
Developing Web
Components
with Svelte

Building a Library of Reusable
UI Components
—
Second Edition
—
Alex Libby

Developing Web
Components with

Svelte
Building a Library of Reusable

UI Components

Second Edition

Alex Libby

Developing Web Components with Svelte: Building a Library of Reusable

UI Components, Second Edition

ISBN-13 (pbk): 979-8-8688-1179-1		 ISBN-13 (electronic): 979-8-8688-1180-7
https://doi.org/10.1007/979-8-8688-1180-7

Copyright © 2025 by Alex Libby

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar

Cover image by Freepik.com

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Alex Libby
Belper, Derbyshire, UK

https://doi.org/10.1007/979-8-8688-1180-7

This is dedicated to my family, with thanks for their love
and support while writing this book.

v

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

Changes in This Edition��xxi

Chapter 1: ��Getting Started���1

What Are Web Components?��2

Taking First Steps��4

Breaking Apart the Code���6

Background to the Project���8

Our Approach and Strategy��9

Determining Our Needs��11

Setting Up the Project��12

Understanding What Happened��15

Integrating a Playground��15

Understanding What Happened��18

Summary���19

Chapter 2: ��Creating Basic Components���21

Creating the Input Component���22

Breaking the Code Apart���24

Hooking the Component into Storybook���26

Table of Contents

vi

Understanding What Happened��29

Adding Variants��30

Building a Checkbox Component���34

Exploring the Code Changes���38

Adding Variations in Storybook���39

Breaking the Code Apart���42

Adding a RadioButton Component���44

Exploring the Changes Made��50

Constructing the Slider Component���51

Adding the Component to Storybook��56

Exploring the Code���59

Summary���59

Chapter 3: ��Building Action Components��61

Creating the SelectBox Component���61

Understanding What Happened��64

Adding the Component to Storybook��65

Exploring the Code in Detail���70

Creating the Spinner Component���72

Understanding What Happened��75

Adding the Component to Storybook��76

Breaking Apart the Code���79

Creating Variants��80

Creating the Accordion Component���85

Understanding What Happened��90

Adding the Component to Storybook��91

Reviewing the Code��95

Summary���95

Table of Contents

vii

Chapter 4: ��Building Navigation Components���������������������������������������97

Creating the Breadcrumbs Component��98

Understanding What Happened��102

Adding the Component to Storybook��103

Exploring the Code in Detail���107

Building a Chip Component��108

Exploring the Code Changes���112

Hooking the Component into Storybook���113

Building Two Variants���117

Constructing the Tabs Component���120

Exploring the Code Changes���123

Hooking the Component into Storybook���124

Creating a Variant���127

Summary���131

Chapter 5: ��Creating Notification Components�����������������������������������133

Creating the Alert Component��133

Sourcing the Icons��134

Building the Component���135

Adding the Component to Storybook��142

Creating a Variant���145

Creating the Dialog Component���150

Understanding What Happened��154

Adding to Storybook���155

Creating Variants��157

Creating the Tooltip Component���162

Understanding What Happened��167

Adding the Component to Storybook��168

Table of Contents

viii

Exploring the Code Changes���170

Creating a Variant���171

Summary���173

Chapter 6: ��Creating Grid Components���175

Determining the Approach���175

Building the Table Component���176

Understanding What Happened��178

Creating the Grid Component���179

Breaking Apart the Code���181

Creating the Cell Component���182

Understanding What Happened��184

Adding to Storybook���185

Exploring in Detail��188

Adding a Variant���189

Summary���192

Chapter 7: ��Creating Animation Components�������������������������������������195

Animating a Progress Bar Component���196

Exploring the Code Changes���200

Adding to Storybook���201

Adding Variants��204

Creating the Alarm Component��206

Breaking Apart the Code���212

Adding to Storybook���213

Adding Variants��216

Creating a Switch Component���220

Breaking Apart the Code���223

Table of Contents

ix

Adding to Storybook���224

Creating a Variant���228

Summary���229

Chapter 8: ��Writing Documentation��231

Setting the Scene���232

Adding Status Badges��233

Understanding What Happened��236

Customizing the Badges Plugin Configuration���236

Breaking Apart the Changes���239

Updating the Documentation���241

Breaking Apart an Example��242

Making Improvements��245

Exploring the Changes in Detail��250

Summary���252

Chapter 9: ��Testing Components���253

Setting Expectations��253

Setting Up the Testing Environment���254

Breaking Apart the Code Changes��256

Testing the Components��256

Exploring the Changes in Detail��260

Improving on the Tests���261

Testing the Components Visually��263

Bundling the Components��266

Configuring the Build Process��266

Running the Build Process���271

Updating Our Demo��276

Breaking Apart the Code���280

Table of Contents

x

Testing with Other Frameworks���281

Understanding What Happened��284

Adding Test Coverage���284

Refining the Results���288

Breaking Apart the Code Changes��291

A Parting Thought���293

Summary���294

Chapter 10: ��Accessibility���295

A Quick Experiment��296

Understanding What Happened��297

Setting Expectations��298

Testing with the Chrome Extension��299

Understanding the Results���301

Implementing Vitest-Axe��303

Exploring the Changes��308

Fixing the Issues���309

Limits of Testing���314

Exploring Next Steps��317

Summary���319

Chapter 11: ��Deploying to Production���321

Performing Final Checks��321

Understanding the Deployment Process��323

Publishing to GitHub���325

Setting Up a GitHub Repository��326

Uploading Components to GitHub���328

Exploring the Code in Detail���335

Releasing Components to npm��336

Table of Contents

xi

Building a Demo���343

Breaking Apart the Code Changes��345

Publishing Storybook to Netlify��348

Setting Up Netlify��349

Understanding the Changes Made���352

Adding Polish to the Repository���352

Adding a Custom Domain Name���353

Summary���360

Chapter 12: ��Taking Things Further��363

Reviewing the Site���364

Setting a Road Map��365

Converting Our Next Component��366

Dissecting the Code��371

Adding to Storybook���372

Adding a Theme Manager��382

Determining the Approach��382

Implementing the Changes���383

Understanding What We Changed��388

“And Now to Answer That Question…”��389

Summary���390

��Index��393

Table of Contents

xiii

About the Author

Alex Libby is a front-end engineer and seasoned book author who hails

from England. His passion for all things open source dates back to the

days of his degree studies, where he first came across web development

and has been hooked ever since. His daily work involves extensive use

of React, Node.js, JavaScript, HTML, and CSS. Alex enjoys tinkering with

different open source libraries to see how they work. He has spent a stint

maintaining the jQuery Tools library and enjoys writing about open source

technologies, principally for front-end UI development. 

xv

About the Technical Reviewer
Vadim Atamanenko is an experienced

software engineer with over 25 years of

experience, a senior member of the IEEE and

Harvard Square associations, and an active

participant in the scientific community. He

is the author of numerous scientific articles,

an expert in international hackathons, a

lecturer in software development courses,

and currently serves as the Head of the

Development Department at Freedom Life

Insurance Company. Vadim also shares his

knowledge and expertise through more than

40 articles published in online publications in

two languages (English and Russian). He is always open to meeting new

people and exchanging knowledge.  

xvii

Acknowledgments
Writing a book can be a long but rewarding process; it is not possible to

complete it without the help of other people. I would like to offer a huge

vote of thanks to my editors, in particular, Nirmal Selvaraj and James

Robinson-Prior; my thanks also to Vadim Atamanenko as my technical

reviewer, James Markham for his help during the process, and others at

Apress for getting this book into print. All have made writing this book a

painless and enjoyable process, even with the edits!

My thanks also to my family for being understanding and supporting

me while writing. I frequently spend a lot of late nights writing alone

or pass up times when I should be with them, so their words of

encouragement and support have been a real help in getting past those

bumps in the road and producing the finished book that you now hold in

your hands.

xix

Introduction

Developing Web Components with Svelte, Second Edition is for people who

want to learn how to quickly create web components that are efficient and

fast using the upcoming Svelte framework and associated tools.

This project-oriented book simplifies the setting up of a Svelte web

component library as a starting point before beginning to explore the

benefits of using Svelte to create components not only usable in this

framework but equally reusable in others such as React, Vue, and Angular.

We can use this as a basis for developing an offer that we can customize

to our needs, across multiple frameworks. It will equip you with a starting

toolset that you can use to create future component libraries, incorporate

the processes into your workflow, and that will allow you to take your

components to the next level.

Throughout this book, I’ll take you on a journey through creating the

base library, before adding a variety of components such as a select box,

tabs, and the typical tooltip components. We will also touch on subjects

such as writing documentation, testing components, and deploying into

production – showing you how easy it is to develop simple components

that we can augment later quickly. With the minimum of fuss and plenty of

practical exercises, we’ll focus on topics such as building the functionality,

styling, testing in a self-contained environment, and more – right through

to producing the final result viewable from any browser!

Developing Web Components with Svelte, Second Edition uses nothing

more than standard JavaScript, CSS, and HTML, three of the most

powerful tools available for developers: you can enhance, extend, and

configure your components as requirements dictate. With Svelte, the art of

possible is only limited by the extent of your imagination and the power of

JavaScript, HTML, and Node.js.

xxi

Changes in This Edition

Below are some of the changes made for this edition of Developing Web

Components with Svelte:

•	 Updated Storybook to version 8

•	 Updated Svelte to version 4

•	 Refactored all Storybook stories to use a newer format,

switching from default Svelte to JavaScript

•	 Fixed issues in the RadioButton component

•	 Included a new section on accessibility

•	 Included a new Animation chapter and components:

Alarm, Switch, and ProgressBar

•	 Updated installation of Svelte project to use Vite as a

replacement: this bypasses workarounds used when

creating the original library project

•	 Refreshed color scheme to new shade and named

library GarnetUI (to avoid confusion)

•	 Added coverage testing

•	 Added a new Avatar component as conversion from

React to Svelte

•	 Updated documentation to use a new format as part of

the update to Storybook 8

xxii

•	 Switched to using Vitest from Svelte Testing Library

•	 Removed the SideBar component (as this didn’t work

well in Storybook)

•	 Added a new Switch component

Changes in This Edition

1© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_1

CHAPTER 1

Getting Started
Let’s suppose for a moment that you’ve spent any time developing with

frameworks such as React. In that case, I’m sure you will have come across

the principle of creating web components. We can drop these self-contained,

reusable packages of code into any number of projects, with only minor tweaks

needed to configure the package for use in your project. Sound familiar?

