
Abdul-Rahman Mawlood-Yunis

Android
for Java
Programmers

Android for Java Programmers

Abdul-Rahman Mawlood-Yunis

Android for
Java Programmers

Abdul-Rahman Mawlood-Yunis
Physics and Computer Science
Wilfrid Laurier University
Waterloo, ON, Canada

ISBN 978-3-030-87458-2 ISBN 978-3-030-87459-9 (eBook)
https://doi.org/10.1007/978-3-030-87459-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-87459-9

I would like to dedicate this book to my family:
my wife Arkhawan, my daughter Sara, my son
Sipan, my youngest daughter Zylan, my dad
Mawlood-Yunis, and my mom Saadia
Abdullah Haydar.

I would also like to dedicate this book to the
friends of my youth Hawaz, Zana, Arsalan,
Nazir, Shapoor, and Qabil who were
martyred very early in life because of the war
in Iraq, political dictatorship, and extremism.
Their memories will stay with me forever.

Preface

Android for Java programmers is about learning Android and developing native apps
using the Java programming language. The book reflects my expertise and experi-
ence in teaching software engineering, Java, and Android application development,
as well as 10 years of IT work experience developing stand-alone Java, Web, and
Business Intelligence applications.

Target Audience

The book intends to be a textbook for introductory or advanced Android courses to
be taught in one or two semesters in universities and colleges. It uses code samples
and exercises extensively to explain and clarify Android coding and concepts. The
book will benefit students and programmers who have no prior Android program-
ming knowledge. It is also useful for those who already have some Android
programming skills and are excited to study more advanced concepts or acquire a
deeper knowledge and understanding of Android programming.

The book can be easily read and used by instructors. All the apps in the book are
native Android apps and do not need to use or include third-party technologies to
run. The book differs from others that spend substantive time explaining third-party
software, such as React Native, Ionic Framework, Flutter, and App Inventor to create
and run apps. Our approach is to stay focused on using Android and native apps,
something important when learning Android for the first time.

Topics and Teaching Approach

For each chapter, one or two demo apps are developed to demonstrate the concepts
discussed. The source codes of the demo apps are available for download from
the book’s website (https://github.com/amawloodyunis). The executable codes,

vii

https://github.com/amawloodyunis

i.e., .apk (Android application package), are also available for download. I recom-
mend that you re-create the demo apps following the instructions provided in the
book instead of just opening the source codes in Android Studio and running them.
You will learn more by doing it yourself, i.e., by re-creating the demo apps
incrementally and using the provided source codes as a reference to debug and fix
any issues you might face. Once you are done reading this book, I expect you to be
able to develop and publish apps on Google Apps Store, Samsung Apps Store,
Amazon Online Store, and F-Droid.

Each chapter of the book is dedicated to one or more Android development
topics. Each app has a main interface with two or more buttons on the first screen.
When clicked, each button starts a stand-alone app. We followed this approach to
consolidate all apps for each chapter into one project. However, if you wish, you can
create multiple small projects by copying parts of the chapter app and using the code
to create each separate stand-alone app. Although we cover the important features of
each topic, they are not all-inclusive. There is space for further expansion of each
topic. The topics covered include Activities and transitions between Actives, Intents,
Bundle objects, Activity lifecycles, callback methods, Android user interfaces and
Widgets, Activity layouts, Toolbars and Menus, Cursor objects, the Android Pro-
filer, the Device File Explorer, Android Debug Bridge (adb), Toast and Snackbar
message objects, the Log class and the LogCat utility, testing, Parcelable objects,
Fragments, Date and Time Pickers, Shared Preferences, databases, XML and JSON
processing, the Content Provider, the Room library, the Android directory structure
and access to local and external files, Services and broadcasting, AsyncTask and
threading, Broadcast Receivers, MediaPlayer, VideoView, location and motion
Sensors, Android map and tracking, language and Locale settings, Android
measurements, etc.

Content and Explanation

The book is unique in terms of its content, content explanation, approach, and
structure. To emphasize the importance of app design, documentation, code main-
tenance, and evolving code, we include class structures for most of the apps created
in the book. We also explain concepts such as code profiling, test coverage, and
reverse engineering. While these topics are important to create high-quality business
apps, they are rarely discussed in Android books. My objective is to go beyond the
simple app explanations that are typically found in Android development books.
Here, we help the reader to think of all aspects of software engineering to create
robust and maintainable apps.

The book provides a deep explanation of what is beneath Android concepts in
terms of Java. For example, while it is fundamental for Android app development to
have a layout and create the layout for Activities in the XML file, we show how you
can achieve the same results without creating a layout in the XML file. This approach

viii Preface

deepens the reader’s understanding of what is beneath the Android hood, something
not often found or addressed in Android books.

Some of the apps included in this book solve real-world problems. For example,
in Chap. 11, the live streaming app created using URLs enables one’s favorite radio
stations to be grouped in one place and, hence, easily played and switched from
another. It is an app that turns your device into a radio and lets you listen to live
streaming stations while in the office, on the road, or in any other setting. The app is
similar to Spotify but on a smaller scale. Other apps in the book provide you with
real-time weather information for all the cities in Canada and Covid-19 data. We also
add further guidance to create apps that obtain news information, currency exchange
rates, information about your local political representation in government, etc.

The structure of the book follows Java and Object-Orient (OO) programmers’
expectations. Java and OO programmers are familiar with concepts such as classes,
interfaces, methods, method calls, and passing values and objects between methods,
and when they come to learn Android, they look for mapping between what they
know and what they are trying to learn. That is, they look for equivalent concepts in
the new API they are about to learn. Our book is structured in a way to help Java and
OO programmers easily map Android concepts to their own. For example, in the
early chapters of the book, we cover Parcelable objects, which are equivalent to
object serialization for passing objects between Activities. We also introduce going
back and forth between Activities, which is equivalent to navigating back and forth
between Java frames or HTML webpages.

Latest Code

An important aspect of teaching and learning is to stay up to date. This is especially
the case for a field of study that has been going through a lot of changes, where some
of these changes are philosophical ones. For example, Google recently made
changes to the way services run in the app’s background, how the permission is
checked to read/write the files, and how to access local resources and location
services. These changes make explanations provided in any Android book written
before them, some of these changes being made in 2018, invalid and their associated
code to be unusable without a substantive redo. All codes of this book are up to date.
They are implemented in the latest Android SDK version and the latest published
Android Studio.

Enjoy.

Preface ix

Additional Resources for Users and Instructors

Users can download the source codes of the demo apps from here: https://github.
com/amawloodyunis. In addition, instructors can download chapter presentations
in PTT and PDF formats by request. The email for contact is
droidforjavaprogrammers@gmail.com.

Convention Used in the Book

We use . . . notation to indicate that the user should write their code in this place.

Waterloo, ON, Canada Abdul-Rahman Mawlood-Yunis
July 2021

x Preface

https://github.com/amawloodyunis
https://github.com/amawloodyunis

Acknowledgments

I would like to thank my daughter, Sara Mawlood-Yunis, for the reviews and
contributions she made. Her input has been priceless. I would like to also thank
my colleague, Professor Ilias Kotsireas from Wilfrid Laurier University, for his help
and encouragement to write this book. I also would like to thank Ralf Gerstner,
Sharanya Sakthivel, Ramya Prakash, and others from Springer who worked tire-
lessly to improve the manuscript of this book.

xi

Contents

1 Java Review . 1
1.1 Introduction . 1
1.2 Language Basics . 1

1.2.1 Variables . 2
1.2.2 Type of Variable . 2
1.2.3 Java Primitive Data Types . 3
1.2.4 Default Variable Initializations 5
1.2.5 Typecasting . 6
1.2.6 Type Assignment Example . 6
1.2.7 Java String Class . 7
1.2.8 Java Operators . 8
1.2.9 Control Flow Statements . 11
1.2.10 Arrays . 11
1.2.11 ArrayList . 12
1.2.12 Java Iterator Interface . 13
1.2.13 For-Each Loop . 13

1.3 Object-Oriented Programming Concepts in Java 15
1.3.1 Classes . 15
1.3.2 Objects . 17
1.3.3 Interfaces . 20
1.3.4 Package . 22
1.3.5 Inheritance . 22
1.3.6 Inheritance Example . 23
1.3.7 Polymorphism . 24
1.3.8 Hiding Fields . 28
1.3.9 Using the Keyword Super . 28
1.3.10 Subclass Constructors . 29
1.3.11 Using Preserved Keyword “this” 30
1.3.12 Java Exception Handling . 32
1.3.13 Generic Types . 33

xiii

1.3.14 Type Parameter Naming Conventions 35
1.3.15 Autoboxing . 36
1.3.16 Parameterized Types . 38
1.3.17 Anonymous Classes . 38
1.3.18 Object Serialization . 40
1.3.19 Lambda Expressions . 44
1.3.20 Variable Argument (Varargs) 45

1.4 Chapter Summary . 48
Further Reading . 49

2 Getting Started with Android . 51
2.1 Introduction . 51
2.2 Starting with Android . 51

2.2.1 A Brief Android History . 52
2.2.2 Android Is Open Source . 52
2.2.3 Android Libraries . 52
2.2.4 Android Popularity . 53
2.2.5 Android Development Environment 53
2.2.6 Android Developer’s Skills . 54
2.2.7 Model View Controller and App Development 55
2.2.8 Android’s Main Program . 55
2.2.9 Java and Android . 55
2.2.10 Why Use Java for Android? 56
2.2.11 Android and Linux . 56

2.3 Download and Install Android Studio and Android SDK 57
2.3.1 Download the Android Studio 57
2.3.2 Install Android Studio . 58
2.3.3 Update Android Files . 63
2.3.4 Release Note . 64
2.3.5 Android SDK . 64

2.4 Create a New Android Project . 67
2.4.1 Start New Project . 67
2.4.2 Select an Activity Template 67
2.4.3 Fill in Application Requirement 69
2.4.4 Define SDK Requirements . 70
2.4.5 Finish the Project Creation . 70

2.5 Compiling and Running Android Apps 71
2.5.1 Running HelloWorld on Your Phone 71
2.5.2 Running the Android App in Android Studio 73
2.5.3 Issues Starting First App . 74
2.5.4 Running HelloWorld on Emulator 75
2.5.5 Setting Up the Emulator . 75
2.5.6 Do It Yourself . 77

xiv Contents

2.6 Compiling, Building, and Packaging Technologies 78
2.6.1 Compiling Android Code . 78
2.6.2 Android App Bundle . 79
2.6.3 Do It Yourself . 79
2.6.4 Install Android Apps . 80
2.6.5 Install APK from Online . 80
2.6.6 Install APK from Files . 81
2.6.7 From Dalvik to ART Runtime 81
2.6.8 Gradle Build . 81
2.6.9 Software Versioning Using Local or Remote

Repositories . 85
2.7 Android Stack and Framework . 87

2.7.1 Android Architecture . 87
2.7.2 User and System Apps . 88
2.7.3 Java API Framework . 88
2.7.4 Native Libraries and Android Runtime 89
2.7.5 Hardware Abstraction Layer (HAL) 89
2.7.6 Linux Kernel . 90

2.8 Chapter Summary . 90
Further Reading . 92
References . 92

3 Your First Android Application . 95
3.1 Introduction . 95
3.2 Android App Development . 96

3.2.1 Early Android Development 96
3.2.2 Android Versions . 97
3.2.3 Android Application Characteristic 98
3.2.4 Android Activity . 98
3.2.5 R File . 100
3.2.6 Android Context . 101
3.2.7 Application Manifest Files . 102
3.2.8 Opening Android Project in Android Studio 102
3.2.9 Cleaning Android Project Builds 102

3.3 Create Your First Mobile App . 103
3.3.1 Your App Specification . 103
3.3.2 Create Activity Layout . 103
3.3.3 Invoke Message on Activity 107
3.3.4 Intent Class . 107
3.3.5 Using StartActivity . 110
3.3.6 Create Second Activity . 111
3.3.7 Project Manifest Update . 114
3.3.8 Running the App . 117
3.3.9 Receiving Messages/Data from an Activity 118
3.3.10 Responding to the Messages from an Activity 119

Contents xv

3.4 Debugging Information . 123
3.4.1 Debugging Using Log.d() . 124
3.4.2 Using Logcat to View Log Messages 125
3.4.3 Do It Yourself . 126

3.5 Localize Your App and Resources . 127
3.5.1 Create a Resource File for Second Language 127
3.5.2 Create Resource Entries for Languages Supported . . . 130
3.5.3 Set Device Language . 130

3.6 Chapter Summary . 131
Further Reading . 133

4 Debugging and Testing Using Junit, Espresso, and Mockito
Frameworks . 135
4.1 Introduction . 136
4.2 The Android Studio Debugger . 136

4.2.1 Fault Handling Methods . 136
4.2.2 Enable Debugger . 137
4.2.3 Inspecting and Modifying Variable Values 139
4.2.4 Android Profiler . 141
4.2.5 Device File Explorer . 142
4.2.6 Android Debug Bridge (adb) 144
4.2.7 Do It Yourself . 145

4.3 Toast and Snackbar Messages . 146
4.3.1 Toast Messages . 146
4.3.2 Snackbar Messages . 150
4.3.3 Do It Yourself . 156
4.3.4 The Log Class and Logcat Window 156

4.4 Android App Testing . 159
4.4.1 Create a Test Class . 159
4.4.2 Assert Methods . 163
4.4.3 Hamcrest Assert Methods . 164
4.4.4 Espresso Testing . 165
4.4.5 Unit Testing . 167
4.4.6 Unit Testing with Mockito . 169
4.4.7 Code Coverage . 172
4.4.8 Code Inspection and Refactoring 173
4.4.9 Reverse Engineering . 174

4.5 Chapter Summary . 178
Further Reading . 179
References . 180

5 Activity Lifecycle and Passing Objects Between Screens Using
Parcelable Interface . 183
5.1 Introduction . 183
5.2 Activity States . 185

xvi Contents

5.2.1 Activity and States . 185
5.2.2 Transition Between States . 186
5.2.3 The Launcher Activity . 187
5.2.4 Implementing onCreate() . 188
5.2.5 Bundle Class . 191

5.3 Understanding Activity Lifecycle . 193
5.3.1 Understanding the onDestroy Method 193
5.3.2 Pausing and Resuming an Activity 194
5.3.3 Stopping and Restarting an Activity 194
5.3.4 Restoring Activity State . 196
5.3.5 Do It Yourself . 199

5.4 Lifecycle Illustration App . 199
5.4.1 Lifecycle Callback Methods 199
5.4.2 Callback Methods for the MainActivity 200
5.4.3 Callback Methods for the DisplayMessageActivity . . . 201
5.4.4 Do It Yourself . 205
5.4.5 Callback Method Implementations 206
5.4.6 Trigger the onPause() Method 208

5.5 Creating and Using Parcelable Objects 212
5.5.1 Passing User-Defined Objects Between Activities 212
5.5.2 LifeCycle with Parcelable Object 213
5.5.3 Parcelable Example . 214

5.6 Chapter Summary . 225
Further Reading . 226

6 User Interface Essential Classes, Layouts, Styles, Themes, and
Dimensions . 227
6.1 Introduction . 227
6.2 Essential UI Classes and Properties . 228

6.2.1 Android Project Structure . 228
6.2.2 Views . 228
6.2.3 View Class Examples . 230
6.2.4 Widget . 232
6.2.5 ViewGroup . 234
6.2.6 App Layout . 236

6.3 Writing XML Layouts . 239
6.3.1 Declare UI Elements in XML 239
6.3.2 Android Studio’s Layout Editor 241
6.3.3 Defining UI Programmatically 242
6.3.4 LinearLayout Java Class . 243
6.3.5 LayoutParams Java Class . 244

6.4 Details of the LayoutApplication Demo 245
6.4.1 MainActivity Layout . 245
6.4.2 Activity with Linear Layout 248
6.4.3 Linear Layout XML File . 250

Contents xvii

6.4.4 Using Android Studio Design Option 252
6.4.5 strings.xml File . 253
6.4.6 String Editor . 254
6.4.7 String Resources . 254
6.4.8 RelativeLayout . 256
6.4.9 Other Layouts . 258
6.4.10 Parent-Child Relationship Between Activities 262

6.5 Styles, Themes, and Dimension . 264
6.5.1 Defining a Style File . 265
6.5.2 Applying Styles . 267
6.5.3 Defining the App’s Theme . 268
6.5.4 The Difference Between a Theme and Style 271
6.5.5 Padding and Margin View Properties 273
6.5.6 Gravity and Weight View Properties 273
6.5.7 Dimensions of a Phone and UI 274

6.6 Chapter Summary . 276
Further Reading . 277

7 ListView, ScrollList, Date and Time Pickers, and RecyclerView . . . 279
7.1 Introduction . 279
7.2 List Views . 280

7.2.1 Adapter and ArrayAdapter Classes 280
7.2.2 ListView and ListActivity . 280

7.3 Date and Time Pickers . 289
7.3.1 Date and Time Pickers . 289
7.3.2 Set Date Using the DatePicker 292
7.3.3 Set Time Using the TimePicker 295
7.3.4 Pickers and Anonymous Classes 296

7.4 Scroll Views . 298
7.4.1 The ScrollView Class . 298
7.4.2 Top-Level XML Element for a Scroll View 299
7.4.3 Scroll View Activity . 303

7.5 RecyclerView . 304
7.5.1 Using RecyclerView, Adapter, and ViewHolder

Classes . 305
7.5.2 RecyclerViewActivity . 313
7.5.3 Adapter and ViewHolder . 315
7.5.4 Using Recycler View with Older SDKs 321

7.6 Chapter Summary . 323
Further Reading . 324

8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent,
and Directory Structure . 325
8.1 Introduction . 326
8.2 More User Interface . 326

8.2.1 ActionBar . 326

xviii Contents

8.2.2 Toolbar . 326
8.2.3 Add androidx.appcompat Library to the Project 327
8.2.4 Extending AppCompatActivity 329
8.2.5 Specify a Theme with NO ActionBar 329
8.2.6 Adding Toolbar Element to the Layout 330
8.2.7 Menu Interface . 331
8.2.8 Options Menu and App Bar 331
8.2.9 Context Menu . 337
8.2.10 Popup Menu . 338

8.3 Dialog Boxes and the Camera App . 341
8.3.1 Dialog Boxes . 341
8.3.2 Custom Dialog Boxes . 344
8.3.3 Access a Phone’s Default Camera App 344
8.3.4 Starting Activities for Results 347
8.3.5 Activity Result in AndroidX 349

8.4 Saving Data with SharedPreferences . 351
8.4.1 SharedPreferences Interface . 351
8.4.2 Layout for Shared Preferences Activity 355
8.4.3 How SharedPreferencesActivity Code Works 356

8.5 Directory Structure and Saving Data in Files 361
8.5.1 Internal Storage Location . 362
8.5.2 External Storage Location . 362
8.5.3 Standard Public Directories for Data/Files 362
8.5.4 Android File IO Classes and Methods 367
8.5.5 Accessing External Storage Files 368
8.5.6 Permission to Access External Directory 368
8.5.7 Examples Using External Methods 369
8.5.8 Environment Class and

getExternalStoragePublicDirectory 372
8.5.9 Locate Apps on Emulator File System 374

8.6 Chapter Summary . 376
Further Reading . 377

9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen
Swiping . 379
9.1 Introduction . 380
9.2 The Fragment Basics . 380

9.2.1 Fragment Uses . 380
9.2.2 Why Using Fragments . 381
9.2.3 Fragment Lifecycle . 383

9.3 Creating an App with the Fragments . 386
9.3.1 Create a Fragment . 386
9.3.2 One Activity and Multiple Layouts 388
9.3.3 Detecting Device Size and Orientation 388
9.3.4 Fragment Development Steps in Details 389

Contents xix

9.3.5 The MainActivity Class and Demo App
Demonstration . 401

9.3.6 Inserting Fragments in the Activity 405
9.3.7 Fragment Static Binding Example 406

9.4 Inheritance in Android . 408
9.4.1 Create a Base Activity . 408
9.4.2 Layout for the BaseActivity 410
9.4.3 No onCreate() Method for Child Class 413
9.4.4 Layout Reuse . 414

9.5 Density-Independent Pixel and Screen Sizes 416
9.5.1 Naming Scheme . 416
9.5.2 Supporting Different Screen Sizes 417
9.5.3 Density-Independent Pixel (dp) 419

9.6 Pinching and Screen Swiping . 420
9.6.1 Pinch to Zoom Image . 420
9.6.2 Swiping Gesture . 423
9.6.3 Swiping Gesture App . 423

9.7 Chapter Summary . 429
Further Reading . 430

10 Parsing Remote XML and JSON Files, Using
HTTPUrlConnection, XmlPullParser, and AsyncTask 433
10.1 Introduction . 433
10.2 Parsing Remote and Local XML Files 434

10.2.1 XML Parser Review . 434
10.2.2 Push Parsing . 434
10.2.3 Pull Parser . 435
10.2.4 Remote XML Parsing . 436
10.2.5 Parsing Events . 439
10.2.6 Reading Image from Local File 442
10.2.7 Retrieving Image from Remote Server 443
10.2.8 An Example of Reading Image File 444
10.2.9 A Demo App . 445
10.2.10 Parsing Local XML File . 448
10.2.11 Asset Folder . 451

10.3 AsyncTask and Thread Handling . 451
10.3.1 AsyncTask Class . 451
10.3.2 Using AsyncTask Class . 451
10.3.3 AsyncTask and Varargs Type 452
10.3.4 Input, Progress, and Result Parameters

to AsyncTask . 453
10.3.5 AsyncTask Execute Methods 454
10.3.6 AsyncTask Method Sequence Calls 454

10.4 App Implementation Details . 456
10.4.1 WeatherForecast Class . 456

xx Contents

10.4.2 Complete Code for Weather Network App
Activity . 459

10.4.3 Parsing JSON Files . 465
10.4.4 Other XML Feeds . 466

10.5 An App for Information on Covid-19 . 467
10.5.1 Covid-19 App Development Steps 468
10.5.2 Data Extraction and Conversion 469
10.5.3 Testing and Production Development

Environments . 470
10.5.4 Covid-19 Source Code and Class Structure 471

10.6 Chapter Summary . 471
Further Reading . 473

11 Android SQLite, Firebase, and Room Databases 475
11.1 Introduction . 476
11.2 The Android SQLite Database . 477

11.2.1 SQLiteOpenHelper Class . 477
11.2.2 SQLiteDatabase Class . 478
11.2.3 Overriding Methods of the SQLiteOpenHelper

Class . 478
11.2.4 The Class Constructor Method 478
11.2.5 The onCreate() Method . 479
11.2.6 onUpgrade Method . 481
11.2.7 onDowngrade Method . 482
11.2.8 onOpen() Method . 483
11.2.9 Read and Read/Write Access 483
11.2.10 The execSQL Method from SQLiteDatabase Class . . . 484

11.3 Content Values and Cursor Objects . 484
11.3.1 Content Values and Insert Method 484
11.3.2 Cursor . 487
11.3.3 Query Data . 489
11.3.4 rawQuery . 490
11.3.5 More Methods of the SQLiteDatabase Class 491

11.4 DatabaseDemo Project . 492
11.4.1 The Data Component . 492
11.4.2 The Middle Component . 495
11.4.3 The View Component . 499
11.4.4 Test Your Database Using SQLiteBrowser 505
11.4.5 Use SQLiteBrowser for Database Design 506
11.4.6 Android Database Inspector 507

11.5 Realtime Firebase Database . 509
11.5.1 Firebase and JSON Tree File 509
11.5.2 Firebase Account and Project Setup 510
11.5.3 Register Your Project Using the Firebase Console . . . 510
11.5.4 Adding Dependency to Your Project 510

Contents xxi

11.5.5 Connecting to Database . 511
11.5.6 Inserting Data into Database 511
11.5.7 Retrieving Data from Database 514
11.5.8 Deleting Data from Database 516
11.5.9 Query Data from Database . 518
11.5.10 DataSnapshot and Query Classes 518
11.5.11 ChildEventListener Interface 519
11.5.12 Querying Firebase Database Using User-Defined

Classes . 520
11.5.13 Querying Firebase Database Example 522

11.6 Other Data Storage Options . 524
11.6.1 Room Database . 524
11.6.2 Content Provider . 527
11.6.3 Internal and External Storage 527

11.7 Chapter Summary . 528
Further Reading . 530
References . 530

12 Content Provider, Service, Message Broadcasting, and
Multimedia Player . 531
12.1 Introduction . 531
12.2 Content Provider Component . 532

12.2.1 Content Provider . 532
12.2.2 Creating a Content Provider 534
12.2.3 Provider in Manifest File . 542
12.2.4 Run and Test Content Provider 544
12.2.5 Content Provider Client . 545

12.3 Media Content Streaming Apps . 547
12.4 Android Service . 549

12.4.1 Service . 549
12.4.2 Communication with Service 550
12.4.3 Services Lifecycle . 550
12.4.4 Creating Service . 550
12.4.5 Service Binding . 554
12.4.6 OnCreate() Method for Service 555
12.4.7 OnDestroy() Method . 556
12.4.8 Stopping Service . 557
12.4.9 Android Rules to End Service 558
12.4.10 Declaring a Service in the Manifest 558
12.4.11 Intent Service . 559
12.4.12 Service Summary . 560
12.4.13 Do It Yourself . 560

12.5 Message Broadcasting in Android . 561
12.5.1 Android Message Broadcasting Types 561
12.5.2 BroadcastReceiver Class . 562

xxii Contents

12.5.3 Do It Yourself . 566
12.6 Android MediaPlayer for Streaming Radio Stations 566

12.6.1 App Structure . 567
12.6.2 Android Media Player . 568
12.6.3 Power Manager and WakeLock 570
12.6.4 WifiLock . 571
12.6.5 Other App Components . 571
12.6.6 Stopping and Restarting Service 572
12.6.7 The New Restriction on Background Service 573
12.6.8 Do It Yourself . 575

12.7 Remote and Local Video Playback . 576
12.7.1 Playback Video Using Implicit Intent and URL 576
12.7.2 Playback Live Streaming Video Using URL and

VideoView . 577
12.7.3 Playback Embedded Video in Your App 580
12.7.4 Playback Video Outside Your App Directory 581

12.8 Chapter Summary . 582
Further Reading . 583

13 Sensors, Location-Based Service, and Google Maps 585
13.1 Introduction . 585
13.2 Android Sensor . 586

13.2.1 Accelerometer Sensor . 587
13.2.2 Accelerometer App . 587
13.2.3 Using Accelerometer . 588
13.2.4 Get List of Sensors . 595
13.2.5 Do It Yourself . 597

13.3 Location-Based Services . 597
13.3.1 Demo App Interface . 598
13.3.2 Location Service APIs . 598
13.3.3 App Development Steps . 599
13.3.4 App Implementation Details 601
13.3.5 Revising Weather App . 611
13.3.6 Do It Yourself . 613

13.4 Use Google Maps in Your App . 614
13.4.1 Create a Google Maps Project 614
13.4.2 Obtaining App Key . 616
13.4.3 Update Manifest File . 617
13.4.4 Google Maps API . 619
13.4.5 GoogleMap Class . 620
13.4.6 OnMapReadyCallback Interface 620
13.4.7 SupportMapFragment Class 620
13.4.8 Map Fragment Layout Example 622
13.4.9 MapView . 624
13.4.10 UiSettings . 627

Contents xxiii

13.4.11 Configure Initial State . 627
13.4.12 Setting Map Initial State Programmatically 630
13.4.13 Covid App Revised . 630

13.5 Chapter Summary . 632
Further Reading . 633
References . 634

Index . 635

xxiv Contents

Chapter 1
Java Review

What You Will Learn in This Chapter
This chapter includes reviewing Java language basics and Java classes and objects. If
you have no prior experience with Java, by the end of this chapter, you will learn
Java fundamentals. If you have prior experience, this chapter will help you gain more
knowledge in Java and learn the latest developments in the Java world.

1.1 Introduction

This chapter presents a brief review of Java programming syntax and concepts as
well as object-oriented programming terminology. The emphasis has been put on the
part of Java that will be used for Android development. These include topics such as
anonymous classes, the lambda expression, varargs, generic classes and methods,
for-each statements, object serialization, etc. All the code snippets listed in this
chapter are included in a file, the JavaReview.zip file, which you can download
from the book website. Downloading and running the code is part of the learning
material for this chapter. We start this chapter by reviewing the language basics.

1.2 Language Basics

In this section, we will review Java programming language basics. These include
Java variables, data types, operators, and basic Java data structures and control flow
operators.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_1#DOI

1.2.1 Variables

The Java programming language uses both instance “variables” and “fields” as part
of its terminology. In Java, to declare a class variable/field, you need to specify the
access modifier, field type, and field name. The name of the variable must be unique
within a class. The variable modifier is either public, protected, or private, where a
public modifier means the field is accessible from all classes, a private modifier
means the field is accessible only within its class, and a protected modifier means the
field is accessible only within the class package. If you do not declare the field access
modifier explicitly, the field will have a default modifier which will be accessible
within the class package only. The default modifier is like the protected modifier
except that the protected field can be accessed inside the package and outside of the
class package through inheritance. Below are examples of variable declarations
where access modifiers are private, protected, public, and default, respectively, and
variable types are int, char, double, and String.

private int student_number ;
protected char student_gender ;
public double grade_point_average ;

String student_name ;

1.2.2 Type of Variable

Java differentiates between four types of variables. The types are instance, static,
local, and parameter variables. They can be described as follows:

• Instance variables (non-static fields) are unique to each object or an instance of a
class.

• Class variables (static fields) are fields declared with the static modifier; there is
only one copy of a static variable regardless of how many objects you instantiate
from the class.

• Local variables hold temporary state values inside a method.
• Parameters are variables passed to methods. They are local variables to the

method and are used within the methods.

Both local and parameter variables are not properties or fields of an object. They
are local variables like x, y, and z that are used within the method. We will see
examples of using these variables later in this chapter.

2 1 Java Review

1.2.3 Java Primitive Data Types

Java has eight primitive data types. Unlike user-defined types, these are system-
defined types. These are fundamental types that enable you to write programs and do
computation/calculations. The types are listed below.

1.2.3.1 Integers

Java has four different variable types to hold whole numbers. The types are:

1. byte: its length is 1 byte or 8 bits.
2. short: its length is 2 bytes or 16 bits.
3. int: its length is 4 bytes or 32 bits.
4. long: its length is 8 bytes or 64 bits.

The types are different from each other by the range of the value they can hold.
For example, when you declare a variable of type byte, the variable can have
28 (256) possible values. The value range of a byte is between 227 and 272 1,
i.e., 2127 and 127. It is for this reason that if you declare byte b ¼ 127, it will be
fine, but if you declare byte b ¼ 300, the compiler will not accept it without casting
(byte b ¼ (byte) 300) which results in an expected outcome.

1.2.3.2 Real Numbers

Java has two variable types to hold numbers with fraction values. Like integers, the
types are different from each other by the size of the value they can hold. The
types are:

5. float: its length is 4 bytes or 32 bits.
6. double: its length is 8 bytes or 64 bits.

Double is used more often than float. This is because nowadays storage memory
is cheap and anything you can do with the float you can do with a double as well.

When lining up Java primitive data types based on their size, they can be arranged
in this order: byte, short, int, long, float, double. Values of any predecessor type can
be assigned to any successor type (e.g., int to double, long to double). This is because
larger types are big enough to hold the value of smaller types. To learn about Java
variable types and how variables of small size types can be assigned to another type
with a larger size, see the example in Listing 1.1:

1.2 Language Basics 3

Listing 1.1 Java primitive data type declaration and assignment.

public class PrimitiveTypes {
public static void main (String args[]) {

byte b = 100; short s = 10000;
int i = 100000; long l = 1000000;
float f = 123.4f; double d = 1.234e2;
s = b;
i = s;
l = i ;
f = l;
d = f;

}
}

To assign a value the other way around, i.e., assign variables that can hold a large
value to a variable that can hold a small value, you need to do explicit typecasting.
This is because larger types cannot be saved in a smaller space. A value needs to be
shortened to fit into a smaller location. See the example in Listing 1.2:

Listing 1.2 Primitive typecasting in Java.

public class PreimativeTypes2 {
public static void main (String args[]) {

byte b = 100;
short s = 10000;
int i = 100000;
long l = 1000000;
float f = 123.4f;
double d = 1.234e2;
b = (byte) s;
s = (byte) i ;
i = (int) l;
l = (long) f;
f = (float)d;

}
}

Note that the range of values that can be represented by a float or double type is
much larger than the range that can be represented by a long type. This is because
both float and double types use exponent to represent values. For more information
about this topic, see the link that is called widening primitive conversion provided at
the end of this chapter.

4 1 Java Review

1.2.3.3 Char and Boolean

In addition to the whole and real numbers, Java has two other primitive variable
types:

7. char
8. boolean

The char length is 2 bytes or 16 bits, and boolean is 1 bit of information and takes
a true or false value. Variables of type int can be assigned to char. For example, char
a ¼ 97; is a valid Java expression, and when a is printed, it will produce “a.” This is
because the ASCII value for a small “a” is 97. In Java, you cannot assign int values to
boolean variables, nor you can assign a true/false value to an int variable.

The Java class String represents character strings and is often used along with
primitive data types to declare Java class fields. But remember String is a Java class
and not a primitive type.

Note that in Java, you cannot assign one and zero to a boolean type; the value
must be true or false. This is possible in other programming languages like C++, but
not in Java.

1.2.4 Default Variable Initializations

Class instance variables are automatically initialized in Java. The default variable
value depends on the type, and they are initialized as follows:

• Boolean types are initialized to false.
• Primitives holding numbers (short, byte, int, double, and float) are initialized

to zero.
• Char types are initialized to space.
• Class types are initialized to null.

It is better practice to explicitly initialize instance variables yourself in the
class constructor. More on constructors in later sections of this chapter. Different
from double, when you initialize float, you include the letter “f” in the value, e.g.,
float f = 123.4f;

In Java, you can define and initialize multiple variables of the same type in one
line. For example, this is correct in Java: int x ¼2, y ¼4, z ¼5; variable declarations
are separated from each other by a comma. This is possible only when all the
variables are of the same type; in this example, the type is int.

Note that local variables declared inside methods are not automatically initialized.
It is the programmer’s responsibility to initialize local variables.

1.2 Language Basics 5

1.2.5 Typecasting

A typecast takes a value of one type and produces a value of another type with an
“equivalent” value. For example, you can declare:

int x;
double y;
y= (double)x;

Here, the x value is changed from int to double before being assigned to y.
When casting, the desired type is placed inside parentheses immediately in front

of the variable to be cast. The type and value of the variable cast do not change.
If x and y are integers to be divided, and the fractional portion of the result must

be preserved, at least one of the two variables must be a typecast to a floating-point
type before the division operation is performed. Here is an example:

int x =5;
int y =2;
double result = x / (double)y;
the code will become 5/2.0 and the result would be 2.5.

When typecasting from a floating-point to an integer type, the number is trun-
cated, not rounded. For example, (int)2.9 evaluates to 2, not 3. When the value of an
integer type is assigned to a variable of a floating-point type, Java performs an
automatic typecast called type coercion, e.g., double d = 5; would be converted to
double d = 5.0;

1.2.6 Type Assignment Example

In Java, not all types can be assigned to other types without explicit typecasting. Run
the code in Listing 1.3 to see when variables of different types can be assigned to
each other (e.g., int to double, long to double) and when to do explicit typecasting.

Listing 1.3 Java primitive data type assignments.

package lesson01;
public class VariableAssignment {

public static void main (String args[]) {
int x = 2; double y;
y = x; // this is possible
x = y; // this is a mismatch error cannot assignment double to int
x = (int) y; // explicit type casting
byte b; short s;
s = b; // correct
b = s; // mismatch type

6 1 Java Review

s = x; // mismatch type
b = x; // mismatch type
x = b; // correct assignment
x = s; // correct assignment
long l;
x = l; // mismatch type
l = x;
double d; float f;
d = l;
l = d; // mismatch type
f = l;
l = f; // mismatch type
char c = 'a';
char a = 97;
System.out.println (a); // prints character a
int charvalue = (int) c;
boolean bool1 = true;
boolean bool2 = false;
bool1 = 0; // type mismatch cannot convert from int to boolean
bool2 = 1; // type mismatch cannot convert from int to boolean
bool1 = (boolean) 1; // cannot cast from int to boolean

}
}

1.2.7 Java String Class

String represents character strings, or text, and is often used along with primitive
data types to declare Java class fields. But String is a class, not a primitive type. Here
is an example of how to use the String class.

String str = “hello class”;

The String class has many methods to perform actions on string literals. These
include compareTo (), charAt(index), contains (), equals (), length (), and many
more. A simple example of how to use the String class is giving in Listing 1.4. For
detailed information on the String class, visit the Oracle API documentation.

1.2.7.1 String Concatenation

In Java, you can use the plus operator (+) on two strings or more to connect them to
form one larger string. For example, if the greeting variable is equal to “Greetings”
and the javaClass variable is equal to “Class,” then greeting + javaClass is equal to
“Greetings Class”; see the code in Listing 1.4:

1.2 Language Basics 7

Listing 1.4 Plus sign is used as a text concatenator in Java.

public class StringClass {
public static void main (String args[]) {

String greetings = "Greetings ";
String JavaClass = " Class";
System.out.println(greetings + JavaClass);

}
}

Any number of Strings can be concatenated together, and when a String is
combined with almost any other type, the result is still a String. For example, if
the following line of code is executed, the result would be the String “The answer is
2021.”

int number = 2021;
System.out.println ("The answer is " + number);

1.2.8 Java Operators

As in most programming languages, in Java, expressions can be formed using
variables, constants, and arithmetic operators. These operators are + (addition),
- (subtraction), * (multiplication), / (division), % (modulo or remainder), and many
more. An expression can be fully parenthesized to specify exactly what expression
parts are combined with each operator. Java operators, along with a brief description
of each operator, are listed in Table 1.1.1

If the parentheses in an expression are omitted, Java will follow precedence rules.
Java executes/evaluates unary operators such as +, -, ++, --, and ! first; binary
arithmetic operators, such as *, /, and %, are executed second; and binary arithmetic
operators such as + and – are executed last.

1.2.8.1 Associativity Rules

When two operations have equal precedence, the order of operations is determined
by the associativity rules as follows:

• The unary operators (+, -, ++, --, and !) of equal precedence are grouped from
right to left. For example, +-+rate is evaluated as +(-(+rate)).

1https://docs.oracle.com/javase/tutorial/java/nutsandbolts/opsummary.html

8 1 Java Review

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/opsummary.html

• Binary operators of equal precedence are grouped from left to right. For example,
the expression base + rate + hours is evaluated as (base + rate) + hours.

A string of assignment operators is an exception to the rule above and grouped
right to left. For example, n1 ¼ n2 ¼ n3; is evaluated as n1 ¼ (n2 ¼ n3); when the
println statement executes in the code snippet below (c¼b¼a), it will print hello.

String a = "hello ";
String b = "World";
String c = "Say ";
c = b = a;
System.out.println (c);

The output is hello.

Table 1.1 Java operators

Arithmetic operators + Additive operator (also used for String concatenation)
- Subtraction operator
* Multiplication operator
/ Division operator
% Remainder operator also called modulo operator

Unary operators + Unary plus operator; indicates a positive value (numbers are
positive without the + symbols as well)

- Unary minus operator; negates an expression
++ Increment operator; increments a value by 1
-- Decrement operator; decrements a value by 1
! Logical complement operator; inverts the value of a boolean

(e.g., ! true means false)

Equality and relational
operators

¼¼ Equal to
! ¼ Not equal to
> Greater than
>¼ Greater than or equal to
< Less than
<¼ Less than or equal to

Conditional operators && Conditional-AND
|| Conditional-OR
?: Ternary (shorthand for if-then-else statement)

Type comparison
operator

instanceof Compares an object to a specified type

Bitwise and bit shift
operators

~ Unary bitwise complement
<< Signed left shift
>> Signed right shift
>>> Unsigned right shift
& Bitwise AND
^ Bitwise exclusive OR
| Bitwise inclusive OR

1.2 Language Basics 9

1.2.8.2 Shorthand Assignment Operators

Shorthand assignment notation combines the assignment operator (=) and an
arithmetic operator. It is used to change the value of a variable by adding,
subtracting, multiplying, or dividing by a specified value. The general form is as
follows:

Variable Op = Expression,

and is equivalent to:

Variable = Variable Op Expression

For example, int x +¼ y; is the same as int x ¼ x +y;.
In Listing 1.5, we show how the shorthand operator can be used. We use each

variable twice: the first time with the shorthand operator and the second time without
the shorthand operator. The call to the print method shows that the shorthand and
non-shorthand operators provide identical results.

Listing 1.5 Using shorthand operator in Java.

public class ShorthandAssignmentOperators {
// instance variable declaration

static int count = 0, sum = 0, bonus = 2, time = 360, rushFactor = 10,
change = 37, discount = 5, count1 = 5,
count2 = 12, amount = 4;

public static void main (String args[]) {
count += 2;
sum -= discount;
bonus *= 2;
time /= rushFactor;
change %= 100;
amount *= count1 + count2;
print ();

// instance variables are re-initialized.
count = 0; sum = 0; bonus = 2; time = 360;
rushFactor = 10; change = 37; discount = 5;
count1 = 5; count2 = 12; amount = 4;
count = count + 2;
sum = sum - discount;
bonus = bonus * 2;
time = time / rushFactor;
change = change % 100;
amount *= (count1 + count2);

}
// print method declaration

public static void print () {
System.out.println("Shorthand operator is used");
System.out.println("variable values are " + count +

" " + sum + " " + time + " "+ bonus + " " + change + " " + amount);

10 1 Java Review

System.out.println("---------------------–");
System.out.println("variables are re- initialized");
System.out.println(
" regular expressions are used and results are identical");
System.out.println("variable values are " + count +

" " + sum + " " + time + " "+ bonus + " " + change + " " + amount);
}

}

The program output when you run the code in Listing 1.5 is as follows:

Shorthand operator is used
variable values are 2 -5 36 4 37 68
---------------------–
variables are re-initialized
regular expressions are used and results are identical
variable values are 2 -5 36 4 37 68

1.2.9 Control Flow Statements

Generally, code is executed top-down, i.e., from top to bottom in the order that they
appear. However, the control flow statements, such as if-else statements, break up
the flow of the execution. They loop and branch, enabling your program to decide
which blocks of code will be executed.

The Java programming language supports the following control flow operators:

1. The decision-making statements: if-then, if-then-else, and switch
2. The looping statements: for, while, and do-while
3. The branching statements: break, continue, and return

Examples of using these control flows will be given in the sections below.

1.2.10 Arrays

An array is the simplest data structure in Java. It is a homogeneous container object
that holds a fixed number of values. By homogeneous we mean all the elements of an
array are of the same type.

The length of an array is set when the array is created. After creation, an array’s
length is fixed and cannot be changed. Arrays have certain features:

• All its elements are of the same type.
• Array elements are in adjacent memory locations.

1.2 Language Basics 11

The following line of code declares an array (named myArray):

private int [] myArray;

Like declarations for variables, an array declaration has three components: the
access modifier, the array type, and the array name. If an access modifier is not
declared, then the variable takes the default access modifier. Brackets can be
put before or after the array’s name. For example, float anArrayOfFloats[]; and
float [] anArrayOfFloats; are both valid syntaxes to declare an array. However, the
latter is more appealing.

The new operator is used to create arrays. The following line of code allocates an
array with enough memory for ten integer elements and assigns the array to
the myArray variable.

// create an array of 10 integers, the array size needs to be known at this
// point.
myArray = new int [10];

1.2.11 ArrayList

The length of an array is set when the array is created. After creation, its length is
fixed and cannot be changed. In many cases, it is useful to have a data structure that
has all the properties of the array and is easy to change size. Java has an
ArrayList<type> to overcome the fixed size limitation of the array. It is a dynamic
array, and array size can grow or shrink at the runtime. It is also a type and can be
used in the same way as any other Java type. It can be used:

1. To declare variables, for example, ArrayList<String> namelist;
2. As a type of parameter in a method definition
3. As the return type of a method
4. With the new operator to create a dynamic list. For example,

namelist ¼ new ArrayList<String> ();

ArrayList has instance methods such as:

• add for adding a String to the list, e.g., namelist.add(“Abdul-Rahman”);
• get(index) for getting the string at index, e.g., namelist.get(1);
• size for getting the number of items currently in the list, for example,

namelist.size();

12 1 Java Review

You can use ArrayList with any user-defined types or Java types. For example, if
Student is a class representing students, you can create a list of students as follows:

ArrayList<Student> classList = new ArrayList<Student>();

Then, to add students like George or Ali to the list just created, we simply have
to say classList.add (Ali). You can remove students from the list using array index,
e.g., classList.remove(i).

1.2.12 Java Iterator Interface

Java provides an interface for going through or traversing all elements in any
collection, container, or data structure. The interface is called an Iterator. The syntax
of an iteration is generic and applies to any Java class that implements the Iterator
interface. Here is an example of iterating through an ArrayList of Strings without
using the Iterator.

for (int i =0; i <yourList.size();i++) {
String s = yourList.get(i);
//do something with s

}

Alternatively, using the Iterator would be:

Iterator<String> itr = list.iterator();
while (itr.hasNext()) {
String s = itr.next();

}

It is more suitable to use the Iterator interface than the for loop or for-each loop if
you are updating the collection, e.g., removing items from the collection, while you
iterate over the collection or the list of objects.

1.2.13 For-Each Loop

A new loop construct called for-each loop was added in Java 5 to loop through each
item in an array or a collection more clearly. Table 1.2 show examples where
for-each loop is used with for loop and the Iterator.

1.2 Language Basics 13

The generic format of the for-each statement is like this:

For (type variable: any_collection) { // do something; }

Listing 1.6 is a more complete example of how for-each loop is used:

Listing 1.6 Using for-each loop.

package javaReview;
public class ForEachTest {

public static void main (String args[]) {
double sum = 0;
double [] price = {1.5, 2.5, 3.5, 4, 0.5};
for (int i = 0; i < price. length; i++) {

sum = sum + price[i];
}
System.out.println("When regular for loop is used sum is " + sum);
sum = 0;
for (double p: price)

sum = sum + p;
System.out.println("When For-each loop is used sum is " + sum);
Collection<String> myCollectionItem = new ArrayList<String> ();
myCollectionItem.add("1 - H - Hydrogen");
myCollectionItem.add("2 - He - Helium");
myCollectionItem.add("3 - Li - Lithium");
myCollectionItem.add("4 - Be - Beryllium");
myCollectionItem.add("5 - B - Boron");
System.out.println (
" When Iterator is used the collection printout is ");

Table 1.2 For-each loop vs. for loop and Iterator

14 1 Java Review

Iterator iter = myCollectionItem.iterator();
while (iter.hasNext()) {

System.out.println(iter.next());
}
System.out.println ("When For-each is used instead of the" +

Iterator the collection printout is");
for (String item: myCollectionItem)

System.out.println (item);
}

}

The for-each operator should not be used if you need compatibility with versions
before Java 5. You also need to be aware of some rules when using the for-each loop.
For example,

1. It is not possible to traverse two structures or collections at once.
2. It can be used only for single-element access.
3. It can only iterate forward by single steps.

For more information about Java language basics, we suggest that you refer to the
resources listed at the end of this chapter.

1.3 Object-Oriented Programming Concepts in Java

There are similarities between object-oriented programming (a.k.a, OOP) and pro-
cedural programming; both involve executing a set of instructions in a specified
order. However, OOP is different from procedural programming in the way that code
is organized. In this part of the chapter, we will review some of the fundamental
object-oriented programming concepts. These include classes, objects, interfaces,
packages, abstract classes, inheritance, polymorphism, and exception handling.

1.3.1 Classes

The Java programming style involves organizing code in “chunks” that logically
correspond to real-world objects. For example, you may group all your code related
to a person into one file (a class), while code related to a car or a bank account would
be grouped in separate files (i.e., classes). A class is an essential building block of the
Java programming language and other object-oriented programming languages.
Without classes, OO programming would not be possible. In Java, every program,
library, and programmer-defined type consists of classes. Think of classes as bulky
types when compared to primitive data types such as int, double, etc. A primitive
type value is a single piece of data. A class can have multiple pieces of data, as well

1.3 Object-Oriented Programming Concepts in Java 15

as actions called methods. A class determines the types of data that an instance of the
class, i.e., an object, can contain as well as the actions it can perform.

You already saw classes, the objects created from classes, and invoked class
methods. For example, you have used the String and the System classes. These are
system-defined classes; they are included in the Java SDK you download. In this
lesson, you will learn how to define your own Java classes, i.e., user-defined classes,
their methods, and how to instantiate objects from your own Java classes.

Think of a class as a special programmer-defined type. They are not int, double, or
char. They are programmer types. Once you defined your type, you can declare
variables of the defined type. The class variable declaration is like the primitive
variable declaration. For example, like declaring int x, you can declare Bird flamingo
where Bird is a programmer-defined type. In the example below, a Bird class is
defined, and the flamingo variable of the type Bird is declared.

public class Bird {
String name;
String description;
String family;

}
Bird flamingo;

A value of a class type is called an object or an instance of the class. For example,
if Bird is a class, then the phrases “Flamingo is of type Bird,” “Flamingo is an object
of the class Bird,” and “Flamingo is an instance of the class Bird” all mean the same
thing, i.e., here, types, objects, and instances all mean the same thing. All objects of a
class have the same methods and pieces of data (i.e., data name, type, and number).
For a given object, each piece of data can hold a different value.

A class may be declared with one or more modifiers which affect its runtime
behavior. The modifier types that are supported in Java are:

• Access modifiers: public, protected, and private.
• Modifier requiring override: abstract.
• Modifier restricting to one instance: static.
• Modifier prohibiting value modification: final.
• Modifier forcing strict floating-point behavior: strictfp.
• Comments or metadata that you can insert in your Java code, i.e., annotations. It

starts with the @ sign.

The access modifier, for example, specifies which external classes can access a
given class and its properties, constructors, and methods. Access modifiers can be
assigned to class fields, methods, and constructors separately from the class modi-
fier. For example, in most cases, the class modifier is public, but its internal fields are
private or protected. Classes, fields, constructors, and methods can have one of these
access modifiers: private, default (package), protected, or public.

The code snippet given in Listing 1.7 is an example of a Bank Account class in
Java where all information related to a bank account is grouped to form a
BankAccount class. The access modifier for the class as well as the two methods,

16 1 Java Review

withdraw and deposit, are public. The access modifiers for the instance variables
accountNumber, customer name, and balance, however, are private.

Listing 1.7 Java class named BankAccount.

public class BankAccount {
private String accountNumber = "";
private String customer_name = "";
private double balance = 0.0;
public BankAccount() {

this.accountNumber = accountNumber;
this.customer_name = customer_name;
this.balance = balance;

}
public BankAccount(String id, String name, double amount) {

this.accountNumber = id;
this.customer_name = name;
this.balance = amount;

}
public double deposit (double amount) {

balance = balance + amount;
return (balance);

}
public String withdraw (double amount) {

String customerBalance = "";
if (amount > balance) {

balance = balance - amount;
customerBalance = "your new balance is" + balance;

} else {
customerBalance = "no enough fund to withdraw" + amount;

}
return customerBalance;

}
public String toString() {

return (" the account number for the customer " +
customer_name + " is " + accountNumber +
" and the balance is " + balance);

}
}

1.3.2 Objects

An object is an individual element of the class, i.e., an instance of the class. In Java,
objects and instances are used interchangeably; there can be any number of objects
of a given class in computer memory at any one time.

The data (i.e., information) is associated with, or defines, the attributes or
properties of the object. These attributes represent the state of the object during its

1.3 Object-Oriented Programming Concepts in Java 17

lifetime. Since an object is an instance of a class, we call these kinds of variables
instance variables.

You may have noticed that the BankAccount class does not have a main method.
This is because it is not a complete application; it is just a blueprint for the
BankAccount class that might be used in an application. The responsibility of
creating and using new BankAccount objects belongs to some other class in the
application. In this case, the TestingBankAccount class is taking care of creating
BankAccount objects. The code for the TestingBankAccount is shown in
Listing 1.8.

Listing 1.8 TestingBankAccount class for creating and testing BankAccount
objects.

public class TestingBankAccount {
BankAccount anAccount;
public void test1() {

BankAccount myDefaultAccount = new BankAccount();
System.out.println(myDefaultAccount);

}
public void test2() {

BankAccount myNonEmptyAccount = new BankAccount(
"123", "AR Yunis", 100);

System.out.println(myNonEmptyAccount);
}
public static void main (String args[]) {

TestingBankAccount testingAccount = new
TestingBankAccount();

testingAccount.test1();
testingAccount.test2();

}
}

The code snippet below shows two methods, test1() and test2(), from the
TestingBankAccount class. In each method, a BankAccount object has been created.
In the first one, the object is called myDefaultAccount, and in the second one,
the object is called myNonEmptyAccount. Both objects are created by calling the
constructor method of the BankAccount class. See the code snippet below; the object
creation calls are highlighted in boldface font.

public void test1() {
BankAccount myDefaultAccount = new BankAccount();
System.out.println(myDefaultAccount);

}
public void test2() {

BankAccount myNonEmptyAccount = new BankAccount(
"123", "AR Yunis", 100);

System.out.println(myNonEmptyAccount);
}

18 1 Java Review

The new operator is used to instantiate the class objects. In both test methods, the
newly created objects are passed to the System.out.println for printing. During
instantiation, the following processes take place:

• A chunk of computer memory gets allocated to the newly instantiated object.
• A reference to the newly allocated memory is returned.
• Object constructor is invoked.

The new operator takes only one parameter, a call to the class constructor.
The name of the constructor is the name of the class to instantiate. Once a reference
to the newly created object is returned, the reference is usually assigned to a variable
of the proper type for further use.

The BankAccount class created above has two constructors. You can recognize a
constructor easily because its declaration uses the same name as the class and the
constructor method has no return type. When we run the code, you get the following:

javaReview.BankAccount@7852e922
javaReview.BankAccount@4e25154f

The output of the above print method is not very meaningful. This is because we
have not defined how the object should look like when we print the objects. To do so,
you need to override the toString method that BankAccount has inherited from the
Object class, the top class in the Java class hierarchy. We will provide more
information about the properties of the Object class and the inheritance mechanism
in later sections. Here is an example of toString() method implementation.

public String toString() {
return (" the account number for the customer " +

customer_name + " is " + accountNumber +
" and the balance is " + balance);

}

After adding the toString() method to the BankAccount class and re-running the
code, we get the following two meaningful outputs.

the account number for the customer is and the balance is 0.0
the account number for the customer AR Yunis is 123 and the balance is 100.0

As expected, the first object has no value for its attributes, and all three attributes
for the second object are initialized.

1.3.2.1 Do It Yourself

1. Using any Java IDE, for example, Eclipse, write the BankAccount and
TestBankAccount code, and then compile and run the code.

2. Make modifications to the code gradually, and after each change, compile and run
the code until you feel you are fluent with class and object concepts.

1.3 Object-Oriented Programming Concepts in Java 19

3. Add two more properties to the BankAccount class and update the toString
method to print the properties that have been added.

4. Add two more test cases to the TestBankAccount class for testing the new
properties and the toString method.

1.3.3 Interfaces

The Java interface forms the object’s view to the outside world. It enables other
classes and applications to interact with an object without knowing its internal
implementation. To define an interface, you use the keyword interface and include
one or more methods that represent the object’s behavior in the interface’s definition.
The methods will not have a body but only signatures, i.e., name and parameter list.

Like classes, in Java, an interface is a type. However, the interface can only have
the following variable modifiers and method information:

1. Constants
2. Method signatures
3. Default methods, introduced in Java 8
4. Static methods
5. Nested types

Default methods and static methods are the only ones that have method bodies.
You cannot instantiate an interface; it can only be implemented by classes
or extended by other interfaces. The code snippet in Listing 1.9 is an example of
the interface declaration:

Listing 1.9 An example of an interface declaration is called RemoteControl.

public interface RemoteControl {
int turnOn();
int turnOff();
int increaseVolume (double value);
int decreaseVolume (double valu);
int changeChannel (int chanelNumber);
int pressTVMenu();

}

Note that the method declaration, i.e., the method signature, has no method body
braces; instead, they are ended with a semicolon. An interface declaration consists of
modifiers (e.g., public, private, protected), the keyword interface, the interface name,
and the interface body. If your interface extends other interfaces, then a comma-
separated list of other interfaces will be included in the interface declaration. See the
code snippet in Listing 1.10 where MultiInterface extends three interfaces.

20 1 Java Review

Listing 1.10 An example of interface extending other interfaces.

public interface MultiInterface extends FirstInterface,
SecondInterface, ThirdInterface {

final double pi = 3.14;
public void doingSomething ();
public int doingAnotherThing();

}

Defining your interface as public says that the interface can be accessed by any
class in any package interested to use the interface. If you do not specify any access
specifier, then your interface will have default access, and it will be accessible only
to classes defined in the same package where the interface is defined.

An interface can extend other interfaces, just as a class can subclass or extend
another class. However, there is a difference between the two. While a Java class can
extend only one other class, an interface extension is not limited to one. An interface
can extend multiple other interfaces.

To use an interface, you write a class that implements the interface like this:

Public class operateSamsungTV implements RemoteControl {. . .}.

When a non-abstract class implements an interface, it provides a method body for
each of the methods declared in the interface. For example, in the code snippet of
Listing 1.11, a dummy implementation for each method of the RemoteControl
interface is provided.

Listing 1.11 An example of a class implementing an interface

public class MySamsungTV implements RemoteControl {
public int turnOn() {return 0;}
public int turnOff() {return 0;}
public double increaseVolume (double value) {return 0;}
public double decreaseVolume (double valu) {return 0;}
public int changeChannel (int chanelNumber) {return 0;}
public int [] pressTVMenu() {return null ; }

}

1.3.3.1 Do It Yourself

Implement a SonyTV class to simulate Sony TV operations. To do so, you need to
write code, i.e., the signature body, for all the methods included in the
RemoteControl interface.

1.3 Object-Oriented Programming Concepts in Java 21

1.3.4 Package

A package is a way to organize your source code and other components of your
application properly. It is done by saving related classes and interfaces together in
separate folders. Conceptually, you can think of packages as folders for different
components of your application. For example, for a Web application, you might
keep all HTML pages, images, scripts, data, and source code in separate folders.
Because application code can be composed of many individual classes, it is good
practice to keep things organized by placing related code, classes, and interfaces into
packages. For example, Java API has a separate package for file I/O classes, util
classes, gui classes, security classes, network classes, etc.

The first line in any Java source code file should be the package statement. As
shown below, for our BankAccount class, a package has been created and is called
JavaReview:

package javaReview;

1.3.5 Inheritance

The Java programming language supports inheritance, that is, classes can
be derived or subclassed from other classes, inheriting data fields, methods, and
nested classes from their superclasses. Except for the Object class, which has no
superclass, in Java, every class has one and only one direct superclass. This is
because Java supports only single inheritance, different from, for example, C++,
which supports multiple inheritances. If no superclass is explicitly declared for a
class, then the class becomes a subclass of the Object class.

A class can be derived from classes that are subclasses of other classes which in
turn are subclasses of other classes and so on which are derived from the topmost
class in the Java class hierarchy, the Object class. Such a class is said to be a child of
all the classes in the inheritance chain, stretching back to the Object class.

A subclass inherits all the members, properties, and behavior from its
superclass. Constructors are not class members, so they are not inherited by sub-
classes. For the constructor of the superclass to be invoked from the subclass,
the subclass must use the keyword super in front of the constructor’s name,
e.g., Super.contructorName (“list of parameters, if any”);

The most general or generic class in Java is the Object class, the topmost class in
the Java class hierarchy. Classes near the bottom of the Java class hierarchy are
specialized classes; they are created to provide more specific or custom behavior.

22 1 Java Review

1.3.6 Inheritance Example

Let us define two classes, the Employee and Manager classes. The first one is a base
class, and the second one is a subclass of the Employee class. The class definitions
are shown in Listings 1.12 and 1.13:

Listing 1.12 Defining a base class called Employee.

public class Employee {
String name;
String department;
int PRINumber ;
public Employee (String name,

String department, int pRINumber) {
super ();
this.name = name;
this.department = department;
PRINumber = pRINumber;

}
public String getName() {

return name;
}
public void setName(String name) {

this.name = name;
}
public String getDepartment() {

return department;
}
public void setDepartment(String department) {

this.department = department;
}
public int getPRINumber() {

return PRINumber;
}
public void setPRINumber(int pRINumber) {

PRINumber = pRINumber;
}

}

A class declaration for a Manager class that is a subclass of an Employee
class might look like Listing 1.13:

Listing 1.13 An Employee subclass definition called Manager class.

public class Manager extends Employee {
int numberOfTeams ;
public Manager (String name, String department,

int pRINumber, int numberOfTeams) {
super (name, department, pRINumber);

1.3 Object-Oriented Programming Concepts in Java 23

this.numberOfTeams = numberOfTeams;
}
public int getNumberOfTeams() {

return numberOfTeams;
}
public void setNumberOfTeams(int numberOfTeams) {

this.numberOfTeams = numberOfTeams; }
}

The Manager class inherits all the fields and methods of the Employee class. A
new field called numberOfTeams has been added along with a new method to set the
numberOfTeams. Except for the constructor, it is as if you had written a new class
from scratch with four fields and five methods. Thanks to inheritance, you don’t have
to do all the work.

Not having to re-write an entirely new class from scratch would be especially
valuable if the methods in the Employee class were complex and had taken substan-
tial time to create, test, and debug.

Java inheritance enables a powerful programming technique called polymor-
phism which is described next section.

1.3.7 Polymorphism

Polymorphism is the ability of a method to do different tasks based on the object that
it is operating on. In other words, polymorphism allows you to define one interface
of an object and have multiple implementations of the same object. Polymorphism
can be explained with a minor modification to the Employee class. For example,
a printDescription method could be added to the class to display all the data
currently stored in an Employee instance. The Employee print method would be as
follows:

public String printDescription () {
return "Employee [name=" + name + ", department=" + department + ",
PRINumber=" + PRINumber + "]";

}

After adding the printDescription method, the new definition of the Employee
class is shown in Listing 1.14:

24 1 Java Review

Listing 1.14 New Employee class with printDescription method.

package javaReview;
public class Employee {

String name;
String department;
int PRINumber ;
public Employee (String name,

String department, int pRINumber) {
super ();
this.name = name;
this.department = department;
PRINumber = pRINumber;

}
public String getName() {

return name;
}
public void setName(String name) {

this.name = name;
}
public String getDepartment() {

return department;
}
public void setDepartment(String department) {

this.department = department;
}
public int getPRINumber() {

return PRINumber;
}
public void setPRINumber(int pRINumber) {

PRINumber = pRINumber;
}
public String printDescription () {

return ("Employee [name=" + name + ", " + "department=" +
department + ", " + "PRINumber=" + PRINumber + "]");

}
}

To demonstrate polymorphic features in the Java language, we create two new
classes, Manager and TeamLeader, that extend the Employee class. Each of the
newly created classes has its customized print method. For the printDescription
method in the Manager class, we add a field called numberOfTeams. The
numberOfTeams field would have an int value indicating how many teams a
Manager is managing now. See the Manager class definition in Listing 1.15:

1.3 Object-Oriented Programming Concepts in Java 25

Listing 1.15 New Manager class with print description.

package javaReview;
public class Manager extends Employee {
int numberOfTeams ;

public Manager (String name, String department, int pRINumber,
int numberOfTeams) {

super (name, department, pRINumber);
this.numberOfTeams = numberOfTeams;

}
public int getNumberOfTeams() {

return numberOfTeams;
}
public void setNumberOfTeams(int numberOfTeams) {

this.numberOfTeams = numberOfTeams;
}
@Override
public String printDescription () {

return ("Manager [numberOfTeams= " + numberOfTeams +
", " + super.printDescription() + "]");

}
}

Note that in addition to the original information included in the printDescription
method, additional data about the numberOfTeams is included in the
printDescription method of the Manager class.

Next, we create another class called the TeamLeader class, and we add an
attribute, numberofEmployee, that indicates the number of employees a team leader
supervises. The TeamLeader class definition is shown in Listing 1.16:

Listing 1.16 An Employee subclass definition called TeamLeader class.

package javaReview;

public class TeamLeader extends Employee {
int numberOfEmployee;
public TeamLeader(String name, String department,

int pRINumber, int numberOfEmployee) {
super (name, department, pRINumber);
this.numberOfEmployee = numberOfEmployee;

}
public int getNumberOfEmployee() {

return numberOfEmployee;
}
public void setNumberOfEmployee(int numberOfEmployee) {

this.numberOfEmployee = numberOfEmployee;
}

26 1 Java Review

@Override
public String printDescription() {
return ("TeamLeader [numberOfEmployee= " +

numberOfEmployee + ", " + super.printDescription());
}

}

Note that again the printDescription method has been customized. This time,
information about the numberOfEmployee in the team is included in the
printDescription method for the display.

To summarize, we now have three classes: Employee, Manager, and TeamLeader.
Some properties are common to all three classes, but the two subclasses override
the printDescription method to display unique information relevant to their custom-
ized properties. The TestEmployee program shown in Listing 1.17 creates
three Employee objects – one for each class; then each object is printed.

Listing 1.17 The main class to create and print Employee objects.

package javaReview;

public class TestEmployee {
public static void main (String args[]) {
Employee employee1 = new Employee ("AR yunis","BI", 123456) ;
Employee employee2 = new Manager ("AR yunis","BI", 123456, 5) ;
Employee employee3 = new TeamLeader ("AR yunis","BI", 123456, 12) ;

Employee comapnyEmployees [] = {employee1, employee2, employee3} ;
for (Employee emp : comapnyEmployees) {

System.out.println (emp.printDescription());
}
}
}

The following is the test result from the test program:

Employee [name=AR yunis, department=BI, PRINumber=123456]
Manager [numberOfTeams= 5, Employee [name=AR yunis, department=BI,

PRINumber=123456]]
TeamLeader [numberOfEmployee= 12, Employee [name=AR yunis,

department=BI, PRINumber=123456]

Note that the type of all three variables, employee1, 2, and 3, is Employee, yet the
Java virtual machine (JVM) finds and calls a suitable printDescription method at
runtime for the actual objects instantiated which are Employee, Manager, and
TeamLeader, respectively. This behavior, i.e., recognizing the object’s customized
printDescription at runtime, is the polymorphism feature in the Java language.

1.3 Object-Oriented Programming Concepts in Java 27

1.3.7.1 Do It Yourself

1. To practice inheritance and polymorphism, rebuild the example above. Create
four Java classes: Employee, Manager, TeamLeader, and TestEmployee. Make
both the Manager and the TeamLeader extend the Employee class as described
above. Use the Test class to test the printDescription method. Compile and run
your code. You should have results like the output listed above.

2. Create a new project called Students to include information about Student,
GraduateStudent, UnderGraduateStudent, FulltimeStudent, and ParttimeStudent.
Utilize inheritance to minimize code writing and compile, run, and test your code
to become more familiar with Java inheritance.

1.3.8 Hiding Fields

Within a subclass, if a field has the same name as a field in the superclass, then the
subclass hides the superclass’s field. This field hiding happens even if field types of
super- and subclasses are different. Thus, within the subclass, the fields in the
superclass cannot be referenced simply by their names. Instead, to reference fields
from the superclass, the keyword super should precede the field name. The use of the
keyword “super” is covered below in detail. You can also use “super” to refer to the
superclass field that has not been overwritten in the subclass. Even though we can
access the superclass’s hidden fields, generally speaking, hiding fields is not
recommended as it makes code difficult to read. To avoid hidden fields, name fields
in sub- and superclasses uniquely.

1.3.9 Using the Keyword Super

If your method overrides one of its superclass’s methods, then you can call the
overridden method from the superclass using the keyword “super.” See the examples
in Listings 1.18 and 1.19:

Listing 1.18 A base class definition.

public class SuperClass_A {
public void print () {
System.out.println("printing inside superclass A");
}

}

28 1 Java Review

Listing 1.19 A subclass definition uses a super keyword to call the superclass.

public class SubClass_B extends SuperClass_A {
@Override
public void print () {

super.print();
System.out.println("printing inside sub class B");

}
public static void main (String args[]) {

SubClass_B b = new SubClass_B().print();
}

}

In Listing 1.19, a new class called subclass_B is created. It extends SuperClass_A
and overrides the print method. Within subclass_B, the name print () refers to the
method declared in the subclass which overrides the one in the superclass. This is
normal, and nothing is new here. However, to refer to, or reference, the print ()
method inherited from the superclass, the subclass must use the “super” keyword.
The call to the superclass print method, super.print(), is highlighted in bold in the
subclass_B method. Compiling and running the subclass_B prints the following
output:

printing inside superclass A
printing inside subclass B

1.3.10 Subclass Constructors

In the example below, we illustrate how to use the super keyword to call a
superclass’s constructor. We use the Manager and the Employee classes for this
example; we have already defined earlier that the Manager class is a subclass of the
Employee class. Here, the Manager constructor calls the superclass constructor first
and then initializes its field, numberOfTeams.

public Manager (String name, String department, int pRINumber,
int numberOfTeams) {

super (name, department, pRINumber);
this.numberOfTeams = numberOfTeams;

}

Calling or invoking a superclass constructor must be the first line in the
subclass constructor. The syntax for calling a superclass constructor is either
super(); or super (parameter list); depending on whether the superclass constructor
takes parameters or not. With super(), the superclass’s no-argument constructor is

1.3 Object-Oriented Programming Concepts in Java 29

https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

called. With super (parameter list), the superclass’s constructor with a matching
parameter list is called.

If a constructor in a subclass does not explicitly call a superclass constructor,
the Java compiler automatically inserts a call to the default constructor (also called
the no-argument constructor) of the superclass. This automatic call to the default
constructor could be problematic. If the superclass does not have a no-argument
constructor, then you will get a compile-time error saying Object does not have such
a constructor.

When a subclass constructor calls a constructor of its superclass, either explicitly
or implicitly, there will be a whole chain of constructor calls going all the way back
to the constructor of the Object class on the top of the Java class hierarchy; this is
called constructor chaining. When a constructor chain happens, the code perfor-
mance might degrade. When coding, you need to be aware of the impact of
constructor chaining calls and try to avoid it. To do so, you need to avoid a long
line of class descent.

1.3.11 Using Preserved Keyword “this”

When the preserved keyword “this” is used inside a class constructor or any other
methods of the class, it means the current class in use. You can refer to any instance
variable or method of the object in use using the “this” operator. The most common
reason for using the “this” keyword is to remove ambiguity. For example, the
PressButton class can be written as shown in Listing 1.20. However, the code
would be more clear if it had been written in the way shown in Listing 1.21 where
the “this” keyword is used.

Listing 1.20 A class definition with no clear constructor definition.

public class PressButton {
int width;
int height;
public PressButton(int height, int width) {
super();
height = height;
width = width;

}
}

30 1 Java Review

Listing 1.21 A class definition that uses the “this” keyword to differentiate
between incoming arguments and class fields.

public class PressButton {
int width;
int height;
public PressButton(int height, int width) {
super();
this.height = height;
this.width = width;

}
}

Arguments passed to the constructor can be used to set values of an object’s
fields. For example, inside the constructor of Listing 1.21, height is a local copy
variable. To refer to the PressButton class field height, the constructor is using
this.height.

1.3.11.1 Using this with a Constructor

Inside a class constructor, you can also use “this” keyword to call another construc-
tor in the same class. In Listing 1.22, the MyButton class uses “this” inside the
default and two-parameter constructors to explicitly invoke a constructor that has
four parameters.

Listing 1.22 Using this keyword to call other constructors in the class.

public class MyButton {
int height, width, margin;
String label;
public MyButton () {
this (1, 1, 0, null);
}
public MyButton (int margin, String label) {
this (1, 1, margin, label);

}
public MyButton (int height, int width, int margin, String label) {
super ();
this.height = height;
this.width = width;
this.margin = margin;
this.label = label;

}
}

1.3 Object-Oriented Programming Concepts in Java 31

If you pay close attention to the MyButton class in Listing 1.22, you can see that
the MyButton class has three different constructors. Each constructor initializes
some, or all, of MyButton’s fields. For example, when the default constructor, or
non-argument constructor, is called, no parameters are passed. Yet, two out of four
fields of the class are given initial values of 1, and the other two fields are given zero
and null values, respectively. Thus, a call to the default constructor creates a
MyButton object with no labels and zero margins using this (1, 1, 0, null);.

The constructor with two arguments, on the other hand, calls the four-
argument constructor, passing values to both the margin and label fields. Inside
the constructor, the values (1,1) are used to initialize the other two fields using
this (1, 1, margin, label);. Based on the number and the type of arguments, the
compiler determines which constructor to call, and if you need to call a constructor
inside a constructor, it must be the first line in the constructor.

Note that both the “this” and “super” operators can’t be invoked within the same
constructor. To do so, you need to find a way around it. For example, if constructor A
uses the “this” operator to call constructor B, then constructor B can include the
“super” operator in its implementation and make a call to the super constructor.

1.3.12 Java Exception Handling

When an exception happens, also called arises, the normal execution of the program
stops abruptly, and the alternative piece of code can be executed. It is also possible
for the program to end completely. Exceptions are said to be thrown, or raised, at the
point of program interruptions and are said to be handled, or caught, at the point
when normal program execution proceeds. There are two types of exceptions in
Java, checked and unchecked exceptions.

Checked exceptions—is a list of classes that are defined in the Java SDK to handle
situations that can cause trouble in normal program execution. These situations are
known to the compiler and are checked during code compilation. For example, you
may be given an incorrect path to the file that your program is supposed to read, or
the file has been removed. Java designers predicted such situations and have a class,
file not found exception class, to check for such situations. The Java compiler checks
your program during compilation time to find out if you either catch or re-throw the
exceptions. The checked class exceptions are subclasses of the Java class Exception,
but their parent class is not RuntimeException.

Unchecked exceptions—is a list of classes that are defined in the Java SDK that
represent all types of errors your program can encounter; you need to account for
these errors to prevent them from happening. The compiler does not check to see that
you catch/handle these types of exceptions. For example, the number format excep-
tion and division by zero exception are exceptions only checked at runtime and not
during the compilation time. It is your responsibility to handle these types of
exceptions through proper programming, design, and testing. In addition to the

32 1 Java Review

exceptions already defined by the Java language, programmers may create their
exception classes by extending Java-provided exception classes.

1.3.12.1 The Try-Catch-Finally Block

Java uses the try, catch, and finally keywords to handle exceptions; the format is
shown in the code snippet below. The first catch block has an exception of type
ExceptionTypeX. If the type of exception thrown in the try block matches
ExceptionTypeX, it will be executed, and the other catch blocks will be skipped.
The finally block is optional and is executed whether an exception is thrown or not.

try {
// program statements

} catch (ExceptionTypeX exception) {
// program statements to handle exceptions of type X or any of its
// subclasses
} . . . // other catch clauses
} catch(ExceptionTypeN exception) {
// program statements to handle exceptions of type N or any of its
// subclasses
} finally {

/* executed after the try block or a catch block has been executed. It will
execute whether an exception is thrown or not.*/
}

1.3.13 Generic Types

To enable class definition reuse, the generics technique enables classes, interfaces,
and methods definitions to be parameterized. Just like the way parameters are used
in the method declarations, the generic structure enables parameters to be used in the
class definition. When using generic types, however, the parameters are types or
classes and not the values which is the case when passing parameters to methods.
The following simple Material class, Listing 1.23, which seems to be a generic class
because of the use of the Object type as a parameter, will be changed to show the true
generic concept, Listing 1.24.

1.3.13.1 A Simple Material Class

Let us begin by examining a class called Material that works with objects of Solid,
Liquid, and Air types; see Listing 1.23.

1.3 Object-Oriented Programming Concepts in Java 33

Listing 1.23 A Java class called Material use properties of type Object to
implement generic behavior.

public class Material {
private Object object;
public Object getObject() {
return object;

}
public void setObject(Object object) {
this.object = object;

}
}

Since the Material methods accept/return the Object type, any object can be
passed to the Material class methods without issue during code compilation. This
is because the Object type is a superclass for all types and any class is a subclass of
the Object class. However, inconsistent use of the Material class could lead to a
disaster at runtime, i.e., when it means different things at different parts of the code.
For example, a Solid object in one part of the code is treated as a Liquid or Air object
in other parts of the code.

1.3.13.2 A Generic Version of the Material Class

The solution to the runtime error that might happen using the above naive generic
structure is to use true generic class definition and type parameters. The generic
class definition format is like this:

class name <T1, T2, ..., Tn> {/* ... */}

The type parameters are enclosed inside angle brackets (<>) and follow the class
name. The angle brackets, <>, are also called a diamond. T stands for the type
parameters, sometimes called type variables, T1, T2, ..., and Tn. To turn the Material
class listed in 1.23 into a generics class, you need to use a generic type declaration.
That is, you need to change:

public class Material {} to public class Material <T> {}

The type variable T is introduced, and it can be used anywhere inside the class.
The new definition of the Material class is shown in Listing 1.24:

34 1 Java Review

Listing 1.24 A generic version of Material class.

public class Material <T> {
// T stands for "Type"
private T mtype ;
public void set (T mtype) {this.mtype = mtype ;}
public T get () {return mtype; }

}

As you can see, all occurrences of objects are now replaced by T. The parameter T
can be of any type you want to pass, except the non-primitive ones, i.e., T can be any
class or interface or another T variable you would like to pass. The generic structure
is not limited to the class. The same technique can be applied to create generic
interfaces.

1.3.14 Type Parameter Naming Conventions

The type parameter names used with the generic class definition are single uppercase
letters. This is contradictory to the Java variable naming convention which suggests
using lowercase and meaningful names. Nonetheless, the single uppercase letter
convention has been accepted and used widely by developers.

The extensively used type parameter names are E, K, N, T, V, S, and U. The
E type parameter is used with the collections and represents collection elements;
K is used for keys, N for numbers, T for types, and V for values; and S and U are
used for the second and third type parameters.

1.3.14.1 Calling and Instantiating a Generic Type

To use the generic Material class from within an application code, you must perform
a generic type call, which means replacing T with a concrete type, e.g., Solid
material, and it will be declared like this: Material <Solid> marble;

The statement above does not create a new Material object yet. It simply declares
that a marble variable will hold a “Solid” type of Material. To instantiate an object of
Solid type, you need to use the usual new keyword and place <Solid> between the
class name and the parenthesis at the end. Here is an example:

Material <Solid> marble = new Material <Solid> ();

In Java SE 7 and later, empty diamond <> can be used instead of <T> if a
compiler can infer the argument type from the context using an empty diamond. For
example, you can create an instance of Material <Air> like this:

Material <Air> air = new Material <> ();

1.3 Object-Oriented Programming Concepts in Java 35

1.3.14.2 Multiple Type Parameters

A generic class can have one or more parameters. For example, in Listing 1.25, the
generic PeriodicTable class, which implements the Elements interface, has two
parameters:

Listing 1.25 Implementing Periodic Table as a generic class.

public interface Elements<K, V> {
public K getElementKey();
public V getElementValue();

}
public class PeriodicTable <K,V> implements Elements <K, V> {

private K aKey;
private V aValue;
public PeriodicTable(K key, V value) {

this.aKey = key;
this.aValue = value ;

}
public K getaKey() { return aKey; }
public V getValue() { return aValue ; }

}

The following statements create two objects of the PeriodicTable class:

PeriodicTable <String, Integer> AluminiumAtomicNumber =
new PeriodicTable <String, Integer> ("Al-uminium ", 13);

PeriodicTable <String, String> AluminiumSymbol =
new PeriodicTable <String, String> ("Aluminium", "AI");

The code, new PeriodicTable <String, Integer>, instantiates a new object with
K as a String and V as an Integer. Due to autoboxing, it is valid to pass a hard-coded
String such as “Aluminium” and an int primitive value to the class constructor that
expects String and Integer objects.

1.3.15 Autoboxing

Autoboxing is about changing Java primitive types to their corresponding Java
objects. The conversion, or the change, is done automatically at runtime by the
Java compiler. For example, if you pass int when Integer is expected, the compiler
automatically generates an Integer type for the int you pass; similar conversion is
done by the compiler for other primitive types when needed. An example of
autoboxing is shown in Listing 1.26. An int and a hard-coded String are passed to

36 1 Java Review

the class constructor to instantiate objects. Due to autoboxing, these values are
changed to their corresponding objects, and proper objects are instantiated.

Listing 1.26 Using this keyword to call other constructors in the class.

public class PeriodicTable <K,V> implements Elements <K, V> {
private K key;
private V value;

public PeriodicTable(K key, V value) {
this.key = key; this.value = value;

}
public K getKey() { return key ; }
public V getValue() { return value ; }

public static void main (String args) {
PeriodicTable <String, Integer>elementKeyValue =

new PeriodicTable <String, Integer>(args, null);

PeriodicTable <String, String> PotassiumSymbol =
new PeriodicTable <String, String> ("Potassium", "K");

PeriodicTable <String, Integer> PotassiumAtomicNumber =
new PeriodicTable <String, Integer> ("Potassium", 9);

PeriodicTable <String, Material<Solid>> aSolidMaterial =
new PeriodicTable <> ("new Material", new Material<Solid> ());

}
}

The above PeriodicTable<String, Integer> statements can be shortened using
diamond notation as follows:

PeriodicTable<String, Integer> PotassiumAtomicNumber = new
PeriodicTable <> ("Potassium", 9);

PeriodicTable<String, String> PotassiumSymbol=new
PeriodicTable <> ("Potassium", "K");

This is because the Java compiler can infer the K and V types from the declara-
tion PeriodicTable<String, Integer>. To create a generic interface, follow the same
conventions as for creating a generic class.

1.3 Object-Oriented Programming Concepts in Java 37

1.3.16 Parameterized Types

It is also possible to substitute a type parameter such as K or V with a parameterized
type such as List<String> or Material<Solid>. That is, instead of K being String, it
can be List<String>, and instead of V being integer, it can be ArrayList<Integer>.
In this case, for example, using the PeriodicTable<K, V> for Material<Solid>
would be:

PeriodicTable <String, Material<Solid>> solidMateral = new
PeriodicTable <> ("Solid Material", new Material<Solid> ());

Here, the String “Solid Material” and parametrized type “Material<Solid>” are
passed to the K and V values in PeriodicTable generic type.

1.3.17 Anonymous Classes

Sometimes you need to create a class that is only going to be used once. In this case,
you don’t need to create a file for the class which keeps the code concise. If you need
to use a class only once, the anonymous class is the answer. Anonymous class
expressions allow you to declare and instantiate a class at the same time. They are
similar to regular Java classes except that the class does not have a name.

1.3.17.1 Declaring Anonymous Classes

While regular classes are declared, anonymous classes are expressions created on
the fly, which means that you define the class in an expression. Listing 1.27, the
AnonymousClassExample, uses anonymous classes to compute the area for the
rectangle and square classes but uses the local inner class to compute the area of the
circle class.

Listing 1.27 An example of an anonymous class.

public class AnonymousClassExample {

interface ComputeAreaForGeometricShapes {
public void computeArea(double a, double b) ;
public void printArea(String shape);

}
public void computeAreaForDifferentShapes() {

class CircleShape implements ComputeAreaForGeometricShapes {
String name = "Circle Area is ";

38 1 Java Review

public void computeArea(double a, double b) {
printArea(name + (a * (b*b)) + " unit");

}
public void printArea(String shape) {

System.out.println(shape);
}

}
ComputeAreaForGeometricShapes circle = new CircleShape();

ComputeAreaForGeometricShapes rectangle =
new ComputeAreaForGeometricShapes() {

String name = "Rectangle area is ";
public void computeArea(double a, double b) {

printArea(name + (a*b) + " units");
}
public void printArea(String shape) {

System.out.println(shape);
}

};
ComputeAreaForGeometricShapes squar =

new ComputeAreaForGeometricShapes() {
String name = "Squar area is ";
public void computeArea(double a, double b) {

printArea(name + (a*a) + " units ");
}
public void printArea(String shape) {

System.out.println(shape);
}

};
// call computeArea on three different objects:
circle.computeArea (3.14, 4) ;
rectangle.computeArea (3.14, 4) ;
squar.computeArea (3.14, 4) ;

}
public static void main (String... args) {

AnonymousClassExample anonymousClassExample =
new AnonymousClassExample();

anonymousClassExample.computeAreaForDifferentShapes();
}

}

1.3.17.2 Syntax of Anonymous Classes

As mentioned earlier, an anonymous class is an expression that is written like this:
new() {. . .}. You use the new operator and call a class constructor, and you also pass
a block of code, a class definition, to the constructor. See the instantiation of the
square object in Listing 1.28. The definition of the two methods and the
String “square area is” are contained in curly brackets after the expression
new ComputeAreaForGeometricShapes ().

1.3 Object-Oriented Programming Concepts in Java 39

Listing 1.28 Creating an anonymous class without using a regular class
definition and saving it in a file.

ComputeAreaForGeometricShapes squar = new Shapes () {
String name = "Squar area is ";

public void computeArea(double a, double b) {
printArea(name + (a * a) + " units ");

}
public void printArea(String shape) {
System.out.println(shape);

}
};

1.3.18 Object Serialization

Java allows you to save an object’s state to a file, i.e., to serialize an object. When the
object’s state needs to be saved for feature retrieval, the object’s data is converted
into a series of bytes and saved in a file on your machine or other medians. If the
object you are trying to save is set up correctly, the other objects that it contains as
fields are serialized automatically as well.

There are several situations when object serialization can be used. For example,
serialization is used when you want an object to persist, i.e., the value of the object’s
instance variable can be restored after turning off the Java virtual machine (JVM). It
is also used by RMI (Remote Method Invocation) to pass objects between connected
machines in a network. In this case, objects are passed either as method arguments or
return values from a method invocation. The RMI is an API that acts as a mediator to
create distributed applications in Java. The RMI enables an object to call methods of
another object which is running in another JVM on a remote computer. In general,
serialization is used when you want the object to exist, not only in computer memory
but even when JVM is turned off. More information on how to serialize an object is
provided below.

1.3.18.1 Serializable Interface

To be able to serialize an object, its class must implement the Serializable interface.
The Serializable interface is empty; it has no methods or fields. The interface’s sole
purpose is to tell the Java compiler that objects of the class might be serialized. If a
class is a composed class, i.e., has objects of other classes as an instance variable,
those filed variables must also implement the Serializable interface to be serialized.

40 1 Java Review

1.3.18.2 Serialize an Object

To write a serialized object to a file, you need to use an ObjectOutputStream class. This
class is designed to enable the serialization process. To write the bytes to a file, a
FileOutputStream object is needed as well. How to use these two classes is shown below:

FileOutputStream fileOutStream ;
ObjectOutputStream objOutStm =

new ObjectOutputStream(fileOutStream);

To serialize an object and write it to the file, the writeObject() method from class
ObjectOutputStream is used. Here is an example of how to use the writeObject
method:

StoreInventory item = new StoreInventory("char", 120);
objOutputFile.writeObject(item);

Note that the writeObject method used in the code snippet above throws an
IOException which needs to be handled.

1.3.18.3 Deserialize an Object

As you may guess correctly, the deserialization process is the opposite of the serial-
ization process. The process of reading a serialized object’s bytes and constructing an
object from them is known as deserialization. To deserialize an object, an
ObjectInputStream object is used along with a FileInputStream object as follows:

FileInputStream inStream = new FileInputStream("Objects.dat");
ObjectInputStream objtInputFile =

new ObjectInputStream(inStream);

To read a serialized object from the file, the readObject() method from the class
ObjectInputStream is used as follows:

StoreInventory item = (StoreInventory) objtInputFile.readObject();

The readObject()method returns the deserialized object which you need to cast to
a proper class type. The readObject() method throws several different exceptions if
an error occurs.

1.3.18.4 Code Example

Let us look at a complete object serialization example. In the following sections, we
will create an object, serialize it, write it to a file, read the objects back from the file,
and recreate the objects in the memory.

1.3 Object-Oriented Programming Concepts in Java 41

The StoreInventory class holds simple data about an item in the inventory. A
description of the item is stored in the description field, and the number of units on
hand is stored in the unit’s field. An example of an inventory item class is shown in
Listing 1.29:

Listing 1.29 A simple item inventory class.

public class StoreInventory implements Serializable {
String itemName ;
int itemNumber;
String description;
public StoreInventory() {

super();
}
public StoreInventory(
String itemName, int itemNumber, String description) {

this.itemName = itemName;
this.itemNumber = itemNumber;
this.description = description;

}
public StoreInventory(String description) {

super();
this.description = description;

}
public StoreInventory(String description, int itemNumber) {

super();
this.description = description;
this.itemNumber = itemNumber;

}
public String getDescription() {

return description;
}
public void setDescription(String description) {

this.description = description;
}
public int getItemNumber() {

return itemNumber;
}
public void setItemNumber(int itemNumber) {

this.itemNumber = itemNumber;
}
public String getItemName() {

return itemName;
}
public void setItemName(String itemName) {

this.itemName = itemName;
}

}

42 1 Java Review

1.3.18.5 Example of Serializing an Object

Once you create an object that you would like to serialize, the next step is to write the
object to a file for future retrieval. Class SerializeObjects, shown in Listing 1.30,
serializes the objects in an array. The array elements are of the type StoreInventory.

Listing 1.30 Object serialization steps.

package javaReview;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.io.Serializable;
public class SerializeObjects {

private static int NUM_ITEMS = 10;
private static String description ="";
private static int units = 0;;
public static void main(String[] args) {

FileOutputStream outStream;
StoreInventory[] instoreIems ;
try {

instoreIems = new StoreInventory[NUM_ITEMS];
for (int i = 0; i < instoreIems.length; i++) {
instoreIems[i]= new StoreInventory("item" + i, i);

}
outStream = new FileOutputStream("Objects.dat");
ObjectOutputStream objectOutputFile =

new ObjectOutputStream(outStream);
for (int i = 0; i < instoreIems.length; i++) {

objectOutputFile.writeObject(instoreIems[i]);
}

ObjectOutputStream objOutputFile =
new ObjectOutputStream(outStream);

StoreInventory item = new StoreInventory("char", 120);
objOutputFile.writeObject(item);
System.out.println ("serialized") ;

outStream.close() ;
objectOutputFile.close();
} catch (FileNotFoundException e) {

e.printStackTrace();
} catch (IOException e) {

e.printStackTrace();
}

}
}

1.3 Object-Oriented Programming Concepts in Java 43

1.3.18.6 Example of Deserializing an Object

There are steps you need to follow to read a serialized object from the file. An
example of these steps is included in the DeserializeObjects class; see Listing 1.31. It
deserializes the objects in the Objects.dat file, recreates the object, and stores them in
an array.

Listing 1.31 Object Deserialization steps.

package javaReview;
import java.io.FileInputStream;
import java.io.ObjectInputStream;

public class DeserializeObjects {
public static void main (String [] args) throws Exception {

final int NUM_ITEMS = 10;
FileInputStream inStream =
new FileInputStream("Objects.dat");
ObjectInputStream objectInputFile =
new ObjectInputStream(inStream);
StoreInventory[] instoreItems =
new StoreInventory[NUM_ITEMS];
for (int i = 0; i < instoreItems.length; i++) {

instoreItems[i] =
(StoreInventory) objectInputFile.readObject();

}
inStream.close();
objectInputFile.close();
for (int i = 0; i < instoreItems.length; i++) {

System.out.println("Item " + (i + 1));
System.out.println(" Description: " +

instoreItems[i].getDescription());
System.out.println(" Units: " +

instoreItems[i].getItemNumber());
}

}
}

In Android, object serialization is carried out using Parcelable objects, a subject
that we cover in detail in the later chapters of this book.

1.3.19 Lambda Expressions

In a previous section, Anonymous Classes, we showed how to implement a concise
class without giving it a name and its advantages. Starting with Java 8, there is
another way to write concise classes. In cases where a class has only one method,

44 1 Java Review

you can use the Lambda expression to create a more concise class than a named
class. Lambda expressions are even more compact than anonymous classes for
classes that have only one method. See the code example below for how to use the
Lambda expression.

Lambda is different from a class with one object. A class with one object is called
a singleton class which is similar to static variables when you have only one copy of
the variable shared among all the objects of the same class. Once you define a
constructor to be private and allow only one object to be instantiated, then you have a
singleton class. Singleton is used for controlling resources such as socket and
database connections. In Listing 1.32, the class definition uses two methods to do
the same thing. The methods show the difference in writing code using an anony-
mous class vs. the lambda expression.

Listing 1.32 Using Lambda vs. anonymous classes.

public class LambdaTest {
public void test1() {

// Anonymous Runnable
Runnable runnable1 = new Runnable() {

@Override
public void run() {

System.out.println("Not using Lambda");
} };

runnable1.run();
}
public void test2() {

// Lambda Runnable
Runnable runnable2 = () -> System.out.println("Once a Lambda

expression is" + " used, no Explicit Runnable +
object and its run" + " method are required.");

runnable2.run();
}
public static void main (String []args) {

System.out.println("Testing Lambda expression");
LambdaTest atest = new LambdaTest();
atest.test1();
atest.test2();

}
}

1.3.20 Variable Argument (Varargs)

In Java 5, a new feature, variable arguments or varargs for short, has been introduced
for passing arguments to the methods of classes. Using the varargs feature, zero or
multiple parameters, i.e., a variable number of parameters, can be passed to a
method. In practice, this is equivalent to creating multiple methods, i.e., overloading

1.3 Object-Oriented Programming Concepts in Java 45

the method, where each method has a different number of parameters. It is also
similar to having a method with an array as a parameter.

The added feature is useful. It improves code maintenance since you do not have
to write and maintain multiple methods; you have less code to write and maintain. It
also enables developers to deal with situations when they do not know ahead of time
how many arguments will have to be passed to a method.

1.3.20.1 Syntax of Varargs

To declare a method with varargs arguments, you need to use three dots after the data
type, e.g., (String... variable), also called ellipsis. The method signature syntax is
like this:

access modifier, return type, method name (data type ... variableName)
{// method body}.

An example of how to use varargs in Java is shown in Listing 1.33.

Listing 1.33 An example using varargs in Java.

public class VariableArgumentExample {
public static void printLength(String... variable) {

if (variable.length <= 0) {
System.out.println(" 0 parameter passed");

} else {
System.out.println(variable.length + " parameters are passed" + "

and they are: ");
for (String s: variable) {

System.out.print(s + " ");
}
System.out.println();

}
}
public static void main (String args[]) {

// same print method used over and over with need for a method
// overloading
VariableArgumentExample.printLength();
VariableArgumentExample.printLength("amazing coding");
VariableArgumentExample.printLength("1", "2");
VariableArgumentExample.printLength("1", "2", "3");
VariableArgumentExample.printLength("1", "2", "3", "4");
VariableArgumentExample.printLength("1", "2", "3", "4", "5");
VariableArgumentExample.printLength("1", "2", "3", "4", "5", "6");
VariableArgumentExample.printLength("have you noticed" +
"the power of varargs?");

}
}

46 1 Java Review

When the program is run, the program output would be as follows:
0 parameter passed
1 parameter are passed, and they are:
amazing coding
2 parameters are passed, and they are:
1 2
3 parameters are passed, and they are:
1 2 3
4 parameters are passed, and they are:
1 2 3 4
5 parameters are passed, and they are:
1 2 3 4 5
6 parameters are passed, and they are:
1 2 3 4 5 6
1 parameter are passed, and they are:
have you noticed the power of varargs?

1.3.20.2 Rules for Varargs

There are rules you must follow when using varargs to compile your program
successfully. The rules are:

1. There can be only one variable argument in the method.
2. When you have multiple variables in the method, variable argument (varargs)

must be the last argument.

Below are two examples when varargs will not compile:

1. void methodName (String... a, int... b) {}

Compile-time error for having two varargs arguments (a and b).

2. void methodName (int... a, String b) {}

Compile-time error for varargs being the first argument and not the last argument;
Inside the parenthesis int . . . a comes before b. In the example shown in Listing
1.34, varargs is the second parameter and receives four string values.

Listing 1.34 An example using varargs as a second parameter in the method.

class VarargsTest2 {
static void display (int num, String... values) {

System.out.print(num);
for (String s : values) {

System.out.print (s + " ");
}

1.3 Object-Oriented Programming Concepts in Java 47

System.out.println(); ;
}
public static void main (String args[]) {

display(500, " varargs is the last argument");
display(1000, " one", "two", "three", "four");

}
}

1.4 Chapter Summary

In this chapter, we presented a brief review of Java programming syntax and
concepts as well as object-oriented programming terminologies and concepts. In
this review, the emphasis was put on the parts of Java that are often used in Android
programming and Android application development. These include topics such as
anonymous class, the lambda expression, varargs, generic types, for-each statement,
object serialization, etc. For thorough and recent coverage of the Java language
fundamentals, and Java UI using JavaFX, see [3, 18], and for object-oriented
programming concepts and using Java for application design, see [17].

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

• Anonymous class
• Arrays and ArrayLists
• Class
• Decision-making
• Encapsulation
• Exceptions
• Generic
• Inheritance
• Interfaces
• Lambda expressions
• Objects
• Polymorphism
• Programming basics
• Serialization
• Variable argument (varargs)
• Variables and objects

48 1 Java Review

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Oracle and are a part of the
Java language specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

Allen B. Downey and Chris Mayfield, Think Java: How to Think Like a
Computer Scientist, [Online] Available: http://greenteapress.com/thinkjava6/html/
index.html

David J. Eck, Introduction to Programming Using Java, Eighth Edition,
Version 8.1.1, May 2020, [Online] Available: http://math.hws.edu/javanotes/

Essentials of the Java Programming Language, Part 1, [Online] Available:
https://www.oracle.com/technetwork/java/basicjava1-135508.html

Essentials of the Java Programming Language, Part 2, [Online] Available:
https://www.oracle.com/technetwork/java/index-139917.html

Java™ Platform, Standard Edition 8, API Specification, [Online] Available:
https://docs.oracle.com/javase/8/docs/api/index.html

Lesson 8: Object-Oriented Programming, [Online] Available: https://www.
oracle.com/technetwork/java/oo-140949.html

The Java™ Tutorials Getting Started, [Online] Available: https://docs.oracle.
com/javase/tutorial/getStarted/

The Java™ Tutorials, Java Tutorials Learning Paths, [Online] Available:
https://docs.oracle.com/javase/tutorial/tutorialLearningPaths.html

The Java™ Tutorials, Trails Covering the Basics, [Online] Available: https://
docs.oracle.com/javase/tutorial/index.html

XML Tutorial, [Online] Available: https://www.w3schools.com/xml/
Widening Primitive Conversion, [Online] Available: https://docs.oracle.com/

javase/specs/jls/se7/html/jls-5.html#jls-5.1.2

Further Reading 49

http://greenteapress.com/thinkjava6/html/index.html
http://greenteapress.com/thinkjava6/html/index.html
http://math.hws.edu/javanotes/
https://www.oracle.com/technetwork/java/basicjava1-135508.html
https://www.oracle.com/technetwork/java/index-139917.html
https://docs.oracle.com/javase/8/docs/api/index.html
https://www.oracle.com/technetwork/java/oo-140949.html
https://www.oracle.com/technetwork/java/oo-140949.html
https://docs.oracle.com/javase/tutorial/getStarted/
https://docs.oracle.com/javase/tutorial/getStarted/
https://docs.oracle.com/javase/tutorial/tutorialLearningPaths.html
https://docs.oracle.com/javase/tutorial/index.html
https://docs.oracle.com/javase/tutorial/index.html
https://www.w3schools.com/xml/

Chapter 2
Getting Started with Android

What You Will Learn in This Chapter
By the end of this chapter, you should be able to:

• Download and install Android Studio
• Create Android project
• Compile, build, and run Android apps
• Differentiate between the module and top-level Gradle builds
• Manage code versioning
• Describe Android stack and framework

2.1 Introduction

This chapter marks the start of your journey to learn Android programming. It is
divided into six parts. Section 2.2 is an introduction to the Android and Android
operating system; Sect. 2.3 describes downloading and installing Android Studio
and the Android SDK; Sect. 2.4 describes how to create a simple Android project;
Sect. 2.5 describes compiling and running Android apps and running a HelloWorld
app; Sect. 2.6 describes technologies used for compiling, building, and packaging
Android apps; and, lastly, Sect. 2.7 describes Android stack and framework.

2.2 Starting with Android

Let’s start this chapter by learning more about Android as a mobile operating system
and platform and as a framework for developing apps.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_2

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_2#DOI

2.2.1 A Brief Android History

The story of the Android mobile platform begins in October 2003 when Andy Rubin,
Rich Miner, Nick Sears, and Chris White started a company called Android, Inc. The
company started with the intention to create an advanced operating system for digital
cameras, i.e., use the Linux kernel to create an embedded operating system for digital
cameras: in other words, to create an Android operating system. However, they
changed the direction of the company and started focusing on mobile devices.
Google acquired Android, Inc., and with it acquired the Android operating system
in August 2005. People consider this date as the date that Google entered the mobile
operating system market. In November 2007, several tech companies including
Google, Sony, HTC, Samsung, and others created a consortium called the Open
Handset Alliance (OHA) to develop open standards for mobile devices. The OHA
released the first Android OS open-source software in 2007. One year later, in
October 2008, the first Android phone, the HTC Dream, was launched marking
the start of the mobile phones we know today.

2.2.2 Android Is Open Source

Android is a mobile operating system based on the Linux kernel. It is an open-source
operating system for mobile devices that has been built upon other open-source
projects. As a developer, this means you have access to the source code of the
platform, which in turn helps you to better understand how the interface and the
various other pieces of the platform work. If you happen to find a bug, you can also
submit your solution for the issue and get rewarded by being a part of future Android
improvement. You can download the Android source code at the Android Open
Source Project (AOSP1) repository along with the information you need to create
custom Android OS, port devices, and other accessories to the Android platform.
You can even download the Android OS to your PC and use your PC as an Android
device enabling you to use all the apps available for Android on your PC. To build
the Android source files, you will need to have a Linux or Mac OS. Building under
Windows is not supported yet.

2.2.3 Android Libraries

In addition to phones and tablets, Android powers watches, TVs, and cars and has a
library to develop apps for the IoT (internet of things). Android provides users with
the interface for touchscreens. Users can interact with the Android devices by

1https://wladimir-tm4pda.github.io/source/download.html

52 2 Getting Started with Android

http://en.wikipedia.org/wiki/HTC_Dream
https://wladimir-tm4pda.github.io/source/download.html

swiping, tapping, pinching, or using the virtual keyboard and voice. The voice
access app for Android lets you control your device with spoken commands, i.e.,
use your voice to open apps, navigate, and edit text hands-free. Android has built-in
support for Bluetooth, USB, and peripherals such as printers. Android has sensors to
discover actions such as user moving, phone rotation, tilting steer, etc. Basically, it is
a mini-computer and more.

2.2.4 Android Popularity

Android is a very popular operating system. It is used on a large2 percentage of all
smartphones. Based on Google Play Store’s statistics, there are billions of active
Android devices, and there are millions3 of Android apps in the Google Play Store,
and these numbers grow daily. Android supports the developer community through
documentation and sample codes. The fact that Android is an open-source operating
system based on Linux and uses the Java programming language gives Android a
unique advantage to becoming a popular platform. The Linux operating system
made it easier for device manufacturers to develop drivers for their products.
Similarly, Java made it easier for developers to develop apps for Android. Many
developers prefer Android as it has a large community ready to help and provide
useful information. There are well-developed IDEs for developing Android apps that
have many integrated tools, for example, quality assurance or QA tools, performance
measuring tools, layout tools, etc. that help to develop efficient, secure, and high-
quality Android apps fast and easily.

Before developing an app as simple as a HelloWorld for Android devices, we
need to install the programming environment. In this chapter, we set up the pro-
gramming environment that will be used for the rest of the book. After installing the
Android Studio IDE, we will run the HelloWorld app on the Android emulator and
phone. Running apps on the Android emulator might be slow; this depends on the
CPU speed, memory size, and graphic card size of your machine.

2.2.5 Android Development Environment

To develop Android mobile apps, in addition to your knowledge of the Java data
types, operations, statements, syntax, and program structures, you need to become
familiar with a new set of libraries, classes, and interfaces, i.e., you need to learn to
use the Android software development kit (SDK) and Android API. Unlike Java and
C++, which have very stable and well-established SDKs and APIs, the Android SDK

2https://gs.statcounter.com/os-market-share/mobile/worldwide
3https://buildfire.com/app-statistics/

2.2 Starting with Android 53

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://buildfire.com/app-statistics/

and API evolve quickly which puts an extra challenge on your learning path. You
not only need to learn a new API but also watch out for the latest updates to avoid
your code from becoming obsolete.

When you write code for Android-powered devices, you are working in a
restricted environment. Compared to PCs, Android phones, watches, and tablets
have low computational power. The screen size and battery power are also limited
and pose new constraints on the development environment that you must account
for. You need to understand how to stack or pile frames when going back and forth
between screens. You also need to understand object lifecycles, system callback
methods, layouts, and device rotations, which are all usually of lower concern when
developing stand-alone or distributed Java and Web applications.

Mobile devices come with built-in sensors, GPS (Global Positioning System),
Wi-Fi, Bluetooth, cameras, USBs, screens, and other components and features used
for text messaging, finding device orientation, tracking the user’s movements, etc.
Writing programs to use these new components and features is relatively novel to
Java programmers and is something that they need to learn and get used to.

Compiling, running, and debugging Android code require learning new tools.
You might need to learn how to use a new integrated development environment
(IDE), such as Android Studio, or new build tools, such as Gradle. You also need to
learn how to refactor, profile, inspect, and measure the performance of your code.
Additionally, you need to learn how to use and set up Android Virtual Devices
(AVD), use layout inspectors and resource managers, and write bilingual or multi-
lingual code. Furthermore, you might also need to learn how to run automatic testing
using the JUnit software and how to do code versioning using versioning tools.

2.2.6 Android Developer’s Skills

If you know the Java programming language, can run applications on the Linux
operating system, and have some basic XML and Linux administration knowledge,
you are pretty much set and ready to be an Android developer. The latter is useful
because managing apps on Android devices is similar to managing user accounts on
the Linux operating system. If you don’t know these technologies, you don’t need to
worry; we will review them in enough detail to enable you to write Android code
and apps.

Knowledge of Java, XML, and Linux are helpful and set you up on the path to
becoming an Android developer. However, Android programming is a bit more
engaging than usual Java application development on the Linux operating system.
To be a successful Android programmer, you need to acquire additional skills. The
objective of this book is to teach you the skills needed to become a successful
Android programmer.

54 2 Getting Started with Android

2.2.7 Model View Controller and App Development

Android programming involves not only a clear separation between the visual
components and the app’s computational logic, or business objects, but also using
XML elements to represent the visual objects. You can create all the GUI (graphical
user interface) components of your app using XML files. At runtime, the XML files
are converted to Java code and linked to the main source code to be executed. The
separation between views, logic, and data is essential in the Android app develop-
ment philosophy, and you must master this concept to be able to code for Android
devices.

2.2.8 Android’s Main Program

For any program to start, there is a need for an entry point into the program. For Java
programs, the main method in a class is the entry point. For Web applications, you
type the address of the website in the browser which looks for the index.html file to
load the page and display it. To run Android programs, you need to create the
AndroidManifest.XML file. All Android application programs start with the
manifest file.

When you use Android Studio to create a project, the manifest file is automati-
cally created for you. Every time you add an Android Activity class, i.e., screen, to
your app, the Activity is automatically added to the manifest file. Inside the manifest
file, you declare one of the Activity classes to be the main class, i.e., the starting point
for your app. This is very similar to Java where you can have multiple classes, but
your program starts with the one class that has the main method.

2.2.9 Java and Android

Android is an adapted Linux operating system that can run on low-energy mobile
touchscreen devices. At first, Android development was done in Eclipse with some
plugins to enable Android app development. Coding was done in Java and then
installed on Android-enabled devices or emulators powered with the Java virtual
machine (JVM) for running. Now, Android Studio, based on IntelliJ IDEA,4 is used
for app development with emulators and physical devices.

Android uses the Java API (application programming interface) and supports
most Java features. Not only does Android use the Java programming language, but
app development for Android devices follows the JavaFX application design as well.
Similar to JavaFX, developing Android apps involves using both XML files and

4https://developer.android.com/studio/

2.2 Starting with Android 55

https://developer.android.com/studio/

code as well as extending an already defined class to render graphical components of
the app. Having said that, there are differences between Java and Android in terms of
application programming interfaces (APIs), software development kits (SDKs), and
runtimes. In [1], the differences between Java and Android are explored, and an
approach is proposed for developing an application that runs on both the Android
platform and the Java platform.

Java is one of the two official languages for Android development; the other
language is Kotlin. Kotlin depends on JVM and can coexist with Java in the same
application. Kotlin aims to solve several limitations of Java. The description of these
limitations and Kotlin’s potentials to solve them are described in [2, 3]. There are
many versions of Android. Newer versions support more features than the older ones
and are backward compatible.

2.2.10 Why Use Java for Android?

From a technical perspective, Java is selected as a programming language for
Android for three main reasons.

First, Java is a popular programming language [4]. It has been taught in almost all
colleges and universities around the world for many years. This enables Java devel-
opers to create Android apps without having to learn a new programming language.

Second, Java runs inside the Java virtual machine (JVM) which helps Android
apps to run on any Android-powered device regardless of the device’s manufacturer.
Android apps can run, for example, on Samsung, LG, and Huawei phones. This
helps companies to easily develop devices that can run Android apps.

Third, Java is a comprehensive programming language with a large number of
libraries, classes, and interfaces that are open source, or mostly open source, and
readily available for use. The latter helps developers and companies to utilize Java
resources to develop apps and products.

Java will continue to be the programming language for Android for many years to
come. Millions of existing Android apps are written in Java. These apps need to be
maintained/extended, and new apps are developed in Java daily.

2.2.11 Android and Linux

Android smartphones and tablets contain the Linux kernel to manage active pro-
cesses and communication between hardware and software components. Instead of
writing the kernel from scratch, Android developers from Google modified the
Linux kernel for their devices. This is possible because Linux is an open-source
operating system. Others used a similar approach, for example, the Sony gaming
console PlayStation 4 uses the open-source FreeBSD kernel.

While the Linux kernel is an important component of Android and has helped to
build Android, the Android team made many changes to the Linux kernel. These

56 2 Getting Started with Android

include adding specialized libraries, APIs, drivers, and tools that are written specif-
ically for Android. It is because of these changes that the programs you write on
Linux may not run on Android without modifications. In other words, in terms of the
operating system, Android is Linux and more.

2.3 Download and Install Android Studio
and Android SDK

In this part, we describe downloading the latest Android development environment
and Android SDK. We also provide step-by-step instructions to install the Android
development environment, update Android files, and apply release notes.

