

Hsin-Hao Tang

Practical Front-End Testing
Strategies and Best Practices for Developers

Hsin-Hao Tang
Taipei, Taiwan

ISBN 979-8-8688-1450-1 e-ISBN 979-8-8688-1451-8
https://doi.org/10.1007/979-8-8688-1451-8

© Hsin-Hao Tang 2025

This work is subject to copyright. All rights are solely and exclusively
licensed by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service
marks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice
and information in this book are believed to be true and accurate at the date
of publication. Neither the publisher nor the authors or the editors give a
warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The
publisher remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

This Apress imprint is published by the registered company APress Media,
LLC, part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

https://doi.org/10.1007/979-8-8688-1451-8

To all developers committed to building robust, reliable, and high-quality
web applications. May this book be a valuable guide in mastering front-end
testing strategies and best practices, empowering you to write code with
confidence and create exceptional user experiences.

Forewords
Foreword by Joey Chen
Common Issues and Decision Points in Testing Practice
In today’s software industry, everyone agrees on the value of automated
testing, but it’s easier said than done. Many teams understand the concept
but struggle with implementation. Even after becoming familiar with testing
frameworks and writing some automated tests, teams often encounter
decision-making challenges such as

Should tests simulate reality or use mock data?
Should tests verify implementation details or focus on external
behaviors?
For front-end testing, should rendering be included? Should tests focus
on shallow rendering or full rendering?
When should snapshot testing be used, and when is visual testing more
appropriate? What are the use cases and limitations of each?
Should visual tests cover specific component combinations or entire web
pages?
How much test coverage is enough?
How should naming conventions be defined and aligned with the team?
What should the rationale be?

These questions are common in real-world practice, and this book can
help readers understand the practicality of the topics discussed. To grasp the
pros and cons of these technical decisions and the scenarios they’re best
suited for, readers must first understand the underlying implementation
methods and framework characteristics. The book provides well-sized,
concise, and easy-to-understand examples that allow readers to learn and
follow along to turn knowledge into skill. By following the content and
building a solid foundation, readers will gain a clearer understanding of
various approaches and their context, enabling them to make informed,
“just right” decisions when working with their team.

Content Overview
I categorize the book’s chapters into three main areas. The first is to help
readers make the right decisions with the highest return on investment in
different situations. Investing in testing is like buying insurance—it

involves considering costs and identifying the risks to mitigate. When
resources are limited, the goal is to maximize user experience and save
valuable team resources by focusing on the most critical areas based on
product characteristics, team background, and constraints.

To make the best decisions with the highest ROI, you need a variety of
solutions at your disposal. The second category is testing classifications and
how different types of tests can complement each other for greater synergy.
The book explains different types of tests based on granularity, scope, and
goals and how frameworks and features can be used to achieve the most
appropriate testing.

For front-end testing, several key types are discussed, such as unit
testing, which focuses on functions or classes and ensures code logic and
consistency. Integration testing focuses on components, isolating only
system boundaries or third-party libraries and services. However,
integration testing comes with challenges, and the book offers suggestions:
Should child components be isolated or included? What is the right way to
test state, rendering, and dependencies? When should certain aspects be
tested, and when should they not? The book also delves into using
framework features for testing, including how to test state machines
provided by frameworks. End-to-end testing, critical for front-end testing,
focuses on user behavior, usage scenarios, and operational workflows to
ensure the entire system’s integrity and stability. Another challenge for
front-end engineers is ensuring that the user interface works across different
browsers, devices, screen sizes, and resolutions. The book covers available
frameworks and services that automate visual testing to help maintain UI
consistency without relying on manual testing or visual inspection.

The third category, after understanding the goals, values, and strategies
of various tests, is lowering the cost of writing tests to maximize ROI. The
book provides valuable advice on selecting suitable frameworks and
libraries based on specific objectives, avoiding reinventing the wheel, and
leveraging existing tools. It also explains how to integrate CI pipelines into
the product development lifecycle to maximize the value of testing. The
book highlights how to save time using AI tools like Copilot, which can
rapidly generate test code based on comments, leaving developers to verify,
refactor, and adjust the output.

I’m personally a fan of Kent Beck’s principle in software development:
Make it work. Make it right. Make it fast. Summer’s book reflects these

three phases, making it easier for software engineers to read, understand,
and apply.

Recommendation
The different types of tests mentioned in this book are not mutually
exclusive but should complement each other for maximum efficiency. Most
testing-related books focus on back-end testing, while front-end testing
resources often focus solely on framework learning. Few touch on the
practical considerations and trade-offs engineers face. This book is perfect
for front-end engineers looking for a comprehensive foundation. It covers
more than just how to write front-end tests; it helps readers make well-
rounded, informed decisions. Though my expertise leans toward the back
end, this book taught me a lot about front-end testing, providing valuable
insights and practical tips, making it an excellent resource for any back-end
engineer looking to learn more about front-end testing.

What I appreciate about this book is its clear structure, comprehensive
approach, and easy-to-follow pace. The examples are well sized and
practical and encourage hands-on learning. I recommend that readers start
by reviewing the FAQ chapter, reflect on how they typically handle similar
issues, and then compare their thoughts with Summer’s insights and
recommendations. Three examples that I think will resonate with teams
include

Tests break whenever the UI or functionality changes.
How best to test scenarios involving timers or intervals.
How to identify which part of the process or rendering failed when a test
breaks.

My acquaintance with Summer stems from Trend Micro’s annual
corporate training. Despite her focus on front-end development, her
questions in class and discussions about real-world problems were
insightful. She then systematized what she learned and shared her
knowledge clearly through her blog, designing examples in her own
language to explain concepts. Great authors and teachers often start as
excellent learners. I’m honored that Summer invited me to write this
foreword. Reading this content was refreshing and filled gaps in my front-
end testing knowledge.

I believe this book will help many front-end engineers and even back-
end engineers save valuable time, allowing them to spend more time
learning and expanding their skills and careers. I’m grateful to Summer for
pouring her time and effort into helping readers save time, build high-
quality products, and create better experiences for users.

Joey Chen, Odd-e Taiwan Agile Coach

Foreword by Eddie Gao
Summer is a very diligent person in every aspect. Although I’m a few years
older than her, she always seems surprised when I say I grew up reading her
blog, but I genuinely learned a lot about JavaScript from it. Thanks to her
meticulous personality, she ensures every article or book she writes is
thoroughly researched before she begins. Sometimes, when our students are
searching for front end–related information and come across her blog, I
always recommend it by saying, "Yes, you can trust what this person
writes."

Testing is a subject that many people know is important, yet don’t quite
know how to approach—especially front-end testing. Most people
(including myself) tend to open a browser to see if the page layout is off or
if there are any red error messages in the console. But in more complex
front-end projects, this kind of testing only scratches the surface. The logic
hidden beneath the surface often depends on luck and the developer's
experience to work correctly. The challenge is that even if you want to start
introducing test-driven development (TDD) into your project, choosing the
right testing tools or frameworks isn't too difficult, but there are many
questions: Should you write the tests first, or finish the features and then
add tests later? What should be tested and what shouldn’t? What level of
test coverage is sufficient? While writing tests may rely on a developer's
experience, there are methodologies established by industry experts that can
serve as valuable guides.

For those using React or similar front-end frameworks, many tutorials
teach component decomposition for reusability. However, the real purpose
of breaking down components isn’t just reuse—it’s like writing functions.
The key is to assign a piece of logic or code an easily identifiable name.
Once a component is broken down, it can be unit tested, just like Lego

blocks. As long as each block works perfectly, assembling them together
should result in a functioning system.

I often hear concerns about how to test third-party payment services or
external APIs. Should we test these non-self-written services or just ensure
the workflow passes?

Summer’s book covers these topics. Moreover, in the era of AI
dominance, the book introduces how to use AI tools to assist in writing
tests, which can be a great starting point for those who are less familiar with
testing.

Learning front-end testing through Summer’s book is essentially
learning how to write more confident front-end code!

Eddie Gao, 5xcampus

Foreword by PJCHENder
Have you ever had this experience?

The designer asks you to enlarge the CTA (call-to-action) button text on
the home page to make it more noticeable and increase the click-through
rate. You think this is an easy task, and you know to be extra careful when
editing CSS so you don't accidentally affect other components. Soon, you
submit a pull request, and your colleague quickly approves it, efficiently
pushing it live.

The next day, the designer notices that the button styles on the product
page have changed, and you start feeling a bit anxious and uneasy. Could it
be that my changes yesterday unintentionally broke something?

The story ends here, but regardless of whether or not you caused the
issue, one thing remains the same: you lack confidence in the code you
modified.

Writing tests is a way to boost that confidence. If tests had been in
place, you might have caught the issue where changing A affected B before
it went live. If there weren’t any tests, at least after discovering the problem,
you could add them to avoid making the same mistake next time.

In Summer’s book, a variety of testing types are introduced in a clear
and accessible way. From unit testing, integration testing, and end-to-end
testing to visual testing, which is especially important for front-end
development, all areas are covered. It also demonstrates how to run tests in
CI and provides rich practical insights on why front-end testing focuses

more on behavior rather than code implementation. The book
systematically organizes different testing methods and tools for use at
various stages.

If you're looking for a comprehensive understanding of front-end testing
—from types to tools to execution—this is definitely a book worth reading.

PJCHENder, web developer and author of Get Reacting with Your
Website: Starting from Hooks

Foreword by Eric Lee
You're tasked with making a change to a complex application, but after
deploying, a seemingly unrelated feature breaks. Sound familiar? It's time
to start writing tests for your code. Testing not only boosts your confidence
with each change but also helps you write more maintainable and readable
code.

Summer, a leading expert in testing, demystifies the often-intimidating
world of front-end testing in Practical Front-End Testing: Strategies and
Best Practices for Developers, providing clear explanations and practical
guidance for creating well-tested applications.

Practical Front-End Testing: Strategies and Best Practices for
Developers covers a wide range of topics, from the importance of testing to
different testing strategies and how to test common features. One of my
favorite sections is on conducting visual tests using tools like Storybook
and Cypress. This approach is logical for front-end developers but not as
widely adopted as I'd hoped. Design inconsistencies directly impact user
experience, but users might not always report them. By combining this with
the section on running tests in CI/CD, you'll create a robust pipeline that
automatically catches bugs and visual regressions early.

I wish I had this book when I started my career. It covers theory,
concepts, and real-world examples that engineers actually encounter. You'll
learn how to design effective test cases, identify potential edge cases, and
automate your testing workflow for maximum efficiency. With this book,
you'll be productive from day one, have peace of mind knowing you have a
solid development process, and ultimately become a better front-end
developer.

Eric Lee, Senior Software Engineer at Rivian

Introduction
Why I Wrote This Book
In the fast-paced and ever-evolving field of front-end development, one of
the biggest challenges is maintaining high-quality code while producing
work rapidly. This is why testing has become so crucial. Deciding on the
right testing approach and how to write and execute tests is a key issue
every developer must consider. Code without tests is difficult to guarantee
in terms of quality, and the solution lies in developing a solid testing
strategy. This book shares the practical experience I’ve accumulated in
front-end testing, with the hope of inspiring and helping others.

Whom This Book Is For
If you

Want to dive deep into the types and implementation of front-end testing
Are looking to build flexible, maintainable test code
Wish to write test code efficiently
Face challenges when writing tests and are seeking solutions

this book will provide you with

Detailed explanations, supported by visuals and code examples, to help
you learn, practice, and apply various front-end tests, while seeing the
effectiveness of writing tests in real-world applications
Clear principles and viewpoints to guide you in evaluating testing
strategies and costs, so you can make the best choices
Tips on effectively using AI tools to generate test code and boost
productivity
A clear and thorough explanation of various challenges through easy-to-
understand examples, helping you tackle testing obstacles with ease

How This Book Is Structured
The book is divided into eight chapters:

Getting Started with Testing: A deep dive into the fundamental concepts,
techniques, and various types of front-end web testing
Unit Testing: In-depth exploration of how to validate logic at the smallest
scope, emphasizing the importance of component testing, and a
comparison of popular testing frameworks to ensure foundational tasks
are done correctly
Integration Testing: Verifying specific features from the user’s
perspective, with guidance on how to simulate real-world scenarios and
use snapshots to improve the stability of your codebase
End-to-End Testing: Testing the entire workflow, focusing on simulating
real user behavior to achieve comprehensive coverage
Visual Testing: Ensuring visual accuracy, detailing how to precisely
compare UI elements across different browsers and viewports to
accelerate the UI testing process
What to Do After Writing Tests: When and How to Run Them:
Discussing different testing methods and timings, such as pre-commit
hooks, manual triggers, pre- and post-merge tests, and continuous
integration, as well as how to deduce usage case coverage from code
coverage
Frequently Asked Questions: Practical solutions to common challenges,
helping developers overcome the hurdles of testing
Leveraging AI for Writing Tests: How to leverage AI tools to enhance
the efficiency of writing tests and increase productivity

You can read the chapters in sequence or choose individual sections
based on your needs.

Code examples from this book can be found at the following links:

Chapters 1, 2, 4, 5, 7: https://bit.ly/49wKbrC
Chapter 3: https://bit.ly/3SZw2xL
Chapter 5: https://bit.ly/3MB2xxn

Conventions Used in This Book
// ... indicates that part of the code has been omitted.

https://bit.ly/49wKbrC
https://bit.ly/3SZw2xL
https://bit.ly/3MB2xxn

This is a key concept. Important concepts will be highlighted in bold.
Example file paths will be noted above the code blocks.

// Example file path src/sayHi.js

const sayHi = () => console.log('Hi!');

About Me
I’m Summer, an engineer, speaker, and writer, and the author of the
technical blog Summer (https://www.cythilya.tw/) and the book
Speed Up Your App with Web Vitals. My expertise includes SEO, front-end
performance, and testing.

https://www.cythilya.tw/

Any source code or other supplementary material referenced by the author
in this book is available to readers on GitHub. For more detailed
information, please visit https://www.apress.com/gp/services/source-code.

Acknowledgments
I would like to express my heartfelt gratitude to Alex Liu, Eddie Kao,
Hunter Liu, Kent Chen, Leslie Liu, Sean Chou, and Yvonne Huang for their
invaluable support and contributions. Your insights, encouragement, and
expertise have played a crucial role in the creation of this book. Thank you!

Table of Contents
Chapter 1: Getting Started with Testing

What Is Front-End Web Testing?

Why Write Tests?

How to Start Writing Tests?

Types of Front-End Testing

Unit Testing

Integration Testing

End-to-End Testing

Visual Testing

I Only Have One Hour, Which Tests Should I Write?

Summary

Notes

Testing Techniques

What Are the Testing Techniques?

How Are These Testing Techniques Applied in Development?

Are These Testing Techniques Suitable for UI Development?

Notes

Naming Conventions

Given-When-Then

it should

3A Pattern

Conclusion

Notes

Mock, Spy, and Double

Mock

Spy

Double

Notes

Chapter Review and Summary

Chapter 2: Unit Testing

Unit Testing

Environment Setup, Installation, and Tool Comparison

Jest

Cypress

Notes

Minimal Scope Validation Logic

Breaking Down Overly Complex Code

Isolating Dependencies

Conclusion

Notes

How to Write Tests for Components? A React Example

Testing Implementation vs. Testing Behavior

Splitting Logic and Presentation

Summary

Notes

Shallow Rendering and Full Rendering

Shallow Rendering

Full Rendering

Summary

Notes

Chapter Review and Summary

Chapter 3: Integration Testing

Integration Testing

Notes

Testing Features from the User’s Perspective and Maximizing
Realism

Testing Features from the User’s Perspective

Maximizing Realism

Notes

Mocking Components, API Responses, and Third-Party Libraries

How to Mock Components?

How to Mock API Responses?

How to Mock Third-Party Libraries?

Why Aim for Realism? Is Mocking Not Good Enough?

Can Testing Be Done Without Using Mock Data?

Notes

Snapshots

Notes

How to Write Tests for State Management? A Redux Example

Notes

Chapter Review and Summary

Chapter 4: End-to-End Testing

End-to-End Testing

Notes

Environment Setup and Installation

Notes

Verifying User Flow

Memori

Conclusion

Notes

Chapter Review and Summary

Chapter 5: Visual Testing

Visual Testing

Mixtini

How Snapshot Comparison Works

Notes

Verifying Visual Accuracy

Component-Level Testing

Page-Level Testing

Workflow

Summary

Notes

Tool Comparison

Snapshot File Types and Structure

Reviewing Snapshots Based on Pull Requests or Branches

Merge Checks

Component-Level Testing

Page-Level Testing

Browser Support

Summary

Notes

Chapter Review and Summary

Chapter 6: What to Do After Writing Tests: When and How to Run
Them

Pre-commands and Manual Test Invocation

Pre-commands

Manual Test Invocation

Summary

Notes

Run Tests Before Merging Code

pre-commit

pre-push

Running Tests During PR Submission

Summary

Notes

Running Tests Regularly in CI

Should Code Be Merged into the Main Branch When Tests Fail?

How to Reduce the Likelihood of Test Failures After Code
Merges?

Notes

Inferring Use Case Coverage from Code Coverage

Conclusion

Chapter Review and Summary

Chapter 7: Frequently Asked Questions

What to Do When UI Updates Cause Test Failures?

The Element Selection Method Is Too Loose, Strict, or Lacks
Clear Meaning

Tests with Too Many Implementation Details

Summary

Notes

How to Handle Duplicate Tests?

Notes

How to Test the Timer?

Notes

How to Mock Only Part of a Module?

How to Debug? What If an Element Can’t Be Found? How Do You
Trace the Data Flow?

What If the Element Can’t Be Found?

How Do You Trace the Data Flow?

Notes

How to Test Localization?

Notes

How to Use Setup and Teardown? What Are beforeEach,
afterEach, beforeAll, and afterAll?

Repeated Setup

One-Time Setup

Summary

Notes

Should Tests Include Type Checking?

Option 1: Implement Type Checking Inside the addNumbers
Function

Option 2: Use Tools for Type Checking

Notes

Why Do Some Test Cases Succeed Sometimes and Fail Other
Times?

Resource Dependencies

Test Dependencies

Conclusion

Notes

How to Run Specific Tests? An Example Using Jest

Skipping Specific Test Blocks

Skipping Specific Test Cases

Notes

Chapter 8: Leveraging AI for Writing Tests

How to Effectively Use GitHub Copilot for Writing Tests

Simple Example

Implementing Unit Tests

Implementing Integration Tests

Implementing End-to-End Tests

Conclusion

Notes

How to Leverage Mermaid and ChatGPT for Writing Tests

Simple Example

Writing Unit Tests

Implementing Integration Test

Implementing End-to-End Test

Conclusion

Notes

Chapter 9: Summary

Types and Methods of Testing

Product Stage and Testing Ratio

Common Types of Testing

Testing Methods and Tools

Testing Strategies at Different Stages of Product Development

Leveraging AI to Improve Testing Efficiency

Conclusion

Index

About the Author
Hsin-Hao Tang (Summer)
is passionate about front-end development,
with a strong focus on creating products
that deliver excellent user experiences and
high performance. She is also a skilled
SEO expert. She is an active blogger and
writer. Her technical books in Chinese have
been very well received by developers.

About the Technical Reviewer
Eric Lee
is a Senior Software Engineer with nine
years of experience focusing on front-end
development and has worked in
ecommerce and electric vehicle industries.
Passionate about maintainable code and
developer experience, Eric believes testing
is not only a crucial step to ensure great
user and developer experiences but also to
ensure the success of your product. As a
technical reviewer, he hopes this helps
developers understand testing’s importance
and use it to build confidence between
releases.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
H.-H. Tang, Practical Front-End Testing
https://doi.org/10.1007/979-8-8688-1451-8_1

1. Getting Started with Testing
Hsin-Hao Tang1

Taipei, Taiwan

What Is Front-End Web Testing?
Why Write Tests?
How to Start Writing Tests?
Types of Front-End Testing
Unit Testing
Integration Testing
End-to-End Testing
Visual Testing
I Only Have One Hour, Which Tests Should I Write?
Summary
Notes
Testing Techniques
What Are the Testing Techniques?
How Are These Testing Techniques Applied in Development?
Are These Testing Techniques Suitable for UI Development?
Notes
Naming Conventions
Given-When-Then
it should
3A Pattern
Conclusion
Notes
Mock, Spy, and Double
Mock
Spy
Double
Notes
Chapter Review and Summary

https://doi.org/10.1007/979-8-8688-1451-8_1

You will learn the following in this chapter:

Front-end testing basics—their importance, challenges, test types, and effective
strategies
Various front-end testing types—unit, integration, end-to-end, and visual—as well as
their scopes, benefits, and applicable scenarios to optimize testing strategies
Various testing techniques such as Agile, Scrum, TDD, BDD, and DevOps and their
application in development processes, particularly UI development
Test naming conventions like Given-When-Then and it should, along with the 3A
pattern for clarity
The concepts of mock, spy, and double in testing, along with their differences, use
cases, and examples

What Is Front-End Web Testing?
Front-end web testing refers to the process of testing the front end of web applications.
The front end is the part of the website that users interact with directly, including the
interface, styles, animations, and functionalities.

Why Write Tests?
Imagine you are a developer. Have you ever experienced the following?

Developing new features and being unsure whether all scenarios are covered. A
feature often has many considerations and possible paths.
Modifying or refactoring functionality and being uncertain if the original intent has
been unintentionally altered. This can lead to new features or bug fixes that
introduce new issues, creating a cycle of fixing and refixing.
Testing involves too many variables, and manual testing is time-consuming and
labor-intensive. Factors such as resolution (desktop vs. mobile), browsers (Chrome,
Firefox, Safari), and various process combinations make manual testing impractical
and exhaustive.
Many front-end details are hard to detect manually and require automated tools for
effective inspection.

Now, imagine you are a user. Have you experienced the following?

New features on a website breaking or being poorly designed, forcing you to switch
to alternative products
Some website features being supported only on specific browsers or platforms, such
as working on Chrome or desktop but not on Safari or mobile
The display or interaction feeling off or laggy, leading you to seek out other products
Difficulty reading the website after changing languages, resulting in a poor user
experience

How should developers address these issues? Especially in the front-end domain,
where development environments evolve rapidly and technologies continually advance,
maintaining high-quality code amid tight development schedules is indeed a significant
challenge. The best way to tackle these challenges is through frequent testing and
attention to various details. Take the first step and start writing tests!

How to Start Writing Tests?
The main goals of front-end web testing are

To ensure that the front-end functionality of the website or application operates
correctly and meets various scenarios and workflows, instilling greater confidence in
adding, modifying, and refactoring features in the future
To provide a good user experience by checking for performance bottlenecks and
compatibility across different browsers and platforms

Thus, the focus of front-end testing should be to achieve the following:

Ensure that core functionalities and integrations with other services operate correctly.
Ensure that the interface displays and interacts smoothly.
Increase productivity and reduce the cost of manual testing.

Developers can plan corresponding test types based on these goals, including unit
tests, integration tests, end-to-end tests, and visual tests. Unit tests, integration tests,
and end-to-end tests effectively check if core functionalities and integrations work
properly, while visual tests ensure smooth user interface display and interaction. By
combining different testing methods and tools, you can significantly enhance product
quality and developer productivity while reducing the costs of manual testing.

This book will provide a detailed introduction to various types and methods of
testing, helping you plan a testing structure, process, and test writing suited to your
product. Follow the guidance in this book to upgrade your product!

Types of Front-End Testing
Front-end testing can be categorized into various types, as depicted in Figure 1-1,
which shows the well-known Testing Pyramid model. This model includes unit testing,
integration testing, end-to-end testing, and visual testing. The purpose of testing is to
verify whether the current results match the expected outcomes. The main distinction
among these types of tests is usually the scope of verification: from bottom to top, the
scope ranges from small to large, the quantity decreases, the cost increases, and the
confidence provided to developers increases. Generally, lower-level tests should be
performed first and in greater numbers, but adjustments can be made depending on the
product or project type (Note 1). However, tests cannot always be strictly categorized
into a single type; there may be some gray areas. For example, testing larger

components may be closer to integration testing, but unit tests might still be needed to
ensure the correctness of the component’s functionality.

Figure 1-1 Testing Pyramid

In the following chapters, this book will explain, exemplify, and compare the
different types of tests to provide a deeper understanding of their characteristics. This
section will provide a brief overview of each test type to give developers an initial
concept.

Unit Testing
Unit testing refers to testing the “smallest unit” or “independently testing specific code
snippets” (Note 2). This type of testing primarily validates whether the inputs and
outputs of functions, methods, or class instances meet expectations. It focuses on
testing the smallest unit of code to ensure that it can operate independently and handle
specific input and output scenarios correctly.

For example, the following code shows a function, divideNumbers, which
divides two integers:

// src/utils/divideNumbers/divideNumbers.js

const divideNumbers = (num, den) => {
 if (den === 0) {

 throw new Error('Cannot divide by zero');
 }
 return num / den;
};

For the divideNumbers function, you can write tests for the following
scenarios:

Dividing two numbers evenly to get an integer.
Dividing two numbers that do not divide evenly to get a fraction.
When the numerator is zero, the result should be zero.
When the denominator is zero, it should throw an error.

Here is an example of a unit test:

// src/utils/divideNumbers/divideNumbers.test.js

describe('divideNumbers', () => {
 // Dividing two numbers evenly to get an integer
 it('should return the correct integer when dividing two
integers that are divisible', () => {
 expect(divideNumbers(8, 4)).toBe(2);
 });

 // Dividing two numbers that do not divide evenly to get
a fraction
 it('should return the correct fraction when dividing two
numbers that are not divisible', () => {
 expect(divideNumbers(7, 2)).toBe(3.5);
 });

 // When the numerator is zero, the result should be zero
 it('should return zero when the numerator is zero', ()
=> {
 expect(divideNumbers(0, 2)).toBe(0);
 });

 // When the denominator is zero, it should throw an
error
 it('should throw an error when dividing by zero', () =>
{
 expect(() => divideNumbers(10, 0)).toThrow('Cannot
divide by zero');
 });

});

Common unit testing frameworks include Vitest (https://vitest.dev/),
Playwright (https://playwright.dev/), Jest (https://jestjs.io/), and
Cypress (https://www.cypress.io/). For component testing, Jest is often used
with Enzyme (https://enzymejs.github.io/enzyme/) or Testing Library
(https://testing-library.com/).

The advantages of unit testing include the following:

A smaller test scope allows for more focused testing, including happy path testing
and edge cases, achieving the highest level of code quality assurance.
Because unit tests focus on the smallest scope, they are generally the least costly in
terms of time and effort to write and implement. This high cost-performance ratio
makes unit testing highly recommended as the first line of testing.
Unit testing helps identify the root cause of issues; if an error occurs, you only need
to review the related test cases to find the cause.

However, unit testing often lacks the integration between components and may
differ significantly from real user interactions, necessitating other types of tests to
achieve comprehensive and reliable test coverage.

For a detailed explanation and examples of unit testing, see Chapter 2.

Integration Testing
Integration testing, also known as functional testing, involves testing “combined code
snippets.” This type of testing is more comprehensive than unit testing and covers all
aspects of specific features, including integrated components, related packages or
libraries, and data presentation after fetching from APIs. Its purpose is to provide more
thorough testing of the functionality, ensuring that integrated components work
correctly and meet expectations in a real-world operating environment.

For example, the following code shows the HelloWorld component, where
clicking the “Click!” button displays the message “Hello World!”:

const HelloWorld = () => {
 const [message, setMessage] = useState('');

 return (
 <div>
 <button
 data-test-id="show-message-button"
 onClick={() => setMessage('Hello World!')}
 >
 Click!
 </button>
 <Text data-test-id="message">{message}</Text>

https://vitest.dev/
https://playwright.dev/
https://jestjs.io/
https://www.cypress.io/
https://enzymejs.github.io/enzyme/
https://testing-library.com/

 </div>
);
};

Here is an integration test example, testing the functionality of clicking the “Click!”
button to display the message “Hello World!” In this test, to ensure complete
functionality, two components <HelloWorld> and <Text> are integrated to test the
button click and message display flow.

describe('HelloWorld component', () => {
 it('logs "Hello World!" when the button is clicked', ()
=> {
 const { getByTestId } = render(<HelloWorld />);

 // Click the button
 fireEvent.click(getByTestId('show-message-button'));

 // Verify if the displayed message matches the expected
outcome
 expect(getByTestId('message')).toHaveTextContent('Hello
World!');
 });
});

Common integration testing frameworks include Jest with Enzyme or Testing
Library and Cypress.

Compared to unit testing, integration testing is closer to actual user interactions,
helping to verify the overall correctness and completeness of the functionality.
However, it is harder to pinpoint the root cause of errors, which can be mitigated by
using unit tests.

For detailed explanations and examples of integration testing, see Chapter 3.

End-to-End Testing
End-to-end testing (E2E testing) simulates the entire user interaction flow with the
product. In the case of web interfaces, this testing simulates actions from opening a
browser and entering a URL to navigating through specific features, browsing pages,
and finally closing the window. Its purpose is to mimic real user behavior to ensure
proper functionality in actual usage scenarios.

For example, the following code navigates to the “About Me” page of the
“Summer” website (https://www.cythilya.tw/about/) and checks if the
correct title text is retrieved (Note 3):

// cypress/e2e/cythilya.cy.js

https://www.cythilya.tw/about/

describe('about page', () => {
 it('should get page title correctly', () => {
 cy.visit('https://www.cythilya.tw/about');

 cy.get('.page-title').should('have.text', 'About Me');
 });
});

Common end-to-end testing frameworks include Cypress
(https://www.cypress.io/), Puppeteer (https://pptr.dev/),
WebdriverIO (https://webdriver.io/), and Nightwatch
(https://nightwatchjs.org/).

End-to-end testing’s advantage is its ability to test the full functionality of the
product, closely mimicking real user interactions. However, identifying the root cause
of errors can be challenging and often requires tracing back to unit tests.

For detailed explanations and examples of end-to-end testing, see Chapter 4.

Visual Testing
Visual testing involves using tools to automatically detect changes in the user interface.
It captures snapshots of what users see and compares them to identify any differences.

For example, the following code combines Cypress with Percy to capture snapshots
of a page, using Mixtini as an example (Note 4):

// cypress/e2e/mixtini.cy.js

describe('Index page', () => {
 it('should update snapshot to Percy correctly', () => {
 cy.visit('https://mixtini-co.web.app/');
 cy.percySnapshot('index');
 });
});

After browsing the Mixtini home page, the cy.percySnapshot command
captures a snapshot of the page and uploads it to Percy’s service platform, where you
can later view the comparison results.

Common visual testing tools include Chromatic
(https://www.chromatic.com/), Percy (https://percy.io/), and end-
to-end testing frameworks like Cypress (https://www.cypress.io/). These
tools are effective for visual testing.

Visual testing’s advantages include precise visual comparisons (pixel perfect) and
the ability to test across various variables such as browsers and viewports. However, it
may require third-party tools or services to implement, and it may not effectively detect
dynamic changes on the screen.

https://www.cypress.io/
https://pptr.dev/
https://webdriver.io/
https://nightwatchjs.org/
https://www.chromatic.com/
https://percy.io/
https://www.cypress.io/

For detailed explanations and examples of visual testing, see Chapter 5.
Whether it’s unit testing, integration testing, end-to-end testing, or visual testing,

this book will provide detailed explanations in the following chapters for each type.

I Only Have One Hour, Which Tests Should I Write?
In most project schedules, implementing functionality is always the most urgent task,
followed by “possibly” writing tests. Testing often seems unimportant and is frequently
overlooked, but tests are crucial for ensuring product and code quality. Issues such as
breaking functionality or difficulty refactoring often stem from a lack of tests.

Testing is important, but what if I only have one hour to write tests? Of course, it’s
possible. But with only one hour, which tests should I write? How should I write them?

There are many types of tests; you can choose based on your testing goals:

Core services of the product are suitable for unit testing, for example, verifying
whether the inputs and outputs of functions, methods, or class instances meet
expectations.
Interfaces connecting the product with third-party services are suitable for
integration testing, for example, integrating components, related packages or
libraries, and data presentation from APIs.
Testing the actual workflows of the product is suitable for end-to-end testing, for
example, simulating the user flow from opening a browser, entering a URL, to
navigating specific features and browsing pages.
Emphasizing visual comparisons and testing various devices or browsers is suitable
for visual testing, for example, different layouts on different devices, where visual
testing can provide precise automated comparisons.

Next, consider how to write the tests.
First, consider where to write tests and how to conduct them. When selecting test

locations, prioritize areas with a high return on investment, including important
business logic, revenue-generating features, high-security areas, parts affecting
reputation, and frequently modified or error-prone functionalities. Start with the main
flow, then proceed to error handling and edge cases.

Additionally, testing should focus on meeting goals rather than the number of tests
or coverage percentage. In other words, more tests aren’t necessarily better; the ratio of
tests should depend on the nature of the product and project. Code coverage is not an
absolute indicator; assess the importance of functionality and usage scenarios to decide
if writing tests is worthwhile (Note 5). Meeting user needs might be more important
than having 1,000 tests or 90% coverage. A good practice is to add some tests with
each code update, which helps improve code reliability and stability (Note 6).

Summary
Table 1-1 summarizes and compares the types of tests, applicable scenarios,
advantages, and disadvantages.

Table 1-1 Summary and Comparison of Test Types, Scenarios, Advantages, and Disadvantages

Type Description Advantages Disadvantages Applicable
Scenarios

Unit
Testing

Testing the
smallest unit

Focused testing within a small
scope; lowest cost

Lacks integration between
components; significantly differs
from real user behavior

Core services
of the product

Integration
Testing

Testing
combined
code
snippets

Integration helps detect overall
correctness and completeness Harder to identify root causes

Interfaces
with third-
party services

End-to-
End
Testing

Simulating
user
workflows

Closest to real user interactions Harder to identify root causes
Testing actual
product
workflows

Visual
Testing

Checking UI
visual
changes

Precise visual comparisons across
various variables like browsers
and viewports

Requires third-party tools or
services; less effective for dynamic
changes

Visual
comparisons

Note that visual testing of components is tied to unit or integration testing.
Compared to end-to-end testing, it has lower costs, shorter runtimes, and can be run
more frequently, making it a valuable approach to reduce testing costs and time.

Once you’ve decided which tests to write, let AI assist in writing them. For more on
using AI to write tests, see Chapter 8.

Notes
Note 1: For test structure planning strategies, besides the pyramid type, there are
various variations such as ice cream cone, crab, trophy, diamond, and honeycomb.
For related discussions, refer to Kent C. Dodds’s “The Testing Trophy and Testing
Classifications” (https://kentcdodds.com/blog/the-testing-
trophy-and-testing-classifications) and “Pyramid or Crab? Find a
testing strategy that fits” (https://web.dev/articles/ta-strategies).
Note 2: For specific test terminology, if referring to the test code alone, use the noun
“test”; if referring to the process, use the gerund “testing.” For example, “unit test”
refers to a single test case or test code, while “unit testing” refers to the process of
executing a series of unit tests.
Note 3: For more on this example, see Chapter 4.
Note 4: For more on Mixtini and related examples, see Chapter 5.
Note 5: For more on using usage scenarios to write tests, see Chapter 6, section
“Inferring Use Case Coverage from Code Coverage.”
Note 6: For guidelines on reasonable coverage levels, refer to “JavaScript & Node.js
Testing Best Practices”
(https://github.com/goldbergyoni/javascript-testing-best-
practices/), which suggests that “developers can gain confidence with sufficient
code coverage; ~80% seems like a lucky number, 10% ~ 30% clearly cannot prove
project correctness, but 100% might be overly time-consuming.”

https://kentcdodds.com/blog/the-testing-trophy-and-testing-classifications
https://web.dev/articles/ta-strategies
https://github.com/goldbergyoni/javascript-testing-best-practices/

Testing Techniques
What Are the Testing Techniques?
Developers can enhance code quality and productivity through various types of testing,
and organizations also attempt to improve processes using different testing techniques,
including

Agile: Agile refers to the concept of allowing each stage of the development cycle to
run concurrently, avoiding waiting times. By breaking down each phase into smaller
increments, the operational cycle is shortened, providing the flexibility to adapt to
rapidly changing requirements.
Scrum: Scrum is an Agile development framework that emphasizes iteration,
collaboration, and self-management. Development work is divided into cycles called
sprints, each with a fixed duration. The team plans, develops, and reviews each
sprint, delivering working software at the end of the sprint. Scrum manages the
development process through product backlogs, sprint backlogs, and daily stand-up
meetings.
TDD (test-driven development): TDD is a development process where tests are
written first, followed by code, and then refactoring. This workflow ensures code
quality and helps developers better understand the requirements.
BDD (behavior-driven development): BDD defines test specifications from the
user’s perspective and writes them in natural language. This approach helps
developers better understand requirements and assists testers in writing effective
tests.
DevOps: DevOps combines development and operations culture, practices, and tools
into a working model. Its goal is for engineers to take responsibility for the entire
product lifecycle, including development, testing, deployment, and operations, rather
than focusing solely on a single skill. This approach helps organizations seamlessly
bridge development and operations, increasing team speed and productivity.

How Are These Testing Techniques Applied in Development?
Organizations attempt to apply various testing techniques to their development
processes. Ideally, proper use of TDD and BDD can help developers ensure functional
correctness and expected behavior during development. In contrast, Agile and DevOps
provide a better collaborative and integrated environment, helping development teams
test and deploy more efficiently.

How is this implemented in practice? In Scrum, for instance, the team decides what
tasks to complete in each sprint during sprint planning and executes them accordingly.
If requirements change, they are documented and discussed in the next sprint’s
planning session, allowing for continuous iteration with each sprint. For example, when
developing a new feature, the team estimates the duration and the number of sprints
needed to complete the feature and initially plans the work scope for each sprint.
Changes such as requirement modifications or UI adjustments are logged in the

backlog and reprioritized in the next sprint based on progress and priority. If tasks are
independent, different developers can work on them simultaneously. During the sprint,
developers can use daily stand-ups to sync information and discuss any issues. Features
not yet fully implemented can be hidden using a feature toggle mechanism until
completed, at which point the toggle can be turned on to make the feature available to
users (Note 1).

When writing tests, the focus is on the function’s performance and behavior and
how users interact with the function or workflow. Specific test cases can be discussed
with QA (Note 2), and test scripts can be written based on the minimum standards
provided by the QA specifications.

Different testing techniques provide developers with varied workflows and
experiences, but code quality is generally related to the amount of testing. More tests
usually lead to better quality. Since code quality does not directly correlate with the
process, it is recommended to start accumulating test cases from critical paths.

Are These Testing Techniques Suitable for UI Development?
How can developers apply these testing techniques to UI (user interface) development?
We can plan and implement tests based on each sprint’s output goals, with the
following recommendations:

Focus on how the functionality is presented and how users interact with it, such as
when to click a button, when a modal appears, and what messages are displayed
under specific conditions. Since functionality presentation or user interactions are
related to function specifications and not visual details, minor visual adjustments
will generally not affect the tests (Note 3).

// src/Counter/Counter.enzyme.test.js

it('should get 1 when click the increment button', () => {
 const wrapper = mount(<Counter />);

 wrapper.find('[data-test-id="increment-
button"]').simulate('click');

 expect(wrapper.find('[data-test-id="counter-
value"]').text()).toBe('1');
});

Focus on whether integrations are correct, such as data flow or API connections,
ensuring that events are triggered and responses are received correctly. Since
integrations are related to functionality, not visual details, minor visual adjustments
will generally not affect the tests (Note 4).

// src/Item.test.js

test('should show 2 items when click increment button',
async () => {
 // ...omitted...
 const spyDispatch = jest.spyOn(store, 'dispatch');

 // Click the "+" button to select the quantity
 fireEvent.click(getByTestId('add-to-cart'));

 // Click "+" again to add 1 more
 fireEvent.click(getByTestId('increment-button'));

 // Trigger action to add the item to the cart
 expect(spyDispatch).toHaveBeenCalledWith({
 type: ACTIONS.ADD_TO_CART,
 payload: { itemId: '999' },
 });
});

These methods can be used to write tests before implementation. Common
challenges include (1) unclear requirements and (2) tight development schedules that
do not allow enough time for testing, but these challenges can be overcome to some
extent (Note 5). Developers can still apply the above recommendations because these
tests do not require knowledge of visual details—just the workflow and key
components. It’s important to note that visual details often change, especially as the
product iterates. Teams may adjust and update the UI to improve quality, such as
adding shadows to buttons for better aesthetics or repositioning elements for clearer
content presentation. It’s recommended not to write tests for visual details until the
product stabilizes or to pay attention to element selection rules (Note 6) and consider
using visual testing to assist.

Notes
Note 1: Feature toggle is a software development technique used to dynamically
enable or disable specific features in an application, enhancing the development
team’s flexibility and delivery of new features. This technique allows teams to
control the application’s behavior at runtime without redeploying or recompiling.
The feature toggle decouples feature deployment from release, allowing features to
be deployed in production even if incomplete or untested. It also enables
dynamically turning features on or off in production to handle emergencies, test new
features, or perform A/B testing. Feature toggles are typically implemented through
conditional statements or configuration files in the code. When the application runs,
it checks these conditions to determine whether to enable specific features, which
can be based on various factors, such as user identity, environment variables, or date.
The benefits of using feature toggles include increased deployment flexibility, risk

reduction, continuous delivery and testing facilitation, and quicker feature delivery
to users. However, excessive feature toggles can lead to increased code complexity
and fragmented functionality, so careful consideration and management are
necessary. Common feature toggle tools include LaunchDarkly
(https://launchdarkly.com/).
Note 2: QA refers to Quality Assurance Engineers responsible for reviewing outputs
to ensure implementation according to specifications and meeting release quality
standards. After product implementation specifications are completed, QA produces
corresponding test specifications to test the outputs, ensuring the product meets
expectations.
Note 3: For more discussions on “how functionality is presented and how users
interact with it,” see Chapter 2, section “How to Write Tests for Components? A
React Example,” and Chapter 3, section “Testing Features from the User’s
Perspective and Maximizing Realism.”
Note 4: For discussions on how to write tests for data flows, see Chapter 3, section
“How to Write Tests for State Management? A Redux Example.”
Note 5: Using AI tools like Mermaid and ChatGPT can generate test scripts from
flowcharts during the design phase, significantly aiding TDD adoption. For more on
this, see Chapter 8.
Note 6: For discussions on element selection rules, see Chapter 7, section “What to
Do When UI Updates Cause Test Failures?”

Naming Conventions
When running tests, it’s common to encounter test failures that require further
investigation. When examining the cause of the test failure, the first step is usually to
check the error message. For example, if a test case produces the error message
should get correct result, the information is too vague to give developers a
clear understanding of the issue, providing little help in resolving the problem.

