you will no longer need to define a scope with a job or to manually cancel the
coroutine scope:

• GlobalScope: This allows the coroutines to live as long as the application is alive.
In the previous example, we used this scope for simplicity, but GlobalScope
should be avoided since the work launched within this coroutine scope is only
canceled when the application has been destroyed. Using this scope in a component
that has a narrower lifecycle than the application – such as an Activity
component, might allow the coroutine to outlive that component's lifecycle and
produce memory leaks.

• lifecycleScope: This scopes coroutines to the lifecycle of a LifecycleOwner
instance such as an Activity component or a Fragment component. We can use
the lifecycleScope scope defined in the Jetpack KTX extensions package:

class UserFragment : Fragment() {

 ...

 fun saveDetails(user: User) {

 lifecycleScope.launch(Dispatchers.IO) {

 startAnimation()

 database.storeUser(user)

 stopAnimation()

 }

 }

}

By launching coroutines within this context, we ensure that if the Fragment
component gets destroyed, the coroutine scope will automatically be canceled;
therefore, this will also cancel our coroutine.

Exploring the basic elements of coroutines 125

• viewModelScope: To scope our coroutines to live as long as the ViewModel
component does, we can use the predefined viewModelScope scope:

class UserViewModel: ViewModel() {

 fun saveDetails(user: User) {

 // do some work

 viewModelScope.launch(Dispatchers.IO) {

 database.storeUser(user)

 }

 // do some other work

 }

}

By launching coroutines within this context, we ensure that if the ViewModel
component gets cleared, the coroutine scope will cancel its work – in other words, it
will automatically cancel our coroutine.

• rememberCoroutineScope: To scope a coroutine to the composition cycle of
a composable function, we can use the predefined rememberCoroutineScope
scope:

@Composable

fun UserComposable() {

 val scope = rememberCoroutineScope()

 LaunchedEffect(key1 = "save_user") {

 scope.launch(Dispatchers.IO) {

 viewModel.saveUser()

 }

 }

}

Therefore, a coroutine's lifecycle is bound to the composition cycle of
UserComposable. This means that when UserComposable leaves the
composition, the scope will be automatically canceled, thereby preventing the
coroutine from outliving the composition lifecycle of its parent composable.

Since we want the coroutine to be launched only once upon composition and not
at every recomposition, we wrapped the coroutine with a LaunchedEffect
composable.

Now that we covered what coroutine scopes are and how they allow us to control the
lifetime of coroutines, it's time to better understand what dispatchers are.

126 Handling Async Operations with Coroutines

Dispatchers
A CoroutineDispatcher object allows us to configure what thread pool our work should
be executed on. The point of coroutines is to help us move blocking work away from the
main thread. So, somehow, we need to instruct the coroutines what threads to use for the
work that we pass to them.

To do that, we need to configure the CoroutineContext object of the coroutines to
set a specific dispatcher. In fact, when we covered coroutine scopes, we've explained how
CoroutineContext is defined by a job and a dispatcher.

When creating custom scopes, we can specify the default dispatcher right when we
instantiate the scope, just as we did previously:

val myScope = CoroutineScope(context = job + Dispatchers.IO)

In this case, the default dispatcher of myScope is Dispatchers.IO. This means that
whatever suspending work we pass to the coroutines that are launched with myScope,
the work will be moved to a special thread pool for I/O background work.

In the case of predefined coroutine scopes, such as with lifecycleScope,
viewModelScope, or rememberCoroutineScope, we can specify the desired default
dispatcher when starting our coroutine:

scope.launch(Dispatchers.IO) {

 viewModel.saveUser()

}

We start coroutines with coroutine builders such as launch or async, which we will
cover in the next section. Until then, we need to understand that when launching a
coroutine, we can also modify the CoroutineContext object of the coroutine by
specifying a CoroutineDispatcher object.

Now we've used Dispatchers.IO as a dispatcher throughout our examples. But are
there any other dispatchers that are of use to us?

Dispatchers.IO is a dispatcher offered by the Coroutines API, but in addition to this,
coroutines offer other dispatchers too. Let's list the most notable dispatchers as follows:

• Dispatchers.Main: This dispatches work to the main thread on Android. It is
ideal for light work (which doesn't block the UI) or actual UI function calls and
interactions.

Exploring the basic elements of coroutines 127

• Dispatchers.IO: This dispatches blocking work to a background thread
pool that specializes in handling disk-heavy or network-heavy operations. This
dispatcher should be specified for suspending work on local databases or executing
network requests.

• Dispatchers.Default: This dispatches blocking work to a background thread
pool that specializes in CPU-intensive tasks, such as sorting long lists, parsing
JSON, and more.

In the previous examples, we set a specific dispatcher of Dispatchers.IO for the
CoroutineContext object of the coroutines launched, ensuring that suspended work
will be dispatched by this specific dispatcher.

But we've made a critical mistake! Let's take a look at the code again:

class UserFragment : Fragment() {

 ...

 fun saveDetails(user: User) {

 lifecycleScope.launch(Dispatchers.IO) {

 startAnimation()

 database.storeUser(user)

 stopAnimation()

 }

 }

}

The main issue with this code is that the startAnimation() and stopAnimation()
functions are probably not even suspending functions, as they interact with the UI.

We wanted to run our database.storeUser() blocking work on a background
thread, so we specified the Dispatchers.IO dispatcher to the CoroutineContext
object. But this means that all the rest of the code in the coroutine block (that is, the
startAnimation() and stopAnimation() function calls) will be dispatched to
a thread pool intended for background work instead of being dispatched to the main
thread.

To have more fine-grained control regarding what threads our functions are being
dispatched to, coroutines allow us to control the dispatcher by using the withContext
block, which creates a block of code that can run on a different dispatcher.

Since startAnimation() and stopAnimation() have to work on the main thread,
let's refactor our example.

128 Handling Async Operations with Coroutines

Let's launch our coroutine with the default dispatcher of Dispatchers.Main,
and then wrap our work, which has to be run on a background thread (the
database.storeUser(user) suspending function), with a withContext block:

fun saveDetails(user: User) {

 lifecycleScope.launch(Dispatchers.Main) {

 startAnimation()

 withContext(Dispatchers.IO) {

 database.storeUser(user)

 }

 stopAnimation()

 }

}

The withContext function allows us to define a more granular CoroutineContext
object for the block that it exposes. In our case, we had to pass the Dispatchers.IO
dispatcher to make sure our blocking work with the database will run on the background
thread instead of being dispatched to the main thread.

In other words, our coroutine will have all its work dispatched to the
Dispatchers.Main dispatcher, unless you define another more granular context that
has its own CoroutineDispatcher set.

Now we've covered how to use dispatchers and how to ensure more granular control over
how our work is dispatched to different threads. However, we haven't covered what the
launch { } block means. Let's do that next.

Coroutine builders
Coroutine builders (such as launch) are extension functions on CoroutineScope
and allow us to create and start coroutines. Essentially, they are a bridge between the
normal synchronous world with regular functions and the suspending world with
suspending functions.

Since we can't call suspending functions inside regular functions, a coroutine builder
method executed on the CoroutineScope object creates a scoped coroutine that
provides us with a block of code where we can call our suspending functions. Without
scopes, we cannot create coroutines – which is good since this practice helps to prevent
memory leaks.

Exploring the basic elements of coroutines 129

We can use three builder functions to create coroutines:

• launch: This starts a coroutine that runs concurrently with the rest of the code.
Coroutines started with launch won't return the result to the caller – instead, all
of the suspending functions will run sequentially inside the block that launch
exposes. It's our job to get the result from the suspending functions and then
interact with that result:

fun getUser() {

 lifecycleScope.launch(Dispatchers.IO) {

 val user = database.getUser()

 // show details to UI

 }

}

Most of the time, if you don't need concurrent work, launch is the go-to option for
starting coroutines since it allows you to run your suspending work inside the block
of code provided and doesn't care about anything else.

If no dispatcher is specified in the coroutine builder, the dispatcher that is going
to be used is the dispatcher provided by default by the CoroutineScope used
to start the coroutine. In our case, if we wouldn't have specified a dispatcher,
our coroutine launched with the launch coroutine builder will have used the
Dispatchers.Main dispatcher defined by default by lifecycleScope.

Apart from lifecycleScope, viewModelScope also provides the same
predefined dispatcher of Dispatchers.Main. GlobalScope on the other
hand, defaults to Dispatchers.Default if no dispatcher was provided to the
coroutine builder.

• async: This starts a new coroutine, and it allows you to return the result as a
Deferred<T> object, where T is your expected data type. The deferred object is
a promise that your result, T, will be returned in the future. To start the coroutine
and get a result, you need to call the suspending function, await, which blocks the
calling thread:

lifecycleScope.launch(Dispatchers.IO) {

 val deferredAudio: Deferred<Audio> =

 async { convertTextToSpeech(title) }

 val titleAudio = deferredAudio.await()

 playSound(titleAudio)

}

130 Handling Async Operations with Coroutines

We can't use async in a normal function as it has to call the await suspending
function to get the result. To fix that, first, we've created a parent coroutine with
launch and started the child coroutine with async inside it. This means the child
coroutine that was started with async inherits its CoroutineContext object
from the parent coroutine that was started with launch.

With async, we can get the results of the concurrent work in one place. Where
the async coroutine builder shines (and where it's recommended to be used) is in
tasks with parallel execution where results are required.

Let's say that we need to simultaneously convert two pieces of text into speech and
then play both results at the same time:

lifecycleScope.launch(Dispatchers.IO) {

 val deferredTitleAudio: Deferred<Audio> =

 async { convertTextToSpeech(title) }

 val deferredSubtitleAudio: Deferred<Audio> =

 async { convertTextToSpeech(subtitle) }

 playSounds(

 deferredTitleAudio.await(),

 deferredSubtitleAudio.await()

)

}

In this particular example, both the resulting deferredTitleAudio and
deferredSubtitleAudio tasks will run in parallel.

Since our Restaurants application hasn't featured concurrent work until now, we
won't go any deeper in terms of concurrency topics.

• runBlocking: This starts a coroutine that blocks the current thread on which it is
invoked until the coroutine has been completed. This builder should be avoided for
async work within our app since creating threads and blocking them is less efficient.
However, this coroutine builder can be used for unit tests.

Now that we have covered the basics of coroutines, it's high time we implement coroutines
in our Restaurants application!

Using coroutines for async work 131

Using coroutines for async work
The first thing that we have to do is identify the async/heavy work that we have done in
our Restaurants application.

Without looking at the code, we know that our app retrieves a list of restaurants from
the server. It does that by initiating a network request with Retrofit and then waits for a
response. This action qualifies as an async job because we don't want to block the main
(UI) thread while the app waits for the network response to arrive.

If we check out the RestaurantsViewModel class, we can identify that the
getRestaurants() method is the one place in our application where heavy blocking
work is happening:

private fun getRestaurants() {

 restaurantsCall = restInterface.getRestaurants()

 restaurantsCall.enqueue(object : Callback

 <List<Restaurant>> {

 override fun onResponse(...) {

 response.body()?.let { restaurants -> ... }

 }

 override fun onFailure(...) {

 t.printStackTrace()

 }

 })

}

When we implemented the network request, we used Retrofit's enqueue() method to
which we passed a Callback object where we could wait for the result without blocking
the main thread.

To simplify the way we handle this async operation of getting the restaurants from the
server, we will implement coroutines. This will allow us to ditch callbacks and make our
code more concise.

In this section, we will cover two main steps:

• Implementing coroutines instead of callbacks

• Improving the way our app works with coroutines

Let's get started!

132 Handling Async Operations with Coroutines

Implementing coroutines instead of callbacks
To handle async work with coroutines, we need to do the following:

• Define our async work in a suspending function.

• Next, create a coroutine and call the suspending function inside it to obtain the
result asynchronously.

Enough with the theory, it's time to code! Perform the following steps:

1. Inside the RestaurantsApiService interface, add the suspend keyword to
the getRestaurants() method and replace the Call<List<Restaurant>>
return type of the method with List<Restaurant>:

interface RestaurantsApiService {

 @GET("restaurants.json")

 suspend fun getRestaurants(): List<Restaurant>

}

Retrofit supports coroutines out of the box for network requests. This means that
we can mark any method in our Retrofit interface with the suspend keyword;
therefore, we can transform the network requests to suspending work that isn't
blocking the main thread of the application.

Because of this, the Call<T> return type is redundant. We no longer need Retrofit
to return a Call object on which we would normally enqueue a Callback object
to listen for the response – all of this will be handled by the Coroutines API.

2. Since we will no longer receive a Call object from Retrofit, we will also not need
the Callback object in our RestaurantsViewModel class. Clean up the
RestaurantsViewModel component:

 � Remove the restaurantsCall: Call<List<Restaurant> member
variable.

 � Remove the restaurantsCall.cancel() method call inside the
onCleared() callback.

 � Remove the entire body of the getRestaurants() method.

Using coroutines for async work 133

3. Inside the getRestaurants() method, call the
restInterface.getRestaurants() suspending function and store the result
in a restaurants variable:

private fun getRestaurants() {

 val restaurants = restInterface.getRestaurants()

}

The IDE will throw an error telling us that we cannot call the
restInterface.getRestaurants() suspending function from the regular
getRestaurants() function within the ViewModel component.

To fix this, we must create a coroutine, launch it, and call the suspending function
there.

4. Before creating a coroutine, we need to create a CoroutineScope object. Inside
the ViewModel component, define a member variable of type Job and another of
type CoroutineScope, just as we learned earlier:

class RestaurantsViewModel(…): ViewModel() {

 private var restInterface: RestaurantsApiService

 val state = mutableStateOf(…)

 val job = Job()

 private val scope = CoroutineScope(job +

 Dispatchers.IO)

 …

}

The job variable is the handle that will allow us to cancel the coroutine scope, while
the scope variable will ensure we keep track of the coroutines that are going be to
be launched with it.

Since the network request is a heavy blocking operation, we want its suspending
work to be executed on the IO thread pool to avoid blocking the main thread, so we
specified the Dispatchers.IO dispatcher for our scope object.

134 Handling Async Operations with Coroutines

5. Inside the onCleared() callback method, call the cancel() method in the
newly created job variable:

override fun onCleared() {

 super.onCleared()

 job.cancel()

}

By calling cancel() on our job variable, we ensure that if the
RestaurantsViewModel component is destroyed (for example, in scenarios
where the user navigates to a different screen) the coroutine scope object will
be canceled through its job object reference. Effectively, this will cancel any
suspending work and prevent the coroutine from causing a memory leak.

6. Inside the getRestaurants() method in our ViewModel component, create
a coroutine by calling launch on the previously defined scope object, and inside
that body exposed by the coroutine add the existing code where we obtain the
restaurants:

private fun getRestaurants() {

 scope.launch {

 val restaurants = restInterface.getRestaurants()

 }

}

Success! We have launched a coroutine that executes our suspending work of
obtaining the restaurants from the server.

7. Next, add the initial code to update our State object with the newly received
restaurants so that the Compose UI displays them:

scope.launch {

 val restaurants = restInterface.getRestaurants()

 state.value = restaurants.restoreSelections()

}

However, this approach is flawed. Can you point out why?

Well, we are updating the UI on an incorrect thread. Our scope is defined to run
the coroutine on a thread from the Dispatchers.IO thread pool, but updating
the UI should happen on the Main thread.

Using coroutines for async work 135

8. Inside the getRestaurants() method, wrap the line of code where the
Compose State object is updated with a withContext block that specifies the
Dispatchers.Main dispatcher:

scope.launch {

 val restaurants = restInterface.getRestaurants()

 withContext(Dispatchers.Main) {

 state.value = restaurants.restoreSelections()

 }

}

By doing this, we ensure that while heavy work is being done on the background
threads, the UI is updated from the main thread.

We have now successfully implemented coroutines in our app. We have defined a
scope and created a coroutine where we executed our suspending work: a network
request.

9. You can now Run the application and notice that on the outside, the behavior of the
app hasn't changed. However, behind the scenes, our async work was done with the
help of coroutines in a more elegant manner than before.

Even so, there are a few things that could be improved. Let's tackle those next.

Improving the way our app works with coroutines
Our app uses a coroutine to move heavy work from the main thread to specialized
threads.

However, if we think about our particular implementation, we can find some ways to
improve our coroutine-related code:

• Use predefined scopes as opposed to custom scopes.

• Add error handling.

• Make sure that every suspend function is safe to be called on any Dispatcher
object.

Let's start with the fun one: replacing our custom scope with a predefined one!

136 Handling Async Operations with Coroutines

Using predefined scopes as opposed to custom scopes
In our current implementation, we've defined a custom CoroutineScope object that
will make sure that its coroutines will live as long as the RestaurantsViewModel
instance. To achieve this, we pass a Job object to our CoroutineScope builder and
cancel it when the ViewModel component is destroyed: on the onCleared() callback
method.

Now, remember that coroutines are well integrated with the Jetpack libraries, and when
we define scopes, we also talk about predefined scopes such as lifecycleScope,
viewModelScope, and more. These scopes make sure that their coroutines live as long
as the component they are bound to, for example, lifecycleScope is bound to a
Fragment or Activity component.

Note
Whenever you are launching a coroutine inside components such
as Activity, Fragment, ViewModel, or even composable
functions, remember that instead of creating and managing your own
CoroutineScope object, you can use the predefined ones that take care of
canceling coroutines automatically. By using predefined scopes, you can better
avoid memory leaks as any suspending work is cancelled when needed.

In our scenario, we can simplify our code and replace our custom CoroutineScope
object with the viewModelScope one. Behind the scenes, this predefined scope will
take care of canceling all of the coroutines launched with it when its parent ViewModel
instance has been cleared or destroyed.

Let's do that now:

1. Inside the getRestaurants() method of the RestaurantsViewModel class,
replace scope with viewModelScope:

private fun getRestaurants() {

 viewModelScope.launch {

 val restaurants = …

 …

 }

}

Using coroutines for async work 137

2. Since we will no longer use our scope object, we need to make sure that our
coroutine will run the suspending work in the background, just as it did with the
previous scope. Pass a Dispatchers.IO dispatcher to the launch method:

viewModelScope.launch(Dispatchers.IO) {

 val restaurants = restInterface.getRestaurants()

 withContext(Dispatchers.Main) {

 state.value = restaurants.restoreSelections()

 }

}

Usually, the launch coroutine builder inherits CoroutineContext
from its parent coroutine. In our particular case though, if no dispatcher is
specified, coroutines launched with viewModelScope will default to using
Dispatchers.Main.

However, we want our network request to be executed on a background thread
from the specialized I/O thread pool, so we passed an initial CoroutineContext
object with a Dispatchers.IO dispatcher to our launch call.

3. Remove the onCleared() callback method entirely from the ViewModel class.
We will no longer need to cancel our coroutine scope from a job object because
viewModelScope takes care of that for us.

4. Remove the job and scope member variables from the
RestaurantsViewModel class.

5. You can now Run the application and again notice that on the outside, the behavior
of the app hasn't changed. Our code now works the same but is greatly simplified
because we used a predefined scope instead of handling everything by ourselves.

Next, we must re-add error handling to our project. However, this time, we will do it in
the context of coroutines.

Adding error handling
In the previous implementation with callbacks, we received an error callback from
Retrofit. However, with coroutines, it appears that since our suspending function returns
List<Restaurant>>, there is no room for error.

138 Handling Async Operations with Coroutines

Indeed, we are not handling any error that could be thrown. For example, if you try to
launch the application without internet right now, Retrofit will throw a Throwable
object, which, in turn, will crash our app with a similar error as follows:

E/AndroidRuntime: FATAL EXCEPTION: DefaultDispatcher-worker-1

To handle errors, we can simply wrap suspending function calls in a try catch block:

viewModelScope.launch(Dispatchers.IO) {

 try {

 val restaurants = restInterface.getRestaurants()

 // show restaurants

 } catch (e: Exception) {

 e.printStackTrace()

 }

}

The preceding approach is fine, but the code becomes less concise because of another
level of nesting. Additionally, to better support a single point of error handling, coroutines
allow you to pass a CoroutineExceptionHandler object to the context of your
CoroutineScope object:

Figure 4.5 – The signature of CoroutineExceptionHandler

The CoroutineExceptionHandler object allows us to handle errors thrown by any
coroutine launched within a CoroutineScope object, no matter how nested it might be.
This handler gives us access to a function that exposes the CoroutineContext object
and the Throwable object thrown in this particular context.

Using coroutines for async work 139

Let's add such a handler to the RestaurantsViewModel class. Perform the following
steps:

1. Define an errorHandler member variable of type
CoroutineExceptionHandler and print the stack trace of the exception:
Throwable parameter:

class RestaurantsViewModel() : ViewModel() {

 ...

 private val errorHandler =

 CoroutineExceptionHandler { _, exception ->

 exception.printStackTrace()

 }

 ...

}

We're not interested in the first parameter of type CoroutineContext, so we
named it with an underscore, _.

2. Inside the getRestaurants() method, pass the errorHandler variable to the
launch block using the + operator:

private fun getRestaurants() {

 viewModelScope.launch(Dispatchers.IO +

 errorHandler) {

 …

 }

}

By passing our errorHandler variable to the launch method, we make sure
that the CoroutineContext object of this coroutine sets this
CoroutineExceptionHandler, which will allow us to handle errors inside our
handler.

3. Try running the app again without the internet.

Now the app shouldn't crash because the errorHandler variable will catch the
Throwable object thrown by Retrofit and allow us to print its stack trace.

140 Handling Async Operations with Coroutines

Note
As an improvement, try to find a way of notifying the UI that an error has
occurred, thereby informing the user of what just happened.

We are now handling errors with coroutines, so it's time to move to the last point of
improvement – handling the switch of dispatchers correctly.

Making sure that every suspending function is safe to be called on
any dispatcher
When defining suspending functions, a good practice is to make sure that every
suspending function can be called on any Dispatcher object. This way, the caller (in
our case, the coroutine) doesn't have to worry about what thread will be needed to execute
the suspending function.

Let's analyze our code with the coroutine:

private fun getRestaurants() {

 viewModelScope.launch(Dispatchers.IO + errorHandler) {

 val restaurants = restInterface.getRestaurants()

 withContext(Dispatchers.Main) {

 state.value = restaurants.restoreSelections()

 }

 }

}

The getRestaurants() method of the restInterface:
RestaurantsApiService interface is a suspending function. This function should
always be run on Dispatchers.IO since it executes a heavy I/O operation, that is, the
network request.

However, this would mean that whenever we have to call
restInterface.getRestaurants(), we either have to call this suspending
function from a coroutine that has a scope of Dispatchers.IO – just as we did
previously – or always wrap it in a withContext(Dispatchers.IO) block inside the
caller coroutine.

Both of these alternatives don't scale well. Imagine that you have to call
restInterface.getRestaurants() 10 times in the RestaurantsViewModel
class. You would always have to be careful with setting the dispatcher when calling this
function.

Using coroutines for async work 141

Let's address this by creating a separate method where we can specify the correct
dispatcher for our suspending function:

1. Inside the RestaurantsViewModel class, create a separate suspending
method, called getRemoteRestaurants(), and wrap the
restInterface.getRestaurants() call there with a withContext()
block:

private suspend fun getRemoteRestaurants():
List<Restaurant> {

 return withContext(Dispatchers.IO) {

 restInterface.getRestaurants()

 }

}

To the withContext method, we've passed the corresponding dispatcher for this
suspending function: Dispatchers.IO.

This means that whenever this suspending function is called (from a
coroutine or another suspending function), the dispatcher will be switched to
Dispatchers.IO for the restInterface.getRestaurants() call's
execution.

By doing so, we make sure that whoever is calling getRemoteRestaurants()
will not have to care about the correct thread dispatcher for the content of this
method.

2. In the getRestaurants() method of the ViewModel component,
replace the restInterface.getRestaurants() method call with
getRemoteRestaurants():

private fun getRestaurants() {

 viewModelScope.launch(Dispatchers.IO + errorHandler)

 {

 val restaurants = getRemoteRestaurants()

 withContext(Dispatchers.Main) {

 state.value = restaurants.restoreSelections()

 }

 }

}

142 Handling Async Operations with Coroutines

3. Since the content of the getRemoteRestaurants() method will be called on its
appropriate dispatcher, we no longer have to pass Dispatchers.IO to the launch
block. Remove the Dispatchers.IO dispatcher from the coroutine launch
block:

private fun getRestaurants() {

 viewModelScope.launch(errorHandler) {

 val restaurants = getRemoteRestaurants()

 withContext(Dispatchers.Main) {

 state.value = restaurants.

 restoreSelections()

 }

 }

}

By default, the launch block will inherit the CoroutineContext (and so
its defined Dispatcher object) from its parent coroutine. In our case, there
is no parent coroutine, so the launch block will launch a coroutine on the
Dispatchers.Main thread which was predefined by the viewModelScope
custom scope.

4. Since the coroutine will now run on the Dispatchers.Main thread, we can
remove the redundant withContext(Dispatchers.Main) block from within
the getRestaurants() method. The getRestaurants() method should
now look like this:

private fun getRestaurants() {

 viewModelScope.launch(errorHandler) {

 val restaurants = getRemoteRestaurants()

 state.value = restaurants.restoreSelections()

 }

}

Using coroutines for async work 143

Now, the getRestaurants() method where we launched the coroutine
is much easier to read and understand. Our suspending function call, for
instance, getRemoteRestaurants(), is called inside this coroutine on the
Dispatchers.Main dispatcher. However, at the same time, our suspending
function has its own withContext() block with its corresponding Dispatcher
object set:

private suspend fun getRemoteRestaurants()

 : List<Restaurant> {

 return withContext(Dispatchers.IO) {

 restInterface.getRestaurants()

 }

}

This practice allows us to call suspending functions from coroutines with any given
Dispatcher object, simply because the suspending functions have their own
CoroutineContext object set with their appropriate Dispatcher objects.

At runtime, even though the coroutines are launched on their initial Dispatcher object,
when our suspending functions are called, the Dispatcher object is briefly overridden
for every suspending function that is internally wrapped with a withContext block.

Note
For Retrofit interface calls such as restInterface.getRestaurants(),
we can skip wrapping them in withContext() blocks because Retrofit
already does this behind the scenes and sets the Dispatchers.IO
dispatcher for all suspending methods from within its interface.

Finally, the application should behave the same. However, in terms of good practices, we
made sure that the correct Dispatcher object is set for every suspending function out
of the box, and without us having to manually set it in every coroutine.

Now that we improved the way dispatchers are set within our suspending function and
coroutine, it's time to wrap this chapter up.

144 Handling Async Operations with Coroutines

Summary
In this chapter, we learned how coroutines allow us to write async code in a much clearer
and more concise way.

We understood what coroutines are, how they work, and why they are needed in the
first place. We unveiled the core elements of coroutines: from suspend functions to
CoroutineScope objects, to CoroutineContext objects and Dispatcher objects.

Then, we replaced the callbacks with coroutines in our Restaurants application and
noticed how the code is much easier to understand and less nested. Additionally, we
learned how to perform error handling with coroutines and integrated some of the best
practices when working with coroutines.

In the next chapter, we will add another Compose-based screen to our Restaurants
application and learn how to navigate between screens in Compose with yet another
Jetpack library.

Further reading
While canceling coroutines might seem simple with the help of the associated Job
objects, it's important to note that any cancelation must be cooperative. More specifically,
when coroutines perform suspending work based on conditional statements, you must
ensure the coroutine is cooperative with respect to canceling.

You can read about this topic, in more detail, in the official documentation:
https://kotlinlang.org/docs/cancellation-and-timeouts.
html#cancellation-is-cooperative.

https://kotlinlang.org/docs/cancellation-and-timeouts.html#cancellation-is-cooperative
https://kotlinlang.org/docs/cancellation-and-timeouts.html#cancellation-is-cooperative

5
Adding Navigation

in Compose With
Jetpack Navigation

In this chapter, we'll focus on a core Jetpack library, the Navigation component. This
library is essential to us since it allows us to easily navigate between application screens.

So far, we have only created a screen in our Restaurants application, where we displayed
a list of diners. It's time to step up the game and add another screen to our application!

In the first section, Introducing the Jetpack Navigation component, we will explore the basic
concepts and elements of the Navigation component. In the second section, Creating a
new Compose-based screen, we will create a new screen to display the details of a specific
restaurant and realize that we don't know how to navigate to it.

In the third section, Implementing navigation with Jetpack Navigation, we will add the
Navigation component to the Restaurants application and use it to navigate to the second
screen. Finally, in the Adding support for deep links section, we will create a deep link to
our newly created screen and make sure that our application knows how to handle it.

146 Adding Navigation in Compose With Jetpack Navigation

To summarize, in this chapter we're going to cover the following main topics:

• Introducing the Jetpack Navigation component

• Creating a new Compose-based screen

• Implementing navigation with Jetpack Navigation

• Adding support for deep links

Before jumping in, let's set up the technical requirements for this chapter.

Technical requirements
Building Compose-based Android projects with Jetpack Navigation usually requires your
day-to-day tools. However, to follow along smoothly, make sure you have the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds, but note that the IDE interface and
other generated code files might differ from the ones used throughout this book.

• Kotlin 1.6.10 or newer plugin installed in Android Studio

• The Restaurants app code from the previous chapter

The starting point for this chapter is represented by the Restaurants application developed
in Chapter 4, Handling Async Operations with Coroutines. If you haven't followed the
implementation from the previous chapter, access the starting point for this chapter by
navigating to the Chapter_04 directory of the repository and importing the Android
project named chapter_4_restaurants_app.

To access the solution code for this chapter, navigate to the Chapter_05 directory:
https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_05/
chapter_5_restaurants_app.

Introducing the Jetpack Navigation
component
The Navigation component is Jetpack's solution to navigation within Android apps. This
library allows you to easily implement navigation between the screens of your application.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_05/chapter_5_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_05/chapter_5_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_05/chapter_5_restaurants_app

Introducing the Jetpack Navigation component 147

To promote a predictable user experience and consistent manner of handling app flows,
the Navigation component adheres to a set of principles. The two most important
principles are as follows:

• The application has a fixed start destination (screen) – this allows the application
behavior to be predictable because the app will always present this destination first,
no matter where it is being launched from.

In our Restaurants application, we plan to set the start destination as our existing
screen with the list of restaurants (represented by the RestaurantsScreen()
composable function). In other words, this is the first screen that the user will
always see when launching the app from the Android launcher screen.

• The navigation state is defined as a stack of destinations, often called the back stack.
When the app is initially started, the stack will contain the app's start destination –
let's call this Screen A. If you navigate from Screen A to Screen B, B will be added on
top of the stack. This applies when navigating to Screen C too. To better understand
how the back stack works, let's try to illustrate it in such a scenario:

Figure 5.1 – Back stack evolution of screens while the user navigates within the app

148 Adding Navigation in Compose With Jetpack Navigation

At the top of the back stack, you will always have the current screen the user is at
right now. When navigating back to the previous screen, the top of the back stack
is popped, just as we did in Figure 5.1, where navigating from Screen C to Screen B
resulted in the pop of Screen C from the back stack.

All these operations are always done at the top of the stack, while the back of the
stack will always contain the fixed start destination – in our case, Screen A.

The Navigation component takes care of handling the back stack operations behind
the scenes for us.

Note
Initially, the Navigation component specialized in offering navigation mainly
between Fragment components. Today, the library also supports Compose
and the navigation between composable functions.

Apart from following clear principles when it comes to UI navigation, the Navigation
component has three main constituent elements:

• Navigation graph: The core source of information related to navigation within your
app. In the navigation graph, you define all the destinations as well as the possible
paths that the user can take throughout the app to achieve different tasks.

• NavHost: A container composable function that will display the composable
destinations. As the user navigates between different destinations, the content of the
navigation host is swapped and recomposed.

• NavController: A stateful object that handles the navigation between composable
screens and is, therefore, in charge of propagating updates inside the destinations
back stack. The navigation controller sets the correct destinations to NavHost as
the user starts navigating between screens.

Now, when you implement the Navigation component in your Compose-based Android
app, you will gain a lot of benefits. The following lists some examples:

• You don't need to handle the complexity of navigation between composable
functions. The library does that out of the box for you.

• You don't need to handle Up or Back actions on your own. If you press the system's
Back button, the library will automatically pop the current destination from the
back stack and send the user to the previous destination.

Creating a new Compose-based screen 149

• You benefit from scoped ViewModel components to a specific Navigation graph
or destination. This means that the ViewModel instance used by a composable
destination will live for as long as the composable screen does.

• You don't need to implement deep links from scratch. Deep links allow you to
directly navigate to a specific destination within the app without having to traverse
the entire path of screens that get you there. We will see how they work in the
Adding support for deep links section of this chapter.

Now that we have a basic overview of the elements and advantages of using Jetpack
Navigation, it's time to create a new screen so we can implement navigation in our
Restaurants application.

Creating a new Compose-based screen
Real-world applications are required to display a lot of content, so one screen probably
won't suffice. So far, our Restaurants application features a simple screen where all the
restaurants that we receive from our remote database are displayed.

Let's practice all the skills we've learned so far by creating a new screen that will display
the details of a particular restaurant. The plan is that when users press on a particular
restaurant from the list inside our RestaurantsScreen() composable screen,
we should take them to a new details screen for that particular restaurant.

Yet to perform navigation between two screens, we need first to build the second screen.
Unlike with the first composable screen, it's time to change our tactic and build it from
top to bottom. Let's build this second feature first by defining the network request, then
executing it inside its own ViewModel, and finally creating the composable UI that will
consume the data, as follows:

• Defining the HTTP request for the contents of a restaurant

• Getting the contents of a specific restaurant

• Building the restaurant details screen

Let's start!

150 Adding Navigation in Compose With Jetpack Navigation

Defining the HTTP request for the contents of
a restaurant
We need to know how to obtain the data for our new restaurant details screen. Instead
of relying on the previously retrieved data (the list of restaurants), we want to make
every screen in our application as independent as possible. This way, we design our
application to easily support deep links and we better defend ourselves from events such
as a system-initiated process death.

That's why we will build this new screen so that it gets its own content. In other words, in
the new screen, we will get the details for a particular restaurant from the same database
where we've obtained the list of restaurants. But how will we do that?

Remember that the restaurants within our Firebase database have a unique Integer
identifier field called r_id, as shown in the following screenshot:

Figure 5.2 – Identifying the unique identifier field for restaurants in Firebase

We can use this field to get the details of one specific restaurant. And since r_id is
mapped to the id: Int field of the Restaurant object, this means that when the user
presses on a restaurant in our RestaurantsScreen composable, we can forward the
id value to the second screen.

Creating a new Compose-based screen 151

In the second screen, we will execute an API request to our Firebase REST API and pass
the value of the unique ID of the restaurant within our app that corresponds to the r_id
identifier of the restaurant inside the remote database.

The Firebase REST API has us covered for such cases. If we want to get the details of one
element from the restaurants JSON content, we must append two query parameters to the
same URL used to retrieve the entire restaurants list:

• orderBy=r_id to instruct Firebase to filter the elements by their r_id field.

• equalTo=2 to let Firebase know the value of the r_id field of the restaurant
element that we're looking for – in this case 2.

To practice, place in your browser address bar the Firebase URL that you've used to get
the restaurants until now and append the previous two query parameters as follows:

https://restaurants-db-default-rtdb.firebaseio.com/restaurants.
json?orderBy="r_id"&equalTo=2

If you access your link, the response will, unfortunately, look like this:

{ "error" : "Index not defined, add \".indexOn\": \"r_id\", for
path \"/restaurants\", to the rules" }

Firebase needs some additional configuration so that we can get the details of only one
element within the list, so let's do that now:

1. Navigate to your Firebase console and log into your Google account by accessing
this link: https://console.firebase.google.com/.

2. From the list of Firebase projects, select the one you've previously created to store
the restaurants.

3. In the left menu, expand the Build tab, search for Realtime Database, and
then select it.

4. Move away from the preselected Data tab and select the Rules tab.
5. We need to allow Firebase to index the restaurants based on their r_id field,

so update the write rules as follows:

{

 "rules": {

 ".read": "true",

 ".write": "true",

 "restaurants": {

https://console.firebase.google.com/

152 Adding Navigation in Compose With Jetpack Navigation

 ".indexOn": ["r_id"]

 }

 }

}

By doing so, we've instructed Firebase that the JSON array content located at the
restaurants node can be indexed and accessed individually.

6. Now, try to access the URL with the details for the restaurant with the id field value
of 2 again:

Figure 5.3 – Obtaining the response from Firebase for one restaurant JSON object

Note:
To see the structure of the JSON response in a more readable manner in your
browser, you can add the &print=pretty query parameter at the end of
the request URL.

Success! We've obtained the details of the restaurant with the r_id field's value
of 2.

Now, let's implement this request in our app:

1. First, inside the RestaurantsApiService interface, define a suspend
function called getRestaurant(), which will serve as another @GET HTTP
method that will get the details of one restaurant:

interface RestaurantsApiService {

 […]

 @GET("restaurants.json?orderBy=\"r_id\"")

 suspend fun getRestaurant(

 @Query("equalTo") id: Int): Unit

}

Creating a new Compose-based screen 153

Let's break down the code we've just added to our second HTTP method:

 � The HTTP call defined by this method is an async job that takes some time to
finish, so we've marked the method as a suspending function by adding the
suspend keyword.

 � Inside the @GET annotation, we specified not only that we want to access the
restaurants.json JSON content, but this time we also hardcoded the
orderBy query parameter and specified the r_id value so that we filter the
elements by the value of their r_id key.

 � This method receives one essential parameter – id: Int that represents the
unique ID of the restaurant corresponding to the r_id field in the database.
To tell Retrofit that this method parameter is a query parameter in the required
HTTP call, we've annotated it with the @Query annotation and passed the
"equalTo" value.

Yet our HTTP call defined by our getRestaurant() method is missing
something crucial: the response type. We've set Unit as the response type, but
we need to receive a proper response object. To see what to expect, let's have
a closer look at the response we received earlier on inside our browser:

Figure 5.4 – The JSON response structure of the restaurant object
If we look at these fields, is_shutdown, r_description, r_id, and r_title,
we can easily identify the response JSON object as the same JSON object that
we receive in the existing HTTP request that gets all the restaurants.

And since we've mapped such a JSON object in the past to our Restaurant
data class using the @Serialized annotations, we could very well say our
new getRestaurant() HTTP call will receive a simple Restaurant object
as a response.

We wouldn't be far from the truth, yet this response wouldn't be fully correct.

154 Adding Navigation in Compose With Jetpack Navigation

If we look closer at the previous JSON response, we notice that the restaurant JSON
object is a value object that corresponds to a String key with the value of 2:

Figure 5.5 –Identifying the key field for the restaurant object
This key corresponds to an internal index generated by Firebase that represents the
order number in which the corresponding restaurant was added to the database.
This response structure isn't typical for most REST API responses, yet Firebase has
this quirk of wrapping your JSON object in a key that is unknown at compile time.

2. To get around this, inside the RestaurantsApiService interface, update the
getRestaurant() method to return a Map object with an unknown String
key and a Restaurant data type as the value:

interface RestaurantsApiService {

 …

 @GET("restaurants.json?orderBy=\"r_id\"")

 suspend fun getRestaurant(@Query("equalTo") id: Int)

 : Map<String, Restaurant>

}

Great work! We have our app ready to execute a second network request that obtains the
details about a specific restaurant, so it's time to call this request.

Getting the contents of a specific restaurant
Now that we know how to obtain the details about a specific restaurant, it's time to execute
our newly defined network request.

Creating a new Compose-based screen 155

Our existing RestaurantsScreen composable delegates the responsibility of
requesting the list of restaurants that must be displayed to a ViewModel class,
so let's create another ViewModel so that our second screen can do the same:

1. Create a new file by left-clicking the application package, selecting New, and then
Kotlin Class/File. Enter RestaurantDetailsViewModel as the name and
select File as the type. Inside the newly created file, add the following code:

class RestaurantDetailsViewModel(): ViewModel() {

 private var restInterface: RestaurantsApiService

 init {

 val retrofit: Retrofit = Retrofit.Builder()

 .addConverterFactory(GsonConverterFactory

 .create())

 .baseUrl("your-firebase-base-url")

 .build()

 restInterface = retrofit.create(

 RestaurantsApiService::class.java)

 }

}

In the preceding snippet, we've created a ViewModel class where we instantiated
a Retrofit client of type RestaurantsApiService, just like we did in the
RestaurantsViewModel class.

The block of code that initializes a Retrofit client is indeed duplicated in both our
ViewModel classes, but don't worry because you will be able to fix this during
Chapter 9, Implementing Dependency Injection with Jetpack Hilt.

Note
Remember to pass your Firebase database URL to the baseUrl()
method. This URL should be identical to the one used in the
RestaurantsViewModel class and should correspond to your Firebase
Realtime Database project.

156 Adding Navigation in Compose With Jetpack Navigation

2. Inside the newly created ViewModel, create a getRemoteRestaurant()
method that receives an id parameter and takes care of executing the network
request to get the details of a specific restaurant:

class RestaurantDetailsViewModel() : ViewModel() {

 private var restInterface: RestaurantsApiService

 init { […] }

 private suspend fun getRemoteRestaurant(id: Int):

 Restaurant {

 return withContext(Dispatchers.IO) {

 val responseMap = restInterface

 .getRestaurant(id)

 return@withContext responseMap.values.first()

 }

 }

}

Let's break down what happens inside the getRemoteRestaurant() method:

 � It receives an id parameter corresponding to the restaurant whose details
we need and returns the specific Restaurant object.

 � It is marked by the suspend keyword since the job of executing a network
request is a suspending work that shouldn't block the main thread.

 � It is wrapped in a withContext() block that specifies the
Dispatchers.IO dispatcher since the suspending work should be run
on the specialized IO thread.

 � It executes the network request to obtain the details of a restaurant by calling
the getRestaurant() suspending function on restInterface while
passing id of the specific restaurant.

 � Finally, it obtains Map<String, Restaurant> from the REST API. To
unwrap this and obtain the restaurant, we call the values() function of Map
and get the first Restaurant object with the .first() extension function.

Creating a new Compose-based screen 157

Note:
The first() extension function is called on the
Collection<Restaurant> object returned by the values()
function of Map. With this extension function, we are obtaining the first
element, that is, the Restaurant object we're interested in. However, the
first() extension function can throw a NoSuchElementException
if for some reason we query for a non-existent restaurant. In production, you
should cover this case as well by catching such an exception.

3. Since RestaurantDetailsViewModel will hold the state of the
restaurant details screen, add a MutableState object that will hold
a Restaurant object and initialize it with a null value until we finish
executing the network request that retrieves it:

class RestaurantDetailsViewModel(): ViewModel() {

 private var restInterface: RestaurantsApiService

 val state = mutableStateOf<Restaurant?>(null)

 […]

}

4. Inside the init block of RestaurantDetailsViewModel, below the
instantiation of the Retrofit client, launch a coroutine with the help of the
viewModelScope builder:

init {

 […]

 restInterface = retrofit.create(…)

 viewModelScope.launch {

 val restaurant = getRemoteRestaurant(2)

 state.value = restaurant

 }

}

158 Adding Navigation in Compose With Jetpack Navigation

We needed to launch a coroutine because the job of getting a Restaurant object from
our remote Firebase API would have blocked the main thread. We've used the built-in
viewModelScope coroutine builder to make sure that the launched coroutine will live
as long as the RestaurantDetailsViewModel instance does. Inside the coroutine,
we did the following:

1. We first called the suspending getRemoteRestaurants() function
and passed a hardcoded value of 2 as the id of the restaurant. At this time,
RestaurantsViewModel has no idea what's the id of the restaurant that it's
looking for – we will fix this soon when we perform the navigation.

2. We stored the obtained Restaurant inside the restaurant variable and passed
it to the state variable of the RestaurantDetailsViewModel class so that
the UI will be recomposed with the freshly received restaurant content.

We've executed the network request to obtain the details about a restaurant and prepared
the state so that a Compose-based screen can display its contents. Let's build the new
screen up next.

Building the restaurant details screen
We need to create a new composable screen that will display the details about
a specific restaurant:

1. Create a new file inside the application package called
RestaurantDetailsScreen and create the RestaurantDetailsScreen
composable:

@Composable

fun RestaurantDetailsScreen() {

 val viewModel: RestaurantDetailsViewModel =
 viewModel()

 val item = viewModel.state.value

 if (item != null) {

 // composables

 }

}

Creating a new Compose-based screen 159

Inside of it, we've instantiated its corresponding ViewModel and accessed
the State object, just like we previously did in the RestaurantsScreen
composable. The State object holds the Restaurant object, which we're storing
inside the item variable. If item is not null, we will display the details about the
restaurant by passing a composable hierarchy.

2. Since we plan to reuse some composable functions from the first screen, head back
inside the RestaurantsScreen.kt file and mark the RestaurantIcon
and RestaurantDetails composables as public for use by removing their
private keywords.

3. Add a new parameter to the RestaurantDetails composable called
horizontalAlignment and pass it to the column's horizontalAlignment
parameter:

@Composable

fun RestaurantDetails(

 … ,

 modifier: Modifier,

 horizontalAlignment: Alignment.Horizontal

 = Alignment.Start

) {

 Column(

 modifier = modifier,

 horizontalAlignment = horizontalAlignment

) { ... }

}

By doing so, we can control how the Column children are horizontally aligned
so we can change this behavior in the new screen. Since we want Column to
position its children horizontally to the left by default (so that its effect in the
RestaurantsScreen composable won't differ), we passed Alignment.Start
as the default value.

160 Adding Navigation in Compose With Jetpack Navigation

4. Inside the RestaurantDetailsScreen composable, add a Column
instance that contains RestaurantIcon, RestaurantDetails, and Text
composables, all positioned vertically and centered horizontally:

@Composable

fun RestaurantDetailsScreen() {

 val viewModel: RestaurantDetailsViewModel =

 viewModel()

 val item = viewModel.state.value

 if (item != null) {

 Column(

 horizontalAlignment =

 Alignment.CenterHorizontally,

 modifier =

 Modifier.fillMaxSize().padding(16.dp)

) {

 RestaurantIcon(

 Icons.Filled.Place,

 Modifier.padding(

 top = 32.dp,

 bottom = 32.dp

)

)

 RestaurantDetails(

 item.title,

 item.description,

 Modifier.padding(bottom = 32.dp),

 Alignment.CenterHorizontally)

 Text("More info coming soon!")

 }

 }

}

Implementing navigation with Jetpack Navigation 161

To prove how simple it is to reuse composables, we've passed the same
RestaurantIcon and RestaurantDetails composables used in the
first screen to our Column. We've configured them with different Modifier
objects and additionally passed Alignment.centerHorizontally to the
RestaurantDetails composable's new alignment parameter added previously.

5. To test that everything works fine, and our new screen renders the details of the
hardcoded restaurant with an id value of 2, navigate back to MainActivity and
inside the setContent method, replace the RestaurantsScreen composable
with RestaurantDetailsScreen:

setContent {

 RestaurantsAppTheme {

 //RestaurantsScreen()

 RestaurantDetailsScreen()

 }

}

6. Run the application and we get the following screenshot:

Figure 5.6 – Displaying the RestaurantDetailsScreen() composable

Awesome! We have now created our second screen, the restaurant details screen. We can
now start thinking about the navigation between our two screens.

Implementing navigation with Jetpack
Navigation
Navigation within apps represents those interactions that allow the user to navigate back
and forth between several screens.

162 Adding Navigation in Compose With Jetpack Navigation

In our Restaurants application, we now have two screens, and we want to navigate from
the first one to the second one. In the first screen, we display a list of restaurants and when
the users press on one restaurant item from the list, we want to take them to the second
screen, the details screen:

Figure 5.7 – Navigation from list screen to details screen

Basically, we want to perform a simple navigation action from the RestaurantsScreen
composable to the RestaurantDetailsScreen composable. To achieve a simple
navigation action, we need to implement a navigation library that will not only allow us to
transition from the first screen to the second screen but should also allow us to return to
the previous screen with the press of the Back button.

As we already know, the Jetpack Navigation component comes to our rescue as it will help
us implement such a behavior! Let's start with the following steps:

1. Inside the build.gradle file in the app module, add the dependency for the
Navigation component with Compose inside the dependencies block:

implementation "androidx.navigation:navigation-
compose:2.4.2"

After updating the build.gradle file, make sure to sync your project with its
Gradle files. You can do that by pressing on the File menu option and then by
selecting Sync Project with Gradle Files.

Implementing navigation with Jetpack Navigation 163

2. Inside the MainActivity class, create a new empty composable function called
RestaurantsApp():

@Composable

private fun RestaurantsApp() {

}

This composable function will act as the parent composable function of our
Restaurants application. Here, all the screens of the app will be defined.

3. Inside the onCreate() method, replace the RestaurantsDetailsScreen()
composable that is passed to the setContent method with the
RestaurantsApp() composable:

setContent {

 RestaurantsAppTheme {

 RestaurantsApp()

 }

}

4. Inside the RestaurantsApp() composable function, instantiate
NavController via the rememberNavController() method:

@Composable

private fun RestaurantsApp() {

 val navController = rememberNavController()

}

The NavController object handles the navigation between composable
screens – it operates on the back stack of composable destinations. This means
that across recompositions, it must keep the current state of the navigation
stack. For that to happen, it must be a stateful object – that's why we used the
rememberNavController syntax, which is similar to the remember block
we've been using when defining State objects.

5. Next up, we need to create a NavHost container composable that will display the
composable destinations. Every time a navigation action between composables is
done, the content within NavHost is recomposed automatically.

Add a NavHost composable and pass both, the NavController instance created
previously and an empty String to the startDestination parameter:

import androidx.navigation.compose.NavHost

[…]

164 Adding Navigation in Compose With Jetpack Navigation

@Composable

private fun RestaurantsApp() {

 val navController = rememberNavController()

 NavHost(navController, startDestination = "") {

 }

}

Among other parameters, NavHost specifies three mandatory parameters:

 � A navController: NavHostController object that is associated with
a single NavHost composable. NavHost links NavController with
a navigation graph that defines the possible destinations of the application.
In our case, we've passed the navController variable to this parameter.

 � A startDestination: String object that defines the entry-point route
of the navigation graph. The route is String, which defines the path to
a specific destination (composable screen). Every destination should have
a unique route. In our case, since we haven't defined any routes, we've passed
an empty String to startDestination.

 � The builder: NavGraphBuilder.() -> Unit trailing lambda
parameter, which uses the lambda syntax from the Navigation Kotlin DSL
(just like LazyColumn or LazyRow did with their own DSL) to construct
a navigation graph. In here, we should define routes and set corresponding
composables, yet so far we've set an empty body { } function to the trailing
lambda parameter.

6. To build the navigation graph, we must make use of the builder parameter and
instead of passing only an empty function, inside of it, we need to start adding
routes that specify composable destinations.

To do that, make use of the DSL function called composable() where
you can provide a route string to the route parameter and a composable
function corresponding to the desired destination to the trailing lambda
content parameter:

@Composable

private fun RestaurantsApp() {

 val navController = rememberNavController()

 NavHost(

 navController,

 startDestination = "restaurants"

Implementing navigation with Jetpack Navigation 165

) {

 composable(route = "restaurants") {

 RestaurantsScreen()

 }

 }

}

Through the composable() DSL function, we've created a route with the value of
"restaurants" that navigates to the RestaurantsScreen() composable.

Additionally, we've passed the same route to the startDestination parameter
of NavHost, thereby making our RestaurantsScreen() composable the
unique entry point of our application.

7. By calling the composable() DSL function again inside the navigation graph
builder, add another route that points to the RestaurantDetailsScreen()
destination and that derives from the "restaurants" route by appending the
{restaurant_id} argument placeholder:

NavHost(navController, startDestination = "...") {

 composable(route = "restaurants") { … }

 composable(route = "restaurants/{restaurant_id}") {

 RestaurantDetailsScreen()

 }

}

We want to navigate from the "restaurants" route to this new route that points
to the RestaurantDetailsSreen() composable, so the {restaurant_id}
placeholder will take the id value of the restaurant to which we are trying to
navigate.