2.3.1 Download the Android Studio

Android Studio is the official integrated development environment (IDE) for Android
development and is based on IntelliJ IDEA. It is not the only IDE that you can use to
develop apps. There are other IDEs such as Eclipse or NetBeans. However, Android
Studio includes everything you need to start developing Android apps. These include
project and activity templates, a layout editor, testing tools, the Gradle build tool, a log
console, a debugger, and virtual devices to emulate phones, tablets, watches, and many
more plugins. Basically, you can develop, debug, test, and package apps with Android
Studio. A detailed description of Android Studio is provided in [5].

Click on Android Studio (Fig. 2.1) or put this download link (Download
Android Studio and SDK tools | Android Developers) into your browser to get

Fig. 2.1 Link to download Android Studio

2.3 Download and Install Android Studio and Android SDK 57

started. The latest version of Android Studio for Windows 64-bit is 4.2. You
have to make sure that you have enough RAM and disk space to be able to
install Android, create apps, and run the emulator. The space requirements
continually change as newer versions of Android need more space. At the down-
load time, you need to check the Android documentation to find out the space
requirements.

If you have a Mac or Linux computer, you can use Android Studio with Mac or
Linux to develop apps. The installation process would be similar to what is described
here. While native iOS developers must develop on a Mac, with Android, you can
develop on Windows, Mac, or Linux. To get started with Android on a Mac,
however, you need to download Android Studio for Mac.

2.3.2 Install Android Studio

Installing Android is straightforward. After downloading Android Studio, go to your
download directory, and double-click on the executable file you downloaded to open
Android Studio. To complete the installation, press “Yes” for the installation process
to start as shown in Fig. 2.2.

Fig. 2.2 Starting point to download Android

58 2 Getting Started with Android

After you click “Yes,” a welcome message like Fig. 2.3 will be shown.
Click “Next” to choose components to install, in this case, Android Studio and

Android Virtual Device, as shown in Fig. 2.4.
Click “Next” to specify the configuration folder or to specify the installation

home of the previous version of Android Studio if you have one and you would like
to install the newer version in the same place. The location folder should have
enough space to install and run Android projects. The amount of space you need will
be shown on the configuration setting window as shown in Fig. 2.5.

Fig. 2.3 Android welcome setup message

2.3 Download and Install Android Studio and Android SDK 59

Fig. 2.5 Specify Android installation home folder

Fig. 2.4 Choose which features of Android Studio you want to install

60 2 Getting Started with Android

Click “Next” to start the installation. Clicking Install Android Studio, shown in
Fig. 2.6, will automatically install the Android SDK.

Accept all licenses to continue. On Windows, a shortcut will be created on the
start menu which points to Android Studio executable in the bin folder (C:\Program
Files\Android\Android Studio1\bin). Once the Android SDK installation is com-
plete, you are ready to build and run the HelloWorld app. On the next screen, shown
in Fig. 2.7, select Start Android Studio to start Android at the end of the installation
process.

To complete installation, you might be asked to import your settings from a
previous version of Android Studio, that is, if you have one. This step is shown in
Fig. 2.8.

Fig. 2.6 Shortcut to Android Studio home

2.3 Download and Install Android Studio and Android SDK 61

If you selected Start Android Studio as shown in Fig. 2.7, then it will start, and
you will see the Android start screen as shown in Fig. 2.9. You are now ready to start
your first app.

Fig. 2.7 The last step in installing Android Studio

Fig. 2.8 Import previous Android setting step

62 2 Getting Started with Android

2.3.3 Update Android Files

If Android Studio is missing updates, a message gets displayed to indicate the
updates needed. Click on the displayed link and download all of the updates. You
can push updates to run in the background and continue working. You can check for
updates yourself by clicking on the Help tab on the Android Studio toolbar and
clicking check for updates as shown in Fig. 2.10.

If new updates exist, you will see a window like the one showing in Fig. 2.11.

Fig. 2.9 Android start

Fig. 2.10 Steps to invoke Android updates

2.3 Download and Install Android Studio and Android SDK 63

2.3.4 Release Note

While you are trying to get updates, and just before clicking on the Update Now
button, click on the Release Note button shown on the update window; see Fig. 2.11.
This will take you to the Android documentation where you can find what is new in
the release. It is important to read the release notes. Sometimes, Android makes
substantive changes and improvements that have an impact on your existing code or
the code you are about to write. You need to be aware of these changes. In cases
where the new updates are related to plugins that you are not using, you don’t need to
update. This way you can save some space on your machine.

2.3.5 Android SDK

The Android Software Development Kit (Android SDK) consists of a large number
of Java classes, interfaces, and packages that are essential to developing apps. These
are classes and interfaces that you import to your code during development. The
SDK is independent of the Android Studio. However, it is more suitable to work
with when used with Android Studio or other IDEs such as NetBeans or Eclipse. On
your machine, the SDK is located at *~/Android/sdk*, e.g., C:\Users\username
\AppData\Local\Android\Sdk. To see the SDK directories from the Android Studio
toolbar, click on Tools followed by SDKManager as shown below in Fig. 2.12. You
can access the SDK directory from the file menu as well. Click file | Settings |
Appearance & Behavior | System Settings | Android SDK to see it.

Using SDK Manager, you can access tools, platforms, and update sites as shown
in Fig. 2.13. Click on the SDK tools tab to find out the available development tools.

Fig. 2.11 Link to the release note

64 2 Getting Started with Android

Fig. 2.12 Accessing the SDK Manager from Android Studio

Fig. 2.13 Using SDK Manager to see SDK tools

2.3 Download and Install Android Studio and Android SDK 65

Make sure you have installed the Android SDK build-tools, Android SDK platform-
tools, Google USB Driver, and Intel x68 Emulator Accelerator (HAXM installer).
These are the minimum tools you need to create Android apps. Most of the time,
these are installed automatically, and you don’t have to do anything.

You also need to have the most recent API and any other API you intend to use in
your apps. Click on the SDK platforms tab to see which SDK platform you currently
have access to. This step is shown in Fig. 2.14.

After using Android Studio for a while, open SDK Manager, and click on SDK
Tools | optimize disk space button to delete unused files and free up space. This step
is shown in Fig. 2.15.

Fig. 2.14 Using SDK Manager to see installed platforms

66 2 Getting Started with Android

2.4 Create a New Android Project

To start a new Android app project for HelloWorld, follow the wizard steps as
described in this part.

2.4.1 Start New Project

Click “Create a new Android Studio project” as shown below (Fig. 2.16).

2.4.2 Select an Activity Template

To create an activity, you select an activity template for your app. Activity templates
help fast development and best design practices. Android Studios come with mul-
tiple code templates. For this exercise, select EmptyActivity as shown in Fig. 2.17,
and click next.

Fig. 2.15 Using SDK Manager to see platforms

2.4 Create a New Android Project 67

Fig. 2.16 Create a new Android project menu

Fig. 2.17 Android templates to choose from

68 2 Getting Started with Android

By the time you complete reading this book, you should experiment using all the
given templates. This way, you will learn more about the features Android provides
to create your desired apps. To make yourself familiar with the Android app
templates, I encourage you to read about Android templates that come with Android
Studio. For Android templates, see this link: https://developer.android.com/studio/
projects/templates.

2.4.3 Fill in Application Requirement

Fill in the application name, package name, and project location as shown below
(Fig. 2.18). The package name is the reverse of the company domain. If you want to
customize the package name, click *edit* on the right of *Package name*. The
project location is where your project files reside. You can choose any location you
want. You also have a choice to select Java or Kotlin as a programming language for
your coding.

Fig. 2.18 Fill in the application name, package name, and project location

2.4 Create a New Android Project 69

https://developer.android.com/studio/projects/templates
https://developer.android.com/studio/projects/templates

2.4.4 Define SDK Requirements

For Minimum Required SDK, you can accept the default and click *next* or select
the desired API for your app, i.e., define the target device for your app, as shown in
Fig. 2.19. It is important to choose the correct version of the API for your app. This is
because not all phones support the latest version of the API or have it installed. On
the other hand, if you don’t choose a reasonable version of the API, your app might
miss key features that the newer version of APIs offers. This a design decision, you
decide what is best for your app, or you build more than one version of your app to
work with different APIs. Click *Finish* when you are done.

2.4.5 Finish the Project Creation

Once you have clicked Finish, you are presented with the project and all its files as
shown in Fig. 2.20.

Open the app/java folder and look at the MainActivity.java code. You should see
a Java class similar to the one shown in Listing 2.1. This is a typical Java class file. It

Fig. 2.19 Define a minimum SDK API your app requires

70 2 Getting Started with Android

is made of a package name, some import statements, and a class definition. The file is
saved as MainActivity.java which has one overwritten method called onCreate().
The meaning of the code components such as AppCompatActivity, setContentView,
Bundle, etc. will be explained in the coming chapters.

Listing 2.1 MainActivity.java.

package com.code.abdulrahman.book.chapter2;
import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}
}

2.5 Compiling and Running Android Apps

How you run your app depends on whether you have an Android device or are using
an Android emulator. This chapter shows you how to install and run your apps on
Android devices as well as on Android emulators. You will also run the HelloWorld
app we created in the previous part.

2.5.1 Running HelloWorld on Your Phone

Let’s run our code directly on the phone. The biggest advantage of using Android
devices for development is that it is fast to load and run programs. In contrast, the

Fig. 2.20 HelloWorld app components

2.5 Compiling and Running Android Apps 71

emulator, which we will discuss next, runs slowly; it’s not recommended to use the
emulator for the whole book. If you are going to be an Android developer, it is time
to think about getting an Android device and using emulator as a backup.

Before you start, plug your phone into your laptop using the USB port. Android
Studio installs the HelloWorld app on your connected phone and starts it. Next, go to
Settings on your phone, and select the Developer options, shown in Fig. 2.21
(on left), and select USB debugging, shown in Fig. 2.21 (on right). This setting
will allow Android Studio to communicate with the phone to program it.

Note that, depending on the device you are going to use, this step might be
slightly different than what has been described above. If this is the case, search
online, perhaps by visiting the manufacturer’s website, to find out information about
the developer settings on your device.

If you cannot see the Developer options button, you should tap on the About
phone button (under settings) and click the Build number button seven times. Now
you should see the Developer options. Next, go into Developer options and select
USB debugging.

Fig. 2.21 Enabling device developer option

72 2 Getting Started with Android

2.5.2 Running the Android App in Android Studio

Click on the *Run* button on the Android Studio toolbar as shown in Fig. 2.22.
The app is downloaded and installed and runs on the phone. You’ll see the

following “HelloWorld” on your phone (Fig. 2.23).

Fig. 2.22 On Android Studio, the run icon is marked

Fig. 2.23 First
HelloWorld app

2.5 Compiling and Running Android Apps 73

If you have followed the steps above correctly, congratulations you have devel-
oped your first Android app.

2.5.3 Issues Starting First App

If for some reason your app did not run, i.e., you do not see the app running on your
phone, make sure that USB has been enabled. Then, make sure that you clicked and
enabled the USB debugging option as discussed above. If USB debugging is
enabled, unplug the USB cable, and plug it in again. If you see the error message
dialog, as shown in Fig. 2.24, on your phone, check “Always allow from this
computer,” and click OK, as shown below. Now, after re-launching the app, you
should see HelloWorld on the phone.

Fig. 2.24 A dialog message
indicating phone and
Android connection is
enabled

74 2 Getting Started with Android

2.5.4 Running HelloWorld on Emulator

Now, let’s run the HelloWorld program on the Android emulator which emulates the
functionality of the phone as best as possible and allows developers to run, test, and
debug code. The code that runs on the emulator runs unchanged on the real device
as well.

To run the app, disconnect your phone first, and then click the run button in
Android Studio. In the dropdown list circled in Fig. 2.25, select Launch Emulator
and click OK. Android Studio will install the app (the HelloWorld.apk) on your
AVD and start it.

This could take some time, but eventually, you will see the HelloWorld on the
emulator as shown in Fig. 2.26.

2.5.5 Setting Up the Emulator

In the previous step, we assumed that you have already set up the emulator. But, in
case you didn’t or you want to emulate different devices, here we describe how to
do it.

There are so many Android devices available that it would be difficult to test your
apps on all or many real devices. If you have an Android device, you can use it for
testing basic functionalities, and you will have quick results. However, you cannot
be sure of how your app will look and behave on every Android device.

Android provides a way to create as many emulated devices as you want using the
virtual device manager. The AVDManager allows you to emulate both the hardware
and software part of the devices. Click on the AVD menu as shown in Fig. 2.27, or

Fig. 2.25 Emulator named My HelloWorld app is selected for running an app

2.5 Compiling and Running Android Apps 75

Fig. 2.26 HelloWorld app running in an emulator

Fig. 2.27 AVD Manager to
start the virtual emulator

76 2 Getting Started with Android

click on tools | AVD to start the Android Virtual Device Manager. The AVD
Manager is shown in Fig. 2.28.

Click on Create Virtual Device and follow the steps to choose a device (phone,
tablet, TV, Wear OS, or Automative) and select a system image (Pie or Android 9, Q
or Android 10, R or Android 11, etc.) to start the emulator.

Bear in mind that Android emulators can be slow. You can probably do a few
things to speed it up a bit. For example, if your app does not use the camera or other
components, it doesn’t need to be included in the emulator configuration. You can
also use third-party emulators such as Genymotion that can be faster than the native
emulators or work better with your device especially if you have Mac.

2.5.6 Do It Yourself

Install Android and AVD. Create your first project. Replace the HelloWorld text
with some other text and familiarize yourself with Android Studio.

Fig. 2.28 Start Android Virtual Device Manager

2.5 Compiling and Running Android Apps 77

2.6 Compiling, Building, and Packaging Technologies

It is important to understand how your Java code is turned into a .dex (Dalvik
Executable) file that will end up on your Android device. Similarly, it is essential to
learn about project building and code packaging for publishing. We introduce these
topics here to help you understand the Android application and project structures that
you will create in this chapter. We will discuss these topics more as the book
progresses and wherever we find it necessary.

2.6.1 Compiling Android Code

When you compile Java code for Android apps, it goes through several steps. These
steps are summarized below. A few of these steps depend on the version of the
system you use. We will discuss these variances.

2.6.1.1 Compiling Java Code

You need a Java compiler, javac, to compile the Java code of your application. The
javac is included in the Java development kit (JDK) that you need to download
separately from downloading Android Studio. Your code and imported codes from
the Android API and custom libraries are compiled. The output of this step is
Java bytecode files. This is a normal Java compiling process. You are turning
*.java classes into *.class bytecode.

2.6.1.2 Minimizing and Obscuring Code

To make it hard to decompile packaged Java code, currently, the Android Gradle
plugin uses the R8 compiler to minimize the size of the code and obscure code by
changing method names and applying code encryption. Android Gradle used to use
the ProGuard plugin to do code optimization. However, starting with Android
Gradle 3.4.0, ProGuard is no longer used to perform compile-time code optimiza-
tion. Instead, Gradle uses the R8 compiler to handle code optimization and code
shrinking. The R8 compiler is a replacement for the ProGuard tool. The output of
this step is a minimized *.class file.

2.6.1.3 Turning .class into .dex Bytecode

In this step, your bytecode is converted to Dalvik bytecode and stored in a .dex
(Dalvik Executable) file. The conversion is done by a command-line tool called D8

78 2 Getting Started with Android

(DEX compiler). D8 is a replacement for the DX dexer. Android Studio and the
Android Gradle plugin use D8 to compile Java bytecode into DEX bytecode. The
.dex bytecode is an optimized bytecode format for Android that can be executed by
Dalvik or Android runtime (ART). In this step, you are turning *.class into *.dex.
Later, the device’s runtime environment will read the .dex file and recompile some of
the files to machine code for the fastest possible execution.

The steps we described so far can be summarized as follows:

Source code (*.java)! using javac! Java bytecode (*.class)! using ProGuard or
R8 ! optimized Java bytecode (*.class) ! using D8 or DEX ! Dalvik
optimized bytecode (*.dex)

2.6.1.4 Packaging DEX Files

The APK Packager combines the DEX files and compiled resources into a single
APK file. The APK is a file format designed for distributing Android applications. It
is simply just a ZIP archive file similar to the Java JAR package designed for the
distribution of Java applications. In addition to the .dex file, APK contains other
files, for example, AndroidManifest.xml. In addition to the APK, Android supports
another build format, the Android App Bundle (AAB) build format.

2.6.2 Android App Bundle

The Android App Bundle (AAB) is Android’s new format to build and release apps.
The generated bundle includes all your app’s compiled code and resources. How-
ever, Google Play defers generating the APK to optimize downloading for each
device configuration. That means only the code and resources that are needed for a
specific device are downloaded.

To use or switch to the new publishing format, you don’t need to refactor your
code. When you develop apps using Android Studio 3.2 or higher versions, you can
generate AAB builds from Android Studio.

2.6.3 Do It Yourself

Create a new project, and try to generate a .apk using the build APK steps shown in
Fig. 2.29. Familiarize yourself with creating APK, signed APK, and AAB files.

2.6 Compiling, Building, and Packaging Technologies 79

2.6.4 Install Android Apps

An Android Package Kit (APK) is similar to a .exe file for Windows PC. The
Android operating system uses .apk for the distribution and installation of apps.
When you download, or when you get an APK, you’re getting an app. Below, we
describe how to install APK files posted online and from your computer.

2.6.5 Install APK from Online

The best way to download apps is to get them from trusted sources such as the Google
Play Store. However, when needed, you can install apps from any source online. To
install APK posted online to your Android device, you need to find the APK file and
download it. Once the file is downloaded, you can open it by tapping on the file and
tapping “yes” when you are prompted by the installation process. The app should
begin installing on your device. We will post one or more .apk for each chapter in this
book. You can download these .apk files to your device and run the apps.

Fig. 2.29 Steps to create APK as shown from Android

80 2 Getting Started with Android

2.6.6 Install APK from Files

If you happen to have an APK file on your computer, you can install the APK file on
your device. To do so, you need to connect your computer to your Android device
and copy the APK file to it. Find the APK file on your device, tap it, and then hit
“install” when you are prompted by the installation process. To be sure that the
newly installed app is working properly, open it from your device. If it is not
working, repeat the steps above.

2.6.7 From Dalvik to ART Runtime

Android runtime (ART) is a replacement for the Dalvik virtual machine. Dalvik is
the original Android runtime implementation. It is a virtual machine specifically
created for Android to deal with low-memory devices. Before Lollipop, Dalvik used
to translate bytecodes (.classes) to the native code, or machine-level code, (.dex)
files. The translation was happening during runtime using the just-in-time (JIT)
virtual machine. With ART, the translation from bytecode to machine-level code
is done during the app installation which makes apps run faster but takes more
memory and time when installing them for the first time.

2.6.8 Gradle Build

Android uses the Gradle build system to build, compile, and package apps. Gradle
does the same job as the Apache Ant and Maven toolkits that you are probably
familiar with. These are earlier toolkits used for building Java applications.
Compared to Ant and Maven tools, Gradle is a faster and more flexible building
tool. It allows customized builds enabling you to create APKs that can be
uploaded to the emulator for demoing. There are other build tools such as
Bazel, which is used by Google to build all its software, and Buck, which is
developed and used by Facebook. However, Gradle is the main tool used for
building Android apps.

Gradle is a part of the project structure displayed on Android Studio. See
Fig. 2.30. It is important to gain some insight into each section of the Gradle
structure to understand project configuration and setup. Below will look at a few
of these files for their important roles in app development.

2.6 Compiling, Building, and Packaging Technologies 81

2.6.8.1 Gradle Build Files

Gradle creates two build files, the module-level build.gradle file and
top-level build.gradle file. Each of these files is used for different purposes. If your
app is big or complex, for example, it requires more than one team to develop it, then
it makes sense for each team to be specialized and work on one part of the app. In this
case, each team will create its own module-level build.gradle file for the app.
Creating app modules can be an effective way to manage your code as it grows
as well.

When using Android Studio, the build file for each module will be inside the app
directory and hold configuration information for the module. There will be one build
file for each module. The total number of build files in your app will be equal to the
number of modules in your project. Table 2.1 shows the content of a module-level
build project.

You can see and update the content of the module build files using the Project
Structure window. On your Android Studio, click file | Project Structure to open the
Project Structure window. Your current build.gradle information will be displayed,
and you can use this window to make any changes you want. You can make changes

Fig. 2.30 Gradle structure inside project structure

82 2 Getting Started with Android

directly inside the build XML files, but it is easier to use the Project Structure
window to make the changes.

Table 2.2, on the other hand, is an example of the second type of the build file,
top-level build.gradle. It holds configuration information for the entire project. It is

Table 2.1 Module-level build file

2.6 Compiling, Building, and Packaging Technologies 83

stored in the root directory of your project. There is only one top-level build file for
each project.

We will talk more about each task, or component, of the build files as the book
progresses. To find out the location of either build files on your PC, right-click on the
file inside the project structure, and click on “Show in Explorer” to locate the files.

2.6.8.2 Build Parameters

Gradle creates another five files as shown in Fig. 2.30. These files include informa-
tion about the Gradle version you are using and the link to the Gradle distribution.
There is also a file for inserting rules to ProGuard. Other files are used to set project
properties such as the parameters passed to the Java virtual machine, whether you are
using AndroidX, and other information about your project settings and SDK loca-
tion. Open each of these files, and see their content to become familiar with the
Gradle project structure and settings.

Table 2.2 Top-level project build file

84 2 Getting Started with Android

2.6.9 Software Versioning Using Local or Remote
Repositories

Controlling software versions, also known as source management control (SCM), is
an essential part of the software development process. You need to manage your
code versions whether you are writing a simple app for your interest or you are a
team member working on a large software development project. An open-source
version control tool called Git is integrated into the Android Studio and can be used
to manage code versioning. Using Git, you can trace the history of your code
changes, coordinate work among several programmers working on the same source
code, and, if needed, return to previous versions of your code.

Git enables you to develop your code separately from the rest of your team. To do
so, you create a branch from the main repository. It is a copy of a stable version of
your repository which is called codebase. Once your part, or changes you made, is
ready, you can upload it to the repository and save it, i.e., you commit your changes
to the codebase. Other tasks you can do with Git include pulling in commits, also
known as checkout commits, from other developers to your repository; pushing
commits, also known as check-in commits, to others; merging your commits with
the main repository; and finding out who made changes in the code.

Below, we describe the Git setup using Android Studio. However, to be fluent
using Git, or using a remote repository such as GitHub or Bitbucket, you need to read
the tutorials for these tools provided on their webpages.

2.6.9.1 Create a Git Repository

To create a Git repository for your project, click the VCS menu | Import into
Version Control menu, and select “Create Git Repository” as shown in Fig. 2.31.
Then select the repository folder of your Android Studio Project.

Fig. 2.31 Create a Git repository for your project

2.6 Compiling, Building, and Packaging Technologies 85

The steps above create a .git directory with few subdirectories for objects,
refs/heads, refs/tags, logs, info, and template files. An initial HEAD file that refer-
ences the HEAD of the master branch is also created. To see this file, go to your
project root directory, and click on .git file.

While you are creating the .git repository, you will also see a dialog popup asking
you to add project configure files to your Git; see Fig. 2.32. Click on View Files and
select .gitignore. You don’t need to add project setting files, i.e., .idea files, to the
version control repository.

Once you created the Git repository, Android Studio shows the Version Control
window as shown in Fig. 2.33. Click on the Git tab (at the bottom left of Android
Studio) and explore what you have there.

Fig. 2.32 Prompt message to add project files to version control

Fig. 2.33 Version Control showing on Android Studio

86 2 Getting Started with Android

By now you should see the pull and push menus on your Android Studio as well
as shown in Fig. 2.34.

2.6.9.2 Integrating with GitHub or Bitbucket

Using Android Studio, you can utilize GitHub or Bitbucket or other remote repos-
itories as a storage for your project. To do so, for example, click on File | New |
Project from Version Control | GitHub. This will take you to the GitHub login page.
Once you have logged in successfully, the Clone Repository dialog window will pop
up. This dialog window displays a dropdown menu containing a list of repositories
you currently own or have worked on in GitHub. Click Clone to clone the repository
to your local machine. Note that you can create a free secure student GitHub account
by emailing the GitHub administrators.

2.7 Android Stack and Framework

Understanding Android architecture is an asset that can help you develop high-
quality apps. In this part, we describe Android architecture layers. Each layer is
briefly introduced, and its components and purposes are explained.

2.7.1 Android Architecture

For developing Android apps, you need to have a high-level understanding of
Android architecture. Figure 2.35 shows the major components of the Android
development architecture and operating system, also known as the Android stack.
The stack is made of the typical layers that you will find in any system platform. The
layers are the application layer, the classes and libraries (or API layer), the compiler
and runtime environment layer, a layer that connects software to hardware interfaces
(or driver layer), and, finally, the physical hardware layer such as the motherboard
and other network and hardware components.

Below is a short description of some of the components/layers listed in Fig. 2.35.
We start with layer 1.

Fig. 2.34 Pull and push menu showing in Android Studio

2.7 Android Stack and Framework 87

2.7.2 User and System Apps

The apps you will develop will live in Layer1 along with core system apps. This is
the top layer of the Android stack. System apps, such as Clock and Calculator, are
preinstalled on Android devices. Many system apps can’t be uninstalled. If you
want, you can enable or disable all system apps. When you disable a system app, that
doesn’t mean it has been removed from the system. It just means users and other
apps can’t access it. Some system apps are critical for device functionality. You don’t
want to disable these critical apps; otherwise, your device will not work. For example,
you can’t disallow Bluetooth, contacts, keychain, keyguard, com.android.launcher,
com.android.nfc, com.android.phone, com.android.settings, etc.

2.7.3 Java API Framework

All the classes, interfaces, and other features of Android are available to the
developers through the application programming interfaces (APIs) layer. In other
words, all the classes, interfaces, and packages you import to your code during app
development are from this layer. In addition to Java API, currently, Android supports
Kotlin API as well. The more you know about the Android API, the easier it is to
develop Android apps. However, at the starting point, learning the following is
necessary to be an Android developer:

• View System is used to build apps’ user interfaces (UIs), including lists, buttons,
menus, etc.

• Resource Manager is used to accessing non-code resources such as localized
strings written in XML, graphics, and layout files.

• Notification Manager is used to displaying custom alerts to the user.
• Activity Manager is used for managing the app’s lifecycle.

Fig. 2.35 Android
architecture layers
(Resource source: https://
google-developer-training.
github.io/android-
developer-fundamentals-
course-concepts-v2/unit-1-
get-started/lesson-1-build-
your-first-app/1-0-c-
introduction-to-android/1-0-
c-introduction-to-android.
html)

88 2 Getting Started with Android

https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/unit-1-get-started/lesson-1-build-your-first-app/1-0-c-introduction-to-android/1-0-c-introduction-to-android.html

• Content Provider is used to enable apps to access data from other apps.
• Location Manager is used for providing location information using data from

GPS sensors, cell towers, and Wi-Fi networks.

We will study all the above topics and more in the context of this book.

2.7.4 Native Libraries and Android Runtime

Each app runs in its process and with its instance of the Android runtime (ART).
ART is a replacement for the Dalvik virtual machine. Before Android Lollipop,

Dalvik used to translate bytecodes (.classes) to the native code, or machine-level
code, (.dex) files. That translation was happening during runtime using the just-in-
time (JIT) virtual machine. With ART, the translation from bytecode to
machine-level code is done during app installation which makes apps run faster
but takes more memory and time when installing for the first time.

Level 3 of the Android stack also includes native C/C++ libraries. These core
libraries help developers create apps using the C/C++ programming language and
using NDK (Native Development Kit) libraries. This means you’ll be writing code
that runs directly on the devices’ hardware and your app can access physical
components such as sensors and cameras directly. The fact that you don’t need to
use the Java virtual machine will give you some advantages. For example, you will
have better control over memory allocation and memory cleanup, and the app’s
performance can be improved. This is because many components of the Android
system such as ART and HAL are built using native libraries. This is important for
performance-intensive apps like games.

2.7.5 Hardware Abstraction Layer (HAL)

It is an abstraction layer between Android’s physical hardware and its software.
Instead of understanding how the drivers work, or how the hardware is accessed,
HAL provides an interface for communication with hardware and drivers. It provides
ways for data passing from/to hardware devices to the higher-level Java API
framework. This way, you develop software based on the hardware interface without
the need to know the implementation of the hardware. The HAL consists of multiple
libraries; each library implements access for a specific type of hardware components
such as the camera or Bluetooth. Note that, once you implement this layer, it will be
hard to change it and make it work for other types of hardware devices and
platforms.

2.7 Android Stack and Framework 89

2.7.6 Linux Kernel

The basis of the Android platform is the Linux kernel. The four layers above rely on
the Linux kernel for underlying functionalities such as threading, memory manage-
ment, process management, security, networking, etc. You should note that Android
is not another Linux version like Red Hat or Ubuntu. Instead, it uses the core of
Linux operating system functionalities. For example, the kernel layer contains all the
essential hardware drivers. These include drivers for the camera, keyboard, display,
USB, audio, etc.

Using the Linux kernel gives Android some advantages. For example, Android
inherits the key security features from Linux which are robust and extensively tested
worldwide. Device manufacturers can develop hardware drivers for Android easily
which in turn has helped the Android devices’ popularity. This is because Linux is
open-source software that can easily be modified to meet hardware needs. More
information on each layer and detailed Android architecture components and mod-
ules are listed in Fig. 2.36. For a detailed description of each layer, see the reference
section of this chapter.

2.8 Chapter Summary

In this chapter, we put together all the nuts and bolts that set you up for developing
Android applications. We covered getting and setting up Android IDE, how to run
apps on the Android emulator and the phone, Android SDK components and
packages, Android architecture and API framework, and other topics. Once you
complete reading this chapter, you will be well on your way to start the journey of
learning Android application development. For further information about the topics
covered in this chapter, you can see these references [6, 7, 8, 9].

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

• .dex file
• AndroidX
• APK
• App Bundle
• ART
• AVD
• Dalvik
• Git
• GitHub

90 2 Getting Started with Android

Fig. 2.36 Android architecture components and layers (Resource source: https://developer.
android.com/guide/platform/)

2.8 Chapter Summary 91

https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/

• Gradle
• Hardware abstraction layer (HAL)
• Obscuring code
• ProGuard
• R8
• Release note
• SDK Manager
• SDK platforms

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

Android guide and tutorial, [Online] Available: https://developer.android.com/
guide/.

Android API, [Online] Available: https://developer.android.com/reference/.
Android Developers, Docs, Guides, Build a simple user interface, [online]

Available: https://developer.android.com/guide/components/fundamentals.
html#Components.

Android Studio, [Online] Available: https://developer.android.com/studio/.
Add App Resources, [Online] Available: https://developer.android.com/studio/

write/add-resources.
Developer Documentation, [Online] Available: https://developer.android.com/

samples .
What is Gradle?, [Online] Available: https://docs.gradle.org/current/userguide/

what_is_gradle.html.
Configure Your Build with Gradle, [Online] Available: https://

sodocumentation.net/android-gradle/topic/2161/configure-your-build-with-gradle.

References

1. Y. Cheon, Multiplatform application development for Android and Java, in 2019 IEEE 17th
International Conference on Software Engineering Research, Management and Applications
(SERA), 2019, pp. 1–5. https://doi.org/10.1109/SERA.2019.8886800

2. L. Ardito, R. Coppola, G. Malnati, M. Torchiano, Effectiveness of Kotlin vs. Java android app
development tasks. Inf. Softw. Technol. 127, 106374 (2020). https://doi.org/10.1016/j.infsof.
2020.106374. https://www.sciencedirect.com/science/article/pii/S0950584920301439

3. B.G. Mateus, M. Martinez, An empirical study on quality of Android applications written in
Kotlin language. Empir. Softw. Eng. 24, 3356–3393 (2019). https://doi.org/10.1007/s10664-
019-09727-4

92 2 Getting Started with Android

https://developer.android.com/guide/
https://developer.android.com/guide/
https://developer.android.com/reference/
https://developer.android.com/guide/components/fundamentals.html#Components
https://developer.android.com/guide/components/fundamentals.html#Components
https://developer.android.com/studio/
https://developer.android.com/studio/write/add-resources
https://developer.android.com/studio/write/add-resources
https://developer.android.com/samples
https://developer.android.com/samples
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://sodocumentation.net/android-gradle/topic/2161/configure-your-build-with-gradle
https://sodocumentation.net/android-gradle/topic/2161/configure-your-build-with-gradle
https://doi.org/10.1109/SERA.2019.8886800
https://doi.org/10.1016/j.infsof.2020.106374
https://doi.org/10.1016/j.infsof.2020.106374
https://www.sciencedirect.com/science/article/pii/S0950584920301439
https://doi.org/10.1007/s10664-019-09727-4
https://doi.org/10.1007/s10664-019-09727-4

4. P. Krill, Java programming language celebrates 25 years, in InfoWorld.com, San Mateo,
20 May 2020

5. K. Mew, Mastering Android Studio 3: Build Dynamic and Robust Android Applications (Packt
Publishing, Birmingham, UK, 2017)

6. H.J. Franceschi, Android App Development (Jones & Bartlett Learning, LLC, Sudbury, 2017)
7. J. Horton, Android Programming for Beginners: Build In-depth, Full-Featured Android 9 Pie

Apps Starting from Zero Programming Experience, 2nd edn. (Packt Publishing, Birmingham,
UK, 2018)

8. J. Morris, Hands-On Android UI Development: Design and Develop Attractive User Interfaces
for Android Applications (Packt Publishing, Birmingham, UK, 2017)

9. R. Boyer, K. Mew, Android Application Development Cookbook, 2nd edn. (Packt Publishing,
Birmingham, UK, 2016)

References 93

Chapter 3
Your First Android Application

What You Will Learn in This Chapter
By the end of this chapter, you should be able to:

• Create your first Android app with a user interface
• Navigate between app screens
• Pass parameters between app screens
• Develop Android apps that support multiple languages
• Log information for debugging
• Use Android resources such as string, icon, color, etc.

Check Out the Demo Project
Download the demo app, MyFirstApplication.zip, specifically developed to go
with this chapter. I recommend that you code this project up from the notes rather
than just opening the project in Android Studio and running it; however, if you want
to run the code first to get a sense of the app, please do so. The code is thoroughly
explained in this chapter to help you understand it. We follow the same approach to
all other chapters throughout the book. The app’s code will help you comprehend the
additional concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

3.1 Introduction

You may have noticed that there were several new ideas in the HelloWorld app
presented in Chap. 2 that you usually don’t see when running the HelloWorld Java
programs. These include using activities, intents, and bundle objects, starting the
program from the manifest file, creating a user interface (UI) for the app using an

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_3

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_3#DOI

XML file, and using resources such as layouts and strings. Moreover, an important
design principle was presented. In the HelloWorld app, there is a clear separation
between the UI implementation, which is written in the XML files, and the program,
the Java code.

In this chapter, we will consider a more complex program with multiple UIs,
activities, and intent objects. The new program is called MyFirstApplication. You
can download and run it; the code is on the book page. Before we go deep into the
MyFirstApplication code and architecture, we start this chapter by studying some
important aspects/components of Android and Android application development
such as activities, activity context, and the AndroidManifest.xml file.

Note that, in this chapter, you will encounter words, concepts, and technologies
that you don’t know yet. For example, you will learn later about onCreate, dp,
resource files, layouts, etc. For now, just follow the step-by-step instructions to
create your first app. These concepts will be introduced gradually throughout
the book.

3.2 Android App Development

In this part, we cover a general introduction to Android app development. We
describe Android application characteristics and introduce major concepts and
components like Android activities, R Files, Android context, AndroidManifest.xml
files, opening Android projects in Android Studio, and cleaning Android project
builds.

3.2.1 Early Android Development

At first, Android development was done in Eclipse with some plugins to enable
Android app development. Coding was done in Java and then installed on Android-
enabled devices or emulators powered with the Java virtual machine for running.
Now, Android Studio is used for app development, and there is more than one
emulator and physical device for running.

In the past, the Jack (Java Android Compiler Kit) toolchain needed to be enabled
to support Java 1.8 language features. Now, Jack is deprecated, and native Java 1.8
features are supported as part of the build system.

There are many versions of Android API; some are listed in Fig. 3.1. Newer
versions support more features than the older ones and are backward compatible.
Only Android Studio version 2.1 and newer ones support Lambda functions. Every-
thing before that uses anonymous classes. Both Lambda and anonymous classes are
discussed in Chap. 1.

Android apps use the Android software development kit (SDK), or Android
libraries, and the Android Application Framework. The apps are executed by the

96 3 Your First Android Application

Android runtime (ART) virtual machine. The compilation, packaging, and installa-
tion of Android apps are different from typical Java applications. These steps were
described in Chap. 2, and you are encouraged to review them.

3.2.2 Android Versions

Android versioning reveals the fact that the Android API is continually growing and
improving, and this growth is expected to continue for many years to come. Both the
users and the developer can feel these improvements. However, their views on the
change are different. As a developer, you express these changes as going from API
level 25 to API 27 to API 28, etc. However, the user is not aware of these terms.
Instead, they see it as going from Nougat to Oreo, to Pie, etc. Only recently Google
started to name its APIs as Android 10, Android 11, etc. Below are examples of the
Android API levels, or versions, and the features they support.

• AsyncTask was introduced in API 3.
• Download Manager was introduced in API 9.
• GridLayout was introduced in API 14 and is depreciated in the current API

version.
• NetworkServiceDiscovery was introduced in API 16.

Fig. 3.1 Android versions are listed in Android Studio

3.2 Android App Development 97

You can find out when a feature has been introduced by checking the top right-
hand side of the Android reference page for the feature. For example, the reference
page for the AsyncTask feature1 shows that it has been introduced in level 3. See
Fig. 3.2.

3.2.3 Android Application Characteristic

Useful Android apps are typically made of multiple interactive screens. Two of the
main technologies used to create Android apps are Java and XML files.

XML is used to define resources, e.g., strings, color, layouts, and the manifest file.
The manifest file is the entry point to the app. It plays a role similar to the main
method of Java applications. Java files are used to define the app’s behavior or
business logic.

There are multiple challenges when developing Android apps. Android devices
come in different kinds of screen sizes and resolutions that you need to account for
when developing apps. Your app has to be secure, responsive, and smooth. Android
is evolving continuously, and your app needs to be backward compatible as well.
These issues and their solutions will be discussed throughout this book.

3.2.4 Android Activity

The Android Activity defines a screen, or a window, in your app, just like an HTML
file of a website or a JFrame in a Java Swing application. It is the fundamental
building block for creating Android applications. Activities for Android are the same
as classes in Java and more. Activities, as the name implies, are activities and are
created for a reason, for example, to display information, enable transactions,
process business forms, etc. They enable user interactions such as clicking a button
or entering text and can start other activities in the same or different apps. It has a
lifecycle, i.e., it is created, started, run, paused and resumed, stopped, and destroyed.
We will discuss these states in other chapters.

Fig. 3.2 Android reference page showing when an Android feature has been introduced

1https://developer.android.com/reference/android/os/AsyncTask

98 3 Your First Android Application

https://developer.android.com/reference/android/os/AsyncTask

Just like a JFrame or an HTML page, an Activity usually has a user interface
layout to enable arranging components on it. The layout is defined as an XML file.
When the app starts, the components on the layout are transformed into visual
objects and are arranged according to the layout definition. The components’
transformation to visual objects is called inflating.

The following actions take place automatically when a simple Activity is created
using Android Studio:

1. An Activity class is created which extends AppCompatActivity. The Activity is
saved in a single file with .java extension.

2. An Activity layout is created which will be an XML file inside the layout folder,
e.g., activity main.xml, declared inside the layout folder.

3. The Activity’s layout is set. In other words, the layout for the screen is set. This is
done inside the onCreate() method of the newly created Activity class. The
setContentView(R.layout.activity_main) method call is used to set the layout
and links the Activity code to the XML layout file.

4. A row, or an XML element holding information related to the newly created
Activity, is added to the Android manifest.

In the first chapter, we created an Activity named MainActivity while creating a
new project. You usually create activities following the steps below:

Right-click on the app, or Java folder, in your project, click on New -> Activity ->
Empty Activity and click to open the create Activity dialog window, and fill in the
Activity detail.

The code snippet shown in Listing 3.1 is the definition of the display message
activity created for this chapter. The code is saved in a file called
MessageDisplayActivity.java, and as you can see, the class is extending the
AppCompatActivity class. The screen visual layout is set using the
setContentView() method.

Listing 3.1 DisplayMessageActivity.java.

public class MessageDisplayActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_display_message);
}

}

ssetContentView is a method in the Activity class that takes a layout object, an
XML file declared inside the layout folder, as an input. The statement
R.layout.activity_display_message is an instruction to the Android system to find
inside the res folder a layout folder and retrieve an XML file named
activity_display_message.

3.2 Android App Development 99

Another way to interpret the input parameter R.layout.activity_display_message
passed to the setContentView method is that there is an R class that has a static class
field called layout, which in turn has a static instance variable called
activity_display_message. This is possible because all the components declared
inside the XML file are transformed into visual objects, i.e., GUI type objects, and
are presented on the activity screen to form the app screen. More on layout trans-
formations to GUI objects and the R class will be described in the coming sections
and chapters.

3.2.4.1 Activity Constructors and Methods

An Activity class has a public default constructor and many methods. These include
startActivity(), getIntent(), onCreate(), findViewById(), getResources(),
getSupportActionBar(), finish(), getParent(), getTitle(), isChild, setContentView(),
and many more methods.

Remember that Java API provides many classes and interfaces to instantiate
objects. These classes have one or more constructors, fields, and public methods.
Since the Activity is a Java class in the Android SDK, it makes sense to think that it
must have one or more constructors, fields, constants, and many public methods.

Activity methods can be classified. Some of these methods are getters and setter
methods, for example, the getTitle() and setTitle() methods. Other methods are
boolean methods returning true or false, like isChild(), isDestroyed(), isFinishing
(), etc. Activities have methods where their names start with “on,” for example,
onCreate(), onSaveInstanceState(), onStart(), onStop(), onAttachFragment(), etc.
These methods are called callback methods. Callback methods are usually invoked
by the Android system in response to an event without the user having to directly
intervene. We will study these methods as the book progresses.

3.2.5 R File

When compiling an application, the XML files are parsed to generate the R.java class
class. For each folder in your res directory, there will be a static final class with the
same name in the R.java file. For example, the layout folder in your app will be
represented as a static final class layout. There will be a class for color, dimen,
layout, style, string, and more in the R.java class.

The XML files inside the app folders are also represented in the R.java file.
They are represented as a static final int instance variable in their corresponding
classes (folders). For example, the activity_main.xml file inside the layout folder
becomes a static final instance variable inside the layout class, which is an instance
variable for the R.java file.

In the early versions of the Android framework, you were able to locate and open
the R.java file by searching the generated folder of your app. It was located at

100 3 Your First Android Application

app\build\generated\not_namespaced_r_class_sources\debug\r\. However, this is
not the case anymore. New versions of the Android framework transform bytecode
into machine code during app installation using ahead-of-time (AOT) compilation
and Android runtime (ART), and there is no need to save R.java files anymore to be
saved into your device. Nonetheless, inside the app\build\intermediates
\runtime_symbol_list\debug directory of your project, you can see a file called R.
txt with similar content to the R.java file. The R.txt file is used by the Android system
for mapping source IDs to the resource name.

After compiling the Android code, the application is put into an “APK” (zip file)
and installed on an Android device. Each app on the Android device has a separate
Linux account created just for that one app. Each application is protected from other
applications the same way that a Linux user is protected from other Linux users on
the same machine. All applications can access shared system resources, just like
Linux users can.

3.2.6 Android Context

Context is an interface to the app. This is an important class that you are going to use
frequently. You can use context to refer to components of your app, for example,
your Activity. The Activity class has a method called getContext(), and when called,
it returns the reference to the current Activity. In this case, the getContext() method
acts similar to the “this” construct in Java.

Activity is a subclass of the Context class. Hence, when it is appropriate, you can
use Activity in places where Context is expected. For example, within an Activity,
you can pass this in places where Context is needed.

The same can be applied to the TextView class. TextView is a class in the
Android SDK which is the same as the JLable class in Java. The constructor of
TextView takes Context as an input. It needs a place where the label can be drawn. In
this case, Activity can safely be passed for Context. Here is an example:

TextView text = new TextView(this);

The getApplicationContext() method returns the context of the entire application
and not just the current active Activity. The context of the application is the process
holding all the Activities currently running. If you need the context of the entire
application and not just the current Activity, use getApplicationContext() instead of
getContext().

All Android UI classes are subclasses of the View class which is a class that we
will study in other chapters. The View class has a method called getContext() which
returns the context. To access the View context in your code, you can use any View
component placed on your Activity and call getContext, e.g., view.getContext().

3.2 Android App Development 101

3.2.7 Application Manifest Files

Every application must have a manifest file. The manifest file is the entry point to the
app; it acts as the main method in Java. In the manifest file, you declare Activities
that are a part of your application. The Activity that launches the app becomes the
first screen of your app. When needed, you declare application permissions such as
defining permission to use the internet, read files, make calls, etc. inside the manifest
file. The parent-child relationship declaration between activities, as well as the app’s
interaction behavior with other apps on the same device and components within the
same app, is also declared inside the manifest file. This information is needed for
your build tools, Android OS, and Google Play Store.

3.2.8 Opening Android Project in Android Studio

You should have downloaded the MyFirstApplication.zip by now. If you did not,
please do so. Once you have downloaded the .zip file, follow the steps below to open
it. To open each of the demo projects given out, you will need to do this:

1. Click on the Application zip file, in this case, the MyFirstApplication.zip file, and
download and save the file on your desktop or download folder.

2. Unzip the MyFirstApplication.zip. You will have the MyFirstApplication direc-
tory/ project.

3. In Android Studio, click File ! Open if you have already opened a project.
4. Otherwise, click Open an existing Android Studio project at the “Welcome to

Android Studio” screen.
5. Find the MyFirstApplication directory and click “Choose.” The project should be

opened and ready to run.

3.2.9 Cleaning Android Project Builds

If, for some reason, you get errors opening the MyFirstApplication, try to clean the
build (go to Build ➔ clean project). You also need to synchronize your code with
Gradle files. You can do that by clicking on the Sync Project with Gradle button on
the File menu or just click on the sync button on the menu bar; the Sync button is
circled in Fig. 3.3. Cleaning builds and synchronizing your project with Gradle is
oftentimes a helpful way to clear out project errors.

102 3 Your First Android Application

3.3 Create Your First Mobile App

In this part of the chapter, we will describe how to create your first mobile app. We
use our MyFirstApplication example to describe the steps. This chapter, along with
the previous one, is all that it takes to create your first app.

3.3.1 Your App Specification

Before creating an app, you need to know its specification, i.e., what you are going to
build. In this example, the MyFirstApplication app is made of two activities or two
screens: the MainActivity which starts the second Activity, called
MessageDisplayActivity, using an Intent object as a passing parameter between the
two Activities. When the user types a message into the input box, or EditText object,
on the first Activity and clicks send button, the message is bundled up in an intent
object and is passed to the second Activity. The second Activity then starts
displaying the message on its ViewText object.

Figure 3.4 is the screenshots of the app. The first screen from the left is rendered
by the MainActivity; the user enters a message and clicks the send button. The
DisplayMessageActivity starts to display the message (the middle screen). You can
navigate back to the MainActivity view using the Back to Main button from the
DisplayMessageActivity view.

To see the application code, open the app/java folder, and look at the
MainActivity.java code. Again, a Java class with a visual presentation is called an
Activity in Android. Below, we describe the steps involved in the app creation.

3.3.2 Create Activity Layout

Earlier in this chapter, we described how to create an Android Activity, specifically,
how to create an EmptyActivity. When an Activity is created using the Android
Studio, a window pops up, and you will be asked if you want to create a layout file
for it. If you checked the Generate a Layout File box, a layout file is created. The
location of the file would be at app/res/layout/. The XML code snippet in Listing 3.2

Fig. 3.3 Steps to follow to synch project with Gradle files

3.3 Create Your First Mobile App 103

is the layout for the MainActivity when you create a project following the default
steps for creating an EmptyActivity.

Listing 3.2 activity_main.xml file.

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

</androidx.constraintlayout.widget.ConstraintLayout>

As you can see, there are no entries for widget elements between the opening and
closing ConstraintLayout element, i.e., the layout is empty. To make it more
interesting, we need to add some widgets to it. For example, we may need to add
a button, TextView, and labels to make it more appealing. We will also change the
ConstraintLayout to the LinearLayout to simplify the Layout explanation. The
ConstraintLayout is too advanced for this chapter. The ConstraintLayout and other
layout classes will be discussed in Chap. 6. To see the XML layout file for the
MyFirstApplication demo app, check this location: app/res/layout/activity_main.xml.

Fig. 3.4 Navigation between activities

104 3 Your First Android Application

3.3.2.1 Adding an EditText Field to the Layout File

By adding the code snippet below between opening and closing layout elements, we
are adding an EditText object to the top left of the main screen of the app. This is a
default location for elements added to the linear layout.

EditText is a class with many properties in the Android SDK. In Android, you can
use an XML file to declare and initialize classes. In the code snippet below, the
EditText class is declared, and four of its properties are initialized using tags. The
name of the class becomes an XML element, and class fields are represented using
XML element properties.

<EditText android:id="@+id/edit_message"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:hint="@string/edit_message" />

3.3.2.2 Add String to Resource File

By default, an Android project has a strings.xml resource file located at app/res/
values/ directory inside the project structure. Open the file and insert a new string key
named "insert_message" and set the value to “Enter a message.” See the example
below:

<string name="insert_message"> Enter Message </string>

All strings of your app will be added here. So, add another string key,
"send_button", for the button you’ll soon add called "button_send".

Note that it is important to give your components and variables proper names.
Having too many buttons and other variables in your layout without clear names
might result in incorrect referencing, which in turn could result in total application
failure. After adding strings to the strings.xml file, the content of your final string.
xml file should be similar to the one listed below:

<resources>
<string name="app_name">My First Application</string>
<string name="insert_message"> Enter Message </string>
<string name="send_button"> Send Button </string>
<string name="action_settings">Settings</string>
<string name="title_activity_display_message">My Message</string>

</resources>

3.3 Create Your First Mobile App 105

3.3.2.3 Adding Components to the Layout File

Similar to the EditText class, Button is a class in the Android SDK. Using XML
syntax, the Button class is declared below, and three of its properties are initialized.
To put both EditText and Button on the same line, add the Button class description to
the layout file, and put it under the EditText description.

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_send" />

To format the EditText input box, add the following attributes to an already
declared EditText element in the layout file.

android:layout_weight="1"
android:layout_width="0dp"

You may think that changing EditText width to 0dp will make it disappear
from the screen. However, this does not happen here because we are setting
EditText layout_weight to 1 which will stretch the EditText width to the width of
the device screen minus the width of other components that are on the same
horizontal line. In this case, there is only one other component on the same line,
the send button component. Widget properties will be described in detail in the
coming chapters. Now, your end-result activity_main.xml layout file from the
res/layout/ directory should be as shown in Listing 3.3:

Listing 3.3 The content of the activity_main.xml file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal"
android:background="@color/lightGreen">
<EditText android:id="@+id/edit_message"

android:layout_weight="1"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:hint="@string/insert_message"/>

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/send_button"
android:onClick="sendMessage"/>

</LinearLayout>

106 3 Your First Android Application

Note that we changed the default ConstraintLayout to LinearLayout to simplify
the discussion about the layout. Layout types are described in detail in Chap. 6.

3.3.3 Invoke Message on Activity

Add android:onClick¼"sendMessage" to the Button definition. By doing so, you are
saying that when button_send is pressed, a method called sendMessage() inside the
MaintActivity.java class should be executed. The new definition for the Button
would be as follows:

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_send"
android:onClick="sendMessage" />

Open the MainActivity.java class inside your project, and add sendMessage()
definition to the class. The class file is located inside the project’s res directory.
sendMessage is a regular Java class method, and you can add it anywhere in the
MainActivity class where the method declaration is acceptable.

The signature for the methods declared inside the layout file has to abide by
certain constraints. The return type of the method has to be void, the method should
have only one parameter, and the type of the parameter is View. An example of the
sendMessage() method implementation is given below.

/* This method is called when the user clicks the send button */
public void sendMessage(View view) {

// write your code in response to the button click
}

3.3.4 Intent Class

The MainActivity code for the MyFirstApplication example uses the Intent object
for starting a second Activity. Let’s first explain what the Intent class is. Then, we
will describe how you can create and use it.

The Android SDK has a class called Intent, and objects of the Intent class can be
passed between Activities. In other words, Intent objects are message objects or links
between Activities. You will see what that means when you create an Intent object
and used it to start a second Activity and pass data to the second Activity.

You can think of Intent objects as something you would like to do, i.e., your
intention, or description, of an operation to be carried out as you request the Android
system to do something for you. For example, if you use Intent with the StartActivity

3.3 Create Your First Mobile App 107

method (more on StartActivity below), it will launch another Activity. It can also be
used to initiate downloading a file and broadcast a message to other components of
your app or other apps installed on your device.

There are two types of Intents, explicit Intent and implicit Intent. Both types are
described briefly in the subsections below. We will return to this topic as the book
progresses.

3.3.4.1 Explicit Intent

Explicit Intents are used to activate other components such as activities explicitly.
You use explicit Intent when you know what app components you would like to
trigger. Using explicit Intent enables you to pass objects between activities as well.

The code snippet below shows how an explicit Intent object is created. It is an
explicit Intent because you pass explicitly the name of the second Activity, i.e., the
MessageDisplayActivity.class, that needs to be provided to the intent constructor of
the first Activity. As shown, you can also pass data to the next screen using the
putExtra (key, value) method from the Intent class. The value of data can be a String,
other Java primitive types, or objects.

Intent intent = new Intent (this, DisplayMessageActivity.class);
intent.putExtra("key", "value");
startActivity(intent);

A complete MainActivity code for the MyFirstApplication example is shown in
Listing 3.4.

Listing 3.4 The MainActivity.java class.

package code.android.abdulrahman.com.myfirstapplication;
import android.content.Intent;
import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.EditText;
public class MainActivity extends AppCompatActivity {

public final static String EXTRA_MESSAGE =
"code.android.abdulrahman.com.myfirstapplication.MESSAGE";

private static final String TAG = "MyActivity";
@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}
/** Called when the user clicks the Send button */

108 3 Your First Android Application

public void sendMessage(View view) {
// Do something in response to button
Intent intent = new Intent (this, DisplayMessageActivity.class);
EditText editText = findViewById(R.id.edit_message);
String message = editText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);
Log.d(TAG, "Intent fired ");
startActivity(intent);

}
}

3.3.4.2 Implicit Intent

There is another type of Intent, implicit Intent. When implicit Intent is used, the
Activity that handles the Intent request is not specified; instead, the Android system
finds one or more Activities that can handle the request.

To create an implicit Intent, you need two pieces of information: the action that
needs to be carried out and the data/information for the action. The Intent class has
multiple actions, or constants, that can be called, for example, Action_View,
Action_Dial, Action_Answer, Action_Call, Action_Pick, Action_search,
Action_send, and many more. The code snippet in Listing 3.5 shows how you can
use Action_view to view a webpage and Action_Dial to dial a number using implicit
Intent.

Listing 3.5 Using Action_view Action_Dial with implicit Intent.

Uri uri = Uri.parse("http://www.wlu.ca");
Intent anIntent = new Intent(Intent.ACTION_VIEW,uri);
startActivity(anIntent);

Uri uri = Uri.parse("tel:8005551234");
Intent telIntent = new Intent(Intent.ACTION_DIAL, uri);
startActivity(telIntent);

When using implicit Intent objects, the Uri object is used in two Intent construc-
tors. Hence, it is important to know how to instantiate Uri objects correctly. Uri is a
Java class from the net package. It has several methods including the parse, fromfile,
and fromParts method that return Uri object. Both examples above, Listing 3.5, use
the parse method to form Uri objects. To create a Uri object using the parse method,
you need to know the format of the string passed to the parse method.

Another key step to using implicit Intent is to select a proper constant, or action,
from the Intent class to be used with the Uri class. In the examples above,
Action_View is used to view a webpage, and Action_Dial is used to dial a phone
number. When you are developing an app with an implicit Intent, you need to check
the Android reference page to find the proper string format for the Uri parse method
and select the proper action for the Uri.

3.3 Create Your First Mobile App 109

The Intent has other useful methods. Examples of such methods include PutExtra,
putExtras, getIntExtra, etc. It also has multiple constructors; see the table below. We
will talk more about these methods and constructors in the coming chapters.
Remember that Intent is an important class with many constants, methods, and
constructors and is an essential component for creating apps.

3.3.5 Using StartActivity

The Activity class, which is a subclass of Context class, defines multiple versions of
the startActivity method. To start another Activity from your current Activity, you
need to call the startActivity() method and pass an Intent object to the method. The
Intent object should include the name of the second Activity you would like to
launch. These steps are as follows:

1. Create an Intent object, for example, Intent myIntention ¼ new Intent (this,
DisplayMessageActivity.class);. The constructor that is used to create the
myIntention object is Intent (Context ctx, Class<?> cls). The Intent class has
other constructors to instantiate Intent objects. For the list of constructors, see
Table 3.1.

2. Put data into the Intent object. Use putExtra() methods to include data about your
intention, or the operation about to happen, inside the Intent object. For example,
use putExtra(String name, String value) method. The putExtra() method is
overloaded, and the intent class provides multiple versions of it.

3. Call startActivity with an Intent object, e.g., startActivity (myIntention);.
Here we are saying “act upon my intention using the data that has been

included in the myIntention object,” i.e., start the DisplayMessageActivity
screen. The Android system receives the call and starts an instance of the Activity
included in the Intent object.

After adding the startActivity statement to the sendMessagemethod, the complete
code for the sendMessage() method that can be invoked by the Send button looks as
shown below.

Table 3.1 Intent constructors

Intent() Create an empty intent

Intent(Intent o) Copy constructor

Intent(String action) Create an intent with a given action

Intent(String action, Uri uri) Create an intent with a given action and for a
given data url

Intent(Context packageContext, Class<?>
cls)

Create an intent for a specific component

Intent(String action, Uri uri, Context
packageContext, Class<?> cls)

Create an intent for a specific component with a
specified action and data

110 3 Your First Android Application

/** Called when the user clicks the Send button */
public void sendMessage(View view) {

// Do something in response to button
Intent intent = new Intent(this, DisplayMessageActivity.class);
EditText editText = findViewById(R.id.edit_message);
String message = editText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);
Log.d(TAG, "Intent fired ");
startActivity(intent);

}

When the user presses the send button on the main screen, the sendMessage()
method is executed, and the startActivity statement triggers the Activity that has
been included in the Intent object, i.e., the Activity that has been passed to the
startActivity as a parameter. These steps can be summarized as follows:

Send button ! SendMessage () ! startActivity (intent) ! secondActivity.

Every Activity class inherits the startActivity methods from the Context class.
Multiple versions of the startActivity method are defined in the Context class. We
will use other forms of the startActivity method in other chapters.

Now, you need to create a second Activity, DisplayMessageActivity, for the code
above to execute successfully.

3.3.6 Create Second Activity

To create a new activity using Android Studio, do this: Right-click on the app or Java
folder, find New -> Activity -> Empty Activity, and click to open the create
Activity dialog window; see Fig. 3.5.

Fill in the Activity details; see Fig.3.6.
Finally, click Finish. When you are done, Android Studio automatically does the

following three things for you:

1. Creates the DisplayMessageActivity file
2. Creates the corresponding activity_display_message.xml layout file given you

checked the generate layout activity box
3. Adds the DisplayMessageActivity to the AndroidManifest.xml

The DisplayMessageActivity code is presented in Listing 3.6.

3.3 Create Your First Mobile App 111

Fig. 3.5 Steps to follow to create a new project in Android Studio

112 3 Your First Android Application

Listing 3.6 MessageDisplayActivity.java.

package code.android.abdulrahman.com.myfirstapplication;
import android.content.Intent;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.util.Log;
import android.view.View;
import android.widget.TextView;
public class MessageDisplayActivity extends AppCompatActivity {

private static final String TAG = "MessageDisplayActivity";
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setTitle(R.string.title);
setContentView(R.layout.activity_display_message);
String intentMessage = getString(R.string.intentHasNoData);

}

If you created a non-empty activity, you would see that several methods have been
created for you. We do not use these methods in the current exercise. For example, if
you see that an onCreateOptionsMenu(Menu menu) method has been created, you
can delete it for now.

Fig. 3.6 Activity creation temple

3.3 Create Your First Mobile App 113

3.3.6.1 R.string and strings.xml File

Looking at the onCreate method for the message display activity, you may notice
that there is a call to the setTitle() method. This a public method in the activity class
that you can use whenever you want to set a title for our activity page. It takes a
string as input. The input string can be hardcoded which is not recommended or
declared inside the strings.xml file. In the current project or example, it is declared in
the strings.xml file, and the actual title text gets retrieved using R.string.title. The
statement R.string.title directs the Android operating system to look at the strings.
xml file inside the res/value/ folder and retrieve the value associated with the title
key. This is possible because when compiling an application, the strings.xml file is
parsed to the strings.java class which will have a static final data field for each entry
in the XML file.

3.3.7 Project Manifest Update

If you open the project’s manifest file, you will see that an XML entry for the new
activity, DisplayMessageActivity, has been added to the manifest file. The addition
is bolded in Listing 3.7.

Listing 3.7 AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=

"http://schemas.android.com/apk/res/android"
package="code.android.abdulrahman.com.myfirstapplication">
<application

android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".MessageDisplayActivity" />

</application>
</manifest>

114 3 Your First Android Application

3.3.7.1 Intent-Filter and Launcher Screen

We have already mentioned that the manifest file is the first file that gets execute and
is an entry point to your app. However, there is much more to it than that. For
example, if you have more than one activity, you can define which one will be the
starting screen. This can be done by using intent-filter with an action name and
category.

In the code snippet below, the intent-filter is part of the MainActivity definition,
and both action and category names are used to specify that MainActivity is the
starting, or the launcher, activity.

<activity android:name=".MainActivity">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

If you decide to make, for example, MessageDisplayActivity the starting screen
of your app, you need to put the intent-filer element inside the
MessageDisplayActivity element declaration and use the action name and category
name elements to define the new starting activity.

3.3.7.2 Setting Application Attributes

Application is one of the components of the manifest file. It has subelements and
attributes. The subelements, such as Activity, are components of the app. If your app
is made of multiple Activities, all Activities have to be defined inside the application
element, and then they become the applications’ child element.

Application attributes are used to define properties that can be applied to all
components of the app. Some of these attributes, such as icon, label, and theme, have
default values that can be changed by individual components. Others, such as the
debuggable attribute, are applied to the whole application, and once set, it cannot be
changed by an individual application component. Some of the attributes that you can
set are listed in Listing 3.8.

3.3 Create Your First Mobile App 115

Listing 3.8 Examples of Application attributes that you can set for your app.

<application android:allowTaskReparenting=""
android:allowBackup=""
android:allowClearUserData=""
android:allowNativeHeapPointerTagging=""
android:backupAgent="string"
android:backupInForeground=""
android:banner="drawable resource"
android:debuggable=""
android:description="string resource"
android:directBootAware=""
android:enabled=""
android:extractNativeLibs=""
android:fullBackupContent="string"
android:fullBackupOnly=""
android:gwpAsanMode=""
android:hasCode=""
android:hasFragileUserData=""
android:hardwareAccelerated=""
android:icon="drawable resource"
android:isGame=""
android:killAfterRestore=""
android:largeHeap=""
android:label="string resource"
android:logo="drawable resource"
android:manageSpaceActivity="string"
android:name="string"
android:networkSecurityConfig="xml resource"
android:permission="string"
android:persistent=""
android:process="string"
android:restoreAnyVersion=""
android:requestLegacyExternalStorage=""
android:requiredAccountType="string"
android:resizeableActivity=""
android:restrictedAccountType="string"
android:supportsRtl=""
android:taskAffinity="string"
android:testOnly=""
android:theme="resource or theme"
android:uiOptions=""
android:usesCleartextTraffic=""
android:vmSafeMode=""["true" | "false"] >

. . .
</application>

You don’t need to learn about all these attributes from the get-go. Instead, based
on the needs of the applications you are building, you will study one or more of these
attributes. Some of these attributes, like theme, label, logo, and icon, are commonly
used. Others, like testOnly and supportRtl, have limited use. When you want to test
your app for a certain security feature but don’t want to include it in your app, you

116 3 Your First Android Application

might want to set the testOnly attribute to true. Similarly, you set supportRtl to true
when you want your application to support right-to-left (RTL) layouts.

3.3.8 Running the App

Once you run the demo app and press the send message button on the main Activity,
MessageDisplayActivity starts but is empty. This is because the second Activity has
an empty layout; see Fig. 3.7. In the following subsections, we will add some
elements to the second activity layout to make it more interesting.

Fig. 3.7 The second
activity is launched from the
first activity

3.3 Create Your First Mobile App 117

3.3.9 Receiving Messages/Data from an Activity

In the DisplayMessageActivity class and inside the onCreate() method, you can use
the getIntent() method to receive the intent object passed by the main activity. The
getIntent() method is a public method in the Activity class and can be used like this:
Intent intent = getIntent();.

The message, or the data delivered by MainActivity, can be extracted as well. The
code snippet below shows extracting data from the Intent object received from the caller
Activity. You first check to see if the Intent is not null, and then you check to see whether
anymessage or data has been put in the Intent object. If you pass the previous two checks,
then you use the getStringExtra() method from the Intent class to retrieve the message.

Intent intent = getIntent();
if (intent != null) {

if (intent.hasExtra(getString(R.string.message))) {
intentMessage = intent.getStringExtra(

getString(R.string.message));
}

}

Note that we used getStringExtra() because we know that the type of message
passed by MainActivity is a string. If it was something else, for example, int, then we
use getIntExtra(). To retrieve the string message, i.e., the string value, you also need
to know the message key. The key is declared in the strings.xml file as the message,
and that is why we are using R.string.message as a key to retrieve its value. Listing
3.9 is an update of Listing 3.8. The added steps are highlighted in bold.

Listing 3.9 Using the Intent object, getStringExtra, and R.string.message.

public class MessageDisplayActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setTitle(R.string.MsgActivity);
setContentView(R.layout.activity_display_message);
String intentMessage = getString(R.string.intentHasNoData);
Intent intent = getIntent();
if (intent != null) {

if (intent.hasExtra(getString(R.string.message))) {
intentMessage = intent.getStringExtra(

getString(R.string.message));
Log.d(TAG, getString(R.string.IntentRecieved));

}
}
TextView messageTextView = findViewById(R.id.message);
messageTextView.setText(intentMessage);

}
. . .
}

118 3 Your First Android Application

3.3.10 Responding to the Messages from an Activity

To display the message on the screen of the second Activity, i.e., the
MessageDisplayActivity view, you need to add a TextView element to the display
layout of the Activity. To add a TextView, add the following element to the activity
display_message.xml file.

<TextView
android:id="@+id/message"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="TextView"
android:textAlignment="center"
anroid:textAppearance="@style/TextAppearance.AppCompat.Body1"
android:textSize="24sp"
android:typeface="normal"
android:visibility="visible" />

Inside the onCreate() method of DisplayMessageActivity, you can access the
TextView, which has been newly added to the activity_display_message.xml, using
findViewByID and passing resource id as a parameter, i.e., passing R.id.message. The
code statement would be like this:

TextView messageTextView = findViewById(R.id.message);

The message part of “R.id.message” is referencing the id we have included inside
the TextView element definition: android:id="@+id/message".

We added the textAppearance and textAlignment attributes to the description of
the TextView for a better look.

The complete code for the onCreate() method for DisplayMessageActivity is
shown in Listing 3.10. This is an updated version of Listing 3.8 which includes
additional code for the TextView creation and uses. The setMessage() method from
the TextView class is used to put the delivered message on the screen. The added
code is highlighted in bold.

Listing 3.10 Using TextView and setMessage.

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setTitle(R.string.MsgActivity);
setContentView(R.layout.activity_display_message);
String intentMessage = getString(R.string.intentHasNoData);
Intent intent = getIntent();

3.3 Create Your First Mobile App 119

if (intent != null) {
if (intent.hasExtra(getString(R.string.message))) {

intentMessage = intent.getStringExtra(
getString(R.string.message));

Log.d(TAG, getString(R.string.IntentRecieved));
}

}
TextView messageTextView = findViewById(R.id.message);
messageTextView.setText(intentMessage);

}

Once you are done, you can run your first Android application. Enter some text
into EditText on the main screen, and then press the send button; see Fig. 3.8, on the
left. A new activity should launch displaying the message you entered on the second
screen; see Fig. 3.8, on the right.

Fig. 3.8 Snapshot of MyFirstApplication screens. On the left is Main Activity; on the right is
Display Activity

120 3 Your First Android Application

To make the app a bit more interesting, we added a button on the second activity.
When it is pressed, the Display message Activity gets closed, and we return to the
main activity. Here is the button description inside activity_display_message.xml.

<Button
android:layout_width="match_parent"
android:layout_height="60dp"
android:layout_weight=".5"
android:background="@android:color/holo_green_dark"
android:text="Back to Main"
android:visibility="visible"
android:onClick="goToMain"/>

Note that, inside the button description, there is an entry called android:onClick
which takes the name of the method that will be executed when the button is pressed.
In other words, you name your method inside MessageDisplayActivity, in this
example, as “goToMain.” The method implementation inside the Activity must be
public with a void return type, and it should have one parameter of type View. The
method signature is as follows:

public void gotoMain(View view) {. . .}

The complete code for MessageDisplayActivity after adding the go back to the
main button is shown in Listing 3.11.

Listing 3.11 MessageDisplayActivity.java return messages to the
MainActivity.

package code.android.abdulrahman.com.myfirstapplication;
import android.content.Intent;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.util.Log;
import android.view.View;
import android.widget.TextView;
public class DisplayMessageActivity extends AppCompatActivity {

private static final String TAG = "DisplayMessageActivity";
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setTitle(R.string.title_activity_display_message);
setContentView(R.layout.activity_display_message);
String message = "no data from intent";
Intent intent = getIntent();
if (intent != null) {

if (intent.hasExtra(
"code.android.abdulrahman.com.myfirstapplication.MESSAGE")) {
message = intent.getStringExtra(

3.3 Create Your First Mobile App 121

"code.android.abdulrahman.com.myfirstapplication.MESSAGE");
Log.d(TAG, "Got Intent");

}
}
TextView messageTextView = findViewById(R.id.message);
messageTextView.setText(message);

}
public void goToMain(View view) {

// go back to main page in response to button
Intent intent = new Intent (this, MainActivity.class);
startActivity(intent);

}
}

The complete layout file for the activity_display_message is shown in Listing
3.12. This layout, along with the code in Listing 3.11, is the complete code for the
second activity.

Listing 3.12 The content of the activity_display_message.xml file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/lightBlue"
android:gravity="top"
android:orientation="vertical"
tools:context=".DisplayMessageActivity">
<TextView

android:id="@+id/message"
android:layout_width="match_parent"
android:layout_height="200dp"
android:layout_margin="20dp"
android:text="TextView"
android:textAlignment="center"
android:textSize="24sp"
android:typeface="normal"
android:visibility="visible" />

<Button
android:layout_width="200dp"
android:layout_height="60dp"
android:layout_gravity="center"
android:background="@android:color/holo_green_dark"
android:onClick="goToMain"
android:text="Back to Main"/>

</LinearLayout>

122 3 Your First Android Application

Figure 3.9 shows the back and forth between Main and DisplayMessage activi-
ties. First, a send button on the main activity launches the second activity. The
second activity displays the content of the message carried inside the Intent object.
Lastly, when the back to the main button is pressed on DisplayMessageActivity, the
Message Activity gets closed, and the MainActivity screen gets opened, i.e., the
MainActivity gets launched.

3.4 Debugging Information

The Android SDK has a Log class in the util package to log information and print
debugging information to the Logcat window. It has several methods to write different
log messages. The Android Log class can be utilized like System.out.println in Java
for debugging. By using Logcat, the debugging and monitoring window in Android
Studio, you can view the logs and filter log messages during app debugging.

The Log class has five methods for displaying debugging information. The
methods are Log.i() for writing information, Log.w() for writing warnings, Log.e()
for writing errors, Log.v() for writing verbose or detailed messages, and Log.d() for
writing debugging statements. In this part, we will describe how to use the Log class
methods in your app.

Fig. 3.9 Snapshots of back and forth between Activities

3.4 Debugging Information 123

3.4.1 Debugging Using Log.d()

You use log statements in your code for various purposes. For example, you might
want to confirm that an Intent fired by one activity is received by another. This
confirmation can be done with Log.d(). In the code snippet below, the Log.d()
method is used for message confirmation.

To use Log.d(), you first need to create a TAG in your code and then call Log.d()
with the tag. The TAG variable is usually declared as constant in the class, and the
value of the TAG variable is the activity name of your app.

private static final String TAG = "MainActivity";

The syntax of the log methods is like this: Log.type (TAG, "message");.
In Listing 3.13, we show how you can use Log class in your app. We import the

android.util.Log class to the code, define a TAG, and call the Log.d() method. The
codes related to the logging are highlighted in bold font.

Listing 3.13 An example showing how to use Log.d in your app.

package code.android.abdulrahman.com.myfirstapplication;
import android.content.Intent;
import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.EditText;
public class MainActivity extends AppCompatActivity {

public final static String EXTRA_MESSAGE =
"code.android.abdulrahman.com.myfirstapplication.MESSAGE";

private static final String TAG = "MyActivity";
@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}
. . .

}
}

The Send message method from MainActivity uses Log.d to log debugging
information; see the code snippet below.

/** Called when the user clicks the Send button */
public void sendMessage(View view) {
// Do something in response to button
Intent intent = new Intent (this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewById(R.id.edit_message);

124 3 Your First Android Application

String message = editText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);
Log.d(TAG, getString(R.string.intent_fired));
startActivity(intent);

}

A debug message has been written to the log file. Using Logcat, we can read that
the Intent object has been received from MainActivity. The code to show this step is
written in Listing 3.14.

Listing 3.14 A code to show Intent object sent by sender is received.

Public class MessageDisplayActivity extends AppCompatActivity {
private static final String TAG = “MessageDisplayActivity”;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setTitle(R.string.MsgActivity);
setContentView(R.layout.activity_display_message);
String intentMessage = getString(R.string.intentHasNoData);
Intent intent = getIntent();
if (intent != null) {

if (intent.hasExtra(getString(R.string.message))) {
intentMessage = intent.getStringExtra(

getString(R.string.message));
Log.d(TAG, getString(R.string.IntentRecieved));

}
}
TextView messaView = findViewById(R.id.message);
messaView.setText(intentMessage);

}

3.4.2 Using Logcat to View Log Messages

You can monitor logs using the Logcat window. Logcat is a command-line tool
integrated into Android Studio. You’ll find Logcat at the bottom of Android Studio
or by clicking the View tab from the Android menu bar followed by the Tool
Window and Logcat menu item. The following screenshot, Fig. 3.10, shows viewing
and filtering logs from the Logcat window.

We will study code debugging in more detail in the next chapters. What is
described here is just a short introduction to Log class and viewing logs in the
Logcat window in case you need it while you are creating and running your
first app.

3.4 Debugging Information 125

3.4.3 Do It Yourself

3.4.3.1 Exercise 1

For this chapter, we have defined TextView and Button inside the Activities’ Layout
XML files. These objects can be defined as Java code inside your MainActivity and
DisplayMessageActivity classes. For example, you can create TextView as follows:

TextView = new TextView(this);
textView.setTextSize(40);
textView.setText(message);

Re-write the MainActivity and the DisplayMessageActivity classes using Java code
only. That is, instead of declaring Android classes inside the XML layout file, use Java
code. Study the trade-off between defining UI objects as an XML element vs. Java code.

3.4.3.2 Exercise 2

Familiarize yourself with Android shortcuts. To reduce errors and improve your
development time, it is good practice to use Android Studio shortcuts. A compre-
hensive Android keyboard shortcut is listed on the Android Studio Developers
webpage. Put the link below in your browser to see the list of Android shortcuts
(https://developer.android.com/studio/intro/keyboard-shortcuts).

3.4.3.3 Exercise 3

Each new version of the Android API adds new features to the prior version. We
listed some of the Android APIs and their unique features in this chapter. Search the

Fig. 3.10 Debugging window is shown with debugging message

126 3 Your First Android Application

https://developer.android.com/studio/intro/keyboard-shortcuts
https://developer.android.com/studio/intro/keyboard-shortcuts

Android developer page, to find out what is unique to other APIs that we have not
listed in the chapter.

3.5 Localize Your App and Resources

Android runs on a large number of devices and in all countries and regions of the
world. For your app to be used by the largest possible number of users, it should at
least handle text, numbers, currency, and graphics in ways that is suitable to users in
many places. This chapter describes the best practices for localizing Android apps.

3.5.1 Create a Resource File for Second Language

To support texts in other languages in your app, you need to create a strings.xml file
similar to the default strings.xml file for the English language for every language you
would like to support. To do so, right-click on the “res” folder of your app, and select
“New” followed by Android Resource File. This step is shown in Fig. 3.11. A
window, same as the one shown in Fig. 3.12, will open. Select “Locale” from the list,
and click the “>>” button to see the list of languages that you can choose from.

Fig. 3.11 Create a new string resource file for language locale

3.5 Localize Your App and Resources 127

From the list of languages (see Fig. 3.13), select any language, other than English,
that you would like to support.

In the file name field, circled in Fig. 3.14, type strings and press OK. This should
create a second “strings.xml” file in the values folder. The pattern for the newly

Fig. 3.12 First step to localize your app

Fig. 3.13 List of languages supported by Android is shown

128 3 Your First Android Application

created file name would be string(XX-rYY) where the string is the language like
French or Arabic, the first XX is the language qualifier like fr or ab, and the second
rYY is the specific region you selected. You also have a choice to not select a
specific region. To do so, you leave the Specific Region option to Any Region.

In Fig. 3.15, a new string XML file in the values folder is shown for the French
language. The file is called french.xml(fr). The file name shows that the French
language is selected and is not specified for a specific region.

Fig. 3.14 Support for different English language dialectics is shown

Fig. 3.15 A new strings.xml file for the French language is shown

3.5 Localize Your App and Resources 129

3.5.2 Create Resource Entries for Languages Supported

To add content to the newly created strings.xml file for the second language, copy
the xml elements between the <resources> tags of the original “values/strings.xml”
file, and paste them between the <resources> tags of the new strings(xx).xml file. In
the strings.xml file for the second language, modify the string values to the new
language. For example, the app name element in English and French string files
would be as follows, respectively.

<string name="app_name">My First Application</string>
<string name="app_name">Ma première application</string>

Note that the key part of the XML entry, i.e., app_name, is the same in both files.
It is only the value part, the actual text, of each entry in the strings.xml file that needs
to be translated. Listing 3.15 is an example of a resource file string.xml(fr) for our
demo app:

Listing 3.15 strings.xml example for the French language.

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">Ma première application</string>
<string name="insert_message"> Entrer un message </string>
<string name="send_button"> Bouton d\'envoi </string>
<string name="textview">TextView</string>
<string name="back_to_main">Retour à la page principale</string>
<string name="MsgActivity">Activité de message</string>
<string name="message">

code.android.abdulrahman.com.myfirstapplication.MESSAGE
</string>

<string name="IntentRecieved">Got Intent</string>
<string name="intentHasNoData">aucune donnée d\'intention

</string>
<string name="intentFired">Intention renvoyée</string>

</resources>

3.5.3 Set Device Language

To be able to read the content of the second strings.xml you just created, you need to
change the language of your device or the emulator if you are running your app on
the emulator. To do so, click on Settings -> Language & Input -> Language menus
or anything equivalent to that. This step may look different on different devices and
different versions of Android. Set the language of the phone to whatever you choose
as your second language for your app. Your app will automatically read the strings

130 3 Your First Android Application

from the other strings.xml file you created. Below is an example of supporting the
French language in the app; see Fig. 3.16.

3.6 Chapter Summary

In this chapter, we described how to create your first Android app. We defined
Activity as a Java class or a component in your app representing a window that fills
the screen. We also described both explicit and implicit Intent classes as a message
object and a description of the operation that needs to be carried out. We studied the
Context class, the Log class, and other classes. We studied how to start a second
Activity with an Intent object using the startActivity method, passing data between
Activities with extras, and going back and forth between Activities.

Fig. 3.16 MyFirstApplication is running with support for the French language

3.6 Chapter Summary 131

We described the fundamental steps to create an app. These include defining a
layout in XML, defining an Activity by extending AppCompatActivity, connecting
Activity to the XML layout file using the setContentView method in the onCreate()
method, and declaring Activity in the Android manifest file. We also studied how
your app can support multiple languages. You will learn more about each of these
concepts and steps in the coming chapters. You need to run all the sample codes and
examples provided in this chapter to master the topics.

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

• Activity
• Android API
• Android SDK
• Bundle
• Button
• Change the UI string
• Clean project
• EditText
• findViewByID
• hasExtra
• Implicit Intent
• Intent
• Local
• Log class
• Logcat
• OnClick
• OnCreate()
• Open the Layout editor
• getApplicationContext()
• getContext()
• getIntent
• getStringExtra
• intent.putExtra
• Project Sync
• R.java
• setText
• startActivity
• TextView
• Uri

132 3 Your First Android Application

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

Build a simple user interface, [online] Available: https://developer.android.
com/training/basics/firstapp/building-ui

Localize your app, [online] Available: https://developer.android.com/guide/
topics/resources/localization

Keyboard shortcuts, [online] Available: https://developer.android.com/studio/
intro/keyboard-shortcuts

Navigation, [online] Available: https://developer.android.com/training/
implementing-navigation/ancestral

Intent, [online] Available: https://developer.android.com/reference/android/
content/Intent.html

Log, [online] Available: https://developer.android.com/reference/android/util/
Log

Further Reading 133

https://developer.android.com/training/basics/firstapp/building-ui
https://developer.android.com/training/basics/firstapp/building-ui
https://developer.android.com/guide/topics/resources/localization
https://developer.android.com/guide/topics/resources/localization
https://developer.android.com/studio/intro/keyboard-shortcuts
https://developer.android.com/studio/intro/keyboard-shortcuts
https://developer.android.com/training/implementing-navigation/ancestral
https://developer.android.com/training/implementing-navigation/ancestral
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/util/Log
https://developer.android.com/reference/android/util/Log

Chapter 4
Debugging and Testing Using Junit,
Espresso, and Mockito Frameworks

What You Will Learn in This Chapter
By the end of this chapter, you should be able to:

• Debug code with the Android Studio Debugger
• Run the Android Profiler to profile your code
• Use the Device File Explorer to manage your app files
• Use the Android Debug Bridge (adb) command-line tool to access Linux shell
• Create Toast and Snackbar messages
• Use Log and the Logcat utility to view log messages from the Logcat window
• Use Junit, Expresso, and Mockito frameworks testing to test your code
• Apply test coverage using Android Studio
• Use a reverse engineering technique to generate a class diagram from the code

Check Out the Demo Project
Download the demo app, ch04.zip, specifically developed to go with this chapter. I
recommend that you code this project up from the notes rather than just opening the
project in Android Studio and running it; however, if you want to run the code first to
get a sense of the app, please do so. The code is thoroughly explained in this chapter
to help you understand it. We follow the same approach to all other chapters
throughout the book. The app’s code will help you comprehend the additional
concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_4

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_4#DOI

4.1 Introduction

In this chapter, the focus will be put on fault detection (testing and debugging) using
the Android Studio Debugger to locate faults and code errors and to fix them. In
addition to what Android Studio offers as an IDE to enable debugging and testing,
we also study the Android classes and methods that facilitate testing. For example,
we will discuss the classes and methods that enable unit testing and how it can be
conducted using Android Studio.

Different from the previous chapters, in this chapter, you need to practice what
will be described. You need to open Android Studio, run an existing app, follow the
instructions provided in each section, and observe the results. You need to be
creative and curious to run and find out more about each feature described in this
chapter to be fluent in Android debugging and testing. What you are going to learn
here will help you throughout your software development career. Each part of this
chapter is important and you should not skip it. However, you might not need to read
this chapter entirely in one attempt. Instead, you could come back to this chapter as
you read other chapters of the book.

4.2 The Android Studio Debugger

In this part, we describe code debugging in Android Studio. We show you how to
enable and use the Android Debugger tool to debug your code, inspect and modify
variable values during debugging, use the Android Profiler tool to profile the
performance of your code, use the Device File Explorer to access and modify files
on Android devices, and use the Android Debug Bridge (adb) command-line tool to
run Linux commands on an Android device.

4.2.1 Fault Handling Methods

There are various software fault handling methods and approaches. These include
preventing fault from happening in the first place, detecting the fault and fixing it, or
applying mechanisms to tolerate fault. These methods and techniques can be
grouped and classified in various ways. Figure 4.1 shows one way to classify these
methods. This is a non-inclusive list of methods. There might be other ways to deal
with software bugs, errors, and faults.

From Fig. 4.1, you can draw parallels between software fault handling and fault
treatments in other fields of science. For example, in health science, prevention is the
best approach to avoid sickness, and once you get sick, you need medication, and
when medication is not helpful, you have to live with consequences. As you can see,
this is the same approach that is followed in software fault handling: prevention,

136 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

fixing, and dealing with consequences. As you progress through this book, you will
be introduced to all fault handling approaches listed in Fig. 4.1.

When developing Android apps, the types of bugs that you should watch out for
include incorrect or unexpected results, wrong values, crashes, exceptions, freezes,
and memory leaks. Android Studio comes with various built-in tools and plugins for
app debugging, i.e., finding and fixing errors in code, as well as testing app
performance, and verifying/validating the non-functional requirements. Android
Studio enables you to debug apps running on the emulator and Android devices.
With Android Studio, you can do the following:

• Set a debugging device.
• View the system log.
• Set breakpoints in your code.
• Check the variables and evaluate expressions at runtime.
• Run the debugging tools to debug your code.
• Capture screenshots and videos of your app using Logcat or Android monitor.

Android monitor is used in early versions of Android Studio.

The features above enable you to find incorrect or unexpected results, wrong
values, crashes, exceptions, freezes, and memory leaks.

4.2.2 Enable Debugger

To debug code, i.e., find and fix errors, you need to enable the debugging option on
your device. It is enabled for the emulator by default. As for your device, use settings
to find developer options. If you cannot find developer options, it means it is hidden
by default. Follow the instructions below to enable it.

First, on your device, go to Settings ! About <device> ! build number, and
then tap build number seven times or more to make developer options available. On

Fig. 4.1 Classification for
fault handling approaches

4.2 The Android Studio Debugger 137

newer Android devices, you need to go to Settings! System! about<device>!
build number. You also need to enable the USB debugging option. Figure 4.2 shows
the developer and USB debugging options that you need to enable.

Now that you have enabled the developer and USB debugger options, do the
following to start debugging:

1. Open the project in Android Studio.
2. Select a hardware device, an emulator, or your connected device, for

debugging code.
3. Click on the debug icon on the toolbar (circled in red in Fig. 4.3), or click run ➔

debug on the menu bar. The app starts on the selected device, and the debugging
window opens. Once you see the debugging window, highlighted in black in
Fig. 4.3, it indicates that the debugger is attached to your development
environment.

Now, you can step through your code and execute it line by line, using the
debugging buttons circled in green in Fig. 4.3.

Fig. 4.2 The developer and USB debugging options that you need to enable for debugging

138 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

While debugging, you can execute code by clicking on the step buttons or using
the shortcuts such as F8 for Start Over and F7 for Step Into. The step buttons are
circled in green in Fig. 4.3.

During debugging, you can highlight any variable or expression by right-clicking
on it and pressing Evaluate Expression or Add to Watch to find out the value of the
variable and the value of the expression when it is executed.

The debugger also allows you to see the execution stack. This is shown in
Fig. 4.4. The execution stack and the frame that responds to the current breakpoint
are shown below.

4.2.3 Inspecting and Modifying Variable Values

While you are running your code in the debugging mode with breakpoints set, if you
execute your code one step at a time using the step buttons, you can see the state of
each class variable and object in the Logcat window. Figure 4.5 shows the inspecting
variable window.

Fig. 4.3 Android Studio debugging windows

4.2 The Android Studio Debugger 139

Fig. 4.4 View of the debugger window for inspecting the execution stack

Fig. 4.5 Variables view of the debugger window

140 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

Note that, when your app is ready to be published, you need to remove the
logging statements and any calls to Toast and Snackbar debugging messages. This
cleanup is needed to avoid app hanging and crashes.

4.2.4 Android Profiler

Quality assurance (QA) requirements, such as performance, usability, robustness,
security, privacy, and other non-functional requirements, are essential parts of
almost all apps. The Android Profiler provides you with the ability to profile your
code, i.e., verify/validate the non-functional requirement such as the performance
and usability of your app.

Code profiling provides you with real-time data on how much your app uses
CPU, memory, network, and battery resources. Using the captured data, you can
inspect CPU activity and traces, Java heap and memory allocation, network traffic,
energy usage, etc. Table 4.1 summarizes these activities.

To open the Profiler window, on the Android Studio’s menu bar, click View !
Tool Windows ! Profiler, or click on the Profile icon, shown in Fig. 4.6, in the
toolbar. Run the app, and press on the plus sign to start profiling (see Fig. 4.7).

Figure 4.7 is a snapshot of the app profiling window. The four components that
you can profile, as well as the session ending button, are circled. Once started, the
Android Profiler continues collecting data until you either disconnect the device or
click the end session button.

On the right-hand side of Fig. 4.7, the graphical representation of the apps’
resource usages (CPU, memory, network, energy) is shown. This information can
be utilized to determine an app’s non-functional behavior. More information about
each of the graphs can be found by clicking on it. The ability to extract data about an
app’s behavior is not only useful for managing device resources but could also be the
base for developing various useful apps, for example, having an app that examines
all apps, i.e., profiling all the apps running on your device to return information
about the CPU time, memory, network, and battery usage for each app.

Table 4.1 Profile activities CPU profiler CPU activity and traces

Memory profiler Java heap and memory allocations

Network profiler Network traffic

Energy profiler Battery usage

Fig. 4.6 Profile icon is shown

4.2 The Android Studio Debugger 141

4.2.5 Device File Explorer

The Device File Explorer allows you to view, edit, copy, and delete files on an
Android device. To use the Device File Explorer on the Android Studio’s menu bar,
click View ! Tool Windows ! Device File Explorer, or click the Device File
Explorer button if it is visible in the window toolbar. File Explorer can be used to
examine the files you created or copy files from one device to another.

To practice with the Device File Explorer, run your app and select a device, and
open the Device File Explorer window to see the files stored on the device. For
example, in Fig. 4.8, Emulator Pixel_3_XL_AP1_30 has been selected to see its
content. Figure 4.8 shows some of the device’s directories.

If you open the data directory, you might be able to see all the apps that you have
run on this emulator; an example is shown in Fig. 4.9. The location of where the apps
are stored is emulator-dependent.

It is important to be able to access the data directory of your emulator/device and
be able to, for example, delete some of the apps/files you no longer use to free up
space. Using the Device File Explorer, you can move and create files and directories
and check to see whether the file your app is supposed to create has actually been
created.

Fig. 4.7 App profiling snapshot

142 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

Fig. 4.8 Device File Explorer for an emulator

Fig. 4.9 Apps inside the data directory of an emulator

4.2 The Android Studio Debugger 143

4.2.6 Android Debug Bridge (adb)

Android has a command-line tool, the Android Debug Bridge (adb) tool, for
running Linux commands on the Android device. The executable command,
adb.exe, is located inside the platform-tools directory. At the bottom of Android
Studio, click on the Terminal button, or on Android Studio’s menu bar, click View!
Tool Windows ! Terminal to open the Terminal window. In the Terminal Window,
change the directory, i.e., cd, to where adb.exe is located. It is usually located at
C:\Users\userName\AppData\Local\Android\Sdk\platform-tools\adb.exe.

Replace “userName” in the path above with your user name, in my case, amawl,
as shown in Fig. 4.10. The steps above, i.e., opening the Terminal window and
changing the directory to the adb directory, are shown in Fig. 4.10.

Once you change the directory to the adb directory, you can start adb shell and run
Linux commands. Below are some examples of shell commands:

To start, type adb shell:
C:\Users\AbdulYunis\AppData\Local\Android\Sdk\platform-tools>adb shell

Use exit to quit the shell, generic_x86_64:/ $ exit
and use ls to list all the files, generic_x86_arm:/ $ ls

To create a shell, make a directory, and exit all in one single command use: adb
shell mkdir /sdcard/app_bkup/.

To copy a file to the device, use adb push fragment.apk /sdcard/app_bkup/.

This section shows that the Android operating system is a modified version of the
Linux operating system. In the Device File Explorer section, we saw that the file
structure of the Android device is the same as, or very similar to, the Linux file
structure. If you run the shell command ls on the adb tool, you can see that again.
Moreover, you can run Linux commands on the Android device emulators using the
adb tool. So, if you know the Java and Linux OS, you are on the path to becoming an
Android developer.

Fig. 4.10 Command-line terminal of Android Studio to run Linux commands using adb

144 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

4.2.7 Do It Yourself

In this section, we list a few activities that you need to do to improve your experience
and exposure to the Android Studio tools. You will practice using the Android
Debugger, the Device File Explorer, the Android Profiler, and the Android Debug
Bridge or adb.

1. Debug an app
Open one of the apps we have created for this course. To pause the normal

execution, put breakpoints in your code by clicking on the left side of the editor
window next to the line numbers. When a red button next to the line numbers
appears, it indicates that a breakpoint has been set. See Fig. 4.11 for an example.
Run your code by pressing the debug icon or Run ! debug. A window like the
one shown in Fig. 4.3 should open. Press on the step button (circled in green in
Fig. 4.3, also shown Fig. 4.11), and observe the result.

Experiment with five buttons (Step Over, Step Into, Force Step Into, and Step Out
functions and Run to Cursor), and observe and record the execution behavior of each
button.

2. Profile an app
Open one of the apps developed in this course. Run the app and the profiler,

and find out how much CPU time, memory, and energy the app uses. Check to see
whether the app is causing any network traffic.

3. Use the Device File Explorer
Run one of the apps developed in this course, and use the Device File Explorer

to find where the apps have been installed on the emulator or your device file
system. Try to find the location of all the apps you run on your device or on the
emulator. See what is inside the data and sdcard folders.

4. Running Linux command using the adb shell
To familiarize yourself with the file structure of your device or your emulator,

run the following Linux file management commands on the adb shell. You need
to run the following commands carefully to avoid unwanted results. For example,
the rm command is used to delete files, the mv command is used for moving
files, etc.

Fig. 4.11 Debugging step buttons and breakpoints

4.2 The Android Studio Debugger 145

Run Pull, push, ls, cd, rm, mkdir, touch, pwd, cp, mv, and adb device, and
observe the results. You can find other adb commands using adb shell ls system/bin.

5. Access apps installed on a device
Create an app that allows you to access all the apps installed on a device. To do

so, you need to access the Data directory on the device. Your app should be able
to display the name of all the apps listed in the Data directory, delete apps, and
create new files and directories.

4.3 Toast and Snackbar Messages

In Android, the Toast and Snackbar classes are used to give users feedback messages
on events that occurred. You can use these classes to identify where in your code
something went wrong. For example, you can create snackbar/toast messages inside
the catch block of exception handling to find out where the exception happened and
its type. We have developed an app to demonstrate how to implement toasts and
snackbars in your app. The main interface of the demo app developed for this chapter
is presented in Fig. 4.12. The app has three buttons on the main page, one for
displaying the toast messages, one for displaying the snackbar messages, and one for
displaying information about the current or parent layout.

4.3.1 Toast Messages

In programming languages such as Java, System.out.println is heavily used by
programmers for debugging. Developers use the print and println methods to print
messages to the console and learn what their code is doing. Similarly, C/C++
developers use the “printf” and “cout” commands to print messages to the console.

In Android, the Toast class in the android widget package can be used as print,
printf, and cout in Java and C/C++, to display a brief message to the developer or
user. When the toast message is shown, it appears as a floating text over the screen. It
does not block user interaction with the device. Similar to the System.out.print and
cout, Toast messages can be a part of an application giving feedback to the user
about something important that had happened or is about to happen. For example,
when inserted data is correct/incorrect, the file download is complete, the back-
ground process is started, a file is deleted, etc.

4.3.1.1 Creating Toast Messages

Toast messages are usually created by calling one of the static methods of the Toast
class, for example, makeText. The method signature of makeText is as follows:

146 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

public static Toast makeText (Context context, CharSequence text, int
duration);

MakeText is a standard toast and takes three parameters: the object, or the view,
that displays the toast message, the text of the message, and the duration that the
message stays displaying. Android uses CharSequence in places where String is used
in Java, but you can still use String. This is because String is CharSequences, i.e., the
String class implements the CharSequence interface.

Fig. 4.12 The main
interface of the demo app

4.3 Toast and Snackbar Messages 147

There is another MakeText method that takes the resource id as a second
parameter instead of the CharSequence type for the text of the message, meaning
that the text is from a resource folder. The signature for the second MakeText
method is shown below:

public static Toast makeText(Context cxt, int resId, int duration);

When you call the second version of the makeText method, you can use
getString(R.string.toastText) for the resId.

The getString() method is a public method in the Activity class, and
R.string.toastText can be interpreted as follows: the R class references its static
field res (res directory), string refers to the strings.xml file inside the values direc-
tory, and toastText is a key for a string element inside the resource tag. The steps of
referencing the R.string.toastText text are shown in Fig. 4.13.

Note that the context parameter in the MakeText method is usually “this”; the
duration can have any of these constants:

• Toast.LENGTH_SHORT
• Toast.LENGTH_LONG

Android had another constant called LENGTH_INDEFINITE for use with the
MakeText() method. In newer versions of Android, this is not supported directly.
The code snippet in Listing 4.1 shows how Toast can be coded in your app.

Fig. 4.13 The R.string.toastText components

148 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

Listing 4.1 MainActivity.java class.

import android.widget.Toast;
public class MainActivity extends AppCompatActivity {
. . .

public void startToast(View view) {
Toast.makeText(getApplicationContext(),

getString(R.string.app_name),
Toast.LENGTH_SHORT).show();

Toast.makeText(this,
message, Toast.LENGTH_LONG).show();

Toast.makeText(this,
"some text", Toast.LENGTH_LONG).show();

Toast.makeText(this, getString(R.string.app_name),
Toast.LENGTH_SHORT).show();

}

There are a few things that you should note about the example above.

1. In the code above, both long and short constants are used for showing a Toast
message. Of course, you just need one to use in your code, but the example shows
how you can use each of them.

2. The example shows that you can change the first parameter of the makeText()
method from the getApplicationContext() method to this. It is possible to do so
because this refers to the Activity which is a subclass of the Context class. When
using this with the makeText() method, the method call will become as follows:

Toast.makeText(this, getString(R.string.app_name),
Toast.LENGTH_SHORT).show();

3. The example shows that the toast message can be hardcoded, a class field, or
referenced from the strings.xml file.

4. You need to call the showmethod on the makeText() method to display the actual
Toast message. Without calling the show message, you will make a Toast object,
but you are not displaying the actual Toast. This is because the makeText()
method returns the Toast object and only when you call the show method on it
will it display the Toast message on the View.

Figure 4.14 shows the Toast message on the View once the Toast button of the
demo app is pressed.

4.3 Toast and Snackbar Messages 149

4.3.2 Snackbar Messages

Similar to Toast messages, the Android SDK has another class called Snackbar in
the package android.support.design.widget for displaying messages. It can be used
to display a brief message to the user at the bottom of the phone and lower left on
large devices. The message automatically goes away after a short period making it
different from Toast which goes away only when the display time expires.

The Snackbar is ideal for brief messages the user doesn’t necessarily need to act
on. For example, a file management app could use a Snackbar to tell the user that the
app successfully downloaded a file. The Snackbar class is newer than the Toast class
and provides more features, e.g., it can handle some forms of user input and can be
dismissed by swiping. It is considered as the replacement to the Toast class.

Fig. 4.14 App snapshot
with toast message being
displayed

150 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

4.3.2.1 Creating Snackbar Messages

Displaying the Snackbar message in your app involves a few steps.

1. Create a Snackbar object with the message text by calling the static method
make(). The Snackbar object creation is shown below.

Snackbar snackbar = Snackbar.make(view, resouceID, duration);

2. Call the show how method to show the message to the user. For example,

Snackbar.show();

You also need to import android.support.design.widget.Snackbar to your code
and have the com.android.support:design support library in your build.gradle file.

Below is an example of a build.gradle file with a support library for the Snackbar.
Depending on the API level used, your support library can be the same or different
from the example below:

dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'com.android.support:design:28.0.0'
implementation 'com.android.support.constraint:constraint

-layout:1.1.3'
testImplementation 'junit:junit:4.12'
androidTestImplementation 'com.android.support.test:runner:1.0.2'
androidTestImplementation

'com.android.support.test.espresso:espresso-core:3.0.2'
}

The parameters for the Snackbar.make (View view, int resouceID, int duration)
method are View, resouceID, and the duration. The purpose and the description of
the parameters are as follows:

1. View: The view that the Snackbar should be attached to. The view object can be
obtained in different ways.

A. View parentLayout ¼ findViewById(R.id.content). R.id.content returns the
root of the current View. On some devices, R.id.content returns null. If you
experienced a null return, use
getWindow().getDecorView().findViewById(android.R.id.content) ;

B. You can always assign an id to the Activity layout and use the given id to
access the View of an Activity. Here is an example:

View parentLayout¼ findViewById(R.id.myLayout); wheremyLayout is an id of a
screen layout that you would like to display the Snackbar message on.

4.3 Toast and Snackbar Messages 151

2. resouceID: The resource ID of the message you want to display. The description
of the resouceID is same as the resouceID we discussed for MakeText in the Toast
class. It refers to the text that can be obtained from the strings.xml file inside the
res/values folder. For example, you can pass R.string.app_name or any other
string you would like to display as a method parameter.

3. duration: It can be any one of these three static constants: LENGTH_LONG,
LENGTH_SHORT, or LENGTH_INDEFINITE.

The code snippet in Listing 4.2 shows how the Snackbar class can be used in your
coding:

Listing 4.2 SnackbarActivity.java.

public class SnackbarActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
View parentLayout = findViewById(R.id.content);
Snackbar snackbar = Snackbar.make (parentLayout,

R.string.app_name,Snackbar.LENGTH_INDEFINITE);
snackbar.show();

}
}

If you want to specify a View for your snackbar, i.e., if you want to replace
R.id.content, for example, with R.id.myLayout where myLayout is the id of your
rootView, you can do it using a statement like this:

findViewById(R.id.myLayout).

Listing 4.3 is an example where we have defined a rootView, meaning we have
assigned an id called myLayout to the LinearLayout object. In this case, the
LinearLayout object is a rootView because it is a top element in the layout file
holding all Views or Buttons in it.

Listing 4.3 Assigning an id to a view (LinearLayout).

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/myLayout"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/lightgold"
android:orientation="vertical"
tools:context=".MainActivity">

152 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

<Button
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="startToast"
android:text="@string/click_to_toast"
android:textStyle="normal" />

<Button
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="startSnackbar"
android:text="@string/click_to_get_snackbar"
android:textStyle="normal" />

<Button
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="parent_or_current_layout"
android:text="@string/parent_or_current_layout"
android:textStyle="normal" />

</LinearLayout>

Once you have assigned an id to your root view, you can replace
View parentLayout=findViewById(R.id.content); in listing 4.2 with
View parentLayout = findViewById(R.id.myLayout); and use the

parentLayout variable as the first parameter to the make method as follows:

Snackbar = Snackbar.make (parentLayout, R.string.app_name,
Snackbar.LENGTH_SHORT);

Figure 4.15 shows an app snapshot with a Snackbar message displayed at the
bottom of a phone emulator.

In addition to the method make(View view, int resId, int duration),
Snackbar has another version of the make method to display messages, i.e.,
make(View view, CharSequence text, int duration). Here the CharSequence is
used in place of ResouceID. Accepting the CharSequence instead of the resId is
useful for displaying hardcoded debugging messages quickly.

To use something for debugging, it has to be simple and quickly done. The
second version of the make method can be utilized to quickly print a debugging
message. For example, the two lines of code below are good enough to produce a
debugging message:

Snackbar.make (R.id.content,"some text", Snackbar. LENGTH_SHORT);
Snackbar.show();

In the code snippet below, we make use of the make method to develop a print
method that you can use anywhere in your code during debugging. To use the
method, you simply call the print method and pass the debugging message and a
View, i.e., the place where you want the message to be printed.

4.3 Toast and Snackbar Messages 153

public void print (View view, CharSequence message) {
View parentLayout = findViewById(R.id.content);
if (null != parentLayout) {

Snackbar snackbar = Snackbar.make
(parentLayout, message, Snackbar.LENGTH_INDEFINITE);

snackbar.show();
}

}

The code for the print method, along with how to show the Snackbar and Toast
messages that can be used for debugging purposes, is included in Listing 4.4.

Fig. 4.15 App snapshot
with Snackbar message
being displayed at the
bottom

154 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

Listing 4.4 MainActivity.java.

package com.code.abdulrahman.widgetexamples;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Toast;
import androidx.appcompat.app.AppCompatActivity;
import com.google.android.material.snackbar.Snackbar;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
public class MainActivity extends AppCompatActivity {

String message = "message";
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setTitle("Chapter 4: Android Widgets and Debug");
setContentView(R.layout.activity_main);

}
public void startToast(View view) {

Toast.makeText(getApplicationContext(),
getString(R.string.app_name),

Toast.LENGTH_SHORT).show();
Toast.makeText(this,

message, Toast.LENGTH_LONG).show();
Toast.makeText(this,

"some text", Toast.LENGTH_LONG).show();
}
public void startSnackbar(View view) {

// View parentLayout = findViewById(R.id.content);
View parentLayout2 =
getWindow().getDecorView().findViewById(android.R.id.content);
Snackbar snackbar = Snackbar.make

(parentLayout2, R.string.app_name,
Snackbar.LENGTH_INDEFINITE);

snackbar.show();
}
public void print (View view) {

View parentLayout = findViewById(R.id.myLayout);
if (null != parentLayout) {

Snackbar snackbar = Snackbar.make
(parentLayout, message, Snackbar.LENGTH_INDEFINITE);

snackbar.show();
}

}
public void readingFile() {

final String logTAG = "ParentLayout";
final String FILE_NAME = "fileName.txt";
try {

FileInputStream fis = openFileInput(FILE_NAME);
// do something with the file

} catch (FileNotFoundException exception) {
String errorMsg = FILE_NAME + " not found";

4.3 Toast and Snackbar Messages 155

Log.e(logTAG, errorMsg, exception);
Toast toast = Toast.makeText(this, errorMsg,

Toast.LENGTH_SHORT);
toast.show();

}
}

}

There are also methods for setting the text and text color of the Snackbar
messages. If you would like to explore more about the Snackbar and Toast classes,
see the reference provided at the end of this chapter.

4.3.3 Do It Yourself

Write a method called print with the void return type. The method should take one
String as an incoming parameter. Include the Snackbar/Toast creation code inside
the print method. The code should Toast the incoming message parameter. During
debugging, call the print method whenever you need to print a debugging message.

4.3.4 The Log Class and Logcat Window

We have introduced the Log class and Logcat tool in the previous chapter. Here, we
provide more details about the Log class and Logcat window.

The Log class is included in the android.util package and can be used to log
messages at runtime. The Log class has multiple static methods that can be utilized to
create and filter proper messages. The methods are Log.e, Log.w, Log.i, Log.d,
Log.v, and Log.wtf. As a developer, you use these methods to log proper messages:
error, warning, information, debugging messages, verbose, and what a terrible
failure, respectively. These methods take two parameters; the first one is the TAG,
and the second one is the message information.

To help where the issue is, the TAG parameter is usually the name of the activity,
for example, private static final String TAG = "MainActivity";.

To avoid hardcoding, or to avoid long Activity names (when the activity name
includes the package name, it becomes a long name), you can use the getSimpleName
() method from the Class class to name your TAG. Here is an example:

static String TAG = MainActivity.class.getSimpleName();

There is a second version of each logging method listed above that takes three
parameters each. The second version of the methods logs the error messages and the
exceptions that can be thrown. Exceptions and exception handling are an essential
part of programming in Java and any object-oriented programming. The second
versions of the log methods recognize this role and provide you with the ability to

156 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

log the exceptions, thus helping you to recognize errors and exceptions in your code.
An example of the Log method signature with three parameters is as follows:

Log.e(String TAG, String message, Throwable exception);

4.3.4.1 Logging Class Exception

The code snippet in Listing 4.5 shows how the Log class can be used to log the
exceptions to the Logcat window for error handling. When an exception is thrown, it
will be caught inside the catch block. The log statement inside the catch block is then
used to log the exception.

Listing 4.5 Logging class and exception.

public void readingFile() {
final String logTAG = "MainActivity";
final String FILE_NAME = "fileName.txt";
try {
FileInputStream fis = openFileInput(FILE_NAME);
// do something with the file

} catch (FileNotFoundException fileNotFound) {
String errorMsg = FILE_NAME + " not found";
Log.e(logTAG, errorMsg, fileNotFound);
Toast toast = Toast.makeText(this, errorMsg,

Toast.LENGTH_SHORT);
toast.show();

}
}

4.3.4.2 Using adb with Log Messages

You can view Log messages in Android Studio by clicking on the “Logcat” icon on
the bottom of Android Studio. If it is not shown, click on View! tool Windows!
Logcat. The Logcat window is shown in Fig. 4.16. The log message can be filtered
based on message type (error, warning, verbose, etc.) or by the TAG specified in the
log method calls.

Log messages can also be viewed in the debugger by using the Android Debug
Bridge (adb). The command adb logcat launches the Logcat window.

You can redirect the output of the adb to a file using>> operator. For example, to
redirect your log message to a text file in c:\temp directory, cd to platform-tools, and
type this:

\Android\Sdk\platform-tools> adb logcat >> c:\temp\log.txt

The command line creates a text file with all log messages for further analysis.

4.3 Toast and Snackbar Messages 157

There are multiple icons on the left-hand side of the Logcat debugging window.
The icons are numbered and their description are provided on the right-hand side of
Table 4.2. When clicked, each icon on the list does an action to help developers
debug code more efficiently. Below is a brief description of each icon.

Fig. 4.16 The Logcat window with filtering options dropdown list is showing

Table 4.2 Logcat icons and their description

1. Delete: Clear the visible log.

2. Scroll to the end: Go to the bottom of the log

and see the latest log messages. If you click on a

line in the log, then the view pauses scrolling.