FAIL sample.js
 × should get correct result

Error messages are based on the descriptions written during test implementation.
Therefore, before writing tests, it’s essential to understand how to write effective
descriptions—essentially how to name the tests. Currently, two mainstream test naming
conventions are Given-When-Then and it should. Both conventions help
developers clearly express the test’s purpose, actions, and expected outcome.
Additionally, they promote consistency and readability in test cases and, most
importantly, assist developers in quickly identifying issues when tests fail.

Given-When-Then

https://launchdarkly.com/

Given-When-Then, often abbreviated as GWT, is a well-known test naming
convention commonly applied in testing techniques such as BDD and TDD to ensure
clarity and consistency in test cases. It consists of three parts:

Given: This step sets the preconditions for the test, describing the initial state needed
before running the test. It is the preparation phase for the test case.
When: This step describes the specific behavior or action being tested, detailing the
action that triggers the test. It is the phase where the test behavior is executed.
Then: This step verifies the result of the test, checking whether the outcome of the
test action meets the expected result. It is the confirmation phase of the test.

For example, the test typically begins with a name and uses describe and test
to separate the Given and When blocks, with Then subtly included within.

In this example:

Given: The user is already logged in.
When: The user submits the form.
Then: The user should see a success message (Note 1).

describe('Login form', () => {
 describe('Given the form', () => {
 beforeEach(() => {
 setupLoginForm();
 });

 test('When the form is submitted', () => {
 submitForm();

 // Then ...
 expect(successMessage).toBeVisible();
 });
 });
});

Or, as shown in the following code, describe and test blocks clearly separate
the Given, When, and Then sections:

describe('Login form', () => {
 describe('Given the form', () => {
 describe('When the form is submitted', () => {
 test('Then display a success message', () => {
 expect(successMessage).toBeVisible();
 });
 });
 });

});

it should
it should is another well-known test naming convention. It describes, in a single
sentence, what is being tested, the expected outcome, and the conditions under which
the outcome should occur. This convention is often paired with the 3A pattern to
structure the test.

should: Describes the expected result
when: Describes the condition that triggers the result

For example, testing a function addNumbers that adds two numbers, the test case
should return 3 when 1 + 2 indicates that when adding 1 + 2, the result
should be 3.

// src/utils/addNumbers/addNumbers.test.js

describe('addNumbers', () => {
 it('should return 3 when 1 + 2', () => {
 expect(addNumbers(1, 2)).toBe(3);
 });
});

In this example:

should: The expected result is 3.
when: The condition is adding the numbers 1 and 2.

3A Pattern
The 3A pattern, also known as the AAA pattern, stands for Arrange, Act, and Assert.
Arrange refers to setting up the test conditions, Act refers to executing the action being
tested, and Assert refers to verifying the expected result. The 3A pattern corresponds to
the Given-When-Then structure mentioned earlier.

For example, in the following code, the component is rendered, a button is clicked,
and the text content is verified to be 1, in sequence:

// src/Counter/Counter.enzyme.test.js

// Arrange: Render the component (Given)
const wrapper = mount(<Component />);

// Act: Click the button (When)
wrapper.find('[data-test-id="button"]').simulate('click');

// Assert: Verify the text content is 1 (Then)

expect(wrapper.find('[data-test-
id="value"]').text()).toBe('1');

The 3A pattern offers a structured method for organizing and writing test cases. Its
benefits include

Clarity and readability: The test flow is easy to understand.
Separation of concerns: The code is clearly divided into preparation, execution, and
verification phases, helping maintain modularity.
Consistency: The uniform structure of the code promotes consistency, making
debugging and maintenance easier.

While the 3A pattern has many advantages, it may also be considered inflexible or
burdensome in certain situations. Teams can discuss and adjust the pattern based on
their specific needs.

Conclusion
Both Given-When-Then and it should are test naming conventions that clearly
identify what is being tested, the expected result, and the conditions under which the
test passes. These conventions help provide complete descriptions of test cases. Due to
its simplicity and clarity, this book uses the it should convention along with the 3A
pattern as the test naming model. Developers can choose either model based on their
preferences and requirements.

The advantage of following a naming convention is that it clearly expresses the
test’s purpose, what it does, and the expected result. This approach makes collaboration
with AI to write tests more effective and understandable (Note 2).

Notes
Note 1: For more discussion and examples of using toBeVisible to check if an
element is visible to the human eye, see Chapter 3, section “Snapshots.”
Note 2: For detailed explanations and examples of collaborating with AI to write
tests, see Chapter 8.

Mock, Spy, and Double
Mock, spy, and double are three common concepts in testing. They are used to
simulate, monitor, or replace real objects to facilitate testing. These tools are essential
for handling dependencies in tests to ensure stability and reliability. The choice
between them usually depends on the specific testing needs and code structure. This
chapter will explain the differences between mock, spy, and double, provide examples,
and describe their use cases in testing.

Mock

A mock is an object or function used to simulate or replace target components, third-
party libraries, or API responses. By using mocks, developers can implement actual
code during the testing process, replacing real implementation details. This method not
only ensures that the code under test interacts correctly with its dependencies but also
provides an isolated environment, making tests more reliable and easier to manage
(Note 1). The core concept of mocking is that it allows developers to test parts of the
code without relying on real dependencies. In other words, developers can focus on
testing specific functionality or behavior without worrying about factors that may affect
the test results. Mocks can be used in both unit and integration testing. Whether testing
new features during development or checking the impact of changes during
maintenance, mocks provide a simple and effective solution.

For example, in Jest, you can use jest.mock to mock components and their
content from a specified path. In the following code, the component
MyComponent.js from the src folder at the same level is mocked, returning
<div>Hello World!</div>. In this test file, whenever the <MyComponent>
component is rendered, it is replaced by <div>Hello World!</div>, bypassing
the real implementation details.

jest.mock('./src/MyComponent', () => <div>Hello World!
</div>);

Spy
A spy is an object that can monitor the behavior of a target object, recording the
methods called, their parameters, and return values, without affecting the original
behavior of the object. This method is useful for ensuring that the target being
monitored is called and used correctly.

For example, suppose we have a <Timer> component that displays the remaining
seconds as a countdown and shows a “Time’s Up” message when the countdown ends.
In this case, the <Timer> component calls the clearInterval method to clear the
previously created timer when it is unmounted. We need to ensure that
clearInterval is called at the appropriate time (Note 2).

// src/Timer/Timer.js

const Timer = () => {
 const [seconds, setSeconds] = useState(3);
 const intervalIDRef = useRef(null);
 const startTimer = useCallback(() => {
 intervalIDRef.current = setInterval(
 () => setSeconds((prev) => prev - 1),
 1000
);
 }, []);

 const stopTimer = useCallback(() => {
 clearInterval(intervalIDRef.current);
 intervalIDRef.current = null;
 }, []);

 useEffect(() => {
 startTimer();
 return () => clearInterval(intervalIDRef.current);
 }, []);

 useEffect(() => {
 if (seconds === 0) {
 stopTimer();
 }
 }, [seconds]);

 return (
 <div>
 {seconds === 0
 ? `Time's Up`
 : `Remaining seconds: <span data-test-id="remain-
time">${seconds}`}
 </div>
);
};

We can wrap the clearInterval method as a spy and monitor it when the
<Timer> component is unmounted, ensuring that clearInterval is called
correctly and logging the parameters passed to it. Using Jest, we can use
jest.spyOn to monitor whether clearInterval was called. As shown in the
following code, spyOnClearInterval is an object that tracks calls to the
clearInterval method, including the number of calls and the parameters passed.
Here, the toHaveBeenCalledTimes assertion checks whether clearInterval
was called. This monitoring mechanism not only helps developers ensure that
clearInterval is called as expected but also provides rich information for
debugging and testing. In the testing environment, spyOnClearInterval replaces
the real clearInterval method to track its behavior during the test. This approach
ensures the code runs correctly and provides detailed logs to assist with debugging and
maintenance. By using spies, developers can test with greater confidence and ensure
accurate results.

// src/Timer/Timer.test.js

it('should clean up the timer when unmount', () => {
 const { unmount } = render(<Timer />);
 const spyOnClearInterval = jest.spyOn(global,
'clearInterval');

 unmount();

 expect(spyOnClearInterval).toHaveBeenCalledTimes(1);
});

Double
Double is a term used in testing to refer to any mock object or function that replaces the
real target. It includes both mocks and spies, and the choice of which to use depends on
the specific testing needs.

Double refers to any object or function used to replace the real target during testing.
It includes the two main forms: mocks and spies. As previously mentioned, they serve
different purposes:

Mocks are used to simulate the behavior of the target object, providing predefined
responses without executing the real methods.
Spies are used to monitor the behavior of the target object, recording methods called,
parameters, and return values, without changing the object’s behavior.

The choice between using a mock or a spy depends on the current test’s goals and
requirements. If the purpose of the test is to ensure that the code interacts correctly with
the target object without executing the object’s methods, mocks are the best option.
However, if the goal is to ensure that the target object’s methods are called correctly
and to log the details of those calls, spies are the better choice.

Regardless of which form of double is used, the primary goal is to provide an
isolated environment where tests can be run without relying on the real target object.
This ensures that test results are reliable and repeatable. By using doubles, developers
can test with greater confidence and ensure accurate results.

Notes
Note 1: For more discussion on “mocks,” see Chapter 3, section “Mocking
Components, API Responses, and Third-Party Libraries.”
Note 2: For details about the <Timer> component, see Chapter 7, section “How to
Test the Timer?”

Chapter Review and Summary
Front-end web testing refers to the process of testing the front-end part of a web
application. The front end refers to the part of the website where users interact
directly, including the interface, styles, animations, and functionality.
The primary goals of front-end web testing are (1) to ensure that the front-end
functions of the website or application work properly, covering various scenarios and
workflows, and to provide confidence in adding, modifying, or refactoring features
in the future; and (2) to deliver a good user experience by checking for performance
bottlenecks, browser compatibility, and platform compatibility.
To achieve the following goals for front-end testing: (1) core functions and
integration with other services must work correctly; (2) the interface should display
and operate smoothly; and (3) increase productivity while reducing the cost of
manual testing. Developers can plan appropriate test types based on these goals,
including unit testing, integration testing, end-to-end testing, and visual testing. Unit
testing, integration testing, and end-to-end testing can effectively verify whether core
functions and service integrations are working properly, while visual testing ensures
that the user interface is displayed and operates smoothly. By combining different
testing methods and tools, developers can significantly improve product quality and
productivity while reducing manual testing costs.
Regardless of the testing technique used, code quality is generally related to the
amount of testing conducted. The more tests there are, the better the quality.
When applying testing techniques in UI development, the focus should be on
functional correctness and service integration rather than visual details. Since it
doesn’t rely on visual specifics, tests can remain unaffected even if the UI changes.
Visual changes are common, so developers should follow best practices for element
selection and consider using visual testing tools to make tests more flexible.
Currently, two mainstream test naming conventions exist: Given-When-Then and
it should. Both approaches help developers clearly express the test’s purpose,
what actions are being tested, and the expected outcome. They also promote
consistency and readability in test cases. Most importantly, when errors occur, these
conventions help developers understand the cause and quickly identify the issue.
Mock, spy, and double are three common concepts in testing, used to simulate,
monitor, or replace real objects to facilitate testing. They are all tools used to handle
dependencies in tests to ensure stability and reliability.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
H.-H. Tang, Practical Front-End Testing
https://doi.org/10.1007/979-8-8688-1451-8_2

2. Unit Testing
Hsin-Hao Tang1

Taipei, Taiwan

Unit Testing
Environment Setup, Installation, and Tool Comparison
Jest
Cypress
Notes
Minimal Scope Validation Logic
Breaking Down Overly Complex Code
Isolating Dependencies
Conclusion
Notes
How to Write Tests for Components? A React Example
Testing Implementation vs. Testing Behavior
Splitting Logic and Presentation
Summary
Notes
Shallow Rendering and Full Rendering
Shallow Rendering
Full Rendering
Summary
Notes
Chapter Review and Summary

You will learn the following in this chapter:

Unit testing benefits for code quality, early error detection, and the need for
complementary testing methods
The setup, installation, and comparison of Jest, Enzyme, and Cypress for effective unit
testing of JavaScript applications
Write unit tests with minimal scope validation by breaking down complex code and
isolating dependencies for more focused and effective testing

https://doi.org/10.1007/979-8-8688-1451-8_2

Write tests for React components by focusing on testing implementation vs. behavior,
using examples like a counter and calculator component
Shallow and full rendering techniques in React testing, explaining their benefits,
limitations, and usage with Enzyme and React Testing Library

Unit Testing
Unit testing refers to testing the “smallest unit” or “independently testing specific code
fragments” with the goal of verifying whether the input and output of a function, method,
or class instance meet expectations. It focuses on examining the smallest functional units
of the code to ensure they work independently and handle specific input/output scenarios
correctly.

As shown in the code below, the addNumbers function provides the functionality to
add two numbers:

// src/utils/addNumbers/addNumbers.js

const addNumbers = (a, b) => a + b;

Here’s a sample unit test. Given two numbers as input, it verifies whether the output
matches the expected result.

// src/utils/addNumbers/addNumbers.test.js

// Input two integers 1 and 2, expect to get 3
describe('addNumbers', () => {
 it('should return 3 when 1 + 2', () => {
 expect(addNumbers(1, 2)).toBe(3);
 });
});

During development, situations may arise due to code modifications or user actions
under different scenarios. These issues can be prevented or adjusted through testing to
avoid future problems, for example:

A developer accidentally changes a + b to a - b. Running the test would throw an
error, indicating to the developer that something broke and needs to be fixed.
When users input 0.1 and 0.2, the result is not 0.3 but 0.30000000000000004.
This happens because the calculation is converted to binary during the process. We need
to adjust the addNumbers function to handle this correctly, which is particularly
important for currency conversion or product discount calculations.

The code is modified as follows, using toFixed to round the decimal to a specified
number of places (in this case, one decimal place), then converting the result back to a
number. This avoids issues where the calculation result does not align with real-world use
cases due to conversion limitations.

// src/utils/addNumbers/addNumbers.js

const addNumbers = (a, b) => Number((a + b).toFixed(1));

The following test case verifies that the addNumbers function correctly handles
decimal addition. If any adjustments are made in the future, this test will effectively check
if the function meets the specified use case.

// src/utils/addNumbers/addNumbers.test.js

it('should return 0.3 when 0.1 + 0.2', () => {
 expect(addNumbers(0.1, 0.2)).toBe(0.3);
});

These examples highlight the benefits and necessity of implementing unit testing,
including

Improving code quality: The smaller the testing scope, the more focused and detailed
the tests can be, covering both happy path and edge cases, which ensures the highest
level of code quality.
Cost efficiency: Since unit testing targets the smallest scope, the time cost for
implementation is typically the lowest. In this case, unit testing offers the best value in
terms of cost and quality, making it the recommended starting point.
Early detection of potential errors: Unit tests help identify the root cause of issues early.
If errors occur, developers can quickly find the cause by examining the relevant test
cases.
Facilitating refactoring: When refactoring code, unit test cases can verify that
functionality still works as expected.
Providing excellent documentation: Each unit test case serves as a useful
documentation tool, recording what functionality exists and how it operates. This helps
the team understand the code more easily.

While unit testing is an essential testing method, it is not without limitations. Unit
testing often differs significantly from real-world interactions between components and
actual user behavior. Even if the unit test results are correct, other types of testing, such as
integration testing, are needed to ensure data flow and interactions between components
function properly.

Additionally, unit tests may pass, but that doesn’t always guarantee alignment with
real user interaction scenarios. There may be unforeseen interaction cases that result in
unexpected outcomes. To ensure overall system quality, different types of tests, such as
integration testing and end-to-end testing, are needed to complement one another and
achieve comprehensive, reliable test coverage.

In summary, the primary goal of unit testing is to verify whether input and output meet
expectations. Unit testing effectively improves code quality and quickly identifies core
issues. However, because unit testing focuses on the functionality of individual
components and differs significantly from real user interactions, it must be supplemented

by other types of testing, such as integration testing and end-to-end testing, to ensure
overall system quality.

Environment Setup, Installation, and Tool Comparison
In the field of software development, unit testing is an indispensable testing method. It
focuses on testing individual units of code to ensure their functionality and behavior meet
expectations. Jest and Cypress are two widely used testing frameworks in this domain.
This section introduces the setup and installation process for both Jest and Cypress,
allowing developers to choose the most suitable testing tool based on their needs and
proceed with relevant testing. This will help developers more effectively test products and
projects, ensuring their quality and stability.

Jest
Jest (https://jestjs.io/) is a testing framework for JavaScript that is known for
its simple syntax, built-in assertions, and mocking capabilities. It integrates easily with
other tools, making it simple for developers to write and run tests. As a result, Jest is
widely used for unit testing and integration testing, making it a preferred testing
framework for many JavaScript developers.

To install Jest, use the following commands, depending on your package manager,
such as yarn (https://yarnpkg.com/) or npm (https://www.npmjs.com/)
(Note 1):

yarn add --dev jest
npm install --save-dev jest

The --dev or -D option specifies that the package will be installed in the
devDependencies section of the package.json file. This is because, during the
development process, we use various testing tools and frameworks to run test scripts,
which ensure the code operates as expected and helps identify and fix any potential issues.
However, when the application is deployed to a production environment, these test scripts
are not needed. Therefore, testing-related packages are installed in the
devDependencies section rather than in dependencies.

Once installed, we can write a simple test to validate the code. Below is an example of
an addNumbers function that provides functionality to add two numbers:

// src/utils/addNumbers/addNumbers.js

const addNumbers = (a, b) => Number((a + b).toFixed(1));

The unit test is written as follows. It provides two numbers as input and verifies that
the output meets the expected result. The test is structured as follows:

The first test case ensures that when the input parameters are integers 1 and 2, the result
should be 3.

https://jestjs.io/
https://yarnpkg.com/
https://www.npmjs.com/

The second test case ensures that when the input parameters are decimal values 0.1 and
0.2, the result should be 0.3. This checks how the function handles floating-point
numbers.

The implementation of the test is as follows. This simple test helps confirm whether
the addNumbers function performs its intended functionality correctly.

// src/utils/addNumbers/addNumbers.test.js

describe('addNumbers', () => {
 // Input 1 and 2, the result is 3
 it('should return 3 when 1 + 2', () => {
 expect(addNumbers(1, 2)).toBe(3);
 });

 // Input 0.1 and 0.2, the result is 0.3
 it('should return 0.3 when 0.1 + 0.2', () => {
 expect(addNumbers(0.1, 0.2)).toBe(0.3);
 });
});

Explanation:

In the Jest testing framework, the describe function is used to group related test
cases together, enhancing code modularity and readability. The describe function
accepts two parameters: the first is a string that describes the test, and the second is a
function that contains one or more test cases. This structure makes the test code more
organized and easier to understand when reviewing results. For example, running the
test code from this example will produce the following output, clearly showing the test
results for the addNumbers.test.js file, with two test cases checking different
scenarios:

PASS src/utils/addNumbers/addNumbers.test.js
 addNumbers
 ✓ should return 3 when 1 + 2 (1 ms)
• ✓ should

Jest + Enzyme
Enzyme (https://enzymejs.github.io/enzyme/) is a JavaScript library
designed specifically for testing React applications. It offers a rich API that allows
developers to easily render, manipulate, and traverse React components. Enzyme supports
rendering components and performing assertions for unit and integration tests. It also
allows developers to simulate user interactions, test UI rendering, and verify behavior.
These features make Enzyme a powerful tool that helps developers efficiently simulate
and validate React application functionality. Its simple and understandable API enables

https://enzymejs.github.io/enzyme/

developers to query and interact with rendered components, improving testing efficiency
and accuracy.

To begin using Enzyme for testing React applications, you need to install Enzyme via
a package manager. Additionally, since React’s version updates may affect rendering and
interaction methods, developers need to install the corresponding Enzyme adapter package
based on the React version they are using (Note 6). These adapters act as an abstraction
layer, providing a stable API interface that ensures testing reliability and compatibility
when upgrading the framework. This method not only ensures the reliability of tests but
also offers an easy and effective way to accommodate React version changes.

yarn add --dev enzyme @cfaester/enzyme-adapter-react-18
npm install --save-dev enzyme @cfaester/enzyme-adapter-
react-18

Next, configure the settings file. setupTests.js is the default file that Jest reads
for setting up the test environment. Here, Enzyme’s adapter is configured to connect
Enzyme with React 18.

// src/setupTests.js

import { configure } from 'enzyme';
import Adapter from '@cfaester/enzyme-adapter-react-18';

configure({ adapter: new Adapter() });

Once configured, you can begin writing test code. Below is an example of a
<Counter> component that lets users increase or decrease a number by clicking buttons
to implement a counting function. In this example, you’ll see how to use Enzyme to
render the component and simulate user interaction to ensure the component behaves as
expected:

// src/Counter/Counter.js

const Counter = () => {
 const [count, setCount] = useState(0);
 const increment = () => setCount(count + 1);
 const decrement = () => setCount(count - 1);

 return (
 <>
 <div data-test-id="counter-value">{count}</div>
 <button data-test-id="decrement-button" onClick=
{decrement}>
 -
 </button>

 <button data-test-id="increment-button" onClick=
{increment}>
 +
 </button>
 </>
);
};

Explanation:

The useState hook is used to create and manage the count state, initialized to 0.
Two functions, increment and decrement, are defined to increase and decrease
the count value. In the JSX return, the interface interacts with the user, displaying the
current count value and two buttons (“+” and “-”). Clicking the buttons triggers the
increment and decrement functions, respectively.
Both the buttons and the displayed number have corresponding data-test-id
attributes, which are used as selectors for testing purposes to find and interact with
these elements in the test.

Using Jest and Enzyme to test the <Counter> component, the following code
simulates clicking the “+” button and checks whether the count increases from 0 to 1. This
test verifies how the component behaves on screen (Note 7).

// src/Counter/Counter.enzyme.test.js

describe('Counter component', () => {
 it('should get 1 when click the increment button', () => {
 const wrapper = mount(<Counter />);

 wrapper.find('[data-test-id="increment-
button"]').simulate('click');

 expect(wrapper.find('[data-test-id="counter-
value"]').text()).toBe('1');
 });
});

Explanation:

Enzyme’s mount method performs a full rendering, rendering the entire <Counter>
component and all of its child components. This is particularly useful when testing the
overall behavior of components in integration tests (Note 8).
Enzyme’s find method is used to locate target DOM elements within the rendered
component by passing in a selector. In this case, it’s used to find the DOM elements
with the data-test-id attributes of increment-button and counter-
value for further assertions.

Enzyme’s text method is used to retrieve the text content of the selected DOM
element.
Jest’s expect assertion checks whether the actual text content retrieved matches the
expected value “1.” If they match, the test passes; otherwise, it fails with an error
message.

To run the test:

yarn test src/Counter/Counter.enzyme.test.js
npm run src/Counter/Counter.enzyme.test.js

The test output shows that the <Counter> component behaves as expected:

PASS src/Counter/Counter.enzyme.test.js
 Counter component
 ✓ should get 1 when click the increment button (35 ms)

Jest + Testing Library
Testing Library (https://testing-library.com/) is a tool designed specifically
for testing JavaScript applications. Its core principle is to focus on testing user interface
behavior rather than implementation details. It includes various versions tailored for
different frameworks, such as React Testing Library, Vue Testing Library, and Angular
Testing Library. These tools are designed to help developers test user interactions and
behaviors. Testing Library is often used alongside testing frameworks like Jest, providing
a simple and easy-to-understand API that makes test code more readable, maintainable,
and comprehensible.

For React developers, to start using Testing Library, you can install it using a package
manager from your project root.

yarn add --dev @testing-library/react
npm install --save-dev @testing-library/react

Since this guide prefers using data-test-id as the testing attribute rather than the
default data-testid, the configuration can be adjusted by setting the
testIdAttribute. This adjustment allows developers to customize the data attributes
used for testing to match the project’s coding style and consistency.

// src/setupTests.js

import '@testing-library/jest-dom';
import { configure as configureTestingLibrary } from
'@testing-library/react';

configureTestingLibrary({ testIdAttribute: 'data-test-id'
});

https://testing-library.com/

Once configured, you can start writing test code. For example, using Jest and React
Testing Library, you can write test cases for the <Counter> component. The following
code demonstrates how to simulate clicking the “+” button and check if the number
increases from 0 to 1, just like in the previous example:

// src/Counter/Counter.rtl.test.js

describe('Counter component', () => {
 it('should get 1 when click the increment button', () => {
 const { getByTestId } = render(<Counter />);

 fireEvent.click(getByTestId('increment-button'));

 expect(getByTestId('counter-
value')).toHaveTextContent('1');
 });
});

Explanation:

React Testing Library’s render method performs a full render, rendering the entire
<Counter> component and all its child components. This is particularly useful when
performing integration tests where you need to test the overall behavior of components.
React Testing Library’s getByTestId can be used to find the target DOM element by
passing the testing attribute data-test-id. In this case, it looks for the data-
test-id values of increment-button and counter-value to interact with
these elements.
The @testing-library/jest-dom library provides the Jest matcher
toHaveTextContent to assert that the content of a DOM element matches the
expected text.
Jest’s expect assertion checks if the actual text matches the expected value “1.” If
they match, the test passes; otherwise, it fails with an error message.

To run the test:

yarn test src/Counter/Counter.rtl.test.js
npm run src/Hello/Hello.enzyme.test.js

The test output shows that the <Counter> component behaves as expected:

PASS src/Counter/Counter.rtl.test.js
 Counter component
 ✓ should get 1 when click the increment button (40 ms)

Cypress

Cypress (https://www.cypress.io/) is a comprehensive front-end testing
framework that offers a range of powerful features, including real-time test feedback, a
simple API, automatic waiting mechanisms, and support for screenshots and video
recording. While Cypress was initially designed for integration or end-to-end testing, its
powerful features and ease of use also make it a viable option for unit testing. This
multipurpose testing framework not only helps developers ensure the overall quality of an
application but also provides rich test feedback, leading to a more efficient development
process.

To start using Cypress for testing, you can install it via a package manager from the
project root.

yarn add --dev cypress
npm install --save-dev cypress

To ensure ease of use, consistency, and integration with other tools, you can add a
cypress:open script in the package.json file as a preconfigured command (Note
9). This script acts as a shortcut for launching Cypress tests, so when testing is needed in
the future, you can quickly start the Cypress test environment with a simple command.
This approach not only simplifies the test initiation process but also ensures the
consistency of the project’s testing workflow with other development tasks, improving
both efficiency and maintainability.

// package.json

{
 "scripts": {
 "cypress:open": "cypress open"
 }
}

To start Cypress, use the following commands:

yarn cypress:open
npm cypress:open

If this is your first time setting up the project, the Cypress setup interface will open in
the browser. Since this chapter focuses on unit testing, choose the “Component Testing”
option on the right, as shown in Figure 2-1. Follow the instructions on the screen to
complete the setup. Once configured, Cypress will handle the necessary settings, unlike
Jest, which requires manual configuration files for customization. This design allows
developers to get started with writing test code quickly without spending much time on
configuration.

https://www.cypress.io/

Figure 2-1 Cypress setup interface

Extend the mount command, which will help render components during testing.

// cypress/support/component.js

import { mount } from 'cypress/react18';

Cypress.Commands.add('mount', mount);

Once setup is complete, you can begin writing test code. For example, the following
code shows how to use Cypress to test the <Counter> component. Like the previous
examples, it simulates clicking the “+” button and checks if the number increases from 0
to 1.

// src/Counter/Counter.cy.js

describe('<Counter />', () => {
 it('should get 1 when click the increment button', () => {
 cy.mount(<Counter />);

 cy.get('[data-test-id="increment-button"]').click();

 cy.get('[data-test-id="counter-
value"]').should('have.text', '1');
 });
});

Explanation:

Cypress’s mount method fully renders the <Counter> component and all its child
components, just like in the previous examples. Full rendering is particularly useful for
integration tests where the overall behavior of the component is tested.
Cypress’s get method is used to find target DOM elements in the rendered component
by passing in the selector. In this case, it’s used to find the DOM elements with data-
test-id attributes increment-button and counter-value for further
assertions.
Cypress comes with a built-in assertion tool, Chai (https://www.chaijs.com/).
Here, Chai’s should function is used to assert that the actual text content matches the
expected value “1.” If they match, the test passes; otherwise, it fails with an error
message.

It’s important to note that since Cypress focuses on simulating real user interactions in
a browser environment, it is primarily used for integration or end-to-end testing.
Therefore, it does not offer shallow rendering functionality. Additionally, Cypress does
not provide built-in mock component mechanisms, so for unit testing, Jest with Enzyme or
Testing Library might be a better fit. However, if you want to switch between unit testing,
integration testing, and end-to-end testing, or if you want to use a single testing framework
for different types of tests, Cypress is a solid choice. Overall, Cypress is a comprehensive
testing framework that, while less flexible for unit testing compared to Jest with Enzyme
or Testing Library, meets the needs of developers for other types of tests depending on
their preferences and use cases.

To run the test file, select Counter.cy.js for testing:

yarn cypress:open
npm run cypress:open

The test output shows that the <Counter> component behaves as expected:

Counter.cy.js 400ms
 <Counter />
 should get 1 when click the increment buttonpassed
 should get -1 when click the decrement button

As shown in Figure 2-2, during the testing process, developers can observe the effect
of each line of code on the component in real time. This not only makes understanding the
test results more intuitive but also provides developers with a powerful tool to quickly
identify and resolve issues. If difficulties arise during the testing process, or debugging is
needed, Cypress’s time travel feature allows developers to rewind to any point in the test
process and retrieve the component’s state and related information at that moment, making
debugging and issue resolution more convenient.

https://www.chaijs.com/

Figure 2-2 Cypress test example

In the following sections of this chapter, we will explore examples using these
common frameworks to demonstrate how to write test code. However, developers can
choose the framework they prefer based on their needs or preferences.

Notes
Note 1: If you are using Create React App (https://create-react-app.dev/)
as the project setup template, Jest and Testing Library are already built-in, so you don’t
need to install additional packages. Additionally, for the Node version, it is
recommended to use the latest LTS (Long-Term Support) version.
Note 2: Since Enzyme no longer supports React versions after 16, there is no official
adapter. For React 17 and above, it is recommended to use unofficial adapters. This
book uses React 18 and above, so it’s recommended to install @cfaester/enzyme-
adapter-react-18. For more information, see Enzyme is dead. Now what?
(https://bit.ly/4bnIWNq).
Note 3: For detailed explanations and examples of component testing, see the section
“How to Write Tests for Components? A React Example” in this chapter.
Note 4: For detailed explanations and examples of full rendering, see the section
“Shallow Rendering and Full Rendering” in this chapter.
Note 5: For more on pretest commands and examples, see Chapter 6, section “Pre-
commands and Manual Test Invocation.”

Minimal Scope Validation Logic
The purpose of unit testing is to test the smallest functional units of code to ensure they
operate independently and correctly handle specific input and output scenarios as
expected. This approach effectively improves code quality and helps identify core issues
quickly. To achieve minimal scope validation logic in unit tests, two key principles must
be followed:

Break down overly complex code: Check whether the code block being tested only
completes one task. If it performs multiple tasks or is too complex, refactoring is
needed.

https://create-react-app.dev/
https://bit.ly/4bnIWNq

Isolate dependencies: When writing tests, isolate dependencies and focus on testing
only one function.

For example, the checkValentinesDay function checks whether today is
Valentine’s Day. If today is February 14, it returns the string “Happy Valentine’s Day”;
otherwise, it returns “Today is not Valentine’s Day.”

// src/utils/checkValentinesDay/checkValentinesDay.js

const checkValentinesDay = () => {
 const today = new Date();
 const month = today.getMonth() + 1;
 const day = today.getDate();
 return month === 2 && day === 14
 ? "Happy Valentine's Day"
 : "Today is not Valentine's Day";
};

The following test case assumes today is January 15 and checks whether it is
Valentine’s Day. In this test case, we expect that after calling the
checkValentinesDay function, the result will be “Happy Valentine’s Day.”

// src/utils/checkValentinesDay/checkValentinesDay.test.js

describe('checkValentinesDay', () => {
 it('today should be Valentines Day', () => {
 expect(checkValentinesDay()).toBe("Happy Valentine's
Day");
 });
});

When running this test using yarn test checkValentinesDay.test.js,
the expected result is “Happy Valentine’s Day,” but we receive the message “Today is not
Valentine’s Day,” causing the test to fail.

● checkValentinesDay › today should be Valentines Day
 Expected: "Happy Valentine's Day"
 Received: "Today is not Valentine's Day"

Breaking Down Overly Complex Code
Let’s examine why the test fails. We assumed today is January 15, which is not Valentine’s
Day. However, what we are really trying to test is

When today is January 15, it should correctly determine that it is not Valentine’s Day
and return the string “Today is not Valentine’s Day.”

When today is February 14, it should correctly determine that it is Valentine’s Day and
return the string “Happy Valentine’s Day.”

Looking at the checkValentinesDay function, it does several things:

Retrieves today’s date
Checks if today is February 14
Returns “Happy Valentine’s Day” or “Today is not Valentine’s Day”

From this, it becomes clear that the checkValentinesDay function does too
much. It not only checks if today is Valentine’s Day but also retrieves today’s date. This
makes it difficult to ensure we are testing the minimal scope. Therefore, we need to
refactor the checkValentinesDay function, simplifying its functionality to make it
more focused.

Since the primary goal of checkValentinesDay is to “determine if today is
Valentine’s Day,” we can break out the “retrieve today’s date” part into a separate
getToday function that can be reused. This allows the checkValentinesDay logic
to focus solely on checking if today is Valentine’s Day.

The refactored code looks like this: checkValentinesDay will call getToday to
retrieve today’s date and then return the appropriate string based on the result, either
“Happy Valentine’s Day” or “Today is not Valentine’s Day.”

// src/utils/checkValentinesDay/checkValentinesDay.js

const checkValentinesDay = () => {
 const today = getToday();
 return today === '2/14'
 ? "Happy Valentine's Day"
 : "Today is not Valentine's Day";
};

const getToday = () => {
 const today = new Date();
 const month = today.getMonth() + 1;
 const day = today.getDate();
 return `${month}/${day}`;
};

Explanation:

The getToday function retrieves today’s date. First, it creates a Date object
representing the current date and time. Then, the getMonth method is used to get the
current month (note that getMonth returns months starting from 0, so we need to add
1 to get the correct month). For example, if today is January 15, the getMonth method
will return 0 instead of 1. Then, the getDate method retrieves the current day. Finally,

the month and day are combined into a string formatted as MM/DD and returned. In this
case, it will return “1/15.”
The checkValentinesDay function checks if today is Valentine’s Day by calling
getToday to retrieve the current date in MM/DD format. It checks if today’s date is the
string “2/14,” which is the defined date for Valentine’s Day. If so, it returns “Happy
Valentine’s Day”; otherwise, it returns “Today is not Valentine’s Day.” For example, if
today is January 15, getToday will return “1/15,” so checkValentinesDay will
return “Today is not Valentine’s Day.”

After refactoring, the code structure and logic become clearer. Next, we will
implement the test to ensure the functionality is correct and meets expectations.

Isolating Dependencies
After refactoring, each function does just one thing: checkValentinesDay only
determines if today is Valentine’s Day, and getToday only retrieves today’s date. Now,
we will write the test. It is important to “isolate dependencies” and test only one function
at a time, ensuring the focus is on testing the specific functionality. Any functions outside
the test’s scope should be mocked to replace their actual implementation details (Note 1).

First, we mock getToday, which checkValentinesDay depends on. This
allows us to focus solely on testing whether checkValentinesDay correctly
determines if today is Valentine’s Day.

// src/utils/checkValentinesDay/checkValentinesDay.test.js

jest.mock('./getToday', () => ({
 getToday: jest.fn(),
}));

Next, we implement the test to check two scenarios:

When today is February 12, it should determine that it is not Valentine’s Day and return
the string “Today is not Valentine’s Day.”
When today is February 14, it should determine that it is Valentine’s Day and return the
string “Happy Valentine’s Day.”

Since we have already mocked getToday, we can use mockReturnValue to set
the return value of getToday, allowing us to test the logic of checkValentinesDay
(Note 2).

// src/utils/checkValentinesDay/checkValentinesDay.test.js

describe('checkValentinesDay', () => {
 // When today is February 12, it should return "Today is
not Valentine's Day"
 it('2/12 should not be Valentines Day', () => {
 getToday.mockReturnValue('2/12');

 expect(checkValentinesDay()).toBe("Today is not
Valentine's Day");
 });

 // When today is February 14, it should return "Happy
Valentine's Day"
 it('2/14 should be Valentines Day', () => {
 getToday.mockReturnValue('2/14');
 expect(checkValentinesDay()).toBe("Happy Valentine's
Day");
 });
});

Running this test using yarn test checkValentinesDay.test.js will
show that the test passes, with the following output:

PASS src/utils/checkValentinesDay/checkValentinesDay.test.js
 checkValentinesDay
 ✓ 2/12 should not be Valentines Day (2 ms)
 ✓ 2/14 should be Valentines Day (1 ms)

Conclusion
Breaking down complex code into smaller parts and isolating external dependencies
makes unit testing easier for developers. This method allows us to focus on validating the
smallest possible scope, which in turn helps achieve testing goals. All test cases in this
book are written according to this principle, enhancing both the efficiency and accuracy of
testing.

Notes
Note 1: For more on mocking, see Chapter 3, section “Mocking Components, API
Responses, and Third-Party Libraries.”
Note 2: For explanations, comparisons, and examples of mockImplementation and
mockReturnValue, see Chapter 3, section “Mocking Components, API Responses,
and Third-Party Libraries.”

How to Write Tests for Components? A React Example
When it comes to front-end testing, one of the main goals is to test the functionality and
behavior of components. But how do you write tests for components? In this section, we
will take React as an example to explain in detail how to write component tests, providing
implementation examples to help understand and master the process.

Testing Implementation vs. Testing Behavior

When implementing unit tests for components, developers usually approach it from two
perspectives: testing the “implementation” or evaluating the “behavior” of the component
(Note 1). To illustrate these two approaches, we will implement a <Counter>
component as an example. This component allows users to increment or decrement a
number by clicking buttons, thereby achieving a counting function. The following
example demonstrates how to use Enzyme to render the component and simulate user
interactions to ensure that the component functions correctly. For a preview of the
<Counter> component, refer to the previous section “Environment Setup, Installation,
and Tool Comparison.”

As shown in the code below, we implement the <Counter> component as a class
component for the counter functionality. In the component’s constructor, the initial state of
count is set to 0. Next, we define two methods, increment and decrement, for
incrementing and decrementing the counter’s value, respectively. In these methods, we use
the setState method to update the value of count by increasing or decreasing it based
on the previous state. In the render method, we return JSX that contains the counter
value, increment button, and decrement button, which serve as the user interface for
interaction. Each element includes a data-test-id attribute for testing purposes, and
both the increment and decrement buttons are bound to the corresponding click events,
invoking the previously defined increment and decrement methods.

// src/Counter/Counter-class.js

class Counter extends Component {
 constructor(props) {
 super(props);
 this.state = { count: 0 };
 }

 increment = () => {
 this.setState((prevState) => ({
 count: prevState.count + 1,
 }));
 };

 decrement = () => {
 this.setState((prevState) => ({
 count: prevState.count - 1,
 }));
 };

 render() {
 return (
 <>

 <p data-test-id="counter-value">Count:
{this.state.count}</p>
 <button data-test-id="decrement-button" onClick=
{this.decrement}>
 +
 </button>
 <button data-test-id="increment-button" onClick=
{this.increment}>
 -
 </button>
 </>
);
 }
}

Testing Implementation
We will write the first test example to test the “implementation” of the component. This
example will use Jest and Enzyme to write the test code.

Explanation:

In the code, the describe function is used to define two test cases. In each test case,
the beforeEach function is used to initialize the testing environment (Note 2). Then,
the <Counter> component is shallow rendered (Note 3), and the result is stored as the
wrapper variable. The advantage of this approach is that each test case uses a fresh,
unaltered instance of the component, ensuring the accuracy and reliability of the test
results (Note 4).
The first test case checks that clicking the “+” button increases the number by 1. Using
the test attribute data-test-id, the button with the value increment-button is
found, and a click event is simulated. Then, the state of the <Counter> component is
checked to see if it is correctly updated to 1.
The second test case checks that clicking the “-” button decreases the number by 1.
Similarly, the button with the value decrement-button is found using the test
attribute data-test-id, and a click event is simulated. The state of the
<Counter> component is then checked to ensure it is correctly updated to -1.

These tests ensure that the <Counter> component correctly increments or
decrements the number when the user clicks the buttons. This not only guarantees that the
component functions properly but also provides developers with a reliable way to verify
and maintain the component’s behavior.

// src/Counter/Counter-class.enzyme.test.js

describe('Counter component', () => {
 let wrapper;

 beforeEach(() => {
 wrapper = shallow(<Counter />);
 });

 // Check that clicking the "+" button increments the
number by 1
 test('increments the counter value on button click', () =>
{
 const incrementButton = wrapper.find('[data-test-
id="increment-button"]');

 incrementButton.simulate('click');

 expect(wrapper.state('count')).toBe(1);
 });

 // Check that clicking the "-" button decrements the
number by 1
 test('decrements the counter value on button click', () =>
{
 const decrementButton = wrapper.find('[data-test-
id="decrement-button"]');

 decrementButton.simulate('click');

 expect(wrapper.state('count')).toBe(-1);
 });
});

By checking the count state value of the <Counter> component after clicking the
increment or decrement buttons, we are essentially testing how the component is
implemented. This method allows us to examine the implementation details and confirm
whether it works as expected. The advantage of this approach is that it ensures the
component functions correctly; however, the downside is that it might make the test code
fragile and unable to guarantee that the functionality is verified properly.

Testing Behavior
The next example will test the “behavior” of the component, and we will still use Jest and
Enzyme to write the test code. The difference this time is that the test will focus on
checking the change in the number displayed on the screen to evaluate the component’s
performance. First, in the first test case, we simulate the user clicking the “+” button and
then check if the number increases from 0 to 1. Next, in the second test case, we simulate
the user clicking the “-” button and check if the number decreases from 0 to -1. Through
this approach, we can directly observe the change in the number on the screen after

clicking the increment or decrement button, thus testing the “behavior” of the
<Counter> component.