In practice, this route branches off the "restaurants" route, and while being
structured similarly to a URL (because of the "/" element that delimitates a new
path), we can say that this route can have multiple values, depending on id of the
restaurant we're looking to navigate to. For example, this route can have values at
runtime such as "restaurants/0" or "restaurants/2".

8. Inside the navigation graph, we've defined the routes and their corresponding
destinations, but we haven't really performed the actual navigation between the two
screens. To do that, we first need to have a trigger or callback that notifies us when
the user pressed on a restaurant item within the restaurant list, so we can navigate to
the restaurant details screen.

166 Adding Navigation in Compose With Jetpack Navigation

Inside the RestaurantsScreen.kt file, modify the RestaurantItem
composable to expose an onItemClick callback function that provides us with id
of the restaurant that is clicked, and also call it when the entire restaurant's Card is
pressed on:

@Composable

fun RestaurantItem(item: Restaurant,

 onClick: (id: Int) -> Unit,

 onItemClick: (id: Int) -> Unit) {

 val icon = …

 Card(elevation = 4.dp,

 modifier = Modifier

 .padding(8.dp)

 .clickable { onItemClick(item.id) }) { … }

}

9. To prevent confusion, refactor the RestaurantItem composable by renaming the
old onClick parameter to a more suggestive name, such as onFavoriteClick:

@Composable

fun RestaurantItem(item: Restaurant,

 onFavoriteClick: (id: Int) -> Unit,

 onItemClick: (id: Int) -> Unit) {

 val icon = …

 Card(…) {

 Row(…) {

 …

 RestaurantIcon(icon, Modifier.weight(0.15f))

 {

 onFavoriteClick(item.id)

 }

 }

 }

}

Implementing navigation with Jetpack Navigation 167

10. Inside the RestaurantsScreen() composable, add a similar onItemClick
callback function as a parameter, and call it when the onItemClick callback
comes from the RestaurantItem composable:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit = {
}) {

 val viewModel: RestaurantsViewModel = viewModel()

 LazyColumn(...) {

 items(viewModel.state.value) { restaurant ->

 RestaurantItem(

 restaurant,

 onFavoriteClick =

 { id -> viewModel.toggleFavorite(id) },

 onItemClick = { id -> onItemClick(id) })

 }

 }

}

Additionally, we've changed the onClick parameter name of the
RestaurantItem composable call to match its signature of onFavoriteClick.

What we are essentially doing is propagating events through callbacks from child
composables to parent composables.

11. Inside NavHost, update the RestaurantsScreen() composable destination to
listen for navigation callbacks and then, inside the callback, trigger the navigation
between composables by calling the navigate() method, which expects route
as a parameter:

@Composable

private fun RestaurantsApp() {

 val navController = rememberNavController()

 NavHost(navController, startDestination = "...") {

 composable(route = "restaurants") {

 RestaurantsScreen { id ->

 navController.navigate("restaurants/$id")

 }

 }

 composable(

168 Adding Navigation in Compose With Jetpack Navigation

 route = "restaurants/{restaurant_id}"

) {

 RestaurantDetailsScreen()

 }

 }

}

Inside the new trailing lambda function of RestaurantsScreen, we now receive
the id value of the restaurant we need to navigate to. To trigger the navigation,
we called the navigate() method, and to its route parameter, we passed
the "restaurants/$id" string to match the route of our other composable
destination, RestaurantDetailsScreen().

12. Try running the application and verify the following.

When the app is launched, the RestaurantsScreen() composable is composed
and displayed. In other words, you are at the "restaurants" route because
we've set this route as startDestination for our navigation graph. On the
navigation back stack, this destination will be added:

Figure 5.8 – Back stack with the start destination
When pressing on one of the restaurants on the list, navigation is triggered and you
arrive at the RestaurantDetailsScreen() composable destination. On top of
the navigation back stack this destination will be added:

Figure 5.9 – Back stack after navigating to another destination
When pressing the system's Back button while being at the
RestaurantDetailsScreen() destination, you are sent back to the existing
destination in the back stack, RestaurantsScreen(). This means that on the
back stack, the top destination is popped, and only the root destination remains:

Implementing navigation with Jetpack Navigation 169

Figure 5.10 – Back stack after returning to start destination
The navigation works, but if you noticed, it always points to the same restaurant.
This happens because of two reasons:

 � While we defined the {restaurant_id} placeholder argument in the
route that points to RestaurantDetailsScreen(), we didn't define this
argument inside the DSL composable() function as a navigation argument,
so the Navigation component has no idea how to send it to the route's
composable destination.

 � Inside RestaurantDetailsViewModel, we've hardcoded the id of the
restaurant to the value of 2.

We want the user to see details about the restaurant that is pressed on, so let's fix
these issues and pass the ID of the restaurant dynamically.

13. For the RestaurantDetailsScreen() destination, apart from route, add the
arguments parameter that expects a list of NamedNavArgument objects, and
pass such an argument using the navArgument function:

NavHost(navController, startDestination = "..."){

 composable(route = "restaurants") { … }

 composable(

 route = "restaurants/{restaurant_id}",

 arguments =

 listOf(navArgument("restaurant_id") {

 type = NavType.IntType

 })

) { RestaurantDetailsScreen() }

}

This argument specifies the same "restaurant_id" key that we've added as
a place holder within route and allows the Navigation library to expose this
argument to the destination composable. Additionally, the navArgument function
exposes NavArgumentBuilder, where we specified the type of the argument to
be IntType.

170 Adding Navigation in Compose With Jetpack Navigation

To obtain the argument's value inside the RestaurantDetailsScreen()
destination, the composable() DSL function exposes a NavBackStackEntry
object that allows us to get the value as follows:

composable(…) { navStackEntry ->

 val id =

 navStackEntry.arguments?.getInt("restaurant_id")

 RestaurantDetailsScreen()

}

Yet our RestaurantDetailsScreen() destination doesn't expect the id of
a restaurant, but RestaurantDetailsViewModel does, so we will not perform
the previous changes where we access navStackEntry; instead, we will do
something similar in the ViewModel soon enough.

14. Behind the scenes, the Navigation component saves the navigation arguments
stored in NavStackEntry into SavedStateHandle, which our VM exposes.
This means that we can take advantage of that, and instead of obtaining the ID of
the restaurant inside the RestaurantDetailsScreen() composable, we can
directly obtain it in RestaurantDetailsViewModel.

First, add the SavedStateHandle parameter to the
RestaurantDetailsViewModel constructor, just like we did within
RestaurantsViewModel:

class RestaurantDetailsViewModel(

 private val stateHandle: SavedStateHandle

) : ViewModel() {

 […]

 init { […] }

 private suspend fun getRemoteRestaurant(id: Int) {

 […]

 }

}

15. Inside of the init { } block of ViewModel, below the instantiation of the
Retrofit client, store the ID of the restaurant inside a new id variable while
obtaining it dynamically from the SavedStateHandle object, and then pass it to
the getRemoteRestaurant() method call:

class RestaurantDetailsViewModel(private val stateHandle:
SavedStateHandle): ViewModel() {

Implementing navigation with Jetpack Navigation 171

 …

 init {

 val retrofit: Retrofit = Retrofit[…].build()

 restInterface = […]

 val id = stateHandle.get<Int>("restaurant_id")

 ?: 0

 viewModelScope.launch {

 val restaurant = getRemoteRestaurant(id)

 state.value = restaurant

 }

 }

 …

}

We've instructed navArgument that the argument is of type Int, so we've
obtained it as an Int value from stateHandle and passed the same
"restaurant_id" key that we've used to define navArgument.

This approach will protect us from system-initiated process death scenarios as well.
The user could navigate to the RestaurantDetailsScreen() destination of
a restaurant with an id value of 2, and then minimize the app for a while. In the
meantime, the system could decide to kill the process of the app to free up memory,
so when the user resumes the app, the system would restore it and provide us with
a SavedStateHandle object that contains the ID of the restaurant with the
value of 2.

In conclusion, the app would know to obtain the details of the restaurant the user
initially navigated to, so the application behaves correctly for this edge case.

16. Run the app again and verify that this time when pressing on one restaurant item in
the RestaurantsScreen()start destination, the details about this restaurant are
displayed in the second destination, RestaurantDetailsScreen().

Note
We used the Navigation component with destinations that are composable
functions. Inside these composables, we instantiate ViewModel objects.
Since these composables are in a back stack of destinations, their ViewModel
objects become scoped to the lifetime of the composables. In other words, with
the addition of the Navigation component, the ViewModel objects have the
same lifetime as the composable screen that they are attached to.

172 Adding Navigation in Compose With Jetpack Navigation

Perfect! Now our Restaurants app has two screens that you can navigate between
whenever the user presses on a restaurant from within our list. It's time to explore another
type of navigation event.

Adding support for deep links
Deep links allow you to redirect users to specific parts of your application without having
them go through all the intermediary screens. This technique is especially useful for
marketing campaigns because it can boost user engagement while also providing a good
user experience.

Deep links are usually incorporated within URI schemes or custom schemes. This allows
you to configure anything from an image advertisement, text advertisement, or even
a QR code that when clicked or scanned redirects you to a specific page of the app. If your
app is configured to know how to handle such schemes, the user will be able to open that
particular link with your application.

For example, say that for our Restaurants application, we start a marketing campaign
where we include some advertisements on the internet that showcase some special
restaurants. We configure the advertisements to be clickable and to redirect to the
following link, which contains the ID of the advertised restaurant, such as 2: https://
www.restaurantsapp.details.com/2.

This URI will not work when loaded into a browser application (because there is no such
website), yet we can configure our app to know how to interpret it as a deep link.

When a user is browsing a search engine and presses on a campaign advertisement for one
of our restaurants, the app should know how to handle these actions and should allow the
user to be redirected to our application:

Figure 5.11 – Inefficient redirect to our Restaurants app

Adding support for deep links 173

Our application has as the start destination the RestaurantsScreen() composable,
so the user should manually find the restaurant that was initially presented on the
advertisement, and press on it to navigate to the RestaurantDetailsScreen()
destination.

This is obviously a bad practice because we don't want the user to perform manual
navigations within our app to get to the advertised restaurant. Imagine if other apps
required the user to navigate not through one or two screens as per our application, but
more screens – this would result in a bad user experience and the campaign would be
ineffective.

Deep links, however, allow you to automatically redirect the user to your desired
destination:

Figure 5.12 – Direct deep link to the screen of interest

By redirecting the user directly to the screen of interest, we improve the user experience
and expect our advertising campaign to perform better.

174 Adding Navigation in Compose With Jetpack Navigation

Let's implement such a deep link in our Restaurants application with the help of the
Navigation component library:

1. Inside the RestaurantDetailsScreen() DSL composable() function,
apart from route and arguments, add another parameter called deepLinks
that expects a list of NavDeepLink objects, and pass such an argument using the
navDeepLink function:

NavHost(navController, startDestination = "restaurants")

{

 composable(route = "restaurants") {…}

 composable(

 route = "restaurants/{restaurant_id}",

 arguments = listOf(

 navArgument("restaurant_id") {…}

),

 deepLinks = listOf(navDeepLink {

 uriPattern =

 "www.restaurantsapp.details.com/{restaurant_id}"

 })

) { RestaurantDetailsScreen() }

}

The navDeepLink function expects in turn a NavDeepLinkDslBuilder
extension function that exposes its own DSL. We've set the uriPattern DSL
variable to expect our custom URI of www.restaurantsapp.details.com
but also added our placeholder "restaurant_id" argument that will allow the
Navigation component to parse and provide us with the ID of the restaurant from
the deep link.

Right now, our application knows how to handle a deep link, but only internally.
2. To make our deep link available externally, inside the AndroidManifest.xml

file, add the following <intent-filter> element within our MainActivity's
<activity> element:

<application … >

 <activity

 android:name=".MainActivity"

 […] >

 <intent-filter>

Adding support for deep links 175

 <action android:name="[…].action.MAIN" />

 <category android:name="[…].LAUNCHER" />

 </intent-filter>

 <intent-filter>

 <data

 android:host="www.restaurantsapp.

 details.com"

 android:scheme="https" />

 <action android:name="android.intent.

 action.VIEW" />

 <category android:name="android.intent.

 category.DEFAULT" />

 <category android:name="android.intent.

 category.BROWSABLE" />

 </intent-filter>

 </activity>

</application>

Let's break up what we've just added inside the new <intent-filter> element:

 � A <data> element that specifies the following:

 � The host parameter as the deep link URI that we've set previously in our
navigation graph. This is the URI that our ads should link to.

 � The scheme parameter of the deep link as https. Every <data>
element should define a scheme so that the URI is recognized.

 � A <category> element of BROWSABLE that is required for the intent filter
to be accessed from web browser apps.

 � A <category> element of DEFAULT that makes the app intercept the deep
link's intents implicitly. Without it, the app could be started only if the deep
link intent specified the application component name.

To test the deep link, we need to simulate a deep link action. Let's imagine that we
want to test a deep link that points to a restaurant that has the ID with the value
of 2. The deep link would look like this: https://www.restaurantsapp.
details.com/2.

176 Adding Navigation in Compose With Jetpack Navigation

Since we don't have any advertisements that refer to our deep link, we have
two options:

 � Create a QR code with this URL and then scan it with our device.

 � Launch an intent from the command line that simulates the deep link.

Let's go with the second option.
3. Build the project and run the application on an emulator or physical device.

This step is needed so that the installed application knows how to respond to
our deep link.

4. Close the app or minimize it, but make sure you leave your emulator or device
connected to Android Studio.

5. Open the terminal inside Android Studio, paste the following command and
enter it:

$ adb shell am start -W -a android.intent.action.VIEW -d
"https://www.restaurantsapp.details.com/2"

6. The emulator/device that you have connected to Android Studio should now
prompt a disambiguation dialog asking you what app you'd like to open the deep
link with:

Figure 5.13 – Disambiguation dialog displayed when launching a deep link
Our application is one of those apps and this means that it has been correctly
configured to intercept our deep links.

Summary 177

7. Select Restaurants app (or whatever you called your app) and press JUST ONCE.
The application should open our RestaurantDetailsScreen() destination
and show the details of the desired restaurant.

Optionally, you can try pressing the system's Back button. The Navigation
component application knows automatically how to send the user back to the
RestaurantsScreen composable.

Now that we've also successfully added deep link functionality to our Restaurant
application, it's time to wrap this chapter up.

Summary
In this chapter, we learned how to navigate between screens within our Restaurants
application. We did that easily with the help of the Jetpack Navigation component library.

We started off by learning the basics of the Jetpack Navigation library and understood
how easy our life becomes when having to handle navigation back stacks. Afterward, we
created a new screen, implemented the Navigation library, and explored how seamless it
is to add navigation between composables. Finally, we added support for deep links and
made sure to test such a deep link within our app.

Next up, it's time to focus on improving the quality and architecture of our Restaurants
application.

Part 2:
A Guide to Clean

Application Architecture
with Jetpack Libraries

In this part, we will learn how to incorporate clean and modern architectures, add
offline capabilities with Room, include Dependency Injection with Hilt, and test UI
and application logic by using the demo project from the previous section.

This section comprises the following chapters:

• Chapter 6, Adding Offline Capabilities with Jetpack Room

• Chapter 7, Introducing Presentation Patterns in Android

• Chapter 8, Getting Started with Clean Architecture in Android

• Chapter 9, Implementing Dependency Injection with Jetpack Hilt

• Chapter 10, Test Your App with UI and Unit Tests

6
Adding Offline

Capabilities with
Jetpack Room

In this chapter, we're starting our journey of exploring ways to architecture our apps
by first making sure that our application can be used without an internet connection.

In the Introducing Jetpack Room section, we will briefly note the various caching
mechanisms that are on Android. Then, we will introduce the Jetpack Room library and
its core elements.

Next, in the Enabling offline usage by implementing Room section, we will implement
Room in our Restaurants app and allow users to use the application without an internet
connection. In the Applying partial updates to the Room database section, we will learn
how to partially update data inside Room so that we can save selections such as whether
the restaurants were favorited by the user.

182 Adding Offline Capabilities with Jetpack Room

Finally, in the Making local data the single source of truth for app content section, we will
understand why having a single source of truth for app data is beneficial, and then we will
set the Room database as the single source of content for our app.

To summarize, in this chapter, we're going to cover the following main topics:

• Introducing Jetpack Room

• Enabling offline usage by implementing Room

• Applying partial updates to the Room database

• Making local data the single source of truth for app content

Before jumping in, let's set up the technical requirements for this chapter.

Technical requirements
Usually, building Compose-based Android projects with Jetpack Room will require your
day-to-day tools. However, to follow along with the examples smoothly, make sure you
have the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds but note that the IDE interface and
other generated code files might differ from the ones used throughout this book.

• The Kotlin 1.6.10, or newer, plugin installed in Android Studio

• The Restaurants app code from the previous chapter.

• Minimal knowledge of SQL databases and queries

The starting point for this chapter is represented by the Restaurants application that was
developed in the previous chapter. If you haven't followed the implementation described
in the previous chapter, access the starter code for this chapter by navigating to the
Chapter_05 directory of the repository. Then, import the Android project entitled
chapter_5_restaurants_app.

To access the solution code for this chapter, navigate to the Chapter_06 directory:

https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_06/
chapter_6_restaurants_app.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_06/chapter_6_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_06/chapter_6_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_06/chapter_6_restaurants_app

Introducing Jetpack Room 183

Introducing Jetpack Room
Modern applications should be available for use in any conditions, including when
the user is missing an internet connection. This allows apps to provide a seamless user
experience and usability even when the user's device cannot access the network.

In this section, we will discuss the following:

• Exploring the caching mechanism on Android

• Introducing Jetpack Room as a solution for local caching

So, let's begin!

Exploring the caching mechanism on Android
To cache specific content or application data, reliable Android apps make use of the
various offline caching mechanisms that are suitable for different use cases:

• Shared preferences are used to store lightweight data (such as user-related
selections) as key-value pairs. This option shouldn't be used to store objects that
are part of the app's content.

• Device storage (either internal or external) is used for storing heavyweight data
(such as files, pictures, and more).

• SQLite database is used for storing app content in a structured manner inside a
private database. SQLite is an open source SQL database that stores data in private
text files.

In this chapter, we will focus on learning how to cache structured content (which is,
usually, held by Kotlin data class objects) within a SQLite database. In this way,
we allow the user to browse the app's data while remaining offline.

Note
Android comes with a built-in SQLite database implementation that allows us
to save structured data.

In our app, we can consider the array of restaurants to be a perfect candidate for app
content that can be saved inside a SQLite database. Since the data is structured, with
SQLite, we get the advantage of being able to perform different actions such as searching
for restaurants within the database, updating particular restaurants, and more.

184 Adding Offline Capabilities with Jetpack Room

By caching app content in this way, we can allow users to browse the app's restaurants
while offline. However, for this to work, the users need to have previously opened the app
using an active internet connection, thereby allowing the app to cache the contents for
future offline use.

Now, to save the restaurants to the SQLite private database, we need to make use
of the SQLite APIs. These APIs are powerful. However, by using them, you face quite
a few disadvantages:

• The APIs are of a low level and are relatively difficult to use.

• The SQLite APIs provide no compile-time verification of SQL queries, which can
lead to unwanted runtime errors.

• There is a lot of boilerplate code involved in creating a database, performing SQL
queries, and more.

To mitigate these issues, Google provides the Jetpack Room library. This library is nothing
more than a wrapper library that simplifies the way we access and interact with the SQLite
database.

Introducing Jetpack Room as a solution for local
caching
Room is a persistence library that is defined as an abstraction layer over SQLite and
provides simplified database access while taking advantage of the power of the
SQLite APIs.

As opposed to using the raw SQLite APIs, Room abstracts most of the complexity
associated with working with SQLite. The library removes most of the unpleasant
boilerplate code that is required to set up and interact with SQLite databases on Android
while also providing the compile-time checking of SQL queries.

To make use of the Room library and cache contents using its API, you need to define
three primary components:

• Entities that define tables within the private database. In our Restaurants app, we
will consider the Restaurant data class as an entity. This means that we will have
a table populated with Restaurant objects. In other words, the rows of the table
are represented by instances of our restaurants.

Introducing Jetpack Room 185

• A database class that will contain and expose the actual database.

• Data Access Objects (DAOs) that represent an interface. This allows us to get,
insert, delete, or update the actual content within the database.

The database class provides us with a reference to the DAO interface associated with the
SQLite database:

Figure 6.1 – The interaction between the application and the Room database

As previously illustrated, we can use the DAO to retrieve or update the data from the
database in the form of entity objects – in our case, the entity is the restaurant, so we will
be applying such operations to restaurant objects.

Now that we have a basic understanding of how Room works and how we can
interact with it, it's time to see it in action for ourselves and implement Room in
our Restaurants app.

186 Adding Offline Capabilities with Jetpack Room

Enabling offline usage by implementing Room
We want to locally cache all the restaurants that we receive from our Firebase database.
Since this content is structured, we want to use Room to help us with this task.

Essentially, we are trying to save the restaurants when the user is browsing our
Restaurants app while online. Then, we will reuse them when the user browses the app
while being offline:

Figure 6.2 – Data retrieval for the Restaurants app with two sources of truth

When online, we retrieve the restaurants from our web API. Before displaying them to
the user, first, we will cache them to our Room database. If offline, we will retrieve the
restaurants from the Room database and then display them to the user.

Essentially, we are creating two sources of truth for our app:

• The remote API for when the user is online

• The local Room database for when the user is offline

In the next section, we will discuss why this approach is not ideal. However, until then,
we are content with the fact that we will be able to use the app while remaining offline.

Let's start implementing Room, and then let's cache those restaurants! Perform the
following steps:

1. Inside the build.gradle file in the app module, add the dependencies for Room
inside the dependencies block:

implementation "androidx.room:room-runtime:2.4.2"

kapt "androidx.room:room-compiler:2.4.2"

implementation "androidx.room:room-ktx:2.4.2"

Enabling offline usage by implementing Room 187

2. While you are still inside the build.gradle file, add the kotlin-kapt plugin
for Room inside the plugins block:

plugins {

 id 'com.android.application'

 id 'kotlin-android'

 id 'kotlin-kapt'

}

The kapt plugin stands for Kotlin Annotation Processing Tool. This allows Room
to generate annotated code at compile time while hiding most of the associated
complexity from us.

After updating the build.gradle files, make sure to sync your project with
its Gradle files. You can do that by pressing on the File menu option and then by
selecting Sync Project with Gradle Files.

3. Since we want to store restaurant objects inside our local database, let's instruct
Room that the Restaurant data class is an entity that must be saved. Head inside
the Restaurant.kt file, and add the @Entity annotation on top of the class
declaration:

@Entity(tableName = "restaurants")

data class Restaurant(…)

Inside the @Entity annotation, we have passed the name of the table via the
tableName parameter. We will use this name when making queries.

4. Now that Room will create a table with Restaurant objects as rows, it's
time to define the columns (or fields) of the entity. While we are still inside the
Restaurant.kt class, let's add the @ColumnInfo annotation on top of each
field that we're interested in, and that should represent a column:

@Entity(tableName = "restaurants")

data class Restaurant(

 @ColumnInfo(name = "r_id")

 @SerializedName("r_id")

 val id: Int,

 @ColumnInfo(name = "r_title")

 @SerializedName("r_title")

 val title: String,

 @ColumnInfo(name = "r_description")

188 Adding Offline Capabilities with Jetpack Room

 @SerializedName("r_description")

 val description: String,

 var isFavorite: Boolean = false

)

For each field we're interested in saving, we've added the @ColumnInfo annotation
and passed a String value to the name parameter. These names will correspond
to the name of the table's columns. Right now, we are not interested in saving the
isFavorite field; we will do that a bit later.

5. The entity that represents a table should have a primary key column that
ensures uniqueness within the database. For this, we can use the id field that
was configured from our Firebase database to be unique. While still inside the
Restaurant.kt class, let's add the @PrimaryKey annotation to the id field:

@Entity(tableName = "restaurants")

data class Restaurant(

 @PrimaryKey()

 @ColumnInfo(name = "r_id")

 @SerializedName("r_id")

 val id: Int,

 …)

Now we have defined the entity for our database and configured the table's columns.

It's time to create a DAO that will serve as the entry point to our database, allowing
us to perform various actions on it.

6. Create a DAO by clicking on the application package, selecting New, and then
selecting Kotlin Class/File. Enter RestaurantsDao as the name, and select
Interface as the type. Inside the new file, add the following code:

import androidx.room.*

@Dao

interface RestaurantsDao { }

Since Room will take care of implementing any actions that we need to interact
with the database, the DAO is an interface, just like Retrofit also had an interface
for the HTTP methods. To instruct Room that this is a DAO entity, we've added the
@Dao annotation on top of the interface declaration.

Enabling offline usage by implementing Room 189

7. Inside the RestaurantsDao interface, add two suspend functions that will help
us to both save the restaurants and retrieve them from the database:

@Dao

interface RestaurantsDao {

 @Query("SELECT * FROM restaurants")

 suspend fun getAll(): List<Restaurant>

 @Insert(onConflict = OnConflictStrategy.REPLACE)

 suspend fun addAll(restaurants: List<Restaurant>)

}

Now, let's analyze the two methods that we've added:

 � getAll() is a query statement that returns the restaurants that were
previously cached inside the database. Since we need to perform a SQL query
when calling this method, we've marked it with the @Query annotation
and specified that we want all the restaurants (by adding *) from the
restaurants table defined in the Restaurant entity data class.

 � addAll() is an insert statement that caches the received restaurants
inside the database. To mark this as a SQL insert statement, we've added
the @Insert annotation. However, if the restaurants being inserted are
already present in the database, we should replace the old ones with the
new ones to refresh our cache. We instructed Room to do so by passing the
OnConflictStrategy.REPLACE value into the @Insert annotation.

Both methods are marked as suspend functions because any interaction with
the Room database can take time and is an async job; therefore, it shouldn't block
the UI.

Now, we have defined an entity class and a DAO class, we must define the last
component that Room needs in order to function, the database class.

8. Create a Room database class by clicking on the application package. Select New,
and then select Kotlin Class/File. Enter RestaurantsDb as the name, and select
File as the type. Inside the new file, add the following code:

@Database(

 entities = [Restaurant::class],

 version = 1,

 exportSchema = false)

abstract class RestaurantsDb : RoomDatabase() { }

190 Adding Offline Capabilities with Jetpack Room

Now, let's analyze the code that we've just added:

 � RestaurantsDb is an abstract class that inherits from RoomDatabase().
This will allow Room to create the actual implementation of the database
behind the scenes and hide all the heavy implementation details from us.

 � For the RestaurantsDb class, we've added the @Database annotation
so that Room knows that this class represents a database and provides an
implementation for it. Inside this annotation, we've passed the following:

 � The Restaurant class to the entities parameter. This parameter tells
Room which entities are associated with this database so that it can create
corresponding tables. The parameter expects an array, so you can add as
many entity classes as you wish, as long as they are annotated with @Entity.

 � 1 as the version number of the database. We should increment this
version number whenever the schema of the database changes. The schema
is the collection of database objects, such as the tables that correspond to
entities. If we change the Restaurant class, since it's an entity, we might
change the schema of the database, and Room needs to know that for
migration purposes.

 � false to the exportSchema parameter. Room can export the schema of
our database externally; however, for simplicity, we chose not to do so.

9. Inside the RestaurantsDb class, add an abstract RestaurantsDao variable:

@Database(…)

abstract class RestaurantsDb : RoomDatabase() {

 abstract val dao: RestaurantsDao

}

We know that the database class should expose a DAO object so that we can
interact with the database. By leaving it abstract, we allow Room to provide its
implementation behind the scenes.

10. Even though we declared a variable to hold our DAO object, we still need to find a
way to build the database and obtain a reference to the RestaurantsDao instance
that Room will create for us. Inside the RestaurantsDb class, add companion
object and then add the buildDatabase method:

@Database(…)

abstract class RestaurantsDb : RoomDatabase() {

 abstract val dao: RestaurantsDao

 companion object {

Enabling offline usage by implementing Room 191

 private fun buildDatabase(context: Context):

 RestaurantsDb =

 Room.databaseBuilder(

 context.applicationContext,

 RestaurantsDb::class.java,

 "restaurants_database")

 .fallbackToDestructiveMigration()

 .build()

 }

}

Essentially, this method returns a RestaurantsDb instance. To construct a Room
database, we need to call the Room.databaseBuilder constructor, which
expects the following parameters:

 � A Context object that we provided from the context input argument of
our buildDatabase method.

 � The class of the database you're trying to build, that is, the RestaurantsDb
class.

 � A name for the database – we named it "restaurants_database".

The builder returns a RoomDatabase.Builder object on which we called
.fallbackToDestructiveMigration(). This means that, in the case of
a schema change (such as performing changes in the entity class and modifying
the table columns), the tables would be dropped (or deleted) instead of trying to
migrate the contents from the previous schema (which would have been a bit
more complex).

Finally, we called build() on the builder object so that our buildDatabase()
method returns a RestaurantsDb instance.

It's time to finally get a reference to our DAO so that we can start using the database.
11. While still inside the companion object of the RestaurantsDb class, add the

following code:

companion object {

 @Volatile

 private var INSTANCE: RestaurantsDao? = null

 fun getDaoInstance(context: Context): RestaurantsDao

192 Adding Offline Capabilities with Jetpack Room

 {

 synchronized(this) {

 var instance = INSTANCE

 if (instance == null) {

 instance = buildDatabase(context).dao

 INSTANCE = instance

 }

 return instance

 }

 }

 private fun buildDatabase(…) = …

}

Now, let's break down what we've done:

 � We added an INSTANCE variable of type RestaurantsDao. Since this
variable is inside the companion object, INSTANCE is static. Additionally,
we marked it with @Volatile. This means that writes to this field are
immediately made visible to other threads. Don't worry too much about these
multithreading concepts – we will get rid of this boilerplate code soon enough.

 � We created a getDaoInstance() method where we added a block of code
that calls the buildDatabase() method and gets the DAO object by calling
the .dao accessor.

Since we want only one memory reference to our database (and not create other
database instances in other parts of the app), we made sure that our INSTANCE
variable conforms to the singleton pattern. Essentially, the singleton pattern
allows us to hold a static reference to an object so that it lives as long as
our application does.

By following this approach, anytime we need to access the Room database from
different parts of the app, we can call the getDaoInstance() method, which
returns an instance of RestaurantsDao. Additionally, we can be sure that it's
always the same memory reference and that no concurrency issues will occur since
we have wrapped the instance creation code inside a synchronized block.

12. You might have noticed that to get a reference to our DAO and cache our
restaurants in the database, the RestaurantsDb.getDaoInstance() method
expects a Context object. This is needed to create the instance of the database.
However, we want to get our DAO in the RestaurantsViewModel class, and we
have no context there, so what should we do?

Enabling offline usage by implementing Room 193

Let's expose the application context from the application class! Create the
application class by clicking on the application package, selecting New, and then
selecting Kotlin Class/File. Enter RestaurantsApplication as the name, and
select File as the type. Inside the new file, add the following code:

class RestaurantsApplication: Application() {

 init { app = this }

 companion object {

 private lateinit var app: RestaurantsApplication

 fun getAppContext(): Context =

 app.applicationContext

 }

}

This class now inherits from android.app.Application and exposes its
context through the static getAppContext() method. The only issue is that
even though we have an application class, we still haven't configured the project to
recognize it.

13. In the AndroidManifest.xml file, inside the <application> element, add
the android:name identifier that sets our RestaurantsApplication class as
the application class:

<application

 android:allowBackup="true"

 android:name=".RestaurantsApplication"

 android:icon="@mipmap/ic_launcher"

 …

 <activity> … </activity>

</application>

It's time to finally start working on caching those restaurants in our database.
14. Inside the RestaurantsViewModel class, add a restaurantsDao variable.

Then, instantiate it via the static RestaurantsDb.getDaoInstance method:

class RestaurantsViewModel(…) : ViewModel() {

 private var restInterface: RestaurantsApiService

 private var restaurantsDao = RestaurantsDb

 .getDaoInstance(

 RestaurantsApplication.getAppContext()

194 Adding Offline Capabilities with Jetpack Room

)

}

Make sure that you pass the application context through the newly created
getAppContext() method inside the application class.

15. Now we're ready to save the restaurants locally! While you are still in the
RestaurantsViewModel class, inside the getRemoteRestaurants()
method, add these new lines of code:

private suspend fun getRemoteRestaurants():

 List<Restaurant> {

 return withContext(Dispatchers.IO) {

 val restaurants = restInterface.getRestaurants()

 restaurantsDao.addAll(restaurants)

 return@withContext restaurants

 }

}

Essentially, what we are doing is the following:
I. Getting the restaurants from the remote API (here, it's the Retrofit

restInterface variable).
II. Caching those restaurants inside the local database through Room by calling

restaurantsDao.addAll().
III. Finally, returning the restaurants to the UI.

16. Run the app while you have a working internet connection.

In terms of the UI, nothing should change – you should still see the restaurants.
That said, behind the scenes, the restaurants should now have been cached.

17. Run the app again but without internet.

The chances are that you won't see anything. The restaurants are not there.

This happens because, while we are offline, we never try to get the previously
cached restaurants from the Room database. Moreover, when offline, the
restInterface.getRestaurants() suspending function throws an error
because the HTTP call that fetches the restaurants has failed – this exception should
arrive inside CoroutineExceptionHandler. The exception is thrown by
Retrofit because the associated network request has failed.

Enabling offline usage by implementing Room 195

18. Let's leverage the fact that, while we're offline, the
restInterface.getRestaurants() function call throws an exception.
This is so that we can wrap the whole block of code inside
getRemoteRestaurants() inside a try-catch block:

private suspend fun getRemoteRestaurants():

 List<Restaurant> {

 return withContext(Dispatchers.IO) {

 try {

 val restaurants = restInterface

 .getRestaurants()

 restaurantsDao.addAll(restaurants)

 return@withContext restaurants

 } catch (e: Exception) {

 when (e) {

 is UnknownHostException,

 is ConnectException,

 is HttpException -> {

 return@withContext

 restaurantsDao.getAll()

 }

 else -> throw e

 }

 }

 }

}

Essentially, what happens now is that if the user is offline, we catch the exception
thrown by Retrofit. Alternatively, we return the cached restaurants from the Room
database by calling restaurantsDao.getAll().

As an extra, we also check whether the exception we've caught has been thrown
because of the user's poor or inexistent internet connectivity. If the Exception
object is of type UnknownHostException, ConnectException,
or HttpException, we're loading the restaurants from Room through
our DAO; otherwise, we propagate the exception so that it's caught later by
CoroutineExceptionHandler.

196 Adding Offline Capabilities with Jetpack Room

19. Before running the app, let's refactor our getRemoteRestaurants() method
a bit. Now, the name of the method implies that it retrieves restaurants from
a remote source. However, in reality, it also retrieves restaurants from Room
if the user is offline. Room is a local data source, so the name of this method is no
longer appropriate.

Rename the getRemoteRestaurants() method to getAllRestaurants():
private suspend fun getAllRestaurants():

 List<Restaurant> { }

Additionally, remember to rename its usage in the getRestaurants() method
where the coroutine is launched:

private fun getRestaurants() {

 viewModelScope.launch(errorHandler) {

 val restaurants = getAllRestaurants()

 state.value = restaurants.restoreSelections()

 }

}

20. Run the app again without an internet connection.

Because the restaurants were previously cached and now the user is offline,
we are fetching them from Room. You should see the restaurants even without the
internet. Success!

Even though we've come a long way and have managed to make the Restaurants app
usable even without internet, there is still something that we've missed. To reproduce it,
perform the following steps:

1. Try running the application (either online or offline), and then mark a couple of
restaurants as favorites.

2. Disconnect your device from the internet and make sure you are now offline.
3. Restart the application while remaining offline.

You will get to see the restaurants, but your previous selections have been lost. More
precisely, even though we have marked some restaurants as favorites, all restaurants now
appear as not favorites. It's time to fix this!

Applying partial updates to the Room database 197

Applying partial updates to the Room
database
Right now, our application is saving the restaurants that we receive from the remote web
API directly inside the Room database.

This is not a bad approach; however, whenever we are marking a restaurant as a favorite,
we aren't updating the corresponding restaurant inside Room. If we take a look inside the
RestaurantsViewModel class and we check its toggleFavorite() method, we
can see that we're only updating the isFavorite flag of a restaurant inside the state
variable:

fun toggleFavorite(id: Int) {

 val restaurants = state.value.toMutableList()

 val itemIndex = restaurants.indexOfFirst { it.id == id }

 val item = restaurants[itemIndex]

 restaurants[itemIndex] = item.copy(isFavorite =

 !item.isFavorite)

 storeSelection(restaurants[itemIndex])

 state.value = restaurants

}

We aren't updating the corresponding restaurant's isFavorite field value inside Room.
So, whenever we use the application offline, the restaurants will no longer appear as
favorites, even though when we were online, we might have marked some as favorites.

To fix this, whenever we mark a restaurant as a favorite or not a favorite, we need to
apply a partial update on a particular Restaurant object inside our Room database.
The partial update should not replace the entire Restaurant object, but it should only
update its isFavorite field value.

Let's get started! Perform the following steps:

1. Create a partial entity class by clicking on the application package, selecting New,
and then selecting Kotlin Class/File. Enter PartialRestaurant as the name,
and select File as the type. Inside the new file, add the following code:

@Entity

class PartialRestaurant(

 @ColumnInfo(name = "r_id")

 val id: Int,

198 Adding Offline Capabilities with Jetpack Room

 @ColumnInfo(name = "is_favorite")

 val isFavorite: Boolean)

In this @Entity annotated class, we've only added two fields:

 � An id field with a @ColumnInfo() annotation that has the same value
("r_id") passed to the name parameter as the Restaurant object's id field.
This allows Room to match the Restaurant object's id field with the one
from PartialRestaurant.

 � An isFavorite field with a @ColumnInfo() annotation that has the name
set to "is_favorited". So far, Room can't match this field with the one
from Restaurant, because inside Restaurant, we haven't annotated the
isFavorite field with @ColumnInfo – we'll do that next.

2. Now that our partial entity, called PartialRestaurant, has a column
corresponding to the isFavorite field, it's time to also add a @ColumnInfo()
annotation with the same value ("is_favorite") for the isFavorite field of
the Restaurant entity:

@Entity(tableName = "restaurants")

data class Restaurant(

 …

 val description: String,

 @ColumnInfo(name = "is_favorite")

 val isFavorite: Boolean = false

)

As a good practice, we've also made the isFavorite field val instead of var
to prevent its value from being changed once the object has been created. Because
Restaurant is an object passed to a Compose State object, we want to promote
immutability across its fields to ensure recomposition events happen.

Note
By having a data class field as var, we can easily change its value at runtime
and risk having Compose miss a well-needed recomposition. Immutability
ensures that whenever an object field's value changes, a new object is created
(just as we do with the .copy() function), and Compose is notified so that it
can trigger recomposition.

Applying partial updates to the Room database 199

3. Since the isFavorite field is now val, the restoreSelections() extension
function inside RestaurantViewModel has broken. Update its code as follows:

private fun List<Restaurant>.restoreSelections(): … {

 stateHandle.[…]let { selectedIds ->

 val restaurantsMap = this.associateBy { it.id }

 .toMutableMap()

 selectedIds.forEach { id ->

 val restaurant =

 restaurantsMap[id] ?: return@forEach

 restaurantsMap[id] =

 restaurant.copy(isFavorite = true)

 }

 return restaurantsMap.values.toList()

 }

 return this

}

Essentially, what we have done is make sure our restaurantsMap of type
Map<Int, Restaurant> is mutable so that we can replace elements inside it.
With this approach, we are now replacing the restaurant at entry id by passing a
new object reference with the copy function. We are not going to go into much
detail since this portion of the code will soon be removed.

4. Now that we have a partial entity defined, we need to add another function inside
our DAO that will update a Restaurant entity through a PartialRestaurant
entity. Inside RestaurantsDao, add the update() function:

@Dao

interface RestaurantsDao {

 …

 @Insert(onConflict = OnConflictStrategy.REPLACE)

 suspend fun addAll(restaurants: List<Restaurant>)

 @Update(entity = Restaurant::class)

 suspend fun update(partialRestaurant:

 PartialRestaurant)

}

200 Adding Offline Capabilities with Jetpack Room

Let's understand, step by step, how the new update() function works:
I. It's a suspend function because, as we know by now, any interaction with the

local database is a suspending job that should not run on the main thread.
II. It receives a PartialRestaurant entity as an argument and returns

nothing. The partial entity's field values correspond to the restaurant that
we're trying to update.

III. It's annotated with the @Update annotation to which we passed the
Restaurant entity. The update process has two steps, as follows:

i. First, PartialRestaurant exposes the id field, whose value matches the
id field's value of the corresponding Restaurant object.

ii. Once the match is complete, the isFavorite field's value is set to the
isFavorite field of the matched Restaurant object.

These matches are possible because the id and isFavorite fields of both entities
have the same @ColumnInfo name values.

5. Now that our DAO knows how to partially update our Restaurant entity, it's
time to perform the update.

First, inside RestaurantsViewModel, add a new suspending function, called
toggleFavoriteRestaurant():

private suspend fun toggleFavoriteRestaurant(id: Int,
oldValue: Boolean) =

 withContext(Dispatchers.IO) {

 restaurantsDao.update(

 PartialRestaurant(

 id = id,

 isFavorite = !oldValue

)

)

 }

Let's understand, step by step, what this new method does:
I. It receives the id field of the restaurant that we're trying to update, along with

the oldValue field which represents the value of the isFavorite field just
before the user has toggled the heart icon of the restaurant.

Applying partial updates to the Room database 201

II. To partially update a restaurant, it needs to interact with the Room DAO object.
This means that the toggleFavoriteRestaurant method must be a
suspend function. As a good practice, we wrapped it inside a withContext
block that specifies its work must be done inside the IO dispatcher. While Room
ensures that we wrap our suspending work with a special dispatcher, we explicitly
specified the Dispatchers.IO dispatcher to better highlight that such heavy
work should be done in an appropriate dispatcher.

III. It builds a PartialRestaurant object, which it then passes to the DAO's
update() method that was created earlier. The PartialRestaurant object
gets the id field of the restaurant we're updating, along with the negated value of
the isFavorite flag. If the user previously didn't have the restaurant marked
as favorite, upon clicking the heart icon, we should negate the old (false) value
and obtain true, or vice versa.

Now that we have the method in place to update a restaurant, it's time to call it.
6. While you are still in RestaurantsViewModel, make the toggleFavorite

method launch a coroutine at the end of its body. Then, inside it, call the new
toggleFavoriteRestaurant() suspending function:

fun toggleFavorite(id: Int) {

 …

 restaurants[itemIndex] = item.copy(isFavorite =

 !item.isFavorite)

 storeSelection(restaurants[itemIndex])

 state.value = restaurants

 viewModelScope.launch {

 toggleFavoriteRestaurant(id, item.isFavorite)

 }

}

To the toggleFavoriteRestaurant() function, we've passed the following:

 � The id parameter, which represents the ID of the restaurant the user is trying
to mark as favorite or not favorite

 � The old value of the favorite status of the restaurant, as defined by the
isFavorite flag of the item field

Now, whenever the user presses on the heart icon, we not only update the UI but
also cache this selection inside the local database through a partial update.

202 Adding Offline Capabilities with Jetpack Room

7. Build and run the application because it's time to test what we've just implemented!
Unfortunately, the app crashes. Can you think of one reason why this happens? If
we look at the stack trace of the error, we will see the following message:

java.lang.IllegalStateException: Room cannot verify the
data integrity. Looks like you've changed schema but
forgot to update the version number.

This error message makes total sense because we've changed the schema of the
database, and now Room doesn't know whether to migrate the old entries or delete
them. But how did we change the schema?

Well, we changed the schema when we defined a new column for the Restaurants
table by adding the @ColumnInfo() annotation to the isFavorite field.

8. To mitigate this issue, we must increase the version number of the database.
Inside the RestaurantsDb class, increase the version number from 1 to 2:

@Database(

 entities = [Restaurant::class],

 version = 2,

 exportSchema = false)

abstract class RestaurantsDb : RoomDatabase() { .. }

Now, Room knows that we've changed the schema of the database. In turn,
because we haven't provided a migration strategy, and instead, we've called
the fallbackToDestructiveMigration() method in the
Room.databaseBuilder constructor when we initially instantiated the
database, Room will drop the old contents and tables and provide us with a
fresh start.

9. Try running the application online, and then mark a couple of restaurants
as favorites.

10. Disconnect your device from the internet and make sure you are now offline.
11. Restart the application while remaining offline.

Great news! The selections were now kept, and we can see which restaurants
were previously marked as favorites!

12. To continue testing, while you are offline, you can try marking other restaurants
as favorites.

Making local data the single source of truth for app content 203

Then, still in offline mode, restart the app and you will notice that these new
selections have also been saved.

13. Connect your device to the internet and run the application – while you are online.

Oops! The restaurants that we have previously marked as favorites no longer appear as
such, even though we previously cached these selections inside the Room database.

Essentially, every time we open the application while being connected to the internet,
we lose all the previous selections, and no restaurant is marked as favorite anymore.

There are two issues in our code that are causing this! Can you think of why this
is happening?

In the next section, we will identify and address them. Additionally, we will make sure that
Room is the single source of truth for the content of our application.

Making local data the single source of truth
for app content
Whenever we launch the app with the internet, all the restaurants appear as not favorites,
even though we previously marked them as favorites and cached the selections in the
Room database.

To identify the issue, let's navigate back inside RestaurantsViewModel and inspect
the getAllRestaurants() method:

private suspend fun getAllRestaurants(): List<Restaurant> {

 return withContext(Dispatchers.IO) {

 try {

 val restaurants = restInterface.getRestaurants()

 restaurantsDao.addAll(restaurants)

 return@withContext restaurants

 } catch (e: Exception) {

 when (e) {

 is UnknownHostException, […] -> {

 return@withContext restaurantsDao.getAll()

 }

 else -> throw e

 }

 }

204 Adding Offline Capabilities with Jetpack Room

 }

}

Now, when we launch the app while online, we do three things:

• We load the restaurants from the server by calling
restInterface.getRestaurants(). For these restaurants, we don't receive
the isFavorite flag, so we automatically have it set to false. This happens
because our Restaurant class defaults the value of isFavorite to false if no
value is passed from the Gson deserialization:

@Entity(tableName = "restaurants")

data class Restaurant(

 …

 @ColumnInfo(name = "is_favorite")

 val isFavorite: Boolean = false)

• Then, we save those restaurants to Room by calling
restaurantsDao.addAll(restaurants). However, because we've used
the REPLACE strategy inside our DAO's addAll() function, and because we
received the same restaurants from the server, we override the isFavorite flags
of the corresponding restaurants inside the database to false. So, even though our
restaurants in Room might have had the isFavorite flag set to true, because
we receive restaurants with the same id fields from the server, we end up overriding
all those values to false.

• Next, we pass the restaurants list that we've received from the server to the
UI. As we already know, these restaurants have the isFavorite field's value of
false. So, anytime we start the app while connected to the internet, we will always
see no restaurants marked as favorites.

If we think about it, there are two main issues here:

• Our application has two sources of truth:

 � When online, it displays the restaurants from the remote server.

 � When offline, it displays the restaurants from the local database.

• Whenever we cache restaurants that already exist inside the local database, we
override their isFavorite flag to false.

Making local data the single source of truth for app content 205

If we can fix these two issues by having our UI receive content from a single source of
data, we will also be able to remove the need for SavedStateHandle and all the special
handling related to process recreation – we will see why in a moment.

Essentially, in this section, we will be doing the following:

• Refactoring the Restaurants app to have a single source of truth for data

• Removing the logic of persisting state inside SavedStateHandle in the case of
process recreation

So, let's begin with the first issue at hand!

Refactoring the Restaurants app to have a single
source of truth for data
The approach of having multiple sources of data can lead to many inconsistencies and
subtle bugs – just like how our app is now inconsistent in terms of what data it displays
when the user is either online or offline.

Note
The concept of designing systems to rely on only one data source used for
storing and updating content is related to a practice that is called Single
Source of Truth (SSOT). Having multiple sources of truth for data that the UI
consumes can lead to inconsistencies between what's expected to be shown to
the UI and what is actually shown. The SSOT concept helps us to structure the
data access so that only one data source is trusted to provide the app with data.

Let's make sure that our application only has one source of truth, but which one should
we choose?

On the one hand, we cannot control the data that is being sent from our Firebase database,
and we also can't update the restaurants stored inside it when the user marks one as a
favorite.

On the other hand, we can do that with Room! In fact, we are already doing that – every
time a user marks a restaurant as a favorite or not a favorite, we're applying a partial
update to that restaurant inside the local database.

206 Adding Offline Capabilities with Jetpack Room

So, let's make the local Room database our only source of data:

Figure 6.3 – Data retrieval for the Restaurants app with the local database as an SSOT

When the user is online, we should get the restaurants from the server, cache them into
Room, and then obtain the restaurants again from Room to finally send them to the UI.

Similarly, if the user is offline, we simply obtain the restaurants from Room and
display them.

Note
Alternatively, instead of always asking your Room database for the most
up-to-date content, you could update the DAO interface to provide you with
a reactive data stream that we can observe. This way, upon every data update,
you would automatically be notified with the most up-to-date content in
a reactive manner, without having to manually ask for it. To achieve that, you
must use special data holders provided by libraries such as Jetpack LiveData,
Kotlin Flow, or RxJava. We will explore Kotlin Flow in Chapter 11, Creating
Infinite Lists with Jetpack Paging and Kotlin Flow.

The similarity between our two scenarios is that now, regardless of the internet
connectivity of the user, our UI always displays the restaurants from inside our Room
database. In other words, the local database is our SSOT!

Let's start implementing! Perform the following steps:

1. Inside RestaurantsViewModel, refactor the getAllRestaurants()
function to always return the restaurants from the Room database:

private suspend fun getAllRestaurants():

 List<Restaurant> {

 return withContext(Dispatchers.IO) {

Making local data the single source of truth for app content 207

 try { … } catch (e: Exception) { […] }

 return@withContext restaurantsDao.getAll()

 }

}

Here, our app tries to display the restaurants from the local database in
any condition.

2. Now, it's time to refactor the try – catch block inside the
getAllRestaurants() method! Essentially, what we want to do is to get the
restaurants from the server and then cache them locally.

Replace the contents within the try { } block with a new refreshCache()
method:

return withContext(Dispatchers.IO) {

 try {

 refreshCache()

 } catch (e: Exception) { […] }

 return@withContext restaurantsDao.getAll()

}

3. Additionally, we want to define the refreshCache() function to get the
restaurants from the remote server and then cache them inside the local database,
thereby refreshing their contents:

private suspend fun refreshCache() {

 val remoteRestaurants = restInterface

 .getRestaurants()

 restaurantsDao.addAll(remoteRestaurants)

}

4. We know that if the refresh of the cache fails, we will still show the local restaurants
from Room. But what if the local database is empty?

Continue refactoring the getAllRestaurants() method by updating
its catch block. You can do this by removing the return@withContext
restaurantsDao.getAll() call (which is now redundant) from
the is UnknownHostException, is ConnectException, is
HttpException branch and by replacing it with the following code:

try { … } catch (e: Exception) {

 when (e) {

208 Adding Offline Capabilities with Jetpack Room

 is UnknownHostException, is ConnectException,

 is HttpException -> {

 if (restaurantsDao.getAll().isEmpty())

 throw Exception(

 "Something went wrong. " +

 "We have no data.")

 }

 else -> throw e

 }

}

Essentially, if a network exception has been thrown, we can check whether we have
any local restaurants saved in the Room database:

 � If the list is empty, we return from the parent method early by throwing
a custom exception to inform the user that we have no data to display.

 � However, if the local database has elements, we do nothing and let the
getAllRestaurants() method return the cached restaurants to the UI.