What if you found yourself creating multiple components and were

beginning to reuse them across multiple projects? We could use them

individually, but that wouldn’t be the most effective way – instead, why not

create a component library?

Creating such a library opens some real possibilities – we could build

our library around standard components that everyone uses or focus on a

select few that follow a theme, such as forms. At this point, you’re probably

assuming that we’d do something in React, right?

Wrong. Anyone who knows me knows that I like to keep things

simple – while there is nothing technically wrong with React (it’s a great

framework), I want to do something different.

We will build such a component library for this book, but the

framework I’ve elected to use is a relatively new kid on the block – Svelte.

It, however, won’t just be another library, but one based around web

components! Why, I hear you ask?

https://doi.org/10.1007/979-8-8688-1180-7_1#DOI

2

There are many reasons for doing this, but performance is the most

important one – Svelte’s architecture is different from most frameworks,

making it superfast than many of its rivals and one that suits web

component architecture perfectly. It means we can create something

in Svelte (easy to pick up) and use it in React, Angular, Vue, and so on.

Any framework that uses JavaScript (and potentially npm packages) can

effectively use this library. Throughout this book, we’ll explore how to

write web components using Svelte, bring them together in a unified

library, and explore the steps required to release them to the world at large

with minimal effort.

In time-honored tradition, we must start somewhere – there’s no better

place than to start with a look at what we will create through this book,

set some boundaries, and get some of the tools and resources ready for

use. Let’s first answer this question before we do so (and get anyone up to

speed who hasn’t used web components).

�What Are Web Components?
To answer this question, we must go back ten years to the Fronteers

Conference in 2011, where web components were first introduced to

developers.

There are many ways to describe what a web component is, but I like

the definition given by Riccardo Canella in his article on the Medium

website, where he states that

…Web components are a set of web platform APIs that allow
you to create new custom, reusable, encapsulated HTML tags
to use in web pages and web apps.

Chapter 1 Getting Started

3

This definition is just a tiny part of what they are – in addition, it’s

essential to know that they

•	 Are based on web standards and will work across

modern browsers

•	 Can be used with any JavaScript-based framework

Wow – that’s powerful stuff! Gone are the days when we had to use

a React component in a React-based site or, likewise, for Angular. Just

imagine: we could build a component in Svelte and then use it in different

frameworks – as long as they are based on JavaScript.

There is one question, though, that I bet some of you are asking: Why

choose Svelte? It’s a valid question, as Svelte is not as well known as other

frameworks such as React.

However, there are three reasons for choosing this framework:

•	 It’s a fair bet that many of you use React in some

capacity; we could develop a web component in

React, but we would be missing out on one key factor:

interoperability. We need to build the component using

a different framework, such as Svelte.

•	 Svelte’s architecture pushes compilation into the build

process, preventing the need for a runtime library when

operating in a browser (unlike its competitors such as

React). It means the end code is superfast – it doesn’t have

the overhead of that library, plus compiled code is as close

as you will get to pure HTML, CSS, and JavaScript.

Chapter 1 Getting Started

4

•	 Svelte’s developers decided not to reinvent the wheel –

if JavaScript already has a perfectly adequate solution,

then Svelte uses this instead of trying to add a custom

equivalent!

•	 Svelte is designed to include markup and styling for a

component in one file, not multiple. Each component

is self-contained, making it more portable and suited to

a web component design.

•	 This lightweight architecture also means that any

core dependencies will be minimal compared to

frameworks such as React. Any that we need will be just

those required to operate the framework – it does not

include any extra dependencies for operations such as

manipulating date or time.

Okay – enough talk: let’s crack on with something a little more

practical! Before we get into the nuts and bolts of building our library, let’s

first have a quick peek at a small example I’ve put together to see how a

Svelte-based web component works in more detail.

For this book, we’ll create a folder called garnet for our library. I will
refer to this as the “project folder” – please use this folder unless
otherwise indicated in the text.

�Taking First Steps
For the first demo, I’ve reworked an example by Simon O. available

from GitHub – you can see the original version at https://github.com/
FroyoNom/Svelte-Weather-Forecast. I’ve simplified my version to only

display the current weather, hard-code the location to New York (Apress’

office!), and use the luxon date library instead to provide the current date.

Chapter 1 Getting Started

https://github.com/FroyoNom/Svelte-Weather-Forecast
https://github.com/FroyoNom/Svelte-Weather-Forecast

5

You may get a request from the browser asking for your location in
this demo – please click Allow. We need this for the demo to operate
correctly.

Okay – let’s crack on with the demo.

RUNNING A DEMO COMPONENT

To run the weather component demo, follow these steps:

	1.	 First, we need to get a key from OpenWeatherMap.org – head

over to https://home.openweathermap.org/users/
sign_up, and sign up with the correct details (it’s a free

service, although I would recommend using a free email

address such as Gmail). Make sure you store the key safely, as

we will need it later in this exercise.

	2.	N ext, go ahead and download the archive file from the code

download accompanying this book – extract the contents to a

new folder called weather-app, not your project folder.

	3.	 Once extracted, open the .env file at the root of the folder

you created in step 2, then add your API key from step 1, as

indicated in the file.

	4.	 Fire up a Node.js terminal session, then change the working

folder to that separate folder from the previous step.

	5.	A t the prompt, enter npm install to install the demo, and

press Enter.

	6.	 Once done, enter npm run dev at the prompt, and press Enter

to run the application. We should see a weather component

displayed on the page if all is well, as shown in Figure 1-1.

Chapter 1 Getting Started

https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up

6

Figure 1-1.  The OpenWeatherMap component demo

I designed that demo to be a quick and easy start, although it, in reality,

hides a lot of code under the covers. At face value, it would be difficult to

tell if we had written this using Svelte – don’t worry, it has!

To prove this, crack open a copy of the weather-app folder from the

code download, then look at the contents in your text editor. Don’t worry

if you don’t understand it all – getting a feel for how we structure a Svelte

component at this stage is more important. We’ll go through it in more

detail when creating components in the next chapter. Let’s review the code

from that last demo before continuing with the rest of this chapter.

�Breaking Apart the Code
At first glance, you might be slightly bewildered by some of the code in the

example – what does it all do? We use quite a bit of code, but we only need

to be concerned with what’s in the src folder at this stage.

We went through the usual steps of downloading, extracting, and firing

up the demo in localhost, using standard Node commands to get the demo

running.

Chapter 1 Getting Started

7

What makes our demo tick, though, is the code within the src folder.

Other files and folders are present, but we will return to these later in the

book. The src folder is where we store all the core component code – ours

has lib and assets folders, vite-env.d.ts, and App.svelte. The lib

folder holds the code for each component – this is where we’ll store our

code as we progress through this book.

Although Svelte has two files that act as a starting page for a Svelte

site (main.js, in the \src folder, and the index.html file at root), we

will primarily use the former. The plan for our library is to display each

component using Markdown files in a Storybook installation and use the

index.html file in a secondary capacity to demonstrate how we might

reference each component outside of a Svelte environment. Don’t worry

too much about the specifics of how we will do this – we will go through

everything in detail throughout this book. For now, it’s important to know

where we will store our components and that we have two ways to display

them in our environment.

We will use other files and folders throughout this book, some of
which you will recognize, such as package.json. Others may not
be so familiar; we will go through examples throughout this book.

Okay – let’s move on: now that we’ve created a demo component, it’s

time we got stuck into the star attraction for this book: our component

library!

Throughout this book, we’ll create the basis for our component library

and flesh it out with a selection of components. There is plenty we could

choose from – indeed, space constraints mean we can’t add them all! The

key is that we’ll learn how to structure our library, add components, test

them, and generally make sure we have something worthwhile toward the

end of the book.

Let’s start first with the background to this project so we can set the

scene and understand what’s coming up later in the book.

Chapter 1 Getting Started

8

�Background to the Project
So, where do we begin? Let me introduce you to what we will be creating:

the Garnet UI library.

This UI library will contain a mix of components – all of these you will

find in use on many websites, particularly ecommerce ones! The great

thing about creating a component library is that you can pick and choose

which components to add; if people don’t like one or are not using it, we

can deprecate it from the library. Hopefully, that won’t be the case with the

ones I’ve chosen – I’ve listed them in Table 1-1.

Table 1-1.  List of Components for Our Garnet UI Library

Category Components

Basic Components Input box and variations, such as email or password fields

Checkbox

RadioButton

Slider

Action Components SelectBox

Accordion

Spinner

Navigation Components Breadcrumbs

SideBar (and Hamburger)

Tabs

Notification Components Dialog boxes (such as error, info, warn)

Alert

Tooltip

Grid Components Grid (Row and Column)

Animation Components Collapsible DropDown

Animated ProgressBar

Switch

Chapter 1 Getting Started

9

If you’re wondering about the name – it came from an interest I have
in precious stones and a trip to a gemstone museum in Prague a few
years ago. They had an incredible array of garnets on display (which
happen to be the national gemstone for the Czech Republic) – garnet
red is also one of my favorite colors, plus it’s a nice short name
to boot!