// src/Counter/Counter.enzyme.test.js

describe('Counter component', () => {
 // Check that clicking the "+" button increments the
number to 1

 it('should get 1 when click the increment button', () => {
 const wrapper = mount(<Counter />);

 wrapper.find('[data-test-id="increment-
button"]').simulate('click');

 expect(wrapper.find('[data-test-id="counter-
value"]').text()).toBe('1');
 });

 // Check that clicking the "-" button decrements the
number to -1
 it('should get -1 when click the decrement button', () =>
{
 const wrapper = mount(<Counter />);

 wrapper.find('[data-test-id="decrement-
button"]').simulate('click');

 expect(wrapper.find('[data-test-id="counter-
value"]').text()).toBe('-1');
 });
});

We will use Jest along with Testing Library to write the third test example. The
purpose of this example is the same as the second one above, which is to test the
“behavior” of the component. First, using the render method provided by React Testing
Library, we fully render the <Counter> component. Then, we use the getByTestId
method to get the DOM element with the test attribute data-test-id of
increment-button. Next, we simulate a click event and again use the
getByTestId method to retrieve the DOM element with the test attribute data-
test-id of counter-value. Finally, we check if its text content is “1,” verifying that
the number is correctly incremented after clicking the “+” button. This method not only
tests the functionality of the component but also ensures that the behavior of the
component meets expectations.

// src/Counter/Counter.rtl.test.js

describe('Counter component', () => {
 // Check that clicking the "+" button increments the
number to 1
 it('should get 1 when click the increment button', () => {
 const { getByTestId } = render(<Counter />);

 fireEvent.click(getByTestId('increment-button'));

 expect(getByTestId('counter-
value')).toHaveTextContent('1');
 });

 // Check that clicking the "-" button decrements the
number to -1
 it('should get -1 when click the decrement button', () =>
{
 const { getByTestId } = render(<Counter />);

 fireEvent.click(getByTestId('decrement-button'));

 expect(getByTestId('counter-
value')).toHaveTextContent('-1');
 });
});

Earlier, we mentioned implementing the <Counter> component as a class
component. Now, we will refactor it to a functional component. The specification of the
<Counter> component will remain unchanged, but the implementation details will be
different. This situation is common during refactoring and is often encountered when
fixing bugs or improving the code for efficiency.

Below is the reimplementation of the <Counter> component. This component uses
the useState hook to create and set the count state, initializing it to 0. The
<Counter> component defines two functions, increment and decrement, which
are used to increase and decrease the count state value, respectively. In the JSX, we
return a user interface that displays the current count value, along with “+” and “-”
buttons to increment and decrement the value. When the user clicks these buttons, the
increment and decrement functions are called. Each element has a data-test-
id attribute for testing purposes, making it easier to find and interact with these elements
in the tests.

// src/Counter/Counter.js

const Counter = () => {

 const [count, setCount] = useState(0);
 const increment = () => setCount(count + 1);
 const decrement = () => setCount(count - 1);

 return (
 <>
 <div data-test-id="counter-value">{count}</div>
 <button data-test-id="decrement-button" onClick=
{decrement}>
 -
 </button>
 <button data-test-id="increment-button" onClick=
{increment}>
 +
 </button>
 </>
);
};

What’s the difference between testing “implementation” and testing “behavior”? After
refactoring, we found that the first test example could not pass because Enzyme can only
access state in class components. However, the second and third test examples, which test
the behavior of the component, worked fine. Therefore, as long as the functionality
remains the same, focusing on testing behavior—how the component performs or how the
user interacts with it—allows test code to be more flexible. In contrast, focusing on testing
implementation details can make the tests more fragile, failing to guarantee that
functionality is correctly validated. As a result, testing “behavior” proves to be a better
approach for both validating functionality and maintaining flexibility (Note 5).

In the early stages of writing test code, developers typically choose Jest with Enzyme
to conduct tests. These early test codes mainly focus on testing the “implementation” of
components, such as checking the state changes of components after certain actions. React
Testing Library, which was released later, offers a user-centric testing perspective,
focusing on the changes in the UI seen by the user after specific interactions. In summary,
Enzyme is more inclined to test the implementation of components, while Testing Library
is geared toward testing user interactions. However, Enzyme also provides ways to
simulate user-triggered events to test component performance and user behavior, as
demonstrated in the second test example of this section.

Moreover, from the perspective of snapshots, Enzyme’s snapshots focus on the
internal structure of the component, including props, state, and child components,
monitoring the internal changes. On the other hand, Testing Library’s snapshots focus on
the appearance seen by the user, i.e., the final rendered UI, not the internal structure of the
component (Note 6). This difference reflects the different focuses and advantages of these
two testing approaches.

Splitting Logic and Presentation
When testing components, separating logic from the presentation allows for more efficient
testing. To illustrate this, we will implement a calculator <Calculator> component as
an example. The <Calculator> contains two input fields for entering numbers, a drop-
down for selecting the +, -, *, or / operator, and a button to perform the calculation. The
following code uses the useState hook to store the user’s input and operator, defines
the handleChange function to handle changes in the input fields and drop-down, and
defines the calculateResult function to compute the result of the two numbers.
Finally, the input fields, drop-down, calculate button, and result display are rendered, with
corresponding data-test-id attributes added for easy element selection during
testing.

// src/Calculator/Calculator.advenced.js

const Calculator = () => {
 const [num1, setNum1] = useState('');
 const [num2, setNum2] = useState('');
 const [operator, setOperator] = useState('+');
 const [result, setResult] = useState('');

 const handleChange = (e) => {
 const { name, value } = e.target;
 if (name === 'num1') {
 setNum1(value);
 } else if (name === 'num2') {
 setNum2(value);
 } else if (name === 'operator') {
 setOperator(value);
 }
 };

 const calculateResult = () => {
 const parsedNum1 = parseFloat(num1);
 const parsedNum2 = parseFloat(num2);

 switch (operator) {
 case '+':
 setResult(parsedNum1 + parsedNum2);
 break;
 case '-':
 setResult(parsedNum1 - parsedNum2);
 break;
 case '*':
 setResult(parsedNum1 * parsedNum2);

 break;
 case '/':
 setResult(parsedNum1 / parsedNum2);
 break;
 default:
 setResult('Invalid operator');
 }
 };

 return (
 <div>
 <input
 data-test-id="number1"
 type="number"
 name="num1"
 value={num1}
 onChange={handleChange}
 />
 <select
 data-test-id="operator"
 name="operator"
 value={operator}
 onChange={handleChange}
 >
 <option value="+">+</option>
 <option value="-">-</option>
 <option value="*">*</option>
 <option value="/">/</option>
 </select>
 <input
 data-test-id="number2"
 type="number"
 name="num2"
 value={num2}
 onChange={handleChange}
 />
 <button data-test-id="calculate" onClick=
{calculateResult}>
 Calculate
 </button>
 <div data-test-id="result">{result}</div>
 </div>
);
};

This code is generally fine, but there are a few points worth discussing:

First, this component handles the UI, calculation logic, and state management all at
once, making it difficult to separate parts for reuse.
Second, without breaking the component into smaller pieces, the code can become
overly lengthy, which should be avoided to keep it more understandable and
maintainable.
Similarly, lack of separation can make testing too complex, causing the test code to
become brittle and harder to maintain.
Lastly, without breaking it up, it becomes challenging to achieve division of labor or
phased development, potentially leading to a disorganized and inefficient development
process. Therefore, it’s recommended to split this component, separating the UI,
calculation logic, and state management to enhance reusability, testability, and
maintainability.

The issues mentioned above can be resolved through refactoring. The goal of
refactoring is to break the code into smaller units, making it easier to maintain, test, and
reuse. It also facilitates phased development and better teamwork. Before refactoring, we
will first write tests for the <Calculator> component using React Testing Library. In
the following test case, we will verify that the result of 5 * 3 is 15. The test simulates
user interaction by inputting numbers, selecting an operator, and clicking a button to get
the result. This method is appropriate because it tests from the user’s perspective, making
the test more comprehensive and flexible and less prone to failure due to changes in
implementation details, thus reducing the maintenance effort for the tests.

// src/Calculator/Calculator.advenced.test.js

describe('Calculator', () => {
 it('should get 15 when 5 multiplied by 3', () => {
 const { getByTestId } = render(<Calculator />);

 // Enter numbers
 fireEvent.change(getByTestId('number1'), { target: {
value: '5' } });
 fireEvent.change(getByTestId('number2'), { target: {
value: '3' } });

 // Select operator
 fireEvent.change(getByTestId('operator'), { target: {
value: '*' } });

 // Click calculate button
 fireEvent.click(getByTestId('calculate'));

 // Verify the result
 expect(getByTestId('result')).toHaveTextContent('15');

 });
});

Next, we will refactor the <Calculator> component by encapsulating the business
logic and state management related to calculations in a custom hook,
useCalculatorHook, while keeping only the UI-related parts within the
<Calculator> component. This approach has many benefits, including making the
code easier to maintain, test, and reuse, as well as simplifying collaboration and phased
development.

// src/Calculator/useCalculatorHook.js

const useCalculatorHook = () => {
 const [num1, setNum1] = useState(0);
 const [num2, setNum2] = useState(0);
 const [operator, setOperator] = useState('+');
 const [result, setResult] = useState(0);

 const handleChange = (e) => {
 const { name, value } = e.target;
 if (name === 'num1') {
 setNum1(value);
 } else if (name === 'num2') {
 setNum2(value);
 } else if (name === 'operator') {
 setOperator(value);
 }
 };

 const calculate = () => {
 switch (operator) {
 case '+':
 setResult(num1 + num2);
 break;
 case '-':
 setResult(num1 - num2);
 break;
 case '*':
 setResult(num1 * num2);
 break;
 case '/':
 setResult(num1 / num2);
 break;
 default:
 setResult(0);

 }
 };

 return {
 calculate,
 handleChange,
 num1,
 num2,
 operator,
 result,
 };
};

In this refactoring, we extracted the business logic and state management related to
calculations from the <Calculator> component and moved them into the custom hook
useCalculatorHook. This hook handles all the logic and state for the
<Calculator> component, including number inputs, operator selection, and
calculation results. In the future, if you need to reuse the calculator’s logic, you can simply
reuse the useCalculatorHook. By refactoring this way, the <Calculator>
component is now focused solely on the UI display, making it easier to understand, test,
and maintain.

// src/Calculator/Calculator.advenced-refactor.js

import useCalculatorHook from './useCalculatorHook';

const Calculator = () => {
 const { calculate, handleChange, num1, num2, operator,
result } =
 useCalculatorHook();

 return (
 <>
 <input
 data-test-id="number1"
 type="number"
 value={num1}
 onChange={handleChange}
 />
 <select data-test-id="operator" value={operator}
onChange={handleChange}>
 <option value="+">+</option>
 <option value="-">-</option>
 <option value="*">*</option>
 <option value="/">/</option>

 </select>
 <input
 data-test-id="number2"
 type="number"
 value={num2}
 onChange={handleChange}
 />
 <button onClick={calculate}>Calculate</button>
 <div data-test-id="result">{result}</div>
 </>
);
};

Since we’ve split the calculator into the <Calculator> component and the
useCalculatorHook, we can now test each part separately. We’ve already written
tests for the <Calculator> component, and now we will write tests for the
useCalculatorHook. The following example tests the scenario where 5 + 3 equals
8. Notice that the test works by calling the exported functions to input numbers, select an
operator, and trigger the calculation to get the result.

// src/Calculator/useCalculatorHook.test.js

describe('useCalculatorHook', () => {
 test('should get 8 when add 5 and 3', () => {
 const TestComponent = () => {
 const {
 calculate,
 handleNum1Change,
 handleNum2Change,
 handleOperatorChange,
 num1,
 num2,
 operator,
 result,
 } = useCalculatorHook();

 return (
 <div>
 <input
 data-test-id="number1"
 value={num1}
 onChange={handleNum1Change}
 />
 <select

 data-test-id="operator"
 value={operator}
 onChange={handleOperatorChange}
 >
 <option value="+">+</option>
 </select>
 <input
 data-test-id="number2"
 value={num2}
 onChange={handleNum2Change}
 />
 <button data-test-id="calculate" onClick=
{calculate}>
 Calculate
 </button>
 <div data-test-id="result">{result}</div>
 </div>
);
 };

 const { getByTestId } = render(<TestComponent />);

 // Enter numbers
 fireEvent.change(getByTestId('number1'), { target: {
value: '5' } });
 fireEvent.change(getByTestId('number2'), { target: {
value: '3' } });

 // Select operator
 fireEvent.change(getByTestId('operator'), { target: {
value: '+' } });

 // Click calculate button
 fireEvent.click(getByTestId('calculate'));

 // Verify the result
 expect(getByTestId('result')).toHaveTextContent('8');
 });
});

This code is used to test the behavior of the custom useCalculatorHook. The
scenario being tested is that when adding 5 and 3, the result should be 8. In the test code,
we first render the test component <TestComponent>, which uses the
useCalculatorHook to return states and functions. Then we simulate entering
numbers, selecting an operator, clicking the calculate button, and finally verifying that the

result is 8. This testing method simulates user interactions, ensuring that the calculator
behaves as expected.

What are the differences after refactoring?

Reusability: The logic and state have been extracted into useCalculatorHook,
making it easy to reuse this custom hook elsewhere.
Maintainability: The separation of logic and state makes the code more readable and
understandable. The <Calculator> component focuses only on rendering the UI,
making it easier to maintain.
Collaboration: Breaking down the code facilitates division of work. Different
functionalities can be implemented separately, tested, and submitted as smaller pull
requests (PRs), which are easier to review (Note 7).
Testability: The separation of logic and state allows us to test both parts individually.
This makes the tests more comprehensive and flexible. When writing tests, it’s best to
minimize dependency on UI details. If the UI frequently changes or isn’t finalized,
testing the hook’s functionality first ensures that the core features work properly. UI-
related tests can be added later once the design is finalized. There are many ways to
keep tests flexible regarding UI changes, such as using test attributes like data-
test-id instead of relying on visible text to target elements. Additionally, tests that
mimic actual user interactions tend to be more reliable and flexible (Note 8).

Splitting the code into smaller parts doesn’t need to happen immediately in the early
stages of development. Instead, consider refactoring and extracting features when
encountering similar functionality that can be reused. This approach is known as the
“refactor when needed” strategy. It allows developers to avoid overengineering during
initial implementation and focus on solving real problems or meeting actual needs. This
strategy also fosters discussions within the team, ensuring that the most suitable solution is
chosen based on concrete examples. Ultimately, it improves development efficiency while
maintaining code maintainability and scalability (Note 9).

Summary
When choosing a testing tool, Enzyme focuses on testing implementation, while Testing
Library emphasizes testing behavior. The current trend in testing suggests that “behavioral
testing” is a better approach. Therefore, whether you choose to use Jest with Enzyme or
Testing Library, focusing on testing behavior is key. Cypress, because it allows real-time
visibility into how each line of code affects the UI, better simulates actual user behavior,
making it an excellent choice for testing behavior. This is especially beneficial for unit and
integration testing of large components. Moreover, if you want a simple development
environment that also supports end-to-end testing, Cypress is a solid option.

Regarding how to refactor components for better testability, a common approach is to
encapsulate business logic and data state within a custom hook, while keeping the UI
display part in the component. This method simplifies maintenance, testing, and code
reuse while also making it easier to divide tasks or implement phased development.

Notes

Note 1: Behavioral testing, also known as black-box testing, refers to testing the
external behavior of a program rather than focusing on the internal implementation
details.
Note 2: For detailed explanations and examples of how to use the beforeEach
function to initialize the test environment, see Chapter 7, section “How to Use Setup
and Teardown? What Are beforeEach, afterEach, beforeAll, and afterAll?”
Note 3: For more on “flaky tests” and examples, see Chapter 7, section “Why Do Some
Test Cases Succeed Sometimes and Fail Other Times?”
Note 4: For a detailed explanation and examples of full rendering, see the section
“Shallow Rendering and Full Rendering” in this chapter.
Note 5: For recommendations on how to test components, read Lily Scott’s “The Right
Way to Test React Components” (https://bit.ly/3Sjqb6b).
Note 6: For detailed explanations and examples of snapshots, see Chapter 3, section
“Snapshots.”
Note 7: For guidelines on how to handle code reviews, see Google’s Code Review
Guidelines (https://google.github.io/eng-practices/review/).
Note 8: For more on how to avoid test failures caused by UI updates, see Chapter 7,
section “What to Do When UI Updates Cause Test Failures?”
Note 9: Refactor on Demand is a software development strategy that emphasizes
refactoring code only when necessary. This approach, based on Donald Knuth’s famous
quote, “premature optimization is the root of all evil,” highlights the importance of
avoiding early refactoring or optimization without sufficient evidence. Instead,
developers should focus on code readability, maintainability, and scalability during the
early stages of development, waiting for real issues to arise before making
improvements or optimizations. While this doesn’t mean developers should never
optimize, the key is to ensure that optimizations are truly needed and to proceed
cautiously to avoid unnecessary mistakes.

Shallow Rendering and Full Rendering
In JavaScript and web development, rendering refers to the process of converting data into
visual HTML elements. This process becomes more abstract and automated in JavaScript
frameworks. In React, for example, JSX is used to implement the UI, and React converts
this JSX into actual HTML elements, which are then inserted into the DOM. When
testing, developers use “shallow rendering” or “full rendering” techniques to simulate this
process to test the component’s behavior.

Shallow Rendering
Shallow rendering is a technique that renders only the current component and does not
render its child components. Since it only renders the component itself, it isolates
unnecessary dependencies, reducing test complexity and making it ideal for writing unit
tests. However, the limitation is that it cannot test the component’s child components,
which can be inconvenient for integration testing.

https://bit.ly/3Sjqb6b
https://google.github.io/eng-practices/review/

Common libraries like Enzyme or Testing Library provide APIs for shallow rendering
and component interaction in testing.

Enzyme
Enzyme provides the shallow method to allow developers to perform shallow
rendering. For example, the following code demonstrates the implementation of a
<Counter> component, which allows users to increment or decrement a number by
clicking buttons. The layout of the <Counter> component is presented in the earlier
section, “Environment Setup, Installation, and Tool Comparison.” The following code
demonstrates how the <Counter> component is implemented as a class component. The
constructor initializes the state count to 0. The increment and decrement methods
are defined to increase and decrease the count. In the render method, JSX returns the
UI with the count value, increment, and decrement buttons. Each element has a data-
test-id attribute for testing purposes, and the buttons are bound to the corresponding
methods.

// src/Counter/Counter-class.js

class Counter extends Component {
 constructor(props) {
 super(props);
 this.state = { count: 0 };
 }

 increment = () => {
 this.setState((prevState) => ({
 count: prevState.count + 1,
 }));
 };

 decrement = () => {
 this.setState((prevState) => ({
 count: prevState.count - 1,
 }));
 };

 render() {
 return (
 <>
 <p data-test-id="counter-value">Count:
{this.state.count}</p>
 <button data-test-id="decrement-button" onClick=
{this.decrement}>
 +

 </button>
 <button data-test-id="increment-button" onClick=
{this.increment}>
 -
 </button>
 </>
);
 }
}

Here’s an example test using Enzyme’s shallow method to implement shallow
rendering. This test case verifies whether the shallow rendering correctly renders the
<Counter> component. In the test, the shallow method is used to render the
<Counter> component, and the toJson method from the enzyme-to-json
package converts the rendered result into JSON format. The expect assertion compares
the rendered result with the expected output. The toMatchSnapshot function captures
a snapshot of the rendering, comparing it to previously generated snapshots. If the two
snapshots differ, the test fails. Snapshot testing ensures that any unintended changes to the
component are highlighted for the developer’s review (Note 1).

// src/Counter/Counter-class-enhanced.enzyme.test.js

test('should shallow render component correctly', () => {
 const wrapper = shallow(<Counter />);

 expect(toJson(wrapper)).toMatchSnapshot();
});

The snapshot below shows the DOM structure produced by Enzyme’s shallow
rendering of the <Counter> component, including the component’s attributes and event
handlers. This structure contains only the first layer of the component and does not render
the child components. The snapshot captures the component’s rendered output in a
specific state, and during future tests, it compares this output with previous results to
ensure there are no unexpected changes in the component’s rendering behavior.

// src/Counter/__snapshots__/Counter-class-
enhanced.enzyme.test.js.snap

exports[`Counter component should shallow render component
correctly 1`] = `
<Fragment>
 <CounterValue
 count={0}
 />
 <IncrementButton

 onClick={[Function]}
 />
 <IncrementButton
 onClick={[Function]}
 />
</Fragment>
`;

The next test case checks the increment method of the <Counter> component. It
uses Enzyme’s shallow method to shallow render the <Counter> component and
calls the increment method, then checks whether the component’s state has correctly
updated from 0 to 1. This test case verifies the correctness of the increment method,
but it only tests behavior directly related to this <Counter> component without
involving its child components or external dependencies, focusing solely on the internal
functionality.

// src/Counter/Counter-class-enhanced.enzyme.test.js

test('should increment the counter value to 1 when calling
increment method', () => {
 const wrapper = shallow(<Counter />);

 wrapper.instance().increment();

 expect(wrapper.state('count')).toBe(1);
});

In this code, by checking the state value of count after clicking the increment or
decrement button, the test is focused on testing the “implementation.” As mentioned in
previous chapters, if the <Counter> component is refactored later, tests that focus on
implementation details may break. Therefore, it is generally recommended to test
“behavior” instead. In other words, if the functionality remains unchanged, even if the
implementation changes, testing behavior—how the component functions or how the user
interacts with it—makes tests more flexible. On the other hand, focusing on testing
implementation details makes tests more fragile and less reliable in validating the
component’s functionality. Testing behavior is a more robust and recommended approach
(Note 2).

React Testing Library
Besides Enzyme, Jest can also be paired with React Testing Library to test components.
React Testing Library provides a shallow method to perform shallow rendering. The
following example still uses the <Counter> component, but it’s slightly modified as a
functional component using hooks. This updated <Counter> component uses the
useState hook to manage the count state, initially set to 0. The component defines

two functions, increment and decrement, to update the count value. The returned
JSX includes three child components: <CounterValue>, <DecrementButton>,
and <IncrementButton>. These components render the current count value, the
decrement button, and the increment button, respectively, and contain relevant attributes
and event handlers to interact with the <Counter> component.

// src/Counter/Counter-enhanced.js

const Counter = () => {
 const [count, setCount] = useState(0);
 const increment = () => setCount(count + 1);
 const decrement = () => setCount(count - 1);

 return (
 <>
 <CounterValue count={count} />
 <DecrementButton onClick={decrement} />
 <IncrementButton onClick={increment} />
 </>
);
};

The following test case uses the createRenderer function from the react-
test-renderer/shallow library to implement shallow rendering and generate a
snapshot. It shallow renders the <Counter> component, only rendering the first layer,
which includes the <CounterValue>, <IncrementButton>, and
<DecrementButton> components, without rendering their child components. The
rendered result is compared with the previously stored snapshot to check for any
unintended changes.

// src/Counter/Counter.snapshot.rtl.test.js

import { createRenderer } from 'react-test-
renderer/shallow';

describe('Counter component', () => {
 describe('shallowing rendering', () => {
 const renderer = createRenderer();

 it('should get snapshot correctly', () => {
 const counter = renderer.render(<Counter />);

 expect(counter).toMatchSnapshot();
 });
 });

});

The snapshot generated from the React Testing Library’s shallow rendering of the
<Counter> component shows only the direct child components. It does not render the
nested child components. The snapshot is compared with previous snapshots to ensure
consistency when no unexpected changes have occurred.

exports[
 `Counter component shallowing rendering should get
snapshot correctly 1`
] = `
<React.Fragment>
 <CounterValue
 count={0}
 />
 <DecrementButton
 onClick={[Function]}
 />
 <IncrementButton
 onClick={[Function]}
 />
</React.Fragment>
`;

Full Rendering
Full rendering refers to rendering a component along with all of its child components.
This approach allows testing the entire behavior of a component. However, the limitation
is that it may increase test complexity and require more resources to execute the tests,
making it more suitable for integration tests.

Popular libraries such as Enzyme and Testing Library offer APIs for full rendering and
interacting with components during tests.

Enzyme
Enzyme provides the mount method to enable full rendering. Using the <Counter>
component as an example, the following test case utilizes Enzyme’s mount method to
fully render the <Counter> component. It then uses the toJson method from the
enzyme-to-json package to convert the rendered output to a JSON format. Finally, it
applies Jest’s snapshot testing to compare the rendered result with a previously generated
snapshot to ensure that the <Counter> component is rendered correctly and has not
changed unexpectedly. If the rendered result matches the previous snapshot, the test
passes; otherwise, it fails and displays the differences in rendering. Developers can use
this to verify whether the changes are intentional or not. Since mount renders all
components and includes DOM elements, it allows testing the complete lifecycle of the
component and its child components, making it suitable for integration tests.

// src/Counter/Counter-class-enhanced.enzyme.test.js

import toJson from 'enzyme-to-json';

test('should mount component correctly', () => {
 const wrapper = mount(<Counter />);

 expect(toJson(wrapper)).toMatchSnapshot();
});

The snapshot below shows the fully rendered result of the <Counter> component
using Enzyme’s full rendering, including all the child components, attributes, and states.
This snapshot is compared with the previously generated one to ensure consistency when
no unexpected changes have occurred.

// src/Counter/__snapshots__/Counter-class-
enhanced.enzyme.test.js.snap

exports[`Counter component should mount component correctly
1`] = `
<Counter>
 <CounterValue
 count={0}
 >
 <p
 data-test-id="counter-value"
 >
 Count:
 0
 </p>
 </CounterValue>
 <IncrementButton
 onClick={[Function]}
 >
 <button
 data-test-id="decrement-button"
 onClick={[Function]}
 >
 -
 </button>
 </IncrementButton>
 <IncrementButton
 onClick={[Function]}
 >
 <button

 data-test-id="increment-button"
 onClick={[Function]}
 >
 +
 </button>
 </IncrementButton>
</Counter>
`;

The next test case evaluates the increment method within the <Counter>
component. It uses Enzyme’s mount function to fully render the <Counter>
component in a complete DOM environment, allowing the interaction between the
component and its child components to be tested. In this test, the find method locates the
“+” button, and the simulate method mimics a click event. The test then checks if the
component’s state has been correctly updated from 0 to 1. This test case examines both the
component’s interaction behavior and its child components to confirm that the integration
works as expected in a real use case. This example highlights the full rendering concept,
but once again emphasizes that testing implementation details in this way is generally not
recommended.

// src/Counter/Counter-class-enhanced.enzyme.test.js

test('should increment the counter value to 1 when clicking
increment button ', () => {
 const wrapper = mount(<Counter />);

 const incrementButton = wrapper.find('[data-test-
id="increment-button"]');
 incrementButton.simulate('click');

 expect(wrapper.state('count')).toBe(1);
});

React Testing Library
React Testing Library provides the render method to facilitate full rendering. The
following test case fully renders the <Counter> component and captures a snapshot.
During the test, the <Counter> component is first rendered into the DOM, and the
toMatchSnapshot method verifies whether the rendered DOM structure matches the
expected structure. It then compares the DOM structure with the previously stored
snapshot to ensure consistency and detect any unexpected changes.

// src/Counter/Counter.snapshot.rtl.test.js

import { render } from '@testing-library/react';

describe('Counter component', () => {
 describe('full rendering', () => {
 it('should get snapshot correctly', () => {
 const counter = render(<Counter />);

 expect(counter.container).toMatchSnapshot();
 });
 });
});

The following snapshot shows the HTML structure rendered by React Testing
Library’s full rendering of the <Counter> component:

exports[`Counter component full rendering should get
snapshot correctly 1`] = `
<div>
 <p
 data-test-id="counter-value"
 >
 Count:
 0
 </p>
 <button
 data-test-id="decrement-button"
 >
 -
 </button>
 <button
 data-test-id="increment-button"
 >
 +
 </button>
</div>
`;

The next test case evaluates the increment method of the <Counter> component.
It uses React Testing Library’s render function to fully render the <Counter>
component and simulate user interactions in a complete DOM environment. The test uses
the getByTestId method to locate the “+” button and the fireEvent.click
method to simulate a click. Finally, it verifies that the displayed result is updated to 1. This
test case checks the component’s interaction behavior and ensures that the
<CounterValue>, <IncrementButton>, and <DecrementButton>
components work correctly together in real use scenarios (Note 3).

// src/Counter/Counter.snapshot.rtl.test.js

describe('full rendering', () => {
 let counter;
 const renderCounter = () => <Counter />;

 beforeEach(() => {
 counter = render(renderCounter());
 });

 it('should get 1 when click the increment button', () => {
 const { getByTestId } = counter;

 fireEvent.click(getByTestId('increment-button'));

 expect(getByTestId('counter-
value')).toHaveTextContent('1');
 });
});

Summary
The comparison between shallow rendering and full rendering is summarized in Table 2-1.

Table 2-1 Comparison of Shallow Rendering and Full Rendering

Rendering
Method

Advantages Disadvantages Enzyme
Method

Testing
Library
Method

Shallow
rendering

Isolates unnecessary dependencies,
making it ideal for unit testing

Cannot test child components, making it
less convenient for integration tests shallow shallow

Full
rendering

Renders the component and all its
child components, enabling behavior
testing

Increases test complexity and may require
more resources, suitable for integration
testing

mount render

No matter which rendering method you choose, the selection should align with the
test’s objectives. For unit tests, shallow rendering should be used to isolate dependencies
and focus on the component’s behavior. For integration tests, full rendering should be
employed to test the overall behavior of the component and its interactions with child
components.

Notes
Note 1: For more information on snapshots and examples, see Chapter 3, section
“Snapshots.”
Note 2: For more discussion on testing implementation vs. behavior, see the section
“How to Write Tests for Components? A React Example” in this chapter.

Note 3: For more exploration on implementing integration testing, see Chapter 3,
section “Testing Features from the User’s Perspective and Maximizing Realism.”

Chapter Review and Summary
Unit testing refers to testing the “smallest unit” or “independently testing a specific
piece of code.” This type of testing primarily verifies whether the input and output of a
function, method, or class instance meet expectations, focusing on testing the smallest
unit of functionality to ensure that it operates independently and processes specific
inputs and outputs correctly.
Common unit testing frameworks include Jest paired with Enzyme or Testing Library
and Cypress. Developers can choose the most suitable tools based on their product and
project requirements.
“Breaking down large chunks of code and isolating dependencies” allows developers to
more easily implement unit tests, achieving the goal of testing minimal logic.
Regarding how to write tests for components, when the functionality remains
unchanged but the implementation may change, focusing on testing behavior allows
tests to be more flexible. On the other hand, focusing on implementation details makes
tests more fragile and less reliable for validating functionality. Therefore, “testing
behavior” is the better approach for verifying functionality and ensuring flexibility.
One common approach to refactoring components to be more test-friendly is to
encapsulate business logic and state management in custom hooks, while leaving the UI
in the component itself. This makes the code easier to maintain, test, and reuse and
facilitates smoother collaboration and incremental development.
In terms of choosing testing tools, Enzyme focuses on testing implementation details,
while Testing Library emphasizes behavior testing. The current mainstream approach
favors “behavior testing” as the better way to write tests. Therefore, whether using Jest
with Enzyme or Testing Library, aiming for behavior testing is recommended.
Since Cypress can immediately display the impact of every line of code on a
component’s UI, it excels at demonstrating actual user interactions, making it especially
suitable for unit tests and integration tests of large components. If a simple development
environment is needed along with end-to-end testing, Cypress is a good choice.
However, Cypress does not offer shallow rendering or built-in mock component
mechanisms, so for unit tests, Jest paired with Enzyme or Testing Library may be a
better option.
Comparing shallow rendering and full rendering: (1) Shallow rendering only renders
the component itself, isolating unnecessary dependencies, making it suitable for unit
testing. The limitation is that it cannot test child components, which can be
inconvenient for integration testing. (2) Full rendering renders the component and all its
child components, allowing the overall behavior of the component to be tested. The
downside is that it increases test complexity and may require more resources, making it
better suited for integration testing.
While unit testing can effectively verify whether code behaves as expected, it differs
significantly from real user interactions. Therefore, it needs to be supplemented by
other types of tests, such as integration testing and end-to-end testing.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
H.-H. Tang, Practical Front-End Testing
https://doi.org/10.1007/979-8-8688-1451-8_3

3. Integration Testing
Hsin-Hao Tang1

Taipei, Taiwan

Integration Testing
Notes
Testing Features from the User’s Perspective and Maximizing Realism
Testing Features from the User’s Perspective
Maximizing Realism
Notes
Mocking Components, API Responses, and Third-Party Libraries
How to Mock Components?
How to Mock API Responses?
How to Mock Third-Party Libraries?
Why Aim for Realism? Is Mocking Not Good Enough?
Can Testing Be Done Without Using Mock Data?
Notes
Snapshots
Notes
How to Write Tests for State Management? A Redux Example
Notes
Chapter Review and Summary

You will learn the following in this chapter:

Demonstrate how to test the interaction between combined components and ensure they function
correctly in real-world environments.
Write integration tests from the user’s perspective and maximize realism by minimizing mocks and
using real data.
Mock components, API responses, and third-party libraries to improve testing by isolating
dependencies and controlling variables.
Snapshot testing ensures UI consistency by comparing component renders to saved snapshots, but it
may not be suitable for dynamic data.
Write tests for Redux actions and reducers by focusing on the expected state changes and user
interactions.

Integration Testing
Integration testing, also known as functional testing, refers to testing “combined code segments.” This
type of testing is more comprehensive than unit testing, covering various aspects of a specific feature,
including integrating components, related packages or libraries, and rendering data fetched from APIs.

https://doi.org/10.1007/979-8-8688-1451-8_3

The goal is to perform a more thorough test of the functionality, ensuring that the integrated components
work together properly and achieve the expected results in real operational environments.

Let’s look at a simple example of an image list feature, with a structure as shown in Figure 3-1,
implemented using two components: <ImageList> and <ImageItem>. The main purpose of this
image list feature is to display image information visually.

Figure 3-1 Image list structure

Before implementing integration tests, let’s observe the functionality and compare unit testing with
integration testing. First, let’s look at the larger component <ImageList>, as shown in the following
code. This component is primarily responsible for determining how to display the image information
received. If no image information is available, a prompt informs the user that no images are available; if
there is image information, the <ImageItem> component displays the images.

// src/ImageList/ImageListMockData.js

const ImageList = ({ data }) => {
 // Render images
 const renderImages = () => {
 return data.products.map(({ id, title, images }) => (
 <ImageItem key={id} title={title} image={images[0]} />
));
 };

 // Render no data prompt

 const renderNoDataPrompt = () => {
 return <div data-test-id="no-data-prompt">No data to display.
</div>;
 };

 return (
 <>
 {!!data.products.length ? (
 <div data-test-id="image-list">{renderImages()}</div>
) : (
 renderNoDataPrompt()
)}
 </>
);
};

From a unit testing perspective, <ImageList> can be tested as follows:

Check if the “No data to display” prompt appears when no data is available.
Verify if the image section is displayed correctly when data is provided.

Here’s the unit test implementation using Jest with React Testing Library:

// src/ImageList/ImageListMockData.shallow.jest.test.js

describe('ImageList', () => {
 // Check if the no data prompt appears when no images are available
 it('should render no data prompt when no images', async () => {
 const renderer = createRenderer();
 const mockedData = { products: [] };

 const wrapper = renderer.render(<ImageList data={mockedData} />);

 expect(wrapper).toMatchSnapshot();
 });

 // Check if the image section is displayed correctly when data is
available
 it('should render correct image items when have data', async () => {
 const renderer = createRenderer();
 const mockedData = {
 products: [
 {
 id: '1',
 title: 'Building a fast website: From metrics to user
experience',
 images: ['https://bit.ly/4228IT0'],
 },
 {
 id: '2',
 title: 'Shimanami Kaido: A bike island-hopping adventure',
 images: ['https://bit.ly/4b5nLPO'],
 },

],
 };

 const wrapper = renderer.render(<ImageList data={mockedData} />);

 expect(wrapper).toMatchSnapshot();
 });
});

Explanation:

The first test case checks whether the “No data to display” prompt is shown when there is no image
data. We use react-test-renderer/shallow’s createRenderer method to create a
shallow renderer and use mock data for rendering. Then, we use toMatchSnapshot to verify the
presence of the no data prompt snapshot.
The second test case checks whether the image section is displayed correctly when image data is
available. Similar to the first test, we use mock data and shallow rendering (Note 1), followed by
checking the snapshot (Note 2) for the presence of the image section.

These tests validate the rendering behavior of the <ImageList> component under various
conditions to ensure the functionality works as expected.

Now, let’s look at the unit test implementation for the child component <ImageItem>. Since
<ImageItem> mainly displays an image and title, we can test whether the title text and image URL are
correct. Here’s the code for <ImageItem>:

// src/ImageList/ImageItem.js

const ImageItem = ({ title, image }) => {
 return (
 <div data-test-id="image-item">

 <p data-test-id="image-item-title">{title}</p>
 </div>
);
};

Although Cypress is typically used for end-to-end testing, it can also be used for unit testing. Below
is an example of how to implement unit tests for <ImageItem> using Cypress:

// src/ImageList/ImageItem.cy.js

describe('ImageItem', () => {
 // Verify if the title is displayed correctly
 it('should show image title correctly', () => {
 cy.mount(
 <ImageItem image={MOCK_IMAGE.images[0]} title={MOCK_IMAGE.title}
/>
);

 cy.get('[data-test-id="image-item-title"]').should(
 'have.text',
 'Building a fast website: From metrics to user experience'
);

 });

 // Verify if the image URL is correct
 it('should show image url correctly', () => {
 cy.mount(
 <ImageItem image={MOCK_IMAGE.images[0]} title={MOCK_IMAGE.title}
/>
);

 cy.get('[data-test-id="image-item-src"]').should(
 'have.attr',
 'src',
 'https://bit.ly/4228IT0'
);
 });
});

Explanation:

The first test case checks if the <ImageItem> component correctly displays the provided image title.
We use Cypress’s cy.mount to fully render the component and then use cy.get to find the element
containing the title and verify if the text matches the expected string.
The second test case checks if the image URL is displayed correctly. Similarly, we use cy.mount and
then verify if the correct image URL is present using cy.get.

These tests ensure that <ImageItem> works correctly under different conditions and guarantees its
functionality.

The above unit tests focus on individual components. For integration testing, we need to check
whether the data passed from <ImageList> to <ImageItem> is correctly transferred and rendered.

In the following integration test, we use the cy.mount method to fully render the <ImageList>
component. Then, we use the cy.contains method to check for the presence of specific text like
“Building a fast website” and “Shimanami Kaido.” If <ImageList> successfully passes the data to
<ImageItem>, we should be able to retrieve these strings.

// src/ImageList/ImagesList.cy.js

it('should render correct image items when have data', () => {
 const mockedData = {
 products: [
 {
 id: '1',
 title: 'Building a fast website: From metrics to user
experience',
 images: ['https://bit.ly/4228IT0'],
 },
 {
 id: '2',
 title: 'Shimanami Kaido: A bike island-hopping adventure',
 images: ['https://bit.ly/4b5nLPO'],
 },
],
 };

 // Render the component and pass in the data
 cy.mount(<ImageList data={mockedData} />);

 // Verify that the titles "Building a fast website" and "Shimanami
Kaido" are present
 cy.contains('Building a fast website');
 cy.contains('Shimanami Kaido');
});

If the data from <ImageList> is not successfully passed to <ImageItem>, such as if the title
field is renamed from title to heading, the test will fail.

// src/ImageList/ImageItem.js

const ImageItem = ({ heading, image }) => {
 return (
 <div data-test-id="image-item">

 <p data-test-id="image-item-title">{heading}</p>
 </div>
);
};

In this case, the test would fail, showing the following error message:

Timed out retrying after 4000ms: Expected to find content: 'Building a
fast website' but never did.

Such data passing issues are not detectable with unit tests alone but can be caught with integration
tests. Identifying side effects from integrations during testing helps reduce unexpected issues in real-
world scenarios, which is the primary goal of integration testing.

Notes
Note 1: For more information on rendering, see Chapter 2, section “Shallow Rendering and Full
Rendering.”
Note 2: For more details on snapshots, see the section “Snapshots” in this chapter.

Testing Features from the User’s Perspective and Maximizing
Realism
Since the goal of integration testing is to verify specific features to ensure that integrated components
work together correctly and achieve the expected results in real operational environments, there are two
principles to keep in mind when writing integration tests:

Test features from the user’s perspective.
Maximize realism, minimizing the use of mocks, avoiding overly artificial data, and ensuring full
component rendering.

Testing Features from the User’s Perspective
Since integration testing aims to validate complete functionality, and ultimately, it is the user who verifies
whether a feature works, it makes sense to test from the user’s perspective. The focus should be on how

the user interacts with the feature (Note 1). In plain terms, the test should specify what the user wants to
see, open, or click.

For example, a correct test description might be

Upon entering the home page, a red button is visible.
By clicking the buttons “1”, “+”, “2”, and “=”, the input box displays “3.”

In contrast, this is not written from the user’s perspective:

Add two numbers and get the result. The add(1, 2) function is expected to return 3.

If you want to test a simple calculator component, <Calculator>, you should write the test like
this: the user clicks the buttons “1”, “+”, “2”, and “=” and sees the result “3” on the screen. This type of
description better reflects the user’s workflow and expected outcome, meeting the purpose of integration
testing more effectively.

it('get 3 when click button 1, button add, button 2, and button
equal', () => {
 const wrapper = mount(<Calculator />);

 wrapper.find('[data-test-id="button-one"]').simulate('click');
 wrapper.find('[data-test-id="button-add"]').simulate('click');
 wrapper.find('[data-test-id="button-two"]').simulate('click');
 wrapper.find('[data-test-id="button-equal"]').simulate('click');

 expect(wrapper.find('[data-test-id="result"]').text()).toBe('3');
});

Explanation:

Using Jest’s it method, we define the purpose of the test case, describing that when the user clicks
buttons “1”, “+”, “2”, and “=”, the expected result is “3.”
Enzyme’s mount method is used to fully render the <Calculator> component for testing.
Enzyme’s find method locates button elements using the data-test-id attribute to target specific
buttons, and simulate('click') mimics the user’s button clicks.
Jest’s expect method checks if the result matches the expectation, and Enzyme’s text method
retrieves the text content of the selected DOM element.

The benefit of this testing approach is that it tests not only the user’s interaction with the interface but
also the corresponding functionality, such as the addition function. This method achieves the goal of
integrating different components, related packages, or libraries.

Maximizing Realism
Since the purpose of integration testing is to verify that all components work together correctly, it’s
important to avoid excessive mocking and instead test with fully rendered components in as realistic a
scenario as possible.