Now, inside the toggleFavorite() function of ViewModel, whenever
we toggle a restaurant as a favorite or not, we can observe that we're updating the
Room database with a partial update. However, we're not fetching the restaurants
again from Room and so the UI is never informed of this change:

fun toggleFavorite(id: Int) {

 …

 restaurants[itemIndex] = item.copy(isFavorite =

 !item.isFavorite)

 storeSelection(restaurants[itemIndex])

 state.value = restaurants

 viewModelScope.launch {

 toggleFavoriteRestaurant(id, item.isFavorite)

 }

}

Instead, we're updating the state variable's value – so the UI receives the updated
restaurants in-memory. This means that we are not conforming to the SSOT
practice in which we opt to always feed the UI with restaurants from the local
database. Let's fix this.

Making local data the single source of truth for app content 209

5. Make the toggleFavoriteRestaurant() function return the restaurants
from our local database. You can do this by calling the
restaurantsDao.getAll() function from inside the withContext() block:

private suspend fun toggleFavoriteRestaurant(

 id: Int,

 oldValue: Boolean

) = withContext(Dispatchers.IO) {

 restaurantsDao.update(

 PartialRestaurant(id = id, isFavorite =

 !oldValue))

 restaurantsDao.getAll()

 }

6. Inside the toggleFavorite() method, store the updated restaurants
returned by the toggleFavoriteRestaurant() method inside an
updatedRestaurants variable, and then move the
state.value = restaurants line from outside the coroutine to
inside it while, this time, making it receive the value stored by the
updatedRestaurants variable:

fun toggleFavorite(id: Int) {

 val restaurants = state.value.toMutableList()

 […]

 storeSelection(restaurants[itemIndex])

 viewModelScope.launch(errorHandler) {

 val updatedRestaurants =

 toggleFavoriteRestaurant(id, item.isFavorite)

 state.value = updatedRestaurants

 }

}

Here, we have not updated the state object value with the restaurants value
from the previous state value. Instead, we passed the restaurants from the local
database, which were obtained from the toggleFavoriteRestaurant()
function.

Now that we have made our local database the single source of truth for data,
we might assume that our issues have been solved. However, remember that we are
still overriding the isFavorite field values of the local restaurants whenever
we cache restaurants with the same IDs from the server.

210 Adding Offline Capabilities with Jetpack Room

That's why the final problem lies in the refreshCache() method:
private suspend fun refreshCache() {

 val remoteRestaurants = restInterface

 .getRestaurants()

 restaurantsDao.addAll(remoteRestaurants)

}

We must find a way to preserve the isFavorite field of the restaurants whenever
we call restaurantsDao.addAll(remoteRestaurants).

We can fix this issue by complicating the logic that is happening inside the
refreshCache() function.

7. Inside the refreshCache() function, add the following code:

private suspend fun refreshCache() {

 val remoteRestaurants = restInterface

 .getRestaurants()

 val favoriteRestaurants = restaurantsDao

 .getAllFavorited()

 restaurantsDao.addAll(remoteRestaurants)

 restaurantsDao.updateAll(

 favoriteRestaurants.map {

 PartialRestaurant(it.id, true)

 })

}

Now, let's break down what we've just done:
i. First, just as before, we got the restaurants from the server (which will all

have the isFavorite fields set to false as their default values) by calling
restInterface.getRestaurants().

ii. Then, from Room, we obtained all the restaurants that were favorited by
calling restaurantsDao.getAllFavorited() – we haven't added this
function yet so don't worry if your code doesn't compile yet.

iii. Next, just as before, we saved the remote restaurants in Room by calling
restaurantsDao.addAll(remoteRestaurants). With this,
we override the isFavorite field (to false) of the existing restaurants
that have the same ID as remoteRestaurants.

Making local data the single source of truth for app content 211

iv. Finally, we partially updated all the restaurants within Room by calling
restaurantsDao.updateAll(). To this method (which we have yet to
implement), we are passing a list of PartialRestaurant objects.

These objects resulted from mapping the previously cached
favoriteRestaurants objects of type Restaurant to objects of type
PartialRestaurant, which have their isFavorite fields set to true. With
this approach, we have now restored the isFavorite field's value for those
favorited restaurants that were initially cached.

8. Inside RestaurantsDao, we must implement the two methods used earlier:

@Dao

interface RestaurantsDao {

 […]

 @Update(entity = Restaurant::class)

 suspend fun updateAll(partialRestaurants:

 List<PartialRestaurant>)

 @Query("SELECT * FROM restaurants WHERE

 is_favorite = 1")

 suspend fun getAllFavorited(): List<Restaurant>

}

We have added the following:

 � The updateAll() method: This is a partial update that works in the same
way as the update() method. Here, the only difference is that we update the
isFavorite field for a list of restaurants instead of only one.

 � The getAllFavorited() method: This is a query just like the getAll()
method but more specific, as it obtains all the restaurants that have their
isFavorite field values equal to 1 (which stands for true).

We are finally done! It's time to test out the app!
9. Try running the application offline and then mark a couple of restaurants

as favorites.
10. Connect your device to the internet and run the application – while you are online.

You should now be able to see the previous selections – all the restaurants that were
originally marked as favorites are now persisted across any scenario.

However, we have one more thing to address!

212 Adding Offline Capabilities with Jetpack Room

Removing the logic of persisting state in the case of
process recreation
Now our application has a single source of truth, that is, the local database:

• Whenever we receive restaurants from the server, we cache them to Room and then
refresh the UI with the restaurants from Room.

• Whenever we mark a restaurant as a favorite or not, we cache the selection to
Room, and similarly, we then refresh the UI with restaurants from Room.

This means that if a system-initiated process death occurs, we should be able to restore
the UI state easily because, now, the restaurants in Room also have the isFavorite
field cached.

In other words, our app no longer needs to rely on SavedStateHandle to restore the
restaurants that have been favorited or not; the local source of data for our application will
now handle this automatically.

Let's remove our special handling for a system-initiated process death:

1. Inside RestaurantsViewModel, remove the stateHandle:
SavedStateHandle parameter:

class RestaurantsViewModel() : ViewModel() { … }

2. Inside RestaurantsViewModel, remove the storeSelection() and the
restoreSelections() methods.

3. Remove the companion object of the RestaurantsViewModel class.
4. While you are still inside ViewModel, remove all the logic related to the

stateHandle variable from within the toggleFavorite() method. The
method should now look like this:

fun toggleFavorite(id: Int) {

 viewModelScope.launch(errorHandler) {

 val updatedRestaurants =

 toggleFavoriteRestaurant(id, item.isFavorite)

 state.value = updatedRestaurants

 }

}

Making local data the single source of truth for app content 213

The issue is that we no longer have the item variable, so we don't know what to
pass to the toggleFavoriteRestaurant() function's oldValue parameter
instead of item.isFavorite. We need to fix this.

5. Add a new parameter to the toggleFavorite() method, called oldValue:

fun toggleFavorite(id: Int, oldValue: Boolean) {

 viewModelScope.launch(errorHandler) {

 val updatedRestaurants =

 toggleFavoriteRestaurant(id, oldValue)

 state.value = updatedRestaurants

 }

}

This Boolean argument should tell us whether the restaurant was previously
marked as favorite or not.

6. Following this, refactor the getRestaurants() method to no longer use the
restoreSelections() method. The method should now look like this:

private fun getRestaurants() {

 viewModelScope.launch(errorHandler) {

 state.value = getAllRestaurants()

 }

}

7. Next, navigate to the RestaurantsScreen file. Then, inside the
RestaurantItem composable, add another oldValue parameter to the
onFavoriteClick callback function:

@Composable

fun RestaurantItem([…],

 onFavoriteClick: (id: Int, oldValue: Boolean)

 -> Unit,

 onItemClick: (id: Int) -> Unit) {

 ...

 Card(…) {

 Row(…) {

 [...]

 RestaurantDetails(...)

 RestaurantIcon(icon, Modifier.weight(0.15f))

214 Adding Offline Capabilities with Jetpack Room

 {

 onFavoriteClick(item.id, item.isFavorite)

 }

 }

 }

}

Also, make sure that you pass the item.isFavorite value to the newly added
parameter when the onFavoriteClick function is called.

8. Inside the RestaurantsScreen() composable, make sure you register and then
pass the newly received oldValue function parameter to the toggleFavorite
method of ViewModel:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 val viewModel: RestaurantsViewModel = viewModel()

 LazyColumn(…) {

 items(viewModel.state.value) { restaurant ->

 RestaurantItem(

 restaurant,

 onFavoriteClick = { id, oldValue ->

 viewModel

 .toggleFavorite(id, oldValue)

 },

 onItemClick = { id -> onItemClick(id) })

 }

 }

}

We're done! Now it's time to simulate the system-initiated process death scenario.
9. Build the project and run the application.
10. Mark some restaurants as favorites.
11. Place the app in the background by pressing the home button on the

device/emulator.
12. Select the Logcat window and then press the red rectangular button on the left-

hand side to terminate the application:

Summary 215

Figure 6.4 – Simulating a system-initiated process death

13. Relaunch the application from the application drawer.

Because the app relies on the content saved in the local database, it should now correctly
display the UI state with the previously favorited restaurants from before the system-
initiated process death.

Assignment
In this chapter, we made sure to cache the restaurants in Room so that the
first screen of the application could be accessed without the internet.
As a homework assignment, you can try to refactor the details screen of the
application (where the details of a specific restaurant are displayed) to obtain its
own data from Room if the user enters the app without the internet.

Summary
In this chapter, we gained an understanding of how Room is an essential Jetpack library
because it allows us to offer offline capabilities to our applications.

First, we explored the core elements of Room to see how a private database is set up.
Second, we implemented Room inside our Restaurants application and explored how to
save and retrieve cached content from the local database.

Afterward, we discovered what partial updates are and how to implement them to
preserve a user's selections within the app.

Toward the end of the chapter, we understood why having a single source of truth for
the application's content is beneficial and how that helps us in edge cases such as
a system-initiated process death.

In the next chapter, we're going to dive deeper into various ways of defining the
architecture of our applications by exploring architectural presentation patterns.

7
Introducing

Presentation
Patterns in Android

In this chapter, we're continuing our journey of exploring ways to architect Android
applications. More precisely, we will be making sure that our applications split
responsibilities correctly with the introduction of presentation patterns.

In the first section, Introducing MVC, MVP, and MVVM as presentation patterns, we will
provide a short overview on why we need presentation patterns, and we will explore how
most common patterns are implemented in Android projects.

Next up, in the Refactoring our Restaurants App to fit a presentation pattern section, we
will refactor our Restaurants App to fit the MVVM presentation pattern, while also
understanding why MVVM is best suited for our Compose-based app.

In the last section, Improving state encapsulation in ViewModel, we will see why it's
important for the user interface (UI) state to be properly encapsulated inside the
ViewModel, and we will explore how to achieve that.

218 Introducing Presentation Patterns in Android

To summarize, in this chapter, we're going to cover the following main topics:

• Introducing Model-View-Controller (MVC), Model-View-Presenter (MVP), and
Model-View-ViewModel (MVVM) as presentation patterns

• Refactoring our Restaurants app to a presentation pattern

• Improving state encapsulation in ViewModel

Before jumping in, let's set up the technical requirements for this chapter.

Technical requirements
Building Compose-based Android projects for this chapter usually requires your
day-to-day tools. However, to follow along smoothly, make sure you have the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds, but note that the IDE interface and
other generated code files might differ from the ones used throughout this book.

• Kotlin 1.6.10 or newer plugin installed in Android Studio.

• The Restaurants app code from the previous chapter.

The starting point for this chapter is represented by the Restaurants app developed in the
previous chapter. If you haven't followed the implementation from the previous chapter,
access the starting point for this chapter by navigating to the Chapter_06 directory of the
repository and importing the Android project entitled chapter_6_restaurants_app.

To access the solution code for this chapter, navigate to the Chapter_07 directory at
https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_07/
chapter_7_restaurants_app.

Introducing MVC, MVP, and MVVM as
presentation patterns
In the beginning, most Android projects were designed as a bunch of Activity
or Fragment classes that were setting content to their corresponding Extensible
Markup Language (XML) layouts.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_07/chapter_7_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_07/chapter_7_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_07/chapter_7_restaurants_app

Introducing MVC, MVP, and MVVM as presentation patterns 219

As projects grew and new features were requested, developers had to add more logic
inside the Activity or Fragment class, development cycle after development cycle.
This means that anything from a new feature, improvement, or bug fix for a particular
screen would have to be done inside those Activity or Fragment classes.

After some time, these classes became larger and larger, and at some point, adding an
improvement or fixing a bug could become a nightmare. The reason for this would be that
the Activity or Fragment classes were burdened with all the responsibilities from
within a particular project. These classes would be doing the following:

• Defining the UI

• Preparing the data to be displayed and defining different UI states

• Obtaining data from different sources

• Applying different business rules to data

This approach introduces coupling between distinct responsibilities and concerns of a project.
For such projects, if—for example—a portion of the UI must be changed, your changes
could easily impact other concerns of the app: the way data is presented, the logic of
obtaining that data, business rules, and so on.

The worst part of this happening is that when you need to change only a part (say, part of
the UI) and you end up changing other parts (say, the presentation, or data logic) you risk
breaking unrelated things that worked, therefore possibly introducing new bugs.

Having such an approach where all the code of a project is bundled inside the Activity
or Fragment class, causes your project to develop the following issues:

• Fragile and difficult to scale: Adding new features or improvements can break
other parts of your app.

• Difficult to test: Since all the logic of the app is bundled in one place, testing only
one part of the logic is very difficult because all your logic is tangled and tied to
platform-related dependencies.

• Difficult to debug: When responsibilities are intertwined, then parts of your code
base are also intertwined and coupled. Debugging one specific issue becomes
extremely difficult because it's hard to track the exact culprit.

To alleviate these issues, we can try to identify the core responsibilities of an app and then
separate their corresponding logic and code into distinct components (or classes) that
are part of specific layers. This way, we are trying to follow the principle of separation of
concerns (SoC), whereby each layer will contain classes whose responsibilities are tightly
related only to their corresponding layer's concern.

220 Introducing Presentation Patterns in Android

To make sure that our projects obey the SoC principle, we can split the app's
responsibilities into two major ones and define a layer for each of them, as follows:

• The Presentation layer contains classes (or other components) responsible for
defining the UI and preparing the data to be presented.

• The Model layer contains classes where the application's data is obtained, modeled,
and updated.

Even though the two layers seem to do more than one thing, all these actions define a
broader dedicated responsibility that encapsulates a specific concern.

In this chapter, while we will be mostly focusing on structuring the Presentation layer, we
will also start working on the Model layer. We will continue refactoring the Model layer in
Chapter 8, Getting Started with Clean Architecture in Android.

To separate concerns within the Presentation layer, you can make use of presentation
design patterns. Presentation design patterns are architectural patterns that define how
the Presentation layer is structured in our applications.

The Presentation layer is a part of our project that is tied to what the user sees: the UI and
the presentation of that UI. In other words, the Presentation layer handles two granular,
yet related responsibilities associated with two types of logic, as outlined here:

• UI logic: Defines the ability to display content on a device in a specific way for
one screen or flow. For example, when building an XML layout or a composable
hierarchy for a screen, we're defining the UI logic for that specific screen since we're
defining its UI elements.

• Presentation logic: The logic that defines the state of the UI (for one screen or flow)
and how it mutates when the user interacts with our UI, therefore defining how
the data is being presented to the UI. We're writing presentation logic when, for
example, we must do the following:

 � Ensure that the screen is in a loading state or error state at specific times

 � Present content for a screen in a specific manner by formatting it to
some standards

For the Presentation layer to define UI logic and presentation logic, it needs some data to
work with. That's why it must be connected to the Model layer, which provides it with raw
data, be it from web services, local databases, or other sources. You can see an illustration
of this in the following diagram:

Introducing MVC, MVP, and MVVM as presentation patterns 221

Figure 7.1 – Composition of the Presentation layer and its relation to the Model layer

For now, we will consider the Model layer a black box that just provides us with data.

We can say that such separations allow the UI to become a representation of the model's
data through transformations that happen inside the Presentation layer while having
components whose responsibilities don't overlap.

In Android, transformations from within the Presentation layer are modeled through
three popular presentation patterns that are used in other technology stacks as well,
as follows:

• MVC

• MVP

• MVVM

Note
As Android developers, we have adjusted the implementation of these
presentation patterns to the specific needs of Android. That's why the way
we will exemplify or implement them may vary from their original definitions
given by their founders—all this is in pursuit of observing their common
usages in Android projects.

These presentation patterns will allow us to separate UI logic from presentation logic for
each screen or flow within our app. By doing so, we are ensuring that our Presentation
layer has less coupled code that is easier to maintain, easier to scale with new features, and
easier to test.

222 Introducing Presentation Patterns in Android

Historically, most Android projects have transitioned from MVC to MVP and, nowadays,
to MVVM. Regardless of their structure, though, it's important to mention that the SoC
promoted by these presentation patterns often translates into each UI flow being broken
into classes or components that are instructed to do something specific, tightly related to
their responsibility.

To see what I'm talking about, let's briefly cover them, starting out with MVC.

MVC
A common implementation in Android projects of the MVC pattern defines its layers
like so:

• View: Views inflated from the XML layouts as a representation of the UI. This layer
would only be rendering the content it receives from the Controller onto the screen.

• Controller: UI controllers such as Activity or Fragment. This component
would define the state of the UI by preparing data received from the Model layer
for presentation, or by intercepting UI events that in turn would mutate the state.
Additionally, the Controller would be in charge of setting actual data to the View layer.

• Model: The entry point of data. The actual structure doesn't depend on MVC,
but we can think of it as the layer that obtains content needed by the Presentation
layer, by querying a local database or remote sources such as web application
programming interfaces (APIs).

Let's visualize the actual separation brought by this pattern, as follows:

Figure 7.2 – Presentation layer in the MVC pattern

Introducing MVC, MVP, and MVVM as presentation patterns 223

This implementation of the MVC pattern achieves a proper separation between the
Presentation layer and the Model layer, therefore liberating Activity and Fragment
controllers from being the ones that obtain data from REpresentational State Transfer
(REST) APIs or local databases. Yet at least in this form factor, MVC doesn't shine where
it should because the actual separation within the Presentation layer could be improved.

Disadvantages of this pattern may include the following:

• High coupling between the Controller (Activity or Fragment controllers) and
the View layer. Since the Controller is a component with a lifecycle and it also must
provide the infrastructure of building and setting up Android views with content
(such as building Adapter classes and passing data), testing it becomes difficult
because it's tightly coupled with Android APIs.

• The Controller has two responsibilities: it handles the state of the UI (presentation
logic) while also providing infrastructure for the View layer to function (UI logic).
The two responsibilities become tangled up—when testing one, you would be
testing the other too.

Let's move on to another popular presentation pattern in Android.

MVP
A common implementation in Android projects of the MVP pattern defines its layers
like so:

• View: The UI layer defined by the Activity or Fragment class and their
corresponding inflated views from XML. This layer now encapsulates the entire UI
logic: it provides the infrastructure of building and setting up rendered Android
views with content.

• Presenter: Presents data to the UI by manipulating the View layer indirectly
through an interface. With this approach, a one-to-one relationship between
a Presenter and a View layer (be it Activity or Fragment) is established. The
interface allows the Presenter to pass data that is ready for presentation to the UI
layer and to directly mutate the UI state at the UI level.

Unlike the Controller in MVC, the Presenter is no longer coupled to lifecycle
components or Android View APIs, so it becomes much easier to test the
presentation logic that it contains.

• Model: The same as in MVC.

224 Introducing Presentation Patterns in Android

Let's visualize the actual separation brought by this pattern, as follows:

Figure 7.3 – Presentation layer in the MVP pattern

Unlike MVC, Activity and Fragment are now part of the View layer, which seems
more natural because they are both tightly related to the Android UI. This approach
allows the Presenter to be the one that prepares data that must be presented, while
imperatively mutating the UI.

Since we now have a separate entity that is in charge of presenting data to the UI,
we can say that, unlike MVC, MVP performs the SoC inside the Presentation layer
somewhat better.

However, there are still some issues with this approach, as outlined here:

• The imperative approach of having the Presenter manually update the UI directly
in the Activity or Fragment class can be prone to bugs and can cause illegal
UI states (such as showing an error message and a loading status at the same time)
as a project grows and new features are added. This is similar to how a UI controller
(such as Activity) also imperatively mutates XML views—an approach that
we deemed as prone to issues when we introduced Compose with its declarative
paradigm.

• If the interface contract between the Presenter and the View layer is not well
designed or is missing entirely, the two would become coupled, and reusing the
Presenter for other Activity or Fragment controllers might be difficult.

Let's move on to another important presentation pattern.

Introducing MVC, MVP, and MVVM as presentation patterns 225

MVVM
MVVM is a very popular presentation pattern in Android, mostly because it addresses the
concerns stated with the previously mentioned implementation of MVP.

A common implementation in Android projects of MVVM defines its layers like so:

Figure 7.4 – Presentation layer in the MVVM pattern

Let's look at how the layers are defined:

• View: The UI layer is the Activity or Fragment class and its XML views, just as
in MVP. Unlike in MVP, though, the View layer observes either an observable state
or observable fields from the ViewModel, both containing UI data. Whenever new
updates are received from those observable entities, the View layer updates the UI
with the content received.

• ViewModel: This prepares the data received from the Model layer, just as the
Presenter in MVP did. Unlike the Presenter, though, the ViewModel defines the
UI state as an observable property (or multiple observable fields) and is totally
decoupled from the View layer as it has no reference to it.

• Model: The same as in MVC or MVP.

One advantage of the ViewModel, as opposed to the Presenter in MVP, is that it's no
longer coupled to the View layer, so it can be reused much more easily. In contrast with
MVP, the View layer is responsible for referencing the ViewModel for obtaining and
observing the observable state, and so the ViewModel no longer needs to reference the
View layer, becoming totally independent.

In other words, the ViewModel in MVVM forces the View layer to subscribe to data,
which is different from MVP, where the Presenter was manually setting up the View
layer with data. This approach allows multiple Views to bind to the same ViewModel,
therefore sharing the same UI state within the same ViewModel.

226 Introducing Presentation Patterns in Android

Another advantage is that since the View layer observes the UI state from the ViewModel
and binds the received data as an effect, the ViewModel doesn't imperatively update
the UI as the Presenter did through an interface in MVP. In other words, the View
layer obtains the UI state from the ViewModel and binds it to the UI—this results in a
unidirectional flow of data that is less likely to introduce bugs or illegal states.

Note
While considering the original definition of MVVM, the ViewModel shouldn't
be confused with the Jetpack ViewModel component—the ViewModel can
be a simple class that presents the data through an observable state. For us on
Android, though, it's convenient to consider the Jetpack ViewModel as the
actual ViewModel from MVVM because it brings some advantages out of
the box.

However, the pattern's implementation that is commonly used in Android considers
the Jetpack ViewModel as the ViewModel from MVVM, and this brings both a set of
advantages and disadvantages.

Using the Jetpack ViewModel as the ViewModel from MVVM is beneficial for the
following reasons:

• The Jetpack ViewModel is scoped to the lifetime of the View and provides
convenient APIs for canceling work such as the onCleared() callback or the
viewModelScope coroutine scope, therefore providing a convenient API for
canceling asynchronous jobs and minimizing the risk of memory leaks.

• The Jetpack ViewModel survives configuration changes, therefore allowing you to
preserve the UI state automatically if the user changes the orientation of the device,
for example.

• You can easily restore the UI state after system-initiated process death because the
Jetpack ViewModel is providing us with a SavedStateHandle object.

Unfortunately, this approach comes with the following downsides:

• The ViewModel is now a library dependency (the Jetpack ViewModel) that
introduces coupling with the Android platform (as it exposes APIs such as
SavedStateHandle). This prevents us from reusing presentation components
for cross-platform projects with Kotlin Multiplatform (KMP).

• Because the Jetpack ViewModel is a library dependency that handles other
responsibilities apart from data presentation, such as restoring the UI state after
system-initiated process death, we could argue that the Presentation layer concerns
are not very well separated.

Refactoring our Restaurants app to fit a presentation pattern 227

Now that we have had a quick overview of presentation patterns, it's time for
a practical example.

Refactoring our Restaurants app to fit a
presentation pattern
We plan to refactor our Restaurants app to fit a presentation pattern. From our previous
comparison, we can consider that MVVM is best suited for our Compose-based app.
Don't worry—we will talk about this decision in more detail a bit later.

But before we do that, let's add more functionality inside the application to better
highlight how mingling responsibilities can lead to unmaintainable code.

To summarize, in this section, we're going to be doing the following:

• Adding more functionality inside our Restaurants app

• Refactoring our Restaurants app to MVVM

Let's begin!

Adding more functionality inside our Restaurants app
When the Restaurants application is launched, the RestaurantsScreen()
composable is rendered. Inside this screen, we are loading a bunch of restaurants from the
server, and then we're displaying them to the user.

Yet while our app waits for the network request to finish and for the local caching to Room
to happen (in order for it to receive restaurants for the UI), the screen remains blank, and
the user has no idea what's going on. To provide a better user experience (UX), we should
somehow suggest to the user the fact that we're waiting for content from the server.

We could do that through a loading progress bar! Inside the RestaurantsScreen()
composable, we could add a loading UI element that is displayed until the LazyColumn
composable that renders a list of restaurants is populated. When the content arrives,
we should hide it, thereby letting the user know that the application has loaded its content.

228 Introducing Presentation Patterns in Android

Let's do that right now, as follows:

1. First, inside the RestaurantsScreen() composable, save the restaurant
list from the state (retrieved from RestaurantsViewModel) inside a
restaurants variable, like this:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 val viewModel: RestaurantsViewModel = viewModel()

 val restaurants = viewModel.state.value

 LazyColumn(…){

 items(restaurants) { restaurant ->

 RestaurantItem(…)

 }

 }

}

Make sure to also pass the restaurants variable to the LazyColumn
composable's items domain-specific language (DSL) function.

2. We need to define a condition that lets us know when to show a loading indicator.
As a first attempt, we could say that when the restaurants variable contains
an empty List<Restaurant> as a value, which means that restaurants haven't
arrived yet, the content is still loading. Add an isLoading variable that accounts
for this, as follows:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 val viewModel: RestaurantsViewModel = viewModel()

 val restaurants = viewModel.state.value

 val isLoading = restaurants.isEmpty()

 LazyColumn(…){ … }

}

If, however, restaurants arrive from the server, the state variable is updated, and
the restaurants variable no longer contains an empty list of restaurants. At this
point, the isLoading variable becomes false.

Refactoring our Restaurants app to fit a presentation pattern 229

3. We want to display a loading indicator while the isLoading variable is true.
To do that, wrap the LazyColumn composable in a Box composable, and below
the LazyColumn code, check if the isLoading variable is true and pass
a CircularProgressIndicator composable. The code is illustrated in the
following snippet:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 …

 val isLoading = restaurants.isEmpty()

 Box() {

 LazyColumn(…){…}

 if(isLoading)

 CircularProgressIndicator()

 }

}

The Box composable allows us to overlay two composables: LazyColumn and
CircularProgressIndicator. Because of the if condition that we've added,
we now have the following two cases:

 � isLoading is true (the app is waiting for restaurants), so both composables
are composed. While the CircularProgressIndicator composable
is displayed on top of the LazyColumn composable, the LazyColumn
composable contains no elements, so it's not visible.

 � isLoading is false (the app now has restaurants to display), so only the
LazyColumn composable is composed and visible.

4. To center the CircularProgressIndicator composable, add the
Alignment.Center alignment to the contentAlignment parameter of the
Box composable, while also passing a Modifier.fillMaxSize() modifier.
The code is illustrated in the following snippet:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 …

 Box(contentAlignment = Alignment.Center,

 modifier = Modifier.fillMaxSize()) {

 …

 }

}

230 Introducing Presentation Patterns in Android

5. Build and run the app. For a moment (until restaurants are loaded), you should see
a loading progress indicator. When restaurants are displayed, this should go away.

Inside the UI layer, we have now added a loading indicator as well as the logic that decides
when to display it. In this simple scenario, our logic works, but what happens if the server
(or local database) returns an empty list of restaurants? Then the loading indicator will
never go away.

Or, what happens if an error occurs? Our RestaurantsScreen composable has no
idea that an error was generated. This means that not only does it not know when to
display the error, but it also doesn't know when to hide the loading indicator if such an
error were to occur.

These issues arise from the fact that we're trying to define presentation logic (when to
show or hide a loading indicator; when to show an error message) inside the UI layer
(where composables reside), thereby mixing UI logic with presentation logic.

We can now see just some limitations that derive from mixing UI logic with presentation
logic, yet there's also the fact that in the previous chapters, we've mixed the presentation
logic with the data logic. The long-term implications for our current approach are scary:
debugging will be difficult, and testing even more so.

It's time to refactor our Restaurants app to MVVM so that we can better separate its
responsibilities.

Refactoring our Restaurants app to MVVM
To better separate responsibilities, we will choose the most popular presentation pattern:
MVVM. Despite its flaws, when you compare it to MVC and MVP following the
definition we previously gave them, it's the best candidate so far for the following reasons:

• It provides a pretty good separation between the UI logic and the presentation logic.

• Our UI layer (the composables) is designed to expect an observable state (more
precisely, the Compose State object), just like the one the ViewModel in MVVM
is set to expose.

Now, our Restaurants app already uses the Jetpack ViewModel (that exposes a Compose
State object that is observed and consumed inside the composables), so we can say that
we unknowingly started implementing this modified version of the pattern, whereby the
Jetpack ViewModel is the ViewModel from MVVM.

Refactoring our Restaurants app to fit a presentation pattern 231

Note
We will consider for now that the advantages of using the Jetpack ViewModel
as the ViewModel in MVVM are outweighing the disadvantages that it
brings, so we will keep it as it is.

However, just because we used a ViewModel, that doesn't mean we also implemented
the MVVM presentation pattern correctly. Let's first have a look at how we structured our
components and classes for the first screen displaying a list of restaurants. You can see
how this looks here:

Figure 7.5 – Components with poorly separated responsibilities per layer in the MVVM pattern

For this screen, we notice two violations where layers contain more than one
responsibility, as outlined here:

• The View layer (represented by the RestaurantsScreen() composable)
performs both UI logic and presentation logic. While this composable should only
contain UI logic (the stateless composables that consume the state content), some
presentation logic lurked in when the isLoading variable was calculated,
as illustrated in the following code snippet:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 …

 val isLoading = restaurants.isEmpty()

 …

}

232 Introducing Presentation Patterns in Android

The composables shouldn't be in charge of deciding their own state as in this
case—the RestaurantsScreen() composable shouldn't hold presentation logic;
instead, this should be moved inside the ViewModel.

• The RestaurantsViewModel class contains both presentation logic (such
as holding and updating the state of the UI) and data logic (as it works with the
Retrofit service Room Data Access Object (DAO) when it obtains and caches
restaurants), as illustrated in the following code snippet:

class RestaurantsViewModel() : ViewModel() {

 private var restInterface: RestaurantsApiService

 private var restaurantsDao = ...

 val state = mutableStateOf(emptyList<Restaurant>())

 private suspend fun getAllRestaurants(): … {…}

 ...

 private suspend fun refreshCache() {...}

}

It's clear that presentation logic occurs when the state variable is updated,
but there's also a lot of data logic when restaurants are obtained from the
restInterface variable, then cached and updated in the restaurantsDao
variable, and so on.

All this data logic shouldn't reside inside the ViewModel but instead inside the
Model layer because the ViewModel should only present the data and not care to
know about the data sources and how they are used—it only knows that it should
receive some data.

Now, let's have a look at how we should correctly structure our classes (to follow MVVM)
for the first flow of displaying a list of restaurants. The components should look like this:

Refactoring our Restaurants app to fit a presentation pattern 233

Figure 7.6 – Components with well-separated responsibilities per layer in the MVVM pattern

In the previous diagram, each component handles its own responsibility, as follows:

• The View component contains only composables (RestaurantsScreen) with UI
logic (consuming the UI state).

• The ViewModel component (RestaurantsViewModel) contains only
presentation logic (holds the UI state and mutates it).

• The Model component (where we will create a RestaurantsRepository
class—more on that soon) contains only data logic (obtains restaurants from remote
sources, caches them into a local source, and so on).

To achieve this separation, in this section, we will be doing the following:

• Separating UI logic from presentation logic

• Separating presentation logic from data logic

Let's start!

Separating UI logic from presentation logic
The UI logic (rendering composables) is already at the UI level (Compose UI), so we don't
have to do anything from this point of view. However, we need to extract the presentation
logic from the UI layer to the ViewModel, where it should reside.

More specifically, from within the RestaurantsScreen() composable, we want to
move the calculation of the isLoading variable to the RestaurantsViewModel
class, simply because the ViewModel should decide and also know better when the
screen should be in a loading state.

234 Introducing Presentation Patterns in Android

To do that, we will create a state class that will hold all the information the UI needs
in order to render the correct state. This approach is much more efficient because the
ViewModel is responsible for requesting data and therefore knows better when content
arrives, and so on. Because of this, later on, it will be very simple for us to also allow the
ViewModel to also dictate when the screen must show an error state. Proceed as follows:

1. Create a class that will model the UI state for the RestaurantsScreen()
composable. Do that by clicking on the application package, selecting New, and
then Kotlin Class/File. Enter RestaurantsScreenState as the name and
select Data class as the type. Inside the new file, add fields that define this screen's
state, a restaurants list, and an isLoading flag. The code is illustrated in the
following snippet:

data class RestaurantsScreenState(

 val restaurants: List<Restaurant>,

 val isLoading: Boolean)

Since we've used a data class instead of a regular class, we will be able
to easily perform mutation on this object with the .copy() function, thereby
ensuring that since the Compose state object will receive a new object, it will
know to trigger recomposition.

2. Inside the RestaurantsViewModel class, update the initial state value of the
state variable and pass a RestaurantsScreenState object, as follows:

class RestaurantsViewModel() : ViewModel() {

 …

 val state = mutableStateOf(

 RestaurantsScreenState(

 restaurants = listOf(),

 isLoading = true)

)

 …

}

We've marked the restaurants field as an empty list, and isLoading is true
because from this point on, we're waiting for restaurants and the UI should render a
loading state.

Refactoring our Restaurants app to fit a presentation pattern 235

3. Still inside the RestaurantsViewModel class, find the getRestaurants()
method and update the way we update the state variable, as follows:

private fun getRestaurants() {

 viewModelScope.launch(errorHandler) {

 val restaurants = getAllRestaurants()

 state.value = state.value.copy(

 restaurants = restaurants,

 isLoading = false)

 }

}

We first stored restaurants inside a restaurants variable. Then, we used
the copy() function to pass a new restaurants list that we received to the
restaurants field, and also marked the isLoading field to false because the
data has arrived and the UI should no longer render a loading state.

4. Still in the RestaurantsViewModel class, make sure that the
toggleFavorite() method is correctly updating the state variable object
using the copy() function, as follows:

fun toggleFavorite(id: Int, oldValue: Boolean) {

 viewModelScope.launch(errorHandler) {

 val updatedRestaurants = […]

 state.value = state.value.copy(restaurants =

 updatedRestaurants)

 }

}

All right—we've added all the presentation logic within the ViewModel, and it's
now time to update the UI (our composables) to render new possible UI states.

5. Refactor the RestaurantsScreen() composable to consume the new UI state
content, as follows:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 val viewModel: RestaurantsViewModel = viewModel()

 val state = viewModel.state.value

 Box(…) {

 LazyColumn(…) {

236 Introducing Presentation Patterns in Android

 items(state.restaurants) {…}

 }

 if (state.isLoading)

 CircularProgressIndicator()

 }

}

Let's break down what we've done, as follows:

 � We renamed the restaurants variable as state to better suggest that this
variable holds the state of this screen.

 � We passed state.restaurants to the LazyColumn composable's items
DSL function.

 � We deleted this line: val isLoading = restaurants.isEmpty().

 � We updated the condition for when to show
CircularProgressIndicator() based on the state.isLoading
value—no more decision-making logic inside this composable.

6. Build and run the app.

You should be able to see the loading indicator, just as before, yet the difference is
that the presentation logic is better separated and held by the ViewModel. With
our new approach, if for any reason we receive an empty list from our data sources
(Retrofit and Room), the application won't misbehave and show a loading state
because the UI is checking whether the list is empty or not.

To see how simple it is to add a new state to our Compose-based UI, let's continue
by setting an error state when any error is thrown inside the ViewModel.

7. Inside the RestaurantsScreenState class, add an error: String
parameter that will hold an error message if any error occurs, as follows:

data class RestaurantsScreenState(

 val restaurants: List<Restaurant>,

 val isLoading: Boolean,

 val error: String? = null

)

To simplify our work with state handling inside the ViewModel, we've set a default
value of null to the error field, since the initial state of the screen shouldn't ever
contain an error.

Refactoring our Restaurants app to fit a presentation pattern 237

8. Inside the RestaurantsViewModel class, find the errorHandler variable that
we use to catch any exception that might be thrown by our coroutines, and update
the state object by passing an exception.message error message to the
error field. The code is illustrated in the following snippet:

class RestaurantsViewModel() : ViewModel() {

 …

 private val errorHandler =

 CoroutineExceptionHandler { _, exception ->

 exception.printStackTrace()

 state.value = state.value.copy(

 error = exception.message,

 isLoading = false

)

 }

 ...

}

Additionally, we've set the isLoading field to false on the new state simply
because if an error is thrown, we don't want the UI to be in a loading state.

If, however, you want to add a retry button that is pressed after an error has
occurred and was shown, you would have to set the error field to null when that
button is pressed so that the UI won't remain in an error state indefinitely.

9. Inside the RestaurantsScreen() composable, add another if statement in
the Box composable. This statement checks whether the state object contains an
error message to be shown, and if that is true, add a Text composable that will
display the error message. The code is illustrated in the following snippet:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 …

 Box(…) {

 LazyColumn(...) {…}

 if (state.isLoading)

 CircularProgressIndicator()

 if (state.error != null)

 Text(state.error)

 }

}

238 Introducing Presentation Patterns in Android

10. Build the project, and now, let's test the error scenario. Yet to see the error message,
we need to simulate an error.

If you remember, inside our RestaurantsViewModel class's
getAllRestaurants() method, we check if we failed in retrieving restaurants
from the server (Retrofit client), and if this happens while the Room DAO is also
empty, we throw this error message: "Something went wrong.
We have no data.".

To reproduce this scenario, make sure that the following applies:

 � You have cleared the cache of the application. To do that, inside your device
or emulator, go to Settings, then Applications, and search for our Restaurants
app and press on it. Then, press Storage and Cache and then Clear Storage.

 � Your device/emulator is disconnected from the internet.

11. Run the application. You should see this message in the center of the screen:
"Something went wrong. We have no data.".

Note
For the sake of simplicity, we made sure that the UI logic is separated from the
presentation logic only within the first screen of our app. When you're looking
to move logic to corresponding classes, thereby ensuring SoC, you need to
make sure to do so for all other screens within the app, together with their
ViewModel classes, and so on.

Now that we've separated UI logic from presentation logic, it's time to separate some
data logic.

Separating presentation logic from data logic
While the RestaurantsViewModel class contains data logic because it interacts with
the Retrofit service and the Room DAO to obtain and cache restaurants, it should only
hold presentation logic because its core responsibility is to govern the UI state.

Another sign that our RestaurantsViewModel has piled up a lot of logic is that it
currently stands at around 90 lines of code—this might not seem much yet, remember
that our application is pretty simple and we have little presentation logic, so 90 lines will
definitely turn into thousands for production-ready applications.

We want to move the data logic out of the RestaurantsViewModel into a different
class. Since data logic is part of the Model layer of our application, in this section, we will
start exploring how to define the Model layer with the help of Repository classes.

Refactoring our Restaurants app to fit a presentation pattern 239

The Repository pattern represents a strategy for abstracting data access inside your
application. In other words, Repository classes hide away from the caller all the
complexity associated with parsing data from the server, storing it in local databases,
or performing any caching/refreshing mechanisms.

In our app, the RestaurantsViewModel class must decide whether to get data from
the restInterface (remote) source or from the restaurantsDao (local) source,
while also making sure to refresh the cache. The following snippet shows the code that
is executed:

class RestaurantsViewModel() : ViewModel() {

 private var restInterface: RestaurantsApiService

 private var restaurantsDao = [...]

 ...

 private suspend fun refreshCache() {...}

}

This is obviously wrong. The ViewModel shouldn't care which particular data source
to call as it shouldn't need to be the one that initiates caching to local sources. The
ViewModel should only care about receiving some content that it will prepare
for presentation.

Let's lift this burden from the RestaurantsViewModel class by creating a Repository
class that will abstract all the data logic, as it will be interacting with the two data sources
(web API and Room DAO) to do the following:

• Provide a List<Restaurant> object to the Presentation layer

• Handle any caching logic such as retrieving restaurants from the web API and
caching them to the Room local database

• Define a single source of truth (SSOT) for data—the Room database

To do that, we must only move the data logic out of the ViewModel and separate it in
a Repository class. Let's begin, as follows:

1. Create a Repository class by clicking on the application package, selecting New, and
then Kotlin Class/File. Enter RestaurantsRepository as the name and select
Class as the type:

class RestaurantsRepository { }

Now, let's start moving some code!

240 Introducing Presentation Patterns in Android

2. From inside the RestaurantsViewModel class, cut the restInterface
variable and its initialization logic from the init block and paste it inside
RestaurantsRepository, as follows:

class RestaurantsRepository {

 private var restInterface: RestaurantsApiService =

 Retrofit.Builder()

 .addConverterFactory(…)

 .baseUrl(…)

 .build()

 .create(RestaurantsApiService::class.java)

}

3. Do the same for the restaurantsDao variable, as follows:

class RestaurantsRepository {

 private var restInterface: RestaurantsApiService = …

 private var restaurantsDao = RestaurantsDb

 .getDaoInstance(

 RestaurantsApplication.getAppContext())

}

4. Inside the RestaurantsViewModel class, add a repository variable and
instantiate it with the RestaurantsRepository() constructor, like this:

class RestaurantsViewModel() : ViewModel() {

 private val repository = RestaurantsRepository()

 val state = mutableStateOf(…)

 private val errorHandler = CoroutineExceptionHandler
{ … }

 init {

 getRestaurants()

 }

 […]

}

Make sure that the RestaurantsViewModel no longer contains the
restInterface variable, the restaurantsDao variable, or their initialization
code from within the init block.

Refactoring our Restaurants app to fit a presentation pattern 241

5. Move the toggleFavoriteRestaurant(), getAllRestaurants(),
and refreshCache() methods of the RestaurantsViewModel class to the
RestaurantsRepository class, as follows:

class RestaurantsRepository {

 private var restInterface: RestaurantsApiService = …

 private var restaurantsDao = […]

 private suspend fun toggleFavoriteRestaurant(…) = […]

 private suspend fun getAllRestaurants(): […] { … }

 private suspend fun refreshCache() { … }

}

6. Make sure that apart from the init { } block, the RestaurantsViewModel
class only contains the toggleFavorite() and getRestaurants() methods,
as follows:

class RestaurantsViewModel() : ViewModel() {

 […]

 init { getRestaurants() }

 fun toggleFavorite(id: Int, oldValue: Boolean) {…}

 private fun getRestaurants() {…}

}

7. Inside the RestaurantsRepository class, remove the private modifier for
the getAllRestaurants() and toggleFavoriteRestaurant() methods
as RestaurantsViewModel will need to call them, so they must be public. The
code is illustrated in the following snippet:

class RestaurantsRepository {

 […]

 suspend fun toggleFavoriteRestaurant(…) = […]

 suspend fun getAllRestaurants(): […] { … }

 private suspend fun refreshCache() { … }

}

242 Introducing Presentation Patterns in Android

8. Going back inside the RestaurantsViewModel class, update the
getRestaurants() method to now call repository.getAllRestaurants(),
as follows:

private fun getRestaurants() {

 viewModelScope.launch(errorHandler) {

 val restaurants = repository.getAllRestaurants()

 state.value = state.value.copy(…)

 }

}

9. Still inside the RestaurantsViewModel class, update the toggleFavorite()
method to now call repository.toggleFavoriteRestaurant(), as
follows:

fun toggleFavorite(id: Int, oldValue: Boolean) {

 viewModelScope.launch(errorHandler) {

 val updatedRestaurants = repository

 .toggleFavoriteRestaurant(id, oldValue)

 state.value = state.value.copy(…)

 }

}

And we're done! While the functionality of the first screen should stay the same, we have
now divided the responsibilities within this first flow not only within the Presentation
layer but also between the Presentation layer and the Model layer.

Assignment
You can try to practice what we've learned in this section on the details screen
of the Restaurants application.

Next up, let's return for a while to the Presentation layer and inspect how the UI state is
exposed from within our ViewModel.

Improving state encapsulation in ViewModel 243

Improving state encapsulation in ViewModel
Let's have a look at how the UI state is defined in the RestaurantsViewModel class,
as follows:

class RestaurantsViewModel() : ViewModel() {

 …

 val state = mutableStateOf(RestaurantsScreenState(

 restaurants = listOf(),

 isLoading = true))

 …

}

Inside the RestaurantsViewModel, we are holding the state within the state
variable with the MutableState<RestaurantsScreenState> inferred type. This
variable is public, so inside the UI layer, from within the RestaurantsScreen()
composable, we can consume it by accessing the viewModel variable and directly
obtaining the state object, as follows:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 val viewModel: RestaurantsViewModel = viewModel()

 val state = viewModel.state.value

 Box(…) {…}

}

The problem with this approach might not be obvious, but since the state variable is
of type MutableState, not only can we read its value but we can also write its value.
In other words, from within the composable UI layer, we have write access to the state
variable through the .value accessor.

The danger here is that then we (or other colleagues within our development team) could
mistakenly update the UI state from within the UI layer, like so:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 val viewModel: RestaurantsViewModel = viewModel()

 val state = viewModel.state.value

 Box(…) {…}

244 Introducing Presentation Patterns in Android

 viewModel.state.value = viewModel.state.value.copy(

 isLoading = false)

}

You can try to add the previously highlighted line of code but remove it afterwards!

This represents a violation of responsibilities within the Presentation layer: the UI layer
shouldn't perform presentation logic. In other words, the UI layer shouldn't be able to
mutate its own state that is stored inside the ViewModel; instead, only the ViewModel
should have the right to do so.

This way, the ViewModel is the only entity responsible for presentation logic such
as defining or mutating the UI state. At the same time, the responsibilities within our
presentation patterns would be properly divided and respected.

To fix this, we must somehow force the RestaurantsViewModel class to expose
a public state variable of type State instead of MutableState. This will prevent
the UI layer from accidentally mutating its own state.

We can do this by having the Kotlin backing property feature implemented for our
state variable. This feature states that if a class has two properties that are conceptually
the same, yet one of them is part of the public API and the other one is an implementation
detail, we can use an underscore to prefix the private property.

Let's see what this means by applying it directly in code, as follows:

1. First, within the RestaurantsViewModel class, let's prevent our state variable
from being accessed because it's of type MutableState, as follows:

class RestaurantsViewModel() : ViewModel() {

 …

 private val state = mutableStateOf(…)

 …

}

2. Then, still in the RestaurantsViewModel class, rename the state variable
_state. You can do that by selecting the state variable, and then pressing
Shift + F6. Make sure that all previous usages of state are now called _state.
The code is illustrated in the following snippet:

class RestaurantsViewModel() : ViewModel() {

 …

 private val _state = mutableStateOf(…)

Improving state encapsulation in ViewModel 245

 private val errorHandler =

 CoroutineExceptionHandler {

 …

 exception.printStackTrace()

 _state.value = _state.value.copy(…)

 }

 […]

 fun toggleFavorite(id: Int, oldValue: Boolean) {

 viewModelScope.launch(errorHandler) {

 val updatedRestaurants = …

 _state.value = _state.value.copy(…)

 }

 }

 private fun getRestaurants() {

 viewModelScope.launch(errorHandler) {

 val restaurants =

 repository.getAllRestaurants()

 _state.value = _state.value.copy(…)

 }

 }

}

The _state variable is now the private state of type MutableState, so it's
the variable that we referred to as the implementation detail. This means that the
ViewModel can mutate it, but it shouldn't be exposed to the outer world. Yet what
should we expose to the UI layer?

3. Still inside the RestaurantsViewModel, create another state variable called
state of type State<RestaurantsScreenState> and define its custom
getter through the get() syntax, as follows:

class RestaurantsViewModel() : ViewModel() {

 …

 private val _state = mutableStateOf(...)

 val state: State<RestaurantsScreenState>

 get() = _state

 …

}

246 Introducing Presentation Patterns in Android

The state variable is now the public state of type State (so, it's part of the public
API), and this means that when the UI layer will try to get its value, the get()
syntax will be called and the content within the _state variable will be returned.

Behind the scenes, the _state variable's type MutableState is downcasted to
type State of the state variable. This means that composables won't be able to
ever mutate the state within the ViewModel.

Conceptually, both the state variable and the _state variable are the same, yet
state is used as part of a public contract with the outside world (so that it can
be consumed by the UI layer), and _state is used as an internal implementation
detail (a MutableState object that can be updated by the ViewModel).

4. Finally, inside the RestaurantsScreen() composable, make sure that the
state variable is consumed, like this:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 val viewModel: RestaurantsViewModel = viewModel()

 val state = viewModel.state.value

 Box(…) {…}

}

If you now try to mutate the state variable's value, as we did at the beginning of
this section, then the Integrated Development Environment (IDE) will show you a
compilation error telling you that you need to reassign a val variable, as illustrated in the
following code snippet:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 val viewModel: RestaurantsViewModel = viewModel()

 val state = viewModel.state.value

 Box(…) {…}

 viewModel.state.value = viewModel.state.value.copy(

 isLoading = false)

}

Summary 247

This effectively means that our UI can't mutate its own state by accident anymore.

Assignment
You can try to practice what we've learned in this section on the details screen
of the Restaurants application.

Summary
In this chapter, we had a first look at the SoC principle. We understood why we must split
an application's responsibilities across several layers and explored how we can do that with
the help of presentation design patterns.

In the first part of this chapter, we had a quick look over the implementations for the most
common presentation patterns in Android: MVC, MVP, and MVVM.

After that, we established that MVVM might be an appropriate choice for our
Compose-based Restaurants application. We understood in which layer each type of logic
must reside, and then tried to achieve SoC as well as possible in our application.

In the last part of this chapter, we noticed how easy it is for our UI layer to extend its
responsibilities and start performing presentation logic by mutating the UI state within
the ViewModel. To counter that, we learned how to better encapsulate the UI state by
using backed properties.

Let's continue our journey of improving our application's architecture in the next chapter
where we will try to adopt some design decisions from the well-known Clean Architecture
software design philosophy.

8
Getting Started with

Clean Architecture
in Android

In this chapter, we're continuing our journey of improving the architectural design of the
Restaurants application.

More specifically, we will try to adopt some design decisions from the well-known Clean
Architecture. Clean Architecture is a software design philosophy that tries to create
projects with the best level of the following:

• Separation of concerns

• Testability

• Independence of frameworks or libraries used in peripheral layers, such as the UI
or Model layer

By doing so, Clean Architecture tries to allow the business parts of our applications to
adapt to changing technologies and interfaces.

Clean Architecture is a very broad and complex topic, so, in this chapter, we will try to
focus only on establishing a better separation of concerns by separating existing layers
even further, but more importantly, by defining a new layer called the Domain layer.

250 Getting Started with Clean Architecture in Android

In this chapter, we will on one hand borrow some architectural decisions from Clean
Architecture through the Defining the Domain layer with Use Cases section and the
Separating the Domain model from Data models section. On the other hand, we will try to
improve project architecture with other techniques through the Creating a package structure
section and the Decoupling the Compose-based UI layer from ViewModel section.

Another essential principle of Clean Architecture is the Dependency Rule that we will
briefly cover in the Further reading section where you will find proper resources to follow
up with.

We will cover the following topics in this section:

• Defining the Domain layer with Use Cases

• Separating the Domain model from Data models

• Creating a package structure

• Decoupling the Compose-based UI layer from ViewModel

Before jumping in, let's set up the technical requirements for this chapter.