Okay – let’s crack on: now that we’ve decided what we will include in

our library, let’s turn our attention to strategy. What approach will we take?

It’s time to decide on some of the tools we will use and our approach for

each component.

�Our Approach and Strategy
As with any project, it’s crucial to have a strategy – we need to decide

where (and how) to take the project. Otherwise, it could quickly become a

disorganized mess!

We could take this project in many different directions; for now, we will

focus on simplicity (mainly as space constraints mean creating something

feature-rich and complex in the space of a book would be difficult). With

this in mind, I’ve outlined the approach we will take for this project:

•	 We’ll create a minimum viable product or MVP

approach – this will be enough to get something started

and published, but we can add to it later.

•	 I’ve elected to use GitHub and GitHub Pages for

hosting, primarily because I already have several

repositories, so using GitHub will help keep things

simple. Feel free to use an alternative such as BitBucket

or GitLab – both operate similarly to GitHub.

Chapter 1 Getting Started

10

•	 An essential theme for this project will be to keep

things simple, at least for now – I would love to create

something complex and full of features, but I won’t

be able to do it justice in this book. For us, it’s more

important to get the groundwork in place and running

first; it will mean that some features we might want are

not present initially (such as using vanilla JavaScript

rather than TypeScript or excluding some properties

for a component). Once the basis is operational, we can

develop and refine the library later.

•	 For each component, we’ll work on developing code

first. Once done, we’ll style it before hooking it into an

instance of Storybook as our demonstration tool. Tests

for each component will come later, once we have built

all the components, in Chapter 8.

•	 For this library, I’ve elected to use the Cypress testing

suite as a personal choice – there are others out there,

such as testing-library or Jest, which work equally well.

You may have a testing tool you already use, so feel free

to use that instead; the critical point is testing our new

components, not which tool to use!

Okay – I think that’s enough for now: let’s move on to our next task. We

need to determine what we need in terms of accounts, tools, and the like.

As a developer, you may already have some of these tools installed; feel

free to use them or use alternatives if you prefer! That aside, let’s look at the

list in more detail.

Chapter 1 Getting Started

11

�Determining Our Needs
Before getting stuck into setting up Svelte and building our library, we

need to determine which tools we will use for our project. In a sense, we

need to do a little housekeeping – I loathe housekeeping, but hey, needs

must, as they say!

This list will cover everything needed: I will assume that you will use

the tools outlined in the list for this book. If you already have something

installed, feel free to skip the requirement or use an alternative solution.

Leaving that aside, let’s cover which tools we need to have, alongside

the usual requirements such as Internet access and a decent text editor:

•	 The first requirement is Node.js (and npm) – we will

use this to structure our Svelte project and turn code

into components. Please download and install the

version appropriate for your platform; default settings

will suffice for this project.

•	 We also need an account at GitHub and a valid

email address – we use the latter to validate your

account. Once registered, we will use it to set up

two repositories – one for the code and another for

documentation.

•	 To publish the component on npm, we will also need

an account – you can sign up for one at https://www.
npmjs.com/signup if you don’t already have one.

•	 A project folder on your PC or laptop – for this book, I

will assume you are using one called garnet, which is at

the root of your C: drive. If you want to use something

different, please adjust it to suit as you work through

each exercise.

Chapter 1 Getting Started

https://www.npmjs.com/signup
https://www.npmjs.com/signup

12

This list should be enough to get us started – anything else we can

download, or I will give you directions at the appropriate time. Let’s begin

with the bit I know you’re waiting for: installing Svelte and setting up our

library.

�Setting Up the Project
The first task in building our library is to install Svelte – assuming you have

Node.js installed, we can use npm to download and install the framework.

Let’s look at the steps involved in more detail as part of the next exercise.

INSTALLING SVELTE

To get the basis for our library set up, follow these steps:

	1.	 First, crack open a Node.js terminal session, then change to the

root of your C: drive.

	2.	A t the prompt, go ahead and enter npm create vite@
latest garnetui -- --template svelte, then

press Enter.

	3.	 You may see this question (or something similar) – when

prompted, press y to respond:

Need to install the following packages:
 create-vite@5.2.3
Ok to proceed? (y)

Chapter 1 Getting Started

13

	4.	 Svelte will now install. After a few moments, it will prompt us to

run these commands; go ahead and enter each, pressing Enter

after each one:

cd garnetui
npm install
npm run dev

	5.	 When prompted, fire up your browser and navigate to http://
localhost:5173 – if all is well, we should see the demo site

running in our browser, as shown in Figure 1-2.

Figure 1-2.  Our Svelte demo site running

	6.	 Browse to the garnetui folder in your file manager – if all

is well, we should see something akin to the extract shown in

Figure 1-3.

Chapter 1 Getting Started

14

Figure 1-3.  The initial file listing for our component library

Excellent – we now have a basis for building our component library!

Although installing Svelte is straightforward, it’s worth exploring what we

achieved in the last demo. With that in mind, let’s take a moment to review

the changes we made in more detail.

Chapter 1 Getting Started

15

�Understanding What Happened
One of the great things about using Svelte is how easy it is to set up a

starting site. We do everything using npm, a tool many developers already

use in their projects, so many commands will look familiar. The only

oddity is that while we created a Svelte site, we downloaded Vite – what is

all that about?

Vite is the bundling tool Svelte uses to package code ready for

deployment. We ran the npm create command to create what is effectively

a Vite site, but we used a template to format it as a Svelte site. It’s worth

noting that as part of running this command, we had to download Vite –

this is a one-off; it will not prompt us again if we create more Svelte sites.

Once the download was completed, we changed into the garnet folder

and ran a typical npm install command to set up dependencies. With

that done, we fired up the Svelte development server before browsing the

results in our browser. We still have a long way to go, but this last step helps

confirm we have a solid basis in place, ready to build our project!

Okay – let’s move on to our next task. We will, of course, be building

components throughout this book, but how will we display them? We need

the means to show them off to potential users to see how they look and

assess if they will suit their requirements.

The best way to do this is to use a tool called Storybook – it’s available

for download from https://storybook.js.org/ and works with various

frameworks, including Svelte. Let’s set up an instance as part of our

next demo.

�Integrating a Playground
If you’ve spent any time developing code – particularly with frameworks

such as React – you may well have come across Storybook.

Chapter 1 Getting Started

https://storybook.js.org/

16

For the uninitiated, it’s an excellent tool for showcasing any

components we developers write – the tool supports a wide range of

frameworks, including Svelte. We’ll use it in our project to showcase the

components we create for our library – let’s dive in and explore how to set

it up as part of our next exercise.

SETTING UP STORYBOOK

To set up Storybook for our Svelte project, follow these steps:

	1.	 First, crack open a Node.js terminal session, then change the

working folder to our project area.

	2.	A t the prompt, enter npx sb init --builder
@storybook/builder-vite and press Enter to install

Storybook.

	3.	I f prompted, press y to proceed (we’re using npx to download

and install Storybook, so it needs confirmation to proceed with

the download).

	4.	 Once installed, Storybook will preconfigure support

automatically; if successful, it will automatically display a blank

Storybook page in your browser, as shown in Figure 1-4.

Chapter 1 Getting Started

17

Figure 1-4.  Storybook successfully launched

If Storybook fails to detect Svelte, choose yes and use the arrow keys
to go down to svelte, then press Enter to select. Storybook will
manually add support for Svelte.

	5.	T here is a change we must make – this is to tell Svelte that

we’re creating custom web components. Crack open vite.
config.js at the root of our project folder, then update the

code within as highlighted:

export default defineConfig({
 plugins: [svelte()],
 compilerOptions: {
 customElement: true
 }
})

Chapter 1 Getting Started

18

	6.	 We also need to add the same setting to the svelte.config.js

file – crack this file open from the root of the project area, then

modify the code as highlighted:

export default {
 �// Consult https://svelte.dev/docs#compile-time-
svelte-preprocess

 // for more information about preprocessors
 preprocess: vitePreprocess(),
 compilerOptions: {
 customElement: true,
 },

};

	7.	A t this point, we can also remove the \src\stories and

\src\assets folders. This folder is the Storybook examples

folder, which we don’t need for our project.

Great – we now have Storybook in place, ready for us to start adding

components! It is a perfect medium to show off the components we create

throughout this book; while installing Storybook is a one-liner, we need to

ensure it installs the proper support for your project.

With that in mind, let’s dive in and explore the changes we made in

the last exercise to see how Storybook fits into the bigger picture of our

component library.

�Understanding What Happened
So, what did we achieve in the last demo?

We started by running the npx sb init command to download and

set up Storybook; this set up both the application and support for Svelte

automatically. While Storybook supports a wide range of frameworks,

Chapter 1 Getting Started

19

the developers have focused on automating detection for the chosen

framework as part of the installation.

The key to making that automation work lies in detecting the presence

of the correct configuration file – in our case, vite.config.js. To make

sure it works, it’s best to let Storybook install itself into a folder at the root

level – if you browse the file structure, you will see it has created a folder

called .storybook. If we hadn’t, the automated step could have failed, and

we might have ended up installing Storybook manually into the wrong

folder or not at all!

To finish the setup, we removed the demo stories and assets that come

with Storybook. We don’t need these files for the final library, so removing

them keeps the setup tidy. We then rounded out the demo by running

the command to launch Storybook so we could confirm it launched

without issue.

�Summary
We can see creating components and a library as something of a

rollercoaster. There will be highs and lows, successes and challenges to

deal with as we develop what will become our final library. Over these

last few pages, we’ve started to look at our project’s background and get

ourselves ready to create the component library – let’s take a moment to

review what we have learned before beginning the real development work.