3. Up the stack trace and Down the stack trace:

Navigate up and down the stack traces in the log.

4. Use wraps: Enable line-wrapping.

5. Print: Print the Logcat messages.

6. Restart: Clear the log and restart Logcat.

Unlike the clear Logcat button, this recovers and

displays previous log messages, so it is more

useful if Logcat becomes unresponsive and you

don't want to lose your log messages.

7. Logcat configuration header: Open the header

configuration window dialog, where you can set

the appearance of each Logcat message, such as

whether to show the date and time.

8. Screen capture: Capture a screenshot.

9. Screen record: Record a video of the device

(for a maximum of 3 minutes).

10. Terminate: Terminate the application

158 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

4.4 Android App Testing

Testing is a fundamental step in the software development process. As a matter of
fact, there is a software developing process that depends entirely on testing. This
framework, or methodology, is called test-driven development (TDD). A good
review of the TDD framework and tools that enable such an approach is provided
in [1].

When developing Android apps, various elements need to be tested. In [2], five of
these important elements are identified for testing Android apps. The elements are
Intent, Activity lifecycles, event handlers, XML files, and null handling. For an
overview of state-of-the-art works on Android app testing challenges and trends,
see [3].

You need to test your code to make sure it works the way you expect. There are
various testing types. Depending on the application development stage, you will
have a different type of testing. For example, when different components developed
by different teams are integrated together, you need to do integration testing. To
deliver software to the user, you need to do user acceptance testing. Unit testing is
the testing type performed by the developers. While they develop a solution, they
have to test their code. The piece of the code that is tested during a unit test is the
smallest one. It is either a method, part of a method, a class, or few classes.

The type of testing we consider in this section is unit testing. We also consider
using the Junit framework which enables us to do automatic testing and re-run
existing tests to make sure that previous tests are still working and that you are not
breaking any previously tested code.

For the projects you create, you need to develop unit tests to make sure that you
are handling fundamental error checking. For example, you need to check for invalid
input types and logical errors in your code. When reading/writing files, you need to
handle unexpected file types and file not found exceptions. You also need to check
for correct interactions with activities, etc.

When you create a new Android project, Android Studio generates two folders for
testing, the instrumental folder (androidTest) and a unit test (test) folder. The first
one, instrumental testing, is used to run tests that need to be run on Android devices
or Android Virtual Devices. The second one is used for unit testing, tests that require
only a Java virtual machine to run. Both types are described below.

4.4.1 Create a Test Class

It is easy to create test cases and test your code in the Android Studio. Once the Java
class you want to unit test has a focus in the editor, on computers with the Windows
operating system, click anywhere inside the class you want to test, and press
Ctrl+Shift+T; a window pops up to help you with the creation of a new test (see
Fig. 4.17).

4.4 Android App Testing 159

In the menu that appears, click Create New Test; a test window will pop up for
creating a test class (see Fig. 4.18). Select the methods you want to test, and press OK.

The previous steps will generate a test class inside the Android Test directory, the
instrumental directory. A snapshot of the generated class is listed below, Fig. 4.19. It
is a skeleton class that needs to be completed.

You can also create a test class following a regular way of creating classes. Right-
click on the directory where you want to create your testing class, and create a class.

Fig. 4.17 Window for creating a new test class

Fig. 4.18 New test class template

160 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

Inside your testing class, declare your test methods. The method must be public with
a void return type. Each test method should start with annotation @test.

In Listing 4.6, the bodies for the tested methods are completed. These are just
examples. You write the test that meets your needs.

Listing 4.6 MainActivityTest.java.

package com.code.abdulrahman.widgetexamples;
import org.junit.Test;
import static org.junit.Assert.assertTrue;
public class MainActivityTest {

@Test
public void onCreate() {

assertTrue(MainActivity.message.compareTo(
"Hello World") != 0);

}
@Test
public void startToast() {

assertTrue(MainActivity.message.compareTo(
"message") == 0);

}
. . .
}

Fig. 4.19 Test class skeleton generated using CTRL + Shift + T

4.4 Android App Testing 161

The look of the MainActivityTest inside Android Studio is listed in Fig. 4.20. It
includes the necessary libraries and classes needed for running unit tests. All the
unique features and requirements for the test class are underlined.

There are a few things to be noted about the simple code in Fig. 4.20. First, the
snapshot shows two types of buttons for running the tests, one for testing individual
tests and one for running all the methods. Second, each method of the class starts
with annotation @test. This tells us that the method should be run as a unit test. Also,
both methods use the assertTrue construct. This construct returns true if the expected
results from the method and the actual results obtained when running the code are
equal. In our example, both tests return true. This is because MainActivity.message
is not equal to ("Hello World") in the first case and MainActivity.message is equal
to the "message" in the second case.

Connect to an Android device or emulator to run the Test class. The results of the
test cases in the MainActivityTest class are shown below, Fig. 4.21. You can re-run
all your test cases by simply clicking on the run all test button or run an individual
test by clicking on the button associated with each test any time you want. This is the
power of automated testing. You write once and run forever.

A good programming practice is to re-run all your existing tests every time you
make changes to code. This will ensure that the changes you made have not
introduced unexpected errors in other places in your code.

Fig. 4.20 Android test class example

162 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

4.4.2 Assert Methods

The assert methods compare the expected results, that is, what the programmer
thinks the results will be, with the actual outcome of the program. For example, a
programmer can expect that adding two positive numbers will result in a number that
is bigger than zero. So, it is possible to write a test case to add two numbers and
assert the expected result to be positive. In this case, the assert statement can be
assertTrue (x+y > 0).

In all the examples above, we used assertTrue(), but that is not the only assert
method that Android supports. The org.junit.Assert package provides assert methods
for all primitive types, objects, and arrays. The assert pattern is mostly like this:
assert* (condition) or assert* (string message, condition). The message part of the
assert is only displayed when the assert fails. Below are some useful and commonly
used assert methods.

• assertTrue(condition) or assertTrue(string message, condition)
• assertFalse(condition) or assertFalse(string message, condition)
• assertNull(object)
• assertNotNull(object)
• assertEquals(string message, object expected, object actual)
• assertSame(object expected, object actual)
• assertNotSame(object expected, object actual)
• fail(condition)
• assertEquals(double expected, double actual, double delta)

For most of the above-asserted methods, the name is good enough to understand
what is the method does. However, you need to pay special attention to a few. For
example, the assertEquals() method for the double value is a bit different than the
others. This is due to the way double is represented in the Java language. For
example, when dividing 1.0/3, you might expect the result to be 0.33, but that is
not how the division result is in the computer memory. If you print it, you will see it
as 0.3333333333333333. So, if you assert 1.0/3 with a double value of 0.33, the test

Fig. 4.21 Unit test results
for methods in
MainActivityTest class

4.4 Android App Testing 163

will fail. To avoid such situations, the assert method uses a third parameter, the delta
parameter. If the difference between the expected value and the actual value is less
than or equal to the delta, the method returns true.

assertEquals() also behaves differently when used with primitive data types and
objects. When used with objects, it invokes the object’s equal method. AssertSame()
method, on the other hand, is used only with objects and uses the ¼¼ operator to
check if both the expected and the actual object have the same reference, that is,
whether both object names refer to the same memory location.

4.4.3 Hamcrest Assert Methods

To test your Android app, you can use a newer version of the assert methods using
third-party libraries. For example, you can use the assertThat() method from the
hamcrest library. The newer forms of the assert methods provide more clarity as to
what the methods are supposed to do and they improve the performance.

For most, you don’t have to do any additional tasks; these libraries are
downloaded with the Android SDK or Android Studio. You just need to learn the
new syntax of the methods to apply them and probably check to see if the library is
included in the Gradle build file.

In Listing 4.7, we show you how to use assertThat. The first parameter to the
assertThat method is the addingTwoInteger() method which is a method in our
DataOperation class that we would like to test. The second parameter uses methods
from the org.hamcrest.Matchers class to enable successful testing. The Matcher
classes provide a large number of methods that can be utilized for your testing.

Listing 4.7 UsingAssertThatTest.java.

package com.code.abdulrahman.widgetexamples;
import org.hamcrest.Matchers;
import org.junit.Test;
import static org.hamcrest.CoreMatchers.both;
import static org.hamcrest.CoreMatchers.is;
import static org.hamcrest.MatcherAssert.assertThat;

public class UsingAssertThatTest {
@Test
public void addingInteger() {

assertThat(com.code.abdulrahman.widgetexamples.
DataOperation.addingTwoInteger(3, 4), Matchers.is(7));

}
@Test
public void usingGreaterThan() {

// greaterThan and lessThan.
assertThat(com.code.abdulrahman.widgetexamples.DataOperation.

164 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

addingTwoInteger(10, 20), Matchers.greaterThan(25));
}
@Test
public void UsinglessThan() {

assertThat(com.code.abdulrahman.widgetexamples.DataOperation.
addingTwoInteger(10, 20), Matchers.lessThan(30));

}
@Test
public void range() {

assertThat(com.code.abdulrahman.widgetexamples.DataOperation.
addingTwoInteger(10, 20),

both(Matchers.greaterThan(25)).and (Matchers.lessThan(30)));
}

}

4.4.4 Espresso Testing

The third-party software Espresso can be used to test the app’s user interface
(UI) and generate test cases. To do testing, you need to connect the IDE to an
Android device or Android Virtual Device, which means it is instrumental testing.
You can start recording Espresso testing by clicking on run! record Expresso test.
This will result in running your code and recording any actions you perform in
your app.

For example, insert some data into an EditText, and click a button to display the
content of the EditText screen. While you do these steps, your actions are recorded
as shown in Fig. 4.22 (right-hand side). When you press the OK button on the
window recording screen, you will be prompted to give a name to your recording,
and a test class will be generated. The test class will have all the actions you
performed. You can re-run the generated tests as many times as you want. You
can also modify the generated code to test different aspects of your GUI elements.

Espresso uses Junit classes and has a small API. To use Expresso, you need to use
methods like withId, onView, perform, and check. These methods are explained
below along with steps you need to follow to create Expresso testing.

Identify the View object or the GUI component, e.g., a Button, or TextEdit,
that you would like to test. We will talk more about Views in the coming chapters.
You can use withId to match the View you would like to interact with, e.g.,
withId(R.id.aButton). This is like the findViewByID method that we have used
in our apps.

To test a GUI component, you start with the onView() or onData()
method. For example, you can use onView and withId like this:
onView(withId(R.id.myButton));

Any View object you have in your app that can be identified with withId can be
passed to the onView method. Next, you need to identify the type of action that you
would like to have performed on the View object you are testing. For example, if you

4.4 Android App Testing 165

want to see a button clicked, then you pass click() to the perform() method from the
ViewInteraction class.

In the code statement below, the onView(withId (R.id.my_view) method returns
the ViewInteraction object. You use the returned object to call the perform method
with the click() method to simulate a click on a View.

onView(withId(R.id.my_view)).perform(click())

The ViewInteraction class has another method called check() that you can use to
check the state of the View object. For example, you can check to see if a View is
being displayed.

onView(withId(R.id.my_view))
.perform(click())
.check(matches(isDisplayed()));

The code in Listing 4.8 shows how you can use all the constructs described above
to do UI testing. The UI components used for testing are EditText and TextView.

Fig. 4.22 A record of GUI testing using Expresso

166 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

Listing 4.8 ExpressoMainActivityTest.java for auto UI testing.

package com.code.abdulrahman.widgetexamples;

import androidx.test.ext.junit.rules.ActivityScenarioRule;
import org.junit.Rule;
import org.junit.Test;
import static androidx.test.espresso.Espresso.onView;
import static androidx.test.espresso.action.ViewActions.click;
import static androidx.test.espresso.action.ViewActions.
closeSoftKeyboard;
import static androidx.test.espresso.action.ViewActions.typeText;
import static androidx.test.espresso.assertion.ViewAssertions.
matches;
import static androidx.test.espresso.matcher.ViewMatchers.withId;
import static androidx.test.espresso.matcher.ViewMatchers.withText;

public class ExpressoMainActivityTest {
String inputText = "Hello Abdul-Rahman" ;

@Rule
public ActivityScenarioRule<ExpressoMainActivity>
activityScenarioRule

= new ActivityScenarioRule<>(ExpressoMainActivity.class);
@Test
public void onClick() {

// Type text and then press the button.
onView(withId(R.id.editTextT))

.perform(typeText(inputText), closeSoftKeyboard());
onView(withId(R.id.buttonT)).perform(click());

// Check that the text was changed.
onView(withId(R.id.textViewT)).check(matches(
withText(inputText)));

}
}

4.4.5 Unit Testing

To run tests without a device or emulator, you use the second directory, the unit test
directory in the Android project structure. Here, you write typical unit test cases that
can be run on the Java virtual machine. You will test the logic of your methods
without the need for an emulator or device to run your code. Android uses the Junit
framework for unit testing. To use Junit, import org.junit, and use a class package for
your test class.

To use Android classes and packages inside unit testing, you have to make sure
that you have Android libraries as a dependency on your project. That is, add the

4.4 Android App Testing 167

following two lines of code into the dependencies section of your Gradle build file.
dependencies {. . .

androidTestImplementation 'com.android.support.test:rules:1.0.2'
androidTestImplementation 'com.android.support.test:runner:1.0.2' . . .}
When developing apps using Android Studio, the libraries are auto imported to

the build file, and you don’t have to do any extra work. However, you have to be
aware that Junit libraries are used for testing, and one way to access these libraries is
by including them in the Gradle build file. In the example below, we first create a
Java class in the app directory to deal with simple data operations, Listing 4.9. Then,
we write a test class in the unit testing directory for testing; see Listing 4.10.

Listing 4.9 DataOperation.java class that takes care of simple data operations.

package com.code.abdulrahman.widgetexamples;
public class DataOperation {

public static int x, y;
public static int addingTwoInteger(int a, int b) {

x = a; y = b;
return (x + y);

}
public static int subtractingTwoInteger(int a, int b) {

x = a; y = b;
return (x - y);

}
public static int mltiplyingTwoInteger(int a, int b) {

x = a; y = b;
return (x * y);

}
}

Listing 4.10 DataOperationTests.java. for testing data operation class.

package com.code.abdulrahman.widgetexamples;

import org.junit.Test;
import static org.junit.Assert.*;
public class DataOperatoinTests {

@Test
public void addingtwoIntegers() {

assertEquals(20, DataOperation.addingTwoInteger(10, 10));
assertTrue(DataOperation.x==10);
assertTrue(DataOperation.y==10);

}
@Test
public void substractingIntegers() {

assertEquals(5, DataOperation.subtractingTwoInteger(50, 45));
assertTrue(DataOperation.x==50);

168 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

assertTrue(DataOperation.y==45);
}
@Test
public void multiplyingAndAddingNumbers() {

assertTrue((DataOperation.mltiplyingTwoInteger(50, 45))! =5);
assertTrue(DataOperation.x==50);
assertTrue(DataOperation.y==45);
assertTrue(DataOperation.y + DataOperation.x > 0);

}
}

4.4.6 Unit Testing with Mockito

Mockito is a mocking framework for Java that allows you to create mock objects for
testing purposes [4]. Whether you use Mockito objects or your Stub objects, mock
objects are important for testing when the actual object you would like to test is not
available yet. You create mock objects when, for example, the database is not ready
for your testing, the server is not set up yet, components that are developed by other
groups or team members are not available yet, etc. Remember that object mocking is
done during the development phase and in the testing environment. It is part of the
unit testing, and you should not fake anything in the production environment. All
mock objects should be removed from your production code. To use Mockito
objects in your project, there are few steps you need to follow:

• Add the Mockito library as a dependency to your project. That is, you need to add
the line of code below to the dependency section of your Grade build file.

testImplementation "org.mockito:mockito-core:3.5.13"
• Add the @RunWith (MockitoJUnitRunner.class) annotation to the beginning of

the test class:

@RunWith(MockitoJUnitRunner.class)
public class MockitoExample {. . .}

This will instruct the Mockito test runner to validate proper usage of the frame-
work’s syntax and semantics. It will also help mock object initialization.

• To create a mock object for an actual object or component that has not been
written yet, add @mock annotation before the declaration of the variable. See the
examples below:

@Mock
MyServer server; or @Mock SQLiteOpenHelper myDatabase ;

If you want to mock a method and not an entire class or an object, use @spy
instead of @Mock annotation like this:

4.4 Android App Testing 169

@Spy List<String> alist = new ArrayList<String>();

In Mockito, methods like when() and theReturn() are used to enable object
mocking. In Listing 4.11, an example is given to show you how to use the Mockito
object. The above steps are also included in the example.

For our example, we first created a class called ClassUnderTesting which has one
field of type AppCompatActivity and one method called getPath(). When asked for a
file path, it uses its getString() method to get information about a file path from its
internal object field and return it. It uses AppCompatActivity to return some results,
not necessarily the correct results. See Listing 4.11.

Listing 4.11 ClassUnderTesting .java use mock object AppCompatActivity.

package com.code.abdulrahman.widgetexamples;

import androidx.appcompat.app.AppCompatActivity;
public class ClassUnderTesting {

AppCompatActivity appCompatActivity ;

public ClassUnderTesting(AppCompatActivity aca) {
this.appCompatActivity = aca;

}
public String getString () {

System.out.println(ClassUnderTesting.class.getName() +
appCompatActivity.getString(R.string.filePath));

return appCompatActivity.getString(R.string.filePath) ;
}

}

In Listing 4.12, a test class called MockitoExample is created to test the
ClassUnderTesting. A mock object is created to enable ClassUnderTesting to return
a file path which can be any String value. The mock object is created using this
statement.

ClassUnderTesting testingObject = new ClassUnderTesting
(futureObject);

The assertThat statement in the MockitoExample class checks whether
ClassUnderTesting can return the file path. The assert statement is like this:

String filePath = testingObject.getString();
assertThat(filePath, is(fakePath));

If you run the test, it passes; it means a mock object returns the file path.
Note that the current value of the file path is less important. It is a fake value that has

been set by a developer for testing. What is more important is that you can continue
developing your application without waiting for ClassUnderTesting to be fully

170 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

implemented. You have tested ClassUnderTesting with a mock object, and it works,
i.e., it can return a file path. In other words, using the mock object has cleared the path
for you to continue working without waiting for the full implementation of the class
under the test. This is the whole idea behind using the mocking and stubbing method.

Listing 4.12 MockitoExample.java testing class using Mockito.

package com.code.abdulrahman.widgetexamples;
import androidx.appcompat.app.AppCompatActivity;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.mockito.Mock;
import org.mockito.Mockito;
import org.mockito.junit.MockitoJUnitRunner;
import java.util.ArrayList;
import java.util.List;
import static org.hamcrest.MatcherAssert.assertThat;
import static org.hamcrest.Matchers.is;
import static org.junit.Assert.assertEquals;
import static org.mockito.Mockito.when;

@RunWith(MockitoJUnitRunner.class)
public class MockitoExample {

private static final String fakePath = "fakePath";
@Mock
protected AppCompatActivity futureObject;

@Test
public void gettingStringFromSecondActivity() {

// get filepath from the mock object
when(futureObject.getString(R.string.filePath))

.thenReturn(fakePath);
ClassUnderTesting TestingObject =
new ClassUnderTesting(futureObject);

// checking that mock object is returning correct file path
String filePath = TestingObject.getString();
assertThat(filePath, is(fakePath));

}

@Test
public void testMockMethod(){

List mockList = Mockito.mock(ArrayList.class);
mockList.add("Hello class");
Mockito.verify(mockList).add("Hello class");
assertEquals(0, mockList.size());

}
}

Different from the listing above where an object is mocked, in the code snippet
below, the spy method from the Mockito framework is used to mock a method
instead of an object. This approach is useful if you want to mock a method only.

4.4 Android App Testing 171

@Test
public void testSpyMethod(){

ArrayList myArrayList = Mockito.spy(new ArrayList());
myArrayList.add("Hello class");
Mockito.verify(myArrayList).add("Hello class");
assertEquals(1, myArrayList.size());

}

4.4.7 Code Coverage

Code coverage is a useful metric or measurement for getting information on how
well your project is tested. It is used during software development and when you
have access to the source code [5]. It allows you to estimate the relevant parts of the
source code that have never been executed by your test cases, thus facilitating further
testing and improvement of test cases. Android Studio has a built-in capability that
allows you to run tests with code coverage. It shows you which parts of code have/
have not been tried out by your test runs.

Right-click on the unit test folder, and select Run tests with Coverage. The
results will be displayed in a window showing the percentage of the classes,
methods, and code lines that have been tested by your test cases. Figure 4.23
shows how to run the code coverage.

Fig. 4.23 Code coverage snapshot window

172 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

Figure 4.24 shows the result of test coverage, i.e., the parts of the code that have
been covered by your testing classes and methods.

You can send the coverage result to an HTML file using the output button on the
coverage window. This is a useful option for documenting your test results. The
output button is squared in red in Fig. 4.24, and the file content is shown in Fig. 4.25.

Using code coverage as the main testing metric, however, does not give a
definitive answer to how well your code is tested. For example, if you covered
95% of the test cases but the most important tests are within the 5% that you did not
test, then you have not done a good job testing even though the coverage rate is at a
very high percent. Regardless, using code coverage to find out about the parts of
your code that are untested can still be useful.

4.4.8 Code Inspection and Refactoring

Code refactoring is an important approach to improve the quality of your code. It
refers to changing your code during development. For example, you may want to
rename your classes, methods, and class attributes or re-organize the structure of
your classes by moving classes to different packages and move methods to different
classes. All these changes are done to improve the quality of code, for example, to
improve the readability of the code, reduce coupling, and improve cohesion and

Fig. 4.24 Coverage window showing test coverage information

Fig. 4.25 Test coverage output in the HTML file

4.4 Android App Testing 173

performance. An empirical study on how often code refactoring is conducted during
Android app development shows that it is very popular among developers, and on
average, an app undergoes 47.79 refactoring operations [6]. Refactoring is easily
done when using Android Studio. For example, right-click on the class that you
would like to rename, and type the new name for your class. The change will be
applied everywhere in your project. Similar to code refactoring, static analysis of
code is an important technique to improve the quality of your code by detecting
potential bugs and errors in the code [7].

You need to familiarize yourself with these tools to perform code refactoring and
code inspection, especially if you are developing code using the Agile framework
where you might regularly need to refactor your code to respond to the change
requests. To analyze your code, on the Android Studio menu bar, click on Analyze
! inspect code. An inspection window will pop up. Select the scope of the
inspection, whole project, or custom scope, and press OK. An inspection result
window will open displaying all kinds of shortcomings in your code if any. These
include hardcoding, unused resources, redundant variables, empty methods, unused
imports, typos, performance issues, etc. Resolving all or as many as you can results
in better coding and better quality of your app.

4.4.9 Reverse Engineering

The last topic of this chapter is about using a reverse engineering technique to find
out the anomalies in your code structure and design. For small projects, design and
implementation most likely go hand in hand; but typically, you have to develop app
design first and then code it. Different from the typical software development
process, reverse engineering is about decomposing existing codes and programs to
understand how it works, its parts, and the structure.

If you find that your code has performance issues, memory leaks, or usability issues
and you don’t have the proper design documents, generating the class diagram of your
code, or parts of your code, will be a useful way to understand the code. For more about
reverse engineering and how it is used to detect variability in Android apps, see [8, 9].

Generating the UML (Unified Modeling Language) class diagram for your code,
or parts of your code, will help you to understand the relationship between the
classes and the structure of your app. This is especially useful if you have inherited
some code that you would like to maintain/enhance but you don’t have the docu-
mentation for it and the developers who created the code are no longer around.

Android Studio allows you to generate UML class diagrams from code. To do so,
you need to download UML plugins to generate and show a class diagram. Examples
of these tools and their use are given below:

In the Android Studio, click on File ! setting, and search for plugins. In the
plugin search window, type the name of the PlantUML plugin. Once the PlantUML
plugin is found, press OK, and follow the installation process. The snapshot of the
setting and plugin search windows are shown below (see Fig. 4.26).

174 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

To render UML diagrams from the generated PlantUML download, you need to
download Graphviz from the GraphVisualize software website1 and set the
PlantUML graph visualization path to the dot executable of Graphviz (see Fig. 4.27).

You also need to install the Sketch It! plugin similar to the way you install
PlantUML. Once you’re done installing PlantUML, Graphviz, and Sketch It, select
the app folder of your project or an individual class, and on the Android Studio menu
bar, click on tools ! Sketch It! as shown below, Fig. 4.28, to generate the
.PlantUML file.

To open the generated PlantUML file, double click on it, and put the cursor inside
the PlantUML text to generate a UML diagram. Figure 4.29 highlights a generated
PlantUML file.

Fig. 4.26 Search window for plugins in Android Studio

Fig. 4.27 Set PlantUML graph visualization path to the dot executable of Graphviz

1https://graphviz.gitlab.io/_pages/Download/Download_windows.html

4.4 Android App Testing 175

https://graphviz.gitlab.io/_pages/Download/Download_windows.html

Fig. 4.28 Using Sketch It!
to generate a UML diagram
of your code

Fig. 4.29 A file of type PlantUML is highlighted on the project structure

176 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

An example of a generated class diagram is shown below in Fig. 4.30. The
diagram should help you understand your code structure and find possible sources
of errors or bugs in your code. You can also save the diagram as a part of your code
documentation.

If instead of rendering the UML class diagram you experience the below error
message, it means the PlantUML software cannot find the Graphviz executable (see
Fig. 4.31).

To fix the error, click on the .PlantUML file in the app, and inside the PlantUML
window, click on Open Settings ! Browse, and find the location of the Graphviz
executable, i.e., dot.exe file. An example where the Graphviz executable is located

Fig. 4.30 An example of a class diagram generated from code using PlantUML, Graphviz, and
Sketch It

Fig. 4.31 A snapshot of
error message when
PlantUML cannot find
Graphviz

4.4 Android App Testing 177

would look like this: C:\Program Files (x86) \Graphviz2.38\bin\dot.exe. This
should solve the issue, and you should be able to render a UML class diagram for
your code. These steps are shown below.

Figure 4.32 shows that PlantUML has been opened and Open Settings has been
circled.

Once the Open Settings button is pressed, the PlantUML diagram in Fig. 4.27 will
open. Insert the Graphviz dot executable in the box circled.

4.5 Chapter Summary

In this chapter, we described various Android Studio tools and Android classes to
debug the app, i.e., find and fixing errors in code, and to profile your code to find out
the performance and usability issues of the app. We studied Android Studio Debug-
ger, Android Profiler, Device File Explorer, Android Debug Bridge (adb), Toast and
Snackbar classes, the Log class, and the Logcat utility. We also studied unit testing
using Junit and Expresso and Mockito tools for testing UI and creating mock objects,
as well as code coverage, reverse engineering, code refactoring, and code inspection.
The tools and techniques presented in this chapter will help you to correct errors and
fix bugs in the code that you are going to develop throughout your career as a
developer.

Fig. 4.32 First step in solving PlantUML software cannot find Graphviz executable error

178 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

There are other important development tools and Android Studio features that
were not covered here. These include infer nullity, backward dependency, etc. You
can learn about these tools/features by using them when you re-create the demo
projects that come with this book. You need to run all the sample codes and
examples provided in this chapter to master the topics.

For additional information about errors and bugs that are the result of bad design
and development practices which are also known as code smells, you are encouraged
to read these papers [10, 11]. There are also my research works related to security
and data privacy issues in Android apps. These issues and others are covered in [12].

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

• Android Debug Bridge
• Code coverage
• Code inspection
• Debugging
• Device File Explorer
• Expresso
• File Explorer
• Graphviz
• Instrumental testing
• Integration testing
• Junit
• Log
• Logcat
• Mockito
• PlantUML
• Profiler
• Refactoring
• Reverse engineering
• Sketch It
• Snackbar
• Toast
• Unit testing
• User acceptance testing

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the

Further Reading 179

Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

ADB, [online] Available, http://adbshell.com/
Debug Your App, [online] Available, https://developer.android.com/studio/

debug/
Espresso basics, [online] Available, https://developer.android.com/training/

testing/espresso/basics
Espresso, https://developer.android.com/training/testing/espresso
Graph Visualization Software, [online] Available, https://graphviz.gitlab.io/_

pages/Download/Download_windows.html
Mockito, [online] Available, https://javadoc.io/static/org.mockito/mockito-

core/3.7.7/org/mockito/Mockito.html
Profile Your App Performance, [online] Available, https://developer.android.

com/studio/profile/
sketch.it, [online] Available, https://plugins.jetbrains.com/plugin/10387-sketch-

it-
Snackbar, [online] Available, https://developer.android.com/reference/android/

support/design/widget/Snackbar
Toasts, [online] Available, http://developer.android.com/guide/topics/ui/noti

fiers/toasts.html
Write and View Logs with Logcat, [online] Available, https://developer.

android.com/studio/debug/am-logcat.html
Test your app, [online] Available, https://developer.android.com/studio/test
Tasty mocking framework for unit tests in Java, [online] Available, https://

site.mockito.org/

References

1. A. Garcia, V. Farcic, Test-Driven Java Development: Invoke TDD Principles for End-to-End
Application Development (Packt Publishing, Birmingham, UK, 2015)

2. L. Deng, J. Offutt, P. Ammann, et al., Mutation operators for testing Android apps. Inf. Softw.
Technol. 81, 154–168 (2017)

3. P. Kong, L. Li, J. Gao, et al., Automated testing of Android apps: a systematic literature review.
IEEE Trans. Reliab. 68(1), 45–66 (2019). https://doi.org/10.1109/TR.2018.2865733

4. D. Spadini, M. Aniche, M. Bruntink, et al., Mock objects for testing java systems. Empir. Softw.
Eng. 24, 1461–1498 (2019). https://doi.org/10.1007/s10664-018-9663-0

5. A. Pilgun, O. Gadyatskaya, Y. Zhauniarovich, et al., Fine-grained code coverage measurement
in automated black-box Android testing. ACM Trans. Softw. Eng. Methodol. 29(4), 1–35
(2020). https://doi.org/10.1145/3395042

6. A. Peruma, A preliminary study of Android refactorings, in 2019 IEEE/ACM 6th International
Conference on Mobile Software Engineering and Systems (MOBILESoft), 2019, pp. 148–149.
https://doi.org/10.1109/MOBILESoft.2019.00030

7. L. Li, T.F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein, L. Traon,
Static analysis of Android apps: a systematic literature review. Inf. Softw. Technol. 88, 67–95
(2017). https://doi.org/10.1016/j.infsof.2017.04.00

180 4 Debugging and Testing Using Junit, Espresso, and Mockito Frameworks

http://adbshell.com/
https://developer.android.com/studio/debug/
https://developer.android.com/studio/debug/
https://developer.android.com/training/testing/espresso/basics
https://developer.android.com/training/testing/espresso/basics
https://developer.android.com/training/testing/espresso
https://graphviz.gitlab.io/_pages/Download/Download_windows.html
https://graphviz.gitlab.io/_pages/Download/Download_windows.html
https://javadoc.io/static/org.mockito/mockito-core/3.7.7/org/mockito/Mockito.html
https://javadoc.io/static/org.mockito/mockito-core/3.7.7/org/mockito/Mockito.html
https://developer.android.com/studio/profile/
https://developer.android.com/studio/profile/
https://plugins.jetbrains.com/plugin/10387-sketch-it-
https://plugins.jetbrains.com/plugin/10387-sketch-it-
https://developer.android.com/reference/android/support/design/widget/Snackbar
https://developer.android.com/reference/android/support/design/widget/Snackbar
http://developer.android.com/guide/topics/ui/notifiers/toasts.html
http://developer.android.com/guide/topics/ui/notifiers/toasts.html
https://developer.android.com/studio/debug/am-logcat.html
https://developer.android.com/studio/debug/am-logcat.html
https://developer.android.com/studio/test
https://site.mockito.org/
https://site.mockito.org/
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.1007/s10664-018-9663-0
https://doi.org/10.1145/3395042
https://doi.org/10.1109/MOBILESoft.2019.00030
https://doi.org/10.1016/j.infsof.2017.04.00

8. H. Brunelière, J. Cabot, G. Dupé, et al., MoDisco: a model driven reverse engineering
framework. Inf. Softw. Technol. 56(8), 1012–1032 (2014)

9. A. Nirumand, B. Zamani, B.T. Ladani, VAnDroid: a framework for vulnerability analysis of
Android applications using a model‐driven reverse engineering technique. Softw. Pract. Exp.
Source Inf. 49(1), 70–99 (2019)

10. S. Habchi, N. Moha, R. Rouvoy, Android code smells: from introduction to refactoring. J. Syst.
Softw. 177, 110964 (2021). https://doi.org/10.1016/j.jss.2021.110964

11. F. Palomba, D. Di Nucci, A. Panichella, et al., On the impact of code smells on the energy
consumption of mobile applications. Inf. Softw. Technol. 105, 43–55 (2019)

12. M. Zhang, H. Yin, Android Application Security: A Semantics and Context-Aware Approach
(Springer, New York, 2016)

References 181

https://doi.org/10.1016/j.jss.2021.110964

Chapter 5
Activity Lifecycle and Passing Objects
Between Screens Using Parcelable Interface

Learning Outcome
By the end of this chapter, you should be able to:

• Use the Manifest file for multiple Activities
• Create and use the Launcher Activity
• Understand Activity lifecycle and the creation, running, and destruction of

Activities
• Implement the Activity lifecycle callback methods
• Implement the Parcelable interface and pass objects between Activities
• Learn how to pass objects between Activities

Check Out the Demo Project
Download the demo app, LifeCycleWithParcellable.zip, specifically developed to
go with this chapter. I recommend that you code this project up from the notes rather
than just opening the project in Android Studio and running it; however, if you want
to run the code first to get a sense of the app, please do so. The code is thoroughly
explained in this chapter to help you understand it. We follow the same approach to
all other chapters throughout the book. The app’s code will help you comprehend the
additional concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

5.1 Introduction

It is important to understand what a state is to understand the Activity lifecycle. In
this chapter, we use the demo app developed specifically for this chapter to explain
Activity lifecycles and callback methods, as well as the Parcelable interface. The app

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_5

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_5#DOI

has four buttons on the main page (see Fig. 5.1). When pressed, each button shows
one of the app’s functionalities. The first button is for demoing the onCreate()
method creation and usage, which is an important method of the Android Activity
class and Activity lifecycle. The second button is for demoing the Activities’
lifecycle. The third button is for passing objects between Activities using the
Parcelable interface. The last button is for restoring the Activity states. The imple-
mentation details of these methods will be described as well.

Fig. 5.1 LifeCycleWith
Parcellable main interface

184 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

5.2 Activity States

In this part, we describe states and Activity lifecycles and why it is important to
understand these concepts for app development.

5.2.1 Activity and States

As mentioned earlier, it is important to understand what the state is to understand the
Activity lifecycle. Activities, like Java objects, can be in different states, where a
state is a snapshot of an Activity at a given time. When instance variables of an
Activity are holding values and/or its operations are executing, the Activity is in a
state. The state can be starting, resuming, running, etc. The set of states that an
Activity can go through during its lifetime is called the Activity lifecycle. All the
states an Activity has, along with transitions from one state to another, form a
directed graph. While users navigate in and out of the application or navigate
through the Activities (screens) of your app, Activity states change. While this
happens, the Android system calls various lifecycle callback methods.

You can control how your application behaves as the user interacts with your
application and Activity states change. The control is implemented through callback
methods. So far, you have only seen the onCreate() callback method. The rest of the
lifecycle callback methods and the Parcelable interface will be described in this
chapter. We use the demo app developed specifically for this chapter to explain
activity lifecycle and callback methods as well as the Parcelable interface.

Android apps are different from typical desktop applications. Android apps have
limited resources, such as screen size. These limitations put restraints on app design
and architecture. Each Android app is made of one or more Activities (screens).
Because a phone has a limited size display, the app designer cannot present all the
app’s views at once on the device’s screen. Mobile app views, or screens, overlay
one another in the back stack as the user navigates through the app, and this leads to
Activities being in different states.

An Activity has several states which make up its lifecycle. During the lifecycle,
Activities change state. For example, the Activity that was put on the back stack
hidden from the user might come back into focus and become active. The developer
can define, i.e., implement, what kind of actions take place when an Activity transits
from one state to another. For example, the developer can save data to a database, a
file, or another Activity before the Activity is killed by the system so that the next
time the app runs, it starts from where it left off. Similarly, the developer can bring
into focus the view that was previously running in the foreground. These decisions
need to be done at the application design stage, and the implementation of the
activity callback methods enables such decisions.

Note the following about an Activity state:

5.2 Activity States 185

1. An Activity can be in a different state during its lifetime.
2. Typically, an app is made of more than one Activity. Hence, the app can be at

different states as the user navigates between different Activities, which in turn
puts Activities at different states.

5.2.2 Transition Between States

At any given time, an Activity can be in one of the following three states:

• Running (created, started, resumed): the activity has the focus and is at the top of
the activity stack.

• Paused: the device goes to sleep; the activity is partially hidden.
• Stopped: the activity is obscured by another activity. Figure 5.2 shows the

transition between Android Activity states.

Activity states are of two types, static and transient states. When Activities exist
or remain for a long period in a state, the state is called a static state. If the Activities
exist in a state for a very short time, the state is called a transient state. For example,
after the onCreate() method, the onStart() method is called followed by the
onResume() method. When these callback methods are called, the Activity would
be in a transient state. That is, it will be in these states for a very short time. In these
cases, the transition between the states does not require user intervention; the
changes happen automatically, i.e., the method calls are initiated by the Android
system. When the app is running, e.g., you are browsing the internet on your device,
the Activity is running and is in a resumed static state.

Fig. 5.2 Transition between Activity states (The source of the images is here: https://google-
developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit
%201/22_p_activity_lifecycle_&_state.html)

186 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/22_p_activity_lifecycle_&_state.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/22_p_activity_lifecycle_&_state.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/22_p_activity_lifecycle_&_state.html

5.2.2.1 Do It Yourself

1. List the three state sequences that an Activity can go through during its lifetime.
Hint: See Fig. 5.1 and find out the cycles in the graph.

2. Identify the states that are called only once during an app’s lifetime.

Before we go any further, let us discuss an important topic, the Launcher Activity.
If your app is made of more than one Activity, you must decide which one is the
Main Activity, i.e., the Launcher Activity. Our demo apps for this chapter have more
than one Activity, and you need to understand the Launcher Activity first.

5.2.3 The Launcher Activity

So far, we have worked with apps that have one or two Activities. However, almost
all Android applications will have several Activities. One of these Activities is the
Launcher Activity. Each application has only one Launcher Activity. It is equivalent
to the Java class with the main method that starts an application. The Launcher
Activity is executed when the user clicks the application icon. The programmer has
to decide which Activity is the Launcher Activity and declare it in the
AndroidManifest.xml file.

In the Manifest XML file, you will have an element called application, where all
Activities of your app are children of this element, including the Launcher Activity.
Inside the application element and the Activity that you would like to declare as the
Launcher Activity, you include a subelement called intent-filter. The intent-filter
element has two properties, action and category. For your activity to be the Launcher
Activity, its intent-filter action name must be MAIN, and its category must be
LAUNCHER.

Listing 5.1 is an example of the AndroidManifest.xml file in which the
MainActivity has been defined as the LAUNCHER activity and
DisplayMessageActivity is the second Activity.

Listing 5.1 AndroidManifest.xml where LAUNCHER activity is identified.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
"http://schemas.android.com/apk/res/android"
package="code.android.abdulrahman.com.LifeCycleWithParcellable">
<application

android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">

5.2 Activity States 187

<activity android:name=".MainActivity">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name=

"android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
<activity android:name=".DisplayMessageActivity" />

</application>
</manifest>

Use the demo app source code to set the DisplayMessageActivity as the Launcher
Activity. To do so, in the Manifest XML file of the demo app, replace .MainActivity
with .DisplayMessageActivity, and run the app. The DisplayMessageActivity should
be the main page of your app now. Now, reverse the changes, and run the app again.
This time, the MainActivity should be the main page of your app.

5.2.4 Implementing onCreate()

In studying Activity lifecycle methods, we need to give special attention to the
onCreate() method. To develop an Android app, you need to implement the
onCreate() method for each Activity. It is the only callback method required to be
implemented. The onCreate() code executes once for the entire lifetime of the Activity.
In the onCreate() method for the Launcher Activity, you implement basic application
startup logic, set up an interface, initialize class scope variables, instantiate widgets,
etc. The onCreate() method acts as the constructor method in Java classes.

5.2.4.1 Understanding onCreate()

The onCreate() callback method is called when the system creates the Activity for
the first time. The method has only one parameter. The type of the parameter is
Bundle, and its value is null when the app launches. The parameter value changes to
store the Activity’s previous state if the Activity is recreated for any reason, for
example, when the device is rotated or the app’s language is changed. The method
signature for the onCreate method is as follows:

protected void onCreate(Bundle savedInstanceState);

Two actions that are done inside the onCreate method for almost all Activities are:
First, using the super.onCreate(savedInstanceState) method a call is made to

the base class onCreate () method. Second, the activity layout is set using the
setContentView(Layout) method call. The code for the onCreate() method below
shows the following:

188 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

1. The use of the Bundle object.
2. A call to the Base class method using the keyword super.
3. The Activity’s layout is set using the setContentView method.

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
. . .

}

After calling the onCreate() method, the Android system calls the onStart() and
onResume() methods, respectively. If you only have the above few lines of code and
run your application, a view will be created. An example in Listing 5.2 shows how
onCreate can be used for initializing and setting a display.

Listing 5.2 MainActivity.java class with the onCreate() method.

package abdulrahman.com.code.oneactivityapp;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import androidx.appcompat.app.AppCompatActivity;
public class MainActivity extends AppCompatActivity {

EditText name, age, address, course;
TextView textView;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// assigning widget object declared inside xml file to the local variables
name = findViewById(R.id.editText1);
age = findViewById(R.id.editText2);
address = findViewById(R.id.editText3);
course = findViewById(R.id.editText4);
textView = findViewById(R.id.textView);
Button submit = findViewById(R.id.submit_button);
submit.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

String aname = name.getText().toString();
int anAge = Integer.parseInt(age.getText().toString());
String anAddress = address.getText().toString();
String courseDescription = course.getText().toString();
textView.setText(aname + ", " + anAge + ", "

+ courseDescription + ", " + anAddress);

5.2 Activity States 189

Intent startNewActivity =
new Intent(getBaseContext(), StartActivity.class);

startNewActivity.putExtra("main", aname);
startActivity(startNewActivity);

}
});

}
}

Once you press the first button on the demo app, a screen with four text areas, a
button, and a TextView is created (see Fig. 5.3). Type in some information, and press
the submit button. You will see that the TextView is set with the information you

Fig. 5.3 Example of
onCreate() method
implementation

190 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

inserted. When you press the phone’s back button, the current view will be pushed
onto the stack, and the main view starts. In this example, all code was put in the
onCreate() method which is not good programming practice. We will see various
onCreate implementations in later chapters.

5.2.5 Bundle Class

Bundle is a simple class that acts as a data structure for storing data. It is like a map
class in Java that uses a key/value pair to store values. The Bundle object provides
the means to save and retrieve the activity’s state data. When the first instance of an
Activity is created, the Bundle object is null. The Bundle object is used with the
onCreate(Bundle savedInstanceState), onSaveInstanceState(Bundle outState), and
onRestoreInstanceState (Bundle outState) Activity methods. More information on
these methods is provided in the below subsection. The Bundle class has several
methods. Here are a few of them.

• clear() which removes all elements from the Bundle
• clone() which clones the current Bundle
• deepCopy() which makes a deep copy of the given Bundle
• describeContents() which reports the nature of the Parcelable’s contents

Another import method of the Bundle class is getBundle(String key) which
returns the value associated with the given key or null if the key doesn’t exist.
Bundles also have “get” and “put”methods for all the primitive types, Parcelable and
Serializable objects. That is, it has getInt(), putInt(), getDouble(), putDouble(), etc.

5.2.5.1 Using Bundle Object with Intent

You can use the Bundle object with Intent in a few different ways. For example, you
can use getExtras() to get a Bundle object from the Intent object and use the put
methods with the key/values to insert values into the Bundle. The code snippet
below shows how to use getExtras() to retrieve the Bundle object from the Intent
object and put a value into it using a key.

Intent intent = new Intent (this, secondActivity.class);
Bundle extras = intent.getExtras();
extras.putString("key", "value");

Note that, if the Intent object is created without the Bundle object added to it,
calling getExtras() on the Intent object will return null. Therefore, before using the
Bundle object returned from the Intent, you need to check if it is null or not. Here is
how you can do it:

5.2 Activity States 191

Bundle extras = intent.getExtras();
if (extras != null)

extras.putString("key", "value");

You can instantiate the Bundle object and use the putExtras() method to add the
Bundle object into the Intent object. See the code snippet below:

Bundle bundle = new Bundle();
bundle.putString("key", "value");
newIntent.putExtras(bundle);

Intent newIntent = new Intent(this, secondActivity.class);

To use putExtra and getExtra in a shortcut way, you can use them as follows:

Intent anIntent = new Intent(this, secondActivity.class);
anIntent.putExtra("key", "value");
String value = getIntent().getExtras().getString("key");

The Bundle object can be used with the StartActivity as well to pass data to the
second activity: startActivity (Intent intent, Bundle bundle). The second parameter
provides additional information for how the Activity should be started.

5.2.5.2 Bundle Object and Activity States

The Bundle object provides the means to save and retrieve the Activity’s state data.
When the first instance of an Activity is created, the Bundle object is null. The Bundle
object is used with the onCreate(Bundle savedInstanceState), onSaveInstanceState
(Bundle outState), and onRestoreInstanceState (Bundle outState) Activity methods to
save and restore Activity states.

When the user rotates their device, changes the device mode to split-screen, or
changes the language settings, i.e., changes the configuration of the device, the
Android system temporarily destroys the running activity. The method
onSaveInstanceState(Bundle outState) is then invoked for saving the Activity’s
state for recreation. The code snippet in Listing 5.3 shows how you can use Bundle
with onSaveInstanceState and onRestoreInstanceState to save and restore the
Activity’s state.

Listing 5.3 Using onSaveInstanceState and onRestoreInstanceState to save
and restore the Activity’s state.

@Override
protected void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);
String nameValue = "Abdul-Rahman";
int accountNumber = 12345;

192 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

outState.putString("name", nameValue);
outState.putInt("accountNumber", accountNumber);

}
@Override
protected void onRestoreInstanceState(
@NonNull Bundle savedInstanceState) {
super.onRestoreInstanceState(savedInstanceState);
String r_name = savedInstanceState.getString("name");
int r_accountNumber = savedInstanceState.getInt("accountNumber");
textView.setText("\n" + "Restoring state \n" + r_name + " " +
r_accountNumber);

}

5.3 Understanding Activity Lifecycle

In this part, we continue to look into the activity’s lifecycle callback methods.

5.3.1 Understanding the onDestroy Method

The OnDestroy() method is called when the activity is about to get destroyed. It is
usually used to release resources. An Activity gets destroyed either because it is no
longer needed or because of configuration changes. When an Activity gets destroyed
because of configuration changes, a new Activity is created, and the onCreate()
method is called immediately. You can use the finish() method to destroy an Activity
and the isFinishing() method to find out if the finish() method has been called. In
most cases, you do not need to implement the onDestroy method. This is because
most of the code/data cleanup is done using the onPause() or the onStop() method.
To decide whether or not to implement the onDestroy() method in your code,
consider the following:

1. The onDestroy() method is the last lifecycle callback method. It is called when the
application is removed from the system memory.

2. If you call the finish() method inside the onCreate() method, the onDestroy
method can be used for code/data cleanup. This is because the finish() method
triggers the OnDestroy method.

3. The onDestroy() method can be used to kill long-running processes or when a
large amount of resources is released unwillingly.

What is unique about the Activity’s finish() method is that it calls the onDestroy()
method, and if you come back to the Activity, the onCreate() method is called again.
The onCreate() method is supposed to be called only once, the first time you create
an Activity. Now, because of the finish() method, if you return to the Activity, the
onCreate() method is called again.

5.3 Understanding Activity Lifecycle 193

5.3.2 Pausing and Resuming an Activity

When a foreground Activity is partially obscured (because of another activity, e.g.),
the system calls the onPause()method. The state diagram in Fig. 5.2 shows that once
an activity is in the paused state, there are two states it can move to: the resume or
stop state. If the user decides to return to the start Activity, the onResume() method
is called. However, there is a chance that the user will not resume the Activity.

When the onPause()method is called, your application is still partially visible. As
an app developer, it is here that you should take action, e.g., release resources. Your
app should not consume resources while it is in the paused state. The onPause()
implementations must not take a long time as well. This is because the next Activity
will not resume until this method returns, i.e., is completed. If applicable to your app,
inside the onPause() method, do the following:

• Stop animations if you have any.
• Release system resources such as Wi-Fi locks, broadcast receivers, and close files.
• Release resources that consume battery life such as background services.

Any other action similar to the ones above should be stopped while your app is in
the onPause() state. When the user resumes activity from the paused state, the system
calls onResume(). The onResume() method is called every time an application
comes to the foreground, including the first time. If the OnResume method is called,
you need to initialize resources released previously in the onPause() method. In the
onResume() state, the user can interact with the Activity; the Activity has moved to
the top of the Activity stack and accepts user input.

Note that calling AlertDialog, Toast, Date/Time pickers, and similar objects will
bring new windows on top of the current one, but they will not lead to executing the
onPause() method. Only launching a new Activity will push the current running
Activity to the background and result in executing the onPause() callback method.
The fourth button on the demo app enables you to practice what we just described,
obscuring the running window without calling the onPause() method.

5.3.3 Stopping and Restarting an Activity

An application might be stopped and restarted because:

1. The user switches apps
2. The user performs an action that starts a new Activity
3. The user receives a phone call while using an app
4. The app is doing a complex task, such as a database write

The onStop() callback is called when an Activity becomes hidden, i.e., is fully
obscured (instead of partially obscured). That is, the user’s focus is on another
Activity. While stopped, the Activity instance still lives in the system memory. If
the Android system runs out of memory space or experiences memory shortages, it

194 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

might destroy the stopped Activity. For that reason, you often need to only imple-
ment the onPause() and onResume() methods and not the onStop() method. The
onRestart() method is called when an Activity comes to the foreground from a
stopped state. The OnRestart() method is not called when the application first starts.
The onStart() method is called in two cases: after onCreate() when an Activity
becomes visible and after onRestart() calls. Generally, you only need to handle the
onStart() method. The Activity states and the callback method order diagram
provided by Google are shown in Fig. 5.4.

User navigates
to the activity

App process
killed

onCreate()

onStart()

Another activity comes
into the foreground

Activity
running

Activity
launched

The activity is
no longer visible

onStop()

The activity is finishing or
being destroyed by the system

onDestroy()

User returns
to the activity

onResume()

onPause()

onRestart()

User navigates
to the activity

Activity
shut down

Apps with higher priority
need memory

Fig. 5.4 An illustration of the activity lifecycle (The source of this figure is here: https://developer.
android.com/reference/android/app/Activity#ActivityLifecycle)

5.3 Understanding Activity Lifecycle 195

https://developer.android.com/reference/android/app/Activity#ActivityLifecycle
https://developer.android.com/reference/android/app/Activity#ActivityLifecycle

5.3.4 Restoring Activity State

By default, the Android system only saves limited state information. These include
Views with a unique id, scroll positions in a ListView object, etc. If you want to
restore more than the default values when an Activity is recreated, then you need to
take care of it. That is, the developer is responsible for saving user progress data.
You can do that using either the onSaveInstanceState() or onRestoreInstanceState()
callback methods.

5.3.4.1 onSaveInstanceState()

The onSaveInstanceState() method is called before an Activity begins to stop. Here,
you have a chance to save the Activity’s state information to the Bundle object using
key/value pairs. The saved information can be used for the Activity recreation after
its destruction. When you override the onSaveInstanceState() method, you must call
the superclass in your coding. The call to the superclass saves the state of the View
hierarchy; see the code snippet below:

@Override
public void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);
outState.putString("name",

String.valueOf(nameView.getText()));
}

There are two places where you can retrieve state information from the Bundle
object. You can do it inside in the onCreate(Bundle mySavedState) method. If the
Bundle is not null, you can retrieve state information; see the code snippet below:

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mShowCount = findViewById(R.id.show_count);
if (savedInstanceState != null) {

String count = savedInstanceState.getString("count");
if (mShowCount != null)

myView.setText(count);
}

}

By implementing the onRestoreInstanceState(Bundle mySavedState) callback
method, you can retrieve the saved state. Here is an example:

196 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

https://developer.android.com/reference/android/app/Activity.html

@Override
public void onRestoreInstanceState (Bundle mySavedState) {

super.onRestoreInstanceState(mySavedState);
if (mySavedState != null) {

String count = mySavedState.getString("name");
if (count != null)

nameView.setText(count);
}

}

To practice restoring the Activity state, run the demo app, and press the fourth
button. Rotate your device to change the devices’ configuration. This leads to
destroying the running Activity and recreating it. Since the onRestoreInstanceState
() method is implemented, the object’s state will be restored. The code for restoring
the Activity state, button four on the demo app’s main menu, is shown in Listing 5.4.

Note that saving instance state information keeps state information within the
current session only. If you need to save and retrieve state information after closing
your app, you need to save it into a persistence object or file. For example, use shared
preferences or a database, which will be described in later chapters.

Listing 5.4 Complete code for restoring activity (RestoringActivity.java).

package code.android.abdulrahman.com.LifeCyleapplication;
import android.app.DatePickerDialog;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.DatePicker;
import android.widget.TextView;

import androidx.annotation.NonNull;
import androidx.appcompat.app.AlertDialog;
import androidx.appcompat.app.AppCompatActivity;
import java.util.Calendar;

public class RestoringActivity extends AppCompatActivity {
TextView textView;
Calendar currentDateAndTime = Calendar.getInstance();
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_restoring);
textView = findViewById(R.id.r_textView);
final Button button = findViewById(R.id.restoreButton);
final Button dateButton = findViewById(R.id.fragmentBtn);

5.3 Understanding Activity Lifecycle 197

button.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {

// create alert dialog
AlertDialog.Builder builder =

new AlertDialog.Builder(RestoringActivity.this);
builder.setTitle("Alert Dialog title with Icon");
builder.setIcon(R.drawable.ic_baseline_airport_shuttle_24);
builder.show();

}
});
dateButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {
DatePickerDialog.OnDateSetListener dListener = new

DatePickerDialog.
OnDateSetListener() {

@Override
public void onDateSet(DatePicker view, int yr, int mth, int dy) {

currentDateAndTime.set(Calendar.YEAR, yr);
currentDateAndTime.set(Calendar.MONTH, mth);
currentDateAndTime.set(Calendar.DAY_OF_MONTH, dy);

}
};
new DatePickerDialog(RestoringActivity.this, dListener,

currentDateAndTime.get(Calendar.YEAR),
currentDateAndTime.get(Calendar.MONTH),
currentDateAndTime.get(Calendar.DAY_OF_MONTH)).show();

}
});

}

@Override
protected void onPause() {

super.onPause();
Log.i("pause", "onpause");

}
@Override
protected void onStop() {

super.onStop();
Log.i("onstop", "onstop");

}
@Override
protected void onResume() {

super.onResume();
}
@Override
protected void onRestart() {

super.onRestart();
}
@Override
protected void onStart() {

super.onStart();
}
@Override
protected void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);

198 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

String nameValue = "Abdul-Rahman";
int accountNumber = 12345;
outState.putString("name", nameValue);
outState.putInt("accountNumber", accountNumber);

}
@Override
protected void onRestoreInstanceState(

@NonNull Bundle savedInstanceState) {
super.onRestoreInstanceState(savedInstanceState);
String r_name = savedInstanceState.getString("name");
int r_accountNumber = savedInstanceState.getInt("accountNumber");
textView.setText("\n" + "Restoring state \n" + r_name + " " +
r_accountNumber);
}

}

5.3.5 Do It Yourself

For each activity state listed in Fig. 5.3, identify the in-state (previous state) and the
out-state (next state). For example, for the onCreate() method, the in-states are
Launcher Activity or the stop state, and its out-state is the running state.

5.4 Lifecycle Illustration App

In our demo app, the LifeCycleWithParcellable, we demonstrate the callback
method calls and the order of the calls. In this part, we present the implementation
details of these methods.

5.4.1 Lifecycle Callback Methods

The lifecycle callback methods implemented in the demo app are listed below.

protected void onCreate(Bundle savedInstanceState);
protected void onStart();
protected void onRestart();
protected void onResume();
protected void onPause();
protected void onStop();
protected void onDestroy();
protected void onSaveInstanceState(Bundle outState);

5.4 Lifecycle Illustration App 199

Press the second button on the first screen of the app to run the MainActivity.
When executed, the LifeCycleWithParcellable demo app does the following:

1. At each callback method, some text, or a string, is appended to a class variable.
The class variable is called the MainActivity_called. The added text indicates
which method of the MainActivity has been called, which also indicates the
Activity state.

2. Once the user presses the send button, the values of the class variable are passed
to the DisplayMessageActivity and are displayed on the screen showing the order
of the method calls. For example, the first time you press the send message
button, the following messages are displayed on the second screen.

from MainActivity, onCreate method invoked 0.
from MainActivity, onStart method invoked 1.
from MainActivity, onResume method invoked 2.

The numbers show the order of the message execution in the starter Activity. This
is consistent with what we said about the order of the callback methods: onCreate!
onStart ! onResume.

Once on the second screen, that is, when the DisplayMessageActivity is
displayed, press the Back to Main Activity button to find out the order of the message
calls on the DisplayMessageActivity. You will see that the callback methods for the
DisplayMessageActivity are executed in the same order as the MainActivity:
onCreate ! onStart ! onResume.

Using the submit and back to Main Activity buttons, along with clear and close
buttons, should enable you to test all the possible paths of the Activity lifecycle. The
clear button cleans what is currently posted on the display. The close button closes
the app and returns to the home menu. When the close button or the home button of
the Android device is used, you will see that the onRestart() method gets called. In
the subsection below, the sequence of the method calls is demonstrated.

5.4.2 Callback Methods for the MainActivity

When you open the app and select the second option, the Lifecycle demonstration
option, the sequence onCreate()! onStart()! onResume() is called. These calls
append texts “onCreate method invoked,” “onStart method invoked,” and
“onResume method invoked” to a static class variable called MainActivity_called
in the order of the method calls.

When you press the start message display button, the appended text is inserted
into the Intent object and passed to theMessageDisplayActivity to be displayed. The
OnPause() and OnStop() methods are called as well, but the texts for these two
methods are not included in the Intent for passing to the MessageDisplayActivity.
This is because the startActivity(intent) is called before the onPause() and onStart()
methods are executed. The DisplayMessageActivity presents the texts inside the
Intent Object and is as follows (see Fig. 5.5):

200 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

5.4.3 Callback Methods for the DisplayMessageActivity

Similar to the call order of the MainActivity callback methods, when
DisplayMessageActivity starts, the onCreate() ! onStart() ! onResume() methods
are called. When the Back To Main Activity button is pressed, the texts for these three

Fig. 5.5 DisplayMessage
Activity displaying the text
messages of callback
methods

5.4 Lifecycle Illustration App 201

methods are put into the Intent object and passed to the MainActivity followed by a
call to the onPause() and OnStop() methods. The onCreate() ! onStart() !
onResume() method information for the DisplayMessageActivity are displayed on
the MainActivity screen. See Fig. 5.6.

Fig. 5.6 Text messages in
the callback method
presented on the
MainActivity

202 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

To continue with demoing the app, press the home button of the phone/emulator
to close the app, and re-launch the app as shown below in Fig. 5.7. The actions above
result in a new sequence of method calls. The sequence of the method calls is shown
in Fig. 5.8.

We are using a static variable for appending text at each method. The method
sequence calls are presented in Fig. 5.8 and can be explained as follows:

1. The onCreate() ! onStart() ! onResume() is for starting the app.
2. The onPause() ! onStop() sequence is appended to the first method sequence

calls. This happens after the MainActivity becomes hidden completely and the
DisplayMessageActivity starts.

Fig. 5.7 Closing and re-launching the app

5.4 Lifecycle Illustration App 203

3. The onCreate() ! onStart() ! onResume() sequence is for starting the
DisplayMessageActivity.

4. The onPause() ! onSaveInstanceState() ! onStop() texts are appended to an
already collected call once the home button is pressed on the phone, i.e., the app is
closed.

5. The OnRestart! onStart() ! onResume () sequence calls are appended to the
previous texts when the app reopens.

6. When the Start Message Display Activity button is pressed, the methods
onPause() ! onSaveInstanceState() ! onStop() are called again followed by
OnRestart() ! onStar () ! onResume().

Fig. 5.8 The order of
callback methods

204 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

5.4.4 Do It Yourself

Run the LifeCycleWithParcellable app that comes with this chapter, and reproduce
the method order calls that are displayed on the screen snapshot in Fig. 5.9.

Fig. 5.9 The order of
callback methods for the
DisplayMessageActivity

5.4 Lifecycle Illustration App 205

5.4.5 Callback Method Implementations

The code snippet in Listing 5.5 shows the callback method implementations for the
MainActivity where important steps are bolded for your attention as you go through
the code.

Listing 5.5 MainActivity.java.

package code.android.abdulrahman.com.LifeCyleapplication;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;
import androidx.annotation.NonNull;
import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {
public static final String EXTRA_MESSAGE =

"code.android.abdulrahman.com.LifeCycleapplication.MESSAGE";
public String message = "No data from intent";
private static final String MainTAG = "MainActivity";
public static String MainActivity_called = MainTAG;
public static int order = 0;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_lifecycle);
MainActivity_called = MainActivity_called +

"\n from " + MainTAG + " onCreate method invoked \n " +
order++;

displayMessage();
}
public void sendMessage(View view) {

Intent intent = new Intent(this, DisplayMessageActivity.class);
intent.putExtra(EXTRA_MESSAGE, MainActivity_called);
Log.d(MainTAG, "Intent fired ");
startActivity(intent);

}
public void clean_main_display(View view) {

order = 0;
MainActivity_called = "";
setContentView(R.layout.activity_lifecycle);

}
public void to_first_screen(View view) {

startActivity(new Intent(this, MainActivity.class
)

);
}

206 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

public void exit_app(View view) {
MainActivity_called = "";
Intent intent = new Intent(Intent.ACTION_MAIN);
intent.addCategory(Intent.CATEGORY_HOME);
startActivity(intent);

}
@Override
protected void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);
Log.d("tag", "onSaveInstanceState() called" + order ++);

MainActivity_called = MainActivity_called +
"\n from " + MainTAG + "onSaveInstanceState method invoked"
+ order++;

}
@Override

protected void onRestoreInstanceState(
@NonNull Bundle savedInstanceState) {
super.onRestoreInstanceState(savedInstanceState);
MainActivity_called = MainActivity_called +
"\n from " + MainTAG + "onRestoreInstanceState method invoked"

+ order++;
}
@Override
protected void onStart() {

super.onStart();
MainActivity_called = MainActivity_called +

"\n from " + MainTAG + " onStart method invoked "
+ order++;

}
@Override
protected void onRestart() {

super.onRestart();
MainActivity_called = MainActivity_called +

"\n from " + MainTAG + " onRestart method invoked "
+ order++;

}
@Override
protected void onResume() {

super.onResume();
MainActivity_called = MainActivity_called +

"\n from " + MainTAG + " onResume method invoked "
+ order++;

}
@Override
protected void onPause() {

super.onPause();
MainActivity_called = MainActivity_called +

"\n from " + MainTAG + " onPause method invoked "
+ order++;

}
@Override
protected void onStop() {

super.onStop();

5.4 Lifecycle Illustration App 207

MainActivity_called = MainActivity_called +
"\n from " + MainTAG + " onStop method invoked " +
order++;

}
@Override
protected void onDestroy() {

super.onDestroy();
MainActivity_called = MainActivity_called +

"\n from " + MainTAG + "onDestroy method invoked " +
order++;

}
public void displayMessage() {

Intent intent = getIntent();
if (intent != null) {

if (intent.hasExtra(getString(R.string.appmessage))) {
message = intent.getStringExtra(

getString(R.string.appmessage));
Log.d(MainTAG, "Got Intent");

}
}
TextView messageTextView = findViewById(R.id.messageTextArea);
messageTextView.setText(message);

}
}

5.4.6 Trigger the onPause() Method

We said earlier that Snackbar and Dialog box will not cause onPause() method to be
triggered even though they will come up on top of the activity and cover the main
activity for some time. The same thing is true when you attached fragment views to
the activity’s layout. To demonstrate how you can trigger the onPause() method and
without going back and forth between activities, you can create an Activity as a
Dialog box. That is, you create an activity but apply the dialog theme to it and treated
it like a dialog. To do that, inside the AndroidManifest.xml, you need to add theme
property to the activity. See the code snippet below.

<activity android:name=".ActivityAsDialog"
android:theme="@android:style/Theme.Holo.Dialog"></activity>

Also note that your activity needs to extend Activity class and not AppCompatActivity
as like this: public class ActivityAsDialog extends Activity {. . .}. A complete code for
triggering onPause() method is shown in Listings 5.6 to 5.10. In Listings 5.6 and 5.7, a
simple Activity class and its layout are shown. In Listings 5.8 and 5.9, a simple activity
that would be used as a dialog box and its layout is shown. In Listing 5.10,
AndroidManifest.xml file where dialog theme is assigned to Activity is shown.

208 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

Listing 5.6 MainActivity.java.

import androidx.appcompat.app.AppCompatActivity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}
public void startDialog (View view) {

startActivity(new Intent (this, ActivityAsDialog.class)) ;
}

}

Listing 5.7 Main activity layout file.

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
<Button

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="start dialog"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"
android:onClick="startDialog"/>

</androidx.constraintlayout.widget.ConstraintLayout>

Listing 5.8 An activity class that would be used as a dialog.

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

5.4 Lifecycle Illustration App 209

import android.view.View;
import android.widget.Button;
public class ActivityAsDialog extends Activity {

Button oKbutton;
Button cancelButton;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_as_dialog);
oKbutton = findViewById(R.id.Ok);
oKbutton.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

finish();
}

});
cancelButton = findViewById(R.id.Cancel);
cancelButton.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

finish();
}

});
}
@Override
protected void onPause() {

super.onPause();
Log.i("log", "AR on pause is called ");

}
}

Listing 5.9 A layout file for the activity class that would be used as a dialog.

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="200dp"
android:layout_height="200dp"
tools:context=".ActivityAsDialog">
<Button

android:id="@+id/Ok"
android:layout_width="76dp"
android:layout_height="41dp"
android:layout_marginTop="60dp"
android:layout_marginEnd="28dp"
android:text="OK"
app:layout_constraintEnd_toStartOf="@+id/Cancel"

210 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

app:layout_constraintTop_toBottomOf="@+id/textView" />
<Button

android:id="@+id/Cancel"
android:layout_width="75dp"
android:layout_height="38dp"
android:layout_marginTop="64dp"
android:layout_marginEnd="16dp"
android:text="Cancel"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toBottomOf="@+id/textView" />

<TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="44dp"
android:text="continue or not ?"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

Listing 5.10 AndroidManifest.xml file where dialog theme is assigned to
Activity.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=

"http://schemas.android.com/apk/res/android"
package="com.code.abdulrahman.onpauseexample">
<application

android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.OnPauseExample">
<activity android:name=".ActivityAsDialog"

android:theme="@android:style/Theme.Holo.Dialog"></activity>
<activity android:name=".MainActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

5.4 Lifecycle Illustration App 211

5.5 Creating and Using Parcelable Objects

Java is an object-oriented programming language, and except for primitive data
types, almost everything is an object; hence, you need to be able to pass objects
between activities. So far, we have passed data from one activity to another via the
Intent object. This is accomplished by putting (key/value) pairs in Intent objects
using the putExtra() method. In this part, we describe how you can pass user-defined
objects between Activities using the Parcelable interface.

5.5.1 Passing User-Defined Objects Between Activities

The Intent class puts restrictions on the type of values that can be passed between the
Activities. The value types are restricted to primitives, arrays, CharSequence, String,
Parcelable, or Serializable objects. In other words, the Intent object does not accept
any object as a parameter to be passed between the Activities unless the object is a
Parcelable or Serializable object. You have already seen one example of passing
objects between Activities by inserting the Bundle object into the Intent object. This
is possible because the Bundle object is a Parcelable object.

To pass a user-defined object between Activities, the object must be Serializable
or Parcelable. Android recommends using Parcelable rather than Serializable for
performance. We will follow the recommendation from Android and implement the
Parcelable interface for passing objects between Activities.

The method signatures for the putExtra methods from the Intent class that take
objects are shown below. The method definitions specify that the objects must be
Parcelable or Serializable to be used with the Intent class.

public Intent putExtra (String name, Parcelable value);
public Intent putExtra (String name, Serializable value);

Let’s assume you have a class called Grades: Public class Grades {. . .}. If you
want to create an Intent object and try to insert a Grades object into the Intent object
to pass between Activities, it will not work. The code snippet below will not work
because the Grades object is not Parcelable.

Intent intent = new Intent();
Grades grades = new Grades ();
String name = " a student";
intent.putExtra(name,grades);

To make the code snippet above work, you need to change the definition of the
Grades class and let it implement the Parcelable interface:

Public class Grades implements Parcelable {. . .} or you cast the grades object
to the Parcelable object: intent.putExtra(name, (Parcelable) grades);

212 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

In the first chapter, we described object serialization and the Serializable inter-
face. The Serializable interface has no method to be implemented. It is merely an
instruction to the compiler telling it that the object state can be written to persistent
storage such as a hard drive for future retrieval. Different from the Serializable
interface, the Parcelable interface has methods and a field. Instances of classes that
implement the Parcelable interface can be written and restored from the Parcel class.
The Parcelable interface and its use will be described in this section.

5.5.2 LifeCycle with Parcelable Object

We added new activities to our lifecycle app to pass a Parcelable object between
Activities. This approach is different from appending Strings together and passing a
long String between Activities like we have done earlier in this chapter. We created a
new Java class called MyDataObject to represent the data object that goes back and
forth between Activities. We also created two more Activities, ParcelableActivity
and ParcelableDisplayMessageActivity, and a new Java class to illustrate how you
can create and use Parcelable objects. These classes are shown in Fig. 5.10.

Fig. 5.10 New activities add to the lifecycle app to pass Parcelable objects between activities

5.5 Creating and Using Parcelable Objects 213

5.5.2.1 Parcelable Class Creation

For an object to become Parcelable, it needs to comply with certain requirements. Its
class needs to implement the Parcelable interface, have a public static final field of
type Parcelable.Creator, and override two methods from the Parcelable interface.
The methods are writeToParcel and describeContents. These requirements are
described below.

1. Implement the Parcelable interface. The implementation would be like this:
public class MyDataObject implements Parcelable { . . .}.

2. Override the writeToParcel() method to flatten your object into a parcel object,
i.e., add all of the data in your class fields to a Parcel object.

3. Include a public static final field of type Parcelable.Creator in the class
definition. The Creator field is an Interface with two methods, createFromParcel
and newArray. These methods can be implemented as follows:

public MyParcelable createFromParcel(Parcel in) {
return new MyParcelable(in);

}
public MyParcelable[] newArray(int size) {

return new MyParcelable[size];
}

You use the createFromParcel(Parcel source)method to create a new Parcelable
object and return it. The object is instantiated from the given Parcel class whose data
had previously been written by the writeToParcel method.

The newArray(int size) creates a new array of the Parcelable class.

4. Override the describeContents() method. The method implementation can be as
simple as returns 0 or any integer value that can be used as an id for some
description of the objects contained in the Parcelable instances passed between
Activities.

These steps are numbered in Fig. 5.10. The requirements above indicate that you
cannot associate any object with Intent and pass it between Activities. For any object
to be passed between Activities, it needs to meet the requirements above.

5.5.3 Parcelable Example

MyDataObject is a Java class created to illustrate the creation and usage of
Parcelable objects, i.e., the class objects that can be sent back and forth between
Activities. Below, we implemented all requirements that are needed to create a
Parcelable object. MyDataObject implements the four constraints listed earlier.

214 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

5.5.3.1 Implement the Parcelable Interface

For an object to be Parcelable, its class must implement the Parcelable interface.
MyDataObject implements the Parcelable interface as follows:

public class MyDataObject implements Parcelable {. . .}.

5.5.3.2 Declaring the Parcelable.Creator Interface Field

MyDataObject class has a special field of type interface. Usually, Java fields are
declared in lower case. However, here the class field CREATOR is declared in upper
case to attract your attention. The field, which is of an interface type, has two
methods that need to be implemented. The interface implementation is done in a
separate class called MyCreator. These steps are shown below.

public class MyDataObject implements Parcelable {
. . .

public static final MyCreator CREATOR = new MyCreator();
. . .
}

The MyCreator class implements the Parcelable.Creator interface. This step is
done in a separate class for clarity. If you wish, you can implement the
Parcelable.Creator interface class as an inner class. The implementation of the
Parcelable.Creator interface is presented in Listing 5.11.

Listing 5.11 MyCreator.java implements the Parcelable.Creator interface.

package code.android.abdulrahman.com.LifeCyleapplication;
import android.os.Parcel;
import android.os.Parcelable;
public class MyCreator implements Parcelable.Creator <MyDataObject> {

@Override
public MyDataObject createFromParcel(Parcel source) {

return new MyDataObject(source);
}
@Override
public MyDataObject[] newArray(int size) {

return new MyDataObject[size];
}

}

5.5 Creating and Using Parcelable Objects 215

5.5.3.3 Implementing the describeContents Method

The MyDataObject class overrides the describeContents methods with a simple
implementation, i.e., it returns zero. See the code snippet below:

@Override
public int describeContents() {

// TODO Auto-generated method stub
return 0;

}

5.5.3.4 Implementing the writeToParcel Method

The code snippet in Listing 5.12 is the override implementation for the
writeToParcel method. In this method, you put any value you need to be passed
between Activities inside the Parcel object using methods like writeString, writeInt,
WriteDouble, etc. See Listing 5.12.

Listing 5.12 Overriding writeToParcel method.

@Override
public void writeToParcel(Parcel destination, int flags) {

destination.writeString(inOnCreate);
destination.writeString(inOnStart);
destination.writeString(inOnRestart);
destination.writeString(inOnResume);
destination.writeString(inOnPause);
destination.writeString(inOnStop);
destination.writeString(inOnDestroy);
destination.writeInt(intValue);
destination.writeDouble(doublevalue);

}

So far, we have implemented all requirements to have a Parcelable object, and the
object is ready to be used in an Activity. The code snippet below shows how the
ParcelableActivity uses a Parcelable object,MyDataObject. The object is created, its
fields are set, and it is ready to be sent back and forth between Activities.

public class ParcelableActivity extends AppCompatActivity {
. . .

public static MyDataObject MyDataObject = new MyDataObject() ;
. . .
MyDataObject.setInOnCreate("onCreate");
. . .
intent.putExtra("MyDataObject", MyDataObject);

startActivity(intent);
. . .
}

216 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

Note that both the writeToParcel method and the constructor of the
MyDataObject take Parcel as an input parameter. This is because an instance of
MyDataObject will be written to and restored from a Parcel object. The
MyDataObject constructor code is shown in Listing 5.13.

Listing 5.13 The constructor method for MyDataObject class.

public MyDataObject(Parcel source) {
this.inOnCreate = source.readString();
this.inOnStart = source.readString();
this.inOnRestart = source.readString();
this.inOnResume = source.readString();
this.inOnPause = source.readString();
this.inOnStop = source.readString();
this.inOnDestroy = source.readString();
this.intValue = source.readInt() ;
this.doublevalue = source.readDouble() ;

}

5.5.3.5 CREATOR Interface Constructs a Parcelable Object

The code snippet below shows how the createFromParcel method from the
Parcelable.Creator interface is used to call the MyDataObject constructor, i.e., the
CREATOR interface is used to create a Parcelable object, in our example, the
myDataObject object.

When you create/use a Parcelable object, for example, when you invoke
StartActivity with an Intent object that has a Parcelable object in it, you trigger the
createFromParcel method which then leads to the creation of a Parcelable object.
This step, triggering the myDataObject object creation, consists of a few method
calls. The code snippet below shows these steps.

Intent intent = new Intent (
this, ParcelableDisplayMessageActivity.class);

intent.putExtra("MyDataObject", MyDataObject);
Log.d(MainTAG, "Intent fired ");
startActivity(intent);

For the Parcelable object to be created, first, its fields need to be written to a Parcel
object. The writeToParcel implementation in Listing 5.14 shows this step.

5.5 Creating and Using Parcelable Objects 217

Listing 5.14 Parcelable object fields are written to the Parcel object.

@Override
public void writeToParcel(Parcel destination, int flags) {
destination.writeString(inOnCreate);
destination.writeString(inOnStart);
destination.writeString(inOnRestart);
destination.writeString(inOnResume);
destination.writeString(inOnPause);
destination.writeString(inOnStop);
destination.writeString(inOnDestroy);
destination.writeInt(intValue);
destination.writeDouble(doublevalue);

}

Once the Parcel object is created, the createFromParcel method uses the
Parcelable constructor to create a Parcelable object and return it. These two method
calls are shown below.

@Override
public MyDataObject createFromParcel(Parcel source) {
return new MyDataObject(source); // returns a new Parcelable object

}

public MyDataObject(Parcel source) {
this.inOnCreate = source.readString();
this.inOnStart = source.readString();
this.inOnRestart = source.readString();
this.inOnResume = source.readString();
this.inOnPause = source.readString();
this.inOnStop = source.readString();
this.inOnDestroy = source.readString();
this.intValue = source.readInt() ;
this.doublevalue = source.readDouble() ;

}

The sequence of the above steps can be summarized as follows:
StartActivity ! writeToParcel() ! createFromParcel() ! call to the Parcelable

constructor.
Putting all the code snippets together, the code for the MyDataObject class, which

implements the Parcelable interface, is shown in Listing 5.15.

218 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

Listing 5.15 MyDataObject.java is a Parcelable object that can be passed
between Activities.

package code.android.abdulrahman.com.LifeCyleapplication;
import android.os.Parcel;
import android.os.Parcelable;
public class MyDataObject implements Parcelable {

String inOnCreate = "";
String inOnStart = "";
String inOnRestart = "";
String inOnResume = "";
String inOnPause = "";
String inOnStop = "";
String inOnDestroy = "";
int intValue ;
double doublevalue ;

public static final MyCreator CREATOR = new MyCreator();
@Override
public int describeContents() {

// TODO Auto-generated method stub
return 0;

}
/*
* MyDataObject data to Parcel object
* all the field values you need to be passed
* between activities are put inside the Parcel object
*/
@Override
public void writeToParcel(Parcel destination, int flags) {

destination.writeString(inOnCreate);
destination.writeString(inOnStart);
destination.writeString(inOnRestart);
destination.writeString(inOnResume);
destination.writeString(inOnPause);
destination.writeString(inOnStop);
destination.writeString(inOnDestroy);
destination.writeInt(intValue);
destination.writeDouble(doublevalue);

}
public MyDataObject(int ivalue, double dvalue) {

this.intValue = ivalue ;
this.doublevalue = dvalue ;

}
public void setIntValue(int intValue) {

this.intValue = intValue;
}
public void setDoublevalue(double doublevalue) {

this.doublevalue = doublevalue;
}
/**
* the constructor of your class. Here you create object

5.5 Creating and Using Parcelable Objects 219

* with multiple fields that could be of any
* type for passing between activates.
* @param source
*/
public MyDataObject(Parcel source) {

this.inOnCreate = source.readString();
this.inOnStart = source.readString();
this.inOnRestart = source.readString();
this.inOnResume = source.readString();
this.inOnPause = source.readString();
this.inOnStop = source.readString();
this.inOnDestroy = source.readString();
this.intValue = source.readInt() ;
this.doublevalue = source.readDouble() ;

}
public String getInOnCreate() {

return inOnCreate;
}

5.5.3.6 Passing a Parcelable Object to Second Activity

To pass a Parcelable object to an Activity via an Intent, you use a key/value pair with
the putExtra() method. The key argument is a String and is used to get the object in
the receiving Activity. The value argument is the Parcelable object that you want to
pass, i.e., an instance of the MyDataObject class.

The code snippet in Listing 5.16 shows how to pass an object between Activities.
The DataObject creation, the object value setting, and the passing and receiving of
the Parcelable object are emphasized in bold in the code snippet below.

Listing 5.16 ParcelableActivity.java starts a second activity and passes an
object.

public class ParcelableActivity extends AppCompatActivity {
public String message = "" ; // "initialize intent data";
private static final String MainTAG = "ParcelableActivity";
public static String MainActivity_called = MainTAG;
public static MyDataObject myDataObject =

new MyDataObject() ;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_parcelable);
myDataObject.setInOnCreate("onCreate");
recieved_from_message_display_activity() ;

}
. . .

/** Called when the user clicks START SECOND ACTIVITY button */

220 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

public void invoke_display_message_activity(View view) {
Intent intent = new Intent(
this, ParcelableDisplayMessageActivity.class);
intent.putExtra("MyDataObject", myDataObject);
Log.d(MainTAG, "Intent fired ");
startActivity(intent);

}
public void recieved_from_message_display_activity() {

Intent intent = getIntent();
if (intent != null) {

if(intent.hasExtra("code.android.abdulrahman.
com.paracelableLifeCycle.MESSAGE")) {

message = intent.getStringExtra(
"code.android.abdulrahman.com.

paracelableLifeCycle.MESSAGE");
Log.d(MainTAG, "Got Intent");

}
}
TextView messageTextView = (TextView) findViewById(

R.id.messageTextArea);
messageTextView.setText(message);

}
}

In Listing 5.16, we used the default constructor to create a MyDataObject object.
Then, we used the newly created object with the putExtra() method. You can use the
parameterized constructor to create a MyDataObject object as well.

Since the MyDataObject class implements the Parcelable interface, its instances
are serialized and can be sent back and forth between Activities. The code snippet in
Listing 5.17 shows how the inOnStart and the inOnRestart fields of the
MyDataObject class are set in the callback methods for the ParcelableActivity.

Listing 5.17 Setting the inOnStart and the inOnRestart fields of the
MyDataObject class.

@Override
protected void onStart() {

super.onStart();
myDataObject.setInOnStart("onStart");

}
@Override
protected void onRestart() {

super.onRestart();
myDataObject.setInOnRestart("onRestart");

}

5.5 Creating and Using Parcelable Objects 221

5.5.3.7 Receiving a Parcelable Object from an Activity

You can get the Parcelable object in the receiving Activity using key with either
getIntent().getExtras().getParcelable() or getIntent().getParcelableExtra() as
shown in Listing 5.18. You need to check that the key/value pair exists in the
Bundle by using the hasExtra() method before trying to retrieve the Parcelable object
from it.

Listing 5.18 Code for retrieving Parcelable object from the receiver object.

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setTitle("Parcelable Display Message");
setContentView(R.layout.activity_parcelable_display_message);
isCalled = isCalled + "\n from " + messageTAG +

" onCreate method invoked ";
Intent intent = getIntent();
if (intent != null) {

if (intent.hasExtra("myDataObject")) {
ParcelableActivity.MyDataObject =

getIntent().getParcelableExtra("myDataObject");

MyDataObject porecieved =
getIntent().getParcelableExtra("myDataObject");

. . .
TextView messageTextView = findViewById(R.id.TextMessage);
messageTextView.setText(

ParcelableActivity.myDataObject.toString());
}

5.5.3.8 Logging Callback Method Invocation

In the previous subsection, we called the toString() method on the object
ParcelableActivity.myDataObject and passed the String result to the
MessageTextView to be displayed using this statement:

messageTextView.setText(ParcelableActivity.myDataObject.toString());

In the code snippet below, we show a different way to deal with received objects.
Instead of using the toString() method from the MyDataObject class to turn the
returned object into a String to be displayed on the Activity screen using setText(),
you can get individual fields of the received object and log the field’s value.

222 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

A field value is an indication that a callback method has been called. This is
because each field is initialized inside a callback method. This is another way to
debug object states and callback methods. To log object fields, you need to do the
following:

1. Declare a local variable. In our example, it is called porecieved.
2. Initialize the variable using getParcelableExtra.
3. Access objects’ fields using the get methods.
4. Log the fields for debugging and displaying the sequence of method calls.

The code snippet in Listing 5.19 shows the steps described above:

Listing 5.19 Code for retrieving Parcelable object from the receiver object.

publicclassParcelableDisplayMessageActivityextendsAppCompatActivity{
. . .

@Override
protected void onCreate(Bundle savedInstanceState) {
Intent intent = getIntent();
if (intent != null) {

if (intent.hasExtra("MyDataObject")) {
MyDataObject porecieved =

getIntent().getParcelableExtra("MyDataObject");
Log.d(messageTAG, "Got Intent");
Log.d("A----", porecieved.getInOnCreate());
Log.d("B----", porecieved.getInOnStart());
Log.d("C---", porecieved.getInOnResume());
Log.d("D----", porecieved.getInOnRestart());
Log.d("F----", porecieved.getInOnStop());
Log.d("G----", porecieved.getInOnPause());

. . .
}

5.5.3.9 Testing LifecycleParcelable App

The snapshots below show the testing results of our modified Lifecyle example app
using a Parcelable object instead of a class variable to pass data between Activities.
When the user selects option 3 from the menu on the first screen and presses the
START SECOND ACTIVITY button, the myDataObject object gets created, and
the onCreate, onStart, and OnResume variables are initialized in their corresponding
methods. The ParcelableDisplayMessageActivity displays the method execution
order in the ParcelableActivity. See Fig. 5.11.

5.5 Creating and Using Parcelable Objects 223

Figure 5.12, the left-hand side, shows the case when the Back to Parcelable button
on the ParcelableDisplayMessageActivity is pressed. The onCreate, onStart, and
onResume methods from ParcelableDisplayMessageActivity are executed, and the
result is sent back to the ParcelableActivity to be displayed.

Click on another app on your phone, or go back to the home screen. Once you
have done so, re-launch the ParcelableActivity. There will be two additional method
calls, onPause and onStop. The app snapshot on the right-hand side of Fig. 5.12
shows the two additional method calls.

Fig. 5.11 The testing result of our modified LifeCycleExample app using Parcelable Object

224 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

5.6 Chapter Summary

To summarize, in this chapter, we covered two important topics. First, we studied the
lifecycle of Android Activities, i.e., the states an Activity goes through during its
lifetime before it gets destroyed. We also studied how the lifecycle callback methods
can be used to control and manage Android device resources to create a robust
application. Second, we studied how to pass not only the primitive data types
between Activities but objects as well.

Java is an object-oriented programming language, and except for primitive types,
almost everything is an object. Hence, you need to be able to pass objects between
Activities. Android allows Bundle objects to be passed between Activities. This is

Fig. 5.12 A sequence of callback method calls when a Parcelable object is passed between
Activities

5.6 Chapter Summary 225

because the Bundle object is a Parcelable object. But, to be able to pass any user-
defined object between Activities, your class needs to implement a Parcelable
interface. We studied how to create a Parcelable object in detail. We also created a
demo app to go with this chapter to help you learn how to code Parcelable objects
and use lifecycle Activities.

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been covered
in this chapter. To test your knowledge and your understanding of this chapter, you
should be able to describe each of the below concepts in one or two sentences.

• Activity Lifecycle callback methods
• Activity states
• Back-stack
• Bundle
• Finish()
• isFinishing()
• Launcher Activity
• Managing the Activity lifecycle
• OnDestroy()
• OnPause()
• OnRestoreInstanceState()
• OnResume()
• OnSaveInstanceState()
• OnStart()
• OnStop()
• Parcel
• Parcelable.Creator interface
• Parcelable interface

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

Activity [online] Available, https://developer.android.com/reference/android/
app/Activity#ActivityLifecycle

Parcel [online] Available, https://developer.android.com/reference/android/os/
Parcel

Parcelable [online] Available, https://developer.android.com/reference/android/
os/Parcelable

Activity Lifecycle and Instance State [online] Available, https://google-
developer-training.github.io/android-developer-fundamentals-course-practicals/en/
Unit%201/22_p_activity_lifecycle_&_state.html

226 5 Activity Lifecycle and Passing Objects Between Screens Using Parcelable. . .

https://developer.android.com/reference/android/app/Activity#ActivityLifecycle
https://developer.android.com/reference/android/app/Activity#ActivityLifecycle
https://developer.android.com/reference/android/os/Parcel
https://developer.android.com/reference/android/os/Parcel
https://developer.android.com/reference/android/os/Parcelable
https://developer.android.com/reference/android/os/Parcelable
https://google-developer-training.github.io/android-developer-fundamentals-course-practicals/en/Unit%201/22_p_activity_lifecycle_&_state.html
https://google-developer-training.github.io/android-developer-fundamentals-course-practicals/en/Unit%201/22_p_activity_lifecycle_&_state.html
https://google-developer-training.github.io/android-developer-fundamentals-course-practicals/en/Unit%201/22_p_activity_lifecycle_&_state.html

Chapter 6
User Interface Essential Classes, Layouts,
Styles, Themes, and Dimensions

What You Will Learn in This Chapter
By the end of this chapter, you should be able to:

• Design several common user interface layouts
• Use XML and the design tool for design layouts
• Create layouts programmatically
• Define and use styles and themes
• Use phone dimensions properly
• Use View operations and attributes

Check Out the Demo Project
Download the demo app, LayoutApplication.zip, specifically developed to go with
this chapter. I recommend that you code this project up from the notes rather than
just opening the project in Android Studio and running it; however, if you want to
run the code first to get a sense of the app, please do so. The code is thoroughly
explained in this chapter to help you understand it. We follow the same approach to
all other chapters throughout the book. The app’s code will help you comprehend the
additional concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

6.1 Introduction

From your personal experience using mobile apps, you may have noticed that the
user interface is an important part of the app and is vital in its success. It is a large
topic that would be difficult to cover in-depth in one or two chapters—it could be a
book on its own.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_6

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_6#DOI

We will only investigate some aspects of it, specifically aspects related to the user
interface component we used in our demo app. We will study Views, Layouts,
Widgets, and other components that enable the creation of nice-looking and user-
friendly interfaces for Android apps. We will also study phone styles and themes as
well as phone dimensions.

This chapter is divided into four parts: user interface (UI) components, writing
XML layouts, app styles and themes, and user interface Layout components.

6.2 Essential UI Classes and Properties

In this part, we introduce a few simple and widely used UI classes, class attributes,
and methods as a starting point to learn Android UI. As the book progresses, more
classes, containers, and other UI components will be introduced along with code
samples on how to create and use them. We start by trying to understand the
directory structure of an app project in Android Studio and user interface classes
that are widely used in all apps, including our demo app.

6.2.1 Android Project Structure

In Fig. 6.1, the fundamental components of our demo app, i.e., the project directory
structure, are shown. The two main parts of the app are code and resources, and they
are saved in separate directories.

The Java folder holds the MainLayoutActivity and another six activities, one
for each button on the demo app’s main screen. The data and other resource
components are kept separate from Java code. The resource files are stored in the
“res” folder, and they are strings, dimensions, images, menu text, colors, and style
files. The strings.xml file is used to support localization. Localization was
discussed in detail in Chap. 2. The project directory structure also includes the
manifest XML file which wires all components and resources together to make the
app work.

6.2.2 Views

In Java, we use the object to refer to almost everything. When developing Android
apps, however, you are dealing with UI components, and almost everything is a
visual object; hence, you can use View instead of using the object to refer to any
UI component of an app. View is an Android class that is an essential building

228 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

block of Android’s user interface. It allows you to create a layout or display an
area of your app to put View subclasses and UI components inside it. It occupies
the rectangular area of your device and is in charge of drawing and handling user
interactions. In Android, every UI element is a View, i.e., is a subclass of the View
class.

There is a set of operations (methods) and attributes associated with Views that
you need to set and know when creating UI elements. For example, the View class
has attributes such as id, width, height, background color, etc. View attributes such
as width and height are required when drawing a View.

Fig. 6.1 Android project
structure

6.2 Essential UI Classes and Properties 229

6.2.2.1 View Listeners

Oftentimes when you include a View in your app, it is used to interact with the user.
You as a programmer will set up listeners that will be called when an event gets fired.
For example, when a button is pressed by the user, the input data can be saved. For
dealing with event firing and handling, Android follows the exact Java listener
handling approach. That is, first, you register the component that will fire the
event, and second, you write the method which will get executed once the event is
fired. This method execution is called event handling.

6.2.2.2 View Properties

Each View has multiple attributes or properties. Some of these properties need to
be set when defining View objects inside the layout. Examples of properties that
you can set when defining a View object include setting text, positions, margins,
padding, dimensions, background colors, text font size, style, etc. These properties
can be set in the XML layout file or programmatically in the code. The decision to
set the properties using the XML layout file or programmatically depends on
whether you know the properties before runtime or not. If you know the properties
of your UI elements before runtime, use the XML layout file. Otherwise, if your UI
remains unknown until runtime, i.e., you want to set these properties dynamically,
use code to set them. Keep in mind that defining Views and their properties in the
XML layout file keeps the code clean and compact and is the most common
practice.

6.2.3 View Class Examples

Below, we look at two examples to learn more about some of the View attributes and
how they can be set in the XML layout file.

6.2.3.1 EditText

Let us look at the EditText class attributes included in the layout file, main_activity.xml,
for our demo app. EditText is a user interface class for entering text. The EditText
definition is listed below.

230 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

<EditText
android:id="@+id/editName"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:hint="@string/name_hint"
android:inputType="textCapWords"
android:singleLine="true" >

</EditText>

You can see several View attributes are used to define the class. These include
id, width, height, hint, inputType, and singleLine. The values of these attributes
are "@+id/editName", "match_parent", "wrap_content", "5dp", "@string/
name_hint", "textCapWords", and "true". These attributes and their values are
described below:

android:id = "@+id/editName”. To define an id attribute, i.e., assign a View or
a resource id, you need to include the at-symbol “@” and “+” signs in the attribute
declaration. This is language syntax for defining an id in Android, where the plus-
symbol (+) means a new resource name must be created and added to the R.java file.
In other words, it means that editName does not exist and needs to be created as a
static field of the R.java class. The part of id definitions that you refer to in your code,
however, is the name part only. For example, you can reference the EditText object
above in your code like this:

EditText editText = findViewByID(R.id.editName);

When referencing a view id (just the id and not the resource object), there is no
need to use the plus-symbol “+,” but it does require the at-symbol “@” and the
Android namespace, for example, android:id="@android:id/editName. For
example, inside a layout file, you can use android:layout_below¼“@id/editName”.
Here, you are referring to an existing view.

android:layout_width="match_parent". The match_parent attribute value
means that the view will be as wide as its parent minus any padding that there
may be.

android:layout_height="wrap_content". This means that the view is big
enough (width and high) to enclose its content plus any padding.

android:layout_margin="5dp". This is the space outside of the border of
the view (e.g., a button) and between what is next to and around the view.
android:hint="@string/name_hint. This is a hint of what the user should enter
into EditText. For example, you can use android:hint¼ “enter your email here,” on a
form to hint the user that the field is for inserting an email address.

android:inputType="textCapWords". This is the user input where the
letter of each word will begin with capital by default, for example, Bill Gates.
There are other types of input as well. These include textEmailAddress and
textAutoComplete.

android:singleLine="true". The input by the user is restricted to a single line.

6.2 Essential UI Classes and Properties 231

6.2.3.2 TextView

Another widely used user interface View is TextView which displays text to
the user. It is similar to JLabel in Java. It is widely used with EditText. For
example, when you create a form, the first field usually is TextView followed by
EditText where the user can insert text. The following code sample shows a
typical use of TextView and some of its common attributes when defined in an
XML layout file.

<TextView
android:id="@+id/r_textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginStart="100dp"
android:layout_marginEnd="100dp"
android:text="hello world"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent" />

6.2.4 Widget

A View class has several widget subclasses. These classes are grouped in a package
called Widgets. They are fundamental control elements of the graphical user inter-
face of an app. It is through these elements that the user can interact with the app.
Examples of Widget elements that are widely used in Android apps include Button,
Checkbox, RadioButton, ProgressBar, RatingBar, ImageView, ListView, Switch,
etc. Using Android Studio, developers can drag and drop these elements into the
editor space and use them for app development.

In this book, we will use most of these Widgets to develop our apps. The
Keywords section at the end of this chapter provides links to descriptions and uses
of the widgets highlighted in Fig. 6.2. Refer to these links on Android documents to
learn more about the use and properties of Android widgets.

See Fig. 6.3 for more information on the View and Widget classes and the
relationship between them. Some of the classes are highlighted to show that Widget
classes are subclasses of the View class.

Each Widget class has its unique attributes and usages. I suggest you look at the
View and Widget classes on the Android developer page to become familiar with the
Android View class and its subclasses.

232 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

For more clarity, the background area in Fig. 6.4 represents the View, and
individual buttons drawn on the View are Widgets.

Fig. 6.3 View and its subclasses

Fig. 6.2 The most widely used Widget element in Android

6.2 Essential UI Classes and Properties 233

6.2.5 ViewGroup

Another important Android UI component is ViewGroup. ViewGroup objects are
invisible containers that can contain other Views and ViewGroups. The Views that
reside inside a ViewGroup are called a child View. ViewGroups are abstract classes
and cannot be instantiated. However, they have many subclasses that can be
instantiated. Examples of ViewGroups include ScrollView, ListView, and

Fig. 6.4 A view with multiple widgets (Buttons) on it

234 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

RadioGroup. Other common ViewGroup classes are Layout classes. Figure 6.5
presents and highlights a few ViewGroups that you can access from the Palette
window of the Android Studio layout manager.

ViewGroup is a base class for Layout classes such as LinearLayout, RelativeLayout,
FrameLayout, etc. It is used to organize and control the layout of a screen. In Fig. 6.6,
the relationship between Views, ViewGroups, and Layouts is shown.

Fig. 6.5 Examples of
ViewGroup containers

Fig. 6.6 ViewGroup and its subclasses

6.2 Essential UI Classes and Properties 235

Figure 6.7 is a partial illustration of the View class hierarchy. The figure shows
that buttons are subclasses of TextView and are Views. It also shows that Layouts
are ViewGroups and are Views as well. Understanding these relationships will
help you in app development and in reusing code. Individual classes inherit
methods from other classes, which means writing less code when developing
your apps. It will also help you understand when class casting between various
views is possible.

A simple user interface is presented in Fig. 6.8. In this example, the user interface
is a simple linear vertical layout holding multiple Widgets. These include
TextViews, EditTexts, RadioButtons, a dropdown list (i.e., a Spinner where users
can select an item, currently indicating Apples and Pears), and a button with the text
Go Back to Main View. The app layout container is arranging Widgets on the
surface; in this case, they are arranged linearly and in a vertical orientation. It defines
the structure of your app. We will study Layout classes in more detail later in this
chapter.

6.2.6 App Layout

Install and run the demo app, LayoutApplication.apk; apk stands for
Android application package; it is the app’s executable code. You can down-
load it from the book webpage. We use the layout of the demo app to explain
different UI layouts, click handling, pickers, toasts, and more. Make sure you
don’t just load and run the code; you’ll not learn much from that. Rather, connect
the dots. Check each Activity and its corresponding Layouts and resource files.
Once you install LayoutApplication, you should see six buttons on its start

Fig. 6.7 Partial illustration of the View class hierarchy

236 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

screen. The buttons are arranged linearly, one after another in a vertical orienta-
tion. See Fig. 6.9:

Once clicked, the buttons create linear layout, relative layout, grid layout, and
other layouts, respectively. Some of the layout types that Android support are
depicted in Fig. 6.10, and they are:

• ConstraintLayout
• LinearLayout (horizontal)
• LinearLayout (vertical)
• RelativeLayout
• TableLayout
• FrameLayout
• GridLayout

Fig. 6.8 Linear vertical layout

6.2 Essential UI Classes and Properties 237

Fig. 6.9 The start screen for
the Layout app

Fig. 6.10 Visual Studio Palette showing Layout object

238 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

Both GridLayout and RelativeLayout are considered as legacy layouts, which
means that their use is not encouraged anymore. This is because Android has
introduced a more powerful layout, i.e., ConstraintLayout. However, they are kept,
and the Android compiler is still able to compile them to support existing apps.

When you create your app, you can have nested layouts. That is, a layout can have
a child which is a layout itself. However, you should limit the nesting and keep the
hierarchy flat with a minimal number of Views and ViewGroups. This is because the
arrangement of the View hierarchy and the number of Views in the app has an
impact on the app’s performance.

6.3 Writing XML Layouts

A layout is a ViewGroup object, i.e., an invisible container object that defines which
part of an Activity screen will be occupied by which View or Widget objects, such as
Button, TextView, EditText, or another Layout object such as FrameLayout or
ConstraintLayout. In Android, the user interface objects can be created using
XML tags, programmatically at runtime, or a combination of both. When a combi-
nation of both approaches is used, you create your View and ViewGroup objects
using XML elements and modify them at runtime in your code. Below, both
approaches, using XML files and programming, are described.

6.3.1 Declare UI Elements in XML

As mentioned before, you can use XML files to create UI and Layout objects in your
app. When you use XML files to create UI objects and Layouts for your Activities,
the name of the UI class will become an element in the XML file. For example, if you
have decided to create a layout file that organizes your UI objects linearly with a
Button and a TextView in it, you need to create an XML file where LinearLayout is
the root element. Both the Button and TextView will then become elements inside
the LinearLayout root element, i.e., they will become child elements of the root
element.

Listing 6.1 is a layout file for the first screen of the demo app for this chapter. As
you can see, for every Android View/ViewGroup class and class attribute, there is a
corresponding XML element and element attribute in the XML file. For example, for
the Android LinearLayout class, we have a corresponding LinearLayout element in
the XML file, and for the class fields, such as width, height, background, and
orientation, there are corresponding element attributes: android:layout_width,
android:layout_height, android:background, and android:orientation.

6.3 Writing XML Layouts 239

Listing 6.1 Activity_main_layout.xml file for the first screen of the
demo app.

<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/maroon"
android:orientation="vertical"
tools:context=".MainLayoutActivity">
<Button

android:id="@+id/button_linear_layout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="10dp"
android:onClick="onLinearLayoutClicked"
android:text="@string/button_linear_layout" />

<Button
android:id="@+id/button_relative_layout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="10dp"
android:onClick="onRelativeLayoutClicked"
android:text="@string/button_relative_layout" />

<Button
android:id="@+id/button_grid_layout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="10dp"
android:onClick="onGridViewLayoutClicked"
android:text="@string/button_grid_layout" />

<Button
android:id="@+id/frame_layout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="10dp"
android:onClick="onFrameLayoutClicked"
android:text="@string/button_frame_layout" />

<Button
android:id="@+id/table_layout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="10dp"
android:onClick="onTableLayoutClicked"
android:text="@string/button_table_layout" />

<Button
android:id="@+id/constraint_layout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="10dp"
android:onClick="onConstraintLayoutClicked"
android:text="@string/button_constraint_layout" />

</LinearLayout>

240 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

Note that, in the layout XML file, the UI element id names and the method names
closely match the name of the class they belong to and the methods they fire. For
example, a button id name is btn_linear_layout, and a method name is
OnLinearLayoutClicked. This naming convention becomes crucial for debugging
and understating code as the app’s code becomes increasingly complicated.

6.3.2 Android Studio’s Layout Editor

Android Studio as an IDE is improving continually. This makes the Design and
Layout Editor, which is embedded in Android Studio, more and more useful for
creating UI. You can use the Design and Layout Editor to build your UI screens
using a drag-and-drop interface. In Fig. 6.11, we are numbering some options that
the Layout Editor provides to design the layout of your Activities, and they are:

Fig. 6.11 Layout Editor

6.3 Writing XML Layouts 241

• Option 1: Toggle between layout code, layout design, and split screen to show
code and design.

• Option 2: Set widget attributes such as width, length, background color, etc.
Examples of such settings are numbered 3 and 4.

• Option 5: Set the app’s theme.
• Option 6: Select the design surface to show the design, the blueprint, or both.

The XML layout that corresponds to Listing 6.1 is presented in Fig. 6.11.

6.3.3 Defining UI Programmatically

In addition to defining your UI Layout in XML files, you can define your UI Layout
and other UI components programmatically in your code. Let’s look at an example
where the Layout is created programmatically. Recall the setContentView() state-
ment is where you set or tell the Activity which layout XML file is going to be a
screen Layout.

The Activity class and its subclass AppCompatActivity have three versions of the
setContentView method. The method signatures are as follows:

public void setContentView (View view);
public void setContentView (int layoutResID);
public void setContentView (
View view, ViewGroup.LayoutParams params);

So far, we have used the second version of the method. We passed
R.layout.layoutName to setContentView. In the example below, we will use the
third version of the setContentView method. The input parameter is not a layout file
id, but a View object and its dimensions. The View object will be turned into a layout
root element.

The code below uses setContentView with LinearLayout, which has been created
programmatically. The steps are self-explanatory, and they are as follows:

1. Create a LinearLayout object. This can be done like this:

LinearLayout linearLayout = new LinearLayout(this);

2. Specify the vertical orientation for the Layout. This can be done like this:

linearLayout.setOrientation(LinearLayout.VERTICAL);

3. Create the LayoutParams object. This can be done like this:

LayoutParams linearLayoutParam = new
LayoutParams(LayoutParams.MATCH_PARENT,
LayoutParams.MATCH_PARENT);

242 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

4. Set LinearLayout as a root element of the screen. This can be done like this:
setContentView(linearLayout, linearLayoutParam);

The steps above can be included in the onCreate() method of an Activity, and it
would be as shown in Listing 6.2.

Listing 6.2 Creating app layout programmatically.

public class MainLayoutActivity extends AppCompatActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
LinearLayout linearLayout = new LinearLayout(this);
// specifying vertical orientation
linearLayout.setOrientation(LinearLayout.VERTICAL);
// creating LayoutParams
LinearLayout.LayoutParams linearLayoutParam = new

LinearLayout.LayoutParams
(LinearLayout.LayoutParams.MATCH_PARENT,

LinearLayout.LayoutParams.MATCH_PARENT);
// set LinearLayout as a root element of the screen
setContentView(linearLayout, linearLayoutParam);
}
. . .

}

Creating UI elements programmatically is not recommended. This is because one
of the fundamental principles of good programming is the separation of code from
view, i.e., separating your code from app UI components. This will enable you to
change your code without changing the view of your application. Using XML files to
draw your app screen layouts and define your View objects using the XML element
makes it easy to provide different layouts for different screen sizes and orientations.

While there is a clear advantage of using XML files for creating views, when you
code your app’s View objects, just like regular Java coding, it shows your coding
skills and helps you understand what is beneath the Android XML resource files.
Below, we show two examples of Java classes and their corresponding Android
elements and attributes.

6.3.4 LinearLayout Java Class

We mentioned earlier that a LinearLayout is a Java class that arranges its children’s
Views either horizontally in a single column or vertically in a single row. Here, we
would like to emphasize that LinearLayout, and other Layouts that we will discuss
later in this chapter, can be dealt with as regular Java classes. These classes have
constructors, public fields, and public and protected methods and inherit methods

6.3 Writing XML Layouts 243

from their base classes. For example, LinearLayout has four different constructors to
instantiate LinearLayout objects. The constructor signatures are listed below. We
used the second constructor to create a LinearLayout object in the subsection above.

1. LinearLayout(Context context)
2. LinearLayout(Context context, AttributeSet attrs)
3. LinearLayout(Context context, AttributeSet attrs, int defStyleAttr)
4. LinearLayout(Context context, AttributeSet attrs,

int defStyleAttr, int defStyleRes)

The LinearLayout class has multiple constants. The most widely used constants
are HORIZONTAL and VERTICAL. The other constants are about showing the
divider or not between items and where to show it, at the beginning or end of the
ViewGroups. The LinearLayout class also has multiple useful methods for setting
and retrieving Layout properties. Examples of such methods are listed in Table 6.1.

As mentioned earlier in this chapter, when you use XML files to represent classes,
for every class constant and field, there is a corresponding XML attribute. In
Table 6.2, examples of LinearLayout attributes that correspond to the LinearLayout
class constants and attributes are shown.

6.3.5 LayoutParams Java Class

Another important Android class for defining UI programmatically is LayoutParams.
The LayoutParams class is used by Views such as Layout containers to tell Activities
how they want to be set on the content view. For example, an Activity class can use

Table 6.1 Examples of linear layout class methods

int getGravity() Returns the current gravity

int getOrientation() Returns the current orientation

void setGravity(int gravity) Sets the positions of the child Views; defaults to
GRAVITY_TOP

void setHorizontalGravity(int
horizontalGravity)

Controls the alignment of the children

void setOrientation(int orientation) Sets the orientation, and the layout can be a column or
a row

void setShowDividers(int
showDividers)

Sets how dividers should be shown between items in
this layout

Table 6.2 XML attributes
and their corresponding Java
class instance variables

XML attribute <LinearLayout> Class LinearLayout fields

android: divider Divider

android: gravity Gravity

android: orientation Orientation

244 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

LayoutParams like this: setContentView(LinearLayout, LayoutParam);. This
will set the Activity’s content view linearly with height and width provided in
LayoutParams.

Similar to the LinearLayout class, LayoutParams has constructors, class fields,
constants, and methods. A LayoutParams constructor is shown below. It describes
how big the View can be for both width and height.

LayoutParams(int width, int height);

The LayoutParams base class has two fields, MATCH_PARENT and
WRAP_CONTENT, that can be used with width and height dimensions.

MATCH_PARENT sets the View to be as big as its parent (minus padding), and
WRAP_CONTENT sets the View to be just big enough to enclose its content (plus
padding).

When you use LayoutParams with classes other than Layout classes, you might
need more than just height and width fields. There are other classes of
LayoutParams for various subclasses of ViewGroups. These classes extend the
base LayoutParams class and have additional fields of their own. Examples of the
ViewGroup subclasses that have their implementation of the LayoutParams
include AbsListView.LayoutParams, AbsoluteLayout.LayoutParams, ActionBar.
LayoutParams, ActionMenuView.LayoutParams, FrameLayout.LayoutParams,
GridLayout.LayoutParams, RelativeLayout.LayoutParams, TableLayout.
LayoutParams, etc.

When LayoutParams is used in the XML file, the XML attributes corresponding
to the LayoutParams height and width are android:layout_height, to specify the
basic height of the View, and android:layout_width, to specify the basic width of
the View.

6.4 Details of the LayoutApplication Demo

In this part, to demonstrate how you can use a Layout in your app, we go through the
LayoutApplication code created for this chapter.

6.4.1 MainActivity Layout

Figure 6.12 shows that for each Activity there is a corresponding Layout and all the
layout files are in the res/layout folder. This makes sense because Activity is mostly
used as a screen. Even though you can create an Activity that is not a screen and that
doesn’t have a Layout, it is hardly used this way. Instead, screen elements will be put
in the Activity’s Layout, and together they form an interactive screen.