Technical requirements
Building Compose-based Android projects for this chapter usually requires your
day-to-day tools. However, to follow along smoothly, make sure you have the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds, but note that the IDE interface and
other generated code files might differ from the ones used throughout this book.

• Kotlin 1.6.10 or a newer plugin installed in Android Studio

• The Restaurants app code from the previous chapter

The starting point for this chapter is represented by the Restaurants application
developed in the previous chapter. If you haven't followed the implementation from
the previous chapter, access the starting point for this chapter by navigating to the
Chapter_07 directory of the repository and importing the Android project titled
chapter_7_restaurants_app.

To access the solution code for this chapter, navigate to the Chapter_08 directory:

https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_08/
chapter_8_restaurants_app.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_08/chapter_8_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_08/chapter_8_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_08/chapter_8_restaurants_app

Defining the Domain layer with Use Cases 251

Defining the Domain layer with Use Cases
So far, we've talked about the Presentation layer (with UI and presentation logic) and
the Model layer (with data logic). Yet, apart from these two layers, most of the time,
applications also encapsulate a different type of logic, different from UI, presentation,
or data logic.

To identify this type of logic, we must first acknowledge that most applications have
a dedicated business scope – for example, a food delivery application could have
the business scope of taking orders and generating revenue for the stakeholder. The
stakeholder is the entity interested in the business, such as the company that owns the
restaurant chain.

Such applications can contain business rules imposed by the stakeholders that can vary
from minimum order amounts, custom availability ranges for certain restaurants, or
predefined time frames for different delivery charges; the list could go on. We can refer to
such business rules that are dictated by stakeholders as business logic.

For our Restaurants app, let's imagine that the stakeholder (for example, the company
we would be building the application for) asked us to always show the restaurants
alphabetically, no matter what. This shouldn't be something that the user would know
about; instead, it should be a predefined business rule that we must implement.

Now, sorting restaurants alphabetically isn't that big of a deal, so the natural question that
arises is, where should we apply this sorting logic?

To figure this out, let's recap the current layering of the project. Right now, the
Presentation layer is connected to the Model layer.

Figure 8.1 – Layering of responsibilities in the Restaurants app

252 Getting Started with Clean Architecture in Android

With our existing layer structuring, we could sort the restaurants in the following:

• UI level (composables): Since this sorting logic is business logic, we should try to
avoid adding it here.

• Inside the ViewModel: If this sorting was a presentation option (so the user could
sort restaurants in different ways from the UI by selecting a picker or button),
we would have considered this to be presentation logic that can be held inside a
ViewModel class; yet, remember that this rule is part of the business requirements,
and the user shouldn't know about it, so it's probably not a good idea to implement
it here.

• Inside the Repository: Here, we store data logic (such as caching), which is
different from business logic.

None of the options are ideal, and we will see in a moment why this is the case. Until then,
let's have a compromise and add this business rule inside the Model layer:

1. Inside RestaurantsRepository, refactor the getAllRestaurants()
method to sort the restaurants by title by calling the sortedBy { } extension
function on the restaurants that are returned:

suspend fun getAllRestaurants(): List<Restaurant> {

 return withContext(Dispatchers.IO) {

 try {

 refreshCache()

 } catch (e: Exception) {…}

 return@withContext restaurantsDao.getAll()

 .sortedBy { it.title }

 }

}

2. Build and run the application.

The restaurants are now correctly sorted by their title, yet if you toggle a restaurant
as a favorite, you might notice an initial flicker and a re-ordering effect on the list.
Can you guess why this has happened?

The issue here is that in RestaurantsRepository, the
toggleFavoriteRestaurant() method returns the unsorted version of the
restaurants from the Data Access Object (DAO):

suspend fun toggleFavoriteRestaurant(…)= withContext(…){

 …

Defining the Domain layer with Use Cases 253

 restaurantsDao.getAll()

}

To fix this, we could repeat the same sorting logic from the
getAllRestaurants() method.

Yet, this approach is problematic because we would be repeating or duplicating the
sorting business rule. Worse than that, since we are in the Model layer, we're mixing
data logic with business logic. We shouldn't be mixing data caching logic with
business rules.

It's clear that for us to correctly encapsulate business logic and to be able to reuse it, we
should extract it to a separate layer. Just like whenever we wanted to prevent any changes
impacting the Presentation layer from affecting other layers, such as the UI or Model
layers, we want to separate the business logic inside a separate layer so that any changes to
the business logic shouldn't impact other layers and their corresponding logic.

According to Clean Architecture concepts, the layer that encapsulates business rules and
business logic is referred to as the Domain layer. This layer sits between the Presentation
layer and the Model layer. It should process the data from the Model layer by applying
the business rules that it incorporates, and then feed the Presentation layer with the
business-compliant content.

Figure 8.2 – Layering of responsibilities in the Restaurants app, including the Domain layer

In other words, in a particular flow (as in the screen with the list of restaurants), the
Presentation layer through the ViewModel would connect to the Domain layer instead
of the Model layer. In turn, the Domain layer would get the data from the Model layer.

Note
Not all applications, screens, or flows contain business logic. For these cases,
the Domain layer is optional. The Domain layer should hold business logic,
but, if there is no such logic, there should be no such layer.

254 Getting Started with Clean Architecture in Android

But what should the Domain layer contain?

According to Clean Architecture concepts, repeatable business logic that is related to a
specific application action or flow should be encapsulated in a Use Case. In other words,
Use Cases are classes that extract repeatable business rules related to a single functionality
of your application as a single unit of business logic.

For example, an online ordering app can have business logic related to displaying only
stores in the near proximity of the user. To encapsulate this business rule, we could
create a GetStoresInProximityUseCase class. Or, maybe there is some business
logic associated with the logout action triggered by the user (such as executing some
user benefits or points calculation behind the scenes); then, we could implement
LogOutUserUseCase.

So, in our Restaurants app, any business logic must be encapsulated in a Use Case that sits
between the Presentation layer and the Model layer:

Figure 8.3 – Layering of responsibilities where the Domain layer contains Use Cases

A separated Domain layer brings the following benefits:

• Improves the testability of the app by separating business logic into its own classes.
This way, business responsibilities are separated from other components and their
logic can be tested separately without having to care about components from
other layers.

• By separating business logic inside Use Cases, we avoid code duplication, and
we improve the re-usability of business rules and their corresponding logic.

• Improves the readability of the classes that contain Use Cases dependencies. This is
because each unit of business is now extracted separately and provides developers
with valuable insights into the business actions each screen or flow executes.

Defining the Domain layer with Use Cases 255

Before jumping into a practical example, let's briefly cover a few important aspects of
Use Cases:

• They can use (or depend on) other Use Cases. Since Use Cases define a single unit
of reusable business logic, then Use Cases can use other Use Cases to define
complex business logic.

• They usually obtain their data from the Model layer but are not conditioned to only
one Repository class – in other words, you can access multiple repositories from
within your Use Case.

• They usually have only one public method, mostly because Use Cases
encapsulate business rules related to a single functionality of your app
(like LogOutUserUseCase does).

• They should follow a naming convention. A popular convention for the
Use Case class is a verb in the present tense that defines the action, usually
followed by a few words that express the what, and that ends with the UseCase
suffix. Some examples could be GetStoresInProximityUseCase or
CalculateOrderTotalUseCase.

It's time to see what a Use Case class looks like. In our Restaurants app, the business logic
of sorting restaurants alphabetically is a good match for it being extracted to a Use Case
because of the following:

• It's a business rule dictated by the stakeholder.

• It's repeated twice.

• It's part of a specific action of the app (getting the restaurants).

Let's define our first Use Case class!

1. Click on the application package, select New, and then Kotlin Class/File. Enter
GetRestaurantsUseCase as the name, select Class, and add this code:

class GetRestaurantsUseCase {

 private val repository: RestaurantsRepository =

 RestaurantsRepository()

 suspend operator fun invoke(): List<Restaurant> {

 return repository.getAllRestaurants()

 .sortedBy { it.title }

 }

}

256 Getting Started with Clean Architecture in Android

Functionally, this Use Case class gets the restaurants from
RestaurantsRepository, applies the business rule of sorting the restaurants
alphabetically, just like RestarauntsViewModel did, and then returns the
list. In other words, GetRestaurantsUseCase is now the one responsible for
applying business rules.

This Use Case does that with only one public method, which is also a suspend
function because the repository.getAllRestaurants() call is a suspending
function call. But, more importantly, why did we name the function of the Use Case
as invoke() while also specifying the operator keyword?

We did that because Kotlin allows us to define an invoke operator on a class so
we can call it on any instances of the class without a method name. This is how we
will call the invoke() operator of GetRestaurantsUseCase:

val useCase = GetRestaurantsUseCase()

val result = useCase()

This syntax is especially useful for us because our Use Case classes have only one
method, and the name of the class is already suggestive enough, so we don't need
a named function.

2. Make sure to remove the sorting logic that we initially added in the
getAllRestaurants() method in RestaurantsRepository. The returned
data of the method should look like this:

suspend fun getAllRestaurants(): List<Restaurant> {

 return withContext(Dispatchers.IO) {

 try { … } catch (e: Exception) {…}

 return@withContext restaurantsDao.getAll()

 }

}

3. Inside RestaurantsViewModel, add a new dependency to the
GetRestaurantsUseCase class:

class RestaurantsViewModel() : ViewModel() {

 private val repository = RestaurantsRepository()

 private val getRestaurantsUseCase =
GetRestaurantsUseCase()

 […]

}

Defining the Domain layer with Use Cases 257

4. Then, inside the getRestaurants() method of the ViewModel, remove the
call for restaurants to the repository variable, and instead, call the invoke()
operator for the getRestaurantsUseCase variable:

private fun getRestaurants() {

 viewModelScope.launch(errorHandler) {

 val restaurants = getRestaurantsUseCase()

 _state.value = _state.value.copy(

 restaurants = restaurants, […])

 }

}

Before building and running the app, let's try to identify any other business rules for
this particular flow of the app.

If we have a look inside RestaurantsRepository, the
toggleFavoriteRestaurant() method takes in an oldValue: Boolean
parameter, and negates it before passing it to PartialRestaurant:

suspend fun toggleFavoriteRestaurant(

 id: Int,

 oldValue: Boolean

) =

 withContext(Dispatchers.IO) {

 restaurantsDao.update(

 PartialRestaurant(

 id = id,

 isFavorite = !oldValue

)

)

 restaurantsDao.getAll()

 }

This happens every time we mark a restaurant as a favorite or not favorite. The
rule of negating oldValue of the favorite status of the restaurant (by passing
!oldValue) can be considered a business rule imposed by the stakeholder:
whenever a user presses on the heart icon of a restaurant, we must toggle its favorite
status to the opposite value.

To be able to reuse this business logic and not have it done by
RestaurantsRepository , let's also extract this rule to a Use Case.

258 Getting Started with Clean Architecture in Android

5. First, inside RestaurantsRepository, rename the oldValue parameter
to value and make sure to not negate it anymore when passing it to the
isFavorite field of PartialRestaurant:

suspend fun toggleFavoriteRestaurant(id: Int, value:
Boolean)=

 withContext(Dispatchers.IO) {

 restaurantsDao.update(

 PartialRestaurant(id = id, isFavorite = value)

)

 restaurantsDao.getAll()

 }

6. Click on the application package, select New, and then Kotlin Class/File. Enter
ToggleRestaurantUseCase as the name, select Class, and add this code:

class ToggleRestaurantUseCase {

 private val repository: RestaurantsRepository =

 RestaurantsRepository()

 suspend operator fun invoke(

 id: Int,

 oldValue: Boolean

): List<Restaurant> {

 val newFav = oldValue.not()

 return repository

 .toggleFavoriteRestaurant(id, newFav)

 }

}

This Use Case now encapsulates the business rule of negating the favorite flag of
a restaurant with the val newFav = oldValue.not() line. While the
business logic here is rather slim, in production apps, things tend to get more
complex. This Use Case should be called whenever we mark a restaurant as a
favorite or not favorite.

7. Inside RestaurantsViewModel, add a new dependency to the
ToggleRestaurantUseCase class:

class RestaurantsViewModel() : ViewModel() {

 private val getRestaurantsUseCase =

GetRestaurantsUseCase()

Defining the Domain layer with Use Cases 259

 private val toggleRestaurantsUseCase =
ToggleRestaurantUseCase()

 […]

}

At this step, you can also safely remove the RestaurantsViewModel
class's dependency to the RestaurantsRepository class by removing the
repository variable.

8. Then, inside the toggleFavorite() method of the ViewModel, remove the
call for toggling the restaurant on the repository variable, and instead, call the
invoke() operator for the toggleRestaurantUseCase variable:

fun toggleFavorite(id: Int, oldValue: Boolean) {

 viewModelScope.launch(errorHandler) {

 val updatedRestaurants =

 toggleRestaurantsUseCase(id, oldValue)

 _state.value = _state.value.copy(…)

 }

}

Now, the business rule of toggling a restaurant as a favorite or not is done inside
ToggleRestaurantUseCase.

9. Now that we have extracted business logic into Use Case classes, build the app and
run it. The application should behave the same.

Yet, if you try toggling a restaurant as a favorite, the list of restaurants still flickers, and
their order seems to change. Can you think of why this happens?

Let's circle back to RestaurantsRepository and check out the
toggleFavoriteRestaurant method:

suspend fun toggleFavoriteRestaurant(…)= withContext(…) {
 restaurantsDao.update(
 PartialRestaurant(id = id, isFavorite = value)
)
 restaurantsDao.getAll()
}

The problem with this method is that it returns the restaurants obtained from the Room
DAO by calling restaurantsDao.getAll(). These restaurants are not sorted
alphabetically, as our business rules now indicate. So, every time we toggle a restaurant
as favorite, we update the UI with the unsorted list of restaurants.

260 Getting Started with Clean Architecture in Android

We need to somehow reuse the sorting logic from GetRestaurantsUseCase:

1. First, from within RestaurantsRepository, remove the
restaurantsDao.getAll() call from the toggleFavoriteRestaurant
method:

suspend fun toggleFavoriteRestaurant(…)= withContext(…) {

 restaurantsDao.update(

 PartialRestaurant(id = id, isFavorite = value)

)

}

This way, this method no longer returns a list of restaurants; it just updates a specific
restaurant. As of now, the toggleFavoriteRestaurant method doesn't return
anything anymore.

2. Then, inside the ToggleRestaurantUseCase class, remove the return
statement for the repository.toggleFavoriteRestaurant() line, and
instead return the sorted list of restaurants by directly instantiating and calling the
invoke() operator on the GetRestaurantsUseCase class:

class ToggleRestaurantUseCase {

 private val repository: … = RestaurantsRepository()

 suspend operator fun invoke(…): List<Restaurant> {

 val newFav = oldValue.not()

 repository.toggleFavoriteRestaurant(id, newFav)

 return GetRestaurantsUseCase().invoke()

 }

}

This approach fixes our issue – whenever we toggle a restaurant as a favorite or not, the
UI no longer flickers because the UI is updated with the correctly sorted list – yet this
happens with a lengthy delay.

Unfortunately, this functionality is not efficient at all because whenever we toggle
a restaurant as a favorite or not, the GetRestaurantsUseCase calls the
RestaurantsRepository class's getAllRestaurants() method that, in turn,
triggers a request to get the restaurants again from the Web API, attempts to cache them
into Room, and only then provides us with a list, hence the delay we've just experienced.

Defining the Domain layer with Use Cases 261

In a good application architecture, a network request that gets the new list of items
shouldn't be done after every UI interaction with an item. Let's fix this by refactoring
our code and by creating a new Use Case that only retrieves the cached restaurants, sorts
them, and returns them:

1. First, inside RestaurantsRepository, add a new method called
getRestaurants() that only retrieves the restaurants from our Room DAO:

suspend fun getRestaurants() : List<Restaurant> {

 return withContext(Dispatchers.IO) {

 return@withContext restaurantsDao.getAll()

 }

}

2. Click on the application package, select New, and then Kotlin Class/File. Enter
GetSortedRestaurantsUseCase as the name, select Class, and add this code:

class GetSortedRestaurantsUseCase {

 private val repository: RestaurantsRepository =

 RestaurantsRepository()

 suspend operator fun invoke(): List<Restaurant> {

 return repository.getRestaurants()

 .sortedBy { it.title }

 }

}

The GetSortedRestaurantsUseCase class now retrieves the restaurants
from the RestaurantsRepository by calling the previously created
getRestaurants() method (without triggering any network request or
caching), applies the sorting business rule, and finally, returns the list of restaurants.

3. Use the newly created GetSortedRestaurantsUseCase class inside
ToggleRestaurantUseCase so that we only get the cached restaurants every
time we toggle a restaurant as a favorite or not:

class ToggleRestaurantUseCase {

 private val repository: … = RestaurantsRepository()

 private val getSortedRestaurantsUseCase =

 GetSortedRestaurantsUseCase()

 suspend operator fun invoke(…): List<Restaurant> {

 val newFav = oldValue.not()

262 Getting Started with Clean Architecture in Android

 repository.toggleFavoriteRestaurant(id, newFav)

 return getSortedRestaurantsUseCase()

 }

}

Now, we must refactor GetRestaurantsUseCase to reuse the sorting business logic
from within GetSortedRestaurantsUseCase because the alphabetical sorting logic
is now duplicated in both Use Cases:

1. First, inside RestaurantsRepository, update the getAllRestaurants
method to no longer return the restaurants by no longer returning
restaurantsDao.getAll(), while also removing the function's return type:

suspend fun getAllRestaurants() {

 return withContext(Dispatchers.IO) {

 try { … } catch (e: Exception) { … }

 }

}

2. Rename the getAllRestaurants method to loadRestaurants() to better
reflect its responsibility:

suspend fun loadRestaurants() {

 return withContext(Dispatchers.IO) {

 try { … } catch (e: Exception) { … }

 }

}

3. Inside GetRestaurantsUseCase, add a new dependency to the
GetSortedRestaurantUseCase class and refactor the class as follows:

class GetRestaurantsUseCase {

 private val repository: … = RestaurantsRepository()

 private val getSortedRestaurantsUseCase =

 GetSortedRestaurantsUseCase()

 suspend operator fun invoke(): List<Restaurant> {

 repository.loadRestaurants()

 return getSortedRestaurantsUseCase()

 }

}

Separating the Domain model from Data models 263

Inside the invoke() function, we made sure to first call the newly renamed
loadRestaurants() method of the RestaurantsRepository and then,
in addition, to invoke GetSortedRestaurantsUseCase, which is now also
returned.

4. To better reflect its purpose, rename the GetRestaurantsUseCase class to
GetInitialRestaurantsUseCase:

class GetInitialRestaurantsUseCase {

 private val repository: … = RestaurantsRepository()

 private val getSortedRestaurantsUseCase =

 GetSortedRestaurantsUseCase()

 suspend operator fun invoke(): List<Restaurant> {...}

}

5. As a consequence, inside RestaurantsViewModel, update the type for the
getRestaurantsUseCase variable:

class RestaurantsViewModel() : ViewModel() {

 private val repository = RestaurantsRepository()

 private val getRestaurantsUseCase =

 GetInitialRestaurantsUseCase()

 …

}

6. Build the app and run it. The application should now behave correctly when
marking a restaurant as a favorite or not; the restaurants remain sorted
alphabetically.

Let's now move on to another way of improving the architecture of our app.

Separating the Domain model from Data
models
Inside the Domain layer, apart from Use Cases, another essential business component in
our app is the Domain model component. The Domain model components are those
classes that represent core business data or concepts used throughout the application.

264 Getting Started with Clean Architecture in Android

Note
Since the Domain models reside inside the Domain layer, they should be
agnostic of any third-party library or dependency – ideally, they should be pure
Java or Kotlin classes.

For example, in our Restaurants app, the core entity used throughout the app (retrieved,
updated, and displayed) is the Restaurant data class, which contains data such as
title and description.

If we think about it, our Restaurants app's core business entity is represented by the
restaurant itself: that's what the application is about, so it's only natural that we would
consider the Restaurant class as a business entity.

Note
In Clean Architecture, Domain model classes are often referred to as Entity
classes. However, it's important to mention that the Room database @Entity
annotation has nothing to do with Clean Architecture; any class annotated
with the Room @Entity annotation doesn't automatically become an
entity. In fact, as per Clean Architecture, Entity classes should have no library
dependencies such as database annotations.

If we have a look at our Restaurant data class though, we can identify a serious issue:

import androidx.room.ColumnInfo

 …

import com.google.gson.annotations.SerializedName

@Entity(tableName = "restaurants")

data class Restaurant(

 @PrimaryKey()

 @ColumnInfo(name = "r_id")

 @SerializedName("r_id")

 val id: Int,

 @ColumnInfo(name = "r_title")

 @SerializedName("r_title")

 val title: String,

 …

)

Separating the Domain model from Data models 265

Can you spot the problem?

While, in the beginning, the Restaurant data class was a pure Kotlin data class with
some fields, in time, it grew to something more than that.

We first added Retrofit to our app so we could get the restaurants from a Web API, and
had to mark the fields we obtained with @SerializedName annotations so that the
GSON (Google Gson) deserialization would work. Then we added Room to the mix
because we wanted to cache the restaurants, so we had to add an @Entity annotation to
the class, and other annotations, such as @PrimaryKey and @ColumnInfo, to its fields.

While it was convenient for us to use only one Data model class throughout the app,
we have now coupled a Domain model class (Restaurant.kt) to library dependencies,
such as GSON or Room. This means that our Domain model is coupled to the Data or
Model layer that is responsible for obtaining data.

According to Clean Architecture, the Domain model classes should reside inside the
Domain layer and be agnostic of any libraries tightly related to the way we retrieve
or cache data from several sources.

In other words, we need to make a separation between Domain models and Data
Transfer Objects (DTOs) by creating separate classes for both types. While Domain
models are plain Kotlin classes, DTOs are classes that contain both the fields needed for
a specific data operation, such as caching items to a local source, but also dependencies
such as library annotations.

With such a separation, the Domain model is now a business entity that doesn't care about
implementation details (such as libraries), so every time we might have to replace a library
(such as Retrofit or Room) with another library, we must only update the DTOs (hence,
the Model layer) and not classes within the Domain model.

Figure 8.4 – Separating Domain models from DTO models

266 Getting Started with Clean Architecture in Android

To achieve such a separation in our Restaurants app, we must split our Restaurant class
into three classes. We must do the following:

• Create two DTOs as data class classes that will be used for transferring data:

 � A RemoteRestaurant class that will contain the fields received from
the Web API. These fields will also be annotated with GSON serialization
annotations required by Retrofit to parse the response.

 � A LocalRestaurant class that will contain the fields and their
corresponding annotations required by Room to cache restaurants.

• Refactor the Restaurant data class to be a plain Kotlin data class, without any
third-party dependencies. This way, the Restaurant data class will be a proper
Domain model class, independent of the Model layer that is tightly coupled to
third-party libraries.

Let's begin!

1. Click on the application package, select New, and then Kotlin Class/File. Enter
RemoteRestaurant as the name, select Class, and add this code to define the
DTO for our remote source (Firebase remote database):

data class RemoteRestaurant(

 @SerializedName("r_id")

 val id: Int,

 @SerializedName("r_title")

 val title: String,

 @SerializedName("r_description")

 val description: String)

Inside this class, we have added all the fields received from the Web API, along with
their corresponding serialization fields. You can get these annotations and their
imports from the Restaurant class.

Another advantage of having a separate DTO class is that it now contains only the
necessary fields – for instance, unlike Restaurant, RemoteRestaurant no
longer contains an isFavorite field because we don't receive it from the REST
API of our Firebase Database.

Separating the Domain model from Data models 267

2. Click on the application package and create a new file called LocalRestaurant.
Add this code to define the DTO for our local source (Room local database):

@Entity(tableName = "restaurants")

data class LocalRestaurant(

 @PrimaryKey()

 @ColumnInfo(name = "r_id")

 val id: Int,

 @ColumnInfo(name = "r_title")

 val title: String,

 @ColumnInfo(name = "r_description")

 val description: String,

 @ColumnInfo(name = "is_favorite")

 val isFavorite: Boolean = false)

You can get the fields, annotations, and their imports from the Restaurant class.
3. Now, navigate to the Restaurant class. It's time to remove all its third-party

dependencies to Room and GSON and keep it as a simple Domain model class
containing the fields that define our restaurant entity. It should now look like this:

data class Restaurant(

 val id: Int,

 val title: String,

 val description: String,

 val isFavorite: Boolean = false)

Make sure to also remove any imports for the GSON and Room annotations.
4. Inside the RestaurantsDb class, update the entity used in Room to our newly

created LocalRestaurant, while also updating the schema version to 3, just to
be sure that Room will provide a fresh start:

@Database(

 entities = [LocalRestaurant::class],

 version = 3,

 exportSchema = false)

abstract class RestaurantsDb : RoomDatabase() {

 abstract val dao: RestaurantsDao

 …

}

268 Getting Started with Clean Architecture in Android

5. Rename the PartialRestaurant class to PartialLocalRestaurant to
better clarify that this class is used by our local data source, Room:

@Entity

class PartialLocalRestaurant(

@ColumnInfo(name = "r_id")

val id: Int,

@ColumnInfo(name = "is_favorite")

val isFavorite: Boolean)

6. Inside the RestaurantsDao interface, replace the Restaurant class usages
with LocalRestaurant, and the PartialRestaurant class usages with
PartialLocalRestaurant:

@Dao

interface RestaurantsDao {

 @Query("SELECT * FROM restaurants")

 suspend fun getAll(): List<LocalRestaurant>

 @Insert(onConflict = OnConflictStrategy.REPLACE)

 suspend fun addAll(restaurants:

 List<LocalRestaurant>)

 @Update(entity = LocalRestaurant::class)

 suspend fun update(partialRestaurant:

 PartialLocalRestaurant)

 @Update(entity = LocalRestaurant::class)

 suspend fun updateAll(partialRestaurants:

 List<PartialLocalRestaurant>)

 @Query("SELECT * FROM restaurants WHERE

 is_favorite = 1")

 suspend fun getAllFavorited(): List<LocalRestaurant>

}

Separating the Domain model from Data models 269

7. Inside RestaurantsRepository, navigate to the
toggleFavoriteRestaurant() method, and replace the
PartialRestaurant usage with PartialLocalRestaurant:

suspend fun toggleFavoriteRestaurant(

 …

) = withContext(Dispatchers.IO) {

 restaurantsDao.update(

 PartialLocalRestaurant(id = id, isFavorite = value)

)

}

8. Still inside RestaurantsRepository, navigate to the getRestaurants()
method, and map the LocalRestaurant objects (received by the
restaurantsDao.getAll() method call) to Restaurant objects:

suspend fun getRestaurants() : List<Restaurant> {

 return withContext(Dispatchers.IO) {

 return@withContext restaurantsDao.getAll().map {

 Restaurant(it.id, it.title,

 it.description, it.isFavorite)

 }

 }

}

We have mapped List<LocalRestaurant> to List<Restaurant> by using
the .map { } extension function. We did that by constructing and returning a
Restaurant object from LocalRestaurant, represented by the it implicit
variable name.

Note
Your Model layer (represented by the Repository here), should
only return Domain model objects to the Domain entity. In our case,
RestaurantsRepository should return Restaurant objects,
and not LocalRestaurants objects, simply because the Use Case
classes (so, the Domain layer) that use this Repository shouldn't have
any knowledge of DTO classes from the Model layer.

270 Getting Started with Clean Architecture in Android

9. Navigate to the RestaurantsApiService interface (the Retrofit interface) and
replace the usages of the Restaurant class with RemoteRestaurant:

interface RestaurantsApiService {

 @GET("restaurants.json")

 suspend fun getRestaurants(): List<RemoteRestaurant>

 @GET("restaurants.json?orderBy=\"r_id\"")

 suspend fun getRestaurant(…):

 Map<String, RemoteRestaurant>

}

10. Going back to RestaurantsRepository, navigate to the refreshCache()
method and map the remoteRestaurants list from Retrofit to
LocalRestaurant objects so that restaurantsDao can cache them:

private suspend fun refreshCache() {

 val remoteRestaurants = restInterface

 .getRestaurants()

 val favoriteRestaurants = restaurantsDao

 .getAllFavorited()

 restaurantsDao.addAll(remoteRestaurants.map {

 LocalRestaurant(

 it.id,

 it.title,

 it.description,

 false

)

 })

 restaurantsDao.updateAll(

 favoriteRestaurants.map {

 PartialLocalRestaurant(

 id = it.id,

 isFavorite = true

)

 })

}

Separating the Domain model from Data models 271

Additionally, make sure to update the usage of PartialRestaurant to
PartialLocalRestaurant in the restaurantsDao.updateAll()
method call.

11. Navigate to RestaurantsDetailsViewModel and, inside the
getRemoteRestaurant() method, map the RemoteRestaurant object
received from the Retrofit API to a Restaurant object by using the ?.let{ }
extension function:

private suspend fun getRemoteRestaurant(id: Int):
Restaurant {

 return withContext(Dispatchers.IO) {

 val response = restInterface.getRestaurant(id)

 return@withContext response.values.first().let {

 Restaurant(

 id = it.id,

 title = it.title,

 description = it.description

)

 }

 }

}

Remember that in the restaurant details screen, we don't have any business logic
or Use Cases, or even a Repository, so we have directly added a variable for
the Retrofit interface inside the ViewModel – and that's why we are mapping the
Domain model inside the ViewModel.

12. Build and run the app. The app should behave the same.

Let's now take a break from creating classes and let's organize our project a bit.

272 Getting Started with Clean Architecture in Android

Creating a package structure
Our Restaurants app has come a long way. As we tried to separate responsibilities and
concerns as much as possible, new classes emerged – quite a few actually.

If we have a look on the left of Android Studio, on the Project tab, we have an overview
of the classes we've defined in our project.

Figure 8.5 – Project structure without any package structuring strategy

It's clear that our project has no folder structure at all – all files and classes are tossed
around inside the restaurantsapp root package.

Creating a package structure 273

Note
The name of the root package might differ if you selected a different name for
your app.

Because we've opted to throw any new class inside the root package, it's difficult to have
clear visibility over the project. Our approach is similar to adding dozens of files and
assets on the desktop of our PC – in time, it becomes impossible to find anything on
the screen.

To alleviate this issue, we can opt for a packaging strategy for our project in which each
class belongs to a folder. A clear folder structure allows developers to have good visibility
and to gain valuable insight into the application's components, there by allowing easier
access and navigation through the project files.

The most common package organizing strategies are as follows:

• Organize packages by category or layer: For this strategy, each package
contains classes that are of the same type or belong to the same layer. The following
are examples:

 � A presentation package would contain all the files related to the
Presentation layer, regardless of the feature they belong to, such as all the files
with composables, and all the ViewModel classes.

 � Similarly, a data package would contain all files related to the Model layer,
regardless of the feature they belong to, such as repositories, Retrofit interfaces,
or Room DAO interfaces.

• Organize packages by feature: For this strategy, the root packages represent and
reflect a specific feature of the app. For example, a restaurants package would
contain all the classes related to the restaurants feature, from UI classes to
ViewModel classes, Use Cases, and repositories.

Both approaches have their pros and cons, but most notably, the package organization by
layer doesn't scale well if the app has a lot of features, as there is no way to differentiate
between classes from different features.

On the other hand, the package organization by feature can be problematic if, in each
feature package, all classes are thrown around without any distinct categorization.

274 Getting Started with Clean Architecture in Android

For our Restaurants app, we will use a mix of these two strategies. More specifically,
we will do the following:

• Keep RestaurantsApplication.kt inside the root package.

• Create a root package for the only feature our application has, named
restaurants. This package will contain the functionality for displaying both the
list of restaurants and the detail screen.

• Create sub-packages inside the restaurants package for each layer:

 � Presentation: For composables and ViewModel classes. Inside this
package, we can also break the screens that we have into separate packages:
list for the first screen with the list of restaurants, and details for the
second screen with the details of one restaurant. Additionally, we will keep the
MainActivity class inside the presentation package since it's the host
component for the UI.

 � Data: For classes within the Model layer. Here, we will not only add
RestaurantsRepository, but we'll also create two sub-packages
for the two different data sources: local (for caching classes such as
RestaurantsDao and LocalRestaurant), and remote (for classes
related to the remote source such as RestaurantsApiService and
RemoteRestaurant).

 � Domain: For business-related classes, the Use Case classes, and also the
Restaurant.kt Domain model class.

With this approach, if we were to add a new feature, maybe related to ordering (which
we could call ordering), the package structure would provide us with immediate
information about the features our application contains. When expanding a certain
feature package, we can expand the package of the layer we're interested in working with
and have a clear overview of the components we need to update or modify.

To achieve such a packaging structure, you will have to perform the following actions
a few times:

1. Create a new package. To do that, left-click on a certain existing package (such as
the restaurantsapp package), select New, then Package, and finally, enter the
name of the package.

2. Move an existing class into an existing package. To do that, simply drag the file and
drop it into the desired package.

Creating a package structure 275

In the end, the package structure that we described and that we want to achieve is
the following:

Figure 8.6 – Project structure after applying our package structuring strategy

276 Getting Started with Clean Architecture in Android

Keep in mind, however, that when moving the MainActivity.kt file from its initial
location to the presentation package, you might have to update the Manifest.xml
file to reference the new correct path to the MainActivity.kt file:

<manifest […]>

 […]

 <application

 […]

 <activity

 android:name=".restaurants.presentation.

 MainActivity"

 android:exported="true"

 android:label="@string/app_name"

 android:theme="@style/Theme.RestaurantsApp.

 NoActionBar">

 <intent-filter>

 […]

 </intent-filter>

 <intent-filter>

 […]

 </intent-filter>

 </activity>

 </application>

</manifest>

Some versions of Android Studio do that out of the box for you; however, if they don't,
you might end up with a nasty compilation error because the Manifest.xml file is no
longer detecting our Activity.

Now that we have refactored the structure of our project, we can say that the packages
structure provides us with immediate information about the features of the app (in our
case, there is only one feature related to restaurants) and also with a clear overview of the
components corresponding to a specific feature.

Note
The autogenerated files for Compose projects (Color.kt, Shape.kt,
Theme.kt, and Type.kt) were left inside the theme package that
resides inside the ui package. This is because theming should be consistent
across features.

Decoupling the Compose-based UI layer from ViewModel 277

Let's now move on to another way of improving the decoupling inside the UI layer
between the composables and the ViewModel.

Decoupling the Compose-based UI layer from
ViewModel
Our UI layer (represented by the composable functions) is tightly coupled to the
ViewModel. This is natural, since the screen composables instantiate their own
ViewModel to do the following:

• Obtain the UI state and consume it

• Pass events (such as clicking on a UI item) up to the ViewModel

As an example, we can see how the RestaurantsScreen() composable uses an
instance of RestaurantsViewModel:

@Composable

fun RestaurantsScreen(onItemClick: (id: Int) -> Unit) {

 val viewModel: RestaurantsViewModel = viewModel()

 val state = viewModel.state.value

 Box(…) { … }

}

The problem with our approach is that if we want to later test the UI layer, then, inside the
test, the RestaurantsScreen composable will instantiate RestaurantsViewModel,
which in turn will get data from Use Case classes, which in turn will trigger heavy I/O
work in RestaurantsRepository (like the network request to obtain the restaurants,
or the operation of saving them inside the local database).

When we have to test the UI, we should not care whether the ViewModel obtains the
data correctly and translates it into a proper UI state. The effect of separating concerns
is to facilitate testing a target class (or composable in this discussion) without having to
care about other layers doing their work.

Right now, our screen composables are tied to a library dependency, the ViewModel,
and it's ideal to decouple such dependencies as much as possible to promote reusability
and testability.

278 Getting Started with Clean Architecture in Android

In order to decouple the RestaurantsScreen() composable as much as possible from
its ViewModel, we will refactor it so that the following happens:

• It will no longer reference a ViewModel class (the RestaurantsViewModel
class).

• Instead, it will receive a RestaurantsScreenState object as a parameter.

• It will also define new function parameters to expose callbacks to its caller – we will
see who the caller is in a minute.

Note
By extracting the ViewModel instantiation from screen composables, such
as RestaurantsScreen(), we're promoting reusability in the sense that
we can much easier replace the ViewModel type that creates the state for this
composable. This approach also enables us to port the Compose-based UI layer
much easier to Kotlin Multiplatform (KMP) projects.

Let's begin!

1. Inside the RestaurantsScreen file, update the RestaurantsScreen()
composable by removing its viewModel and state variables, while also making
sure it receives a RestaurantsScreenState object as a state parameter and
an onFavoriteClick function:

@Composable

fun RestaurantsScreen(

 state: RestaurantsScreenState,

 onItemClick: (id: Int) -> Unit,

 onFavoriteClick: (id: Int, oldValue: Boolean) -> Unit

) {

 Box(…) {

 LazyColumn(…) {

 items(state.restaurants) { restaurant ->

 RestaurantItem(

 restaurant,

 onFavoriteClick = { id, oldValue ->

 onFavoriteClick(id, oldValue)

 },

 onItemClick = { id ->

 onItemClick(id)

Decoupling the Compose-based UI layer from ViewModel 279

 }

)

 }

 }

 […]

 }

}

Additionally, make sure to remove the viewModel.toggleFavorite() call
and instead, call the newly added onFavoriteClick() function inside the
RestaurantItem corresponding callback.

2. Since we changed the signature of the RestaurantsScreen() function, we
must also update the DefaultPreview() composable to correctly call the
RestaurantsScreen() composable:

@Preview(showBackground = true)

@Composable

fun DefaultPreview() {

 RestaurantsAppTheme {

 RestaurantsScreen(

 RestaurantsScreenState(listOf(), true),

 {},

 { _, _ -> }

)

 }

}

3. In the MainActivity class and inside the RestaurantsApp()
composable, make the destination composable for RestaurantsScreen()
responsible for wiring up the screen composable with its ViewModel, thereby
ensuring good communication between RestaurantsScreen() and
RestaurantsViewModel:

@Composable

private fun RestaurantsApp() {

 val navController = rememberNavController()

 NavHost(navController, startDestination =

 "restaurants") {

 composable(route = "restaurants") {

280 Getting Started with Clean Architecture in Android

 val viewModel: RestaurantsViewModel =

 viewModel()

 RestaurantsScreen(

 state = viewModel.state.value,

 onItemClick = { id ->

 navController

 .navigate("restaurants/$id")

 },

 onFavoriteClick = { id, oldValue ->

 viewModel.toggleFavorite(id, oldValue)

 })

 }

 composable(

 route = "restaurants/{restaurant_id}",

 […]) { RestaurantDetailsScreen() }

 }

With this approach, the destination composable() with the initial route
of "restaurants" is the composable that manages and wires up the
RestaurantsScreen() composable to its content by doing the following:

 � Instantiating RestaurantsViewModel

 � Getting and passing the state to RestaurantsScreen()

 � Handling the onItemClick() and onFavoriteClick() callbacks

4. Build and run the application. The app should behave the same.
5. You will notice that if you rebuild the project and navigate back to the

RestaurantsScreen() composable, the preview will now function correctly
because the RestaurantsScreen() composable is no longer tied to a
ViewModel, and so Compose can very easily preview its content.

Assignment
In this chapter, we have better decoupled the first screen of the app (the
RestaurantScreen() composable) from its ViewModel to promote
reusability and testability. As homework, you can practice doing the same for
the RestaurantDetailScreen() composable.

Summary 281

Summary
In this chapter, we have dipped our toes into Clean Architecture in Android. We started
by understanding a bit about what Clean Architecture means and some of the best ways
we can achieve this in our Restaurants app, while also covering the main benefits of
following such a software design philosophy.

We started with Clean Architecture in the first section, where we defined the Domain
layer with Use Cases, and continued refactoring in the second section, where we separated
the Domain model from Data models.

Then, we improved the architecture of the app by creating a package structure and by
decoupling the Compose-based UI layer from the ViewModel classes even further.

In the next chapter, we will continue our journey of improving the architecture of our
application by adopting dependency injection.

Further reading
Clean Architecture is a very complex subject, and one chapter is simply not enough to
cover it. However, one of the most important concepts that Clean Architecture brings is
the Dependency Rule. The Dependency Rule states that within a project, dependencies
can only point inward.

To understand what the Dependency Rule is about, let's visualize the layer dependencies
of our Restaurants app through a simplified version of concentric circles. Each concentric
circle represents different areas of software with their corresponding layer dependencies
(and libraries).

Figure 8.7 – The Dependency Rule with layers and components

282 Getting Started with Clean Architecture in Android

This representation dictates that implementation details should be placed in outer
circles (just as Compose is an implementation detail of the UI layer or Retrofit is an
implementation detail for the Data layer), while business policies (Use Cases from the
Domain layer) are placed within the inner circle.

The purpose of this representation is to enforce the Dependency Rule that states how
dependencies should only be pointing inward.

The Dependency Rule (expressed with the inward-pointing arrows) showcases
the following:

• The Presentation layer depends inward on the Domain layer (just like the
ViewModel classes in our app correctly depend on Use Case classes) and how the
Data layer should also depend inward on the Domain layer (in our app, Use Cases
depend on Repository classes, while it should be the other way around – more
on this in a second).

• The Domain layer should not depend on an outer layer – in our app, the Use Cases
depend on Repository classes, which violates the Dependency Rule.

The approach of having the Presentation and Data layers (that contain details of
implementation such as the Compose, Room, and Retrofit libraries) depend on the inner
Domain layer is beneficial because it allows us to effectively separate the business policies
(from within the inner circle, that is, the Domain layer) from outer layers. Outer layers
can frequently change their implementation and we don't want these changes to impact
the inner Domain layer.

In our Restaurants app though, the Domain layer depends on the Data layer because Use
Case classes depend on Repository classes. In other words, the Dependency Rule is
violated because the inner circle (the Domain layer) depends on an outer circle.

Further reading 283

To fix this, we could define an interface class for the Data layer (for the Repository
classes) and consider it part of the Domain layer (for now, by moving it inside the
domain package).

This way, the Use Cases depend on an interface defined within the Domain layer, so now,
the Domain layer has no outer dependencies. On the other hand, the Repository class
(the Data layer) implements an interface provided by the Domain layer, so the Data layer
(from the outer circle) now depends on the Domain layer (from the inner circle), thereby
correctly adhering to the Dependency Rule.

Note
Another way of separating concerns (or layers) and making sure to respect the
Dependency Rule is to modularize the app into layers, where each layer is
a Gradle module.

I encourage you to study more about the Dependency Rule in Robert C. Martin's
blog, while also checking out other strategies for achieving Clean Architecture:
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-
architecture.html.

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

9
Implementing

Dependency
Injection with

Jetpack Hilt
In this chapter, we're continuing our journey of improving the architectural design of the
Restaurants app. More precisely, we will be incorporating dependency injection (DI) in
our project.

In the first section, What is DI?, we will start by defining DI and understanding its basic
concepts, from what a dependency is, the types of dependencies, and what injection
represents, through to concepts such as dependency containers and manual injection.

Afterward, in the Why is DI needed? section, we will focus in more detail on the benefits
that DI brings to our projects.

In the last section, Implementing DI with Hilt, we will first understand how the Jetpack
Hilt DI library works, and how to use it, and finally, with its help, we will incorporate DI
in our Restaurants app.

286 Implementing Dependency Injection with Jetpack Hilt

To summarize, in this chapter we will be covering the following sections:

• What is DI?

• Why is DI needed?

• Implementing DI with Hilt

Before jumping in, let's set up the technical requirements for this chapter.

Technical requirements
Building Compose-based Android projects for this chapter would usually require your
day-to-day tools; however, to follow along smoothly, make sure you have the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds but note that IDE interface and other
generated code files might differ from the ones used throughout this book.

• Kotlin 1.6.10 or newer plugin installed in Android Studio

• The Restaurants app code from the previous chapter

The starting point for this chapter is represented by the Restaurants app developed
in the previous chapter. If you haven't followed the implementation from the
previous chapter, access the starting point for this chapter by navigating to the
Chapter_08 directory of the repository and importing the Android project
entitled chapter_8_restaurants_app.

To access the solution code for this chapter, navigate to the Chapter_09 directory:
https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_09/
chapter_9_restaurants_app.

What is DI?
In simple terms, DI represents the concept of providing the instances of the dependencies
that a class needs, instead of having it construct them itself. But, what are dependencies?

Dependencies are other classes that a certain class depends on. For example, an
ExampleViewModel class could contain a repository variable of type Repository:

class ExampleViewModel {

 private val repository: Repository = Repository()

 fun doSomething() {

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_09/chapter_9_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_09/chapter_9_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_09/chapter_9_restaurants_app

What is DI? 287

 repository.use()

 }

}

That's why ExampleViewModel depends on Repository, or Repository is
a dependency for ExampleViewModel. Most of the time, classes have many more
dependencies, but we'll stick with only one for the sake of simplicity. In this case, the
ExampleViewModel provides its own dependencies so it's very easy to create an
instance of it:

fun main() {

 val vm = ExampleViewModel()

 vm.doSomething()

}

Now, the previous example doesn't incorporate DI, mainly because ExampleViewModel
provides instances for its own dependencies. It does that by instantiating a Repository
instance (through the Repository() constructor) and by passing it to the
repository variable.

To incorporate DI, we must create a component that provides ExampleViewModel
with its dependencies:

object DependencyContainer {

 val repo: Repository = Repository()

}

The DependencyContainer class will act, as the name suggests, as a dependency
container, as it will provide instances for all the dependencies our classes need. When
a class needs an instance for its dependency, this container will provide it. This way,
we centralize the creation of the instances of dependencies so we can handle this process
(which can become elaborate for complex projects where each dependency has other
dependencies, for example) within a single place in our project.

Note
Apart from the DI technique, you can also use the service locator pattern to
construct classes. Unlike DI, if you try to follow the service locator pattern,
then the class that needs to be constructed will be responsible for creating its
own dependencies with the help of a ServiceLocator component. Both
DI and the service locator pattern are useful; however, we will only cover DI in
this chapter.

288 Implementing Dependency Injection with Jetpack Hilt

Getting back to incorporating DI, we then must allow DependencyContainer to
provide a Repository instance to ExampleViewModel:

class ExampleViewModel {

 private val repository: Repository =

 DependencyContainer.repo

 fun doSomething() {

 repository.use()

 }

}

This technique of having dependencies declared as variables (for example,
ExampleViewModel contains a repository variable) and then providing their
instances through a container is a form of DI called field injection.

There are several issues with this approach, mainly caused by the fact that we have
declared dependencies as field variables. The most notable ones are as follows:

• The ExampleViewModel class is tightly coupled to our
DependencyContainer and we cannot use the ViewModel without it.

• The dependencies are implicit, which means they are hidden from the outside
world. In other words, whoever is instantiating ExampleViewModel doesn't
know about the ViewModel class's dependencies or their creation.

This won't allow us to reuse the same ExampleViewModel with other
implementations of its dependencies (given its dependencies, such as
Repository, are interfaces that can be implemented by different classes).

• Since ExampleViewModel has hidden dependencies, it becomes hard for us to
test it. As we will instantiate the ExampleViewModel and put it under test, it will
create its own Repository instance that will probably make real I/O requests for
every test. We want our tests to be fast and reliable and not dependent on real
third-party APIs.

To alleviate these issues, we must first refactor ExampleViewModel to expose its
dependencies through its public API to the outside world. The most appropriate way to do
that is through its public constructor:

class ExampleViewModel constructor(private val repo:
Repository) {

 fun doSomething() { repo.use() }

}

What is DI? 289

Now, ExampleViewModel exposes its dependencies to the outside world through
its constructor, making those dependencies explicit. Yet, who's going to provide the
dependencies from outside?

When we need to instantiate ExampleViewModel, DependencyContainer will
provide it with the necessary dependencies from the outside:

fun main() {

 val repoDependency = DependencyContainer.repository

 val vm = ExampleViewModel(repoDependency)

 vm.doSomething()

}

In the previous example, instead of field injection, we have used constructor injection.
This is because we have provided and injected the dependencies to ExampleViewModel
from the outside world through its constructor.

As opposed to field injection, constructor injection allows us to do the following:

• Decouple our classes from the DI container, just like ExampleViewModel no
longer depends on DependencyContainer.

• The dependencies are exposed to the outside world, so we can reuse the same
ExampleViewModel with other implementations of Repository (given
Repository is an interface).

• The ExampleViewModel class can no longer decide which dependency
implementation to get and use as was the case with field injection, so we have now
inverted this responsibility from ExampleViewModel to the outside world.

• ExampleViewModel is easier to test, as we can easily pass a mock or a fake
Repository implementation (given Repository is an interface) that will
behave the way we're expecting it to in a test.

So far, with the help of a dependency container, we have incorporated DI by ourselves by
allowing DependencyContainer to provide instances of dependencies to our classes
(that is, an instance of ExampleViewModel). This technique is called manual DI.

290 Implementing Dependency Injection with Jetpack Hilt

Apart from manual DI, you can have DI done automatically through frameworks that
relieve you from the burden of the following:

• Providing instances of dependencies to the classes that need them. More specifically,
frameworks help you wire up complex object relationships for the required
dependencies, so you don't have to write boilerplate code to generate instances and
pass them to appropriate objects. This infrastructure code is often cumbersome for
large-sized apps, so a framework that automates that for you can be quite handy.

• Scoping dependencies to certain lifetime scopes, such as the Application
scope or Activity scope. For example, if you want a certain dependency to be a
singleton (to be scoped to the lifetime of the application), you must manually make
sure that only one instance is created in memory while also avoiding concurrency
issues due to concurrent access. A framework can do that for you behind the scenes.

In Android, a very simple DI library is Hilt, and we will explore it in the Implementing DI
with Hilt section. But until then, let's better understand why DI is needed in the first place.

Why is DI needed?
DI is not a must for all projects. Until now, our Restaurants app worked just fine without
any DI incorporated. Yet, while not including DI might not seem like a big issue, by
incorporating it you bring a lot of benefits to your project; the most notable advantages
are that you can do the following:

• Write less boilerplate code.

• Write testable classes.

Let's cover these two next.

Write less boilerplate code
Let's circle back to our Restaurants app, and let's have a look at how we instantiate the
Retrofit interface within the RestaurantsRepository class:

class RestaurantsRepository {

 private var restInterface: RestaurantsApiService =

 Retrofit.Builder()

 .addConverterFactory(

 GsonConverterFactory.create())

 .baseUrl("your_firebase_database_url")

Why is DI needed? 291

 .build()

 .create(RestaurantsApiService::class.java)

 [...]

}

Now, let's have a look at how we similarly instantiate the Retrofit interface within the
RestaurantsDetailsViewModel class:

class RestaurantDetailsViewModel(…): ViewModel() {

 private var restInterface: RestaurantsApiService

 [...]

 init {

 val retrofit: Retrofit = Retrofit.Builder()

 .addConverterFactory(GsonConverterFactory.create())

 .baseUrl("your_firebase_database_url")

 .build()

 restInterface = retrofit

 .create(RestaurantsApiService::class.java)

 [...]

 }

 [...]

}

While the code seems different, in essence, it's the same code needed to instantiate a
concrete instance of RestaurantsApiService. Unfortunately, we have duplicated
this instantiation code in two places, both in the RestaurantsRepository class and
in the RestaurantsDetailsViewModel class.

In medium to large-sized production apps, the relationship between objects is often much
more complex, making such infrastructure code plague every class, mostly because,
without any DI, every class builds the instances of the dependencies it needs. Such code
is often duplicated throughout the project and ultimately becomes difficult to manage.

DI will help us centralize this infrastructure code and will eliminate all the duplicated
code needed to provide instances of dependencies, wherever we need them throughout
the project.

292 Implementing Dependency Injection with Jetpack Hilt

Going back to our Restaurants app, if we were to use manual DI, all this instantiation
code could be extracted into a DependencyContainer class that would provide us
with a RestaurantsApiService instance wherever we need it, so we would have
no more duplicated code! Don't worry, we will incorporate DI soon, in the upcoming
Implementing DI with Hilt section.

Now that we touched upon how DI helps us with containing and organizing the
code related to building instances of classes, it's time to check out another essential
advantage of DI.