We started with a quick demo of a Svelte component that I had adapted

to get a feel for typical code and how one would run. We then moved on to

discussing the background of our project before defining the approach and

strategy we would take, along with what we would need.

Next, we set up the initial framework ready for use before finishing

with integrating an instance of Storybook and ready to display our

components.

Chapter 1 Getting Started

20

We can see creating a website as something of a rollercoaster – there

will be highs and lows, successes and challenges to deal with as we begin

to develop what will become our final solution. Over these last few pages,

we’ve started to look at our project’s background and get ourselves ready to

create the site – let’s take a moment to review what we have learned before

beginning the real development work.

Excellent – we have our initial structure in place, with confirmed

requirements: it’s time we began the real development! We’ll start with

something simple first: creating the basic components, which we will do in

the next chapter.

Chapter 1 Getting Started

21© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_2

CHAPTER 2

Creating Basic
Components
With our initial project set up, it’s time to start creating and adding

components!

For this (and the next few chapters), we will build some sample

components ready for inclusion in our library. We could have chosen to

include any one of dozens of different components, but to keep things

simple, I’ve decided to pick four to start with: InputBox, Checkbox,

RadioButton, and Slider.

For each component, I’ve made a few assumptions in terms of how we

will develop these components:

•	 Use HTML5 tags where possible.

•	 Aim to use an MVP approach: features will be missing,

but that will come later.

•	 Take the approach of developing components, then

adding styles, and finally linking into Storybook.

•	 Add variants where possible and start documentation

(which we can improve over time).

Keeping this approach in mind, let’s start with the first addition to our

library, which is creating the Input field component.

https://doi.org/10.1007/979-8-8688-1180-7_2#DOI

22

�Creating the Input Component
We will start with something simple for our first component – the

ubiquitous input field! You will, of course, see this versatile component

anywhere: it might be as a text box on one website but configured to accept

only email addresses or telephone numbers on other sites.

We’ll keep things simple and start implementing a plain text field for

now, but we’ll discuss more ideas later when we hook the component into

Storybook.

BUILDING THE INPUT COMPONENT

To build our Input component, follow these steps:

	1.	 First, go ahead and create a new folder called \components

under the \src\lib folder.

	2.	 Next, crack open a new file in your text editor, then add

this code – there is a good chunk, so we’ll add it section by

section, starting with a Svelte directive to convert it into a web

component:

<svelte:options customElement="garnet-input" />

	3.	 Leave the next line blank, then add this script block – this

sets up some imports and export declarations, along with an

on:input event handler:

<script>
 export let label = "Label:";
 export let placeholder = "default placeholder";

Chapter 2 Creating Basic Components

23

 export let disabled = false;
 export let inputName = "";
 export let fieldID = "";
 export let value = undefined;
 const dispatch = createEventDispatcher();
 const onInput =(e)=>{
 dispatch('input', { text: e.target.value});
 }
</script>

	4.	O nce added, skip a line, then add in this markup – this will form

the basis of our component:

<div class="garnet-input">
 {#if label}
 <label for={fieldID}>
 {label}
 </label>
 {/if}
 <input
 type="text"
 id={fieldID}
 name={inputName}
 {placeholder}
 {disabled}
 bind:value
 on:input={onInput}
 >
</div>

Chapter 2 Creating Basic Components

24

	5.	M iss a line after the closing </div> tag, then add this styling code:

<style>
 .garnet-input { display: flex; flex-direction: row;
 font-family: Arial, Helvetica, sans-serif;
 }
 �input[type="text"] { width: 200px; border-
radius: 4px; border-color: #733635; height: 30px;
outline: none; }

 �label { padding-right: 10px; display: flex; align-
self: center; }

 input:disabled {
 cursor: not-allowed;
 }
</style>

	6.	 Save the file as Input.svelte in the Input folder, and close all

open files.

We now have an Input component in place – most of it will look

familiar as it is (in the main) standard HTML markup. However, there are

a few exciting features in this code we should cover, so before we get stuck

into testing our new component, let’s look at the code in more detail.

�Breaking the Code Apart
For this exercise, our first task was to create the initial folder structure,

which will form the basis for our library – this will also help maintain the

separation of assets, if needed, at a later date.

Chapter 2 Creating Basic Components

25

Next, we switched to creating the core component and added a

<svelte:options...> directive that turns our component into a web

component. It may only be a one-liner, but it is critical to making

everything work and allow us to create our component in Svelte but use

it in frameworks such as React. At the same time, we also created several

exports for variables such as placeholder or onInput. This export keyword

makes each value available elsewhere, which will be ideal for testing each

component later in Storybook.

In the declarations at the top of Input.svelte, you will see that we’ve

provided some values – Svelte will use these by default if no values are

passed into the component when calling it in code.

The final task for this exercise was to add the markup that will form the

basis for the Input component – we based it on typical markup for a text

input field but adapted it to reference each exported field. There are two

exceptions: on:input and the bind:value spread operator.

The former (on:input) is Svelte’s equivalent of a standard JavaScript

onInput change handler. It works the same way as plain JavaScript, even if

the syntax looks slightly different!

It’s worth noting that you don’t always need to put the callback for the
on:input as we have done here; using on:input={on:input}
with an appropriate event handler will work just as well.

Okay – let’s move on: next up, we need to test our component. We will

use the Storybook instance we set up in the previous chapter, and it’s a

perfect way to test the original component and add variants – let’s dive in

and look in more detail.

Chapter 2 Creating Basic Components

26

�Hooking the Component into Storybook
As tools go, Storybook is an immensely versatile piece of kit. It supports

various frameworks, such as React or Angular, and can also accept content

in several formats (e.g., JavaScript or Markdown).

We should be aware of one thing, though, which is our use of Svelte. In

previous versions of Storybook (before version 8), support was not quite

as mature as for other frameworks – this has radically improved in the

current version. That said, we’ll be using JavaScript-formatted story files.

We could have gone with the Svelte equivalent, which uses Markdown, but

JavaScript offers more choices.

We will still use Markdown, but only in the documentation files that
link to our Storybook installation.

With that all in mind, let’s dive in and look at how we will set up the

Storybook installation for our Input component as part of the next exercise.

ADDING TO STORYBOOK

To set up the component in the Storybook instance, follow these steps:

	1.	 First, crack open a new file in your text editor – save it as

Input.stories.js in the Input folder from the previous

exercise.

	2.	 Next, go ahead and add this code – we’ll break it into sections,

starting with three import statements:

import Input from "./Input.svelte";
import { action } from "@storybook/addon-actions";
import { fn } from "@storybook/test";

Chapter 2 Creating Basic Components

27

	3.	 To render any component in Storybook, we need to specify a

template. We could use different versions for each component,

but for now, we’ll use this one to keep things simple:

export default {
 title: "Garnet UI Library/Basic Components/Input",
 component: Input,
 argTypes: {
 disabled: { control: "boolean" },
 oninput: { action: "changed" },
 placeholder: "",
 },
 on: { input: fn().mockName("on-input") },
};

	4.	 With a template in place, we can now display our component.

Go ahead and add this Story block:

export const Default = (args) => ({
 Component: Input,
 props: {
 ...args,
 label: "Text:",
 placeholder: "Enter your text here",
 props: args,
 on: { input: fn().mockName("on-input") },
 },
});

	5.	 We have one more part to add before viewing the results –

documentation. Go ahead and extract a copy of Docs.mdx from

the code download and drop it into the Input folder.

Chapter 2 Creating Basic Components

28

	6.	 It contains some rudimentary documentation in Markdown

format – we’ll talk more about this when we review the code.

	7.	 Save and close the file. Next, switch to your Node.js terminal

session, then set the working folder to our garnet project area.

	8.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Input link on

the left to display the Default variant we just created, as shown

in Figure 2-1.

Figure 2-1.  Displaying the Input component in Storybook

Just a heads up – you will notice that although I’ve specified http://
localhost:6006 as the URL, it does redirect when loading. This is
perfectly normal; using the short form in the text is easier!

	9.	 Now click the Docs link on the left, under Input – if all is well,

we should see an extract of the documentation appear, as in

Figure 2-2.

Chapter 2 Creating Basic Components

29

Figure 2-2.  An extract of documentation for the Input component

Excellent – things are starting to take shape now! We now have the

first of many components set up in Storybook: it might be a simple one,

but that doesn’t matter. The critical point is that we have a sound basis for

building and developing our components.

In the meantime, this would be an excellent opportunity to review our

code changes. We’ve already talked about the core component, but we’ve

covered some valuable features in the Storybook implementation, so let’s

take some time to review the code in more detail.

�Understanding What Happened
Although we added a simple Input component to our library in the last

exercise, the simplicity hides a mix of technologies – we used Svelte for the

core component, JavaScript to add our story to Storybook, and Markdown

for our documentation! It’s a potent mix, but it seems to work very well. We

could have chosen to use Markdown for our story (thanks in no small part

to Storybook’s versatility), but as mentioned just now, JavaScript offers us

more choices.

Chapter 2 Creating Basic Components

30

For the moment, let’s dive into the Docs file. This file we added in the

last demo isn’t strictly pure MDX but a variant created by Storybook. In

it, we import the Canvas component, which provides a canvas to render

our component, plus the Input.stories.js file. We reference the latter

for each of the stories – it’s important to note that we must have a section

for each Storybook variant we create; otherwise, we may end up with an

error. (This only applies if we manually create the stories, not if Storybook

generates them automatically for us.)

Next, we have the <Meta of=...> tag – think of this as a way of

referencing each story. We imported them using an alias of InputStories,

so when we tell Storybook to render it on a canvas, we use <Canvas
of={InputStories.{name of story}>. We created the Default story for

now, so it would be <Canvas of={InputStories.Default} />. The rest

of the code is standard Markdown – we have the ... as named

anchor links to each subsection and use the standard format for headings,

such as ## Input.