6.4 Details of the LayoutApplication Demo 245

The XML snippet shown in Listing 6.3 is the activity_main_layout.xml which is
associated with the MainActivityLayout Java code. The layout is a simple linear
layout with a root element <LinearLayout> and vertical orientation. By default, the
LinearLayout orientation is horizontal.

Fig. 6.12 The association between the activity_main_layout.xml and MainActivityLayout code

246 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

Listing 6.3 activity_main_layout.xml for MainLayoutActivity.

<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/maroon"
android:orientation="vertical"
tools:context=".MainLayoutActivity">
<Button

android:id="@+id/button_linear_layout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="10dp"
android:onClick="onLinearLayoutClicked"
android:text="@string/button_linear_layout" />

<Button
android:id="@+id/button_relative_layout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="10dp"
android:onClick="onRelativeLayoutClicked"
android:text="@string/button_relative_layout" />

. . ..
<LinearLayout />

The LinearLayout root element represents a container for all the buttons. It is a
ViewGroup object with several Views/Widgets (child elements). It aligns all children
in a single line in a vertical orientation, i.e., one vertical column where each element is
on a horizontal row. The layout direction is specified with the android:orientation
attribute. If the horizontal value is passed to android:orientation parameter, i.e.,
android:orientation="horizontal", all LinearLayout children will be aligned in
one line horizontally. If the line exceeds the screen space, the children will go to the
next line, eventually going down the screen vertically as more are added.

The property tools:context¼".MainLayoutActivity" tells us that this Layout is
associated with the MainLayoutActivity code. In the code snippet below, the
MainLayoutActivity.java class loads the activity_main_layout.xml in the onCreate()
callback method using this line of code:

setContentView(R.layout.activity_main_layout).

public class MainLayoutActivity extends AppCompatActivity {
. . .

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main_layout);

6.4 Details of the LayoutApplication Demo 247

https://www.cs.dartmouth.edu/~campbell/cs65/lecture06/lecture06.txt
https://www.cs.dartmouth.edu/~campbell/cs65/lecture06/lecture06.txt

Toast.makeText(getApplicationContext(),
getString(R.string.i_am_here_message),

Toast.LENGTH_LONG).show();
}

. . .
}

The code snippet contains an additional line of code to print a message to the screen.
In Android, printing messages to the screen can be done using the Toast object like this:

Toast.makeText(getApplicationContext(),
getString(R.string.i_am_here_message), Toast.LENGTH_LONG).show();

The printout shows that the onCreate() method has been called and
activity_main_layout.xml has been set.

6.4.2 Activity with Linear Layout

Listing 6.4 shows how you can create an Activity where screen elements are linearly
arranged.

Listing 6.4 LinearLayoutActivity.java uses a linear layout.

package code.android.abdulrahman.com.layoutapplication;
import android.content.Intent;
import android.os.Bundle;
import androidx.appcompat.app.AppCompatActivity;
import android.view.View;
import android.widget.Toast;
public class LinearLayoutActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
Toast.makeText(getApplicationContext(),

getString(R.string.i_am_here_message),
Toast.LENGTH_SHORT).show();

setContentView(R.layout.linear_layout);
}
public void onGoBackLinearLayoutClick(View v) {

Intent intent = new Intent(LinearLayoutActivity.this,
MainLayoutActivity.class);

startActivity(intent);
}

}

Once the “linear layout” Button is pressed on the main screen and intent is fired, the
LinearLayoutActivity gets started, and its content view is set to layout.linear_layout

248 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

https://www.cs.dartmouth.edu/~campbell/cs65/lecture06/lecture06.txt

using setContentView(). The linear_layout.xml file for LinearLayoutActivity looks
complicated and long, but you will be able to identify the ViewGroups, Views,
Widgets, and the root element, i.e., LinearLayout.

Several new Views such as the Checkbox, RadioButton, and others are used in
this example. You can learn about these classes, their properties, and how to use
them by studying the source code of the demo app, both the Java code and the layout
files. For example, the LinearLayout.xml file includes information on how to use the
RadioButton and RadioGroup containers. It also includes information on how to use
the Spinner object and how to populate it using string array defined inside the strings.
xml file. The screen for the LinearLayoutActivity is presented in Fig. 6.13, and its
corresponding layout XML file is shown in Listing 6.5.

Fig. 6.13 The view for
linear_layout.xml file

6.4 Details of the LayoutApplication Demo 249

6.4.3 Linear Layout XML File

The layout file in Listing 6.5 presents a detailed linear layout file which is the screen
of the LinearMainActivity for our demo up. It contains multiple Views and Widgets
and shows all kinds of attributes that have been defined for them that you can use to
define individual Views for your app. It also shows how you can use the strings.xml
file with the layout file to define text and labels for your app screen.

Listing 6.5 linear_layout.xml sample file made up of several elements.

<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/name" >

</TextView>
<EditText

android:id="@+id/editName"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:hint="@string/name_hint"
android:inputType="textCapWords"
android:singleLine="true" >

</EditText>
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/email" >

</TextView>
<EditText

android:id="@+id/editEmail"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:hint="@string/email_hint"
android:inputType="textEmailAddress"
android:singleLine="true" >

</EditText>
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/phone" >

</TextView>

250 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

<EditText
android:id="@+id/editPhone"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:hint="@string/phone_hint"
android:inputType="phone"
android:singleLine="true" >

</EditText>
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/gender" >

</TextView>
<RadioGroup

android:id="@+id/radioGender"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:orientation="horizontal" >
<RadioButton

android:id="@+id/radioGenderF"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="@string/gender_female" />

<RadioButton
android:id="@+id/radioGenderM"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="@string/gender_male" >

</RadioButton>
</RadioGroup>
<TextView

android:id="@+id/textInputType"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/spinner" >

</TextView>
<Spinner

android:id="@+id/spinnerID"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:entries="@array/spinner_items" >

</Spinner>
<Button

android:id="@+id/button_goback"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:background="@color/blue"

6.4 Details of the LayoutApplication Demo 251

android:onClick="onGoBackLinearLayoutClick"
android:text="@string/button_goback_title" />

</LinearLayout>

6.4.4 Using Android Studio Design Option

We mentioned earlier that you can use Android Layout Editor to create layouts for
your Activities. The editor provides three options to develop your Activity layouts,
the coding mode, the design mode, or a combination of both. For example, the
properties of a Button object can be set by first dragging and dropping the button
inside the LinearLayout root element, highlighting the button, and left-clicking to set
the button properties such as layout_width, layout_height, id, text, and the onClick
method. In Fig. 6.14, the correspondence properties of the button definition shown in
the code below are circled in the Android design tool.

<Button
android:id="@+id/button_goback"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:onClick="onGoBackLinearLayoutClick"
android:text="@string/button_goback_title" />

Fig. 6.14 Setting widget properties using a design tool

252 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

6.4.5 strings.xml File

The linear layout file for our demo app, which is shown in Listing 6.5, uses the
strings.xml file for text strings to avoid hardcoding. The file is in the res/values folder
and contains all the texts used inside the demo code. Listing 6.6 is a snippet of the
strings.xml used in the LayoutApplication showing how to declare an app’s text in
a file.

Listing 6.6 strings.xml file used with LinearLayout.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">LayoutApplication</string>
. . .
<string name="button_goback_title">go back to main view</string>
<string name="name_hint">Your name here</string>
<string name="name">Name</string>
<string name="email_hint">Your Email here</string>
<string name="email">Email:</string>
<string name="phone_hint">Your phone number here</string>
<string name="phone">Phone:</string>
<string name="gender">Gender:</string>
<string name="gender_male">Male</string>
<string name="gender_female">Female</string>
<string name="profile_date">Date:</string>
<string name="profile_date_hint">MM/DD/YYYY</string>
<string name="spinner">what is your favorite fruit:</string>

<string-array name="spinner_items">
<item>Apples and pears</item>
<item>Citrus – oranges, grapefruits, mandarins, and limes</item>
<item>Stone fruit – nectarines, apricots, peaches, and plums</item>

<item>Tropical and exotic – bananas and mangoes</item>
<item>Berries – strawberries, raspberries, blueberries,

kiwifruit and passion fruit</item>
<item>Melons – watermelons, rockmelons and honeydew melons</item>
<item>Tomatoes and avocados</item>

</string-array>
. . ..
</resources>

You can use the graphical tool to define strings or do it manually. To do it
manually, type the first string and its value inside the strings.xml file. Then, cut and
paste existing string items into the file, rename them, and use them to declare new
strings and their values.

You can use a few HTML tags inside your strings.xml file to declare strings; these
are , <u>, and <i> HTML tags for bold, underline, and italics. All other
HTML tags are ignored. Another tag that you can use is \n to start a new line or

6.4 Details of the LayoutApplication Demo 253

https://www.cs.dartmouth.edu/~campbell/cs65/lecture06/lecture06.txt

paragraph. Similarly, to write quotations, apostrophes, and any non-ASCII charac-
ters, use a backslash (\", \', \é).

6.4.6 String Editor

If you open strings.xml in Android Studio and click on the open tab as shown below
in Fig. 6.15, you can view and add to strings using the Resource editor option as
shown below. Using the Resource editor is very handy if you need to support
multiple languages. You can use the Resource editor to provide translations to the
texts in the code. See Fig. 6.16.

6.4.7 String Resources

The strings.xml file can hold a wide set of objects. These include strings, arrays of
strings, integer arrays, colors, and styles/themes. We widely use strings, string
arrays, and integer arrays for our applications. For example, to list the fruit types
using a dropdown menu selection, we used the Spinner object and populated the
dropdown list with a set of fruits defined in the strings.xml file, i.e., we used the
@array/spinner_items to refer to the list declared inside the strings.xml file. Listing
6.7 is a code snippet from the linear_layout.xml file for declaring the Spinner object
and referencing an array of strings defined in the strings.xml file.

Fig. 6.15 Android Studio String editor

254 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

Listing 6.7 Declaring Spinner and an array of strings using an XML file.

<Spinner
android:id="@+id/spinnerID"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:entries="@array/spinner_items">

</Spinner>

The string array defined in the strings.xml is listed below:

Fig. 6.16 Android Studio String editor for translation

6.4 Details of the LayoutApplication Demo 255

<string-array name="spinner_items">
<item>Apples and pears</item>
<item>Citrus – oranges, grapefruits, mandarins and limes</item>
<item>Stone fruit – nectarines, apricots, peaches and plums</item>
<item>Tropical and exotic – bananas and mangoes</item>
<item>Berries – strawberries, raspberries, blueberries,

kiwifruit and passion fruit</item>
<item>Melons – watermelons, rock melons and

honeydew melons</item>
<item>Tomatoes and avocados</item>

</string-array>

Note that Spinner object has a property called android:entries which accepts an
array as input and to define array inside the string.xml file you use<type-array name>.
It is recommended to put your app’s text and other resources in XML inside res/value
folders. This way it will be easy to maintain and extend the app. If later you decided to
change entries, then you simply need only to change the XML contents and not the
code. This is a nice separation of code from other resources, i.e., data.

6.4.8 RelativeLayout

The RelativeLayout container class enables you to specify how child views are
positioned relative to one another or the container. The position of each View object
can be specified as relative to sibling elements using properties such as left of, right
of, top, or below another View. You can also position an element relative to the
parent container area using properties such as aligned to the bottom, left, or center of
the container.

In our Application Layout app, RelativeLayout uses a simple relative layout. A
more complex relative position of Views and Widgets can be achieved within the
layout. We have positioned three objects relative to each other and the parent
container. The AnalogClock has been put at the bottom of the layout using
layout_alignParentBottom, the WLU logo has been put at the top of the layout
using ImageView and layout_alignParentTop, and the RatingBar is situated in
between the two widgets automatically. If you want, you can explicitly position
the RatingBar between the other two Widgets using the below and above layout
attributes. You can also use android:paddingBottom and android:paddingTop to
control the exact position of RatingBar or any UI object between the other two
Widgets.

RelativeLayout has several properties. These include match_parent which will
fill the screen and the padding-left and padding-right to position Widgets in the
container. An example of how to use RelativeLayout is shown in Listing 6.8. In the
demo app, when you click the RelativeLayout button, the layout below will be
displayed.

256 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

Listing 6.8 relative_layout.xml for RelativeLayoutActivity.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android=
"http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingLeft="20dp"
android:paddingRight="20dp">
<AnalogClock

android:id="@+id/analogClock1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_centerHorizontal="true"
android:layout_marginBottom="70dp"
android:paddingBottom="25dp" />

<ImageView
android:id="@+id/wluImage"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:layout_marginTop="25dp"
android:clickable="true"
android:contentDescription="@string/wlu_picture"
android:onClick="onClickImage"
android:src="@drawable/wlu" />

<RatingBar
android:id="@+id/ratingBar"
android:background="@color/_yellow"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@+id/wluImage"
android:layout_centerHorizontal="true"
android:layout_marginTop="150dp" />

</RelativeLayout>

The code for the RelativeLayout button in our demo app is in
RelativeLayoutActivity.java file and is shown in Listing 6.9. The Activity is a simple
Java file with two methods. The first one is onGoBackRelativeLayoutkClicked,
and the second one is onClickImage. Note that, in both cases, a View object is
passed to the methods. That is, the method signature for the two methods is
public void onMethodName (View view). The first method is triggered when the
user clicks on the university logo image, and the second method is triggered when
the user clicks on the clock image.

6.4 Details of the LayoutApplication Demo 257

Listing 6.9 RelativeLayoutActivity.java of the demo app.

package code.android.abdulrahman.com.layoutapplication;
import androidx.appcompat.app.AppCompatActivity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;
public class RelativeLayoutActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.relative_layout);

}
public void onGoBacRelativeLayoutkClicked(View v) {

Intent intent = new Intent(RelativeLayoutActivity.this,
MainLayoutActivity.class);

startActivity(intent);
}
public void onClickImage(View v) {

Toast.makeText(this, getString(R.string.wlu_message),
Toast.LENGTH_LONG).show();

}
}

RelativeLayout is a legacy class now, and its use is no longer encouraged.
Currently, Android supports a more sophisticated Layout called ConstraintLayout
which will be discussed later in this chapter. ConstraintLayout is a default Layout,
i.e., when you create a new Activity, the auto layout for the Activity will be
ConstraintLayout. Android keeps supporting RelativeLayout because it is widely
used among existing apps.

6.4.9 Other Layouts

The LayoutApplication demo app includes other Layouts, and they are
FrameLayout, TableLayout, GridLayout, and ConstraintLayout. Below, we will
briefly introduce these layouts. For coding and layout implementation, see the source
code of the LayoutApplication demo app.

6.4.9.1 FrameLayout

FrameLayout is shown in Fig. 6.17, on the left-hand side. Elements of
FrameLayout are stacked on top of each other, and the last element in the layout
file is on the top of the stack. We can see this in Fig. 6.17 where the last element,

258 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

the green frame, is found on top of the others. FrameLayout is often used with the
fragment View to draw on a part of the Layout. We will study fragments in later
chapters.

6.4.9.2 ConstraintLayout

The right-hand side of Fig. 6.17 shows ConstraintLayout. It works similar to
RelativeLayout except that it is more sophisticated and has more attributes. With
ConstraintLayout, you can align and declare a precise position of an element relative
to the other elements and the parent element in the Layout. It is a default Layout
when you create an activity.

Fig. 6.17 App interface when FrameLayout and Constraint Layout are used

6.4 Details of the LayoutApplication Demo 259

Using the Android Studio Layout Editor and ConstraintLayout, you can create
complicated layouts easily. You can do that by simply connecting so-called con-
straint connectors. Figure 6.18 shows an example of a complicated layout. What is
shown on the right-hand side of Fig. 6.18 is called a layout view, or a blueprint, and
what you see on the left-hand side is a design view. What you see in the design view
is what you get in the final interface of the app. The constraint connectors are
showing on the blueprint view. By connecting these connectors, you can define
the position of Views relative to other elements and parent Views.

6.4.9.3 Grid and Table Layouts

The Grid and Table layouts are shown in Fig. 6.19, respectively. To create
GridLayout, you have to declare column and row counts; see the code snippet in
Listing 6.10.

Fig. 6.18 Design and Layout (blueprint) Views when using ConstraintLayout and Layout Editor,
respectively

260 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

Listing 6.10 grid_layout.xml example.

<GridLayout xmlns:android=
”http://schemas.android.com/apk/res/android”

xmlns:tools=”http://schemas.android.com/tools”
android:layout_width=”match_parent”
android:layout_height=”match_parent”
android:layout_margin=”2dp”
android:background=”@color/gold”
android:columnCount=”2”
android:rowCount=”3”
tools:context=”.GridLayoutActivity”>

Fig. 6.19 Grid and Table layout examples, respectively

6.4 Details of the LayoutApplication Demo 261

To create TableLayout, you have to declare rows, and you can have any number
of columns in each row. The number of columns in each row does not have to be the
same, and that makes it different from the Grid layout. An example of TableLayout
code snippet is shown in Listing 6.11.

Listing 6.11 activity_table_layout.xml example.

<?xml version="1.0" encoding="utf-8"?>
<TableLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context="TableLayoutActivity">
<TableRow

android:layout_width="match_parent"
android:layout_height="match_parent">
<TextView. . .

. . ..
</TableLayout>

6.4.10 Parent-Child Relationship Between Activities

To help navigation between app screens, you can define parent-child relationships
between Activities in the manifest file. This results in creating an arrow on the app’s
menu bar, and when pressed, it will end the current Activity and bring in the parent
Activity. To define the parent-child relationship between Activities, add a new entry,
i.e., a meta-data entry, to the application element of the manifest file. Inside the meta-
data element, declare that the app supports the parent-child relationship, and define
which Activity is the parent Activity. This addition to the manifest file is shown below.

<application>
. . .
<meta-data

android:name=”android.support.PARENT_ACTIVITY”
android:value=”MainLayoutActivity” />

<application>

You also need to update the definition of all Activities declared inside the
manifest file to tell which Activity is its parent Activity. For example, in the
statement below, we are declaring that the parent Activity of
ConstraintLayoutActivity is MainLayoutActivity.

<activity android:name=”.ConstraintLayoutActivity”
android:parentActivityName=”.MainLayoutActivity” />

262 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

We have revised the manifest file for our demo app, declared MainActivity to be
the parent Activity, and declared the other Activities to be a child of MainActivity.
The revised file is shown in Listing 6.12, and changes are highlighted in boldface
font. The impact of the manifest revision on the user interface is shown in
Fig. 6.20.

Listing 6.12 AndroidManifest.xml showing parent-child relationships
between activities.

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=
”http://schemas.android.com/apk/res/android”
package=”code.android.abdulrahman.com.layout”>
<application

android:allowBackup=”true”
android:icon=”@mipmap/ic_launcher”
android:label=”@string/app_name”
android:roundIcon=”@mipmap/ic_launcher_round”
android:supportsRtl=”true”
android:theme=”@style/DarkAppTheme”>
<meta-data

android:name=”android.support.PARENT_ACTIVITY”
android:value=”MainLayoutActivity” />

<activity
android:name=”.ConstraintLayoutActivity”
android:parentActivityName=”.MainLayoutActivity” />

<activity
android:name=”.TableLayoutActivity”
android:parentActivityName=”.MainLayoutActivity” />

<activity
android:name=”.FrameLayoutActivity”
android:parentActivityName=”.MainLayoutActivity” />

<activity android:name=”.MainLayoutActivity”>

Fig. 6.20 Using the parent-
child relationship to create a
navigation button

6.4 Details of the LayoutApplication Demo 263

<intent-filter>
<action android:name=”android.intent.action.MAIN” />
<category
android:name=”android.intent.category.LAUNCHER” />

</intent-filter>
</activity>
<activity

android:name=”.LinearLayoutActivity”
android:parentActivityName=”.MainLayoutActivity” />

<activity
android:name=”.RelativeLayoutActivity”
android:parentActivityName=”.MainLayoutActivity” />

<activity
android:name=”.GridLayoutActivity”
android:parentActivityName=”.MainLayoutActivity” />

</application>
</manifest>

6.4.10.1 Do It Yourself

1. Modify the existing LayoutApplication to experience different Layout attributes.
2. Re-write the RelativeLayout below to study the impact of match_parent on the

width and height. In one example, include only android:layout_width ¼
“match_parent” without android:layout_height. Then, in the next example,
include only android:layout_height¼”match_parent” without android:
layout_width, and observe the differences.

<RelativeLayout xmlns:android=
”http://schemas.android.com/apk/res/android”
android:layout_width=”match_parent”
android:layout_height=”match_parent”
android:paddingLeft=”16dp”
android:paddingRight=”16dp”>

6.5 Styles, Themes, and Dimension

Similar to CSS in HTML programming, the Android style specifies the visual
properties of the elements that make up the app’s interface. In the layout file, you
define properties for individual Views on your screen. You can create a style to
define properties for multiple Views of the same type in your app. For example, if
you use 20 buttons in your app, you can define a style that includes the height,
padding, margins, font size, and font colors, i.e., a collection of attributes, that can be

264 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

applied to all buttons. This enables the reuse of property definitions and a consistent
look throughout the app. In this part, we will study UI styles and themes and how to
use them to define the format and look of UI elements.

6.5.1 Defining a Style File

To define a style, you give a name to your style and inherit style properties from the
existing styles, i.e., the parent styles, that are defined in the Android API. The code
snippet below shows how to define a style.

<resources>
<style name=” LightAppTheme”

parent=”Theme.AppCompat.Light.DarkActionBar”>
</style>

</resources>

In the code sample above, the style name is “LightAppTheme”, and it inherits
properties from an existing theme, “Theme.AppCompat.Light.NoActionBar”.

You customize or add properties to the style by defining <item> entries inside
the style elements. The <item> elements are name-value pairs. The name in each
item is an Android attribute that you would otherwise use in the layout file to define a
View attribute. Examples of name-value pairs that you can use to define your styles
are listed below. If you don’t provide a proper value, you will get an error such as
“expected reference but got (raw string)”.

<style name="forTextStyle" parent=
"Theme.AppCompat.Light.DarkActionBar">
<item name="android:capitalize">characters</item>
<item name="android:textSize">20sp</item>
<item name="android:textAppearance">?android:textAppearanceLarge
</item>
<item name="android:buttonStyle">
@style/Widget.AppCompat.Button.Borderless</item>

</style>

The value for <item> can be a keyword string, a hex color, or a reference to
another resource type using the at-symbol “@,” e.g., @style.

You can define multiple styles in one file using the <style> tag, but each style
should have a unique name. Examples of name-value pairs that you can use to define
your style, as well as styles using already defined styles, are provided in Listing 6.13.

6.5 Styles, Themes, and Dimension 265

Listing 6.13 A style file with multiple customized styles.

<resources
xmlns:android="http://schemas.android.com/apk/res/android">

<style name="WithNoActionBar"
parent="Theme.AppCompat.Light.NoActionBar">
<!-- Customize your theme here. -->
<item name="colorPrimary">@color/blue</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
<item name="android:textColor">#FF0000</item>
</style>

<style name="LightAppTheme"
parent ="Theme.AppCompat.Light.DarkActionBar">

<!-- Customize your theme here. -->
<item name="colorPrimary">@color/blue</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
<item name="android:textColor">#000000</item>
</style>

<style name="forTextStyle" parent=
"Theme.AppCompat.Light.DarkActionBar">
<item name="android:capitalize">characters</item>
<item name="android:textSize">20sp</item>
<item name="android:textAppearance">
?android:textAppearanceLarge</item>
<item name="android:buttonStyle">

@style/Widget.AppCompat.Button.Borderless</item>
</style>

<style name="MyTextViewStyle">
<item name="android:textColor">@color/colorPrimaryDark</item>
<item name="android:textStyle">bold</item>
<item name="android:padding">10dp</item>
<item name="android:textSize">20sp</item>
<item name="android:inputType">textMultiLine</item>
<item name= "android:maxLines">100</item>
<item name= "android:scrollHorizontally">false</item>

</style>
<style name="customButtons">

style="@style/Widget.AppCompat.Button"
style="@style/Widget.AppCompat.Button.Colored"
style="@style/Widget.AppCompat.Button.Borderless"
style="@style/Widget.AppCompat.Button.Borderless.Colored"

</style>
</resources>

266 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

6.5.2 Applying Styles

Depending on which style you refer to in your manifest file, your app’s look will be
different. A style can be applied to an individual View when referenced inside an
element definition in the layout file or to an entire Activity or application when
referenced inside the manifest file. In Listing 6.14, we first defined a style called
MyTextViewStyle for a TextView and referenced it inside the TextView definition in
the layout file using @style.

Listing 6.14 A style definition that we reference inside a layout file.

<resources>
<style name="MyTextViewStyle">
<item name="android:textColor">@color/blue</item>
<item name="android:textStyle">bold</item>
<item name="android:padding">10dp</item>
<item name="android:inputType">textMultiLine</item>
<item name= "android:maxLines">100</item>
<item name= "android:scrollHorizontally">false</item>

</style>
</resources>

The style defined in Listing 6.14, MyTextViewStyle, is referenced in
Listing 6.15.

Listing 6.15 A Layout file where style is referenced.

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android=http://schemas.android.com/apk/res/android . . . >

<TextView
android:id="@+id/textViewID"
style="@style/MyTextViewStyle" />

</androidx.constraintlayout.widget.ConstraintLayout>

To test Listings 6.14 and 6.15, we added a button to the MainActivity screen. We
also created a new Activity called UsingStyleActivity and a new layout file called
activity_using_style with a TextView element inside it. The left-hand side of
Fig. 6.21 shows the added button to the MainActivity screen. When the button is
pressed, UsingStyleActivity is launched, and the TextView in the
activity_using_style file is shown where TextView has been formatted according
to style MyTextViewStyle.

6.5 Styles, Themes, and Dimension 267

6.5.3 Defining the App’s Theme

In our demo app, we referenced LightAppTheme in the manifest file. The app style in
the manifest file is set like this:

android:theme=”@style/LightAppTheme”

LightAppTheme is the name of a style that has been defined in the style file. The
at-symbol “@” is an instruction to the Android system to find the style file in the res
folder.

You create an Android theme by defining a style file with attributes such as
Colors, TextAppearance, Dimens, Drawables, Shapes, and Buttons Styles that are

Fig. 6.21 Using style within Layout file

268 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

not specific to any individual View type, but rather are applicable more broadly and
referenced in the manifest file. For example, you can define a colorPrimary attribute
and apply it as a background color to all of your Activities. Similarly, you can define
textColor and TextAppearance and apply them to all the texts in your app.

When designing a theme for your app, start by selecting a theme that matches
your needs. You can customize your theme later as you learn more about your app’s
requirements. Figure 6.22 presents a snapshot of an app’s appearance when it is run
with two different themes.

In the style file for our demo app, we created two new styles by extended Android
themes. The first one is created by extending Theme.AppCompat.Light.NoActionBar
and is called MyFirstStyle. The second one is created by extending
"Theme.AppCompat.Light.DarkActionBar" and is called MySecondStyle. The

Fig. 6.22 Light.DarkActionBar and AppCompat.NoActionBar themes, respectively

6.5 Styles, Themes, and Dimension 269

difference between the two themes is that the first style has no ActionBar and its text
is set to red. The primary color for both styles is set to blue. Both styles are listed
below.

<style name="MyFirstStyle"
parent="Theme.AppCompat.Light.NoActionBar">
<!-- Customize your theme here.-->
<item name="colorPrimary">@color/blue</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
<item name="android:textColor">#FF0000</item>
</style>

<style name="MySecondStyle"
parent="Theme.AppCompat.Light.DarkActionBar">
<!-- Customize your theme here. -->
<item name="colorPrimary">@color/blue</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
<!-- changed from #0000000 -->
<item name="android:textColor">#000000</item>
</style>

We re-run the app twice. In the first run, we set the app’s theme to MyFirstStyle,
i.e., android:theme¼”@style/MyFirstStyle”, and the impact is shown on the left-
hand side of Fig. 6.22. In the second run, we set the app’s theme to MySecondStyle,
i.e., android:theme¼”@style/MySecondStyle”, and the impact is shown on the
right-hand side of Fig. 6.22.

In the code snippet in Listing 6.16, the definitions for colorPrimary,
colorPrimaryDark, and colorAccent are shown. These entries are referenced in the
styles we used to set the app’s themes. The definitions of these colors are saved in the
color.xml file inside the resource folder.

Listing 6.16 colors.xml file where multiple colors are defined.

<?xml version="1.0" encoding="utf-8"?>
<resources>

<color name="colorPrimary">#AA0000</color>
<color name="colorPrimaryDark">#303F9F</color>
<color name="colorAccent">#00E6E6EE</color>
<color name="maroon">#990099</color>
<color name="blue">#0ccef0</color>
<color name="_yellow">#d7fc03</color>
<color name="gray">#Afffff</color>
<color name="graydark">#999999</color>

</resources>

270 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

Figure 6.23 shows that the impact of a style that is chosen to be the app’s theme,
referenced in the manifest file, goes beyond one View and one Activity. The style
entries are applied to the entire app. The primary color for all Activities is blue as
defined in the color.xml file. We also changed textColor in the LightAppTheme style
definition to red to show the impact of the theme on all Activities.

6.5.4 The Difference Between a Theme and Style

A style is a set of properties that specifies the look and format of a single UI View
type in your app. Using style, you can specify properties such as height, padding,

Fig. 6.23 A style that is applied to all Activities defining the app’s theme

6.5 Styles, Themes, and Dimension 271

font color, font size, and background color for all Views of the same type in your
app. For example, you can define the format for TextViews, Buttons, EditTexts, etc.
and reference them in the layout file to give a similar look to all Views of the same
type. A style is an XML resource that is separate from the layout file.

On the other hand, a theme is a style applied to an entire application, instead of an
individual View type. When a style is applied as a theme, referenced inside the
manifest file, every View in the application will apply each style property that it
supports. To have an effective theme, you should create a style that defines widely
used attributes such as Colors, TextAppearance, Dimensions, Drawables, and
Shapes to format as many Views as possible in one place.

Android provides multiple system themes that you can choose from when
building your apps. Examples of such themes include:

• Material (dark version)
• Material Light (light version)
• Material Light with NOActionBar

Multiple Android predefined themes are listed in Fig. 6.24.

Fig. 6.24 Multiple predefined Themes that are accessible in Android Studio Theme Editor

272 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

6.5.5 Padding and Margin View Properties

View objects have other attributes. For example, several margin attributes can be
applied to Views. The margin attribute names are android:layout_marginBottom,
android:layout_marginEnd, android:layout_marginLeft, android:layout_marginRight,
and android:layout_marginTop. They define the extra space around a View on
the bottom, end, left, right, and top, respectively. While margin attributes define
the outside space between the border and the other elements next to the current
View, the attribute padding is the inside space between the border and the actual
View’s content. Figure 6.25 shows the padding and margin pictorially.

6.5.6 Gravity and Weight View Properties

Two important View attributes are android:layout_gravity and android:layout_weight.
Both are described below and with an example showing how to use them.

android:layout_gravity. Defines how the child view should be placed or posi-
tioned, on both the X and Y axes, within its enclosing layout; some positions include
top, bottom, left, and right and start, center, and end.

Fig. 6.25 Padding and
margin attributes of a widget

6.5 Styles, Themes, and Dimension 273

android:layout_weight. Specifies how much of the extra space in the linear
layout is allocated to the View object that has this parameter, for example, zero
space if the View should not be stretched. Otherwise, the extra pixels will be
distributed among all Views whose weight is greater than zero.

Note that the attribute layout_weight is used within the RadioGroup for the
Linear Layout in our app; hence, space is equally divided between radio buttons. See
the code snippet in Listing 6.17.

Listing 6.17 Using the weight attribute with RadioGroup View.

<RadioGroup
android:id="@+id/radioGender"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:orientation="horizontal" >
<RadioButton

android:id="@+id/radioGenderF"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="@string/gender_female" />

<RadioButton
android:id="@+id/radioGenderM"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="@string/gender_male" >

</RadioButton>
</RadioGroup>

6.5.6.1 Do It Yourself

Create a simple View with three buttons in LinearLayout and with horizontal
orientation. Assign each button a different android:layout_weight value, and find
the impact of the attribute value on the space each button occupies. Now, assign each
button a different android:layout_gravity value: top, center, and end, respectively.
Find the impact of the property values on the position of the buttons.

6.5.7 Dimensions of a Phone and UI

The screen size, both the width and height of a device, as well as the pixel density
influence the design of your app. When designing your app’s screen, it is helpful if

274 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

you have information about the display characteristics of the device you are
designing for.

For example, Fig. 6.26 shows the display properties of the Google Pixel XL. The
physical size of the phone is 5.5 inches diagonally, the resolution is 1440 x 2560
pixels, and the pixel density is 534 ppi where ppi is pixels per inch. This information
is useful, for example, to determine the resolution of the images your app supports
without image deterioration.

Creating and testing your app with a proper AVD emulator and the actual device
is the best way to start your app design. However, to be certain about the appropri-
ateness of your application design, you need to be mindful of the dimensions and

Fig. 6.26 Google Pixel XL
screen size

6.5 Styles, Themes, and Dimension 275

density of the device you are designing for. Here are some of the scaling units that
you need to be aware of when specifying the UI for your app.

• px – screen pixels.
• in – inches based on the physical screen size.
• mm – millimeters based on the physical screen size.
• pt – 1/72 of an inch based on physical screen size.
• dp or dip – device-independent unit relative to a 160 dpi screen.
• sp – similar to dp but used for font sizes.
• dpi – dots per inch; the number of pixels within a physical area of the screen is

referred to as dpi.

Most people confuse dp with ppi (pixels per inch); you should not. One dp is
equivalent to one pixel on a 160 dpi ((dots per inch)) screen. On a 160 dpi screen,
1dp ¼¼ 1px ¼¼ 160/160in, but on a 240dpi screen, 1dp ¼¼ 240/160¼ 1.5px.

6.5.7.1 Do It Yourself

Create two AVDs: one with 1080 * 1920 resolution and an LCD density of 480 and
the other with 768 * 1280 resolution and an LCD density of 320. Run the demo app
created for this chapter on both devices, and study the XML layout look on both
screens.

6.6 Chapter Summary

In this chapter, we studied how to create Views, Layouts, Widgets, and other
components and their properties that enable you to create a nice-looking and user-
friendly interface application. We studied the different types of Layouts that Android
supports. These include LinearLayout, ConstraintLayout, RelativeLayout,
FrameLayout, GridLayout, TapLayout, and TableLayout. We studied how to define
your UI object using XML elements and XML files, as well as how to create Views
and Widgets programmatically. To define View objects programmatically, we
studied the LinearLayout and LayoutParams classes as well as the setContentView
method. Other topics studied in this chapter include phone styles, themes, and phone
dimensions. We will continue with the user interface in the next chapter to study
ListView, ScrollView, RecyclerView, Pickers, and more.

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

276 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

• android:layout_weight
• Button
• Checkbox
• ConstraintLayout
• dp
• FrameLayout
• GridLayout
• LinearLayout
• Margin
• Padding
• Pickers
• RadioButton
• RadioGroup
• RelativeLayout
• Spinner
• Style
• TableLayout
• TextEditor
• TextView
• Theme
• Toast
• Toggle button
• Tooltips
• View
• ViewGroup

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

Build a UI with Layout Editor, [Online] available https://developer.android.
com/studio/write/layout-editor

ConstraintLayout, [Online] available https://developer.android.com/reference/
android/support/constraint/ConstraintLayout

Design app themes with Theme Editor, [Online] available https://developer.
android.com/studio/write/theme-editor

Layouts, [Online] available https://developer.android.com/guide/topics/ui/declar
ing-layout

Linear Layout, [Online] available https://developer.android.com/guide/topics/
ui/layout/linear

Further Reading 277

https://developer.android.com/studio/write/layout-editor
https://developer.android.com/studio/write/layout-editor
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/studio/write/theme-editor
https://developer.android.com/studio/write/theme-editor
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/guide/topics/ui/layout/linear
https://developer.android.com/guide/topics/ui/layout/linear

Relative Layout, [Online] available https://developer.android.com/guide/topics/
ui/layout/relative

User Interface & Navigation, [Online] available https://developer.android.com/
guide/topics/ui/

View, [online] Available https://developer.android.com/reference/android/view/
View

278 6 User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions

https://developer.android.com/guide/topics/ui/layout/relative
https://developer.android.com/guide/topics/ui/layout/relative
https://developer.android.com/guide/topics/ui/
https://developer.android.com/guide/topics/ui/
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View

Chapter 7
ListView, ScrollList, Date and Time Pickers,
and RecyclerView

What You Will Learn in This Chapter
By the end of this chapter, you should be able to:

• Create lists and list view layouts
• Use adapters and list listeners
• Use scroll lists
• Use recycler views
• Create time and date picker widgets
• Implement the view holder design pattern

Check Out the Demo Project
Download the demo app, ListsApplication.zip, specifically developed to go with
this chapter. I recommend that you code this project up from the notes rather than
just opening the project in Android Studio and running it; however, if you want to
run the code first to get a sense of the app, please do so. The code is thoroughly
explained in this chapter to help you understand it. We follow the same approach to
all other chapters throughout the book. The app’s code will help you comprehend the
additional concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

7.1 Introduction

In this chapter, we continue our discussion on the Android user interface and the
various layout options we studied in the last chapter. These include list views, scroll
views, date and time pickers, and the ViewHolder pattern. This chapter is divided

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_7

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_7#DOI

into four parts; we study how to create and use list views, date and time pickers,
scroll views, and recycler views.

7.2 List Views

In this part, we will study list view implementation using the ListActivity class from
Android. If you want to design a user interface (UI) with a long list of items, you can
use a ListView class. The ListView controller class allows you to vertically scroll up
and down through a list of items.

7.2.1 Adapter and ArrayAdapter Classes

Android has an interface called an adapter that is implemented by several
classes directly or indirectly. These classes include ArrayAdapter<T>,
BaseAdapter, CursorAdapter, ListAdapter, SpinnerAdapter, and more. In gen-
eral, the adapter class is used to enable communication between two incompat-
ible objects. In Android, adapters are used as a bridge between the data and the
view. For our demo app, we used ArrayAdapter which is described in more
detail below.

7.2.1.1 ArrayAdapter Classes

ArrayAdapter is a simple Java class that can be used between data and the views.
The class has several constructors and multiple methods. Some of these methods
are listed in Table 7.1. ArrayAdapter can be used with a list view and a spinner. It
can be used with a recycler view as well. When used with the recycler view, it has
similar results to list views but performs better, e.g., you can scroll up and down
lists faster.

7.2.2 ListView and ListActivity

Click on the ListView Layout button from the main page of the ListsApplication
app, and check it out. For the demo, we listed Ottawa Senators alumni hockey

280 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

players1 (see Fig. 7.1). When you select one of the players from the list, a toast
message is displayed for a short time.

To create a list view for your app, you need to follow certain steps. The steps are
listed below. We describe these steps in the following subsections.

1. Define the layout for each row in the list.
2. Define the ListViewActivity.
3. Define the data.
4. Select an adapter class.
5. Implement the adapter class.
6. Assign the adapter to the ListView.
7. Assign a listener to the ListView.

7.2.2.1 Define a Layout for the Items on the List

If you look at the activity_my_list.xml file in our ListsApplication app, you will see
that it includes only a text view definition. This is a description of one row in the list.
The definition would be applied to each item on the list. You simply need to define a
layout for one row in the list; all the items on the list will use that same layout. The
row description for our list is defined in Listing 7.1:

Table 7.1 Multiple methods of ArrayAdapter that are widely used

void add (T object) Adds the specified object at the end of the array

void addAll(T... items) Adds the specified items at the end of the array

void addAll(Collection<? extends T>
collection)

Adds the specified collection at the end of the
array

void clear () Removes all elements from the list

Context getContext() Returns the context associated with this array
adapter

int getCount() Gets the number of items in the dataset
represented by this adapter

T getItem(int position) Gets the data item associated with the specified
position in the dataset

long getItemId(int position) Gets the row id associated with the specified
position in the list

int getPosition(T item) Returns the position of the specified item in the
array

View getView(int position, View
convertView, ViewGroup parent)

Gets a view that displays the data at the specified
position in the dataset

void insert (T object, int index) Inserts the specified object at the specified index
in the array

void remove (T object) Removes the specified object from the array

1Sens Alumni Roster

7.2 List Views 281

https://www.nhl.com/senators/community/alumni-roster

Listing 7.1 listview_layout.xml file representing a row in a list.

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android=
"http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="10dp"
android:textSize="20sp"
android:background="@color/blue">

</TextView>

Fig. 7.1 App’s main screen on the left and an example of a list on the right

282 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

The properties that are defined for the text view in our list are the height, width,
padding, text size, and background color. If your list view contains more than just a
text, for example, an object with multiple properties, you have to define a different
layout in your listview_layout file. We will see an example of that later in this chapter.

7.2.2.2 Create the ListActivity Class

Now that we have a layout for each row in the list, we need to create a Java class, or
an activity, to implement the list view and process the list item selections. For our
demo app, we created a list view layout activity. The class declaration is as follows:

public class ListViewLayoutActivity extends ListActivity {. . .}

Note that, for our app, ListViewLayoutActivity does not extend “Activity”;
rather, it extends “ListActivity.” This is because ListActivity has several methods
that help create, manage, and control list views. See the ListActivity class methods in
Table 7.2. For our example, we use the getListView and setListAdapter methods.

Since our ListViewLayoutActivity class extends ListActivity, we use
getListView() to initialize a ListView object as follows:

ListView listView = getListView();

Instead of defining a ListView in the XML file, we define it in the code. If you
include a ListView in the XML layout file, you need to define a ListView variable in
your code and initialize it inside the onCreate() method as follows:

ListView listview = findViewById(R.id.listView);

Table 7.2 Common methods of ListView class

ListAdapter getListAdapter()
Gets the list adapter associated with this activity’s list view

ListView getListView()
Gets the activity’s list view widget

Long getSelectedItemId()
Gets the cursor row ID of the currently selected item in the list

Int getSelectedItemPosition()
Gets the position of the currently selected item in the list

Void onContentChanged()
Updates the screen’s state (current list and other views) when the content changes

Void setListAdapter(ListAdapter adapter)
Provides the cursor for the list view

Void setSelection(int position)
Sets the currently selected item in the list to a specified position

7.2 List Views 283

https://developer.android.com/reference/android/widget/ListAdapter.html
https://developer.android.com/reference/android/widget/ListView.html
https://developer.android.com/reference/android/widget/ListAdapter.html

7.2.2.3 Define Data

Now that we have defined a list view, we need to define or create data and add data to
the list. List views use an adapter object to load data onto a list. In our code, we
defined a String array for input data; see the code snippets below. The data does not
have to be in the code; in fact, it is better to define it in the XML file. However, since
our list is small and static, we have done it in code for simplicity and performance as
follows:

static final String [] Sens_Alumni_Roster = new String [] {
"Peter Ambroziak",
"Gerry Armstrong",
"Fred Barrett",
"John Barrett",
"Laurie Boschman",
"Brad Brown",
. . . };

So far, we have the row layout, the list view, and the data. Next, we need to use
the adapter class to load data onto the list.

7.2.2.4 Select an Adapter Class

You can use an adapter to provide a view for each object in the array you would like
to list. The adapter class is responsible for displaying each item in the array, i.e., it is
a bridge between the data and the view. There are several types of adapters to choose
from. The choice of which adapter to use depends on the data that you are dealing
with. For example, ArrayAdapter displays arrays of Strings, CursorAdapter displays
results of SQL queries, and SpinnerAdapter displays data in the spinner and the
dropdown list.

In our example, we used ArrayAdapter for its ability to quickly display items in
an array. By default, ArrayAdapter creates a view by calling the toString() method
on each item in the array and placing the results in a text view. You can customize
what view is used for displaying the data objects. We will see an example of a
customized view in later chapters.

7.2.2.5 Create an ArrayAdapter Class

ArrayAdapter has several constructors that can be used to create an ArrayAdapter
object. Here are two examples of ArrayAdapter constructors:

ArrayAdapter (Context ctx, int resource, List<T> objects);
ArrayAdapter (Context ctx, int resource, T [] objects);

284 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

We used the second constructor for our demo app. The context parameter of the
constructor is the Activity that holds the list view. The resource parameter is the ID
of a layout with a text view to display the class T’s toString() value. The T [] objects
are an array of objects, i.e., data, to be loaded onto the list. In our case, the
ArrayAdapter constructor would be as follows:

ArrayAdapter<String> myArrayAdapter = new ArrayAdapter<String> (
this, R.layout.activity_my_list, Sens_Alumni_Roster);

7.2.2.6 Assign the Adapter to List View

The last step in creating a list is to assign the adapter class to the list view. This is
done as follows:

setListAdapter(myArrayAdapter);

7.2.2.7 Assign a Listener to the List View

If you want to do more than just list data, for example, if you want to display a
message when the user clicks on an item on the list, you need to assign listeners to
the items. We can do that in two steps:

1. Define a click listener object to handle clicking events for the items on the list.
This step can be done using OnItemClickListener as follows:

OnItemClickListener itemListener = new OnItemClickListener() {
public void onItemClick(AdapterView<?> parent,

View aview, int position, long id) {
Toast.makeText(getApplicationContext(),

(TextView) aview).getText() + " is an awesome Sens Alumni!",
Toast.LENGTH_SHORT).show();

}

2. Assign a listener to the list view. This step is done using the statement below:

listView.setOnItemClickListener(itemListener);

If any entry in the list is clicked, the onItemClick() method is called. The
onItemClick() method is implemented to toast, i.e., it displays a message on the
screen. You can use the getSelectedItemID and getSelectedItemPosition methods
from the ListActivity class to print out the position in the list and change the toast
message to correspond to the selected item.

In Listing 7.2 code snippet, the ListViewLayoutActivity code covers all the steps
described so far.

7.2 List Views 285

Listing 7.2 ListViewLayoutActivity.java for creating a simple list of items.

package code.android.abdulrahman.com.layoutapplication;
import android.app.ListActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;
public class ListViewLayoutActivity extends ListActivity {
// Sens Alumni Roster
// https://www.nhl.com/senators/community/alumni-roster

static final String [] Sens_Alumni_Roster = new String [] {
"Peter Ambroziak",
"Gerry Armstrong",
"Fred Barrett",
"John Barrett",
"Laurie Boschman",
"Brad Brown",
"Mike Bullard",
// . . .

};
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
// you do not have call setContentView(R.layout.listview_layout);
//anymore
// Define a new adapter
ArrayAdapter<String> myArrayAdapter =

new ArrayAdapter<String> (this,
R.layout.listview_layout, Sens_Alumni_Roster);

// Assign the adapter to ListView
setListAdapter(myArrayAdapter);
// Define the listener interface
OnItemClickListener itemListener = new OnItemClickListener() {

public void onItemClick(AdapterView<?> parent, View aview,
int position, long id) {

// When the button clicked, show a toast with the text
Toast.makeText(getApplicationContext(),
((TextView) aview).getText() + " is an awesome Sens Alumni!",

Toast.LENGTH_SHORT).show();
}

};
// Get the ListView and wired the listener
ListView listView = getListView();
listView.setOnItemClickListener(itemListener);

}
}

286 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

Once setListAdapter is executed, the list view fills the Activity screen. This is
because of the listview_layout.xml file; see the right-hand side of Fig. 7.1
found at the beginning of this section. This is not a common way to use lists. If you
want the list view to occupy only a part of the screen, you have to re-write the
listview_layout.xml file. An example of such a layout is shown in Listing 7.3.

Listing 7.3 A layout example where a list view occupies only part of the
screen.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android=
"http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin">
<ListView

android:layout_alignParentTop="true"
android:layout_alignParentStart="true"
android:layout_alignParentEnd="true"
android:layout_width="match_parent"
android:layout_height="400dp"
android:layout_weight="0.5"
android:id="@+id/listView"/>

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true"
android:layout_alignParentEnd="true"
android:layout_below="@id/listView"
android:text="Send"
android:id="@+id/sendButton"/>

<EditText
android:layout_alignParentBottom="true"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:layout_toLeftOf="@id/sendButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:hint="enter message"
android:id="@+id/chatEditText"/>

</RelativeLayout>

7.2 List Views 287

Here, a list view has been put with other widgets in a layout. In Fig. 7.2, the layout
has a list view, an edit text at the bottom left, and a “Send” button on the bottom
right. The end screen for such a layout looks like a normal chat window from
Facebook, Skype, SMS, etc.

7.2.2.8 Do It Yourself

Change the String [] Sens_Alumni_Roster array in the ListViewLayoutActivity
class to an array of item objects. Each item object should have three properties:
name, price, and image. When you run your app, you should have a list like the one
presented in Fig. 7.1 except that each row is made up of three parts, for example, the
name of a device you recently bought, the price you paid, and the image of the
device.

Fig. 7.2 List layout with
other widgets

288 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

7.3 Date and Time Pickers

In this part of the chapter, we will study date and time pickers. Android provides
ways for users to pick a time or date using popup dialogs. Using the date and time
pickers helps users pick a time or date that is valid, formatted correctly, and adjusted
to the user’s local time and date.

7.3.1 Date and Time Pickers

Android provides standard widgets for setting the date and time. These widgets are
called pickers. In our demo app, the DateAndTimeActivity.java class uses date and
time pickers to set the date and time and display them on text views. Figure 7.3
shows the screen snapshots of the date and time in our demo app.

The layout file for our demo app, date_time_layout.xml, uses a linear layout with
a text view and two buttons. The text view is used to display the date and time with a
large text size, 30sp. The two buttons are used to call the time and date pickers,
respectively. Each button definition includes a call to an onClick() method, and
button labels are initialized using text in the strings.xml file. The layout file is shown
in Listing 7.4.

Fig. 7.3 Snapshots of Android date and time pickers

7.3 Date and Time Pickers 289

Listing 7.4 date_time_layout.xml file for date and time pickers.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
<TextView

android:id="@+id/dateTimeID"
android:layout_marginTop="20dp"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/date_time"
android:textSize="30sp"
android:layout_margin="10dp"
android:background="@color/gray"/>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_margin="10dp">

<Button
android:id="@+id/dateBtnID"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="onDButtonClicked"
android:backgroundTint="@color/graydark"
android:text="@string/button_date"
android:layout_weight="0.5"/>

<Button
android:id="@+id/timeBtnID"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="onTButtonClicked"
android:text="@string/button_time"
android:backgroundTint="@color/graydark"
android:layout_weight="0.5"/>

</LinearLayout>
</LinearLayout>

When a user clicks on the Date and Time button on the main screen, a text view is
instantiated and initialized inside the onCreate() method. The setTimeAndDateText()
method is also called to set the initial date/time for the text view as shown in Fig. 7.4.

The code for the two steps described is:

TextView dateAndTimeDisplay = findViewById(R.id.dateTimeID);
setTimeAndDateText();

290 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

Note that the setTimeAndDateText() method is a call to a local method that has
been defined in the DateAndTimeActivity class. It uses the DateUtils Java class to
format the date and time and uses the calendar object with a default time zone. The
dateAndTimeDisplay class is a local variable defined in the DateAndTimeActivity
class. The code for the DateAndTimeActivity is shown in Listing 7.5.

Fig. 7.4 Date and time on
the picker’s main screen

7.3 Date and Time Pickers 291

Listing 7.5 The content of the DateAndTimeActivity.java file.

public class DateAndTimeActivity extends AppCompatActivity {
TextView dateAndTimeDisplay;
Calendar currentDateAndTime = Calendar.getInstance();
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.date_time_layout);
dateAndTimeDisplay = findViewById(R.id.dateTimeID);
setTimeAndDateText();

}
. . .

private void setTimeAndDateText() {

dateAndTimeDisplay.setText(DateUtils.formatDateTime
(this, currentDateAndTime.getTimeInMillis(),

DateUtils.FORMAT_SHOW_DATE) + " , " +
DateUtils.formatDateTime(this, currentDateAndTime.getTimeInMillis(),
DateUtils.FORMAT_SHOW_TIME));

}
}

The DateAndTimeActivity view gives the users two options: click on the set date
button or click on the time button. The implementations of the set date and time
buttons are described below.

7.3.2 Set Date Using the DatePicker

When the set date button is clicked, a date picker window is presented to the user to
select a date and press the OK or Cancel button. Once the OK or Cancel button is
pressed, the picker handles the click event (see Fig. 7.5).

The app stores the date and time set by the user after theOK button is clicked. The
date is stored using the OnDateSetListener() method, and the time is stored using the
OnTimeSetListener() method. The implementation of the DatePickerDialog class for
our demo app is shown in Listing 7.6.

292 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

Listing 7.6 Setting date using the DatePickerDialog and OnDateSetListener
classes.

public void onDButtonClicked(View v)
DatePickerDialog.OnDateSetListener dListener =

new DatePickerDialog.OnDateSetListener() {
public void onDateSet(DatePicker view, int yr, int mth, int dy) {

currentDateAndTime.set(Calendar.YEAR, yr);

Fig. 7.5 Date selection and
confirmation popup window

7.3 Date and Time Pickers 293

currentDateAndTime.set(Calendar.MONTH, mth);
currentDateAndTime.set(Calendar.DAY_OF_MONTH, dy);
setTimeAndDateText();

}
};
new DatePickerDialog(this, dListener,

currentDateAndTime.get(Calendar.YEAR),
currentDateAndTime.get(Calendar.MONTH),
currentDateAndTime.get(Calendar.DAY_OF_MONTH)). show();

}

The code listed above has two important segments, the creation of the
DatePickerDialog and the OnDateSetListener objects.

7.3.2.1 The DatePickerDialog Class

The DatePickerDialog class is used to create a date picker dialog object for selecting
a date. The class has multiple constructors and public methods. The constructor that
is used to create the DatePickerDialog object in our demo app is this one:

DatePickerDialog(Context context, DatePickerDialog.
OnDateSetListener listener, int year, int monthOfYear, int dayOfMonth).

Once you instantiate a DatePickerDialog object, you can display it to the user by
calling the show()method. The object instantiation and the call to the show() method
are listed below.

new DatePickerDialog(this, dListener,
currentDateAndTime.get(Calendar.YEAR),
currentDateAndTime.get(Calendar.MONTH),
currentDateAndTime.get(Calendar.DAY_OF_MONTH)).show();

7.3.2.2 The OnDateSetListener Interface

The OnDateSetListener interface is used to handle the user’s click on the “OK”
button, i.e., when the user has finished selecting a date. The OnDateSetListener
interface has a single public method called onDateSet (DatePicker view, int year, int
month, int dayOfMonth) that needs to be implemented. The onDateSet() method is
called when the user is done setting a new date, the OK button is pressed, and the
dialog is closed.

294 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

7.3.3 Set Time Using the TimePicker

Similar to the DatePicker class, the TimePicker class can be used to create a
TimePickerDialog window, and the OnTimeSetListener() interface is used to indi-
cate when the user is done selecting the time, that is, they have clicked on the
OK/Cancel button. The implementation of the TimePickerDialog is shown in Listing
7.7. Note that the time can be configured to be a 24-hour clock or a 12-hour clock
with AM/PM. In the 24-hour format, the TimePicker class shows only hours and
minutes.

Listing 7.7 Setting time using the TimePickerDialog and OnTimeSetListener
classes.

public void onTButtonClicked(View v) {
TimePickerDialog.OnTimeSetListener tListener =

new TimePickerDialog.OnTimeSetListener() {
public void onTimeSet(TimePicker view, int hour, int mint) {

currentDateAndTime.set(Calendar.HOUR_OF_DAY, hour);
currentDateAndTime.set(Calendar.MINUTE, mint);
setTimeAndDateText();

}
};

new TimePickerDialog(this, tListener,
currentDateAndTime.get(Calendar.HOUR_OF_DAY),
currentDateAndTime.get(Calendar.MINUTE), true).show();

}

The code listed above has two important segments, the creation of the
TimePickerDialog and the OnTimeSetListener objects.

7.3.3.1 TimePickerDialog Class

The TimePickerDialog class creates a new date picker dialog to select a time. The
class has multiple constructors and public methods. The constructor that is used to
create the TimePickerDialog object in our demo app is:

TimePickerDialog (Context cxt, TimePickerDialog.OnTimeSetListener call-
Back, int hour, int mint, boolean is24HourView).

Context is an Activity calling the TimePickerDialog class. TimePickerDialog.
OnTimeSetListener is a listener object that sets the hours, the minutes, and the time
format, i.e., int hour, int minute, and boolean is24HourView. The code snippet
below shows how we used the TimePickerDialog class in our demo code.

7.3 Date and Time Pickers 295

new TimePickerDialog(this, tListener,
currentDateAndTime.get(Calendar.HOUR_OF_DAY),
currentDateAndTime.get(Calendar.MINUTE), true).show();

The true parameter in the code indicates that we want a 24-hour view.

7.3.3.2 OnTimeSetListener Interface

The OnTimeSetListener interface is used to indicate that the user has clicked the
“OK” button, i.e., they have finished selecting a time and the dialog window has
been closed. The TimePickerDialog.OnTimeSetListener class has a single public
method called onTimeSet(TimePicker view, int hour, int mint) that needs to be
implemented. We store the time input from the time picker into the calendar object
called dateAndTimeDisplay and call the setTimeAndDateText helper method to
display it.

7.3.3.3 The Calendar Class

In our demo app, we store the time input from the time picker into the calendar
object. Android has a calendar class which is an abstract class. It provides methods
for converting between time instances and has a set of fields such as YEAR,
MONTH, DAY_OF_MONTH, and HOUR. A time instance can be represented by
a millisecond value that is an offset from the epoch January 1, 1970, 00:00:00.000
GMT (Gregorian). The calendar class is locale-sensitive and has a class method
called getInstance to get objects of the calendar type. Calendar’s getInstance method
returns a calendar object whose calendar fields have been initialized with the current
date and time. Here is an example of how to get an object of the calendar type:
Calendar currentDateAndTime = Calendar.getInstance();.

7.3.4 Pickers and Anonymous Classes

For our implementation, we used an anonymous class to define the specialized
listeners for the TimePickerDialog and DatePickerDialog listeners. This approach,
i.e., creating an inner class that implements event handling methods for a compo-
nent, is widely used by developers. The complete code of the DateAndTimeActivity
class is shown in Listing 7.8.

296 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

Listing 7.8 DateAndTimeActivity.java complete code.

import android.app.DatePickerDialog;
import android.app.TimePickerDialog;
import android.os.Bundle;
import androidx.appcompat.app.AppCompatActivity;
import android.text.format.DateUtils;
import android.view.View;
import android.widget.DatePicker;
import android.widget.TextView;
import android.widget.TimePicker;
import java.util.Calendar;
public class DateAndTimeActivity extends AppCompatActivity {

TextView dateAndTimeDisplay;
Calendar currentDateAndTime = Calendar.getInstance();
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.date_time_layout);
dateAndTimeDisplay = findViewById(R.id.dateTimeID);
setTimeAndDateText();

}
public void onTButtonClicked(View v) {

TimePickerDialog.OnTimeSetListener tListener =
new TimePickerDialog.OnTimeSetListener() {

public void onTimeSet(TimePicker view, int hour, int mint) {
currentDateAndTime.set(Calendar.HOUR_OF_DAY, hour);
currentDateAndTime.set(Calendar.MINUTE, mint);
setTimeAndDateText();

}
};
new TimePickerDialog(this, tListener,

currentDateAndTime.get(Calendar.HOUR_OF_DAY),
currentDateAndTime.get(Calendar.MINUTE), true).show();

}
public void onDButtonClicked(View v) {

DatePickerDialog.OnDateSetListener dListener =
new DDatePickerDialog.OnDateSetListener) {

public void onDateSet(DatePicker view, int yr, int mth,
int dy) {

currentDateAndTime.set(Calendar.YEAR, yr);
currentDateAndTime.set(Calendar.MONTH, mth);
currentDateAndTime.set(Calendar.DAY_OF_MONTH, dy);
setTimeAndDateText();

} };
new DatePickerDialog(this, dListener,

currentDateAndTime.get(Calendar.YEAR),
currentDateAndTime.get(Calendar.MONTH),
currentDateAndTime.get(Calendar.DAY_OF_MONTH)).show();

}

7.3 Date and Time Pickers 297

private void setTimeAndDateText() {
dateAndTimeDisplay.setText(

DateUtils.formatDateTime
(this, currentDateAndTime.getTimeInMillis(),
DateUtils.FORMAT_SHOW_DATE) +
" , " +
DateUtils.formatDateTime
(this, currentDateAndTime.getTimeInMillis(),
DateUtils.FORMAT_SHOW_TIME)) ;

}
}

7.4 Scroll Views

In this part of the chapter, we will study an import Android widget, the scroll view. A
scroll view is a view group that allows you to view the hierarchy of widgets placed
within it. We will cover how to create and use a scroll view for Android devices in
this section.

7.4.1 The ScrollView Class

While developing a mobile app, you may have to design a layout that has too many
views and widgets for a simple phone screen. To accommodate such a situation,
Android uses a scrollable view. Using a scroll view, the user can scroll up and down
a list to get to the view of interest. In our ListsApplication demo app, if you click on
the ScrollViewLayout button, you will see a screen with a lengthy list of widgets that
needs to be scrolled down to see them all. A screenshot of a scrollable screen is
shown in Fig. 7.6.

A scroll view may have only one direct child placed within it. To have multiple
views within the scroll view, make the direct child a view group, for example, place a
linear layout inside the scroll view and place additional views within that linear
layout.

Scroll views support vertical scrolling by default. For horizontal scrolling, you
can use the HorizontalScrollView class instead. Never add a recycler view or list
view to a scroll view. Doing so results in poor user interface performance and a poor
user experience.

298 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

7.4.2 Top-Level XML Element for a Scroll View

To use a scroll view, all you need to do is to make the ScrollView element the top-
level XML element, i.e., the wrapper element for your layout. In other words, wrap
ScrollView around the layout content. For example, the scrollview_layout.xml file
in Listing 7.9 shows a linear layout embedded inside the ScrollView element.

Fig. 7.6 An example of a
scrollable view

7.4 Scroll Views 299

Listing 7.9 scrollview_layout.xml where the linear layout is embedded inside
the ScrollView element.

<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/scrollLayout"
android:layout_width="match_parent"
android:layout_height="match_parent" >
<LinearLayout

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical" >
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/name" >

</TextView>
<EditText

android:id="@+id/editName"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:hint="@string/name_hint"
android:inputType="textCapWords"
android:singleLine="true" >

</EditText>
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/email" >

</TextView>
<EditText

android:id="@+id/EmailID"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:hint="@string/email_hint"
android:inputType="textEmailAddress"
android:singleLine="true" >

</EditText>
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/phone" >

</TextView>
<EditText

android:id="@+id/editPhone"
android:layout_width="match_parent"

300 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

android:layout_height="wrap_content"
android:layout_margin="5dp"
android:hint="@string/phone_hint"
android:inputType="phone"
android:singleLine="true" >

</EditText>
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/gender" >

</TextView>
<RadioGroup

android:id="@+id/radioGender"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:orientation="horizontal" >
<RadioButton

android:id="@+id/radioGenderF"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="@string/gender_female" />

<RadioButton
android:id="@+id/radioGenderM"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="@string/gender_male" />

</RadioGroup>
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/profile_date" >

</TextView>
<EditText

android:id="@+id/editText1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:hint="@string/profile_date_hint"
android:inputType="date" >

</EditText>
<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/rate_department" >

</TextView>
<RatingBar

android:id="@+id/ratingBar1"

7.4 Scroll Views 301

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:background="@color/_yellow"/>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/profile_device" >

</TextView>
<ToggleButton

android:id="@+id/toggleButton1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp" />

<CheckBox
android:id="@+id/checkBox1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/profile_demand" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:text="@string/signature">

</TextView>
<EditText
android:id="@+id/signatureBox"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:hint="@string/signature_hint"
android:inputType="textCapWords"
android:singleLine="true"/>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="25dp"
android:text="@string/otherWidgets"
android:textSize="30sp">

</TextView>
<LinearLayout

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">
<Switch

android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_margin="20dp"
android:text="on/off Switch"
android:textSize="25sp"
android:layout_weight="1"/>

<SeekBar

302 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

android:id="@+id/seekBar2"
style="@style/Widget.AppCompat.SeekBar.Discrete"
android:layout_width="0dp"
android:layout_height="52dp"
android:layout_weight="1"
android:max="10"
android:progress="3" />

</LinearLayout>
<LinearLayout

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp" >
<Button

android:id="@+id/buttonSave"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="40dp"
android:layout_weight="1"
android:backgroundTint="@color/graydark"
android:onClick="onSaveClicked"
android:text="@string/button_save_title" >

</Button>
<Button

android:id="@+id/buttonCancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginRight="40dp"
android:layout_weight="1"
android:backgroundTint="@color/graydark"
android:onClick="onCancelClicked"
android:text="@string/button_cancel" >

</Button>
</LinearLayout>

</LinearLayout>
</ScrollView>

7.4.3 Scroll View Activity

The snippet code for the ScrollViewLayoutActivity class used in our
ListsApplication demo app is shown in Listing 7.10. The content view is set to the
scrollview_layout file where ScrollView is used as a root element wrapping a linear
layout. The code includes two callback methods, onCancelClicked() and
onSaveClicked(). These two methods do not do much other than printing messages
to the screen using the toast object.

7.4 Scroll Views 303

Listing 7.10 ScrollViewLayoutActivity.java.

package code.android.abdulrahman.com.layoutapplication;
import android.content.Intent;
import android.os.Bundle;
import androidx.appcompat.app.AppCompatActivity;
import android.view.View;
import android.widget.Toast;
public class ScrollViewLayoutActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.scrollview_layout);

}
public void onGoBackScollViewClicked(View v) {

Intent intent = new Intent(ScrollViewLayoutActivity.this,
MainLayoutActivity.class);

startActivity(intent);
}
public void onSaveClicked(View v) {

Toast.makeText(getApplicationContext(),
getString(R.string.save_message),

Toast.LENGTH_SHORT).show();

Intent intent = new Intent(ScrollViewLayoutActivity.this,
MainLayoutActivity.class);

startActivity(intent);
}
public void onCancelClicked(View v) {

Toast.makeText(getApplicationContext(),
getString(R.string.cancel_message),

Toast.LENGTH_SHORT).show();
Intent intent = new Intent(ScrollViewLayoutActivity.this,

MainLayoutActivity.class);
startActivity(intent);

}
}

7.5 RecyclerView

In this part of the chapter, we will study how to improve the performance of scrolling
through a large list of items. The performance improvement is done using the
RecyclerView class instead of the ListView class. You supply the data and define
how each row in the list should look. The recycler view dynamically creates the
views when they are needed. As the name implies, a recycler view recycles individ-
ual views when an item scrolls off the screen and does not destroy them. Using a
recycler view improves your app’s responsiveness and reduces power consumption

304 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

as well. One popular way of using a recycler view is by implementing the
ViewHolder pattern which will be described later in this section. We will try to
create a list of books where each book is represented by the title, ISBN, author, and
cover image.

7.5.1 Using RecyclerView, Adapter, and ViewHolder Classes

To display a large scrollable list efficiently, you need to use the RecyclerView class.
The main idea behind using recycler views is that once you have a large list of
identical items to scroll up and down, you do not need to recreate the views, i.e.,
re-instantiate the view objects, that are holding data, which is the case with a simple
list view. Instead, you recycle the views, keep already created objects, and update
their content. This is because creating views is a time-consuming task and takes up
memory space.

Recycler views are also a more flexible and advanced way to create lists in
Android compared to list views. For example, while a list view can only arrange
items linearly and in a vertical orientation, a recycler view can arrange items in a
grid, in a horizontal or vertical layout orientation, or in staggered grids. In our
ListsApplication demo app, the RecyclerView button is used to demonstrate the
creation and usage of a recycler view. Remember to use a recycler view only when
you have a large list; otherwise, using a list view is easier to implement. To create a
recycler view for your app, do the following:

1. Create a class for the objects that will be listed in your recycler view.
2. Create a layout file for one row of your objects.
3. Create an Activity to display objects and to listen to events.
4. Create a layout file for the main Activity, step 3, and include the recycler view

in it.
5. Set the layout manager for the RecyclerView view group or container.
6. Create or access data.
7. Link data to the view using the RecyclerView.Adapter class. The RecyclerView.

Adapter class enables the binding of data to the views that are displayed within a
recycler view. The last step involves creating recycler view and ViewHolder
objects.

The steps above are implemented in our demo app using four Java classes and two
layout files. The classes are RecycleViewActivity, Book, arrayBookAdapter, and
ViewHolder, and the layout files are book_row.xml and activity_recyler view.xml.
Below, we will describe the two layout files and the four Java classes.

7.5 RecyclerView 305

7.5.1.1 Create Objects for Rows in the List

You need to create a class to hold data that you would like to display in the list. In
Java, almost everything is an object. The data fields that form the rows of your list
need to be translated to object properties and each row to an object. In our case, we
have created a class called Book. The book class has three properties, title, authors,
and ISBN. The Book.java class is shown in Listing 7.11.

Listing 7.11 Book.java class for the object display in the list.

package code.android.abdulrahman.com.listing;
public class Book {

String title; int isbn; String author;
public Book (String title, int isbn, String author) {
this.title = title;
this.isbn = isbn;
this.author = author;

}
public String getTitle() { return title;}
public void setTitle(String title) { this.title = title;}
public int getISBN() {return isbn; }
public void setISBN(int isbn) { this.isbn = isbn; }
public String getAuthor() {return author;}
public void setAuthor(String author) { this.author = author;}

}

Once the recycler view coding is done, the instances, or objects of the book class,
will be displayed in the recycler view list.

7.5.1.2 A Layout File for Rows in the List

You also need to create a layout file, e.g., book_row.xml, to define how you would
like each book in the list to be displayed. This is a view layout for one row in the list.
You saw the use of a one-row layout file before when you created a layout for a list
view. Review the listview_layout.xml file described earlier in this chapter to recall
how to create and use a one-row layout.

The layout in Listing 7.12, i.e., the book_row.xml file, is a layout for our demo
app to hold properties of the Book objects. It includes three text views for the book
title, author, and ISBN and an image view object to store the book’s cover image.

306 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

Listing 7.12 book_row.xml layout to hold properties of the Book objects.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content">
<ImageView

android:id="@+id/cover_page_imgeID"
android:layout_width="match_parent"
android:layout_height="100dp"
android:layout_weight="1"
android:background="@color/_yellow"
android:layout_marginTop="10dp"
android:layout_marginBottom="10dp"
android:layout_marginLeft="10dp"
android:gravity="center"/>

<TextView
android:id="@+id/row_book_title"
android:layout_width="match_parent"
android:layout_height="100dp"
android:layout_weight="1"
android:background="@color/red"
android:layout_marginTop="10dp"
android:layout_marginBottom="10dp"
android:layout_marginLeft="10dp"
android:gravity="center"/>

<TextView
android:id="@+id/row_book_isbn"
android:layout_width="match_parent"
android:layout_height="100dp"
android:layout_marginLeft="10dp"
android:layout_marginTop="10dp"
android:layout_marginRight="10dp"
android:layout_marginBottom="10dp"
android:layout_weight="1"
android:background="@color/green"
android:gravity="center" />

<TextView
android:id="@+id/row_book_author"
android:layout_width="match_parent"
android:layout_height="100dp"
android:layout_weight="1"
android:background="@color/blue"
android:layout_marginTop="10dp"
android:layout_marginBottom="10dp"
android:layout_marginRight="10dp"
android:gravity="center"/>

</LinearLayout>

7.5 RecyclerView 307

The pictorial looks for one row of the book list would be as shown in Fig. 7.7.
Note that, in the layout file for a row in the recycler view, e.g., book_row.xml, you

need to set the layout_height property for the root element to “wrap_content” and not
match_parent. That is, you should set android:layout_height="wrap_content".
Otherwise, i.e., if match_parent is used, one row in the list will occupy all the screen
space, something you do not want to happen. See 7.12.

7.5.1.3 RecyclerViewActivity Layout

The layout for the RecyclerViewActivity class is activity_recyclerview. This has
been set using the setContentView(R.layout.scrollview_layout) method. The
RecyclerViewActivity class needs a layout to hold the visual portion of the recycler
view along with other view objects if they exist. The code snippet below shows the
layout setting for the RecyclerViewActivity class.

public class RecyclerViewActivity extends AppCompatActivity {
. . .
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_recyclerview);
. . .

}

A snippet of the activity_recyclerview.xml layout file is shown in Listing 7.13.
Note that the layout file contains the recycler view widget, or a container, instead of a
list view.

Listing 7.13 The activity_recyclerview.xml layout file that includes the recy-
cler view widget.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
. . .

<androidx.recyclerview.widget.RecyclerView
android:id="@+id/recycler_id"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:scrollbars="vertical" />

</LinearLayout>

Fig. 7.7 The look of one
row in the list

308 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

Using a recycler view within the layout is the main difference between the layouts
we have seen so far, for example, the layouts used in the last two chapters and the
one shown in Listing 7.13.

The root element of the activity_recyclerview file has three important properties:
width, height, and orientation. These properties and their values are as follows:

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"

Do not confuse the android:layout_height property for the top element in
activity_recyclerview, the layout that holds an entire list, with the same property
for the book_row.xml file, the layout for individual rows. For the latter one, the
android:layout_height value is “wrap_content.”

7.5.1.4 Data Model

For our demo app to be ready to work, we are missing a key ingredient, the actual
data, or book instances. The layout file for an individual row, which we have created
in previous steps, acts as a table header, or an excel file field header. The book
objects, or book instances, are field values, or data. This is what we need to add to the
list rows.

In other parts of this chapter and the previous chapter, we created data for our app
in different ways. In one case, we put all the data in a string array inside an XML file
in the resource folder. That was done when we studied the spinner widget with linear
layouts in the previous chapter. In the list view part of this chapter, we included the
hockey player names inside an array and used it for the list view, i.e., we hardcoded a
shortlist of names. Here, data is created programmatically. An array list is created to
hold book objects. The array creation and its initialization are done inside the
RecyclerViewActivity.java class as follows:

A call is made to the Book class constructor (String, int, String) with the three
parameters below:

1. “title” + i
2. Row_index * 100
3. “ author “ + row_index

The call is made inside a loop 200 times; see the code snippet below:

while (row_index <= number_nubmer_of_rows) {
bookList.add(new Book("title " + row_index, row_index * 100,

"author " + row_index));
row_index++;

}

7.5 RecyclerView 309

An additional property, i.e., book_cover_image of image view type, will be added
to the book properties when binding data to the views. We cannot do it here because
in non-GUI Java code we cannot define a variable to hold an image directly. A single
image can be added to the image view widget using the Android:src entry inside the
layout file. This can be done as follows:

<ImageView
. . .

android:src="@drawable/wlu"/>

In the statement above, wlu is an image file inside the drawable folder and has
been accessed using the at-symbol “@.”

7.5.1.5 RecyclerView.Adapter Class

To complete our app, we need to link the data, the row layout, and the recycler view
together. In other words, we need to connect the following:

1. Recycler view, which has been defined inside the layout
2. R.layout.book_row, a layout for one book row
3. bookList, an array list that holds the data

The RecyclerView.Adapter class does the above three steps for us. It binds
app-specific data to views that are displayed within a recycler view. Therefore, we
need to create a RecyclerView.Adapter class. We have created such a class, and it is
called ArrayBookAdapter. The class declaration is listed below. The complete code
for the ArrayBookAdapter class is presented in Listing 7.14.

public class ArrayBookAdapter extends
RecyclerView.Adapter <ViewHolder> {. . .}

We call the ArrayBookAdapter class constructor to create a RecyclerView.Adapter
object. The constructor takes three parameters: the layout id for a row, the app context,
and the data. It then links the data, the row view, and the recycler view together. The
call to the ArrayBookAdapter class constructor is shown below.

ArrayBookAdapter arrayBookAdapter =
new ArrayBookAdapter(

R.layout.book_row, bookArrayList, getApplicationContext());

So far, we have created an array of books and defined how each row should look,
and the RecyclerView.Adapter class dynamically creates the elements to link the
data and the row view together when they are needed.

Note that our array adapter, i.e., ArrayBookAdapter, is not only a subclass of the
recycler view class but is also an array adapter of the view holder objects. In other
words, array elements are of type view holder. So, we need to explain what role a

310 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

view holder object plays in binding data to the recycler view. This will be discussed
in the next section.

The implementation of the ArrayBookAdapter class is listed below. It includes
implementing the onCreateViewHolder(), onBindViewHolder(), and getItemCount()
methods that you need to override when using the RecyclerView.Adapter class. These
methods are described in more detail in the next section.

Once the ArrayBookAdapter constructor is called, the constructor, in turn,
invokes the onCreateViewHolder method which leads to linking the
activity_recyclerview layout, adapter class, and view holder class together. These
steps are implemented in the ArrayBookAdapter class as shown in Listing 7.14.

Listing 7.14 ArrayBookAdapter.java.

package code.android.abdulrahman.com.listing;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import android.widget.TextView;
import androidx.recyclerview.widget.RecyclerView;
import java.util.ArrayList;
public class ArrayBookAdapter extends

RecyclerView.Adapter <BookViewHolder> {
private int book_row_layout;
private ArrayList <Book> bookList;
private Context cxt;
// Constructor of the class
public ArrayBookAdapter(int book_row_layout_as_id,

ArrayList <Book> bookList, Context context) {
book_row_layout = book_row_layout_as_id;
this.bookList = bookList;
this.cxt = context;

}
// return the size of the list
@Override
public int getItemCount() {

return bookList == null ? 0 : bookList.size();
}
// turning the layout for each row in the list to View object
@Override
public BookViewHolder onCreateViewHolder(

ViewGroup parent, int viewType) {
// cxt = parent.getContext() ;
View myBookview = LayoutInflater.from(parent.getContext())

.inflate(book_row_layout, parent, false);
// create GUI object equivalent to the Book object
BookViewHolder myViewHolder =

7.5 RecyclerView 311

new BookViewHolder(myBookview);
return myViewHolder;

}
// load data to each row in the list
// for simplicity we used one image for all book cover images.
@Override

public void onBindViewHolder(final BookViewHolder holder,
final int listPosition) {

TextView abook = holder.title;
TextView isbn = holder.isbn;
TextView author = holder.author;
// showing book on screen
author.setText(bookList.get(listPosition).getAuthor());
abook.setText(bookList.get(listPosition).getTitle());
isbn.setText("ISBN#: " + bookList.get(listPosition).getISBN());

// icon is initialized here not when ArrayBook initialized.
// this demonstrates the Book Object and GUI book object can be
// different.
// presenting Book as TextView on the Android device Screen is very
much

// like creating toString() method for printing,
// you can add or remove properties based on the need.
ImageView coverImage = holder.coverImage;
Bitmap icon = BitmapFactory.decodeResource(cxt.getResources(),

R.drawable.fig1);
coverImage.setImageBitmap(icon);

}
}

You may have noticed that we are passing app context, i.e.,
getApplicationContext(), to the adapter class, i.e., to the ArrayBookAdapter
constructor. We use context inside the adapter class to access app resources, e.g.,
R.drawable.wlu image. Passing context to the adapter class is one way to access the
app’s resources. This is because the array adapter class is not a subclass of an
Activity class.

Another way to access to the context would be to use the parent.getContext();
method inside the OnCreateViewHolder method as follows:

@Override
publicViewHolder onCreateViewHolder (ViewGroup parent, int viewType) {

cxt = parent.getContext();
. . .

}

You might have also noticed that we used one image for all book cover images.
This is done to simplify the presentation. In a commercial application, image IDs can
be used to retrieve individual book cover images.

312 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

7.5.2 RecyclerViewActivity

Before running the ListsApplication demo app, let us recall what has been
implemented in the RecyclerViewActivity class. We will then explain some addi-
tional concepts including view holder’s role in binding data to the recycler view to
complete the implementation.

1. Initializing the recycler view

The recycler view field of the RecyclerViewActivity class is initialized. This is
done using the RecyclerView element that has been included in the
activity_recyclerview_layout file. Both the recycler view definition and the initial-
ization statement are shown below, respectively:

<androidx.recyclerview.widget.RecyclerView
android:id="@+id/recycler_id"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:scrollbars="vertical" />
recyclerView = findViewById(R.id.recycler_id);

2. Setting LayoutManager to the RecylerView

An important step in coding the RecyclerViewActivity class is setting the layout
manager for the recycler view. In other words, you need to specify to the recycler
view what type of layout is used for each row in the list, i.e., how rows are organized
on the recycler view list.

Since we are using a linear layout to display our rows, i.e., book_row.xml uses a
liner layout, we set the recycler view’s layout manager to a linear layout; see the code
statement below:

recyclerView.setLayoutManager(new LinearLayoutManager(this));

The layout manager is responsible for:

• Measuring and positioning book views within a recycler view
• Determining the policy for when to recycle book views that are no longer visible

to the user

Layout manager can be set to standard vertically scrolling lists, uniform grids,
staggered grids, horizontally scrolling collections, etc. As mentioned earlier, this is
the other advantage of using the recycler view over a simple list.

3. Assigning Adapter class to the RecyclerView

To enable attaching data to the list, after creating the recycler view, we need to
assign an adapter to it. In this case, we need to assign ArrayBookAdapter to the
recycler view. The adapter setting is done as follows:

7.5 RecyclerView 313

recyclerView.setAdapter(arrayBookAdapter);

The recycler view has many methods to interact with data in the list. These
include:

1. Adding to the list
2. Removing from the list
3. Setting item animator to handle animations involving changes to the items in the

recycler view
4. Etc.

The three steps described above are shown inside the RecyclerViewActivity class
in Listing 7.15, and they are numbered:

Listing 7.15 RecyclerViewActivity.java.

package code.android.abdulrahman.com.listing;
import android.os.Bundle;
import androidx.appcompat.app.AppCompatActivity;
import androidx.recyclerview.widget.LinearLayoutManager;
import androidx.recyclerview.widget.RecyclerView;
import java.util.ArrayList;
public class RecyclerViewActivity extends AppCompatActivity {

RecyclerView recyclerView;
private final int number_nubmer_of_rows = 200;
int row_index = 1;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_recyclerview);
ArrayList <Book> bookList = new ArrayList <Book> ();
// Populating Array book
while (row_index <= number_nubmer_of_rows) {

bookList.add(new Book (
"title " + row_index,
row_index * 100,
"author " + row_index));

row_index++;
}

ArrayBookAdapter arrayBookAdapter =
new ArrayBookAdapter(R.layout.book_row,

bookList, getApplicationContext());
recyclerView = findViewById(R.id.recycler_id); // 1.
recyclerView.setLayoutManager(new LinearLayoutManager(this)); // 2.
/recyclerView.setAdapter(arrayBookAdapter); // 3.

}
}

314 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

7.5.3 Adapter and ViewHolder

In the section about linking the data, the row layout, and the recycler view together,
we mentioned using the ArrayBookAdapter and ViewHolder objects. Let us elabo-
rate more about the role of these objects in making our ListsApplication demo
app work.

7.5.3.1 ArrayAdapter

An important step in creating the recycler view is the creation of the adapter class. In
our app, what puts everything together is the ArrayBookAdapter class. It adds data
to the recycler view and uses the ViewHolder objects to display item objects. The
ArrayBookAdapter class is created by extending the RecyclerView.Adapter class as
follows:

public class ArrayBookAdapter extends
RecyclerView.Adapter <ViewHolder> {. . .}

To be able to use the RecyclerView.Adapter<ViewHolder> class, we need to
override the following three methods:

1. onCreateViewHolder(ViewGroup parent, int viewType)
2. onBindViewHolder(RecyclerView.ViewHolder holder, int position)
3. getItemCount()

The implementation of the three methods is described below.

7.5.3.2 onCreateViewHolder

The onCreateViewHolder() method is called by the layout manager when the
RecyclerViewActivity class creates an ArrayBookAdapter class to instantiate a
new view holder instance. A layout manager class is responsible for measuring
and positioning each row within a recycler view layout. It is also responsible for
recycling rows that are no longer visible to the user. There are two things to be noted
about the onCreateViewHolder() method:

1. It is used to create and initialize the view holder objects.
2. The onCreateViewHolder callback method is called when the adapter,

ArrayBookAdapter, is assigned to the recycler view and when the user scrolls
the list up and down creating view holder objects for books.

7.5 RecyclerView 315

The code snippet for the onCreateViewHolder() method is shown in 7.16.

Listing 7.16 onCreateViewHolder method implementation.

// turning the layout for each row in the list to view object
@Override
public ViewHolder onCreateViewHolder(
ViewGroup parent, int viewType) {
View myBookview = LayoutInflater.from(parent.getContext())

.inflate(book_row_layout, parent, false);
BookViewHolder myViewHolder =

new BookViewHolder(myBookview);
return myViewHolder;

}

This method inflates the Book object, i.e., it takes a Book definition from the
layout file and creates a corresponding view object, a view holder object, from it and
returns it. The Book object inflation is done using the LayoutInflater class and its
inflate method.

7.5.3.3 LayoutInflater and Adapter Class

The LayoutInflater class transforms a layout XML file into its corresponding view
object. To access the LayoutInflater class, you can call the getLayoutInflater()
method inside an Activity or call the getSystemService() method from the context
class. For example, the statement below returns a LayoutInflater object:

LayoutInflater.from(parent.getContext());

The XML transformation to the corresponding view object is done using the
inflatemethod. The use of the LayoutInflater class with the adapter class in our demo
code is done as follows. Here is the creation statement (a call to the
ArrayBookAdapter constructor):

ArrayBookAdapter arrayBookAdapter = new ArrayBookAdapter(
R.layout.book_row, bookList, getApplicationContext());

Note that, in the code statement above, you can use this or
RecyclerViewActivity.this in place of getApplicationContext().

In the RecyclerViewActivity class, when we created an ArrayBookAdapter
object, i.e., when we created a RecyclerView.Adapter object, we passed two
parameters.

316 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

1. R.layout.book_row; is an id of the resource layout, i.e., an id of book_row.xml
file.

2. bookList; is an ArrayList of the data.

Inside the ArrayBookAdapter class, the id was saved as an int in the
book_row_layout variable. That is, the incoming parameter book_row_layout_as_id
is assigned to an int variable, book_row_layout. See the code snippet below.

public ArrayBookAdapter(int book_row_layout_as_id,
ArrayList <Book> bookList, Context context) {

book_row_layout = book_row_layout_as_id;
this.bookList = bookList;
this.cxt = context;

}

The onCreateViewHolder method of the ArrayBookAdapter class uses the
LayoutInflater object to turn book_row_layout into a view object as follows:

View myBookview = LayoutInflater.from(
parent.getContext()).inflate(book_row_layout, parent, false);

In other words, the layout inflater object turns a layout XML file into its
corresponding view object using the layout id received from the ArrayBookAdapter
constructor.

7.5.3.4 The Inflate Method

The layout inflater class has more than one version of the inflate method which is
used to transform the XML file to its corresponding view object. These include:

public View inflate (int resource, ViewGroup root);
public View inflate (XmlPullParser parser, ViewGroup root);
public View inflate (XmlPullParser parser, ViewGroup root,

boolean attachToRoot);
public View inflate (int resource, ViewGroup root, boolean attachToRoot);

We used the last one in our demo app. We called the inflate method as follows:

inflate(book_row_layout, parent, false);

There are a few things you should know about the three parameters of the inflate
method we used:

The third parameter of the inflate method, i.e., attachToRoot, is about whether or
not to add the view referenced in the first parameter of the method to the second
parameter. For the recycler view, the attach to root parameter should be false. This is
because the recycler view, and not the developer, is responsible for determining

7.5 RecyclerView 317

when to inflate, i.e., instantiate, the list view and to attach the views to it. In general,
the attach to root parameter should be false anytime the developer is not responsible
for adding a view to a view group. More on the layout inflater class and the inflate
method will come when we study Fragments, a modular part of an activity.

7.5.3.5 ViewHolder

The last thing to do is to create the view holder class. A view holder class describes
an item view, in our case a book view, and metadata about its place within the
recycler view. The constructor for the view holder takes a view as an input param-
eter. See the statement below:

ViewHolder myViewHolder = new ViewHolder(myBookview);

Remember that the view object passed to the view holder constructor is created
from the layout book_row.xml file. Review the code for the onCreateViewHolder
method to see how the call to the ViewHolder constructor was made inside that
method after inflating the book layout.

Receiving view objects makes it easy for the three text view attributes of the view
holder class to be initialized using the findViewById(R.id.TextViewID) method.
The code for the view holder class is shown in Listing 7.17.

Listing 7.17 ViewHolder.java class.

package code.android.abdulrahman.com.listing;
import android.util.Log;
import android.view.View;
import android.widget.ImageView;
import android.widget.TextView;
import androidx.recyclerview.widget.RecyclerView;
public class BookViewHolder extends RecyclerView.ViewHolder

implements View.OnClickListener {
// to initialize the views of rows
public TextView title;
public ImageView coverImage;
public TextView isbn;
public TextView author;

public BookViewHolder(View bookView) {
super(bookView);
coverImage = bookView.findViewById(R.id.cover_page_imgeID);
title = bookView.findViewById(R.id.row_book_title);
isbn = bookView.findViewById(R.id.row_book_isbn);
author = bookView.findViewById(R.id.row_book_author);
bookView.setOnClickListener(this);

}

318 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

@Override
public void onClick(View view) {

Log.d("onclick", "onClick "
+ getLayoutPosition() + " " + title.getText());

}
}

7.5.3.6 onBindViewHolder

The onBindViewHolder method is called by the recycler view. It is called when the
recycler view wants to display data at a specified position. The method updates the
content of the view item to reflect the item at the given position.

Presenting a book object as TextViews on the Android device screen is similar to
creating a toString() method to print an object. This enables the book object and its
GUI representation on the screen to be different, i.e., to add or remove properties
based on your needs. Listing 7.18 is the code snippet for onBindViewHolder:

Listing 7.18 onBindViewHolder method implementation.

@Override
public void onBindViewHolder(final BookViewHolder holder,

final int listPosition) {
TextView abook = holder.title;
TextView isbn = holder.isbn;
TextView author = holder.author;

// showing book on screen
author.setText(bookList.get(listPosition).getAuthor());
abook.setText(bookList.get(listPosition).getTitle());
isbn.setText("ISBN#: " + bookList.get(listPosition).getISBN());

// icon is initialized here not when ArrayBook initialized.
// this demonstrates the Book object and GUI book object can be different.
// presenting Book as TextView on the Android device screen is very much
// like creating toString() method for printing,
// you can add or remove properties based on the need.

ImageView coverImage = holder.coverImage;
Bitmap icon =

BitmapFactory.decodeResource(cxt.getResources(), R.drawable.fig1);
coverImage.setImageBitmap(icon);

}

7.5 RecyclerView 319

7.5.3.7 getItemCount()

The getItemCount method returns the size of the collection, ArrayList in our case,
which contains the books we want to display. See the code snippet in Listing 7.19.

Listing 7.19 getItemCount method implementation.

// get the size of the list
@Override
public int getItemCount() {

return bookList == null ? 0 : bookList.size();
}

7.5.3.8 Recycler View Class Diagram

Figure 7.8 is the class diagram for the recycler view part of our demo app. The
diagram shows that the ArrayBookAdapter class is a RecyclerViewAdapter class. It
also shows that the ArrayBookAdapter class implements three methods, the
getItemCount, onCreateViewHolder, and OnBindViewHolder methods. Similarly,
the BookViewHolder class is a subclass of the view holder class and implements
an OnClickListener interface. The class diagram also shows that the

Fig. 7.8 Classes involved in using a recycler view container to display a list

320 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

RecyclerViewActivity class is an AppCompatActivity class and that the Book class
and the ArrayBookAdapter class are two separate classes.

7.5.4 Using Recycler View with Older SDKs

Using a recycler view requires a compileSdkVersion and/or a targetSdkVersion of
29 or greater. If you choose to use a compileSdkVersion and/or a targetSdkVersion
less than 29, you need to declare the following dependency inside the build.gradle
file of your project.

'com.android.support:recyclerview-v7:26.1.0' or a newer version.

The support:recyclerview version you are going to use depends on the target
device you are building. Below is the code snippet for a build.gradle file where the
recycler view library has been added to the list of dependencies:

dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation 'com.android.support:appcompat-v7:26.1.0'
implementation 'com.android.support.constraint:constraint-
layout:1.1.3'
testImplementation 'junit:junit:4.12'
implementation 'com.android.support:recyclerview-v7:26.1.0'
compile 'com.android.support:recyclerview-v7:26.1.0'
androidTestImplementation('com.android.support.

test.espresso:espresso-core:3.0.2', {
exclude group: 'com.android.support', module: 'support-annotations'

})

For targetSdkVersions 29 and higher, you need to include this statement in your
build.gradle file:

implementation 'androidx.recyclerview:recyclerview:1.1.0'.

You can migrate your older code to use the androidX library. Using Android
Studio, click on the refactor button from the menu bar, and press migrate to
AndroidX.

7.5 RecyclerView 321

Now, we have completed the creation of the recycler view in our demo app. The
screenshots of our demo app using the recycler view are provided in Figs. 7.8 and
7.9. Two hundred rows are created for this app. The user can easily scroll up and
down. The snapshots show the beginning, middle, and end of the list, respectively;
see Figs. 7.9 and 7.10.

Fig. 7.9 The screenshot of
the top part of the recycler
view list

322 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

7.6 Chapter Summary

In this chapter, we studied the instantiation and usage of date and time pickers, list
views, scroll views, and recycler views. We also created an app to go with this
chapter to help you learn how to code them. For recycler views, we described in
detail how the recycler view adapter and view holder classes are created.

Implementing a recycler view involves more than creating a simple list, but it is
more efficient when created. The sequence of major steps, or method calls, involved
in the creation of recycler views are setLayoutManager() ! set Adapter
(RecyclerViewAdapter) ! onCreateView ! Viewholder ! onBindViewHolder.
You also need to create a data object, a layout for a row in the list, and a subclass of
the view holder class. When the user scrolls up and down the list, the recycler view

Fig. 7.10 The screenshot of the middle and end of the recycler view list

7.6 Chapter Summary 323

triggers an event to update the content of the rows using the position in the list. All
these steps and methods are described in this chapter in detail.

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been covered
in this chapter. To test your knowledge and your understanding of this chapter, you
should be able to describe each of the concepts below in one or two sentences.

• ArrayAdapter
• Date picker
• Inflate
• LayoutInflater
• Layout manager
• ListActivity
• ListView
• onBindViewHolder
• onCreateViewHolder
• OnItemClickListener
• RecylerView
• ScrollView
• Time picker
• ViewHolder

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

RecyclerView.Adapter, [online] Available, https://developer.android.com/refer
ence/androidx/recyclerview/widget/RecyclerView.Adapter

LayoutInflater, [online] Available, https://developer.android.com/reference/
android/view/LayoutInflater

Pickers, [online] Available, https://developer.android.com/guide/topics/ui/con
trols/pickers

ListView, [online] Available, https://developer.android.com/reference/android/
widget/ListView

ListActivity, [online] Available, https://developer.android.com/reference/
android/app/ListActivity

RecyclerView, [online] Available, https://developer.android.com/jetpack/
androidx/releases/recyclerview

ScrollView, [online] Available, https://developer.android.com/reference/
android/widget/ScrollView

ViewHolder, [online] Available, https://developer.android.com/reference/
androidx/recyclerview/widget/RecyclerView.ViewHolder

324 7 ListView, ScrollList, Date and Time Pickers, and RecyclerView

https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView.Adapter
https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView.Adapter
https://developer.android.com/reference/android/view/LayoutInflater
https://developer.android.com/reference/android/view/LayoutInflater
https://developer.android.com/guide/topics/ui/controls/pickers
https://developer.android.com/guide/topics/ui/controls/pickers
https://developer.android.com/reference/android/widget/ListView
https://developer.android.com/reference/android/widget/ListView
https://developer.android.com/reference/android/app/ListActivity
https://developer.android.com/reference/android/app/ListActivity
https://developer.android.com/jetpack/androidx/releases/recyclerview
https://developer.android.com/jetpack/androidx/releases/recyclerview
https://developer.android.com/reference/android/widget/ScrollView
https://developer.android.com/reference/android/widget/ScrollView
https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView.ViewHolder
https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView.ViewHolder

Chapter 8
Toolbar, Menu, Dialog Boxes, Shared
Preferences, Implicit Intent, and Directory
Structure

What You Will Learn in This Chapter
By the end of this chapter, you should be able to:

• Create toolbars for putting menus at the top of your app Activity
• Create menus, dd them to the toolbar, and handle item selection action
• Create and use contextual and popup menus
• Create dialog boxes
• Use common Intent to access the camera
• Use Android data storage
• Create shared preferences
• Use and access internal and external file storage
• Use Android Device File Explorer

Check Out the Demo Project
Download the demo app,MenubarAndMore.zip, specifically developed to go with
this chapter. I recommend that you code this project up from the notes rather than
just opening the project in Android Studio and running it; however, if you want to
run the code first to get a sense of the app, please do so. The code is thoroughly
explained in this chapter to help you understand it. We follow the same approach to
all other chapters throughout the book. The app’s code will help you comprehend the
additional concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_8

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_8#DOI

8.1 Introduction

In this chapter, we will study the creation of toolbars, how to add menus to toolbars,
the creation of dialog boxes, and how to access the camera app in your code using
implicit intent. We will also study the directory structure and how to store data in
apps; for that, we will study shared preferences and file creation in the app’s internal
and external storages.

8.2 More User Interface

Actionbars, toolbars, menus, and dialog boxes are important components of the user
interface. In this part of the chapter, we will learn how to create toolbars and menus
and how to add items to menus and menus to toolbars. We will also learn how to
create dialog boxes to get user input and display information to the user.

8.2.1 ActionBar

All activities in Android have an actionbar associated with them. It is a menu, but
you can associate icons with the menu items. It was introduced in Android version
3. Previously, Android had a dedicated hardware button to make the menu appear.

8.2.2 Toolbar

The toolbar was introduced in Android Lollipop, the API 21 release, and is the
spiritual successor of the actionbar. The toolbar is a view group that can be placed
anywhere inside your XML layouts. A toolbar’s appearance and behavior can be
more easily customized than an actionbar’s. To use the toolbar class in your app, you
need to do the following:

1. Add the androidx.appcompat library to your project build file.
2. Make your activity extend AppCompatActivity.
3. Specify a theme with no actionbar.
4. Add a toolbar element to the activity’s layout.
5. Set the activity’s toolbar using the setSupportActionBar method.

Below, we will describe the steps you need to follow to add a toolbar to your app.

326 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

8.2.3 Add androidx.appcompat Library to the Project

Adding a library to your app to support the toolbar creation involves two actions.

8.2.3.1 Add the Support Library to the build.gradle

To be able to create a toolbar for your app, you need to add the support library to the
dependencies section of your build.gradle file. That is, add the below line of code to
your build file.

implementation 'androidx.appcompat:appcompat:1.0.0'.

An example of a build.gradle file with the support library is shown in Listing 8.1.

Listing 8.1 build.gradle.

dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation 'androidx.appcompat:appcompat:1.0.0'
implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
testImplementation 'junit:junit:4.12'
implementation 'androidx.recyclerview:recyclerview:1.1.0'
implementation 'com.google.android.material:material:1.0.0'
androidTestImplementation(
'androidx.test.espresso:espresso-core:3.1.0', {
exclude group: 'com.android.support', module: 'support-annotations'
})

}

The version of the support library depends on the compileSdkVersion your app is
using. Below is an example of a build setting where the compileSdkVersion is set to
26. This means that you would like to compile your app code with the SDK version
26. The compile SDK setting is done inside the build.gradle file of your app
(Table 8.1).

Here is another example where the compileSdkVersion is set to 29 (Table 8.2).
Note that, if you compile your code with an SDK version of 29 or up, i.e., you

specified the compileSdkVersion to 29 or up in your gradle build file, you need to
make sure that you are using androidx.appcompat to compile your code correctly. If
you inherit code that uses older libraries, such as android.support.v7.widget.Toolbar,
replace the library in your code with androidx.appcompat.widget.Toolbar. You can
update older versions of code in Android Studio by clicking on refactor! migrate to
AndroidX.

8.2 More User Interface 327

8.2.3.2 Import Toolbar

The second action that you need to do to support the toolbar creation is to import the
toolbar class from the Android library into your code. An example of importing a
toolbar class into your code is given below.

androidx.appcompat.widget.Toolbar;
public class MainActivity extends AppCompatActivity {. . .}

When using Android Studio, you can import an Android class into your code by
pressing the Alt and Enter keys together.

Table 8.1 An example of the build.gradle setting where compileSdkVersion is set to 26

android {
compileSdkVersion 26
defaultConfig {

applicationId "code.android.abdulrahman.com.recyclerviewdemo"
minSdkVersion 25
targetSdkVersion 26
versionCode 1
versionName "1.0"
testInstrumentationRunner

"android.support.test.runner.AndroidJUnitRunner"
}

Table 8.2 An example of the build.gradle setting where compileSdkVersion is set to 29

android {
compileSdkVersion 29
defaultConfig {

applicationId "code.android.abdulrahman.com.menubarAndMore"
minSdkVersion 26
targetSdkVersion 26
versionCode 1
versionName "1.0"
testInstrumentationRunner

"androidx.test.runner.AndroidJUnitRunner"
}

328 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

8.2.4 Extending AppCompatActivity

Make your activity class extend the AppCompatActivity class as shown below:

... In MyActivity.java. . .
public class MyActivity extends AppCompatActivity {// ...}

AppCompatActivity is a class from the v7 appcompat support library and is now
supported by the AndroidX library.

The support libraries are back-compatibility libraries that enable some features of
recent versions of Android on older devices. For example, it enables the use of a
toolbar for older devices using versions of Android as old as Android 2.1 which uses
API level 7.

During app development, if you set the app’s minSdkVersion to a low version
that does not support the new features in newer APIs, use the support library to
enable those features.

Note that starting with Android 9.0 (API level 28), there is a new support library
called AndroidX. This new version of the support library contains the existing
support library and also includes the latest components. You can still continue to
use the older versions of the support libraries, those packaged as android.support.*.
However, Google has all the new libraries in the AndroidX package. We recommend
using the AndroidX package for all of your projects.

8.2.5 Specify a Theme with NO ActionBar

Once you have decided to use a toolbar in your app, you have to specify that you are
not going to use an actionbar. You need to specify that inside your app’s manifest
file. This is required because a toolbar is an extension/replacement of the actionbar.
To do so, you need to set your app’s theme to a theme with no actionbar. This step is
done inside the manifest file using the android:theme attribute inside the applica-
tion element:

android:theme ="@style/MyNoActionBarTheme">

An example, where android:theme is set to a no actionbar style, is shown in
Listing 8.2.

8.2 More User Interface 329

Listing 8.2 AndroidManifest.xml setting app theme to NoActionBar.

<?xml version="1.0" encoding="utf-8"?>
<manifest >

<application
. . .
android:theme="@style/MyNoActionBarTheme">
. . .

</application>
</manifest>

You also need to make sure that the no actionbar theme you are going to use is
defined inside the style file. An example where the app theme defined inside the style
file, i.e., the styles.xml file inside the res folder, that has no actionbar is shown
below:

<style name="MyNoActionBarTheme"
parent="Theme.AppCompat.Light.NoActionBar">

8.2.6 Adding Toolbar Element to the Layout

The last step in the toolbar development is to add the toolbar element to the activity
layout XML file. Listing 8.3 is an example of the toolbar element declaration inside
the layout file:

Listing 8.3 activity_main.xml layout file with Toolbar element.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout . . .>
. . .

<androidx.appcompat.widget.Toolbar
android:id="@+id/my_toolbar"
android:layout_width="match_parent"
android:layout_height="?attr/actionBarSize"
android:background="@color/colorPrimary"
/>

/LinearLayout>

Now, it is time to go back to the MainActivity to put the nuts and bolts together.
See the code snippet in Listing 8.4 in which the toolbar object, myToolbar, has been
initialized and the activity’s toolbar has been set.

330 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

Listing 8.4 MainActivity.java where the toolbar is initialized and set.

import androidx.appcompat.app.AppCompatActivity;
import androidx.appcompat.widget.Toolbar;
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
. . .
Toolbar myToolbar = findViewById(R.id.my_toolbar);
setSupportActionBar(myToolbar);

. . .
}

The activity class has a method called setSupportActionBar that you can use to set
a toolbar for the activity. By now, the toolbar is integrated with the activity but is
empty. The next step is to create a menu and menu items and to add the menu to the
toolbar.

8.2.7 Menu Interface

Menus are commonly used in many applications. They provide a familiar and
consistent user experience. You need menus to enable users to do actions and
have options in your activities. You can create three types of menus, and they are
options menu and app bar, context menu and contextual action mode, and popup
menu. We will study these menu types and give examples of how to create them.

8.2.8 Options Menu and App Bar

The options menu and app bar is a collection of menu items for an activity. Using the
options menu, you use the app bar to present common user actions. It’s where you
should place actions like Search, Compose an Email, and Settings.

8.2.8.1 Menu Inflater and Click Handling

The menu is a Java interface that can be used to manage menu items. By default,
every activity supports a menu of actions or options. You can add items to the menu
and handle clicks on menu times.

You can add menu items by inflating an XML file into the menu using the
MenuInflater class and handle item clicks by implementing the

8.2 More User Interface 331

onOptionsItemSelected(MenuItem) and onContextItemSelected(MenuItem)
methods. Below, we will see an example of how to use the menu inflater class and
the onOptionItemSelected method.

8.2.8.2 Define Menu XML File

One way to define the menu is by creating an XML file inside the project’s
res/menu/ directory and including the following elements in the file.

<menu>
Defines a menu, which is a container for menu items. That is, a<menu> element

must be the root element for the file and can hold one or more<item> and<group>
elements.

<item>
Represents a single item in a menu. <Item> elements may contain a nested

<menu> element in order to create a submenu.
<group>
Invisible containers for <item> elements. It allows you to categorize your items

so that they share properties such as an active state and visibility.<group> elements
are an optional element.

8.2.8.3 Menu Item Properties

The menu item has many important properties. These include id, icon, title,
orderInCagetory, and showAsAction. These properties are described below.

(a) android:id: this is a unique id to the item. It is referenced by the application
when used.

(b) android:icon: this is a drawable resource, i.e., a PNG file to be used as a menu
item icon.

(c) android:title: this is a text for the overflow menu.
(d) android:orderInCategory: this attribute takes an int value and indicates the

item’s importance. Since items are drawn in order of importance, the value
dictates the order in which the menu items will appear within the menu when
it is displayed. The lower the int value, the more important the item becomes.

(e) app:showAsAction: this attribute is used to specify whether or not the icon
should be drawn. The attribute values are always, ifRoom, and never. One of the
three options (always, ifRoom, never) needs to be assigned to the property.
Based on the selected option, the icon would be drawn or not. More detail on the
valid values for the showAsAction attribute is provided below.

8.2.8.4 orderInCategory Attribute

The attribute showAsAction can have one of the following values.

332 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

1. ifRoom: Only place this item in the app bar if there is room for it. If there is no
room for all the items marked “ifRoom,” the items with the lowest
orderInCategory values are displayed as actions, and the remaining items are
displayed in the overflow menu.

2. withText: Include the title text (defined by android:title) with the action item.
You can include this value along with one of the others as a flag set, by separating
them with a pipe-symbol |.

3. Never: Never place this item in the app bar. Instead, list the item in the app bar’s
overflow menu. This is another way to say put the item in the overflow menu.

4. Always: Place this item in the app bar. Avoid using this unless the item must
always appear in the toolbar. Setting multiple items to always can result in them
overlapping with other UIs in the app bar.

The code snippet in Listing 8.5 shows the menu and menu items used in our
demo app.

Listing 8.5 main_activity_actions.xml layout file for declaring a menu.

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
tools:context=".MainActivity">

<item android:id="@+id/action_one"
android:title="One"
android:icon="@drawable/facebook"
android:orderInCategory="101"
app:showAsAction="always" />
<item android:id="@+id/action_two"
android:title="Two"
android:icon="@drawable/twitter"
android:orderInCategory="102"
app:showAsAction="always" />
<item android:id="@+id/action_three"
android:title="Three"
android:icon="@drawable/setting"
android:orderInCategory="103"
app:showAsAction="always" />
<item android:id="@+id/action_about"
android:title="About"
android:orderInCategory="105"
app:showAsAction="never" />

</menu>

Values 101, 102, 103, and 105 represent the menu items’ order from left to right.
Figure 8.1 summarizes what we have discussed so far about menu creation.

8.2 More User Interface 333

8.2.8.5 Methods from the Activity Class for Menu

Below, we describe two activity methods, onCreateOptionsMenu and
onMenuItemSelected, that you can use when dealing with the menu. You can see a
full implementation of these two methods in the MainActivity source code of our
demo app.

8.2.8.5.1 onCreateOptionsMenu(Menu menu)

To specify the options menu for an activity’s toolbar that has been defined inside the
res/menu/filename.xml file, you need to implement the onCreateOptionsMenu()
callback method. In this method, you inflate the menu resource (res/menu/
filename.xml) into the menu passed to the method which will then be displayed in
the toolbar. The menu inflation is done using the MenuInflater class and its inflate
method. The onCreateOptionsMenu method is automatically called by the activity to
initialize the contents of the activity’s standard options menu. This is only called
once, and the default implementation populates the menu with standard system menu
items. For our example, we implemented the onCreateOptionsMenu inside the
MainActivity.java class as follows:

@Override
public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu items for use in the Toolbar
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.main_activity_actions, menu);
return true;

}

Fig. 8.1 Menu XML file inside the Data Studio showing the elements involved in the Menu
creation

334 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

8.2.8.5.2 onMenuItemSelected(MenuItem menuItem)

The onMenuItemSelected(MenuItem menuItem) method needs to be overwritten.
This function responds to an item on the menu being selected. A code snippet of our
implementation for the second method is shown in Listing 8.6.

Listing 8.6 A onMenuItemSelected() method implementation.

@Override
public boolean onOptionsItemSelected(MenuItem mi) {

int id = mi.getItemId();
switch (id) {

case R.id.action_one:
snackbar.show();
break;

case R.id.action_two:
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setTitle("Do you want to go back?");
. . .
break;

case R.id.action_three:
AlertDialog.Builder customDialog =

new AlertDialog.Builder(this);
. . ..
break

case R.id.action_about:
Toast.makeText(this, "Version 1.0," +

" Abdul-Rahman Mawlood-Yunis",
Toast.LENGTH_LONG).show();

}
return true;

}

8.2.8.6 Toolbar Summary

In summary, you need to follow the steps below to add a toolbar to your app:

1. Add a toolbar to your activity layout.
2. In the activity’s OnCreate() method, get the toolbar, and call the setActionToolbar()

method to set the toolbar for your activity.
3. Create a menu XML file with the items in the res/menu/ directory.
4. Inside the onCreateOptionsMenu() method, inflate the menu resource using the

MenuInflater class and inflate method. The onCreateOptionsMenu() method is
invoked automatically by the activity.