Let’s revisit the image list feature, which is implemented using two components: <ImageList> and
<ImageItem>. The main purpose of this feature is to visually display the retrieved image information.
The <ImageList> component determines the display based on the image data received. If no image
data is available, it shows a message to the user indicating that no images are available. If image data is
present, the <ImageItem> component displays the images (Note 2). Here is the code for the
<ImageItem> component:

// src/ImageList/ImageItem.js

const ImageItem = ({ title, image }) => {
 return (
 <div data-test-id="image-item">

 <p data-test-id="image-item-title">{title}</p>
 </div>
);
};

Here’s a mock implementation of the <ImageItem> component using jest.mock. This method
replaces the real <ImageItem> component with a mock implementation (<div data-test-
id="image-item-title">ImageItem</div>). This allows the test to isolate the logic of
<ImageItem>, avoiding its influence during testing. However, mocking <ImageItem> means
reproducing the original implementation details. Any changes to the component require updates to the
mock as well, which can easily be overlooked, leading to failed tests. Moreover, it’s impossible to ensure
that the mock fully represents the real component, making it difficult to confirm that the entire feature
works correctly when integrated (Note 3). Therefore, for integration testing, we should remove the mock
and fully render the <ImageList> component, including the real <ImageItem> (Note 4), to perform
a more complete test and ensure integration quality.

// src/ImageList/ImagesList.mock.test.js

jest.mock('./ImageItem', () => () => (
 <div data-test-id="image-item-title">ImageItem</div>
));

Furthermore, since errors often occur in unforeseen circumstances, using overly simplified or fake
test data is not effective in catching these types of issues. Developers tend to use small amounts of data in
testing, whereas real-world environments typically handle much larger datasets. This discrepancy can
lead to problems that are not detected during testing but emerge in production, such as layout issues, slow
API responses, or exceeding the browser’s local storage limits. Therefore, if possible, developers should
test with data that closely resembles real-world conditions to ensure application stability and performance
in actual environments.

Notes
Note 1: Behavior-driven development (BDD) is a software development method that emphasizes
describing software behavior in simple, natural language. By using scenarios to describe expected
behavior and automated tests to ensure that the implementation meets these expectations, BDD fosters
collaboration and ensures development aligns with user needs.
Note 2: For information on the image list’s UI, structure diagram, and examples, see the section
“Integration Testing” in this chapter.
Note 3: For more on mocking, see the section “Mocking Components, API Responses, and Third-Party
Libraries” in this chapter.
Note 4: For details on full rendering, see Chapter 2, section “Shallow Rendering and Full Rendering.”

Mocking Components, API Responses, and Third-Party Libraries
In testing, mocking is a technique used to simulate or replace target components, third-party libraries, or
API responses. It allows the creation of simulated objects or functions that replace the real
implementation details during tests to ensure the test code and its dependencies interact correctly.

The purposes of mocking are

Isolating dependencies, focusing on testing and validating specific features: Mocks can replace the
dependent objects or functions needed for interaction, allowing the test to focus on specific features
without being affected by external dependencies.
Controlling variables, effectively defining inputs or behaviors to produce specific outputs: This is
useful for testing particular scenarios and edge cases or reducing uncertainty from external
components and real environments.
Reducing side effects, preventing the test from directly modifying data sources such as databases or
issuing network requests, thus avoiding unnecessary work.

Because of these benefits, mocking provides consistent results, allowing developers to focus on
testing specific features and accurately determining whether the functionality works as expected.
Although previous chapters suggested aiming for realism and reducing the use of mocks (Note 1),
mocking can still be used as a flexible solution when needed.

Mocking can be categorized into three main types: components, API responses, and third-party
libraries. The following sections explain how to mock each of these types.

How to Mock Components?
In unit or integration tests, certain internal components may need to be mocked for reasons such as
simplifying the test scenario. For example, Component A might use Component B internally, but
Component B could be too complex or dependent on too many other elements, requiring refactoring to be
fully tested. While this chapter, section “Testing Features from the User’s Perspective and Maximizing
Realism,” encourages minimizing the use of mocks, mocking Component B can still be a reasonable
compromise.

Let’s revisit the image list feature, which is implemented using two components: <ImageList> and
<ImageItem> (Note 2). The primary goal of this feature is to visually display the retrieved image
information. The <ImageList> component decides how to display the images based on the received
data. If there’s no image data, a message informs the user that no images are available. If there is image
data, <ImageItem> displays the images. The original implementation of <ImageList> is shown
below. When <ImageItem> is needed, mocking it in tests can replace its real implementation.

// src/ImageList/ImageList.js

const ImageList = () => {
 // ...code omitted...

 const renderImages = () => {
 return images.map(({ id, title, images }) => (
 <ImageItem key={id} title={title} image={images[0]} />
));
 };

 // ...code omitted...
};

In the following code, jest.mock is used to mock the <ImageItem> component. This method
sets up a function that returns a mock implementation, such as <div>This is the ImageItem
component</div>. This mock replaces the real <ImageItem> component during tests, isolating its
logic to prevent it from affecting the test.

// src/ImageList/ImagesList.mock.test.js

jest.mock('./ImageItem', () => () => (

 <div>This is the ImageItem component</div>
));

Using @testing-library/dom’s screen.debug to print the currently rendered output, we
can see that the real implementation of <ImageItem> inside <ImageList> has been replaced with
the mock implementation (Note 3).

<body>
 <div>
 <div>This is the ImageItem component</div>
 <div>This is the ImageItem component</div>
 </div>
</body>

How to Mock API Responses?
In unit testing or integration testing, to comprehensively verify if a function works as expected, you often
need to obtain data from an API to test whether the functionality operates correctly. However, obtaining
data from an API involves network access and data stability concerns. Therefore, in unit or integration
testing (rather than end-to-end testing), mocking the API response is a common practice to avoid making
real network requests.

Let’s revisit the image list feature. The <ImageList> component fetches image data from an API
and displays it. When the API response contains no data, it shows a message indicating no images are
available; otherwise, it displays the images using the <ImageItem> component.

const ImageList = () => {
 const [images, setImages] = useState([]);

 useEffect(() => {
 async function fetchData() {
 try {
 const response = await
axios.get('https://dummyjson.com/products');
 setImages(response.data.products);
 } catch (error) {
 throw error;
 }
 }
 fetchData();
 }, []);

 const renderImages = () => {
 return images.map(({ id, title, images }) => {
 return <ImageItem key={id} title={title} image={images[0]} />;
 });
 };

 return (
 <>
 {images.length !== 0 ? (
 renderImages()
) : (
 <div data-test-id="no-data-prompt">No data to display.</div>

)}
 </>
);
};

Below is an example of a test case for verifying whether the <ImageList> component correctly
renders the image data when received from the API. First, since the <ImageList> component fetches
data using fetch, we use global.fetch = jest.fn().mockImplementation(...) to
mock the implementation and provide mock data. Next, React Testing Library’s act function is used to
handle asynchronous rendering, ensuring that the component is fully rendered after the state has been
updated. In this example, if render is not wrapped in act, the component might render prematurely,
resulting in a snapshot indicating no data available. Finally, getAllByTestId is used to retrieve DOM
elements with the test attribute data-test-id="image-item-title". Using Jest’s expect
assertion function, we verify that the <ImageList> component renders two elements with the image-
item-title test attribute, meaning two image titles should be displayed (Note 4).

// src/ImageList/ImagesList.mock.test.js

describe('ImageList', () => {
 it('should render correct image items when have data', async () => {
 global.fetch = jest.fn().mockImplementation(() =>
 Promise.resolve({
 json: () =>
 Promise.resolve({
 products: [
 {
 id: '1',
 title:
 'Creating a fast website: A comprehensive guide to
improving user experience and traffic',
 images: ['https://bit.ly/4228IT0'],
 },
 {
 id: '2',
 title: 'Shimanami Kaido: An island-hopping cycling
adventure',
 images: ['https://bit.ly/4b5nLPO'],
 },
],
 }),
 })
);

 const { getAllByTestId } = await act(async () => render(<ImageList
/>));

 expect(getAllByTestId('image-item-title')).toHaveLength(2);
 });
});

mockImplementation and mockReturnValue are mocking methods provided by Jest to
simulate function return values. The difference between these methods is that mockImplementation

allows you to simulate the execution process of a function, while mockReturnValue only simulates
the return value. Additionally, mockReturnValue is a simplified version of
mockImplementation, used solely for setting the mock function’s return value. Thus, if you’re only
simulating a return value, both can be used, but mockReturnValue is more intuitive and readable.

What exactly is the difference between mockImplementation and mockReturnValue? For
example, in the following code, the getStatusById function returns the status corresponding to the
id passed in based on the given list:

// src/utils/getStatusById/getStatusById.js

const getStatusById = (list, id) => {
 const { status } = filterList(list, id);
 return status;
};

Since the filterList function belongs to another module, we don’t want to call it in this test.
Therefore, we can use jest.mock to mock the return value of the filterList function, as shown
below:

// src/utils/getStatusById/getStatusById.test.js

const mockList = [
 { id: 1, status: 'active' },
 { id: 2, status: 'inactive' },
 { id: 3, status: 'pending' },
];

jest.mock('./filterList', () => {
 return jest.fn().mockReturnValue({ status: 'active' });
});

describe('getStatusById', () => {
 it('should return active status when get element id 1', () => {
 const id = 1;
 const result = getStatusById(mockList, id);
 expect(result).toBe('active');
 });

 it('should return inactive status when get element id 2', () => {
 const id = 2;
 const result = getStatusById(mockList, id);
 expect(result).toBe('inactive');
 });
});

However, there’s an issue. When searching for different id values, you need to simulate different
return values. In such cases, you’ll need mockImplementation to simulate the execution process of
the filterList function, as shown below:

jest.mock('./filterList', () => {
 return jest
 .fn()

 .mockImplementation(
 (list, id) => mockList.filter((item) => item.id === id)[0]
);
});

Thus, use mockReturnValue when return values don’t need to change; use
mockImplementation when return values need to be dynamic.

An interesting issue worth discussing is whether the mock state affects other tests. For example, does
mocking the return value of the filterList function affect other test cases? After slightly modifying
the code and running the second test case, a message appears: Number of calls: 1. Although the
first test case has already run, the second test case has not yet been executed, so you might expect the
count to be Number of calls: 0. This happens because, in Jest, the mock state is global. The mock
state from the first test case is not automatically cleared. Therefore, mockClear must be called
manually to reset the mock state, ensuring that subsequent tests are unaffected by earlier mock calls.

// src/utils/getStatusById/getStatusById.test.js

it('should return inactive status when get element id 2', () => {
 expect(filterList).toHaveBeenCalledWith(mockList, 'fake-id');
});

In this test case, we use Jest’s toHaveBeenCalledWith matcher to verify whether dispatch
was called correctly, i.e., whether filterList was called with mockList and fake-id.

The test results show that the filterList function was called once.

Number of calls: 1

Here’s the modification. Use mockClear in the beforeEach stage to reset the mock state. The
beforeEach function runs before each test case, ensuring that all test cases start from the same initial
state, reducing the likelihood of inconsistent test results (Note 5).

// src/utils/getStatusById/getStatusById.test.js

jest.mock('./filterList', () => {
 // code omitted...
});

describe('getStatusById', () => {
 afterEach(() => {
 jest.clearAllMocks(); // Clears all mock states
 });

 it('should return active status when get element id 1', () => {
 const id = 1;
 const result = getStatusById(mockList, id);

 expect(result).toBe('active');
 });

 it('should return inactive status when get element id 2', () => {
 const id = 2;
 const result = getStatusById(mockList, id);

 expect(result).toBe('inactive');
 });
});

During development or integration testing, you may not want to directly mock API responses within
your project for various reasons: the API is not fully developed, you need to simulate different
environments, or you don’t want to add test data to the codebase. In such cases, MSW
(https://mswjs.io/) is a recommended Chrome extension for simulating and managing
HTTP/HTTPS network requests and responses, making it a useful tool to speed up development and
validate code correctness.

How to Mock Third-Party Libraries?
Since whether third-party libraries function correctly is not a concern for developers, they are typically
not mocked. However, when there’s a need to define inputs or behaviors to produce specific outputs or
test certain scenarios, mocking third-party libraries becomes a practical workaround.

Let’s revisit the image list feature. In the previous example, the <ImageList> component fetched
API responses using fetch. What if it used a library like axios instead (Note 6)?

// src/ImageList/ImageListAxios.js

const ImageList = () => {
 const [images, setImages] = useState([]);

 useEffect(() => {
 async function fetchData() {
 try {
 const response = await
axios.get('https://dummyjson.com/products');
 setImages(response.data.products);
 } catch (error) {
 throw error;
 }
 }
 fetchData();
 }, []);

 // ...code omitted...
};

Here’s the corresponding test. The goal is to verify whether the <ImageList> component correctly
renders the received image data. Since the component uses axios to fetch data,
jest.mock('axios') is used to mock the implementation, with mockResolvedValue providing
mock data. This replaces actual network requests with mocked versions, making the test more stable and
controlled by avoiding real network requests during the testing process.

// src/ImageList/ImageListAxios.jest.test.js

jest.mock('axios');

describe('ImageList', () => {
 it('should render correct image items when data is available', async
() => {

https://mswjs.io/

 const mockedData = {
 products: [
 {
 id: '1',
 title:
 'Creating a fast website: A comprehensive guide to
improving user experience and traffic',
 images: ['https://bit.ly/4228IT0'],
 },
 {
 id: '2',
 title: 'Shimanami Kaido: An island-hopping cycling
adventure',
 images: ['https://bit.ly/4b5nLPO'],
 },
],
 };
 axios.get.mockResolvedValue({ data: mockedData });

 const { getAllByTestId } = await act(async () => render(<ImageList
/>));

 expect(getAllByTestId('image-item-title')).toHaveLength(2);
 });
});

Why Aim for Realism? Is Mocking Not Good Enough?
While “mocking” allows developers to test successfully, it does have certain limitations. For example, the
results of mocking components, API responses, or third-party libraries may differ from real-world
outcomes, making it harder to ensure proper interactions. Additionally, maintaining and updating both
real and mock implementations can be challenging.

Mocks Can Diverge from Reality
Mocks are not real components or real API responses, which means they may deviate from actual results.
For instance, if an API changes its data structure—adding new fields, renaming existing ones, or altering
data types—mocks won’t reflect these changes. Consequently, your UI may behave differently based on
unexpected API responses, causing issues that go undetected during testing. Without reflecting real-
world conditions, testing fails to ensure the functionality or product quality.

For example, in the test below, the <ImageItem> component is mocked, and the test checks if two
<ImageItem> components are found based on the data-test-id="image-item-title"
attribute:

// src/ImageList/ImagesList.mock.test.js

jest.mock('./ImageItem', () => () => (
 <div data-test-id="image-item-title">ImageItem</div>
));

// ...code omitted...

expect(getAllByTestId('image-item-title')).toHaveLength(2);

If the <ImageItem> component later updates its test attribute from data-test-id="image-
item-title" to data-test-id="image-item-name", the test still passes, even though the
real <ImageItem> no longer contains image-item-title. This shows how mocks can mask
issues, preventing tests from reflecting the actual behavior of components, thus failing to safeguard the
code effectively.

Mocking Cannot Guarantee Proper Interaction with Real Scenarios
Mocks cannot verify that actual interactions work correctly. For instance, does a real component transmit
data properly when integrated with another component? Is the API still active? These limitations mean
that testing doesn’t fully validate the functionality or guarantee the product’s quality.

As previously mentioned, the <ImageList> component’s test simulates an API response rather
than making a real network request. If the API changes its field names, data types, or goes offline, these
issues would remain undetected. In practice, end-to-end testing is typically used to catch these kinds of
problems.

// src/ImageList/ImageListAxios.jest.test.js

jest.mock('axios');

describe('ImageList', () => {
 it('should render correct image items when data is available', async
() => {
 const mockedData = {
 products: [
 {
 id: '1',
 title:
 'Creating a fast website: A comprehensive guide to
improving user experience and traffic',
 images: ['https://bit.ly/4228IT0'],
 },
 {
 id: '2',
 title: 'Shimanami Kaido: An island-hopping cycling
adventure',
 images: ['https://bit.ly/4b5nLPO'],
 },
],
 };
 axios.get.mockResolvedValue({ data: mockedData });

 // ...code omitted...
 });
});

Difficulty in Maintaining and Updating Both Real and Mock Implementations
Mocked components, API responses, or third-party libraries require additional code. When features
change, this test code also needs to be updated to stay in sync with the real-world implementation.
Failing to update mocks undermines testing efforts and can lead to a failure in validating functionality or
ensuring product quality.

As shown earlier, the <ImageItem> component is mocked in the test.

// src/ImageList/ImagesList.mock.test.js

jest.mock('./ImageItem', () => () => (
 <div data-test-id="image-item-title">ImageItem</div>
));

The actual implementation of <ImageItem> contains a test attribute data-test-id="image-
item-title".

// src/ImageList/ImageItem.js

const ImageItem = ({ title, image }) => {
 return (
 <div data-test-id="image-item">

 <p data-test-id="image-item-title">{title}</p>
 </div>
);
};

If the <ImageItem> component updates its test attribute from data-test-id="image-
item-title" to data-test-id="image-item-name", both the real and mock
implementations need to be updated to maintain test accuracy.

// src/ImageList/ImageItem.js

const ImageItem = ({ title, image }) => {
 return (
 <div data-test-id="image-item">

 <p data-test-id="image-item-name">{title}</p>
 </div>
);
};

The corresponding mock in the test must also be updated to reflect the change in the test attribute.

// src/ImageList/ImagesList.mock.test.js

jest.mock('./ImageItem', () => () => (
 <div data-test-id="image-item-name">ImageItem</div>
));

This approach, which involves maintaining and updating both real and mock implementations, relies
heavily on manual detection and changes. It’s challenging to ensure test effectiveness and manage code
quality.

Can Testing Be Done Without Using Mock Data?
Unless the code is overly complex or dependent on too many external factors without plans for
refactoring, testing can usually be done without mock data. In summary, unless absolutely necessary, it’s
best to aim for realism, minimize mocks, avoid overly simplified test data, and ensure components are

fully rendered. This allows for more comprehensive testing of functionality, ensuring that integrated
components work correctly together, ultimately delivering the expected results in real-world scenarios.

Notes
Note 1: For more explanations and examples of “aiming for realism,” see the section “Testing Features
from the User’s Perspective and Maximizing Realism” in this chapter.
Note 2: For details on the image list structure and example, see the section “Integration Testing” in this
chapter.
Note 3: For more debugging techniques, see Chapter 7, section “How to Debug? What If an Element
Can’t Be Found? How Do You Trace the Data Flow?”
Note 4: For verifying whether an element is present in the DOM, its count, and visibility, see the
section “Snapshots” in this chapter.
Note 5: For information on unstable tests and examples, see Chapter 7, section “Why Do Some Test
Cases Succeed Sometimes and Fail Other Times?”
Note 6: axios (https://axios-http.com) is a library for making HTTP requests that supports
both browser and Node.js environments. It provides a simple API for handling asynchronous requests,
processing HTTP responses, interceptors, request cancellation, and more. axios is a powerful and
flexible tool that is widely applicable and convenient for many use cases.

Snapshots
Snapshot testing is a front-end testing method used to verify if the rendering of a component or page is
consistent with previous results. It captures the rendered output of a component or page into a snapshot
file, then compares future test results with this snapshot to ensure that updates to the code yield the
expected results.

Let’s revisit the image list feature, which is implemented with two components: <ImageList> and
<ImageItem> (Note 1). The primary purpose of this feature is to display the retrieved image
information visually. The <ImageList> component determines how to display the images based on the
received data. If no image data is available, a message informs the user that no images can be displayed;
if image data is available, the images are shown.

// src/ImageList/ImageList.js

const ImageList = () => {
 // ...code omitted...
 return (
 <>
 {
 !!images.length
 ? renderImages() // Display images
 : renderNoDataPrompt(); // Prompt no images available
 }
 </>
);
};

To generate a snapshot for the <ImageList> component, the following code is written. First, the
<ImageList> component mocks an HTTP request using axios.get.mockResolvedValue,
assuming the API returns mock data mockedData to render the component. Then, render is used to
create the component and capture its snapshot, comparing it with the previously saved snapshot. If there
is a mismatch, the test fails, ensuring that the rendered result is consistent with updates, maintaining UI

https://axios-http.com/

stability. In this test case, mock data mockedData is used to render the component and generate a
snapshot of the image list.

// src/ImageList/ImageListAxios.snapshot.jest.test.js

it('should render correct image items when data is available', async
() => {
 const mockedData = {
 // ...data omitted...
 };
 axios.get.mockResolvedValue({ data: mockedData });

 const wrapper = await act(async () => render(<ImageList />));

 expect(wrapper).toMatchSnapshot();
});

Jest’s toMatchSnapshot method generates a snapshot of the element to verify its structure, while
React Testing Library’s act function synchronizes rendering asynchronous behaviors in the test. This
ensures that the component’s state is updated before rendering, resulting in the correct structure. Without
wrapping the render method in act, the component would render before receiving data, resulting in a
snapshot showing the “no data available” message.

The snapshot output looks like this. Here, the snapshot captures all DOM element attributes,
including implementation details:

//
src/ImageList/__snapshots__/ImageListAxios.snapshot.jest.test.js.snap

exports[`ImageList should render correct image items when data is
available 1`] = `
Array [
 <div
 data-test-id="image-item"
 >
 <img
 alt="Creating a fast website: A comprehensive guide to improving
user experience and traffic"
 data-test-id="image-item-src"
 src="https://bit.ly/4228IT0"
 />
 <p
 data-test-id="image-item-title"
 >
 Creating a fast website: A comprehensive guide to improving user
experience and traffic
 </p>
 </div>,
 <div
 data-test-id="image-item"
 >
 <img
 alt="Shimanami Kaido: An island-hopping cycling adventure"

 data-test-id="image-item-src"
 src="https://bit.ly/4b5nLPO"
 />
 <p
 data-test-id="image-item-title"
 >
 Shimanami Kaido: An island-hopping cycling adventure
 </p>
 </div>,
]

Another scenario occurs when no image data is available, in which case a message informs the user
that no images can be displayed. This can be tested by simulating an API response with no data using
mockResolvedValue, where the expected result is the display of a “no data” message.

// src/ImageList/ImageListAxios.snapshot.jest.test.js

it('should render no data prompt when no images', async () => {
 const mockedData = { products: };
 axios.get.mockResolvedValue({ data: mockedData });

 const wrapper = await act(async () => render(<ImageList />));

 expect(wrapper).toMatchSnapshot();
});

The snapshot for this scenario shows the “no data available” message.

//
src/ImageList/__snapshots__/ImageListAxios.snapshot.jest.test.js.snap

exports[
 `ImageList should render correct image items when data is available
1`
] = `
<div
 data-test-id="no-data-prompt"
>
 No data to display.
</div>
`;

As demonstrated by the examples above, snapshot testing is a convenient method that allows
developers to quickly implement tests while ensuring that the UI remains consistent and stable, avoiding
unexpected changes.

Snapshot testing is a convenient testing method, but it’s not suitable for every situation. Let’s explore
two examples to explain when snapshot testing is not ideal.

The first scenario is when data changes dynamically, making snapshots unsuitable for testing. For
instance, when using Date.now to get a timestamp, the rendered output would constantly change.
Here’s an example where Date.now gets the current timestamp and renders it in a component:

it('should render now correctly', async () => {

 const now = Date.now();

 const testRenderer = renderer.create(<>{now}</>);

 expect(testRenderer).toMatchSnapshot();
});

If the current time is 2024/01/29 14:45, the timestamp will be 1706510752546, and this snapshot will
serve as the basis for future comparisons.

exports[`ImageList should render now correctly 1`] =
`"1706510752546"`;

A second later, at 2024/01/29 14:46, the timestamp will be 1706510780376, which will no longer
match the previous snapshot, causing the test to fail.

exports[`ImageList should render now correctly 1`] =
`"1706510780376"`;

Since the timestamp changes over time, it’s unsuitable for snapshot testing. If there is mutable data in
the test, it needs to be mocked so the test can compare fixed inputs and outputs, ensuring the expected
results for specific scenarios. Additionally, if a snapshot conflict arises in version control, it’s
recommended to first resolve the code conflict before regenerating the snapshot.

The second scenario is when snapshots capture implementation details, like HTML structure changes,
which lead to test failures with small updates, such as adding a className or changing a data-*
attribute. Fixing these tests can become time-consuming, leading to wasted resources (Note 2). Thus, it’s
not recommended to use snapshots for recording implementation details. To test visual details, it’s better
to use visual testing tools specifically designed for visual comparisons. Visual testing captures snapshots
of the actual UI, providing a more accurate representation. Also, since snapshots can’t test user
interaction with components, they should be supplemented with unit testing or other forms of testing.

So, when is snapshot testing appropriate? In unit or integration tests, shallow rendering can be used to
test which components are rendered under specific conditions (Note 3). Alternatively, checking for the
existence of specific components is another valid approach. For instance, the <ImageList> component
decides whether to show a “no data” prompt or image blocks based on the API response. Using react-
test-renderer/shallow for shallow rendering, only the first level of components is rendered,
such as <ImageItem>.

// src/ImageList/ImageListMockData.shallow.jest.test.js

import { createRenderer } from 'react-test-renderer/shallow';

// ...omitted...

describe('ImageList', () => {
 it('should render no data prompt when no images', async () => {
 const renderer = createRenderer();

 const wrapper = renderer.render(<ImageList images={} />);

 expect(wrapper).toMatchSnapshot();
 });

 it('should render correct image items when data is available', async
() => {
 const renderer = createRenderer();
 // ...omitted...

 const wrapper = renderer.render(<ImageList data={mockedData} />);

 expect(wrapper).toMatchSnapshot();
 });
});

The first test case checks the no-data scenario, producing the following snapshot where the “no data”
message is displayed:

//
src/ImageList/__snapshots__/ImageListMockData.shallow.jest.test.js.snap

exports[`ImageList should render no data prompt when no images 1`] = `
<React.Fragment>
 <div
 data-test-id="no-data-prompt"
 >
 No data to display.
 </div>
</React.Fragment>
`;

The second test case checks the scenario where data is available, resulting in a snapshot that displays
the image blocks.

//
src/ImageList/__snapshots__/ImageListMockData.shallow.jest.test.js.snap
exports[
 `ImageList should render correct image items when data is available
1`
] = `
<React.Fragment>
 <ImageItem
 image="https://bit.ly/4228IT0"
 title="Creating a fast website: A comprehensive guide to improving
user experience and traffic"
 />
 <ImageItem
 image="https://bit.ly/4b5nLPO"
 title="Shimanami Kaido: An island-hopping cycling adventure"
 />
</React.Fragment>
`;

By rendering only the first layer of components, snapshots can help test conditional rendering while
maintaining flexibility. This approach avoids recording excessive implementation details and reduces the
chance of test failures, minimizing maintenance costs.

Aside from using shallow rendering snapshots to test conditional rendering, checking for the presence
of specific components is also an effective method. For example, the <ElementList> component
contains two elements that can either be visible or hidden on the screen, labeled with data-test-id
as visible-element and invisible-element.

// src/ElementList/ElementList.js

const ElementList = () => {
 return (
 <>
 <div data-test-id="visible-element" style={{ display: 'block'
}}>
 This is a visible element
 </div>
 <div data-test-id="invisible-element" style={{ display: 'none'
}}>
 This is a hidden element
 </div>
 </>
);
};

The following test checks for the existence and visibility of these elements using getByTestId,
along with toBeVisible, toBeInTheDocument, and toHaveLength to confirm that the
elements are present in the DOM and visible or hidden as expected.

// src/ElementList/ElementList.test.js

describe('ElementList', () => {
 it('should display the elements correctly', () => {
 const { getByTestId, queryAllByTestId } = render(<ElementList />);

 // Check that the visible element is present
 expect(getByTestId('visible-element')).toBeVisible();
 expect(getByTestId('visible-element')).toBeInTheDocument();
 expect(queryAllByTestId('visible-element')).toHaveLength(1);

 // Check that the hidden element is present
 expect(getByTestId('invisible-element')).not.toBeVisible();
 expect(getByTestId('invisible-element')).toBeInTheDocument();
 expect(queryAllByTestId('invisible-element')).toHaveLength(1);
 });
});

Explanation:

toBeVisible checks whether the element is visible to the user, considering CSS properties like
display, visibility, opacity, and the hidden or open attributes. Elements may exist but
not be visible, which is useful for checking the visibility state of elements. In this example,
visible-element is shown, and invisible-element is hidden.
toBeInTheDocument checks if an element exists in the DOM, even if it’s not visible. In this case,
both visible-element and invisible-element exist in the DOM.

toHaveLength checks the number of elements returned by queryAllByTestId. Like
toBeVisible, it’s used to confirm the presence of elements in the DOM, regardless of visibility. In
this example, both elements are present in the DOM.

In summary:

Use toBeVisible to check whether an element is toggled between visible and hidden.
Use toBeInTheDocument to check if an element is rendered in the DOM.
Use toHaveLength to check how many times an element is rendered in the DOM.

Notes
Note 1: For an explanation of the image list’s structure and examples, see the section “Integration
Testing” in this chapter.
Note 2: For more details on avoiding test failures due to UI updates, see Chapter 7, section “What to
Do When UI Updates Cause Test Failures?”
Note 3: For a detailed explanation and examples of shallow rendering, see Chapter 2, section “Shallow
Rendering and Full Rendering.”

How to Write Tests for State Management? A Redux Example
While developers are often advised to focus on testing from the user’s perspective and the behavior of
components, avoiding deep testing of implementation details, it becomes crucial to test when core logic
is stored in state management tools like Redux. This section will use Redux as an example to demonstrate
how to write effective tests.

When testing Redux actions and reducers, the goal is to ensure that the state machine operates as
expected. Since a reducer is a pure function, it will always produce the same output for the same input.
Therefore, testing involves comparing the output to the expected result. In other words, given the
previous state and an action, the reducer should output the expected next state.

(previousState, action) => newState;

Let’s take an example of a dessert shop ordering system called “Summer’s dessert shop.” The
interface is shown in Figure 3-2, where a user wants to order two “Chocolate Cream Rolls.” The user
clicks the “+” button to select the quantity, and now we will implement tests for this system.

Figure 3-2 Summer’s Dessert Shop Ordering System, Initial Screen

Users can modify the quantity by clicking the “+” and “-” buttons. Here, adding 1 more results in a
total of 2, as shown in Figure 3-3.

Figure 3-3 Summer’s dessert shop dessert shop ordering system, updated order quantity

To test the scenario where the user selects “Chocolate Cream Roll,” clicks the “+” button to add one,
and then clicks “+” again to add one more, the test implementation is as follows:

// src/Item.test.js

test('should show 2 items when clicking increment button', async () =>
{
 // ...omitted...

 // Click the "+" button to select the quantity
 fireEvent.click(getByTestId('add-to-cart'));
 // Click "+" to add 1 more
 fireEvent.click(getByTestId('increment-button'));

 // Expect to display 2
 expect(getByTestId('item-quantity')).toHaveTextContent('2');
});

toHaveTextContent is a Jest matcher provided by @testing-library/jest-dom, used to
check whether the text content of a DOM element matches the expected string. It is commonly used to
verify that an element contains specific text. Here, toHaveTextContent retrieves the string “2”
directly. If we used toBe, it would include more HTML details, which could make future adjustments
more time-consuming when refactoring or maintaining the tests (Note 1).

//src/Item.js

<div data-test-id="item-quantity">2</div>

Since the “Add Quantity” functionality is a crucial logic, more detailed testing of the reducer’s state
can be performed for the following scenarios:

The cart is empty, and the initial quantity of the item is 0.
The cart already contains 1 item, and the initial quantity is 1.

Let’s implement these two test cases.
The first test case involves an empty cart where the initial item quantity is 0. Triggering the action to

add 1 results in a total quantity of 1.

// src/redux.test.js

test('should add 1 item to cart when dispatching action ADD_TO_CART
from empty', () => {
 const initialState = { cart: {} };
 const action = {
 type: ACTIONS.ADD_TO_CART,
 payload: {
 itemId: 'item_id_998',
 },
 };

 expect(snackReducer(initialState, action)).toEqual({
 cart: {
 item_id_998: {
 quantity: 1,
 },
 },
 });
});

Explanation:

initialState defines the initial state, which is an empty cart in this case.
The action defines the dispatch action, which is ADD_TO_CART here, along with a payload
specifying the item ID to add to the cart.
The expect function provided by Jest is used to assert whether the reducer’s result matches the
expected state for the given initial state and action.
The toEqual method compares two values to see if they are equal. It’s a strict comparison,
performing deep comparisons for objects. In contrast, the more common toBe method does shallow
comparison and cannot compare objects (Note 2).
This test case expects that after the reducer receives the ADD_TO_CART action, the item should be
added to the cart with a quantity of 1.

The second test case involves a cart with an initial quantity of 1 item. Triggering the action to add 1
more results in a total quantity of 2.

// src/redux.test.js

test('should get 2 items in cart when dispatching action ADD_TO_CART
from 1 item', () => {
 const initialState = {
 cart: {
 item_id_998: {
 quantity: 1,
 },
 },
 };
 const action = {
 type: ACTIONS.ADD_TO_CART,
 payload: {
 itemId: 'item_id_998',
 },
 };

 expect(snackReducer(initialState, action)).toEqual({
 cart: {
 item_id_998: {
 quantity: 2,
 },
 },
 });
});

Explanation:

initialState defines the cart with 1 item having an ID of item_id_998 and a quantity of 1.
The action is defined as ADD_TO_CART, with a payload specifying the item ID to add.
This test case expects that after the reducer receives the ADD_TO_CART action, the item quantity
should increase to 2.

We’ve demonstrated how to test the scenario of ordering two “Chocolate Cream Rolls” from the
user’s perspective and the component’s behavior. What if we want to verify that the action is called as
expected? Here’s the test implementation: we can use jest.spyOn to spy on the action’s invocation
and check whether it was called with the correct parameters. In this example, for the ADD_TO_CART
action, we want to verify that after clicking the “+” button to select the quantity, and then clicking “+”
again, the action is triggered with the specified item ID 999.

// src/Item.test.js

test('should show 2 items when clicking increment button', async () =>
{
 // ...omitted...
 const spyDispatch = jest.spyOn(store, 'dispatch');

 // Click the "+" button to select the quantity
 fireEvent.click(getByTestId('add-to-cart'));
 // Click "+" to add 1 more
 fireEvent.click(getByTestId('increment-button'));

 // Expect the action to be triggered with the specified item ID
 expect(spyDispatch).toHaveBeenCalledWith({
 type: ACTIONS.ADD_TO_CART,
 payload: { itemId: '999' },
 });
});

Explanation:

jest.spyOn(...) is used to spy on the action invocation, checking whether the correct parameters
were passed.
React Testing Library’s fireEvent.click simulates user clicks on DOM elements. In this case, it
clicks the element with the data-test-id of add-to-cart to add the item, followed by another
click to increase the quantity to 2.
Since simulating the user’s actions triggers the dispatch to update the store, we can check whether
the correct action was dispatched using Jest’s toHaveBeenCalledWith matcher. It ensures that
the ADD_TO_CART action was dispatched with the payload containing the specified item ID 999.

In summary, when adding or modifying functionality, such as adjusting the action sequence or
updating naming conventions, testing implementation details can lead to test failures, which need to be
balanced. Focusing on testing real user scenarios, rather than implementation details, provides more
flexibility when features are added or modified, preventing test failures and the need to constantly fix
tests. However, when core logic must be protected, or features are developed incrementally, duplicate
tests may be necessary (Note 3). While these tests may seem repetitive, their goals differ. Unit tests
provide more precise feedback for solving problems, while integration tests cover more user-level
scenarios.

Notes
Note 1: For more details on avoiding test failures due to UI updates, see Chapter 7, section “What to
Do When UI Updates Cause Test Failures?”
Note 2: For a comparison between toEqual and toBe, see Chapter 2, section “Environment Setup,
Installation, and Tool Comparison.”
Note 3: For more on handling duplicate tests, see Chapter 7, section “How to Handle Duplicate Tests?”

Chapter Review and Summary
Integration testing refers to testing the “combined pieces of code.” Compared to unit testing, this type
of testing is more comprehensive, covering various aspects of a specific feature, including integrated
components, related libraries, and the presentation of data retrieved from APIs. The goal is to conduct
more thorough testing of functionalities, ensuring that integrated components work correctly together
and deliver expected results in real-world scenarios.
Since the purpose of integration testing is to validate specific features and ensure that integrated
components operate correctly in real-world scenarios, two principles should be followed when writing
integration tests: (1) test the feature from the user’s perspective, and (2) aim for realism by minimizing
mocks that replace real-world situations, avoiding overly fake data, and rendering components as fully
as possible.
Mocking is a method used to simulate or replace target components, third-party libraries, or API
responses. Mocks provide consistent results, allowing developers to focus on testing specific
functionality and effectively verifying whether it works as expected. While tests should strive to be as
realistic as possible by minimizing the use of mocks, they may still be necessary in some situations as
a pragmatic compromise.
Snapshot testing is a front-end testing method used to verify whether a component or page renders
consistently with previous results. It outputs the rendered result as a snapshot file, then compares
subsequent test results with this snapshot to ensure that changes in the code produce the expected
results. Snapshot testing is a convenient method that not only enables rapid implementation but also
helps maintain UI stability by preventing unintended changes. Shallow rendering is recommended for
testing which components appear under certain conditions, offering flexibility by avoiding the
recording of too many implementation details and reducing test failures and maintenance costs.
Two scenarios where snapshot testing is unsuitable: (1) when the data is dynamic, as snapshots
compare specific attributes and values; (2) it is not recommended to use snapshots to record
implementation details.
When testing Redux actions and reducers, the goal is to check whether the state machine operates as
expected. Since a reducer is a pure function, it always produces the same output given the same input.
Therefore, testing only requires comparing the output with the expected result.
When core logic is stored in a state management tool, testing becomes crucial. Even though duplicate
tests may be implemented, they serve different purposes and provide unique feedback. Unit tests
provide more precise information to resolve issues, while integration tests are closer to user-level
scenarios and cover more situations. These considerations should be used to determine whether to
implement tests for state management.
While integration testing aims to comprehensively verify functionality, there is still a slight gap
between it and the real user workflow. This gap can be supplemented by other types of tests, such as
end-to-end testing or visual testing.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
H.-H. Tang, Practical Front-End Testing
https://doi.org/10.1007/979-8-8688-1451-8_4

4. End-to-End Testing
Hsin-Hao Tang1

Taipei, Taiwan

End-to-End Testing
Notes
Environment Setup and Installation
Notes
Verifying User Flow
Memori
Conclusion
Notes
Chapter Review and Summary

You will learn the following in this chapter:

End-to-end testing simulates real user behavior to ensure the product
functions correctly, covering complete workflows and multiple
functionalities.
The installation and setup of Cypress for end-to-end testing, with
configuration and usage examples.
The principles and implementation of end-to-end testing, using an
example to demonstrate user interaction simulations.

End-to-End Testing
End-to-end testing (often abbreviated as E2E testing) refers to simulating
the actual user workflow when interacting with a product. For web

https://doi.org/10.1007/979-8-8688-1451-8_4

interfaces, this type of testing can simulate actions such as opening a
browser, entering a URL to navigate to a website, clicking specific features,
browsing through pages, and finally completing the entire workflow and
closing the window. The goal of this testing is to mimic real user behavior
to ensure that the product functions correctly in real-world usage scenarios.
It is typically the closest to the user level and covers the widest range of
scenarios.

For example, we can use Cypress to create a test that simulates a user
browsing the “About Me” page of the website “Summer’s dessert shop”
(https://www.cythilya.tw/about/). During this test, Cypress
will automatically launch a browser, simulate user behavior, and finally
verify if the page title is correctly retrieved. This test process covers the
entire workflow of browsing a specific page, which consists of many small
functionalities, including the individual components that make up the page,
the utility functions used to retrieve the page title, and the mechanisms that
link these functionalities together. In previous chapters, we focused on unit
testing and integration testing to test these small functionalities individually.
Those tests emphasized checking specific features, but now we enter the
realm of end-to-end testing, which tests the entire feature workflow as a
whole to ensure that the system operates smoothly and as expected.

// cypress/e2e/cythilya.cy.js

describe('about page', () => {
 it('should get title correctly when visit page',
() => {
 cy.visit('https://www.cythilya.tw/about');

 cy.get('.page-title').should('have.text',
'About Me');
 });
});

Explanation:

The describe function from Jest is used to group related test cases.
Typically, the outermost describe indicates the page or component

https://www.cythilya.tw/about/

being tested, serving as the name of the test (Note 1). In this case, the test
is for the “About Me” page.
The it function from Jest describes the purpose of a specific test case. In
this case, the test verifies whether the title is correctly retrieved when
visiting the “About Me” page.
Cypress’s cy.visit function navigates the browser to the specified
URL, here directing it to https://www.cythilya.tw/about.
Cypress’s cy.get function is used to select a DOM element with a
specific selector. In this case, it selects the DOM element with the
.page-title selector. Cypress, in combination with assertion tools
like Chai, then uses the should function to assert whether the text
content of this element matches the expected string “About Me.” If they
match, the test passes; otherwise, it fails.

Popular end-to-end testing frameworks include Cypress
(https://www.cypress.io/), Puppeteer (https://pptr.dev/),
WebdriverIO (https://webdriver.io/), and Nightwatch
(https://nightwatchjs.org/). These frameworks effectively
implement end-to-end testing, and in the following chapters, Cypress will
be the primary framework for implementation examples.

There are many advantages to implementing end-to-end testing. First,
since end-to-end testing simulates the entire user workflow from start to
finish, it thoroughly tests product functionality and reflects real-world usage
scenarios. Additionally, end-to-end testing covers multiple functionalities,
expanding the scope of testing and helping to reduce the likelihood of errors
in production environments. However, a challenge of end-to-end testing is
that when errors occur, it can be difficult to quickly pinpoint the root cause,
requiring a fallback to unit testing for adjustments. For scenarios that
require detailed visual comparisons, visual testing is recommended to
offload some of the burden from end-to-end testing and more effectively
detect changes in the visual layout.

Notes
Note 1: For discussions on naming tests, see Chapter 1, section “Naming
Conventions.”

https://www.cythilya.tw/about
https://www.cypress.io/
https://pptr.dev/
https://webdriver.io/
https://nightwatchjs.org/

Environment Setup and Installation
In the realm of end-to-end testing, there are several well-known testing
frameworks such as Cypress, Puppeteer, WebdriverIO, and Nightwatch.
These frameworks effectively implement end-to-end testing programs,
allowing developers to choose the tool that best suits their product and
project needs. Since this book primarily uses Cypress as the implementation
example framework, this chapter will introduce the setup and installation
process of Cypress for executing related tests.

To install Cypress in your project using a package manager like yarn or
npm, use the following commands. The --dev or -D option specifies that
the package will be installed under the devDependencies section of the
package.json file, as Cypress is a testing tool required only during
development and not needed in the production environment.

yarn add --dev cypress
npm install --save-dev cypress

After installation, Cypress can be used to implement and execute tests.
To make the project easier to manage and integrate with other tools, you can
add a custom script, cypress:open, to the package.json file to
launch Cypress tests.