Write testable classes
Let's suppose that we want to test the behavior of RestaurantsRepository to
make sure that it performs as expected. But first, let's have a quick look at the existing
implementation of RestaurantsRepository:

class RestaurantsRepository {

 private var restInterface: RestaurantsApiService =

 Retrofit.Builder()

 .[...]

 .create(RestaurantsApiService::class.java)

 private var restaurantsDao = RestaurantsDb

 .getDaoInstance(

 RestaurantsApplication.getAppContext()

)

 suspend fun toggleFavoriteRestaurant(…) = {…}

 suspend fun getRestaurants(): List<Restaurant> {…}

 [...]

}

We can see that no DI is currently incorporated, as RestaurantsRepository has
two implicit dependencies: an instance of RestaurantsApiService and an instance
of RestaurantsDao. The RestaurantsRepository provides instances to its own
dependencies, first by constructing a Retrofit.Builder() object and creating the
concrete instance by calling .create(…).

Why is DI needed? 293

Now, let's say we want to test this RestaurantsRepository class, and make sure that
it behaves correctly by running different verifications. Let's imagine how such a test class
would look:

class RestaurantsRepositoryTest {

 @Test

 fun repository_worksCorrectly() {

 val repo = RestaurantsRepository()

 assertNotNull(repo)

 // Perform other verifications

 }

}

The previous test structure is simple: we created a RestaurantsRepository instance
by using its constructor and then we saved it inside a repo variable. We then asserted that
the instance of the Repository is not null, so we can proceed with testing its behavior.

This is optional, yet if you're trying to write the previous test class and follow this process,
make sure that the RestaurantsRepositoryTest class is placed inside the test
directory of the application:

Figure 9.1 – Placement of test classes in the project structure

294 Implementing Dependency Injection with Jetpack Hilt

Now, if we would to run this test, it will throw an exception before having the chance to
verify anything. The stack trace would look like this:

Figure 9.2 – Stack trace of running invalid test

This happens because we're trying to write a small test for RestaurantsRepository
but this class is not yet testable (in fact, we're trying to perform a Unit test – we will tackle
this in more detail in Chapter 10, Test Your App with UI and Unit Tests).

But, why is our simple test throwing UninitializedPropertyAccessException?

If we have a look at the stack trace, we can see that the crash is caused because our
test is trying to obtain the application context through getAppContext() from the
RestaurantsApplication class.

It makes sense because, if we have another look at RestaurantsRepository,
we can see that to obtain the restaurantsDao instance, the Repository calls
RestaurantsDb.getDaoInstance() that initializes the Room database, and it
needs an instance of Context to do that:

class RestaurantsRepository {

 […]

 private var restaurantsDao = RestaurantsDb

 .getDaoInstance(

 RestaurantsApplication.getAppContext()

)

 suspend fun toggleFavoriteRestaurant(…) = {…}

 suspend fun getRestaurants(): List<Restaurant> {…}

 [...]

}

Our small test shouldn't need a Context object, simply because it should neither try to
create a Room database nor to create a Retrofit client instance; it shouldn't even depend
on these concrete implementations. This is not efficient for small tests simply because such
operations are memory-expensive and will do nothing but slow down our tests.

Implementing DI with Hilt 295

Moreover, we don't want our small test (that should run with much ease and very fast,
several times in a short time frame) to make Room queries or, even worse, network
requests through Retrofit, simply because the tests are dependent on the external world
and so they become expensive and difficult to automate.

If, however, we would have had DI in place with constructor injection, we could have
created our own classes that fake the behavior, ultimately making our Repository
class easy to test and independent of concrete implementations that perform heavy I/O
operations. We'll cover more about tests and faking in Chapter 10, Test Your App with UI
and Unit Tests.

Going back to our app, we're not yet ready to write tests, because as you could see,
we're lacking DI in our project. Now that we've seen that, without DI, life is somehow
tough, let's learn how we can incorporate DI in the Restaurants app with the help of the
Hilt library!

Implementing DI with Hilt
DI libraries are often used to simplify and accelerate the incorporation of DI in our
projects, especially when the infrastructure code required by manual DI gets difficult to
manage in large projects.

Hilt is a DI library that is part of Jetpack, and it removes the unnecessary boilerplate
involved in manual dependency injection in Android apps by generating the code and the
infrastructure that you otherwise would have had to develop manually.

Note
Hilt is a DI library based on another popular DI framework called Dagger,
meaning that they are strongly related, so we will often refer to Hilt as Dagger
Hilt in this chapter. Due to the steep learning curve of the Dagger APIs, Hilt
was developed as an abstraction layer over Dagger to allow easier adoption of
automated DI in Android projects.

Dagger Hilt relies on annotation processors to automatically generate code at build
time, making it able to create and optimize the process of managing and providing
dependencies throughout your project. Because of that, its core concepts are strongly
connected to the use of annotations, so before we start adding and implementing Hilt in
our Restaurants app, we must first cover a few concepts to better understand how Dagger
Hilt works.

296 Implementing Dependency Injection with Jetpack Hilt

To summarize, in this section we will be doing the following:

• Understanding the basics of Dagger Hilt

• Setting up Hilt

• Using Hilt for DI

Let's begin!

Understanding the basics of Dagger Hilt
Let's analyze the three most important concepts and their corresponding annotations that
we're required to work with to enable automatic DI in our project:

• Injection

• Modules

• Components

Let's start with injection!

Injection
Dagger Hilt needs to know the type of instances we want it to provide us with. When
we discussed manual constructor injection, we initially wanted ExampleViewModel
to be injected wherever we needed it, and we used a DependencyContainer class
for that.

If we want Dagger Hilt to inject instances of a class somewhere, we must first declare
a variable of that type and annotate it with the @Inject annotation.

Let's say that inside the main() function used for the manual DI example, we no longer
want to use manual DI to get an instance of ExampleViewModel. Instead, we want
Dagger to instantiate this class. That's why we will annotate the ExampleViewModel
variable with the Java @Inject annotation and refrain from instantiating the
ViewModel class by ourselves. Dagger Hilt should do that for us now:

import javax.inject.Inject

@Inject

Implementing DI with Hilt 297

val vm: ExampleViewModel

fun main() {

 vm.doSomething()

}

Now, for Dagger Hilt to know how to provide us with an instance of the
ExampleViewModel class, we must also add the @Inject annotation to the
dependencies of ExampleViewModel so that Dagger knows how to instantiate the
ViewModel class.

Since the dependencies of ExampleViewModel are inside the constructor (from when
we used manual constructor injection), we can directly add the @Inject annotation
to constructor:

class ExampleViewModel @Inject constructor(private val repo:
Repository) {

 fun doSomething() { repo.use() }

}

Now, Dagger Hilt also needs to know how to inject the dependencies of
ExampleViewModel, more precisely the Repository class.

Let's consider that Repository has only one dependency, a Retrofit constructor
variable. For Dagger to know how to inject a Repository class, we must annotate its
constructor with @Inject as well:

class Repository @Inject constructor(val retrofit: Retrofit){

 fun use() { retrofit.baseUrl() }

}

Until now, we got away with @Inject annotations because we had access to the classes
and dependencies that we were trying to inject, but now, how can Dagger know how to
provide us with a Retrofit instance? We have no way of tapping inside the Retrofit
class and annotating its constructor with @Inject, since it's in an external library.

To instruct Dagger on how to provide us with specific dependencies, let's learn a bit
about modules!

298 Implementing Dependency Injection with Jetpack Hilt

Modules
Modules are classes annotated with @Module that allow us to instruct Dagger Hilt on
how to provide dependencies. For example, we need Dagger Hilt to provide us with
a Retrofit instance in our Repository, so we could define a DataModule class
that tells Dagger Hilt how to do so:

@Module

object DataModule {

 @Provides

 fun provideRetrofit(): Retrofit {

 return Retrofit.Builder().baseUrl("some_url").build()

 }

}

To tell the library how to provide us with a dependency, we must create a method inside
the @Module annotated class where we manually build that class instance.

Since we don't have access to the Retrofit class and we need it injected, we've created
a provideRetrofit() method (you can call it any way you want) annotated with the
@Provides annotation, and that returns a Retrofit object. Inside the method,
we manually created the Retrofit instance the way we needed it to be built.

Now, Dagger Hilt knows how to provide us with all the dependencies our
ExampleViewModel needs (its direct Repository dependency and Repository
Retrofit dependency). Yet, Dagger will complain that it needs a component class in
which the module we've created must be installed.

Let's have a brief look at components next!

Components
Components are interfaces that represent the container for a certain set of dependencies.
A component takes in modules and makes sure that the injection of its dependencies
happens with respect to a certain lifecycle.

For our example with the ExampleViewModel, Repository, and Retrofit
dependencies, let's say that we create a component that manages the creation for these
dependencies.

Implementing DI with Hilt 299

With Dagger Hilt, you can define a component with the @DefineComponent
annotation:

@DefineComponent()

interface MyCustomComponent(…) { /* component build code */ }

Afterward, we could install our DataModule in this component:

@Module

@InstallIn(MyCustomComponent::class)

object DataModule {

 @Provides

 fun provideRetrofit(): Retrofit { […] }

}

In practice though, the process of defining and building a component is more complex
than that. This is because a component must scope its dependencies to a certain lifetime
scope (such as the lifetime of the application) and have a pre-existent parent component.

Luckily, Hilt provides components for us out of the box. Such predefined components
allow us to install modules in them and to scope dependencies to their corresponding
lifetime scope.

Some of the most important predefined components are as follows:

• SingletonComponent: Allows us to scope dependencies to the lifetime of the
application, as singletons, by annotating them with the @Singleton annotation.
Every time a dependency annotated with @Singleton is requested, Dagger will
provide the same instance.

• ActivityComponent: Allows us to scope dependencies to the lifetime of
an Activity, with the @ActivityScoped annotation. If the Activity is
recreated, a new instance of the dependency will be provided.

• ActivityRetainedComponent: Allows us to scope dependencies to the
lifetime of an Activity, surpassing its recreation upon orientation change, with
the @ActivityRetainedScoped annotation. If the Activity is recreated
upon orientation change, the same instance of the dependency is provided.

• ViewModelComponent: Allows us to scope dependencies to the lifetime of a
ViewModel, with the @ViewModelScoped annotation.

300 Implementing Dependency Injection with Jetpack Hilt

As the lifetime scope of these components varies, this also translates into the fact that
each component derives its lifetime scope from each other, from the widest @Singleton
lifetime scope (of the application) to narrower scopes such as @ActivityScoped
(of an Activity):

Figure 9.3 – Simplified version of Dagger Hilt scope annotations and their corresponding components

While in our Restaurants app, we will mostly be using SingletonComponent and
its @Singleton scope annotation; it's important to note that Dagger Hilt exposes
a broader variety of predefined components and scopes. Check them out in the
documentation here: https://dagger.dev/hilt/components.html.

Now that we've briefly covered components, it's time to add Hilt to our Restaurants app!

Setting up Hilt
Before injecting dependencies with Hilt, we must first set up Hilt. Let's begin!

1. In the project-level build.gradle file, inside the dependencies block, add the
Hilt-Android Gradle dependency:

buildscript {

 ...

 dependencies {

https://dagger.dev/hilt/components.html

Implementing DI with Hilt 301

 ...

 classpath 'com.google.dagger:hilt-android-

 gradle-plugin:2.40.5'

 }

}

2. Moving inside the application-level build.gradle file, add the Dagger Hilt
plugin inside the plugins block:

plugins {

 […]

 id 'kotlin-kapt'

 id 'dagger.hilt.android.plugin'

}

3. Still inside the application-level build.gradle, inside the dependencies
block, add the Android-Hilt dependencies:

dependencies {

 […]

 implementation "com.google.dagger:hilt-

 android:2.40.5"

 kapt "com.google.dagger:hilt-compiler:2.40.5"

}

The kapt keyword stands for Kotlin Annotation Processor Tool and is required
by Dagger Hilt to generate code based on the annotations we will be using.

After updating the build.gradle files, make sure to sync your project with
its Gradle files. You can do that by pressing on the File menu option and then by
selecting Sync Project with Gradle Files.

4. Annotate the RestaurantsApplication class with the @HiltAndroidApp
annotation:

@HiltAndroidApp

class RestaurantsApplication: Application() { […] }

To make use of automated DI with Hilt, we must annotate our Application
class with the HiltAndroidApp annotation. This annotation allows Hilt to
generate DI-related boilerplate code, starting with the application-level
dependency container.

302 Implementing Dependency Injection with Jetpack Hilt

5. Build the project to trigger Hilt's code generation.
6. Optionally, if you want to check out the generated classes, first, expand the

Project tab on the left, and then expand the package for the generated code. These
classes are the proof that Hilt generates a lot of code behind the scenes so we can
incorporate DI much easier:

Figure 9.4 – Automatically generated classes by Hilt

Let's move on to the actual implementation!

Using Hilt for DI
In this sub-section, we will implement DI with Hilt for the first screen of our app where
the list of restaurants is displayed. In other words, we want to inject all the dependencies
that RestaurantsScreen() needs or depends on.

To have a starting point, let's have a look inside the RestaurantsApp() composable for
the RestaurantsScreen() destination and see what we have to inject first:

@Composable

private fun RestaurantsApp() {

 val navController = rememberNavController()

 NavHost(navController, startDestination = "restaurants") {

 composable(route = "restaurants") {

 val viewModel: RestaurantsViewModel = viewModel()

 RestaurantsScreen(state = viewModel.state.value, […])

 }

Implementing DI with Hilt 303

 composable(…) { RestaurantDetailsScreen() }

 }

}

It's clear that RestaurantsScreen() depends on RestaurantsViewModel to
obtain its state and consume it.

This means that we must first inject an instance of RestaurantsViewModel inside the
composable() destination where the RestaurantsScreen() resides:

1. Since we cannot add the @Inject annotation inside a composable function,
we must use a special composable function to inject a ViewModel. To do that, first,
add the hilt-navigation-compose dependency inside the dependencies
block of the app-level build.gradle file:

dependencies {

 […]

 implementation "com.google.dagger:hilt-

 android:2.40.5"

 kapt "com.google.dagger:hilt-compiler:2.40.5"

 implementation 'androidx.hilt:hilt-navigation-

 compose:1.0.0'

}

After updating the build.gradle file, make sure to sync your project with its
Gradle files. You can do that by pressing on the File menu option and then by
selecting Sync Project with Gradle Files.

2. Then, going back inside the RestaurantsApp() composable, in the DSL
composable() destination for our RestaurantsScreen() composable,
replace the viewModel() constructor of RestaurantsViewModel with the
hiltViewModel() composable:

@Composable

private fun RestaurantsApp() {

 val navController = rememberNavController()

 NavHost(navController, startDestination =

 "restaurants") {

 composable(route = "restaurants") {

 val viewModel: RestaurantsViewModel =

 hiltViewModel()

304 Implementing Dependency Injection with Jetpack Hilt

 RestaurantsScreen(…)

 }

 composable(…) { RestaurantDetailsScreen() }

 }

}

The hiltViewModel() function injects an instance of
RestaurantsViewModel scoped to the lifetime of the
RestaurantsScreen() navigation component destination.

3. Since now our composable hierarchy injects a ViewModel at some point with
the help of Hilt, we must annotate the Android component that is the host of
the RestaurantsApp() root composable with the @AndroidEntryPoint
annotation. In our case, the RestaurantsApp() composable is hosted by the
MainActivity class, so we must annotate it with the @AndroidEntryPoint
annotation:

@AndroidEntryPoint

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 RestaurantsAppTheme { RestaurantsApp() }

 }

 }

}

The @AndroidEntryPoint annotation generates another component for our
Activity with a lifetime narrower than the lifetime of the application. More
precisely, this component allows us to scope dependencies to the lifetime of our
Activity.

4. In the RestaurantsViewModel class, first refactor it to explicitly declare its
dependencies by moving them inside its constructor so that testability is promoted
through constructor injection:

class RestaurantsViewModel constructor(

 private val getRestaurantsUseCase:

 GetInitialRestaurantsUseCase,

 private val toggleRestaurantsUseCase:

 ToggleRestaurantUseCase

Implementing DI with Hilt 305

) : ViewModel() {

 private val _state = mutableStateOf(...)

 [...]

}

Notice that, while we extracted the two Use Case variables into the constructor,
we're no longer instantiating them – we will leave that to Hilt.

5. To get Hilt to inject RestaurantsViewModel for us, mark the ViewModel
with the @HiltViewModel annotation, while also annotating its constructor
with the @Inject annotation so that Hilt understands which dependencies of the
ViewModel must be provided:

@HiltViewModel

class RestaurantsViewModel @Inject constructor(

 private val getRestaurantsUseCase: […] ,

 private val toggleRestaurantsUseCase: […]) :

 ViewModel() {

 [...]

}

Now that our ViewModel is annotated with @HiltViewModel, instances of
RestaurantsViewModel will be provided by ViewModelComponent that
respects the lifecycle of a ViewModel (bound to the lifetime of the composable
destination while also surviving configuration changes).

6. Now that we instructed Hilt how to provide RestaurantsViewModel, we might
think we're done; yet, if we build the application, we will get this exception:

Figure 9.5 – Hilt compilation error
The issue lies in the fact that, while we instructed Hilt to inject
RestaurantsViewModel and its dependencies, we never made sure that
Hilt knows how to provide those dependencies: neither the
GetInitialRestaurantsUseCase dependency nor the
ToggleRestaurantsUseCase dependency.

In other words, if we want RestaurantsViewModel to be injected, we need to
make sure that its dependencies can be provided by Hilt, and their dependencies
too, and so on.

306 Implementing Dependency Injection with Jetpack Hilt

7. Let's first make sure that Hilt knows how to provide
GetInitialRestaurantsUseCase to RestaurantsViewModel. Inside
the GetInitialRestaurantsUseCase class, move its dependencies
inside the constructor and mark it with @Inject, just like we did with
RestaurantsViewModel:

class GetInitialRestaurantsUseCase @Inject constructor(

 private val repository: RestaurantsRepository,

 private val getSortedRestaurantsUseCase:

 GetSortedRestaurantsUseCase) {

 suspend operator fun invoke(): List<Restaurant> { … }

}

After you add the repository and getSortedRestaurantsUseCase
variables inside the constructor, remember to remove the old member variables
as well as their instantiation code from the body of
GetInitialRestaurantsUseCase.

Note that we aren't annotating the GetInitialRestaurantsUseCase class
with any Hilt scope annotations, simply because we don't want it to be tied to
a certain lifetime scope.

Now, Hilt knows how to inject the GetInitialRestaurantsUseCase
class, yet we must also instruct Hilt how to provide its dependencies as well:
RestaurantsRepository and GetSortedRestaurantsUseCase.

We need to make sure that Hilt knows how to provide instances of
RestaurantsRepository. We can see that its dependencies are
RestaurantsApiService (the Retrofit interface) and RestaurantsDao
(the Room Data Access Object interface):

class RestaurantsRepository {

 private var restInterface: RestaurantsApiService =

 Retrofit.Builder()

 […]

 .create(RestaurantsApiService::class.java)

 private var restaurantsDao = RestaurantsDb

 .getDaoInstance(

 RestaurantsApplication.getAppContext()

Implementing DI with Hilt 307

)

 […]

}

The issue here is that once we place these dependencies inside the constructor and
inject them, Hilt will have no idea how to provide them – simply because we cannot
tap into the internal workings of Room or Retrofit and inject their dependencies
too, like we did with RestaurantsViewModel,
GetInitialRestaurantsUseCase, and now with
RestaurantsRepository.

For Hilt to know how to provide dependencies out of our reach, we must create
a module class where we will instruct Hilt on how to provide us with instances of
RestaurantsApiService and RestaurantsDao:

8. Expand the restaurants package, then right click on the data package, and
create a new package called di (short for dependency injection). Inside this
package, create a new object class called RestaurantsModule and add the
following code inside:

@Module

@InstallIn(SingletonComponent::class)

object RestaurantsModule { }

RestaurantsModule will allow us to instruct Hilt on how to provide Room and
Retrofit dependencies to RestaurantsRepository. Since this is a Hilt module,
we have done the following:

 � Annotated it with @Module so that Hilt recognizes it as a module that provides
instances of dependencies.

 � Annotated it with @InstallIn() and passed the predefined
SingletonComponent component provided by Hilt. Since our module
is installed in this component, the dependencies that are contained can be
provided anywhere throughout the application since SingletonComponent
is an application-level dependency container.

9. Next up, inside RestaurantsModule, we need to tell Hilt how to provide
our dependencies, so we will start with RestaurantsDao. For us to obtain an
instance to RestaurantsDao, we must first instruct Hilt on how to instantiate
a RestaurantsDb class.

308 Implementing Dependency Injection with Jetpack Hilt

Add a provideRoomDatabase method annotated with @Provides that will
instruct Hilt how to provide an RestaurantsDb object by borrowing part of the
instantiation code of the database class from the companion object of the
RestaurantsDb class:

@Module

@InstallIn(SingletonComponent::class)

object RestaurantsModule {

 @Singleton

 @Provides

 fun provideRoomDatabase(

 @ApplicationContext appContext: Context

): RestaurantsDb {

 return Room.databaseBuilder(

 appContext,

 RestaurantsDb::class.java,

 "restaurants_database"

).fallbackToDestructiveMigration().build()

 }

}

First off, we've annotated the provideRoomDatabase() method with the
@Singleton instance so that Hilt will create only one instance of
RestaurantsDb for the whole application, allowing us to save memory.

Then, we can see that the provideRoomDatabase() method builds
a RestaurantsDb instance, yet for this to work, we needed to provide the
application-wide context to the Room.databaseBuilder() method.
To achieve this, we have passed a Context object as a parameter of
provideRoomDatabase() and annotated it with @ApplicationContext.

To understand how Hilt provides us with the application Context object, we must
first note that each Hilt container comes with a set of default bindings that we can
inject as dependencies. The SingletonComponent container provides us
with the application-wide Context object wherever we need it by defining the
@ApplicationContext annotation.

Implementing DI with Hilt 309

10. Now that Hilt knows to provide us with RestaurantsDb, we can create another
@Provides method that takes in a RestaurantsDb variable (which Hilt will
now know how to provide) and return a RestaurantsDao instance:

@Module

@InstallIn(SingletonComponent::class)

object RestaurantsModule {

 @Provides

 fun provideRoomDao(database: RestaurantsDb):

 RestaurantsDao {

 return database.dao

 }

 @Singleton

 @Provides

 fun provideRoomDatabase(

 @ApplicationContext appContext: Context

): RestaurantsDb { ... }

}

11. Still inside RestaurantsModule, we now have to tell Hilt how to provide us
with an instance of RestaurantsApiService. Do the same as before, but this
time add a @Provides method for an instance of Retrofit, and one for an
instance of RestaurantsApiService. Now, RestaurantsModule should
look like this:

@Module

@InstallIn(SingletonComponent::class)

object RestaurantsModule {

 @Provides

 fun provideRoomDao(database: RestaurantsDb): […] {

 return database.dao

 }

 @Singleton

 @Provides

 fun provideRoomDatabase(@ApplicationContext

 appContext: Context): RestaurantsDb { [...] }

 @Singleton

 @Provides

310 Implementing Dependency Injection with Jetpack Hilt

 fun provideRetrofit(): Retrofit {

 return Retrofit.Builder()

 .addConverterFactory([…])

 .baseUrl("[…]")

 .build()

 }

 @Provides

 fun provideRetrofitApi(retrofit: Retrofit):

 RestaurantsApiService {

 return retrofit

 .create(RestaurantsApiService::class.java)

 }

}

Remember that all this instantiation code resides in RestaurantsRepository,
so you can get it from there.

12. Now that Hilt knows how to provide both dependencies of
RestaurantsRepository, head back in the RestaurantsRepository
class and apply constructor injection with Hilt by adding the @Inject
annotation to the constructor while moving its RestaurantsApiService
and RestaurantsDao dependencies inside the constructor:

@Singleton

class RestaurantsRepository @Inject constructor(

 private val restInterface: RestaurantsApiService,

 private val restaurantsDao: RestaurantsDao

) {

 suspend fun toggleFavoriteRestaurant(…) = […]

 […]

 }

Usually, Repository classes have a static instance so that only one instance is
re-used throughout the app. This is useful when different data is stored in memory
globally in Repository classes (be cautious with system-initiated process death
because that will wipe anything in memory!).

Implementing DI with Hilt 311

Finally, to have only one instance of RestaurantsRepository that can
then be reused across the app, we have annotated the class with the @Singleton
annotation. This annotation is provided by the Hilt SingletonComponent
container and allows us to scope instances of classes to the lifetime of
the application.

13. Now that Hilt knows how to inject RestaurantsRepository, let's get back to
the other remaining dependency of GetInitialRestaurantsUseCase: the
GetSortedRestaurantsUseCase class. Head inside this class and make sure to
inject its dependencies by moving the repository variable inside the constructor
as we did before with other classes:

class GetSortedRestaurantsUseCase @Inject constructor(

 private val repository: RestaurantsRepository

) {

 suspend operator fun invoke(): List<Restaurant> {

 return repository.getRestaurants()

 .sortedBy { it.title }

 }

}

While we have annotated RestaurantsRepository with a scope annotation,
we haven't added any scope annotation for this Use Case class simply because
we don't want the instance to be preserved across a specific lifetime.

Now, we have instructed Hilt how to provide all the dependencies
for the first dependency of RestaurantsViewModel, which is
GetInitialRestaurantsUseCase!

14. Next up, let's tell Hilt how to provide the dependencies for the second and last
dependency of RestaurantsViewModel, the ToggleRestaurantUseCase
class. Head inside this class and make sure to inject its dependencies by moving
the repository and getSortedRestaurantsUseCase variables inside the
constructor as we did before with other classes:

class ToggleRestaurantUseCase @Inject constructor(

 private val repository: RestaurantsRepository,

 private val getSortedRestaurantsUseCase:

 GetSortedRestaurantsUseCase

) {

 suspend operator fun invoke(id: Int, oldValue:

 Boolean): List<Restaurant> {

312 Implementing Dependency Injection with Jetpack Hilt

 val newFav = oldValue.not()

 repository.toggleFavoriteRestaurant(id, newFav)

 return getSortedRestaurantsUseCase()

 }

}

15. Optionally, you can head inside the RestaurantsDb class and delete the entire
companion object that was in charge of providing a singleton instance for our
RestaurantsDao. The RestaurantsDb class should now be much slimmer and
look like this:

@Database(

 entities = [LocalRestaurant::class],

 version = 3,

 exportSchema = false

)

abstract class RestaurantsDb : RoomDatabase() {

 abstract val dao: RestaurantsDao

}

It's safe to delete this instantiation code because from now on, Hilt will do that for
us out of the box.

16. Also, if you followed the previous step of cleaning up the RestaurantsDb class,
inside RestaurantsApplication, you can also remove all the logic inside this
class that was related to obtaining the application-wide Context object. From now
on, Hilt will do that for us out of the box.

The RestaurantsApplication class should be much slimmer and look
like this:

@HiltAndroidApp

class RestaurantsApplication: Application()

17. Build and run the application. Now, the build should be successful because Hilt is in
charge of providing the dependencies that we required it to provide.

With the help of DI, we have now promoted testability while also extracting the
boilerplate associated with building class instances.

Summary 313

Assignment
We have integrated DI with Hilt for the first screen of
RestaurantsApplication. However, the project is still not
incorporating DI entirely because the second destination of our app
(represented by the RestaurantDetailsScreen() composable) has
neither its RestaurantDetailsViewModel injected nor this
ViewModel class's dependencies injected. As a take-home assignment,
incorporate DI in this second screen. This will allow you to get rid
of the redundant Retrofit client instantiation inside
RestaurantDetailsViewModel – remember that you can now inject
a RestaurantsApiService instance directly with Hilt!

Summary
In this chapter, we improved the architecture of the Restaurants App by incorporating DI.

We discussed what DI is and covered its basic concepts: dependency with its implicit or
explicit types, injection, dependency containers, and manual injection.

We then examined the main benefits that DI brings to our projects: testable classes and
less boilerplate code.

Finally, we covered how DI frameworks can help us with the injection of dependencies,
and explored the Jetpack Hilt library as a viable solution for DI on Android. Afterward,
we practiced what we learned as we incorporated DI with Hilt in our Restaurants app.

Since we incorporated DI, it's a bit clearer that our classes can be easily tested, so it's time
we start writing some tests in the next chapter!

Further reading
Knowing how to work with the basics of Hilt is usually enough for most projects.
However, sometimes you might need to use more advanced features of Hilt or Dagger.
To learn more about Dagger and how the framework automatically creates the
dependencies for you by building a dependency graph, check this article: https://
medium.com/android-news/dagger-2-part-i-basic-principles-
graph-dependencies-scopes-3dfd032ccd82.

https://medium.com/android-news/dagger-2-part-i-basic-principles-graph-dependencies-scopes-3dfd032ccd82
https://medium.com/android-news/dagger-2-part-i-basic-principles-graph-dependencies-scopes-3dfd032ccd82
https://medium.com/android-news/dagger-2-part-i-basic-principles-graph-dependencies-scopes-3dfd032ccd82

314 Implementing Dependency Injection with Jetpack Hilt

On the same note, apart from the @Singleton scope that was the most used scope
throughout our app, Dagger Hilt exposes a broader variety of predefined components and
scopes that allow you to scope different classes to various lifecycles. Check out more about
components and their scopes in the official documentation: https://dagger.dev/
hilt/components.html.

Leaving components and their scopes aside, in some projects, you might need to
allow injection of dependencies in other Android classes than Activity. To see
which Android classes can be annotated with @AndroidEntryPoint, check out the
documentation: https://dagger.dev/hilt/android-entry-point.

https://dagger.dev/hilt/components.html
https://dagger.dev/hilt/components.html

10
Test Your App with

UI and Unit Tests
In the previous chapters, one of our main focuses was to have a testable architecture. We
tried to achieve that by decoupling different components from each other.

In this chapter, because of the architecture we put in place, we will see how easy it is to test
in isolation different parts of the Restaurants app.

In the Exploring the fundamentals of testing section, we will be understanding the benefits
of testing and exploring various types of tests. In the Learning the basics of testing your
Compose UI section, we will learn how to test our Compose UI.

Finally, in the Covering the basics of unit-testing your core logic section, we will learn how
to test the core functionality of your Restaurants app.

To summarize, in this chapter we will be covering the following sections:

• Exploring the fundamentals of testing

• Learning the basics of testing your Compose UI

• Covering the basics of unit-testing your core logic

Before jumping in, let's set up the technical requirements for this chapter.

316 Test Your App with UI and Unit Tests

Technical requirements
Building Compose-based Android projects for this chapter usually requires your
day-to-day tools. However, to follow along smoothly, make sure you also have the
following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds but note that the IDE interface and
other generated code files might differ from the ones used throughout this book.

• The Kotlin 1.6.10 or newer plugin installed in Android Studio.

• The Restaurants app code from the previous chapter.

The starting point for this chapter is represented by the Restaurants app developed
in the previous chapter. If you haven't followed the implementation from the
previous chapter, access the starting point for this chapter by navigating to the
Chapter_09 directory of the repository and import the Android project
entitled chapter_9_restaurants_app.

To access the solution code for this chapter, navigate to the Chapter_10 directory:
https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_10/
chapter_10_restaurants_app

Exploring the fundamentals of testing
In this section, we will briefly cover the basics of testing. More precisely, we will be doing
the following:

• Understanding the benefits of testing

• Exploring the types of tests

Let's start with the benefits of testing!

Understanding the benefits of testing
Testing our code is essential. Through tests, we ensure that our app's functional behavior
is correct and as expected, while also making sure that it's usable, just as it was designed.
By performing tests, we can release stable and functional apps to end users.

More importantly, if we develop an app and then test it consistently, we ensure that new
updates with new functionality won't break the existing functionality, and no bugs will
arise. This is often referred to as regression testing.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_10/chapter_10_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_10/chapter_10_restaurants_app
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_10/chapter_10_restaurants_app

Exploring the fundamentals of testing 317

You can test your app manually by navigating through it on your device or emulator and
making sure that every piece of data is displayed correctly, while also being able to interact
correctly with every UI component.

However, manual testing is neither efficient nor fast. With manual testing, you must
traverse every user flow, generate every user interaction, and verify the integrity of data
displayed at any moment. Also, you must do this, consistently, on every application
update. Moreover, manual testing scales poorly, as with every new update that contains a
new functionality, the manual workload of testing the entire application increases.

Over time, manual testing becomes a burden for medium- and large-sized applications.
Also, manual testing involves a human tester, which generates a human factor – this
basically means that a tester may or may not in some circumstances overlook some bugs.

To alleviate these issues, in this chapter, we will be writing automated tests. Practically,
we will define some scripted tests and then allow tools to run them, automatically.
This approach is faster, consistent, and more efficient, as it scales better with the size of
the project.

In other words, we will write other chunks of code that will test the code of our
application. While this might sound weird, the approach of having automated tests is
much more productive and reliable, and less time-consuming than manual testing.

Next up, let's cover the different types of tests that we can write.

Exploring types of tests
To better understand how to write tests, we must first decide what exactly can be tested in
our apps. From this perspective, let's cover the most important types of tests:

• Functional tests: Is the app doing what is expected? We already touched upon
functional tests and their benefits in the Understanding the benefits of testing section.

• Compatibility tests: Is the app working correctly on all devices and Android API
levels? The Android ecosystem makes this particularly difficult if you consider the
variety of devices and manufacturers.

• Performance tests: Is the app fast or efficient enough? Sometimes, apps can suffer
from bottlenecks and UI stutters that can be identified via performance benchmarks.

• Accessibility tests: Is the app working well with accessibility services? Such services
are used to assist users with disabilities in using our Android application.

In this chapter, we will be mainly focusing on functional tests in an attempt to ensure the
functional integrity of our application.

318 Test Your App with UI and Unit Tests

Now, apart from deciding what has to be tested, we must also think about the scope or
size of the tests. The scope indicates the size of the app's portion we're testing. From the
perspective of the scope of the tests, we have the following:

• Unit tests: Often referred to as small tests, these test the functional behavior of
methods, classes, or groups of classes in an isolated environment. Usually, unit
tests target small portions of the app without interacting with the real-world
environment; hence, they are more reliable than tests that depend on external input.

• Integration tests: Often referred to as medium tests, these test whether multiple
units interact and function correctly together.

• End-to-end tests: Often referred to as big tests, these test large portions of the
application, from multiple screens to entire user flows.

Depending on the size of the tests, each type has a degree of isolation. The degree of
isolation is tightly related to the scope of the tests, as it measures how dependent the
component we're testing is on other components. As the size of the test increases, from
small to big, the isolation level of the tests decreases.

In this chapter, we will be mainly focusing on unit tests, as they are fast, with the simplest
setup, and most reliable in helping us validate the functionality of our application.
These traits are tightly related to the higher isolation level of unit tests from external
components.

Lastly, we must also classify tests based on the system they will be running on:

• Local tests: Run on your workstation or development system (used in practices
such as Continuous Integration (CI)) without the need of an Android device or
emulator. They are usually small and fast, isolating the component under test from
the rest of the application. Most of the time, unit tests are local tests.

• Instrumented tests: Run on an Android device, be it a physical device or emulator.
Most of the time, UI tests are considered instrumented tests, since they allow the
automated testing of an application on an Android device.

In this chapter, our unit tests will be local when we will be testing the core logic of some
components in isolation and instrumented when we will be performing UI unit tests for a
specific screen in isolation.

Let's proceed with local UI tests first!

Learning the basics of testing your Compose UI 319

Learning the basics of testing your
Compose UI
UI tests allow us to evaluate the behavior of our Compose code against what is expected to
be correct. This way, we can catch bugs early in our UI development process.

To test our UI, we must first decide what we are aiming to evaluate. To keep it simple, in
this section, we will unit-test our UI in an isolated environment. In other words, we want
to test the following:

• That our composable screens consume the received state as expected. We want
to make sure that the UI correctly represents the different state values that it can
receive.

• For our composable screens, that user-generated events are correctly forwarded to
the caller of the composable.

To keep our tests simple, we will define these tests as unit tests and try to isolate screen
composables from their ViewModel or from other screen composables; otherwise, our
test will become an integration or an end-to-end test.

In other words, we will test separately each screen, with total disregard of anything outside
of their composable function definition. Even though our tests will run on an Android
device, they will be testing only one unit – a screen composable.

Note
Some UI tests can also be considered unit tests, as long as they are testing only
one part of the UI of your application, as we will do in this section.

For starters, we need to test the first screen of our application, represented by the
RestaurantsScreen() composable. Let's begin!

1. First, add the following testing dependencies inside the dependencies block of
the app-level build.gradle file:

dependencies {

 […]

 androidTestImplementation "androidx.compose.ui:ui-

 test-junit4:$compose_version"

 debugImplementation "androidx.compose.ui:ui-test-

 manifest:$compose_version"

}

320 Test Your App with UI and Unit Tests

These dependencies will allow us to run our Compose UI tests on an Android device.

After updating the build.gradle file, make sure to sync your project with its
Gradle files. You can do that by pressing on the File menu option and then by
selecting Sync Project with Gradle Files.

2. Before creating a test class, locate the androidTest package that is suited for
instrumented tests:

Figure 10.1 – Observing the androidTest package for UI tests
In Android projects, this directory stores source files for UI tests. Also note that the
pre-built ExampleInstrumentedTest class resides in this directory.

3. Create an empty Kotlin class named RestaurantsScreenTest inside the
androidTest package.

Inside this class, we will define a method for each independent test. Behind the
scenes, every method will become a standalone UI test that can pass or fail.

4. Before creating our first test method, inside the RestaurantsScreenTest class,
add the following code:

import androidx.compose.ui.test.junit4.*

import org.junit.Rule

class RestaurantsScreenTest {

 @get:Rule

 val testRule: ComposeContentTestRule =

 createComposeRule()

}

Learning the basics of testing your Compose UI 321

To run our Compose UI tests, we are using the JUnit testing framework that will
allow us to write repeatable unit tests in an isolated environment with the help of a
test rule. Test rules allow us to add functionality to all the tests within a test class.

In our case, we need to test Compose UI in every test method, so we had
to use a special ComposeContentTestRule object. To access this rule,
we have previously imported a special JUnit rule dependency so that our
test class now defines a testRule variable and instantiates it by using the
createComposeRule() method.

ComposeContentTestRule will not only allow us to set the Compose UI under
test but also host tests on an Android device, while also giving us the ability to
interact with the composables under test or perform UI assertions.

Before writing our first test method though, we need to clearly understand what
behavior we are trying to test.

Let's have a look at how our RestaurantsScreen() composable consumes a
RestaurantsScreenState instance from its state parameter, and how it
forwards events to its caller through the onItemClick and onFavoriteClick
function parameters:

@Composable

fun RestaurantsScreen(

 state: RestaurantsScreenState,

 onItemClick: (id: Int) -> Unit,

 onFavoriteClick: (id: Int, oldValue: Boolean) -> Unit

) {

 Box(…) {

 LazyColumn(…) {

 items(state.restaurants) { restaurant ->

 RestaurantItem(restaurant,

 onFavoriteClick = { id, oldValue ->

 onFavoriteClick(id, oldValue) },

 onItemClick = { id ->

 onItemClick (id) })

 }

 }

 if(state.isLoading)

 CircularProgressIndicator()

 if(state.error != null)

322 Test Your App with UI and Unit Tests

 Text(state.error)

 }

}

By looking at the previous snippet, we see that we can test how the onItemClick
and onFavoriteClick functions are called, based on different UI interactions,
and also that we can test whether the state is consumed correctly or not. Yet we can't
infer very well the possible values of the state that our composable is receiving.

To get an overview of the possible states that we want to feed into our
RestaurantsScreen() so that we can test its behavior, we need to have a look
at its state producer, RestaurantsViewModel:

class RestaurantsViewModel @Inject constructor(…) :
ViewModel() {

 private val _state = mutableStateOf(

 RestaurantsScreenState(

 restaurants = listOf(),

 isLoading = true

)

)

 […]

 private val errorHandler = CoroutineExceptionHandler

 { ... ->

 exception.printStackTrace()

 _state.value = _state.value.copy(

 error = exception.message,

 isLoading = false)

 }

 init { getRestaurants() }

 fun toggleFavorite(itemId: Int, oldValue: Boolean) {

 […]

 }

 private fun getRestaurants() {

 viewModelScope.launch(errorHandler) {

 val restaurants = getRestaurantsUseCase()

 _state.value = _state.value.copy(

 restaurants = restaurants,

 isLoading = false)

Learning the basics of testing your Compose UI 323

 }

 }

}

We can say that our screen should have three possible states:

 � Initial loading state: At this point, we're waiting for restaurants, thus
rendering a loading status. You can see this initial state declared at the top
of the ViewModel class in the initialization of the _state variable, where
the restaurants parameter of RestaurantsScreenState is set to
emptyList() and the isLoading parameter is set to true.

 � State with content: The restaurants have arrived, so we reset the loading status
and render them. You can see how this state is created inside the coroutine
launched in the getRestaurants() method where we mutated the initial
state and set the isLoading parameter to false, while also passing the list of
restaurants to the restaurants parameter.

 � Error state: Something went wrong when the app tried to fetch its content
– that is, restaurants. You can see how this state is created inside the block of
code exposed by CoroutineExceptionHandler where the isLoading
parameter is set to false to reset the loading status, while also passing the
message of Exception to the error parameter.

Now that we know what behavior the RestaurantsScreen composable should
exhibit and what input we should pass to it in order to produce such a behavior, it's
time to actually put our composable screen under test.

Let's begin by verifying whether the RestaurantsScreen composable correctly
renders the first state – that is, the initial loading state.

5. Inside the RestaurantsScreenTest class, add an empty test function
named initialState_isRendered() that will later test whether our
RestaurantsScreen() composable properly renders the initial state:

class RestaurantsScreenTest {

 @get:Rule

 val testRule: ComposeContentTestRule =

 createComposeRule()

 @Test

 fun initialState_isRendered() { }

}

324 Test Your App with UI and Unit Tests

To tell the JUnit testing library to run an individual test for this method, we've
annotated it with the @Test annotation.

Also, note that we named this method around the specific behavior it's trying to
test, going from what we're testing (the initial state) to how it's supposed to behave
(to be rendered correctly), while separating these two with an underscore. For unit
tests, there are a lot of naming conventions, yet we will try to stick to the simple
version mentioned before.

Note
Each test method annotated with @Test should focus on only one specific
behavior, just as initialState_isRendered() will test whether the
RestaurantsScreen() properly renders the initial state, and no other
pieces. This allows us to focus on only one behavior on each test method so
that we can better identify later which specific behavior is no longer working
as expected.

6. Prepare the initialState_isRendered() method to set the Compose UI by
calling testRule.setContent(), just as our MainActivity did with its own
setContent() method:

 @Test

 fun initialState_isRendered() {

 testRule.setContent { }

 }

7. Inside the block of code exposed by the setContent() method, we must pass the
unit under test, which is nothing else than the composable we're trying to test.

In our case, we will pass the RestaurantsScreen() composable, not before
wrapping it inside the RestaurantsAppTheme() theme function so that the
Compose UI that is under test mimics what our app is actually displaying in the
production code:

@Test

fun initialState_isRendered() {

 testRule.setContent {

 RestaurantsAppTheme {

 RestaurantsScreen()

 }

 }

}

Learning the basics of testing your Compose UI 325

If you have named your app name differently, then the theme composable might
have a different definition.

8. Now, the RestaurantsScreen() composable is expecting a
RestaurantsScreenState object into its state parameter and two functions
for its onFavoriteClick() and onItemClick() parameters. Let's add these
while also passing the expected initial state from the screen's ViewModel:

 @Test

 fun initialState_isRendered() {

 testRule.setContent {

 RestaurantsAppTheme {

 RestaurantsScreen(

 state = RestaurantsScreenState(

 restaurants = emptyList(),

 isLoading = true),

 onFavoriteClick =

 { _: Int, _: Boolean -> },

 onItemClick = { })

 }

 }

 }

Since we're looking to test whether RestaurantsScreen() is
correctly rendering the initial state, we have passed an instance of
RestaurantsScreenState that had the restaurants parameter set to
emptyList(), and the isLoading parameter is set to true while the error
parameter is by default set to null.

We have now finished setting up the RestaurantsScreen() composable and
fed it with the expected initial state. It's time to perform the assertion of whether
our composable is correctly consuming this initial state or not.

In the RestaurantsScreen() composable, the initial state is a state mainly
defined by the loading indicator that expresses how the app is waiting for content:

@Composable

fun RestaurantsScreen(…) {

 Box(…) {

 LazyColumn(…) {…}

 if(state.isLoading)

326 Test Your App with UI and Unit Tests

 CircularProgressIndicator()

 if(state.error != null)

 Text(state.error)

 }

}

That's why we can check whether the CircularProgressIndicator() is
visible on the screen. But how can we assert whether this composable is visible
or not?

Compose provides us with several testing APIs to help us find elements, verify their
attributes, and even perform user actions. For UI tests with Compose, we consider
pieces of UI as nodes that we can identify with the help of semantics. Semantics
give meaning to a UI element, and for an entire composable hierarchy, a semantics
tree is generated to describe it.

In other words, we should be able to identify anything that is described on the
screen with the help of its exposed semantics.

To give an example, a Text composable that displays a String object such as
"Hello" will become a node in the semantics tree that we can identify by its
text property value – "Hello". Similarly, composables such as Image expose
a mandatory contentDescription parameter whose value will allow us to
identify the corresponding node in the semantics tree inside our tests. Don't
worry – we'll see a practical example of this in a second.

Note
While the semantics attributes are mainly used for accessibility purposes
(contentDescription, for example, is a parameter that allows people
with disabilities to better understand what the visual element it describes is
about), it's also a great tool that exposes semantics used to identify nodes in
our tests.

Now that we have briefly covered how we can use semantics information to
identify UI elements as nodes, it's time to get back to our test, which should
validate if, upon an initial state consumed by RestaurantsScreen(), its
CircularProgressIndicator() is visible.

Learning the basics of testing your Compose UI 327

However, if we look again at the usage of CircularProgressIndicator(), we
can see that it exposes no semantics that we can use to identify it later in our test:

@Composable

fun RestaurantsScreen(…) {

 Box(…) {

 LazyColumn(…) {…}

 if(state.isLoading)

 CircularProgressIndicator()

 […]

 }

}

There is no contentDescription parameter and no visual text displayed. To
be able to identify the node of CircularProgressIndicator() we must
manually add a semantics contentDescription property.

9. For a moment, let's head out of the androidTest directory and go back inside
the main package where our production code resides. Inside the presentation
package, create a new object class named Description and define a constant
description String variable for our loading composable:

object Description {

 const val RESTAURANTS_LOADING =

 "Circular loading icon"

}

10. Inside the RestaurantsScreen() composable, pass a semantics
modifier to the CircularProgressIndicator() composable and
set its contentDescription property to the previously defined
RESTAURANTS_LOADING:

@Composable

fun RestaurantsScreen(…) {

 Box(…) {

 LazyColumn(…) { … }

 if (state.isLoading)

 CircularProgressIndicator(

 Modifier.semantics {

 this.contentDescription =

 Description.RESTAURANTS_LOADING

328 Test Your App with UI and Unit Tests

 })

 […]

 }

}

Now, we will be able to identify the node represented by the
CircularProgressIndicator() composable inside our UI tests by using the
contentDescription semantics property.

11. Now, go back inside the androidTest directory and navigate to
the RestaurantsScreenTest class, and in the
initialState_isRendered() test method, use the testRule
variable to identify the node with the RESTAURANT_LOADING content
description with the help of the onNodeWithContentDescription()
method, and finally, verify that the node is displayed with the
assertIsDisplayed() method:

@Test

fun initialState_isRendered() {

 testRule.setContent {

 RestaurantsAppTheme { RestaurantsScreen(…) }

 }

 testRule.onNodeWithContentDescription(

 Description.RESTAURANTS_LOADING

).assertIsDisplayed()

}

Note
As you can see with the initialState_isRendered() method, every
test method has two parts – the setup of the expected behavior and then the
assertions that verify that the resultant behavior is correct.

12. Inside the Project tab on the left, right-click on the RestaurantsScreenTest
class and select Run RestaurantsScreenTest.

This command will run all the tests inside this class (only one in our case) on an
Android device (either your physical Android device or your emulator).

If we switch to the Run tab, we will see that our test where we checked whether the
initial state of RestaurantsScreen() was rendered correctly has passed:

Learning the basics of testing your Compose UI 329

Figure 10.2 – Observing the UI tests that have passed

Note
Although we have defined a test where UI elements are identified via semantic
properties, it's also possible to match a piece of UI by making it incorporate
a testTag modifier that is later identified via the hasTestTag()
matcher. However, you should avoid this practice, as you will be polluting your
Compose UI production code with testing identifiers used only for tests.

While your test ran on an Android device or emulator, you might have noticed that
no UI was shown on its screen. This happens because the UI tests are really fast. If
you want to see the UI that you're testing, you can add a Thread.sleep() call
at the end of the test method; however, you should avoid such a practice in your
production test code.

Now, it's time to test whether the RestaurantsScreen() composable is
rendering another state correctly – the state with content. In this state, the
restaurants have arrived, so we reset the loading status to false and render the
restaurants.

13. Inside the RestaurantsScreenTest class, add another test function named
stateWithContent_isRendered(), which should test whether the state with
content is rendered correctly:

@Test

fun stateWithContent_isRendered() {

 testRule.setContent {

 RestaurantsAppTheme {

 RestaurantsScreen(

 state = RestaurantsScreenState(

 restaurants =,

 isLoading = false),

330 Test Your App with UI and Unit Tests

 onFavoriteClick =

 { _: Int, _: Boolean -> },

 onItemClick = { }

)

 }

 }

}

Inside this test method, we have set the RestaurantsScreen() composable
with a state whose isLoading field is false (as the restaurants have arrived) but
haven't passed a list of restaurants yet. We need to create a dummy list of restaurants
to mimic some restaurants from our data layer.

14. For a moment, let's head out of the androidTest directory and go back inside
the main package where our production code resides. Inside the restaurants
package, create a new object class named DummyContent, and inside this class,
add a getDomainRestaurants() method that will return a dummy array list of
Restaurant objects:

object DummyContent {

 fun getDomainRestaurants() = arrayListOf(

 Restaurant(0, "title0", "description0", false),

 Restaurant(1, "title1", "description1", false),

 Restaurant(2, "title2", "description2", false),

 Restaurant(3, "title3", "description3", false))

}

15. Now, go back inside the androidTest directory and navigate to the
RestaurantsScreenTest class. Inside the
stateWithContent_isRendered() method, declare a
restaurants variable that will hold the dummy restaurants from the
DummyContent class and pass it to the restaurants parameter of
RestaurantsScreenState:

@Test

fun stateWithContent_isRendered() {

 val restaurants = DummyContent.getDomainRestaurants()

 testRule.setContent {

 RestaurantsAppTheme {

 RestaurantsScreen(

Learning the basics of testing your Compose UI 331

 state = RestaurantsScreenState(

 restaurants = restaurants,

 isLoading = false), […])

 }

 }

}

Now that we have finished the setup part of this test method, it's time to perform
our assertions. Since we are testing that RestaurantsScreen() is correctly
rendering the state that contains restaurants, let's have another quick look at the
composable under test:

@Composable

fun RestaurantsScreen(state: RestaurantsScreenState, […])
{

 Box(…) {

 LazyColumn(…) {

 items(state.restaurants) { restaurant ->

 RestaurantItem(…)

 }

 }

 if(state.isLoading)

 CircularProgressIndicator()

 if(state.error != null)

 Text(state.error)

 }

}

We can deduct that the two conditions we can assert are as follows:

 � The restaurants from RestaurantsScreenState are displayed on
the screen.

 � The CircularProgressIndicator() composable is not rendered, so its
node is not visible on the screen.

332 Test Your App with UI and Unit Tests

Let's start off with the first assertion. Instead of relying on the
contentDescription semantic property, we can use another semantic
property that is more obvious – the text displayed on the screen. Since
LazyColumn will render a list of RestaurantItem() composables, each
one will call a Text composable that will render the title and the description
of the restaurant passed to its text parameter. With the help of our
ComposeContentTestRule, we can identify a node with a certain text
value by calling the onNodeWithText() method.