5. Handle each menu item in the onOptionsItemSelected() method.

Figures 8.2 and 8.3 show the menu and toolbar we have created for our demo app.

8.2 More User Interface 335

You have probably noticed that we have used the snackbar.show() method in our
code. This is another Android widget used to display a short message at the bottom of
the screen to provide feedback to the user. In our demo app, if you click on the heart
icon on the menu bar, a snackbar notification will appear at the bottom of the screen.

Fig. 8.2 Toolbar with four
items

Fig. 8.3 App snapshot with
Toolbar on the top

336 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

8.2.9 Context Menu

A context menu is a floating menu that appears when the user performs a long click
on a view. It provides actions or options that affect the selected content. The
contextual action mode displays action items that affect the selected content in a
bar or window at the top of the screen and allows the user to select multiple items.

To create a floating context menu, you need to do three things. First, you need to
register the view object to which the context menu should be associated with by
calling this method registerForContextMenu() and pass to it a view object.

If your activity uses a list view or a grid view (we use a list view in our demo app)
and you want each item in the list to provide the same context menu, register the
context menu for the list view or grid view. This is can be done like this:
registerForContextMenu(getListView());.

Second, you need to implement the onCreateContextMenu() method in your
activity. When the registered view receives a long-click event, the system calls the
onCreateContextMenu() method. This is where you define the menu items, usually
by inflating a menu resource file. The code snippet below shows the
onCreateContextMenu implementation where the menu file is inflated. The menu
file is called context_menu and is saved inside the res/menu folder of the project.

@Override
public void onCreateContextMenu(ContextMenu menu, View v,

ContextMenu.ContextMenuInfo menuInfo) {
super.onCreateContextMenu(menu, v, menuInfo);
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.context_menu, menu);

}

The MenuInflater class allows you to inflate the context menu from a menu
resource file. An example of a menu resource is shown in Listing 8.7. The
onCreateContextMenu callback method parameters include the view object that
the user selected, a context menu object, and a context menu info object. The latter
provides additional information about the item selected. If your activity has several
views that each provides a different context menu, you can use these parameters to
determine which context menu to inflate.

Listing 8.7 An example of a menu context file.

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="@color/gray"
android:padding="10dp">
<item android:title="@string/update"

8.2 More User Interface 337

android:id="@+id/c_updat"/>
<item android:title="@string/delete"

android:id="@+id/c_delete"/>
</menu>

Third, you need to implement the onContextItemSelected() method. When the
user selects a menu item, the system calls the onContextItemSelected method to
perform the appropriate action. The code snippet in Listing 8.8 shows the imple-
mentation of the onContextItemSelected() method.

Listing 8.8 An onContextItemSelected() method implementation.

@Override
public boolean onContextItemSelected(MenuItem item) {

super.onContextItemSelected(item) ;
AdapterView.AdapterContextMenuInfo info =

(AdapterView.AdapterContextMenuInfo) item.getMenuInfo();
switch (item.getItemId()) {

case R.id.c_updat:
// your code goes here
return true;

case R.id.c_delete:
// your code goes here
return true;

default:
return super.onContextItemSelected(item);

}
}

For a complete example, see the demo app’s source code. Figure 8.4 shows the
contextual menu in our demo app. If you perform a long click on any name in the list,
the menu should open and give you two options, or actions, to choose from.

8.2.10 Popup Menu

A popup menu displays a list of items in a vertical list to an attached view that has
been invoked. The popup menu is useful for providing an overflow of actions that
relate to specific content and for providing options for the second part of a command.
Actions in a popup menu should not directly affect the corresponding content that is
what contextual actions are for. Rather, the popup menu is used to extend actions that
relate to parts of your activity.

The code snippet in Listing 8.9 is an example of an XML menu file for the
popup menu.

338 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

Listing 8.9 An example of an XML file for a popup menu.

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:title="@string/add"/>
<item android:title="@string/delete"/>
<item android:title="@string/update"/>
<item android:title="@string/cancel_menu"/>
<item android:title="@string/download_link"/>
<item android:title="@string/copy_link_address"/>
<item android:title="@string/share_link"/>

</menu>

Fig. 8.4 Shows a contextual menu when the user clicks on an item in the list

8.2 More User Interface 339

Once you have defined your XML menu file, you need to follow the three steps
below to show the popup menu in your app.

First, instantiate a popup menu with its constructor. The PopupMenu class
constructor takes the current application context and the view to which the menu
should be attached. Second, use the MenuInflater class to inflate your menu resource
into the menu object returned by the PopupMenu.getMenu() method. Third, call the
show() method from the PopupMenu class, i.e., PopupMenu.show(). Figure 8.5
displays the popup menu shown when the user clicks on an image button giving
the user multiple options to perform.

Fig. 8.5 Shows a popup menu when the user clicks on an image button

340 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

The menu is dismissed when the user selects an item or touches outside the menu
area. You can listen for the dismiss event using the PopupMenu.OnDismissListener
interface. The steps to create a popup menu button that is used to invoke a popup
menu and inflate a menu are implemented in the code snippet in Listing 8.10. For a
complete example, see the source code of the app developed for this chapter.

Listing 8.10 A popup menu definition and handling example.

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout . . .
tools:context=".MyPopupMenu">
<ImageButton

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginStart="10dp"
android:layout_marginTop="25dp"
android:layout_marginEnd="10dp"
android:layout_marginBottom="200dp"
android:contentDescription="@string/descr_overflow_button"
android:onClick="showPopupMenu"
android:src="@drawable/flag"

. . .
</android.support.constraint.ConstraintLayout>

public void showPopupMenu (View view) {
android.widget.PopupMenu myPopupMenu =

new android.widget.PopupMenu(this, view);
MenuInflater inflater = myPopupMenu.getMenuInflater();
inflater.inflate(R.menu.popup_menu_actions, myPopupMenu.getMenu());
myPopupMenu.show();

}

8.3 Dialog Boxes and the Camera App

In this part, we will study the creation of dialog boxes and how to access the camera
app in your code using the implicit Intent class.

8.3.1 Dialog Boxes

A dialog box is a small box or window that prompts the user to enter additional
information or to make yes/ok or no/cancel decisions. A dialog box is normally used
for situations that require users to take an action before they can continue. In our
example, when the home icon on the toolbar is clicked, the dialog box appears as
shown below (Fig. 8.6):

8.3 Dialog Boxes and the Camera App 341

The creation of the dialog boxes is considered flexible. It can be created using the
AlertDialog Java class which existed before Android devices were invented.

You can follow the builder pattern to create a dialog box. Using a builder pattern,
a complex object gets built in multiple steps. In each step, a simple object is created,
and then the newly created object is used in the next step of the creation process. For
the demo app, we follow the builder pattern to create a dialog box and to keep a chain
of function calls as shown in Listing 8.11.

Fig. 8.6 A snapshot of the
demo app screen showing a
dialog box

342 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

Listing 8.11 Creating an AlertDialog box.

{ . . .
AlertDialog.Builder builder =

new AlertDialog.Builder(this);
builder.setTitle("Do you want to go back?");
// Add the buttons
builder.setPositiveButton(R.string.ok,
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

// User clicked OK button, you put Ok code here
finish();

} });
builder.setNegativeButton(R.string.cancel,

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

// User cancelled the dialog, you put cancel code here
} });

// Create the AlertDialog
AlertDialog dialog = builder.create();
dialog.show();

. . .
}

If you need a third button, a neutral button, add the following code to the code
snippet above.

.setNeutralButton(R.string.Neutral,
new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {
// What to do on Neutral button goes here

} });

The setPositiveButton() method returns the AlertDialog.Builder object; that is,
how you can invoke a chain of method calls on the same object. The method
signature for the setPositiveButton is shown below:

public AlertDialog.Builder setPositiveButton
(int textId, DialogInterface.OnClickListener listener);

The four important parts of dialog boxes that you need to remember are:

1. Text—What are you telling/asking the user?
2. Positive Button—A button for accepting.
3. Negative Button—A button for rejecting/canceling.
4. Handling the click events—This is done by creating an anonymous class of type

DialogInterface.OnClickListener() and implementing the onClick()method of the
interface. The code for this step can be as follows:

8.3 Dialog Boxes and the Camera App 343

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

// What to do on the Neutral button goes here
} });

Once a builder has all the information, call the create() method to instantiate the
dialog box. Then, call the show() method to draw the dialog box. Both calls can be
done in one step like this: builder.create().show().

In our app, we created a text message, positive and negative buttons, when the
home icon on the toolbar is clicked. For a complete example, see the source code of
the app developed for this chapter.

8.3.2 Custom Dialog Boxes

If your application requires a special action or dialog box design, you can create a custom
dialog box. To do so, follow all the steps we described above, and create the special
layout that you want your dialog box to have. That is, you need to do the following:

• You must create a specific layout file and inflate it for your dialog box. The layout
inflation is done as follows:

LayoutInflater inflater = getActivity().getLayoutInflater();
builder.setView(inflater.inflate(R.layout.YourLayout, null)) ;

• Set the positive/negative buttons for the builder object:

.setPositiveButton(...)

.setNegativeButton(...)

.create().show()

Before moving to another important topic, take 2 min to think of what we have
done so far. Here is what we have discussed so far in this chapter:

• Toolbars allow you to put menus at the top of your activity. There is some work
involved in getting it set up, but once you are done, add menu items to your menu
resource, and handle item selection in the onOptionsItemSelected() method.

• Dialog boxes allow you to quickly create custom windows to interact with the
user. You can also create your layout and attach callbacks.

8.3.3 Access a Phone’s Default Camera App

To continue with the interface and design aspect of the app, we will study common
or implicit intent. So far, we have used the intent object with the StartActivity

344 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

method to launch a new activity or second activity in our apps, i.e., we used intent
explicitly. There are other uses of the intent object where it can be used to start an
activity in another app by describing a simple action we would like to happen. For
example, an intent can be used to view a map, start an email or an alarm clock app, or
start the camera app to take a picture and return the results. This type of intent is
called implicit intent. It does not explicitly specify another activity to start but instead
specifies an action to take place and provides some data to perform the action with.

Below, we show an example where implicit intent is used with aMediaStore class
and its image capture action, i.e., MediaStore.ACTION_IMAGE_CAPTURE, to
access a phone’s default camera app, take a picture, and return it.

The manifest file is updated to give the MainActivity permission to access the
default camera from your device. To give permission, add the following line of code
to the manifest file.

<uses-feature
android:name="android.hardware.camera" android:required="true" />

Without permission, your application will crash because a security exception will
be thrown. The code snippet shown in Listing 8.12 is a callback handler for the
image button. It launches your phone’s default camera application by using implicit
intent instead of explicitly starting an activity class:

Listing 8.12 A code snippet for taking pictures using a phone camera.

public void imageClicked(View imageView) {
ImageButton btnImg = findViewById(R.id.btn_img);

Intent takePictureIntent =
new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

if (takePictureIntent.resolveActivity(
getPackageManager()) != null) {

startActivityForResult(takePictureIntent,
REQUEST_IMAGE_CAPTURE);

}
}

Now, whenever you press the image button, you should be able to take a picture
using your device. The startActivityForResult method triggers the onActivityResult
method which sets the image of the button to the picture taken. The code for the
onActivityResult method is shown below.

@Override
protected void onActivityResult(
int requestCode, int resultCode, Intent data) {

if (requestCode == REQUEST_IMAGE_CAPTURE &&
resultCode == RESULT_OK) {
Bundle extras = data.getExtras();
Bitmap imageBitmap = (Bitmap) extras.get("data");

8.3 Dialog Boxes and the Camera App 345

ImageButton btnImg = findViewById(R.id.btn_img);
btnImg.setImageBitmap(imageBitmap);
try {

saveImage(imageBitmap);
} catch (Exception e) {
}

}
}

The demo app has been updated to include a button to take pictures and add them
to the image button (Fig. 8.7).

Fig. 8.7 Updated demo app
to taking pictures

346 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

There are several implicit intents that you can use to perform common actions.
For example, you can use ACTION_DIAL to call a phone number. In this case, you
construct intent as follows:

Intent intent = new Intent(Intent.ACTION_DIAL);
intent.setData(Uri.parse("tel:" + phoneNumber));

Similarly, you can use implicit intent to set a timer or clock, insert an entry into a
calendar, etc.

8.3.4 Starting Activities for Results

In the example above, we used the startActivityForResult method to capture images
using the MediaStore.ACTION_IMAGE_CAPTURE action. This method is differ-
ent from the startActivity we have seen so far. If you want results back from the
activity once it is done, use the startActivityForResult() method instead of the
startActivity() method.

The activity class has two versions of the startActivityForResult methods. The
signature for the two methods is as follows:

public void startActivityForResult (Intent intent, int requestCode,
Bundle options);

public void startActivityForResult (Intent intent, int requestCode);

In our demo app, we used the startActivityForResult method which takes two
parameters. The first one is the intent, and the second one is the caller id or request
code. The id would be used to check the caller in the onActivityResult() method. This
is the method that will be executed after returning from the activity started with the
startActivityForResult() method. For the result to be returned from the activity, the
request code has to be >¼0.

The activity class has two other methods that are commonly used in association
with the startActivityForResult method. These methods are setResult(int) and
finish(). The setResult() method is used to send values, e.g., Result_OK or
Result_cancelled, back to the caller activity. The finish() method is used to end the
current activity and return to the previous activity (back one in history). When you
call the finish() method, you are manually shutting down the activity.

The snippet code below shows how the second activity can use the setResult()
and finish() methods from the activity class to end the current activity and return the
constant RESULT_OK to the caller activity.

8.3 Dialog Boxes and the Camera App 347

Intent resultIntent = new Intent();
resultIntent.putExtra("name", value);
...
setResult(Activity.RESULT_OK, resultIntent);
finish();

The signature for both methods, the setResult and onActivityForResult methods,
is as follows:

Public final void setResult(int resultCode) and
protected void onActivityResult (int requestCode,

int resultCode, Intent data).

Once inside the called activity, you use setResult (RESULT_OK). The
RESULT_OK sets the value of the resultCode parameter of the caller activity. The
sequence of the message calls for the steps above is presented in Fig. 8.8.

8.3.4.1 Do It Yourself

Modify the demo app to invoke other default apps instead of the camera app
currently used. For example, invoke Alarm Clock with the ACTION_SET_ALARM,
or invoke Email with the ACTION_SENDTO, ACTION_SEND, or
ACTION_SEND_MULTIPLE instead of the camera app. In the example below,
ACTION_DIAL is used to dial a number.

Fig. 8.8 The message sequence calls when StartActivityForResult is used

348 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

Intent intent = new Intent(Intent.ACTION_DIAL);
intent.setData(Uri.parse("tel:" + phoneNumber));

8.3.5 Activity Result in AndroidX

Starting another activity doesn’t need to be a one-way operation. You can also start
another activity and receive a result back. As described in the previous section, the
startActivityForResult() and onActivityResult() methods enable you to do so. The
new Android version, however, recommends using the ActivityResult API intro-
duced in AndroidX.

An example of how to use the latest classes and methods is shown in Listings
8.13 and 8.14. The code snippet shows how to use the ActivityResultLauncher
class, the registerForActivityResult() method call, and the launch() and
public void onActivityResult(ActivityResult result) methods to receive a result
back from an Activity. Note that, in this example, the onBackPressed() method
is also implemented. This method is called when the user presses the back button
on their device.

Listing 8.13 Using the Activity Result API introduced in AndroidX.

package com.code.abdulrahman.activityresult;
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;
import androidx.activity.result.ActivityResult;
import androidx.activity.result.ActivityResultCallback;
import androidx.activity.result.ActivityResultLauncher;
import androidx.activity.result.contract.ActivityResultContracts;
import androidx.annotation.Nullable;
import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

ActivityResultLauncher<Intent> mStartForResult =
registerForActivityResult(

new ActivityResultContracts.StartActivityForResult(),
new ActivityResultCallback<ActivityResult>() {

@Override
public void onActivityResult(ActivityResult result) {

TextView textView = findViewById(R.id.textView) ;
if (result.getResultCode() == Activity.RESULT_OK) {

textView.setBackgroundColor(getResources().
getColor(android.R.color.holo_blue_light));

8.3 Dialog Boxes and the Camera App 349

textView.setText("result is recieved in this method");
} else {

textView.setText(
"back button pressed, we did not get result ");

textView.setBackgroundColor(getResources().
getColor(android.R.color.holo_green_light));

}
}

});
@Override
public void onCreate(@Nullable Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Button startButton = findViewById(R.id.startButton);
startButton.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View view) {

// The launcher with the Intent you want to start
mStartForResult.launch(new Intent(MainActivity.this

, SomeActivity.class));
}

});
}

}

Listing 8.14 setResult and finish methods are used with the new Activity
Result API.

package com.code.abdulrahman.activityresult;
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import androidx.appcompat.app.AppCompatActivity;

public class SomeActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_some);
Log.i ("SomeActivity", "SomeActivity") ;
Button return_result_button = findViewById(
R.id.return_result_button);

return_result_button.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {

setResult(Activity.RESULT_OK);

350 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

finish();
}

});
}
@Override
public void onBackPressed() {

super.onBackPressed();
setResult(Activity.RESULT_CANCELED);
finish();

}
}

8.4 Saving Data with SharedPreferences

Android allows you to store user data in several different ways; these include using
files, databases, and content providers. In this part of the chapter, we will study
saving data in an XML file using the SharedPreferences interface as well as saving
data in text files. In the next chapter, we will study both the SQLite database and the
content provider.

8.4.1 SharedPreferences Interface

The activity’s default behavior is that if for any reason an activity gets destroyed, i.e.,
an app screen is closed, any data entered into that screen is lost. Since activities can
be destroyed, for example, if the user clicks on the back button or if the Android OS
needs to reclaim resources and kills activities that are not in the focus, we need to
handle saving preferences/entered data.

Losing data entered into screens, editable text areas, and selection choices are
something that should not happen in your app. You should save user preferences
data, and if the user decided to re-open the app, previously entered data shouldn’t
have to be re-entered. The SharedPreferences interface enables apps to have such
features, saving and retrieving data, by saving a small amount of entered data into an
XML file. Your preferences data is saved in an XML file in the key/value pair
format. The SharedPreferences interface enables accessing and modifying prefer-
ences data using methods from the context class. The key/value pair format used by
the SharedPreferences interface is similar to the way that the Map and Set classes in
Java insert and retrieve data using key/value pairs.

Saving and retrieving data from a local file and without the user having to
intervene can be used to add features to your app similar to the caching technique
used by the browser, where the app remembers the data you last entered into the app.
Furthermore, data entered into forms, user-selected checkboxes, and other user
actions can be saved/loaded into/from a file for later use.

8.4 Saving Data with SharedPreferences 351

In this part, we focus on using the SharedPreferences interface to save a small
amount of user data between activity calls.

8.4.1.1 SharedPreferences Creation and Use

There is only one instance of the SharedPreferences interface that all clients can use.
To use a SharedPreferences interface, you need a SharedPreferences reference that
points to your preferences file. The getSharedPreferences()method from the context
class can be used to get a reference to the preferences file. Here is how you can do it:

SharedPreferences prefs =
getSharedPreferences(String fileName, int mode);

In the statement above, the string fileName specifies the name of the file. The
mode parameter is the security permission. One possible mode option is
Context.MODE_PRIVATE.

The return type of the getSharedPreferences() method is a SharedPreferences
interface to create and read/write data to a file. MODE_PRIVATE is the default
mode, where the preferences file can only be accessed by the calling application or
all applications sharing the same user id.

To define two apps with a shared user id, both android:sharedUserLabel and
android:sharedUserId entries must have the same values. The code snippet below
shows the manifest content for two apps where they share the same user label and id.

//Application1
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

android:sharedUserLabel="@string/label_shared_user"
android:sharedUserId="com.ar.wlu.example"
package="com.ar.wlu.example.package1">

//Application2
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

android:sharedUserLabel="@string/label_shared_user"
android:sharedUserId="com.ar.wlu.example"
package="com.ar.wlu.example.package2">

The other file creation mode that you might want to know is MODE_APPEND.
This is used with the openFileOutput(String, int) method. If the file already exists,
this mode enables writing data to the end of the existing file instead of erasing it.

352 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

8.4.1.2 Editor Interface

To write data to your data preferences file, you must get the Editor interface from the
SharedPreferences object. The Editor interface is used to access the
SharedPreferences file. This is done as follows:

SharedPreferences.Editor edit = prefs.edit();

Modifications to the shared preferences file must go through an Editor object to
ensure that the preferences values remain in a consistent state and to control when
they are committed to storage. This is similar to declaring an interface for object A
and thus providing a means for other objects to interact with object A without
knowing its implementation details to protect the object from undesirable actions.

The Editor interface provides strong consistency; however, it might be slow. If
you save and load data often, you should consider other means to save your data. For
example, create a data object that will be readily available in the app’s memory to
save and retrieve data.

The Editor interface has multiple methods to save data to a file. The format of the
method is putType(key, value), for example:

• putString(String key, String value)
• putFloat(String key, float f)
• putInt(String key, int i)
• Others

Objects that are returned from the get methods must be treated as immutable by
the application, i.e., cannot be changed anymore.

8.4.1.3 Commit Method

You must call the Editor’s commit() or apply() method when you are ready to save
data, e.g., call the edit.apply() or edit.commit() method. Both methods have the same
impact and write data to the file. The difference between the two is that the commit
method returns a boolean value but the return type for the apply method is void. If
you want to be sure that your data is written successfully before executing the next
step in your code, use the return value of the commit method to check.

8.4.1.4 SharedPreferences Reading Methods

SharedPreferences has several methods to read data. The format of the methods is
getType (key, value), for example:

• getInt(String key, int value) to get an int value related to the key
• getFloat(String key, float value) to get a float value related to the key

8.4 Saving Data with SharedPreferences 353

8.4.1.5 Changes to Our Demo App

A new button called SharedPreferences has been added to the main page of our demo
app. See the latest look of our demo app below, Fig. 8.9. The view of the app when
the SharedPreferences button is clicked is also shown on the right-hand side.

8.4.1.6 Running and Testing the Demo App

Click on the SharedPreferences button of the demo, and check it out. Try inputting
data and then destroying it by exiting the app. Then, start the app again; your data
should be saved. Below, we describe the layout and the code for the
SharedPreferences activity in detail.

Fig. 8.9 Demo update with SharedPreferences button

354 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

8.4.2 Layout for Shared Preferences Activity

The XML snippet for the activity shared_preferences layout file is shown in Listing
8.15. The content of the file should be familiar to you since we have seen similar
layouts earlier in this chapter and in previous chapters. The XML file includes two
onClick callbacks methods to “save” data or “cancel” and return to the main page. If
“save” is selected, the input data is stored in the SharedPreferences file. If “cancel” is
clicked, nothing is saved, and we return to the main view of the app.

Listing 8.15 activity_shared_preferences.xml layout file.

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
<TextView

android:text="@string/email"/ >
<EditText

android:inputType="textEmailAddress"
android:singleLine="true" />

<TextView
android:text="@string/gender"/ >

<RadioGroup
android:id="@+id/radioGender"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:orientation="horizontal" >
<RadioButton

android:text="@string/gender_female" />
<RadioButton

android:text="@string/gender_male" />
</RadioGroup>
<LinearLayout

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="5dp" >
<Button

android:onClick="onSaveClicked"
android:text="@string/button_save" >

</Button>
<Button

android:onClick="onCancelClicked"
android:text="@string/button_cancel" >

</Button>
</LinearLayout>

</LinearLayout>

8.4 Saving Data with SharedPreferences 355

8.4.3 How SharedPreferencesActivity Code Works

Now, let us discuss how the SharedPreferencesActivity code works. In addition to
the onCreate() method and save and cancel buttons, the code has three major
methods: load, update, and save user data. We describe each of these methods
thoroughly in this section.

8.4.3.1 OnCreate()

The SharedPreferencesActivity code extends AppCompatActivity. The onCreate()
method of the activity sets the activity’s view and calls a helper method,
loadUserData(), to load saved data, if any. You also need to note that the first time
the app runs, there is no data to be loaded. See the code snippet in Listing 8.16.

Listing 8.16 SharedPreferencesActivity onCreate method.

public class SharedPreferencesActivity extends AppCompatActivity {
private static final String TAG = "CP670";
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_shared_preferences);
loadUserData();

}
. . .
}

Once a user inputs data and clicks the save button, the onSaveClicked() method
calls saveUserData() and displays a toast informing the user that their data is saved.
See the code snippet in Listing 8.17.

Listing 8.17 Calling save user data method to save data in a file.

public void onSaveClicked(View v){
saveUserData();
Toast.makeText(getApplicationContext(),

getString(R.string.save_message),
Toast.LENGTH_SHORT).show();

Intent mIntent = new Intent(SharedPreferencesActivity.this,
MainActivity.class);

startActivity(mIntent);
}

356 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

If the Cancel button is clicked, nothing happens other than displaying a toast
message and returning to the main menu. The onCancelClickedCode is shown in
Listing 8.18.

Listing 8.18 SharedPreferencesActivity onCancelClickedCode method.

public void onCancelClicked(View v) {
Toast.makeText(getApplicationContext(),
getString(R.string.cancel_message), Toast.LENGTH_SHORT).show();

Intent mIntent = new Intent(SharedPreferencesActivity.this,
MainActivity.class);

startActivity(mIntent);
}

An important part of the onCreate() method is loading the preferences. Let us look
into the loadUserData() method and learn more about it.

8.4.3.2 loadUserData()

Once the app starts, the onCreate() method invokes loadUserData(). The first time
the app starts, no user data is stored in the SharedPreferences file.

The loadUserData() method gets the shared preferences file name from the
strings.xml file using the getString() method like this:

String file_name = getString(R.string.preference_name);

The file name is used to get a reference to the SharedReference interface using the
getSharedPreferences() method. This step is done like this:

SharedPreferences myPrefs =
getSharedPreferences(file_name, MODE_PRIVATE);

Even though it is not recommended to hardcode the file name, you can pass a
string name instead of using file_name as shown below.

SharedPreferences myPrefs =
getSharedPreferences(“my preferences file name”, MODE_PRIVATE);

As discussed earlier in this chapter, getSharedPreferences() has two parame-
ters, name and mode. The name parameter is the preferences file name, for
example, the “my preferences file name” in this case. If a file by this name does

8.4 Saving Data with SharedPreferences 357

not exist, it will be created. The mode parameter is the access mode. The
MODE_PRIVATE specifies that the preferences file can only be accessed by the
application that created it.

The getSharedPreferences() method returns a reference (e.g., myPrefs) to the file
through which you can read/modify the file content. The SharedPreferences inter-
face’s behavior is similar to public static class variables. There is only one instance
of the SharedPreferences file with a given name. All activities in the app will see the
content of the SharedPreferences file.

8.4.3.3 Update SharedPreferences Content

To update or set the value of preferences, we first get the key, in our example,
key_email, from the string.xml file and get the string value for the key. These steps
are shown in the code snippet shown in Listing 8.19.

Listing 8.19 A method for retrieving data from SharedPreferences.

private void loadUserData() {
// We can also use log.d to print to the LogCat
Log.d(TAG, "loadUserData()");
// Load and update all profile views
// Get the shared preferences - create or retrieve the activity
// preferences object
String preference_file_name = getString(R.string.preference_name);
SharedPreferences mPrefs =
getSharedPreferences(preference_file_name, MODE_PRIVATE);

// Load the user email
String email_key = getString(R.string.preference_key_profile_email);
String new_email_value = mPrefs.getString(email_key, " ");
((EditText) findViewById(R.id.editEmail)).setText(new_email_value);
// Please Load gender info and set radio box
String gender_key = getString(R.string.preference_key_profile_gender);

}

Note that, if you try to retrieve data from the preferences file when there is nothing
stored with your key, the default value will be retrieved. For example, when using
the statement below and no email was saved, an empty string is used as a default
value.

String new_email_value = myPrefs.getString(email_key, " ");

A value, e.g., an email value, stored in the shared preferences file can be used to
update the EditText on the device’s screen. This is done by getting the view and
setting its value to the retrieved data as follows:

358 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

((EditText) findViewById(R.id.editEmail)).setText(new_email_value);

The steps above apply to all widgets, i.e., EditText, RadioButton, Checkbox,
etc., from the shared_preferences layout.xml file as shown in
Listing 8.20.

Listing 8.20 Retrieving user data for multiple views from shared preferences.

private void loadUserData() {
// We can also use log.d to print to the LogCat
Log.d(TAG, "loadUserData()");
// Load and update all profile views
// Get the shared preferences - create or retrieve the activity
// preferences object
String preference_file_name = getString(R.string.preference_name);
SharedPreferences mPrefs =
getSharedPreferences(preference_file_name, MODE_PRIVATE);

// Load the user email
String email_key = getString(R.string.preference_key_profile_email);
String new_email_value = mPrefs.getString(email_key, " ");
((EditText) findViewById(R.id.editEmail)).setText(new_email_value);
// Please Load gender info and set radio box
String gender_key = getString(R.string.preference_key_profile_gender);

int mIntValue = mPrefs.getInt(gender_key, -1);
// In case there isn't one saved before:
if (mIntValue >= 0) {

// Find the radio button that should be checked.
RadioButton radioBtn = (RadioButton) ((RadioGroup)
findViewById(R.id.radioGender))

.getChildAt(mIntValue);
// Check the button.
radioBtn.setChecked(true);
Toast.makeText(getApplicationContext(),

"number of the radioButton is : " + mIntValue,
Toast.LENGTH_SHORT).show();

}
}

Taking a close look to the code above, you will see that the RadioButtons store
integer values and �1 is their default value. The default value is used if nothing has
already been saved. The 0 and 1 values are stored for the gender buttons (female and
male) based on their order in the RadioGroup. The final step, the Toast.makeText()

8.4 Saving Data with SharedPreferences 359

method call in the loading function, displays a toast with the RadioGroup value.
Again, this toast is used to provide feedback to the user.

8.4.3.4 Saving Data in a Shared Preferences XML File

Once the loadUserData() method is completely executed, the screen is updated with
the stored data, if there is any. Now, assume that the user enters a new email address
and selects a different RadioButton. Once the user clicks the save button, the
onSaveClicked() method calls the saveUserData() helper function, which in turn
executes code to save the data. The steps for saving data in a SharedPreferences
XML file are as follows:

1. Get the SharedPreferences file name.
2. Use the SharedPreferences file name, and obtain a reference to the

SharedPreferences object. The code for these two steps are as follows:

String file_name = getString(R.string.preference_name);
SharedPreferences myPrefs = getSharedPreferences(
file_name, MODE_PRIVATE);

3. Create and clear the SharedPreferences.Editor object. This is done as follows:

SharedPreferences.Editor myEditor = myPrefs .edit();
myEditor.clear();

4. Get the key of the value you would like to update. To do so, use:

myEditor.putString(email_key, new_email_entered);

5. Finally, to save all the changes to the preferences file, use:

myEditor.commit();

Saving data in a SharedPreferences XML file may also include sending a toast to
inform the user that the changes, in our example, the new email address and gender
selection, have been successfully saved. The saveUserData() method code for our
app is shown in Listing 8.21.

360 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

Listing 8.21 A code snippet for saving data in shared preferences.

private void saveUserData() {
Log.d(TAG, "saveUserData()");
// Getting the shared preferences editor
String preference_file_name = getString(R.string.preference_name);
SharedPreferences mPrefs = getSharedPreferences(preference_file_name,

MODE_PRIVATE);
SharedPreferences.Editor mEditor = mPrefs.edit();
mEditor.clear();
// Save email information
String email_key = getString(R.string.preference_key_profile_email);
String new_email_entered = (String) ((EditText)

findViewById(R.id.editEmail)).getText().toString();
mEditor.putString(email_key, new_email_entered);

String gender_key = getString(R.string.preference_key_profile_gender);
RadioGroup mRadioGroup = (RadioGroup) findViewById(R.id.radioGender);
int mIntValue = mRadioGroup.indexOfChild(findViewById(mRadioGroup

.getCheckedRadioButtonId()));
mEditor.putInt(gender_key, mIntValue);
// Commit all the changes into the shared preference
mEditor.commit();
Toast.makeText(getApplicationContext(), "saved name: " + gender_key,

Toast.LENGTH_SHORT).show();
}

8.4.3.5 Do it Yourself

In our demo code, we used the onCreate() method to implement the
SharedPreferences functionality. Can you think of another callback method where
you can implement the same functionality? Hint: think of using the onStart() or
onResume() method instead of the onCreate method. What is the trade-off?

8.5 Directory Structure and Saving Data in Files

Other data storage options available for Android apps include saving data in the
app’s internal or external files and folders. In this part of the chapter, we study
internal and external file creation and access.

8.5 Directory Structure and Saving Data in Files 361

8.5.1 Internal Storage Location

Each app has its private directory on the device like the user account on the Linux
and Windows servers. Therefore, the internal storage is a good place for internal app
data. When the internal app storage is used, the app’s private files are saved on the
device file system. The file location is private; other apps, even users, cannot access
it directly.

One thing you should remember about the internal storage is that when the user
uninstalls an app that has been using the internal storage to save data/files, all the
data and files are removed as well. It is for this reason that you should not save
data/files on the internal storage when the data needs to be kept after uninstallation.
For example, if your app is for drawing pictures or taking photos, and you save the
drawings or photos on the internal storage, all your drawings or photos will be gone
after uninstalling the app, something you should avoid.

8.5.2 External Storage Location

Every Android device supports storing data/files on the external data storage. To do
that, however, your app needs to request read/write file permission. The external data
storage can be an external USB storage, a folder outside where the app is installed, or
an SD card that can physically be inserted/removed from the SD card port. The
external data storage is mostly used when data needs to persist even after the app is
uninstalled. They are also useful when data needs to be shared. However, an external
storage may not be available all the time, for example, if the user removes the USB
storage.

8.5.3 Standard Public Directories for Data/Files

Android provides standard public directories for data/files that should persist after
uninstalling the app. For example, the user has one location for all their photos,
ringtones, music, and such. Here, we are not talking about removable SD cards or
USB drives, but non-removable directories, such as DCIM for storing pictures. That
is, we are referring to the Android file system (Linux file directories).

On the Android file system, the root directory for the public external directories is
confusingly named sdcard. To remove this confusion, remember that there are two
types of external storages, both called sdcard. One is a removable card; you can
remove it from the device; hence, it is external. The second one is non-removable; it
is a directory on Android’s file structure. It is called external because it is outside of
the app’s local directory.

362 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

8.5.3.1 Access Internal Files

Android uses the Linux kernel and is similar to Linux computers. It provides
directories where you can save files. For your app to create a file on the internal
storage, you can use the following statement:

File file = new File(context.getFilesDir(), filename);

The statement above will create a file, and the location of the file would be in the
files folder on the emulator. The path to the files directory is storage ! emulated !
0! Android! data! yourAppPackage! files as shown below in Fig. 8.10. This
path can be different on different emulators.

The name of your app package on the path means that the file will be created
inside your app’s private directory and is not accessible directly.

8.5.3.2 Accessing Files You Create

The Android context class provides several methods to create and access files. These
include the getFilesDir(), listFiles(), getName(), and getAbsolutePath() methods. In

Fig. 8.10 The location of a file created with the new operator

8.5 Directory Structure and Saving Data in Files 363

our demo app, we created two files, TestResults and testFiles, inside the app’s
directory. That is, we used the internal storage to store data. You can access these
file names in the files directory as follows:

((File)getFilesDir()).listFiles()[0].getName(); // returns TestResult
(File)getFilesDir()).listFiles()[1].getName(); // returns testFiles

The code snippet in Listing 8.22 shows how to access the internal storage in
our app.

Listing 8.22 Showing how to access the internal storage in our app.

String filename = “testFile”;
String fileContents = “Some Text”;
FileOutputStream outputStream;
File testResult = new File(getFilesDir(), filename);
if (testResult.exists()) {

Log.i(testResult.getName().toString(), “exists true”);
} try {

outputStream =
openFileOutput(filename, Context.MODE_PRIVATE);
outputStream.write(fileContents.getBytes());
outputStream.close();

} catch (Exception e) {
e.printStackTrace();

}
// fileList() return files created with openFileOutput(String, int)
// 0 = “myfile”
//1 = “testFile”
String fileNames = “”;
for (String fn : fileList()) {

fileNames = fileNames + fn + “\n”;
}

In the code above, the getFilesDir() method returns the absolute path to the
directory on the file system where the files are created with the
openFileOutput(String, int) method. The fileList() method lists the file name located
at the directory returned by the getFileDir() method. Note that, in the code snippet
above, the openFileOutput() method is used to write the file content:

outputStream = openFileOutput(
filename, Context.MODE_PRIVATE);

364 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

To see the files on the emulator, use the File.getAbsolutePath() method in your
code to get the file path and print, or log, the path information. Once you have the
path info, use the Device File Explorer from the Android Studio to locate the file.
Figures 8.11 and 8.12 show how you can use the Device File Explorer to locate the
files you created on the Android emulator.

When a file is no longer needed, you should delete it to save space.
The File class has a delete() function, and the context class has a

deleteFile(fileName) function that can be used to delete files. To check if a file
exists, call:

File aFile = new File(fileName);
if(aFile.exists()) // if true, the file exists!

Fig. 8.11 Snapshot of how to use file explorer to locate your file on your Android app

8.5 Directory Structure and Saving Data in Files 365

Fig. 8.12 The Android’s file system

366 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

8.5.4 Android File IO Classes and Methods

We have updated our demo app and included a button called “click for file info.”
When this new button is clicked, it will start a new page with three buttons to demo
the file input/output classes, the file directories, and the app’s package name, space,
etc. The three buttons for displaying the Android file structure are shown on the left-
hand side of Fig. 8.13, and the Android root subdirectories are listed on the right-
hand side.

Fig. 8.13 Three buttons to demo file IO classes and directories

8.5 Directory Structure and Saving Data in Files 367

8.5.5 Accessing External Storage Files

Tohave access tofiles outside of your app’s directory, includingUSBdrives andSDcards,
use the keyword external with the method used for the internal storage. For example,
you can use these methods to access the external storages: getExternalFilesDir(),
getExternalStorageDirectory(), and getExternalStoragePublicDirectory().

The getExternalFilesDir() method returns a File object representing the root of the
attached drive. The user may remove the drive, so it might not always be accessible.
To avoid app crashes, use the getExternalStorageState()method to check the external
storage. The external storage can be in one of the three states below:

1. Mounted: this return value indicates that the external drive is available.
2. READ_ONLY: this return value indicates that the external drive is available but

is only in a read-only mode.
3. Failure: this return value indicates that the external drive is not available or cannot

be reached.

8.5.6 Permission to Access External Directory

To access the external directory, you need to implement request permissions when
using an SDK version (Build.VERSION.SDK_INT) higher or equal to 23. The code
snippet in Listing 8.23 shows how you can check and request access permissions.
The code uses the checkSelfPermission() method from the activity class to check the
permissions, and when the permissions are not granted, it uses the
requestPermissions() method from ContextCompat class to request permission.

Listing 8.23 A snippet code for checking and requesting access permission.

public boolean requestPermission() {
boolean isPermissionGranted = true;
final int version = Build.VERSION.SDK_INT;
if (version >= 23) {

if (!granted()) {
isPermissionGranted = false;
requestPermissions(EXTERNAL_PERMS,

EXTERNAL_REQUEST);
}

}
return isPermissionGranted;

}
public boolean granted() {
String permisson =
android.Manifest.permission.WRITE_EXTERNAL_STORAGE ;
return (PackageManager.PERMISSION_GRANTED ==

ContextCompat.checkSelfPermission(this, permisson));
}

368 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

To read the content of an external file and write to an external file, you need to
request read/write permissions. The constants for the write and read permissions are
WRITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORAGE. You
need to include the permission requests into the manifest file as follows:

<uses-permission android:name =
"android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission

android:name="android.permission.READ_EXTERNAL_STORAGE" />

8.5.7 Examples Using External Methods

In our demo app, we use various methods to access external files and directories.
These include the getExternalFilesDir(), getExternalStorageDirectory(), and
getExternalStoragePublicDirectory() methods, as well as the Android Environment
methods. In the following subsections, we describe how to use these methods. The
code snippets for all the examples below are from the DirectoryStructureActivity
class in our demo app.

8.5.7.1 getExternalFilesDir

You can use getExternalFilesDir() to return the absolute path to the directory on the
primary shared /external storage device. Similar to the C drive on the PC, every
device has only one primary storage volume. You can use the isPrimary() method to
check if the volume is the primary shared/external storage or not.

The code snippet in Listing 8.24 shows how you can use getExternalFilesDir() in
your code. The code is part of the source code of our demo app and is named as
example 1 in the DirectoryStructureActivity class.

Listing 8.24 Using getExternalFilesDir method.

{ . . .
String anExFile = ""; // file on internal storage

File exteranlPath = getExternalFilesDir(null);
if (null == exteranlPath) {

exteranlPath = mainActivity.getFilesDir();
}
Log.i("path", exteranlPath.getName().toString());
Log.i("path", exteranlPath.getFreeSpace() + "");
Log.i("path", exteranlPath.getTotalSpace() + "");
exteranlPath.list();

. . .
}

8.5 Directory Structure and Saving Data in Files 369

When the code is executed, the result is files, and the absolute path to the files
directory is:

/storage/emulated/0/Android/data/code.android.abdulrahman.com.
menubarAndMore/files

8.5.7.2 getExternalStorageDirectory

The getExternalStorageDirectory() method returns the primary shared/external
storage directory. Don’t be confused by the word “external.” This directory can
better be thought of as a media/shared storage. In our demo code, we append
"/DCIM/Camera" to get access to the pictures stored on a device. Note that,
when used, the directory may not be accessible for various reasons, for example, if
the user accesses the directory on the device from their computer or if the directory
has been removed altogether. You can determine the current state of the directory
using the getExternalStorageState() method.

In our demo code, we append” /DCIM/Camera" to getExternalStorageDirectory().
The code snippet in Listing 8.25 shows the use of getExternalStorageDirectory() with
the /DCIM/Camera directory in the DirectoryStructureActivity class.

Listing 8.25 Using getExternalStorageDirectory with /DCIM/Camera
directory.

{ . . .
String ImageFileNames = "";

File sdCardRoot = Environment.getExternalStorageDirectory();
File yourDir = new File(sdCardRoot, "/DCIM/Camera");
int j = 0;
if (yourDir != null && yourDir.listFiles() != null) {

for (File imgfile : yourDir.listFiles()) {
j++;
if (j % 20 == 0) // just to limit number of files

if (imgfile.isFile()) {
ImageFileNames = ImageFileNames +
imgfile.getName() + "\n";

}
}

}
. . .
}

When the code is executed, it will list all the image files stored on your device.
For example, when we ran the code in our device, it generated the following output:

20171128_090921.jpg
20171128_090923.jpg

370 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

20171128_090924.jpg
20171128_092709.jpg
20171204_170251.jpg
20171204_183426.jpg
20171215_080819.jpg
20171215_080822.jpg
20171215_080831.jpg
20171215_080931.jpg
Etc.

In another example, we used the getExternalStorageDirectory() and list() methods
to see the list of subdirectories in the /storage/emulated/0 directory. This is example
8 from the DirectoryStructureActivity class of our demo app. The code snippet is
shown in Listing 8.26.

Listing 8.26 Using the getExternalStorageDirectory and list methods.

{
. . .
File f3 = getExternalStorageDirectory();

anExFile = "";
if (f3 != null && f3.list() != null)

for (String s : f3.list()) {
anExFile = anExFile + s + "\n";

}
fileInfo = fileInfo + "files in External Storage Directory are: " +
anExFile + "\n\n";
. . .

}

When the code is executed, it will list all the storage directories on your device.
For example, when we ran the code on our device, it generated the following output:

path is /storage/emulated/0
0 = "Music"
1 = "Podcasts"
2 = "Ringtones"
3 = "Alarms"
4 = "Notifications"
5 = "Pictures"
6 = "Movies"
7 = "Download"
8 = "DCIM"
9 = "Android"

The getExternalStorageDirectory() method was deprecated in API level 29 to
improve user privacy. If you want to access content stored on a shared/external
storage, you need to use the getExternalFilesDir(String) method from context class,
MediaStore, or ACTION_OPEN_DOCUMENT with the intent class.

8.5 Directory Structure and Saving Data in Files 371

8.5.8 Environment Class
and getExternalStoragePublicDirectory

Android has a class called Environment which provides access to environment
variables. It has multiple constants. Examples of these constants include
DIRECTORY_PICTURES, DIRECTORY_DCIM, DIRECTORY_DOWNLOADS,
etc. You can use these constants with the getExternalStoragePublicDirectory()
method and obtain information about the file structure and files in the app’s external
directories. Example 9 from the DirectoryStructureActivity class uses Environment
class constants. The code for using these constants is shown in the following sub-
sections. The code snippets for all the examples below are from the
DirectoryStructureActivity class in our demo app.

8.5.8.1 Environment.DIRECTORY_DCIM

In our demo code, we use the DIRECTORY_DCIM constant and the
getExternalStoragePublicDirectory method together to retrieve the top-level public
directory for pictures and videos; see the code snippet in Listing 8.27.

Listing 8.27 Using Environment class constant and DIRECTORY_DCIM.

{
f4 = getExternalStoragePublicDirectory(

Environment.DIRECTORY_DCIM);
anExFile = "";
if (f4 != null && f4.list() != null && f4.list()[0] != null)

for (String s : f4.list()) {
anExFile = anExFile + s + "\n";

}
}

When the code is executed, it will return the top-level public directory for pictures
and videos:

0 = "Camera"
1 = "Screenshots"
2 = ".thumbnails"

8.5.8.2 Environment.getExternalStorageDirectory

Use the getExternalStorageDirectory() and list() methods to see the files in a
directory. In our demo code, we use the getExternalStorageDirectory() method
withMediaStorage, i.e., /DICM/Camera/, as shown in Listing 8.28. This is Example
6 in the DirectoryStructureActivity class of our demo app.

372 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

Listing 8.28 Using getExternalStorageDirectory() and list methods.

{ . . .
File sdcardRoot = Environment.getExternalStorageDirectory();
File yourDir = new File(sdcardRoot, "/DCIM/Camera");
if (yourDir != null && yourDir.listFiles() != null) {

for (File imgfile : yourDir.listFiles()) {
if (imgfile.isFile()) {

ImageFileNames = ImageFileNames + imgfile.getName() + "\n";
}

}
}
fileInfo = fileInfo + " files in " + yourDir + " are: \n\n" +

ImageFileNames + "\n\n";
. . .
}

When the code snippet above is executed, the result is:

files in /storage/emulated/0/DCIM/Camera are:
IMG_20200224_164220.jpg
IMG_20200224_164233.jpg

8.5.8.3 Environment.DIRECTORY_DOWNLOADS

The getExternalStoragePublicDirectory() method gets a top-level shared/external storage
directory to place files of a particular type. This is a common location where the user will
place and manage their files. You should be careful about what you put in this location
and ensure that you don’t erase user files or get in the way of user file organization.

In our demo code, we use the getExternalStoragePublicDirectory() method with
the Environment.DIRECTORY_DOWNLOADS constant as shown in Listing 8.29.

Listing 8.29 Using ExternalStoragePublicDirectory() method to access
download directory.

{
. . .
f4 = getExternalStoragePublicDirectory(

Environment.DIRECTORY_DOWNLOADS);
anExFile = "";
if (f4 != null && f4.list() != null)

for (String s : f4.list()) {
anExFile = anExFile + s + "\n";

}
. . .

}

8.5 Directory Structure and Saving Data in Files 373

The result samples are listed below:

result = {String[40]@5316}
0 = "1 Complete Lesson.pdf"
1 = "1237805a.pdf"
2 = "180830_FLX_Cardholder_Agreement_v12_0818_EN.pdf"
4 = "Contract CP610.docx"
5 = "Course Design Rubric.pdf"
6 = "cra-psac-eng-2012.pdf"
7 = "December12_2018_championship_meet_heat_sheets.pdf"
8 = "final-thesis-presentation3 (1).ppt"
9 = "final-thesis-presentation3.ppt"

8.5.8.4 Environment.getRootDirectory

The Environment.getRootDirectory() method returns the root directory, and when
the results of the method call are presented, you will get the list of directories in your
device; examples of such directories are listed below. As you can see, the file
structure of the Android device is like the Linux file directory.

app
bin
build.prop
camera
data
container
etc
fake-libs
fake-libs64
fonts
framework
hidden
info.extra
lib
lib64
usr
vendor
To see the code for accessing directories in our demo app, open the app !

DirectoryStructureActivity ! example 8.

8.5.9 Locate Apps on Emulator File System

If you use the Device File Explorer, you will see the location of your app on your
device. For example, our menubarAndMore app is stored at sdcard! Android !
Data as shown below in Fig. 8.14.

The sdcard is a symbolic link; the actual path where the apps are stored is
/storage/emulated/0. See Fig. 8.15:

374 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

Fig. 8.14 The location of the app on the Android file system

Fig. 8.15 The actual path
where the apps are stored

8.5 Directory Structure and Saving Data in Files 375

Note that the file location and structure of the file system on the emulator might be
different than the actual device even for the same device type. Therefore, the location
of the app on the emulator and the actual device might be different.

8.5.9.1 Do It Yourself

Run the demo app and find the location of the app on the emulator and on the actual
device (if you have one). Re-run the app multiple times. Each time use a different
emulator and compare the location of the demo app on each emulated device.

8.6 Chapter Summary

In this chapter, we studied some important Android topics for app development. We
studied the creation of the toolbar for your apps, adding menus to the toolbar,
creating dialog boxes and custom dialog boxes, context menu, popup menu, starting
activity for result, the latest ActivityResult from AndroidX, and accessing the
camera app in your code using implicit intent. We also studied how to store data
in the apps using shared preferences and files. We studied the Android file system
and how one can explore the files using the Android Device File Explorer as well as
how to access the app package, internal and external storages, and Android files. In
Chap. 11, we will explore how to store data using a database and the SQLite database
management system and how to query data using the SQL language. We will also
look at how to embed queries in the Android app as well as how to use firebase to
store data in the cloud.

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

• ActionBar
• AndroidX
• apply
• commit
• Context.MODE_PRIVATE
• DIRECTORY_PICTURES, DIRECTORY_DCIM
• DIRECTORY_DOWNLOADS
• Editor
• fileList
• finish
• getAbsoluteFile
• getExternalFilesDir

376 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

• getExternalStoragePublicDirectory
• getFilesDir
• getSharedPreferences
• immutable
• implicit Intent
• MenuInflater
• onActivityResult
• onContextItemSelected
• onCreateContextMenu
• onCreateOptionsMenu
• onOptionsItemSelected
• openFileOutput
• overflow
• PopupMenu
• READ_EXTERNAL_STORAGE
• refactor
• registerForContextMenu
• sdcard
• setResult
• setSupportActionBar
• SharedPreferences
• sharedUserId
• sharedUserLabel
• startActivityForResult
• support library
• WRITE_EXTERNAL_STORAGE

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

ActionBar, [online] Available, https://developer.android.com/reference/android/
support/v7/app/ActionBar

Common Intents, [online] Available, https://developer.android.com/guide/
components/intents-common

Creating an Options Menu, [online] Available, https://developer.android.com/
guide/topics/ui/menus#options-menu

Data and file storage overview, [online] Available, https://developer.android.
com/training/data-storage

Data and file storage overview, [online] Available, https://developer.android.
com/training/data-storage/files#java

Further Reading 377

https://developer.android.com/reference/android/support/v7/app/ActionBar
https://developer.android.com/reference/android/support/v7/app/ActionBar
https://developer.android.com/guide/components/intents-common
https://developer.android.com/guide/components/intents-common
https://developer.android.com/guide/topics/ui/menus#options-menu
https://developer.android.com/guide/topics/ui/menus#options-menu
https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage/files#java
https://developer.android.com/training/data-storage/files#java

Dialogs, [online] Available, https://material.io/design/components/dialogs.html#
getExternalStorageDirectory, [online] Available, https://developer.android.

com/reference/android/os/Environment#getExternalStorageDirectory().
MediaStore, [online] Available, https://developer.android.com/reference/

android/provider/MediaStore
Menu, [online] Available, https://developer.android.com/reference/android/

view/Menu
SharedPreferences, [online] Available, https://developer.android.com/refer

ence/android/content/SharedPreferences
Take photos, [online] Available, https://developer.android.com/training/camera/

photobasics.html

378 8 Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and. . .

https://material.io/design/components/dialogs.html
https://developer.android.com/reference/android/os/Environment#getExternalStorageDirectory
https://developer.android.com/reference/android/os/Environment#getExternalStorageDirectory
https://developer.android.com/reference/android/provider/MediaStore
https://developer.android.com/reference/android/provider/MediaStore
https://developer.android.com/reference/android/view/Menu
https://developer.android.com/reference/android/view/Menu
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/training/camera/photobasics.html
https://developer.android.com/training/camera/photobasics.html

Chapter 9
Fragments, Dynamic Binding, Inheritance,
Pinching, and Screen Swiping

What You Will Learn in This Chapter
By the end of this chapter, you should be able to:

• Describe what a fragment is and the differences between fragments and activities
• Use fragments with varied device sizes
• Explain the lifecycle of fragments and their callback methods
• Apply different layouts for the same device based on its orientation
• Differentiate between dynamic and static fragments
• Subclass activities and apply inheritance
• Reuse toolbars across activities
• Reuse layouts
• Define resource folders with name qualifiers
• Develop apps for different screen densities
• Use screen pinch to zoom images and views
• Use Swiping gestures and events

Check Out the Demo Project
Download the demo app, android-fragment.zip, specifically developed to go with
this chapter. I recommend that you code this project up from the notes rather than
just opening the project in Android Studio and running it; however, if you want to
run the code first to get a sense of the app, please do so. The code is thoroughly
explained in this chapter to help you understand it. We follow the same approach to
all other chapters throughout the book. The app’s code will help you comprehend the
additional concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_9

379

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_9#DOI

9.1 Introduction

Up until now, we have used Android Activities to display Views on the screen. That
is, in the demo apps for previous chapters, screens were associated with Android
Activities to manage user interactions with the widgets and to view the content.
Here, we introduce another component to create visual objects in Android apps. In
this chapter, you will learn about fragments.

Most applications include one or more Activities and fragments. So, what is a
fragment, and why do we use them? In Sect. 9.2 of this chapter, we answer these
questions in detail and describe what it takes to create a layout with fragments. We
have also developed an app to demonstrate the creation and use of fragments. The
app is described in Sect. 9.3 of this chapter. In Sect. 9.4, we show inheritance and
layout reuse to achieve layout modularity without using fragments. Lastly, in
Sect. 9.5, we describe how to create multiple layout files for devices of various
sizes.

9.2 The Fragment Basics

The Fragment class can be used to create visual objects that can be put into the app
view, i.e., that can be attached to the app view. It occupies one or more parts of the
app screen. Using fragments, you can divide your app screen into multiple indepen-
dent areas that are hosted within an activity. One difference between fragments and
Activities is that fragments are threads, while activities are processes. Each fragment
controls its I/O, events, and computational logic.

9.2.1 Fragment Uses

Using fragments, you can divide your app screen into several sections with each
section acting as a mini Activity. Fragments are not a replacement for Activities.
Your application still needs Activities, but we do not solely depend on them to
create Views. You will divide an Activity screen into multiple sections, and all the
sections will reside inside an Activity. You can do the following with the
fragments:

• Combine multiple fragments in a single activity to build a multi-pane user
interface.

• Reuse a fragment in multiple activities.

380 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

• Add or remove fragments to/from activities while the activity is running, also
called perform fragment transaction.

A fragment must always be included in an activity, and the fragment’s lifecycle is
directly impacted by the host activity’s lifecycle. In other words, a fragment exists
within the boundaries of an activity, and an activity is a home container for a
fragment. Each fragment has its layout, behavior, or things it can do and lifecycle
callback methods.

Fragments can communicate with the host activity, access data held in the
activity to which it belongs (the host activity), and send data to the activity
which in turn can be sent to other fragments or activities. Fragments may interact
with each other using the enclosing activity as a mediator for communication. The
communication between the fragment and its host is done using the events and
listeners.

You can think of a fragment as a modular section of an activity, with its own
lifecycle. Fragments have the normal activity callback methods, i.e., onCreate(),
onStart(), onResume(), onPause(), onStop(), onDestroy(), etc. They also have addi-
tional callbacks methods: onCreateView(), is where to inflate the user interface (UI);
onAttach(Context c), is called when the fragment has been added to the activity; and
onDetach(), is called when the fragment is detached from the activity after the
activity has been destroyed.

9.2.2 Why Using Fragments

Up until now, we have developed apps using Android activities only. A draw-
back of this approach is that at any given time, one activity fills the whole screen
of the device. This is a limitation considering the display area offered by larger
devices such as tablets, TV screens, etc. Fragments are the solution to this
limitation.

Designing your app layout with fragments enables your app to behave differ-
ently based on the size and orientation of the devices; you write the code once
and use different layouts to show the content differently on different devices. To
elaborate more, let us look at the email app, i.e., email client interface, behavior
on the phone and tablet. Phones are typically in portrait mode with limited screen
space. If you look at a list of emails on a phone, normally you just see a list. If
you select an email, then it opens another screen or activity to view the email
content. Tablets, on the other hand, are typically in landscape mode with a lot of
screen space. On a tablet, the emails are normally listed on the left side of the
screen, and selecting an email will show the email content on the right side of the
screen. This is possible when the activity’s layout includes fragments.

9.2 The Fragment Basics 381

Figures 9.1 and 9.2 illustrate how designing an app layout with fragments allows
the developer to take advantage of the extra space tablets provide and how you
can write code once and let your app behave differently based on the device size
and orientation.

In Fig. 9.1, there is not enough space for two fragments on the phone screen, so
the activity_main layout that we used includes only one frame layout which is used
as a fragment place holder for the list of book titles (the left-hand side of Fig. 9.1).
When the user selects a title, a second fragment is inflated to display a title and its
description (the right-hand side of Fig. 9.1). This fragment could be a separate
activity as well. So here two different layouts, or screens, are swapped when a
user clicks on a book title and then on the back button to return to the book list.

Different from Figs. 9.1 and 9.2 shows the app display when running the app on a
tablet. Here, the main_activity layout file resides in the large folder, i.e., the w-600dp
folder is used. Since the screen is large enough, the layout embeds two frame

Fig. 9.1 Listing titles on one fragment and title description on another fragment

382 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

layouts, i.e., embeds placeholders for two fragments. So, when the user clicks on the
book title on the left-hand side menu, the description of the book is displayed on the
right-hand side, the content of the right-hand side fragment is updated, and the view
for the fragment on the left-hand side remains unchanged.

Don’t worry if you don’t understand the app implementation details yet. The app
implementation and coding will be described in the coming sections in detail. For
now, you just need to understand the definition and purpose of using fragments.

9.2.3 Fragment Lifecycle

As we stated earlier, fragments have their own lifecycle. Here, we describe the
fragment lifecycle flow diagram (see Fig. 9.3) and highlight some details about the
fragment lifecycle states, transitions, and flow.

9.2.3.1 Activity Lifecycle Impacts on Fragments

The lifecycle of the activity in which the fragment lives (host activity) directly has an
impact on the lifecycle of the fragment, such that each lifecycle callback for the
activity results in a similar callback for each fragment. For example, when the
activity receives onPause(), each fragment in the activity receives onPause(), and
when the activity receives its onCreate() callback, a fragment in the activity receives
the onActivityCreated() callback.

Fig. 9.2 The list title fragment and the detail fragment on one screen

9.2 The Fragment Basics 383

9.2.3.2 Fragments Extra Lifecycle Callbacks

Think of a fragment as amodular section of an activity, which has its own lifecycle. Thus,
fragments have the normal activity callback methods, onCreate(), onStart(), onResume(),
onPause(), onStop(), onDestroy(), etc., and they have an additional five callback methods
that handle interactions with the host activity in order to perform actions such as building
and destroying fragments. These additional callback methods are:

onAttach(): This method is called when the fragment is linked or attached to an
activity. The parameter for the attached method is the context, i.e., the host activity.
The onAttach() event occurs before the fragment’s visually created and before the
fragment, or its parent activity, has completed initialization. The syntax for the
onAttach() method is as follows.

Fig. 9.3 The flow of fragment lifecycle. Retrieved from developer.android.com. Creative Com-
mons Attribution 2.5 license

384 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

http://developer.android.com

@Override
public void onAttach(Context context) {
super.onAttach(context)
. . .
}

The other fragment methods have a similar method signature to the onAttach()
method and are described briefly below.

onCreateView(): This method is called to create the fragment view. It instantiates
the fragment by inflating its layout.

onActivityCreated(): This method is called when the activity’s onCreate() method
has returned, that is, the fragment’s activity has been created.

onDestroyView(): This method is called when the fragment is removed.
onDetach(): This method is called when the fragment is disconnected from the

activity.
Fragments also have three states; they are fragment is added, a fragment is active,

and a fragment is destroyed.
The flow of a fragment’s lifecycle as it is affected by its host activity is illustrated

in Fig. 9.3 where you can see how each successive state of the activity determines the
callback methods a fragment may receive. For example, when an activity receives its
onCreate() callback method, a fragment in the activity receives the
onActivityCreated() callback method. Once the activity reaches the resumed state,
you can add and remove fragments to the activity. When the activity leaves the
resumed state, the fragment is again pushed through its lifecycle by the activity. Note
that the lifecycle of a fragment can change independently only when the activity is in
the resumed state.

9.2.3.3 Overriding Fragment Callback Methods

When implementing fragments, you should consider overriding the following five
callback methods:

onAttach(): Invoked when the fragment has been connected to the host activity.
onCreate(): Used for initializing non-visual components needed by the fragment.
onCreateView(): Most of the work is done here. It is called to create the view

hierarchy representing the fragment. Usually inflates a layout, defines listeners,
and populates the widgets in the inflated layout.

onPause(): The session is about to finish. Here you should commit state data
changes that are needed in case the fragment is re-executed.

onDetach(): Called when the inactive fragment is disconnected from the activity.

9.2 The Fragment Basics 385

9.3 Creating an App with the Fragments

In this part, the fragment creation is described. We first list all the steps needed to
create a fragment and then describe each step. The class diagram for the app is shown
in Fig. 9.4. It should help you understand the explanation provided in this part.

9.3.1 Create a Fragment

Including fragments in your app involves the main steps below:

1. Creating user-defined fragment classes by extending the Android fragment class.
2. Implementing the fragment’s onCreateView() callback method to instantiate the

fragment view by inflating the fragment layout.
3. Instantiating the fragment manager and fragment transactions classes to add,

replace, or remove a fragment to the app screen. This takes place inside the
onCreate() method of the activity which holds the fragments.

Fig. 9.4 A class diagram of our demo bookstore app

386 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

4. Creating one or more layouts for the main activity (e.g., activity_main.xml,
activity_main.xml (land), activity_main.xml (w600dp)) for different device
sizes and orientations. In Fig. 9.5, three layouts are circled in an orange capsule.
These layouts must have one or more frame layouts in them. The frame layout is a
placeholder for fragments that will be populated at runtime.

5. Creating one or more fragment layouts and fragment classes for fragment instan-
tiation and attachment. In Fig. 9.5, fragment layouts are circled in a black capsule

Fig. 9.5 An app directory
structure when the fragment
is used

9.3 Creating an App with the Fragments 387

and fragment classes in a red capsule. The fragment layouts represent the
fragment’s user interfaces, and the fragment classes are used to inflate the layouts,
i.e., turn the layouts into the view objects, and attach them to the frame layout in
the activity_main layout.

6. Loading a proper main_layout with the right number of fragments to the screen of
the device. The last step is particularly important in fragment development.
Loading a proper layout is what enables your app to be viewed differently on
different device sizes and orientations.

9.3.2 One Activity and Multiple Layouts

For all the apps we have seen so far, we have used only one layout per activity, and
we passed the layout to the setContentView method to set up the screen. When
creating apps where the apps’ views are required to fit screens with different sizes,
there needs to be more than one layout per activity to set up the views. This is the
main difference between the two types of apps, apps where an activity makes up the
entire screen and apps where an activity hosts multiple fragments, smaller screen
portions, to fit screens of various sizes.

Since one activity can have multiple layouts, plugging in a proper layout at
runtime, for example, based on the devices’ screen size or orientation, is one way
to differentiate between developing apps made of activities only and apps made of
both activities and fragments to create screens.

Android uses the name of the layout to select a proper layout at runtime. For
example, to run an app on a tablet, you name your layout activity_main(large).
Similarly, to run an app on a device that has a 600 dp width, you name your layout
activity_main (w600dp). Once you are done designing your layouts, you need to
write your main activity code accordingly. Below, we describe the steps involved in
creating an app where the screens are made up of activities and fragments in detail.

9.3.3 Detecting Device Size and Orientation

Similar to detecting an app’s locale language which we studied earlier, Android can
detect the size and orientation of the device in use. Android has multiple built-in
sensors to interact with its environment and provide developers with valuable
information. These include device size, orientation, location, etc. The developer
can use the information returned from the sensors to check, load, update, and replace
a layout. You will learn more about this when we study sensors.

In our demo app, Android detects the size and orientation (portrait or landscape)
of the device, and based on this finding, one of the three activity_main layouts will
be loaded.

388 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

After the initial loading, you use a layout, or the frame layout id, to check which
layout is currently loaded. You need to assign an id to the root element of the layout,
e.g., layoutID, and check if the layout has been loaded in your activity code. The id
can be checked with the findViewByID(R.resouce.layoutID) method call, specifi-
cally by calling the findViewByID(R.id.layoutID) method.

In our demo app, we use layoutID to find out if we need to replace the layout or
just update the layout partially. The latter is used when the device is a tablet or is a
phone in landscape mode.

The design structure of our demo app is shown in Table 9.1. It is structured
following the model-view-controller (MVC) architecture.

9.3.4 Fragment Development Steps in Details

The steps you need to follow to create an app that includes fragments are described in
detail below.

9.3.4.1 Extending Fragment Class

To create a fragment class, you need to extend the Android fragment class or an
existing subclass of it. We created two fragment classes in our demo app. The class
extension is done as follows:

public class BookTitleListFragment extends Fragment {. . .}, and
public class BookTitleAndDescriptionlFragment extends Fragment {. . .}

9.3.4.2 Implement the onCreateView Method

The Android OS calls the onCreateView() method when it is time for the fragment to
draw its user interface for the first time. To draw a user interface for your fragment,
you must return a view object from the onCreateView() method which is a reference
to the root element of the fragment’s layout XML file. The root type can be
LinearLayout, RelativeLayout, or any other layout depending on the root element

Table 9.1 Design structure of our demo app

Model View Controller

Book.java
BandDatabase.java

activity_main.xml
fragment_book_title_
and_description.xml
fragment_book_title_list.xml

MainActivity.java
BookTitleAndDescriptionlFragment.java
BookTitleListFragment.java

9.3 Creating an App with the Fragments 389

of the fragment layout XML file. Note that you can return null if the fragment does
not provide a user interface.

To return a layout view from the onCreateView() method, you inflate the frag-
ment layout using a resource and layout id defined in the layout XML file. What
helps you do so is that the onCreateView() method receives the LayoutInflater object
as an input parameter which can be used to inflate the fragment layout. The code
snippet below shows how onCreateView() is used to inflate the fragment layout and
return the reference to the root element of the fragment, i.e., the layout view. It loads
fragment_book_title_list.xml layout; inflates it, i.e., creates an object of type
LinearLayout; and returns it as a view.

@Override
public View onCreateView(LayoutInflater inflater,

@Nullable ViewGroup parent, @Nullable Bundle savedInstanceState) {
// Inflate the xml file for the fragment

return inflater.inflate(
R.layout.fragment_book_title_list, parent, false);

}

Note that you can cast the return object from the inflater.inflate (R.layout.
fragment_book_title_list, parent, false) call to a LinearLayout type; see code snippet
below:

LinearLayout ln = (LinearLayout) inflater.inflate
(R.layout.fragment_book_title_list, parent, false);

This is because the root element of the fragment_book_title_list.xml file is of type
LinearLayout.

9.3.4.3 The onCreateView Method Signature

The method signature for the onCreateView() method is as follows.

public View onCreateView (LayoutInflater inflater,
ViewGroup parent, Bundle savedInstanceState);

The host activity passes three parameters to the onCreateView() callback method.
The parameters are of type LayoutInflater, ViewGroup, and Bundle.

The ViewGroup object is the container, or frame layout, from the activity_main.
xml layout where your fragment should reside.

The Bundle object, savedInstanceState, provides data about the previous
instance of the fragment if the fragment is being resumed.

The LayoutInflater object is used to call the inflate() method to instantiate the
fragment object. The inflate() method takes three arguments:

1. The id of the layout you want to inflate, i.e., the id of the layout you defined to
create the visual fragment.

390 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

2. The view group, the parent, or the container to hold the inflated layout. Often-
times, the container is a frame layout from the main layout.

3. A boolean variable indicating whether the inflated layout should be attached to
the view group (the second parameter) during the inflation or not.

Note that if the system already has inserted the inflated layout into the container,
e.g., you have already added a fragment to the frame layout, passing true would
create a redundant view group in the final layout.

9.3.4.4 Implement Other Methods

When creating the fragments, in addition to the onCreateView() method, you usually
need to implement other lifecycle callback methods as well. This allows you to
manage the fragment’s state as it is added or removed from the activity and as the
activity transitions between its lifecycle states. These include the following methods.

onCreate()
Within your implementation, you should use the onCreate() method to initialize

essential components of the fragment that you want to retain when the fragment is
paused, or stopped, and then resumed.

onPause()
The system calls the onPause() method as the first indication that the user is

leaving the fragment. Leaving a fragment does not always mean that the fragment is
being destroyed; it might become active again. Here you should commit any changes
that should persist beyond the current user session (because the user might not come
back). There are other callback methods you should also use to handle various stages
of the fragment lifecycle as described earlier in this chapter.

9.3.4.5 Using FragmentManager and FragmentTransaction Classes

To perform transactions such as add, replace, or remove a fragment, you must use the
fragment manager to create a fragment transaction which provides methods to add,
remove, replace, and perform other fragment transactions.

Adding, removing, or replacing a fragment using the fragment manager and
fragment transactions involves the following steps:

1. A call to the getSupportFragmentManager() method to get a FragmentManager
object. The activity class inherits this method from the activity fragment class;
hence, it can be called.

2. A call to the beginTransaction() method on the returned object to create a
fragment transaction object. The beginTransaction() method is a method of the
fragment manager class, and its return type is FragmentTransaction.

The code statement below summarizes the two steps described above:

FragmentTransaction ft =
getSupportFragmentManager().beginTransaction();

9.3 Creating an App with the Fragments 391

3. A call to the add(), replace(), or remove() method to add, remove, or replace a
fragment. Here is an example of how to apply a fragment transaction:
ft.add(R.id.frame1, firstFragment);.

You can perform multiple fragment transactions for the activity using the same
FragmentTransaction. These include adding, replacing, removing, hiding, attaching,
detaching, etc. When you’re ready to finalize these transactions, you must call the
commit() method to commit the changes.

4. A call the addToBackStack() method to add fragment transactions to a stack.

Android uses a stack data structure to save fragment states when the user
navigates from one screen to another. The stack is called back stack and supports
push/pop operations. Every back stack entry, i.e., stack data element, is a record of
the fragment transaction (remove, add, replace) that occurred.

You can recreate a fragment state by calling the popBackStack() method. When
the back stack is used, the retrieved fragment is reused instead of being recreated
from scratch, and the fragment’s state data is restored. Hence, there is no need for
input/output state bundles.

When adding an entry to the back stack using the fragment transaction and
addToBackStack (String name) method, the name parameter is optional.

Use the back stack if you want to undo the transaction with the back button.
Otherwise, pressing the back button changes the activity, and the fragment state can
be recreated. Here is how to call addToBackStack():

getSupportFragmentManager().beginTransaction().addToBackStack(null)
Using a back stack leads to a simpler and more efficient solution, and you should

call the addToBackStack() method every time you make a fragment transaction.

5. A call to transaction.commit() method to add or replace the fragment, e.g.,
ft.commit().

The code snippet in Listing 9.1 shows how the steps above are implemented in
our demo app:

Listing 9.1 Fragment manager and fragment transaction objects to perform
fragment transactions.

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

BookTitleListFragment firstFragment = new BookTitleListFragment();
FragmentTransaction ft = getSupportFragmentManager().
beginTransaction();
ft.add(R.id.frame1, firstFragment).addToBackStack("bookTitles");
ft.commit();

}

392 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

9.3.4.6 Creating Layout Files

You should design different layouts to optimize the available space on various
devices, such as phones and tablets, to improve the user experience. For our demo
app, we created three alternative layout files: activity_main.xml, activity_main.xml
(land), and activity_main.xml (w600dp). The first layout holds space for one frag-
ment, i.e., it has one frame layout entry in it. The second layout holds space for two
fragments. The third layout holds space for two fragments as well, but the difference
between them is that the third layout is designed for very specific devices, devices
with a 600 dp width. You inflate a suitable layout, i.e., create a layout object using
the layout file and the inflate method, at runtime based on the current device’s size
and orientation. The layout directory is the place where the main layout files are
saved (see Fig. 9.6).

The activity_main.xml file, circled in red in Fig. 9.6, is a layout folder that has
neither a large nor w600dp name qualifier, so activity_main.xml is a default layout.
This layout is used when the device screen is small and no more than one fragment
fits the screen at the same time. The default layout is also used for the configurations
that you have neither accounted for nor anticipated. The code snippet in Listing 9.2,
activity_main.xml file, is an example of the default layout configuration for small
devices with one frame layout (a place holder for a fragment).

Fig. 9.6 A layout folder with three layout files

9.3 Creating an App with the Fragments 393

Listing 9.2 Activity_main.xml file with one frame layout as a placeholder for
a fragment.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=
”http://schemas.android.com/apk/res/android”

android:layout_width=”match_parent”
android:layout_height=”match_parent”
android:orientation=”vertical”
android:padding=”16dp”>

<FrameLayout
android:id=”@+id/flContainer”
android:layout_width=”match_parent”
android:layout_height=”match_parent”
android:background=”#33FF00” />

</LinearLayout>

Another example where the main layout (main_activity.xml) contains two frame
layouts is shown in Listing 9.3. The below layout can be used on large screen
devices, such as tables or phone devices in a landscape mode to take advantage of the
landscape space of the phone.

Listing 9.3 Activity_main.xml(land) file with two frame layouts.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=
”http://schemas.android.com/apk/res/android”

android:orientation=”horizontal”
android:layout_width=”match_parent”
android:layout_height=”wrap_content”
android:layout_marginEnd=”10dp”
android:layout_marginTop=”10dp”>

<FrameLayout
android:id=”@+id/flContainer”
android:layout_weight=”1”
android:layout_width=”0dp”
android:layout_height=”match_parent”
android:layout_marginLeft=”10dp”
android:layout_marginStart=”10dp”
android:background=”#3355”/>

<FrameLayout
android:id=”@+id/flContainer2”
android:layout_weight=”2”
android:layout_width=”0dp”
android:layout_marginLeft=”10dp”
android:layout_marginStart=”10dp”
android:layout_height=”match_parent”
android:background=”#33bbaa”/>

</LinearLayout>

394 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

The above layout can be included in the layout-land file. The filename would
have the land name qualifier in it (see Fig. 9.7). To see the layout-land file on your
PC, right-click on the layout folder in your project directory, and click show in
explore to see the file. This layout can be used, i.e., inflated, when the device screen
is large enough to fit two fragments. Your main activity code should make this
happen.

9.3.4.7 Creating Layout and Fragment Classes

For our demo app, we created two fragment Java classes, BookTitleListFragment
and BookTitleAndDescriptionFragment, and two fragment layouts, one for each
class. The structure of both fragment classes and their associated layouts are listed,
respectively. See Fig. 9.8 and Listing 9.4 for BookTitleListFragment and Fig. 9.9
and Listing 9.5 for BookTitleAndDescriptionFragment.

Fig. 9.7 Layout with large qualifier name

9.3 Creating an App with the Fragments 395

Listing 9.4 fragment_book_title_and_description.xml layout file.

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout

xmlns:tools=”http://schemas.android.com/tools”
xmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”match_parent”
android:layout_height=”match_parent”>
<TextView

android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:id=”@+id/bookTitle”
android:textAppearance=”?android:attr/textAppearanceLarge”
android:text=””
tools:text=”This is a sample title”
android:layout_alignParentTop=”true”
android:layout_centerHorizontal=”true”

Fig. 9.9 Book title and description class structure

Fig. 9.8 Book fragment class structure

396 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

android:layout_marginTop=”30dp”/>
<TextView

android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:textAppearance=”?android:attr/textAppearanceMedium”
android:id=”@+id/bookDetails”
android:layout_below=”@+id/bookTitle”
android:layout_centerHorizontal=”true”
android:layout_marginTop=”30dp”
android:gravity=”left”
android:scrollbars=”vertical”/>

<TextView
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:textAppearance=”?android:attr/textAppearanceSmall”
android:id=”@+id/textView2”
android:layout_alignParentTop=”true”
android:layout_alignParentRight=”true”
android:layout_alignParentEnd=”true”
android:scrollbars=”vertical”/>

</RelativeLayout>

Listing 9.5 fragment_book_title_list.xml layout file.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”
android:layout_width=”match_parent”
android:layout_height=”match_parent”>

<TextView
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:textAppearance=”?android:attr/textAppearanceSmall”
android:id=”@+id/textView”
android:layout_gravity=”right”/>

<ListView
android:id=”@+id/listViewItems”
android:layout_width=”match_parent”
android:layout_height=”match_parent”
android:choiceMode=”singleChoice”
android:listSelector=”#FFCDD2” />

</LinearLayout>

9.3 Creating an App with the Fragments 397

Note that the second layout includes a list view entry, but we have not defined a
layout for the items in the list. This is because we are using the default layout
Android provides, called android.R.layout.simple_list_item_1, which is a simple
listing. The code snippet in Listing 9.6 shows how the book list array has been set to
the array adapter class:

Listing 9.6 BookTitleListFragment.java using ArrayAdapter and default
android.R.layout.simple_list_item.

public class BookTitleListFragment extends Fragment {
ArrayAdapter<String> booksAdapter;
private OnItemSelectedListener listener;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
booksAdapter = new ArrayAdapter<String>(getContext(),

android.R.layout.simple_list_item_1, Book.bookList);
. . .

@Override
public void onViewCreated(View view, Bundle savedInstanceState) {
ListView itemsViewList = view.findViewById(R.id.listViewItems);
itemsViewList.setAdapter(booksAdapter);

. . . }
}

9.3.4.8 Attaching Proper Layout to the Device View

In our demo app, when the user clicks on a book title in the list, the main activity
gets notified that a title was clicked. Then, if the activity is running on a phone, the
title description is displayed on the full screen. Otherwise, if it is a tablet, the
description of the title will be shown on the right-hand side without occupying the
entire screen.

Loading or updating a proper layout is a major step in developing apps with
dynamic fragment insertion and updates. Depending on the device size and orienta-
tion, different layouts will make up the view of the app. Below, we describe how a
suitable fragment is attached to the main activity layout. This step involves carrying
out multiple substeps. The substeps are also invoked when the user clicks on the
book title to display the title description. The steps are as follows:

1. Declare an interface for communication between the fragment and the main
activity. The interface will be implemented by the hosting activity.

The code snippet below shows the OnItemSelectedListener interface declara-
tion. The interface will help the fragment to access its host activity.

398 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

public interface OnItemSelectedListener {
void onBookItemSelected(int position);

}}

2. Implementing the interface. The main activity, i.e., the fragment’s hosting activ-
ity, implements the OnItemSelectedListener interface and codes the interface’s
only method, the onBookItemSelected() method. The code for this step can be as
follows:

Public class MainActivity extends AppCompatActivity implements
OnItemSelectedListener {. . .
@Override
public void onBookItemSelected(int position) {. . .}

}

3. Enable communication between the fragment and the main activity. This step is
described below.

9.3.4.9 Communication Between Fragment and Its Host Activity

To enable communication between the fragment object and its host activity, a few
things need to be done. An interface, e.g., the OnItemSelectedListener interface in
the case of our demo app, is used as a type inside of a fragment class, the
BookTitleListFragment class in the case of our demo app. In other words, the
fragment class will have a field of an interface type, for example,
private OnItemSelectedListener listener; see the code snippet below.

public class BookTitleListFragment extends Fragment {
private OnItemSelectedListener listener;
. . . }

Figure 9.10 shows the relationship between the MainActivity class, the
OnItemSelected interface, and the BookTitleListFragment class pictorially. The
MainActivity is the context class and of type OnItemSelected because it implements
it, and a reference to the MainActivity is stored in the fragment class.

When the onAttach() callback method is called with the host context being a
method parameter, you store the host context object (the MainActivity object) in a
variable inside the fragment, i.e., the BookTitleListFragment object. The code
snippet in Listing 9.7 shows how the onAttach() callback method from the fragment
assigns the activity object, i.e., context, to its data field.

9.3 Creating an App with the Fragments 399

Fig. 9.10 Interface acts as a broker between an activity and a fragment

400 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

Listing 9.7 A reference to the MainActivity is stored in the fragment.

public class BookTitleListFragment extends Fragment {
private OnItemSelectedListener listener;

. . .
@Override
public void onAttach(Context context) {
super.onAttach(context);
if(context instanceof OnItemSelectedListener){

// assiging context, i.e., MainActivity, to fragment’s field
this.listener = (OnItemSelectedListener) context;

} else {
throw new ClassCastException(context.toString()

+ " must implement BookMenuFragment.OnItemSelectedListener");
}

}

The code shows that the main activity implements the OnItemSelectedListener
interface, i.e., the main activity is an OnItemSelectedListener, which makes the
statement if (context instanceof OnItemSelectedListener) to be true, and context
can be assigned to the listener field from the fragment class. This assignment is
highlighted in bold inside the onAttach() method.

After assigning the context to the listener, i.e.,
this.listener = (OnItemSelectedListener) context, the BookTitleListFragment
has access to its host activity and can invoke methods from the main activity class,
i.e., communicate with its host activity.

9.3.5 The MainActivity Class and Demo App Demonstration

Now, we have all ingredients to add the fragments to the activity. Let us do just that.
The call to add the fragments to the activity is done inside the main activity class; see
the code snippet in Listing 9.8.

Listing 9.8 MainActivity.java for adding Fragment to the Activity screen.

public class MainActivity extends AppCompatActivity implements
OnItemSelectedListener {
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
if (savedInstanceState == null) {

BookTitleListFragment firstFragment =
new BookTitleListFragment();

9.3 Creating an App with the Fragments 401

FragmentTransaction ft = getSupportFragmentManager().
beginTransaction();

ft.add(R.id.frame1, firstFragment);
if (findViewById(R.id.layoutWithDaulFragments) != null) {

BookTitleAndDescriptionlFragment secondFragment = new
BookTitleAndDescriptionlFragment();

Bundle args = new Bundle();
args.putInt(“position”, 0);
secondFragment.setArguments(args);
ft.add(R.id.frame2, secondFragment);

}
ft.commit();

}
}

The condition statement if (findViewById(R.id.layoutWithDaulFragments) !=null)
checks to see if the layout with two frame layouts has been loaded or not. This
condition can be re-written like this, if (findViewById(R.id.frame2) != null), or
like this:

if (isTablet() || getResources().getConfiguration().orientation ==
Configuration.ORIENTATION_LANDSCAPE) {. . .}

The conditional statement is important for finding out whether or not the layout
with two frame layouts has been loaded. In other words, the condition indicates
whether or not you are using a phone or a larger device and, when using a phone, if it
is in portrait or landscape mode.

Because the fragment has been added to the frame layout container at runtime
(dynamic binding) instead of being defined in the activity’s layout with a
<fragment> tag (static binding which we will discuss in next section), the main
activity can remove the fragment and replace it with a different one. The code
snippet for the fragment replacement or swapping is shown below:

if (findViewById(R.id.frame2) != null) {
.beginTransaction()
.replace(R.id.frame2, secondFragment) // replace flContainer
.addToBackStack(null)
.commit();

}

Putting everything together, the code snippet in Listing 9.9 is a complete code for
the main activity class.

402 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

Listing 9.9 MainActivity.java class in an App using Fragment dynamically.

package code.abdulrahman.bookStore;
import android.os.Bundle;
import android.widget.Toast;
import boolean.appcompat.app.AppCompatActivity;
import boolean.fragment.app.FragmentTransaction;
public class MainActivity extends AppCompatActivity implements OnItem
SelectedListener {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

if (savedInstanceState == null) {
BookTitleListFragment firstFragment = new BookTitleListFragment();
FragmentTransaction ft =
getSupportFragmentManager().beginTransaction();

ft.add(R.id.frame1, firstFragment);
if (findViewById(R.id.layoutWithDaulFragments) != null) {

BookTitleAndDescriptionlFragment secondFragment = new
BookTitleAndDescriptionlFragment();

Bundle args = new Bundle();
args.putInt(“position”, 0);
secondFragment.setArguments(args);

ft.add(R.id.frame2, secondFragment);
}

ft.commit();
}

}
@Override
public void onBookItemSelected(int position) {

Toast.makeText(this, “Called By Fragment A: position – “ +
position, Toast.LENGTH_SHORT).show();

// Load Book Detail Fragment
BookTitleAndDescriptionlFragment secondFragment =

new BookTitleAndDescriptionlFragment();
Bundle args = new Bundle();
args.putInt(“position”, position);
secondFragment.setArguments(args);
if (findViewById(R.id.frame2) != null) {

getSupportFragmentManager().beginTransaction()
.replace(R.id.frame2, secondFragment)
.addToBackStack(null).commit();

} else {
getSupportFragmentManager().beginTransaction()

.replace(R.id.frame1, secondFragment)

.addToBackStack(null).commit();
}

}
}

9.3 Creating an App with the Fragments 403

Figures 9.11, 9.12, and 9.13 are snapshots of our fragment app running on a
phone and tablet in landscape mode and a tablet in portrait mode, respectively.

9.3.5.1 Do It Yourself

Can you think of another way to determine which device is currently in use and its
orientation? Hint: think of using the configuration class.

Fig. 9.12 Running the fragment demo app on a tablet in landscape mode

Fig. 9.11 Running the fragment demo app on a phone in landscape mode

404 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

9.3.6 Inserting Fragments in the Activity

In general, fragments appear on their enclosing activity’s GUI (graphical user
interface) using one of the following attachment approaches:

9.3.6.1 Dynamic Binding

The main activity defines a place on its GUI, or layout, for the fragments to be
plugged in (or attached). The fragment in the designated area is not permanent. Later,
the hosting activity may replace or swap a fragment with another one. We have
followed this approach in developing our demo app.

Fig. 9.13 Running the fragment demo app on a tablet in portrait mode

9.3 Creating an App with the Fragments 405

9.3.6.2 Static Binding

When using the static binding approach, an XML element called <fragment> will
be included in an activity’s layout XML file. The fragment element will have a name
attribute to define the fragment class, and the value of the attributed will be the
fragment class. The name/value property for the fragment element is like this
“android:name=fragmentName” where the fragmentName is a fragment class
name. Here is an example of how to insert the fragment into the activity layout
statically.

<LinearLayout
<fragment android:name=

“code.abdulrahman.bookStore.BookTitleListFragment”/>
</ LinearLayout>

This simple element declaration inside the layout file saves you a call to the
fragment constructors (or passing initial parameters to the constructor). The system
inserts the view returned from the fragment (from inflating the fragment layout)
directly in the place where the <fragment> element has been put.

The static binding is permanent; fragments cannot be replaced at runtime. When
the system creates the activity layout, it instantiates each fragment specified in the
layout and calls the onCreateView() method for each one to retrieve each fragment’s
layout.

9.3.7 Fragment Static Binding Example

The code snippet in Listing 9.10 is an example of a layout file with two fragment
elements statically positioned inside the layout file.

Listing 9.10 Static_fragment_layout.xml file.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
xmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”horizontal”
android:layout_width=”match_parent”
android:layout_height=”match_parent”>
<fragment android:name=

“code.abdulrahman.bookStore.BookTitleListFragment”
android:id=”@+id/frame1”
android:layout_weight=”1”
android:layout_width=”0dp”
android:layout_height=”match_parent” />

<fragment android:name=

406 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

“code.abdulrahman.bookStore.BookTitleAndDescriptionlFragment”
android:id=”@+id/frame2”
android:layout_weight=”2”
android:layout_width=”0dp”
android:layout_height=”match_parent” />

</LinearLayout>

To test the layout, you can create a simple activity, like the one shown in Listing
9.11, i.e., the StaticFragmentActivity. In our demo app, switch the launcher
activity to StaticFragmentActivity, and run the app. The result is shown in
Fig. 9.14. As you can see, both fragments are loaded, and the activity screen is
divided into two parts.

Fig. 9.14 A screen that is
made of two static fragments

9.3 Creating an App with the Fragments 407

Listing 9.11 StaticFragmentActivity.java for testing static fragments.

package code.abdulrahman.bookStore;
import android.os.Bundle;
import androidx.appcompat.app.AppCompatActivity;
publicclassStaticFragmentActivityextendsAppCompatActivityimplements
OnItemSelectedListener {

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.static_fragment_layout);

}
public void onBookItemSelected(int position) {
}

}

The hosting activity may at the same time display any number of fragments using
a combination of static and dynamic binding.

9.4 Inheritance in Android

We have updated the demo app to create a modular view by using inheritance instead
of fragments. At the start of the book, we said that an activity is the same as a class in
Java. That means that like Java classes, an activity can extend another activity. In this
part of the chapter, we will demonstrate activity subclassing and how to create a
modular view using inheritance or subclassing.

9.4.1 Create a Base Activity

Let us create an activity to serve as a base class or superclass for our demo app.
The BaseActivity class has two methods, and its associated layout holds a toolbar.
The BaseActivity class definition is shown in Listing 9.12. The main components
of the class and the way we make use of inheritance are described in the next
subsections.

408 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

Listing 9.12 BaseActivity.java.

package code.abdulrahman.bookStore;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.widget.Toast;
import androidx.appcompat.app.AppCompatActivity;
import androidx.appcompat.widget.Toolbar;
import com.google.android.material.snackbar.Snackbar;
public abstract class BaseActivity extends AppCompatActivity {

Snackbar snackbar;
View testView;
String message;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_base);
Toolbar myToolbar = findViewById(R.id.in_base_my_toolbar);

//1.
setSupportActionBar(myToolbar);

snackbar = Snackbar.make(myToolbar, message,
Snackbar.LENGTH_LONG).setAction(“Action”, null);

onViewReady(savedInstanceState, getIntent());
}

//2.
Protected void onViewReady(Bundle savedInstanceState, Intent intent) {

// To be used by child activities.
}

//3.
Protected abstract int getContentView();

@Override
public boolean onCreateOptionsMenu(Menu menu) {

// invoked automatically by activity
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.main_activity_actions, menu);
return true;

}
public boolean onOptionsItemSelected(MenuItem menuItem) {

int id = menuItem.getItemId();
switch (id) {

case R.id.action_one:
Intent intent =
new Intent(BaseActivity.this, ChildActivity.class);

startActivity(intent);
break;

case R.id.action_two:
snackbar.setText(“You are at home”).show();
break;

9.4 Inheritance in Android 409

case R.id.action_three:
Uri webpage = Uri.parse(
“http://www.wlu.ca/faculty/abdul-rahman-mawlood-yunis”);

intent = new Intent(Intent.ACTION_VIEW, webpage);
if (intent.resolveActivity(getPackageManager()) != null) {

startActivity(intent);
}
break;

case R.id.action_about:
Toast.makeText(this,

“Version 1.0,” + “ Abdul-Rahman Mawlood-Yunis”,
Toast.LENGTH_LONG).show();

}
return true;

}
}

9.4.1.1 onViewReady

In our BaseActivity class, we have defined a method called onViewReady() that is
called inside the onCreate() method after calling the setContentView() method. The
method has an empty body, and its implementation is left for the child class to write.
This method allows child activities to attach new widgets or make changes to the
layout of the base class.

9.4.1.2 getContentView

We have defined another method called getContentView(). This method is an
abstract method that needs to be implemented by the child class. This method will
be used by the onViewReady() method to update or make changes to the layout of
the base class.

9.4.1.3 Toolbar

The base class also includes a toolbar handling method, i.e., the
onCreateOptionsMenu() method. The menu file and the menu handling method
will be freely available to any activity that extends the BaseActivity class.

9.4.2 Layout for the BaseActivity

A layout for the BaseActivity class, called activity_base, is created and is shown in
Listing 9.13:

410 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

Listing 9.13 activity_base.xml.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”
xmlns:tools=”http://schemas.android.com/tools”
android:layout_width=”match_parent”
android:layout_height=”match_parent”
android:orientation=”vertical”
tools:context=”.BaseActivity”>
<androidx.appcompat.widget.Toolbar

android:id=”@+id/in_base_my_toolbar”
android:layout_width=”match_parent”
android:layout_height=”?attr/actionBarSize”
android:background=”@color/colorPrimary” />

<LinearLayout
xmlns:android=”http://schemas.android.com/apk/res/android”
xmlns:tools=”http://schemas.android.com/tools”
android:layout_width=”match_parent”
android:layout_height=”match_parent”
tools:context=”.DirectoryStructureActivity”
android:orientation=”vertical”
android:id=”@+id/baseLayout”>

</LinearLayout> </LinearLayout>

The activity_base.xml layout file has a toolbar and linear layout element in it. The
linear layout element takes the whole screen view without having any components in
it. This allows the child activities to update the layout content and attach widgets to
it. The following three lines of code represent the main idea behind activity
inheritance.

linearLayout = findViewById(R.id.baseLayout);
LayoutInflater layoutInflater = LayoutInflater.from(ChildActivity.this);
layoutInflater.inflate(getContentView(), linearLayout, true);

The code can be explained like this: first, we get the container, the linear layout
container, that we have defined in the layout for the base class. It is an empty
container, and we can add views to it. The linear layout is retrieved and used to
initialize a local liner layout instance variable of the child activity.

Second, we create a LayoutInflater object for the child activity using
LayoutInflater.from(ChildActivity.this). This is another way to create a
LayoutInflater object.

Lastly, we use the inflate method to instantiate a view object. In the last step, we
get the child layout we have prepared for the child screen content and put it inside the
empty linear layout container. By setting the last parameter of the inflate method to
true, we are saying to add the child layout to the linear layout. The ChildActivity
class is shown in Listing 9.14.

9.4 Inheritance in Android 411

Listing 9.14 ChildActivity.java.

package code.abdulrahman.bookStore;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.MenuItem;
import android.widget.LinearLayout;
import android.widget.Toast;
public class ChildActivity extends BaseActivity {

LinearLayout linearLayout;
@Override
protected int getContentView() {

return R.layout.activity_child;
}
@Override
protected void onViewReady(Bundle savedInstanceState, Intent intent) {

super.onViewReady(savedInstanceState, intent);
linearLayout = findViewById(R.id.baseLayout);
LayoutInflater layoutInflater =
LayoutInflater.from(ChildActivity.this);
layoutInflater.inflate(getContentView(), linearLayout, true);

}
public boolean onOptionsItemSelected(MenuItem menuItem) {

int id = menuItem.getItemId();
String phoneNumber = “613 000 0000”;
switch (id) {

case R.id.action_one:
Intent intent = new Intent(Intent.ACTION_DIAL);
intent.setData(Uri.parse(“tel:” + phoneNumber));
if (intent.resolveActivity(getPackageManager()) != null) {

startActivity(intent);
}
break;

case R.id.action_two:
intent = new Intent(ChildActivity.this, NewMainActivity.class);
startActivity(intent);
break;

case R.id.action_three:
Uri webpage = Uri.parse(
“http://www.wlu.ca/faculty/abdul-rahman-mawlood-yunis”);
intent = new Intent(Intent.ACTION_VIEW, webpage);
if (intent.resolveActivity(getPackageManager()) != null) {

startActivity(intent);
}
break;

case R.id.action_about:
Toast.makeText(this,

“Version 1.0,” + “ Abdul-Rahman Mawlood-Yunis”,
Toast.LENGTH_LONG).show();

}
return true;

}
}

412 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

In addition to updating the base layout, the child activity inherits the toolbar and
overrides its onOptionItemSelected() method. When the toolbar items are clicked,
the actions performed are different from the actions performed using the parent class.

9.4.3 No onCreate() Method for Child Class

You may have noticed that the child activity does not implement the onCreate()
method; instead, it inherits it from the base class, and by overriding the
onViewReady() method, it sets a different screen view for the activity.

To run the code above without any disruption to our fragment code, we create a
new activity and named NewMainActivity. It is a copy of the main activity from our
demo app with two minor changes:

(a) The parent class for NewMainActivity is BaseActivity and not
AppCompatActivity.

(b) NewMainActivity doesn’t have the onCreate() method. The content of the
onCreate() from the main activity has been copied to the onViewReady()
method.

To run the app and see the changes made, update the AndroidManifest.xml file,
and set NewMainActivity to be the launcher activity. Figure 9.15 shows how
NewMainActivity inherits the toolbar and attaches a new layout to the screen view
without using the fragments.

Fig. 9.15 Toolbar inherited from the base activity

9.4 Inheritance in Android 413

Clicking on the heart item on the menu bar of the NewMainActivity screen opens
a new screen shown in Fig. 9.16, i.e., it launches a child activity. Figure 9.16 shows
that both the NewMainActivity class and the child activity class inherit the same
toolbar from the base class. However, when clicking on menu items of the child
activity toolbar, they perform actions differently from the menu items of the
NewMainActivity toolbar. The example demonstrates that child activities can have
their unique screens and that inherited menu items can work differently in different
activities.

9.4.4 Layout Reuse

Like reusing code, you can reuse the layout as well. You can create a base or
common layout and include it in another layout using the “include” tag. In the
example shown in Listing 9.15, we create a new layout by reusing the
activity_child layout and adding an extra image to it. When it is loaded, it will
produce Fig. 9.17.

Fig. 9.16 Toolbar inherited from the base activity and view screen update

414 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

Listing 9.15 An example using “include” tag to reuse layout.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=
”http://schemas.android.com/apk/res/android”
xmlns:tools=”http://schemas.android.com/tools”
android:layout_width=”match_parent”
android:layout_height=”match_parent”
android:orientation=”vertical”
tools:context=”.TestActivity”>
<include

Fig. 9.17 Reusing layout
example is shown

9.4 Inheritance in Android 415

layout=”@layout/activity_child”
android:layout_width=”match_parent”
android:layout_height=”200dp” />

<ImageView
android:layout_width=”match_parent”
android:layout_height=”100dp”
android:src=”@drawable/happyface” />

</LinearLayout>

To conclude, in this part, we showed that there are different ways to create your
app screen. You can use fragments either statically or dynamically, use inheritance,
or reuse layouts with the “include” tag.

9.5 Density-Independent Pixel and Screen Sizes

In this chapter, we used fragments to take advantage of the extra space that larger
Android devices provide. We did that by creating more than one layout file for a
given activity. In this part, we explore how to create and name your layout files.

9.5.1 Naming Scheme

Originally in Android 3.0, you would put the layout file for large devices in the layout-
xlarge folder. As of Android 3.2, the folder name needs to follow a certain pattern. In
this new format, the pixel size of the display is used to name folders for different devices.

The layout folder for devices in various sizes is named following this format:
sw<Number>dp. SW means the smallest width or the smallest possible number of
pixels for height or width, for example, layout-sw600dp. Here, for a device to be
considered compatible with your app layout, the device’s smallest width must be
equal to or greater than 600dp. (Usually, the number or value you supply is the
“smallest width” that your layout supports, regardless of the screen’s current orien-
tation.) In our demo app, we used layout-sw600dp.

You can use w<N>dp, where w means that your display should be at least N
pixels wide. You can also use h<N>dp, where h is for height instead of width.
Table 9.2 summarizes the type of device and the file width you should consider for
your app. It also shows the folder names of the layout files.

Table 9.2 The name of the layout folders for different device sizes

320dp Phone res/layout/main_activity.xml

480dp Large phone res/layout/main_activity.xml

600dp 7 inches tablet res/layout-sw600dp/main_activity.xml

720dp 10 inches tablet res/layout-sw720dp/main_activity.xml

416 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

To tell Android that your application checks for various screen sizes, you need to
define the <supports-screens> element in your manifest file. For example, by
putting the following statement in your manifest file, you are specifying that the
minimum width required for your app is 600 dp.

<supports-screens android:requiresSmallestWidthDp="600" />

You can also specify a layout for the landscape or portrait mode of the devices
using the folder names: layout-land and layout-port.

9.5.2 Supporting Different Screen Sizes

When you do not provide alternative layouts for your app, Android applies normal
resizing. The normal resizing done by Android is fine for most applications. How-
ever, it is better if you take care of optimizing your application’s UI by yourself. In
this chapter, we created alternative layouts for activities to run apps on both phones
and tablets ourselves.

To determine if your app supports a given screen size, check to see whether or not
your app fills an entire screen when resized. If your application does not appear as
desired when resized to fit different screen sizes, you can specify a smaller device
screen for your application.

This is done using the <supports-screens> element. Similarly, you can control
your UI scaled up to fit larger screens.

It is better to optimize your UI for different screens; otherwise, users will
experience blurred UI components, also called pixelation. When your app is not
designed for larger screen sizes and the normal resizing does not achieve the
appropriate results, the Android screen compatibility mode will scale your UI by
emulating a normal size screen and medium density and then zooming in so that it
fills the entire screen. This causes the pixelation of your UI, something you can avoid
by optimizing your UI for large screens.

9.5.2.1 Create Directory Using Android Studio

To create a new Android Resource directory for your app, right-click on the res
folder in your project, select new, and click on the Android Resource Directory item
in the menu as shown in Fig. 9.18.

The step above results in a popup window as shown in Fig. 9.19. Fill in or select
values for the resource file fields as shown in the window below. The new resource
file (an XML file) will be created in the specified location with a proper name for
your app.

9.5 Density-Independent Pixel and Screen Sizes 417

Different from what we described above, you can create an alternative layout in
Android Studio using the Orientation for Preview tab in the layout editor.

Open your app layout and click Orientation for Preview in the toolbar. In the
dropdown list, click to create a suggested variant such as Create Landscape Variant
or Create Other. A new layout folder will be created in a proper folder. These steps
are shown below in Fig. 9.20.

Fig. 9.19 An Android form to create a layout resource using Android Studio

Fig. 9.18 Create a new Android resource directory with Android Studio

418 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

9.5.3 Density-Independent Pixel (dp)

Different devices have different densities or dpi (dots per inch). To express layout
dimensions or positions without knowing the density of the device, you need to use
dp. dp is a virtual pixel unit and is equivalent to one physical pixel on a 160-dpi
screen. For example, if the density of your device is 320 dpi, then every dp you
specify in your layout will take two pixels. At runtime, Android scales the dp units
based on the actual density of the screen in use.

The conversion of dp units to screen pixels is as follows: px = dp * (dpi / 160).
For example, on a 480-dpi screen, the conversion is px ¼ dp * (480/160). That is, a
px ¼ 3 dp or 1 dp equals to 1/3 physical pixels. The number 160 dpi is the baseline
density assumed by Android for a “medium” density screen. You should always use
dp units when defining your application’s UI to ensure the proper display of your UI
on screens with different densities.

9.5.3.1 Various Drawable Sizes

If you specify a bitmap that is 128x128 pixels, it will take up a large part of a small
screen but a small space on a large screen. Android has several folder names for
drawable resources that you can use for saving images to deal with different screen
sizes. The folders are:

Fig. 9.20 Using orientation for preview in the toolbar in the layout editor

9.5 Density-Independent Pixel and Screen Sizes 419

• res/drawable-ldpi/ – 120 dots per inch (dpi)
• res/drawable-mdpi/ – 160 dpi
• res/drawable-hdpi/ – 240 dpi
• res/drawable-xhdpi/ – 320 dpi
• res/drawable-xxhdpi/ – 480 dpi

For small size devices, you create your image and save it in the ldpi folder, and for
large and high-resolution devices, you save your image in the xxhdp folder.

9.6 Pinching and Screen Swiping

9.6.1 Pinch to Zoom Image

In this part, we look at the pinch gesture, i.e., using two fingers to zoom in
and out of a view or image. This can be done using the ScaleGestureDetector
and SimpleOnScaleGestureListener classes. The SimpleOnScaleGestureListener
class implements the ScaleGestureDetector.OnScaleGestureListener interface. The
latter has three callback methods, and they are onScale(), onScaleBegin(), and
onScaleEnd(). The onScale() method responds to scaling events for a gesture in
progress, the onScaleBegin() method responds to the beginning of a scaling gesture,
and the onScaleEnd() method responds to the end of a scale gesture. If you want
to implement all three callback methods, your class should implement the
OnScaleGestureListener interface; otherwise, your class needs to extend the
SimpleOnScaleGestureListener class. The SimpleOnScaleGestureListener class provides
empty, or dummy, implementations for all three methods in the OnScaleGestureListener
interface. You will only override the methods that you want to implement.

To use pinch gestures in your app, you need to do the following:

1. Create a class that extends the SimpleOnScaleGestureListener class and overrides
one or more methods of the SimpleOnScaleGestureListener class that you would
like to implement. An example is shown below:

public class MyImageScaling extends
ScaleGestureDetector.SimpleOnScaleGestureListener {
@Override

public boolean onScale(ScaleGestureDetector
scaleGestureDetector) {

super.onScale(scaleGestureDetector) ;
}

}

420 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

2. Instantiate a gesture detector object of type ScaleGestureDetector with a listener
object of type SimpleOnScaleGestureListener as a parameter to the gesture
detector constructor. This step is shown below.

public class MainActivity extends AppCompatActivity {
private ScaleGestureDetector aScaleGestureDetector;
@Override
protected void onCreate(Bundle savedInstanceState) {

new ScaleGestureDetector(this, new MyImageScaling());
}

3. Implement the onTouchEvent() callback method for the enclosing activity. The
method implementation should call the onTouchEvent() method of the
ScaleGestureDetector class. This is can be done as follows:

@Override
public boolean onTouchEvent(MotionEvent event) {

return aScaleGestureDetector.onTouchEvent(event);
}

In Listing 9.16, a simple class is created that implements the
SimpleOnScaleGestureListener and overrides the onScale() method.

Listing 9.16 Implements the SimpleOnScaleGestureListener interface.

package com.code.abdulrahman.pinchingapp;
import android.view.ScaleGestureDetector;

public class MyImageScaling extends
ScaleGestureDetector.SimpleOnScaleGestureListener {

private float sFactor = 0.5f;
@Override
public boolean onScale(ScaleGestureDetector scaleGestureDetector) {

sFactor = sFactor * scaleGestureDetector.getScaleFactor();
MainActivity.anImageView.setScaleX(sFactor);
MainActivity.anImageView.setScaleY(sFactor);
return true;

}
}

Listing 9.17 shows the main activity class where ScaleGestureDetector is instan-
tiated and ImageScaling class is used to listen to gestures.

9.6 Pinching and Screen Swiping 421

Listing 9.17 Implements the SimpleOnScaleGestureListener interface.

package com.code.abdulrahman.pinchingapp;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.ScaleGestureDetector;
import android.widget.ImageView;
import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {
protected static ImageView anImageView;
private ScaleGestureDetector aScaleGestureDetector;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
anImageView = findViewById(R.id.forDirectionView);
aScaleGestureDetector =

new ScaleGestureDetector(this, new MyImageScaling());
}
@Override
public boolean onTouchEvent(MotionEvent event) {

return aScaleGestureDetector.onTouchEvent(event);
}

}

In Listing 9.18, a layout file for the main activity is shown. The layout includes
one image view to be scaled in and out by the user.

Listing 9.18 Implements the SimpleOnScaleGestureListener interface.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
<ImageView

android:id="@+id/forDirectionView"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_centerInParent="true"
android:src="@drawable/ic_baseline_zoom_out_map_24" />

</LinearLayout>

422 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

9.6.1.1 Do It Yourself

Create a project using the code given in Listing 9.17. Run the code, and scale the
image view to familiarize yourself with using the image and text scale classes and
interfaces.

9.6.2 Swiping Gesture

Android supports multiple common gestures that you can implement in your app.
These include support for implementing tap down, tap up, swipe from left to right or
right to left (also called fling), double-tap, scroll, etc. In this part, we develop an app
to show you how to implement some of these gestures.

You can implement gesture functionalities by extending the
SimpleOnGestureListener class. This class is an adapter class; it provides dummy
implementations for all methods of three interfaces, the OnGestureListener,
OnDoubleTapListener, and OnContextClickListener interfaces. The
SimpleOnGestureListener class declaration in the Android API is as follows:

public static class GestureDetector.SimpleOnGestureListener extends
Object

implements GestureDetector.OnGestureListener,
GestureDetector.OnDoubleTapListener,
GestureDetector.OnContextClickListener

Since method implementations of the SimpleOnGestureListener class are
dummies, i.e., do nothing other than returning some values, you need to override
some of the class methods, the one’s that you would like to listen to but not
necessarily all the methods.

9.6.3 Swiping Gesture App

We have created an app where a new screen is created when the user swipes right,
left, up, or down on the main screen. The activities created for this app are shown in
Fig. 9.21, and they are MainActivity, LeftScreen, RightScreen, UpScreen, and
DownScreen. The code snippets for the app are listed in the below subsections.

To handle swipe gestures, you need to register the view that will handle the swipe.
For our demo app, the entire screen is registered to respond to the swipe event. This
is done in two steps. First, we assign an id to the screen layout. Second, inside the
main activity class, the screen layout is referenced using its id, and the layout is set to
listen to screen touches using the setOnTouchListener method. These two steps are
highlighted in boldface font in Listings 9.19 and 9.20.

9.6 Pinching and Screen Swiping 423

Listing 9.19 Assign an id to the screen layout.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:id="@+id/surface">
<TextView

android:layout_width="wrap_content"
android:layout_height="100dp"
android:layout_marginHorizontal="70dp"
android:layout_marginVertical="100dp"
android:background="@mipmap/ic_launcher"
android:text="Swipe Right/Left or UP/Down"
android:textSize="18sp"
android:textStyle="bold" />

</LinearLayout>

To respond to the user screen swipe, i.e., to handle the swipe event, the
MainActivity class implements the OnTouchListener interface. This interface has
one method that needs to be implemented. The method is called onTouch(), and
when the user swipes the app screen, it listens to the motion event. The onTouch()
method from the MainActivity class calls the onTouchEvent() method from the
gestureDetector class and passes the MotionEvent event as a parameter.