{
 "scripts": {
 "cypress:open": "cypress open"
 }
}

To launch Cypress, use the following command. The cypress open
command will launch the Cypress interface, where developers can run test
programs, view test results, check error messages, and monitor the testing
process.

yarn cypress:open
npm cypress:open

If the project is being set up for the first time, the Cypress configuration
interface will open in a browser. Since this chapter focuses on end-to-end
testing, select the “End-to-End Testing” option (Note 1). Follow the
instructions on the page to complete the setup step by step. Once the
configuration is complete, Cypress automatically sets up the necessary
configuration, allowing developers to start writing test programs without
spending too much time on the setup process.

After the configuration is successful, developers can make additional
adjustments based on their needs. For example, you can globally set the
default viewport size for testing so that the web page opens with a size of
800x800 during each test run.

// cypress.config.js

e2e: {
 viewportWidth: 800,
 viewportHeight: 800,
},

Once the configuration is complete, you can start writing test programs.
For example, you can use Cypress to create a test program that simulates a
user visiting the “About Me” page of the “Summer’s dessert shop” website
(https://www.cythilya.tw/about/) and verify if the correct title
string is retrieved (Note 2).

// cypress/e2e/cythilya.cy.js

describe('about page', () => {
 it('should get title correctly when visit page',
() => {
 cy.visit('https://www.cythilya.tw/about');

 cy.get('.page-title').should('have.text', '關於
我');
 });
});

https://www.cythilya.tw/about/

Regarding file structure, the main test programs are placed in the
cypress/e2e folder, while related test data can be placed in the
cypress/fixtures folder. Cypress will automatically read files from
these folders and use them when executing tests. Cypress also provides
many APIs for interacting with the browser, allowing developers to create
test programs based on their specific needs.

Although this book primarily uses Cypress for the examples, developers
can choose the framework that best suits their needs or preferences. Other
frameworks, such as Puppeteer, have their own advantages and features.
For example, Puppeteer is developed by Google and thus has strong support
for Chrome (Note 3). Additionally, Puppeteer offers many APIs for
interacting with the browser, giving developers more control when needed.

Notes
Note 1: For an illustration of the Cypress setup interface, see Chapter 2,
section “Environment Setup, Installation, and Tool Comparison.”
Note 2: For an explanation of this example, see Chapter 4, section “End-
to-End Testing.”
Note 3: Cypress and Puppeteer have different design philosophies.
Cypress is higher level, focusing more on the user perspective, while
Puppeteer operates on a lower level, focusing on browser manipulation.
For example, if you need to intercept a network request, Cypress
provides the cy.intercept API, while Puppeteer uses
page.setRequestInterception to achieve the same
functionality.
Below is an example of simulating a failed network request using
Cypress. In this test case, cy.visit is used to navigate to a specific
website, followed by cy.intercept to intercept the network request
and return a custom response.

// cypress/e2e/network.interception.cy.js
describe('Network interception', () => {
 it('should intercept network request ', () => {
 cy.intercept('GET',
'https://www.cythilya.tw/about/', (req) => {
 // Intercept the network request and return
a custom response

 req.reply({
 statusCode: 200,
 body: 'Connection refused',
 });
 });

 // Visit the website
 cy.visit('https://www.cythilya.tw/about');
 });
});

Below is an example of simulating a failed network request using
Puppeteer. First, launch Puppeteer using launch and create a new page
with newPage to set up request interception. Use
page.setRequestInterception(true) to enable interception,
then use page.on('request', ...) to listen for request events. If
a request’s URL includes www.cythilya.tw/about, mark the
request as connectionrefused and abort it. Finally, use
page.goto(...) to visit the page that triggers the request, and close
the browser afterward.

const puppeteer = require('puppeteer');

(async () => {
 const browser = await puppeteer.launch();
 const page = await browser.newPage();

 // Intercept network requests
 await page.setRequestInterception(true);

 // Listen to requests and simulate a failed
network request for a specific URL
 page.on('request', (request) => {
 if
(request.url().includes('www.cythilya.tw/about'))
{
 request.abort('connectionrefused');
 } else {

http://www.cythilya.tw/about

 request.continue();
 }
 });

 // Visit the website
 await
page.goto('https://www.cythilya.tw/about/');

 await browser.close();
})();

As demonstrated by these two examples, Cypress and Puppeteer differ in
their design philosophies, leading to differences in how they interact with
the browser. Developers can choose the framework that best meets their
needs.

Verifying User Flow
Since the purpose of end-to-end testing is to simulate the real user’s
operation flow and ensure correct functionality in actual use cases, several
principles must be observed when implementing it:

Correctly simulate user interactions, such as clicking, typing, and
scrolling.
Accurately simulate the user environment, such as desktop or mobile
devices, browsers, and platforms, to ensure consistent results across
different environments.
Provide comprehensive functionality coverage. Since end-to-end testing
simulates the user’s complete workflow, it thoroughly tests the product’s
features, making it the most accurate reflection of actual user
interactions. Additionally, by spanning multiple features, it expands the
testing scope, reducing the chances of errors in production. Therefore,
end-to-end testing must cover all major application features to verify the
overall functionality.
Include testing for abnormal conditions to ensure that the application
handles errors or unusual cases properly.
End-to-end testing often incorporates performance and visual testing, and
the decision to include or separate these tests depends on the product and

project requirements.

When planning end-to-end testing, you should combine the user
interaction flow with the expected outcomes to ensure that the entire
application functions correctly while also providing extensive automated
test coverage.

Memori
Memori (https://memori-service.web.app/) is a real-time
sharing and interactive platform. It provides a user-friendly upload interface
(Figure 4-1), allowing guests at social gatherings, weddings, or any events
to take photos with their phones and immediately upload and share them. It
enables easy photo sharing and browsing for all participants (Note 1). In
this chapter, Memori will be used as the implementation example.

Figure 4-1 Memori image upload (desktop version)

For example, when testing the image upload functionality in a desktop
environment, the user flow can be divided into two cases: Scenario 1
“Upload Success” and Scenario 2 “Upload Failure,” with the following
steps (Note 2).

Scenario 1: Successful Image Upload

https://memori-service.web.app/

Step 1: Enter the website URL in the browser.
Step 2: Input the username and message, and select an image file.
Step 3: Click the submit button.
Step 4: Display a success message for the image upload.

The following Cypress test simulates a user’s actions on this website to
ensure a success message is displayed after the image is uploaded.

// cypress/e2e/memori.upload.cy.js

it('should get success message when upload image
with jpeg format', () => {
 // Step 1: Enter the website URL in the browser
 cy.visit('https://memori-ui-upload.web.app/?
serviceId=webconf2023');

 // Step 2: Input username, message, and select
an image file
 cy.get('[data-cy="user-name"]').type('summer');
 cy.get('[data-cy="message"]').type('hello
world!');
 cy.get('[data-cy="file-
upload"]').selectFile('cycling.jpeg', {
 action: 'drag-drop',
 force: true,
 });

 // Step 3: Click the submit button
 cy.get('[data-cy="submit"]').click();

 // Step 4: Display success message for the image
upload
 cy.get('[data-cy="success-
message"]').should('exist');
});

Explanation:

Jest’s it function is used to describe the purpose of the test case (Note
3). In this case, the test checks whether a success message appears after a
user uploads an image.
Cypress’s cy.visit function loads the specified URL in the browser,
in this case, https://memori-ui-upload.web.app/?
serviceId=webconf2023.
Cypress’s cy.get function is used to retrieve a specific DOM element
by its selector. Here, it selects the data-cy="user-name" DOM
element and simulates the user typing the username “summer.” Then, it
selects the data-cy="message" element and inputs the message
“hello world!” The selectFile method is used to choose the image
file cycling.jpeg and upload it. Finally, the cy.get method selects
the DOM element with data-cy="submit" and simulates a click
event to submit the form.
The cy.get method selects the DOM element with data-
cy="success-message" used to display the success message.
Cypress uses assertion tools, such as Chai, and the should method
checks whether the element exists. If it does, the test passes; otherwise, it
fails.

Scenario 2: Failed Image Upload
Step 1: Enter the website URL in the browser.
Step 2: Input the username and message, and select a PDF file, which is
an invalid image format.
Step 3: Click the submit button.
Step 4: Display a failure message for the image upload.

The following Cypress test simulates a user’s actions on this website to
ensure an error message is displayed when uploading an invalid image file
format:

// cypress/e2e/memori.upload.cy.js

it('should get error message when upload file with
pdf format', () => {
 // Step 1: Enter the website URL in the browser

https://memori-ui-upload.web.app/%253FserviceId%253Dwebconf2023

 cy.visit('https://memori-ui-upload.web.app/?
serviceId=webconf2023');

 // Step 2: Input username, message, and select a
PDF file, which is an invalid image format
 cy.get('[data-cy="user-name"]').type('summer');
 cy.get('[data-cy="message"]').type('hello
world!');
 cy.get('[data-cy="file-
upload"]').selectFile('cycling.pdf', {
 action: 'drag-drop',
 force: true,
 });

 // Step 3: Click the submit button
 cy.get('[data-cy="submit"]').click();

 // Step 4: Display failure message for the image
upload
 cy.get('[data-cy="error-
message"]').should('exist');
});

Explanation:

Jest’s it function is used to describe the test case, which checks whether
an error message appears when the user uploads an invalid file format.
Similar to Scenario 1, Cypress’s cy.visit loads the URL. The
cy.get function retrieves the DOM elements data-cy="user-
name" and data-cy="message", where the username “summer”
and the message “hello world!” are entered. The selectFile method
is used to upload the PDF file cycling.pdf. Finally, the cy.get
method selects the data-cy="submit" element and simulates the
submit action.
The cy.get method then selects the DOM element with data-
cy="error-message", used to display the failure message. Cypress
uses the should method to verify if the element exists. If it does, the
test passes; otherwise, it fails.

Cross-Platform Testing
Since users will use different devices depending on their conditions, it is
essential to conduct both cross-browser and cross-platform testing. For
example, you can simulate a user going through the above process on an
iPhone X. As shown in the code below, Cypress can use the
cy.viewport command to set the desired screen size and orientation for
testing. In addition to specifying width and height individually, you can
directly set the device’s name (e.g., iphone-6 or iphone-x) to specify
the viewport for that device.

Here is an example of Cypress test code that simulates user behavior on
both desktop and iPhone X:

// cypress/e2e/memori.upload.cy.js

describe('upload page', () => {
 describe('desktop', () => {
 // ...other tests...
 });

 describe('mobile', () => {
 beforeEach(() => {
 cy.viewport('iphone-x');
 });

 it('should get success message when upload
image with png format', () => {
 // Step 1: Enter the website URL in the
browser
 cy.visit('https://memori-ui-upload.web.app/?
serviceId=webconf2023');

 // Step 2: Input username, message, and
select an image file
 cy.get('[data-cy="user-
name"]').type('summer');
 cy.get('[data-cy="message"]').type('hello
world!');

 cy.get('[data-cy="file-
upload"]').selectFile('cycling.jpeg', {
 action: 'drag-drop',
 force: true,
 });

 // Step 3: Click the submit button
 cy.get('[data-cy="submit"]').click();

 // Step 4: Display success message for the
image upload
 cy.get('[data-cy="success-
message"]').should('exist');
 });

 it('should get error message when upload file
with pdf format', () => {
 // Step 1: Enter the website URL in the
browser
 cy.visit('https://memori-ui-upload.web.app/?
serviceId=webconf2023');

 // Step 2: Input username, message, and
select a PDF file, which is an invalid image
format
 cy.get('[data-cy="user-
name"]').type('summer');
 cy.get('[data-cy="message"]').type('hello
world!');
 cy.get('[data-cy="file-
upload"]').selectFile('cycling.pdf', {
 action: 'drag-drop',
 force: true,
 });

 // Step 3: Click the submit button
 cy.get('[data-cy="submit"]').click();

 // Step 4: Display failure message for the
image upload
 cy.get('[data-cy="error-
message"]').should('exist');
 });
 });
});

As seen in the examples above, end-to-end testing test cases simulate a
user’s entire interaction with the product, spanning multiple components
and functionalities. In this case, the test verifies the entire image upload
process, including browsing the page, form validation, image upload, and
thumbnail preview. It ensures the functionality across different devices,
such as desktops or mobile phones, works as expected in real-world
scenarios.

Conclusion
When planning end-to-end testing, it is recommended to align the testing
with user interaction flows and the intended outcomes. Based on the nature
of the project or product, cross-browser and cross-platform tests should also
be included. In other words, to implement a comprehensive end-to-end test,
it’s essential to have well-designed test cases that cover various aspects and
scenarios. Collaborating with QA on testing strategies is also beneficial. In
addition to writing tests during the development phase, it’s common to
gradually improve tests by first using end-to-end tests to check the happy
path (ensuring the core functionalities work), followed by integration tests
to handle edge cases, and finally unit tests to cover more complex business
logic.

Given that end-to-end testing provides broader and more complete
validation of functionality, why not rely solely on it? Here are several
considerations:

Since end-to-end testing simulates real user interactions to ensure correct
behavior in real-world scenarios, the cost of setting up the environment
(e.g., preparing realistic data and building the infrastructure) can be high.
Writing tests that span across multiple pages or components increases the
complexity, leading to higher costs in implementing tests.

End-to-end testing focuses on validating user flows rather than individual
functions or components, so when errors occur, it’s not always easy to
immediately identify the root cause.
Due to the wide scope of end-to-end tests, even small errors can cause a
single test case to fail. As the product evolves, the chance of test failure
increases, making it hard to rely solely on end-to-end tests for quality
assurance.

Thus, narrowing the scope of tests or combining different types of tests
—such as increasing the number of unit and integration tests—will provide
better quality assurance and confidence than trying to cover everything with
large, all-encompassing end-to-end tests.

Finally, unit testing and integration testing focus on specific, isolated
points, while end-to-end testing emphasizes process validation. By
combining different types of testing, software can maintain stability
throughout iterations without affecting existing functionality. Automation
can further reduce the cost of manual testing, boosting productivity.

Notes
Note 1: For more information about Memori, visit their Instagram page at
https://www.instagram.com/memori.service.tw/.
Note 2: Breaking down the steps in detail not only helps developers write
test cases but also aids in collaborating with AI for test writing. See
Chapter 8, section “Leveraging AI for Writing Tests,” for more
information and examples.
Note 3: For a discussion on test naming conventions, refer to Chapter 1,
section “Naming Conventions.”

https://www.instagram.com/memori.service.tw/

Chapter Review and Summary
End-to-end testing (often referred to as E2E testing) is a process that
simulates the real user journey while interacting with a product. In the
context of a web interface, this type of testing mimics a user’s actions
from opening the browser, entering a URL, clicking specific features,
navigating through pages, and completing the entire flow before closing
the window. The goal of E2E testing is to replicate real user behavior,
ensuring the product functions correctly in real-world scenarios. It is
typically the most user-centric type of testing and covers the broadest
range of use cases.
Since the purpose of E2E testing is to simulate actual user operations and
ensure proper functionality in real use cases, several principles must be
observed when implementing E2E testing: (1) accurately simulating user
interactions, (2) correctly replicating the user’s operating environment,
(3) covering functionality as comprehensively as possible, (4) including
abnormal situation tests, and (5) optionally incorporating other types of
testing based on the needs of the product or project.
The advantages of E2E testing include the following: (1) Since it
simulates the entire user journey, it thoroughly tests product functionality
and best reflects real-world conditions. (2) Because it spans multiple
functions, E2E testing broadens the scope of testing and helps reduce the
likelihood of errors once the product is live in a production environment.
While E2E testing effectively verifies the full product flow, identifying
the root cause of issues can be challenging when errors occur. In such
cases, unit testing may need to be used to isolate the problem.
Additionally, for detailed visual comparisons, visual testing is
recommended to lighten the load on E2E testing.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
H.-H. Tang, Practical Front-End Testing
https://doi.org/10.1007/979-8-8688-1451-8_5

5. Visual Testing
Hsin-Hao Tang1

Taipei, Taiwan

Visual Testing
Mixtini
How Snapshot Comparison Works
Notes
Verifying Visual Accuracy
Component-Level Testing
Page-Level Testing
Workflow
Summary
Notes
Tool Comparison
Snapshot File Types and Structure
Reviewing Snapshots Based on Pull Requests or Branches
Merge Checks
Component-Level Testing
Page-Level Testing
Browser Support
Summary
Notes
Chapter Review and Summary

You will learn the following in this chapter:

Visual testing uses tools to automatically capture UI snapshots and compare them, ensuring intuitive
and precise detection of changes.
Visual testing methods such as component-level testing with tools like Storybook, Chromatic, and
Percy, ensuring UI consistency across different devices and interactions.
Compare Percy, Chromatic, and Jest’s toMatchSnapshot for visual testing, focusing on features, ease
of use, and browser support.

Visual Testing
Visual testing is a type of testing that uses tools to automatically detect UI changes by capturing
snapshots of what the user actually sees and comparing them to previous versions.

In the past, UI changes were often inspected using unit testing to generate text-based snapshots,
which were then compared via version control or commands, or manually compared using screenshots to
spot differences between the latest version and previous versions or mockups (Note 1). While these
methods are simple and convenient, they do not clearly indicate what was updated. However, by

https://doi.org/10.1007/979-8-8688-1451-8_5

generating real visual snapshots and highlighting the specific areas of change, developers can more
intuitively identify what has changed, quickly locate problems, and make fixes more easily.

Mixtini
Mixtini (https://mixtini-co.web.app/) is an online service focused on promoting cocktails
and bars, aiming to build a unified community around alcoholic beverages (Figure 5-1). The following
end-to-end testing code example uses Mixtini as a demo (Note 2).

Figure 5-1 Mixtini home page

For example, the following code demonstrates how to use Cypress and Percy for visual testing,
capturing and comparing a snapshot of a specific page (Note 3). After visiting Mixtini’s home page, the
cy.percySnapshot command is used to capture a snapshot of the home page and upload it to Percy’s
service platform. This allows viewing the comparison results on Percy to ensure the page’s visual
performance meets expectations.

// cypress/e2e/mixtini.cy.js

describe('Index page', () => {
 it('should update snapshot to Percy correctly', () => {
 cy.visit('https://mixtini-co.web.app/');
 cy.percySnapshot('index');
 });
});

Explanation:

Jest’s describe function is used to define a group of test cases, typically specifying the page or
component being tested (Note 4). In this example, it defines the tests for Mixtini’s home page.
Jest’s it function describes a single test case, which, in this case, ensures that the snapshot is correctly
uploaded to Percy.
Cypress’s cy.visit function directs the browser to the specified URL, which in this case is
https://mixtini-co.web.app/.
cy.percySnapshot is an extended method provided by the integration of Cypress and Percy. It
captures a snapshot of Mixtini’s home page and uploads it to Percy’s service platform, where the
comparison results can be viewed.

https://mixtini-co.web.app/
https://mixtini-co.web.app/

The snapshot comparison is shown in Figure 5-2, where Percy’s platform highlights differences
between the current version (right) and the previous version (left), making it easy to see what has
changed.

Figure 5-2 Percy snapshot comparison

How Snapshot Comparison Works
How does snapshot comparison work, and what does it mean to compare with a “previous version”?
Snapshot differences stem from code changes, which can be explained from the perspective of version
control. As shown in Figure 5-3, using Git as an example, when a developer first creates branch A from
the main branch at commit x, the snapshot produced at commit x is the baseline for comparison between
main and A. Over time, both main and A receive new commits, and each commit generates its own
snapshot. If these snapshots are approved for updates, they become the new baseline. For example, main
adds commits y and z after x, while A adds commits p and q after x, so the baseline for main is the
snapshot generated at commit z, while the baseline for A is the snapshot generated at commit q.

Figure 5-3 Snapshot comparison principle—branch creation

When A submits a pull request (PR or MR for merge request) at commit q to merge back into main,
the snapshots generated at z and q are compared. If the snapshot from q is accepted as the new baseline, it
will become the baseline for main after A is merged into main (Figure 5-4).

Figure 5-4 Snapshot comparison principle—submitting pull request

What happens if the snapshot from q is rejected as the new baseline? This means the changes in q do
not meet expectations, so the code must be modified, such as by adding commit r to meet the expected
results, while maintaining z as the baseline (Figure 5-5). In short, snapshot comparison is based on Git
commits.

Figure 5-5 Snapshot comparison principle—rejecting snapshot from q

Common visual testing tools include Chromatic (https://www.chromatic.com/), Percy
(https://percy.io/), and end-to-end testing frameworks like Cypress
(https://www.cypress.io/), all of which can effectively implement visual testing. In later
chapters, these tools will be compared in more detail (Note 5).

There are several advantages to implementing visual testing. First, visual testing captures real user
views, not just the DOM structure, making changes immediately visible and solving the problem of non-
intuitive text-based snapshots. Furthermore, compared to manual screenshot comparisons or manually
comparing updates with the previous version or mockups, visual testing provides a more precise and
flexible testing method. It can test across different browsers and viewports and enable pixel-perfect visual
comparisons.

While visual testing offers significant benefits in providing stability and quality assurance, not all
products are suitable for it. Consider other types of testing if the product meets any of the following
criteria:

Lack of version control: If code is not version-controlled, it is impossible to establish a baseline for
comparison and manage the process effectively.
Frequent UI updates: If the product is not in a stable state, visual comparisons become irrelevant, and
visual testing may not be necessary.

Though visual testing has many advantages, it often requires third-party tools or services to
implement and may not effectively capture dynamic changes on the screen. Additionally, when errors
occur, the root cause may not be immediately clear, requiring further investigation through unit testing.
To fully test a product, visual testing should be combined with other testing methods, which will be
discussed in more detail in subsequent chapters.

Notes
Note 1: Mockups refer to virtual prototypes or diagrams used in software development to simulate an
interface, feature, or workflow, typically in the early design stages to facilitate discussion, validation,
and determination of a product’s look, feel, and functionality. They can be static sketches or interactive
prototypes created with design or prototyping tools. Mockups provide early feedback and save time
and costs.
Note 2: Mixtini’s Instagram is at https://www.instagram.com/mixtini.co/ and its
Facebook page is at https://www.facebook.com/mixtini/.
Note 3: For information on how to integrate Cypress and Percy, please refer to the documentation
“Integrate your Cypress tests with Percy” at this link
https://www.browserstack.com/docs/percy/integrate/cypress.
Note 4: For more on naming conventions for tests, refer to Chapter 1, section “Naming Conventions.”
Note 5: For a detailed comparison of commonly used snapshot tools, refer to the section “Tool
Comparison” in this chapter.

Verifying Visual Accuracy

https://www.chromatic.com/
https://percy.io/
https://www.cypress.io/
https://www.instagram.com/mixtini.co/
https://www.facebook.com/mixtini/
https://www.browserstack.com/docs/percy/integrate/cypress

Visual testing is a specialized testing method used to detect changes in the user interface (UI) by
capturing and comparing snapshots of what the user sees, ensuring visual consistency and accuracy. This
method can be divided into two main types: testing individual components and testing entire web pages.
Both approaches aim to maintain the visual quality and consistency of the UI, helping developers identify
and fix any potential visual issues early on (Note 1).

Component-Level Testing
When structuring projects, they are often built using shared components like building blocks. Therefore,
when refactoring, testing these components helps detect unintended changes to existing business logic or
avoid issues where fixing one feature breaks another. Since most projects consist of shared components,
if you are implementing visual testing for the first time, it’s recommended to start by testing shared
components. Component-level testing can be combined with Storybook and visual testing tools to capture
snapshots of each story, and continuous integration (CI) tools can automate these tests (Note 2).

Storybook (https://storybook.js.org/) is a tool for developing and showcasing UI
components in various states and behaviors. It provides an environment for developers to quickly build,
test, and document UI components. The core concept of Storybook is the story, which describes a
component’s behavior in different scenarios. Each story acts as a small example, showing how a
component behaves in different states, helping teams understand and test UI components better.
Moreover, Storybook integrates with tools like Chromatic and Percy to facilitate snapshot testing of
components.

The steps to integrate Storybook with visual testing tools for snapshot testing are as follows:

Step 1: First, use a package manager (like yarn) to install Storybook along with Chromatic or Percy.
Choose one of these tools to install using the following command: yarn add --dev chromatic
storybook or yarn add --dev @percy/cli storybook. Here, the --dev or -D flag
indicates that the packages will be installed in the devDependencies section of the
package.json file. This is because Chromatic and Percy are testing tools used during development,
and they are not needed in the production environment.
Step 2: Next, write your story and the play function. The play function is used to simulate user
interactions in tests. It will be invoked during the test to mimic user actions on the web page, such as
clicking buttons or entering text.
Step 3: Run the tests and capture snapshots. Use the Chromatic or Percy commands to test and capture
snapshots. For example, run the chromatic or cy.percySnapshot commands. Developers can
choose to run tests manually on their local machine or automate the tests using CI tools.
Step 4: Finally, view the snapshots on the Chromatic or Percy platform. After running specific
commands, the snapshots will be uploaded to the service platform, allowing developers to view the
comparison results on Chromatic or Percy.

Below are some test examples in different scenarios.

Testing Different Viewports
In component-level testing, it’s possible to configure different variables in Storybook, such as setting
parameters in the Storybook configuration file or in individual stories and then using tools like Chromatic
or Percy. Here, we’ll use an example of testing across different viewports.

With Chromatic, the first method is to set global configurations in the Storybook preview.js file.
The following code shows Storybook’s configuration options, where the parameters are used to
configure settings for Chromatic. The viewport settings specify four viewport sizes: 320px, 576px,
768px, and 992px. This ensures snapshots are taken across different screen sizes, verifying that the UI
layout and behavior function as expected on various devices.

const parameters = {
 chromatic: {

https://storybook.js.org/

 viewports: [320, 576, 768, 992],
 },
};

The second method involves specifying the viewport list directly within individual stories. In the
example below, we have a story named IntroStory, where the args define the story’s parameters,
and the chromatic section configures settings specific to Chromatic. The viewports parameter
specifies the viewport sizes for testing—320px, 576px, 768px, and 992px—to simulate how the UI
behaves on different devices, ensuring the layout and behavior are consistent with expectations.

IntroStory.args = {
 chromatic: {
 viewports: [320, 576, 768, 992],
 },
};

To execute the tests locally, use the following command to run the Chromatic CLI. The CLI will test
all Storybook stories in the project and upload the results to the Chromatic platform for snapshot
comparison.

npx chromatic --project-token <project-token>

npx is a Node.js command that runs locally installed packages. Here, npx runs the locally installed
Chromatic package, and the test is executed using the project’s token. While npm is a package
management tool, npx is specifically designed to execute temporary commands without globally
installing packages, avoiding versioning issues. If the package isn’t found locally, npx will automatically
install it, run the command, and delete it afterward, making the process simpler and more convenient for
one-time tasks.

Both methods—setting global configurations in Storybook’s preview.js or specifying viewports
within individual stories—achieve the goal of testing different viewports in Chromatic. The decision
depends on whether it’s a regular requirement (global configuration) or a rare, case-specific scenario
(story-specific configuration). If using Percy, there are similar configuration options, which we’ll cover
later.

By using Chromatic to test specific components across various viewports, the resulting snapshots (as
shown in Figure 5-6) demonstrate different layouts and behaviors across screen sizes. Developers can
compare these snapshots with previous versions to ensure the changes are expected, maintaining
consistency across devices, which is especially useful for websites supporting both desktop and mobile
platforms.

Figure 5-6 Mixtini home page, testing different viewports

How does Percy handle this? You can configure viewports globally in the Percy configuration file or
pass specific settings when running snapshot commands. The first method is to set viewports globally in
Percy’s percy.json configuration file. In the example below, the snapshot field defines related
settings, and the width field specifies the viewport list. This allows snapshots to be captured at different
screen sizes, ensuring consistent UI behavior across devices.

// percy.json
{
 snapshot: {
 widths: [320, 576, 768, 992];
 }
}

The second method involves passing parameters directly when calling the cy.percySnapshot
command, typically for single tests. In the example below, the widths parameter is passed during the
snapshot command, allowing snapshots to be taken at different screen sizes to ensure consistent layout
and behavior across devices.

// Story
cy.percySnapshot('main page', {
 widths: [320, 576, 768, 992],
});

Explanation:

cy.percySnapshot is a method provided by Cypress integrated with Percy, allowing snapshots to
be captured for different components or pages. These snapshots are then uploaded to Percy’s platform
to compare differences between the current and previous snapshots.
main page is the name of the snapshot, used to distinguish different screenshots in the project. This
is typically used to identify the target of the test, such as the home page or product page.
The widths field defines the different viewport sizes, with 320px, 576px, 768px, and 992px used
here. As in the previous solution, the goal is to capture snapshots across different screen sizes to ensure
consistent layout and behavior across devices.

Both methods allow Percy to test different viewports effectively, just as with Chromatic, and are
particularly useful for websites supporting both desktop and mobile platforms.

Taking Snapshots After Specific Interactions
In addition to taking snapshots of a component’s initial state, how do you capture snapshots after specific
interactions? These interactions can generally be categorized into two types: those triggered by
JavaScript and those triggered by CSS.

Interactions Triggered by JavaScript
The first type involves interactions triggered by JavaScript. For example, with Mixtini’s search feature
(Figure 5-7), we want to simulate a user typing “Irish Coffee” into the search bar, clicking the search
button, and then capturing a snapshot of the search results for comparison (Note 3).

Figure 5-7 Snapshot of interaction triggered by JavaScript

Here, we use Storybook combined with Chromatic to capture snapshots of the component. In the
following code, we implement a play function within the story to simulate user interaction. Using the
data-test-id attribute, we retrieve the DOM elements for the search bar and search button, simulate
user actions by typing “Irish Coffee” and clicking the search button, and Chromatic automatically
captures the snapshot after the interaction.

SearchService.play = async () => {
 const canvas = within(canvasElement);
 const Input = canvas.queryByTestId('input');
 const Button = canvas.queryByTestId('button');
 await userEvent.type(Input, 'Irish Coffee');
 await userEvent.click(Button);
};

Explanation:

The play function is implemented for the SearchService story to simulate user interactions with
the search feature.
The within function from the @storybook/testing-library package wraps the
canvasElement to facilitate querying and interaction.
queryByTestId is used to find the DOM element with the data-test-id of input for the
search bar and the data-test-id of button for the search button.
userEvent.type simulates typing “Irish Coffee” into the search bar.
userEvent.click simulates clicking the search button to submit the search query.
After the play function completes, Chromatic automatically captures a snapshot, achieving the goal
of capturing snapshots for interactions triggered by JavaScript.

Interactions Triggered by CSS

The second type involves interactions triggered by CSS. For example, with Mixtini’s “Contact Us”
feature, you may want to capture a snapshot of the button in its hover state (Figure 5-8).

Figure 5-8 Snapshot of interaction triggered by CSS

The first approach is to create a .hover class representing the hover state, which will be added
when capturing the snapshot to ensure the component reflects the hover state. Since the hover state is
triggered by mouse events, and tests do not include real mouse interactions, we need to simulate this state
by adding a .hover class.

&:hover,
&.hover {
 /* Styles for hover state */
}

Next, we add this class to the story when taking the snapshot. The following example shows a story
for a <Button> component, where the hover class is added to capture the snapshot in the hover state:

import Button from './Button';

const Template = () => <Button className="hover" />;

The second approach is to use props and flags to capture snapshots of different states. Since we can’t
directly trigger the hover state, we can use a prop to simulate it. In the following code, the <Button>
component uses a hover prop to determine its state. When hover is set to true, the component will
appear in the hover state, allowing us to capture a snapshot.

const Button = ({ hover }) => {
 return <Button hover={hover} />;
};

In the story, we set the hover value to true to render the <Button> in the hover state and capture
the snapshot. The following example shows a story for a <Button> component where the hover value
is set to true, enabling the snapshot to be taken in the hover state:

import Button from './Button';

const Template = (args) => <Button {...args} />;

const ButtonStory = Template.bind({});

// Set hover value to true
ButtonStory.args = {
 hover: true,
};

Both of these methods allow you to capture snapshots of CSS-triggered interactions. You can choose
the method that suits your specific use case.

Integrating CI Tools for Component-Level Testing
To automate component-level testing in CI tools, you can use GitHub Actions combined with
Chromatic’s chromaui/action@v1 tool. By creating a custom workflow, you can automatically test
components and capture snapshots. The following code demonstrates how to trigger Chromatic to publish
Storybook, test components, and capture snapshots whenever a pull request is submitted:

// .github/workflows/visual-testing.yml

name: 'Components Visual Testing'
on: [pull_request]
jobs:
 chromatic-deployment:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 with:
 fetch-depth: 0
 - name: Install dependencies
 run: yarn
 - name: Publish to Chromatic
 uses: chromaui/action@v1
 with:
 projectToken: ${{ secrets.CHROMATIC_TOKEN }}

Explanation:

This GitHub Actions workflow, named “Components Visual Testing,” triggers the chromatic-
deployment job every time a pull request is submitted. The job runs on the ubuntu-latest
environment, meaning it executes on the latest version of the Ubuntu operating system. It uses the
actions/checkout@v2 action to clone the project’s code, with the fetch-depth: 0
parameter ensuring the full commit history is retrieved. In a workflow, you can define multiple jobs,
which run in parallel, and each job can contain several steps that run sequentially.
In the chromatic-deployment job, the following steps are executed in order:

The yarn command installs the project’s dependencies.
Chromatic’s GitHub Action, chromaui/action@v1, publishes the built components to the
Chromatic service platform. The projectToken is the token specific to your Chromatic project,
which can be obtained from their platform and stored securely in GitHub secrets. It is accessed
using ${{ secrets.CHROMATIC_TOKEN }}.

Since this component-level testing mechanism is integrated with unit testing or integration testing, it
is more efficient and cost-effective compared to end-to-end testing. It can be run frequently, reducing the
time and cost of executing tests, making it highly practical to use regularly.

Page-Level Testing
In addition to capturing snapshots of components, you can integrate end-to-end testing tools, such as
Cypress, to capture snapshots of entire pages. The example below demonstrates how to use Cypress,
Percy, and GitHub Actions to achieve this. Using Mixtini’s home page as an example, after visiting the
page, the cy.percySnapshot command is used to capture a snapshot of the home page and upload it
to Percy’s service platform. You can then view the snapshot comparison results on Percy’s platform.

// cypress/e2e/mixtini.cy.js

describe('Index page', () => {
 it('should update snapshot to Percy correctly', () => {
 cy.visit('https://mixtini-co.web.app/');

 cy.percySnapshot('index');
 });
});

On Percy’s platform, you can view various details. The main features include the following:

In the top-right corner, you can view snapshots based on different browsers and resolutions.
Percy assists in comparing the current snapshot with previous versions and highlights any differences.
If the changes are expected, you can click the “approve” button in the top-left corner to set this
snapshot as the new baseline for future comparisons (Note 4).

Integrating CI Tools for Page-Level Testing
To automate page-level testing with CI tools, GitHub Actions can be used in conjunction with Percy’s
percy-cli tool. You can create a custom workflow to test specific pages and capture snapshots
automatically. The following example sets up a workflow to run tests and capture snapshots every
Monday at midnight:

// .github/workflows/regular-visual-testing.yml

name: Regular Visual Testing
on:
 schedule:
 - cron: '0 0 * * 1'
jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@master
 - name: Install packages
 run: yarn
 - name: Run visual testing
 run: npx percy exec -- cypress run --headless
 env:
 PERCY_TOKEN: ${{ secrets.PERCY_TOKEN }}

Explanation:

This GitHub Actions workflow is named “Regular Visual Testing” and is set to run on a schedule. The
cron expression determines the frequency of execution.
The on field defines the trigger for the workflow. Here, a scheduled trigger is set using the cron
expression '0 0 * * 1', which means the workflow will run every Monday at midnight.
The build job runs on the latest Ubuntu version and executes the following steps:

actions/checkout@master is used to clone the project’s code from the master branch,
ensuring the latest version is tested.
yarn is used to install the project’s dependencies.

The npx percy exec -- cypress run --headless command runs the tests. percy
exec is a command provided by Percy’s CLI to run tests in Percy’s environment, and cypress
run --headless runs the Cypress tests in headless mode. Running in headless mode means the
tests execute without opening a browser, improving speed and making the tests suitable for CI
environments.
PERCY_TOKEN is the token for your Percy project, which can be obtained from Percy’s platform. It
is typically stored in GitHub Secrets and accessed using ${{ secrets.PERCY_TOKEN }}.

Workflow
The following workflow applies to both component- and page-level testing:

Step 1: Run the tests. For component-level testing, you can use Storybook with Chromatic or Percy,
and for page-level testing, tools like Cypress combined with Percy or other packages like cypress-
image-diff-js can be used (Note 5).
Step 2: Capture snapshots of the component or page.
Step 3: Compare the snapshots using platforms like Chromatic, Percy, or other tools to identify
differences.
Step 4: Based on the snapshots, you can either update the code or refresh the snapshot baseline. This
step may involve going back to Step 1 to rerun the tests, possibly multiple times.
Step 5: Once changes are confirmed as expected, you can commit the code and schedule a release.

Summary
Here is a summary of when to use component-level testing vs. page-level testing:

If you are implementing visual testing for the first time in a project or the project is primarily built
from shared components, it is recommended to focus on component-level testing.
If you are testing integration performance or the page consists mostly of custom features with fewer
shared components, page-level testing would be a better choice.

Notes
Note 1: For examples of component- and page-level testing, see https://bit.ly/3MB2xxn.
Note 2: CI (continuous integration) and CD (continuous delivery/continuous deployment) are key
concepts in software development and are part of automated workflows to improve software quality
and speed of delivery. CI involves automatically testing and building code every time changes are
made to a version-controlled repository, ensuring smooth integration of changes. CI helps teams
discover and resolve integration issues early, reducing the cost of fixing errors later on. Common CI
tools include Jenkins, GitHub Actions, Travis CI, CircleCI, and GitLab CI/CD. CD extends CI by
automatically deploying tested code to production or testing environments. Continuous delivery
involves delivering new software versions to a testing or pre-production environment for verification,
while continuous deployment goes a step further by automatically deploying new versions to
production without manual intervention. In summary, CI and CD aim to automate development
processes, reduce human error, and improve delivery speed and software quality. CI focuses on
integrating and testing code, while CD takes it further by deploying the tested code to production.
Popular tools include AWS CodeDeploy, Azure DevOps Services, Google Cloud Build, GitLab
CI/CD, and GitHub Actions.
Note 3: For more information and examples on Mixtini, refer to the section “Visual Testing” in this
chapter.
Note 4: For the principles of snapshot comparison, see the section “Visual Testing” in this chapter.
Note 5: cypress-image-diff-js (https://github.com/uktrade/cypress-image-
diff) is a plug-in for the Cypress testing framework that provides snapshot and image comparison
capabilities. It allows developers to compare two images within a Cypress test to detect visual

https://bit.ly/3MB2xxn
https://github.com/uktrade/cypress-image-diff

differences, helping ensure that the visual presentation of a web page or application remains consistent
after updates or changes.

Tool Comparison
When introducing visual testing into your workflow, which tool should you choose? Below is a
comparison of Percy, Chromatic, and Jest’s toMatchSnapshot (Note 1), covering different aspects.

Snapshot File Types and Structure
Chromatic and Percy’s snapshots are screenshots of what the user sees, whereas Jest’s
toMatchSnapshot stores snapshots of the DOM structure in a text format. Chromatic and Percy
make changes more apparent, solving the problem of non-intuitive snapshots. These tools also provide
built-in comparison functionality. As shown in Figure 5-9, Chromatic’s platform compares the current
snapshot with the previous version, highlighting differences, including both code and rendered output.
This makes it easy for developers to understand what has changed and achieve pixel-perfect visual
comparison. Moreover, Chromatic and Percy support tests across multiple browsers and viewports,
making them more precise and flexible than manual checks or other tools.

Figure 5-9 Chromatic marks the differences between snapshots, including code and rendered output

Jest’s toMatchSnapshot stores snapshots of the DOM structure in a text format, relying on
version control tools or Jest’s expect assertion to compare snapshot files.

//
src/ImageList/__snapshots__/ImageListMockData.shallow.jest.test.js.snap

exports[`ImageList should render correct image items when have data 1`]
= `

<React.Fragment>
 <ImageItem
 image="https://bit.ly/4228IT0"
 title="Improve website performance with key metrics to boost user
experience and traffic"
 />
 <ImageItem
 image="https://bit.ly/4b5nLPO"
 title="Island-hopping bike trip along the Shimanami Kaido"
 />
</React.Fragment>
`;

However, when comparing source code with snapshots, Chromatic’s built-in comparison tool helps
developers easily identify how changes in the code affect the snapshots, while Percy lacks this feature.
Jest’s toMatchSnapshot relies on version control tools to manually compare snapshots with code,
which can be less intuitive. In integration testing, while Jest’s expect(...).toMatchSnapshot()
can detect snapshot changes, developers still need to map changes back to the corresponding code, which
can be challenging with complex files.

Reviewing Snapshots Based on Pull Requests or Branches
Once development is done, developers submit pull requests (PRs) for code review. At this stage, it’s
necessary to review snapshots for different PRs or branches to ensure that changes behave as expected.
Chromatic provides a user-friendly tool for this, as shown in Figure 5-10, allowing developers to review
snapshots by PR or branch. Percy offers this feature too, but it’s not as easy to use, while Jest’s
toMatchSnapshot relies on version control tools. Although all three can accomplish this task,
Chromatic offers the most convenient tools.

Figure 5-10 Chromatic shows snapshots by branch

Merge Checks
After submitting a PR, it is important to check if it meets the merge criteria so that reviewers and teams
can decide whether to merge into the main branch (Note 2). By integrating GitHub Actions with
Chromatic or Percy, the visual testing results can be part of the review process. If there are changes, they
can be approved as the new baseline. If not, the PR can be merged directly. This streamlines the process
and saves time, whereas with Jest’s toMatchSnapshot, developers must manually update snapshots,
check changes in version control, and resubmit PRs, leading to more time-consuming reviews.

Component-Level Testing
Both Chromatic and Percy can integrate with Storybook for component-level testing, making them easy
to implement in projects already using Storybook. Jest’s toMatchSnapshot, on the other hand,
requires developers to manually write tests for each component, as shown below:

// src/ImageList/ImageListAxios.snapshot.jest.test.js

it('should render no data prompt when no images', () => {
 // ...code...
 const wrapper = render(<ImageList />);

 expect(wrapper).toMatchSnapshot();
});

Page-Level Testing
For page-level testing, Percy can work with end-to-end testing frameworks, while Chromatic is limited to
component-level testing. For example, Percy can integrate with Cypress to implement page-level testing
and visual testing easily, while Jest’s toMatchSnapshot cannot perform component- or page-level
testing.