16. Back in the stateWithContent_isRendered() method, let's assert that
title of the first Restaurant object from our dummy list is visible.

Do that by passing the title of the first element from the restaurants variable
to the onNodeWithText() method, thereby identifying its corresponding node.
Finally, call the assertIsDisplayed() method to verify whether this node is
displayed:

@Test

fun stateWithContent_isRendered() {

 val restaurants = DummyContent.getDomainRestaurants()

 testRule.setContent {

 RestaurantsAppTheme {

 RestaurantsScreen(

 state = RestaurantsScreenState(

 restaurants = restaurants,

 isLoading = false

),

 […])

 }

 }

 testRule.onNodeWithText(restaurants[0].title)

 .assertIsDisplayed()

}

Learning the basics of testing your Compose UI 333

17. Similarly, to assert whether the node of the title of the first restaurant from our
dummy list is displayed, verify whether the node of the description of the first
restaurant is displayed:

@Test

fun stateWithContent_isRendered() {

 val restaurants = DummyContent.getDomainRestaurants()

 testRule.setContent { ... }

 testRule.onNodeWithText(restaurants[0].title)

 .assertIsDisplayed()

 testRule.onNodeWithText(restaurants[0].description)

 .assertIsDisplayed()

}

You might be wondering why we aren't asserting whether title or description
of all the elements from the DummyContent class is visible. It's important to
understand that our test is asserting whether some nodes are displayed on the
screen.

That's why, if our restaurants list contained 10 or 15 elements and we tested
whether all titles and description nodes are visible, we could have had this test
method pass on tall devices, since all the restaurants would fit and would be
composed on the screen, but it could have failed if the test device was small and only
some of the restaurants fitted on the screen and were composed.

This would have made our test flaky. To prevent our test from being flaky, we only
asserted whether the first restaurant is visible, therefore minimizing the chance of
having the test run and fail on an incredibly small screen.

Another interesting tactic that you can employ in order to test that content is
correctly rendered would be to emulate a scroll action inside your test to the bottom
of the list and check whether the last element is visible. This, however, is more
complex, so we will proceed with the simpler version that we have implemented.

334 Test Your App with UI and Unit Tests

18. Lastly, let's assert that the node corresponding to the
CircularProgressIndicator() composable does not exist, therefore
ensuring that the app is not loading anything anymore. Do that by calling the
assertDoesNotExist() method on the node with the
RESTAURANTS_LOADING content description:

@Test

fun stateWithContent_isRendered() {

 val restaurants = DummyContent.getDomainRestaurants()

 testRule.setContent { … }

 testRule.onNodeWithText(restaurants[0].title)

 .assertIsDisplayed()

 testRule.onNodeWithText(restaurants[0].description)

 .assertIsDisplayed()

 testRule.onNodeWithContentDescription(

 Description.RESTAURANTS_LOADING

).assertDoesNotExist()

}

19. Now that we have finished writing our second test method asserting whether
the RestaurantsScreen() composable is correctly rendering the state
with content, inside the Project tab on the left, right-click on the
RestaurantsScreenTest class and select Run RestaurantsScreenTest.

The tests should run and pass.

Assignment
Try writing a test method on your own that asserts whether the
RestaurantsScreen() composable renders the error state correctly.
As a hint, you should be passing an error text to the error parameter of
the RestaurantsScreen(), and then you should be asserting whether
a node with that particular text is visible, while also verifying that the node
corresponding to the CircularProgressIndicator() composable
does not exist.

Learning the basics of testing your Compose UI 335

Finally, let's write a test method where we can verify whether upon clicking on a
restaurant element from our dummy list, the correct callback is exposed by the
parent RestaurantsScreen() composable:

20. Inside the RestaurantsScreenTest class, add another test function named
stateWithContent_ClickOnItem_isRegistered(). Inside this method,
store the dummy list inside a restaurants variable, and then store the first
restaurant that we will click upon inside the targetRestaurant variable:

@Test

fun stateWithContent_ClickOnItem_isRegistered() {

 val restaurants = DummyContent.getDomainRestaurants()

 val targetRestaurant = restaurants[0]

}

21. Then, set RestaurantsScreen() under test and feed it with a state with content
by passing the contents of the restaurants variable to the restaurants
parameter of RestaurantsScreenState:

@Test

fun stateWithContent_ClickOnItem_isRegistered() {

 val restaurants = DummyContent.getDomainRestaurants()

 val targetRestaurant = restaurants[0]

 testRule.setContent {

 RestaurantsAppTheme {

 RestaurantsScreen(

 state = RestaurantsScreenState(

 restaurants = restaurants,

 isLoading = false),

 onFavoriteClick = { _, _ -> },

 onItemClick = { id -> })

 }

 }

}

336 Test Your App with UI and Unit Tests

22. Then, identify the node that contains the title text of targetRestaurant and
then simulate a user click on this node by calling the performClick() method:

@Test

fun stateWithContent_ClickOnItem_isRegistered() {

 val restaurants = DummyContent.getDomainRestaurants()

 val targetRestaurant = restaurants[0]

 testRule.setContent {

 RestaurantsAppTheme {

 RestaurantsScreen(

 state = RestaurantsScreenState(

 restaurants = restaurants,

 isLoading = false),

 onFavoriteClick = { _, _ -> },

 onItemClick = { id -> })

 }

 }

 testRule.onNodeWithText(targetRestaurant.title)

 .performClick()

}

23. Now that we have simulated a user-click interaction, let's assert that the id value
from the onItemClick callback exposed by the RestaurantsScreen()
composable matches with the id value of the restaurant we have clicked on:

@Test

fun stateWithContent_ClickOnItem_isRegistered() {

 val restaurants = DummyContent.getDomainRestaurants()

 val targetRestaurant = restaurants[0]

 testRule.setContent {

 RestaurantsAppTheme {

 RestaurantsScreen(

 state = RestaurantsScreenState(

 restaurants = restaurants,

 isLoading = false),

 onFavoriteClick = { _, _ -> },

 onItemClick = { id ->

 assert(id == targetRestaurant.id)

Covering the basics of unit-testing your core logic 337

 }

)

 }

 }

 testRule.onNodeWithText(targetRestaurant.title)

 .performClick()

}

24. Inside the Project tab on the left, right-click on the RestaurantsScreenTest
class and select Run RestaurantsScreenTest.

The three tests should run and pass.

Note
You might have noticed that we haven't given any attention to testing how the
UI updates when a user toggles a restaurant as a favorite or not a favorite. The
only way we could have done that is by adding a dedicated semantic property
to the heart icon of each restaurant from the list and then testing the value of
that property. However, we would have tested a semantic property value and
not the UI – for such cases, it's better to look into screenshot testing strategies.
Screenshot testing is a UI testing practice that generates screenshots of your
app, which are then compared to the initially defined correct versions.

Now that we briefly covered UI testing with Compose, it's time to unit-test our app's
behind-the-scenes functionality!

Covering the basics of unit-testing your core
logic
Apart from testing our UI layer, we must also test the core logic of our application. This
means that we should try to verify as much behavior as possible in terms of presentation
logic (testing ViewModel classes), business logic (testing UseCase classes), or even data
logic (testing Repository classes).

The easiest way of validating such logic is by writing unit tests for each class or group of
classes whose behavior we're trying to verify.

In this section, we will be writing unit tests for the RestaurantsViewModel class and
the ToggleRestaurantUseCase class. Since these components don't interact directly
with the UI, their unit tests will run directly on your local workstation's Java Virtual
Machine (JVM), rather than running on an Android device, as our UI tests did.

338 Test Your App with UI and Unit Tests

To summarize, in this section, we will be doing the following:

• Testing the functionality of a ViewModel class

• Testing the functionality of a UseCase class

Let's begin by testing the RestaurantsViewModel class!

Testing the functionality of a ViewModel class
We want to test the functionality of our RestaurantsViewModel so that we
can make sure that it's correctly performing the role of state producer for the
RestaurantsScreen() composable.

To achieve that, we will write unit tests for this ViewModel class in isolation. Let's begin:

1. First, locate the test package that is suited for regular unit tests:

Figure 10.3 – Observing the test package used for regular unit tests
Also, note that the pre-built ExampleUnitTest class resides inside this package.

2. Create an empty Kotlin class named RestaurantsViewModelTest inside the
test package. Inside this class, we will define a method for each independent test.
Behind the scenes, every method will become a standalone unit test that can pass
or fail.

Before starting to write our first test method, let's have another look at our
RestaurantsViewModel class so that we can remind ourselves which cases
we're looking to test:

class RestaurantsViewModel @Inject constructor(…) :
ViewModel() {

 private val _state = mutableStateOf(

 RestaurantsScreenState(

Covering the basics of unit-testing your core logic 339

 restaurants = listOf(),

 isLoading = true

)

)

 […]

 private val errorHandler = CoroutineExceptionHandler

 { … ->

 exception.printStackTrace()

 _state.value = _state.value.copy(

 error = exception.message,

 isLoading = false)

 }

 init { getRestaurants() }

 fun toggleFavorite(itemId: Int, oldValue: Boolean) {

 […]

 }

 private fun getRestaurants() {

 viewModelScope.launch(errorHandler) {

 val restaurants = getRestaurantsUseCase()

 _state.value = _state.value.copy(

 restaurants = restaurants,

 isLoading = false)

 }

 }

}

We can say that our RestaurantsViewModel should produce the exact three
states that we fed to the RestaurantsScreen() composable in its own UI tests:

 � Initial loading state: At this point, we're waiting for restaurants, thus
rendering a loading status. You can see this initial state declared at the top
of the ViewModel class in the initialization of the _state variable, where
the restaurants parameter of RestaurantsScreenState is set to
emptyList() and the isLoading parameter is set to true.

 � State with content: The restaurants have arrived. This state is produced inside
the coroutine launched in the getRestaurants() method, where we
mutated the initial state and set the isLoading parameter to false while
also passing the list of restaurants to the restaurants parameter.

340 Test Your App with UI and Unit Tests

 � Error state: Something went wrong when the app tried to fetch its content. You
can see how this state is created inside CoroutineExceptionHandler,
where the isLoading parameter is set to false to reset the loading status
while also passing the message of Exception to the error parameter.

In the end, what we basically have to do is assert that the value of the state variable (of
type RestaurantsScreenState), which is exposed to the UI, evolves correctly over
time, from the initial state to all possible states.

Let's begin with a test method that asserts whether the initial state is produced
as expected:

1. Inside the RestaurantsViewModelTest class, add an empty test function
named initialState_isProduced() that will later test whether our
RestaurantsViewModel class properly produces the initial state:

 @Test

 fun initialState_isProduced() { }

As with the UI tests, we will make use of the JUnit testing library to define and run
individual unit tests for each method annotated with the @Test annotation.

Again similar to the UI tests, we named this method around the specific behavior
it's trying to test, going from what we're testing (the initial state) to what should
happen (the state being correctly produced).

2. Inside the initialState_isProduced() method, we must create an
instance of the subject under test – that is, RestaurantsViewModel.
Define a viewModel variable and instantiate it with the value returned by the
getViewModel() method, which we will define in a second:

@Test

fun initialState_isProduced() {

 val viewModel = getViewModel()

}

3. Still inside the RestaurantsViewModelTest class, define
the getViewModel() method, which will return an instance of
RestaurantsViewModel:

private fun getViewModel(): RestaurantsViewModel {

 return RestaurantsViewModel()

}

Covering the basics of unit-testing your core logic 341

The problem now is that the RestaurantsViewModel constructor
needs an instance of GetInitialRestaurantsUseCase and
ToggleRestaurantsUseCase. In turn, these two classes also have other
dependencies that we must instantiate. Let's have a clearer look at what classes
we need to instantiate:

Figure 10.4 – Observing the direct and transitive dependencies of RestaurantsViewModel
We can see that both GetInitialRestaurantsUseCase
and ToggleRestaurantsUseCase depend on
GetSortedRestaurantsUseCase and RestaurantsRepository. The
latter then depends on two library interfaces – RestaurantsApiService and
RestaurantsDao.

Essentially, we must instantiate all these classes to test our
RestaurantsViewModel.

4. Inside the RestaurantsViewModelTest class, refactor the getViewModel()
method to construct all the necessary dependencies of RestaurantsViewModel:

private fun getViewModel(): RestaurantsViewModel {

 val restaurantsRepository =

 RestaurantsRepository(?, ?)

 val getSortedRestaurantsUseCase =

 GetSortedRestaurantsUseCase(restaurantsRepository)

 val getInitialRestaurantsUseCase =

 GetInitialRestaurantsUseCase(

 restaurantsRepository,

342 Test Your App with UI and Unit Tests

 getSortedRestaurantsUseCase)

 val toggleRestaurantUseCase =

 ToggleRestaurantUseCase(

 restaurantsRepository,

 getSortedRestaurantsUseCase

)

 return RestaurantsViewModel(

 getInitialRestaurantsUseCase,

 toggleRestaurantUseCase

)

}

If you read the previous snippet from bottom to top, you will notice that we were
able to construct all the dependencies of the RestaurantsViewModel, and their
dependencies, and so on until we hit RestaurantsRepository. This depends
on two library interfaces, RestaurantsApiService and RestaurantsDao,
whose implementations are provided by the Retrofit and Room libraries.

In our production code, these two interfaces cross the boundary to the real world
because their implementations, provided by the Retrofit and Room libraries,
communicate with a real Firebase REST API and a real Room local database:

Figure 10.5 – Observing the real-world boundary crossed by the transitive
dependencies of RestaurantsViewModel

Covering the basics of unit-testing your core logic 343

If we were to use the existing implementations of these two interfaces provided by
Retrofit and Room in our test code, the RestaurantsViewModel instance will
communicate with the external world and our tests won't be isolated. Instead, our test
code will be slow and not reliable because it will be dependent on our web REST API
and a real local database.

Yet how can we make our RestaurantsViewModel tests isolated, fast, and reliable?
We can simply make sure that instead of having Retrofit and Room provide the
implementations for RestaurantsApiService and RestaurantsDao, we define
dummy implementations for these interfaces that won't communicate with the real world.

These dummy implementations are often called fakes. Fakes are simplified
implementations of the interfaces that we're looking to interact with in our tests. Such
implementations mimic the behavior of the production implementations in a very
simplified manner, often by returning dummy data. Fakes will only be used in our tests, so
we can ensure that our testing environment is isolated.

Apart from fakes, to mimic the functionality of components that cross the boundary to
the real world, you can also use mocks. Mocks are objects that also simulate the behavior
of a real object; however, you can configure their output on the fly without any additional
classes.

In this chapter, we will only focus on fakes, since most of the time, to create mocks, you
need to use special mocking frameworks. Also, fakes tend to be more practical and can
be reused across tests, whereas mocks tend to clutter your tests, as they bring a lot of
boilerplate code.

Note
Whenever you have a component that interacts with the real world, be it a
web API, local database, or other production systems, you should define an
interface for it. This way, in your production code, your other components
interact with a real implementation of that interface, while your tests interact
with a fake implementation of it.

344 Test Your App with UI and Unit Tests

Let's see how we can implement fakes. In our case, RestaurantsRepository
needs fake implementations of the RestaurantsApiService and RestaurantsDao
interfaces. Let's begin with a fake implementation of the RestaurantsApiService
interface:

1. To create a fake for the RestaurantsApiService interface, we must define
a class that will implement the interface and simulate the functionality of a REST
API. Inside the test package, create a Kotlin class named FakeApiService
that implements the RestaurantsApiService interface and add the following
code inside:

class FakeApiService : RestaurantsApiService {

 override suspend fun getRestaurants()

 : List<RemoteRestaurant> {

 delay(1000)

 return DummyContent.getRemoteRestaurants()

 }

 override suspend fun getRestaurant(id: Int)

 : Map<String, RemoteRestaurant> {

 TODO("Not yet implemented")

 }

}

Our FakeApiService overrides the required methods and returns some
dummy restaurants from the DummyContent class. In the getRestaurants()
method, we also call a coroutine-based delay() function of 1,000 milliseconds
to better simulate an asynchronous response. Since we will not be using the
getRestaurant() method in our tests right now, we haven't added any
implementation inside it.

Going back to the dummy content that is returned, note that the
getRestaurants() method must return a list of RemoteRestaurant
objects, so we called a non-existent getRemoteRestaurants() method on the
DummyContent class. Let's define this method up next.

Covering the basics of unit-testing your core logic 345

2. Head back inside the main source set where our production code resides. Inside
the DummyContent class, add a new method called
getRemoteRestaurants() that maps the list of Restaurant objects returned
by the getDomainRestaurants() method to RemoteRestaurant objects:

object DummyContent {

 fun getDomainRestaurants() = arrayListOf(…)

 fun getRemoteRestaurants() = getDomainRestaurants()

 .map {

 RemoteRestaurant(

 it.id,

 it.title,

 it.description

)

 }

}

3. Now, head back inside the test package. We've created a fake for the
RestaurantsApiService interface, but we must also create one fake for the
RestaurantsDao interface that will implement the interface and simulate the
functionality of a local database. Inside the test package, create a Kotlin class
named FakeRoomDao that implements the RestaurantsDao interface and add
the following code inside:

class FakeRoomDao : RestaurantsDao {

 private var restaurants =

 HashMap<Int, LocalRestaurant>()

 override suspend fun getAll()

 : List<LocalRestaurant> {

 delay(1000)

 return restaurants.values.toList()

 }

 override suspend fun addAll(

 restaurants: List<LocalRestaurant>

) {

 restaurants.forEach {

 this.restaurants[it.id] = it

 }

 }

346 Test Your App with UI and Unit Tests

 override suspend fun update(

 partialRestaurant: PartialLocalRestaurant

) {

 delay(1000)

 updateRestaurant(partialRestaurant)

 }

 override suspend fun updateAll(

 partialRestaurants: List<PartialLocalRestaurant>

) {

 delay(1000)

 partialRestaurants.forEach {

 updateRestaurant(it)

 }

 }

 override suspend fun getAllFavorited()

 : List<LocalRestaurant> {

 return restaurants.values.toList()

 .filter { it.isFavorite }

 }

}

Our FakeRoomDao class mimics the functionality of a real Room database, yet
instead of storing restaurants in the local SQL database, it stores them in memory
in the restaurants variable. We will not cover each method implementation of
FakeRoomDao.

However, we will conclude that each method simulates the interaction with a
persistent storage service. Additionally, as our FakeRoomDao simulates interaction
with a real local database, each of its actions will cause a delay triggered by the
pre-built suspending delay() function.

However, our FakeRoom class makes use of an updateRestaurant() method
that we haven't defined so far. Let's do that now.

4. At the end of the body of the FakeRoom class, add the missing
updateRestaurant() method that toggles the value of the isFavorite field:

class FakeRoomDao : RestaurantsDao {

 [...]

 override suspend fun getAllFavorited()

Covering the basics of unit-testing your core logic 347

 : List<LocalRestaurant> { ... }

 private fun updateRestaurant(

 partialRestaurant: PartialLocalRestaurant

) {

 val restaurant =

 this.restaurants[partialRestaurant.id]

 if (restaurant != null)

 this.restaurants[partialRestaurant.id] =

 restaurant.copy(

 isFavorite =

 partialRestaurant.isFavorite

)

 }

}

5. Now that we have finished implementing the fakes for our
RestaurantsApiService and RestaurantsDao interfaces, it's time to pass
them where we need them in our tests. Remember that the last missing piece was to
provide fake implementations of the RestaurantsRepository dependencies so
that our test is isolated.

Head back inside the RestaurantsViewModelTest class and update the
getViewModel() function to pass instances of the FakeApiService and
FakeRoomDao classes to RestaurantsRepository:

private fun getViewModel(): RestaurantsViewModel {

 val restaurantsRepository = RestaurantsRepository(

 FakeApiService(), FakeRoomDao())

 […]

 return RestaurantsViewModel(…)

}

Now that the getViewModel() method is able to return an instance of
RestaurantsViewModel that we can easily test, let's get back to our
initialState_isProduced() test method, which currently looks like this:

@Test

fun initialState_isProduced() {

 val viewModel = getViewModel()

}

348 Test Your App with UI and Unit Tests

Remember that the scope of this test method is to verify that when our
RestaurantsViewModel is initialized, it produces a correct initial state. Let's do
that now.

6. First, inside the initialState_isProduced() test method, store the initial
state inside an initialState variable:

@Test

fun initialState_isProduced() {

 val viewModel = getViewModel()

 val initialState = viewModel.state.value

}

7. Next, by using the built-in assert() function, verify whether the content of
initialState is as expected:

@Test

fun initialState_isProduced() {

 val viewModel = getViewModel()

 val initialState = viewModel.state.value

 assert(

 initialState == RestaurantsScreenState(

 restaurants = emptyList(),

 isLoading = true,

 error = null)

)

}

In this test method, we're asserting whether the value of the initialState
variable is a RestaurantsScreenState object with a false isLoading field
and an emptyList() value inside the restaurants field. Additionally, we're
testing that there is no value stored inside the error field.

8. Now that we have defined our first test method, it's time to run the test!

Inside the Project tab on the left, right-click on the
RestaurantsViewModelTest class and select Run
RestaurantsViewModelTest. This command will run all the tests inside this class
(only one in our case) directly on your local JVM, rather than running on an
Android device, as our UI tests did.

Covering the basics of unit-testing your core logic 349

If you switch to the Run tab, you will see that our test has failed:

Figure 10.6 – Observing how the test inside the RestaurantsViewModelTest class has failed
This exception is thrown because our Restaurants app handles asynchronous
work with the help of coroutines, and our test code doesn't know how to interact
with them.

For instance, our RestaurantsViewModel launches coroutines that call several
suspend functions, and all of these happen on viewModelScope, which has the
Dispatchers.Main dispatcher set by default:

@HiltViewModel

class RestaurantsViewModel @Inject constructor(...) : […]
{

 [...]

 fun toggleFavorite(itemId: Int, oldValue: Boolean) {

 viewModelScope.launch(errorHandler) { ... }

 }

 private fun getRestaurants() {

 viewModelScope.launch(errorHandler) { ... }

 }

}

The main issue here is that our coroutines are launched on the Main thread on our local
JVM, which can't work with the UI thread.

Note
The Dispatchers.Main dispatcher uses the Android
Looper.getMainLooper() function to run code in the
UI thread. That method is available in UI tests but not in the regular
unit tests that run on our JVM.

To make our testing code compliant with the usage of coroutines, we need to use the
Kotlin coroutines testing library, which will provide us with scopes and dispatchers that
are dedicated to testing coroutines. If our test code is run from coroutines that are built
with these dedicated scopes and dispatchers, our test will no longer fail.

350 Test Your App with UI and Unit Tests

Let's add the Kotlin coroutines testing library!

1. In the app-level build.gradle file, add a testImplementation dependency
to the Kotlin coroutines testing package:

dependencies {

 […]

 testImplementation "com.google.truth:truth:1.1.2"

 testImplementation 'org.jetbrains.kotlinx:kotlinx-

 coroutines-test:1.6.1'

}

2. Synchronize your project with its Gradle files by clicking on the Sync your project
with Gradle files button in Android Studio or by pressing on the File menu option
and then by selecting Sync Project with Gradle Files.

3. Head back inside the RestaurantsViewModelTest class and define a variable
for a StandardTestDispatcher object and a variable for a TestScope object
based on the previously defined dispatcher:

@ExperimentalCoroutinesApi

class RestaurantsViewModelTest {

 private val dispatcher = StandardTestDispatcher()

 private val scope = TestScope(dispatcher)

 @Test

 fun initialState_isProduced() {…}

 private fun getViewModel(): RestaurantsViewModel {…}

}

Additionally, we've added the @ExperimentalCoroutinesApi annotation
to the RestaurantsViewModelTest class, since these testing APIs are
still experimental.

4. Next up, make sure that all the code from within the body of the
initialState_isProduced() test method is run inside a test-specific
coroutine. To do that, launch a coroutine that wraps this method's body
by calling the runTest() coroutine builder on our scope variable of
type TestScope:

@Test

fun initialState_isProduced() = scope.runTest {

 val viewModel = getViewModel()

Covering the basics of unit-testing your core logic 351

 val initialState = viewModel.state.value

 assert(

 initialState == RestaurantsScreenState(

 restaurants = emptyList(),

 isLoading = true,

 error = null))

}

5. Run the RestaurantsViewModelTest class. If you switch to the Run tab,
you will see that our test has failed again, with the same exception as before.
Since we wrapped the body of our test method inside a test coroutine, our test
code still throws an exception, telling us that we still need to change the dispatcher
of the coroutine.

If we have another look at RestaurantsViewModel, we can note that both the
coroutines launched with viewModelScope have no dispatcher set, so they're
using Dispatchers.Main behind the scenes:

@HiltViewModel

class RestaurantsViewModel @Inject constructor(...) : […]
{

 [...]

 fun toggleFavorite(itemId: Int, oldValue: Boolean) {

 viewModelScope.launch(errorHandler) { ... }

 }

 private fun getRestaurants() {

 viewModelScope.launch(errorHandler) { ... }

 }

}

However, in our test, all coroutines that are launched should use
StandardTestDispatcher defined in our test class. So, how can we pass a test
dispatcher to the coroutines launched in our RestaurantsViewModel?

We can inject the dispatcher inside the RestaurantsViewModel class by using
its constructor and making it accept a CoroutineDispatcher object, which will
be passed to all the coroutines that are launched.

This way, in our production code, RestaurantsViewModel will receive and use
the Dispatchers.Main dispatcher, and inside our test code, it will receive and
use the StandardTestDispatcher dispatcher.

352 Test Your App with UI and Unit Tests

Note
The practice of injecting dispatchers into our coroutine-based classes is
encouraged, as it allows us to have better isolation and control over the testing
environment of our unit tests.

6. Head back inside the main source set where our production code resides. Inside
RestaurantsViewModel, add a dispatcher constructor parameter of type
CoroutineDispatcher and pass it to the viewModelScope() calls:

@HiltViewModel

class RestaurantsViewModel @Inject constructor(

 private val getRestaurantsUseCase: […],

 private val toggleRestaurantsUseCase: […],

 private val dispatcher: CoroutineDispatcher) :

 ViewModel(){

 [...]

 fun toggleFavorite(itemId: Int, oldValue: Boolean) {

 viewModelScope.launch(errorHandler

 + dispatcher) { … }

 }

 private fun getRestaurants() {

 viewModelScope.launch(errorHandler

 + dispatcher) { … }

 }

}

However, if we build the project now, we will get an error because Hilt doesn't know
how to provide an instance of CoroutineDispatcher to
RestaurantsViewModel.

To instruct Hilt on how to provide our ViewModel with the dispatcher it needs
(that is, Dispatchers.Main), we must create a Hilt module.

7. Inside the di package, create a new class called DispatcherModule and add
the following code that tells Hilt how to provide any CoroutineDispatcher
dependencies with Dispatchers.Main:

@Module

@InstallIn(SingletonComponent::class)

object DispatcherModule {

Covering the basics of unit-testing your core logic 353

 @Provides

 fun providesMainDispatcher(): CoroutineDispatcher

 = Dispatchers.Main

}

However, right now, Hilt will always provide Dispatchers.Main to any
CoroutineDispatcher dependencies. What if we need later to obtain a
dispatcher different than Dispatchers.Main? Let's see how we can prepare
for that.

8. At the top of the body of DispatcherModule, define an annotation class called
MainDispatcher annotated with the @Qualifier annotation:

@Qualifier

@Retention(AnnotationRetention.BINARY)

annotation class MainDispatcher

@Module

@InstallIn(SingletonComponent::class)

object DispatcherModule {…}

The @Qualifier annotation allows us to provide different dispatchers to
the CoroutineDispatcher dependencies. In our case, we defined that a
@MainDispatcher annotation will provide the Dispatchers.Main dispatcher.

9. Add the @MainDispatcher annotation to the providesMainDispatcher()
method so that Hilt will know what dispatcher to provide when such an annotation
is used on a dependency:

@Qualifier

@Retention(AnnotationRetention.BINARY)

annotation class MainDispatcher

@Module

@InstallIn(SingletonComponent::class)

object DispatcherModule {

 @MainDispatcher

 @Provides

 fun providesMainDispatcher(): CoroutineDispatcher

 = Dispatchers.Main

}

354 Test Your App with UI and Unit Tests

10. Then, inside RestaurantsViewModel, annotate the dispatcher parameter
with the newly created @MainDispatcher annotation so that Hilt will provide us
with the Dispatchers.Main dispatcher:

@HiltViewModel

class RestaurantsViewModel @Inject constructor(

 private val getRestaurantsUseCase: […],

 private val toggleRestaurantsUseCase: […],

 @MainDispatcher private val dispatcher:

 CoroutineDispatcher

) : ViewModel() { ... }

11. Now that the RestaurantsViewModel uses the Dispatcher.Main dispatcher
in our production code, head back inside the test source set and inside the
RestaurantsViewModelTest class, update its getViewModel() method
by passing the dispatcher member field to the RestaurantsViewModel
constructor call:

@ExperimentalCoroutinesApi

class RestaurantsViewModelTest {

 private val dispatcher = StandardTestDispatcher()

 private val scope = TestScope(dispatcher)

 @Test

 fun initialState_isProduced() = scope.runTest {…}

 private fun getViewModel(): RestaurantsViewModel {

 […]

 return RestaurantsViewModel(

 getInitialRestaurantsUseCase,

 toggleRestaurantUseCase,

 dispatcher)

 }

}

Now, in our test code, RestaurantsViewModel will use the
StandardTestDispatcher dispatcher for all the launched coroutines.

12. Now, run the RestaurantsViewModelTest class again. If you switch to the
Run tab, you will see that our test has now passed:

Covering the basics of unit-testing your core logic 355

Figure 10.7 – Observing how the test inside the RestaurantsViewModelTest class has succeeded
Since our test uses the runTest() coroutine builder, any delay() calls in
our fake implementations are skipped, making our test run fast, in just a few
hundred milliseconds.

Now that we have tested whether our ViewModel produces a correct initial state,
it's time to test the state that comes after this initial state – the state with content.
This state is produced when the restaurants have arrived (from our data layer), so
the isLoading field should be reset to false, while the restaurants field
should contain a list of restaurants.

13. Add a new testing method inside RestaurantsViewModelTest called
stateWithContent_isProduced() that asserts whether the state with
restaurants is produced as expected:

@Test

fun stateWithContent_isProduced() = scope.runTest {

 val testVM = getViewModel()

 val currentState = testVM.state.value

 assert(

 currentState == RestaurantsScreenState(

 restaurants =

 DummyContent.getDomainRestaurants(),

 isLoading = false,

 error = null)

)

}

Since the FakeApiService returns the dummy list of RemoteRestaurant
from the DummyContent class, it's only natural that we're expecting to get the
same content in ViewModel but in the shape of the Restaurant objects – so
we're asserting that the restaurants field of currentState contains the
restaurants from DummyContent.

356 Test Your App with UI and Unit Tests

Unfortunately, if we run the RestaurantsViewModelTest class,
the stateWithContent_isProduced() test will fail, telling us that
currentState has the isLoading field's value of true and there are no
restaurants inside the restaurants field.

This issue makes sense because we're basically obtaining the initial state and
expecting it to be the state with content, which, in fact, comes later on. Because
there are several delay() calls in our FakeApiService and FakeRoomDao
implementations, we must allow time to pass so that ViewModel produces the
second state – the one with restaurants. But how can we do that?

Inside a test, to immediately execute all pending tasks (such as the launched
coroutine to get restaurants in our ViewModel) and to advance the virtual clock
until after the last delay, we can call the advanceUntilIdle() function exposed
by the coroutines test library.

14. Inside the stateWithContent_isProduced() test method, after
RestaurantsViewModel is instantiated but before our assertion, add the
advanceUntilIdle() method call:

@Test

fun stateWithContent_isProduced() = scope.runTest {

 val testVM = getViewModel()

 advanceUntilIdle()

 val currentState = testVM.state.value

 assert(

 currentState == RestaurantsScreenState(

 restaurants =

 DummyContent.getDomainRestaurants(),

 isLoading = false,

 error = null)

)

}

When we call advanceUntilIdle() inside our scope variable of type
TestScope, we're advancing the virtual clock of TestCoroutineScheduler
featured in the StandardTestDispatcher that we've initially passed to our
scope.

15. Now, run the RestaurantsViewModelTest class again. If you switch to the
Run tab, you will see that the stateWithContent_isProduced() test
still failed.

Covering the basics of unit-testing your core logic 357

The main issue here is that while we're trying to advance the virtual clock of our
test by leveraging the fact that our test instance of RestaurantsViewModel
now launches its coroutines on the StandardTestDispatcher instance
that we've passed to it, we have another class that is passing its own
CoroutineDispatcher.

If we have a closer look inside our RestaurantsRepository, we can see
that it's passing a production-use Dispatchers.IO dispatcher to all its
withContext() calls:

@Singleton

class RestaurantsRepository @Inject constructor(…) {

 suspend fun toggleFavoriteRestaurant(…) =

 withContext(Dispatchers.IO) {…}

 suspend fun getRestaurants() : List<Restaurant> {

 return withContext(Dispatchers.IO) {…}

 }

 suspend fun loadRestaurants() {

 return withContext(Dispatchers.IO) {…}

 }

 private suspend fun refreshCache() {…}

}

Because the RestaurantsRepository instance that our
RestaurantsViewModel indirectly depends on uses the Dispatchers.IO
dispatcher and not the StandardTestDispatcher one, the virtual clock of our
test is not advanced as expected. Let's fix this issue by injecting the dispatcher in the
RestaurantsRepository, just as we did for RestaurantsViewModel.

16. However, before performing the injection, we must first define a new type
of CoroutineDispatcher that Hilt should know how to inject – the
Dispatchers.IO dispatcher.

Head inside the DispatchersModule class and, just as we did for the
Dispatchers.Main dispatcher, instruct Hilt on how to provide us with the
Dispatchers.IO dispatcher:

@Qualifier

@Retention(AnnotationRetention.BINARY)

annotation class MainDispatcher

@Qualifier

@Retention(AnnotationRetention.BINARY)

358 Test Your App with UI and Unit Tests

annotation class IoDispatcher

@Module

@InstallIn(SingletonComponent::class)

object DispatcherModule {

 @MainDispatcher

 @Provides

 fun providesMainDispatcher(): CoroutineDispatcher =

 Dispatchers.Main

 @IoDispatcher

 @Provides

 fun providesIoDispatcher(): CoroutineDispatcher =

 Dispatchers.IO

}

17. Head back inside the main source set where our production code resides. Inside the
RestaurantsRepository class, inject CoroutineDispatcher, annotate it
with the @IoDispatcher qualifier, and then pass the injected dispatcher to all
the withContext() calls:

@Singleton

class RestaurantsRepository @Inject constructor(

 private val restInterface: RestaurantsApiService,

 private val restaurantsDao: RestaurantsDao,

 @IoDispatcher private val dispatcher:

 CoroutineDispatcher

) {

 suspend fun toggleFavoriteRestaurant(…) =

 withContext(dispatcher) {…}

 suspend fun getRestaurants() : List<Restaurant> {

 return withContext(dispatcher) {…}

 }

 suspend fun loadRestaurants() {

 return withContext(dispatcher) {…}

 }

 private suspend fun refreshCache() {…} }

Covering the basics of unit-testing your core logic 359

18. Then, heading back inside our test package, inside the
RestaurantsViewModelTest class, update the getViewModel() method
to pass our dispatcher field of type StandardTestDispatcher to the
RestaurantsRepository constructor:

private fun getViewModel(): RestaurantsViewModel {

 val restaurantsRepository = RestaurantsRepository(

 FakeApiService(),

 FakeRoomDao(),

 dispatcher)

 […]

 return RestaurantsViewModel(

 getInitialRestaurantsUseCase,

 toggleRestaurantUseCase,

 dispatcher)

}

19. Now, run the RestaurantsViewModelTest class again. If you switch to the
Run tab, you will see that both our tests have now passed.

Assignment
Try testing on your own that RestaurantsViewModel is correctly
producing an error state. As a tip, make sure to throw an instance of the
Exception class inside FakeApiService but just for this specific
test method where you're verifying the error state. To achieve that, you can
configure a constructor parameter in FakeApiService so that it can throw
an exception if needed.

Now that we tested how RestaurantsViewModel is producing the UI state, let's briefly
have a look at how we could test a business component.

Testing the functionality of a UseCase class
Aside from unit-testing the presentation layer of our application, it's very important to
also test the business rules present in the app. In our Restaurants app, the business logic is
encapsulated in UseCase classes.

Let's see say that we want to test ToggleRestaurantUseCase. Essentially, we want to
make sure that when we execute this UseCase class for a specific restaurant, the business
logic of negating the isFavorite field of the Restaurant is working.

360 Test Your App with UI and Unit Tests

In other words, if one restaurant was not marked as favorite, after executing
ToggleRestaurantUseCase for that specific restaurant, its isFavorite field
should become true. While this business logic is indeed slim, in medium to large-sized
applications, such business logic can become much more complex.

Let's see how a unit test for ToggleRestaurantUseCase would look:

@ExperimentalCoroutinesApi

class ToggleRestaurantUseCaseTest {

 private val dispatcher = StandardTestDispatcher()

 private val scope = TestScope(dispatcher)

 @Test

 fun toggleRestaurant_IsUpdatingFavoriteField() =

 scope.runTest {

 // Setup useCase

 val restaurantsRepository = RestaurantsRepository(

 FakeApiService(),

 FakeRoomDao(),

 dispatcher)

 val getSortedRestaurantsUseCase =

 GetSortedRestaurantsUseCase(restaurantsRepository)

 val useCase = ToggleRestaurantUseCase(

 restaurantsRepository,

 getSortedRestaurantsUseCase)

 // Preload data

 restaurantsRepository.loadRestaurants()

 advanceUntilIdle()

 // Execute useCase

 val restaurants = DummyContent.getDomainRestaurants()

 val targetItem = restaurants[0]

 val isFavorite = targetItem.isFavorite

 val updatedRestaurants = useCase(

 targetItem.id,

 isFavorite

)

 advanceUntilIdle()

Covering the basics of unit-testing your core logic 361

 // Assertion

 restaurants[0] = targetItem.copy(isFavorite =

 !isFavorite)

 assert(updatedRestaurants == restaurants)

 }

}

This unit test is similar to the ones we wrote for RestaurantsViewModel in the sense
that it's also using StandardTestDispatcher and TestScope, simply because the
invoke() operator of ToggleRestaurantUseCase is a suspending function.

The structure of the test is split into three parts, delimited by the suggestive comments:

• Setup: In this first phase, we have constructed a ToggleRestaurantUseCase
instance and its direct and transitive dependencies, while passing our test dispatcher
to the dependencies that need it.

• Preload data: For ToggleRestaurantUseCase to be able to execute its
business logic on a specific restaurant, we first had to make sure that our
RestaurantsRepository instance had loaded the dummy restaurants. We then
called advancedUntilIdle(), allowing any suspending (blocking) work related
to obtaining and caching dummy restaurants to finish.

• Execute Use Case: We defined the restaurant whose isFavorite field we
want to toggle as targetItem, obtained its current isFavorite field value,
and executed ToggleRestaurantUseCase, storing the resultant restaurants
inside the updatedRestaurants variable. Since this operation refreshes
and re-obtains the restaurants from the fake local database, we then called
advancedUntilIdle(), allowing any suspending work to finish.

• Assertion: We've first updated the dummy list we're expecting to be correct by
manually toggling the first restaurant's isFavorite field. Finally, we asserted that
the resultant updatedRestaurants list is the same as the one we would expect
to be correct – that is, restaurants.

If you run this test, it should pass.

Assignment
Try testing the behaviour of other Use Case classes such as
GetSortedRestaurantsUseCase or even classes from the data layer
such as RestaurantsRepository.

362 Test Your App with UI and Unit Tests

Summary
In this chapter, we first had a look at the benefits of testing and classified tests based on
different aspects. Afterward, we took a shot at testing our Compose-based UI and learned
how to write UI unit tests by leveraging the power of the semantics modifiers.

Finally, we learned how to write regular – non-UI – unit tests in order to validate the core
functionality of our application. In this part, we learned how to test our coroutine-based
code and how important it is to inject the CoroutineDispatcher objects.

In the next chapter, we're steering away from the architectural side of Android
development, and we will be incorporating data pagination with the help of yet another
interesting library called Jetpack Paging.

Further reading
In this chapter, we've briefly covered the basics of UI and unit testing, so the core concepts
taught here should give you a solid starting point. However, there are several other topics
that you might need while you continue your testing adventure:

• For UI tests, we used semantics modifiers to identify UI elements from our node
hierarchy. When testing Compose UI, you should also be aware of the merged and
unmerged semantics tree. Learn more about this topic by reading the official docs:
https://developer.android.com/jetpack/compose/semantics.

• With UI tests, we only scratched the surface in terms of testing APIs. Make sure
to check out this official testing cheat sheet: https://developer.android.
com/jetpack/compose/testing-cheatsheet.

• Our unit tests are based on the JUnit testing framework. To discover the power and
flexibility of Junit, check out its official docs: https://junit.org/junit4/.

• In your coroutine-based tests, apart from the advanceUntilIdle() API,
you can also use the advancetimeBy() API to fast-forward the virtual clock
of the test by a certain amount. Learn more about this function from the official
Coroutines docs: https://kotlin.github.io/kotlinx.coroutines/
kotlinx-coroutines-test/kotlinx.coroutines.test/-delay-
controller/advance-time-by.html.

• Your unit tests must be deterministic in the sense that every run of one test for
the same revision of code should always yield the same result. Learn more about
deterministic and non-deterministic tests from Martin Fowler: https://
martinfowler.com/articles/nonDeterminism.html.

https://developer.android.com/jetpack/compose/semantics
https://developer.android.com/jetpack/compose/testing-cheatsheet
https://developer.android.com/jetpack/compose/testing-cheatsheet
https://junit.org/junit4/
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-test/kotlinx.coroutines.test/-delay-controller/advance-time-by.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-test/kotlinx.coroutines.test/-delay-controller/advance-time-by.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-test/kotlinx.coroutines.test/-delay-controller/advance-time-by.html
https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/nonDeterminism.html

Part 3:
Diving into Other
Jetpack Libraries

In this final part, we will explore and utilize other important Jetpack libraries, including
Paging and Lifecycle, while making use of Kotlin Flow and creating a new demo project.

This section comprises the following chapters:

• Chapter 11, Creating Infinite Lists with Jetpack Paging and Kotlin Flow

• Chapter 12, Exploring the Jetpack Lifecycle Components

11
Creating

Infinite Lists
with Jetpack Paging

and Kotlin Flow
In the previous chapters, we built the great Restaurants App that displayed content from
our own backend. However, the number of restaurants displayed in the Restaurants App
was fixed, and the user was only able to browse through the few restaurants that we added
to our Firebase database.

In this chapter, we will understand how pagination can help us display large datasets of
items without putting pressure on our backend and without huge network bandwidth
consumption. We will create the impression of an infinite list of items inside a new app
that we will be working on called the Repositories App, and we will achieve that with the
help of yet another Jetpack library called Paging.

366 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

In the first section, Why do we need pagination?, we will explore what data pagination
is and how it can help us break large datasets into pages of data, thereby optimizing the
communication between our app and the backend server. Up next, in the Importing and
exploring the Repositories App section, we will explore a project in which we will integrate
pagination: the Repositories App that displays information about GitHub repositories.

Then, in the Using Kotlin Flow to handle streams of data section, we will cover how
paginated content can be expressed as a data stream and how Kotlin Flow is a great solution
to handle such content. In the last section, Exploring pagination with Jetpack Paging, we will
first explore the Jetpack Paging library as a solution to working with paginated content in
our Android app, and then, with the help of this new library, we will integrate paging in our
Repositories App to create the illusion of an infinite list of repositories.

To summarize, in this chapter, we will be covering the following sections:

• Why do we need pagination?

• Importing and exploring the Repositories App

• Using Kotlin Flow to handle streams of data

• Exploring pagination with Jetpack Paging

Before jumping in, let's set up the technical requirements for this chapter.

Technical requirements
Building Compose-based Android projects for this chapter usually requires your
day-to-day tools. However, to follow along smoothly, make sure you have the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds but note that IDE interface and other
generated code files might differ from the ones used throughout this book.

• Kotlin 1.6.10 or newer plugin installed in Android Studio

• The existing Repositories App from the GitHub repository of the book

The starting point for this chapter is represented by the Repositories App that you can find
by navigating to the Chapter_11 directory of the GitHub repository of the book, and
then by importing the repositories_app_starting_point_ch11 directory from
within Android Studio. Don't worry, as we will do this together later in this chapter.

To access the solution code for this chapter, navigate to the Chapter_11 directory
and then import the repositories_app_solution_ch11 directory from within
Android Studio.

Why do we need pagination? 367

You can find the Chapter_11 directory by following this link:

https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_11

Why do we need pagination?
Let's say we have an Android application that allows you to explore GitHub repositories by
displaying a list of projects. It does that by querying the GitHub REpresentational State
Transfer (REST) application programming interface (API) with Retrofit and obtaining
a fixed number of repositories inside the app. While the REST API serves the application
with detailed information for each repository, the app only uses and displays the title and
description of the repository.

Note
Don't confuse the Repository classes in our project architecture that abstract
data logic with the GitHub repositories that are displayed in our Repositories
App.

Now, let's imagine that this application retrieves and displays 20 repository elements.
Because of this, the user will be able to scroll the content until the 20th element, and
therefore will be able to visualize no more than 20 elements.

But what if we wanted to allow the user to explore more repositories inside our list? In the
end, the purpose of the app is to browse a larger number of repositories and not just 20.

We could update the network call and request a larger list of elements from one single
shot. In other words, we could refactor our app to obtain and display a list of 10,000
repositories on one occasion—that is, when the app is launched.

However, with such an approach, we can think of three main issues, as outlined here:

• The user interface (UI) of the app could become unresponsive—If our app tried
to render all 10,000 elements, our UI would most likely freeze and become sluggish.
However, this issue can be avoided by reusing or rendering only items that are
visible on the screen. In fact, until now, we used the LazyColumn composable to
render UI elements in a lazy manner (when needed), so we can conclude that this
issue can be easily fixed.

• The app would put a lot of pressure on the backend—Imagine what would happen
if every Android application client requested 10,000 database records from the
backend server—these services would have to consume quite some resources to
query and return so many elements.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_11
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_11

368 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

• Such a HyperText Transfer Protocol (HTTP) request and response would cause
a high network bandwidth consumption caused by the huge JavaScript Object
Notation (JSON) payload that would have to be transferred. All 10,000 elements
could contain a lot of fields and nested information—it's clear that having such a
payload sent around between our apps and the server would be highly inefficient.

While we can easily address the first issue, we can conclude that the second and
third issues are very concerning. Many real-world applications and systems face these
problems, and in order to alleviate them, the concept of pagination was adopted for
most client-server communication-based relationships where large datasets had to be
displayed to the end user.

Pagination is a server-friendly communication approach that breaks a huge result into
multiple smaller chunks. In other words, if your backend supports pagination, your
application can request only a portion of data (often called a page) and receive a partial
response, thereby allowing the transfer to be faster and more efficient on both sides.

When the application needs more results, it just requests another page, and another page,
and so on. This approach is beneficial both for the app and backend service since only
small portions of data are served and interpreted at a certain moment in time.

With pagination, if the user decides to visualize only a small portion of items and then
switch to another app, your app would have requested only this small portion of data.
Without pagination, in the same case, your backend would have served your app with
the entire collection of items, while some of your users wouldn't have had a chance to
see all of them. This would be a waste of resources from the perspective of your app, but
especially from the perspective of your backend service. Also, only a small portion out of
the huge payload sent over the internet was needed.

To implement such a pagination behavior on the UI, there are two well-known UI
approaches for mobile apps, as follows:

• A fixed number of items are displayed on a screen that resembles a web page. On
this page, there is a fixed amount of scrolling space because if the user wants to see
new items, a button must be pressed to switch pages (often representing the number
of a specific page), and then a new set of data is loaded and displayed, replacing the
existing content.

From a mobile user experience (UX) perspective, this is a poor design choice
because, as opposed to monitor screens used for web pages, scrolling over contents
is more natural on smaller-sized devices such as phones.

Why do we need pagination? 369

• The list of items displayed grows as the user scrolls, thereby creating the impression
that the list is infinite—such an approach is often referred to as infinite scrolling.
While there is no such thing as an infinite list, this approach mimics one. It
starts with a few requests for the initial page/s, and as the user scrolls to see more
elements, it requests more pages with more content on the fly. This approach relies
heavily on scrolling and usually creates a better UX.

In this chapter, we will go for the second option—in other words, we will implement
paging in an attempt to mimic the infinite list effect. Let's also try to visualize how the app
could request more items as the user scrolls in the following simplified example, where
Page 1 contains only six elements:

Figure 11.1 – Observing how infinite lists can be achieved with pagination

For the app to request the second page with items, the users must scroll further down,
thereby informing the app about their intention of wanting to see more elements.

370 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

When the app catches on to this intention (because the user reached the end of the list),
it asks for the second page with items from the backend, making the list of repositories
grow and allowing the user to browse through the new content. This process repeats on
and on, as the user keeps on reaching the end of the list.

Before implementing this pagination approach, let's first get to know our starting
point—the GitHub Repositories App!

Importing and exploring the Repositories App
The Repositories App project is a simple application that displays a list of repositories
obtained from the GitHub Search API. This project is a simplified version of a
Compose-based application that incorporates only a few concepts from the previous
chapters as it tries to be a good candidate for implementing pagination with the Jetpack
Paging library rather than being a fully-fledged sample app that applies all the concepts
taught in the book.

Nevertheless, we will see how the Repositories App follows a Model-View-ViewModel
(MVVM) presentation pattern, uses Retrofit to obtain data, a ViewModel class to hold
state and present data, coroutines for the asynchronous (async) operation of obtaining
data from the server, and Compose for the UI layer.

Let's start off by importing this project into Android Studio, as follows:

1. Navigate to the GitHub repository page of the book, located at https://github.
com/PacktPublishing/Kickstart-Modern-Android-Development-
with-Jetpack-and-Kotlin.

2. Download the repository files. You can do that by pressing the Code button and
then by selecting Download zip.

3. Unzip the downloaded files and remember the location where you did this.
4. Open Android Studio, press on the File tab option, and then select Open.
5. Search for the directory where you unzipped the project files. Once you have

found it, navigate to the Chapter_11 directory, select the
repositories_app_starting_point_ch11 directory, and press Open.

6. Run the application on your test device.

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin

Importing and exploring the Repositories App 371

You should notice that our Repositories App displays a list of repositories, and the index
of each repository item from the list is displayed on the left side, as illustrated in the
following screenshot:

Figure 11.2 – Observing the Repositories App without pagination

If you scroll further down, you will notice that only 20 elements can be viewed. This means
that our app doesn't support paging and the user can only browse through 20 repositories.

372 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

If we have a look inside the RepositoriesApiService.kt file, we will notice that
our app instructs the REST API through the @GET() endpoint Uniform Resource
Locator (URL) to obtain the first page of repositories while fetching only 20 items per
page, as illustrated in the following code snippet:

interface RepositoriesApiService {

 @GET("repositories?q=mobile&sort=stars&page=1&per_page=20")

 suspend fun getRepositories(): RepositoriesResponse

}

If you have a look at the parameters hardcoded within the request, you will notice that
our app always requests the first page of repositories. Also, because it can specify the page
number, this clearly means that the backend we're accessing supports pagination, but
because we always ask for page 1, our app doesn't take advantage of it.

More specifically, when the app performs this request, it will always retrieve 20 records from
the backend from the page with index 1. Later in this chapter, we will learn how to make
multiple network calls requesting different page numbers, therefore adopting pagination.

Note
If you're looking to build an app that supports pagination, you must first make
sure that your backend supports pagination, just as the GitHub Search API
does. Remember that the whole purpose of pagination is to ease the workload
of the backend API and to minimize the network bandwidth consumption
associated with retrieving a huge JSON payload, so if your backend doesn't
support pagination, you can't implement pagination in your app.