Note that the event parameter here is of type MotionEvent which is different from
the type of events associated with, for example, mouse clicks or button presses

Fig. 9.21 The activities created for this swipe app

424 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

which are usually of type ActionEvent. Also note that the class that handles all the
swipe events is called MyGestureListener and is instantiated inside the onCreate()
method of the MainActivity class. The code snippet for the MainActivity class is
shown in Listing 9.20.

Listing 9.20 Referencing screen layout set it to listen to screen touch.

package com.code.abdulrahman.swipeapp;
import android.annotation.SuppressLint;
import android.os.Bundle;
import android.view.GestureDetector;
import android.view.MotionEvent;
import android.view.View;
import android.widget.LinearLayout;
import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity implements
View.OnTouchListener {

private LinearLayout surface;
private GestureDetector gestureDetector;

@SuppressLint("ClickableViewAccessibility")
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
surface = findViewById(R.id.surface);

gestureDetector = new GestureDetector(this, new MyGestureListener(this));
surface.setOnTouchListener(this);

}
@Override
public boolean onTouch(View v, MotionEvent event) {

return gestureDetector.onTouchEvent(event);
}

}

The implementation of the MyGestureListener class is shown in Listing 9.21.
This class implements two gesture methods, onDown() and onFling(). It also
initializes the context, or screen that the gesture is applied to, inside its constructor.
It is a good practice to always implement the onDown() method that returns true.
This is because all gestures begin with an onDown() message. The onFling() is
called when the user drags on the screen with a velocity greater than a user-specified
velocity threshold.

9.6 Pinching and Screen Swiping 425

Listing 9.21 The implementation of the MyGestureListener class.

package com.code.abdulrahman.swipeapp;
import android.content.Context;
import android.content.Intent;
import android.view.GestureDetector;
import android.view.MotionEvent;

public final class MyGestureListener extends
GestureDetector.SimpleOnGestureListener {

private static final int swipe_value = 80;
private static final int swipe_velocity_value = 80;
Context context;

public MyGestureListener(Context context) {
this.context = context;

}
@Override
public boolean onDown(MotionEvent e) {

return true;
}
@Override
public boolean onFling(MotionEvent point1,

MotionEvent point2, float vX, float vY) {
boolean moving = false;
try {

float y = point2.getY() - point1.getY();
float x = point2.getX() - point1.getX();
if (Math.abs(x) > Math.abs(y)) {

if (Math.abs(x) > swipe_value && Math.abs(vX) >
swipe_velocity_value) {
if (x > 0) {

onSwipeRight();
} else {
onSwipeLeft();

}
moving = true;

}
} else if (Math.abs(y) > swipe_value && Math.abs(vY) >

swipe_velocity_value) {
if (y > 0) {

onSwipeBottom();
} else {

onSwipeTop();
}
moving = true;

}
} catch (Exception e) {

e.printStackTrace();
}

426 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

return moving;
}
public void onSwipeTop() {

context.startActivity(new Intent(context,
com.code.abdulrahman.swipeapp.UpScreen.class));

}
public void onSwipeRight() {

context.startActivity(new Intent(context,
com.code.abdulrahman.swipeapp.RightScreen.class));

}
public void onSwipeLeft() {

context.startActivity(new Intent(context,
com.code.abdulrahman.swipeapp.LeftScreen.class));

}
public void onSwipeBottom() {

context.startActivity(new Intent(context, DownScreen.class));
}

}

Listings 9.22 and 9.23 are code snippets for simple screens that are displayed
when the user swipes to the right and up, respectively. In our demo app, two other
screens are used for left and down swipes.

Listing 9.22 Simple screen that is displayed when the user swipes to the right.

package com.code.abdulrahman.swipeapp;
import androidx.appcompat.app.AppCompatActivity;
import android.content.Intent;
import android.os.Bundle;

public class RightScreen extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setTitle("Right Screen");
setContentView(R.layout.activity_right_screen);

}
@Override
public void onBackPressed() {

super.onBackPressed();
startActivity (new Intent(RightScreen.this, MainActivity.class)) ;

}
}

9.6 Pinching and Screen Swiping 427

Listing 9.23 Simple screen that is displayed when the user swipes up.

package com.code.abdulrahman.swipeapp;
import androidx.appcompat.app.AppCompatActivity;
import android.content.Intent;
import android.os.Bundle;

public class UpScreen extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_up_screen);

}
@Override
public void onBackPressed() {

super.onBackPressed();
startActivity (new Intent(UpScreen.this, MainActivity.class)) ;

}
}

The AndroidManifest.xml file is shown in Listing 9.24 to complete the source
code for the swipe demo app. It also includes a code for defining the parent-child
relationship between activities.

Listing 9.24 The AndroidManifest.xml for the swipe demo app.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
"http://schemas.android.com/apk/res/android"
package="com.code.abdulrahman.swipeapp"
android:versionCode="1"
android:versionName="1.0" >
<uses-sdk

android:minSdkVersion="26"
android:targetSdkVersion="30" />

<application
android:allowBackup="true"
android:appComponentFactory="androidx.core.app.
CoreComponentFactory"
android:debuggable="true"
android:extractNativeLibs="false"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:testOnly="true"
android:theme="@style/Theme.SwipeApp" >

428 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

<activity
android:name="com.code.abdulrahman.swipeapp.DownActivity"
android:parentActivityName=

"com.code.abdulrahman.swipeapp.MainActivity" />
<activity

android:name="com.code.abdulrahman.swipeapp.UpScreen"
android:parentActivityName=

"com.code.abdulrahman.swipeapp.MainActivity" />
<activity

android:name="com.code.abdulrahman.swipeapp.LeftScreen"
android:parentActivityName=

"com.code.abdulrahman.swipeapp.MainActivity" />
<activity

android:name="com.code.abdulrahman.swipeapp.RightScreen"
android:parentActivityName=

"com.code.abdulrahman.swipeapp.MainActivity" />
<activity android:name=
"com.code.abdulrahman.swipeapp.MainActivity" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

9.6.3.1 Do It Yourself

Create an app that handles user swipe events to the right, left, up, and down. Reuse
the code snippets in Listings 19.19 to 19.24 to develop such an app.

9.7 Chapter Summary

The best way to make your application work well on various devices is to support
multiple screens and provide alternative layouts for different screen sizes. Fragments
enable you to build an app screen that is made of multiple parts allowing you to
support multiple screen sizes. We have described how to use fragments and the
fragment manager and fragment transactions classes to create transactions to add,
replace, or remove fragments from the app screens using frame layouts. We also
explained that device configurations/orientations can change during runtime. When
such a change occurs, Android restarts the running activity. We have designed and
implemented an app that adapts to the orientation changes by automatically
reloading the app with alternative layouts that match the new device orientation.

We also described how to use class inheritance in Android to reuse layouts by
including an existing layout into a newly created layout. Lastly, we described how to

9.7 Chapter Summary 429

scale images and text views using screen pinches and how to respond to screen swipe
events to the right, left, up, and down.

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

• BackStack
• Dynamic fragment
• Fragment
• FragmentManager
• FragmentTransaction
• FrameLayout
• Include for including layout
• layout.simple_list_item_1
• onAttach
• onContextClickListener
• onCreateView
• onDetach
• onDoubleTapListener
• onGestureListener
• ScaleGestureDetector
• SimpleOnGestureListener
• SimpleOnScaleGestureListener
• Static fragment

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

Advanced Android 01.1: Fragments, [online] Available, https://developer.
android.com/codelabs/advanced-android-training-fragments#0

FragmentManager, [online] Available, https://developer.android.com/refer
ence/kotlin/androidx/fragment/app/FragmentManager

Fragments, [online] Available, https://developer.android.com/guide/fragments
Fragment transactions, [online] Available, https://developer.android.com/

guide/fragments/transactions
FrameLayout, [online] Available, https://developer.android.com/reference/

android/widget/FrameLayout

430 9 Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping

https://developer.android.com/codelabs/advanced-android-training-fragments#0
https://developer.android.com/codelabs/advanced-android-training-fragments#0
https://developer.android.com/reference/kotlin/androidx/fragment/app/FragmentManager
https://developer.android.com/reference/kotlin/androidx/fragment/app/FragmentManager
https://developer.android.com/guide/fragments
https://developer.android.com/guide/fragments/transactions
https://developer.android.com/guide/fragments/transactions
https://developer.android.com/reference/android/widget/FrameLayout
https://developer.android.com/reference/android/widget/FrameLayout

Layout, [online] Available, https://developer.android.com/reference/android/R.
layout#simple_list_item_1

Re-using layouts with <include/>, [online] Available, https://developer.
android.com/training/improvinglayouts/reusing-layouts

Support different screen sizes, [online] Available, https://developer.android.
com/training/multiscreen/screensizes

Supports-screens, [online] Available, https://developer.android.com/guide/
topics/manifest/supports-screens-element

Understand Tasks and Back Stack, [online] Available, https://developer.
android.com/guide/components/activities/tasks-and-back-stack

Further Reading 431

https://developer.android.com/reference/android/R.layout#simple_list_item_1
https://developer.android.com/reference/android/R.layout#simple_list_item_1
https://developer.android.com/training/improvinglayouts/reusing-layouts
https://developer.android.com/training/improvinglayouts/reusing-layouts
https://developer.android.com/training/multiscreen/screensizes
https://developer.android.com/training/multiscreen/screensizes
https://developer.android.com/guide/topics/manifest/supports-screens-element
https://developer.android.com/guide/topics/manifest/supports-screens-element
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://developer.android.com/guide/components/activities/tasks-and-back-stack

Chapter 10
Parsing Remote XML and JSON Files,
Using HTTPUrlConnection,
XmlPullParser, and AsyncTask

Learning Outcome
By the end of this chapter, you will be able to:

• Connect to a remote server using HttpsURLConnection
• Set up an AsyncTask
• Use UI (user interface) threads and run the code in the background
• Parse XML and JSON documents using XMLPullParser
• Save files to the Android device’s storage
• Create an app to display real-time weather information in Canada
• Create an app to display real-time Covid-19 information

Check Out the Demo Project
Download the demo app, xmlProcessingProject.zip, specifically developed to go
with this chapter. I recommend that you code this project up from the notes rather
than just opening the project in Android Studio and running it; however, if you want
to run the code first to get a sense of the app, please do so. The code is thoroughly
explained in this chapter to help you understand it. We follow the same approach to
all other chapters throughout the book. The app’s code will help you comprehend the
additional concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

10.1 Introduction

In this chapter, we will study how to process data asynchronously using an
AsyncTask class. We will describe how to connect your app to a server using
HttpsURLConnection and to process remote XML, JSON, and image files stored

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_10

433

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_10#DOI

on the Web. You will learn about UI threads and running code in the background
thread. We will also study XML files, XML elements, attributes, and processing.

10.2 Parsing Remote and Local XML Files

The eXtensible Markup Language (XML) is a set of rules for encoding documents or
text in a machine-readable format. It is a popular format for sharing data on the
internet. Websites that frequently update their content, such as news sites, stock
markets, or blogs, often provide XML feeds so that external programs can have up-
to-date information for their users. Uploading and parsing XML data is a common
task for network-connected apps. In this section, we explain how to parse and use the
data extracted from online XML files.

10.2.1 XML Parser Review

Android has two types of parsers, i.e., XML readers. They are called XML push
parser and XML pull parser (XMLPullParser). They are used to parse, i.e., process,
the input files. A widely used parser, the Simple API for XML, or SAX, implements
the push parser model. There are differences between the two parsing models, and
each has its advantages and drawbacks. The difference between the two models is
mainly in how the data flows during parsing. Below, the two models are described
briefly.

10.2.2 Push Parsing

Push parsing refers to a programming model in which an XML parser sends (pushes)
XML data to the processing program or client program as the parser encounters
XML elements or tags in the documents. Here, the parser sends data to the client
program regardless of whether or not the client is ready to use it at that time. That
means, the push parser requires you to register or implement the callback methods to
handle events generated from the processing. While the parser reads data or loops
over the documents, the callback methods are dispatched as the event occurs. During
file or XML document parsing, the control remains with the parser until the end of
the document is reached, i.e., the end of the loop reached. Since you don’t have
control over the parser, you have to maintain knowledge of the parser’s state; your
callback methods need to know where they are called.

434 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

10.2.2.1 Push Parser Iterator

As the push parser iterates over all the tags in an XML file, it uses these function
handlers: startDocument(), endDocument(), startElement(), endElement(), and
characters(). For example, the sequence of function calls for the simple xml docu-
ment in Listing 10.1 is shown below:

Listing 10.1 Simple XML file.

<?XML version="1.0”?>
<Quiz>

<Title> Quiz 1 </Title>
<Question>Your name: </Question>

</Quiz>

startDocument(), for starting document.
startElement() for the Quiz opening tag.
startElement() for the Title opening tag.
characters() for the ”Quiz 1” text.
endElement() for the Title.
startElement() for the Question.
characters() for the ”Your name:” text.
endElement() for the Question.
endElement() for the Quiz.
endDocument() for end document

The problem with the push parser model is that it scans the whole document at
once and calls element handlers for you. To know which elements have already been
processed, for example, if the title element in the listing above has been processed,
you must use variables to store the tags that you have already seen.

10.2.3 Pull Parser

The pull parser refers to a programming model in which the client application
processes the input XML documents when it needs to interact with them. The client
receives, i.e., pulls, the XML data only when it explicitly asks for it. In short, the pull
parser works like the push parser, except that you control when the parser advances
to the next element. A pull parser is what Google recommends for parsing XML
data. For this chapter, we will use the XMLPullParser API to process XML docu-
ments received from a remote server. We use our demo app as a running example to
explain the concepts and code you need to learn to process online XML files.

10.2 Parsing Remote and Local XML Files 435

10.2.4 Remote XML Parsing

The first step in parsing XML files is to decide which fields of an XML document
you are interested in. The parser can extract data for those fields and ignore the rest.
In other words, you have to understand your app requirements. Below, we explain
the steps involved in parsing an XML file using the pull parser approach.

10.2.4.1 Input File

An example of an XML input file is shown in Listing 10.2. It is similar to the file
used in our demo app as input data. The file is retrieved from a remote server and
shows the weather information for the city of Kitchener, Ontario, Canada.

Listing 10.2 Weather.xml file retrieved from a remote server.

<current>
<city id="6176823" name="Waterloo">

<coord lon="-80.52" lat="43.47"/>
<country>CA</country>
<timezone>-14400</timezone>
<sun rise="2020-03-09T11:44:04" set="2020-03-09T23:21:06"/>

</city>
<temperature value="12.14" min="10.56" max="15" unit="celsius"/>
<feels_like value="8.16" unit="celsius"/>
<humidity value="62" unit="%"/>
<pressure value="1019" unit="hPa"/>
<wind>

<speed value="4.1" unit="m/s" name="Gentle Breeze"/>
<gusts/>
<direction value="190" code="S" name="South"/>

</wind>
<clouds value="40" name="scattered clouds"/>
<visibility value="14484"/>
<precipitation mode="no"/>
<weather number="802" value="scattered clouds" icon="03n"/>
<lastupdate value="2020-03-10T00:17:46"/>

</current>

For our demo app, we are interested in the values of five elements from the input
file, that is, we need to extract data for these elements: current temperature, min
temperature, max temperature, wind speed, and weather image. Figure 10.1 shows
all the fields we are interested in when the app starts running.

436 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

10.2.4.2 Parser Instantiation Using XmlPullParser Class

After analyzing our input file, the next step in the development process is to instantiate
a parser and start the parsing process. Android has a class called android.util.Xml with
a public static method called newPullParser() to create XmlPullParser objects. You get
an instance of the XmlPullParser by calling the newPullParser() factory method, e.g.,
XmlPullParser parser = Xml.newPullParser();

The XmlPullParser class has multiple utility methods to process and parse XML
elements. The setFeature() method, for example, is used to change the general

Fig. 10.1 The interface for
weather information app

10.2 Parsing Remote and Local XML Files 437

behavior of the parser, i.e., to change the namespace processing or doctype decla-
ration handling. To ask XmlPullParser to not process the XML namespaces, use the
setFeature() method like this.

parser.setFeature(
XmlPullParser.FEATURE_PROCESS_NAMESPACES, false);

The XmlPullParser has multiple methods to set the input stream for the parser to
process, for example, setInput(InputStream inputStream, String inputEncoding).
In our demo code, we used parser.setInput(inputStream, null) to reset the parser
state and set the event type to the initial value START_DOCUMENT. The described
steps can be summarized as follows:

XmlPullParser parser = Xml.newPullParser();
parser.setFeature(
XmlPullParser.FEATURE_PROCESS_NAMESPACES, false);
parser.setInput(input, null);

10.2.4.3 Connecting to Server Using HTTPUrlConnection

To connect to an HTTP server, Android uses the HTTPUrlConnection class. You
can get Facebook updates, weather information, stock prices, tweets, and other
similar services using the HTTPUrlConnection class. Connecting to the server
involves multiple steps. The steps are:

1. The HTTPUrlConnection class starts with a URL object which takes a string in
the constructor. Here is an example of how to create a URL object.

URL url = new URL(
"https://api.openweathermap.org/" +

"data/2.5/weather?q=" + this.city +"," +
"ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&" +
"mode=xml&units=metric");

2. From the URL, you need to call the openConnection() method. This returns a
URLConnection object that represents a connection to the remote server referred
to by the URL. The example below starts the connection to the weather network
passed to the URL class constructor.

HttpsURLConnection urlConnection = (HttpURLConnection)
url.openConnection();

3. To read an input stream from an open connection, call the getInputStream()
method from your connection object; here is an example:
InputStream in ¼ urlConnection.getInputStream() ;.

438 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

4. Pass the InputStream to the XMLPullParser and start processing:

parser.setInput (in, null);.

Once you have passed the URL to the setInput() method, you are ready to process
the parser events. The code snippet in Listing 10.3 shows how to create a URL object
and how it is used with the parser.

Listing 10.3 Create a URL object and use it with the parser.

@Override
protected String doInBackground(String... strings) {

try {
URL url = new URL(

"https://api.openweathermap.org/" +
"data/2.5/weather?q=" + this.city +"," +
"ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&" +
"mode=xml&units=metric");

HttpsURLConnection conn =
(HttpsURLConnection) url.openConnection();

conn.setReadTimeout(10000);
conn.setConnectTimeout(15000);
conn.setRequestMethod("GET");
conn.setDoInput(true);
conn.connect();
InputStream in = conn.getInputStream();

try {
XmlPullParser parser = Xml.newPullParser();
parser.setFeature(
XmlPullParser.FEATURE_PROCESS_NAMESPACES, false);
parser.setInput(in, null);

} . . . }

10.2.5 Parsing Events

By default, the XML pull parser starts at the first element of the XML file that is
being processed. You need to use two parser methods, the getEventType() and next()
methods, to iterate over the XML file. To examine each element of the document,
you call the getEventType() method, and the return result can be either:
START_DOCUMENT, START_TAG, TEXT, END_TAG, or
END_DOCUMENT. You call the next() method to advance to the next tag.

For the start and end tags, you can call getName() method to get the tag’s name or
the getAttributeValue() method to get the attributes of the start/end tags. The code
snippet below shows how to use the getEventType(), getName(), and

10.2 Parsing Remote and Local XML Files 439

getAttributeValue() methods to get max and min values for the temperature element
in the weather information XML file.

if (parser.getEventType() == XmlPullParser.START_TAG) {
if (parser.getName().equals("temperature")) {

currentTemp = parser.getAttributeValue(null, "value");
minTemp = parser.getAttributeValue(null, "min")
maxTemp = parser.getAttributeValue(null, "max");

}
}

If the tag is a text or a string, call the getText() method to get the string value. In
the example below, we read an XML element attribute id as a string and cast the
value to an integer for further processing.

String currentTag =null ;
if (parser.getEventType() == XmlPullParser.START_TAG) {

currentTag= parser.getName();
}else if (parser.getEventType() == XmlPullParser.TEXT){

currentTag= parser.getText();
if ("id".equals(currentTag)){
int id = Integer.getInteger(parser.getText()) ;

}
}

10.2.5.1 Parsing Loop

The Android parsing algorithm should use a while() loop, where you call next() until
you reach the END_DOCUMENT tag. For our sample weather XML file, we used
the following while loop to process the XML file, see the code snippet in Listing
10.4.

Listing 10.4 Parsing loop example.

while ((type = parser.getEventType()) !=
XmlPullParser.END_DOCUMENT) {

if (parser.getEventType() == XmlPullParser.START_TAG) {
if (parser.getName().equals("temperature")) {

currentTemp = parser.getAttributeValue(null, "value");
minTemp = parser.getAttributeValue(null, "min");
maxTemp = parser.getAttributeValue(null, "max");
} else if (parser.getName().equals("weather")) {

. . .
} else if (parser.getName().equals("wind")) {

. . .
} } parser.next();

}

440 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

The first event is of type START_DOCUMENT; hence, we continue reading the
input file until we encounter the END_DOCUMENT tag. The stopping condition for
the loop is expressed as follows:

while((type = parser.getEventType()) !=
XmlPullParser.END_DOCUMENT) {. . .}.

In each step as the document is processed, we advance to the next event by calling
the next() method, i.e., parser.next(). The code simply keeps on advancing to the
next event until it encounters the START_TAG which is the beginning of a new
element in the XML file. Don’t confuse the START_TAG, which represents the start
of an element, with the START_DOCUMENT tag, which represents the start of a
document.

Once we hit the beginning of a new element, we retrieve the element’s local name
by calling the getName() method. When namespace processing is disabled, the raw
name is returned. The code statement below shows how the getName() method is
used to check the start of the new XML element.

if(parser.getName().equals("temperature");

We then use the getAttributeValue() method to retrieve the temperature values,
current, min, and max, from the temperature element <temperature value¼"3.5"
unit¼"metric" max¼"4" min¼"3"/>. The method signature for the
getAttributeValue() method is as follows:

String getAttributeValue (String namespace, String name);

The getAttributeValue() method returns the value of the attribute identified by the
namespace URI and localName. Since we disabled namespaces URI, we pass null
for the first parameter. For the second parameter, we pass the attribute name which
returns the string value of the attribute. Here is how the getAttributeValue() method
is used:

currentTemp = parser.getAttributeValue(null, "value");
minTemp = parser.getAttributeValue(null, "min");
maxTemp = parser.getAttributeValue(null, "max");

Similar to temperature value, we used parser.getAttributeValue(null, "value");
to retrieve the wind speed from the wind element. The wind element is represented as
follows:

<wind>
<speed value="4.1" unit="m/s" name="Gentle Breeze"/>
<gusts/>
<direction value="190" code="S" name="South"/>

</wind>

10.2 Parsing Remote and Local XML Files 441

We treated the attribute extraction of the weather element slightly differently
from the temperature element. This is because the weather element includes an icon
attribute. The weather element is like this:

<weather number="804" value="overcast clouds" icon="04d"/>

We first get an icon attribute from the tag using the getAttributeValue() method
and use it to create a file name for the icon image as follows:

String iconName = parser.getAttributeValue(null, "icon");
String fileName = iconName + ".png";

When you retrieve a weather icon from the weather element, the icon name is
included in the URL. For example, the URL to retrieve a cloudy icon from the
OpenWeatherMap website API is: https://openweathermap.org/img/w/04d.png. The
general URL format for retrieving a weather icon from the OpenWeatherMap website
API is like this: "http://openweathermap.org/img/w/" + iconName + ".png"where
iconName is the name of the icon you would like to retrieve.

10.2.6 Reading Image from Local File

We retrieve each weather icon from the server only one time and save it locally for
future use. The OpenWeatherMap website has icons for showing “Cloudy,”
“Sunny,” “Raining,” etc. Chances that these images will change sometime soon
are unlikely. Hence, it makes sense to retrieve these images only once and save them
locally for future use. This will improve the performance of your app. You do not
have to download these images every time you visit the weather network; instead,
you use the local copy of the images. You should use this strategy whenever you
have a similar situation.

Once the file exists locally, you can use both the openFileInput() and
BitmapFactory.decodeStream() methods to retrieve the local image. The
openFileInput() method can be used to open and read files associated with the
application context. The BitmapFactory class creates a Bitmap object from various
sources, including files, streams, and byte-arrays, using, for example, the
decodeStream() method. The method signature for the decodeStream is as follows:

public static Bitmap decodeStream (InputStream is);

The method decodes an input stream into a bitmap object. If the input stream is
null or cannot be used to decode a bitmap, the function returns null. A code sample
for image retrieval using the openFileInput() and decodeStream() methods is shown
in Listing 10.5.

442 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

https://openweathermap.org/img/w/04d.png
http://openweathermap.org/img/w/

Listing 10.5 Image retrieval using the openFileInput() and decodeStream()
methods.

if (parser.getName().equals("weather")) {
String iconName = parser.getAttributeValue(null, "icon");
// create file name
String fileName = iconName + ".png";

if (fileExistance(fileName)) {
FileInputStream fis = null;
try { // open the file

fis = openFileInput(fileName);
} catch (FileNotFoundException e) {

e.printStackTrace();
}

picture = BitmapFactory.decodeStream(fis);
}

Bitmap, BitmapFactory, BitmapShader, Canvas, Camera, Color, Paint, Point, etc.
are important classes in the graphics package for image processing that are used by
app developers, and you should familiarize yourself with them.

10.2.7 Retrieving Image from Remote Server

To retrieve images or icons from the net, you need to use the URL and
HttpsURLConnection classes and their methods like the openConnection(),
connect(), and getResponseCode() methods from HttpsURLConnection class. The
code snippet in Listing 10.6 shows how these two classes and their methods are used
in our demo app to retrieve an image from the net.

Listing 10.6 Using URL and HttpsURLConnection classes to retrieve icons
from the network.

String iconUrl = "https://openweathermap.org/img/w/" + fileName;
HttpsURLConnection connection =
(HttpsURLConnection) iconUrl .openConnection();
connection.connect();
int responseCode = connection.getResponseCode();
if (responseCode == 200) {

return BitmapFactory.decodeStream(connection.getInputStream());
}

Note that the response code gets the status code from the HTTP
getResponseCodemessage() method, and 200 means the status code is ok. Other

10.2 Parsing Remote and Local XML Files 443

status codes include 401 which means that the status code is unauthorized,�1 which
means that HTTP is not valid, etc.

10.2.8 An Example of Reading Image File

In Listing 10.7, a code for reading images from the local file system and the remote
server is provided. A few things that you should note about the code snippet in this
Listing are:

1. To have a clean and easily maintainable code, the image processing is done in a
separate method called the getImage() method.

2. The FileOutputStream class and compress() method are used to save the image in
file. This step is done as follows:

picture = getImage(new URL(iconUrl));
FileOutputStream outputStream = openFileOutput(fileName, Context.
MODE_PRIVATE);
picture.compress(Bitmap.CompressFormat.PNG, 80, outputStream);

3. The BitmapFactory.decodeStream() method is used in two different ways:

(a) To decode an input stream of a remote image into a bitmap.
BitmapFactory.decodeStream(connection.getInputStream());

(b) To decode an input stream of a local file.

The fileExistance() method returns a boolean value indicating whether or not
the file exists. When the file exists, it uses the local file instead of downloading it
from the net. This check is done to avoid server connection overheads.

Listing 10.7 Reading an image file from a local file and a remote server.

String iconUrl = "https://openweathermap.org/img/w/" + fileName;
picture = getImage(new URL(iconUrl));
FileOutputStream outputStream = openFileOutput(fileName, Con-text.
MODE_PRIVATE);
picture.compress(Bitmap.CompressFormat.PNG, 80, outputStream);
Log.i(ACTIVITY_NAME, "Downloaded the file from the Internet");
outputStream.flush();
outputStream.close();
public boolean fileExistance(String fname) {

File file = getBaseContext().getFileStreamPath(fname);
return file.exists();

}
public Bitmap getImage(URL url) {

HttpsURLConnection connection = null;

444 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

try {
connection = (HttpsURLConnection) url.openConnection();
connection.connect();
int responseCode = connection.getResponseCode();
if (responseCode == 200) {

returnBitmapFactory.decodeStream(connection.getInputStream());
} else

return null;
} catch (Exception e) {

return null;
} finally {

if (connection != null) {
connection.disconnect();

}
}

}

10.2.9 A Demo App

To display the parsed XML data, we have created a demo app. The app has an
activity called WeatherForecast. A button on the main activity page should launch
the WeatherForecast activity when the user clicks on it. In the AndroidManifest.xml
file, we need to request internet permissions. That is, you need to add the following
line code to your manifest file:

<uses-permission android:name="android.permission.INTERNET" />

In the WeatherForecast activity, we set the activity’s layout to the
activity_weather_forecast.xml layout file. The layout file has the following widgets:

1. An ImageView to display the current weather icon.
2. A TextVew to display the current temperature.
3. A TextView to display the minimum temperature.
4. A TextView to display the maximum temperature.
5. A TextView to display the wind speed.
6. A progress bar where the initial visibility has been set to “invisible.” The style of

the progress bar is set to horizontal bar using the style¼"?android:attr/
progressBarStyleHorizontal" parameter.

7. A Spinner, or a dropdown list, to hold the name of all the Canadian cities. When
the user selects a city, the weather information for that city will be displayed. A
snippet code of the activity_weather_forecast XML layout file is shown in Listing
10.8.

10.2 Parsing Remote and Local XML Files 445

Listing 10.8 Activity_weather_forecast.xml file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/colorAccent"
android:gravity="center"
android:orientation="vertical"
android:visibility="visible"
tools:context=".WeatherForecastActivity">
<TextView

android:id="@+id/cityName"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="10dp"
android:layout_marginRight="10dp"
android:layout_marginTop="25dp"
android:textColor="@android:color/black"
android:textSize="@android:dimen/app_icon_size" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/select_a_canadian_city"
android:textSize="18sp"
android:layout_marginTop="10dp"
android:layout_marginLeft="10dp"
android:layout_marginRight="10dp"
android:textColor="@color/colorPrimary"/>

<Spinner
android:id="@+id/citySpinner"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="30dp"
android:layout_marginRight="30dp">

</Spinner>
<ImageView

android:id="@+id/image_forecast"
android:layout_width="140dp"
android:layout_height="85dp">

</ImageView>
. . .
</LinearLayout>

446 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

10.2.9.1 Spinner Initialization and Handling

In the onCreate() method, the app’s layout is set, the progress bar’s visibility is set to
visible so that it will be shown while we are retrieving information from the net, and
the spinner object is initialized.

The spinner object provides a simple and quick way to select one item from a list.
By default, a spinner shows the first item on the list. Clicking the spinner displays a
dropdown menu with the list content from which you can select a new one. All the
steps you need to create a list of items, i.e., a spinner object, as described in previous
chapters, are followed here. These include:

1. Declare a list variable inside an activity. In this case, the variable is cityList.
2. Declare an array of strings to hold data, i.e., the city names. The array is declared

inside the strings.xml resource folder like this <string-array name="cities">,
and the city list is initialized as follows:

List <String> cityList =
Arrays.asList(getResources().getStringArray(R.array.cities));

The asList() method is used to convert an array of strings to a list of strings.

3. Create an adapter class to work with the list as follows:

ArrayAdapter <CharSequence> adapter =
ArrayAdapter.createFromResource (this,

R.array.cities,android.R.layout.simple_spinner_dropdown_item);

The array of city names inside the strings.xml file is referenced using
R.array.cities where cities is the name of the array. The layout for an item on the
spinner row is a simple dropdown layout.

The adapter is assigned to the list using the setAdapter() method, and a listener,
onItemSelectedListener, is attached to the spinner object to handle item selection. All
the steps above are implemented in the get_a_city() method which is called inside
the onCreate() method of the weather forecast activity. The code for the get_a_city()
method is shown in Listing 10.9.

Listing 10.9 The code for the get_a_city() method.

public void get_a_city () {
cityList = Arrays.asList(getResources().getStringArray(R.array.
cities));
final Spinner citySpinner = findViewById(R.id.citySpinner);
ArrayAdapter <CharSequence> adapter =
ArrayAdapter.createFromResource(this, R.array.cities,

android.R.layout.simple_spinner_dropdown_item);
citySpinner.setAdapter(adapter);

10.2 Parsing Remote and Local XML Files 447

citySpinner.setOnItemSelectedListener(new
AdapterView.OnItemSelectedListener() {

@Override
public void onItemSelected(AdapterView<?> adapterView,

View view, int i, long l) {
new ForecastQuery(cityList.get(i)).execute();
cityName.setText(cityList.get(i) + " Weather");

}
@Override
public void onNothingSelected(AdapterView<?> adapterView) {
}

});
}

You may have noticed that in the code snippet above, we used AsyncTask to
connect to the internet to download an XML file and process it in the background
thread. What is an AsyncTask and why do we use it? We discuss that in the next part
of this chapter.

10.2.9.2 Predefined Layouts

We mentioned in Chap. 2 that the Android R class has an inner class for every folder
on the project structure. One of these classes is called the Layout class. The R.Layout
class has a set of predefined layouts. These include simple_list_item,
simple_list_item_2, simple_selectable_list_item, simple_spinner_dropdown_item,
droid.R.layout.simple.spinner_item, etc. When suitable for your app, you can use
these layouts instead of defining your own. For example, for listing cities in the
spinner in our demo app, we used the simple_spinner_dropdown_item which is a
standard layout defined in the R.Layout class. Another possible choice for the
spinner view that we could have used is android.R.layout.simple.spinner_item. For
the list of all standard layouts provided by the Android API, see the R.Layout class.
A link to the R.Layout class is provided at the end of this chapter.

10.2.10 Parsing Local XML File

If your app needs to parse an XML file residing on the Web, you need to connect to
the site. For example, since the content of the XML file in our demo app is dynamic
and changes frequently, we connected to the weather network information site,
downloaded a file, and processed it.

Once you learn how to process and parse the remote XML files, parsing local
ones will be very similar, except that you do not need to connect to the network. The
code in the demo app can be reused with minor modifications to process local XML
files. The input stream parameter of the setInput(in, null) method needs to be
replaced with the file name as shown below:

448 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

Parser.setInput(filename, String inputEncoding);

Note that, before using a filename in the setInput() method, you also need to open
the input file using the InputStream class. This can be done as follows when you
have your local XML file inside the asset folder:

try {
InputStream is = getAssets().open("fileName.xml");

} catch (Exception e) {// exception statement goes here}

The getAssets() method returns the AssetManager class which has an open
method for opening local files saved inside the asset folder. For a complete example,
see the code Listing 10.10.

Listing 10.10 Parsing a local XML file.

package android.abdulrahman.wilfriedlaurie.xmlprocessing;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.util.Xml;
import android.widget.TextView;
import androidx.appcompat.app.AppCompatActivity;
import org.xmlpull.v1.XmlPullParser;
import java.io.File;
import java.io.InputStream;
import java.net.URL;
import javax.net.ssl.HttpsURLConnection;
public class ReadingLocalXMLFileActivity extends AppCompatActivity {

TextView min ;
TextView max ;
TextView current ;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_reading_local_xml_file);

current = findViewById(R.id.current);
min = findViewById(R.id.min);
max = findViewById(R.id.max);
InputStream in = null;
try {

in = getAssets().open("weather.xml");
XmlPullParser parser = Xml.newPullParser();
parser.setFeature(XmlPullParser.

FEATURE_PROCESS_NAMESPACES, false);
parser.setInput(in, null);
String currenTemp = "" ;
String minTemp = "";
String maxTemp = "";
int type;

10.2 Parsing Remote and Local XML Files 449

while ((type = parser.getEventType()) !=
XmlPullParser.END_DOCUMENT) {

if (parser.getEventType() == XmlPullParser.START_TAG) {
if (parser.getName().equals("temperature")) {

currenTemp = parser.getAttributeValue(null, "value");
minTemp = parser.getAttributeValue(null, "min");
maxTemp = parser.getAttributeValue(null, "max");

} else if (parser.getName().equals("wind")) {
parser.nextTag();
if (parser.getName().equals("speed")) {

String windSpeed = parser.getAttributeValue(null,
"value");

}
}

}
parser.next();

}// end of loop
current.setText ("current temp is" + currenTemp + "\n");
min.setText ("min temp is " + minTemp + "\n");
max.setText ("max temp is " + maxTemp);

} catch (Exception ex) {
ex.printStackTrace();

} finally {
try {

in.close();
}catch (Exception e) {}

}
}
public boolean fileExistance(String fname) {

File file = getFileStreamPath(fname);
return file.exists();

}
public Bitmap getImage(URL url) {

HttpsURLConnection connection = null;
try {

connection = (HttpsURLConnection) url.openConnection();
connection.connect();
int responseCode = connection.getResponseCode();
if (responseCode == 200) {

returnBitmapFactory.decodeStream(connection.getInputStream());
} else

return null;
} catch (Exception e) {

return null;
}

}
}

450 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

10.2.11 Asset Folder

When you have raw, text, HTML, or XML files, you can create an asset folder and
save your files in it. When using Android Studio, right-click on the app folder, click
! create a new folder ! asset folder, and create a new folder. You can use the
methods of AssetManager to access and process asset files.

10.3 AsyncTask and Thread Handling

In this part, we study running tasks asynchronously in the background using the
Android AsyncTask class.

10.3.1 AsyncTask Class

In Android, an asynchronous task is defined by a computation that runs in the
background thread and whose result is published on the app interface. For computa-
tionally demanding operations or slow-running operations, the best solution is to run
those operations asynchronously separate from the main interface thread. In Android,
this can be done using the AsyncTask class. The AsyncTask class is a helper class for
thread creation and handling, i.e., it encapsulates the creation of threads and handlers.
AsyncTask is not a generic framework for doing threading, and it should ideally be
used for operations that take only a few seconds. When AsyncTask is executed, it calls
four methods in a predefined order. These methods are: onPreExecute,
doInBackground, onProgressUpdate, and onPostExecute. It has another method called
publishProgress that can be executed in the background process inside the
doInBackground() method. The publishProgress() method helps the background pro-
cess to send results to the UI thread.

10.3.2 Using AsyncTask Class

To use AsyncTask, you create the class you want to run in the background and make
it a subclass of the AsyncTask. Here is how you will subclass AsyncTask.

Private class ForecastQuery extends
AsyncTask<String, Integer, String> {. . .}

10.3 AsyncTask and Thread Handling 451

AsyncTask is a generic class and uses generic parameters. We studied generic
classes when we reviewed Java in the first chapter. If you do not know generic
classes, it is a good time to review that part of the chapter.

When subclassing an AsyncTask, you specify the argument types for the class,
i.e., you specify the Params, Progress, and Result parameters that will be used by the
AsyncTask. The first parameter, Params, is used as an input parameter for the thread
running in the background. The second parameter, Progress, is used for holding
intermediate results as the task progresses. The third parameter, Result, holds return
results from the background thread. In the case above, we defined the parameters to
be String, Integer, and String.

Once AsyncTask is instantiated, the background tasks can be executed by calling
the execute() method. Here is an example of how to call the execute() method.

ForecastQuery fcastQuery = new ForecastQuery().execute();

It is important to remember two things when you are about to use the AsyncTask
class. One, you need to decide on the number and type of parameters that you will
instantiate your object with, and two, you should be aware of the sequence of the
callback methods of the class. Below, we will study the AsyncTask class’s four
methods and its parameters.

10.3.3 AsyncTask and Varargs Type

The AsyncTask class parameters are of the type varargs. The varargs type allows a
method to accept zero or multiple arguments. It is like you have written multiple
methods all with the same name but with a different argument list. Before adding
varargs to Java, programmers used the overload technique or took an array as an
input argument to achieve the same result. Using varargs, however, is a better
practice; it minimizes code maintenance. If you do not know how many arguments
you will have to pass to a method, you should use the varargs type. This way you
will write less code. Varargs use ellipsis, i.e., three dots after the data type. The
syntax is:

return type method name (data type ... variableName) {}

We studied the varargs parameters in more detail in Chap. 1. You might want to
revisit this part of the book to see an example of how varargs can be used.

452 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

10.3.4 Input, Progress, and Result Parameters to AsyncTask

When you define an object of the type AsyncTask class, you need to pass up to three
parameters to the class and implement up to five callback methods. The implemen-
tation of the long-running tasks will be done in the doInBackground() method. That
is, the code that should be executed in a background thread will be put in the
doInBackground() method. The method runs automatically in a separate thread,
after calling the .execute() or execute(Params... params) method. The parameters
of the AsyncTask (Input_params, Progress_value, Result_value) are of type generic
varargs and serve different purposes in the method.

The Input_params is passed into the doInBackground() method as an input.
Result_value, the third parameter, is a return value from the doInBackground()
method and is passed to the onPostExecute() method as a parameter. It is used for
storing progress information, i.e., holding progress data. The progress data can be
published on the UI thread by calling the publishProgress() method. The
onPostExecute() method runs on the user interface thread and allows it to update.
It is called by the framework once the doInBackground() method finishes.

For example, if AsyncTask’s parameters are String, Integer, and String, i.e.,
AsyncTask<String, Integer, String> is instantiated; you can infer the following
rules:

1. The doInBackground() method accepts String . . . varargs; the first parameter type
of the class.

2. The return type of the doInBackground() method is a String. The third parameter
in the AsyncTask<String, Integer, String> class declaration is the return type of
the doInBackground() method.

3. The publish progress method calls the onProgressUpdate() method and can pass
only values of type Integer to it.

4. The input parameter to the onProgressUpdate() method is of type Integer.
5. The input parameter of the onPostExecute() method is of type String which is the

return type of the doInBackground() method.

Figure 10.2 shows an example of how you can specify the class parameters for the
three callback methods.

Fig. 10.2 An example of the data types used for the callback methods

10.3 AsyncTask and Thread Handling 453

10.3.5 AsyncTask Execute Methods

AsyncTask has two versions of the execute method. The method signature for the
first one is:

public final AsyncTask<Params, Progress, Result>
execute (Params... params)

You can start a new thread and execute a task by calling the method above with
specified parameters. The return type for the method is AsyncTask, i.e., this. This
way you can keep a reference to the object itself.

The second version of the execute method is a simpler one and is used with the
Runnable object. The method signature is like this:

public static void execute (Runnable runnable);

We studied the Runnable interface when we reviewed Java in Chap. 1. The
Runnable interface is used when you want your class objects to run in a separate
thread. The class has one method called run which takes no parameters. Any class
that implements the runnable interface must implement the run method.

10.3.6 AsyncTask Method Sequence Calls

In the code below, we see how AsyncTask operates, i.e., we describe the sequence of
the callback method calls. Again, AsyncTask’s generic parameters are Params, the
type of parameter sent to the task upon execution, Progress, the type of progress unit
published during the background computation, and Result, the type of the result of
the background computation. Not all types are always used by an asynchronous task.
To mark a type as unused, use the void type. For example, you can declare an
AsyncTask like this:

private class MyTask extends AsyncTask<void, void, void> {. . .}

When an asynchronous task is executed, the task goes through four steps in the
order below:

1. The onPreExecute() method is invoked on the UI thread before the task is
executed. This step is normally used to set up the task. For example, start showing
a progress bar in the user interface.

2. The doInBackground(Params...) method is invoked on the background thread
immediately after onPreExecute() finishes executing. This step is used to perform
background computations. The arguments of the asynchronous task are passed at
this stage. The result of the computation, if any, must be returned from this stage
and passed to the last step.

454 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

This step can also use the publishProgress(Progress...) method to publish
intermediate results. The progress values are published on the UI thread in the
onProgressUpdate(Progress...) step.

3. The onProgressUpdate(Progress...) method is invoked on the UI thread after a
call to publishProgress(Progress...). The timing of the execution is undefined.
This method is used to display any form of progress in the user interface while the
background process is still executing; for instance, it can be used to animate a
progress bar or log text values.

4. The onPostExecute(Result) method is invoked on the UI thread after the back-
ground computation finishes. The result of the background computation process
is passed to this step as a parameter, i.e., the Result argument, or the input
parameter to onPostExecute(Result) is initialized.

Figure 10.3 shows the sequence of the AsyncTask’s callback method execution.

Fig. 10.3 The execution order of the callback methods of the AsyncTask class

10.3 AsyncTask and Thread Handling 455

10.4 App Implementation Details

So far, we have described all the classes and methods you need to run a task in a
background thread as well as how to process remote XML files. Let us look at a
concrete app where everything described so far will be used together.

10.4.1 WeatherForecast Class

For our demo app, we created an AsyncTask as an inner class in the WeatherForecast
activity and named it ForecastQuery. The class extends the AsyncTask<String, Integer,
String> class; see the code snippet shown in Listing 10.11.

Listing 10.11 ForecastQuery is an inner AsyncTask Java class.

private class ForecastQuery extends AsyncTask <String, Integer, String> {
private String windSpeed;
private String currentTemp;
private String minTemp;
private String maxTemp;
private Bitmap picture;
protected String city ;
ForecastQuery(String city) {
this.city = city;

}
. . .

}

10.4.1.1 Weather URL

The ForecastQuery class has four string fields. The fields are used to save data for the
wind speed and the min, max, and current temperatures. The ForecastQuery addi-
tionally has a Bitmap field to store the picture of the current weather icon. We will be
using data posted on the open whether map server to retrieve Canadian cities’
weather information. The URL for the map server used in our demo app is provided
below and the URL parameters are described in Table 10.1.

http://api.openweathermap.org/data/2.5/weather?q¼ottawa,ca&APPID¼79cecf4
93cb6e52d25bb7b7050ff723c&mode¼xml&units¼metric

Open a weather account at https://openweathermap.org/api to get a free APPID.
The free APPID expires after some time. You need to get a paid version if you are
going to develop and publish a weather forecast app. Paste the URL above into a
Web browser. Replace cityname in the link with the name of the city for which you
would like to know the weather information. You can see the XML data that is
returned. You will be using this data file for your app.

456 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

http://api.openweathermap.org/data/2.5/weather?q=ottawa,ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&mode=xml&units=metric
http://api.openweathermap.org/data/2.5/weather?q=ottawa,ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&mode=xml&units=metric
http://api.openweathermap.org/data/2.5/weather?q=ottawa,ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&mode=xml&units=metric
http://api.openweathermap.org/data/2.5/weather?q=ottawa,ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&mode=xml&units=metric
http://api.openweathermap.org/data/2.5/weather?q=ottawa,ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&mode=xml&units=metric
http://api.openweathermap.org/data/2.5/weather?q=ottawa,ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&mode=xml&units=metric
https://openweathermap.org/api

10.4.1.2 doInBackground()

The protected String doInBackground(String . . .args) function is created in the
ForecastQuery class. The XML parsing is done here. The XML pull parser has a
getAttributeValue(String namespace, String name) function that returns the value
associated with the given name parameter. The namespace is null in this case, and
the attributes that you are looking for are “speed,” “value,” “min,” and “max.” For
each of the attributes, we call the publishprogress() method with 25, 50, and 75 as the
parameters to show the progress of the data retrieval; see the code snippet shown in
Listing 10.12.

Listing 10.12 The code for retrieving weather info. from a remote XML file.

@Override
protected String doInBackground(String... strings) {

try {
URL url = new URL(

"https://api.openweathermap.org/" +
"data/2.5/weather?q=" + this.city + "," +
"ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&" +
"mode=xml&units=metric");

HttpsURLConnection conn =
(HttpsURLConnection) url.openConnection();
conn.setReadTimeout(10000);
conn.setConnectTimeout(15000);
conn.setRequestMethod("GET");
conn.setDoInput(true);
conn.connect();
InputStream in = conn.getInputStream();
try {

XmlPullParser parser = Xml.newPullParser();
parser.setFeature(XmlPullParser.

FEATURE_PROCESS_NAMESPACES, false);
parser.setInput(in, null);
int type;
//While you're not at the end of the document:

Table 10.1 The description for the parameters used to form the URL

q Is used to specify the name of the city for which you want the weather information

APPID Is an API key used to measure how many queries per hour have been submitted using
the app key. If you go over the limit for the free service level, it will stop working

Mode Is used to specify the file return type; it can be a JSON or XML file

Units Is used to specify the measurement units. For example, use metric to specify that you
want units in Celsius and not Kelvin or Imperial units

10.4 App Implementation Details 457

while ((type = parser.getEventType())
!= XmlPullParser.END_DOCUMENT) {

//Are you currently at a Start Tag?
if (parser.getEventType() == XmlPullParser.START_TAG) {

if (parser.getName().equals("temperature")) {
currentTemp = parser.getAttributeValue(null, "value");
publishProgress(25);
minTemp = parser.getAttributeValue(null, "min");
publishProgress(50);
maxTemp = parser.getAttributeValue(null, "max");
publishProgress(75);

} else if (parser.getName().equals("weather")) {
String iconName = parser.getAttributeValue(null, "icon");
String fileName = iconName + ".png";
Log.i(ACTIVITY_NAME, "Looking for file: " + fileName);
if (fileExistance(fileName)) {

FileInputStream fis = null;
try {

fis = openFileInput(fileName);
} catch (FileNotFoundException e) {

e.printStackTrace();
}
Log.i(ACTIVITY_NAME, "Found the file locally");
picture = BitmapFactory.decodeStream(fis);

} else {
String iconUrl =
"https://openweathermap.org/img/w/"

+ fileName;
picture = getImage(new URL(iconUrl));
FileOutputStream outputStream =
openFileOutput(fileName, Context.MODE_PRIVATE);

picture.compress(Bitmap.CompressFormat.PNG,
80, outputStream);

Log.i(ACTIVITY_NAME,
"Downloaded the file from the Internet");

outputStream.flush();
outputStream.close();

}
publishProgress(100);

} else if (parser.getName().equals("wind")) {
parser.nextTag();
if (parser.getName().equals("speed")) {

windSpeed=parser.getAttributeValue(null,"value");
}} }

parser.next();
}

} finally {
in.close();

}
} catch (Exception ex) {

ex.printStackTrace();
}
return "";

}

458 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

10.4.1.3 onProgressUpdate()

The onProgressUpdate(Integer . . .value) function is implemented so that it sets the
visibility of the progress bar to visible. It also sets the progress of the progress bar to
value[0]; see the code snippet below.

@Override
protected void onProgressUpdate(Integer... values) {

progressBar.setProgress(values[0]);
}

10.4.1.4 onPostExecute()

In the onPostExecute() method, the data retrieved from the weather network server is
presented. The min, max, and current temperatures are updated. The ImageView
object is also updated with a bitmap icon. The visibility of the progress bar is set to
invisible, using the setVisibility(View.INVISIBLE) function. The code snippet for
this method is listed below.

@Override
protected void onPostExecute(String a) {

progressBar.setVisibility(View.INVISIBLE);
imageView.setImageBitmap(picture);
current_temp.setText(currentTemp + "C\u00b0");
min_temp.setText(minTemp + "C\u00b0");
max_temp.setText(maxTemp + "C\u00b0");
wind_speed.setText(windSpeed + "km/h");

}

10.4.2 Complete Code for Weather Network App Activity

The complete code for the WeatherForecastActivity and its generic AsyncTask inner
class, the ForecastQuery class, is shown in Listing 10.13.

Listing 10.13 WeatherForecastActivity.java.

package android.abdulrahman.wilfriedlaurie.xmlprocessing;
import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;
import android.util.Xml;
import android.view.View;

10.4 App Implementation Details 459

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ProgressBar;
import android.widget.Spinner;
import android.widget.TextView;
import org.xmlpull.v1.XmlPullParser;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.net.URL;
import java.util.Arrays;
import java.util.List;
import javax.net.ssl.HttpsURLConnection;
public class WeatherForecastActivity extends Activity {

private final String ACTIVITY_NAME = "WeatherForecastActivity";
ProgressBar progressBar;
ImageView imageView;
TextView current_temp;
TextView min_temp;
TextView max_temp;
TextView wind_speed;
List <String> cityList;
TextView cityName;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_weather_forecast);
setTitle("Weather Network Information");
current_temp = findViewById(R.id.current_temp);
min_temp = findViewById(R.id.min_temp);
max_temp = findViewById(R.id.max_temp);
wind_speed = findViewById(R.id.wind_speed);
imageView = findViewById(R.id.image_forecast);
cityName = findViewById(R.id.cityName);
progressBar = findViewById(R.id.progress_bar);
progressBar.setVisibility(View.VISIBLE);
get_a_city();

}
public void get_a_city() {

// Get the list of cities.
cityList = Arrays.asList(getResources().getStringArray(R.array.
cities));
// Make a handler for the city list.
final Spinner citySpinner = findViewById(R.id.citySpinner);
ArrayAdapter <CharSequence> adapter =

ArrayAdapter.createFromResource(this, R.array.cities,
android.R.layout.simple_spinner_dropdown_item);

citySpinner.setAdapter(adapter);
citySpinner.setOnItemSelectedListener(

new AdapterView.OnItemSelectedListener() {
@Override

460 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

public void onItemSelected(AdapterView <?> adapterView,
View view, int i, long l) {

new ForecastQuery(cityList.get(i)).execute();
cityName.setText(cityList.get(i) + " Weather");

}
@Override
public void onNothingSelected(AdapterView <?> adapterView) {
}

});
}
privateclassForecastQueryextendsAsyncTask<String,Integer,String>{

private String windSpeed;
private String currentTemp;
private String minTemp;
private String maxTemp;
private Bitmap picture;
protected String city;
ForecastQuery(String city) {

this.city = city;
}
@Override
protected String doInBackground(String... strings) {

try {
URL url = new URL(

"https://api.openweathermap.org/" +
"data/2.5/weather?q=" + this.city + "," +
"ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&" +
"mode=xml&units=metric");

HttpsURLConnection conn = (HttpsURLConnection)
url.openConnection();

conn.setReadTimeout(10000);
conn.setConnectTimeout(15000);
conn.setRequestMethod("GET");
conn.setDoInput(true);
conn.connect();
InputStream in = conn.getInputStream();
try {

XmlPullParser parser = Xml.newPullParser();
parser.setFeature(
XmlPullParser.FEATURE_PROCESS_NAMESPACES, false);
parser.setInput(in, null);
int type;
//While you're not at the end of the document:
while ((type = parser.getEventType()) !=

XmlPullParser.END_DOCUMENT) {
//Are you currently at a Start Tag?
if (parser.getEventType() == XmlPullParser.START_TAG) {

if (parser.getName().equals("temperature")) {
currentTemp = parser.getAttributeValue(null, "value");
publishProgress(25);
minTemp = parser.getAttributeValue(null, "min");
publishProgress(50);
maxTemp = parser.getAttributeValue(null, "max");

10.4 App Implementation Details 461

publishProgress(75);
} else if (parser.getName().equals("weather")) {

String iconName = parser.getAttributeValue(null, "icon");
String fileName = iconName + ".png";
Log.i(ACTIVITY_NAME,

"Looking for file: " + fileName);
if (fileExistance(fileName)) {

FileInputStream fis = null;
try {

fis = openFileInput(fileName);

} catch (FileNotFoundException e) {
e.printStackTrace();

}
Log.i(ACTIVITY_NAME, "Found the file locally");
picture = BitmapFactory.decodeStream(fis);

} else {
String iconUrl =
"https://openweathermap.org/img/w/" + fileName;
picture = getImage(new URL(iconUrl));
FileOutputStream outputStream =
openFileOutput(fileName, Context.MODE_PRIVATE);
picture.compress(Bitmap.CompressFormat.PNG, 80,
outputStream);
Log.i(ACTIVITY_NAME,
"Downloaded the file from the Internet");
outputStream.flush();
outputStream.close();

}
publishProgress(100);

} else if (parser.getName().equals("wind")) {
parser.nextTag();
if (parser.getName().equals("speed")) {

windSpeed=parser.getAttributeValue(null,"value");
}

}
}
// Go to the next XML event
parser.next();

}
} finally {

in.close();
}

} catch (Exception ex) {
ex.printStackTrace();

}
return "";

}
public boolean fileExistance(String fname) {

File file = getBaseContext().getFileStreamPath(fname);
return file.exists();

}
public Bitmap getImage(URL url) {

HttpsURLConnection connection = null;

462 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

try {
connection = (HttpsURLConnection) url.openConnection();
connection.connect();
int responseCode = connection.getResponseCode();
if (responseCode == 200) {

return
BitmapFactory.decodeStream(connection.getInputStream());

} else
return null;

} catch (Exception e) {
return null;

} finally {
if (connection != null) {

connection.disconnect();
}

}
}

In Fig. 10.4, the left-hand side shows the first page of the weather app interface,
and the right-hand side shows an instance of the weather information. You can click
on the dropdown list and select the city for which you would like to know its weather
information; see Fig. 10.5.

Fig. 10.4 The first screen of the weather app interface

10.4 App Implementation Details 463

10.4.2.1 Do It Yourself

Modify the demo app as follows:

1. Add the date and time to the app display as well as other weather information such
as sunset and sunrise, humidity levels, and pressure levels.

2. Change the array list of Canadian cities and regions to a local XML file, and
process the file in the app activities.

3. From the URL, change the mode¼xml to mode ¼json, and extract similar
weather information in JSON format.

4. Compare the trade-off between processing JSON files and XML files.

See the section below for information on how to use a JSON file instead of using
an XML file.

Fig. 10.5 The dropdown list to select a city for retrieving its weather information

464 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

10.4.3 Parsing JSON Files

If you would like to work with JSON (JavaScript Object Notation) files instead of
XML files, you have to process the JSON files. First, in the URL you have to change
file mode from mode¼xml to mode¼json as follows:

url ¼ "http://api.openweathermap.org/data/2.5/weather?q=ottawa,ca&APPID=
79cecf493cb6e52d25bb7b7050ff723c&mode=xml&units=metric";

The JSON file you would receive from the weather network would be similar to
the following text:

Listing 10.14 An example of weather forecast data in JSON format.

{
"coord": {
"lon": -75.7,
"lat": 45.41
},
"weather": [
{
"id": 803,
"main": "Clouds",
"description": "broken clouds",
"icon": "04d"
}],
"base": "stations",
"main": {
"temp": -0.44,
"feels_like": -4.32,
"temp_min": -2,
"temp_max": 0.56,
"pressure": 1021,
"humidity": 46
},
"visibility": 24140,
"wind": {
"speed": 1.11,
"deg": 203
},
"clouds": {
"all": 75
},
"dt": 1583959705,
"sys": {
"type": 1,
"id": 872,
"country": "CA",
"sunrise": 1583925722,
"sunset": 1583967809
},
"timezone": -14400,
"id": 6094817,

10.4 App Implementation Details 465

http://api.openweathermap.org/data/2.5/weather?q=ottawa,ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&mode=xml&units=metric
http://api.openweathermap.org/data/2.5/weather?q=ottawa,ca&APPID=79cecf493cb6e52d25bb7b7050ff723c&mode=xml&units=metric

"name": "Ottawa",
"cod": 200
}

When using result.getJSONObject("main") you will get
{"temp":-3.14,"feels_like":-9.27,"temp_min":-
4,"temp_max":-2.22,"pressure":1021,"humidity":68}.

You can extract JSON object property values using keys. To retrieve the current,
max, and min temperatures and the pressure and humidity levels, you use the
following statements:

result.getJSONObject("main").getString("temp")
result.getJSONObject("main").getString("temp_max")
result.getJSONObject("main").getString("temp_min")
result.getJSONObject("main").getString("pressure")
result.getJSONObject("main").getString("humidity")

To retrieve an icon name, you first retrieve the weather information using the
getJsonArray() method. This can be done like: result.getJSONArray("weather").
You use the getJsonArray() method because looking at the JSON file, you can see
that the value for the weather key is an array; the key is weather, and the value is
array as shown below:

array:"weather":[{"id":803,"main":"Clouds","description":"broken
clouds","icon":" 04d"}].

The result of the getJsonArray() method would be an array with one object. You
use getJsonObjet(0) and getString() methods to retrieve the icon name as follows:

result.getJSONArray("weather").getJSONObject(0).getString("icon")
to retrieve wind speed, use result.getJSONObject("wind").getString
("speed").

As you can see, when using JSON you do not need to use a parser. You can read
JSON files using Java objects and methods. The JSON syntax is also shorter than the
XML syntax, and both are human-readable files.

10.4.4 Other XML Feeds

Once you learn how to process remote files, there are many interesting sources that you
can build an app for. For example, News API provides daily news headlines and articles
in XML and JSON that you can use to create apps. Here is the link to the website:
https://newsapi.org/. The Bank of Canada provides the daily exchange rate for most
currencies in three different formats, XML, JSON, and CVS, which you can equally use
to create an app. Here is the link to the website: https://www.bankofcanada.ca/rates/
exchange/daily-exchange-rates/M. You can also get information about your local

466 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

https://newsapi.org/
https://www.bankofcanada.ca/rates/exchange/daily-exchange-rates/M
https://www.bankofcanada.ca/rates/exchange/daily-exchange-rates/M

representatives in the government and parliament using his/her name, postal code, or
other parameters. For example, to retrieve information about Canadian representatives
using a postal code, you can form a URL like this: https://represent.opennorth.ca/
postcodes/N2L3C5/?sets¼federal-electoral-districts and parse the retrieved JSON file
using objects and methods, similar to how we described above.

10.5 An App for Information on Covid-19

In this part, we reuse the structure of the weather information demo app presented
earlier in this chapter to create an app for presenting Covid-19 data. The interface for
the app is shown in Fig. 10.6.

Fig. 10.6 Main interfaces for Covid-19 app

10.5 An App for Information on Covid-19 467

https://represent.opennorth.ca/postcodes/N2L3C5/?sets=federal-electoral-districts
https://represent.opennorth.ca/postcodes/N2L3C5/?sets=federal-electoral-districts
https://represent.opennorth.ca/postcodes/N2L3C5/?sets=federal-electoral-districts

When you run the app, you can select a country/region from a dropdown list to
display updated information about Covid-19 in that state/region. An example of this
information is shown for Canada/Ontario on the right-hand side of Fig. 10.6. You
can also click on a button at the bottom of the app’s main view to display the latest
information about the casualty and recovery rates for the top ten most affected
countries; see the left-hand side of Fig. 10.6.

10.5.1 Covid-19 App Development Steps

The app Data is obtained from the Coronavirus Visual Dashboard which is a public data
repository operated by the Johns Hopkins University Center for Systems Science and
Engineering (JHU CSSE) which is supported by the ESRI Living Atlas Team and the
Johns Hopkins University Applied Physics Lab (JHU APL). The repository is available
on the GitHub server at this link: https://github.com/CSSEGISandData/COVID-19.

The steps for the XML parsing and remote connection to the server are almost
identical to the ones we described in the weather information demo app presented
earlier in this chapter. The difference in this step is in the fields of the two apps. That
is, the information we are presenting is different between the two apps.

The data provided by the Johns Hopkins University is in the CSV (comma-
separated value) format. While there are various ways of reading the CSV file
format, for example, by using the OpenCSV or JavaCSV open-source libraries, it
is easier to just reuse our existing code for processing data. Thus, an important step in
developing our Covid-19 app is converting data from the CSV (comma-separated
value) file format to the XML format. There are software programs that you can
utilize to convert CSV files to XML files including ones that are available online for
free. For example, we used this webpage https://www.convertcsv.com/csv-to-xml.
htm to convert CSV files to XML files for our app.

Another important step in developing our Covid-19 app is identifying the latest
file that has the information we need. The data provided includes more information
than we want to use in our app. We identified the file we wanted to use, converted the
file into the XML format, and stored the data in an XML file. We then posted the
converted file onto a remote server for processing.

The converted data is posted on two different environments, testing and production
environments.We first put the converted file on a testing environment to test our app with
the new data. Once the data is tested and is successful, the data is moved to the production
environment to be used as production data, i.e., to be used by our app and seen globally.

One drawback of the current version of our Covid-19 app is that some of the steps
described above are done manually. Automating some of the steps involved in
creating the Covid-19 app is an interesting future project.

468 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

https://github.com/CSSEGISandData/COVID-19
https://www.convertcsv.com/csv-to-xml.htm
https://www.convertcsv.com/csv-to-xml.htm

10.5.2 Data Extraction and Conversion

Wementioned earlier that we converted the data format provided by the Johns Hopkins
University from CVS to XML. More specifically, we converted one file a day, i.e., the
daily data about the pandemic, and not all the files. The file covers the latest information
about all the countries and regions around the world. A snapshot of the converted data
is shown in Listing 10.15. It shows the data for March 09, 2021, for the top five
countries from a list of all countries that are organized alphabetically in our demo app.

You may notice that we did not use the latitude and longitude elements of the
data. We will return to this app when we study the Android map and location
elements in Chap. 13 where we will try to use the latitude and longitude elements
for the input data to improve user experience with the app.

Listing 10.15 WeatherForecastActivity.java.

<root>
<row>
<FIPS/>
<Admin2/>
<Province_State/>
<Country_Region>Afghanistan</Country_Region>
<Last_Update>2021-03-09 05:28:19</Last_Update>
<Lat>33.93911</Lat>
<Long_>67.709953</Long_>
<Confirmed>55876</Confirmed>
<Deaths>2451</Deaths>
<Recovered>49402</Recovered>
<Active>4023</Active>
<Combined_Key>Afghanistan</Combined_Key>
<Incident_Rate>143.53552852406426</Incident_Rate>
<Case_Fatality_Ratio>4.386498675638915</Case_Fatality_Ratio>
</row>
<row>
<FIPS/>
<Admin2/>
<Province_State/>
<Country_Region>Albania</Country_Region>
<Last_Update>2021-03-09 05:28:19</Last_Update>
<Lat>41.1533</Lat>
<Long_>20.1683</Long_>
<Confirmed>113580</Confirmed>
<Deaths>1956</Deaths>
<Recovered>75887</Recovered>
<Active>35737</Active>
<Combined_Key>Albania</Combined_Key>
<Incident_Rate>3946.7648898464095</Incident_Rate>
<Case_Fatality_Ratio>1.7221341785525621</Case_Fatality_Ratio>
</row>
<row>

10.5 An App for Information on Covid-19 469

<FIPS/>
<Admin2/>
<Province_State/>
<Country_Region>Algeria</Country_Region>
<Last_Update>2021-03-09 05:28:19</Last_Update>
<Lat>28.0339</Lat>
<Long_>1.6596</Long_>
<Confirmed>114382</Confirmed>
<Deaths>3018</Deaths>
<Recovered>79187</Recovered>
<Active>32177</Active>
<Combined_Key>Algeria</Combined_Key>
<Incident_Rate>260.84214234083333</Incident_Rate>
<Case_Fatality_Ratio>2.6385270409679844</Case_Fatality_Ratio>
</row>
<row>
<FIPS/>
<Admin2/>
<Province_State/>
<Country_Region>Andorra</Country_Region>
<Last_Update>2021-03-09 05:28:19</Last_Update>
<Lat>42.5063</Lat>
<Long_>1.5218</Long_>
<Confirmed>11069</Confirmed>
<Deaths>112</Deaths>
<Recovered>10661</Recovered>
<Active>296</Active>
<Combined_Key>Andorra</Combined_Key>
<Incident_Rate>14326.020837377857</Incident_Rate>
<Case_Fatality_Ratio>1.0118348540970277</Case_Fatality_Ratio>
</row>
. . .
</root>

10.5.3 Testing and Production Development Environments

When developing software, it is especially important to have at least two sets of
development environments: one, for example, for testing your code while you are
developing your application, and another one for production.

Before making your app or product available for public use or client use, the app
needs to be developed and tested thoroughly. This needs to be done on its environment,
i.e., testing environment. For example, when we converted data fromCSV to XML, we
first put it in the testing directory on the server and tested our app with that data. Once
we were done testing and were happy with both the converted data and the application,
we moved the data to the production directory on the server. Now, both the data and the
application are ready for use. That is, external applications can read the files posted on
the server, and the app can be published on the app store for users to download and use.

470 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

This way you will always have at least two copies of your code. One copy of the
code is already published and used by clients. You have to save this code in a
separate directory, production directory, or production environment. A second copy
of the code is saved in a testing environment where you might work on it to improve
it further for subsequent releases or to fix bugs when found. Similarly, you need to
test your daily data updates before posting them for public use. Data testing needs to
be done in a separate testing environment.

10.5.4 Covid-19 Source Code and Class Structure

The app is made of four main classes,MainActivity, DataObject, DataAnalytics, and
AnalyticDisplay. The main activity class includes an inner private AsyncTask class
for processing remote XML files. The processing is done in the doInBackground
class. The main activity displays the latest data on the number of casualties,
confirmed cases, and recoveries of Covid-19 for each region/state and country. It
can start the AnalyticDisplay activity to present the global state of the pandemic.
Figure 10.7 is a simplified class diagram for the app. It shows the main classes, their
properties and methods, and the relationship between the classes. For a complete
source code, see the demo apps developed for this chapter.

10.6 Chapter Summary

In this chapter, we studied a couple of important topics. These include processing
remote XML files using the HTTPUrlConnection and XMLPullParser classes,
running tasks asynchronously in the background using the Android AsyncTask
class, and processing a large amount of Covid-19 data, analyzing the data,
converting the data format, and creating data models.

We studied how the XML pull parser can be instantiated using the Android XML
class and the steps involved in processing XML files. We also studied the method
sequences for the AsyncTask and the AsyncTask class generic parameters.

We created two real-life apps, the Weather Network and Covid-19 apps, to
explain and demonstrate how to use the concepts discussed in this chapter.

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

10.6 Chapter Summary 471

Fig. 10.7 A simplified class
diagram for the Covid-
19 app

472 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

• BitmapFactory
• doInBackground
• END_DOCUMENT
• END_TAG
• execute()
• getName()
• getNamespace()
• getText()
• HttpsURLConnection
• JSON file
• newPullParser
• next()
• nextToken()
• onPostExecute
• onPreExecute,
• OnProgressUpdate
• R.Layout
• setInput(InputStream, String)
• START_DOCUMENT
• START_TAG
• TEXT
• Xml
• XmlPullParser
• XmlPullParserFactory

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

AsyncTask, [online] Available, https://developer.android.com/reference/
android/os/AsyncTask

BitmapFactory, [online] Available, https://developer.android.com/reference/
android/graphics/BitmapFactory

HttpURLConnection, [online] Available, https://developer.android.com/refer
ence/java/net/HttpURLConnection

Interface Runnable, [online] Available, https://developer.android.com/refer
ence/java/lang/Runnable

JSONObject, [online] Available, https://developer.android.com/reference/org/
json/JSONObject

Further Reading 473

https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/graphics/BitmapFactory
https://developer.android.com/reference/android/graphics/BitmapFactory
https://developer.android.com/reference/java/net/HttpURLConnection
https://developer.android.com/reference/java/net/HttpURLConnection
https://developer.android.com/reference/java/lang/Runnable
https://developer.android.com/reference/java/lang/Runnable
https://developer.android.com/reference/org/json/JSONObject
https://developer.android.com/reference/org/json/JSONObject

Parse XML data, [online] Available, https://developer.android.com/training/
basics/network-ops/xml

Pull Parsing versus Push Parsing, [online] Available, https://docs.oracle.com/
cd/E19879-01/819-3669/bnbdy/index.html

R.layout, [online] Available, https://developer.android.com/reference/android/R.
layout

Weather API, [online] Available, http://api.openweathermap.org
[10] Xml, [online] Available, https://developer.android.com/reference/android/

util/Xml

474 10 Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser,. . .

https://developer.android.com/training/basics/network-ops/xml
https://developer.android.com/training/basics/network-ops/xml
https://docs.oracle.com/cd/E19879-01/819-3669/bnbdy/index.html
https://docs.oracle.com/cd/E19879-01/819-3669/bnbdy/index.html
https://developer.android.com/reference/android/R.layout
https://developer.android.com/reference/android/R.layout
http://api.openweathermap.org
https://developer.android.com/reference/android/util/Xml
https://developer.android.com/reference/android/util/Xml

Chapter 11
Android SQLite, Firebase, and Room
Databases

What You Will Learn in This Chapter
By the end of this chapter, you should be able to:

• Create and use an Android SQLite database
• Open and upgrade an Android SQLite database
• Insert, delete, remove, and query data in the Android SQLite database
• Use ContentValues object
• Use the cursor object
• Understand the uses of Android’s content provider
• Use Android’s internal and external data storages
• Use the SQLite browser tool
• Use database inspector
• Create and use a Firebase database
• Create and use Room Database

Check Out the Demo Project
Download the demo app,DatabaseDemoApp.zip, specifically developed to go with
this chapter. I recommend that you code this project up from the notes rather than
just opening the project in Android Studio and running it; however, if you want to
run the code first to get a sense of the app, please do so. The code is thoroughly
explained in this chapter to help you understand it. We follow the same approach to
all other chapters throughout the book. The app’s code will help you comprehend the
additional concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_11

475

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_11#DOI

11.1 Introduction

Android provides diverse ways to store data. In this chapter, we study how to store
an app’s data into a database. There are many database engines for mobile devices
including MongoDB, MariaDB, SQLite, etc. In this part, we investigate using the
Android SQLite database to store structured data (a relational database). You will
learn how to create, open, and upgrade a database, as well as how to insert, delete,
and query data in an Android SQLite database.

SQLite is embedded in the Android SDK (software development kit) download and
can be used to save data locally. You will also learn about content values, cursor
objects, content providers, and internal and external data storages, as well as how to
use the SQLiteBrowser tool, Firebase database, and Room library. The chapter is
divided into five parts: the Android SQLite database, content values and cursors, the
database demo project, Firebase databases, and other data storage options. Figure 11.1

Fig. 11.1 Database demo app interfaces using SQLite on the left-hand side and Firebase on the
right-hand side

476 11 Android SQLite, Firebase, and Room Databases

shows the user interface for the database and Firebase demo apps developed to go with
this chapter.

11.2 The Android SQLite Database

The SQLite database is an open-source database engine that Android uses to store
small amounts of structured data, such as your list of contacts or SMS (Short
Message Service) information. It is a built-in database engine and can create and
execute all database operations. To use the SQLite database engine, you first need to
create the database and the database tables and then use it to write and read data.
Once you are done working with your database operations, you need to close it to
avoid any unpredictable behavior. The lifecycle of the Android SQLite database
activities can be summarized like this:

1. Create a database.
2. Open the database.
3. Read/write and update the data.
4. Close the database.

11.2.1 SQLiteOpenHelper Class

Android has a package called android.database.sqlite which contains all the inter-
faces and classes that are needed to create and manage a database. Android uses the
SQLiteOpenHelper class to create and open databases. The class has multiple
constructors and public methods to manage the database. One of the widely used
SQLiteOpenHelper constructors is:

SQLiteOpenHelper(Context context, String databaseName,
SQLiteDatabase.CursorFactory factory, int version)

where the input parameters are:

• Context is the activity that opens the database.
• String databaseName is the file that will contain the data.
• CursorFactory is an object to create cursor objects and normally is null.
• int version is the version of your database.

To use a database in your app, you must create a subclass of the
SQLiteOpenHelper class for your application. In the code snippet shown in Listing
11.1, MySQLiteHelper is a subclass of SQLiteOpenHelper.

11.2 The Android SQLite Database 477

Listing 11.1 Extending MySQLiteHelper class.

package com.code.abdulrahman.database;
import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
public class MySQLiteHelper extends SQLiteOpenHelper {. . .}

11.2.2 SQLiteDatabase Class

Once you create your database, you need to be able to manage it. That is, you need to
be able to run SQL queries on your database to create and delete tables, insert data
into tables, remove and update table entries, etc. The SQLiteDatabase class has
methods that enable you to run such SQL queries. For our database demo app, we
will be using the SQLiteDatabase methods to run queries on the database.

11.2.3 Overriding Methods of the SQLiteOpenHelper Class

There are several essential methods from the SQLiteOpenHelper class that you must
override to implement whatever tasks and actions you want your app to do. The
methods, or functions, are the onCreate(), onUpgrade(), and onOpen(optional)
methods and the class constructor methods. Below we describe the roles of each
method in the development of SQLite databases for your apps.

11.2.4 The Class Constructor Method

In the subclass you write to create and open a database, you must call a superclass
constructor and pass certain information to it. The SQLiteOpenHelper has three
constructors. The signatures of these constructors are shown below:

SQLiteOpenHelper(Context context, String name,
SQLiteDatabase.CursorFactory factory, int version);

SQLiteOpenHelper(Context context, String name,
SQLiteDatabase.CursorFactory factory, int version,
DatabaseErrorHandler errorHandler);

SQLiteOpenHelper(Context context, String name,
int version, SQLiteDatabase.OpenParams openParams);

478 11 Android SQLite, Firebase, and Room Databases

In our Android database demo app, we used the first constructor using the
following line of code:

super (context, DATABASE_NAME, null, DATABASE_VERSION);

The context parameter is DatabaseMainActivity, the database name is
myPersonalDatabase.db, CursorFactory is null, and DATABASE_VERSION is an
int value, for example, 1 or 2, depending on the version of the database. The code
snippet shown in Listing 11.2 shows a call to the superclass constructor for our
database demo project. Note that the database file extension is db.

Listing 11.2 A call to the MySQLiteHelper superclass database constructor.

public class MySQLiteHelper extends SQLiteOpenHelper {
private static final String DATABASE_NAME =

"myPersonalDatabase.db";
private static final int DATABASE_VERSION = 1;
MySQLiteHelper (Context context) {

super (context, DATABASE_NAME, null, DATABASE_VERSION);
}

. . .
}

11.2.5 The onCreate() Method

If the database does not exist, i.e., the onCreate() method of the MySQLiteHelper
class has not been called, the onCreate() method is called immediately. The
onCreate() method signature would be like this:

@Override
public void onCreate(SQLiteDatabase database) {

// database is the database object.
}

To elaborate more, in the subclass you create, you call the superclass constructor
which in turn calls the onCreate() method to create a database. The call to the
superclass constructor should happen only once, the first time you create the
database. You do not want to create a new database every time you run the app.
Instead, you should use an already created database.

11.2 The Android SQLite Database 479

11.2.5.1 Create Table in Database

The onCreate() method can be used to execute SQL table creation statements. The
code snippet shown in Listing 11.3 is an example of a table creation statement where
the SQL statement is created as a string and saved in a static final string variable
named DATABASE_CREATE.

Listing 11.3 An example of creating a table statement.

private static final String DATABASE_CREATE = "create table "
+ TABLE_Of_My_ITEMS + " (" + Item_ID
+ " integer primary key autoincrement, " + ITEM_NAME
+ " text not null);";

When executed, the statement above creates a table called tableOfMyItems that
has two fields, or columns. The columns are _id and an itemName. The _id type is an
integer, and the ITEM_NAME type is text or string. The _id is the primary key for
the table and is an auto-increment, i.e., when a record is inserted into the table, a
unique number is generated automatically.

The create table statement would be executed only once, when you create a
database for the first time. After writing your create table statement, you need to
execute it to create tables. The execSQL() method is a function that executes a string
SQL statement; see the code snippet below:

@Override
public void onCreate(SQLiteDatabase database) {

database.execSQL(DATABASE CREATE);
}

The execSQL() method executes a single SQL statement that is not a select or any
other SQL statement that returns data.

So far, we have described four steps to create a database in Android using the
SQLite database, and they are:

1. Subclassing the SQLiteOpenHelper class.
2. Composing the SQL statement for the database/table creation.
3. Calling the superclass constructor.
4. Calling the execSQL() method with the database create statement. This call is

made inside the onCreate() method.

The code snippet in Listing 11.4 summarizes the four steps above.

480 11 Android SQLite, Firebase, and Room Databases

Listing 11.4 MySQLiteHelper.java.

package com.code.abdulrahman.database;
import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

// 1. Subclassing SQLiteOpenHelper class
public class MySQLiteHelper extends SQLiteOpenHelper {

public static final String TABLE_Of_My_ITEMS = "tableOfMyItems";
public static final String Item_ID = "_id";
public static final String ITEM_NAME = "itemName";
private static final String DATABASE_NAME =

"myPersonalDatabase.db";
private static final int DATABASE_VERSION = 2;

// 2. Table/Database creation statement
private static final String DATABASE_CREATE = "create table "

+ TABLE_Of_My_ITEMS + "(" + Item_ID
+ " integer primary key autoincrement, " + ITEM_NAME
+ " text not null);";

// 3. super constructor call
MySQLiteHelper (Context context) {
super(context, DATABASE_NAME, null, DATABASE_VERSION);

}
@Override
public void onCreate(SQLiteDatabase database) {
// 4. Executing SQL command
database.execSQL(DATABASE_CREATE);

}

11.2.6 onUpgrade Method

The SQLiteOpenHelper class calls the onUpgrade() method when the database needs
to be upgraded. You update your database if, for example, you change a type of a
field in a table, add/remove fields in a table, or add/delete tables.

If you change the database version number inside your code and restart your app, the
onUpgrade() method is called. The method signature for onUpgrade() is as follows:

public abstract void onUpgrade (SQLiteDatabase db,
int oldVersion, int newVersion);

Once the onUpgrade() method is invoked, you have a chance to upgrade your
data. For example, you can add new columns to an existing table, create a new table,

11.2 The Android SQLite Database 481

drop a table, or change the table schema. You can also delete all your data using the
execSQL() method the with DROP statement as follows:

db.execSQL(“DROP TABLE IF EXISTS TABLENAME”);

In our database demo project, when onUpgrade() is called, we will delete all the
data in the table and call the onCreate() method with the table name to recreate the
table; see the code snippet shown in Listing 11.5.

Listing 11.5 An example of an onUpgrade() method implementation.

@Override
public void onUpgrade(SQLiteDatabase db,

int oldVersion, int newVersion) {
db.execSQL("DROP TABLE IF EXISTS TABLE_Of_My_ITEMS");
onCreate(db); // or database.execSQL(“CREATE TABLE . . .”);

}

11.2.7 onDowngrade Method

The onDowngrade() method is called when you want to downgrade the database. If
you decide to use an older version of the database, the onDowngrade() method can
be used. The onDowngrade() method implementation may include a create table
statement or/and drop a table statement.

Unlike the onCreate() and onUpgrade() methods, the onDowngrade() method is
not an abstract method; therefore, you do not have to override it, i.e., its implemen-
tation is optional. You do not normally use the onDowngrade() method, but if you
need it, it exists and is one of the SQLiteOpenHelper methods.

To invoke the onDowngrade() method, lower the version number of your data-
base. For example, if the current version of your database is 3, change it to 2, and
restart your app; you will see that the onDowngrade() function is called. Restarting
your app results in calling the MySQLiteHelper class constructor, and when the
database version value is lower than the previously provided value, the
onDowngrade() method is called.

Since onDowngrade() is an optional method, you do not need to use the
@Override keyword when implementing it. An example of how the onDowngrade()
method can be implemented is shown in Listing 11.6.

482 11 Android SQLite, Firebase, and Room Databases

Listing 11.6 An example of an onDowngrade method implementation.

public void onDowngrade (SQLiteDatabase db, int oldVersion,
int newVersion){

Log.w(MySQLiteHelper .class.getName(),
"Downgrading database from version " + newVersion + " to "

+ oldVersion);
db.execSQL("DROP TABLE IF EXISTS TABLE_Of_My_ITEMS");
onCreate(database);

}

Here, the onCreate() method handles the request for downgrading the database.

11.2.8 onOpen() Method

The onOpen() method is called when the database has been opened. It is an optional
method that you do not have to override. If you decided to override the onOpen()
method, you should include the database status check using the isReadOnly() method
in the implementation body of your method. The isReadOnly() method returns a true
or false value indicating whether the database mode is read-only or read/write,
respectively. You should allow database updates only if the database status is read
and write. By default, when the onCreate() and onUpgrade()/onDowngrade() methods
are called, the onOpen() method gets called last. It can also get called regardless of the
onCreate()/onUpgrade() methods, i.e., you can call it separately when needed.

11.2.9 Read and Read/Write Access

Once you create your database, you need to open it to use it. You have the option to
open your database in a read-only mode using the getReadableDatabase() method or
in a read/write mode. In our demo app, we open the database in a read/write mode as
shown below:

dbHelper = new MySQLiteHelper (context);
public void open () throws SQLException {

database = dbHelper.getWritableDatabase();
}
To open a database in read mode only, it can be done as follows:
public void open () throws SQLException {

database= dbHelper.getReadableDatabase() ;
}

The return type of the getWritableDatabase() method is a SQLiteDatabase object.
If the database does not exist when either the getWritableDatabase() method or the
getReadableDatabase() method is called, the onCreate() method is called to create
and return the database.

11.2 The Android SQLite Database 483

11.2.10 The execSQL Method from SQLiteDatabase Class

Android uses the execSQL() method from the SQLiteDatabase class to execute a
single SQL statement. The statement should not return any data. For example, the
execSQL() method cannot be used with the select statement.

The SQLiteDatabase class has more than one version of the execSQL() method. The
one we used in our demo app has this signature: public void execSQL (String sql);.

The type for the input parameter for the execSQL() method is a string. Hence, the
SQL statement you write for your app needs to be formed as a string and passed to
execSQL() method to run. We have used the execSQL() method throughout our
demo app. Below is an example of how we used the execSQL() method. The input
parameter is a create table statement.

final String contact_table = "create table contacts" + " (" +
"firstName" + " text primary key , " +
"lastName" + " text , " +
"email" + " text , " +
" phoneNumber" + " number " + ");";
database.execSQL(contact_table);

In the code above, the SQL statement creates a table called contacts which has
four fields: first name, last name, email, and phone number. The type of the first three
fields is text, i.e., string, and the phone number type is an integer.

To summarize, implementing the steps above will create a database for your app
where your users will be able to apply read, write, and update operations on it. Next,
we will describe how your users can interact with the database of your app.

11.3 Content Values and Cursor Objects

In this part of the chapter, we will study how to interact with the data in the database.
You will learn how to insert, remove, update, and query data in the database tables.
Android has two classes to enable such interactions or transactions. The classes are
ContentValues and Cursor; both are described below.

11.3.1 Content Values and Insert Method

The insert() method from the SQLiteDatabase class is an easy way to insert a row
into the database tables. The signature for the insert method is as follows.

public long insert (String table, String nullColumnHack,
ContentValues values);

484 11 Android SQLite, Firebase, and Room Databases

The first parameter of the method is the table name into which you want to insert
the row. The second parameter is an optional string, which may be null, and the last
parameter is an object of type ContentValues. The ContentValues class is a class that
you can use to store a set of values using key/value pairs.

If you have multiple fields such as first name, last name, email, and phone number
for which you need to insert a row into a table, you first create a ContentValues
object and then use the insert() method from the SQLiteDatabase class to add the
newly created object into a table row.

You create ContentValues objects by calling the constructor of the class. You can
use the put(String ColumnName, String value) method of the ContentValues class to
add data into ContentValues objects. Once you have your ContentValues object
ready, use the insert() method from the SQLiteDatabase class to add the
ContentValues object into a table row. The code snippet below shows the two
steps above, i.e., how the ContentValues object is used to insert data into the
database using the put() and the insert() methods:

ContentValues cValues = new ContentValues();
cValues.put("FristName", "Abdul-Rahman");
cValues.put("LastName", "Mawlood-Yunis");
cValues.put("email", "amawloodyunis@wlu.ca");
dataBaseName.insert("TableName","NullPlaceHolder,",cValues) ;

Note that the second parameter to the insert() method, i.e., the string
nullColumnHack of the method, is the column name. If you forgot to provide the
column name, the “NullPlaceHolder” will be inserted into the row for the missing
column name.

In our demo app, the createItem() method is called with an item object as a
parameter to add an item object to the database. The key for the ContentValues
objects is MySQLiteHelper.ITEM_NAME, and the values are fields of the incoming
parameter. See the code snippet below.

public Item createItem(Item item) {
ContentValues values = new ContentValues() ;
values.put(MySQLiteHelper .ITEM_NAME, item.getItem());
long insertId = database.insert

(MySQLiteHelper .TABLE_Of_My_ITEMS, null,values);
. . .

}

The Item object in our app has only one property of type string which represents
the name of the object. Figure 11.2 shows the items that have been inserted into the
database after pressing the insert button.

In most cases, the objects that are inserted into the database will have more than
one property. This leads us to the exercise below.

11.3 Content Values and Cursor Objects 485

11.3.1.1 Do It Yourself

Exercise 1
Replace the item class with a new class called Contacts with three properties, String
name, Int phone_number, and String email. Change the database demo project to use
the Contacts class instead of the item class. Once you are done inserting the data, the
information display of your app should be similar to the information presented
below:

Fig. 11.2 Demo screen
showing inserted items into
a database

486 11 Android SQLite, Firebase, and Room Databases

ID Name Phone number Email

1 AR Mawlood-Yunis 6135214444 amwloodyunis@wlu.ca

2 SA Mawlood-Yunis 6135214444 amwloodyunis@wlu.ca

3 SI Mawlood-Yunis 6135214444 amwloodyunis@wlu.ca

4 ZY Mawlood-Yunis 6135214444 amwloodyunis@wlu.ca

Exercise 2
Think of some useful applications for the Android database. To make yourself
familiar with database usage with the mobile apps, search the Google app store to
find out some apps where you think the app developers are utilizing the Android
database correctly/wisely. Do some searches to find out popular databases that can
be used with mobile apps.

11.3.2 Cursor

Android has a class called cursor. Objects of the cursor class can hold rows returned
from a query. Cursor objects can contain a single row or an entire table. You can
think of the cursor class as an iterator class in Java or a reference to the result set
returned from a query that you can iterate through.

The cursor class has several useful functions. These include methods to move
where the cursor is pointing to, for example, moveToNext, moveToFirst,
moveToLast, etc. Table 11.1 lists some of these methods and their descriptions.

We used the cursor object in our database demo app in multiple places. The code
snippets showing in Listings 11.7 and 11.8 show how it is used inside the
getAllItem() and createItem() methods in our demo app.

Table 11.1 Useful methods of the Cursor class and their description

getCount() Returns the number of rows a query returned, i.e., the number of rows
in the cursor

moveToFirst() Moves the cursor to the first row

moveToLast() Moves the cursor to the last row

moveToNext() Moves the cursor to the next row

moveToPosition(int
position)

Moves the cursor to a specified position

close() Closes the cursor object and releases all its resources

11.3 Content Values and Cursor Objects 487

Listing 11.7 Using the Cursor object to return all the items in the table.

public List<Item> getAllItem() {
List<Item> items = new ArrayList<>();

Cursor cursor = database.query (
MySQLiteHelper .TABLE_Of_My_ITEMS, allItems, null, null, null,

null, null);
cursor.moveToFirst();
while (!cursor.isAfterLast()) {

Item item = cursorToItem(cursor);
Log.d(TAG, "get item = " + cursorToItem(cursor).toString());
items.add(item);
cursor.moveToNext();

cursor.close();
return items;

}

Listing 11.8 Creating an Item object and inserting it into a table.

public Item createItem(Item item) {
ContentValues values = new ContentValues();

values.put(MySQLiteHelper .ITEM_NAME, item.getItem());

long insertId = database.insert(
MySQLiteHelper .TABLE_Of_My_ITEMS, null,values);

Cursor cursor = database.query(
MySQLiteHelper .TABLE_Of_My_ITEMS, allItems,

MySQLiteHelper .Item_ID +
" = " + insertId, null, null, null, null);

cursor.moveToFirst();
Item newItem = cursorToItem(cursor);
cursor.close();
return newItem;

}

There are multiple interesting things that one can observe about the two methods
above. Both examples show that running queries on the database returns cursor
objects, and the cursor objects hold the item object inserted into the table. The
createItem() method demonstrates how an id that is returned from the database.insert
() method can be reused as part of the query to retrieve an item with the specified
id. In both methods, the ContentValues object is used to insert an item object into the
database table. We will analyze the database demo code in more detail in the next
part of this chapter.

488 11 Android SQLite, Firebase, and Room Databases

11.3.3 Query Data

The query() method is a convenient function for creating the built-in SQL state-
ments. Android provided three different versions of the query methods. The return
type for all three query methods is a cursor object which can be processed by the app.
The syntax and components of one of the query methods used in our demo app are as
follows:

query (boolean distinct, String tableName, String[] columns,
String selection, String[] selectionArgs,
String groupBy, String having, String orderBy, String limit)

The meaning of each parameter is as follows:

• distinct is a boolean variable and when set to true, it will return a unique result.
• The string tableName is the table name for the FROM part of SELECT clause.
• Columns [] is a list of strings, i.e., column names to be used for selection. For

example, the new String [] ¼ [“A”,”B”,”C”] is the same as saying
SELECT (A, B, C) columns.

• Selection is a string for the WHERE clause without using the WHERE keyword,
for example, “ firstName like ? AND lastName not ? “. The ? is a placeholder
which will be replaced by the selectionArgs [] array.

• selectionArgs[] is an array of strings to replace the “?” in the selection. The order
of replacement is in a left to right order.

• The names of the other parameters explain their purposes.

Below are two test cases using the query clause. The database is called
tableOfMyItems, and the columns are id and ITEM_NAME.

Example 1
database = dbHelper.getReadableDatabase();
database.query(true, "tableOfMyItems", null,null, null,null, null,
null, null);

The query statement above is equivalent to SELECT * from tableOfMyItems.

Example 2
Cursor c = database.query("tableOfMyItems", new String[]{"*"},

"_id" + "=?" + " And " + " ITEM_NAME",
new String[]{"8", "Gift Cards"}, null, null, null, null);

The query in example 2 is equivalent to:

SELECT * FROM tableOfMyItems WHERE _id=8 AND
itemName = Gift Cards ;

11.3 Content Values and Cursor Objects 489

11.3.4 rawQuery

If you are comfortable with writing the SQL statements yourself, the rawQuery()
construct or method lets you do it. You embed your query inside the rawQuery()
method to run in your app. In Listing 11.9, some examples from our demo app on
how to write and use a rawQuery() method in the app are shown.

Listing 11.9 Examples from our demo app on how to write and use a raw
query.

public void test4() {

database = dbHelper.getReadableDatabase();
String q1 = "select itemName from tableOfMyItems where _id=8";
String q2 =

"select _id from tableOfMyItems where itemName='Gift Cards'";
String q3 =

"select _id from tableOfMyItems where itemName like '%Gift%'";

// 1.
database.rawQuery(q1, null);
database.rawQuery(q2, null);
database.rawQuery(q3, null);

//2. Get a specific item
Cursor c = database.rawQuery(

"select * from tableOfMyItems where _id = ? ",
new String[] { " 25 " });

//3. get all table names from the database
Cursor tables = database.rawQuery(

"select name from sqlite_master where type= ? ",
new String [] { " table "}) ;

//4. get count
Cursor cursor = database.rawQuery("select count(*) " +

"from tableOfMyItems", null);

//5. to format the output
Cursor cursor2 = database.rawQuery(String.format(

"select count(*)
from %s", "tableOfMyItems"), null);
}

To see the result of the above queries, you need to run the demo app prepared for
this chapter. See the source code of the demo app for more examples of rawQuery().

490 11 Android SQLite, Firebase, and Room Databases

11.3.5 More Methods of the SQLiteDatabase Class

The SQLiteDatabase class is one of the main classes for interacting with database
tables when using the SQLiteDatabase with Android. This class has methods for all
types of operations that can be performed on the database. So far, we have used the
create(), insert(), query(), and rawQuery() methods, but there are more. Below we
describe three more methods of this class that are very relevant to database
management.

11.3.5.1 Replace Method

The replace() method from the SQLiteDatabase is used to replace a row in a table. It
will insert a new row if a row does not already exist. The signature of the method is
as follows:

public long replace (String table,
String nullColumnHack, ContentValues initialValues);

11.3.5.2 Update Method

The SQLiteDatabase has a method for updating rows in tables, the update() method.
The signature of the method is as follows:

public int update (String table,
ContentValues values, String whereClause, String[] whereArgs);

11.3.5.3 Delete Method

The delete() method is used to delete rows in a table. The signature of the method is
as follows:

public int delete (String table, String whereClause, String[] whereArgs);

The methods replace(), update(), and delete(), which are used in our demo app,
will be described in the next part of this chapter.

11.3 Content Values and Cursor Objects 491

11.4 DatabaseDemo Project

In this part of the chapter, we will describe how the SQLiteOpenHelper, the
SQLiteDatabase, and their methods are used to create an Android database app or
to create a database for our app. In our app, we followed the model view controller or
MVC design pattern. That is, we created three components:

1. Data and classes to access data: a data component
2. Operational and test driver classes: the middle component, or controller

component
3. Presentation and data query classes: the view component

The middle component (component 2) receives commands from the view com-
ponent (component 3) and sends them to the data component (component 1). Once
the middle component receives the results from the data component (component 1),
it sends the results back to the view component (component 3). All communication
between the database and view components goes through the middle component. Let
us dig into each layer in detail:

11.4.1 The Data Component

Almost all apps and computer applications need a database when they need data to
work with. In our demo database app, the data that needs to be saved is just a
product name: the name of the top 20 items that a business can sell on eBay (this is
fictional data; you should not take it as real core business information). The data is
saved in an array called bestThingsToSellOnEBay inside the SourceData class as
shown in Listing 11.10:

Listing 11.10 SourceData.java class for holding data.

package com.code.abdulrahman.database;
public class SourceData {
static String[] bestThingsToSellOnEBay = new String[]{

"Athletic Shoes",
"Gift Cards",
"Marvel Toys",
"Collectible Coins",
"BitCoin Collector Coins"
, "Classic Video Games",
"New Video Games",
"Healing Bracelets",
"Sport Jerseys",
"Oculus Go",
"Meghan Markle Related Goods",
"Yeti Coolers",
"Healing Bracelets",

492 11 Android SQLite, Firebase, and Room Databases

"Hot Wheels 50th Anniversary Toys",
"Funko Pop",
"Star Wars Collectibles",
"Bobbleheads",
"Smart Watch Straps",
"Fitbit Products",
"Drones"

};
public static String[] getBestThingsToSellOnEBay() {

return bestThingsToSellOnEBay; }
public static void setBestThingsToSellOnEBay(String[]

bestThingsToSellOnEBay) {
SourceData.bestThingsToSellOnEBay = bestThingsToSellOnEBay;

}
}

We also did the following as part of developing the data component:

1. Created a database helper class named MySQLiteOpenHelper which extends the
SQLiteOpenHelper class

2. Implemented the functionalities of the onCreate(), onUpgrade(), and
onDowngrade() methods

3. Created a third method, a count() method, to return the number of rows currently
in the item table

4. Developed a table creation statement to create tables and table columns
5. Called a super constructor inside the constructor of our MySQLiteOpenHelper

class to create a database and assign a database version

Figure 11.3 is a snapshot of theMySQLiteOpenHelper class structure in Android
Studio.

Fig. 11.3 MySQLiteHelper class structure in Android Studio

11.4 DatabaseDemo Project 493

The implementation of the class structure above is listed in the code snippet
shown in Listing 11.11:

Listing 11.11 MySQLiteOpenHelper.java class for creating a database.

package com.code.abdulrahman.database;
import android.content.ContentValues;
import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;
public class MySQLiteOpenHelper extends SQLiteOpenHelper {

public static final String TABLE_Of_My_ITEMS = "tableOfMyItems";
public static final String Item_ID = "_id";
public static final String ITEM_NAME = "itemName";
public static final String DATABASE_NAME =

"myPersonalDatabase.db";
private static final int DATABASE_VERSION = 2;
// Table/Database creation statement
private static final String DATABASE_CREATE = "create table "

+ TABLE_Of_My_ITEMS + "(" + Item_ID
+ " integer primary key autoincrement, " + ITEM_NAME
+ " text not null);";

// super constructor call
MySQLiteOpenHelper(Context context) {

super(context, DATABASE_NAME, null, DATABASE_VERSION);
}
@Override
public void onCreate(SQLiteDatabase database) {

database.execSQL(DATABASE_CREATE);
addTable (database) ;

}
@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {
Log.w(MySQLiteOpenHelper.class.getName(),

"Upgrading database from version " + oldVersion + " to "
+ newVersion);

db.execSQL("DROP TABLE IF EXISTS "
+ TABLE_Of_My_ITEMS);

onCreate(db);
}
public void onDowngrade (SQLiteDatabase database,

int oldVersion, int newVersion) {
Log.w(MySQLiteOpenHelper.class.getName(),

"Downgrading database from version " + newVersion + " to "
+ oldVersion);

494 11 Android SQLite, Firebase, and Room Databases

database.execSQL("DROP TABLE IF EXISTS "
+ TABLE_Of_My_ITEMS);
onCreate(database);

}
public long count(SQLiteDatabase database) {

long count = 0;
database.execSQL("select count(*) " + " from "
+ " TABLE_Of_My_ITEMS");
return count;

}
public void addTable (SQLiteDatabase database) {

database.execSQL("DROP TABLE IF EXISTS " + "contact");
// Table/Database creation statement
final String contact_table = "create table " +

"contact" + " (" +
"firstName" + " text primary key , " +
"lastName" + " text , " +
"email" + " text , " +
" phoneNumber" + " number " + ");";

database.execSQL(contact_table);
ContentValues values = new ContentValues();
values.put("firstName", "Abdul-Rahman");
values.put("lastName", "Mawlood-Yunis");
values.put("email", "abdulrahman@mawloodyunis.com");
values.put("phoneNumber", "1234567890");
long insertId = database.insert("contact", null, values);

}
}

11.4.2 The Middle Component

Every request from the user (view component) goes through the middle component
to interact with the database. This separates the view component from the data
component which in turn enables change in the database without the need for the
view component to change and vice versa. The middle component is implemented
through the ItemsDataSource class. In this class, all the fundamental database
methods (create, open, read/write, and close methods) are implemented. The
below code snippets from the ItemsDataSource class show that the methods inside
the middle component are merely calls to the methods in the database component.
For example, the ItemsDataSource constructor calls the MySQLiteOpenHelper
construct to create a database:

ItemsDataSource(Context context) {
dbOpenHelper = new MySQLiteOpenHelper(context);

}

11.4 DatabaseDemo Project 495

After the creation of the database, the open() method calls the
getWritableDatabase to open it in a writable mode:

public void open() throws SQLException {
// another option:
// database = dbOpenHelper.getReadableDatabase();
database= dbOpenHelper.getWritableDatabase();

}

Once the database no longer needs to be open, the close() method calls the
database close() method:

public void close() {
dbOpenHelper.close();

}

Figure 11.4 shows the structure of the ItemsDataSource class in Android Studio
and the database methods that the class implements.

Listing 11.12 is a complete implementation of the ItemsDataSource class:

Fig. 11.4 The class structure for ItemsDataSource class showing the database methods it
implements

496 11 Android SQLite, Firebase, and Room Databases

Listing 11.12 ItemsDataSource.java.

package com.code.abdulrahman.database;
import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.DatabaseUtils;
import android.database.SQLException;
import android.database.sqlite.SQLiteDatabase;
import android.util.Log;
import java.util.ArrayList;
import java.util.List;
public class ItemsDataSource {
// Database fields
private SQLiteDatabase database;
private MySQLiteOpenHelper dbOpenHelper;
private String[] columns = { MySQLiteOpenHelper.Item_ID,

MySQLiteOpenHelper.ITEM_NAME };
private static final String TAG = "myItemDB";
// call to database constructor
ItemsDataSource(Context context) {
dbOpenHelper = new MySQLiteOpenHelper(context);
}
public void open() throws SQLException {
//database = dbHelper.getWritableDatabase();
database= dbOpenHelper.getReadableDatabase() ;

}
public void close() {
dbOpenHelper.close();

}
public Item createItem(Item item) {
ContentValues values = new ContentValues();
values.put(MySQLiteOpenHelper.ITEM_NAME, item.getItem());
long insertId = database.insert(MySQLiteOpen

Helper.TABLE_Of_My_ITEMS, null, values);
Cursor cursor =
database.query(MySQLiteOpenHelper.TABLE_Of_My_ITEMS,
columns, MySQLiteOpenHelper.Item_ID + " = "

+ insertId, null, null, null, null);
cursor.moveToFirst();
Item newItem = cursorToItem(cursor);
// Log the item stored
Log.d(TAG, "item = " + cursorToItem(cursor).toString()

+ " insert ID = " + insertId);
cursor.close();
return newItem;

}
public void deleteItem(Item item) {
long id = item.getId();
Log.d(TAG, "delete item = " + id);

System.out.println("Item deleted with id: " + id);

11.4 DatabaseDemo Project 497

database.delete(MySQLiteOpenHelper.TABLE_Of_My_ITEMS,
MySQLiteOpenHelper.Item_ID + " = " + id, null);

}
public void deleteAllItems() {
System.out.println("Item deleted all");
Log.d(TAG, "delete all = ");
database.delete(MySQLiteOpenHelper.TABLE_Of_My_ITEMS,

null, null);
}
public List<Item> getAllItem() {

List<Item> items = new ArrayList<>();
Cursor cursor = database.query(MySQLiteOpenHelper.

TABLE_Of_My_ITEMS, columns,
null, null, null, null, null);

cursor.moveToFirst();
while (!cursor.isAfterLast()) {
Item item = cursorToItem(cursor);
Log.d(TAG, "get item = " + cursorToItem(cursor).toString());
items.add(item);

cursor.moveToNext();
}
// Make sure to close the cursor
cursor.close();
return items;

}
public long count () {

long count = DatabaseUtils.queryNumEntries(database,
MySQLiteOpenHelper.TABLE_Of_My_ITEMS);

return count;
}
public Item updateItem (String item, int id) {

ContentValues values = new ContentValues();
values.put(MySQLiteOpenHelper.Item_ID, id+"");
values.put(MySQLiteOpenHelper.ITEM_NAME, item);

database.update(MySQLiteOpenHelper.TABLE_Of_My_ITEMS,
values, MySQLiteOpenHelper.Item_ID + " = " + id, null);
Item it = new Item() ;
it.setItem(item);
it.setId(id);

return it;
}
private Item cursorToItem(Cursor cursor) {

Item item = new Item();
item.setId(cursor.getLong(0));
item.setItem(cursor.getString(1));

return item;
}

}

498 11 Android SQLite, Firebase, and Room Databases

11.4.3 The View Component

The view component is implemented via the DatabaseMainActivity class. The
DatabaseMainActivity class contains a reference to the ItemsDataSource class
which represents a link to the controller component. The DatabaseMainActivity
class implements four methods, onCreate(), onClick(), onResume(), and onPause().
Figure 11.5 is the class structure of the DatabaseMainActivity class.

Inside the onCreate() method of the DatabaseMainActivity class, several method
calls are made on the ItemsDataSource class to accomplish three tasks: creating a
database, opening the database to write to it, and retrieving data in the database to
present on the main screen. The code snippet showing in Listing 11.13 shows the
details of the method calls inside the onCreate() method.

Listing 11.13 Method calls to create and use database.

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
ListView mListView = findViewById(R.id.list);

// 1. call to create database
datasource = new ItemsDataSource(this);

// 2. open Database for writing
datasource.open();

Fig. 11.5 The class structure of the DatabaseMainActivity class

11.4 DatabaseDemo Project 499

//3. list all the items in the table on the main screen
List <Item> values = datasource.getAllItem();
mAdapter = new ArrayAdapter <>(this,

android.R.layout.simple_list_item_1, values);
mListView.setAdapter(mAdapter);

}

The DatabaseMainActivity class also implements the onResume() and onPause()
activity lifecycle methods. These two methods are used to open and close the
database every time the app is re-opened or closed. This is a good demonstration
of how one can make use of the activity lifecycle methods properly. Listed below are
the code snippets for the onResume() and onPause() methods:

@Override
protected void onResume() {

datasource.open();
super.onResume();

}
@Override
protected void onPause() {

datasource.close();
super.onPause();

}

You may have noticed that the ArrayAdapter class has been used to list all the
items in the table on the main screen of the app. The constructor that has been used to
create the ArrayAdapter object is:

ArrayAdapter(Context context, int resource, List<T> objects).

The constructor uses Android’s predefined layout to display one row:

android.R.layout.simple_list_item_1.

The code snippet below shows to use the simple_list_item_1 layout.

List <Item> values = datasource.getAllItem();
mAdapter = new ArrayAdapter <>(this,

android.R.layout.simple_list_item_1, values);
mListView.setAdapter(mAdapter);

The bulk of the view component code is inside the onClick() method of the
DatabaseMainActivity class. The codes for handling all button events are included in
this method. It includes a switch statement to handle each button pressed. We have
seen event handling in previous chapters, and there is not much new here. A couple
of things you might need to pay attention to are:

500 11 Android SQLite, Firebase, and Room Databases

1. When the update button is pressed, two edit texts, one to insert the id of the item
you would like to update and the other to insert a new value, and a button become
visible (see Fig. 11.6). This is also an example of how you can programmatically
control Android widgets.

2. The purge button deletes all data in the database.
3. The exit button uses the Android activity finish() methods to close the current

view and return to where the activity was launched.

Figure 11.7 shows how an item update method works. In this case, the item that
needs to be updated is “Healing Bracelets” which has an id of 1. The item name is
updated to “New Item Name” in the database and is displayed on the screen.

Fig. 11.6 The database
demo view when the update
button is pressed

11.4 DatabaseDemo Project 501

Listing 11.14 shows a complete source code for the DatabaseMainActivity class
(view component). If you decide to duplicate the code, the source code below would
be handy; you also need to duplicate the activity_main.xml layout file. You can find
the activity_main.xml layout in the source file of the database demo app.

Listing 11.14 DatabaseMainActivity.java.

package com.code.abdulrahman.database;
import android.content.Context;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.LinearLayout;
import android.widget.ListView;
import android.widget.Toast;
import androidx.appcompat.app.AppCompatActivity;
import java.util.List;
import java.util.Random;
public class DatabaseMainActivity extends AppCompatActivity {

private ItemsDataSource datasource;
String[] bestThingsToSellOnEBay =

SourceData.getBestThingsToSellOnEBay();
private ArrayAdapter <Item> mAdapter;

Fig. 11.7 Snapshot of updating an item in the database

502 11 Android SQLite, Firebase, and Room Databases

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
ListView mListView = findViewById(R.id.list);
// 1. call to create database
datasource = new ItemsDataSource(this);
// 2. open Database for writing
datasource.open();
//3. list all the items in the table on the main screen
List <Item> values = datasource.getAllItem();
mAdapter = new ArrayAdapter <>(this,

android.R.layout.simple_list_item_1, values);
mListView.setAdapter(mAdapter);

}
// Will be executed via the onClick attribute
// of the buttons in activity_main.xml
public void onClick(View view) {

try {
Item item;
EditText editkey = findViewById(R.id.editKey);
EditText editvalue = findViewById(R.id.editValue);
Button updateButton = findViewById(R.id.updateButton);
LinearLayout ln = findViewById(R.id.group3);
switch (view.getId()) {

case R.id.add:
int nextInt = new Random().nextInt(19);
// Save the new comment to the database
item = datasource.createItem(new Item(

bestThingsToSellOnEBay[nextInt]));
mAdapter.add(item);
break;

case R.id.delete:
if (mAdapter.getCount() > 0) {

item = mAdapter.getItem(0);
datasource.deleteItem(item);
mAdapter.remove(item);

}
break;

case R.id.deleteall:
if (mAdapter.getCount() > 0) {

datasource.deleteAllItems();
mAdapter.clear();

}
break;

case R.id.update:
ln.setBackgroundColor(999);
editkey.setHint("insert the id");
editvalue.setHint("insert value");
updateButton.setText("Press to Update");
editkey.setVisibility(View.VISIBLE);
editvalue.setVisibility(View.VISIBLE);
updateButton.setVisibility(View.VISIBLE);

11.4 DatabaseDemo Project 503

break;
case R.id.updateButton:

ln.setBackgroundColor(999);
boolean done = false;
for (int i = 0; i < mAdapter.getCount() && !done; i++) {

Item removedItem = mAdapter.getItem(i);
if (removedItem.getId() == new
Long(editkey.getText().toString()).longValue()) {
done = true;
mAdapter.remove(removedItem);

}
}
item = datasource.updateItem(editvalue.getText().toString(),

(new Integer(editkey.getText().toString())).intValue());
editkey.setVisibility(View.INVISIBLE);
editvalue.setVisibility(View.INVISIBLE);
updateButton.setVisibility(View.INVISIBLE);
mAdapter.add(item);
break;

case R.id.delete_last:
if (mAdapter.getCount() > 0) {

item = mAdapter.getItem(mAdapter.getCount() - 1);
datasource.deleteItem(item);
mAdapter.remove(item);

}
break;

case R.id.count:
long numOfItems = datasource.count();
String text = "number of entries in database table is " +

numOfItems;
Context context = getApplicationContext();
int duration = Toast.LENGTH_LONG;
Toast toast = Toast.makeText(context, text, duration);
toast.show();
break;

case R.id.exitButton:
finish();
break;

}
mAdapter.notifyDataSetChanged();

} catch (Exception e) { }
}
@Override
protected void onResume() {

datasource.open();
super.onResume();

}
@Override
protected void onPause() {

datasource.close();
super.onPause();

}
}

504 11 Android SQLite, Firebase, and Room Databases

11.4.4 Test Your Database Using SQLiteBrowser

SQLiteBrowser is a simple and free database management application that you can
download and use to design and test your Android database. Below, we describe
how to use SQLiteBrowser.