Okay – we’re almost finished with this component, but there is

one more task we should explore: How can we add a variant for our

component?

�Adding Variants
It is something you will hear about when creating component libraries

such as ours, and it highlights the importance of good planning: variants.

So what are they?

They are just variations on a theme – we can use elements such as

Input fields for plain text, email addresses, or even choosing colors! The

trick here is understanding what each element can support and ensuring

we have sufficient properties to support that variation. For example, if

we wanted not to display a label by default and add email support to our

component, we might create something like this in Storybook:

Chapter 2 Creating Basic Components

31

export const NoLabel = (args) => ({
 Component: Input,
 props: {
 ...args,
 label: "",
 props: args,
 on: { input: fn().mockName("on-input") },
 },
});

Let’s put that into practice and add it to our setup now as part of our

next demo – we’ll also add a second variant to disable the component.

DEMO – ADDING VARIANTS FOR INPUT

To add the new variants, follow these steps:

	1.	 First, crack open input.stories.js, then scroll to the

bottom of the page.

	2.	 Leave a line blank, then add the following code – this will

remove the label from our component:

export const NoLabel = (args) => ({
 Component: Input,
 props: {
 ...args,
 label: "",
 props: args,
 on: { input: fn().mockName("on-input") },
 },
});

Chapter 2 Creating Basic Components

32

	3.	M iss a line, then add this code to set a disabled property

if needed:

export const Disabled = (args) => ({
 Component: Input,
 props: {
 ...args,
 placeholder: "disabled field",
 label: "Text",
 disabled: true,
 },
});

	4.	 Save the file and close it – next, go ahead and open the original

Input.svelte file: we need to add a slight tweak to our

styling.

	5.	A t the bottom of the file before the closing </style> tag, add

this style declaration:

 input:disabled {
 cursor: not-allowed;
 }

	6.	 Save and close that file. Crack open the Docs.mdx file under

the Input folder – we need to add some extra entries for our

new variants. Miss a line, then add this markup:

NoLabel

This is to set or hide the label for the input field
component

<Canvas of={InputStories.NoLabel} />

Chapter 2 Creating Basic Components

33

DisabledInput

This disables the component

<Canvas of={InputStories.Disabled} />

	7.	 Save the file and close it. Switch to your Node.js terminal

session, then set the working folder to our garnet project area.

	8.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/.

	9.	 Click the Input entry on the left, under Basic Components –

you should now see two new entries: No Label and

Disabled.

	10.	 If you click No Label, you will see our Input component rendered

without a label, as shown in Figure 2-3.

Figure 2-3.  The new Input component displayed in Storybook

	11.	 The Disabled entry will show the same Input component, but

this time, you will not be able to enter any text – it will also

show a not-allowed cursor (the “no-entry” logo).

Chapter 2 Creating Basic Components

34

As you can see, it’s straightforward to add new variants – Storybook

allows us to use different formats to create our variants, but the critical

point here is that we’re just passing properties to our component, so it

knows how to render on-screen.

Before we carry on, there is one gotcha that we need to be aware of –

you will notice that I’ve not added a variant to deal with a format such

as email. It would be an obvious choice – input boxes are designed to

handle formats such as dates, email, and so on. However, we can’t add it

to our iteration, at least not yet: we set two-way binding in the component

(bind:value), and Svelte gets very upset if you try to make the type field

of the input box dynamic! That isn’t to say we can’t do it – it needs changes,

which we would have to add as a new iteration of our component.

Okay, it’s time to move on. Let’s focus on creating our next component,

the humble checkbox. It’s a doyen of forms and pages all over the Internet;

it’s straightforward to construct something as a starting point for future

development.

�Building a Checkbox Component
We’ve made good progress so far – it might seem like we’ve covered a lot

for a simple Input field component, but don’t worry: things will get easier

as we go through the next few components.

For this next tool in this chapter, we will use the same principles

as before to help keep things simple and prepare the base for future

development. First, let’s start setting up the core component, ready for

deployment into Storybook.

Chapter 2 Creating Basic Components

35

BUILDING THE CHECKBOX COMPONENT

Adding a checkbox component is easy – we can use techniques similar

to the input component we created earlier in this chapter. To do so, follow

these steps:

	1.	 First, create a folder called Checkbox under the \src\lib\
components folder.

	2.	 Next, crack open your text editor and create a new file called

Checkbox.svelte. Add the following code to this file,

beginning with the <script> block to import a Svelte function,

define some exported variables, and create a handleChange

event handler:

<svelte:options customElement="garnet-checkbox" />

<script>
 import { createEventDispatcher } from 'svelte';

 export let checked = false;
 export let label = "Checkbox";
 export let disabled = false;
 const dispatch = createEventDispatcher();

 function handleChange(event) {
 const { checked } = event.target;
 dispatch('change', { checked });
 }</script>

	3.	 We can now add in the markup that will form the basis of our

component – for this, add this code below the <script> block,

missing a line first:

<div class="garnet-checkbox">
 <input

Chapter 2 Creating Basic Components

36

 type="checkbox"
 bind:checked={checked}
 id="name"
 {disabled}
 on:change={handleChange}
 />
 <label for="name">
 {label}
 </label>
</div>

	4.	 There is one last step for us to complete, which is to add some

styling. Leave a line blank after the closing </div> tag, then

add this block of code:

<style>
 .garnet-checkbox {
 display: flex;
 align-items: center;
 font-family: Arial, Helvetica, sans-serif;
 }

 input[type="checkbox"] {
 -webkit-appearance: none;
 appearance: none;
 margin: 0;
 font: inherit;
 color: currentColor;
 width: 18px;
 height: 18px;
 border: 2px solid currentColor;
 border-radius: 2px;

Chapter 2 Creating Basic Components

37

 transform: translateY(-1px);
 display: grid;
 place-content: center;
 }

 input[type="checkbox"]::before {
 content: "";
 width: 10px;
 height: 10px;
 �clip-path: polygon(14% 44%, 0 65%, 50% 100%, 100%

16%, 80% 0%, 43% 62%);
 transform: scale(0);
 transform-origin: bottom left;
 transition: 120ms transform ease-in-out;
 box-shadow: inset 16px 16px #733635;
 }

 input[type="checkbox"]:checked::before {
 transform: scale(1);
 }

 input[type="checkbox"]:disabled {
 color: #959495;
 cursor: not-allowed;
 opacity: 0.4;
 }

 label {
 margin-left: 5px;
 user-select: none;
 }
</style>

	5.	 Save the file and close it – the component is now in place.

Chapter 2 Creating Basic Components

38

We now have a component in place, ready to test – granted, it’s not

a complex one, but the key here is to focus on creating the basis for

something we can develop over time. In the meantime, let’s pause for a

moment to review the code we added in the last demo – you will see some

similarities to the previous component, but it’s worth reiterating through

them as practice!

�Exploring the Code Changes
The first task was to create a folder for our new component – inside this, we

added Checkbox.svelte, which contains the code for our component.

We first import the createEventDispatcher function from Svelte,

to take care of managing events. We followed this by defining several

variables, including checked and label, which we make available for

consumption in code, such as in Storybook. At the same time, we also add

a default handleChange event handler – this we can call externally (such as

from Storybook) to dispatch a change event to the checkbox element.

We then added the HTML markup for the component before finishing

with adding styles to give our component its final look and feel. Although

our code uses the same format as the previous component, there are two

things I want to highlight: the order of properties and the use of on:change.

I’m a great believer in keeping consistency when it comes to coding –

not only is using a proper naming convention worthwhile, but keeping the

same order of values is equally important. It keeps things tidier and makes

it easier to trace issues if we pass random values between components!

With this in mind, I tend to pass values through first and leave functions

to last.

You will notice that we’ve only included a select number of props for

this component. Some people might ask how we deal with those props we

don’t know about and therefore need to pass to the component – typically,

we could use the ...$$props operator, which will serve this purpose.

Chapter 2 Creating Basic Components

39

However, it’s not recommended, as Svelte can’t optimize the code properly

if we pass props that it doesn’t know about. There may be occasions

where we must use it, but these should be rare, and it’s better to amend

the component to include these extra props as part of the makeup of the

component.

Okay – let’s move on: it’s time to test our component using the

Storybook instance we set up in the previous chapter. We’ll use similar

techniques as before, which helps make it quicker to add – let’s dive in and

explore the steps required in more detail.

�Adding Variations in Storybook
From the first component, we’ve already seen that setting up an instance

in Storybook is relatively straightforward. Once we get past choosing which

formats to use when creating the first component, we can reuse most of its

code for subsequent additions to the library. To see what I mean, check out

the next exercise, where we add the newly created Checkbox component to

Storybook.

ADDING VARIATIONS

To add variations for our Checkbox component, follow these steps:

	1.	 First, crack open a new file in your text editor, then add this

code – as before, we will go through it in blocks, starting with

the declarations:

import Checkbox from "./Checkbox.svelte";
import CheckboxDecorator from "./CheckboxDecorator.
svelte";

let statusMessage = "";

Chapter 2 Creating Basic Components

40

	2.	 To render the component as a new instance in Storybook, we

need to create a function that acts as a template. Leave the

next line blank, then add this function:

export default {
 title: "Garnet UI Library/Basic Components/Checkbox",
 component: Checkbox,
 decorators: [() => CheckboxDecorator],
 argTypes: {
 checked: { control: "boolean" },
 label: { control: "text" },
 oninput: { action: "changed" },
 },
};

	3.	 We can now render the Checkbox component – we will add it

as a Default instance, with no additional parameters, save for

a checked property, and an on:change event:

export const Default = () => ({
 Component: Checkbox,
 props: {
 checked: true,
 label: "This is a test",
 },
 on: {
 change: (event) => {
 event.detail.checked == true
 ? (statusMessage = "checked")
 : (statusMessage = "unchecked");
 document.getElementById("message").innerHTML =
 `Status: Checkbox is ${statusMessage}`;
 },

Chapter 2 Creating Basic Components

41

 },
});

	4.	 Save the file as Checkbox.stories.js in the

Checkbox folder.