// cypress/e2e/mixtini.cy.js

describe('Index page', () => {
 it('should update snapshot to Percy correctly', () => {
 cy.visit('https://mixtini-co.web.app/');
 cy.percySnapshot('index');
 });
});

If Percy is not an option, is it still possible to do snapshot testing? Yes, tools like Cypress provide the
screenshot method for snapshot testing on entire components or pages. However, comparing and
storing snapshots would require additional setup, such as using third-party tools or services. For example,
installing the cypress-image-diff-js package can be used for page comparison, but compared to
Percy, this setup is more labor-intensive.

Browser Support
For browser support, Percy can test Chrome, Firefox, and Edge, while Chromatic only supports Chrome.
Jest’s toMatchSnapshot is browser independent.

Summary
The following table compares Percy, Chromatic, Cypress, Jest’s toMatchSnapshot, and Cypress with
the cypress-image-diff-js plug-in.

Percy Chromatic Cypress Jest’s
toMatchSnapshot

Snapshot types and
structure Visual screenshot Visual screenshot Visual screenshot Text-based DOM

structure

Comparison tools Platform tool Platform tool With cypress-
image-diff-js

With version control
or assertion

Compare source
code No Platform tool With version control With version control

Review snapshots
by PR/branch Platform tool Platform tool With version control With version control

Merge checks With percy/exec-action With chromaui/action No Version control

Component-level
testing With Storybook With Storybook Built-in No

Page-level testing With e2e testing framework No Built-in No

Percy Chromatic Cypress Jest’s
toMatchSnapshot

Browser support Chrome, Firefox, Edge Chrome Chrome, Firefox, Edge Browser independent

Features Supports both component- and
page-level testing

Focused on component-level
testing, feature-rich

Integrates multiple
testing methods Easy to implement

Storage Platform provided Platform provided Developer managed Developer managed

Finally, for implementing visual testing, the recommended approach is

Use Storybook with Chromatic for component-level testing, reviewing common components during
PR reviews.
Use Cypress with the cypress-image-diff-js plug-in or, better yet, integrate Percy for page-
level testing, regularly checking the status of specific pages in production.

Developers can choose the best option based on the specific needs and characteristics of their project
or product.

Notes
Note 1: Jest’s toMatchSnapshot (https://jestjs.io/docs/snapshot-testing) is a
method for comparing snapshots. It captures snapshots of rendered UI in tests and compares them with
previous versions. If there are differences, the test fails, prompting developers to either update the code
or the snapshot, helping to catch unintended changes.
Note 2: For discussions about running tests during PR submissions, see Chapter 6, section “Run Tests
Before Merging Code.”

https://jestjs.io/docs/snapshot-testing

Chapter Review and Summary
Visual testing is a type of testing that uses tools to automatically detect UI changes by capturing and
comparing snapshots of what users actually see on the screen.
The benefits of implementing visual testing include the following: (1) Since the snapshots produced by
visual testing represent the actual view users see rather than just the DOM structure, changes become
more apparent, solving the problem of non-intuitive snapshots. (2) Compared to using manual
screenshot comparisons or manually checking updates against previous versions or mockups, visual
testing offers a more precise and flexible testing method. It can test across multiple browsers and
viewports and achieve pixel-perfect visual comparisons.
While visual testing can greatly enhance product stability and quality assurance, not all products are
suited for this type of testing. Consider other types of testing if: (1) There is no version control:
Without version control, there is no baseline for comparison or proper workflow management. (2)
Frequent UI updates: If the product has frequent updates and lacks stability, comparisons may not
provide meaningful insights, making visual testing unnecessary.
When to use component- or page-level testing: (1) If you’re introducing visual testing for the first time
or the project heavily relies on shared components, it’s recommended to focus on component-level
testing. (2) If you are testing the effectiveness of integrations or working on customized pages with
fewer shared components, page-level testing is a better choice.
Recommended practices for implementing visual testing include the following: (1) Using Storybook
with Chromatic for component-level testing to review shared components during PR reviews to ensure
they function as expected. (2) Using Cypress with the third-party cypress-image-diff-js plug-
in or integrating Percy for page-level testing, regularly checking specific pages in production
environments.
Although visual testing has many advantages, it requires third-party tools or services to function. In
some cases, it may not effectively detect dynamic content changes. Additionally, when errors occur, it
can be difficult to immediately identify the root cause, often requiring you to start with unit testing. To
fully test product functionality, other testing methods should be used alongside visual testing.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
H.-H. Tang, Practical Front-End Testing
https://doi.org/10.1007/979-8-8688-1451-8_6

6. What to Do After Writing Tests: When and
How to Run Them
Hsin-Hao Tang1

Taipei, Taiwan

Pre-commands and Manual Test Invocation
Pre-commands
Manual Test Invocation
Summary
Notes
Run Tests Before Merging Code
pre-commit
pre-push
Running Tests During PR Submission
Summary
Notes
Running Tests Regularly in CI
Should Code Be Merged into the Main Branch When Tests Fail?
How to Reduce the Likelihood of Test Failures After Code Merges?
Notes
Inferring Use Case Coverage from Code Coverage
Conclusion
Chapter Review and Summary

You will learn the following in this chapter:

Manual test invocation, pre-run commands, and monitoring file changes to
efficiently execute tests during development
Run tests before merging code, focusing on pre-commit, pre-push, and PR
submission for quality assurance

https://doi.org/10.1007/979-8-8688-1451-8_6

The importance of running tests regularly in CI to ensure stability, address gaps,
and reduce test failures
Use code coverage to infer use case coverage, ensuring comprehensive testing of
product features and scenarios

Pre-commands and Manual Test Invocation
Automated tests can be executed manually through scripts or by using a test runner
from a testing framework. By running tests in different ways, you can receive
valuable feedback and support at various stages of the development lifecycle. This
chapter explores pre-run commands, manually triggering tests, monitoring file
changes to rerun tests, and how to add custom settings through configuration files.

Pre-commands
In most web projects, there is typically a configuration file (e.g., package.json)
that contains the project’s dependencies, information, and helper commands. These
commands include how to build, run, and test the project. For running tests, a test
command is usually defined in package.json to act as a pre-run command for
the package manager to start the test runner.

If Jest is being used as the test runner, an example package.json file might
look like this, where the --config option loads the relevant settings from a
configuration file:

"scripts": {
 "test": "jest --config ./jest.config.js"
}

In this example, a test command is defined in the scripts section of
package.json. It runs Jest tests using the configuration specified in the
jest.config.js file, which customizes the behavior of Jest tests (Note 1).

You can run the test runner with a package manager like yarn or npm to
execute the tests:

yarn test
npm run test

In some cases, multiple types of tests may be required, or specific execution
contexts and conditions might need to be added. For instance, if you want to run
visual testing for components using Percy with Storybook, you can add a command
like snapshot:storybook, where ./storybook-build is the directory
containing the static files generated by Storybook. Pre-run commands help

developers differentiate between various types of tests, making it easier to manually
trigger the correct test or integrate with CI tools.

"scripts": {
 "test": "jest --config ./jest.config.js",
 "snapshot:storybook": "percy storybook ./storyDist"
}

Manual Test Invocation
Manual test triggering refers to developers manually running test commands (such
as yarn test or jest) on their local development environment to start the test
runner. During the development phase, manual test triggers provide quick feedback
to help developers refine their code or test cases. Developers can also set specific
configurations depending on the needs, such as rerunning updated tests based on file
changes or adding custom settings to configuration files.

Monitoring File Updates and Rerunning Tests
Typically, you would use a package manager like yarn or npm to run the test
runner. For example, when running yarn test or npm run test, these
commands will look at the package.json file in the project and execute the
script defined under the scripts section to start the test runner. This will run all
the tests with files ending in .test.js.

yarn test
npm run test

If you want to continuously rerun tests as files are updated, you can use Jest’s
watch mode. With the --watch or --watchAll flags, Jest monitors file changes
and reruns tests when updates occur.

jest --watch # Rerun only modified files
jest --watchAll # Rerun all tests

You can update the pre-run commands to make these options easier to access.
For example, using yarn, you can create commands like yarn test:watch or
yarn test:watchAll for rerunning modified files or all files, respectively.

"scripts": {
 "test": "jest --config ./jest.config.js",
 "test:watch": "jest --config ./jest.config.js --
watch",

 "test:watchAll": "jest --config ./jest.config.js --
watchAll"
}

The choice between rerunning modified files or all files depends on the project’s
size and the number of tests. For smaller projects or when the number of tests is low,
running all tests may not take much time. However, in larger projects with more
tests, rerunning all tests could take longer. It’s recommended to rerun only modified
files to reduce wait time.

Adding Custom Settings via Configuration Files
With Jest, you can customize which files should be tested or ignored by adding
settings to a configuration file like jest.config.js. For instance, you can use
testPathIgnorePatterns to skip files or directories that shouldn’t be tested.
In the following example, Jest is instructed to ignore any test files located in
node_modules or dist directories. Since node_modules contains third-party
dependencies that don’t need testing, and dist holds the project’s build output,
these paths are excluded from the testing process to improve efficiency.

module.exports = {
 testPathIgnorePatterns: ['/node_modules/', '/dist/'],
};

Summary
Setting up pre-run commands allows developers to execute tests with different
scenarios and conditions quickly during development and makes it easier to
integrate these tests with CI tools. Manual test triggering enables developers to get
rapid feedback during development while allowing for customization, such as
monitoring file changes and rerunning tests or using configuration files to add
custom settings.

Manual test triggers are flexible and convenient during development but rely on
manual execution, which can lead to human error or inefficiency. Therefore,
automating the testing process is the best way to improve test efficiency and quality.
The next chapter will explore how to implement automated testing.

Notes
Note 1: For more information on Jest configuration, refer to the official
documentation (https://jestjs.io/docs/configuration).

Run Tests Before Merging Code

https://jestjs.io/docs/configuration

To ensure that the codebase functions correctly before merging code back into the
main branch, it is recommended to run tests as much as possible. There are a few
key points in time when tests should be executed before code is merged: pre-
commit, pre-push, and during PR submissions. These checkpoints help
maintain code quality and prevent negative impacts on the existing codebase.

pre-commit
Pre-commit refers to running tasks before the git commit command, using
Git’s pre-commit hook to perform tasks such as code formatting checks and tests.
As shown in Figure 6-1, if the checks pass, the git commit is executed; if they
fail, the code remains in the staged phase (Note 1). The benefit is that it ensures all
checks are completed before committing code, avoiding problems after the git
push to a remote repository. This workflow can be improved by integrating tools
like Husky (Note 2) and Lint-Staged (Note 3) to manage the process efficiently.

Figure 6-1 pre-commit workflow

pre-push
Pre-push refers to executing tasks before git push, using Git’s pre-push
hook. Similar to pre-commit, this checks code formatting and runs tests before
pushing commits. As shown in Figure 6-2, if all checks pass, the git push is
completed; if they fail, the commit stays local. This method ensures that all checks
are done before pushing code, saving time and resources by avoiding errors being

pushed to the repository, which can lead to multiple back-and-forth changes and
wasted CI resources.

Figure 6-2 pre-push workflow

To summarize, both pre-commit and pre-push provide the following
benefits:

Early detection of issues to prevent problematic code from entering the codebase
and causing confusion during code reviews or CI/CD pipeline failures

Ensures CI/CD pipelines succeed, preventing unnecessary failures and errors,
which saves resources
Reduces wasted time and effort, increasing productivity

Since developers often commit frequently during development, pre-commit
can lead to too many test executions or long execution times due to the large number
of tests. This can disrupt development. Distributing some tasks to pre-push can
be a good solution.

Running Tests During PR Submission
Many projects choose to verify the stability of the codebase before merging code
into the main branch, meaning that tests are run during PR submission to check
whether the merge passes all necessary checks. This ensures that new or modified
code does not negatively impact the existing codebase. Additionally, it is a way to
share information with the team. If a developer runs tests on their local environment,
others working on the shared repository may not know that the changes have passed
tests. Running tests during PR submission allows the team to better understand the
status of development and engage in code review or discussions.

Popular code hosting services, like GitHub, enable status checks through GitHub
Actions, which act as a form of testing. GitHub Actions execute each step and
confirm whether they pass. Developers can require that PRs pass specific tests
before merging the code back into the main branch.

For example, in Figure 6-3, a PR undergoes testing via GitHub Actions. If the
tests pass, the PR is considered stable, and the team can proceed with code review.

Figure 6-3 Merge checks

Summary
The key moments to run tests before merging code are pre-commit, pre-push,
and during PR submissions. These checkpoints help ensure code quality and prevent
code changes from negatively affecting the existing codebase. In addition to
manually triggering tests during development or running tests before merging code,
once a PR is merged into the main branch, continuous testing is essential to ensure
long-term product stability. The next section will cover how to automate tests in CI.

Notes
Note 1: In Git version control, the staged phase refers to changes that have been
added to the index but not yet committed. Developers can use the git add
command to stage changes and later commit them using git commit. More
details about Git’s file management process can be found in Gao Jianlong’s book
Learn Git for Yourself under the chapter “Working Directory, Staging Area, and
Repository” (https://gitbook.tw/chapters/using-
git/working-staging-and-repository#google_vignette).
Note 2: Husky (https://typicode.github.io/husky/) is a tool that
enables Git hooks to execute tasks like code formatting and testing before actions
such as committing code to avoid polluting the codebase.
Note 3: Lint-Staged (https://github.com/okonet/lint-staged) is
used to specify the scope of checks by only running tasks on modified files
instead of the entire project. It can also define different commands based on file
types.

Running Tests Regularly in CI
In software development, testing is an essential part of ensuring product quality and
reliability. Beyond manual testing during development and automated testing before
merging code, most projects also schedule tests after PRs are merged into the main
branch or set up regular testing (e.g., every night at 10 p.m.).

If comprehensive testing is done before merging code, why run tests again
afterward? Here are the main reasons:

Code interactions: Once merged, the code can interact in unexpected ways,
causing issues that were not initially foreseen.
Test instability: Some tests may be unstable, resulting in intermittent success or
failure due to environmental or other factors (Note 1).
Test cost or limitations: Certain high-cost end-to-end tests or tests requiring
specialized environments may not be feasible in a developer’s environment and
thus need to be run in the CI environment.

https://gitbook.tw/chapters/using-git/working-staging-and-repository%2523google_vignette
https://typicode.github.io/husky/
https://github.com/okonet/lint-staged

Therefore, post-merge testing helps address potential gaps in pre-merge testing
and further enhances product quality and stability.

Should Code Be Merged into the Main Branch When Tests Fail?
When tests fail, should the code still be merged into the main branch? This is a
question worth considering from the following perspectives:

Can the root cause of the test failure be quickly identified and fixed?

If yes, the issue should be fixed before continuing the code merge process.
If not, the failing tests can be temporarily disabled and marked for future
resolution, allowing time to fix the issues before re-enabling the tests.

Based on this, the potential risks of continuing to merge code when tests fail
include the following:

Failing to address issues may result in an accumulation of problems, making
debugging and resolution more difficult later.
Prolonged test failures can lead to fatigue among managers and developers,
increasing the likelihood of overlooking the impact of test failures.

Considering these factors, it is recommended to pause code merges into the main
branch when tests fail and resume merging only after the issues are fixed.

How to Reduce the Likelihood of Test Failures After Code Merges?
If test failures frequently occur after merging code, improvements can be made in
the following areas:

Identify and fix flaky tests: Flaky tests are prone to fail due to environmental or
other factors, such as incomplete or incorrect test data or unstable test
environments.
Find better test implementation methods: Different products or teams may require
different testing approaches. For example, for products that undergo frequent
iterations, unit testing or integration testing, which focus on smaller scope tests,
may be more suitable for quickly identifying and resolving issues.
Narrow the scope of tests: Smaller tests make it easier to pinpoint issues. For
instance, breaking a single end-to-end test case into multiple unit or integration
test cases can help identify problems more efficiently, improving confidence and
accuracy.

Implementing these strategies can effectively reduce the likelihood of test
failures after merging code, ensuring greater product stability.

Notes

Note 1: For more details and examples on “flaky tests,” see Chapter 7, section
“Why Do Some Test Cases Succeed Sometimes and Fail Other Times?”

Inferring Use Case Coverage from Code Coverage
Code coverage refers to the proportion of code that has been tested, while use case
coverage refers to the proportion of test cases that cover all the features and
scenarios of a project or product.

Traditionally, we have used code coverage to assess the quality of tests, but this
approach has several limitations:

Doesn’t truly reflect product quality: Code coverage only shows how much of the
code is tested, but it doesn’t indicate whether the tests achieve their intended
goals. For example, even if code coverage reaches 100%, there might still be
important features or scenarios that are untested.
Cannot provide effective testing recommendations: Code coverage can tell us
which parts of the code need testing, but it doesn’t tell us which parts are critical
and should be prioritized for testing. Additionally, it doesn’t indicate under which
scenarios certain code is executed, making it ineffective in guiding test writing.

While code coverage is not a perfect metric, it can still serve as a helpful tool for
identifying potential untested parts of the code. The following discussion explores
how to use code coverage to infer use case coverage, improving testing
effectiveness and achieving comprehensive feature coverage.

For example, let’s consider a <Count> component where the number updates
after 0.5 seconds when the user clicks the + or - button.

// src/Count/Count.js
const Count = () => {
 const [counter, setCounter] = useState(0);

 const delayCount = () => {
 setTimeout(() => {
 setCounter((prevCounter) => prevCounter + 1);
 }, 500);
 };

 return (
 <>

 <h1 data-test-id="counter">{counter}</h1>
 <button data-test-id="button-up" onClick=
{delayCount}>

 +
 </button>
 <button
 data-test-id="button-down"
 onClick={() => setCounter((prevCounter) =>
prevCounter - 1)}
 >
 -
 </button>
 </>

);
};

First, we test the current functionality with the following test for the <Count>
component. The test simulates a user clicking the + button, then checks whether the
counter value updates to 1 after 0.5 seconds.

// src/Count/Count.test.js

beforeAll(() => {
 jest.useFakeTimers();
});

afterAll(() => {
 jest.useRealTimers();
});

it('should get 1 when click + button', () => {
 const { getByTestId } = render(<Count />);
 fireEvent.click(getByTestId('button-up'));

 act(() => {
 jest.advanceTimersByTime(500);
 });

 expect(getByTestId('counter')).toHaveTextContent('1');
});

This unit test for the <Count> component fully renders the component using
React Testing Library’s render method and retrieves elements using
getByTestId. The test simulates clicking the + button with

fireEvent.click, and the act function ensures that asynchronous updates are
properly handled. Finally, Jest’s expect assertion checks whether the counter
updates to 1 after the button is clicked.

Now, running the following command executes the tests and generates the test
coverage report:

yarn test Count.test.js --coverage

The results for Count.js are shown below:

----------|---------|----------|---------|---------|----

File | % Stmts | % Branch | % Funcs | % Lines |
Uncovered Line #s
----------|---------|----------|---------|---------|----

All files | 77.77 | 100 | 66.66 | 85.71 |
Count.js	77.77	100	66.66	85.71	20

Explanation of each part of the report:

File: The name of the file being tested, in this case, Count.js.
% Stmts (statements coverage): The percentage of code statements that have
been tested. In this example, Count.js has 77% statement coverage.
% Branch (branch coverage): The percentage of code branches (e.g., if
statements) that have been tested. Since Count.js has no branches, it shows
100% branch coverage.
% Funcs (function coverage): The percentage of functions that have been tested.
In this example, Count.js has three functions (the + button’s onClick, the -
button’s onClick, and delayCount). Only two of them have been tested, giving
a 66.66% function coverage.
% Lines (line coverage): The percentage of lines of code that have been tested.
In this example, Count.js has 28 lines of code (including blank lines), of
which 24 are covered by tests, resulting in 85.71% line coverage.
Uncovered Line #s: The specific line numbers not covered by tests. In this
case, line 20 in Count.js is uncovered.

Next, use the test framework’s report to analyze which parts of the code remain
untested, and write corresponding test cases. Specifically, review the uncovered
code, consider the scenarios where it would be executed, and implement tests for

those scenarios. In this example, the uncovered line is line 20, which handles
decrementing the counter.

// src/Count/Count.js

18 <button
19 data-test-id="button-down"
20 onClick={() => setCounter(prevCounter =>
prevCounter - 1)}
21 >

When would this line of code be executed? When the user clicks the - button to
decrement the counter. Write a test case where clicking the - button results in the
counter displaying -1. The test implementation is shown below:

// src/Count/Count.test.js

it('should get -1 when click - button', () => {
 const { getByTestId } = render(<Count />);

 act(() => {
 fireEvent.click(getByTestId('button-down'));
 });

 expect(getByTestId('counter')).toHaveTextContent('-1');
});

After modifying and adding the new test, run the tests again. The updated report
will show full coverage:

----------|---------|----------|---------|---------|----

File | % Stmts | % Branch | % Funcs | % Lines |
Uncovered Line #s
----------|---------|----------|---------|---------|----

All files | 100 | 100 | 100 | 100 |
 Count.js | 100 | 100 | 100 | 100 |
----------|---------|----------|---------|---------|----

While this improves code coverage to 100%, it also covers more usage
scenarios. The benefit of this approach is that it helps developers identify untested
code and implement tests based on the corresponding use cases, increasing the
overall effectiveness of the tests.

Conclusion
When evaluating the application and determining what to test, code coverage does
not provide deep insights into where most of the testing efforts should be focused.
Therefore, it is essential to consider (1) the scenarios in which the code will be
executed and (2) which tests can cover those scenarios. Use case coverage, which
focuses on whether the tests cover all the features and usage scenarios of a project or
product, is a better metric.

Chapter Review and Summary
Automated testing can be performed manually via scripts or using a test runner
within the testing framework. By leveraging different testing methods, assistance
and feedback can be provided at various stages of the development lifecycle.
To ensure that the codebase functions correctly before merging code back into the
main branch, it is recommended to run as many tests as possible. Key moments
for executing tests before merging include pre-commit, pre-push, and
testing when submitting a pull request (PR). Since git commit can be
triggered frequently during development, executing too many tests or lengthy
tests during pre-commit can disrupt development or lead to excessive wait
times. A more balanced approach is to allocate some tasks to pre-push instead.
Whether tests are manually triggered during development or executed before
merging, most projects also schedule tests after the code has been merged into the
main branch or set up routine, periodic tests to ensure long-term, stable product
performance. It’s important to pause merging code into the main branch when
tests fail and resume merging only after issues are resolved.
As use case coverage focuses on whether tests cover all functionalities and
scenarios of the project and product, it is considered a better metric. It’s
recommended to infer use case coverage from code coverage to write effective
tests and achieve comprehensive functionality coverage.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
H.-H. Tang, Practical Front-End Testing
https://doi.org/10.1007/979-8-8688-1451-8_7

7. Frequently Asked Questions
Hsin-Hao Tang1

Taipei, Taiwan

What to Do When UI Updates Cause Test Failures?
The Element Selection Method Is Too Loose, Strict, or Lacks Clear Meaning
Tests with Too Many Implementation Details
Summary
Notes
How to Handle Duplicate Tests?
Notes
How to Test the Timer?
Notes
How to Mock Only Part of a Module?
How to Debug? What If an Element Can’t Be Found? How Do You Trace the Data Flow?
What If the Element Can't Be Found?
How Do You Trace the Data Flow?
Notes
How to Test Localization?
Notes
How to Use Setup and Teardown? What Are beforeEach, afterEach, beforeAll, and afterAll?
Repeated Setup
One-Time Setup
Summary
Notes
Should Tests Include Type Checking?
Option 1: Implement Type Checking Inside the addNumbers Function
Option 2: Use Tools for Type Checking
Notes
Why Do Some Test Cases Succeed Sometimes and Fail Other Times?
Resource Dependencies
Test Dependencies
Conclusion
Notes
How to Run Specific Tests? An Example Using Jest
Skipping Specific Test Blocks
Skipping Specific Test Cases
Notes

What to Do When UI Updates Cause Test Failures?

https://doi.org/10.1007/979-8-8688-1451-8_7

Front-end developers often encounter a common issue after implementing tests: whenever the UI is
updated, the tests fail, requiring corresponding adjustments, which can be time-consuming and labor-
intensive. Is there a way to reduce the frequency or extent of these adjustments to save maintenance
costs?

There are two main reasons why tests easily fail due to UI updates:

The method for selecting elements is too loose, too strict, or lacks clear meaning.
The test contains too many implementation details.

Let’s break down each of these issues and provide solutions.

The Element Selection Method Is Too Loose, Strict, or Lacks Clear Meaning
The Element Selection Method Is Too Loose
For example, consider the following code for the <Hello> component. How should we test that the
string “This is test text” is correctly rendered?

// src/Hello/Hello.js

const Hello = () => {
 return (
 <div>
 This is a box
 <div>This is test text</div>
 </div>
);
};

Let’s try selecting the text directly for testing. Using React Testing Library’s getByText to
match the text can find the correct element. In this code snippet, the render method from React
Testing Library fully renders the <Hello> component. Then, getByText is used to retrieve the
corresponding DOM element based on the expected text. We can then use textContent to get the
actual text and use an expect assertion to check if it matches the expected string “This is test text.”
Here, using toHaveTextContent is recommended for asserting the DOM element’s text content
because it provides a more readable and semantic way to verify the content. However, for
demonstration purposes, we’ll temporarily use the current approach and explain more later.

// src/Hello/Hello.test.js

it('should render the correct content', () => {
 const { getByText } = render(<Hello />);

 expect(getByText('This is test text').textContent).toBe('This is
test text'); // Recommended to use toHaveTextContent
});

Now, if the text changes to “This is not test text,” two things need to be updated: the element
selection and the comparison string, which doesn’t seem ideal.

// src/Hello/Hello.test.js

it('should render the correct content', () => {

 const { getByText } = render(<Hello />);

 // Both places must be changed to "This is not test text"
 expect(getByText('This is test text').textContent).toBe('This is
test text'); // Recommended to use toHaveTextContent
});

In this case, the line expect(getByText('...').textContent).toBe('...')
should be changed to use toHaveTextContent. Why? When comparing the text content of a
specific element, both textContent with toBe and toHaveTextContent can be used to assert
the content.

Here’s an example using textContent with toBe:

expect(getByTestId('sample-id').textContent).toBe('sample text...');

If the content doesn’t match the expectation, the test will fail with an error message like

expect(received).toBe(expected)
 Expected: "sample text..."
 Received: "Hello World"

An example using toHaveTextContent:

expect(getByTestId('sample-id')).toHaveTextContent('sample
text...');

If the content doesn’t match the expectation, the test will fail with an error message like

Expected element to have text content:
 sample text...
 Received:
 Hello World

Here are the differences between textContent with toBe and toHaveTextContent:

textContent is a DOM element property that retrieves the text content. It directly accesses the
element’s text but doesn’t provide semantic validation like toHaveTextContent. Using a
matcher like toBe may compare more details than just text, including HTML details, which can
lead to brittle tests and reduced flexibility.
toHaveTextContent, from the @testing-library/jest-dom library, is a Jest matcher
that checks if an element contains specific text. It offers a more readable and semantic way to verify
text content. For example, error messages from toBe may not clearly indicate the root cause, while
toHaveTextContent clearly states when the string differs from expectations. Using
toHaveTextContent improves test readability and provides more useful error messages when
tests fail, making it the recommended approach.

Now, let’s consider another case where the <Hello> component has two instances of the text
“This is test text.” Initially, we expected only one instance, but using getByText can only select one
element, leading to test failures since multiple elements now contain the same text. If we want to
select just one, using text content as the selection method will make it difficult to identify the correct
instance. Essentially, when there are multiple elements with the same text, selecting based on text
alone is too loose.

// src/Hello/Hello.js

const Hello = () => {
 return (
 <div>
 This is a box
 <div>This is test text</div>
 <div>This is test text</div>
 </div>
);
};

If we really need to know how many elements contain “This is test text,” we can use
getAllByText and queryAllByTestId to select all matching elements and then make
assertions. For example, the following code uses getAllByText to find elements with data-
test-id="text-1" and queryAllByTestId to find elements with data-test-
id="text-2". If these elements are not present, getAllByTestId('text-1') will throw an
error like Unable to find an element by: [data-test-id="text-1"], while
queryAllByTestId('text-2') will return an empty array [].

// src/Hello/Hello.test.js

// Will throw an error, useful for asserting the existence of a
specific number of elements
expect(getAllByTestId('text-1')).toHaveLength(0);

// Will return an empty array [], useful when retrieving multiple
elements under unknown conditions
expect(queryAllByTestId('text-2')).toHaveLength(0);

Both getAllByText and queryAllByTestId are matchers provided by Testing Library to
retrieve elements with a specific data-test-id attribute. The difference is that getAllByText
throws an error if it doesn’t find the expected number of elements, making it useful for asserting exact
counts, while queryAllByTestId returns an empty array and is useful for iterating over multiple
elements.

The Element Selection Method Is Too Strict
Consider the following example where XPath /div/div is used to select the element containing the
text “This is test text” (Note 1):

// src/Hello/Hello.js

const Hello = () => {
 return (
 <div>
 This is a box
 <div>This is test text</div>
 </div>
);
};

If the component is updated and the tag is changed from <div> to <p>, the selection path must
be updated to /div/p. This is common when refactoring or adjusting component structures. This
scenario exemplifies how using an overly strict selection method can cause unnecessary test failures.
Relying on XPath to select elements is rigid; any changes to the HTML structure require rewriting the
selection rules, making it highly inflexible.

// src/Hello/Hello.js

const Hello = () => {
 return (
 <div>
 This is a box
 <p>This is test text</p>
 </div>
);
};

The Element Selection Method Is Not Clear Enough
What if you use a class name to select the element, like using the .text selector?

// src/Hello/Hello.js

const Hello = () => {
 return (
 <div>
 This is a box
 <div className="text">This is test text</div>
 </div>
);
};

The test might look like this. In this code, Cypress is used for testing. First, the <Hello>
component is rendered into Cypress’s testing environment using cy.mount. Then, the cy.get
method selects the element with the class name .text. Finally, Cypress’s built-in Chai assertion tool
should checks if the element’s text content is “This is test text.”

// src/Hello/Hello.cy.js

it('should show image title correctly', () => {
 cy.mount(<Hello />);

 cy.get('.text').should('have.text', 'This is test text');
});

Since class names are usually associated with styles, combining them with tests may lead to test
failures when modifying the UI. For example, if the style class is changed from .text to
.content, the developer must decide whether to remove .text and only keep .content or
retain both. This requires developers to inspect the code carefully, making it unclear whether a class
name is for styling or testing purposes.

const Hello = () => {

 return (
 <div>
 This is a box
 <div className="text content">This is test text</div>
 </div>
);
};

In this example, if you remove .text, the test will fail. However, keeping both may seem
redundant and could introduce maintenance issues later.

const Hello = () => {
 return (
 <div>
 This is a box
 <div className="content">This is test text</div>
 </div>
);
};

The test must be updated as follows, changing .text to .content for it to work correctly. But
if the class name is changed again in the future, the test will need updating again, still causing test
failures due to UI changes.

// src/Hello/Hello.cy.js

it('should show image title correctly', () => {
 cy.mount(<Hello />);

 cy.get('.content').should('have.text', 'This is test text');
});

This unclear selection method not only causes test failures after code changes but also requires
developers to carefully review the code for necessary adjustments, which can be time-consuming. It is
recommended that element selection methods be clearly defined and not mixed. One approach is to
use a data-* attribute, as discussed in the next section.

Using data-* attribute for Focused and Flexible Element Selection
When selecting elements, using data-* attributes (such as data-test-id) provides focus
as it can be specifically named for testing purposes. Additionally, since this method is unrelated to
HTML structure or styles, it offers greater flexibility.

// src/Hello/Hello.js

const Hello = () => {
 return (
 <div>
 This is a box
 <div data-test-id="text">This is test text</div>
 </div>
);

};

Here’s an example of a test. Regardless of future structural or styling changes, as long as the
data-test-id remains as text, it will consistently provide access to the element’s content or
interactions. This avoids issues where the selector is too strict, too loose, or unclear in meaning. In
other words, as long as the data-test-id remains unchanged, the test will work properly and
won’t easily fail.

// src/Hello/Hello.test.js

it('should render the correct content 2', () => {
 const { getByTestId } = render(<Hello />);

 expect(getByTestId('text')).toHaveTextContent('This is test
text');
});

Tests with Too Many Implementation Details
Excessive Mocking
Mocking replaces real implementation details in tests with simulated code to ensure that the test code
can correctly interact with the objects it depends on. However, when a feature changes, the test code
using mocks also needs to be updated. If not, the test will fail.

For example, in a test, <ImageItem> is mocked to replace the real implementation.

// src/ImageList/ImagesList.mock.test.js

jest.mock('./ImageItem', () => () => (
 <div data-test-id="image-item-title">ImageItem</div>
));

Here’s the actual implementation of <ImageItem>:

// src/ImageList/ImageItem.js

const ImageItem = ({ title, image }) => {
 return (
 <div data-test-id="image-item">

 <p data-test-id="image-item-title">{title}</p>
 </div>
);
};

If later <ImageItem> is updated, changing the test attribute data-test-id from image-
item-title to image-item-name, both the real and mock code need to be updated to ensure
the test’s correctness.

// src/ImageList/ImagesList.mock.test.js

jest.mock('./ImageItem', () => () => (
 // Changed from image-item-title to image-item-name

 <div data-test-id="image-item-name">ImageItem</div>
));

Updated actual implementation of <ImageItem>:

const ImageItem = ({ title, image }) => {
 // Changed from image-item-title to image-item-name
 return (
 <div data-test-id="image-item">

 <p data-test-id="image-item-name">{title}</p>
 </div>
);
};

Excessive mocking in test implementation can lead to discrepancies between the mock and the real
code, making it hard to ensure the test correctly interacts with the actual implementation. Maintaining
both the real and mock code separately is difficult and relies heavily on manual updates, which makes
it challenging to ensure the effectiveness of the tests and manage code quality. Therefore, unless
necessary, tests should aim to be as real as possible, minimizing the use of mocks, avoiding overly
fake data, and fully rendering components. This allows for more comprehensive testing of the
functionality, ensuring that integrated components can work together correctly and achieve the
expected outcomes in a real environment (Note 2).

Snapshots
Snapshots capture implementation details, so even small changes like adding a class name or updating
a data-* attribute will cause tests to fail. Fixing these tests can be time-consuming and
resource-intensive. Too many changes lead to wasted resources. Therefore, it is not recommended to
use snapshots to capture implementation details (Note 3).

//
src/ImageList/__snapshots__/ImageListAxios.snapshot.jest.test.js.snap

exports[`ImageList should render correct image items when have data
1`] = `
Array [
 <div
 data-test-id="image-item"
 >
 <img
 alt="Building a high-speed website, starting with web metrics!
Key to enhancing user experience and traffic"
 data-test-id="image-item-src"
 src="https://bit.ly/4228IT0"
 />
 <p
 data-test-id="image-item-title"
 >
 Building a high-speed website, starting with web metrics! Key
to enhancing user experience and traffic

 </p>
 </div>,
 <div
 data-test-id="image-item"
 >
 <img
 alt="Shimanami Kaido: Island-hopping cycling adventure"
 data-test-id="image-item-src"
 src="https://bit.ly/4b5nLPO"
 />
 <p
 data-test-id="image-item-title"
 >
 Shimanami Kaido: Island-hopping cycling adventure
 </p>
 </div>,
]

Comparing Details
When selecting elements for comparison, we often capture the entire DOM element and then extract
its value. For example, getByTestId('item-quantity') will capture the following HTML
structure:

<div data-test-id="item-quantity">2</div>

To compare the content of this element, we can use either getByTestId with toBe or
toHaveTextContent to extract the value. Which is better? Using
expect(getByTestId('item-quantity')).toHaveTextContent('2') compares the
string 2 extracted from the DOM element. As long as the data-test-id remains unchanged, the
test will pass, and it won’t fail due to changes in the structure. On the other hand,
expect(getByTestId('item-quantity')).toBe('2') would compare the exact HTML
structure <div data-test-id="item-quantity">2</div>, which would fail if the HTML
structure changes. Therefore, using toHaveTextContent is more flexible and is the recommended
approach.

Other similar examples include the following:

Using toHaveStyle to check if the element a user hovers over in a list is highlighted with a
specific color.

expect(selectItem).toHaveStyle({ backgroundColor: '#5e5e5e' });

Not all detailed checks are unreasonable. For instance, using toHaveProperty to ensure a
submit button is disabled when a form is incomplete is valid because a form that hasn’t passed
validation should not be submitted. This test checks business logic, not just the UI display.

expect(button).toHaveProperty('disabled', true);

Using toContainHTML to verify if the <TextBold> component correctly bolds the text. Tests
involving UI display are often fragile since they can involve many implementation details.
However, in this case, it’s reasonable because the component’s purpose is to bold text using the
 HTML tag, so we need to ensure it works as expected.

expect(textBoldComponent.getByTestId('bold-text')).toContainHTML(

 'test'

);

Developers can find the most suitable testing method based on different scenarios. When writing
tests, choosing the appropriate level of detail ensures that the tests are flexible and maintainable.

Splitting Logic, State, and UI Rendering
When testing components, separating logic and UI rendering can lead to more efficient testing. By
appropriately splitting logic, state, and UI rendering—encapsulating business logic and data state in a
custom hook and leaving only the display portion in the component—you can achieve more effective
testing (Note 4).

For example, here’s a calculator component <Calculator>, which includes two input fields for
entering numbers, a drop-down menu for selecting the operator (+, -, *, /), and a button to perform
the calculation. The following code uses the useState hook to store the user’s input and operator,
defines a handleChange function to handle changes in the input fields and drop-down menu, and
defines a calculateResult function to compute the result based on the two numbers. Finally, the
component renders the input fields, drop-down, calculate button, and result display, with
corresponding data-test-id attributes for easy element targeting during testing.

// src/Calculator/Calculator.advanced.js

const Calculator = () => {
 const [num1, setNum1] = useState('');
 const [num2, setNum2] = useState('');
 const [operator, setOperator] = useState('+');
 const [result, setResult] = useState('');

 const handleChange = (e) => {
 const { name, value } = e.target;
 if (name === 'num1') {
 setNum1(value);
 } else if (name === 'num2') {
 setNum2(value);
 } else if (name === 'operator') {
 setOperator(value);
 }
 };

 const calculateResult = () => {
 const parsedNum1 = parseFloat(num1);
 const parsedNum2 = parseFloat(num2);

 switch (operator) {
 case '+':
 setResult(parsedNum1 + parsedNum2);
 break;
 case '-':
 setResult(parsedNum1 - parsedNum2);
 break;

 case '*':
 setResult(parsedNum1 * parsedNum2);
 break;
 case '/':
 setResult(parsedNum1 / parsedNum2);
 break;
 default:
 setResult('Invalid operator');
 }
 };

 return (
 <div>
 <input
 data-test-id="number1"
 type="number"
 name="num1"
 value={num1}
 onChange={handleChange}
 />
 <select
 data-test-id="operator"
 name="operator"
 value={operator}
 onChange={handleChange}
 >
 <option value="+">+</option>
 <option value="-">-</option>
 <option value="*">*</option>
 <option value="/">/</option>
 </select>
 <input
 data-test-id="number2"
 type="number"
 name="num2"
 value={num2}
 onChange={handleChange}
 />
 <button data-test-id="calculate" onClick={calculateResult}>
 Calculate
 </button>
 <div data-test-id="result">{result}</div>
 </div>
);
};

In the above code, since the component handles the UI rendering, calculation logic, and state
management, none of these parts can be easily reused. Ideally, we would refactor the component to
encapsulate the calculation-related business logic and data state within a custom hook,
useCalculatorHook, leaving only the UI rendering in the <Calculator> component. The

benefit of this approach is that it makes the code more maintainable, testable, and reusable, and it
simplifies collaborative and phased development. Here’s how the refactored hook would look, making
it easy to reuse the calculator logic by simply using useCalculatorHook in the future:

// src/Calculator/useCalculatorHook.js

const useCalculatorHook = () => {
 const [num1, setNum1] = useState(0);
 const [num2, setNum2] = useState(0);
 const [operator, setOperator] = useState('+');
 const [result, setResult] = useState(0);

 const handleChange = (e) => {
 const { name, value } = e.target;
 if (name === 'num1') {
 setNum1(value);
 } else if (name === 'num2') {
 setNum2(value);
 } else if (name === 'operator') {
 setOperator(value);
 }
 };

 const calculate = () => {
 switch (operator) {
 case '+':
 setResult(num1 + num2);
 break;
 case '-':
 setResult(num1 - num2);
 break;
 case '*':
 setResult(num1 * num2);
 break;
 case '/':
 setResult(num1 / num2);
 break;
 default:
 setResult(0);
 }
 };

 return {
 calculate,
 handleChange,
 num1,
 num2,
 operator,
 result,
 };

};

Refactor the <Calculator> component as follows, focusing the <Calculator> component
solely on UI rendering, making it easier to understand, test, and maintain:

// src/Calculator/Calculator.advanced-refactor.js

import useCalculatorHook from './useCalculatorHook';

const Calculator = () => {
 const { calculate, handleChange, num1, num2, operator, result } =
 useCalculatorHook();

 return (
 <>
 <input
 data-test-id="number1"
 type="number"
 value={num1}
 onChange={handleChange}
 />
 <select data-test-id="operator" value={operator} onChange=
{handleChange}>
 <option value="+">+</option>
 <option value="-">-</option>
 <option value="*">*</option>
 <option value="/">/</option>
 </select>
 <input
 data-test-id="number2"
 type="number"
 value={num2}
 onChange={handleChange}
 />
 <button onClick={calculate}>Calculate</button>
 <div data-test-id="result">{result}</div>
 </>

);
};

Since the calculator has now been split into the <Calculator> component and the
useCalculatorHook, you can write separate tests for each part. The following test case checks
whether the result of 5 * 3 is 15. In this example, the test simulates the user’s actions, including
entering numbers, selecting the operator, and clicking the button to get the result. This testing method
is appropriate because it approaches testing from the user’s perspective, making it more
comprehensive and flexible. Additionally, it is less likely to fail due to implementation changes, which
helps reduce the effort required to maintain the tests.

// src/Calculator/Calculator.advanced.test.js

describe('Calculator', () => {
 it('should get 15 when 5 is multiplied by 3', () => {
 const { getByTestId } = render(<Calculator />);

 // Input numbers
 fireEvent.change(getByTestId('number1'), { target: { value: '5'
} });
 fireEvent.change(getByTestId('number2'), { target: { value: '3'
} });

 // Select operator
 fireEvent.change(getByTestId('operator'), { target: { value: '*'
} });

 // Click calculate button
 fireEvent.click(getByTestId('calculate'));

 // Verify result
 expect(getByTestId('result')).toHaveTextContent('15');
 });
});

Now that the test for <Calculator> has been written, let’s write the test for
useCalculatorHook. The following test case is for the scenario where adding 5 and 3 results in
8. Notice that the test method involves using the exported function to input numbers, select the
operator, and call the calculate function to get the result.