11.4.4.1 Locate Your App Database

To view a database stored on your device (or emulator), do the following:

1. Connect your device to your computer using a USB cable.
2. Open Android Studio.
3. Click View - > Tool Windows - > Device File Explorer.

Following these steps, you can also explore files on the Android emulator. Just
make sure that the emulator is open when you click on View -> Tool Windows ->
Device File Explorer. Figure 11.8 is a snapshot of the file explorer for an Android
device using Android Studio.

11.4.4.2 Open Your Database with SQLiteBrowser

In file explorer, do the following:

1. Click data -> data -> [your_app_package_name]->databases.
2. Copy the database file to your PC.
3. Open the database with the SQLite browser.

In the emulator, the location of items.db for our demo app is /data/user/0/com.
code.abdulrahman.database/databases/items.db.

Fig. 11.8 Using file explorer on Android Studio to locate the database of your app

11.4 DatabaseDemo Project 505

If you run the app in the debugging mode, you will find the exact location of your
database. Figure 11.9 shows the location of the database when running our app in the
debugging mode.

11.4.4.3 Test Your Database with SQLiteBrowser

Once you open the database in SQLiteBrowser, do the following:

1. Check the table schemas and data in the database to confirm that your database
has been created correctly.

2. Run queries on your database and check the results. Based on your query results,
change or update your code.

11.4.5 Use SQLiteBrowser for Database Design

Before coding your database tables and queries, you can use SQLiteBrowser, or any
other database management system, to create your tables and run and test queries.
Later, when you code the database part of your app, use the tested SQL statement in
your code. For example, using the rawQuery construct, Android allows you to write
queries such as:

select itemName from tableOfMyItems where itemName NOT NULL
select _id, itemName from tableOfMyItems where itemName="Gift Cards"
select _id from tableOfMyItems where itemName='Gift Cards'
select itemName from tableOfMyItems where _id=8 ;

If you run both the queries above, or similar ones outside of your app, and the
embedded queries in your app and receive identical results, you will be sure of the
correctness of your code.

Fig. 11.9 Running your app in the debugging mode to locate the database on the emulator

506 11 Android SQLite, Firebase, and Room Databases

11.4.5.1 Sqlite3 Database Tool

The Android SDK includes a sqlite3 database tool which is a simple command-line
program that allows you to view table contents and run SQL commands and other
useful functions on SQLite databases.

The location of the sqlite3 tool is inside the Android Studio download folder/
platform-tools folder, e.g., C:\Users\...\AppData\Local\Android\Sdk\platform-tools.
The screenshot in Fig. 11.10 shows the location of the sqlite3 tool on your PC and
how to start sqlite3 program from the Android Studio command line. Once started,
you can manually enter and execute SQL statements against an SQLite database.

The sqlite3 tool is not covered in this chapter, but if you want to learn about it,
check the references provided at the end of this chapter.

11.4.5.2 Do It Yourself

Do the following exercises to improve your understating of the current project and
Android SQLite databases:

1. Add error handling to the update() method of the demo app code. For example, if
a user tries to update a non-existent item, the app should handle it and not crash.

2. Currently, when the add button of the demo app is pressed, an item is randomly
selected from the data list to be inserted into the database. Change the code to
prevent database insert duplication, i.e., prevent an item to be added more than
once to the database.

11.4.6 Android Database Inspector

In Android Studio 4.1 and higher, there is a tool called Database Inspector that you
can use to test and debug your database. It enables you to run queries using regular

Fig. 11.10 The location of the sqlite3 inside the Android Studio download folder

11.4 DatabaseDemo Project 507

SQL statements and inspect your database schema. Below, we describe how to use
this tool.

Run your app, and then click on the View tab ! Tool Windows ! Database
Inspector to open the database inspector interface. The database of our demo app in the
database inspector window is shown in Fig. 11.11. As you can see, our database is
called myPersonalDatabase and contains two tables, contacts and tableOfMyItems. To
see the table schemas, click on the head-down arrow, numbered 1.

Click on the query tab icon, numbered 1 in Fig. 11.11, to open the tab. Fig-
ure 11.12 shows a query tab for our demo app. The query tab includes a space to
write regular SQL queries and run them. You can open as many tabs as you want to
run different queries and test your app. The results of your queries will be shown in

Fig. 11.11 A database is shown in the Database Inspector

Fig. 11.12 An example of running a query and the query result is shown

508 11 Android SQLite, Firebase, and Room Databases

the query tab window. An example of where to type the query, running a query, and
query results is shown below.

Some examples of SQL queries that you can use to test your database are listed
below.

select * from contacts
select itemName from tableOfMyItems where _id = 111
delete from tableOfMyItems where _id = 116
select count (*) from tableOfMyItems
insert into tableOfMyItems (_id, itemName) values (30, "new item")
UPDATE tableOfMyItems SET itemName = "updatedItem" WHERE _id = 116

11.5 Realtime Firebase Database

Firebase is a Google platform that allows you to build Web, Unity, IOS, and mobile
applications without server-side programming. Firebase provides multiple features
enabling you to focus on the client-side of your app, while the server-side is taken
care of for you. It is a real-time database, i.e., when you update your app data, your
clients receive the updated data almost instantly. It has a built-in authentication
system and enables you to collect performance data and perform data analytics. You
can use Firebase to store images and other files. It can also be a hosting service for
the content.

In this section, we will introduce Firebase databases and create an app that inserts,
retrieves, queries, and deletes data from a database. To be able to use a Firebase
database in your app, you need to do some setup. Below we describe the setup steps.

11.5.1 Firebase and JSON Tree File

When you put your database on the Firebase server, the data is stored as JSON
objects. This means there will be no tables and table records. Instead, you will have a
JSON tree which is also called a NoSQL database. Every time you add data to your
database, it becomes a node in the existing JSON tree structure.

The Firebase real-time database allows deep data nesting, up to 32 levels deep.
However, it would be better if you keep the structure of your data as flat as possible.
You should store your data in a flat structure for two reasons. First, when you
retrieve a node, you are also getting all of its children. Second, when you grant
someone access to a node in your database, you also grant them access to all data
underneath that node. For these two reasons, when you keep the structure of your
database deeply nested, you might put the performance and security of your app
at risk.

11.5 Realtime Firebase Database 509

11.5.2 Firebase Account and Project Setup

To be able to use Firebase in your app, you need to create a Firebase project and
connect to the Firebase server. You can start this step within Android Studio or by
login into the Firebase console. When using Android Studio, open your project, and
click on the Tools tab from the menu bar, and then click Firebase. This will open a
pan inside Android Studio on the right-hand side. This is a Firebase assistant
workflow that will help you add Firebase to your app. It helps to add the necessary
Firebase files, plugins, and dependencies to your Android project. You need to select
the type of service you would like to establish and complete the steps required to
establish the service.

Below are some of the tasks that you need to do to connect your app to Firebase
and use the Firebase database. Some of these tasks are done automatically when you
use Firebase assistance.

11.5.3 Register Your Project Using the Firebase Console

Open the Firebase console, and click on the plus sign to add a project to your
account. Follow the steps to create your Firebase project. Once you are done creating
your firebase project, you need to add your app to the project. From the Firebase
console, click on the Android icon, and complete the steps to add your app to the
project. You need to download the google-service.json file from the Firebase console
and put it in the app directory of your project to complete this step.

11.5.4 Adding Dependency to Your Project

For your app to be able to use Firebase services, you need to add some dependencies
to your Android project. Add the database dependency to your Gradle application
level. For example, add implement com.google.firebase:firebase-database:19.7.0
to your Gradle file. At the time of writing this book, this is the latest Firebase
database version. You need to consult Android documentation, https://firebase.
google.com/docs/android/setup, to find the latest dependencies for your project. The
code snippet below shows how a Firebase database has been added to the Gradle file.

dependencies {
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'com.google.android.material:material:1.3.0'
implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
implementation 'com.google.firebase:firebase-database:19.7.0'
. . . }

510 11 Android SQLite, Firebase, and Room Databases

https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup

You need to add the classpath and plugin to your project level Gradle; see the
examples below:

dependencies {
classpath "com.android.tools.build:gradle:4.1.2"
classpath 'com.google.gms:google-services:4.3.5'

}
plugins {

id 'com.android.application'
id 'com.google.gms.google-services'

}

11.5.5 Connecting to Database

Firebase provides multiple classes to connect, read/write, query, and delete data in a
database. The most widely used classes are FirebaseDatabase, DatabaseReference,
DataSnapshot, DatabaseError, and Query. We will show when and how you are
going to use these classes to perform database transactions.

To create an instance of the database, you use the getInstance() method like this:
FirebaseDatabase database = FirebaseDatabase.getInstance();.

This will return a default database instance that you can use in your app. You call
the getReference() method on the returned database to create a child node and set the
node value. The code snippet below shows the described steps.

FirebaseDatabase database = FirebaseDatabase.getInstance();
DatabaseReference DatabaseRef = database.getReference() ;
DatabaseRef.child("cp213");

Here you are creating a database for students in a class that has a unique name and
a root note called cp 213. If you open your database from the Firebase console, you
should see the database and the root note.

11.5.6 Inserting Data into Database

By calling the .child(“cp 213”) method on the database reference, you are creating a
reference to a note, i.e., a table called “cp 213.” The table is ready for inserting data.
You can insert data using the databaseReference.setValue() method as follows.

11.5 Realtime Firebase Database 511

int i = 1;
for (; i <= 10; i++) {

HashMap <String, String> aStudent = new HashMap <>();
aStudent.put("student" + i + " Name", "name " + i);
aStudent.put("student" + i + " number", i * 200 + 25 + "");
database.getReference("cp 213").child("Class list").

child("Student " + i). setValue(aStudent);
}

Once the code above is executed, the following JSON tree will be created on the
Firebase server. It represents the database of your app. As you can see, it is a NoSQL
database where the root note represents a table name and the child elements can be
another node or node properties and values. Firebase supports 32 different child
levels.

In the code snippet below, we create another node, i.e., a table called User with
multiple rows where each row has information about the first name, last name, id,
and email address of the user. The code execution results are shown in Fig. 11.11.
Both Figs. 11.13 and 11.14 show how you can create multiple tables to form your
database.

Fig. 11.13 An example of a real-time database created on the Firebase server

512 11 Android SQLite, Firebase, and Room Databases

Random rand = new Random(); //instance of random class
int upperbound = 10000;
i = 1;
for (; i <= 10; i++) {

int id = rand.nextInt(upperbound);
User user = new User("first_name " + id, "last_name" + id,

id, "user" + id + "@gmail.com");
database.getReference("Users").child("User " + i).setValue(user);

}

The setValue() method overwrites data at the specified position, including any
child nodes. You can use this method to pass JSON types which are String, Long,
Double, Boolean, Map<String, Object>, and List.

You can also pass user-defined objects. To do so, you need to define a class with a
default constructor that has public getters for the properties to be assigned.

Figure 11.15 is the class structure that we have used in our app for passing user
objects.

Fig. 11.14 A Firebase
database with two nodes,
User and CP 213, and
multiple children in
each node

11.5 Realtime Firebase Database 513

11.5.7 Retrieving Data from Database

To retrieve data from Firebase, you can use the ValueEventListener interface to read
values from the database class. Each time the data changes, the listener will be called
with a snapshot of the data. The listener can be added to your database reference
using the addValueEventListener() method. The ValueEventListener has two
methods, onDataChange() and onCancelled(), that need to be implemented. See
the code snippet shown in Listing 11.15.

Listing 11.15 onDataChange() and onCancelled() method implementation.

DatabaseReference UserRef =
FirebaseDatabase.getInstance().getReference().child("Users");
UserRef.addValueEventListener(new ValueEventListener() {

@Override
public void onDataChange(@NonNull DataSnapshot snapshot) {

final ArrayList <String> list = new ArrayList <>();
ArrayAdapter adapter = new ArrayAdapter(getApplicationContext(),

android.R.layout.simple_list_item_1, list);
listView.setAdapter(adapter);
for (DataSnapshot achild : snapshot.getChildren()) {

list.add(achild.getValue().toString());
}
adapter.notifyDataSetChanged();

}
@Override
public void onCancelled(@NonNull DatabaseError error) {
// Failed to read value

Fig. 11.15 A user-defined
class structure used as a
parameter to the Firebase
database

514 11 Android SQLite, Firebase, and Room Databases

Log.w("firebase application", "Failed to read value.",
error.toException());

}
});

The onCancelled() method will be triggered when the listener fails or data is not
accessible because of the security and Firebase database rules.

Figure 11.16 shows the student information stored in the Firebase database. The
data is retrieved from the Firebase database and put inside a list for presentation.

Fig. 11.16 Data retrieved
from the Firebase database
are present in the list

11.5 Realtime Firebase Database 515

11.5.8 Deleting Data from Database

The removeValue()method from the DatabaseReference class can be used to remove
data from the database. The following code snippet removes ten students from the
database we created in our demo app.

for (i = 0; i < 10; i++) {
DatabaseReference Studetns = FirebaseDatabase.getInstance().
getReference("cp 213").child("Class list").child(
"Student " + i);

Studetns.removeValue();
}

FirebaseDatabase.getInstance().getReference("cp 213").child(
"Class list").child("Student " + 10).removeValue();

Listing 11.16 shows the complete code for creating, using, and deleting data in a
real-time Firebase database in an app.

Listing 11.16 Code for creating and using the Firebase database.

package com.code.abdulrahman.book.firebaseapplication;
import android.os.Bundle;
import android.util.Log;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import androidx.annotation.NonNull;
import androidx.appcompat.app.AppCompatActivity;
import com.google.firebase.database.DataSnapshot;
import com.google.firebase.database.DatabaseError;
import com.google.firebase.database.DatabaseReference;
import com.google.firebase.database.FirebaseDatabase;
import com.google.firebase.database.ValueEventListener;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Random;

public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
ListView listView = findViewById(R.id.listView);

FirebaseDatabase database = FirebaseDatabase.getInstance();
DatabaseReference DatabaseRef = database.getReference();

HashMap <String, String> course = new HashMap <>();
course.put("course title", "Object Orient Programming in Java");

516 11 Android SQLite, Firebase, and Room Databases

course.put("Professor", "Abdul-Rahman Mawlood-Yunis");
DatabaseRef.child("cp 213").setValue(course);

int i = 1;
for (; i <= 10; i++) {

HashMap <String, String> aStudent = new HashMap <>();
aStudent.put("student" + i + " Name", "name " + i);
aStudent.put("student" + i + " number", i * 200 + 25 + "");
database.getReference("cp 213").child(

"Class list").child("Student " + i).setValue(aStudent);
}

Random rand = new Random();
int upperbound = 10000;
i = 1;
for (; i <= 10; i++) {

int id = rand.nextInt(upperbound);
User user = new User("first_name " + id, "last_name" + id,

id, "user" + id + "@gmail.com");
database.getReference("Users").child("User " + i).setValue(user);

}
DatabaseReference UserRef = FirebaseData
base.getInstance().getReference().child("Users");

UserRef.addValueEventListener(new ValueEventListener() {
@Override
public void onDataChange(@NonNull DataSnapshot snapshot) {

final ArrayList <String> list = new ArrayList <>();
ArrayAdapter adapter = new ArrayAdapter(getApplicationContext(),

android.R.layout.simple_list_item_1, list);
listView.setAdapter(adapter);
for (DataSnapshot achild : snapshot.getChildren()) {

list.add(achild.getValue().toString());
}
adapter.notifyDataSetChanged();

}
@Override
public void onCancelled(@NonNull DatabaseError error) {

Log.w("firebase application", "Failed to read value.",
error.toException()); } });

// delete
for (i = 0; i < 10; i++) {

DatabaseReference Studetns = FirebaseDatabase.getInstance().
getReference().child("Student " + i);

Studetns.removeValue(); }
FirebaseDatabase.getInstance().getReference().child(

"Student " + 10);
}

}

11.5 Realtime Firebase Database 517

11.5.9 Query Data from Database

The Firebase database API provides multiple classes and methods to retrieve data
from the database, i.e., to query a database, in the order that you would like. These
include classes like Query and DataSnapshot and methods like orderByChild(),
orderByKey(), orderByValue(), etc. These methods can be used along with other
methods like limitToFirst(), limitToLast(), startAt(), endAt(), and equalTo() to form
complex queries. Below, we describe the DataSnapshot and Query classes and show
how to use some of the methods mentioned to run queries.

11.5.10 DataSnapshot and Query Classes

When you query data from the Firebase database, you receive a DataSnapshot object.
The DataSnapshot objects are passed to the listener methods that you need to
implement, i.e., listen to, in your code. To receive copies of the data when the database
is changed, you can register to listen to the database changes using methods like:

addValueEventListener(ValueEventListener),
addChildEventListener(ChildEventListener), or
addListenerForSingleValueEvent(ValueEventListener)

The code snippet shown in Listing 11.17 shows how to register your database
reference to receive data snapshot inside a listener method. Adding a listener to the
database reference and receiving a data snapshot inside the listener methods are
highlighted in bold.

Listing 11.17 Registering a database reference to receive a data snapshot.

public class QueryClass {

public static void queries1() {
FirebaseDatabase database = FirebaseDatabase.getInstance();
final DatabaseReference databaseRef = database.getReference("Users");
databaseRef.orderByChild("id").addChildEventListener(

new ChildEventListenerAdapter() {
@Override
public void onChildAdded(DataSnapshot dataSnapshot,
String prevChildKey) {

User user = dataSnapshot.getValue(User.class);
System.out.println(dataSnapshot.getKey() + user.id);

}
});

}
. . .

}

518 11 Android SQLite, Firebase, and Room Databases

11.5.11 ChildEventListener Interface

As mentioned earlier, to receive events about changes in the child locations of your
database, you need to implement, for example, the ChildEventListener interface.
This interface has five methods that you need to implement whenever you would like
to receive changing events.

To avoid implementing all five methods, we created an Adapter class called
ChildEventListenerAdapter that implements all five methods with empty bodies.
This way, instead of implementing all five methods in our QueryClass, we simply
override the method that we would like to implement from the
ChildEventListenerAdapter class. The code for the ChildEventListenerAdapter
class, shown in Listing 11.18, and how it is used to receive data snapshots in the
QueryClass are shown in the code snippet in Listing 11.19.

Listing 11.18 ChildEventListenerAdapter.java class.

package com.code.abdulrahman.firbaseDatabase.firebaseapplication;
import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import com.google.firebase.database.ChildEventListener;
import com.google.firebase.database.DataSnapshot;
import com.google.firebase.database.DatabaseError;

public class ChildEventListenerAdapter implements ChildEventListener {
@Override
public void onChildAdded(@NonNull DataSnapshot snapshot,

@Nullable String previousChildName) { }
@Override
public void onChildChanged(@NonNull DataSnapshot snapshot,

@Nullable String previousChildName) {}
@Override
public void onChildRemoved(@NonNull DataSnapshot snapshot) {}

@Override
public void onChildMoved(@NonNull DataSnapshot snapshot,

@Nullable String previousChildName) {}
@Override
public void onCancelled(@NonNull DatabaseError error) {}

}

11.5 Realtime Firebase Database 519

Listing 11.19 QueryClass.java class using ChildEventListenerAdapter class.

public class QueryClass {

public static void queries1() {
FirebaseDatabase database = FirebaseDatabase.getInstance();
final DatabaseReference databaseRef = database.getReference("Users");
databaseRef.orderByChild("id").addChildEventListener(

new ChildEventListenerAdapter() {
@Override
public void onChildAdded(DataSnapshot dataSnapshot,
String prevChildKey) {
User user = dataSnapshot.getValue(User.class);
System.out.println(dataSnapshot.getKey() + user.id);

}
});

}
. . .

}

You may have noticed that the ChildEventListenerAdapter class is implemented
as an inner class and only one method, the onChildAdded() method, is overridden.
Also, both the orderByChild() method and DataSnapshot class are used to retrieve
data from the database, and when the code is executed, the results are written to the
console. The query1() method is declared as a static method inside the QueryClass to
make it easily accessible inside the MainActivity class.

11.5.12 Querying Firebase Database Using User-Defined
Classes

To write to the database, you use set methods like setValue() to set the data and
priority to the given values. The data types used by the set methods are of JSON
types: Boolean, Long, Double, String, Map<String, Object>, and List<Object>.

You can insert instances of your class into the database. To do so, your class must
have a default constructor, i.e., a no argument constructor as well as the getter
methods for the properties you would like to save in the database. In the example
shown in Listing 11.20, we create a User class that can be used for storing/querying
user data in the database. Storing and querying User data is done using the below two
statements, and the complete code is presented in Listing 11.21.

database.getReference("Users").child("User " + i).setValue(user);
User user = dataSnapshot.getValue(User.class);

520 11 Android SQLite, Firebase, and Room Databases

Listing 11.20 User.java class.

public class User {
private String fst_name ;
private String lst_name ;
protected static int id ;
private String email ;

public User() {}

public User(String fst_name, String lst_name, int id, String email) {
this.fst_name = fst_name;
this.lst_name = lst_name;
this.id = id;
this.email = email;

}

public String getFst_name() {
return fst_name;

}
public String getLst_name() {

return lst_name;
}
public int getId() {

return id;
}
public String getEmail() {

return email;
}
public void setFst_name(String fst_name) {

this.fst_name = fst_name;
}
public void setLst_name(String lst_name) {

this.lst_name = lst_name;
}
public void setId(int id) {

this.id = id;
}
public void setEmail(String email) {

this.email = email;
}
@Override
public String toString() {

return "User{" +
"fst_name='" + fst_name + '\'' +
", lst_name='" + lst_name + '\'' +
", id=" + id +
", email='" + email + '\'' +
'}';

}
}

11.5 Realtime Firebase Database 521

Listing 11.21 QueryClass.java class using ChildEventListenerAdapter class.

Random rand = new Random();
int upperbound = 10000;
i = 1;
for (; i <= 10; i++) {

int id = rand.nextInt(upperbound);
User user = new User("first_name " + id, "last_name" + id,

id, "user" + id + "@gmail.com");
database.getReference("Users").child("User " + i).setValue(user);

}
DatabaseReference UserRef =
FirebaseDatabase.getInstance().getReference().child("Users");
UserRef.addValueEventListener(new ValueEventListener() {
@Override
public void onDataChange(@NonNull DataSnapshot snapshot) {

final ArrayList <String> list = new ArrayList <>();
ArrayAdapter adapter = new ArrayAdapter(getApplicationContext(),

android.R.layout.simple_list_item_1, list);
listView.setAdapter(adapter);
for (DataSnapshot achild : snapshot.getChildren()) {

list.add(achild.getValue().toString());
}
adapter.notifyDataSetChanged();

}

11.5.13 Querying Firebase Database Example

In the code example shown in Listing 11.22, three queries are provided showing how
you can query and retrieve data from the Firebase database using the various
methods that the Query and DatabaseReference classes provide.

Listing 11.22 QueryClass.java showing how to query Firebase database.

package com.code.abdulrahman.firbaseDatabase.firebaseapplication;
import android.util.Log;
import androidx.annotation.NonNull;
import com.google.firebase.database.DataSnapshot;
import com.google.firebase.database.DatabaseError;
import com.google.firebase.database.DatabaseReference;
import com.google.firebase.database.FirebaseDatabase;
import com.google.firebase.database.Query;
import com.google.firebase.database.ValueEventListener;

522 11 Android SQLite, Firebase, and Room Databases

public class QueryClass {
public static void queries1() {
FirebaseDatabase database = FirebaseDatabase.getInstance();
final DatabaseReference databaseRef = database.getReference("Users");
databaseRef.orderByChild("id").addChildEventListener(

new ChildEventListenerAdapter() {
@Override
public void onChildAdded(DataSnapshot dataSnapshot,

String prevChildKey) {
User user = dataSnapshot.getValue(User.class);
System.out.println(dataSnapshot.getKey() + user.id);

} });
}

public static void queries2() {
FirebaseDatabase database = FirebaseDatabase.getInstance();
final DatabaseReference databaseRef =

database.getReference("cp 213").child("Class list");

databaseRef.addChildEventListener(new ChildEventListenerAdapter() {
@Override
public void onChildAdded(DataSnapshot dataSnapshot,

String prevChildKey) {
if (dataSnapshot.exists()) {

Log.v("Students", dataSnapshot.getValue().toString());
} } });

}

public static void query3() {
FirebaseDatabase database = FirebaseDatabase.getInstance();
final DatabaseReference databaseRef =

database.getReference("cp 213").child("Class list");
Query query = databaseRef.orderByChild(
"Students").limitToLast(3);
query.addListenerForSingleValueEvent(new ValueEventListener() {

@Override
public void onDataChange(@NonNull DataSnapshot dataSnapshot) {

//System.out.println("snapp "+dataSnapshot.getChildren());
if (dataSnapshot.exists()) {

System.out.println(dataSnapshot.getChildrenCount());
Iterable <DataSnapshot> iterable =
dataSnapshot.getChildren();
for (DataSnapshot snapshot : iterable) {

System.out.println(snapshot.getValue());
} } }

@Override
public void onCancelled(@NonNull DatabaseError databaseError) { }

});
}

}

11.5 Realtime Firebase Database 523

11.6 Other Data Storage Options

To complete this chapter, we will describe other ways to save and access data in
Android devices.

11.6.1 Room Database

To simplify the creation, use, and maintenance of databases, Android supports indirect
access to SQLite databases using the Room library as a layer on top of the SQLite
database. The Room library eliminates the need to work directly with the
SQLiteOpenHelper class, the main class involved when working with SQLite data-
bases. The Room library helps you create databases and run full SQL queries using
classes and methods defined in the Room library, which is a part of the Android
Jetpack libraries. To create databases using the Room library, you need to create at
minimum three Java classes: an Entity class, Data Access Object (DAO) abstract class
or interface, and an abstract database class that extends the RoomDatabase class. You
also need to update both Gradle files of your project and add proper dependencies. In
this section, we briefly introduce database creation and usage using the Room library.
You can find a complete example of database creation using the Room library by
following the link provided at the end of this chapter.

11.6.1.1 Entity Class

The first component that you need to define when using the Room library is the
Entity class. For each table you would like to have in your database, define a class,
and annotate it with the @Entity tag. At runtime, classes and methods from the
Room library will take the defined classes and create the corresponding tables to
form the database. The instance variables for each Entity class become table column
names, and variable types and their properties become table column types and
constraints. An example of an Entity class is shown in Listing 11.23.

Listing 11.23 Defining an Entity class for Room database.

@Entity(tableName = "book_table")
public class Book {

@PrimaryKey(autoGenerate = true)
private int id;

@NonNull
@ColumnInfo(name = "book")

private String book;

524 11 Android SQLite, Firebase, and Room Databases

public Book(@NonNull String book) {
this.book = book;

}
public String getBook() {

return book;
}
public int getId() {

return id;
}
public void setId(int id) {

this.id = id;
}

}

Note that the getter() and setter() methods are used by Room library classes and
need to be included in your Entity class definition.

11.6.1.2 DAO Interface

The second component that you need to define when using the Room library is the
DAO abstract class/interface. It is the place where you define all the operations that
you need to perform on the database and maps method calls to the database SQL
query statements. In your DAO, abstract class/interface, use annotations like
@Insert, @query, @primaryKey, and @ColumnInfo with the SQL queries that
you would like to execute; the rest will be taken care of by the Room library.

An example of a DAO interface is shown in Listing 11.24.

Listing 11.24 DAO interface for mapping queries to methods.

package com.code.abdulrahman.roomdatabase;
import androidx.room.Dao;
import androidx.room.Insert;
import androidx.room.OnConflictStrategy;
import androidx.room.Query;
import java.util.ArrayList;
@Dao
public interface BookDAO {

@Insert(onConflict = OnConflictStrategy.REPLACE)
void insert(Book book);

@Query("DELETE from book_table")
void deleteAll();

@Query("SELECT * from book_table")
ArrayList <Book> getAllBooks();

}

11.6 Other Data Storage Options 525

11.6.1.3 Database Class

The third component that you need to define when using the Room library is the
Database class. You create this class by extending the RoomDatabase class. It is an
abstract class with an abstract method that has a DAO Interface return type. Listing
11.25 shows an example of such a class.

Listing 11.25 Database Java class when using Room.

package com.code.abdulrahman.roomdatabase;
import androidx.room.Database;
import androidx.room.RoomDatabase;

@Database(entities = {Book.class}, version = 1)
public abstract class AppDatabase extends RoomDatabase {

public abstract BookDao bookDao();
}

11.6.1.4 App Room Database Class

Once you have all the database components ready, you need to create another class
to create and initialize it. An example of such a class is shown in Listing 11.26. The
database build statement used to create and initialize the database is shown in
boldface font. The database is created using the databaseBuilder() and build()
methods from the Room Builder class. The method signature for the
databaseBuilder() method is shown below. The build() method is called on the
Builder object returned from the databaseBuilder() method call to create and initial-
ize the database.

Builder<T> databaseBuilder (
Context context, Class<T> yourClass, String name).

Listing 11.26 Concrete Room Database class.

package com.code.abdulrahman.roomdatabase;
import android.content.Context;
import androidx.room.Room;

public class BookDatabase {
private Context ctx;
private static BookDatabase anInstance;
private AppDatabase appDatabase;

526 11 Android SQLite, Firebase, and Room Databases

private BookDatabase(Context ctx) {
this.ctx = ctx;
appDatabase = Room.databaseBuilder(ctx, AppDatabase.class,

"MyLibrary").build();
}
public static synchronized BookDatabase getInstance(Context mCtx) {

if (anInstance == null) {
anInstance = new BookDatabase(mCtx);

}
return anInstance;

}
public AppDatabase getAppDatabase() {

return appDatabase;
}

}

To complete the app, you need to create additional classes, such as the main class,
to interact with the database, instantiate the database, and display query results. The
code snippet shown below can be used for inserting data into a table row.

BookDatabase.getInstance(getApplicationContext()).
getAppDatabase().bookDao().insert(book);

11.6.1.5 Do It Yourself

All the components needed to create a database using the Room library are described
in Sect. 11.6.1. Use the code snippet given in this section to create a complete
database app.

11.6.2 Content Provider

If your app manages a data repository and provides access to other apps to use this
data, your app is acting as a server that provides the content to multiple clients. In
such a situation, you must define how other apps can access the data, i.e., you need to
provide a data interface, and what other apps can do with data, i.e., you need to
define data access permissions and transaction types. Android provides such a
service using content providers. This topic is covered in Chap. 12.

11.6.3 Internal and External Storage

Other data storage options available on Android include internal and external data
storages. To cover data storages completely, here we provide a brief review of these
two storage types. This topic has been covered thoroughly in Chap. 8.

11.6 Other Data Storage Options 527

11.6.3.1 Device File System

When an internal storage is used, the app’s private files are saved on the device’s file
system. The file location is private. Other apps (even users) cannot access
it. Remember that each app has its private directory on the device, like the user
account on Linux or Windows; therefore, internal storage is a good place for internal
app data. One thing you should remember about the internal storage is that when the
user uninstalls an app that has been using the internal storage to save data/files, all
data and files are removed. It is for this reason that you should not save data/files on
the internal storage when the data needs to be kept after uninstallation. For example,
if your app is for drawing pictures or taking photos and you save the drawings or
photos on the internal storage, all your drawings and photos will be gone after
uninstalling the app, something you might need to avoid.

11.6.3.2 SD Card, USB Storage, and Standard Public Directories

Every Android device supports storing data/files on external data storages. Your app
needs to request read/write permission to be able to work with the external storages.
The external data storages can be an sd card that can be physically inserted/removed
from the sd card port on the device, an external USB storage, etc. External data
storage is mostly used when data needs to persist even after the app is uninstalled.
They are also useful when data needs to be shared. External storages might not
always be available, for example, if the user removes the USB storage. Another
example of an external storage is standard public directories for data/files. Android
provides standard public directories for data/files that should persist after
uninstalling the app; for example, the user has one location for all their photos,
ringtones, music, and such.

11.7 Chapter Summary

Similar to personal computers (PCs), data can be saved in Android devices in
multiple different ways, but mostly on a smaller scale since Android devices are
meant to have different objectives than PCs. In this chapter, we covered SQLite
databases to store structured data in a private database. We studied the
SQLiteDatabase and SQLiteDatabaseHelper classes to create, upgrade, and open
databases. We also described various methods to interact with the database. These
include describing and using the insert(), query(), rawQuery(), replace(), and delete()
methods in the demo app. We also described how to test your database using the
open-source SQLiteBrowser tool, database inspector, or any other tool.

528 11 Android SQLite, Firebase, and Room Databases

We covered how to create a Firebase real-time database to store and sync data
with a NoSQL cloud database and to enable data to be synchronized across all clients
in real time and remain available when your app goes offline.

Lastly, to simplify the creation, use, and maintenance of databases, we described
the Room library as a layer on top of the SQLite database.

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

• @Entity
• addChildEventListener
• Android Database inspector
• autoincrement
• ChildEventListener
• ContentProvider
• ContentResolver
• ContentValue
• Cursor
• DAO
• databaseBuilder
• DatabaseError
• DatabaseReference
• DataSnapshot
• execSQL
• Firebase Database
• getReadableDatabase
• getWritableDatabase
• isReadOnly
• JSON File
• MoveToLast
• MoveToNext
• NoSQL
• onCreate
• onOpen
• onUpgrade
• orderByChild
• rawQuery
• RoomDatabase
• Room
• SQLiteDatabase
• SQLiteOpenHelper

11.7 Chapter Summary 529

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to. Furthermore, to expand your knowledge about
using SQLite database with Android, SQLite performance, and security, see [1, 2].

adb documentation, [online] Available, https://developer.android.com/studio/
command-line/adb

Android Room with a View, online] Available,
https://developer.android.com/codelabs/android-room-with-a-view#0
Content providers, [online] Available, https://developer.android.com/guide/

topics/providers/content-providers
ContentValues, [online] Available, https://developer.android.com/reference/

android/content/ContentValues
DatabaseReference, [online] Available, https://firebase.google.com/docs/refer

ence/android/com/google/firebase/database/DatabaseReference
DataSnapshot, [online] Available, https://firebase.google.com/docs/reference/

android/com/google/firebase/database/DataSnapshot
firebase-database Reading data, [online] Available, https://sodocumentation.

net/firebase-database/topic/9242/reading-data
FirebaseDatabase, [online] Available, https://firebase.google.com/docs/refer

ence/android/com/google/firebase/database/FirebaseDatabase
orderByChild, [online] Available, https://developers.google.com/android/refer

ence/com/google/firebase/database/Query.html#orderByChild(java.lang.String).
Query, [online] Available, https://firebase.google.com/docs/reference/android/

com/google/firebase/database/Query
Retrieving Data, https://firebase.google.com/docs/database/admin/retrieve-data
sqlite, [online] Available, https://developer.android.com/reference/android/data

base/sqlite/SQLiteDatabase
SQLiteOpenHelper, [online] Available, https://developer.android.com/refer

ence/android/database/sqlite/SQLiteOpenHelper
ValueEventListener, [online] Available, https://firebase.google.com/docs/refer

ence/android/com/google/firebase/database/ValueEventListener

References

1. O. Nikola, K. Aleksandar, D. Igor, Performance analysis on Android SQLite database, in 2019
18th International Symposium INFOTEH-JAHORINA (INFOTEH), 2019, pp. 1–4. https://doi.
org/10.1109/INFOTEH.2019.8717652

2. J.H. Park, S. Yoo, I.S. Kim, et al., Security architecture for a secure database on Android. IEEE
Access 6, 11482–11501 (2018). https://doi.org/10.1109/ACCESS.2018.2799384

530 11 Android SQLite, Firebase, and Room Databases

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/codelabs/android-room-with-a-view#0
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/reference/android/content/ContentValues
https://developer.android.com/reference/android/content/ContentValues
https://firebase.google.com/docs/reference/android/com/google/firebase/database/DatabaseReference
https://firebase.google.com/docs/reference/android/com/google/firebase/database/DatabaseReference
https://firebase.google.com/docs/reference/android/com/google/firebase/database/DataSnapshot
https://firebase.google.com/docs/reference/android/com/google/firebase/database/DataSnapshot
https://sodocumentation.net/firebase-database/topic/9242/reading-data
https://sodocumentation.net/firebase-database/topic/9242/reading-data
https://firebase.google.com/docs/reference/android/com/google/firebase/database/FirebaseDatabase
https://firebase.google.com/docs/reference/android/com/google/firebase/database/FirebaseDatabase
https://developers.google.com/android/reference/com/google/firebase/database/Query.html#orderByChild
https://developers.google.com/android/reference/com/google/firebase/database/Query.html#orderByChild
https://firebase.google.com/docs/reference/android/com/google/firebase/database/Query
https://firebase.google.com/docs/reference/android/com/google/firebase/database/Query
https://firebase.google.com/docs/database/admin/retrieve-data
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper
https://firebase.google.com/docs/reference/android/com/google/firebase/database/ValueEventListener
https://firebase.google.com/docs/reference/android/com/google/firebase/database/ValueEventListener
https://doi.org/10.1109/INFOTEH.2019.8717652
https://doi.org/10.1109/INFOTEH.2019.8717652
https://doi.org/10.1109/ACCESS.2018.2799384

Chapter 12
Content Provider, Service, Message
Broadcasting, and Multimedia Player

What You Will Learn in This Chapter
By the end of this chapter, you should be able to:

• Create content providers and use content resolvers
• Create and use the Android service and Intent service
• Broadcast messages and use the broadcast receiver
• Use the MediaPlayer object to stream radio stations
• Use MediaView objects to play and stream video content
• Manage Android power and Wi-Fi connections programmatically

Check Out the Demo Project
Download the demo apps, cprovider, ContentProviderClient, and
LiveStreamingMediaContent.zip, specifically developed to go with this chapter.
I recommend that you code this project up from the notes rather than just opening the
project in Android Studio and running it; however, if you want to run the code first to
get a sense of the app, please do so. The code is thoroughly explained in this chapter
to help you understand it. We follow the same approach to all other chapters
throughout the book. The app’s code will help you comprehend the additional
concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

12.1 Introduction

In this chapter, you will learn how to create and use the content provider, Android
service, message broadcasts, MediaPlayer, and VideoView objects, as well as how to
manage Android power and Wi-Fi connections. The chapter is divided into five

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_12

531

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_12#DOI

parts. In Sect. 12.2, we study the classes and concepts needed to develop and use
content provider apps. In Sect. 12.4, we study the main concepts and classes
involved in creating and running the Android service. In Sect. 12.5, we study the
classes and concepts involved in creating broadcasts to broadcast and receive
messages. In Sect. 12.6, we present an app that uses an Android media player,
broadcast receiver, and service. Lastly, in Sect. 12.7, we study how to use
VideoView to play content remotely and locally.

12.2 Content Provider Component

When your app manages a data repository and provides access to other apps to use
this data, your app is acting as a server that provides the content to multiple clients.
In such a situation, you must define how other apps can access the data, i.e., you need
to provide a data interface, and what other apps can do with data, i.e., you need to
define data access permissions and transaction types. Android provides such a
service using the ContentProvider, ContentResolver, and URI classes. We will
study these classes and how to create and run content providers in this part of the
chapter.

12.2.1 Content Provider

Content providers are one of the main components of the Android system related to
data sharing. As the name implies, a content provider offers content to others, i.e.,
enables the sharing of centralized data among apps. It acts as a mediator between
data repositories (e.g., SQLite database, text files, image files, etc.) and apps that are
interested in the data. For example, multiple apps might need to access your contact
information. In this case, data must be accessed through the ContentProvider class. It
is a must to prevent data breaches and accidents. Android has several built-in content
providers, for example, contacts, media, calendar, and user dictionary.

Using a content provider imposes certain implementations on both the content
provider and the client app. Think of content providers as a server or as centralized
data. Client apps interested in the data residing underneath a content provider need to
implement a standard set of APIs, i.e., transaction protocols, to interact with the data.

Android comes with two classes, ContentProvider and ContentResolver, to
securely enable the creation of data-sharing apps. Content provider apps need to
extend the ContentProvider class to manage data repositories. Client apps need to
use the ContentResolver class to access the shared data.

We have created two demo apps to show you how to create and use content
providers. The content provider and the client are separate apps; they are named
cprovider and ContentProviderClient, respectively.

532 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

The first app, i.e., the content provider, is used to insert data into a database. It can
also display data locally. In other words, we have created a MainActivity class that
you can use to query the content provider. This is useful for testing the content
provider limitations before making it accessible to other apps.

The second app, i.e., the client app, is used to query the content provider and
display the retrieved data in a list. Figure 12.1 shows the interface of both demo apps.
The left-hand side of the figure shows the content provider where the user can insert
the team contact information (team name, office number, fax number, and email)
into an SQLite database. The right-hand side of the figure shows the button used to
load the data from the content provider and the area where the retrieved data from the
content provider query would be listed.

Fig. 12.1 Content provider and Content provider client interfaces

12.2 Content Provider Component 533

12.2.2 Creating a Content Provider

Creating a content provider involves four steps: designing a URI to do data mapping,
inserting a provider element into the manifest file, extending the ContentProvider
class, and setting permissions. All these steps will be described in this part.

To create a ContentProvider class, right-click on the app folder from your project
! others! content provider. Give a name to your provider, and define an authority.
To keep the authority unique, give it the package name of your app. This will
generate a template similar to the one shown in Listing 12.1. You need to implement
all six methods listed in the class template to have a content provider. In the
following subsections, we will describe each method and its implementation.

Listing 12.1 Content provider class skeleton.

public class MyContentProvider extends ContentProvider {
public MyContentProvider() {}
@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {

// Implement this to handle requests to delete one or more rows.
throw new UnsupportedOperationException("Not yet implemented");

}
@Override
public String getType(Uri uri) {
// TODO: Implement this to handle requests for the MIME type of the data
// at the given URI.
throw new UnsupportedOperationException("Not yet implemented");

}
@Override
public Uri insert(Uri uri, ContentValues values) {

// TODO: Implement this to handle requests to insert a new row.
throw new UnsupportedOperationException("Not yet implemented");

}
@Override
public boolean onCreate() {
// TODO: Implement this to initialize your content provider on startup.
return false;

}
@Override
public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {
// TODO: Implement this to handle query requests from clients.
throw new UnsupportedOperationException("Not yet implemented");

}
@Override
public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {
// TODO: Implement this to handle requests to update one or more rows.
throw new UnsupportedOperationException("Not yet implemented");

}
}

534 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

12.2.2.1 Designing a URI

All methods implemented by the content provider have a parameter of type Uri, and
that is why before implementing content provider methods, you need to think of
designing a Uri for your app. The Uri, i.e., Universal Resource Identifier, is an id that
uniquely names a provider and the data in the provider in a way that enables other
apps to locate it and communicate with it. For example, the Uri used by the client to
locate the provider and the provider data for our demo app is:

“content://com.code.abdulrahman.cprovider/contacts”.

The following lines of code show how to define the Uri for your content provider.

static final String PROVIDER_NAME = "com.code.abdulrahman.cprovider";
static final String URL = "content://" + PROVIDER_NAME + "/contacts";
static final Uri CONTENT_URI = Uri.parse(URL);

The Uri is made of three parts. The first part is the string “content://”, also called
the schema. The second part is the authority that you declare inside the
AndroidManifest.xml file, for example, the authority for our demo app is
com.code.abdulrahman.coprovider. The last part is the path to a table in the data-
base, for example, the path in our demo app is contacts.

The Android UriMatcher class can be used to match the incoming Uri, i.e., the
Uri the app is trying to locate, and the Uri of the content provider. The creation and
initialization of the UriMatcher inside the ContentProvider class are as follows:

static {
uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
uriMatcher.addURI(PROVIDER_NAME, "contacts", URI_CODE);
uriMatcher.addURI(PROVIDER_NAME, "contacts/*", URI_CODE);

}

This is a static block that is executed when the content provider class is created.
The addURI() method has three parameters, the provider’s name, path, and
return code.

The match() method from the UriMatcher class can be used to match the
incoming Uri with the content provider Uri; the matching statement would be
like this: uriMatcher.match(uri)).

12.2.2.2 onCreate Method Implementation

The onCreate() method implementation can be used to create a database, for
example, an SQLite database, for your content provider and to initialize local vari-
ables. All the steps involved in creating an SQLite database and the methods used are

12.2 Content Provider Component 535

described in Chap. 11 and are reused here. An example of the onCreate() imple-
mentation is shown in the code snippet below. The database instantiation and the
access to write to the database statements are in boldface.

@Override
public boolean onCreate() {

Context context = getContext();
DatabaseHelper dbHelper = new DatabaseHelper(context);
db = dbHelper.getWritableDatabase();
if (db != null) {

return true;
}
return false;

}

12.2.2.3 Query Method Implementation

An example of a query() method implementation for the ContentProvider class is
shown in Listing 12.2. There are a few things you need to note about the implemen-
tation of this method. First, the UriMatcher.match() method is used to match
between the client and provider Uris. Second, the database query() method is called
to retrieve data from the database. Third, the method calls the setNotificationUri()
method from the cursor class to notify the observer objects about changes in the
content provider. Objects, such as CursorLoader, can register to changes in the
content provider data. This is similar to registering listeners to list objects in early
chapters; every time the list data changed, the list objects were notified to update
their content. The steps described are shown in Listing 12.2.

Listing 12.2 Content provider query implementation.

@Override
public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortby) {

SQLiteQueryBuilder sqLiteQueryBuilder = new SQLiteQueryBuilder();
sqLiteQueryBuilder.setTables(TABLE_NAME);
switch (uriMatcher.match(uri)) {

case uri_code:
// additonal code goes here

break;
default:

throw new IllegalArgumentException("Unknown URI " + uri);
}
// sort result by row id
if (sortby == null || sortby.isEmpty()) {

sortby = id;
}

536 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

Cursor queryResult = sqLiteQueryBuilder.
query(db, projection, selection, selectionArgs,
null, null, sortby);

queryResult.setNotificationUri
(getContext().getContentResolver(), uri);
return queryResult;

}

Note that you can have additional code in the switch section of the method
implementation. For example, you can have a class variable of type HashMap that
can be used to map the column names that the client apps insert into the query to the
database column names. This mapping can be done using the setProjectionMap()
method from the SQLiteQueryBuilder class. In this case, the switch section of your
code can be re-written as follows:

public class MyContentProvider extends ContentProvider {
private static HashMap <String, String> values;
. . ..
switch (uriMatcher.match(uri)) {

case uri_code:
sqLiteQueryBuilder.setProjectionMap(values);

. . .
}

12.2.2.4 Insert Method Implementation

An example of an insert() method implementation for the ContentProvider class is
shown in Listing 12.3. The two important code statements that you should be aware
of when implementing this method are the database insert() and the
ContentResolver’s notifyChange() method calls. Both methods are shown in
boldface font.

Listing 12.3 Insert implementation.

@Override
public Uri insert(Uri uri, ContentValues values) {

long rowID = db.insert(TABLE_NAME, "", values);
if (rowID > 0) {

Uri _uri = ContentUris.withAppendedId(CONTENT_URI, rowID);
getContext().getContentResolver().notifyChange(_uri, null);
return _uri;

}
throw new SQLiteException("Failed to add a record into " + uri);

}

12.2 Content Provider Component 537

12.2.2.5 Update Method Implementation

The update() method implementation for the ContentProvider class is very similar to
that of the insert() method. The most important part of the method implementation is
the call to the database update() method. The code snippet in Listing 12.4 is an
example of how to implement the update method in an app.

Listing 12.4 Update implementation.

@Override
public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {
int count = 0;
switch (uriMatcher.match(uri)) {

case uri_code:
count = db.update(TABLE_NAME, values, selection, selectionArgs);
break;

default:
throw new IllegalArgumentException("Unknown URI " + uri);

}
getContext().getContentResolver().notifyChange(uri, null);
return count;

}

12.2.2.6 Delete Method Implementation

The delete() method implementation for the ContentProvider class is very similar to
that of the insert()/update() methods. The most important part of the method imple-
mentation is the call to the database delete() method. The code snippet in Listing
12.5 is an example of how to implement the delete() method in an app.

Listing 12.5 Insert implementation.

@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {

int count = 0;
switch (uriMatcher.match(uri)) {

case uri_code:
count = db.delete(TABLE_NAME, selection, selectionArgs);
break;

default:
throw new IllegalArgumentException("Unknown URI " + uri);

}
getContext().getContentResolver().notifyChange(uri, null);
return count;

}

538 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

12.2.2.7 getType Method Implementation

When you create media content, e.g., an image or a text file, it is better to specify the
content media type, also called the MIME type, to help applications display the
content properly. For example, by creating a website and specifying the content
media type as text/html, the browser is better able to display the content. The
getType() method implementation returns the content media type of the content
provider to the client application. There are several standard content media types
such as “text/html” for normal webpages, “text/plain” for plain text, “application/
octet-stream,” etc. The last one does not specify the content type; it lets the content
display application find the content type itself.

Content providers support both the return standard content types and custom
ones. The custom MIME type strings, also called “vendor-specific” MIME types,
have more complex type and subtype values. When you want to return only
one single row, the return type of the getType() method for your app should be
“vnd.android.cursor.item”. However, when you want to support multiple row
retrieval in your content provider app, the return type of your getType() method
should be “vnd.android.cursor.dir”. This is because the return type of the query
is the cursor object. For example, in our method implementation, we will return
“vnd.android.cursor.dir/contacts”. The contact subtype is specific to our app. An
example of a getType() method implementation is shown below.

@Override
public String getType(Uri uri) {

switch (uriMatcher.match(uri)) {
case uri_code:

return "vnd.android.cursor.dir/contacts";
default:

throw new IllegalArgumentException("Unsupported URI: " + uri);
}

}

12.2.2.8 ContentProvider Code Example

We put together the implementation of all six content provider methods along with
the Uri and database creation in one file to form a complete code for the content
provider. The code snippet in Listing 12.6 is the complete code for the
ContentProvider class in our demo app.

12.2 Content Provider Component 539

Listing 12.6 MyContentProvider.java class.

package com.code.abdulrahman.cprovider;
import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteQueryBuilder;
import android.net.Uri;
import java.util.HashMap;

public class MyContentProvider extends ContentProvider {

static final String PROVIDER_NAME = "com.code.abdulrahman.cprovider";
static final String URL = "content://" + PROVIDER_NAME + "/contacts";
static final Uri CONTENT_URI = Uri.parse(URL);
private static HashMap <String, String> values;

static final String id = "id";
static final String contact = "name";
static final int uri_code = 1;

private SQLiteDatabase db;
static final String DATABASE_NAME = "ContactDB";
static final String TABLE_NAME = "MyContacts";
static final int DATABASE_VERSION = 1;

static final String CREATE_DB_TABLE =
" CREATE TABLE " + TABLE_NAME
+ " (id INTEGER PRIMARY KEY AUTOINCREMENT, "
+ " name TEXT NOT NULL);";

static final UriMatcher uriMatcher;
static {

uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
uriMatcher.addURI(PROVIDER_NAME, "contacts", uri_code);
uriMatcher.addURI(PROVIDER_NAME, "contacts/*", uri_code);

}
@Override
public String getType(Uri uri) {

switch (uriMatcher.match(uri)) {
case uri_code:

return "vnd.android.cursor.dir/contacts";
43 /* you use return "application/octet-stream" ;
if you don’t implement this method */

540 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

default:
throw new IllegalArgumentException("Unsupported URI: " + uri);

}
}
@Override
public boolean onCreate() {

Context context = getContext();
DatabaseHelper dbHelper = new DatabaseHelper(context);
db = dbHelper.getWritableDatabase();
if (db != null) {

return true;
}
return false;

}
@Override
public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortby) {

SQLiteQueryBuilder sqLiteQueryBuilder = new SQLiteQueryBuilder();
sqLiteQueryBuilder.setTables(TABLE_NAME);

switch (uriMatcher.match(uri)) {
case uri_code:

break;
default:

throw new IllegalArgumentException("Unknown URI " + uri);
}
// sort result by row id
if (sortby == null || sortby.isEmpty()) {

sortby = id;
}
Cursor queryResult = sqLiteQueryBuilder.

query(db, projection, selection, selectionArgs,
null, null, sortby);

queryResult.setNotificationUri
(getContext().getContentResolver(), uri);

return queryResult;
}

@Override
public Uri insert(Uri uri, ContentValues values) {

long rowID = db.insert(TABLE_NAME, "", values);
if (rowID > 0) {

uri = ContentUris.withAppendedId(CONTENT_URI, rowID);
getContext().getContentResolver().notifyChange(uri, null);
return uri;

}
throw new SQLiteException("Failed to add a record into " + uri);

}
@Override
public int update(Uri uri, ContentValues values,

String selection, String[] selectionArgs) {
int count = 0;

12.2 Content Provider Component 541

switch (uriMatcher.match(uri)) {
case uri_code:
count = db.update

(TABLE_NAME, values, selection, selectionArgs);
break;

default:
throw new IllegalArgumentException("Unknown URI " + uri);

}
getContext().getContentResolver().notifyChange(uri, null);
return count;

}
@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {

int count = 0;
switch (uriMatcher.match(uri)) {

case uri_code:
count = db.delete(TABLE_NAME, selection, selectionArgs);
break;

default:
throw new IllegalArgumentException("Unknown URI " + uri);

}
getContext().getContentResolver().notifyChange(uri, null);
return count;

}
private static class DatabaseHelper extends SQLiteOpenHelper {

DatabaseHelper(Context context) {
super(context, DATABASE_NAME, null, DATABASE_VERSION);

}
@Override
public void onCreate(SQLiteDatabase db) {

db.execSQL(CREATE_DB_TABLE);
}
@Override
public void onUpgrade
(SQLiteDatabase db, int oldVersion, int newVersion){
db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);
onCreate(db);

}
}

}

12.2.3 Provider in Manifest File

You need to declare the provider element in the AndroidManifest.xml file to
complete your content provider. Otherwise, the app will not run the content provider,
and the Android system will not be aware of the class existence. To do so, include
the <provider> element in the file; an example is shown in Listing 12.7.

The provider element has multiple items. A complete list of the provider items is
shown below. More information on the provider items including their meanings and
use are found in the Android documentation. The four element items that we used to
define the provider in our demo app are name, authorities, enabled, and exported.

542 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

<provider android:authorities="list"
android:directBootAware=["true" | "false"]
android:enabled=["true" | "false"]
android:exported=["true" | "false"]
android:grantUriPermissions=["true" | "false"]
android:icon="drawable resource"
android:initOrder="integer"
android:label="string resource"
android:multiprocess=["true" | "false"]
android:name="string"
android:permission="string"
android:process="string"
android:readPermission="string"
android:syncable=["true" | "false"]
android:writePermission="string" >

. . .
</provider>

Listing 12.7 MyContentProvider.java class.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
"http://schemas.android.com/apk/res/android"
package="com.code.abdulrahman.cprovider">

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.Cprovider">

<provider
android:name="com.code.abdulrahman.cprovider.MyContentProvider"

android:authorities="com.code.abdulrahman.cprovider"
android:enabled="true"
android:exported="true">

</provider>
<activity android:name=".MainActivity"

android:windowSoftInputMode="adjustPan">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

12.2 Content Provider Component 543

12.2.4 Run and Test Content Provider

To run and test the ContentProvider class in our demo app, we have created a main
class. The main class includes two methods, storeData() and retrieveData(). The
storeData() method is used to run the insert() method from the ContentProvider
class, and the retrieveData() method is used to run the query() method from the
ContentProvider class. The complete code is shown in Listing 12.8.

Listing 12.8 The main class to run and test the content provider app locally.

package com.code.abdulrahman.cprovider;
import android.content.ContentValues;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.Toast;
import androidx.appcompat.app.AppCompatActivity;
import java.util.ArrayList;
import java.util.StringTokenizer;

public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
setTitle(getString(R.string.app_title));

}
public void storeData(View view) {
String editText1 =
((EditText)findViewById(R.id.editText1)).getText().toString();

String editText2 =
((EditText)findViewById(R.id.editText2)).getText().toString();

String editText3 =
((EditText)findViewById(R.id.editText3)).getText().toString();

String editText4 =
((EditText)findViewById(R.id.editText4)).getText().toString();

String in = editText1 + "\n" + editText2 + "\n" + editText3 + " \n" +
editText4 + "\n";

ContentValues values = new ContentValues();
values.put(MyContentProvider.contact, in);
Uri contentResolver =
getContentResolver().insert
(MyContentProvider.CONTENT_URI, values);
if (contentResolver != null)

544 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

Toast.makeText(getBaseContext(),
getText(R.string.record_insert), Toast.LENGTH_LONG).show();

}

public void reterive_data(View view) {
StringBuilder strBuild = new StringBuilder();
Cursor cursor = getContentResolver().query(

Uri.parse
("content://com.code.abdulrahman.cprovider/contacts"),

null, null, null, null);
if (cursor.moveToFirst()) {

while (!cursor.isAfterLast()) {
strBuild.append("\n" +

cursor.getString(cursor.getColumnIndex("name")));
cursor.moveToNext();

}
addToList(strBuild.toString());

} else {
addToList(getString(R.string.no_recored_msg));

}
}
private void addToList(String str) {

ListView resultView = findViewById(R.id.listView);
ArrayList aList = new ArrayList();
StringTokenizer stringTonizer = new StringTokenizer(str, "\n");
while (stringTonizer.hasMoreTokens()) {

aList.add(stringTonizer.nextToken());
}
final ArrayAdapter <String> arrayAdapter = new ArrayAdapter <String>

(this, android.R.layout.simple_list_item_1, aList);
resultView.setAdapter(arrayAdapter);

}
}

12.2.4.1 Do It Yourself

In the main class above, we have created two methods to test the insert() and query
methods(). Test the other four methods (the update(), delete(), getType(), and
onCreate() methods) by implementing methods similar to the two created for the
main class.

12.2.5 Content Provider Client

The main objective of content providers is to have an app that can store data where
other apps interested in that data can query and, in some cases, write to and update
it. To show this functionality, we have created a client app that is interested in the

12.2 Content Provider Component 545

data stored in the content provider app database. The client app queries the content
provider using a Uri and displays the retrieved results on its screen.

For the client app to query data from the content provider, it needs to use the
ContentResolver object and its query() method, getContentResolver().query(). The
ContentResolver class query() method invokes the ContentProvider.query() method
defined by the ContentProvider class, which in turn returns the cursor object. Listing
12.9 shows an example of the query() method from the client app. The left-hand side
of Fig. 12.2 shows the content provider client app and the results of querying the
content provider. The right-hand side of Fig. 12.2 shows the content provider app
and the results of inserting soccer team information into the content provider using
the ContentProvider main class.

Fig. 12.2 Insert and display team contact info using the content provider and content provider
client app

546 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

Listing 12.9 Query implementation in the client app.

public void queryProvider(View view) {

Cursor cursor = getContentResolver().query(uri,null, null,
null, null);

if(cursor.moveToFirst()) {
StringBuilder stringBuilder=new StringBuilder();
while (!cursor.isAfterLast()) {
stringBuilder.append("\n"+

cursor.getString(cursor.getColumnIndex("name")));
cursor.moveToNext();

}
addToList(stringBuilder.toString());

}
else {

addToList("No Records Found");
}

}
private void addToList(String str) {

ListView resultView = findViewById(R.id.listView);
ArrayList aList = new ArrayList();
StringTokenizer stringTonizer = new StringTokenizer(str, "\n");
while (stringTonizer.hasMoreTokens()) {

aList.add(stringTonizer.nextToken());
}
final ArrayAdapter <String> arrayAdapter = new ArrayAdapter <String>

(this, android.R.layout.simple_list_item_1, aList);
resultView.setAdapter(arrayAdapter);

}

12.2.5.1 Do It Yourself

Write update(), delete(), and insert() methods for the client content provider app.
Note that you need to update the provider’s AndroidManifest.xml and add writable
access to the provider element in the file.

12.3 Media Content Streaming Apps

Streaming audio and video content locally or from URLs requires multiple Android
classes. These include Android Service, BroadcastReceiver, MediaPlayer,
VideoView, and other classes. A demo app is developed to demonstrate how to

12.3 Media Content Streaming Apps 547

use these classes. Figure 12.3 is an interface for the demo app. The app has four
buttons to start and stream media content. The app code uses the Android Service,
BroadcastReceiver, MediaPlayer, and VideoView classes and demonstrates how to
run radio stations using URLs, how to use implicit intent to run videos using URLs,
how to use video view to playback remote videos, and how to run embedded videos
in your app. The classes and implementation details will be discussed in the
following parts.

Fig. 12.3 Demo app’s user
interface

548 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

12.4 Android Service

Having a service component run in the app’s background while the user performs
other tasks is an essential requirement for many apps, and their popularity depends
on this feature. For example, it is because of the service component that you can
browse the internet on your phone and listen to your favorite music at the same time.
In this part of the chapter, we examine the Android service class in detail. We study
how it is created, started, stopped, and used, as well as how to send and receive
messages to/from the service. We also study the restrictions that Android puts on the
service. We additionally study the broadcast receiver object and its uses with the
service. Let us start by understanding what the service is.

12.4.1 Service

Service is an Android class that performs long-running tasks in the background with
no UI. Since the service runs in the app’s background, it does not require an XML
layout file. Once the service starts, it continues to run even if the original application
is ended or if the user moves to a different application. This might cause some
performance issues. We will address these issues later. Service is the right choice to
use when an activity does not interact with the user, i.e., it is not the forefront
activity. Service can be private or public. When private, it is usable only by the app it
belongs to; however, when public, it is also usable by apps other than the app it
belongs to.

Service can be used in multiple situations. For example, it can be used to
download an app from the app store or any kind of download/upload via the
network, and the downloading will continue even when the user leaves the store.
It can be used to monitor websites for updates/changes periodically, play music in
the background while the user is browsing the device, maintain the connection in a
chat app when a phone call is received, etc.

Apps can start a service by calling its API, for example, an application
component such as the MainActivity can start service with the
startForegroundService() method call. The startForegroundService() method is
a replacement for the startService() method. Google recently made this change to
protect the client’s device from resource leaks. When a user starts the service
using the foreground service, the user will be notified that a service is running in
the background that otherwise the user might forget, leading to the device’s
battery drain.

The startForegroundService() method is like the startActivity() method used by
activities. Once started, the service can run in the background indefinitely. It is the
developer’s responsibility to prevent resource wastes and stop the service.

12.4 Android Service 549

Generally, services do not return a result; however, if it is necessary, for example,
to notify an activity or other services that the task is done, it can send a local
broadcast message. In addition to starting service, the app component and activ-
ities can connect (bind) to the service to interact with it through interprocess
communication.

12.4.2 Communication with Service

There are two ways to communicate with the service. First, client apps and users can
communicate with the service using the commands, i.e., method calls, without
keeping a connection to the service. For example, when the user or other components
initiate the start or end service method calls, they are communicating with the
service. Second, the client app can bind to the service. Binding follows the sub-
scribe/publish communication pattern between the service and user client. In this
approach, the service and other components, such as an activity or another service,
register to receive messages from the service.

12.4.3 Services Lifecycle

The Android service has three lifecycle methods. The methods are onCreate(),
onStartCommand(), and onDestroy(). The onCreate() method is called to set up
the service and is called once. The onStartCommand() method is invoked when a
service is explicitly started using the startForegroundService() method. The
onDestroy() method is invoked when a service is stopped using the stopService()
method. Like the activity and fragments, the service also has lifecycle states which
are similar to the activity states.

12.4.4 Creating Service

To create a service, you must create a subclass of the Android service or use one of
its existing subclasses, e.g., IntentService. Here is an example of how to extend the
service class:

public class RadioService extends Service implements
OnPreparedListener, MediaPlayer.OnErrorListener {. . .}

550 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

In your implementation, you must implement the callback methods that are
important for the service binding and service lifecycle. These include implementing
four methods: onStartCommand(), onBind(), onCreate(), and onDestroy(). Each of
these methods is described in this section.

12.4.4.1 OnStartCommand()

When an activity requests the service by calling startForegroundService(), the
onStartCommand() method is called, and once the onStartCommand() method is
executed, the service starts and can run in the background indefinitely. Since the
onStartCommand() is called whenever the service starts with a
startForegroundService() call, it may be executed several times during the service’s
lifetime, and you as a developer need to handle the system response when the service
restarts.

The onStartCommand() method returns one of the following three values,
predefined constants:

1. START_STICKY: If for any reason the Android system terminates the process
which is running the service, the service stays in the started state, i.e., remains on,
and is later recreated when the process restarts without its state being saved. For
example, if the service streams music and you rotate your device, the service
terminates and resumes. However, some parts of the music will be lost.

2. START_REDELIVER_INTENT: This is like the START_STICKY, but noth-
ing gets lost here, i.e., the original Intent parameter is passed to the
onStartCommand() method.

START_NOT_STICKY: The service runs until its pending works are fin-
ished, for example, until it completes downloading a file. When its pending work
is done, it will terminate. If this service’s process is terminated and is not restarted
explicitly, the service will not be recreated.

12.4.4.2 Service and Threads

When running a service, it does not create its running thread by default. Instead, it
runs from the main thread of the hosting process. A better approach would be to run
the service in a separate thread. For example, create a new thread from the
onStartCommand() method to start and stop the service outside the main hosting
process. The code snippet shown in Listing 12.10 shows how an app component,
RadioMainActivity, starts a service. It also shows the message sequence calls
between the main activity and the service. First, a call to the
startForegroundService() is made in the RadioMainActivity, and then the
onStartCommand() method is invoked in the RadioService class.

12.4 Android Service 551

Listing 12.10 RadioMainActivity is starting a service.

public class RadioMainActivity extends ListActivity implements View.
OnClickListener {
. . .
@Override
protected void onListItemClick(
ListView list, View v, int position, long id) {

try {
Intent service = new Intent(this, RadioService.class);
startForegroundService(service);

} catch (Exception e) { }
. . .

}
public class RadioService extends Service implements

OnPreparedListener, MediaPlayer.OnErrorListener {
@Override
public int onStartCommand(Intent intent, int flags, int startId) {

super.onStartCommand(intent, flags, startId);
try {

player.prepareAsync();
. . .

}
}

If you implement the onStartCommand() method, it is your responsibility to
stop the service when its work is complete by calling the stopSelf() or
stopService() method. Note that, if you only want to provide binding, you do not
need to implement the onStartCommand() method.

12.4.4.3 Starting Service with the Intent

A service can be started with an explicit or implicit intent. Staring service explicitly
would be like this:

Intent anIntent = new Intent("context", "serviceclass");
anIntent.putExtra("key", "value");
startForegroundService(anIntent);

We start service explicitly in our demo app as follows:

Intent service = new Intent(
RadioMainActivity.this, RadioService.class);
startForegroundService(service);

552 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

For security reasons, using explicit intent is recommended for starting and
binding to the service. If your intent is explicit, your intention is clear; you are
specifying which service you would like to start. Once explicit Intent is used, you do
not need to worry about the Intent filtering.

Services can start with implicit Intents as well. Using an implicit intent is not
secure, and you should not use it. In the newer Android versions, beginning with
Android 5.0 (API level 21), Android throws an exception if bindService() is called
with an implicit intent.

12.4.4.3.1 Service and Intent-Filter

The IntentFilter class is used to filter client apps that can use a running service by
matching the actions, categories, and/or data in the intent object with these properties
of the IntentFilter object. IntentFilter objects are often created in XML as a part of the
manifest file using the intent-filter tag. It is used with the service tag to tell which
client apps can access your service. The intent-filter tag can also have a “priority”
value that can be used to order multiple matching filters. An example of declaring an
intent filter within the service tag is shown below.

<service
an-droid:name= "com.code.abdulrahman.wlu.

serviceandmediaplayer.RadioService"
<intent-filter>
<action android:name="com.code.abdulrahman.wlu.

serviceandmediaplayer.RadioMainActivity" />
</intent-filter>

</service>

Here, for example, an intent filter expression specifies that the type of component
that can access the service, i.e., start service, is RadioMainActivity.

When your intent is explicit, you are specifying which intent your service can
receive; hence, there is no need for extra filtering, i.e., there is no need for an intent
filter declaration in your manifest file. In the example below, the intent is created
explicitly, and the service object is clear about the intent it is going to receive. Hence,
there is no need for intent filtering inside the service tag.

Intent service = new Intent(
RadiosMainActivity.this, RadioService.class);
startForegroundService(service);

12.4.4.3.2 Intent-Filter and Activity

When you use an intent-filter within the activity tag in your app manifest file, you
allow certain specified apps and app components to directly start your activity. When
you do not declare any intent-filters for your activity, it can be started only with an

12.4 Android Service 553

explicit intent, and that is what we have been doing for almost all of our examples,
except when we studied the implicit intent.

When you use implicit intent, the Android system looks for an appropriate app or
component that can handle the intent request. The app selection is done by compar-
ing the contents of the implicit intent to the intent-filters declared inside the manifest
file of other apps on the device. If multiple intent-filters can handle the request, the
system displays a message, so the user selects its favorite app to handle the request.
For example, when you implicitly request opening a webpage, all your installed
browsers can handle the request, and Android gives you the option to select your
favorite.

12.4.5 Service Binding

When an app or component wants to bind, i.e., connect to the service, it needs to call
the bindService() method which results in calling the onBind() method from the
service side. Once bound, the app’s components can interact with the service (send
and receive messages) following the communication protocol. That is, the service
must implement the onBind() method and return an IBinder object to the connected
client. To return the IBinder object, you need to create an instance of the IBinder
class and consider two different cases; we describe these two cases in the two
subsections below.

12.4.5.1 Allow Apps to Bind to Service

If you allow other apps to bind to your service, do the following:

1. Create a class by extending the Binder class and implement the getService()
method. This step is done as follows:

public class MyBinder extends Binder {
Service getService() {

return Service.this;
}

. . . }

2. Override the onBind() method to return the MyBinder instance. This step can be
done as follows:

@Override
public MyBinder onBind(Intent intent) {

private final IBinder binder = new MyBinder();
return binder;

}

554 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

Note that, inside the onBind() method, the IBinder object is instantiated as
follows:

private final IBinder binder = new MyBinder();

The client app or the client component, such as the RadioMainActivity class,
receives the Binder object and can use it to directly access public methods of the
Binder and/or the service objects.

12.4.5.2 Prohibit Apps to Bind to Service

If you don’t want to allow binding, i.e., other apps or components to connect or
communicate with your service, then your onBind() method should return null. The
code snippet below shows the onBind() method returning null indicating that your
service will not accept requests to bind calls, i.e., it is a private service.

@Override
public IBinder onBind(Intent intent) {

return null;
}

A service can be both started and bound at the same time as well. That is, if it is
not a private service, the service can be started and later bound to other applications.

12.4.6 OnCreate() Method for Service

The Android system invokes the onCreate() method to perform a one-time setup
when the service is initially created. If the service is already running, the onCreate
method is not called. The OnCreate() method is called before the onStartCommand()
or onBind() method is called. In the code snippet shown in Listing 12.11, the
onCreate() method of the service class is used to initialize the intent and local
variables.

Listing 12.11 RadioService.java initializing the Intent object.

public class RadioService extends Service implements
OnPreparedListener, MediaPlayer.OnErrorListener {

static MediaPlayer player;
Intent intentbuf;
public static final String buffering =

"com.code.abdulrahman.wlu.serviceandmediaplayer";
public String NotifiationChannel ="notificationChannel" ;

12.4 Android Service 555

@Override
public void onCreate() {

super.onCreate();
isRunning = true;
intentbuf = new Intent(buffering);

}
. . .

}

12.4.7 OnDestroy() Method

The onDestroy() method allows the programmers to do a cleanup. This is the last call
that the service receives. The Android system invokes the onDestroy() method when
the service is no longer used and is being killed. You should implement this method
in your service class to clean up any resources such as threads, registered listeners, or
receivers. The code snippet in Listing 12.12 shows how the onDestroy() method can
be used to do a resource cleanup.

Listing 12.12 The onDestroy() method is used to clean up resources.

@Override
public void onDestroy() {

super.onDestroy();
Log.i(destroy_tag, getString(R.string.destroyed));
if (player != null) {

player.stop();
player.release();
player = null;

}
if (wifiLock != null) {

wifiLock.release();
wifiLock = null;

}
intentbuf = null;
stopSelf();
cancelNotification();

}

Putting things together, the code snippet shown in Listing 12.13 is a skeleton for
the service class; it shows how the structure of the service class would be with
lifecycle callback methods implemented.

556 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

Listing 12.13 RadioService.java is the service class skeleton.

public class RadioService extends Service {
@Override
public IBinder onBind(Intent intent) {return null; // service is private}
@Override
public void onCreate() {/*widget and component initialization*/}
@Override
public void onDestroy() {

super.onDestroy();
// code cleanup }

@Override
public int onStartCommand(Intent intent, int flags, int startId) {

super.onStartCommand(intent, flags, startId);
// start service
return START_STICKY ;

}
. . .
}

12.4.8 Stopping Service

To stop a service in your app, two cases need to be differentiated:

• If the startForegroundService() method is used by the user client to start the
service, which in turn results in a call to the onStartCommand() method, the
service continues to run until it stops itself with the stopSelf() method or until
another component stops it by calling the stopService() method. The code snippet
shown in Listing 12.14 shows how the stopService() method is used.

Listing 12.14 An example of using stopService() method.

@Override
public void onClick(View src) {
switch (src.getId()) {
case R.id.stopbutton:

getApplicationContext().stopService(intent);
break;

case R.id.exitButton:
getApplicationContext().stopService(intent);
System.exit(0);

break;
. . .

}

12.4 Android Service 557

• If the user client starts the service by calling the bindService() method, and the
onBind() method is called instead of onStartCommand(), the service runs only if
the client user stays bound to it. After the service is unbound, i.e., disconnected
from all its clients and no one is using it, the system destroys it.

12.4.9 Android Rules to End Service

The Android operating system follows the rules below in regard to keeping or
destroying a service.

1. It stops a service when the device is running out of memory and when it must
recover system resources for the activity that has the user’s focus.

2. If the service starts and runs for a long time, the system lowers its priority over
time in the list of background tasks, making it susceptible to ending.

3. If the service is bound to an activity that has the user’s focus, the chances it will be
destroyed are low.

4. If the service is declared to run in the foreground, it keeps running and is rarely
killed.

5. If the system kills your service, it restarts it as soon as the resources become avail-
able. This also depends on the value that you return from onStartCommand():
START_STICKY, START_NOT_STICKY, or START_REDELIVER_
INTENT.

12.4.10 Declaring a Service in the Manifest

You must declare all services in your application’s manifest file just as you do for
activities and other components. Otherwise, when the service is started, the app will
crash. To declare your service, add a <service> tag as a child of the <application>
tag. If you use Android Studio to create a service class, it will be added automatically
to your manifest file. The code snippet shown in Listing 12.15 shows how service
can be added to the manifest file.

Listing 12.15 AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>
<manifest

package="com.code.abdulrahman.wlu.serviceandmediaplayer">
<application . . . >
<activity
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" >

</intent-filter>

558 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

</activity>
<service

android:name="com.code.abdulrahman.wlu.
serviceandmediaplayer.RadioService"
android:description="@string/runningRadio"
android:enabled="true"
android:exported="false">

</service>
</application>

There are some attributes that you can include in the <service> tag to define
properties such as the permissions that are required to start the service and the
process in which the service should run. The android:name attribute is the only
required attribute; it specifies the class name of the service. As we mentioned before,
to ensure your app is secure, use an explicit intent and no intent-filtering.

You can make your service private, that is, you can ensure that your service is
available to only your app, by including the android:exported attribute and setting
it to false. This effectively stops other apps from starting your service, even when
using an explicit intent.

Users can see what services are running on their devices. If they see a service that
they do not recognize or trust, they can stop the service. To avoid having your
service stopped accidentally by users, you need to add the android:description
attribute to the <service> tag in your app manifest file. In the description, provide a
short sentence explaining what the service does and how it is useful. The code
snippet in Listing 12.14 shows a service with four properties and no use of an intent-
filter.

12.4.11 Intent Service

IntentService is a subclass of service that cannot interact with the GUI and has a
simplified lifecycle. It is ideal for one long task on a single background thread. It
stops itself once it has handled all the requests. IntentService cannot be interrupted
when started, and to use it, you only need to implement the onHandleIntent(intent)
method. Beginning with API 26, Android introduced a new service called
JobIntentService which does similar work as the IntentService but uses jobs instead
of services. The code snippet shown in Listing 12.16 shows how the IntentService
implementation would be.

Listing 12.16 IntentService implementation example.

package com.code.abdulrahman.wlu.serviceandmediaplayer;
import android.app.IntentService;
import android.content.Intent;

12.4 Android Service 559

public class MyIntentService extends IntentService {
public MyIntentService() {

super("HelloIntentService");
}
@Override
protected void onHandleIntent(Intent intent) {

try { // Do some work
} catch (Exception e) {

Thread.currentThread().interrupt();
}

}
} // When this method returns, IntentService stops the service.

12.4.12 Service Summary

What we have described in this section can be summarized as follows:

1. For service creations, you need to extend the Android service or one of its
subclasses.

2. Declare services in the manifest file.
3. Implement the necessary service lifecycle methods, i.e., onCreate(),

onStartCommand(), and onDestroy().
4. You can start service by calling the startForegroundService() method with an

intent object. This step is similar to starting an activity.
5. Use explicit intent, and do not use the intent-filter with the service.
6. You must stop service before starting up another instance.
7. It is best to start service in the onCreate()/onResume() method and stop it in the

onPause() method.

12.4.13 Do It Yourself

To check your knowledge of the service, answer the following questions.

1. In terms of the manifest file, what are services equivalent to?
2. What is the difference between a bound and an unbound service?
3. Give the syntax for declaring a service in the manifest file.
4. How often is "onCreate()" called?
5. How often is "onStartCommand()" called?
6. What are services used for?

560 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

12.5 Message Broadcasting in Android

In computer science, broadcasting is about sending messages to interested or regis-
tered entities. Broadcasting can be a one-to-one, one-to-many, or many-to-many
message exchange between the senders and receivers. Android has a class called
BroadcastReceiver for receiving messages when an interesting event happens. For
example, when a device is low on battery or disconnected, or when the device screen
is turned off, Android broadcasts these events. The message details, i.e., information
about what happened, are wrapped in the intent object and broadcasted to the
receivers. In this part, we will study message broadcasting in Android.

12.5.1 Android Message Broadcasting Types

Android differentiates between two types of broadcasting, system broadcasting and
custom broadcasting. System broadcasts are messages sent by the Android system.
The Android system broadcasts messages in various situations. These include when
the screen turns off, the battery is low, the user is presently using the phone, a picture
is captured, etc. The Android system delivers a broadcast Intent to all interested
(registered) broadcast receivers. Custom broadcasts are broadcasts that your app
sends out. Apps can initiate broadcast messages to let other apps know, for example,
that some data has been downloaded to the device and is available for them to use. In
our demo app, when MediaPlayer is buffering, we send a message to the client to
wait until the playing starts. The send message code is shown below:

public void startBuffering() {
intentbuf.putExtra("bufValue", 1);
sendBroadcast(intentbuf);

}

Custom broadcasting can be sent in three different ways, as a normal broadcast,
an ordered broadcast, or a local broadcast. When normal broadcasting is used, the
message is sent to all registered receivers in parallel and in an undefined order. This
is a one-to-many message broadcasting. Receivers cannot propagate the messages
among themselves, and they cannot terminate the broadcast. This approach is used in
our demo app. We use the sendBroadcast() method to send a normal broadcast.

Ordered broadcasting is delivered to one receiver at a time sequentially. You use
the sendOrderedBroadcast() method to send ordered broadcasts. Receivers can
send the message to the next receiver or terminate it. You can control the message
order with the android:priority attribute of the intent-filter in the manifest file.
Receivers with the same priority run in arbitrary order.

Local broadcasting sends broadcasts to receivers within your app. Local broad-
casting is safe, and you do not need to worry about security since message exchanges
are done internally inside your app. To send a local broadcast, you need to get an

12.5 Message Broadcasting in Android 561

instance of the LocalBroadcastManager class and then call the sendBroadcast()
method on the class instance. Here is an example:

LocalBroadcastManager.getInstance(this).
sendBroadcast(customBroadcastIntent);

Senders and receivers must agree on a unique name for the intent they send back
and forth. Using the full name of your app as part of the intent name makes your
intent name highly likely to be unique. Here is an example of how to name your
custom intent.

private static final String MY_CUSTOM_BROADCAST =
"com.code.abdulrahman.wlu.serviceandmediaplayer.My_CUSTOM_

BROADCAT";

12.5.2 BroadcastReceiver Class

BroadcastReceiver is an Android class that responds to broadcast announcements,
i.e., messages. It receives and handles broadcast intents sent from service by the
sendBroadcast(Intent) method. The BroadcastReceiver class does not have a UI, but
it can create a status bar notification to alert the user when a broadcast event occurs.
The BroadcastReceiver needs to be instantiated and registered to process the broad-
casted messages on arrival. This step is like the GUI event handling. In both cases,
you must instantiate the object, register the object that handles the event, and handle
the events when it is fired. Below, we explain the four steps involved in message
broadcasting and receiving which are creating the BroadcastReceiver object, regis-
tering the BroadcastReceiver object to receive messages, broadcasting the messages,
and performing actions upon receiving the broadcasted messages. These steps are
defined in the subsections below.

12.5.2.1 Create a BroadcastReceiver Object

The first step in handling broadcasted messages is to create a BroadcastReceiver
object to receive the messages. For our demo app, we created a BroadcastReceiver
that is a private inner class inside the main activity class as shown in Listing 12.17.

562 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

Listing 12.17 Creating a BroadcastReceiver class as a private inner class.

public class RadiosMainActivity extends ListActivity implements
View.OnClickListener {

. . .
private BroadcastReceiver receiver = new BroadcastReceiver() {

@Override
public void onReceive(Context context, Intent bufIntent) {

new CreateProgressDialog(RadiosMainActivity.this, bufIntent);
} };

. . .
}

12.5.2.2 BroadcastReceiver Registration

For the BroadcastReceiver object to receive messages, it needs to be registered as a
listener. There are two ways to register a BroadcastReceiver object to receive broad-
casted messages. You can dynamically register an instance of the class with the
registerReceiver() method or statically declare it with the <receiver> tag in the
AndroidManifest.xml file. The code snippet below shows how in our demo app we
dynamically register the receiver object that has been declared inside themain activity.

if (!RadioService.isRunning) {
registerReceiver(receiver, new IntentFilter
(RadioService.buffering));
intent = new Intent(RadioMainActivity.this, RadioService.class);

}

You can unregister the service when the app is in the paused state and re-register
it when the app resumes; see the code snippet below:

@Override
protected void onPause() {

super.onPause();
unregisterReceiver(reciver);

}
@Override
protected void onResume() {

super.onResume();
registerReceiver(reciver, new IntentFilter
(RadioService.buffering));

}

12.5.2.3 Using the sendBroadcast Method

The service can send messages to its listeners about an event that has happened in the
background using its sendBroadcast() method. In our demo app, before we call the

12.5 Message Broadcasting in Android 563

prepareAsync() method on the MediaPlayer object, we broadcast a message to let the
RadioMainActivity (the listener) object know that we are about to play a radio
station. This involves doing the following:

1. Creating a constant String:

public static final String buffering =
"com.example.listviewexample.Buffering";

2. Creating an Intent object and initializing it with the constant String:

Intent intentbuf = new Intent(buffering);

3. Calling the sendBroadcast() method with the Intent object:

sendBroadcast(intentbuf);

The code snippet shown in Listing 12.18 shows how a service, i.e., the
RadioService class, can broadcast messages using the sendBroadcast() method.

Listing 12.18 RadioService.java.

public class RadioService extends Service implements
OnPreparedListener, MediaPlayer.OnErrorListener {

Intent intentbuf;
public static final String buffering =

"com.code.abdulrahman.wlu.serviceandmediaplayer";
private static final int notification_id = 5005;
public String NotifiationChannel = "notificationChannel";
@Override
public void onCreate() {

super.onCreate();
intentbuf = new Intent(buffering);

}
public void bufferingComplete() {

intentbuf.putExtra("bufValue", 2);
sendBroadcast(intentbuf);

}
. . .
}

12.5.2.4 Receiving Broadcasted Message

The BroadcastReceiver class has a single callback method called
onReceive(). The method signature is like this:
public void onReceive(Context context, Intent intentWithmessage). When a

564 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

broadcasted message arrives at a receiver object, the onReceive() method is invoked
and receives the Intent object containing the message. You should remember two
important things about the onReceive() method.

First, the onReceive() method of the broadcast receiver object in your class is
another entry point to your app, similar to how the main method is an entry point to
your app. Second, the onReceive() method should do a very minimal amount of
work. For instance, it might initiate a service to perform some work. The task that is
executed inside the onReceive() method must be complete in less than 10 seconds. If
the task takes longer, you must start a new thread to avoid the application crashing.

In our demo app, the receiver class, RadioMainActivity, has an instance variable
of type BroadcastReceiver called a receiver for communicating with the service. We
use the onReceive() method from the internal BroadcastReceiver class to show the
progress dialog informing the users to wait a few seconds before the radio station
starts playing. The code snippet shown in Listing 12.19 shows the
BroadcastReceiver object instantiation and progress dialog startup.

Listing 12.19 onReceive() is used to show the progress dialog.

public class RadiosMainActivity extends ListActivity implements
View.OnClickListener {
. . .

private BroadcastReceiver receiver = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent bufIntent) {

new CreateProgressDialog(RadiosMainActivity.this, bufIntent) ;
}

};

public class CreateProgressDialog {
public static ProgressDialog dprogress = null;
int bufferingResult = 0;
Context mainactivity = null;
public CreateProgressDialog(Context mainactivity, Intent bufIntent) {

this.mainactivity = mainactivity;
showProgressDialog(bufIntent);

}

public void showProgressDialog(Intent bufIntent) {
bufferingResult = bufIntent.getExtras().getInt("bufValue");
try {

if (bufferingResult == 2) {
if (dprogress != null) {

dprogress.dismiss();
//dprogress = null;

}
} else if (bufferingResult == 1) {

dprogress = ProgressDialog.show(mainactivity,
mainactivity.getString(R.string.msg_title3),

12.5 Message Broadcasting in Android 565

mainactivity.getString(R.string.buf_message), true);
dprogress.setCancelable(true);
new Thread(new Runnable() {

volatile boolean running = true;
public void run() {

try {
if (null != dprogress && dprogress.isShowing()) {

Thread.sleep(20000);
// dprogress.dismiss();
if (!running) return;

}
} catch (InterruptedException e) {

Thread.currentThread().interrupt(); }
}

}).start();
}

} catch (Exception e) {
Log.d("error", e.getMessage()); }

}
}

In the next part, we will discuss how we use the service component to play live
streaming radio stations using a URL as well as how to use the sendBroadcast()
method to notify users of an event.

12.5.3 Do It Yourself

Answer the following questions to test your knowledge.

1. In your own words, what is automatic system broadcasting?
2. Name two ways to register/unregister a BroadcastReceiver.
3. When do you recycle the receiver?

12.6 Android MediaPlayer for Streaming Radio Stations

In this part, you will learn how to create an app using the Android media player,
broadcast receiver, and service. You are going to collect your favorite radio station
URLs and create an app to stream them on your phone. In [16], we published the first
version of this app. The app is cool for two reasons: First, all the radio stations will
be grouped in one place, hence, you can easily switch from one station to another
one. Second, it is an app to run radio stations on your device. It is very similar to
Spotify but on a smaller scale. The app comes with a built-in list of radio stations.
You can easily remove and add the stations you would like to listen to. The interface
of the app is shown in Fig. 12.4. This is a complete app in itself. However, to access

566 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

it, you need to click on the first button on the main interface of the app developed for
this chapter.

12.6.1 App Structure

For this part of our demo app, we use the service and MediaPlayer component to
play live streaming radio stations using URLs. We also use BroadcastReceiver to
notify users of an event. RadioMainActivity maintains a reference to the service;
thus, it can make calls on the service just like any other class and can directly access
members and methods inside the service. RadioMainActivity starts the service

Fig. 12.4 The interface of
the MyRadioStations app

12.6 Android MediaPlayer for Streaming Radio Stations 567

which in turn gets the radio URL from the RadioMainActivity and starts the
MediaPlayer. The static class structure of our demo app is shown in Fig. 12.5 in
which essential classes and their relations are presented. Figure 12.5 reveals that the
service component has other member classes. These include MediaPlayer, WifiLock,
PowerManager, and AudioManager, and it implements the OnPreparedListener
interface. Below, we briefly discuss what role each of these classes plays in making
our demo app.

12.6.2 Android Media Player

Android uses the MediaPlayer class to control the playback of audio/video files and
streams. MediaPlayer needs to be prepared, started, and released. To understand the
lifecycle method of the MediaPlayer, visit Android documentation. For the playback
to start, the MediaPlayer must first enter the prepared state. There are two ways for
the player to enter the prepared state, the synchronous way using the prepare()
method or the asynchronous way using the prepareAsync() method. The difference
between the two methods is in what thread they are executed.

Fig. 12.5 The class structure of our demo app MyRadioStations

568 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

The prepare() method runs in the UI thread and thus takes a long time to prepare.
It will block your UI thread, and the user might get an ANR (Application Not
Responding) message. The prepareAsync() method, on the other hand, runs in a
background thread meaning that your UI thread is not blocked. However, you might
end up in a situation where you call the prepareAsync() method but the media player
is not ready yet. To avoid such a scenario, you want to implement the
onPreparedListener() method to know when the MediaPlayer is ready for use.

The prepareAsync() method is commonly used for playing live data over the
stream, and that is why in our app, we use the prepareAsync() method. It allows
playing without blocking the main thread. If we use prepare() for live data streaming,
it eventually crashes because the data is received in streams. This is because the
prepare() method tries to load all the data first and then play it which is not possible.
The code snippet shown in Listing 12.20 shows how we create the MediaPlayer
object, call the player.prepareAsync() method, handle the onPrepared() method, and
release all the resources when the onDestroy() method is called.

Listing 12.20 Instantiating and using MediaPlayer.

public class RadioService extends Service implements
OnPreparedListener, MediaPlayer.OnErrorListener {

. . .
@Override
public int onStartCommand(Intent intent, int flags, int startId) {
super.onStartCommand(intent, flags, startId);

try {
notification(); // private helper method
initMediaPlayer(); // privte helper method

player.setOnPreparedListener(this);
player.setDataSource(RadioMainActivity.url);
player.setWakeMode(getApplicationContext(),

PowerManager.PARTIAL_WAKE_LOCK);
. . .

player.prepareAsync();
} catch (IllegalArgumentException e) {

. . .
return START_STICKY;

}
public void initMediaPlayer() {

player = new MediaPlayer();
player.setAudioAttributes(new AudioAttributes.Builder()

.setUsage(AudioAttributes.USAGE_MEDIA)

.setContentType(AudioAttributes.CONTENT_TYPE_MUSIC)

.build());
}
@Override
public void onPrepared(MediaPlayer mp) {
new Thread(new Runnable() {
volatile boolean running = true;

12.6 Android MediaPlayer for Streaming Radio Stations 569

public void run() {
try {

if (null != MainActivity.url) {
if (!player.isPlaying()) {

player.start();
bufferingComplete();

}
}

} catch (Exception e) { player.reset(); }
} }).start();

}
@Override

public void onDestroy() {
super.onDestroy();
player.stop();
player.release();
player = null;
wifiLock.release();
wifiLock = null;
intentbuf = null;
cancelNotification();

}
}

12.6.3 Power Manager and WakeLock

Even though you have code in a BroadcastReceiver or service, it will not run if your
phone goes into a low-power state. To control the power state on the device, you
need to use power management to keep the CPU running, prevent the screen from
dimming or going off, and prevent the backlight from turning on. You need to use a
WakeLock class in your app if the MediaPlayer in your app works fine when your
phone is on and connected to the computer during development, but fails under
normal use, disconnecting your phone from the development environment. The code
snippets presented in Listing 12.21 show how we created the PowerManager object
in our demo app and how we use it with the WakeLock and MediaPlayer.

Listing 12.21 Creating and using PowerManager object.

@Override
public int onStartCommand(Intent intent, int flags, int startId) {

super.onStartCommand(intent, flags, startId);
try {
pm = (PowerManager) getSystemService(Context.POWER_SERVICE);
PowerManager.WakeLock wl = pm.newWakeLock(

PowerManager.PARTIAL_WAKE_LOCK, "MyWakeLock");
wl.acquire();

}
player.prepareAsync();

. . .
}

570 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

The PARTIAL_WAKE_LOCK keeps the CPU running without the screen
on. Whenever you want to release the WakeLock, use wakeLock.release();.

12.6.4 WifiLock

WifiLock allows an application to keep the Wi-Fi component awake. The Wi-Fi
component may turn off when the user has not used the device for a while. Acquiring
a WifiLock will keep the Wi-Fi on until the application releases the lock. In our
demo app, we have decided to keep the radio stations running even when the device
screen is off. Hence, in our app, we acquire the WifiLock. To use a WifiLock, we
added the below permission to the AndroidManifest.xml file.

<uses-permission android:name="android.permission.WAKE_LOCK" />

You also need to add the service foreground permission to your manifest file. This
can be done as follows:

<uses-permission android:name=
"android.permission.FOREGROUND_SERVICE" />

12.6.5 Other App Components

In the demo app, we also implemented additional features such as the progress dialog
when the app tries to connect to the radio station. Users can also delete any listed
radio station. This is done by pressing and holding on to an item in the list for a short
period and confirming the delete by pressing the OK button on the popup dialog box.
Users can add new stations to the list as well. This is done by pressing on the link
button at the bottom of the screen and following the wizard which prompts users to
enter the station name, link, and icon in sequence. This feature enables users to create
a customized list of stations. Lastly, users can populate the list with predefined
embedded stations when using the app for the first time or reset the list at any time by
pressing the reset button. Figure 12.6 shows both the link and reset buttons at the
bottom of the app screen.

12.6 Android MediaPlayer for Streaming Radio Stations 571

12.6.6 Stopping and Restarting Service

The app also provides the ability to stop service and MediaPlayer from
RadioMainActivity which also demonstrates the communication between activities
and service. The code snippet presented in Listing 12.22 shows how to stop and
restart the service when the user changes the radio station.

Listing 12.22 Stop and restart the service when stations changed.

@Override
protected void onListItemClick(ListView list, View v, int position,

long id) {
try {

url = vector.get(position).getUrlLink();
icode_id = (vector.elementAt(position)).stationImage;
radio_name = "\t" + (vector.elementAt(position)).latinName;
stopService(intent);
Intent service = new Intent(RadioMainActivity.this,

RadioService.class);
startForegroundService(service);

} catch (Exception e) {
Log.d(listException, e.toString());

}
}

The app can be dismissed or exited, and if this happened, all the resources the app
was using are released to prevent resource leaks.

Fig. 12.6 Some app features are highlighted

572 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

12.6.7 The New Restriction on Background Service

Running multiple apps in parallel puts an extra load on system resources. For
example, playing games and listening to music at the same time lead to consuming
a lot of RAM which might result in a bad user experience. To avoid this issue, and
when your app is using service, you need to use a foreground service.

Starting from Android 8.0, API 26, Android introduced a new method,
startForegroundService(), which we have used in our app to start service in the
foreground. Android no longer allows apps running in the background to create
services in the background. Once an app goes into the background, it has a few
minutes to start a service and call startForegroundService() to start a new service in
the foreground and create a notification that will be visible to the user. The code
snippet in Listing 12.22 shows how to create a foreground service.

Note that the definition of background and foreground used here is not the same
definition used in the memory management field. Here, the foreground service is
running in the background but with a visible notification.

The code snippet presented in Listing 12.22 shows how to use the foreground
service and a notification channel to meet the requirement of using the service in the
foreground.

Your app needs to check the API version installed on the device. If the API
version is greater than or equal to 26, you need to instantiate the notification channel
object. In the code snippet shown in Listing 12.23, a notification channel is created,
and a start service foreground is called.

Listing 12.23 NotificationAndForegroundService.java.

package com.code.abdulrahman.wlu.serviceandmediaplayer;
import android.app.Notification;
import android.app.NotificationChannel;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;
import android.os.Build;
import androidx.core.app.NotificationCompat;
public class NotificationAndForgroundService {

RadioService rService;
public NotificationAndForgroundService(RadioService rs) {

this.rService = rs;
}
public void notification() {

CharSequence contentTitle = RadiosMainActivity.radio_name;
CharSequence contentText = rService.getString
(R.string.runningRadio);
Context context = rService.getApplicationContext();
// Create the NotificationChannel, but only on API 26+ because
// the NotificationChannel class is new and not in the support library

12.6 Android MediaPlayer for Streaming Radio Stations 573

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
CharSequence name = rService.getString(R.string.msg_title);
String description = rService.getString(R.string.runningRadio);

int importance = NotificationManager.IMPORTANCE_DEFAULT;
NotificationChannel channel = new NotificationChannel(

rService.notification_id + "", name, importance);
channel.setDescription(description);
NotificationManager notificationManager =

rService.getSystemService(NotificationManager.class);
channel.enableLights(true);
channel.setLightColor(Color.RED);
channel.enableVibration(true);
notificationManager.createNotificationChannel(channel);
Notification notification = new NotificationCompat.Builder(

context, channel.getId())
.setContentTitle(contentTitle)
.setContentText(contentText)
.setSmallIcon(R.drawable.ic_launcher)
.build();

notificationManager.notify(rService.notification_id, notification);
rService.startForeground(rService.notification_id, notification);

} else {
String ns = Context.NOTIFICATION_SERVICE;
NotificationManager mNotificationManager =

(NotificationManager) rService.getSystemService(ns);
Intent notficationIntent = new Intent(rService,

RadiosMainActivity.class);
PendingIntent pendingIntent = PendingIntent.getActivity(context,

0, notficationIntent, 0);
Notification notification =

new NotificationCompat.Builder(context,
rService.NotifiationChannel)

.setContentTitle(contentTitle)

.setContentText(contentText)

.setSmallIcon(R.drawable.ic_launcher)

.setContentIntent(pendingIntent)

.build();
mNotificationManager.notify(rService.notification_id, notification);
} }}

Figure 12.7 shows the notification while an example of the radio station is
running.

574 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

12.6.8 Do It Yourself

Answer the following questions to test your knowledge and understanding of the
materials discussed in this section.

1. What do you need to do to use MediaPlayer.setWakeMode() in your code?
2. What can you do with the MediaPlayer API?

Fig. 12.7 A notification is
shown while an example of
a radio station is running

12.6 Android MediaPlayer for Streaming Radio Stations 575

3. When data is in a file or stream, what method must MediaPlayer use?
4. List the steps to use MediaPlayer.

12.7 Remote and Local Video Playback

In the previous part of this chapter, we discussed the use of the media player and all
the essential classes you need to create a live streaming audio app. Android has
another class, VideoView, to playback local or live streaming videos, i.e., to enable
the creation of Android TV apps. You can also play media content with an implicit
intent. These topics are described in this part of the chapter.

12.7.1 Playback Video Using Implicit Intent and URL

To use implicit intent, you need to use Android predefined actions. In this case, the
action is Intent.ACTION_VIEW. You also need to provide a media URL such as a
YouTube link. The example presented in Listing 12.24 shows how you can use
implicit intent to play remote videos using URLs.

Listing 12.24 PlayMediaWithIntentActivity.java.

package com.code.abdulrahman.wlu.serviceandmediaplayer;
import androidx.appcompat.app.AppCompatActivity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
public class PlayMediaWithIntentActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_play_media_with_intent);
Intent myMediaIntent = new Intent();
myMediaIntent.setAction(Intent.ACTION_VIEW);
myMediaIntent.seData(Uri.parse("https://youtu.be/jxX8o1bJZMk"));

startActivity(myMediaIntent);
}

}

To run the code above, click on the second button, implicit intent action, of the
demo app.

576 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

12.7.2 Playback Live Streaming Video Using URL
and VideoView

To playback a local video or live stream video using a URL, you need two essential
Android classes. That is, you need to use VideoView class for the playback and the
MediaController class to control the view. You also need to use a special VideoView
class property, i.e., app:layout_constraintDimensionRatio property, to keep the
aspect ratio (width ratio to height) the same for all devices. Two popular examples of
aspect ratios are 4:3 and 16:9. We use 4:3 in the below code, but you can replace it
with 16:9 or any other aspect ratio to see the differences between them and find the
best suitable ratio for your app.

Listing 12.25 is an example of the layout file that we used in our demo app, my
favorite TVs, which can be activated using the third button on the demo interface.
The layout file uses both the VideoView class and the aspect ratio property.

Listing 12.25 A layout file example that uses VideoView tag and aspect ratio.

<?xml version=”1.0” encoding=”utf-8”?>
<android.constraintlayout.widget.ConstraintLayout

xmlns:android=”http://schemas.android.com/apk/res/android”
android:layout_width=”match_parent”
android:layout_height=”match_parent”
xmlns:app=”http://schemas.android.com/apk/res-auto”>
<VideoView

android:id=”@+id/VideoView”
android:layout_width=”0dp”
android:layout_height=”0dp”
android:layout_margin=”8dp”
app:layout_constraintDimensionRatio=”4:3”
app:layout_constraintBottom_toBottomOf=”parent”
app:layout_constraintEnd_toEndOf=”parent”
app:layout_constraintStart_toStartOf=”parent”
app:layout_constraintTop_toTopOf=”parent”/>

</android.constraintlayout.widget.ConstraintLayout>

A code example of how VideoView can be used to run live streaming TV stations
is shown in Listing 12.26. The setVideoURI(video) method is used to set the URL,
and the videoView.start() method is used to play the video. The media controller,
URL setup, and getting the VideoView from layout file are highlighted below
in bold.

12.7 Remote and Local Video Playback 577

Listing 12.26 PlayVideoActivity.java uses VideoView object to play back
remote video.

package com.abdulrahman.mytvs.code;
import android.media.MediaPlayer;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.widget.MediaController;
import android.widget.VideoView;
import android.appcompat.app.AppCompatActivity;
public class PlayVideoActivity extends AppCompatActivity {

VideoView videoview;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
try {

setContentView(R.layout.activity_play_video);
MediaController controller = new MediaController(this);
String VideoURL =
“https://svs.itworkscdn.net/rudawlive/rudawlive.smil/
playlist.m3u8”;
videoview = findViewById(R.id.VideoView);
videoview.setMediaController(controller);
controller.setMediaPlayer(videoview);
Uri video = Uri.parse(VideoURL);
videoview.setVideoURI(video);

} catch (Exception e) {
Log.e(“Error”, e.getMessage());
e.printStackTrace();

}
videoview.requestFocus();
videoview.setOnPreparedListener
(new MediaPlayer.OnPreparedListener() {
public void onPrepared(MediaPlayer mp) {

videoview.start();
}

});
}

}

The VideoView class has multiple methods, for example, start(), pause(),
stopPlayback(), getCurrentPosition(), etc. VideoView also has multiple callback
methods, for example, the onPrepared() method which is called when the player is
ready to play, the onCompletion() method which can be used to inform the user that

578 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

the playback has ended, etc. For the complete list of methods that the VideoView
class supports, see Android documentation. A link to the documentation is provided
in the reference section at the end of this chapter.

Figure 12.8 shows an example where VideoView is used to play live streaming
TV stations using URLs. The right-hand side of Fig. 12.9 shows the main interface
for an app where one’s favorite TV stations are grouped in one place and the user
can easily switch between TV stations. This screen is accessible by clicking on the
third button of our demo app’s main interface. The left-hand side of the Fig. 12.9
shows one of the stations running where the aspect ratio is 4:3. The screen size of
Fig. 12.9 is smaller when compared to the screen size of Fig. 12.8 where the aspect
ratio is 16:9.

A topic related to live streaming is Android TVs. The features that Android TVs
can bring to both TV operators and consumers are described in [19]. These include
providing operators with a capable operating system that can help to build a
complete TV experience for subscribers, bringing traditional TV broadcasting and
streaming services to one place, etc. In this new setting, TVs will have many new
features including search, content discovery, personalization, interface customiza-
tion, Android app store connectivity, and even smart home control as standard
features.

Fig. 12.8 An example of VideoView running a live stream TV

12.7 Remote and Local Video Playback 579

12.7.3 Playback Embedded Video in Your App

If your video is embedded in the app, you parse the file path and pass the result to the
setVideoUri() method. For example, if the video file is saved in the res/raw
directory, you compose and run the Uri as follows:

Uri video = Uri.parse("android.resource://" +
getPackageName() + "/raw/" + "videofile");

videoview.setVideoURI(video);

The code snippet shown in Listing 12.27 is a complete code to run a video file
embedded in the app. With a simple modification, you can change this part of the

Fig. 12.9 The interface for all TV app (left) and running screen for a live TV (right)

580 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

demo app to enable users to play their favorite movies stored on their device. This is
especially useful when you download your favorite movies while you have access to
the internet without using your mobile data so that you can later playback videos
without the need for a network connection.

Listing 12.27 PlayLocalVideo.java.

import android.media.MediaPlayer;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.widget.MediaController;
import android.widget.VideoView;
import androidx.appcompat.app.AppCompatActivity;
public class PlayLocalVideo extends AppCompatActivity {

VideoView videoview;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
try {

setContentView(R.layout.activity_play_local_video);
MediaController controller = new MediaController(this);
videoview = findViewById(R.id.videolocal);
Uri video = Uri.parse("android.resource://" +

getPackageName() + "/raw/" + "soccer");
videoview.setMediaController(controller);
controller.setMediaPlayer(videoview);
videoview.setVideoURI(video);

} catch (Exception e) {
Log.e("Error", e.getMessage());
e.printStackTrace();

}
videoview.requestFocus();
videoview.setOnPreparedListener
(new MediaPlayer.OnPreparedListener() {
// Close the progress bar and play the video
public void onPrepared(MediaPlayer mp) {

videoview.start();
}

});
}

}

12.7.4 Playback Video Outside Your App Directory

If the video file is outside your app directory, for example, on your device’s file
system, you must use the environment and external storage directory methods to

12.7 Remote and Local Video Playback 581

access the file. You also need to set proper settings permissions in the manifest file to
access storages outside of your app directory. Here is an example of how to run a
video file in the external file directory.

String filepath = Environment.getExternalStorageDirectory() + "/" +
"yourvideofile.mp4;

File file = new File(fullPath);
Uri video = Uri.fromFile(file);
Object mVideoView;
mVideoview.setVideoUri(video);

12.8 Chapter Summary

In this chapter, we covered the creation and usage of the ContentProvider class,
ContentResolver class, Android service component, intent server, and
BroadcastReceiver. We also covered the creation of the MediaPlayer and
VideoView objects to stream radio/TV stations, as well as how to manage Android
power and Wi-Fi connections. Additionally, we discussed and described fundamen-
tal coding blocks to build an app for audio/video streaming.

The fact that you have learned about content providers, the Android service
component, and message broadcasting means that you have completed a major
milestone on your way to becoming a professional Android developer.