	5.	 We have two further steps to complete before previewing the

results – we need to add the Docs.mdx file, referenced in step 4.

Extract a copy of this file from the code download, then drop it

in the Checkbox folder.

	6.	 Next, we need to add a decorator to our component – for this,

go ahead and create a new file called CheckboxDecorator.
svelte, and add this code:

<div>
 <slot />
</div>
<div id="message">Status: Checkbox is checked</div>

<style>
 div { margin-top: 10px; }

 �#message { font-family: Arial, Helvetica,
sans-serif; }

</style>

	7.	 Save and close all open files. Next, switch to your Node.js

terminal session, then set the working folder to our garnet

project area.

	8.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook display in our browser at

http://localhost:6006/. Click the Checkbox link on the

left to display the Default variant we just created, as shown in

Figure 2-4 (overleaf).

Chapter 2 Creating Basic Components

42

Figure 2-4.  Displaying the new Checkbox component in Storybook

	9.	 We’ve added one variant into Storybook for this component,

but what others could we add? For now, a disabled variant

would be a good start – as a starting point, we can replicate the

Default story and then set disabled to true. As long as we

give the story a new name, then it will render in Storybook.

The code download contains the expanded version if you need any
inspiration!

We’ve now added our second component; we’ve almost finished the

Basic Components section for our library! There is one more we will add

shortly, but before doing so, let’s first break for a moment to review the

code we added in the last demo in more detail.

�Breaking the Code Apart
So, what did we achieve in the last demo? We began by adding some

imports to the Storybook file for the component itself, followed by

declaring a variable to display a message (more in a moment). We then

Chapter 2 Creating Basic Components

43

added a default template to render our component; this contained

properties such as the title, the component, and argTypes (think of these

as props) that we wanted to use to display it on-screen.

With the template in place, we then added the story. As with other

components, this takes the form of a function – inside it, we define the

component we want to use, plus the prop values we want to pass, and an

on:change event handler.

We then rounded out the demo by adding the Docs.mdx

documentation file from the code download and created a

CheckboxDecorator.svelte file before executing the command to build

and run Storybook with the latest updates for our components.

Now – let’s revisit that message variable: Why do we need it? It’s a good

question: it ties in with the decorator file we created for this demo. Let me

explain what is going on here.

We have our component in Checkbox.svelte – this will work as

expected. The decorator file is purely for Storybook: we use it to add extra

markup that we need to render the component correctly. In our case, we

added a <slot> element (as a placeholder for the component) alongside

our check message (to confirm if the component displays the expected

result). We update the contents of this message in the on:change handler

within Storybook to show whether the checkbox is checked or unchecked

when we click the component.

Okay – let’s move on: we’re done with Checkbox, so it’s time to start

on the next component: RadioButton. Radio buttons and checkboxes use

the same core element at heart – an input – but the markup we need to use

in Svelte is somewhat different! We can still use a native input element, so

let’s take a look at how we create a set of radio buttons as a component for

our library.

Chapter 2 Creating Basic Components

44

�Adding a RadioButton Component
Creating a radio button component is a little more complicated than

checkboxes, as we have to iterate through several child elements, rather

than just a single one, as we might do with a checkbox component. (We

often use radio buttons when we need to choose a single option from

several, whereas we may only need to confirm acceptance with a single

checkbox.)

With this in mind, let’s take a look at the markup we need as part of our

next demo – we’ll focus on the critical part, which is the markup and Svelte

script required to create our demo.

ADDING A RADIOBUTTON COMPONENT

To set up our component, let’s walk through the steps required:

	1.	 First, create a folder called RadioButton under the \src\lib\

components folder.

	2.	 Next, crack open your text editor and create a new file called

RadioButton.svelte. Add the following code to this file,

beginning with the Svelte tag to transform our component into a

web component, followed by the <script> block, and defining

some exported variables:

<svelte:options customElement="garnet-radiobutton" />
<script>
 export let selectOptions = [
 {
 value: "Test slot 1",
 label: "Test slot 1"
 },

Chapter 2 Creating Basic Components

45

 {
 value: "Test slot 2",
 label: "Test slot 2"
 },
 {
 value: "Test slot 3",
 label: "Test slot 3"
 }
];

 export let legend = "Legend";
 export let disabled = false;
 export let userSelected = selectOptions[0].value;

 const slugify = (str = "") =>
 �str.toLowerCase().replace(/ /g, "-").

replace(/\./g, "");
</script>

	3.	 Next, miss a line, then add this markup – this will form the

basis of our component:

<fieldset id="garnet" {disabled}>
 �<div class="legend" id={`label-
${legend}`}>{legend}</div>

 {#each selectOptions as { value, label }}
 <input
 class="sr-only"
 type="radio"
 id={slugify(label)}
 on:change
 bind:group={userSelected}
 value={value} />

Chapter 2 Creating Basic Components

46

 <label for={slugify(label)}> {label} </label>
 {/each}
</fieldset>

<style>
 ...ADD STYLING HERE...
</style>

	4.	 To finish off the component, we need to add some styling –

there is quite a bit to add, so for reasons of space, go ahead

and copy the styling from the code download accompanying

this book, then add it as indicated in the previous step.

	5.	 Save and close the file. We’re almost done – the last

step is to extract a copy of Docs.mdx from the code

download accompanying this book. Drop this file into the

RadioButton folder.

Excellent – we now have a RadioButton component! As you can see

from the code, there are some similarities (such as the type, value tags,

and label). However, radio buttons require more code to implement, as

we have to iterate through each button we need to render in our projects.

Now that we have our component, let’s move on and take a look at how

it will appear when we set it up in Storybook.

ADDING IT TO STORYBOOK

To initialize the component in Storybook, follow these steps:

	1.	 First, crack open a new file in your text editor, then add this

code – as before, we will go through it in blocks, starting with

the imports and a declaration for the data we’ll use:

Chapter 2 Creating Basic Components

47

import RadioButton from "./RadioButton.svelte";
import { action } from "@storybook/addon-actions";
import { fn } from "@storybook/test";
let selectOptions = [
 {
 value: "Armstrong-Siddeley",
 label: "Armstrong-Siddeley",
 },
 {
 value: "Jaguar Mark II",
 label: "Jaguar Mark II",
 },
 {
 value: "Ford Zephyr",
 label: "Ford Zephyr",
 },
];

	2.	 Next, we need to add our story template – for this, leave a line,

then add this export:

export default {
 �title: "Garnet UI Library/Basic Components/
RadioButton",

 component: RadioButton,
 argTypes: {
 options: selectOptions,
 disabled: { control: "boolean" },
 onchange: { action: "changed" },
 },
 on: { change: fn().mockName("on-change") },
};

Chapter 2 Creating Basic Components

48

	3.	 We can now add our variations – we’ll add two: the first one is

the Default variant, which renders the radio buttons without any

changes:

export const Default = (args) => ({
 Component: RadioButton,
 props: {
 ...args,
 selectOptions,
 },
 on: { change: action("on-change") },
});

	4.	 For our second, we’ll add a variant that disables the component

if we set a disabled property to true:

export const Disabled = (args) => ({
 Component: RadioButton,
 props: {
 ...args,
 selectOptions,
 disabled: true,
 },
 on: { change: action("on-change") },
});

	5.	 Save the file as RadioButton.stories.js, then close it. We

need two more files, which are the Docs.mdx documentation

and a RadioButtonDecorator.svelte file – we can get them from

the code download accompanying this book. Drop the file into

the RadioButton folder.

	6.	 Switch to your Node.js terminal session, then make sure the

working folder is set to our garnet project area.

Chapter 2 Creating Basic Components

49

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook display in our browser at

http://localhost:6006/. Click the Checkbox link on the

left to display the Default variant we just created, as shown in

Figure 2-5.

Figure 2-5.  Adding a RadioButton component

If all goes well, we should now have a working radio button

component. In our example, you can see an interesting choice of data: all

three being of classic cars (one of my favorite things), with examples dating

as far back as 1920! Leaving that aside, we’ve covered some interesting

concepts in creating and rendering the component, so let’s take a moment

to explore the code in more detail.

Chapter 2 Creating Basic Components

50

�Exploring the Changes Made
Creating a radio button component has been a challenge, particularly

around rendering it in Storybook – building the markup was easy, but

getting it to trigger and render the correct choice was something else! That

said, we now have something that works, at least as an MVP!

For this component, we’ve followed what is becoming a typical format

for our library – we started by adding the svelte:options directive to

tell Svelte to treat this as a web component, before adding a bunch of

exports (such as selectOptions, legend, and userSelected). The critical

ones here are selectOptions and userSelected – the former acts as

placeholder data for our component, while we use the latter to select the

top entry on render and then update it if someone clicks one of the radio

buttons. When we render this component in Storybook, we pass in our

target data, which is why you don’t see Test slot 1, etc., in Storybook, but

our car names.

Moving on, we then created the markup for our component – most of

this is standard HTML for a radio button set; I’ve put it inside a <fieldset>

element for now, but we could set a variant not to render this fieldset if we

wanted. The critical parts of this markup are the #each block, on:change

tag, and bind:group={userSelected}.