Let's have a brief look over the response we receive from the GitHub API by navigating to
the Repository.kt file. Basically, we get a list of Repository objects, and we parse
the id, name, and description values of the repository, as illustrated in the following
code snippet:

data class RepositoriesResponse(

 @SerializedName("items") val repos: List<Repository>

)

data class Repository(

 @SerializedName("id")

 val id: String,

 @SerializedName("full_name")

 val name: String,

Importing and exploring the Repositories App 373

 @SerializedName("description")

 val description: String)

As mentioned before, our app makes use of the GitHub Search API, and this can be
better observed inside the DependencyContainer.kt class where the Retrofit
RepositoriesApiService dependency is manually constructed, and the base
URL of this API is passed. You can view the code for this process in the following snippet:

object DependencyContainer {

 val repositoriesRetrofitClient: RepositoriesApiService =

 Retrofit.Builder()

 .addConverterFactory(GsonConverterFactory.create())

 .baseUrl("https://api.github.com/search/")

 .build().create(RepositoriesApiService::class.java)

}

If you're looking to find out more about the API we're using in this chapter, head over
to the official documentation of the GitHub Search API, at https://docs.github.
com/en/rest/search#search-repositories.

Now, going back to our Repositories App, if we navigate to the
RepositoriesViewModel.kt file, we will see that our ViewModel class uses
the RepositoriesApiService dependency to obtain a list of repositories by
launching a coroutine and setting the result to a Compose State object holding a list of
Repository objects. The code is illustrated in the following snippet:

class RepositoriesViewModel(

 private val restInterface: RepositoriesApiService

 = DependencyContainer.repositoriesRetrofitClient

) : ViewModel() {

 val repositories = mutableStateOf(emptyList<Repository>())

 init {

 viewModelScope.launch {

 repositories.value =

 restInterface.getRepositories().repos

 }

 }

}

https://docs.github.com/en/rest/search#search-repositories
https://docs.github.com/en/rest/search#search-repositories

374 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

The approach of having a Jetpack ViewModel launch a coroutine to obtain data with the
help of Retrofit is very similar to what we've done in the Restaurants App.

The UI level is also similar to the Restaurants App. If we navigate to the
MainActivity.kt file, we can see that our Activity class creates a
ViewModel instance, retrieves a Compose State object, obtains its value of type
List<Repository>, and passes it to a composable function to consume it, as
illustrated in the following code snippet:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 RepositoriesAppTheme {

 val viewModel: RepositoriesViewModel =

 viewModel()

 val repos = viewModel.repositories.value

 RepositoriesScreen(repos)

 }

 }

 }

}

The composable function that consumes the list of Repository objects resides inside
the RepositoriesScreen.kt file, as illustrated in the following code snippet:

@Composable

fun RepositoriesScreen(repos: List<Repository>) {

 LazyColumn(

 contentPadding = PaddingValues(

 vertical = 8.dp,

 horizontal = 8.dp)

) {

 itemsIndexed(repos) { index, repo ->

 RepositoryItem(index, repo)

 }

 }

}

Importing and exploring the Repositories App 375

Just as in the Restaurants App, our screen-level composable uses the LazyColumn
composable to optimize the way the UI renders elements in the list.

LazyColumn usage is important for our use case of trying to implement pagination
because we don't want our UI to render thousands of UI elements. Luckily, as we know
already, LazyColumn has us covered because it only composes and lays out visible
elements on the screen.

Now, you might have noticed that the RepositoriesScreen composable uses the
itemsIndexed() domain-specific language (DSL) function instead of the items()
function that we used in the Restaurants App. This is because, since our app will support
pagination, we want to paint the index of the element displayed on the screen to better
understand where we are at right now. To get the index of the composable item visible on the
screen, the itemsIndexed() function provides us with this information out of the box.

Finally, let's have a brief look over the structure of the RepositoryItem composable
that displays the contents of a Repository object, while also rendering the index of the
repository, as follows:

@Composable

fun RepositoryItem(index: Int, item: Repository) {

 Card(

 elevation = 4.dp,

 modifier = Modifier.padding(8.dp).height(120.dp)

) {

 Row(

 verticalAlignment = Alignment.CenterVertically,

 modifier = Modifier.padding(8.dp)

) {

 Text(

 text = index.toString(),

 style = MaterialTheme.typography.h6,

 modifier = Modifier

 .weight(0.2f)

 .padding(8.dp))

 Column(modifier = Modifier.weight(0.8f)) {

 Text(

 text = item.name,

 style = MaterialTheme.typography.h6)

 Text(

376 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

 text = item.description,

 style = MaterialTheme.typography.body2,

 overflow = TextOverflow.Ellipsis,

 maxLines = 3)

 }

 }

 }

}

Now that we have briefly covered the current state of the Repositories App, we can
conclude that it could really use pagination to show more repositories, especially when
the GitHub Search API supports that. It's time to cover another important aspect that
pagination forces us to be aware of, and that's the concept of streams of data.

Using Kotlin Flow to handle streams of data
If we want our app to support pagination in the form of an infinite list, it's clear that our
existing approach of having a single one-shot request to the backend that results in one UI
update will not suffice.

Let's first have a look in the following code snippet at how our
RepositoriesViewModel class requests data:

class RepositoriesViewModel(

 private val restInterface: RepositoriesApiService = [...]

) : ViewModel() {

 val repositories = mutableStateOf(emptyList<Repository>())

 init {

 viewModelScope.launch {

 repositories.value =

 restInterface.getRepositories().repos

 }

 }

}

Using Kotlin Flow to handle streams of data 377

When the ViewModel is initialized, it executes the getRepositories() suspending
function inside a coroutine. The suspending function returns a list of Repository
objects that is passed to the repositories variable. This means that our ViewModel
performs a one-shot request for data in the form of a one-time call to the suspending
function—no other request is done over time to get new repositories as the user scrolls
through the list. That's why our app receives a single event with data (an initial list of
objects) from the backend as a single result.

We can imagine that calling a similar getRepositories() suspending function with
the one in our app would just as well return a one-time response as its return type would
be List<Repository>, as illustrated in the following screenshot:

Figure 11.3 – Observing one-shot data result with suspending function

Note
While our ViewModel contains a repositories variable whose type is
MutableState, meaning that it can change its value over time, we aren't
going to use Compose State objects to observe changes coming from the data
layer as this would break the responsibilities of layers. Right now, in our code,
we are calling a suspending function that returns only one result or one set of
data asynchronously. This result is passed to the repositories variable, so
even though our UI state can change over time, it only receives one update.

To support an infinite list, we must somehow design our app to receive multiple results
over time, just as with a stream of data. In other words, our app must request new
Repository objects as the user scrolls, thereby receiving multiple events with data,
and not just one. With every new data event coming in, our app should get a new list of
Repository objects that now contains the newly received repositories as well.

To make our ViewModel receive multiple events of data in the form of a stream of data,
we can use Flow. Kotlin Flow is a data type built on top of coroutines that exposes a
stream of multiple, asynchronously computed values.

378 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

As opposed to suspending functions, which emit a single result, Flow allows us to emit
multiple values sequentially over time. However, just as a suspending function emits a
result in an asynchronous manner that you can later obtain from within a coroutine, Flow
also emits results asynchronously, so you must observe its results from within a launched
coroutine.

You could use Flow to listen for events coming from various sources; for example, you
could use Flow to get location updates every time the location of the user changes. Or, you
could use Flow to get sequential updates from your Room database—instead of manually
querying the database every time you insert or update items, you can tell Room to return
a flow that will emit updates with its most up-to-date content whenever you perform
insertions, updates, and so on.

Getting back to our example with repositories, let's imagine that our
getRepositories() function is no longer a suspending function, but instead returns
a flow whose contained data is of type List<Repository>, as illustrated in the
following screenshot:

Figure 11.4 – Observing multiple results over time with Kotlin Flow

Just as the Compose State object holds data of a certain type (for example,
State<Int> emits values of type Int), Flow also holds data of a certain type; in
our previous example, that type was the data we're interested in emitting—that is,
List<Repository>.

But how can we observe the emitted values of a flow?

Let's take the previous example where the getRepositories() method returned a
Flow<List<Repository>> instance, and let's imagine that we're trying to observe its
values in a UI component, as follows:

class SomeViewModel(…) : ViewModel() {

 init {

 viewModelScope.launch {

 getRepositories().collect { repos ->

Exploring pagination with Jetpack Paging 379

 // Update UI

 }

 }

 }

 […]

}

Since a flow emits values asynchronously, we obtained the Flow<List<Repository>>
instance inside a launched coroutine and then called the .collect() method, which in
turn provided us with a block of code where we can consume the List<Repository>
values.

As opposed to obtaining such a list from a suspending function call, it's important to
remember that the values emitted by the flow change (or, at least, should change) over
time. In other words, for every callback that provides us with a value stored in the repos
variable, the content of its value of type List<Repository> could be different,
allowing us to update the UI on every new emission.

In this section, we have explored what a flow is and how we can consume it. However,
Kotlin Flow is a very complex subject; for example, we aren't going to cover the manner
in which you can create a flow, or how you can modify the produced stream. If you're
looking to find out more about Flow, check the official Android documentation at
https://developer.android.com/kotlin/flow.

Let's now explore the last missing piece of the puzzle—the Paging library.

Exploring pagination with Jetpack Paging
To implement an infinite list of repositories in our Repositories App, we must find a way
to request more repositories as the user scrolls through the existing list and reaches its
bottom, thereby adding new elements on the fly. Instead of manually deciding when the
user is approaching the bottom of the current list of repositories and then triggering a
network request to get new items, we can use the Jetpack Paging library, which hides all
this complexity from us.

Jetpack Paging is a library that helps us load and display pages of data from a large set of
data, either through network requests or from our local data storage, thereby allowing us
to save network bandwidth and optimize the usage of system resources.

In this chapter, for simplicity, we will use the Paging library to display an infinite list of
repositories obtained from a network source (that is, the GitHub Search API), without
involving the local cache.

https://developer.android.com/kotlin/flow

380 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

Note
The Jetpack Paging library is now at its third implementation iteration, which is
often referred to as Paging 3 or Paging v3. In this chapter, we will be using this
latest version, so even though we will simply call it Jetpack Paging, we are in
fact referring to Jetpack Paging 3.

The Jetpack Paging library abstracts most of the complexity associated with requesting the
correct page at the correct time, depending on the scroll position of the user. Practically, it
brings a lot of benefits to the table, such as the following:

• Avoidance of data request duplication—your app will request data only when
needed; for example, when the user reaches the end of the list and more items must
be rendered.

• Paged data is cached in memory out of the box. During the lifetime of the app
process, once a page was loaded, your app will never request it again. If you cache
the paginated data in a local database, then your application will not need to request
a specific page for cases such as after an app restart.

• Paginated data is exposed as a data stream of the type that fits your need: Kotlin
Flow, LiveData, or RxJava. As you might have guessed, we will use Flow.

• Out-of-the-box support for View System or Compose-based UI components that
request data automatically when the user scrolls toward the end of the list. With
such support, we don't have to know when to request new pages with data as the
UI layer will trigger that for us out of the box.

• Retry and refresh capabilities triggered directly by the UI components.

Before moving to the actual integration of the Paging library, let's spend a bit of time
looking over the main components part of the Paging API. To ensure paging in your
application with the Jetpack Paging API, you must use the following:

• A PagingSource component—Defines the source of data for the paginated
content. This object decides which page to request and loads it from your remote or
local data source. If you're looking to have both a local and remote data source for
your paginated content, you could use the built-in RemoteMediator API of the
Paging library. Check out the Further reading section for more information on this.

• A Pager component—Based on the defined PagingSource component, you
can construct a Pager object that will expose a stream of PagingData objects.
You can configure the Pager object by passing a PagingConfig object to its
constructor and specifying the page size of your data, for example.

Exploring pagination with Jetpack Paging 381

The PagingData class is a wrapper over your paginated data containing a set
of items part of the corresponding page. The PagingData object is responsible
for triggering a query for a new page with items that is then forwarded to the
PagingSource component.

• A dedicated UI component that supports pagination—To consume the stream of
paginated content, your UI must make use of dedicated UI components that can
handle paginated data. If your UI is based on the traditional View System, you
could use the PagingDataAdapter component. Since our UI layer is based on
Compose, LazyColumn has us covered as it knows how to consume paginated data
(more on that in the next section).

To get a visual understanding of how all these components should fit, let's take the
following example of a possible implementation of the Paging library inside our
Repositories App:

Figure 11.5 – Observing how Paging library APIs can be used in the Repositories App

At the UI level, our composable collects a flow that contains a stream of
PagingData<Repository> objects. The PagingData object contains a list of
Repository objects, and behind the scenes, it's responsible for forwarding requests for
new pages to PagingSource, which in turn asks for new items from our REST API.

Inside ViewModel, we will have a Pager object that will use an instance of
PagingSource. We will define a PagingSource object so that it knows which page to
ask for and where to ask for it—that is, the GitHub Search API.

Now that we have covered the theoretical aspects of our pagination integration with
Jetpack Paging, let's see which practical tasks we will be working on in this section. We
will be doing the following:

• Implementing pagination with Jetpack Paging

• Implementing loading and error states plus retry functionality

Let's proceed with the first task: integrating pagination in our Repositories App.

382 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

Implementing pagination with Jetpack Paging
In this section, we will integrate paging in our Repositories App and create an infinite list
of repositories with the help of Jetpack Paging. To achieve that, we will implement and add
all the components described in the previous section.

Let's get cracking! Proceed as follows:

1. First, inside the app-level build.gradle file, in the dependencies block, add
the Compose Gradle dependency for Jetpack Paging, as follows:

dependencies {

 […]

 implementation "androidx.paging:

 paging-compose:1.0.0-alpha14"

}

After updating the build.gradle file, make sure to sync your project with its
Gradle files. You can do that by pressing on the File menu option and then by
selecting Sync Project with Gradle Files.

2. Next up, let's refactor our Retrofit RepositoriesApiService interface by
removing the hardcoded page index of 1 within the @GET() request annotation,
and by adding a query page parameter of type Int representing the page index
we're looking to acquire. The code is illustrated in the following snippet:

interface RepositoriesApiService {

 @GET("repositories?q=mobile&sort=stars&per_page=20")

 suspend fun getRepositories(@Query("page") page:Int):

 RepositoriesResponse

}

Before these changes, we were always obtaining the first page of repository results.
Now, we have updated our network request to harvest the power of paginated REST
APIs—that is, the capability to ask for a different page index based on the scrolling
position of the user.

To achieve this, we used the Retrofit @Query() annotation, which
basically will insert the value of the page parameter we have defined in the
getRepositories() method into the GET request. As the GitHub Search API
expects a "page" query key in the URL request, we have passed the "page" key to
the @Query() annotation.

Exploring pagination with Jetpack Paging 383

3. It's now time to build a PagingSource component that will request new pages
through our RepositoriesApiService dependency and will keep track of
which page to ask for, while also keeping an in-memory cache of the previously
retrieved pages.

Inside the root package of the app, create a new class named
RepositoriesPagingSource and paste the following code below it:

class RepositoriesPagingSource(

 private val restInterface: RepositoriesApiService

 = DependencyContainer.repositoriesRetrofitClient,

) : PagingSource<Int, Repository>() {

 override suspend fun load(params: LoadParams<Int>)

 : LoadResult<Int, Repository> {

 }

 override fun getRefreshKey(

 state: PagingState<Int, Repository>,

): Int? {

 return null

 }

}

Let's break down the code we have just added. This component is doing the
following:

 � It is in charge of requesting new pages, so it has a dependency on
RepositoriesApiService as the restInterface constructor field.

 � It is a PagingSource component, so it inherits from the PagingSource
class while also defining the following:

• A key as the type of the page index—in our case, the GitHub Search
API requires an integer representing the index of the page, so we set the
key as Int.

• Type of the loaded data—in our case, Repository objects.

384 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

 � Implementing the following two mandatory functions:

• The load() suspending function, which is called automatically by the
Paging library and should fetch more items asynchronously. This method
takes in a LoadParams object that keeps track of information such as
what is the key (index) of the page that must be requested, or the initial
load size of items. Also, this method returns a LoadResult object
indicating if a specific query result was successful or has failed.

• The getRefreshKey() function, which is called to obtain and return
the most recent page key in case of a refresh event so that the user is
returned to the latest known page (and not the first one). A refresh event
can come from a variety of sources, such as a manual UI refresh triggered
by the user, a database cache invalidation event, system events, and so on.

For simplicity, and also because we will not implement refresh capabilities, we will
skip implementing the getRefreshKey() method, so we just returned null
inside the body of this method. However, if you're looking to also support such
behavior, check out the Further reading section where additional resources are listed
to help you provide an implementation for this method.

4. Now that we have covered the purpose of the two mandatory methods, let's
implement the one we're really interested in—the load() function.

This method should return a LoadResult object, so first, add a try-catch
block, and inside the catch block, return an Error() instance of LoadResult
by passing the Exception object that was caught, as illustrated in the following
code snippet:

class RepositoriesPagingSource(…) : […] {

 override suspend fun load(params: LoadParams<Int>)

 : LoadResult<Int, Repository> {

 try {

 } catch (e: Exception) {

 return LoadResult.Error(e)

 }

 }

 override fun getRefreshKey(…): Int? { … }

}

With this approach, if the request for a new page fails, we let the Paging library
know that an error event occurred by returning the LoadResult.Error object.

Exploring pagination with Jetpack Paging 385

5. Next up, inside the try block, we must first obtain and store the next page we're
interested in. Store the index of the next page inside the nextPage variable, as
follows:

class RepositoriesPagingSource(…) : […] {

 override suspend fun load(params: LoadParams<Int>)

 : LoadResult<Int, Repository> {

 try {

 val nextPage = params.key ?: 1

 } catch (e: Exception) {

 return LoadResult.Error(e)

 }

 }

 override fun getRefreshKey(…): Int? { … }

}

We obtained the index for the next page by tapping into the params parameter
and getting its key field—this field will always give us the index of the next page
that must be loaded. If this is the first time a page is requested, the key field will be
null, so we default to the value of 1 in that case.

6. Since we now know the index of the next page of repositories that we need, let's
query our REST API for that specific page by calling the getRepositories()
method of restInterface and by passing in the newly defined nextPage
parameter, as follows:

class RepositoriesPagingSource(…) : […] {

 override suspend fun load(params: LoadParams<Int>)

 : LoadResult<Int, Repository> {

 try {

 val nextPage = params.key ?: 1

 val repos = restInterface

 .getRepositories(nextPage).repos

 } catch (e: Exception) {

 return LoadResult.Error(e)

 }

 }

 override fun getRefreshKey(…): Int? { … }

}

386 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

In this step, we also store a list of Repository objects from within the response
inside the reposResponse variable.

7. Next up, we must return a LoadResult object, as the request to our REST API is
successful at this point. Let's instantiate and return a LoadResult.Page object,
as follows:

class RepositoriesPagingSource(…) : […] {

 override suspend fun load(params: LoadParams<Int>)

 : […] {

 try {

 val nextPage = params.key ?: 1

 val repos = restInterface

 .getRepositories(nextPage).repos

 return LoadResult.Page(

 data = repos,

 prevKey = if (nextPage == 1) null

 else nextPage - 1,

 nextKey = nextPage + 1)

 } catch (e: Exception) {

 return LoadResult.Error(e)

 }

 }

 override fun getRefreshKey(…): Int? { … }

}

We had to pass the following to the LoadResult.Page() constructor:

 � A list of Repository objects from the newly requested page to the data
parameter.

 � The previous key of the newly requested page to the prevKey parameter. This
key is important if, for some reason, the previous pages are invalidated and
must be reloaded when the user starts scrolling up. Most of the time, we would
deduct 1 from the nextPage value, yet we also made sure that if we had just
requested the first page (the value of nextPage would be 1), we would pass
null to the prevKey parameter.

 � The next key after nextPage to the nextKey parameter. This is a simple one
as we have just added 1 to the value of nextPage.

Exploring pagination with Jetpack Paging 387

Now that we finished the PagingSource implementation, it's time to build the
Pager component and get a stream of paginated data.

8. Inside RepositoriesViewModel, replace the RepositoriesApiService
dependency with the newly created RepositoriesPagingSource class, as
follows:

class RepositoriesViewModel(

 private val reposPagingSource:

 RepositoriesPagingSource = RepositoriesPagingSource()

) : ViewModel() {

}

At the same time, we make sure to remove any existing implementation inside the
RepositoriesViewModel, leaving it blank for the upcoming step.

9. Still inside the RepositoriesViewModel, define a repositories variable
that will hold our flow of paginated data, like this:

import kotlinx.coroutines.flow.Flow

class RepositoriesViewModel(

 private val reposPagingSource:

 RepositoriesPagingSource = RepositoriesPagingSource()

) : ViewModel() {

 val repositories: Flow<PagingData<Repository>>

}

The paginated content with Repository items is held within a
PagingData container, making our stream of data to be of type
Flow<PagingData<Repository>>.

Now, we must instantiate our repositories variable. However, creating a flow is
not trivial, especially when the data (the list of repositories) must grow as the user
scrolls. The Paging library has us covered, as it will hide this complexity from us
and will provide us with a flow that emits data as we would expect it to: when the
user scrolls to the end of the list, new requests are made to the backend, and new
Repository objects are appended to the list.

388 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

10. As the first step to obtaining our flow of paginated data, we must create an instance
of the Pager class based on the previously created PagingSource object, like so:

class RepositoriesViewModel(

 private val reposPagingSource:

 RepositoriesPagingSource = RepositoriesPagingSource()

) : ViewModel() {

 val repositories: Flow<PagingData<Repository>> =

 Pager(

 config = PagingConfig(pageSize = 20),

 pagingSourceFactory = {

 reposPagingSource

 })

}

To create an instance of a Pager, we called the Pager() constructor and passed
the following:

 � A PagingConfig object with a pageSize value of 20 (to match this value
with the number of repositories we're requesting from the backend) to the
config parameter.

 � The reposPagingSource instance of type RepositoriesPagingSource
to the pagingSourceFactory parameter. By doing so, the Paging library
will know which PagingSource object to query for new pages.

11. Finally, to obtain a flow with data from the newly created Pager instance, we must
simply access the flow field exposed by the resulted Pager instance, as follows:

class RepositoriesViewModel(...) : ViewModel() {

 val repositories: Flow<PagingData<Repository>> =

 Pager(

 config = PagingConfig(pageSize = 20),

 pagingSourceFactory = {

 reposPagingSource

 }).flow.cachedIn(viewModelScope)

}

Exploring pagination with Jetpack Paging 389

On the resulting flow, we also called the cachedIn() extension function
that makes sure that the stream of data is kept alive as long as the passed
CoroutineScope object is alive and then returns back the same flow it's
called upon. Since we wanted the paginated content to be cached as long as the
ViewModel is kept in memory, we passed the viewModelScope scope to this
extension function. This makes sure that the flow is also preserved upon events
where the ViewModel survives—for example, configuration change.

12. Now, we must obtain the flow in our Compose-based UI, so inside the
RepositoriesAppTheme() composable call from within MainActivity,
replace the repos variable with the reposFlow variable that holds a reference to
the repositories flow variable of the ViewModel, as follows:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 RepositoriesAppTheme {

 val viewModel: RepositoriesViewModel =

 viewModel()

 val reposFlow = viewModel.repositories

 RepositoriesScreen()

 }

 }

 }

}

13. Next up, we must use a special collection function (similar to the collect()
function used in the previous section) that can consume and remember the
paginated data from within reposFlow in the context of Compose.

Declare a new variable called lazyRepoItems and instantiate it with the result
returned from the collectAsLazyPagingItems() call on reposFlow,
as follows:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 RepositoriesAppTheme {

390 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

 val viewModel: […] = viewModel()

 val reposFlow = viewModel.repositories

 val lazyRepoItems

 : LazyPagingItems<Repository> =

 reposFlow.collectAsLazyPagingItems()

 RepositoriesScreen(lazyRepoItems)

 }

 }

 }

}

The collectAsLazyPagingItems() function returned a LazyPagingItems
object filled with Repository objects. The LazyPagingItems object is
responsible for accessing Repository objects from the flow so that they can be
consumed by our LazyColumn component later on—that's why, in the end, we
passed lazyRepoItems to the RepositoriesScreen() composable.

14. Moving to the last piece of the puzzle, the RepositoriesScreen() composable,
make sure that it accepts the LazyPagingItems object returned by our flow by
adding the repos parameter, as follows:

@Composable

fun RepositoriesScreen(

 repos: LazyPagingItems<Repository>

) {

 LazyColumn (…) {

 }

}

Also, while you're at this step, remove all the code inside the DSL content block
exposed by LazyColumn as we will re-add it in a different structure in the next step.

15. Finally, still inside RepositoriesScreen(), pass the repos input parameter
to another itemsIndexed() DSL function that accepts LazyPagingItems,
as follows:

@Composable

fun RepositoriesScreen(

 repos: LazyPagingItems<Repository>

) {

 LazyColumn(…) {

Exploring pagination with Jetpack Paging 391

 itemsIndexed(repos) { index, repo ->

 if (repo != null) {

 RepositoryItem(index, repo)

 }

 }

 }

}

The LazyColumn API knows how to consume paginated data and how to
report back to our instances of Pager and PagingSource when a new page
should be loaded, and that's why we made use of an overloaded variant of the
itemsIndexed() DSL function that accepts LazyPagingItems as content.

Also, because the returned repo value can be null, we added a null check before
passing it to our RepositoryItem() composable.

16. Finally, build and run the application. Try to scroll to the bottom of the repositories
list. This should trigger a request to get new items, and therefore you should be able
to scroll and browse through an endless list of repositories.

Note
If you make too many requests to the GitHub Search API, you might be
temporarily limited, and the application will stop loading new items and throw
an error. To make our application express such an event, we will learn how to
display error states, up next.

Next up, let's improve the UI and UX of our application by adding loading and error states
in the context of an infinite list.

Implementing loading and error states plus retry
functionality
While our application now features an infinite list that the user can scroll through, it
doesn't express any sort of loading or error state. The good news is that the Paging library
tells us exactly when loading states or error states must be shown.

However, before jumping into the actual implementation, we should first cover the
possible loading states and error states that emerge from interacting with an app that
features pagination. Luckily, all these cases are already covered by the Paging API.

392 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

While the LazyPagingItems API provides us with several LoadState objects, the
most common ones—and the ones we will need in this section—are the refresh and
append types, as explained in more detail here:

• The LoadState.refresh instance of LoadState represents initial states that
occur after the first request of paginated items or after a refresh event. The two
values that we're interested in for this object are these:

 � LoadState.Loading — This state means that the app is expressing the
initial loading status. When this status arrives for the first time after an app
launch, no content would be painted on the screen at that point.

 � LoadState.Error — This state means that the app is expressing the initial
error status. Just as with the previous state, if this status arrives for the first time
after an app launch, no content is present.

• The LoadState.append instance of LoadState represents states that occur at
the end of a subsequent request of paginated items. The two values we're interested
in for this object are similar to type refresh but have different significance, as
outlined here:

 � LoadState.Loading — This state means that the app is in a loading status
at the end of a subsequent request for a page with repositories; in other words,
the app has requested another page with repositories and it's waiting for the
results to arrive. At this point, there should be content rendered from the
previous pages.

 � LoadState.Error — This state means that the app reached an error status
after a subsequent request for a page with repositories. In other words, the app has
requested another page with repositories but the request has failed. Just as with
the previous state, there should be content rendered from the previous pages.

Let's listen for these states in our app and start with type LoadState.refresh,
as follows:

1. Inside the RepositoriesScreen() composable, below the itemsIndexed()
call, store the refresh load state instance inside the refreshLoadstate
variable, as follows:

@Composable

fun RepositoriesScreen(

 repos: LazyPagingItems<Repository>

) {

 LazyColumn(…) {

Exploring pagination with Jetpack Paging 393

 itemsIndexed(repos) { index, repo ->

 if (repo != null) {

 RepositoryItem(index, repo)

 }

 }

 val refreshLoadState = repos.loadState.refresh

 }

}

Every time this refreshes, LoadState will change; the values within
refreshLoadState will be the latest ones and will correspond to the page where
they occurred.

2. Next up, create a when expression and verify whether refreshLoadState
is of type LoadState.Loading, and if it is, inside a new item() call, pass a
LoadingItem() composable that we will define in a bit. The code is illustrated in
the following snippet:

@Composable

fun RepositoriesScreen(

 repos: LazyPagingItems<Repository>

) {

 LazyColumn(…) {

 itemsIndexed(repos) { index, repo ->

 if (repo != null) {

 RepositoryItem(index, repo)

 }

 }

 val refreshLoadState = repos.loadState.refresh

 when {

 refreshLoadState is LoadState.Loading -> {

 item {

 LoadingItem(

 Modifier.fillParentMaxSize())

 }

 }

 }

 }

}

394 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

Since we are adding another item() call below the itemsIndexed() DSL call,
we are actually adding another composable below the list of composables from
the itemsIndexed() call. However, since refreshLoadState can be of type
LoadState.Loading on the first request for a page of items, this means that the
screen is empty at this time, so we also passed a fillParentMaxSize modifier to
the LoadingItem() composable, thus making sure that this composable will take
up the entire size of the screen.

3. Next up, at the bottom of the RepositoriesScreen.kt file, let's quickly define
a LoadingItem() function that will feature a
CirculatorProgressIndicator() composable, as follows:

@Composable

fun LoadingItem(

 modifier: Modifier = Modifier

) {

 Column(

 modifier = modifier.padding(24.dp),

 verticalArrangement = Arrangement.Center,

 horizontalAlignment =

 Alignment.CenterHorizontally

) { CircularProgressIndicator() }

}

4. Now, run the app, and notice how the progress indicator animation is running
before the first page of repositories is loaded and how it is occupying the entire
screen, as illustrated in the following screenshot:

Figure 11.6 – Adding a loading animation for the first request of paginated content

Exploring pagination with Jetpack Paging 395

5. Now, let's cover the case where refreshLoadState is of type
Loadstate.Error. Back inside the LazyColumn component of the
RepositoriesScreen() composable, below the first when branch, add another
check for the state to be LoadState.Loading—and if that's the case, add an
ErrorItem() composable that we will define in a bit. The code that you must add
is illustrated in the following snippet:

@Composable

fun RepositoriesScreen(

 repos: LazyPagingItems<Repository>

) {

 LazyColumn(…) {

 itemsIndexed(repos) { index, repo -> […] }

 val refreshLoadState = repos.loadState.refresh

 when {

 refreshLoadState is LoadState.Loading -> {

 item { LoadingItem(…) }

 }

 refreshLoadState is LoadState.Error -> {

 val error = refreshLoadState.error

 item {

 ErrorItem(

 message = error.localizedMessage

 ?: "",

 modifier =

 Modifier.fillParentMaxSize()

)

 }

 }

 }

 }

}

The ErrorItem() composable requires an error message to display, so we stored
the Throwable object from LoadState in the error variable and passed its
localizedMessage value to the message parameter of the composable.

396 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

Similar to the LoadState.Loading case from before, we are adding another
item() call below the itemsIndexed() DSL call, so we are actually adding
another composable below the list of composables from the itemsIndexed()
call. Also, since refreshLoadState can be of type LoadState.Error on
the request for the first page of items, this means that the screen is empty at this
time, so we also passed a fillParentMaxSize modifier to the ErrorItem()
composable, thus making sure that this composable is taking up the entire size of
the screen.

6. Next up, at the bottom of the RepositoriesScreen.kt file, let's quickly define
an ErrorItem() function that will feature a Text() composable displaying a red
error message, as follows:

@Composable

fun ErrorItem(

 message: String,

 modifier: Modifier = Modifier) {

 Row(

 modifier = modifier.padding(16.dp),

 horizontalArrangement =

 Arrangement.SpaceBetween,

 verticalAlignment = Alignment.CenterVertically

) {

 Text(

 text = message,

 maxLines = 2,

 modifier = Modifier.weight(1f),

 style = MaterialTheme.typography.h6,

 color = Color.Red)

 }

}

7. To mimic an error state, run the app on your emulator or physical device without an
internet connection, and you should see a similar error occupying the entire screen,
as illustrated in the following screenshot:

Exploring pagination with Jetpack Paging 397

Figure 11.7 – Adding an error message for the first request of paginated content
Note that the error message could be different depending on the circumstances of
the error scenario that you have created.

Before moving on to the append type of LoadState, let's briefly cover the retry
functionality that is provided out of the box by the Paging library. In other words,
we want to give the user the option to retry obtaining the data in case something
went wrong, such as with our forced-error case of disconnecting the test device
from the internet.

Let's do that next.
8. Refactor the ErrorItem() composable to accept an onClick() function

parameter that will be triggered by the onClick event caused by the press of a new
retry Button() composable, as follows:

@Composable

fun ErrorItem(

 message: String,

 modifier: Modifier = Modifier,

 onClick: () -> Unit) {

 Row(...) {

 Text(...)

 Button(

 onClick = onClick,

 modifier = Modifier.padding(8.dp)

) { Text(text = "Try again") }

 }

}

398 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

Also, inside the Row() composable that was displaying the error message, we
have now added a Button() composable that when pressed, forwards the event
to its caller.

9. Then, back inside the LazyColumn component of RepositoriesScreen(),
find the case where LoadState is of type LoadState.Error and implement
the onClick parameter of the ErrorItem() composable that will now trigger a
reload. The code is illustrated in the following snippet:

@Composable

fun RepositoriesScreen(

 repos: LazyPagingItems<Repository>

) {

 LazyColumn(…) {

 itemsIndexed(repos) { index, repo -> […] }

 val refreshLoadState = repos.loadState.refresh

 when {

 refreshLoadState is LoadState.Loading -> {

 …

 }

 refreshLoadState is LoadState.Error -> {

 val error = refreshLoadState.error

 item {

 ErrorItem(

 message = error.localizedMessage

 ?: "",

 modifier =

 Modifier.fillParentMaxSize(),

 onClick = { repos.retry() })

 }

 }

 }

 }

}

To trigger a reload, we called the retry() function provided by our
LazyPagingItems instance. Behind the scenes, when the retry() function is
called, the Paging library notifies PagingSource to request the problematic page
again—in this case, for us, the first page with repositories.

Exploring pagination with Jetpack Paging 399

10. Run the app on your emulator or physical device without an internet connection.
You should now see the error state occupying the entire screen containing the error
message, but also a retry button. The following screenshot provides a depiction of this:

Figure 11.8 – Adding error message and retry button for the first request of paginated content
Don't press the retry button just yet.

11. Reconnect your device to the internet and then press the retry button. As an effect
of this action, the content should now load successfully.

Now that we have covered the possible LoadState values for the refresh state,
it's time to also cover the values for the append state. As we previously stated,
type LoadState.append represents states that occur at the end of a subsequent
request of paginated items.

The possible states we're interested in for this scenario are the LoadState.Loading
state—meaning the user has scrolled toward the end of the list and the app is waiting
for another page with repositories—and the LoadState.Error state—meaning
that the user has scrolled toward the end of the list but the request to get a new page
with repositories has failed.

12. Inside the block of code exposed by the itemsIndexed() call from within
the RepositoriesScreen() composable, just as we did with the refresh
state, store the append state inside a new appendLoadState variable, and
then add two corresponding branches inside the when expression treating the
LoadState.Loading and the LoadState.Error cases. The code is
illustrated in the following snippet:

@Composable

fun RepositoriesScreen(

 repos: LazyPagingItems<Repository>

) {

 LazyColumn(…) {

 itemsIndexed(repos) { […] }

 val refreshLoadState = repos.loadState.refresh

 val appendLoadState = repos.loadState.append

 when {

 refreshLoadState is LoadState.Loading -> {

 item {

400 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

 LoadingItem(...)

 }

 }

 refreshLoadState is LoadState.Error -> {

 val error = refreshLoadState.error

 item {

 ErrorItem(

 message = error.localizedMessage

 ?: "",

 modifier = ...,

 onClick = { repos.retry() })

 }

 }

 appendLoadState is LoadState.Loading -> {

 item {

 LoadingItem(

 Modifier.fillMaxWidth())

 }

 }

 appendLoadState is LoadState.Error -> {

 val error = appendLoadState.error

 item {

 ErrorItem(

 message = error.localizedMessage

 ?: "",

 onClick = { repos.retry() })

 }

 }

 }

 }

}

The way we treated the possible values of appendLoadState is very similar to
how we treated the possible values of refreshLoadState. However, the notable
difference is that appendLoadState state values occur when the app has already
loaded some pages and the user has scrolled toward the end of our list, meaning
that our app is either waiting for a new page with repositories or failed to load it.

Exploring pagination with Jetpack Paging 401

That's why, in the LoadState.Loading case, we have passed the
Modifier.fillMaxWidth() modifier to the LoadingItem() composable,
therefore making sure that the loading indicator item appears at the bottom
of the list as a list element. In other words, the loading element will take only
the available width and it will not cover the entire screen like we did when
refreshLoadState was of type LoadState.Loading.

Similarly, for the LoadState.Error case, we passed the
Modifier.fillMaxWidth() modifier to the ErrorItem() composable,
therefore making sure that the error element appears as a list element and doesn't
cover the entire screen like we did when refreshLoadState was of type
LoadState.Error.

Let's see these two cases in practice, and let's start with the case when our
appendLoadState instance has a value of LoadState.Loading.

13. First, run the app while your test device is connected to the internet. If you scroll
down to the bottom of the list with repositories, you should see the loading
indicator animation displayed until a new page with repositories is loaded, as
illustrated in the following screenshot:

Figure 11.9 – Adding a loading animation for a subsequent request of paginated content

402 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

Unlike the loading indicator that is shown initially, this indicator appears as an
item within the list, thereby indicating that the app is waiting for a new page
with repositories.

Note
If your network speed is very fast, you might miss the loading spinner as
you are scrolling through new pages. To simulate a slower connection, you
can change the network speed of your Android emulator by going into AVD
Manager, pressing the Edit button of your emulator, and then selecting Show
Advanced Settings. Inside this menu, you can slow down the internet speed of
your emulator so that you can see the loading spinner.

Now, let's test the case when our appendLoadState instance is of type
LoadState.Error.

14. First, run the app while your test device is connected to the internet.
15. Then, disconnect your test device from the internet and scroll down to the bottom

of the list with repositories. Initially, you might see the loading indicator, yet after a
short period of time, you should see the error element appearing at the bottom of
the list, as illustrated in the following screenshot:

Figure 11.10 – Adding error element for a subsequent request of paginated content

Summary 403

Unlike the error message that is shown initially, this error element appears as an
item in the list, thereby indicating that the app has failed to obtain the next page
with repositories.

16. Optionally, you can reconnect your device to the internet and press the retry
button—the new page with repositories should now load, so you can continue
browsing and scrolling for more items.

Summary
In this chapter, we first understood what pagination is and how pagination can be used to
expose large datasets of items to users in a more efficient manner.

Then, we got to meet the Repositories App, a simple Android project where a fixed amount
of GitHub repositories was displayed. At that point, we took the decision that users should
be able to browse through a huge number of repositories that the GitHub Search API is
exposing, so the only solution for that was to integrate paging within our app.

However, we then realized that we needed to first understand the concept of data streams
in the context of pagination, so we learned a few things about Kotlin Flow and how it can
be a simple solution to consume paginated content.

Then, we explored how the Jetpack Paging library is an elegant solution to adding
pagination to our apps, culminating with the practical task of integrating paging in our
Repositories App with the help of this library. Finally, we transformed our Repositories
App into a modern application that creates the illusion of an infinite list of repositories,
with initial and intermediary loading or error states, as well as retry functionality.

In the next chapter, we will tackle yet another Jetpack subject—Lifecycle components!

Further reading
In this chapter, we briefly covered how you can integrate Jetpack Paging into an Android
application. However, in the context of pagination and Jetpack Paging, there are a couple
of more advanced topics that you might end up wondering about, as outlined here:

• Having both a local and remote source for paginated content—For such a
case, you will need a component that manages communication between the two
data sources. For this task, you could use the built-in RemoteMediator API of
the Paging library. You can learn more about it from its official documentation
at https://developer.android.com/topic/libraries/
architecture/paging/v3-network-db#implement-remotemediator.

https://developer.android.com/topic/libraries/architecture/paging/v3-network-db#implement-remotemediator
https://developer.android.com/topic/libraries/architecture/paging/v3-network-db#implement-remotemediator

404 Creating Infinite Lists with Jetpack Paging and Kotlin Flow

• Adding support for content refresh or invalidation—If you're looking to support
pull-to-refresh functionality, or you're interested in making sure that the user is
returned to the appropriate page upon various system events that could restart
the paginated content, you need to obtain the refresh keys of the PagingSource
component. Learn more about this from the official documentation at https://
developer.android.com/topic/libraries/architecture/paging/
v3-migration#refresh-keys.

As you know by now, testing is very important. In the context of paging, testing can
get a little trickier. If you're interested in learning how to test your paging app, check
out the official documentation at https://developer.android.com/topic/
libraries/architecture/paging/test.

https://developer.android.com/topic/libraries/architecture/paging/v3-migration#refresh-keys
https://developer.android.com/topic/libraries/architecture/paging/v3-migration#refresh-keys
https://developer.android.com/topic/libraries/architecture/paging/v3-migration#refresh-keys
https://developer.android.com/topic/libraries/architecture/paging/test
https://developer.android.com/topic/libraries/architecture/paging/test

12
Exploring the

Jetpack Lifecycle
Components

In this chapter, we're adding a countdown timer component to our Repositories app from
Chapter 11, Creating Infinite Lists with Jetpack Paging and Kotlin Flow, while also exploring
the Jetpack Lifecycle components.

In the first section, Introducing the Jetpack Lifecycle components, we want to explore how
the lifecycle events and states are tied to Android components such as Activity or
Fragment, and then how predefined components from the Lifecycle package can
react to them.

Next, in the Adding a countdown component in the Repositories app section, we will be
creating and adding a countdown timer component to the Repositories app. When a
60-second countdown finishes, we will award users with a fictional prize.

406 Exploring the Jetpack Lifecycle Components

However, we will want the countdown to run as long as the timer is visible on the screen;
otherwise, users could cheat by minimizing the application and having the countdown
run in background. In the Creating your own lifecycle-aware component section, we will
prevent users from cheating by making our timer component aware of the different
lifecycle events and states that our Android components traverse.

In the Making our countdown component aware of the lifecycle of composables section, we
will realize that users can also cheat on the countdown contest by scrolling and hiding
the timer countdown UI element. To prevent them from doing that, we will also make
sure that our countdown component knows how to react to composition cycles that our
Compose UI features.

To summarize, in this chapter, we will be covering the following sections:

• Introducing the Jetpack Lifecycle components

• Adding a countdown component in the Repositories app

• Creating your own lifecycle-aware component

• Making our countdown component aware of the lifecycle of composables

Before jumping in, let's set up the technical requirements for this chapter.

Technical requirements
Building Compose-based Android projects for this chapter usually requires your
day-to-day tools. However, to follow along with this chapter smoothly, make sure
that you also have the following:

• The Arctic Fox 2020.3.1 version of Android Studio. You can also use a newer
Android Studio version or even Canary builds but note that the IDE interface and
other generated code files might differ from the ones used throughout this book.

• A Kotlin 1.6.10 or newer plugin installed in Android Studio.

• The existing Repositories app from the GitHub repository of the book.

Introducing the Jetpack Lifecycle components 407

The starting point for this chapter is represented by the Repositories app developed in
the previous chapter. If you haven't followed the implementation from the
previous chapter, access the starting point for this chapter by navigating to the
Chapter_11 directory of the repository and importing the Android project entitled
repositories_app_solution_ch11.

To access the solution code for this chapter, navigate to the Chapter_12 directory:
https://github.com/PacktPublishing/Kickstart-Modern-Android-
Development-with-Jetpack-and-Kotlin/tree/main/Chapter_12/
repositories_app_ch12.

Introducing the Jetpack Lifecycle components
It's no secret by now that components within the Android framework have certain
lifecycles that we must respect when we need to interact with them. The most common
components that own a lifecycle are Activity and Fragment.

As programmers, we cannot control the lifecycle of Android components because their
lifecycle is defined and controlled by the system or the way Android works.

Going back to Lifecycle components, a very good example is the entry point to our
Android application, represented by the Activity component, which, as we know,
possesses a lifecycle. This means that in order to create a screen in our Android
application, we need to create an Activity component – from this point on, all our
components must be aware of its lifecycle to not leak any memory.

Now, when we say that Activity has a system-defined lifecycle, this actually translates
into our Activity class inheriting from ComponentActivity(), which in turn
contains a Lifecycle object. If we have a look at our MainActivity class from the
Repositories app, we can see that it inherits from ComponentActivity():

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 […]

 }

}

https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_12/repositories_app_ch12
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_12/repositories_app_ch12
https://github.com/PacktPublishing/Kickstart-Modern-Android-Development-with-Jetpack-and-Kotlin/tree/main/Chapter_12/repositories_app_ch12

408 Exploring the Jetpack Lifecycle Components

Now, if we dig into the source code of the ComponentActivity.java class, we can see
that it implements the LifecycleOwner interface:

Figure 12.1 – Observing how ComponentActivity implements the LifecycleOwner interface

In other words, the ComponentActivity class is an owner of a lifecycle. If we check
out the implementation of the LifecycleOwner interface a few hundreds of lines
downward in the source code, we can see that the LifecycleOwner interface contains
a single method called getLifecycle() that returns a Lifecycle object:

Figure 12.2 – Observing the implementation of the LifecycleOwner interface method

From these findings, we can deduct that our Activity classes have a system-defined
lifecycle, as they implement the LifecycleOwner interface, which in turn means that
they own a Lifecycle object.

Note
There are several other components in Android that have a lifecycle. In the
context of the Activity classes, there are other classes inheriting directly or
indirectly from ComponentActivity, therefore owning a Lifecycle
object – see AppCompatActivity or FragmentActivity.
Alternatively, just as Activity classes have a lifecycle, so do Fragment
components. If you check out the source code of the Fragment class, you
will notice that it also implements the LifecycleOwner interface, and so it
also contains a Lifecycle object.

Introducing the Jetpack Lifecycle components 409

Simply put, the concept of a component having a lifecycle boils down to the idea of it
providing a concrete implementation of the Lifecycle interface. This brings the idea
that components with a lifecycle, such as Activity, expose information related to their
lifecycle.

To better understand what we can find out about a component's lifecycle, we must explore
the source code of the Lifecycle abstract class. If we do that, we will learn that the
Lifecycle class contains information about the lifecycle state of the component that
it's bound to, such as Activity or Fragment. The Lifecycle class features two main
tracking pieces of information in the form of enumerations:

• Event: The events represented by the lifecycle callbacks that are triggered by the
system and that we are all familiar with by now (onCreate(), onStart(),
onResume(), onPause(), onStop(), and onDestroy()).

• State: The current state of the component tracked – INITIALIZED, DESTROYED,
CREATED, STARTED, and RESUMED. If our Activity just received the
onResume() callback, it means that until a new event arrives, it will stay in the
RESUMED state. Upon every new event (the lifecycle callback), the state changes.

While we were already pretty familiar with the lifecycle events (callbacks), we might need
to better understand how lifecycle states are defined.

Let's take a practical example and explore what information a Lifecycle object can
provide about an Activity component. As previously mentioned, the information is
structured in the form of events and states:

Figure 12.3 – The lifecycle of an Activity picturing its lifecycle events and states

410 Exploring the Jetpack Lifecycle Components

In the preceding diagram, we were able to dissect the lifecycle of an Activity
component by its events and states. We also now have a better overview of how lifecycle
events trigger transitions between lifecycle states.

But why do all these events and states matter to us?

In fact, most of our code is driven with respect to lifecycle information. To avoid potential
crashes, memory leaks, or wasting resources, it's essential to perform actions only in the
correct state or on the correct lifecycle event.

When we think of lifecycle events, we can say that different types of functionalities can
and should only be executed at appropriate times, or after certain lifecycle callbacks.
For example, we wouldn't want to update our UI components with data after the
onDestroy() callback in our Activity, as it's very likely that our app would crash
simply because the UI has been scrapped by this time. Another example would be that
when the onResume() event is called in our Activity, we would know that our
Activity has gained (or regained) focus, so we can perform certain actions in our code
such as initializing our camera component.

When we think of lifecycle states, we can say that different continuous actions can and
should be running only during certain lifecycle periods – for example, we would want to
start observing database changes if the state is RESUMED because that's when the user can
interact with the screen and mutate data. When this state transitions to a different one,
such as CREATED or DESTROYED, we might want to stop observing database changes so
that we avoid memory leaks and don't waste resources.

From the previous examples, it's clear that our code should be aware of the lifecycle of
Android components. When we write code based on lifecycle events or states, we're
writing code that is aware of the lifecycle of a specific component.

Let's take an example and use our imagination a bit – the Presenter class features
a data stream produced by several network requests. That data stream is observed
and passed to the UI. However, any ongoing network requests must be canceled in
the cancelOngoingNetworkRequests() method, as our UI no longer needs to
consume their response:

class Presenter() {

 // observe data and pass it to the UI

 fun cancelOngoingNetworkRequests() {

 // stop observing data

 }

}

Introducing the Jetpack Lifecycle components 411

Let's say that an instance of our Presenter class is used inside MainActivity.
Naturally, it must respect the lifecycle of the MainActivity class. That's why we should
stop any ongoing network requests from within the Presenter class by calling the
cancelOngoingNetworkRequests() method of the Presenter class inside the
onDestroyed() lifecycle callback of the MainActivity class:

class MainActivity : ComponentActivity() {

 val presenter = Presenter()

 override fun onStart() {

 super.onStart()

 //consume data from presenter

 }

 override fun onDestroy() {

 super.onDestroy()

 presenter.cancelOngoingNetworkRequests()

 }

}

We can say that our Presenter is aware of the lifecycle of its host, MainActivity.

If a component respects the lifecycle of an Android component such as Activity, then
we can consider that component to be lifecycle-aware.

However, we manually made our Presenter class be lifecycle-aware by manually calling
a certain cleanup method from the MainActivity lifecycle callback. In other words, we
had our MainActivity manually tell Presenter that it must stop its ongoing work.

Also, whenever we need to use our Presenter in some other Activity
or Fragment classes, that component will need to remember to call the
cancelOngoingNetworkRequests() method of Presenter on a certain lifecycle
callback, therefore producing boilerplate code. If Presenter needed multiple actions on
certain lifecycle callbacks, then that boilerplate code would have multiplied.

With the Jetpack Lifecycle package, we no longer need to manually force our Android
components to call methods on every other class that cares about their lifecycle events
or states. We can create lifecycle-aware components without having Activity or
Fragment components manually inform our classes that a certain lifecycle event was
triggered, or a certain state was reached – the Lifecycle package will help us receive
the callbacks directly inside our components in a more efficient manner.

412 Exploring the Jetpack Lifecycle Components

The Jetpack Lifecycle package provides us with the following:
• Predefined lifecycle-aware components with different purposes that require less

boilerplate or work from our side. Such components are two Jetpack libraries:

 � ViewModel

 � LiveData

• A Lifecycle API that allows us to create a custom lifecycle-aware component much
easier with less boilerplate code.

Before creating our own lifecycle-aware component, we should briefly cover the two
predefined lifecycle-aware components that the Jetpack Lifecycle package provides us
with. Let's begin with ViewModel.

ViewModel
In this book, we have already covered Jetpack's ViewModel as a class where our UI
state resides and where most of the presentation logic is found. However, we also learned
that in order to properly cancel data streams or ongoing network requests, ViewModel
is aware of the lifecycle of its host Activity, Fragment, and even its composable
destination (in conjunction with the Jetpack Navigation component).

In contrast to our Presenter class, whose lifecycle we have manually tied to the lifecycle
of a host Activity, Jetpack's ViewModel is a lifecycle-aware component that we can
use to eliminate any boilerplate calls from Activity or Fragment components.