// src/Calculator/useCalculatorHook.test.js

describe('useCalculatorHook', () => {
 test('should get 8 when adding 5 and 3', () => {
 const TestComponent = () => {
 const {
 calculate,
 handleNum1Change,
 handleNum2Change,
 handleOperatorChange,
 num1,
 num2,
 operator,
 result,
 } = useCalculatorHook();

 return (
 <div>
 <input
 data-test-id="number1"
 value={num1}
 onChange={handleNum1Change}
 />
 <select

 data-test-id="operator"
 value={operator}
 onChange={handleOperatorChange}
 >
 <option value="+">+</option>
 </select>
 <input
 data-test-id="number2"
 value={num2}
 onChange={handleNum2Change}
 />
 <button data-test-id="calculate" onClick={calculate}>
 Calculate
 </button>
 <div data-test-id="result">{result}</div>
 </div>
);
 };

 const { getByTestId } = render(<TestComponent />);

 // Input numbers
 fireEvent.change(getByTestId('number1'), { target: { value: '5'
} });
 fireEvent.change(getByTestId('number2'), { target: { value: '3'
} });

 // Select operator
 fireEvent.change(getByTestId('operator'), { target: { value: '+'
} });

 // Click calculate button
 fireEvent.click(getByTestId('calculate'));

 // Verify result
 expect(getByTestId('result')).toHaveTextContent('8');
 });
});

When writing tests, the biggest issue is when changes to the UI break the tests. To avoid this, tests
should not be too dependent on UI details. If the UI is constantly changing or is not yet finalized, it’s a
good idea to start by writing tests for the hooks, which will ensure functionality works correctly. Once
the UI is stable, you can add component-related tests. Therefore, separating logic, state, and UI
display by encapsulating business logic and data state in custom hooks, while leaving UI-specific parts
in the component, leads to better testing outcomes.

Summary
To minimize the issue of tests breaking whenever the UI is updated, follow these principles when
writing test code:

Use data-* attributes to maintain focus and flexibility when selecting elements.

Avoid testing with too much implementation detail, such as reducing mocks, avoiding snapshots for
recording implementation details, and choosing test methods that do not involve comparing detailed
UI structures.
Separate logic, state, and UI display to simplify the scope of the tests and improve efficiency.

This approach will help reduce the cost of maintaining tests, saving both time and effort.

Notes
Note 1: XPath (XML Path Language) is a query language used to locate nodes in an XML
document. It uses path expressions to describe the relationships between nodes, allowing precise
targeting of specific nodes within the XML structure. XPath is also commonly used for locating
elements in HTML documents for automated web testing.
Note 2: For more information on “mocking” and related topics, see Chapter 3, section “Mocking
Components, API Responses, and Third-Party Libraries.”
Note 3: For more details on “snapshots,” refer to Chapter 3, section “Snapshots.”
Note 4: For discussions on how to write tests for components, see Chapter 2, section “How to Write
Tests for Components? A React Example.”

How to Handle Duplicate Tests?
During software development, functionality is often developed in phases, and each phase typically
involves implementing suitable tests to ensure product and code quality. For example, when
developing a calculator’s addition function, we can break down the implementation as follows.

In the first phase, we implement an addNumbers function:

// src/utils/addNumbers/addNumbers.js

const addNumbers = (a, b) => Number((a + b).toFixed(1));

Here, we will examine three test cases:

Test if 0.1 plus 0.2 equals 0.3 to check floating-point addition.
Test if 5 plus –3 equals 2 to check negative number addition.
Test if 5 plus 3 equals 8 to check positive number addition.

We write unit tests for addNumbers as shown below:

// src/utils/addNumbers/addNumbers.test.js

test('should return 0.3 when 0.1 + 0.2', () => {
 expect(addNumbers(0.1, 0.2)).toBe(0.3);
});

test('should get 2 when add 5 and -3', () => {
 expect(addNumbers(5, -3)).toBe(2);
});

test('should get 8 when add 5 and 3', () => {
 expect(addNumbers(5, 3)).toBe(8);
});

In the second phase, we implement a calculator component <Calculator>, which includes two
input fields for numbers and a button to execute the calculation:

// src/Calculator/Calculator.js

const Calculator = () => {
 const [su, setSu] = useState(0);
 const [ad, setAd] = useState(0);
 const [result, setResult] = useState(0);

 const getResult = () => {
 const result = addNumbers(Number(su), Number(ad));
 setResult(result);
 };

 return (
 <>
 <input
 type="number"
 data-test-id="number-su"
 onChange={(e) => setSu(e.target.value)}
 />
 +
 <input
 type="number"
 data-test-id="number-ad"
 onChange={(e) => setAd(e.target.value)}
 />
 ={result}
 <button data-test-id="get-result-button" onClick={getResult}>
 Get result!
 </button>
 </>

);
};

Now, let’s write unit tests for the <Calculator> component as follows. In this code, we use
React Testing Library’s render method to fully render the <Calculator> component, use
getByTestId to access elements on the page, simulate user input using fireEvent.change,
and simulate button clicks using fireEvent.click. Finally, we use toHaveTextContent to
compare the content of the result and use the expect assertion to check if the result equals the
expected string “8.”

// src/Calculator/Calculator.test.js

describe('Calculator', () => {
 test('should get 8 when add 5 and 3', () => {
 const { getByTestId } = render(<Calculator />);

 const suInput = getByTestId('number-su');

 const adInput = getByTestId('number-ad');
 const getResultButton = getByTestId('get-result-button');
 const result = getByTestId('result');

 act(() => {
 fireEvent.change(suInput, { target: { value: '5' } });
 fireEvent.change(adInput, { target: { value: '3' } });
 fireEvent.click(getResultButton);
 });

 expect(result).toHaveTextContent('8');
 });
});

At this point, both the addNumbers function and the <Calculator> component have unit
tests to ensure the correctness of the addition functionality. However, upon reviewing the test code, we
realize that the following test case is redundant with the UI component test for <Calculator>:

test('should get 8 when add 5 and 3', () => {
 expect(addNumbers(5, 3)).toBe(8);
});

So, how should we handle duplicate tests? Should we keep or remove them? This topic can be
discussed from the following perspectives:

As in this scenario, where features are developed in phases, and tests are written to ensure code
quality at each step, duplicated tests may appear. Although the tests seem redundant, they serve
different purposes and provide different insights. Unit tests offer precise problem-solving
information, while integration tests are closer to user-level testing and cover more scenarios. Both
types should be retained.
If tests are written after feature development, the focus is typically on implementing integration
tests. Depending on the product and development stage, the focus and types of tests may vary (Note
1). To speed up test execution, duplicate tests might be removed, such as the addNumbers test
case in this case. Although the process may differ, the outcome remains the same. In practice, while
unit tests can thoroughly test details and are less costly to implement, integration tests better reflect
user scenarios and avoid resource waste, making them the preferred option.

Notes
Note 1: For more on test structures, refer to Chapter 9, section “Summary.”

How to Test the Timer?
When testing time-related functionalities, it’s impractical to actually wait for the specified duration.
For example, if a countdown timer component is set to wait for 30 seconds, implementing a test that
waits for 30 seconds would take too much time. Therefore, when testing time-related functions, we
use fake timers to assist. What is a fake timer? It replaces the real timer in the test code with a
substitute provided by the testing framework. In Jest, this is done using useFakeTimers.

Below is the implementation of the <Timer> component. It displays the remaining seconds and
shows the message “Time’s Up” after three seconds.

// src/Timer/Timer.js

const Timer = () => {
 const [seconds, setSeconds] = useState(3);
 const intervalIDRef = useRef(null);
 const startTimer = useCallback(() => {
 intervalIDRef.current = setInterval(
 () => setSeconds((prev) => prev - 1),
 1000
);
 }, []);

 const stopTimer = useCallback(() => {
 clearInterval(intervalIDRef.current);
 intervalIDRef.current = null;
 }, []);

 useEffect(() => {
 startTimer();
 return () => clearInterval(intervalIDRef.current);
 }, []);

 useEffect(() => {
 if (seconds === 0) {
 stopTimer();
 }
 }, [seconds]);

 return (
 <div>
 {seconds === 0
 ? `Time\'s Up`
 : `Remaining seconds: <span data-test-id="remain-
time">${seconds}`}
 </div>
);
};

In the test code, we start by declaring the use of Jest’s fake timers with useFakeTimers.

// src/Timer/Timer.test.js

jest.useFakeTimers();

We want to test that after one second, the message “Remaining seconds: 2” is displayed. In this
test case, we fully render the <Timer> component using React Testing Library’s render method
(Note 1). Then, we use the jest.advanceTimersByTime function to fast-forward time,
simulating the passage of one second. Finally, we use getByTestId to fetch the DOM element with
the data-test-id attribute of remain-time, which holds the remaining time value, and assert
using expect that it has correctly updated to two seconds. The act function is used to synchronize

rendering with asynchronous behaviors in the test to ensure the component updates its state before
rendering.

// src/Timer/Timer.test.js

it('should show remaining 2 seconds after 1 second', () => {
 const { getByTestId } = render(<Timer />);

 act(() => {
 jest.advanceTimersByTime(1000); // Fast-forward time, simulating
1 second
 });

 expect(getByTestId('remain-time')).toBe('2');
});

Next, we test that the message “Time’s Up” is displayed after three seconds. In this test case, we
again fully render the <Timer> component and use jest.advanceTimersByTime to simulate
the passage of three seconds. Finally, we retrieve the DOM element with data-test-id="time-
up" and assert that the time-up message is displayed (Note 2).

// src/Timer/Timer.test.js

it("should show Time's Up after 3 seconds", () => {
 const { getByTestId } = render(<Timer />);

 act(() => {
 jest.advanceTimersByTime(3000); // Fast-forward time, simulating
3 seconds
 });

 expect(getByTestId('time-up')).toBeInTheDocument();
});

Lastly, when testing time-related functionalities, it’s important to verify that the timer is cleared
when the component is unmounted. To check whether clearInterval is called when the
component is removed, we use jest.spyOn to spy on clearInterval. The
spyOnClearInterval object tracks the call (Note 3).

// src/Timer/Timer.test.js

it('should clean up the timer when unmounted', () => {
 const { unmount } = render(<Timer />);
 const spyOnClearInterval = jest.spyOn(global, 'clearInterval');

 unmount();

 expect(spyOnClearInterval).toHaveBeenCalledTimes(1);
});

This test ensures that the timer is correctly cleared when the component is unmounted. We fully
render the <Timer> component using React Testing Library’s render method and use
jest.spyOn to listen for the global clearInterval method. The unmount method is called to
simulate the component being removed. Finally, the test asserts that clearInterval was called
once, ensuring the timer is properly cleared when the component is removed. Clearing timers is
essential to avoid memory leaks and wasted resources. In JavaScript, if a timer is not cleared, it will
continue running in memory, even after the related component is removed, potentially causing
performance issues.

Using useFakeTimers allows developers to manipulate the timer like a time machine, freely
moving forward or backward without waiting, making it much easier to test time-related
functionalities.

Notes
Note 1: For more details on full rendering, see Chapter 2, section “Shallow Rendering and Full
Rendering.”
Note 2: For detecting element presence in the DOM, quantity, or visibility status, see Chapter 3,
section “Snapshots.”
Note 3: For the concepts of mock and spy testing, see Chapter 1, section “Mock, Spy, and Double.”

How to Mock Only Part of a Module?
A module typically contains multiple methods, and developers may not always need to mock all of
them when writing tests. Sometimes, only specific methods need to be mocked to produce desired
inputs and outputs. How can we mock only part of a module? Let’s use the bakeUtils module as an
example to demonstrate how to mock just part of a module.

For example, the bakeUtils.js file contains several functions: bakeChocolatePudding,
bakeLemonTart, bakeMatchaRoll, and bakeAllCakes, with bakeAllCakes being the
default export.

// src/utils/bakeUtils/bakeUtils.js

const bakeChocolatePudding = () => 'Chocolate Pudding is baked.';

const bakeLemonTart = () => 'Lemon Tart is baked.';

const bakeMatchaRoll = () => 'Matcha Roll is baked.';

const bakeAllCakes = () =>
 'Chocolate Pudding, Lemon Tart and Matcha Roll are all baked.';

export default bakeAllCakes;
export { bakeChocolatePudding, bakeLemonTart, bakeMatchaRoll };

Here’s how to implement the test. Using jest.mock, we mock the bakeUtils module and use
jest.requireActual('./bakeUtils') to get the real bakeUtils module. By passing in
the functions that do not need to be mocked, we can preserve the implementation details we don’t
want to replace.

// src/utils/bakeUtils/bakeUtils.test.js

import bakeAllCakes, { bakeMatchaRoll } from './bakeUtils';

jest.mock('./bakeUtils', () => {
 const originalModule = jest.requireActual('./bakeUtils');

 return {
 __esModule: true,
 ...originalModule,
 default: jest
 .fn()
 .mockReturnValue('Chocolate Pudding and Matcha Roll are all
baked.'),
 };
});

As a result, when bakeAllCakes is called, it executes the mocked version and returns the fake
string “Chocolate Pudding and Matcha Roll are all baked” instead of the original result.

// src/utils/bakeUtils/bakeUtils.test.js

describe('bakeAllCakes', () => {
 it('should bake Chocolate Pudding and Matcha Roll', () => {
 expect(bakeAllCakes()).toBe(
 'Chocolate Pudding and Matcha Roll are all baked.'
);
 });
});

However, when bakeMatchaRoll is called, since we preserved its original implementation, the
output string remains unchanged.

// src/utils/bakeUtils/bakeUtils.test.js

describe('bakeMatchaRoll', () => {
 it('should bake Matcha Roll', () => {
 expect(bakeMatchaRoll()).toBe('Matcha Roll is baked.');
 });
});

This approach of mocking only part of a module allows developers to selectively control specific
behaviors of a module while reducing unnecessary mocks, making the testing process more efficient.

How to Debug? What If an Element Can’t Be Found? How Do You
Trace the Data Flow?
When writing tests, you’re often reviewing the results in the terminal without seeing the actual view in
the browser. So what do you do when the test fails, and how do you debug it?

Let’s explore the image list feature, which is implemented with two components: <ImageList>
and <ImageItem> (Note 1). The purpose of this image list feature is to display the retrieved image
data visually. The <ImageList> component is responsible for determining the display based on the
fetched image data. If no image data is available, it shows a prompt to inform the user that no images
are available; if there is image data, it uses the <ImageItem> component to display the images.

// src/ImageList/ImageListAxios.js

const ImageList = () => {
 const [images, setImages] = useState();

 useEffect(() => {
 async function fetchData() {
 try {
 const response = await
axios.get('https://dummyjson.com/products');
 setImages(response?.data?.products ||);
 } catch (error) {
 throw error;
 }
 }
 fetchData();
 }, []);

 const renderImages = () => {
 return images.map(({ id, title, images }) => (
 <ImageItem key={id} title={title} image={images[0]} />
));
 };

 const renderNoDataPrompt = () => {
 return <div data-test-id="no-data-prompt">No data to display.
</div>;
 };

 return <>{!!images.length ? renderImages() : renderNoDataPrompt()}
</>;
};

Here’s the test code:

// src/ImageList/ImageListAxios.jest.test.js

it('should render correct image items when have data', async () => {
 const mockedData = {
 list: [
 {
 id: '1',
 title: 'Build a Fast Website: Improve User Experience and
Traffic',
 images: ['https://bit.ly/4228IT0'],
 },
 {
 id: '2',
 title: 'Shimanami Kaido: A Cycling Island-Hopping
Adventure',
 images: ['https://bit.ly/4b5nLPO'],
 },
],
 };
 axios.get.mockResolvedValue(mockedData);

 const { getAllByTestId } = await act(async () => render(<ImageList
/>));

 expect(getAllByTestId('image-item-title')).toHaveLength(2);
});

However, the test throws an error:

× should render correct image items when have data (18 ms)

TestingLibraryElementError: Unable to find an element by: [data-
test-id="image-item-title"]

What should you do when the error message doesn’t provide enough details, or when the error
message is unclear?

What If the Element Can't Be Found?
Since we’re expecting to find a specific element that isn’t appearing, we can inspect the current screen
to see what’s rendered. To do this, you can print out the current view to check what’s actually being
displayed. In Testing Library, you can use screen.debug,
screen.logTestingPlaygroundURL, or generate a snapshot for this purpose.

// src/ImageList/ImageListAxios.jest.test.js

it('should render correct image items when have data', async () => {
 // ...skip...
 const { getAllByTestId } = await act(async () => render(<ImageList
/>));

 screen.debug(); // Add this line to print the rendered output

 expect(getAllByTestId('image-item-title')).toHaveLength(2);
});

screen.debug will print the HTML structure of the current screen, and inspecting this reveals
that it’s showing the “No data” prompt.

<body>
 <div>
 <div data-test-id="no-data-prompt">No data to display.</div>
 </div>
</body>

Alternatively, you can use Jest’s toMatchSnapshot method to generate a snapshot of the
rendered HTML.

// src/ImageList/ImageListAxios.snapshot.jest.test.js

it('should render correct image items when have data', async () => {
 // ...skip...
 const { getAllByTestId } = await act(async () => render(<ImageList
/>));

 // Generate a snapshot after rendering the component
 const wrapper = renderer.create(<ImageList />).toJSON();
 expect(wrapper).toMatchSnapshot();

 expect(getAllByTestId('image-item-title')).toHaveLength(2);
});

The snapshot output also shows that the “No data” section was rendered.

//
src/ImageList/__snapshots__/ImageListAxios.snapshot.jest.test.js.snap

exports[`ImageList should render correct image items when have data
1`] = `
<div
 data-test-id="no-data-prompt"
>
 No data to display.
</div>
`;

There are two possible reasons for this: (1) no data was fetched, or (2) the data fields don’t match
correctly. Let’s investigate further.

How Do You Trace the Data Flow?
First, let’s check whether any data was actually fetched. Add a console.log to the component to
print out the retrieved data.

// src/ImageList/ImageListAxios.js

const response = await axios.get('https://dummyjson.com/products');
console.log(response); // Add this line to inspect the fetched data

Upon inspection, we see that data was indeed fetched.

{
 list: [
 {
 id: '1',
 title: 'Build a Fast Website: Improve User Experience and
Traffic',
 images: [Array],
 },
 {
 id: '2',
 title: 'Shimanami Kaido: A Cycling Island-Hopping Adventure',
 images: [Array],
 },
];
}

Next, let’s check whether the data fields are mapped correctly.

// src/ImageList/ImageListAxios.js

// Add these lines to inspect the response data
console.log(response); // Result: { list: [...] }
console.log(response?.data); // Result: undefined
console.log(response?.data?.products); // Result: undefined

Comparing the code with response?.data?.products, we see that response doesn’t
have a data field, let alone a products field. This results in an empty array and triggers the “No
data” section.

So, we need to modify the test data to use products instead of list.

// src/ImageList/ImageListAxios.jest.test.js

const mockedData = {
 // Change mockedData's list to products
 products: [
 {
 id: '1',
 title: 'Build a Fast Website: Improve User Experience and
Traffic',
 images: ['https://bit.ly/4228IT0'],
 },
 {
 id: '2',
 title: 'Shimanami Kaido: A Cycling Island-Hopping Adventure',
 images: ['https://bit.ly/4b5nLPO'],
 },
],
};

Also, make sure the returned value includes the data field.

// src/ImageList/ImageListAxios.jest.test.js

axios.get.mockResolvedValue({ data: mockedData });

After making these changes, the test should pass successfully.

✓ should render correct image items when have data (21 ms)

In this example, we used simple methods to debug the issue. In real projects, you may need
additional tools, and you can choose whichever methods and tools suit your needs and preferences.

Notes
Note 1: For the screen structure and layout of the image list feature, refer to Chapter 3 for more
details.

How to Test Localization?
When testing localized interfaces, a common issue is that while everything may look well arranged
when testing in Chinese (Note 1), using other languages—such as English, Japanese, or Arabic—can
result in layout breakage. So how can we tackle this?

For example, the ordering system of the dessert shop “Summer’s dessert shop” is available in both
Chinese and English. As shown in Figure 7-1, the Chinese version looks perfectly fine.

Figure 7-1 The Chinese version of the ordering system for “Summer’s dessert shop”

Now, let’s look at the English version (Figure 7-2). It also seems okay at first glance.

Figure 7-2 The English version of the ordering system for “Summer’s dessert shop”

One day, an English translator updated the dessert names, giving them trendy new titles. After
renaming, the English version of “Fig Strawberry Matcha Cake” had a longer name, causing the
display to look crowded (Figure 7-3). How can we quickly identify such issues and notify developers
that the layout needs fixing?

Figure 7-3 The updated English version of the ordering system for “Summer’s dessert shop”

Visual testing can help with this. In this example, due to the renaming of “Fig Strawberry Matcha
Cake,” we can use Percy for visual testing to highlight the updated parts. This allows developers to
review the changes and determine if they meet expectations (Figure 7-4). If the changes are as
expected, the new view can be set as the new baseline for future comparisons. If not, adjustments need
to be made. Visual testing can be set as part of the PR review criteria, ensuring that if an unexpected
visual change occurs, it will be flagged and the PR will not be merged into the main branch. This
helps maintain product quality.

Figure 7-4 Visual testing using Percy for “Summer’s dessert shop” ordering system

How is this implemented? For components, you can import strings in different languages into
Storybook to generate accurate snapshots. Similarly, for pages, you can switch between languages and
capture snapshots of the view. Each time a component or page is modified, it can be compared against
this baseline. If the update is expected, it can be accepted as the new baseline. If not—such as when
layout issues arise—adjustments must be made before updating.

Since English or other languages may not be as familiar to us as Chinese, visual testing’s ability to
detect subtle layout differences makes it highly effective. It makes it easier to identify issues,
especially in non-native languages, and helps solve readability and user experience problems when
switching between languages on websites.

Notes
Note 1: In this section, as the author originally wrote the book in Chinese, it is dedicated to
translating non-English terms into English.

How to Use Setup and Teardown? What Are beforeEach,
afterEach, beforeAll, and afterAll?
When implementing tests, it’s common to encounter scenarios where some preparation is needed
before testing, and cleanup is required afterward. But why do we need this, and how do we implement
it?

Repeated Setup
To maintain the independence of each test case and avoid unintended interference that can lead to
unstable test results (Note 1), we can use the beforeEach and afterEach hooks to encapsulate
repetitive setup and teardown tasks. This ensures that each test case runs in a clean environment. For
example, if one test case modifies the value of a variable and the next test case doesn’t reset it,
subsequent tests might fail.

For instance, here is a Counter class that allows incrementing or decrementing a number via the
increment and decrement methods, with the current count retrievable through the getCount
method.

// src/Counter/Counter.js

class Counter {
 constructor() {
 this.count = 0;
 }

 increment() {
 this.count++;
 }

 decrement() {
 this.count--;
 }

 getCount() {
 return this.count;
 }
}

The test is written as follows. The first test case checks the increment method, and the second
test case checks the decrement method. These two test cases share the same counter instance.

Initially, the counter starts at 0. Logically, if the test cases run in order, the first should return 1 (0 + 1
= 1), and the second should return 0 (1 – 1 = 0).

describe('Counter class', () => {
 let counter = new Counter();

 // 0 + 1 = 1
 test('should get 1 when increment from 0', () => {
 counter.increment();
 expect(counter.getCount()).toBe(1);
 });

 // 1 - 1 = 0
 test('should get 0 when decrease', () => {
 counter.decrement();
 expect(counter.getCount()).toBe(0);
 });
});

What happens if the test cases don’t run in order? If the second test case runs first, it will fail. This
is because the expected results depend on the order of execution. In such cases, test cases can interfere
with each other due to dependencies, leading to failures. The solution is to ensure each test case
remains independent and unaffected by the others.

Here’s how we can modify the test:

Use beforeEach to initialize a new counter instance before each test case.
Adjust the expected result of the second test case to make it independent.

// src/Counter/Counter.flaky.test.js

describe('Counter class', () => {
 let counter = new Counter();

 beforeEach(() => {
 counter = new Counter();
 });

 test('should get 1 when increment from 0', () => {
 counter.increment();
 expect(counter.getCount()).toBe(1);
 });

 test('should get -1 when decrease from 0', () => {
 counter.decrement();
 expect(counter.getCount()).toBe(-1);
 });
});

After these changes, we ensure that every test case starts from the same state, reducing the
likelihood of unstable results. You could also use afterEach in a similar way to ensure that each
test case ends in a consistent state.

The beforeEach and afterEach hooks can be applied in various scenarios:

When testing components, you can initialize and render the component before each test and clean
up afterward.
In cookie-related tests, you could clear cookies before or after each test.
When using mocks, you could mock certain objects before the tests and clean up afterward (Note
2).

One-Time Setup
One-time setup avoids repetitive setup tasks, improving test efficiency. It ensures a consistent and safe
testing environment. For instance, before testing, you can use the beforeAll hook to set up the
environment for all test cases. After testing is complete, the afterAll hook cleans up the
environment, preventing any lingering effects.

Here’s an example. Before testing, beforeAll calls Jest’s useFakeTimers method to replace
real timers with test-controlled ones. After testing, afterAll calls useRealTimers to restore the
original timer settings, ensuring other tests are not affected (Note 3).

// src/Timer/Timer.js

describe('Timer component', () => {
 beforeAll(() => {
 jest.useFakeTimers();
 });

 afterAll(() => {
 jest.useRealTimers();
 });

 // ...test cases...
});

beforeAll and afterAll are useful in scenarios such as

Logging in before running all test cases and logging out afterward when testing checkout
functionality
Loading test data before testing a menu feature and cleaning it up afterward

Summary
When implementing tests, we often need to set up before tests and clean up afterward. Depending on
whether the tasks are repeated or one-time setups, you can use the appropriate before* and
after* hooks. In summary, beforeEach and afterEach are best for repeated setups, while
beforeAll and afterAll are for one-time setups. These hooks ensure a consistent and safe
testing environment, improving the efficiency and reliability of your tests.

Notes
Note 1: For details and examples of “flaky tests,” see the section “Why Do Some Test Cases
Succeed Sometimes and Fail Other Times?” in this chapter.
Note 2: For more on mockClear testing and examples, see Chapter 3, section “Mocking
Components, API Responses, and Third-Party Libraries.”
Note 3: For more on time-related testing and examples, see the section “How to Test the Timer?” in
this chapter.

Should Tests Include Type Checking?
Should we perform type checking during testing? Consider the following example where the
addNumbers function is used to sum two numbers (Note 1):

// src/utils/addNumbers/addNumbers.js

const addNumbers = (a, b) => Number((a + b).toFixed(1));

If we want to ensure that the inputs to addNumbers are always numbers, how should we handle
it?

Option 1: Implement Type Checking Inside the addNumbers Function
One approach is to add type-checking logic within the addNumbers function itself. If the input is not
a number, an error message is returned.

// src/utils/addNumbers/addNumbers.js

const addNumbers = (a, b) => {
 if (typeof a !== 'number' || typeof b !== 'number') {
 return 'Inputs must be numbers.';
 }
 return Number((a + b).toFixed(1));
};

When writing tests, add corresponding type-checking test cases. In the test case below, we verify
that when the inputs are strings '1' and '2', the addNumbers function returns the expected error
message 'Inputs must be numbers.':

// src/utils/addNumbers/addNumbers.test.js

test('should get error when inputs are not number', () => {
 expect(addNumbers('1', '2')).toBe('Inputs must be numbers.');
});

This approach shows that adding too much defensive code can make the addNumbers function
overly complex. Whether to include such defensive logic in the implementation is a subject of debate.
Some developers believe it adds unnecessary complexity, while others feel it strengthens the code and
enhances test reliability. From the above example, adding type checking within the addNumbers
function increases complexity and makes testing more difficult, which may not be ideal (Note 2).

Option 2: Use Tools for Type Checking
Instead of checking types directly within functions or tests, developers can use tools such as prop-
types (for React components) or TypeScript’s type system to handle type checking (Note 3). This
keeps the addNumbers function simple and avoids unnecessary complexity.

For example, using TypeScript, you can define the inputs a and b of addNumbers as numbers.

// src/utils/addNumbers/addNumbers.ts

const addNumbers = (a: number, b: number) => Number((a +
b).toFixed(1));

If addNumbers is used somewhere with valid number inputs, no issues arise.

// src/utils/addNumbers/helloNumbers.ts

const a = addNumbers(1, 2);

However, if strings are passed in, TypeScript will warn that this is incorrect and requires fixing.

// src/utils/addNumbers/helloNumbers.ts

const b = addNumbers('1', '2');

The error message would be

Argument of type 'string' is not assignable to parameter of type
'number'.

By using type-checking tools instead of implementing type checks within functions or tests, you
can keep the addNumbers function and its test cases clean and readable while ensuring the
robustness of your codebase.

Notes
Note 1: Before running all tests, consider performing “static analysis” depending on the project’s
requirements. Static analysis is a technique that examines the structure, syntax, and quality of the
code without actually executing it. Tools such as TypeScript and ESLint are highly recommended
for static analysis.
Note 2: Defensive programming is a coding style designed to prevent and handle potential errors or
issues, improving the robustness and reliability of programs. However, repeatedly checking types in
this way can lead to unnecessary complexity. A more effective solution is to use contracts, like
TypeScript’s type checking, which ensures correctness during development while improving code
readability and maintainability.
Note 3: TypeScript is not only a programming language but also a static analysis tool. It provides
type checking during development, helping developers catch potential issues early on. By checking
variable types, function parameters, return types, and more, TypeScript helps maintain high-quality
code throughout the development process.

Why Do Some Test Cases Succeed Sometimes and Fail Other
Times?
Flaky tests refer to test cases that produce inconsistent results under different executions. These
inconsistencies can be caused by various factors such as network latency, database state, execution
environment differences, or poor test design. Flaky tests are a common problem in automated testing.
While developers may not be able to control external factors, they can reduce the occurrence of flaky
tests by improving the test code itself. Let’s explore the causes of flaky tests and how to address them.

Resource Dependencies

Dependencies on internal and external resources such as time, network, data sources, or execution
environments can cause tests to be unreliable. For example, consider the checkValentinesDay
function, which checks if today is Valentine’s Day. If the current date is February 14, it returns Happy
Valentine's Day; otherwise, it returns Today is not Valentine's Day (Note 1).

// src/utils/checkValentinesDay/checkValentinesDay.js

const checkValentinesDay = () => {
 const today = getToday();
 return today === '2/14' ? 'Happy Valentine's Day' : 'Today is not
Valentine's Day';
};

If today is February 10 (not Valentine’s Day), the function will return Today is not
Valentine's Day, causing the test to fail. However, on February 14, the function will return
Happy Valentine's Day, making the test pass.

// src/utils/checkValentinesDay/checkValentinesDay.test.js

describe('checkValentinesDay', () => {
 it('today should be Valentines Day', () => {
 expect(checkValentinesDay()).toBe('Happy Valentine's Day');
 });
});

This test case does not consistently produce the same result, making it a flaky test. This happens
because the checkValentinesDay function relies on the getToday function, which introduces
variability. To address this, we can use mocking to isolate dependencies. Unreliable tests make it
difficult to evaluate if the functionality is working correctly.

For tests with dependencies, you can use mock data or fixed test data to isolate the dependencies.
For example, you can mock the getToday function (Note 2) to ensure that
checkValentinesDay behaves consistently regardless of the actual date. By isolating
getToday, you can prevent test instability. In the test cases below, the mockReturnValue
function is used to return specific dates (Note 3):

// src/utils/checkValentinesDay/checkValentinesDay.test.js

jest.mock('./getToday', () => ({
 getToday: jest.fn(),
}));

The following test cases check two scenarios:

When today is February 12, the function should return Today is not Valentine's Day.
When today is February 14, the function should return Happy Valentine's Day.

// src/utils/checkValentinesDay/checkValentinesDay.test.js

describe('checkValentinesDay', () => {
 // When today is February 12, expect the function to return `Today
is not Valentine's Day`

 it('2/12 should not be Valentines Day', () => {
 getToday.mockReturnValue('2/12');

 expect(checkValentinesDay()).toBe('Today is not Valentine's
Day');
 });

 // When today is February 14, expect the function to return `Happy
Valentine's Day`
 it('2/14 should be Valentines Day', () => {
 getToday.mockReturnValue('2/14');

 expect(checkValentinesDay()).toBe('Happy Valentine's Day');
 });
});

Test Dependencies
When test cases depend on each other or rely on execution order, they can become flaky tests. This
often occurs when test cases share a state that may differ between tests, leading to inconsistent results.

For example, the following Counter class has methods increment and decrement to
increase or decrease a counter and getCount to retrieve the current count:

// src/Counter/Counter.js

class Counter {
 constructor() {
 this.count = 0;
 }

 increment() {
 this.count++;
 }

 decrement() {
 this.count--;
 }

 getCount() {
 return this.count;
 }
}

The test cases below share a single counter instance. The first test case tests increment, and
the second tests decrement. Initially, the counter starts at 0, and when run in sequence, the first test
case should result in 1 (0 + 1 = 1), and the second in 0 (1 – 1 = 0).

describe('Counter class', () => {
 let counter = new Counter();

 // 0 + 1 = 1
 test('[dev1] should get 1 when increment from 0', () => {

 counter.increment();

 expect(counter.getCount()).toBe(1);
 });

 // 1 - 1 = 0
 test('[dev2] should get 0 when decrease', () => {
 counter.decrement();

 expect(counter.getCount()).toBe(0);
 });
});

Running these tests in order will pass.

yarn test Counter.flaky.test.js
PASS src/Counter/Counter.flaky.test.js
 Counter class
 ✓ [dev1] should get 1 when increment from 0 (3 ms)
 ✓ [dev2] should get -1 when decrease from 0 (2 ms)

But if the test order is changed, the tests may fail. If the second test runs first, the counter starts at
0, and the result is –1 (0 – 1 = –1), causing the test to fail.

FAIL src/Counter/Counter.flaky-skip-and-only.test.js
 Counter class
 × [dev2] should get 0 when decrease (5 ms)
 × [dev1] should get 1 when increment from 0 (1 ms)

To avoid this dependency, initialize a new counter instance before each test using
beforeEach, and adjust the test expectations to ensure each test runs independently.

// src/Counter/Counter.flaky.test.js

describe('Counter class', () => {
 let counter = new Counter();

 beforeEach(() => {
 counter = new Counter();
 });

 test('[dev1] should get 1 when increment from 0', () => {
 counter.increment();
 expect(counter.getCount()).toBe(1);
 });

 test('[dev2] should get -1 when decrease from 0', () => {
 counter.decrement();
 expect(counter.getCount()).toBe(0);
 });
});

Now, the tests will pass regardless of the execution order.

PASS src/Counter/Counter.flaky.test.js
 Counter class
 ✓ [dev1] should get 1 when increment from 0 (3 ms)
 ✓ [dev2] should get -1 when decrease from 0 (2 ms)

Conclusion
The causes and solutions for flaky tests are summarized in Table 7-1.

Table 7-1 The Causes and Solutions for Flaky Tests

Cause Solution

Resource dependencies Isolate dependencies with mocks or fixed data

Test dependencies Ensure no dependencies and reset state before each test

If a flaky test cannot be resolved immediately, it can be temporarily skipped (using skip or
only) until fixed (Note 4). Flaky tests can undermine the reliability of test results, confuse
developers, and reduce confidence in code quality, so skipping them temporarily is often better than
allowing unreliable results.

Notes
Note 1: For more details on the checkValentinesDay example, refer to Chapter 2, section
“Minimal Scope Validation Logic.”
Note 2: For more information on mocking, see Chapter 3, section “Mocking Components, API
Responses, and Third-Party Libraries.”
Note 3: For details on mockImplementation and mockReturnValue, see Chapter 3, section
“Mocking Components, API Responses, and Third-Party Libraries.”
Note 4: For more on using skip and only, see the section “How to Run Specific Tests? An
Example Using Jest” in this chapter.

How to Run Specific Tests? An Example Using Jest
When running tests, developers may want to skip specific test cases for debugging or isolating flaky
tests. Below is an explanation using Jest as an example.

Skipping Specific Test Blocks
“Skipping specific test blocks” means ignoring an entire block of test cases in the execution. In Jest,
adding skip to describe will skip all test cases in that block. In the example below, describe
separates “shallow rendering” and “full rendering” test blocks:

// src/Counter/Counter.snapshot.rtl.test.js

describe('Counter component', () => {
 describe.skip('shallow rendering', () => {
 // ... omitted ...
 });

 describe('full rendering', () => {
 // ... omitted ...

 });
});

Since skip is added to the first block, only the “full rendering” test cases will run, and the
“shallow rendering” block will be skipped:

PASS src/Counter/Counter.snapshot.rtl.test.js
 Counter component
 shallow rendering
 ○ skipped should get snapshot correctly
 full rendering
 ✓ should get snapshot correctly (33 ms)
 ✓ should get 1 when click the increment button (26 ms)

Skipping Specific Test Cases
To skip individual test cases, you can add skip to it or test. Below are three test cases, but the
third one will be skipped:

// src/utils/addNumbers/addNumbers.test.js

test('should return 0.3 when 0.1 + 0.2', () => {
 expect(addNumbers(0.1, 0.2)).toBe(0.3);
});

test('should return 2 when 5 - 3', () => {
 expect(addNumbers(5, -3)).toBe(2);
});

test.skip('should get error when inputs are not number', () => {
 expect(addNumbers('1', '2')).toBe('Inputs must be numbers.');
});

Since skip is added to the third case, only the first two test cases will run:

PASS src/utils/addNumbers/addNumbers.test.js
 ✓ should return 0.3 when 0.1 + 0.2 (4 ms)
 ✓ should return 2 when 5 - 3 (1 ms)
 ○ skipped should get error when inputs are not number

This is very useful when debugging, especially if you need to check if test cases have
dependencies or if you want to temporarily skip unstable tests (Note 1). For example, here is a
Counter class where you can increment or decrement a number and retrieve the result using
getCount:

// src/Counter/Counter.js

class Counter {
 constructor() {
 this.count = 0;
 }

 increment() {
 this.count++;
 }

 decrement() {
 this.count--;
 }

 getCount() {
 return this.count;
 }
}

The following two test cases share a single counter instance. Initially, the counter starts at 0. As
the tests are run sequentially, the first test case is expected to return 1 (i.e., 0 + 1 = 1), and the second
test case should return 0 (i.e., 1 – 1 = 0).

When the test cases run in order, both tests pass:

PASS src/Counter/Counter.flaky.test.js
 Counter class
 ✓ [dev1] should get 1 when increment from 0 (3 ms)
 ✓ [dev2] should get -1 when decrease from 0 (2 ms)

However, when test cases are not run in order, the results may change. If they don’t follow the
expected sequence, all tests may fail:

FAIL src/Counter/Counter.flaky-skip-and-only.test.js
 Counter class
 × [dev2] should get 0 when decrease (5 ms)
 × [dev1] should get 1 when increment from 0 (1 ms)

When all tests fail like this, it becomes difficult to determine which specific test case is causing the
issue. In such a scenario, you can use only or skip to narrow down the issue. Let’s start by only
running the first test case:

describe('Counter class', () => {
 let counter = new Counter();

 // 0 + 1 = 1
 test.only('[dev1] should get 1 when increment from 0', () => {
 // ... omitted ...
 });

 // 1 - 1 = 0
 test('[dev2] should get 0 when decrease', () => {
 // ... omitted ...
 });
});

If only the first test case runs, it will pass:

PASS src/Counter/Counter.flaky-skip-and-only.test.js
 Counter class
 ✓ [dev1] should get 1 when increment from 0 (2 ms)
 ○ skipped [dev2] should get 0 when decrease

Next, run only the second test case:

describe('Counter class', () => {
 let counter = new Counter();

 // 0 + 1 = 1
 test('[dev1] should get 1 when increment from 0', () => {
 // ... omitted ...
 });

 // 1 - 1 = 0
 test.only('[dev2] should get 0 when decrease', () => {
 // ... omitted ...
 });
});

The second test case fails because its result depends on the first test case. The second test case
expects the result after the first test’s increment operation, which means the initial value (0) was
already incremented by 1 before decrementing. To fix this, reduce the dependencies between the two
tests by initializing a new counter instance before each test case and adjusting the expected result
for the second test case to run independently:

FAIL src/Counter/Counter.flaky-skip-and-only.test.js
 Counter class
 × [dzev2] should get 0 when decrease (8 ms)
 ○ skipped [dev1] should get 1 when increment from 0

 ● Counter class › [dev2] should get 0 when decrease

 expect(received).toBe(expected) // Object.is equality

 Expected: 0
 Received: -1

You should ensure that each test case starts from the same initial state to avoid this kind of
dependency issue. Ideally, tests should not rely on one another. When refactoring test code, changing
the order or skipping test cases should not cause failures.

Conclusion
In summary, comparing when to use .only vs. .skip depends on how many test cases you want to
run or skip:

If you want to skip many test cases, use .only.
If you only need to skip a few, use .skip.

Notes

Note 1: For more information on “flaky tests,” see the section “Why Do Some Test Cases Succeed
Sometimes and Fail Other Times?” in this chapter.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
H.-H. Tang, Practical Front-End Testing
https://doi.org/10.1007/979-8-8688-1451-8_8

8. Leveraging AI for Writing Tests
Hsin-Hao Tang1

Taipei, Taiwan

How to Effectively Use GitHub Copilot for Writing Tests
Simple Example
Implementing Unit Tests
Implementing Integration Tests
Implementing End-to-End Tests
Conclusion
Notes
How to Leverage Mermaid and ChatGPT for Writing Tests
Simple Example
Writing Unit Tests
Implementing Integration Test
Implementing End-to-End Test
Conclusion
Notes

You will learn the following in this chapter:

GitHub Copilot can help developers write efficient test cases by
generating code from clear, goal-oriented comments, but requires review
and adjustments.
Use Mermaid flowcharts and ChatGPT to efficiently write tests in
development for improved product quality.

https://doi.org/10.1007/979-8-8688-1451-8_8

How to Effectively Use GitHub Copilot for
Writing Tests
GitHub Copilot (or Copilot) is an AI-powered code assistant tool provided
by GitHub, which can be used with the Visual Studio Code editor
(https://code.visualstudio.com/). By providing clear prompts,
developers can leverage Copilot to generate code and efficiently write test
cases. Although Copilot can generate suggested code based on comments,
improving development efficiency and reducing syntax overhead,
developers must still carefully review the generated code and adjust it as
needed to meet specific testing requirements (Note 1).

How can you use Copilot to help write tests? Let’s look at a few
examples.