The #each block we use here is a Svelte function, similar to a map

command in React – we iterate through each data block and add the values

and labels to new instances of inputs, so it renders a radio button for each

data element. Inside the markup, we have on:change and bind:group –

the former works just like an onChange event in React. We don’t pass it a

custom event handler, though, as we want Svelte to pass it through to the

native element; think of this as an abstract layer over the top of a standard

<input> element! The bind:group provides two-way data binding, so if a

radio button is selected, we can get the name of it in userSelected.

Chapter 2 Creating Basic Components

51

Switching to the Storybook setup, we first import our component,

followed by the action and function plugins from Storybook. We then

provide our data (this allows us not to have to store our real data in the

component). We then created our default template for each story, which

specifies the component name, and the argtypes to expect. In here, we

set options for data, followed by control switches in Storybook for the

disabled property and onchange event handler. In each of the stories, we

specify the component we want to use (i.e., RadioButton), followed by

passing in the default arguments and only changing those we need, such

as data (selectOptions or disabled).

Phew – it’s a little complex, but it does show how we can start to use

more options when using Storybook! At this stage, we saved and closed

everything before relaunching Storybook to preview the results in our

browser.

Okay – let’s crack on: for this chapter’s fourth and final component,

we will explore creating a Slider component. It’s not one you’re likely to

see as often as the others, particularly on ecommerce sites, but it is still an

equally important tool to have in the toolbox. Let’s dive in and take a closer

look at how we might set up such a component.

�Constructing the Slider Component
If we’re tasked with constructing a Slider component, it’s easy to think we

might have to build something from the ground up. It’s a valid supposition;

we can control what features to add and how to construct them. It will

result in a lot more code, though, when most browsers already natively

support the HTML range element – let’s see what happens when we use it

to create our next component.

Chapter 2 Creating Basic Components

52

BUILDING THE SLIDER COMPONENT

To build the final component for this chapter, follow these steps:

	1.	 First, create a new folder called Slider under the \src\
lib\components folder at the same level as the previous two

components.

	2.	 Next, crack open your text editor, then add this code – we’ll do

this in blocks, starting with importing the style sheet and setting

some exported declarations:

<svelte:options customElement="garnet-slider" />

<script>
 export let id = "sliderChoice";
 export let min = 0;
 export let max = 100;
 export let step = 1;
 export let val = 50;
 export let disabled = false;
 export let ticks = false;
 export let label = "Please select a value:";
</script>

	3.	 With the declarations in place, we can now add the markup

used to render our component. The first half deals with the

slider itself:

<div class="garnet-slider">
 <div class="range-slider">
 <label for={id}>{label}</label>
 <input
 type="range"

Chapter 2 Creating Basic Components

53

 id={id}
 {min}
 {max}
 {step}
 name={id}
 bind:value={val}
 {disabled}
 />

	4.	 This part shows the ticks and selected value underneath the

slider, which we will use in a variant:

 {#if ticks}
 <div class="sliderticks">
 0
 25
 50
 75
 100
 </div>
 {/if}
 </div>
 <div class="selectedValue">Value: {val}</div>
</div>

	5.	 There is one last change we need to make, which is to add

some styling. Leave a line blank after the closing </div> tag,

then add this code:

I’ve reproduced the styles here, but in compressed format for space –
they are listed in full in the code download for easy copying!

Chapter 2 Creating Basic Components

54

<style>
 �.garnet-slider { display: flex; align-items:
center; font-family: Arial, Helvetica,
sans-serif; }

 �input[type="range"] { -webkit-appearance: none;
 �appearance: none; width: 100%; cursor:
pointer; outline: none; border-radius: 15px;
height: 6px; background: #ccc; margin: 20px
0 0 0; }

 �input[type="range"]::-webkit-slider-thumb { -webkit-
appearance: none; appearance: none; height: 15px;
width: 15px; background-color: #733635; border-
radius: 50%; border: none; transition: .2s ease-
in-out; }

 �input[type="range"]::-moz-range-thumb { height: 15px;
width: 15px; background-color: #733635; border-
radius: 50%; border: none; transition: .2s ease-
in-out; }

 input[type="range"]::-webkit-slider-thumb:hover {
 box-shadow: 0 0 0 10px rgba(115, 54, 53 .1)
 }

 input[type="range"]:active::-webkit-slider-thumb {
 box-shadow: 0 0 0 13px rgba(115, 54, 53 .2)
 }

 input[type="range"]:focus::-webkit-slider-thumb {
 box-shadow: 0 0 0 13px rgba(115, 54, 53 .2)
 }

Chapter 2 Creating Basic Components

55

 input[type="range"]::-moz-range-thumb:hover {
 box-shadow: 0 0 0 10px rgba(115, 54, 53 .1)
 }

 input[type="range"]:active::-moz-range-thumb {
 box-shadow: 0 0 0 13px rgba(115, 54, 53 .2)
 }

 input[type="range"]:focus::-moz-range-thumb {
 box-shadow: 0 0 0 13px rgba(115, 54, 53 .2)
 }

 �.sliderticks { display: flex; justify-content: space-
between; padding: 0 7px; }

 �.sliderticks span { display: flex; justify-content:
center; width: 1px; height: 10px; background: d3d3d3;

line-height: 40px; }

 .selectedValue { padding: 20px 0 0 15px ; }

 /* Disabled styles */
 input[type=range]:disabled { opacity: 0.4; }

 input[type=range]:disabled::-moz-range-track,
 input[type=range]:disabled::-webkit-slider-thumb,
 input[type=range]:disabled::-moz-range-thumb {
 background: rgb(115, 54, 53);
 }
 </style>

	6.	 Save the file as slider.svelte, then close all open files.

Chapter 2 Creating Basic Components

56

Cool – our slider component is now in place. We need to add it to our

Storybook instance to see it operate. Fortunately, this is easy to do – we can

use similar code to that used for the previous two components; let’s look at

what’s required for the next exercise.

�Adding the Component to Storybook
Adding in the new Slider component is straightforward – we can use the

same structure as previous components, making it super easy to slot into

our Storybook setup. Let’s focus on getting the basics in place as part of the

next exercise.

SETTING UP THE SLIDER IN STORYBOOK

With the component now in place, we can now add the component and

documentation to Storybook:

	1.	 First, create a new file called Slider.stories.mdx, at the

root of the Slider folder.

	2.	 Next, go ahead and add this code – we’ll break it down section

by section, beginning with the relevant imports:

import Slider from './Slider.svelte';
import SliderDocs from './SliderDocs.mdx';

	3.	 To render the component as a new instance in Storybook, we

need to create a function that acts as a template. Leave the

next line blank, then add this function:

export default {
 title: "Garnet UI Library/Basic Components/Slider",
 component: Slider,
 label: "Example Slider",

Chapter 2 Creating Basic Components

57

 argTypes: {
 val: 1,
 min: 0,
 max: 100,
 step: 10,
 ticks: false,
 },
};

	4.	 With the template in place, we can now add the Story code to

render our new Slider component:

export const Default = {
 args: {
 label: "Text:",
 },
};

	5.	 Let’s add a couple of variants – take a copy of the code from

step 4, then miss a line and paste it into the file. Change the

Story name to Step, then replace label: "Text" with

step: 25 and ticks: true, as shown below:

export const Step = {
 args: {
 step: 25,
 ticks: true,
 },
};

Chapter 2 Creating Basic Components

58

	6.	R epeat the same process, but this time swap the args values

for disabled: true, as shown below:

export const Disabled = {
 args: {
 disabled: true,
 },
};

	7.	 Save and close the file. We have one more step to complete

before previewing the results – we need to add the Docs.mdx

file, referenced in step 4. Extract a copy of this file from the

code download, then drop it in the Slider folder.

	8.	O nce done, switch to your Node.js terminal session, then make

sure the working folder is set to our garnet project area.

	9.	A t the prompt, enter npm run storybook and hit Enter – if all

is well, we should see Storybook fire up in our browser at

http://localhost:6006/. Click the Slider link on the left,

then Step, to display the Step variant we created, as shown in

Figure 2-6.

Figure 2-6.  Displaying the Slider component in Storybook

Chapter 2 Creating Basic Components

59

Great – we’ve created the first set of components for our library! Things

are shaping up well; we have a solid basis for developing the code at a

later date. In the next chapter, we will focus on adding the next batch of

components, but for now, let’s round out this chapter with a final look at

the changes made in the last exercise.

�Exploring the Code
Adding components to our Storybook instance should be a little more

familiar now – the key is preparing the code for the first, which we can

reuse in subsequent components.

Keeping that thought in mind, we started by creating the Slider.
stories.js file for Storybook, into which we first imported our Slider

component. We then added a default template, which sets the title,

specifies the component, and assigns several props values for our

component.

Next, we set up our initial story block, which we labeled Default. Here,

we set up a basic instance of the Slider component; we then added two

more variants, one to show what happens when we use the step option

and another when the slider is disabled.

We then switched to creating a variant – we talked about how this

should be straightforward, given our desire to use consistent code, and

that this should make adding variants easier. We then rounded out the

demo by adding a prepared Docs.mdx documentation file before firing up

Storybook and previewing the results in a browser.

�Summary
In Chapter 1, I mentioned that creating components and a library can be a

rollercoaster. As we develop our final library, there will be highs and lows,

successes, and challenges to overcome. Over these last few pages, we’ve

Chapter 2 Creating Basic Components

60

started that journey to add in our component – let’s take a moment to

review what we learned in this chapter.

The focus throughout this chapter was creating the code for each

component – we started by constructing the code for a typical input field

before hooking it into our Storybook instance and adding in some variants

to showcase how we can make our components more useful.

We then created our second and third components, the Checkbox

and RadioButton. Both followed the same format, but we touched on how

both components may share similar markup (using the input element);

the latter requires more markup to handle each radio button we want to

display.