To be more precise, ViewModel knows when its host component with a lifecycle reaches
the end of its lifecycle and provides us with a callback method that we can use by overriding
the onCleared() method. Inside this callback, we can cancel any pending work whose
result we're no longer interested in to avoid memory leaks or wasting resources.

As an example, if our ViewModel is hosted by an Activity, then it knows when in the
lifecycle of that Activity the onDestroy() event was called, and so it automatically
triggers the onCleared() callback:

Introducing the Jetpack Lifecycle components 413

Figure 12.4 – The lifecycle of ViewModel is tied to the lifecycle of an Activity

This basically means that instead of manually having our Activity inform the
ViewModel that its lifecycle has ended so that it can stop its work, ViewModel is
a lifecycle-aware component that does that out of the box for you by providing a handle
for that event – that is, the onCleared() callback:

class MyViewModel(): ViewModel() {

 override fun onCleared() {

 super.onCleared()

 // Cancel work

 }

}

414 Exploring the Jetpack Lifecycle Components

Additionally, in the context of an Activity host, the ViewModel component is also
aware of any lifecycle callbacks caused by events such as a configuration change, so it knows
how to outlive those and helps us maintain the UI state, even after a configuration change.

But how does ViewModel know about the lifecycle callbacks of an Activity
component? To answer that, we can look at a traditional way of instantiating a
ViewModel inside an Activity by using the ViewModelProvider API and
specifying the type of ViewModel that must be retrieved – that is, MyViewModel:

class MyActivity: ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 val vm =

 ViewModelProvider(this)[MyViewModel::class.java]

 // Perform operations

 }

}

To get an instance of MyViewModel, we used the ViewModelProvider() constructor
and passed the this instance of the MyActivity class to the owner parameter that
expected a ViewModelStoreOwner object. MyActivity indirectly implements the
ViewModelStoreOwner interface because ComponentActivity does so.

To control the lifetime of the instance of our ViewModel, ViewModelProvider
needs an instance of ViewModelStoreOwner because when it instantiates
our MyViewModel, it will link the lifetime of this instance to the lifetime of the
ViewModelStoreOwner – that is, MyActivity.

But how does ViewModel know when it must be cleared? In other words, what triggers
the onCleared() method of the MyViewModel class?

ComponentActivity will wait for its onDestroy() lifecycle callback, and when
that event is triggered, it will call the getViewModelStore() method of the
ViewModelStoreOwner interface and obtain a ViewModelStore object. On this
object, it will then call the clear() method to clear the ViewModel instance that was
linked to ComponentActivity – in our case, the MyViewModel instance.

If you check out the source code of the ComponentActivity class, you will find the
following implementation, which proves the previous points we're trying to express:

Introducing the Jetpack Lifecycle components 415

Figure 12.5 – ViewModel is cleared on the onDestroy() callback of ComponentActivity

Now, the ViewModel lifecycle-aware component is helpful because it allows us to easily
stop pending work and also persist UI state across configuration changes.

However, there is another important lifecycle-aware component that we haven't covered in
this book and that we should briefly mention, and that is LiveData.

LiveData
LiveData is an observable data holder class that allows us to get data updates in
a lifecycle-aware manner inside our Android components, such as Activity and
Fragment. While specific implementations of Kotlin Flow data streams are similar to
LiveData because both allow us to receive multiple data events over time, LiveData
presents the advantage of being a lifecycle-aware component.

Note
In this section, we won't cover LiveData extensively to understand its API.
Instead, we will try to highlight its lifecycle-aware character. Right now, you
don't have to code along.

Without going into too much detail, let's see a simple usage of a LiveData object kept
inside a ViewModel class and consumed from an Activity component.

416 Exploring the Jetpack Lifecycle Components

Inside ViewModel, we instantiated a MutableLiveData object that will hold values
of type Int, passed an initial value of 0, and then in the init{} block launched a
coroutine, where we've set the value to 100 after a 5000-millisecond delay:

class MyViewModel(): ViewModel() {

 val numberLiveData: MutableLiveData<Int> =

 MutableLiveData(0)

 init {

 viewModelScope.launch {

 delay(5000)

 numberLiveData.value = 100

 }

 }

}

numberLiveData is now a data holder that will first notify any components observing it
of the value 0 and, after 5 seconds, the value 100.

Now, an Activity can be observing these values by first obtaining an instance of
MyViewModel, tapping into its numberLiveData object, and then starting to observe
the changes through the observe() method:

class MyActivity: ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 val vm =

 ViewModelProvider(this)[MyViewModel::class.java]

 vm.numberLiveData.observe(this, object: Observer<Int> {

 override fun onChanged(t: Int?) {

 // Consume values

 }

 })

 }

}

Introducing the Jetpack Lifecycle components 417

Now, to the observe() method, we've passed the following:

• First, the this instance of the MyActivity class to the owner parameter
that expected a LifecycleOwner object. This worked because MyActivity
indirectly implements (through ComponentActivity) the LifecycleOwner
interface and therefore owns a Lifecycle object. The observe() method
expected a LifecycleOwner as its first parameter, so that the observing feature is
lifecycle-aware of the lifecycle of MainActivity.

• An Observer<Int> Kotlin inner object that allows us to receive the data
events (holding the Int values) from the MutableLiveData object inside the
onChanged() callback. Each time a new value is propagated, this callback will be
triggered, and we will receive the latest value.

Now that we have briefly covered how to use LiveData, let's better understand the
whole reason why we are talking about LiveData. As we've mentioned, LiveData is a
lifecycle-aware component, but how does it achieve that?

When we passed our MainActivity as LifecycleOwner to the owner parameter
of the observe() method, behind the scenes, LiveData started an observing process
dependent on the Lifecycle object of the provided owner.

More precisely, the Observer object provided as the second parameter to the
observe() method will only receive updates if the owner – that is, MainActivity – is
in the STARTED or RESUMED lifecycle state.

This behavior is essential, as it allows Activity components to only receive UI updates from
ViewModel components when they are visible or in focus, therefore making sure that the UI
can safely handle the data events and not waste resources.

If, however, updates would have occurred in other states when the UI would not have
been initialized, our app could have misbehaved or, even worse, crashed or introduced
memory leaks. To be sure that such behavior doesn't occur, if the owner moves to the
DESTROYED state, the Observer object will be automatically removed.

418 Exploring the Jetpack Lifecycle Components

In the following diagram, you will be able to visualize how LiveData updates only
come when the Activity component is in the RESUMED or STARTED state, while also
automatically removing the Observer object when the state becomes DESTROYED:

Figure 12.6 – Lifecycle states and events when LiveData updates are received and the
LiveData Observer is removed

With such behavior, LiveData becomes a lifecycle-aware component in the sense that
any LifecycleOwner must be in an active lifecycle state to be receiving updates from it.

Now that we have covered the two predefined lifecycle-aware components (ViewModel
and LiveData) that are part of the Lifecycle package, it's time to add a countdown
timer component in our Repositories app so that later on, we can transform it into a
custom lifecycle-aware component with the help of the Lifecycle APIs.

Adding a countdown component in the Repositories app 419

Adding a countdown component in the
Repositories app
Our plan is to learn how to create our own lifecycle-aware component. However, before
we can do that, we must first create a normal component that, by default, is not aware of
the lifecycle of any Android component.

To do that, we can create a countdown timer component inside our Repositories app that
will track whether the user has spent at least 60 seconds on the app, and if so, we will
award the user with a fictional prize.

More precisely, our plan is to create a countdown timer widget inside the
RepositoriesScreen() that will award the user with a prize upon a 60-second
countdown. However, for the countdown to work and the prize to be awarded, the user
must be inside RepositoriesScreen() and have the countdown composable visible.

The countdown will behave like so:

• It will start from 60 and finish when the countdown reaches 0. Upon every second,
the timer will decrease by 1 unit.

• When the countdown has finished, a prize message will be displayed.

• It will be paused if the countdown composable is not visible. In other words, if
the user is not inside the RepositoriesScreen() composable or the timer
composable is not visible or hidden within RepositoriesScreen(), then the
countdown should be paused.

Now that we have a plan, let's implement a countdown timer component:

1. Inside the root package, create a new class called CustomCountdown and
define its constructor to feature two function parameters that will be called as the
countdown timer functions:

class CustomCountdown(

 private val onTick: ((currentValue: Int) -> Unit),

 private val onFinish: (() -> Unit),

) {

}

We will have to call the onTick() function after every second has passed and the
onFinish() function when the countdown has ended.

420 Exploring the Jetpack Lifecycle Components

2. Now, inside the CustomCountdown class, let's create an inner class called
InternalTimer that will inherit from the built-in Android
android.os.CountDownTimer class and handle the actual countdown
sequence:

class CustomCountdown(

 private val onTick: ((currentValue: Int) -> Unit),

 private val onFinish: (() -> Unit),

) {

 class InternalTimer(

 private val onTick: ((currentValue: Int) -> Unit),

 private val onFinish: (() -> Unit),

 millisInFuture: Long,

 countDownInterval: Long

) : CountDownTimer(millisInFuture,

 countDownInterval){

 }

}

While the constructor of InternalTimer also accepts two identical function
parameters, as CustomCountdown does, it's essential to note its
millisInFuture and countDownInterval parameters that it forwards to the
built-in Android CountDownTimer class. These two parameters will configure the
core functionality of the timer – the countdown starting point in time and the time
period that passes between timer ticks.

3. Next up, let's finish the implementation of the InternalTimer class:

class CustomCountdown(

 private val onTick: ((currentValue: Int) -> Unit),

 private val onFinish: (() -> Unit),

) {

 class InternalTimer(

 private val onTick: ((currentValue: Int) -> Unit),

 private val onFinish: (() -> Unit),

 millisInFuture: Long,

 countDownInterval: Long

) : CountDownTimer(millisInFuture,

 countDownInterval) {

Adding a countdown component in the Repositories app 421

 init {

 this.start()

 }

 override fun onFinish() {

 onFinish.invoke()

 }

 override fun onTick(millisUntilFinished: Long) {

 onTick(millisUntilFinished.toInt())

 }

 }

}

To make sure the timer works as expected, we have done the following:

 � Called the start() method provided by the inherited parent,
CountDownTimer, inside the init{} block. This should automatically start
the timer upon inception.

 � Implemented the two mandatory onFinish() and onTick() methods
of the inherited parent, CountDownTimer, and propagated the events to
the caller of InternalTimer by calling its onFinish() and onTick()
function parameters.

4. Then, back in the CustomCountdown class, let's create an instance of
InternalTimer and configure it to work like a 60-second countdown timer that
starts from 60 and finishes at 0.

To do that, let's pass to its constructor not only the onFinish and onTick
function parameters but also 60 seconds (as 60000 milliseconds) to the
millisInFuture parameter and 1 second (as 1000 milliseconds) to the
countDownInterval parameter:

class CustomCountdown(

 private val onTick: ((currentValue: Int) -> Unit),

 private val onFinish: (() -> Unit),

) {

 var timer: InternalTimer = InternalTimer(

 onTick = onTick,

 onFinish = onFinish,

 millisInFuture = 60000,

 countDownInterval = 1000)

422 Exploring the Jetpack Lifecycle Components

 class InternalTimer(

 private val onTick: ((currentValue: Int) -> Unit),

 private val onFinish: (() -> Unit),

 millisInFuture: Long,

 countDownInterval: Long

): CountDownTimer(millisInFuture, countDownInterval)

 { … }

}

5. Still inside CustomCountdown, to provide a way for canceling the countdown,
add a stop() method that will allow us to call the cancel() method inherited by
InternalTimer from the Android CountDownTimer class:

class CustomCountdown(…) {

 var timer: InternalTimer = InternalTimer(…)

 fun stop() {

 timer.cancel()

 }

 class InternalTimer(

 […]

): CountDownTimer(millisInFuture, countDownInterval)

 { … }

}

6. Then, in RepositoriesViewModel, add not only a timerState variable that
will hold the text state displayed by our countdown composable but also a timer
variable that will hold a CustomCountdown object:

class RepositoriesViewModel(…) : ViewModel() {

 val repositories: Flow<PagingData<Repository>> = […]

 val timerState = mutableStateOf("")

 var timer: CustomCountdown = CustomCountdown(

 onTick = { msLeft ->

 timerState.value =

 (msLeft / 1000).toString() +

 " seconds left"

 },

 onFinish = {

 timerState.value = "You won a prize!"

Adding a countdown component in the Repositories app 423

 })

}

Inside the onTick callback, we are computing the remaining seconds and setting a
String message about our countdown to timerState. Then, in the onFinish
callback, we're setting a prize message to timerState.

7. As a good practice, inside RepositoriesViewModel, make sure to stop the
timer inside the onCleared() callback if the user moves to a different screen. This
would mean that RepositoriesScreen() wouldn't be composed anymore, so
this ViewModel would be cleared and the countdown should be stopped so that it
doesn't send events and waste resources:

class RepositoriesViewModel(…) : ViewModel() {

 val repositories: Flow<PagingData<Repository>> = […]

 val timerState = mutableStateOf("")

 var timer: CustomCountdown = CustomCountdown(…)

 override fun onCleared() {

 super.onCleared()

 timer.stop()

 }

}

8. Now, move to MainActivity and make sure that just as the repositories are
consumed and passed to the RepositoriesScreen() composable, the
countdown timer text produced by ViewModel is also consumed and passed to
RepositoriesScreen():

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 RepositoriesAppTheme {

 val viewModel: RepositoriesViewModel = …

 val reposFlow = viewModel.repositories

 val timerText =

 viewModel.timerState.value

 val lazyRepoItems: […] = […]

 RepositoriesScreen(

 lazyRepoItems,

424 Exploring the Jetpack Lifecycle Components

 timerText

)

 }

 }

 }

}

9. Then, at the end of the RepositoriesScreen.kt file, create a simple
CountdownItem() composable function that takes in a timerText: String
parameter and sets its value to a Text composable:

@Composable

private fun CountdownItem(timerText: String) {

 Text(timerText)

}

10. Next, in the RepositoriesScreen() composable, add a new parameter for the
countdown text called timerText, and inside the LazyColumn scope, before
the itemsIndexed() call, add a singular item() Domain-Specific Language
(DSL) function call where you should add the CountdownItem() composable
while passing the timerText variable to it:

@Composable

fun RepositoriesScreen(

 repos: LazyPagingItems<Repository>,

 timerText: String

) {

 LazyColumn(…) {

 item {

 CountdownItem(timerText)

 }

 itemsIndexed(repos) { index, repo -> […] }

 […]

 }

}

By doing so, we make sure that the countdown timer is displayed at the top of the
screen as the first item within the list of repositories.

Adding a countdown component in the Repositories app 425

11. Build and run the application. You should first see the countdown timer telling you
how much time you need to wait, and after approximately 1 minute, you should see
the prize message displayed:

Figure 12.7 – Observing how the countdown timer works

We have now finished incorporating the countdown timer that ends by awarding the user
with a fictional prize.

However, there is a scenario where our timer doesn't work as expected. Let's identify it:

1. Restart the application. You can do that by closing the current instance of the app
and reopening it.

The countdown should have started from 60 again at this point.
2. Before the countdown finishes, remember or write down somewhere the current

countdown value and then put the app in background.
3. Wait for a few seconds and then bring the app back to the foreground.

You should notice that while the app was in the background, the countdown kept going.
We wanted the timer to be paused when the app was put in the background and then
resumed when the app was brought back to the foreground – this would have allowed us
to award the prize to users that actively use the app and have the countdown timer visible.
This behavior didn't occur, as the timer kept on counting while the app was not visible or
in focus.

426 Exploring the Jetpack Lifecycle Components

This is happening because we didn't do anything to pause the timer when the app goes
into the background or resume it when the app comes back to the foreground. In other
words, our countdown timer is not lifecycle-aware, so it doesn't get notified and can't react
to the lifecycle events of the Activity host.

Next, let's make our countdown timer a lifecycle-aware component.

Creating your own lifecycle-aware component
We need to make our CustomCountdown aware of the lifecycle of MainActivity. In
other words, our countdown logic should observe and react to the lifecycle events of our
LifecycleOwner – that is, MainActivity.

To make our CustomCountdown lifecycle-aware, we must force it to implement the
DefaultLifecycleObserver interface. By doing so, the CustomCountdown
will be observing the lifecycle events or states defined by the Lifecycle object that
LifecycleOwner provides.

Our main goal is to pause the countdown when the app is put in the background and
to resume it when the app is brought back into the foreground. More precisely, our
CustomCountdown must react to the following lifecycle events of MainActivity:

• onPause(): When the onPause() callback comes in MainActivity,
CustomCountdown must pause its countdown.

• onResume(): When the onResume() callback comes in MainActivity,
CustomCountdown must resume its countdown.

With this behavior, we can award the prize to users that actively use the app and have the
countdown timer visible and in focus.

Now that we have a plan, let's start coding.

1. Make the CustomCountdown class implement the
DefaultLifecycleObserver interface and then override the two lifecycle
callbacks we're interested in, onResume() and onPause():

class CustomCountdown(

 […]

): DefaultLifecycleObserver {

 var timer: InternalTimer = InternalTimer(

 onTick = onTick,

 onFinish = onFinish,

Creating your own lifecycle-aware component 427

 millisInFuture = 60000,

 countDownInterval = 1000)

 override fun onResume(owner: LifecycleOwner) {

 super.onResume(owner)

 }

 override fun onPause(owner: LifecycleOwner) {

 super.onPause(owner)

 }

 fun stop() { timer.cancel() }

 class InternalTimer(…) {…}

}

Once we make our CustomCountdown observe the lifecycle of MainActivity,
its onResume(owner: LifecycleOwner) callback will be called when
the onResume() callback of MainActivity is called, and similarly, its
onPause(owner: LifecycleOwner) callback will be called when the
onPause() callback of MainActivity is called.

2. Now that we know when to pause and resume our countdown timer, we need to
find ways to actually pause and resume it.

First, let's pause the countdown in the onPause() callback by calling the
cancel() method of the timer variable:

class CustomCountdown(

 […]

): DefaultLifecycleObserver {

 var timer: InternalTimer = InternalTimer(…)

 override fun onResume(owner: LifecycleOwner) {

 super.onResume(owner)

 }

 override fun onPause(owner: LifecycleOwner) {

 super.onPause(owner)

 timer.cancel()

 }

 fun stop() { timer.cancel() }

 class InternalTimer(…) : CountDownTimer(…) {…}

}

428 Exploring the Jetpack Lifecycle Components

With this behavior, when MainActivity is paused, we are stopping the
countdown run by the InternalTime instance held inside the timer variable.

3. Next up, we need to resume the timer in the onResume() callback. However, to
resume it, we need to know the value of the last countdown before the onPause()
callback was triggered and the timer was canceled. With that last known countdown
value, we can reinitiate our timer in the onResume() callback.

Inside the inner InternalTimer class, create a lastKnownTime variable,
initiate it with the value of millisInFuture, and then make sure to update it in
the onFinish() and onTick() timer callbacks:

class CustomCountdown(

 […]

): DefaultLifecycleObserver {

 var timer: InternalTimer = InternalTimer(

 […]

 millisInFuture = 60000,

 countDownInterval = 1000)

 override fun onResume(owner: LifecycleOwner) { … }

 override fun onPause(owner: LifecycleOwner) { … }

 fun stop() { timer.cancel() }

 class InternalTimer(…) : CountDownTimer(…) {

 var lastKnownTime: Long = millisInFuture

 init { this.start() }

 override fun onFinish() {

 lastKnownTime = 0

 onFinish.invoke()

 }

 override fun onTick(millisUntilFinished: Long) {

 lastKnownTime = millisUntilFinished

 onTick(millisUntilFinished.toInt())

 }

 }

}

Creating your own lifecycle-aware component 429

While in the onFinish() callback, we've set lastKnownTime to 0 because
the countdown has finished, in the onTick() callback, we've made sure to save
inside the lastKnownTime variable the latest value received from the onTick()
callback – that is, millisUntilFinished.

4. Now, going back in the parent CustomCountdown class, resume the countdown
in the onResume() callback of CustomCountdown by first canceling the
countdown of the previous timer and then by storing inside the timer variable
another instance of InternalTimer, which now starts the countdown from the
lastKnownTime value of the previous InternalTimer instance:

class CustomCountdown(

 […]

): DefaultLifecycleObserver {

 var timer: InternalTimer = InternalTimer(

 onTick = onTick,

 onFinish = onFinish,

 millisInFuture = 60000,

 countDownInterval = 1000)

 override fun onResume(owner: LifecycleOwner) {

 super.onResume(owner)

 if (timer.lastKnownTime > 0) {

 timer.cancel()

 timer = InternalTimer(

 onTick = onTick,

 onFinish = onFinish,

 millisInFuture = timer.lastKnownTime,

 countDownInterval = 1000)

 }

 }

 override fun onPause(owner: LifecycleOwner) { […] }

 fun stop() { timer.cancel() }

 class InternalTimer(…) : CountDownTimer(…) {…}

}

430 Exploring the Jetpack Lifecycle Components

With this behavior, when MainActivity is resumed, we are creating a new
InternalTimer instance that starts off the countdown from the value that the
previous timer recorded before being paused. Also, note that the new instance
of InternalTimer receives the same parameters as the first initialization of
the timer variable – the same onTick() and onFinish() callbacks and the
same countDownInterval – the only difference is the starting point of the
countdown, which should now be less than 60 seconds.

For the onPause() and onResume() callbacks of the CustomCountdown
class to be called when their corresponding lifecycle events are called inside
MainActivity, we must effectively bind our DefaultLifecycleObserver
– that is, the CustomCountdown instance – to the lifecycle of our
LifecycleOwner – that is, MainActivity.

Let's do that next.
5. Go back inside the RepositoriesScreen.kt file, and inside the

CountdownItem() composable, first obtain the LifecycleOwner instance that
the composable function belongs to by tapping into the LocalLifeCycleOwner
API and then get the owner by accessing its current variable:

@Composable

private fun CountdownItem (timerText: String) {

 val lifecycleOwner: LifecycleOwner =

 LocalLifecycleOwner.current

 Text(timerText)

}

Finally, we've stored the LifecycleOwner instance into the lifecycleOwner
variable.

It's important to mention that since the parent composable of CountdownItem()
– that is, RepositoriesScreen() – is hosted by MainActivity, it's only
natural that the LifecycleOwner instance that we have obtained is in fact
MainActivity.

6. Then, we need to make sure that the Lifecycle instance of our lifecycleOwner
adds and removes our DefaultLifecycleObserver timer.

To achieve that, we need to first create a composition side effect that allows us to
know when the CountdownItem() composable first entered composition so that
we can add the observer, and then when it was removed from composition so that
we can remove the observer.

Creating your own lifecycle-aware component 431

For such a case, we can use the DisposableEffect() composable, which
provides us with a block of code where we can perform actions when the
composable enters composition, and then perform other actions when the
composable leaves composition through its inner onDispose() block:

@Composable

private fun CountdownItem (timerText: String) {

 val lifecycleOwner: LifecycleOwner =

 LocalLifecycleOwner.current

 DisposableEffect(key1 = lifecycleOwner) {

 onDispose {

 }

 }

 Text(timerText)

}

Since this is a side effect, anything we add inside the block of code exposed by
the DisposableEffect function will not be re-executed upon recomposition.
However, this effect will be restarted if the value provided to the key1
parameter changes. In our case, we want this effect to be restarted if the value
of lifecycleOwner changes - this will allow us to have access to the correct
lifecycleOwner instance inside this side-effect composable.

7. Now that we know when and where we can add and then remove the observer, let's
first obtain the Lifecycle object from the lifecycleOwner variable so that we
can store it inside the lifecycle variable:

@Composable

private fun CountdownItem(timerText: String) {

 val lifecycleOwner: LifecycleOwner =

 LocalLifecycleOwner.current

 val lifecycle = lifecycleOwner.lifecycle

 DisposableEffect(key1 = lifecycleOwner) {

 onDispose {

 }

 }

 Text(timerText)

}

432 Exploring the Jetpack Lifecycle Components

Next, on the Lifecycle object from within the lifecycle variable, we will add
and remove the observer.

8. Inside the block of code exposed by the DisposableEffect() composable,
add the observer on the lifecycle variable by calling its addObserver()
method, and then inside its exposed onDispose() callback, remove it with the
removeObserver() method:

@Composable

private fun CountdownItem(timerText: String) {

 val lifecycleOwner: LifecycleOwner

 = LocalLifecycleOwner.current

 val lifecycle = lifecycleOwner.lifecycle

 DisposableEffect(key1 = lifecycleOwner) {

 lifecycle.addObserver()

 onDispose {

 lifecycle.removeObserver()

 }

 }

 Text(timerText)

}

With this approach, when the CountdownItem() composable is first composed,
we will make our countdown component observe the lifecycle events of
MainActivity. Then, when the CountdownItem() leaves composition, our
countdown component will no longer observe such events.

However, you might have noticed that both the addObserver() and
removeObserver() methods expect a LifecycleObserver object, but we
didn't provide any.

In fact, we should have passed the CustomCountdown instance to the
addObserver() and removeObserver() methods because
CustomCountdown is the component that implements
DefaultLifecycleObserver and that we want to react to the lifecycle changes
of our MainActivity.

Next, let's obtain the CustomCountdown instance.

Creating your own lifecycle-aware component 433

9. Update the CountdownItem() function definition to receive a getTimer()
function parameter that returns a CustomCountdown timer. This callback method
should be called to provide the addObserver() and removeObserver()
methods with a LifecycleObserver instance:

@Composable

private fun CountdownItem(timerText: String,

 getTimer: () -> CustomCountdown) {

 val lifecycleOwner: LifecycleOwner

 = LocalLifecycleOwner.current

 val lifecycle = lifecycleOwner.lifecycle

 DisposableEffect(key1 = lifecycleOwner) {

 lifecycle.addObserver(getTimer())

 onDispose {

 lifecycle.removeObserver(getTimer())

 }

 }

 Text(timerText)

}

Since the CustomCountdown class implements DefaultLifecycleObserver,
which extends FullLifecycleObserver, which in turn extends
LifecycleObserver, the addObserver() and removeObserver()
methods accept our CustomCountdown instance as an observer to the
Lifecycle object of our lifecycleOwner – that is, MainActivity.

10. Since CountdownItem() now expects a getTimer: ()->
CustomCountdown callback function, we must also force our
RepositoriesScreen() composable to accept such a callback function as well
and then pass it to our CountdownItem() composable:

@Composable

fun RepositoriesScreen(

 repos: LazyPagingItems<Repository>,

 timerText: String,

 getTimer: () -> CustomCountdown

) {

 LazyColumn(…) {

 item {

 CountdownItem(timerText, getTimer)

434 Exploring the Jetpack Lifecycle Components

 }

 itemsIndexed(repos) { … }

 […]

 }

}

11. Lastly, inside MainActivity, update the RepositoriesScreen() composable
call to provide a getTimer() function implementation, where we will get the
CustomCountdown instance from the viewModel variable through its timer
field:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 RepositoriesAppTheme {

 […]

 RepositoriesScreen(

 lazyRepoItems,

 timerText,

 getTimer = {viewModel.timer}

)

 }

 }

 }

}

We have finally tied our DefaultLifecycleObserver – that is, the
CustomCountdown instance – to the lifecycle of our LifecycleOwner – that
is, MainActivity. Now that the CustomCountdown class should react to the
lifecycle events of our MainActivity, let's test our problematic scenario from
before.

12. Build and run the app. The countdown should have started from 60 again at
this point.

13. Before the countdown finishes, remember or write down somewhere the current
countdown value and put the app in background.

14. Wait for a few seconds and then bring the app back to foreground.

Making our countdown component aware of the lifecycle of composables 435

You should now notice that while the app was in background, the countdown was paused.
We wanted the timer to be paused when the app was put in background and then resumed
when the app was brought back to foreground – and now this is happening! We can now
award the prize to users that actively use the app.

However, there is still an edge case that we haven't covered. Let's discover it:

1. Build and run the app. The countdown should have started from 60 again at
this point.

2. Before the countdown finishes, remember or write down somewhere the current
countdown value and then quickly scroll down past four or five repositories within
the list until the countdown is not visible anymore.

3. Wait for a few seconds and then scroll back up to the top of the list so that the
countdown is visible again.

Note that after we scrolled down, while the timer wasn't visible, the countdown kept
going. We wanted the timer to be paused when the timer isn't visible anymore and then
resumed when the timer is visible again – this would have allowed us to award the prize to
users that have the countdown timer visible so that they didn't cheat on our contest. This
behavior didn't occur, as the timer kept on counting while the timer wasn't visible.

This is happening because we didn't do anything to pause the timer when the timer
composable leaves composition or resume it when the timer composable is composed
again. In other words, our countdown timer is not aware of the lifecycle of our timer
composable.

Next, let's make our countdown timer aware of Compose composition cycles so that users
don't cheat in our contest.

Making our countdown component aware of
the lifecycle of composables
The main issue is that our CustomCountdown component still runs its countdown even
after the CountdownItem() composable leaves composition. We want to pause the
timer when its corresponding composable is not visible anymore. With such an approach,
we can prevent users from cheating, and we can award the prize only to users that have
had the countdown timer visible for the full amount of time. Basically, if the timer is not
visible anymore, the countdown should stop.

To pause the timer when its corresponding composable function leaves composition, we
must somehow call the stop() function exposed by CustomCountdown. But when
should we do that?

436 Exploring the Jetpack Lifecycle Components

If you look inside the body of the CountdownItem() composable, you will notice that
we have already registered a DisposableEffect() composable that notifies us when
the CountdownItem() composable leaves composition by exposing the onDispose()
callback:

@Composable

private fun CountdownItem(…) {

 val lifecycleOwner: […] = LocalLifecycleOwner.current

 val lifecycle = lifecycleOwner.lifecycle

 DisposableEffect(key1 = lifecycleOwner) {

 lifecycle.addObserver(getTimer())

 onDispose {

 lifecycle.removeObserver(getTimer())

 }

 }

 Text(timerText)

}

When the composable leaves composition, inside the onDispose() callback, we
are already removing the CustomCountdown as an observer to the lifecycle of
our MainActivity. Exactly at this point, we can also pause the timer because the
composable leaves composition:

1. Update the CountdownItem() function definition to accept a new
onPauseTimer() callback function and then make sure to call it inside the
onDispose() callback of DisposableEffect():

@Composable

private fun CountdownItem(timerText: String,

 getTimer: () -> CustomCountdown,

 onPauseTimer: () -> Unit) {

 val lifecycleOwner: […] = LocalLifecycleOwner.current

 val lifecycle = lifecycleOwner.lifecycle

 DisposableEffect(key1 = lifecycleOwner) {

 lifecycle.addObserver(getTimer())

 onDispose {

 onPauseTimer()

 lifecycle.removeObserver(getTimer())

 }

Making our countdown component aware of the lifecycle of composables 437

 }

 Text(timerText)

}

2. Since CountdownItem() now expects an onPauseTimer: () -> Unit
callback function, we must also force our RepositoriesScreen() composable
to accept such a callback function and then pass it to our CountdownItem()
composable:

@Composable

fun RepositoriesScreen(

 repos: LazyPagingItems<Repository>,

 timerText: String,

 getTimer: () -> CustomCountdown,

 onPauseTimer: () -> Unit

) {

 LazyColumn(…) {

 item {

 CountdownItem(

 timerText,

 getTimer,

 onPauseTimer

)

 }

 itemsIndexed(repos) { … }

 […]

 }

}

3. Lastly, inside MainActivity, update the RepositoriesScreen()
composable call to provide an onPauseTimer() function implementation, where
we will pause the timer by calling the stop() method of the CustomCountdown
instance obtained from the viewModel variable through its timer field:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 RepositoriesAppTheme {

438 Exploring the Jetpack Lifecycle Components

 […]

 RepositoriesScreen(lazyRepoItems,

 timerText,

 getTimer = { viewModel.timer },

 onPauseTimer =

 { viewModel.timer.stop() }

)

 }

 }

 }

}

4. Build and run the app. The countdown should have started from 60 again at
this point.

5. Before the countdown finishes, remember or write down somewhere the current
countdown value and then quickly scroll down past four or five repositories within
the list until the countdown is not visible anymore. Make sure to scroll past a few
repositories so that Compose removes the node of the timer composable – if you
scroll just a bit, the node of the timer won't be removed.

6. Wait for a few seconds and then scroll back up to the top of the list so that the
countdown is visible again.

Note that the timer was now paused while the CountdownItem() composable was not
visible. We have now achieved the desired effect!

But how come the countdown is resumed when the composable becomes visible
again? We didn't do anything to cover that case – we only stopped the timer when the
CountdownItem() composable left composition, but we didn't resume it when it
became visible again as it re-entered composition.

Fortunately, the timer is resumed out of the box when the CountdownItem()
composable re-enters composition – but why is this happening?

This behavior is exhibited because of an interesting side effect provided by the Lifecycle
APIs. More precisely, as soon as we're binding the LifecycleObserver instance to the
Lifecycle instance of our LifecycleOwner, the observer instantly receives as a first
event the event corresponding to the current state of LifecycleOwner.

Making our countdown component aware of the lifecycle of composables 439

Let's have a look inside the CountdownItem() composable and see how this could
be happening:

@Composable

private fun CountdownItem(timerText: String,

 getTimer: () -> CustomCountdown,

 onPauseTimer: () -> Unit) {

 val lifecycleOwner: LifecycleOwner

 = LocalLifecycleOwner.current

 val lifecycle = lifecycleOwner.lifecycle

 DisposableEffect(key1 = lifecycleOwner) {

 lifecycle.addObserver(getTimer())

 onDispose {

 onPauseTimer()

 lifecycle.removeObserver(getTimer())

 }

 }

 Text(timerText)

}

In our case, as soon as we're binding the DefaultLifecycleObserver instance – that
is, CustomCountdown – to the Lifecycle of the LifecycleOwner instance – that
is, MainActivity – the observer receives as a first event the event corresponding to the
current state.

In other words, as soon as our timer composable is visible, we're adding the timer as an
observer to the lifecycle of our MainActivity class. At that point, the RESUMED state is
the current state of MainActivity, so the onResume() callback is triggered inside the
CustomCountdown component, which effectively resumes the timer countdown in our
specific scenario:

class CustomCountdown([…]): DefaultLifecycleObserver {

 var timer: InternalTimer = InternalTimer(…)

 override fun onResume(owner: LifecycleOwner) {

 super.onResume(owner)

 if (timer.lastKnownTime > 0) {

 timer.cancel()

 timer = InternalTimer(

 onTick = onTick,

440 Exploring the Jetpack Lifecycle Components

 onFinish = onFinish,

 millisInFuture = timer.lastKnownTime,

 countDownInterval = 1000)

 }

 }

 override fun onPause(owner: LifecycleOwner) { […] }

 fun stop() { timer.cancel() }

 class InternalTimer(…) : CountDownTimer(…) {…}

}

We have now made our countdown timer aware of the Compose composition cycles as well.

Summary
In this chapter, we understood what a lifecycle-aware component is and how we can
create one.

We first explored how the lifecycle events and states are tied to Android components,
such as Activity or Fragment, and then how predefined components from the
Lifecycle package can react to them. Then, we created and added a countdown timer
component to the Repositories app.

Finally, we prevented users from cheating by making our timer component aware not only
of the different lifecycle events and states of Activity components but also of the lifecycle
of composables.

Further reading
In this chapter, we briefly covered how to create a lifecycle-aware component by
making our CustomCountdown component aware of the lifecycle events that
MainActivity exhibits. However, when needed, we can also tap into the lifecycle
states of LifecycleOwner. To understand how you can do that, check out the official
docs for an example: https://developer.android.com/topic/libraries/
architecture/lifecycle#lco.

https://developer.android.com/topic/libraries/architecture/lifecycle#lco
https://developer.android.com/topic/libraries/architecture/lifecycle#lco

Index

A
accessibility tests 317
Android

caching mechanism 183
Android Jetpack ViewModel 55-57
application programming

interface (API) 87, 367
apps

communicating, with remote
servers 87, 88

network requests, handling 106
asynchronous (async) operation 370

B
Backend-as-a-Service (BaaS) 88
backing property feature 244
back stack 147
builder functions, to create coroutines

async 129, 130
launch 129
runBlocking 130

building blocks, Compose-based UI
composables, previewing 17-20
content, setting 17-20
exploring 16

business logic 251

C
caching mechanism, Android 183
Clean Architecture 254
Column composable

scrolling, adding 45
compatibility tests 317
component hierarchy

reference link 300
composable functions

stateful 66
stateless 67
UIs, describing with 6, 7

composables
about 5
customizing, with modifiers 25-27

Compose
state, defining 60-63
state, handling 60-63

Compose-based screen
building 32
contents of specific restaurant,

obtaining 154-158
creating 149

442 Index

HTTP request, defining for contents
of restaurant 150-154

list of restaurants, displaying 42-44
project, creating 32-41
restaurant-details screen,

building 158-161
restaurant element layout,

building 38-41
Compose-based UI

building blocks, exploring 16
Compose-based UI layer

decoupling, from ViewModel 277-280
Compose UI

testing, basics 319-337
constructor injection 289
contents, of specific restaurant

obtaining 155-158
Continuous Integration (CI) 318
controlled environment

network requests, triggering
from 108-111

core components, Compose-based UI
about 20
Button 21, 22
Image 24, 25
Text 20, 21
TextField 22-24

coroutine
about 115
advantages 116
basic elements 118
features 116
implementing, instead of

callbacks 132-135
launching 120-122
suspending functions, creating 119
using, for async work 131

versus threads 115
working 117, 118

Coroutine Builders 128-130
CoroutineDispatcher object 126-128
coroutine-related code, improving

about 135
error handling, adding 137-139
predefined scopes, using as opposed

to custom scopes 136, 137
suspending function, calling on

Dispatcher object 140-143
coroutine scopes

about 123
GlobalScope 124
lifecycleScope 124
rememberCoroutineScope 125
viewModelScope 125

countdown component
adding, in Repositories App 419-426
alerting, of Compose composition

cycle 435-440
custom lifecycle-aware component

creating 426-435

D
Dagger Hilt

about 290, 295
basics 296
components 298-300
injection 296, 297
modules 298
setting up 300, 301
used, for implementing dependency

injection (DI) 295, 302-312
Data Access Object (DAO) 232, 252

Index 443

database
creating, with Firebase 88-93
populating, with Firebase 88-93

database class 185
Data Transfer Objects (DTOs) 265
deep links

about 172
implementing, in Restaurants

Apps 174, 175
support, adding 172, 173
testing 175, 176

degree of isolation 318
dependencies 286
dependency container 287
dependency injection (DI)

about 286-289
Dagger Hilt, using 302-312
implementing, with Dagger Hilt 295
less boilerplate code, writing 290-292
need for 290
testable classes, writing 292, 294

destination (screen) 147
Dispatchers.Default 127
Dispatchers.IO 127
Dispatchers.Main 126
Domain layer

benefits 254
defining, with use cases 251-263
separating, from Data models 263-271

Domain model component 263
Domain-Specific-Language

(DSL) function call 424

E
effect API 108
end-to-end tests 318
entities 184

entry-point route 164
error states

implementing 391-402
event 60
explicit dependencies 289
Extensible Markup Language

(XML) layouts 218

F
field injection 288
Firebase

default security rules 90
reference link 88
used, for creating database 88-93
used, for populating database 88-93

Firebase console
URL 151

Firebase REST API
about 151
GET requests, executing to 100-106

Floating Action Button (FAB) 30
functional tests 317

G
GET requests

executing, to Firebase REST
API 100-106

H
HTTP networking client, for Android

Retrofit, exploring as 93
HTTP request

defining, for contents of
restaurant 150-154

444 Index

Hypertext Transfer Protocol
(HTTP) 87, 368

I
implicit dependencies 288
infinite list

error states, implementing 391-402
loading states, implementing 391-402
retry functionality,

implementing 391-402
infinite scrolling 369
instrumented tests 318
Integrated Development

Environment (IDE) 246
integration tests 318
intelligent recomposition 14

J
JavaScript Object Notation

(JSON) 87, 368
mapping, to model classes 96-100

Java Virtual Machine (JVM) 337
Jetpack Compose

about 3
composition, versus inheritance 10-12
core concepts 5
layouts 27
lists, exploring 44
recomposition 14-16
unidirectional flow of data 12-14

Jetpack lifecycle components
about 407
Activity 407-411
Fragment 407
LiveData 415-418
ViewModel 412-414

Jetpack Lifecycle package
Lifecycle API 412
predefined lifecycle-aware

components 412
Jetpack Navigation components

about 146
benefits 148
constituent elements 148, 149
examples 148
NavController 148
NavHost 148
navigation graph 148
navigation, implementing with 161-172
principles 147, 148

Jetpack Paging
about 379
used, for exploring pagination 379-381
used, for implementing

pagination 382-391
Jetpack Paging 3 380
Jetpack Room

for local caching 184, 185
Jetpack ViewModel

about 53
using, as ViewModel from MVVM 226

K
Kotlin Annotation Processing Tool 187
Kotlin Coroutines 115
Kotlin Flow

on Android, reference link 379
using, to handle streams of data 376-379

Kotlin Multiplatform (KMP) 226

Index 445

L
layer structure, project

about 251
repository 252
UI level (composables) 252
ViewModel 252

layouts, Jetpack Compose
about 27
Box composable 30, 31
Column composable 29, 30
Row composable 28

LazyColumn
using, to display restaurants 47, 48

lazy composables 46, 47
lifecycle-aware component 411
Lifecycle class features

event 409
state 409

LiveData 415-418
loading states

implementing 391-402
local caching

with Jetpack Room 184, 185
local tests 318
Logcat 104

M
manual DI 289
model classes

JavaScript Object Notation
(JSON), mapping to 96-100

Model Layer 220
Model-View-Controller (MVC) pattern

about 222
Controller 222
disadvantages 223

implementation 222, 223
Model 222
View 222

Model-View-Presenter (MVP) pattern
disadvantages 224
implementation 223
Model 223
Presenter 223
View 223

Model-View-ViewModel (MVVM)
about 225, 370
advantages 225, 226
disadvantages 226
implementation 225
Model 225
Restaurants App, refactoring to 230-233
View 225
ViewModel 225

modifiers
composables, customizing with 25-27

N
NavController 148
NavHost 148
navigation

implementing, with Jetpack
Navigation 162-172

navigation graph 148
network requests

canceling, as cleanup measure 107, 108
triggering, from controlled

environment 108-111
used, for handling app 106

446 Index

O
offline usage

enabling, by implementing
Room 186-196

P
package structure

creating 272-277
packaging strategy 273
page 368
pagination

exploring, with Jetpack Paging 379-381
implementing, with Jetpack

Paging 382-391
need for 367-370

paging 365
Paging 3 (v3) 380
partial updates

applying, to Room database 197-202
performance tests 317
presentation design patterns

about 220, 221
Restaurants App, refactoring to 227

Presentation Layer
about 220
presentation logic 220
relation, with Model layer 221
UI logic 220

Presenter class features 410
project design, with Activity

or Fragment class
about 218, 219
issues 219

R
recomposition 14
regression testing 316
remember block 62
remote servers

apps, communicating with 87, 88
Repositories App

about 365
countdown component, adding 419-426
exploring 370-376
importing 370-376

Repository pattern 239
REpresentational State Transfer

(REST) 367
restaurant-details screen

building 158-161
Restaurants App

assertion 361
functionality, adding 227-230
local data, making single source of

truth for content 203-205
logic, removing of persisting state in

case of process recreation 212-214
preload data 361
presentation logic, separating

from data logic 238-242
refactoring, for fitting

presentation pattern 227
refactoring, to have single source

of truth for data 205-211
refactoring, to MVVM 230-233
Retrofit, adding to 95
setup 361
state, adding to 63-66
state hoisting 68-75
UI logic, separating from

presentation logic 233-238

Index 447

unit-testing 337, 338
UseCase class functionality,

testing 357-361
use case, executing 361
ViewModel class functionality,

testing 338-357
REST web services 87
Retrofit

about 85
adding, to Restaurants App 95
exploring, as HTTP networking

client for Android 93
using 94

retry functionality
implementing 391-402

Room
implementing, for enabling

offline usage 186-196
Room database

partial updates, applying to 197-202

S
Saved State module 78
schema 190
search repositories

reference link 373
separation of concerns (SoC) 55, 219
service locator pattern 287
side effect 108
Single Source of Truth (SSOT) 205
singleton pattern 192
SQLite 183
SQLite APIs

disadvantages 184
stakeholder 251

state
about 60
adding, to Restaurants App 63-66
defining, with Compose 60-63
handling, with Compose 60-63

state encapsulation
improving, in ViewModel 243-247

stateful composables 66
state hoisting

about 67
benefits 67
within Restaurants App 68-75

stateless composables 67
streams of data

handling, with Kotlin Flow 376-379
suspending function 119
system-initiated process death

about 76
recovering from 76-82

T
testing

benefits 316, 317
fundamentals 316
types 318

tests
scope 318
size 318
types 317

test types
accessibility tests 317
compatibility tests 317
functional tests 317
performance tests 317

threads
versus coroutine 115

448 Index

U
UI controllers 54
UIs, creating on Android

declarative paradigm 9
imperative paradigm 8, 9
paradigm shift 8

Uniform Resource Locator (URL) 372
unit tests 318
UseCase class

about 254
functionality, testing 359-361

user experience (UX) 227, 368

V
View 53
ViewModel

about 53, 412, 414
Compose-based UI layer,

decoupling from 277-280
implementing 58-60
need for 54, 55
state encapsulation, improving 243-247
tasks 54

ViewModel class
error state 340
functionality, testing 338-359
initial loading state 339
state, with content 339

views 8

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://Packt.com
https://packt.com
https://customercare@packtpub.com
https://www.packt.com

450 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Android UI Development with Jetpack Compose

Thomas Künneth

ISBN: 978-1-80181-216-0

• Gain a solid understanding of the core concepts of Jetpack Compose

• Develop beautiful, neat, and immersive UI elements that are user friendly, reliable,
and performant

• Build a complete app using Jetpack Compose

• Add Jetpack Compose to your existing Android applications

• Test and debug apps that use Jetpack Compose

https://www.packtpub.com/product/android-ui-development-with-jetpack-compose/9781801812160

Other Books You May Enjoy 451

Simplifying Application Development with Kotlin Multiplatform Mobile

Róbert Nagy

ISBN: 978-1-80181-258-0

• Get acquainted with the multiplatform approach and KMM's competitive edge

• Understand how Kotlin Multiplatform works under the hood

• Get up and running with the Kotlin language quickly in the context of Swift

• Find out how to share code between Android and iOS

https://www.packtpub.com/product/simplifying-application-development-with-kotlin-multiplatform-mobile/9781801812580

452

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished In-Memory Analytics with Apache Arrow, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1-801-07103-9
https://packt.link/r/1-801-07103-9

	Cover
	Title Page
	Dedicated
	Contributors
	Table of Contents
	Preface

	Copyright and Credits
	Part 1:
Exploring the Core Jetpack Suite and
Other Libraries
	Chapter 1: Creating a Modern UI with Jetpack Compose
	Technical requirements
	Understanding the core concepts of Compose
	Describing UIs with composable functions
	The paradigm shift in creating UIs on Android
	Favoring composition over inheritance
	Unidirectional flow of data
	Recomposition

	Exploring the building blocks of Compose UIs
	Setting content and previewing composables
	Exploring core composables
	Customizing composables with modifiers
	Layouts in Compose

	Building a Compose-based screen
	Creating your first Compose project
	Building a restaurant element layout
	Displaying a list of restaurants with Compose

	Exploring lists with Compose
	Adding scrolling to the Column composable
	Introducing lazy composables
	Using LazyColumn to display restaurants

	Summary
	Further reading

	Chapter 2: Handling UI State with Jetpack ViewModel
	Technical requirements
	Understanding the Jetpack ViewModel
	What is a ViewModel?
	Why do you need ViewModels?
	Introducing Android Jetpack ViewModel
	Implementing your first ViewModel

	Defining and handling state with Compose
	Understanding state and events
	Adding state to our Restaurants app

	Hoisting state in Compose
	Recovering from system-initiated process death
	Summary
	Further reading
	Exploring ViewModel with runtime-provided arguments
	Exploring ViewModel for Kotlin Multiplatform projects
	Understanding how to minimize the number of recompositions

	Chapter 3: Displaying Data from REST APIs
with Retrofit
	Technical requirements
	Understanding how apps communicate with remote servers
	Creating and populating your database with Firebase
	Exploring Retrofit as an HTTP networking client for Android
	Using Retrofit
	Adding Retrofit to the Restaurants application
	Mapping JSON to model classes
	Executing GET requests to the Firebase REST API

	Improving the way our app handles network requests
	Summary
	Further reading

	Chapter 4: Handling Async Operations with Coroutines
	Technical requirements
	Introducing Kotlin coroutines
	What is a coroutine?
	The features and advantages of coroutines
	How do coroutines work?

	Exploring the basic elements of coroutines
	Creating suspending functions
	Launching coroutines

	Using coroutines for async work
	Implementing coroutines instead of callbacks
	Improving the way our app works with coroutines

	Summary
	Further reading

	Chapter 5: Adding Navigation in Compose With Jetpack Navigation
	Technical requirements
	Introducing the Jetpack Navigation component
	Creating a new Compose-based screen
	Defining the HTTP request for the contents of
a restaurant
	Getting the contents of a specific restaurant
	Building the restaurant details screen

	Implementing navigation with Jetpack Navigation
	Adding support for deep links
	Summary

	Part 2:
A Guide to Clean Application Architecture with Jetpack Libraries
	Chapter 6: Adding Offline Capabilities with Jetpack Room
	Technical requirements
	Introducing Jetpack Room
	Exploring the caching mechanism on Android
	Introducing Jetpack Room as a solution for local caching

	Enabling offline usage by implementing Room
	Applying partial updates to the Room database
	Making local data the single source of truth for app content
	Refactoring the Restaurants app to have a single source of truth for data
	Removing the logic of persisting state in the case of process recreation

	Summary

	Chapter 7: Introducing Presentation Patterns in Android
	Technical requirements
	Introducing MVC, MVP, and MVVM as presentation patterns
	MVC
	MVP
	MVVM

	Refactoring our Restaurants app to fit a presentation pattern
	Adding more functionality inside our Restaurants app
	Refactoring our Restaurants app to MVVM

	Improving state encapsulation in ViewModel
	Summary

	Chapter 8: Getting Started with Clean Architecture in Android
	Technical requirements
	Defining the Domain layer with Use Cases
	Separating the Domain model from Data models
	Creating a package structure
	Decoupling the Compose-based UI layer from ViewModel
	Summary
	Further reading

	Chapter 9: Implementing Dependency Injection with Jetpack Hilt
	Technical requirements
	What is DI?
	Why is DI needed?
	Write less boilerplate code
	Write testable classes

	Implementing DI with Hilt
	Understanding the basics of Dagger Hilt
	Setting up Hilt
	Using Hilt for DI

	Summary
	Further reading

	Chapter 10: Test Your App with UI and Unit Tests
	Technical requirements
	Exploring the fundamentals of testing
	Understanding the benefits of testing
	Exploring types of tests

	Learning the basics of testing your
Compose UI
	Covering the basics of unit-testing your core logic
	Testing the functionality of a ViewModel class
	Testing the functionality of a UseCase class

	Summary
	Further reading

	Part 3:
Diving into Other Jetpack Libraries
	Chapter 11: Creating
Infinite Lists
with Jetpack Paging and Kotlin Flow
	Technical requirements
	Why do we need pagination?
	Importing and exploring the Repositories App
	Using Kotlin Flow to handle streams of data
	Exploring pagination with Jetpack Paging
	Implementing pagination with Jetpack Paging
	Implementing loading and error states plus retry functionality

	Summary
	Further reading

	Chapter 12: Exploring the Jetpack Lifecycle Components
	Technical requirements
	Introducing the Jetpack Lifecycle components
	ViewModel
	LiveData

	Adding a countdown component in the Repositories app
	Creating your own lifecycle-aware component
	Making our countdown component aware of the lifecycle of composables
	Summary
	Further reading

	Index
	Other Books You May Enjoy