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

• ANR
• AudioManager
• bindService
• BroadcastReceiver
• constraintDimensionRatio
• Content provider
• Content resolver
• Custom broadcasts
• getContentResolver
• IBinder
• IntentFilter
• IntentService
• MediaController
• MediaPlayer
• MIME-type

582 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

• NotificationChannel
• OnPreparedListener
• onStartCommand
• PowerManager
• prepareAsync
• sendBroadcast
• service
• startForegroundService
• START_NOT_STICKY
• START_REDELIVER_INTENT
• START_STICKY
• stopSelf
• stopService
• System broadcasts
• Uri
• UriMatcher
• VideoView
• WakeLock
• WifiLock

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

Audio Focus, [online] Available, https://developer.android.com/guide/topics/
media-apps/audio-focus

AudioManager, [online] Available, https://developer.android.com/reference/
android/media/AudioManager

Broadcasts overview, [online] Available, https://developer.android.com/guide/
components/broadcasts

Content provider basics, [online] Available, Content provider basics, [online]
Available, https://developer.android.com/guide/topics/providers/content-provider-
basics

ContentResolver, [online] Available, https://developer.android.com/reference/
android/content/ContentResolver

ContentUris, [online] Available, https://developer.android.com/reference/
android/content/ContentUris

IntentFilter, [online] Available, https://developer.android.com/reference/
android/content/IntentFilter

Further Reading 583

https://developer.android.com/guide/topics/media-apps/audio-focus
https://developer.android.com/guide/topics/media-apps/audio-focus
https://developer.android.com/reference/android/media/AudioManager
https://developer.android.com/reference/android/media/AudioManager
https://developer.android.com/guide/components/broadcasts
https://developer.android.com/guide/components/broadcasts
https://developer.android.com/guide/topics/providers/content-provider-basics
https://developer.android.com/guide/topics/providers/content-provider-basics
https://developer.android.com/reference/android/content/ContentResolver
https://developer.android.com/reference/android/content/ContentResolver
https://developer.android.com/reference/android/content/ContentUris
https://developer.android.com/reference/android/content/ContentUris
https://developer.android.com/reference/android/content/IntentFilter
https://developer.android.com/reference/android/content/IntentFilter

IntentService, [online] Available, https://developer.android.com/reference/
android/app/IntentService

JobIntentService, [online] Available, https://developer.android.com/reference/
androidx/core/app/JobIntentService

MediaControler, [online] Available, https://developer.android.com/reference/
android/media/session/MediaController

MediaPlayer Overview, [online] Available, https://developer.android.com/
guide/topics/media/mediaplayer

NotificationChannel, [online] Available, https://developer.android.com/refer
ence/kotlin/android/app/NotificationChannel

Notification Overview, [online] Available, https://developer.android.com/
reference/kotlin/android/net/wifi/WifiManager

PowerManager, [online] Available, https://developer.android.com/reference/
android/os/PowerManager

Service Overview, [online] Available, https://developer.android.com/guide/
components/services

UriMatcher, [online] Available, https://developer.android.com/reference/
android/content/UriMatcher

VideoView, [online] Available, https://developer.android.com/reference/
android/widget/VideoView

WifiManager, [online] Available, https://developer.android.com/reference/
kotlin/android/net/wifi/WifiManager

584 12 Content Provider, Service, Message Broadcasting, and Multimedia Player

https://developer.android.com/reference/android/app/IntentService
https://developer.android.com/reference/android/app/IntentService
https://developer.android.com/reference/androidx/core/app/JobIntentService
https://developer.android.com/reference/androidx/core/app/JobIntentService
https://developer.android.com/reference/android/media/session/MediaController
https://developer.android.com/reference/android/media/session/MediaController
https://developer.android.com/guide/topics/media/mediaplayer
https://developer.android.com/guide/topics/media/mediaplayer
https://developer.android.com/reference/kotlin/android/app/NotificationChannel
https://developer.android.com/reference/kotlin/android/app/NotificationChannel
https://developer.android.com/reference/kotlin/android/net/wifi/WifiManager
https://developer.android.com/reference/kotlin/android/net/wifi/WifiManager
https://developer.android.com/reference/android/os/PowerManager
https://developer.android.com/reference/android/os/PowerManager
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://developer.android.com/reference/android/content/UriMatcher
https://developer.android.com/reference/android/content/UriMatcher
https://developer.android.com/reference/android/widget/VideoView
https://developer.android.com/reference/android/widget/VideoView
https://developer.android.com/reference/kotlin/android/net/wifi/WifiManager
https://developer.android.com/reference/kotlin/android/net/wifi/WifiManager

Chapter 13
Sensors, Location-Based Service,
and Google Maps

What You Will Learn in This Chapter
By the end of this chapter, you should be able to:

• Describe Android sensor types and their uses
• Use the accelerometer sensor to programmatically find out your phone orientation

(in portrait or landscape), which way it is facing (up or down), and whether or not
your phone is moving in a linear direction

• Use Location Manager, LocationProvider, and Geocoder to create location-based
services

• Use Google Maps in your app

Check Out the Demo Project
Download the demo app, SensorsLocationAndGoogleMaps.zip, specifically
developed to go with this chapter. I recommend that you code this project up from
the notes rather than just opening the project in Android Studio and running it;
however, if you want to run the code first to get a sense of the app, please do so. The
code is thoroughly explained in this chapter to help you understand it. We follow the
same approach to all other chapters throughout the book. The app’s code will help
you comprehend the additional concepts that will be described in this chapter.

How to run the code: unzip the code in a folder of your choice, and then in
Android Studio, click File->import->Existing Android code into the workspace.
The project should start running.

13.1 Introduction

This chapter covers three important topics, Sensors, Location-based services, and
Google Maps. In Sect. 13.2, we will specifically study the accelerometer sensor, for
it has many applications. In Sect. 13.3, we will study the classes that enable the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9_13

585

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87459-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-87459-9_13#DOI

creation of location-based apps. These include Location Manager, LocationProvider,
and Geocoders. In Sect. 13.4, we will describe how to include Google Maps in your
app and point out its many uses.

13.2 Android Sensor

Android has three types of sensors: motion, environment, and position sensors.
Motion sensors measure device motion, for example, acceleration, gravity, and
rotational moves. Environmental sensors measure environmental conditions such
as temperature, pressure, and humidity. Position sensors measure the physical
position of a device such as proximity. The left-hand side of Fig. 13.1 lists the
different sensors that you might find on your phone, and they include the

Fig. 13.1 Example of Android sensors and the main interface for the demo app

586 13 Sensors, Location-Based Service, and Google Maps

accelerometer, proximity, gyroscope, magnetic, light, compass, and more. The right-
hand side of Fig. 13.1 shows the main interface of the demo app developed for this
chapter.

In this part, we will focus on the Android accelerometer, a device used to measure
the acceleration force, including the gravitational force.

13.2.1 Accelerometer Sensor

Android uses the accelerometer sensor to measure the acceleration force applied to a
device on the (x, y, and z) axes. The data returned from the accelerometer can be
used to detect movement, tilts, and vibrations. By measuring the amount of accel-
eration, you can find the angle your device is tilted at with respect to the earth, and
you can analyze the way your device is moving. In general, you can use the
accelerometer to determine:

(a) Whether your phone is in the portrait or landscape orientation
(b) Which way your phone is pointed to, facing up or down
(c) Whether or not your phone is moving in a linear direction

Using the accelerometer, you can use your phone to track your steps without
having to buy a wearable device, determine if you are speeding up or not, and find
out the exact orientation of your phone along the x, y, and z axes.

The value of the x, y, and z axes of the accelerometer is with respect to the
phone’s coordinates:

1. The x-axis is horizontal and points to the right/left.
2. The y-axis is vertical and points up/down.
3. The z-axis points toward the outside of the front face of your device screen.

In this setting, coordinates behind your screen have negative z values. More
detailed information on the phone coordination system is provided on the Android
documentation. For more information, see the reference section provided at the end
of this chapter.

13.2.2 Accelerometer App

To demonstrate that the accelerometer can capture changes in the x, y, and z axes and
how this feature can be used, we have created an app to display the x, y, and z axes
readings. Once you install the demo app on your phone, click the accelerometer
button on the main interface of the demo app, and shake the app. The app’s
background changes to a random color in response to the phone’s movement. We
will study the app’s code to demonstrate how the accelerometer can be used in an

13.2 Android Sensor 587

app. Figure 13.2 shows the x, y, and z values and the changes in the app’s
background color in response to the user shaking the phone.

13.2.3 Using Accelerometer

The Android API (application programming interfaces) provides multiple classes
and interfaces to read data from software and hardware sensors. These include
SensorManager, Sensors, SensorEvent, and SensorEventListener. To use an accel-
erometer in your code to read axes in response to device motion, you need to do the
following six steps:

13.2.3.1 Sensor Event Listener Implementation

Your activity class needs to implement the SensorEventListener interface. The
interface has two methods onSensorChanged (SensorEvent event) and
onAccuracyChanged(Sensor sensor, int accuracy). The first one is called when
there is a new sensor event, and the second one is called when there is a change in
the accuracy information that the sensor provides. We have implemented both
methods in the main activity class of the demo app. Inside the onSensorChanged()
method, we check the event type. If the event is of type Sensor.
TYPE_ACCELEROMETER, we retrieve the event values and initialize and display
the x, y, and z axes values. See the code snippet shown in Listing 13.1.

Fig. 13.2 App’s background color change in response to phone shaking

588 13 Sensors, Location-Based Service, and Google Maps

Listing 13.1 Sensor Accelerometer type event.

@Override
public void onSensorChanged (SensorEvent event) {
int accelerometerType = Sensor.TYPE_ACCELEROMETER ;
if (event.sensor.getType() == accelerometerType) {

event.values[0] + " " +
event.values[1] + " " +
event.values[2]) ;

displayAccelerometerVariables (event) ;
checkForShaking (event) ;

}
}

The onAccuracyChanged() method implementation is used to inform users that
the sensor accuracy has changed; this is done using a toast message. See the code
snippet shown in Listing 13.2.

Listing 13.2 onAccuracyChanged() method implementation.

@Override
public void onAccuracyChanged (Sensor sensor, int accuracyValue) {
Toast.makeText(getApplicationContext(),

R.string.accuracychange , Toast.LENGTH_LONG).show() ;
Log.i(“onAccuracyChanged”, “ called”) ;

}

13.2.3.2 Getting Sensor Service and Sensor Manager Objects

To read the accelerometer axes, use the getSystemService() method with the
Sensor_Service constant to get the SensorManager object. This can be done using
the following two lines of code:

1. SensorManager sManager = (SensorManager)
getSystemService(SENSOR_SERVICE);

2. sManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER)

In our demo app, we included the two steps above inside the onCreate() and
onResume() callback methods as shown in Listing 13.3.

13.2 Android Sensor 589

Listing 13.3 MainActivity.java for using the accelerometer.

public class MainActivity extends AppCompatActivity implements
SensorEventListener {
SensorManager sManager ;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
sManager = (SensorManager) getSystemService(SENSOR_SERVICE);

@Override
protected void onResume() {

super.onResume();
sManager.registerListener(this,
sManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_NORMAL);
}

}

Using the Sensor.TYPE_ACCELEROMETER constant and the set() method, the
sensor type is set to accelerometer. You can set your sensor type to other types, such
as the ones listed in Fig. 13.1. The code for displaying accelerometer data and
calculating the acceleration force would be more clear if they were done inside
two separate private helper methods. The code snippet below shows an example of
two helper methods called inside the onSensorchanged() callback method. These
two methods will be explained in the next two sections.

@Override
public void onSensorChanged (SensorEvent event) {
int accelerometerType = Sensor.TYPE_ACCELEROMETER ;
if (event.sensor.getType() == accelerometerType) {

displayAccelerometerVariables (event) ;
checkForShaking (event) ;

}
}

The onSensorChanged(SensorEvent event) callback method is called when there
is a new sensor event. It is also called when the timestamp is changed, even if the
sensor values have not been changed. In the latter case, the same readings will be
generated.

13.2.3.3 Display Accelerometer Readings

Once a sensor event is generated, you need to get the axes readings. The readings are
passed as an array parameter to the onSensorChanged() callback method. The first

590 13 Sensors, Location-Based Service, and Google Maps

element of the array is the x value, and the second and third elements are the y and z
values, respectively. In our demo app, these values are retrieved and used to set the
values of the x, y, and z axes variables, which are then displayed on the app screen
using text views. The code snippet presented in Listing 13.4 shows this step.

Listing 13.4 Getting the axes readings from a sensor.

public void displayAccelerometerVariables (SensorEvent sensorEvent) {
if (null != sensorEvent){

String coordinateValues [] = new String [3] ;
String x = new Double (sensorEvent.values[0]).toString() ;
String y = new Double (sensorEvent.values[1]).toString() ;
String z = new Double (sensorEvent.values[2]).toString() ;
coordinateValues[0]= R.string.xvalue + x ;
coordinateValues[1]= R.string.xvalue + y ;
coordinateValues[2]= R.string.xvalue + z;
xView.setText(coordinateValues[0]);
yView.setText(coordinateValues[1]);
zView.setText(coordinateValues[2]);

}
}

13.2.3.4 Calculating Acceleration Force

To calculate the acceleration force, we get x, y, and z values from the sensor and use
the retrieved values with the acceleration force formula (square root (x2 + y2 + z2)/
gravity2) as follows:

double sequreRootOfxyz = (
xposition * xposition +
yposition * yposition +
zposition * zposition) /
(SensorManager.GRAVITY_EARTH *
SensorManager.GRAVITY_EARTH));

Note that, when you hold your device, it is constantly in motion, no matter how
hard you try to keep your hand steady. Thus, you are constantly generating new data.
That being said, we don’t need all this data; it is too much to be useful for our demo
app. To avoid the constant reading data situation, we store the system’s current time
(in milliseconds) and get the next reading only after 200 milliseconds pass. Thus, we
set the 200 ms interval between readings. The code snippet presented in Listing 13.5
shows the acceleration force calculation and how the app’s background color
changes in response to the change in the acceleration forces (device motion).

13.2 Android Sensor 591

Listing 13.5 Acceleration force calculation.

public void checkForShaking (SensorEvent sensorEvent) {
double xposition = sensorEvent.values[0] ;
double yposition = sensorEvent.values[1] ;
double zposition = sensorEvent.values[2] ;
double sequreRootOfxyz = (xposition * xposition +

yposition * yposition +
zposition * zposition) /

(SensorManager.GRAVITY_EARTH *
SensorManag er.GRAVITY_EARTH) ;

long currentTime = System.currentTimeMillis() ;
if (sequreRootOfxyz >=changeInGravity) {

if (currentTime - lastUpdateTime < elpasedTime) {
return;

}
lastUpdateTime = currentTime;
int rand_num = new Random().nextInt(backgroundColors.length) ;

rootView.setBackgroundColor(backgroundColors[rand_num]*
new Random().nextInt(colorRange));

}
}

13.2.3.5 Listener Registration

For your activity class to receive the readings, you need to register your activity, e.g.,
MainActivity, as a listener to the events fired by the accelerometer sensor. The code
snippet below shows the registration step.

@Override
protected void onResume() {

super.onResume();
sManager.registerListener(this,
sManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_NORMAL);
}

13.2.3.6 Unregister Listening

Finally, unregister the accelerometer sensor once you stop or close the app to reclaim
the resources used by your device. The best place to unregister listening to the
accelerometer sensor is inside the onPause() method as shown below:

592 13 Sensors, Location-Based Service, and Google Maps

@Override
protected void onPause() {

// unregister listener
super.onPause();
sManager.unregisterListener(this);

}

By implementing the six steps above, you are now able to use the accelerometer
sensor inside your app to read the x, y, and z axes.

If you haven’t done so yet, install and start the demo app. You will receive the x,
y, and z values every 200 milliseconds, and when you shake your app, you should
see the app’s background change to a random color. The code for the accelerometer
app is shown in Listing 13.6.

Listing 13.6 AccelerometerActivity.java for using the accelerometer sensor.

package com.code.wlu.abdulrahman.sensorsandlocation;
import androidx.appcompat.app.AppCompatActivity;
import android.graphics.Color;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;
import android.widget.Toast;
import java.util.Random;

public class AccelerometerActivity extends AppCompatActivity
implements SensorEventListener {

static final int colorRange = 100 ;
static final int backgroundColors [] ={Color.GREEN, Color.RED,

Color.BLUE, Color.CYAN, Color.MAGENTA, Color.YELLOW,
Color.DKGRAY} ;

private static final int changeInGravity = 2;
SensorManager sManager ;
TextView xView, yView, zView;
private View rootView ;
private long lastUpdateTime ;
private int elpasedTime = 200 ;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setTitle("Accelerometer");
setContentView(R.layout.activity_accelerometer);
xView = findViewById(R.id.variableX) ;
yView = findViewById(R.id.variableY) ;

13.2 Android Sensor 593

zView = findViewById(R.id.variableZ) ;
rootView = findViewById(R.id.rootLayout) ;
rootView.setBackgroundColor(Color.CYAN);
sManager = (SensorManager) getSystemService(SENSOR_SERVICE);
lastUpdateTime= System.currentTimeMillis() ;

}
@Override
public void onSensorChanged (SensorEvent event) {

int accelerometerType = Sensor.TYPE_ACCELEROMETER ;
if (event.sensor.getType() == accelerometerType) {

Log.i("sensor values", event.values.length + " values are " +
event.values[0] + " " +
event.values[1] + " " +
event.values[2]) ;

displayAccelerometerVariables (event) ;
checkForShaking (event) ;

}
}
public void displayAccelerometerVariables (SensorEvent sensorEvent)

{
if (null != sensorEvent){

String coordinateValues [] = new String [3] ;
String x = new Double (sensorEvent.values[0]).toString() ;
String y = new Double (sensorEvent.values[1]).toString() ;
String z = new Double (sensorEvent.values[2]).toString() ;
coordinateValues[0]= R.string.xvalue + x ;
coordinateValues[1]= R.string.xvalue + y ;
coordinateValues[2]= R.string.xvalue + z;
xView.setText(coordinateValues[0]);
yView.setText(coordinateValues[1]);
zView.setText(coordinateValues[2]);

}
}
public void checkForShaking (SensorEvent sensorEvent) {

double xposition = sensorEvent.values[0] ;
double yposition = sensorEvent.values[1] ;
double zposition = sensorEvent.values[2] ;
double sequreRootOfxyz = (xposition * xposition +

yposition * yposition +
zposition * zposition) /
(SensorManager.GRAVITY_EARTH *

SensorManager.GRAVITY_EARTH) ;
long currentTime = System.currentTimeMillis() ;
if (sequreRootOfxyz >=changeInGravity) {

if (currentTime - lastUpdateTime < elpasedTime) {
return;

}
lastUpdateTime = currentTime;
int rand_num = new Random().nextInt(backgroundColors.length) ;
rootView.setBackgroundColor(backgroundColors[rand_num]*

new Random().nextInt(colorRange));
}

}

594 13 Sensors, Location-Based Service, and Google Maps

@Override
public void onAccuracyChanged (Sensor sensor, int accuracyValue) {

// handel sensor accuracy changes.
//e.g. report the issue to the user.
Toast.makeText(getApplicationContext(),

R.string.accuracychange , Toast.LENGTH_LONG).show() ;
Log.i("onAccuracyChanged", " called") ;

}
@Override
protected void onStart() {

super.onStart();
}
@Override
protected void onResume() {

super.onResume();
// register this class as a listener for the orientation and
// accelerometer sensors
sManager.registerListener(this,

sManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
SensorManager.SENSOR_DELAY_NORMAL);

}
@Override
protected void onStop() {

super.onStop();
sManager.unregisterListener(this);

}
@Override
protected void onPause() {

super.onPause();
sManager.unregisterListener(this);

}
}

13.2.4 Get List of Sensors

The list of sensors installed on a device depends on the device’s model. You can use
a sensor manager to find the list of sensors available on a device. The two lines of
code below show how you can retrieve the name of the sensors installed on an
Android device.

SensorManager mSensorManager =
(SensorManager) getSystemService(Context.SENSOR_SERVICE);
List <Sensor> sensorList =
mSensorManager.getSensorList(Sensor.TYPE_ALL);

We have created an activity to get the name of the sensors installed on an Android
device. The activity code is shown in Listing 13.7, and the results are presented in
Fig. 13.3. The result shows that there are 16 different sensors on the Android Pixel
3 XL (API 28) emulator.

13.2 Android Sensor 595

Listing 13.7 SensorNameList.java to retrieve the name of the sensor installed
on a device.

package com.code.abdulrahman.cp670.
AccelerometerSignalsASensorManager;

import androidx.appcompat.app.AppCompatActivity;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.os.Bundle;

Fig. 13.3 List of sensors on
Pixel 3 XL (API 28)

596 13 Sensors, Location-Based Service, and Google Maps

import android.widget.TextView;
import java.util.List;
public class SensorNameList extends AppCompatActivity {
private SensorManager sensorManager;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_device_sensors);
sensorManager =

(SensorManager) getSystemService(Context.SENSOR_SERVICE);
List <Sensor> sensorList =

sensorManager.getSensorList(Sensor.TYPE_ALL);
StringBuilder aSensor = new StringBuilder();
int i = 1;
for (Sensor currentSensor : sensorList) {

aSensor.append(i++ + " " + currentSensor.getName()+ "\n");
}
TextView sensorTextView = findViewById(R.id.sensor_list);
sensorTextView.setText(aSensor);

}
}

For information on other types of sensors and Android sensor stack, see
[1]. Detailed information about what, why, and how the embedded sensors are
used in the current Android is discussed in [2].

13.2.5 Do It Yourself

1. Spend some time familiarizing yourself with the Android sensor types. Refactor
the demo code and replace the statement:

sManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER)

with other types of sensors and study the results.
2. To receive the axes readings less frequently, change the time interval from 200 ms

to 60 seconds; you should receive the x, y, and z readings every minute.

13.3 Location-Based Services

When you search directions for any location, for example, a store address, your
phone uses your current location as an input and finds the location you are looking
for. These types of apps use Android’s location API. Android provides several
classes to enable the creation of location-based apps. These include Location
Manager, LocationProvider, and Geocoders. In this part of the chapter, we will

13.3 Location-Based Services 597

study these components and their uses. We will also study a demo app to show how
these components can be used together to create location-based apps. Remember
that, when you are developing location-based apps, you need to account for the
user’s privacy. That is, you need to abide by, or follow, certain rules, such as:

1. Updating the location only when necessary
2. Letting the user know if you are tracking his/her location
3. Letting the user know where the information is being stored, communicated, and

used
4. Allowing the user to disable tracking

13.3.1 Demo App Interface

The demo app, myCurrentLocation.zip, is developed for this section. It finds the
location as a longitude/latitude and then converts it to a postal address. A snapshot of
the demo app is shown in Fig. 13.4. To start the location demo app, click the Get
Your Location button from the main interface of the demo app.

13.3.2 Location Service APIs

Android provides two different ways to get the user’s location. It can be
done using the android.location.LocationListener interface and/or the
com.google.android.gms.location.LocationListener API. The first one is a part
of the Android Network Location API, and the second one uses the Google Play
Services (GPS) API. In our demo app, we use Android.location.LocationListener to
find locations.

Fig. 13.4 MyCurrentLocation view

598 13 Sensors, Location-Based Service, and Google Maps

13.3.3 App Development Steps

Creating location-based service apps involves multiple steps. Below, we describe
these steps and the components involved:

13.3.3.1 Permission

For your app to be able to provide location services, it needs to include one of the
following two permission types in the AndroidManifest.xml file:

<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission
adroid:name="android.permission.ACCESS_COARSE_LOCATION"/>

The difference between the two permission types is in the accuracy and the
amount of energy used when getting the location information. The location returned
by ACCESS_FINE_LOCATION is more accurate than the location returned by
ACCESS_COARSE_LOCATION, but the ACCESS_FINE_LOCATION permis-
sion type uses more battery power than ACCESS_COARSE_LOCATION.

13.3.3.2 Obtaining Location Manager

Android uses the LocationManager class to obtain location data. LocationManager
gives the location of your phone in terms of longitude and latitude. It uses location
providers to return location data. The location providers Android uses are
GPS_PROVIDER, NETWORK_PROVIDER, and PASSIVE_PROVIDER, and
they are described below.

13.3.3.3 Obtaining Location Providers

Android uses three different providers to get the location. Brief descriptions of these
providers are as follows.

1. GPS _PROVIDER: this provider determines the location using satellites.
Depending on the weather conditions, this provider may take a while to return
a location.

2. NETWORK_PROVIDER: this provider determines the location based on the
availability of nearby cell towers and Wi-Fi access points. This is typically faster
than GPS.

3. PASSIVE_PROVIDER: this provider returns the locations generated by other
apps or service providers installed on your device. When using a passive

13.3 Location-Based Services 599

provider, your app does not request location; instead, it receives location updates
when other apps or services request them.

Depending on the provider you choose for your app, several locations and phone
properties will be impacted. These include power consumption, longitude/latitude
accuracy, altitude accuracy, and speed and direction information. You can set your
provider attributes by creating the Criteria object and assigning it to your provider
which we will study later in this chapter.

13.3.3.4 Geocoder

Geocoder is an Android class that does two types of location translations:

• Translating from a location address to a longitude/latitude (forward geocoding)
• Translating from a longitude/latitude to a location address (reverse geocoding)

When doing reverse geocoding, you do not get the exact address of the location.
Sometimes, the address is only partially returned. For the Geocoder to work, it needs
a backend service available on your phone. If the user has other services, such as a
Play Store or Gmail account, they most likely have the backend service as well.

As a developer, use the isPresent() method to check if the user has the backend
services on their device or not. The checking can be done as follows:

Geocoder geocoder = new Geocoder(this, Locale.getDefault());
if (geocoder.isPresent()) {. . .}

The Geocoder class uses an internet connection, so you need to add the following
permission to your manifest file as well.

<uses-permission android:name="android.permission.INTERNET" />

13.3.3.5 Register LocationListener

The LocationListener receives notifications from the LocationManager when the
user’s location changes. This interface has four callback methods each with a special
task to perform.

1. onLocationChanged() method is called when a new location can be retrieved.
2. onProviderDisabled() method is called when the location provider is disabled

(e.g., the user has turned off the GPS).
3. onProviderEnabled() method is called when the provider is enabled (e.g., the user

has turned on the Wi-Fi).
4. onStatusChanged() method is called when the provider status has changed, for

example, when a provider is unable to retrieve a location or if the provider has
recently become available after a period of unavailability.

600 13 Sensors, Location-Based Service, and Google Maps

The LocationListener needs to be registered with LocationManager to receive
notifications of location changes. This is done by calling the requestLocationUpdates()
method on the LocationManager object.

The RequestLocationUpdates() method has four parameters. The method signa-
ture is like this:

requestLocationUpdates(String provider, long minTimeMs,
float minDistanceM, LocationListener listener);

and it can be called as follows:

locationManager.requestLocationUpdates(
locationProvider, minTime, minDistance, myLocationListener);

For example, to receive a notification from the GPS provider every 5 seconds and
when the device moves 10 meters, the registration would be as follows:

locationManaer.requestLocationUpdates(
LocatonProvider.GPS_PROVIDER, 5000, 10, myLocationListener);

The requestLocationUpdates() method is overloaded, i.e., the location manager
has multiple versions of this method. The methods are different from each other in
the type and number of method parameters.

13.3.4 App Implementation Details

Below, we describe in detail how to implement the steps above. We use our demo
app to explain the code, method sequence calls, and class and method
implementations.

13.3.4.1 Check and Request Permission

Starting from API 23, you need to ask the user to grant your app permission to track
their location right after the app installs and when the app starts to run. In our demo
app, for example, this is done by calling the checkPermissions() method which in
turn invokes the onRequestPermissionsResult() method. The code snippet presented
in Listing 13.8 shows how this step can be implemented.

13.3 Location-Based Services 601

Listing 13.8 Ask the user to grant your app permission.

// setp1
. . .
private void checkPermissions() {

if (Build.VERSION.SDK_INT < Build.VERSION_CODES.M)
return;

if (checkSelfPermission(
Manifest.permission.ACCESS_FINE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {
// step 2

requestPermissions(
new String[]{Manifest.permission

.ACCESS_FINE_LOCATION}, 0);
}

}

If the access is not granted, you have a chance to briefly explain to the user the
benefit of granting it to the app. This is done by using the
shouldShowRequestPermissionRationale() method. In the code snippet shown
in Listing 13.9, the section used to request access after being denied is in
boldface font.

Listing 13.9 Request access after being denied implementation.

// step 3
@Override
public void onRequestPermissionsResult(int request_code,

String[] permissions,
int[] permissionResults) {

if (permissionResults[0] != PackageManager.PERMISSION_DENIED) {
// step 4.
getMyCurrentLocation();

} else { // if permission is denied
// if Build.VERSION_CODES.M is >= 23
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

if (shouldShowRequestPermissionRationale(
Manifest.permission.ACCESS_FINE_LOCATION)) {

buildRequest();
} }}

}

602 13 Sensors, Location-Based Service, and Google Maps

If the user checks the do not ask again box on the request dialog message, the user
will not be asked again.

We have built the explanation message in a separate method called buildRequest();
see code snippet in Listing 13.10.

Listing 13.10 The implementation of the access explanation message.

public void buildRequest() {
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setMessage(R.string.permission_is_important)

.setTitle(R.string.permission_required);
builder.setPositiveButton(R.string.ok,

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dag, int id) {

if (Build.VERSION.SDK_INT
>= Build.VERSION_CODES.M) {

requestPermissions(new String[]{
Manifest.permission.

ACCESS_FINE_LOCATION},0);
}

}
}).show();

}

13.3.4.2 Location Manager Setup

Once permission is granted, the onRequestPermissionsResult() method invokes the
getMyCurrentLocation() method to set up the LocationManager as shown in the
code snippet below:

public void getMyCurrentLocation() {
LocationManager locationManager =

(LocationManager) getSystemService(
getApplicationContext().LOCATION_SERVICE);

. . .
}

Note that getSystemService() uses LOCATION_SERVICE as an input and returns
the LocationManager object.

13.3.4.3 Specify Location Provider

Even though you can specify the location provider explicitly in your code using the
LocationManager.GPS_PROVIDER, LocationManager.NETWORK_PROVIDER,
or LocationManager.PASSIVE_PROVIDER constant, you should not rigidly

13.3 Location-Based Services 603

specify the provider. It is better programming practice to let the Android systems
choose the available provider for your app based on the criteria you specify.

In our demo app, we specify a location provider for our app using the
getBestProvider() method as follows.

String locationProvider =
locationManager.getBestProvider(myLocationCriteria, true);

To receive the best provider, we need to define a few parameters to form the
criteria, i.e., instantiate a criteria object, for choosing a provider. In our demo app,
the parameters to form the criteria are coarse accuracy, low power consumption, and
no altitude, bearing, or speed. The code snippet presented in Listing 13.11 shows our
app criteria for selecting a location provider.

Listing 13.11 Define the criteria object to choose a location provider.

public void getMyCurrentLocation() {
. . .
Criteria myLocationCriteria = setLocationCriteria();
. . . }
public Criteria setLocationCriteria() {

Criteria myLocationCriteria = new Criteria();
myLocationCriteria.setAccuracy(Criteria.ACCURACY_FINE);
myLocationCriteria.setPowerRequirement(Criteria.POWER_LOW);
myLocationCriteria.setAltitudeRequired(false);
myLocationCriteria.setBearingRequired(false);
myLocationCriteria.setSpeedRequired(false);
return myLocationCriteria;

}

13.3.4.4 Find Your Last Location

The getLastKnownLocation() method can be used to find the last location of your
device. It returns data about the location attained from the given provider. Once the
last location is received, the updateMyLocation(a_lastlocation) method gets called
and passes the location to the Geocoder for printing; see the code snippet shown in
Listing 13.12.

604 13 Sensors, Location-Based Service, and Google Maps

Listing 13.12 Using the getLastKnownLocation() method to find the last
location.

public void getMyCurrentLocation() {
. . .

Location a_lastlocation =
locationManager.getLastKnownLocation(locationProvider);

updateMyLocation(a_lastlocation);
. . . }

}
public void updateMyLocation(Location location) {

LinearLayout linearLayout = findViewById(R.id.rooLayout);
DisplayAddress.displayAddress(linearLayout, location, this);

}

Note that you might get the wrong location if your phone has been moved while
turned off (it will keep the last known location, i.e., the last location where your
phone was on). Furthermore, if the provider or the location is turned off, you might
get a null object.

13.3.4.5 Refresh Current Location

An important step in tracking the location of a device is the method calls made to
refresh the current location. That is, you need to have a LocationListener object in
your code to receive notifications from the LocationManager when the location
changes. The LocationManager class has multiple overloaded methods called
requestLocationUpdates() for this purpose, and we used the
requestLocationUpdates(String, long, float, LocationListener) method in our code.
The code snippet below shows the method call:

locationManager.requestLocationUpdates(locationProvider, minTime,
minDistance, new MyLocationListener(this));

The requestLocationUpdates() method above uses a LocationListener object
called myLocationListener with two parameters, minTime and minDistance. The
definition of the two parameters is as follows.

• minTime: The minimum time needed to pass before receiving the second location
update. It is measured in milliseconds.

• minDistance: The minimum distance needed to elapse before receiving the
second location update. It is measured in meters and used to control the frequency
rate of location updates based on the distance.

13.3 Location-Based Services 605

Your app will receive an update from the location provider when the location has
changed, i.e., when the distance is greater than the minDistance and the time passed
is greater than the minTime.

Each location update consumes resources, e.g., battery life. The battery is needed
to run the GPS, Wi-Fi, cell, and other components. You need to balance between
meeting the app’s requirements and reducing resource consumption. Having the
right minTime value will help to keep this balance.

The LocationListener is used to receive location change notifications from the
LocationManager class. LocationListener has four callback methods. In our code, we
call the updateMyLocation() method if the onLocationChanged() method is called. The
code snippet below shows how often our demo app updates the location information.

public void getMyCurrentLocation() {
. . .
locationManager.

requestLocationUpdates(
locationProvider, minTime, minDistance,

new MyLocationListener(this));
}

The complete implementation of the location listener interface is shown below in
Listing 13.13.

Listing 13.13 MyLocationListener.java implementation.

package com.code.abdulrahman.cp670.mycurrentlocation;
import android.location.Location;
import android.location.LocationListener;
import android.os.Bundle;
import android.util.Log;
public class MyLocationListener implements LocationListener {

final String TAG = "myCurrentLocation";
MainActivity context ;
public MyLocationListener(MainActivity context) {

this.context = context;
}

@Override
public void onLocationChanged(Location location) {

Log.d(TAG, "onLocationChanged called");
context.updateMyLocation(location);

}
@Override
public void onStatusChanged(
String provider, int status, Bundle extras) {

Log.d(TAG, "onStatusChanged called");
}
@Override

606 13 Sensors, Location-Based Service, and Google Maps

public void onProviderEnabled(String provider) {
Log.d(TAG, "onProviderEnabled called");

}
@Override
public void onProviderDisabled(String provider) {

Log.d(TAG, "onProviderDisabled called");
}

}

13.3.4.6 Do It Yourself

Your app will discover new addresses when you move more than the minDistance
away from your last known location and after a time greater than the minTime from
the last time you received the change location notification has passed. Write an
updateMyLocation() method to display the history of the locations visited and the
time spent at each location on the screen.

13.3.4.7 Use Geocoding

The updateMyLocation() method in our code uses the displayAddress()method from
our defined class called DisplayAddress to transform the location object into two
types of outputs, the longitude and latitude output and a readable address output, like
247 King Street N, Waterloo, Ontario, N2J 2YK, Canada. The first part of the
displayAddress() method simply prints out the longitude and latitude to the
UI. The next output uses reverse geocoding. The Geocoder object is created by
calling the Locale.getDefault() method as shown below. The Locale object is used to
format the location in the country’s custom address.

Geocoder geocoder = new Geocoder(cxt, Locale.getDefault());
The List <Address> addressList =
geocoder.getFromLocation(latitude, longitude, 1);

The getFromLocation() method returns a list of addresses that are known to
describe the area immediately surrounding the given latitude and longitude. The
parameters to the getFromLocation() method are:

• latitude: The latitude at a point for the search.
• longitude: The longitude at a point for the search.
• maxResults: The maximum number of addresses to return; use 1 to 5 for good

performance.

In the code snippet above, the maxResults ¼ 1. We are only interested in the top
matching address. Once the Address object is returned, we use the StringBuilder
object to get and format the address to display on the UI.

13.3 Location-Based Services 607

The code snippet presented in Listing 13.14 shows the displayAddress() method
and the display class:

Listing 13.14 DisplayAddress.java for printing the longitude and latitude and
a readable address.

package com.code.abdulrahman.cp670.mycurrentlocation;
import android.content.Context;
import android.location.Address;
import android.location.Geocoder;
import android.location.Location;
import android.widget.LinearLayout;
import android.widget.TextView;
import java.util.List;
import java.util.Locale;
public class DisplayAddress {

public static void displayAddress(LinearLayout linearLayout,
Location location, Context cxt) {

TextView myCurrentLocation =
linearLayout.findViewById(R.id.myCurrentLocation);

String youLocationCoordinate =
cxt.getString(R.string.can_not_find_location);

String yourAddress = cxt.getString(
R.string.can_not_find_address);
if (null != location) {

double latitude = location.getLatitude();
double longitude = location.getLongitude();

youLocationCoordinate = cxt.getString
(R.string.latitude) + latitude +

System.getProperty("line.separator") +
cxt.getString(R.string.longitude) + longitude;

Geocoder geocoder = new Geocoder(cxt, Locale.getDefault());
try {

if (Geocoder.isPresent()) {
List <Address> addressList = geocoder.getFromLocation(

latitude, longitude, 1);
StringBuilder stringBuilder = new StringBuilder();
if (addressList.size() > 0) {

Address anAddress = addressList.get(0);
for (int i = 0; i <= anAddress.getMaxAddressLineIndex();
i++) {

stringBuilder.append
(anAddress.getAddressLine(i)).append("\n");
stringBuilder.append(
anAddress.getLocality()).append("\n");
stringBuilder.append(
anAddress.getPostalCode()).append("\n");
stringBuilder.append(anAddress.getCountryName());

}

608 13 Sensors, Location-Based Service, and Google Maps

yourAddress = stringBuilder.toString();
}

}
} catch (Exception e) {

System.out.println(e);
}

}
String address = cxt.getString(R.string.current_location) +

System.getProperty("line.separator") +
youLocationCoordinate + System.getProperty
("line.separator") +
System.getProperty("line.separator")
+ yourAddress;

myCurrentLocation.setText(address);
}

}

The source code for the location’s main activity is shown in Listing 13.15.

Listing 13.15 LocationMainActivity.

package com.code.wlu.abdulrahman.sensorsandlocation;
import android.Manifest;
import android.app.AlertDialog;
import android.content.DialogInterface;
import android.content.pm.PackageManager;
import android.location.Criteria;
import android.location.Location;
import android.location.LocationManager;
import android.os.Build;
import android.os.Bundle;
import android.widget.LinearLayout;

import androidx.appcompat.app.AppCompatActivity;
import androidx.core.app.ActivityCompat;

public class LocationMainActivity extends AppCompatActivity
implements LocationListenerParent {

final int minTime = 200;
final int minDistance = 10;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setTitle("Your Location");
setContentView(R.layout.activity_location_main);
getMyCurrentLocation();
checkPermissions();

}

13.3 Location-Based Services 609

public void updateMyLocation(Location location) {
LinearLayout linearLayout = findViewById(R.id.rooLayout);
DisplayAddress.displayAddress(linearLayout, location, this);

}
// setp1
private void checkPermissions() {

if (Build.VERSION.SDK_INT < Build.VERSION_CODES.M)
return;

if (checkSelfPermission(
Manifest.permission.ACCESS_FINE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {
// step 2
requestPermissions(

new String[]{Manifest.permission
.ACCESS_FINE_LOCATION}, 0);

}
}
// step 3
@Override
public void onRequestPermissionsResult(int request_code,

String[] permissions, int[] permissionResults) {
if (permissionResults[0] != PackageManager.PERMISSION_DENIED) {

// step 4.
getMyCurrentLocation();

} else {
// Build.VERSION_CODES.M is 23
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

if (shouldShowRequestPermissionRationale(
Manifest.permission.ACCESS_FINE_LOCATION)) {

buildRequest();
}

}
}

}

public void getMyCurrentLocation() {

LocationManager locationManager =
(LocationManager) getSystemService(
getApplicationContext().LOCATION_SERVICE);

Criteria myLocationCriteria = setLocationCriteria();
String locationProvider =
locationManager.getBestProvider(myLocationCriteria, true);

if (ActivityCompat.checkSelfPermission(this,
Manifest.permission.ACCESS_FINE_LOCATION)
== PackageManager.PERMISSION_GRANTED) {

Location a_lastlocation =
locationManager.getLastKnownLocation(locationProvider);

updateMyLocation(a_lastlocation);

610 13 Sensors, Location-Based Service, and Google Maps

locationManager.
requestLocationUpdates(
locationProvider, minTime, minDistance,

new MyLocationListener(this));
}

}
public Criteria setLocationCriteria() {

Criteria myLocationCriteria = new Criteria();
myLocationCriteria.setAccuracy(Criteria.ACCURACY_FINE);
myLocationCriteria.setPowerRequirement(Criteria.POWER_LOW);
myLocationCriteria.setAltitudeRequired(false);
myLocationCriteria.setBearingRequired(false);
myLocationCriteria.setSpeedRequired(false);
return myLocationCriteria;

}
public void buildRequest() {

AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setMessage(R.string.permission_is_important)

.setTitle(R.string.permission_required);
builder.setPositiveButton(R.string.ok,

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
requestPermissions(new String[]{

Manifest.permission.ACCESS_FINE_LOCATION}, 0);
}

} }).show();
}

}

13.3.5 Revising Weather App

Now that we know how to retrieve location information using the Android location
API, we revisit our weather app from Chap. 10 to use the location API to retrieve the
user location and display the weather conditions based on the current location. In
other words, if you open the app in Toronto, the app shows you the weather
information for Toronto; if you open it in Waterloo, it will show you weather
information for Waterloo; etc.

We display the weather information based on the current user location by
combing the WeatherForecastActivity class with the myCurrentLocation app. In
the myCurrentLocation app, we changed the DisplayAddress class from displaying
addresses to initializing static variables. In the WeatherForecastActivity class, we
added the current location to the top of the spinner list. The code snippet presented in
Listing 13.16 shows these changes.

13.3 Location-Based Services 611

Listing 13.16 DisplayAddress.java.

public class DisplayAddress {
public static String current_city = "";
public static void displayAddress(Location location, Context cxt) {
if (null != location) {
double latitude = location.getLatitude();
double longitude = location.getLongitude();
Geocoder geocoder = new Geocoder(cxt, Locale.getDefault());
try {
if (Geocoder.isPresent()) {
List <Address> addressList =
geocoder.getFromLocation(latitude, longitude, 1);

if (addressList.size() > 0) {
Address anAddress = addressList.get(0);
current_city = anAddress.getLocality();

} }
} catch (Exception e) {

System.out.println(e); }
}

}
}

Note that the Android address object has multiple get() methods for retrieving
address fields. The getLocality() method is the method we used to retrieve the city
name. We need the city name to retrieve weather information from the network. The
change made to the WeatherForecastActivity class is highlighted in Listing 13.17 in
boldface font.

Listing 13.17 WeatherForecastActivity.java.

public class WeatherForecastActivity extends AppCompatActivity {
. . .
private class CitySelectListener implements
AdapterView.OnItemSelectedListener {

@Override
public void onItemSelected(AdapterView <?> parent, View view,

int position, long id) {
cityList.set(0, DisplayAddress.current_city) ;
new ForecastQuery(cityList.get(position)).execute();
cityName.setText(cityList.get(position) + " Weather");

}
@Override
public void onNothingSelected(AdapterView <?> parent) {}

}

612 13 Sensors, Location-Based Service, and Google Maps

After revising the app, Fig. 13.5 displays the interface of the weather app showing
the Ottawa weather information by default. Ottawa is shown because it is the city
where the app was tested.

13.3.6 Do It Yourself

In the code above, change the value of maxAddress from 1 to 2 and 3 in this line
of code: geocoder.getFromLocation(latitude, longitude,1). Run the app two times,
and study the address granularity returned by the second and third addresses
associated with the longitude and latitude.

Fig. 13.5 The revised
weather app showing city
name based on where the
app is run

13.3 Location-Based Services 613

13.4 Use Google Maps in Your App

What we have studied so far can be used to create numerous applications. In this part
of the chapter, we will study how to include Google Maps in your apps and how to
customize it. We will study the classes and steps involved in creating an app with
Google Maps.

13.4.1 Create a Google Maps Project

We will create a Google Maps project to demonstrate how to include it in your app.
To do so, create a new project using Android Studio, and select the Google Maps
template as shown in Fig. 13.6.

Fig. 13.6 Android template to create a Google Maps project

614 13 Sensors, Location-Based Service, and Google Maps

Open the google_maps_api.xml file; the file name and its location in the project
directory are shown in Fig. 13.7 inside the values folder.

The content of the google_maps_api.xml file is shown in Listing 13.18. It
contains a link to create a free Google Maps API key.

Listing 13.18 google_maps_api.xml file.

<resources>
<!--
TODO: Before you run your application, you need a Google Maps API key.

To get one, follow this link, follow the directions and press "Create" at
the end:
https://console.developers.google.com/flows/enableapi?

apiid=maps_android_backend&keyType=CLIENT_SIDE_ANDROID&r=9A:A9:
0A:46:04:91:11:4D:34:23:22:A5:12:C8:25:A7:B2:B3:29:1C%3Bcom.code.
wlu.abdulrahman.mygooglemapapplication

Fig. 13.7 google_maps_api.
xml file location in the project
directory

13.4 Use Google Maps in Your App 615

You can also add your credentials to an existing key, using these
values:
Package name:
com.code.wlu.abdulrahman.mygooglemapapplication
SHA-1 certificate fingerprint:
9A:A9:0A:46:04:91:11:4D:34:23:22:A5:12:C8:25:A7:B2:B3:29:1C
Alternatively, follow the directions here:

https://developers.google.com/maps/documentation/android/
start#get-key
Once you have your key (it starts with "AIza"), replace the

"google_maps_key"
string in this file. -->

<string name="google_maps_key" templateMergeStrategy=
"preserve" translatable="false">YOUR_KEY_HERE</string>
</resources>

13.4.2 Obtaining App Key

Put the link in your browser, and follow the instructions to obtain a key for your app.
Here is an example where a key has been obtained for our demo app; see Fig. 13.8.
Note that the shown key is usable and is hard to read. The example is shown to help
you to learn about the look and location of the key that you will generate for your
app.

Once you have obtained your key, replace the text “YOUR_KEY_HERE” in the
google_map_api.xml file with the key that you have obtained from Google. The
content of the google_map_api.xml file is shown earlier, in Listing 13.18. Below is
an example where “YOUR_KEY_HERE” has been replaced with the key obtained
from Google for our demo app.

Fig. 13.8 Google Maps key, for example

616 13 Sensors, Location-Based Service, and Google Maps

</resources>
. . .

<string name="google_maps_key"
templateMergeStrategy="preserve"

translatable="false">YOUR_KEY_HERE</string>
. . .

</resources>
</resources>

. . .
<string name="google_maps_key"

templateMergeStrategy="preserve"
translatable="false">AIzaSyC45HJHsDf997iO0Jt8sl </string>

. . .
</resources>

13.4.3 Update Manifest File

The AndroidManifest.xml file should be updated now. Check to see if the meta-data
element below has been added to your manifest file. If not, you need to add it for
your app to work.

<meta-data
android:name="com.google.android.geo.API_KEY"
android:value="@string/google_maps_key" />

You also need to be sure that the latest version of the 'com.google.android.gms:
play-services-maps' has been added to the implementation section of the Gradle
module of your app. An example is shown below.

dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation 'androidx.appcompat:appcompat:1.1.0'
implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
implementation 'com.google.android.gms:play-services-maps:17.0.0'
testImplementation 'junit:junit:4.12'
androidTestImplementation 'androidx.test.ext:junit:1.1.1'
androidTestImplementation 'androidx.test.espresso:espresso-
core:3.2.0'
}

Now, you should have Google Maps displayed in your app; see Fig. 13.9. Your
app is now ready to do all kinds of interesting things.

What we did so far can be summarized as follows:

1. Set up the API key and Gradle dependencies.
2. Add a fragment object to an activity to handle the map. This is done by adding the

<fragment> element to the layout file of the activity.

13.4 Use Google Maps in Your App 617

3. Implement the OnMapReadyCallback interface, and use the onMapReady
(GoogleMap) callback method to handle the GoogleMaps object.

4. Call the getMapAsync() method on the fragment to register the callback.

The Java code for the myMapsActivity demo app is shown in Listing 13.19. The
class extends the FragmentActivity class and implements the OnMapReadyCallback
interface. To start the app, click the Access Google Maps button from the main
interface of the demo app.

Fig. 13.9 Displaying
Google Maps in your app

618 13 Sensors, Location-Based Service, and Google Maps

Listing 13.19 MyMapsActivity.java for creating and using GoogleMap.

package com.code.wlu.abdulrahman.sensorsandlocation;
import androidx.fragment.app.FragmentActivity;
import android.os.Bundle;
import com.google.android.gms.maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;
import com.google.android.gms.maps.OnMapReadyCallback;
import com.google.android.gms.maps.SupportMapFragment;
import com.google.android.gms.maps.model.LatLng;
import com.google.android.gms.maps.model.MarkerOptions;
public class MyMapsActivity extends FragmentActivity implements
OnMapReadyCallback {

private GoogleMap mMap;
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_my_maps);
SupportMapFragment mapFragment =

(SupportMapFragment) getSupport FragmentManager()
.findFragmentById(R.id.map);

mapFragment.getMapAsync(this);
}
@Override
public void onMapReady(GoogleMap googleMap) {

mMap = googleMap;
LatLng sydney = new LatLng(45.2487862,-76.3606792);
mMap.addMarker(new MarkerOptions().

position(sydney).title("Marker in Ottawa"));
mMap.moveCamera(CameraUpdateFactory.newLatLng(sydney));
mMap.getUiSettings().setMyLocationButtonEnabled(true);
mMap.getUiSettings().setCompassEnabled(true);
mMap.getUiSettings().setMapToolbarEnabled(true);

}
}

13.4.4 Google Maps API

Let us learn few more things about the Google Maps API and the essential Google
Maps classes and interfaces before updating our demo app. With the Google Maps
API, you can use Google Maps data and display it. You can also provide users with
real-time information about the user location and support user interactions by adding
markers, polygons, and overlays to your map.

The API has many classes and interfaces. Below, we describe the GoogleMap,
MapFragment, MapView, and UiSettings classes, the OnMapReadyCallback inter-
face, and the map’s initial state configuration. The complete list of classes, methods,

13.4 Use Google Maps in Your App 619

and interfaces can be found in the Google documentation. A reference to the
documentation is provided in the references section of this chapter.

13.4.5 GoogleMap Class

The GoogleMap class is the main class to access Google Maps for Android. It has all
the essential methods related to creating and dealing with maps and is defined in the
com.google.android.gms.maps package.

When you create a Google Maps app using the Google Maps Activity template
that Android studio provides, the GoogleMap class becomes a private field of your
MainActivity class. The class will implement the OnMapReadyCallBack interface,
and its method, onMapReady(), will be included in Google’s MainActivity defini-
tion. See the code snippet below.

public class MyMapsActivity extends FragmentActivity implements
OnMapReadyCallback {
private GoogleMap mMap;
@Override
public void onMapReady(GoogleMap googleMap) {

mMap = googleMap;
. . .
}

}

13.4.6 OnMapReadyCallback Interface

The OnMapReadyCallback interface is a callback interface with one method,
onMapReady(GoogleMap). The onMapReady() method is triggered by the Android
system when the map object is not null and is ready to be used. To trigger the
onMapReady(GoogleMap) method, the user must have the Google Play Services
installed. If you add Google Maps to your app but Google Play Services is not
installed on the device, the user will be prompted to install it.

13.4.7 SupportMapFragment Class

We studied fragments in the earlier chapters and created both static and dynamic
fragments. We explained that while an activity occupies an entire screen, fragments
usually occupy only a portion of the activity screen. The simplest way to place a map
in an app is by using fragments. Fragments become a wrapper around a view of a
map to automatically handle the necessary lifecycle methods. When you create your

620 13 Sensors, Location-Based Service, and Google Maps

main activity using Android Studio’s Google Maps activity, the fragment occupies
the entire screen. That is, the fragment’s width and height are set to match_parent.
An example of a layout file for the Google Maps activity is shown in Listing 13.20.

Listing 13.20 An example of a layout file for the Google Maps activity.

<?xml version="1.0" encoding="utf-8"?>
<fragment

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/map"
android:name="com.google.android.gms.maps.SupportMapFragment"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MyMapsActivity" />

The fragment element in the layout file includes an entry called android: name
which specifies the name of the fragment class to be instantiated. In this case, it is the
SupportMapFragment class, which is a subclass of the Fragment class.

For our demo app, the SupportMapFragment class is referenced inside the
MyMapsActivity class using the getSupportFragmentManager() and
findFragmentById() methods. These steps are shown below.

SupportMapFragment mapFragment = (SupportMapFragment)
getSupportFragmentManager().findFragmentById(R.id.map);
mapFragment.getMapAsync(this);

The getMapAsync() method is used to set a callback object which will be
triggered or receive the map when the GoogleMap instance is ready to be used.
The method signature for the getMapAsync() method is:

public void getMapAsync (OnMapReadyCallback callback),

In our example, this method is used like this: mapFragment.getMapAsync(this).
The MyMapsActivity objects are of type OnMapReadyCallback. This is because

MyMapsActivity implements the OnMapReadyCallback interface. Hence, the state-
ment mapFragment.getMapAsync(this) means that MyMapsActivity is registered to
listen to the map creation event asynchronously and receives the map object when it
becomes available.

Note that the getMapAsync() method must be called from the main thread and is
executed in the main thread. In cases where the Google Play Services is not installed
on the user’s device, the callback method will not be triggered until the user
installs it.

13.4 Use Google Maps in Your App 621

13.4.8 Map Fragment Layout Example

If you want Google Maps to occupy only a portion of your device screen, you have
to set the width and height of the fragment used to hold your map. In the example
below, we used ConstraintLayout, some text views, and a fragment to create a layout
for the app. The layout is shown in Listing 13.21, and the new look for the app is
shown in Fig. 13.10.

Fig. 13.10 Google Maps
occupies only a portion of
the device screen

622 13 Sensors, Location-Based Service, and Google Maps

Listing 13.21 A layout file containing a map along with other components.

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:map="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MyMapsActivity">
<TextView

android:id="@+id/text"
android:layout_width="230dp"
android:layout_height="45dp"
android:layout_marginStart="16dp"
android:layout_marginTop="20dp"
android:layout_marginBottom="50dp"
android:text="Hardware stores near to you:"
android:textStyle="bold"
map:layout_constraintBottom_toTopOf="@+id/text1"
map:layout_constraintStart_toStartOf="parent"
map:layout_constraintTop_toTopOf="parent" />

<TextView
android:id="@+id/text1"
android:layout_width="200dp"
android:layout_height="100dp"
android:layout_marginStart="16dp"
android:layout_marginTop="90dp"
android:padding="10dp"
android:text="@string/orleans_home"
android:textStyle="bold"
map:layout_constraintStart_toStartOf="parent"
map:layout_constraintTop_toTopOf="parent">

</TextView>

<TextView
android:id="@+id/text2"
android:layout_width="200dp"
android:layout_height="90dp"
android:layout_marginStart="16dp"
android:layout_marginTop="8dp"
android:text="@string/capital_home"
android:textStyle="bold"
map:layout_constraintStart_toStartOf="parent"
map:layout_constraintTop_toBottomOf="@+id/text1" />

<TextView
android:id="@+id/text3"
android:layout_width="200dp"
android:layout_height="90dp"

13.4 Use Google Maps in Your App 623

android:layout_marginStart="16dp"
android:layout_marginTop="8dp"
android:padding="10dp"
android:text="@string/heron_home"
android:textStyle="bold"
map:layout_constraintStart_toStartOf="parent"
map:layout_constraintTop_toBottomOf="@+id/text2">

</TextView>

<fragment
android:id="@+id/map"
android:name="com.google.android.gms.maps.SupportMapFragment"
android:layout_width="165dp"
android:layout_height="300dp"
android:layout_marginEnd="8dp"
map:layout_constraintEnd_toEndOf="parent"
map:layout_constraintHorizontal_bias="1.0"
map:layout_constraintStart_toEndOf="@+id/text2"
map:layout_constraintTop_toBottomOf="@+id/text"
map:mapType="normal"
map:uiCompass="true"
map:uiZoomControls="true" />

</androidx.constraintlayout.widget.ConstraintLayout>

13.4.9 MapView

Different from the MapFragment class, MapView is a view. Specifically, it is a
subclass of the FrameLayout container class and is often used as a placeholder for
the fragments. MapView is used to display a map with data obtained from the Google
Maps Services. Once declared inside the layout file, you can reference it using the
findViewByID() method like any other view. When you use the MapView class, you
must forward all the lifecycle methods, like the onStart() and onResume() methods,
from the activity, or fragment, containing the MapView to the corresponding ones of
the MapView class. Listing 13.22 is an example of how to forward the lifecycle
onStart() method to its corresponding one in the ViewMap class.

Listing 13.22 A layout file containing a map along with other components.

public class MapViewActivity extends AppCompatActivity implements
OnMapReadyCallback {

private MapView mapView;
. . .

@Override
protected void onStart() {

super.onStart();
mapView.onStart();

}

624 13 Sensors, Location-Based Service, and Google Maps

The other methods that you must forward to the corresponding ones of the
MapView class are onCreate(Bundle), onStart(), onResume(), onPause(), onStop(),
onDestroy(), onSaveInstanceState(), and onLowMemory().

To get Google Maps, you need to call the getMapAsync() method. MapView
automatically initializes the map system and the view. You should consider the
MapFragment and SupportMapFragment classes for displaying a Map; they are
simpler to use than MapView, for example, you don’t have to worry about
forwarding lifecycle methods. Use the SupportMapFragment class if you are
looking to target earlier platforms. The code snippet in Listing 13.23 shows how
to use the MapView class to include Google Maps in your app.

Listing 13.23 Using the MapView class to include Google Maps in your app.

package com.code.wlu.abdulrahman.sensorsandlocation;
import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;
import com.google.android.gms.maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;
import com.google.android.gms.maps.MapView;
import com.google.android.gms.maps.OnMapReadyCallback;
import com.google.android.gms.maps.UiSettings;
import com.google.android.gms.maps.model.LatLng;
import com.google.android.gms.maps.model.MarkerOptions;

public class MapViewActivity extends AppCompatActivity implements
OnMapReadyCallback {

private MapView mapView;
private GoogleMap mMap;
private static final String MAP_VIEW_BUNDLE_KEY = "bundleKey";
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_map_view);
Bundle mapViewBundle = null;
if (savedInstanceState != null) {

mapViewBundle =
savedInstanceState.getBundle(MAP_VIEW_BUNDLE_KEY);

}
mapView = findViewById(R.id.map_view);
// the onCreate life cycle methods is forwared t othe MapView
mapView.onCreate(mapViewBundle);
mapView.getMapAsync(this);

}
@Override
public void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);

Bundle mapViewBundle =
outState.getBundle(MAP_VIEW_BUNDLE_KEY);

13.4 Use Google Maps in Your App 625

if (mapViewBundle == null) {
mapViewBundle = new Bundle();
outState.putBundle(MAP_VIEW_BUNDLE_KEY, mapViewBundle);

}
mapView.onSaveInstanceState(mapViewBundle);

}
@Override
protected void onResume() {

super.onResume();
mapView.onResume();

}
@Override
protected void onStart() {

super.onStart();
mapView.onStart();

}
@Override
protected void onStop() {

super.onStop();
mapView.onStop();

}
@Override
protected void onPause() {

mapView.onPause();
super.onPause();

}
@Override
protected void onDestroy() {

mapView.onDestroy();
super.onDestroy();

}
@Override
public void onLowMemory() {

super.onLowMemory();
mapView.onLowMemory();

}
@Override
public void onMapReady(GoogleMap googleMap) {

mMap = googleMap;
LatLng Ottawa = new LatLng(47.57833,-65.893191);
mMap.addMarker(new MarkerOptions().position(Ottawa).

title("Marker in Ottawa"));
mMap.moveCamera(CameraUpdateFactory.newLatLng(Ottawa));
mMap.getUiSettings().setMyLocationButtonEnabled(true);
mMap.getUiSettings().setCompassEnabled(true);
mMap.getUiSettings().setMapToolbarEnabled(true);

}
}

626 13 Sensors, Location-Based Service, and Google Maps

13.4.10 UiSettings

The UiSettings class is used to set the user interface of a Google Maps. You need to
call the getUiSettings() method on the GoogleMap object to retrieve a reference to
the UiSettings object and then call the set methods for the retrieved object to set
various UI properties for the map. The method signature for the getUiSettings()
method is public UiSettings getUiSettings();.

The example below shows how to set Google Maps properties using the
UiSettings class.

Listing 13.24 Setting Google Maps properties using the UiSettings class.

public class MyMapsActivity extends FragmentActivity implements
OnMapReadyCallback {
. . .
public void onMapReady(GoogleMap googleMap) {
mMap = googleMap;
mMap.getUiSettings().setMyLocationButtonEnabled(true);
mMap.getUiSettings().setCompassEnabled(true);
mMap.getUiSettings().setMapToolbarEnabled(true);

}

In the example above, the location button, compass, and toolbar are set for the
map. There are many more methods from the UiSettings class that you can use to set
various properties for the map used in your app. For a complete list of the methods,
see the Google documentation. A link to the documentation is provided in the
references section of this chapter.

13.4.11 Configure Initial State

You can configure various attributes to the initial map you add to your app using an
XML layout file. The Google Maps API provides a set of custom XML attributes for
the SupportMapFragment and MapView class which you can use to configure the
initial state of the map directly from the layout file.

To use the map attributes within your XML layout file, you must also add the
following namespace declaration to your layout file.

xmlns:map=http://schemas.android.com/apk/res-auto

13.4 Use Google Maps in Your App 627

Instead of naming your xmlns “map,” you can name the namespace anything you
want, but it is better to name it something meaningful.

In the layout shown in Listing 13.25, three attributes, zoom control, compass, and
map type, are configured, and the namespace has been added to the layout. The
impact of setting the zoom control to true and the map type to satellite is shown in
Fig. 13.11.

Fig. 13.11 Adding UI
zoom control to the layout
file is shown

628 13 Sensors, Location-Based Service, and Google Maps

Listing 13.25 activity_my_maps.xml layout file is used to set the zoom
control, compass, and map type.

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android=
"http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
xmlns:map="http://schemas.android.com/apk/res-auto"
android:id="@+id/map"
android:name="com.google.android.gms.maps.SupportMapFragment"
android:layout_width="match_parent"
android:layout_height="match_parent"
map:uiCompass="true"
map:uiZoomControls="true"
map:mapType="satellite"
tools:context=".MyMapsActivity" />

There are many more attributes that you can use to configure the map in your app.
These include attributes to specify the position of the camera, gesture attributes, etc.
The XML layout file presented in Listing 13.26 shows how to configure a MapView
with some custom options. The same attributes can be applied to a
SupportMapFragment as well.

Listing 13.26 Attributes that you can use to configure the map in your app.

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MapViewActivity"
xmlns:map="http://schemas.android.com/apk/res-auto">

<com.google.android.gms.maps.MapView
android:id="@+id/map_view"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintHorizontal_bias="0.498"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
map:uiCompass="false"
map:uiZoomControls="true"

13.4 Use Google Maps in Your App 629

map:mapType="normal"
map:cameraBearing="112.5"
map:cameraTargetLat="-33.796923"
map:cameraTargetLng="150.922433"
map:cameraTilt="30"
map:cameraZoom="13">

</com.google.android.gms.maps.MapView>
</androidx.constraintlayout.widget.ConstraintLayout>

Note that using the Maps API for Android with a Google Maps API Premium
Plan license is slightly different from using the free one. When you use the Premium
Plan license, you must prefix each attribute with m4b_. For example, when speci-
fying the map type attribute, use m4b_mapType instead of mapType. Or, when
specifying zoom controls, use m4b_uiZoomControls instead of uiZoomControls,
and so on.

13.4.12 Setting Map Initial State Programmatically

You can set various attributes of the map’s initial state using your code. You do that
if you have added a map to your application programmatically. To do it, you need to
use a GoogleMapOptions object. The attributes available to you are the same as
those available via an XML layout file. The code snippet below shows how to create
a GoogleMapOptions object and use it to set Google map attributes.

GoogleMapOptions attribute = new GoogleMapOptions();
attribute.mapType(GoogleMap.MAP_TYPE_SATELLITE)

.compassEnabled(false)

.rotateGesturesEnabled(false)

.tiltGesturesEnabled(false);

Now that you have a base app and knowledge of the classes and interfaces that are
part of the Google Play Services, you can do all sorts of interesting things with
Google Maps in your app. For example, you can change the default street view to the
satellite view, control zooming programmatically, move the map’s initial location to
a specific location instead of Australia on the app start-up, etc.

13.4.13 Covid App Revised

Now that you know how to use the Location class and Google Maps, you can update
the Covid-19 app from Chap. 10 to provide Covid information for the user’s
location. To do so, you need to get the latitude and longitude from the Location
object and, as you process the Covid XML file, match the latitude and longitude

630 13 Sensors, Location-Based Service, and Google Maps

from the location to the one included in the Covid-19 XML data file. Once you have
found one, add the city name to the spinner, and store other related information. This
way the user can have updated Covid status information about their area. That is, in
addition to the existing information, there should be an option that easily provides
Covid data about the user’s area.

The code snippet below shows the areas that you should consider updating when
revising the Covid-19 app.

First, you need to retrieve the latitude and longitude for each entry in the XML
data file.

if (parser.getName().equals(getString(R.string.lat))) {
latitude = parser.nextText();

}else if (parser.getName().equals(getString(R.string.longitude))) {
longitude = parser.nextText();

You also need to get latitude and longitude for where you are using the Location
object. An example code is shown in Listing 13.27.

Listing 13.27 Get latitude and longitude for Location object.

public void getLocation (){
LocationManager locationManager =

(LocationManager) getSystemService(LOCATION_SERVICE);
Criteria myLocationCriteria = setLocationCriteria();
String locationProvider =

locationManager.getBestProvider(myLocationCriteria, true);
Location a_lastlocation = null ;
if (!(ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION)
== PackageManager.PERMISSION_GRANTED)) {

a_lastlocation =
locationManager.getLastKnownLocation(locationProvider);

}
String [] latAndLong = new String [2];
if (null != a_lastlocation) {

latAndLong[0] = a_lastlocation.getLatitude()+"";
latAndLong[1] = a_lastlocation.getLongitude()+"";

}
new UpdatedMainActivity.ProcessXML().execute(latAndLong);

}

Lastly, you need to match your local information to the one provided in the XML
data file.

13.4 Use Google Maps in Your App 631

if (parser.getEventType() == XmlPullParser.END_TAG) {
if (parser.getName().equals(getString(R.string.row))) {

if ((latitude.compareTo(params[0]) == 0) &&
(longitude.compareTo(params[1]) == 0)) {

cityList.add(cityIndex++, region + ": " + state);
DataObject deo = new DataObject();
deo.setState(state);
deo.setRegion(region);
deo.setLastUpdate(lastUpdate);
deo.setDeaths(deaths);
deo.setConfirmed(confirmed);
deo.setRecovered(recovered);
list.add(deo);

}
}

A complete app update is left to you as an exercise.

13.5 Chapter Summary

In this chapter, we studied three important Android topics, Android sensors,
location-based services, and Google Maps. We studied the main classes needed in
your app to access and use sensors and the Location API classes for location-based
services. We studied the Accelerometer, LocationManager, LocationListener,
Criteria, Permission, and more. We also described how to incorporate Google
Maps into your apps.

Check Your Knowledge
Below are some of the fundamental concepts and vocabularies that have been
covered in this chapter. To test your knowledge and your understanding of this
chapter, you should be able to describe each of the below concepts in one or two
sentences.

• Accelerometer
• Address
• checkPermissions
• Criteria
• findFragmentById
• Geocoder
• getBestProvider
• getMapAsync
• getSystemService
• Google Maps
• Location Manager
• LocationProvider

632 13 Sensors, Location-Based Service, and Google Maps

• MapFragment
• MapView
• OnMapReadyCallback
• onRequestPermissionsResult
• SensorEventListener
• SupportMapFragment
• UiSettings

Further Reading

For more information about the topics covered in this chapter, we suggest that you
refer to the online resources listed below. These links provide additional insight into
the topics covered. The links are mostly maintained by Google and are a part of the
Android API specification. The resource titles convey which section/subsection of
the chapter the resource is related to.

Address, [online] Available, https://developer.android.com/reference/android/
location/Address

Build.VERSION.SDK_INT (your current SDK version), [online] Available,
https://developer.android.com/reference/android/os/Build.VERSION

Build.VERSION_CODES.M, [online] Available, https://developer.android.
com/reference/android/os/Build.VERSION_CODES

Criteria, [online] Available, https://developer.android.com/reference/android/
location/Criteria

Geocoder, [online] Available, https://developer.android.com/reference/android/
location/Geocoder

getSystemService, [online] Available, https://developer.android.com/reference/
android/content/Context

GoogleMap, [online] Available, https://developers.google.com/android/refer
ence/com/google/android/gms/maps/GoogleMap?hl¼en

Location, [online] Available, https://developer.android.com/reference/android/
location/Location

LocationListener, [online] Available, https://developer.android.com/reference/
android/location/LocationListener

LocationManager, [online] Available, https://developer.android.com/reference/
kotlin/android/location/LocationManager

OnMapReadyCallback, [online] Available, https://developers.google.com/
android/reference/com/google/android/gms/maps/OnMapReadyCallback

PackageManager, [online] Available, https://developer.android.com/reference/
android/content/pm/PackageManager

requestPermissions, onRequestPermissionsResult, shouldShowRequestPermis-
sionRationale, [online] Available, https://developer.android.com/training/permis
sions/requesting

UiSettings, [online] Available, https://developers.google.com/android/reference/
com/google/android/gms/maps/UiSettings

Further Reading 633

https://developer.android.com/reference/android/location/Address
https://developer.android.com/reference/android/location/Address
https://developer.android.com/reference/android/os/Build.VERSION
https://developer.android.com/reference/android/os/Build.VERSION_CODES
https://developer.android.com/reference/android/os/Build.VERSION_CODES
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/location/Geocoder
https://developer.android.com/reference/android/location/Geocoder
https://developer.android.com/reference/android/content/Context
https://developer.android.com/reference/android/content/Context
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap?hl=en
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap?hl=en
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap?hl=en
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/kotlin/android/location/LocationManager
https://developer.android.com/reference/kotlin/android/location/LocationManager
https://developers.google.com/android/reference/com/google/android/gms/maps/OnMapReadyCallback
https://developers.google.com/android/reference/com/google/android/gms/maps/OnMapReadyCallback
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developers.google.com/android/reference/com/google/android/gms/maps/UiSettings
https://developers.google.com/android/reference/com/google/android/gms/maps/UiSettings

References

1. V. Nagpal, Android Sensor Programming by Example (Packt Publishing, Birmingham, UK,
2016)

2. X. Liu, J. Liu, W. Wang, et al., Discovering and understanding android sensor usage behaviors
with data flow analysis. World Wide Web 21, 105–126 (2018)

634 13 Sensors, Location-Based Service, and Google Maps

Index

A
Abstract, 16
Accelerometer, 587
Access modifiers, 12, 16
Actionbar, 326
Action_Dial, 109, 347
Action_View, 109
Activity, 98, 101
Activity lifecycle, 185
addToBackStack, 392
Agile, 174
AlertDialog, 342
AnalogClock, 256
Android, 52
Android API levels, 97
Android App Bundle (AAB), 79
Android Debug Bridge (adb), 144
android:entries, 256
android:layout_gravity, 273
android:layout_weight, 273
AndroidManifest.XML, 55
android:onClick, 107, 121
android:orientation, 247
android.R.layout.simple_list_item_1, 398
Android runtime (ART), 89
android:sharedUserId, 352
android:sharedUserLabel, 352
android:src, 310
Android Studio, 57
Android style, 264
android.util.Xml, 437
AndroidX, 327, 329
Annotations, 16
Anonymous, 38
apk, 79, 80, 236

AppCompatActivity, 99
Application, 115
Application Not Responding (ANR), 569
apply(), 353
Array, 11
@array, 254
ArrayAdapter, 284
ArrayList, 12
assertEquals, 163
assertSame, 164
assertThat, 164
assertTrue, 162
Asset folder, 449
AssetManager, 449
Associativity, 8
Asynchronous, 451
AsyncTask, 433, 448, 451
AudioManager, 568
Autoboxing, 36

B
Back stack, 185, 392
Bazel, 81
Binding, 550
bindService, 554
Bitbucket, 85
BitmapFactory, 442
BitmapFactory.decodeStream, 442
Bitmap object, 442
Boolean, 5
Branch, 85
Break, 11
Broadcast, 549, 550
BroadcastReceiver, 567

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A.-R. Mawlood-Yunis, Android for Java Programmers,
https://doi.org/10.1007/978-3-030-87459-9

635

https://doi.org/10.1007/978-3-030-87459-9#DOI

Buck, 81
Builder, 526
Bundle, 188, 191
Byte, 3

C
Calendar, 291, 296
Callback methods, 185
Catch, 33
Char, 5
Checked exceptions, 32
Check-in commits, 85
Checkout, 85
checkPermissions(), 601
Codebase, 85
Code coverage, 172
Code smells, 179
Comma-separated value (CSV), 468
Commit, 85, 353, 392
compileSdkVersion, 327
constraintDimensionRatio, 577
ConstraintLayout, 104, 258, 259
Constructor chaining, 30
Constructors, 19, 22
Content providers, 532
ContentResolver, 532, 546
ContentValues, 485
Context, 101, 110
Context.MODE_PRIVATE., 352
Continue, 11
createFromParcel, 214, 217
Criteria, 600, 604
Cursor, 487
CursorAdapter, 284
Custom broadcasts, 561

D
Dalvik, 89
Dalvik Executable, 78
Data Access Object (DAO), 524
databaseBuilder(), 526
DatabaseError, 511
database.getReference(), 511
Database Inspector, 507
DatabaseRef.child, 511
DatabaseReference, 511
databaseReference.setValue, 511
Data object, 213
DatePickerDialog, 292
DataSnapshot, 511, 520
DateUtils, 291

Debugging, 137
decodeStream(), 442
Default, 2
Default constructor, 32
Derived, 22
describeContents(), 214
Deserialization, 41
Device File Explorer, 142, 505
doInBackground, 451
Do-while, 11
Dynamic, 12
Dynamic binding, 402
Dynamic fragment, 398

E
Editor, 353
EditText, 103, 105, 230
Ellipsis, 46
endAt(), 518
equalTo(), 518
Espresso, 165
Exception, 32
execSQL(), 480, 484
execute(), 452
Explicit Intents, 108
Explicit typecasting, 4

F
Fields, 2
FileInputStream, 41
fileList(), 364
FileOutputStream, 41
Final, 16
Finally, 33
findFragmentById, 621
findViewByID, 119
finish(), 193
Firebase, 509
FirebaseDatabase, 511
FirebaseDatabase.getInstance, 511
For, 11
For-each, 13
Fragment, 259, 380, 389
Fragment manager, 391
Fragment transaction, 391, 392
FrameLayout, 258, 382

G
Generics, 33
Genymotion, 77

636 Index

Geocoder, 600
Geodecoders, 597
getApplicationContext(), 101
getAssets(), 449
getAttributeValue(), 441
getBestProvider(), 604
GetBundle, 191
getContentResolver(), 546
getFilesDir(), 364
getInstance, 296
getIntent(), 118
getLastKnownLocation(), 604
getLocality(), 612
getMapAsync(), 621, 625
getReadableDatabase(), 483
getSharedPreferences(), 352
getString(), 148
getSystemService(), 603
Git, 85
GitHub, 85
GoogleMap, 619, 620
GoogleMapOptions, 630
GridLayout, 239, 260

H
hamcrest, 164
Hardware abstraction layer (HAL), 89
HorizontalScrollView, 298
HTTPUrlConnection, 433, 438, 443

I
IBinder, 554
If-then, 11
If-then-else, 11
ImageView, 256
immutable, 353
Implements, 13
Implicit intent, 108, 109, 345, 553
Inflates, 316, 317, 390
Inflating, 99
Inheritance, 22
Inner class, 38
insert(), 484
Instance variables, 2
Instrumental testing, 159
Int, 3
Integration testing, 159
Intent, 103, 107
Intent-filter, 115, 187
Intent filtering, 553
IntentService, 550

Interface, 20
isFinishing(), 193
isReadOnly(), 483
Iterator, 13

J
Javac, 78
JavaCSV, 468
Java development kit (JDK), 78
JobIntentService, 559
Junit, 159, 167
Just-in-time (JIT), 89

L
Lambda expression, 45
Launcher Activity, 187
Layout, 104, 448
Layout_alignParentBottom, 256
Layout_alignParentTop, 256
LayoutInflater, 316
Layout manager, 313, 315
LayoutParams, 242, 244, 245
Legacy, 239
limitToFirst(), 518
limitToLast(), 518
LinearLayout, 242
Linux kernel, 90
ListActivity, 283
List view, 279, 280
Local broadcast, 561
LocalBroadcastManager, 562
Locale, 127
Local variables, 2
LocationListener, 600
LocationManager, 597, 599
Location Providers, 597
Log, 123, 156
Logcat, 123, 125
Long, 3

M
Manifest, 102
MapFragment, 619
MapView, 619, 624
Margin, 273
MariaDB, 476
Matcher, 164
MediaController, 577
MediaPlayer, 567, 568
MediaStore, 345

Index 637

MenuInflater, 331, 334, 337
Mockito, 169
Model-view-controller (MVC), 389
Modifiers, 16
MongoDB, 476
moveToFirst(), 487
moveToLast(), 487
moveToNext(), 487

N
New, 12
newArray, 214
newPullParser(), 437
Non-argument constructor, 32
Normal broadcast, 561

O
Object, 17, 19
ObjectInputStream, 41
Object-oriented programming (OOP), 15
ObjectOutputStream, 41
onActivityCreated(), 385
onActivityResult(), 345, 347
onAttach(), 381, 384
OnContextClickListener, 423
onContextItemSelected, 332, 338
onCreate(), 119, 188, 478
onCreateContextMenu(), 337
onCreateOptionsMenu(), 334
onCreateView(), 381, 385
onCreateViewHolder(), 311
onDateSet(), 294
onDateSetListener(), 292
onDestroy(), 193, 550
onDestroyView(), 385
onDetach(), 381, 385
OnDoubleTapListener, 423
onDowngrade(), 482
OnGestureListener, 423
onItemClick(), 285
onItemClickListener, 285
OnMapReadyCallback, 618, 619, 621
onOpen(), 478, 483
onOptionsItemSelected, 331
onPause(), 194
onPostExecute, 451
onPreExecute, 451
onPreparedListener(), 568, 569
onProgressUpdate, 451
onReceive(), 564
onRequestPermissionsResult(), 601

onResume(), 194
onSaveInstanceState(), 196
onStartCommand(), 550
onStop(), 194
onTimeSetListener(), 292
onTouch(), 424
onTouchEvent(), 424
onUpgrade(), 478, 481
OpenCSV, 468
openFileInput(), 442
openFileOutput(), 364
Open-source, 52
Operators, 8
orderByChild(), 518, 520
orderByKey(), 518
orderByValue(), 518
Ordered broadcast, 561
Overflow, 332, 333
Override, 19, 28

P
Package, 2, 22
Parameters, 2, 33
Params, 452
Parcel, 213, 217
Parcelable, 44, 184, 185, 212
Parcelable.Creator, 214, 217
PARTIAL_WAKE_LOCK keeps,

571
Paused, 186
perform, 166
Pickers, 279, 289
Pixelation, 417
Polymorphism, 24
Popup menu, 340
PopupMenu.OnDismissListener, 341
PowerManager, 568, 570
Precedence rules, 8
prepare(), 568
prepareAsync, 563, 568
Primitive, 3
Private, 2, 352
Profiler, 141
Progress, 452
ProGuard, 78
Protected, 2
Public, 2
publishProgress(), 451

Q
Query, 511

638 Index

R
RatingBar, 256
R8 compiler, 78
READ_EXTERNAL_STORAGE, 369
ReadObject, 41
RecyclerView, 304, 305
Refactor, 327
Refactoring, 173
registerForContextMenu(), 337
RelativeLayout, 239
Remote Method Invocation (RMI), 40
removeValue(), 516
requestLocationUpdates(), 601
Result, 452
Return, 11
Reverse engineering, 174
R.java, 100
R.Layout, 448
Room, 524
RoomDatabase, 524, 526
RootView, 152
Runnable, 454
Running, 186
RuntimeException, 32

S
SAX, 434
ScaleGestureDetector, 420, 421
Scroll views, 279
sdcard, 362
SDK Manager, 64
sendBroadcast(), 561–564
sendOrderedBroadcast(), 561
SensorEventListener, 588
Serializable, 40, 212
Serialize, 40
Service, 549
setActionToolbar(), 335
setAdapter, 314
setContentView(), 99, 242
setLayoutManager, 313
setOnTouchListener, 423
setResul()t, 347
setSupportActionBar, 331
setTitle(), 114
SharedPreferences, 351
Short, 3
Shorthand operator, 10
shouldShowRequestPermissionRationale, 602
SimpleOnGestureListener, 423
SimpleOnScaleGestureListener, 420

Singleton, 45
Snackbar, 150
Spinner, 256
SpinnerAdapter, 284
Spy, 171
SQLite, 476, 477
SQLiteBrowser, 505, 506
SQLiteDatabase, 484
SQLiteOpenHelper, 477
sqlite3, 507
StartActivity, 107, 110
startActivityForResult, 345, 347
startAt(), 518
startForegroundService(), 549
startService(), 549
State, 185
Static, 2, 16
Static analysis, 174
Static binding, 402
Static state, 186
Stopped, 186
stopSelf(), 552, 557
stopService(), 550, 552, 557
Strictfp, 16
String, 5, 7
String array, 249
Stub, 169
Style, 264
Subclass, 22
Super, 22, 28
Superclass, 22
Support library, 329
SupportMapFragment, 621
Switch, 11
System broadcasts, 561

T
TableLayout, 262
@test, 162
TextView, 101, 119, 232
Theme, 268
TimePickerDialog, 295
Toast, 146
Toolbar, 326
Tools:context, 247
toString(), 19
Transient state, 186
Try, 33
TV, 576
Type-array name, 256
Typecast, 6

Index 639

Type coercion, 6
Type parameters, 34
Type variables, 34

U
UiSettings, 619, 627
Unary operators, 8
Unchecked exceptions, 32
Unit testing, 136, 159
Uri, 109, 535
UriMatcher, 535
URL, 443
User acceptance testing, 159
UserRef.addValueEventListener, 514

V
Varargs, 45
Variable arguments, 45
Variables, 2
VideoView, 576

View, 101, 228
ViewGroup, 234
ViewHold, 279
ViewInteraction, 166
ViewText, 103
Virtual pixel unit, 419

W
WakeLock, 570
While, 11
Widgets, 232
WifiLock, 568, 571
WRITE_EXTERNAL_STORAGE,

369
WriteObject, 41
writeToParcel, 214

X
XML pull parser, 434
XML push parser, 434

640 Index

	Preface
	Target Audience
	Topics and Teaching Approach
	Content and Explanation
	Latest Code
	Additional Resources for Users and Instructors
	Convention Used in the Book

	Acknowledgments
	Contents
	Chapter 1: Java Review
	1.1 Introduction
	1.2 Language Basics
	1.2.1 Variables
	1.2.2 Type of Variable
	1.2.3 Java Primitive Data Types
	1.2.3.1 Integers
	1.2.3.2 Real Numbers
	1.2.3.3 Char and Boolean

	1.2.4 Default Variable Initializations
	1.2.5 Typecasting
	1.2.6 Type Assignment Example
	1.2.7 Java String Class
	1.2.7.1 String Concatenation

	1.2.8 Java Operators
	1.2.8.1 Associativity Rules
	1.2.8.2 Shorthand Assignment Operators

	1.2.9 Control Flow Statements
	1.2.10 Arrays
	1.2.11 ArrayList
	1.2.12 Java Iterator Interface
	1.2.13 For-Each Loop

	1.3 Object-Oriented Programming Concepts in Java
	1.3.1 Classes
	1.3.2 Objects
	1.3.2.1 Do It Yourself

	1.3.3 Interfaces
	1.3.3.1 Do It Yourself

	1.3.4 Package
	1.3.5 Inheritance
	1.3.6 Inheritance Example
	1.3.7 Polymorphism
	1.3.7.1 Do It Yourself

	1.3.8 Hiding Fields
	1.3.9 Using the Keyword Super
	1.3.10 Subclass Constructors
	1.3.11 Using Preserved Keyword ``this´´
	1.3.11.1 Using this with a Constructor

	1.3.12 Java Exception Handling
	1.3.12.1 The Try-Catch-Finally Block

	1.3.13 Generic Types
	1.3.13.1 A Simple Material Class
	1.3.13.2 A Generic Version of the Material Class

	1.3.14 Type Parameter Naming Conventions
	1.3.14.1 Calling and Instantiating a Generic Type
	1.3.14.2 Multiple Type Parameters

	1.3.15 Autoboxing
	1.3.16 Parameterized Types
	1.3.17 Anonymous Classes
	1.3.17.1 Declaring Anonymous Classes
	1.3.17.2 Syntax of Anonymous Classes

	1.3.18 Object Serialization
	1.3.18.1 Serializable Interface
	1.3.18.2 Serialize an Object
	1.3.18.3 Deserialize an Object
	1.3.18.4 Code Example
	1.3.18.5 Example of Serializing an Object
	1.3.18.6 Example of Deserializing an Object

	1.3.19 Lambda Expressions
	1.3.20 Variable Argument (Varargs)
	1.3.20.1 Syntax of Varargs
	1.3.20.2 Rules for Varargs

	1.4 Chapter Summary
	Further Reading

	Chapter 2: Getting Started with Android
	2.1 Introduction
	2.2 Starting with Android
	2.2.1 A Brief Android History
	2.2.2 Android Is Open Source
	2.2.3 Android Libraries
	2.2.4 Android Popularity
	2.2.5 Android Development Environment
	2.2.6 Android Developer´s Skills
	2.2.7 Model View Controller and App Development
	2.2.8 Android´s Main Program
	2.2.9 Java and Android
	2.2.10 Why Use Java for Android?
	2.2.11 Android and Linux

	2.3 Download and Install Android Studio and Android SDK
	2.3.1 Download the Android Studio
	2.3.2 Install Android Studio
	2.3.3 Update Android Files
	2.3.4 Release Note
	2.3.5 Android SDK

	2.4 Create a New Android Project
	2.4.1 Start New Project
	2.4.2 Select an Activity Template
	2.4.3 Fill in Application Requirement
	2.4.4 Define SDK Requirements
	2.4.5 Finish the Project Creation

	2.5 Compiling and Running Android Apps
	2.5.1 Running HelloWorld on Your Phone
	2.5.2 Running the Android App in Android Studio
	2.5.3 Issues Starting First App
	2.5.4 Running HelloWorld on Emulator
	2.5.5 Setting Up the Emulator
	2.5.6 Do It Yourself

	2.6 Compiling, Building, and Packaging Technologies
	2.6.1 Compiling Android Code
	2.6.1.1 Compiling Java Code
	2.6.1.2 Minimizing and Obscuring Code
	2.6.1.3 Turning .class into .dex Bytecode
	2.6.1.4 Packaging DEX Files

	2.6.2 Android App Bundle
	2.6.3 Do It Yourself
	2.6.4 Install Android Apps
	2.6.5 Install APK from Online
	2.6.6 Install APK from Files
	2.6.7 From Dalvik to ART Runtime
	2.6.8 Gradle Build
	2.6.8.1 Gradle Build Files
	2.6.8.2 Build Parameters

	2.6.9 Software Versioning Using Local or Remote Repositories
	2.6.9.1 Create a Git Repository
	2.6.9.2 Integrating with GitHub or Bitbucket

	2.7 Android Stack and Framework
	2.7.1 Android Architecture
	2.7.2 User and System Apps
	2.7.3 Java API Framework
	2.7.4 Native Libraries and Android Runtime
	2.7.5 Hardware Abstraction Layer (HAL)
	2.7.6 Linux Kernel

	2.8 Chapter Summary
	Further Reading
	References

	Chapter 3: Your First Android Application
	3.1 Introduction
	3.2 Android App Development
	3.2.1 Early Android Development
	3.2.2 Android Versions
	3.2.3 Android Application Characteristic
	3.2.4 Android Activity
	3.2.4.1 Activity Constructors and Methods

	3.2.5 R File
	3.2.6 Android Context
	3.2.7 Application Manifest Files
	3.2.8 Opening Android Project in Android Studio
	3.2.9 Cleaning Android Project Builds

	3.3 Create Your First Mobile App
	3.3.1 Your App Specification
	3.3.2 Create Activity Layout
	3.3.2.1 Adding an EditText Field to the Layout File
	3.3.2.2 Add String to Resource File
	3.3.2.3 Adding Components to the Layout File

	3.3.3 Invoke Message on Activity
	3.3.4 Intent Class
	3.3.4.1 Explicit Intent
	3.3.4.2 Implicit Intent

	3.3.5 Using StartActivity
	3.3.6 Create Second Activity
	3.3.6.1 R.string and strings.xml File

	3.3.7 Project Manifest Update
	3.3.7.1 Intent-Filter and Launcher Screen
	3.3.7.2 Setting Application Attributes

	3.3.8 Running the App
	3.3.9 Receiving Messages/Data from an Activity
	3.3.10 Responding to the Messages from an Activity

	3.4 Debugging Information
	3.4.1 Debugging Using Log.d()
	3.4.2 Using Logcat to View Log Messages
	3.4.3 Do It Yourself
	3.4.3.1 Exercise 1
	3.4.3.2 Exercise 2
	3.4.3.3 Exercise 3

	3.5 Localize Your App and Resources
	3.5.1 Create a Resource File for Second Language
	3.5.2 Create Resource Entries for Languages Supported
	3.5.3 Set Device Language

	3.6 Chapter Summary
	Further Reading

	Chapter 4: Debugging and Testing Using Junit, Espresso, and Mockito Frameworks
	4.1 Introduction
	4.2 The Android Studio Debugger
	4.2.1 Fault Handling Methods
	4.2.2 Enable Debugger
	4.2.3 Inspecting and Modifying Variable Values
	4.2.4 Android Profiler
	4.2.5 Device File Explorer
	4.2.6 Android Debug Bridge (adb)
	4.2.7 Do It Yourself

	4.3 Toast and Snackbar Messages
	4.3.1 Toast Messages
	4.3.1.1 Creating Toast Messages

	4.3.2 Snackbar Messages
	4.3.2.1 Creating Snackbar Messages

	4.3.3 Do It Yourself
	4.3.4 The Log Class and Logcat Window
	4.3.4.1 Logging Class Exception
	4.3.4.2 Using adb with Log Messages

	4.4 Android App Testing
	4.4.1 Create a Test Class
	4.4.2 Assert Methods
	4.4.3 Hamcrest Assert Methods
	4.4.4 Espresso Testing
	4.4.5 Unit Testing
	4.4.6 Unit Testing with Mockito
	4.4.7 Code Coverage
	4.4.8 Code Inspection and Refactoring
	4.4.9 Reverse Engineering

	4.5 Chapter Summary
	Further Reading
	References

	Chapter 5: Activity Lifecycle and Passing Objects Between Screens Using Parcelable Interface
	5.1 Introduction
	5.2 Activity States
	5.2.1 Activity and States
	5.2.2 Transition Between States
	5.2.2.1 Do It Yourself

	5.2.3 The Launcher Activity
	5.2.4 Implementing onCreate()
	5.2.4.1 Understanding onCreate()

	5.2.5 Bundle Class
	5.2.5.1 Using Bundle Object with Intent
	5.2.5.2 Bundle Object and Activity States

	5.3 Understanding Activity Lifecycle
	5.3.1 Understanding the onDestroy Method
	5.3.2 Pausing and Resuming an Activity
	5.3.3 Stopping and Restarting an Activity
	5.3.4 Restoring Activity State
	5.3.4.1 onSaveInstanceState()

	5.3.5 Do It Yourself

	5.4 Lifecycle Illustration App
	5.4.1 Lifecycle Callback Methods
	5.4.2 Callback Methods for the MainActivity
	5.4.3 Callback Methods for the DisplayMessageActivity
	5.4.4 Do It Yourself
	5.4.5 Callback Method Implementations
	5.4.6 Trigger the onPause() Method

	5.5 Creating and Using Parcelable Objects
	5.5.1 Passing User-Defined Objects Between Activities
	5.5.2 LifeCycle with Parcelable Object
	5.5.2.1 Parcelable Class Creation

	5.5.3 Parcelable Example
	5.5.3.1 Implement the Parcelable Interface
	5.5.3.2 Declaring the Parcelable.Creator Interface Field
	5.5.3.3 Implementing the describeContents Method
	5.5.3.4 Implementing the writeToParcel Method
	5.5.3.5 CREATOR Interface Constructs a Parcelable Object
	5.5.3.6 Passing a Parcelable Object to Second Activity
	5.5.3.7 Receiving a Parcelable Object from an Activity
	5.5.3.8 Logging Callback Method Invocation
	5.5.3.9 Testing LifecycleParcelable App

	5.6 Chapter Summary
	Further Reading

	Chapter 6: User Interface Essential Classes, Layouts, Styles, Themes, and Dimensions
	6.1 Introduction
	6.2 Essential UI Classes and Properties
	6.2.1 Android Project Structure
	6.2.2 Views
	6.2.2.1 View Listeners
	6.2.2.2 View Properties

	6.2.3 View Class Examples
	6.2.3.1 EditText
	6.2.3.2 TextView

	6.2.4 Widget
	6.2.5 ViewGroup
	6.2.6 App Layout

	6.3 Writing XML Layouts
	6.3.1 Declare UI Elements in XML
	6.3.2 Android Studio´s Layout Editor
	6.3.3 Defining UI Programmatically
	6.3.4 LinearLayout Java Class
	6.3.5 LayoutParams Java Class

	6.4 Details of the LayoutApplication Demo
	6.4.1 MainActivity Layout
	6.4.2 Activity with Linear Layout
	6.4.3 Linear Layout XML File
	6.4.4 Using Android Studio Design Option
	6.4.5 strings.xml File
	6.4.6 String Editor
	6.4.7 String Resources
	6.4.8 RelativeLayout
	6.4.9 Other Layouts
	6.4.9.1 FrameLayout
	6.4.9.2 ConstraintLayout
	6.4.9.3 Grid and Table Layouts

	6.4.10 Parent-Child Relationship Between Activities
	6.4.10.1 Do It Yourself

	6.5 Styles, Themes, and Dimension
	6.5.1 Defining a Style File
	6.5.2 Applying Styles
	6.5.3 Defining the App´s Theme
	6.5.4 The Difference Between a Theme and Style
	6.5.5 Padding and Margin View Properties
	6.5.6 Gravity and Weight View Properties
	6.5.6.1 Do It Yourself

	6.5.7 Dimensions of a Phone and UI
	6.5.7.1 Do It Yourself

	6.6 Chapter Summary
	Further Reading

	Chapter 7: ListView, ScrollList, Date and Time Pickers, and RecyclerView
	7.1 Introduction
	7.2 List Views
	7.2.1 Adapter and ArrayAdapter Classes
	7.2.1.1 ArrayAdapter Classes

	7.2.2 ListView and ListActivity
	7.2.2.1 Define a Layout for the Items on the List
	7.2.2.2 Create the ListActivity Class
	7.2.2.3 Define Data
	7.2.2.4 Select an Adapter Class
	7.2.2.5 Create an ArrayAdapter Class
	7.2.2.6 Assign the Adapter to List View
	7.2.2.7 Assign a Listener to the List View
	7.2.2.8 Do It Yourself

	7.3 Date and Time Pickers
	7.3.1 Date and Time Pickers
	7.3.2 Set Date Using the DatePicker
	7.3.2.1 The DatePickerDialog Class
	7.3.2.2 The OnDateSetListener Interface

	7.3.3 Set Time Using the TimePicker
	7.3.3.1 TimePickerDialog Class
	7.3.3.2 OnTimeSetListener Interface
	7.3.3.3 The Calendar Class

	7.3.4 Pickers and Anonymous Classes

	7.4 Scroll Views
	7.4.1 The ScrollView Class
	7.4.2 Top-Level XML Element for a Scroll View
	7.4.3 Scroll View Activity

	7.5 RecyclerView
	7.5.1 Using RecyclerView, Adapter, and ViewHolder Classes
	7.5.1.1 Create Objects for Rows in the List
	7.5.1.2 A Layout File for Rows in the List
	7.5.1.3 RecyclerViewActivity Layout
	7.5.1.4 Data Model
	7.5.1.5 RecyclerView.Adapter Class

	7.5.2 RecyclerViewActivity
	7.5.3 Adapter and ViewHolder
	7.5.3.1 ArrayAdapter
	7.5.3.2 onCreateViewHolder
	7.5.3.3 LayoutInflater and Adapter Class
	7.5.3.4 The Inflate Method
	7.5.3.5 ViewHolder
	7.5.3.6 onBindViewHolder
	7.5.3.7 getItemCount()
	7.5.3.8 Recycler View Class Diagram

	7.5.4 Using Recycler View with Older SDKs

	7.6 Chapter Summary
	Further Reading

	Chapter 8: Toolbar, Menu, Dialog Boxes, Shared Preferences, Implicit Intent, and Directory Structure
	8.1 Introduction
	8.2 More User Interface
	8.2.1 ActionBar
	8.2.2 Toolbar
	8.2.3 Add androidx.appcompat Library to the Project
	8.2.3.1 Add the Support Library to the build.gradle
	8.2.3.2 Import Toolbar

	8.2.4 Extending AppCompatActivity
	8.2.5 Specify a Theme with NO ActionBar
	8.2.6 Adding Toolbar Element to the Layout
	8.2.7 Menu Interface
	8.2.8 Options Menu and App Bar
	8.2.8.1 Menu Inflater and Click Handling
	8.2.8.2 Define Menu XML File
	8.2.8.3 Menu Item Properties
	8.2.8.4 orderInCategory Attribute
	8.2.8.5 Methods from the Activity Class for Menu
	8.2.8.5.1 onCreateOptionsMenu(Menu menu)
	8.2.8.5.2 onMenuItemSelected(MenuItem menuItem)

	8.2.8.6 Toolbar Summary

	8.2.9 Context Menu
	8.2.10 Popup Menu

	8.3 Dialog Boxes and the Camera App
	8.3.1 Dialog Boxes
	8.3.2 Custom Dialog Boxes
	8.3.3 Access a Phone´s Default Camera App
	8.3.4 Starting Activities for Results
	8.3.4.1 Do It Yourself

	8.3.5 Activity Result in AndroidX

	8.4 Saving Data with SharedPreferences
	8.4.1 SharedPreferences Interface
	8.4.1.1 SharedPreferences Creation and Use
	8.4.1.2 Editor Interface
	8.4.1.3 Commit Method
	8.4.1.4 SharedPreferences Reading Methods
	8.4.1.5 Changes to Our Demo App
	8.4.1.6 Running and Testing the Demo App

	8.4.2 Layout for Shared Preferences Activity
	8.4.3 How SharedPreferencesActivity Code Works
	8.4.3.1 OnCreate()
	8.4.3.2 loadUserData()
	8.4.3.3 Update SharedPreferences Content
	8.4.3.4 Saving Data in a Shared Preferences XML File
	8.4.3.5 Do it Yourself

	8.5 Directory Structure and Saving Data in Files
	8.5.1 Internal Storage Location
	8.5.2 External Storage Location
	8.5.3 Standard Public Directories for Data/Files
	8.5.3.1 Access Internal Files
	8.5.3.2 Accessing Files You Create

	8.5.4 Android File IO Classes and Methods
	8.5.5 Accessing External Storage Files
	8.5.6 Permission to Access External Directory
	8.5.7 Examples Using External Methods
	8.5.7.1 getExternalFilesDir
	8.5.7.2 getExternalStorageDirectory

	8.5.8 Environment Class and getExternalStoragePublicDirectory
	8.5.8.1 Environment.DIRECTORY_DCIM
	8.5.8.2 Environment.getExternalStorageDirectory
	8.5.8.3 Environment.DIRECTORY_DOWNLOADS
	8.5.8.4 Environment.getRootDirectory

	8.5.9 Locate Apps on Emulator File System
	8.5.9.1 Do It Yourself

	8.6 Chapter Summary
	Further Reading

	Chapter 9: Fragments, Dynamic Binding, Inheritance, Pinching, and Screen Swiping
	9.1 Introduction
	9.2 The Fragment Basics
	9.2.1 Fragment Uses
	9.2.2 Why Using Fragments
	9.2.3 Fragment Lifecycle
	9.2.3.1 Activity Lifecycle Impacts on Fragments
	9.2.3.2 Fragments Extra Lifecycle Callbacks
	9.2.3.3 Overriding Fragment Callback Methods

	9.3 Creating an App with the Fragments
	9.3.1 Create a Fragment
	9.3.2 One Activity and Multiple Layouts
	9.3.3 Detecting Device Size and Orientation
	9.3.4 Fragment Development Steps in Details
	9.3.4.1 Extending Fragment Class
	9.3.4.2 Implement the onCreateView Method
	9.3.4.3 The onCreateView Method Signature
	9.3.4.4 Implement Other Methods
	9.3.4.5 Using FragmentManager and FragmentTransaction Classes
	9.3.4.6 Creating Layout Files
	9.3.4.7 Creating Layout and Fragment Classes
	9.3.4.8 Attaching Proper Layout to the Device View
	9.3.4.9 Communication Between Fragment and Its Host Activity

	9.3.5 The MainActivity Class and Demo App Demonstration
	9.3.5.1 Do It Yourself

	9.3.6 Inserting Fragments in the Activity
	9.3.6.1 Dynamic Binding
	9.3.6.2 Static Binding

	9.3.7 Fragment Static Binding Example

	9.4 Inheritance in Android
	9.4.1 Create a Base Activity
	9.4.1.1 onViewReady
	9.4.1.2 getContentView
	9.4.1.3 Toolbar

	9.4.2 Layout for the BaseActivity
	9.4.3 No onCreate() Method for Child Class
	9.4.4 Layout Reuse

	9.5 Density-Independent Pixel and Screen Sizes
	9.5.1 Naming Scheme
	9.5.2 Supporting Different Screen Sizes
	9.5.2.1 Create Directory Using Android Studio

	9.5.3 Density-Independent Pixel (dp)
	9.5.3.1 Various Drawable Sizes

	9.6 Pinching and Screen Swiping
	9.6.1 Pinch to Zoom Image
	9.6.1.1 Do It Yourself

	9.6.2 Swiping Gesture
	9.6.3 Swiping Gesture App
	9.6.3.1 Do It Yourself

	9.7 Chapter Summary
	Further Reading

	Chapter 10: Parsing Remote XML and JSON Files, Using HTTPUrlConnection, XmlPullParser, and AsyncTask
	10.1 Introduction
	10.2 Parsing Remote and Local XML Files
	10.2.1 XML Parser Review
	10.2.2 Push Parsing
	10.2.2.1 Push Parser Iterator

	10.2.3 Pull Parser
	10.2.4 Remote XML Parsing
	10.2.4.1 Input File
	10.2.4.2 Parser Instantiation Using XmlPullParser Class
	10.2.4.3 Connecting to Server Using HTTPUrlConnection

	10.2.5 Parsing Events
	10.2.5.1 Parsing Loop

	10.2.6 Reading Image from Local File
	10.2.7 Retrieving Image from Remote Server
	10.2.8 An Example of Reading Image File
	10.2.9 A Demo App
	10.2.9.1 Spinner Initialization and Handling
	10.2.9.2 Predefined Layouts

	10.2.10 Parsing Local XML File
	10.2.11 Asset Folder

	10.3 AsyncTask and Thread Handling
	10.3.1 AsyncTask Class
	10.3.2 Using AsyncTask Class
	10.3.3 AsyncTask and Varargs Type
	10.3.4 Input, Progress, and Result Parameters to AsyncTask
	10.3.5 AsyncTask Execute Methods
	10.3.6 AsyncTask Method Sequence Calls

	10.4 App Implementation Details
	10.4.1 WeatherForecast Class
	10.4.1.1 Weather URL
	10.4.1.2 doInBackground()
	10.4.1.3 onProgressUpdate()
	10.4.1.4 onPostExecute()

	10.4.2 Complete Code for Weather Network App Activity
	10.4.2.1 Do It Yourself

	10.4.3 Parsing JSON Files
	10.4.4 Other XML Feeds

	10.5 An App for Information on Covid-19
	10.5.1 Covid-19 App Development Steps
	10.5.2 Data Extraction and Conversion
	10.5.3 Testing and Production Development Environments
	10.5.4 Covid-19 Source Code and Class Structure

	10.6 Chapter Summary
	Further Reading

	Chapter 11: Android SQLite, Firebase, and Room Databases
	11.1 Introduction
	11.2 The Android SQLite Database
	11.2.1 SQLiteOpenHelper Class
	11.2.2 SQLiteDatabase Class
	11.2.3 Overriding Methods of the SQLiteOpenHelper Class
	11.2.4 The Class Constructor Method
	11.2.5 The onCreate() Method
	11.2.5.1 Create Table in Database

	11.2.6 onUpgrade Method
	11.2.7 onDowngrade Method
	11.2.8 onOpen() Method
	11.2.9 Read and Read/Write Access
	11.2.10 The execSQL Method from SQLiteDatabase Class

	11.3 Content Values and Cursor Objects
	11.3.1 Content Values and Insert Method
	11.3.1.1 Do It Yourself

	11.3.2 Cursor
	11.3.3 Query Data
	11.3.4 rawQuery
	11.3.5 More Methods of the SQLiteDatabase Class
	11.3.5.1 Replace Method
	11.3.5.2 Update Method
	11.3.5.3 Delete Method

	11.4 DatabaseDemo Project
	11.4.1 The Data Component
	11.4.2 The Middle Component
	11.4.3 The View Component
	11.4.4 Test Your Database Using SQLiteBrowser
	11.4.4.1 Locate Your App Database
	11.4.4.2 Open Your Database with SQLiteBrowser
	11.4.4.3 Test Your Database with SQLiteBrowser

	11.4.5 Use SQLiteBrowser for Database Design
	11.4.5.1 Sqlite3 Database Tool
	11.4.5.2 Do It Yourself

	11.4.6 Android Database Inspector

	11.5 Realtime Firebase Database
	11.5.1 Firebase and JSON Tree File
	11.5.2 Firebase Account and Project Setup
	11.5.3 Register Your Project Using the Firebase Console
	11.5.4 Adding Dependency to Your Project
	11.5.5 Connecting to Database
	11.5.6 Inserting Data into Database
	11.5.7 Retrieving Data from Database
	11.5.8 Deleting Data from Database
	11.5.9 Query Data from Database
	11.5.10 DataSnapshot and Query Classes
	11.5.11 ChildEventListener Interface
	11.5.12 Querying Firebase Database Using User-Defined Classes
	11.5.13 Querying Firebase Database Example

	11.6 Other Data Storage Options
	11.6.1 Room Database
	11.6.1.1 Entity Class
	11.6.1.2 DAO Interface
	11.6.1.3 Database Class
	11.6.1.4 App Room Database Class
	11.6.1.5 Do It Yourself

	11.6.2 Content Provider
	11.6.3 Internal and External Storage
	11.6.3.1 Device File System
	11.6.3.2 SD Card, USB Storage, and Standard Public Directories

	11.7 Chapter Summary
	Further Reading
	References

	Chapter 12: Content Provider, Service, Message Broadcasting, and Multimedia Player
	12.1 Introduction
	12.2 Content Provider Component
	12.2.1 Content Provider
	12.2.2 Creating a Content Provider
	12.2.2.1 Designing a URI
	12.2.2.2 onCreate Method Implementation
	12.2.2.3 Query Method Implementation
	12.2.2.4 Insert Method Implementation
	12.2.2.5 Update Method Implementation
	12.2.2.6 Delete Method Implementation
	12.2.2.7 getType Method Implementation
	12.2.2.8 ContentProvider Code Example

	12.2.3 Provider in Manifest File
	12.2.4 Run and Test Content Provider
	12.2.4.1 Do It Yourself

	12.2.5 Content Provider Client
	12.2.5.1 Do It Yourself

	12.3 Media Content Streaming Apps
	12.4 Android Service
	12.4.1 Service
	12.4.2 Communication with Service
	12.4.3 Services Lifecycle
	12.4.4 Creating Service
	12.4.4.1 OnStartCommand()
	12.4.4.2 Service and Threads
	12.4.4.3 Starting Service with the Intent
	12.4.4.3.1 Service and Intent-Filter
	12.4.4.3.2 Intent-Filter and Activity

	12.4.5 Service Binding
	12.4.5.1 Allow Apps to Bind to Service
	12.4.5.2 Prohibit Apps to Bind to Service

	12.4.6 OnCreate() Method for Service
	12.4.7 OnDestroy() Method
	12.4.8 Stopping Service
	12.4.9 Android Rules to End Service
	12.4.10 Declaring a Service in the Manifest
	12.4.11 Intent Service
	12.4.12 Service Summary
	12.4.13 Do It Yourself

	12.5 Message Broadcasting in Android
	12.5.1 Android Message Broadcasting Types
	12.5.2 BroadcastReceiver Class
	12.5.2.1 Create a BroadcastReceiver Object
	12.5.2.2 BroadcastReceiver Registration
	12.5.2.3 Using the sendBroadcast Method
	12.5.2.4 Receiving Broadcasted Message

	12.5.3 Do It Yourself

	12.6 Android MediaPlayer for Streaming Radio Stations
	12.6.1 App Structure
	12.6.2 Android Media Player
	12.6.3 Power Manager and WakeLock
	12.6.4 WifiLock
	12.6.5 Other App Components
	12.6.6 Stopping and Restarting Service
	12.6.7 The New Restriction on Background Service
	12.6.8 Do It Yourself

	12.7 Remote and Local Video Playback
	12.7.1 Playback Video Using Implicit Intent and URL
	12.7.2 Playback Live Streaming Video Using URL and VideoView
	12.7.3 Playback Embedded Video in Your App
	12.7.4 Playback Video Outside Your App Directory

	12.8 Chapter Summary
	Further Reading

	Chapter 13: Sensors, Location-Based Service, and Google Maps
	13.1 Introduction
	13.2 Android Sensor
	13.2.1 Accelerometer Sensor
	13.2.2 Accelerometer App
	13.2.3 Using Accelerometer
	13.2.3.1 Sensor Event Listener Implementation
	13.2.3.2 Getting Sensor Service and Sensor Manager Objects
	13.2.3.3 Display Accelerometer Readings
	13.2.3.4 Calculating Acceleration Force
	13.2.3.5 Listener Registration
	13.2.3.6 Unregister Listening

	13.2.4 Get List of Sensors
	13.2.5 Do It Yourself

	13.3 Location-Based Services
	13.3.1 Demo App Interface
	13.3.2 Location Service APIs
	13.3.3 App Development Steps
	13.3.3.1 Permission
	13.3.3.2 Obtaining Location Manager
	13.3.3.3 Obtaining Location Providers
	13.3.3.4 Geocoder
	13.3.3.5 Register LocationListener

	13.3.4 App Implementation Details
	13.3.4.1 Check and Request Permission
	13.3.4.2 Location Manager Setup
	13.3.4.3 Specify Location Provider
	13.3.4.4 Find Your Last Location
	13.3.4.5 Refresh Current Location
	13.3.4.6 Do It Yourself
	13.3.4.7 Use Geocoding

	13.3.5 Revising Weather App
	13.3.6 Do It Yourself

	13.4 Use Google Maps in Your App
	13.4.1 Create a Google Maps Project
	13.4.2 Obtaining App Key
	13.4.3 Update Manifest File
	13.4.4 Google Maps API
	13.4.5 GoogleMap Class
	13.4.6 OnMapReadyCallback Interface
	13.4.7 SupportMapFragment Class
	13.4.8 Map Fragment Layout Example
	13.4.9 MapView
	13.4.10 UiSettings
	13.4.11 Configure Initial State
	13.4.12 Setting Map Initial State Programmatically
	13.4.13 Covid App Revised

	13.5 Chapter Summary
	Further Reading
	References

	Index