Simple Example
First, since Copilot needs enough information to generate code, it is up to
the developer to name files or functions appropriately and write clear, goal-
oriented comments to generate test cases (Note 2). For instance, suppose we
want to implement a function called addDays, which adds a specified
number of days to the current date to calculate a target date. Following the
principles of TDD (Note 3), we can first create a test file named
hello.test.js and ask GitHub Copilot to help write the test case.

// src/utils/timeUtils/hello.test.js

// test this function

After pressing Enter, Copilot begins to generate the test case. However,
with an unclear file name and vague comment, Copilot cannot produce the
desired content. Since the file name contains the word “hello” and does not
mention addDays or anything related to dates, Copilot generates a test
case for the string Hello World instead.

// src/utils/timeUtils/hello.test.js

// test this function

https://code.visualstudio.com/

describe('hello', () => {
 test('should return "Hello, World!"', () => {
 const result = hello();

 expect(result).toBe('Hello, World!');
 });
});

We can adjust our approach by renaming the test file to
addDays.test.js and adding a comment like // should get the
date after adding days to guide Copilot in generating the correct
test case. Then, we ask Copilot to generate the test case based on the
comment.

// src/utils/timeUtils/addDays.test.js

// should get the date of 5 days from now

This time, the generated test case is much more accurate and complete,
clearly specifying the date, adding the target number of days, and checking
if it matches the expected result. You can follow this process to generate
more context-appropriate test cases. While Copilot can generate code based
on the given information, it’s essential to review and adjust the code to meet
your testing needs.

// src/utils/timeUtils/addDays.test.js

// should get the date of 5 days from now
test('should get the date of 5 days from now', ()
=> {
 const date = new Date('2020-01-01');
 const result = addDays(date, 5);
 expect(result).toEqual(new Date('2020-01-06'));
});

Next, implement the addDays function to verify whether the
implementation and the test are working correctly.

// src/utils/timeUtils/addDays.js

const addDays = (currentDate, daysToAdd) => {
 // should get the date of daysToAdd days from
currentDate
 const result = new Date(currentDate);
 result.setDate(result.getDate() + daysToAdd);
 return result;
};

This was a simple example. Now, let’s move on to a more complex
example.

Implementing Unit Tests
How do we write unit tests for components? For instance, we have a
<Counter> component with a simple counting functionality that allows
users to increment or decrement a number by clicking buttons (Note 4). In
most development scenarios, the functionality is implemented first,
followed by writing the tests. In this case, we will first implement the
<Counter> component and then call GitHub Copilot to help write the test
cases.

// src/Counter/Counter.js

const Counter = () => {
 const [count, setCount] = useState(0);
 const increment = () => setCount(count + 1);
 const decrement = () => setCount(count - 1);

 return (
 <>
 <div data-test-id="counter-value">{count}
</div>
 <button data-test-id="decrement-button"
onClick={decrement}>
 -
 </button>

 <button data-test-id="increment-button"
onClick={increment}>
 +
 </button>
 </>

);
};

To write the unit test for the <Counter> component, we can call
Copilot and type /tests Counter.js in the Copilot Chat to generate
the test cases. Once Copilot produces the test cases (as shown in Figure 8-
1), you can review them. If they look good, simply insert them into your
test file.

Figure 8-1 Copilot generates test cases for the Counter component

As seen here, the more detailed the information you provide, the more
accurate the code that Copilot generates. When writing comments, it is
advised to clearly specify what needs to be tested, the expected result, and
under what conditions the result is valid. This will help generate
comprehensive test cases that meet expectations.

Implementing Integration Tests
When implementing integration tests, let’s revisit the image list
functionality. This feature is split into two components: <ImageList>
and <ImageItem> (Note 5). The main purpose of this functionality is to
visually display the retrieved image information. The <ImageList>
component is responsible for determining how to display the data based on
the fetched image information. If no image data is available, a prompt is
shown to notify the user that no images can be displayed. If image data
exists, the component uses <ImageItem> to display the images.

// src/ImageList/ImageList.js

const ImageList = () => {
 const [images, setImages] = useState([]);

 useEffect(() => {
 async function fetchData() {
 const response = await
fetch('https://dummyjson.com/products');
 const data = await response.json();
 setImages(data.products);
 }
 fetchData();
 }, []);

 const renderImages = () => {
 return images.map(({ id, title, images }) => (
 <ImageItem key={id} title={title} image=
{images[0]} />
));
 };

 const renderNoDataPrompt = () => {
 return <div data-test-id="no-data-prompt">No
data to display.</div>;
 };

 return <>{!!images.length ? renderImages() :
renderNoDataPrompt()}</>;
};

To write tests for the <ImageList> component, integration tests can
be a bit more complex since they might require fetching data from APIs and
testing across multiple components. To ensure Copilot generates the desired
test code, it is recommended to give the test files proper names and write
clear comments to reduce the likelihood of generating unintended results.

// src/ImageList/ImagesList.cy.js

describe('ImageList', () => {
 it('should render no data prompt when no
images', () => {
 // intercept response from
https://dummyjson.com/products with fixture
`empty.json` in fixtures folder
 // mount component `<ImageList />`
 // assert no data prompt "no-data-prompt"
exists
 });

 it('should render correct image items when data
is available', () => {
 // intercept response from
https://dummyjson.com/products with fixture
`products.json` in fixtures folder
 // mount component `<ImageList />`
 // assert image items length is 2
 });
});

After writing these comments and selecting the code block, you can
enter /tests in Copilot to generate test code. Although the code
generated by Copilot might not be entirely correct, you can make some
adjustments.

// src/ImageList/ImagesList.cy.js

describe('ImageList', () => {
 it('should render no data prompt when no
images', () => {
 cy.intercept('https://dummyjson.com/products',
{
 fixture: 'empty.json',
 }).as('getProducts');
 cy.visit('/'); // Not needed, remove this line
 cy.wait('@getProducts'); // Not needed, remove
this line
 // Add mount command here
 cy.get('[data-test-id="no-data-
prompt"]').should('exist');
 });

 it('should render correct image items when data
is available', () => {
 cy.intercept('https://dummyjson.com/products',
{
 fixture: 'products.json',
 }).as('getProducts');
 cy.visit('/'); // Not needed, remove this line
 cy.wait('@getProducts'); // Not needed, remove
this line
 // Add mount command here
 cy.get('[data-test-id="image-item-
title"]').should('have.length', 2);
 });
});

After adjusting, the result should look like this. Remove unnecessary
code, add the mount command, and format the code into 3A (Arrange,
Act, Assert) blocks for better readability (Note 6).

// src/ImageList/ImagesList.cy.js

describe('ImageList', () => {
 it('should render no data prompt when no
images', () => {
 cy.intercept('GET',
'https://dummyjson.com/products', {
 statusCode: 200,
 body: { products: },
 }).as('apiRequest');

 cy.mount(<ImageList />);

 cy.get('[data-test-id="no-data-
prompt"]').should('exist');
 });

 it('should render correct image items when data
is available', () => {
 cy.intercept('GET',
'https://dummyjson.com/products', {
 statusCode: 200,
 body: {
 products: [
 {
 id: '1',
 title: 'Build a fast website, starting
with performance metrics!',
 images: ['https://bit.ly/4228IT0'],
 },
 {
 id: '2',
 title: 'Shimanami Kaido: Cycling
Island Hopping Adventure',
 images: ['https://bit.ly/4b5nLPO'],
 },
],
 },
 }).as('apiRequest');

 cy.mount(<ImageList />);

 cy.get('[data-test-id="image-item-
title"]').should('have.length', 2);
 });
});

Implementing End-to-End Tests
How can you implement an end-to-end test? For example, if you want to
write a test for Memori’s image upload feature (Note 7), the user flow for
testing the image upload feature can be divided into the following steps:

Step 1: Enter the website URL in the browser.
Step 2: Input the username and message, and select an image file.
Step 3: Click the submit button.
Step 4: Display a success message after the image is uploaded.

Based on the user flow, the following comments can be written to
structure the test:

// cypress/e2e/memori.upload.cy.js

describe('upload page', () => {
 describe('desktop', () => {
 it('should get success message when uploading
an image with png format', () => {
 // go to url "https://memori-ui-
upload.web.app/?serviceId=webconf2023"
 // type "summer" into input with data-cy
"user-name"
 // type "hello world!" into input with data-
cy "message"
 // upload file "cycling.jpeg" into input
with data-cy "file-upload"
 // click button with data-cy "submit"
 // expect element with data-cy "success-
message" to have text "Success!"
 });

 });
});

Once you’ve written the comments, call Copilot to generate the
suggested test code. Select the code block with comments and enter
/tests in Copilot to produce the test code (see Figure 8-2).

Figure 8-2 Copilot generating Memori's image upload test code

Below is the code generated by Copilot. You’ll notice that precise
naming and clearly defined steps in the comments help generate accurate
test code. However, the Copilot-generated code may not be entirely correct,
so the developer must adjust it accordingly.

// cypress/e2e/memori.upload.cy.js

describe('upload page', () => {
 describe('desktop', () => {
 it('should get success message when uploading
an image with jpeg format', () => {
 // go to url "https://memori-ui-
upload.web.app/?serviceId=webconf2023"
 cy.visit('https://memori-ui-upload.web.app/?
serviceId=webconf2023');

 // type "summer" into input with data-cy
"user-name"
 cy.get('[data-cy="user-
name"]').type('summer');

 // type "hello world!" into input with data-
cy "message"
 cy.get('[data-cy="message"]').type('hello
world!');

 // upload file "cycling.jpeg" into input
with data-cy "file-upload"
 const fileName = 'cycling.jpeg';
 cy.fixture(fileName).then((fileContent) => {
 cy.get('[data-cy="file-
upload"]').attachFile({
 fileContent,
 fileName,
 mimeType: 'image/jpeg',
 });
 });

 // click button with data-cy "submit"
 cy.get('[data-cy="submit"]').click();

 // expect element with data-cy "success-
message" to have text "Success!"
 cy.get('[data-cy="success-
message"]').should('have.text', 'Success!');
 });
 });
});

Conclusion
To effectively use Copilot for writing tests, the first step is to write clear
and meaningful comments. Next, it’s important to carefully review the code
generated by Copilot to ensure it meets the test requirements and works

correctly, adjusting or writing code manually as needed. While the initial
results might not always be perfect, once Copilot gains context from similar
experiences within your project, it can quickly generate much of the code
you need. Integrating Copilot into your workflow can significantly boost
productivity.

Summary of steps for using Copilot to help with test writing:

Step 1: Name the file or function appropriately and write clear, goal-
specific comments.
Step 2: Call Copilot to generate the test code based on the comments.
Step 3: Review and verify the code generated by Copilot. Copilot’s
suggestions may not always be entirely correct or suitable, so
adjustments are often necessary.
Step 4: If the generated code doesn’t meet your needs, go back to Step 1
or write the code manually.

No time to write tests? With AI, there are no more excuses.

Notes
Note 1: The purpose of this section is to explain how to use Copilot to
efficiently generate test code, so background, operation principles,
installation, and experience will not be discussed. For more information,
please refer to the official website
https://github.com/features/copilot/.
Note 2: Regarding what constitutes a “clear goal,” it’s recommended to
clearly specify what is being tested, define the expected outcome, and
outline under what conditions this should occur, for example, get
input element by ID "name" or expect message to be
"Success!". For more details, see Chapter 1, section “Naming
Conventions.”
Note 3: For more on TDD, refer to Chapter 1, section “Testing
Techniques.”
Note 4: For details and examples of the <Counter> component, see
Chapter 2, section “Environment Setup, Installation, and Tool
Comparison.”
Note 5: For examples and explanations of the image list display structure,
refer to Chapter 3, section “Integration Testing.”

https://github.com/features/copilot/

Note 6: For information on the 3A principle, see Chapter 1, section
“Naming Conventions.”
Note 7: For information about Memori, see Chapter 4, section “Verifying
User Flow.”

How to Leverage Mermaid and ChatGPT for
Writing Tests
In the software development process, implementing functionality is
naturally the most important task, but in a fast-paced and constantly
evolving development environment, writing tests is essential for improving
product quality. Efficiently writing test scripts is one of the goals that
developers pursue. In this chapter, we will explore how to effectively use
Mermaid and ChatGPT for writing tests.

Mermaid (https://mermaid.js.org/) is a simple and intuitive
Markdown-based diagramming tool used to create flowcharts, sequence
diagrams, Gantt charts, and more. With simple code, Mermaid can
automatically generate complex diagrams.

ChatGPT (https://chatgpt.com/) is a large language model
developed by OpenAI. Based on GPT technology, it can understand and
generate natural language text. ChatGPT is widely used in areas such as
conversations, Q&A, translations, and summaries. By training on vast
amounts of data, ChatGPT improves its language understanding and
generation abilities, continually updating to adapt to language changes. As a
language model, ChatGPT can provide helpful assistance in many fields
and can be customized and extended according to users’ needs.

So, can we use Mermaid flowcharts to ask ChatGPT to write tests?

Simple Example
First, let’s try using a Mermaid flowchart to implement a function. For
example, we’ll implement an addNumbers function that provides the
ability to add two numbers. The flowchart for this function is implemented
in Mermaid as shown below:

flowchart TD

https://mermaid.js.org/
https://chatgpt.com/

 Get_Input[get 2 numbers from arguments] -->
Add_Numbers[add 2 numbers]
 Add_Numbers --> Round_Result[round the result]
 Round_Result --> Return_Result[return added
result]

As shown in Figure 8-3, Mermaid generates a preview of the flowchart
based on the code.

Figure 8-3 Mermaid flowchart for addNumbers

Developer’s Request: Implement the Function

Based on the flowchart code, we can ask ChatGPT to help implement this
function like this:

Generate a function addNumbers based on this diagram.

flowchart TD
 Get_Input[get 2 numbers from arguments] -->
Add_Numbers[add 2 numbers]
 Add_Numbers --> Round_Result[round the result]
 Round_Result --> Return_Result[return added
result]

ChatGPT’s Response
ChatGPT responds within seconds with the following:

Based on the flowchart, here’s a possible implementation of the
addNumbers function:

function addNumbers(num1, num2) {
 const sum = num1 + num2;
 const roundedResult = Math.round(sum);
 return roundedResult;
}

This function accepts two numbers as parameters, adds them together,
rounds the result, and returns it.

The following code is the example implementation of the
addNumbers function from this book. Compared to ChatGPT’s response,
the difference lies in the choice between using Math.round and
toFixed for rounding. While both perform rounding, the former returns a
number, and the latter returns a string, making the data type different.

// src/utils/addNumbers/addNumbers.js

const addNumbers = (a, b) => Number((a +
b).toFixed(1));

It seems that the return data type was not clearly defined, so we redefine
the flowchart as follows:

flowchart TD
 Get_Input[get 2 numbers from arguments] -->
Add_Numbers[add 2 numbers]
 Add_Numbers --> Round_Result[round the result]
 Round_Result --> Return_Result[return added
result in string format]

As shown in Figure 8-4, Mermaid generates a preview of the updated
flowchart based on the new code.

Figure 8-4 Updated Mermaid flowchart for addNumbers

Let’s ask ChatGPT again if it can generate code that better matches the
requirements and specifications.

Generate a function addNumbers based on this diagram.

flowchart TD
 Get_Input[get 2 numbers from arguments] -->
Add_Numbers[add 2 numbers]
 Add_Numbers --> Round_Result[round the result]
 Round_Result --> Return_Result[return added
result in string format]

ChatGPT responds with the following:
Based on the flowchart, we need to implement a function

addNumbers that adds two input numbers, rounds the result to an integer,
and then returns the result as a string. Here’s a possible JavaScript
implementation:

function addNumbers(num1, num2) {
 const sum = num1 + num2;
 const roundedSum = Math.round(sum);
 return roundedSum.toString();
}

This function accepts two parameters, num1 and num2, adds them
together, rounds the result using Math.round(), and then returns it as a
string.

Although the reply does not use toFixed as expected for rounding,
ChatGPT’s response already meets the requirements. The developer can
make adjustments based on their preferences or project needs. In this simple
example, implementing the addNumbers function based on the flowchart
works smoothly.

Developer Asks Again: Writing Tests
Not only do we want ChatGPT to help implement the function, but we also
want it to write test cases, so we ask again.

Generate test cases based on this diagram in Jest.

flowchart TD

 Get_Input[get 2 numbers from arguments] -->
Add_Numbers[add 2 numbers]
 Add_Numbers --> Round_Result[round the result]
 Round_Result --> Return_Result[return added
result in string format]

ChatGPT’s Response
ChatGPT quickly provides the following response:

Based on the above diagram, we can write the following test code:

import { addNumbers } from './addNumbers';

describe('addNumbers', () => {
 it('should correctly add two numbers and round
the result', () => {
 const num1 = 2;
 const num2 = 3;

 const result = addNumbers(num1, num2);

 expect(result).toBe('5');
 });
});

This test case tests the addNumbers function to ensure it correctly
adds two numbers and rounds the result.

The following is an example test case from this book for the
addNumbers function. Compared to ChatGPT’s response, the difference
lies in considering edge cases. For example, due to binary floating-point
arithmetic, adding 0.1 and 0.2 results in 0.30000000000000004
instead of 0.3. If the addNumbers function does not handle this case,
users may get unexpected results when inputting such numbers. Therefore,
test cases for these special cases are important to ensure the function works
as expected, or they can serve as validation after refactoring.

// src/utils/addNumbers/addNumbers.test.js

const addNumbers = require('./addNumbers');

test('should return 0.3 when 0.1 + 0.2', () => {
 expect(addNumbers(0.1, 0.2)).toBe(0.3);
});

test('should return 2 when 5 - 3', () => {
 expect(addNumbers(5, -3)).toBe(2);
});

In this simple example, can we rely on Mermaid flowcharts to ask
ChatGPT to write tests? It seems that implementing test cases based on the
flowchart is not an issue. ChatGPT’s response met the requirement of
testing the addNumbers function for the addition of two numbers.
However, it did not consider all edge cases, so developers must make slight
adjustments according to their specific needs or preferences when writing
the function or tests.

This was a simple example; let’s move on to a more complex one.

Writing Unit Tests
How can we write unit tests for components? For example, here we have a
<Counter> component, where users can click buttons to increase or
decrease a number, fulfilling a counting function.

// src/Counter/Counter.js

const Counter = () => {
 const [count, setCount] = useState(0);
 const increment = () => setCount(count + 1);
 const decrement = () => setCount(count - 1);

 return (
 <>

 <div data-test-id="counter-value">{count}
</div>
 <button data-test-id="decrement-button"
onClick={decrement}>
 -
 </button>

 <button data-test-id="increment-button"
onClick={increment}>
 +
 </button>
 </>

);
};

Since developers should create a design document before implementing
functionality (Note 1), they would write or draw flowcharts according to
design specifications to describe the component’s behavior. For example, a
flowchart depicting the behavior of “clicking the + button should increase
the number by 1” might look like this:

flowchart TD
 Render_Component[render Counter component] -->
Click_Increment_Button[click increment button]
 Click_Increment_Button --> Get_Result[get
result]

As shown in Figure 8-5, this Mermaid-generated flowchart visualizes
the behavior of the Counter component based on the code.

Figure 8-5 Mermaid flowchart for Counter component

Developer Inquiry: Implementing Functionality
Based on the flowchart’s code, we can ask ChatGPT to assist with
implementing the feature as follows:

Generate a component Counter based on this diagram.

flowchart TD
 Render_Component[render Counter component] -->
Click_Increment_Button[click increment button]
 Click_Increment_Button --> Get_Result[get
result]

ChatGPT's Response
Within seconds, ChatGPT generates the following response:

Based on the provided flowchart, here is the implementation of the
Counter component:

import React, { useState } from 'react';

const Counter = () => {

 const [count, setCount] = useState(0);

 const handleIncrement = () => {
 setCount(count + 1);
 };

 return (
 <div>
 <h2>Counter Component</h2>
 <p>Count: {count}</p>
 <button onClick=
{handleIncrement}>Increment</button>
 </div>
);
};

export default Counter;

This component displays a counter with an initial value of 0. Clicking
the “Increment” button increases the count by 1.

For this <Counter> component example, ChatGPT’s response meets
the requirements. It shows that implementing the <Counter> component
based on the flowchart works as expected. However, for a more refined
implementation, developers might need to ask further questions or adjust
the code according to their preferences or needs. For instance, when
developing more complex components, separating the logic, state, and
display of the <Counter> component can make the code more
maintainable and easier to test (Note 2).

Developer Inquiry: Writing Tests
We not only want ChatGPT to assist in implementing functionality but also
to generate test cases. So, we ask again:

Generate test cases based on this diagram by using Jest + React Testing
Library.

flowchart TD
 Render_Component[render Counter component] -->
Click_Increment_Button[click increment button]

 Click_Increment_Button --> Get_Result[get
result]

ChatGPT's Response
ChatGPT responded in just a few seconds with the following:

Here is the test code using Jest and React Testing Library based on the
provided flowchart:

import React from 'react';
import { render, fireEvent } from '@testing-
library/react';
import Counter from './Counter';

describe('Counter Component', () => {
 it('should increment count when increment button
is clicked', () => {
 const { getByText } = render(<Counter />);
 const incrementButton =
getByText('Increment');
 fireEvent.click(incrementButton);
 const countElement = getByText('Count: 1');
 expect(countElement).toBeInTheDocument();
 });
});

This test checks whether the displayed count increases by 1 when the
“Increment” button is clicked.

Below is part of the test code for the <Counter> component
implemented in this book. Compared to ChatGPT’s response, the main
differences lie in how structured and maintainable the code is. For example,
using getByText to select elements can be too loose compared to using
getByTestId. Additionally, simply checking whether the element exists
is not rigorous enough; verifying the element’s displayed content would be
a more precise approach (Note 3). Finally, using toBeInTheDocument
to check if the element is present is not ideal, as the element will always be
present but with different content. Using toHaveTextContent would

be a better choice (Note 4), and developers should pay attention to these
details.

// src/Counter/Counter.rtl.test.js

describe('Counter component', () => {
 let counter;
 const renderCounter = () => <Counter />;

 beforeEach(() => {
 counter = render(renderCounter());
 });

 afterEach(() => {
 counter.unmount();
 });

 it('should get -1 when click the decrement
button', () => {
 const { getByTestId } = counter;

 fireEvent.click(getByTestId('decrement-
button'));

 expect(getByTestId('counter-
value')).toHaveTextContent('-1');
 });
});

So, can we rely on Mermaid’s flowcharts to help ChatGPT generate unit
tests for components? For this example, implementing the test code based
on the flowchart seems to work without major issues. However, a more
refined implementation requires developers to adjust the tests according to
their needs or preferences. If it doesn’t work, it’s always fine to adjust the
query, the code, or rewrite it manually.

Let’s now take a look at a more complex example.

Implementing Integration Test

How should we approach writing integration tests? As an example, let’s
write test cases for the <Counter> component. In this case, <Counter>
is implemented using three child components: <CounterValue>,
<DecrementButton>, and <IncrementButton>.

// src/Counter/Counter-enhanced.js

const Counter = () => {
 const [count, setCount] = useState(0);
 const increment = () => setCount(count + 1);
 const decrement = () => setCount(count - 1);

 return (
 <>

 <CounterValue count={count} />
 <DecrementButton onClick={decrement} />
 <IncrementButton onClick={increment} />
 </>

);
};

The flowchart representing the specification “When the + button is
clicked, the count should increment by 1” is shown below:

flowchart TD
 Render_Component[render Counter component,
including child component CounterValue,
DecrementButton and IncrementButton] -->
Click_Increment_Button[click IncrementButton]
 Click_Increment_Button --> Get_Result[show
result in CounterValue]

As shown in Figure 8-6, Mermaid generates the flowchart based on the
code. First, the component and its child components are rendered, then the
+ button is clicked, and, finally, the result is displayed.

Figure 8-6 Updated Mermaid flowchart of the Counter component

In this case, we specifically inform ChatGPT that the <Counter>
component includes three child components: <CounterValue>,
<DecrementButton>, and <IncrementButton>. The expectation is
that ChatGPT will correctly implement the <Counter> component based
on this information.

Developer Inquiry: Implementing Functionality
Based on the flowchart, we can ask ChatGPT for assistance in
implementing this functionality:

Generate a component Counter based on this diagram.

flowchart TD
 Render_Component[render Counter component,
including child component CounterValue,
DecrementButton, and IncrementButton] -->
Click_Increment_Button[click IncrementButton]
 Click_Increment_Button --> Get_Result[show
result in CounterValue]

ChatGPT’s Response
ChatGPT responded within seconds with the following:

Based on the provided flowchart, here is the implementation of the
Counter component:

import React, { useState } from 'react';
import CounterValue from './CounterValue';
import DecrementButton from './DecrementButton';
import IncrementButton from './IncrementButton';

const Counter = () => {
 const [count, setCount] = useState(0);

 const increment = () => setCount(count + 1);

 return (
 <div>
 <CounterValue count={count} />
 <DecrementButton />
 <IncrementButton onClick={increment} />
 </div>
);
};

export default Counter;

This component includes child components CounterValue,
DecrementButton, and IncrementButton. When the IncrementButton is
clicked, it increases the count, which is then displayed in the CounterValue
component.

As seen from this example, implementing the <Counter> component
based on the flowchart posed no significant issues. With clear instructions,
ChatGPT generally provides responses that meet the requirements.
However, a better implementation approach may involve further questions
or adjustments based on specific preferences or project needs.

Developer Inquiry: Writing Tests
We want ChatGPT to help not only with implementing the functionality but
also with writing the test cases. So we ask again:

Generate test cases based on this diagram by using Jest + React Testing
Library.

flowchart TD
 Render_Component[render Counter component,
including child component CounterValue,
DecrementButton, and IncrementButton] -->
Click_Increment_Button[click IncrementButton]

 Click_Increment_Button --> Get_Result[show
result in CounterValue]

ChatGPT’s Response
ChatGPT responded in a few seconds with the following:

Here are the test cases using Jest and React Testing Library based on the
provided flowchart:

import React from 'react';
import { render, fireEvent } from '@testing-
library/react';
import Counter from './Counter';

describe('Counter component', () => {
 test('increments count when IncrementButton is
clicked', () => {
 const { getByText, getByTestId } =
render(<Counter />);
 const incrementButton =
getByText('Increment');
 fireEvent.click(incrementButton);
 const counterValue = getByTestId('counter-
value');
 expect(counterValue.textContent).toBe('1');
 });
});

This test checks whether the count increases when the IncrementButton
is clicked and if the result is correctly displayed in the CounterValue
component.

When compared with the test implementation from the book for the
<Counter> component, the primary difference lies in the structure and
maintainability of the test. Similar to the previous example, using
getByText to select elements is too loose, and using textContent can
be improved by using toHaveTextContent to make the test easier to
read and provide better error messages when the test fails. This would be a
more recommended approach (Note 6).

// src/Counter/Counter.snapshot.rtl.test.js

describe('Counter component', () => {
 let counter;
 const renderCounter = () => <Counter />;

 beforeEach(() => {
 counter = render(renderCounter());
 });

 afterEach(() => {
 counter.unmount();
 });

 it('should get 1 when click the increment
button', () => {
 const { getByTestId } = counter;

 fireEvent.click(getByTestId('increment-
button'));

 expect(getByTestId('counter-
value')).toHaveTextContent('1');
 });
});

For slightly more complex examples, we can still rely on Mermaid
flowcharts to help ChatGPT write integration tests. However, developers
need to provide more precise information to help ChatGPT generate more
accurate code, or they can adjust it according to their needs. If ChatGPT’s
solution doesn’t work, it’s always fine to tweak the question, the code, or
simply write it manually.

Let’s move on to the most complex example.

Implementing End-to-End Test
Using the photo browsing feature of Memori (Note 5) as an example, we
can rely on a Mermaid flowchart and ask ChatGPT to help write the test.

The following Mermaid flowchart represents the steps to implement this
functionality:

flowchart TD
 Init[page loaded] --> Get_Photos[get photos] -
-> Get_Photos_Status{status?}
 Get_Photos_Status --> |success|Has_Photos{has
photos?}
 Get_Photos_Status -->
|fail|Show_Error_Message[show error message] -->
|wait for some time|Polling
 Has_Photos -->|yes| Render_Photos[render
photos with max count] --> |wait for some
time|Polling
 Has_Photos -->|no| Show_Empty_Message[show
empty message] --> |wait for some time|Polling
 Polling[polling] --> Get_Photos

As shown in Figure 8-7, Mermaid generates the flowchart based on the
code, representing a sequence where the page loads, photos are fetched, and
the API response determines whether to display a photo list or an error
message.

Figure 8-7 Flowchart of Memori’s photo browsing functionality

Developer Inquiry
We want to ask ChatGPT to generate test code based on the Mermaid
flowchart:

Generate end-to-end test codes based on this diagram by using Cypress.

flowchart TD
 Init[page loaded] --> Get_Photos[get photos] -
-> Get_Photos_Status{status?}

 Get_Photos_Status --> |success|Has_Photos{has
photos?}
 Get_Photos_Status -->
|fail|Show_Error_Message[show error message] -->
|wait for some time|Polling
 Has_Photos -->|yes| Render_Photos[render
photos with max count] --> |wait for some
time|Polling
 Has_Photos -->|no| Show_Empty_Message[show
empty message] --> |wait for some time|Polling
 Polling[polling] --> Get_Photos

ChatGPT’s Response
ChatGPT responded with the following:

Based on the flowchart, the generated Cypress test code is as follows:

describe('Photo Page', () => {
 it('displays photos when loaded successfully',
() => {
 cy.visit('/photos'); // Assuming '/photos' is
the route for the photo page
 cy.intercept('GET', '/api/photos', { fixture:
'photos.json' }); // Mocking API response

 cy.wait('@getPhotos'); // Wait for the photos
to be fetched

 cy.get('.photo').should('have.length.above',
0); // Check if photos are rendered
 });

 it('displays error message when photos fail to
load', () => {
 cy.visit('/photos'); // Assuming '/photos' is
the route for the photo page
 cy.intercept('GET', '/api/photos', {
statusCode: 500 }); // Mocking failed API response

 cy.wait('@getPhotos'); // Wait for the failed
request

 cy.get('.error-message').should('be.visible');
// Check if error message is displayed
 });

 it('displays empty message when no photos are
available', () => {
 cy.visit('/photos'); // Assuming '/photos' is
the route for the photo page
 cy.intercept('GET', '/api/photos', { fixture:
'empty.json' }); // Mocking empty API response

 cy.wait('@getPhotos'); // Wait for the photos
to be fetched

 cy.get('.empty-message').should('be.visible');
// Check if empty message is displayed
 });
});

This test suite includes three cases that verify the page’s behavior when
photos load successfully, fail to load, or no photos are available.

Upon reviewing the test code generated by ChatGPT, it shows that
indeed, we can use a Mermaid flowchart to guide ChatGPT in writing end-
to-end test code. However, developers need to provide more precise details,
and ChatGPT’s suggestions may not always be fully correct or meet all
needs. Therefore, developers must review and adjust the output according
to project requirements or preferences. If ChatGPT’s suggestions don’t
work, rephrasing the question and writing the code manually are valid
alternatives.

Conclusion
If you want to use Mermaid-generated flowcharts to assist ChatGPT in
writing related test code, it’s essential to provide clear, step-by-step
flowcharts and review the generated code carefully to ensure it meets
testing needs and is correct. You may need to adjust or write parts of the

code manually. Although results may not be perfect initially, once you gain
experience within a project, ChatGPT can quickly generate most of the
code, making it an effective way to boost productivity by integrating
Mermaid and ChatGPT into your workflow.

Here’s a summary of how to leverage Mermaid and ChatGPT for
writing tests:

Step 1: Create a flowchart with clear steps.
Step 2: Ask ChatGPT to generate suggested test code based on the
flowchart.
Step 3: Review and verify the generated code. ChatGPT’s suggestions
may not be completely accurate, so developers must adjust the code as
necessary.
Step 4: If the generated code doesn’t meet your needs, return to Step 1 or
write the code manually.

By generating test code during the design phase using flowcharts, this
approach significantly supports the practice of TDD (test-driven
development) (Note 7) and boosts development productivity. Finally, the
excuse of “no time to write tests” no longer applies—just create the
flowchart, and you’ll produce a high-quality product. As AI continues to
advance, we can’t avoid writing tests anymore.

Notes
Note 1: For advice on writing effective design documents, refer to Sean
Chou’s “How to Write a Front-End Development Design Document”
(https://bit.ly/48Rp5U5).
Note 2: For discussions on refactoring components for better testing, see
Chapter 2, section “How to Write Tests for Components? A React
Example.”
Note 3: For issues related to “element selection being too loose, too
strict, or not clear enough” and “tests containing too many
implementation details,” see Chapter 7, section “What to Do When UI
Updates Cause Test Failures?”
Note 4: For inspecting whether elements exist in the DOM, their count,
or visibility, see Chapter 3, section “Snapshots.”
Note 5: For more information on Memori, see Chapter 4, section
“Verifying User Flow.”

https://bit.ly/48Rp5U5

Note 6: For suggestions on the textContent approach, see Chapter 7,
section “What to Do When UI Updates Cause Test Failures?”
Note 7: For information on TDD, see Chapter 1, section “Testing
Techniques.”

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
H.-H. Tang, Practical Front-End Testing
https://doi.org/10.1007/979-8-8688-1451-8_9

9. Summary
Hsin-Hao Tang1

Taipei, Taiwan

Types and Methods of Testing
Product Stage and Testing Ratio
Common Types of Testing
Testing Methods and Tools
Testing Strategies at Different Stages of Product Development
Leveraging AI to Improve Testing Efficiency
Conclusion

Types and Methods of Testing
Testing is a crucial method for ensuring software quality. During
development, the proportion and structure of different types of testing
should be dynamically adjusted based on the product stage and
characteristics.

Product Stage and Testing Ratio
For larger-scale products that require integration with various components,
services, or systems, integration testing plays a more significant role.
Conversely, in smaller products with simpler functionality, where the focus
is on self-contained features, unit testing becomes more prominent.

Common Types of Testing

https://doi.org/10.1007/979-8-8688-1451-8_9

Here are some common testing types and their objectives:

Unit testing: Tests whether a single module or function meets the
expected outcome
Integration testing: Tests the interfaces between multiple modules or
features to ensure they work together properly
End-to-end testing: Ensures the entire flow from the user end to the
system back end operates smoothly
Visual testing: Verifies that the user interface displays correctly and
functions seamlessly

Testing Methods and Tools
At different stages of product development, different approaches can be
used to continuously ensure product quality. During development, manual
scripts or test runners can be employed to provide immediate feedback.
Before merging code, testing can be conducted at the pre-commit, pre-
push, and pull request (PR) stages to catch any errors. After merging,
projects often run automated tests or scheduled tests to ensure the long-term
reliability of the product.

Testing Strategies at Different Stages of Product
Development
Different types of tests can be conducted at various stages of product
development. During the development phase, unit testing, integration
testing, and end-to-end testing ensure core functionality. Before product
release, end-to-end and visual testing can optimize the user experience.

Leveraging AI to Improve Testing Efficiency
With the advancement of AI technology, many AI tools are available to
assist developers in implementing tests. By effectively using AI tools,
testing efficiency can be improved, reducing development costs.

Conclusion

Testing is an indispensable part of software development. Effective testing
improves product quality and reduces development costs. In today’s fast-
paced, ever-evolving development environment, testing helps us achieve the
dual goals of high productivity and high quality.

Index
A
AI

See Artificial intelligence (AI)
API

See Application programming interface (API)
Application programming interface (API)
Arrange, Act, and Assert (AAA) pattern
Artificial intelligence (AI)

Copilot
See Copilot

Automated tests
configuration file
continuous integration (CI)
merging code
See Merging code

Automating tests
manual test
package.json file
pre-commands

B
BDD

See Behavior-driven development (BDD)
Behavioral testing
Behavior-driven development (BDD)
Behavior testing
Black-box testing

C
CD

See Continuous delivery/deployment (CD)
ChatGPT

addNumbers function
E2E testing
integration tests

JavaScript implementation
language model
refactoring
response
unit testing
unit tests
write test cases
writing tests

CI
See Continuous integration (CI)

Code coverage
<Count> component
Count.js
limitations
modification
product quality
recommendations
testing efforts

Component-level testing
different viewports
interactions

CI tools
CSS trigger
hover state
JavaScript
props and flags
snapshots

Mixtini home page
page
See Page-level testing
shared components
snapshot testing
Storybook
tool comparison

Continuous delivery/deployment (CD)
Continuous integration (CI)

code interactions

code merge process
cost/limitations
development/automated testing
integration
merging code
potential risks
strategies
test instability

Copilot
addDays function
context-appropriate test
counter component
end-to-end test
hello.test.js
integration tests
test writing
unit tests
write tests

Cypress
components
Counter.cy.js
E2E testing
explanations
features
integration
long-term support
Memori
mount command
output process
package.json file
package manager
pretest commands
setup interface
testing framework
testing process
test process

D
Debugging process

components
data flow
elements
error message
<ImageList> and <ImageItem>
toMatchSnapshot method
writing tests

DevOps
Double

E
End-to-end (E2E) testing

advantages
Copilot
Cypress
describe/it function
environment/installation

configuration
Cypress
file structure
network request
package manager
Puppeteer
testing frameworks
web page

frameworks
learning process
scenarios
types
user flow verification

comprehensive
Memori
principles
user environment

web interfaces

writing test
ChatGPT response
developer inquiry
flowchart
implementation
photo list/error message

Enzyme

F
Flaky tests

causes/solutions
inconsistent results
internal/external resources
scenarios
test dependencies

Front-end web testing
advantage/disadvantages
concepts
E2E testing
error handling/edge cases
factors
features
goals
integration
meaning
scenarios
testing pyramid model
types/methods
unit testing
variations
visual testing
writing test

Full rendering
comparison
components
enzyme
features

HTML structure
increment method
libraries
meaning
React testing library
snapshot

Functional testing
See Integration testing

G
GitHub Copilot

See Copilot

H
Handle duplicate tests

I
Integration testing

components
Copilot
cy.mount method
Cypress
definition
description
error message
explanation
features
<ImageItem> code
<ImageItem> component
<ImageList>
image list structure
learning process
mock
See Mocking techniques
principles
React Testing Library
realism
real-world scenarios

snapshot
state management

implementation
initial quantity
modification
Redux
scenarios
shop ordering system
test implementation
toEqual method
toHaveTextContent
user’s perspective

types
user’s perspective
writing tests

ChatGPT response
child components
Counter components
flowchart representation
Mermaid flowchart
react testing library

J, K
JavaScript

applications
See Jest
component-level testing

Jest
addNumbers function
describe function
Enzyme
getCount
implementation
installation
only vs. skip
package.json file
React applications

running test
scenarios
shallow/full rendering
test case fails
test cases
testing library

L
Localization testing

Chinese version
components
English version
ordering system
visual testing

M
Manual testing

commands
configuration file
monitoring file
testing process
triggers

Memori
advantages
considerations
cross-browser/cross-platform
failure message
image upload function
image uploading
implementation
interface
iterations
learning process
photo browsing function
photo sharing and browsing
product flow
testing strategies
user interaction flows

Merging code
benefits
codebase functions
code hosting services
GitHub actions
Git version control
Husky
Lint-Staged
pre-commit workflow
pre-push workflow
PR submission

Mermaid
ChatGPT
See ChatGPT
counter component
flowcharts
writing test

Mixtini
Mock
Mocking techniques

API responses
axios
beforeEach function
benefits
components
data structure
debugging techniques
dependencies
external factors
features
filterList function
getStatusById function
image list structure
interactions
mockImplementation/mockReturnValue
real-world implementation
third-party libraries

Mocking testing
modules
user interface (UI)

N, O
Naming conventions

advantage
3A pattern
descriptions
error message
Given-When-Then (GWT)
identification
it should

P, Q
Page-level testing

CI tools
components
features
integration
Percy’s platform
tool comparison

R
Repetitive setup/teardown tasks

beforeAll/afterAll
beforeEach
beforeEach/afterEach
increment/decrement method
getCount method
one-time setup
repeated setup

S
Shallow rendering

components
<Counter> component
createRenderer function

Enzyme
increment method
libraries
React testing library

Snapshot testing
comparisons
components
convenient method
elements
HTML structure
image blocks
<ImageList>/<ImageItem>
implementation details
no-data scenario
scenarios
shallow rendering
timestamp and renders
toBeInTheDocument
toBeVisible
toHaveLength
toMatchSnapshot method

Snapshot, visual testing
advantages
benefits
branch creation
differences
prototypes/diagrams
pull request
rejecting process
third-party tools/services

Spy

T
TDD

See Test-driven development (TDD)
Test-driven development (TDD)
Testing techniques

Agile/Scrum
AI technology
behavior-driven development
data flows
development processes
DevOps
feature toggle
Mermaid and ChatGPT
objectives
product development
product stage/ratio
pull request (PR) stages
quality assurance
test-driven development
types/method
UI development

Timer testing
Type checking

addNumbers function
defensive programming
static analysis
tools
TypeScript

U
UI

See User interface (UI)
Unit testing

addNumbers function
advantages
benefits
code modifications/user actions
code quality
components/user behavior
conversion limitations
cost efficiency
Cypress

divideNumbers function
full rendering
implementation/behavior

beforeEach function
behavior
components
differences
getByTestId method
implementation
increment/decrement methods
internal structure
setState method
snapshots
stages

integration
See Integration testing
Jest
logic/presentation

calculate button
code explanation
collaboration
differences
guidelines
implementation
maintainability
pull requests (PRs)
refactoring
reusability
testability
useCalculatorHook

minimal scope validation logic
checkValentinesDay function
components
efficiency and accuracy
functional units
getToday function
isolate dependencies

key principles
mocking

potential errors
primary goals
refactoring code
setup/installation process
shallow rendering
smallest unit
types
writing test

ChatGPT response
components
counting function
design specifications
implementation
Mermaid flowchart
react testing library

User interface (UI)
element selection method

clear enough
data-* attributes
HTML structure
loose
strict

implementation details
comparison
logic/state/UI rendering
mocking
snapshots

principles
test failures
testing development
visual testing
XPath (XML Path Language)

V, W, X, Y, Z
Visual testing

accuracy verification
component-level
components/web pages
page-level
workflow

advantages
benefits
component-level testing
learning process
localization testing
Mixtini
page-level testing
Percy snapshot comparison
snapshot comparison work
tool comparison

approaches
browser support
Chromatic marks
comparison
component-level testing
merge checks
page-level testing
pull requests (PRs)
snapshot file types/structure

types
UI changes

	Front Matter
	1. Getting Started with Testing
	2. Unit Testing
	3. Integration Testing
	4. End-to-End Testing
	5. Visual Testing
	6. What to Do After Writing Tests: When and How to Run Them
	7. Frequently Asked Questions
	8. Leveraging AI for Writing Tests
	9. Summary
	Back Matter