The fourth and final component we covered for this chapter was

the Slider – we worked through creating the core component. Adding it

to Storybook was more straightforward, though, as this is one of those

components where we have to provide values for it to operate, not just

because we want to change how it works; it’s something to bear in mind

when creating tools for our toolbox.

Okay – let’s move on: it’s time for some action. You might have to

pardon the pun, as it wasn’t the best lead-in to what we will cover in the

next chapter. Suffice it to say, we will focus on components that show a

little action in some way (yes – there’s the link). Intrigued? Stay with me,

and I will reveal it all in the next chapter.

Chapter 2 Creating Basic Components

61© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_3

CHAPTER 3

Building Action
Components
Lights, camera, action...

Okay – we’re not about to create the next movie blockbuster! Instead,

it’s the turn of the next batch of components we will be building, which all

have some form of action (if you pardon the pun).

In the previous chapter, we started by creating some simple

components based on standard HTML5 elements, which we could refine

into more complex versions as the library matures over time. Our next

batch of components is a little more involved and shows a moving part in

(most) respects – hence the reference to the title of this chapter!

Over the following few pages, we will, in turn, create SelectBox,

Spinner, and Accordion components – let’s begin with the SelectBox.

�Creating the SelectBox Component
The typical select box type component is one you will find everywhere

online. It, of course, is perfect for choosing options on ecommerce

websites, such as the size of shoes, the quantity of a particular item,

or whether we want standard or expedited delivery. To construct this

component, I’ve elected to use the standard HTML <select> element; let’s

make a start on building it as part of the next exercise.

https://doi.org/10.1007/979-8-8688-1180-7_3#DOI

62

BUILDING THE SELECTBOX COMPONENT

To build our SelectBox component, follow these steps:

	1.	 First, create a new folder called SelectBox at the root of the

\src\lib\components folder.

	2.	 Next, crack open a new file and add this code – we’ll start

with adding a tag to turn our code into a web component and

creating a few variables for export:

<svelte:options tag="garnet-selectbox" />

<script>
 export let selectOoptions = [];
 export let displayText = a => a.value;
 export let index = 1;
 export let disabled = false;
 export let selected = {};
 export let label = "Test dropdown:"

 const dispatch = createEventDispatcher()

 �$: selected = selectOptions.find((o) => o.id
=== index);

	3.	 Miss a line, then add in this little function and the closing

script tag:

 function handleChange() {
 dispatch('change', { text: selected });
 }
</script>

Chapter 3 Building Action Components

63

	4.	 We can now add the markup for our component – much of this

standard HTML markup, but it does include some Svelte tags:

<div class="garnet-selectbox">
 <label for="garnet-selectbox">{label}</label>
 �<select bind:value={index} on:change={handleChange}
name="garnet-selectbox">

 {#each selectOptions as option, i}
 <option value={i + 1} {disabled}>
 {displayText(option)}
 </option>
 {/each}
 </select>
</div>

	5.	 Next, we need to add some styling. Leave a line blank, then add

this code:

<style>
 .garnet-selectbox {
 display: flex;
 align-items: center;
 font-family: Arial, Helvetica, sans-serif;
 }

 label { padding-right: 10px; }

 select {
 padding: 5px 100px 5px 5px;
 font-size: 16px;
 border: 1px solid #733635;
 height: 34px;
 border-radius: 10px;
 }

Chapter 3 Building Action Components

64

 option:disabled {
 cursor: not-allowed;
 }
</style>

	6.	 Save the file as SelectBox.svelte, then close the file.

We now have our component in place, although you will notice that

we’ve not yet tested it – we will do that once we hook the component into

our Storybook instance. For now, let’s take some time to review the code in

more detail. There are some exciting features present that are helpful!

�Understanding What Happened
So far, we’ve added four components to our library – hopefully, by now,

you will start to see some similarities in the steps we take, which will help

speed up the process of getting out an initial version of a component!

The SelectBox component we created in the last exercise is no

different – we created a component folder before setting up the file for our

component. We then exported several variables required for operating our

SelectBox component in this file. We also added a $: or reactive statement

block to assign whatever value we select in the selectOptions array to the

selected variable.

Reactive statements are a vital function of Svelte – Svelte executes these

before any component updates. It allows us to intercept any value within

the statement block and store it whenever it is updated.

Next up, we added the markup for our component – most of this is

standard HTML for select boxes, but there are a couple of points of note.

We first bind the contents of value to the <select> element; data typically

Chapter 3 Building Action Components

65

flows from parent to child in Svelte, but this allows it to flow both ways (and

update on any change). We then have a Svelte {#each}...{/each} block,

which iterates through the <option...> tag to display the values from

our options array that we will pass into the component. The displayText

function extracts the relevant value from the options array. The SelectBox

component knows which display value to show and what to set as the value

property for that entry.

Last but by no means least, we also added a set of style rules for our

component – these use our theme color plus set a few attributes so that our

component at least renders correctly on the page.

Okay, let’s crack on: we have our component in place and some

rudimentary styling. It’s time to test our code, so let’s fire up Storybook and

set up an entry for our component.

�Adding the Component to Storybook
Right – where were we? Ah, yes...adding our component to Storybook.

One of the benefits of careful planning is that we can reuse existing

code – to date, we’ve created three components, which all use the same

format when hooking them into Storybook.

It might seem a little repetitious, but don’t forget: reusability means

we can be a lot more agile! I will come back to this when we review the

changes made shortly, but for now, let’s work through setting up our new

component in Storybook as part of the next demo.

Chapter 3 Building Action Components

66

LINKING INTO STORYBOOK

Adding the component into Storybook is straightforward – we will reuse

the existing code format from previous examples, with only minor changes

needed. To see what I mean, let’s set up the SelectBox component we created

just now using these steps:

	1.	 First, go ahead and create a new file, then add this code – as

before, we have a reasonable chunk to add. Let’s start with

the initial <script> block to import the component and

documentation, along with some functions from Storybook:

import SelectBox from "./SelectBox.svelte";
import SelectBoxDecorator from "./SelectBoxDecorator.
svelte";

	2.	 With the initial configuration in place, we can now focus on our

component – as before, we first need to add a default story to

act as our template for all future stories. Skip a line, then add

this block in – it’s similar to previous examples, with only a

minor change of component:

let optionValues = [
 { id: 1, value: "aaa" },
 { id: 2, value: "bbb" },
 { id: 3, value: "ccc" },
 { id: 4, value: "ddd" },
];

export default {
 �title: "Garnet UI Library/Action Components/
SelectBox",

 component: SelectBox,
 decorators: [() => SelectBoxDecorator],

Chapter 3 Building Action Components

67

 argTypes: {
 checked: { control: "boolean" },
 label: { control: "value" },
 oninput: { action: "changed" },
 selectOptions: optionValues,
 },
};

	3.	 We can now render our component – for this, we will create a

Default function, so go ahead and add this block:

export const Default = () => ({

 Component: SelectBox,
 props: {
 selectOptions: [optionValues,
 label: "",
 },
 on: {
 change: (event) => {
 document.getElementById("message4").innerHTML =
 �SelectBox value is ${JSON.stringify(event.

detail.text.value)}`;
 },
 },
});

	4.	L et’s also add a second story – this one will disable the

component:

export const WithLabel = () => ({
 Component: SelectBox,
 props: {
 selectOptions: optionValues,
],

Chapter 3 Building Action Components

68

 label: "This is a test",
 },
 on: {
 change: (event) => {
 document.getElementById("message4").innerHTML =
 �SelectBox value is ${JSON.stringify(event.

detail.text.value)}`;
 },
 },
});

	5.	 We can add a third story – this one will disable the component

when rendered:

export const Disabled = {
 component: SelectBox,
 args: {
 selectOptions: optionValues,
],
 disabled: true,
 },
};

	6.	 Save the file as SelectBox.stories.js, then close the file.

	7.	 You will see from the code that we’ve specified

SelectBoxDecorator.svelte, but have not yet created

it! Go ahead and open a new file in your editor, then add this

markup and styling:

<div>
 <slot />
</div>
<div id="message4">SelectBox value is (not selected)</div>

Chapter 3 Building Action Components

69

<style>
 div { margin-top: 10px; }

 �#message4 { font-family: Arial, Helvetica, sans-serif; }
</style>

	8.	 Save the file as SelectBoxDecorator.svelte in the

SelectBox folder, then close it. We have everything in place, so

let’s test it! Switch to a Node.js terminal session, then set the

working folder to our project area.

	9.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default

link under SelectBox on the left to display the variant we just

created, as shown in Figure 3-1.

Figure 3-1.  The SelectBox component on display in Storybook

And voila! Our new component is rendering in Storybook – we used a

Storybook decorator to prove that when selecting an entry in the drop-

down, we can capture and display it on-screen. It’s an interesting effect

that runs independently of our component. Let’s dig into the code to see

how it and other key features work, before we continue creating the next

component in this chapter.

Chapter 3 Building Action Components

70

�Exploring the Code in Detail
To hook our SelectBox component, we began by creating our Storybook

page. We imported our component and a Storybook decorator file we will

use (more on this in a moment).

We then moved on to the critical part – our template. It’s primarily

the same as previous components; after all, there is no need (at this time)

to make it any more complicated! In this template, we include a few

properties:

•	 The title of the component (which acts as the

navigation when Storybook is running).

•	 The name of the component and a reference to the

decorator file.

•	 An argTypes object, which contains details of

properties we use for our component – in this instance,

we’ve set a bunch of entries that we can control in

Storybook.

•	 We include a pass-through for oninput – this allows

Storybook to pass through the oninput event handler

triggered when interacting with the component,

through to the Svelte component itself.

•	 A selectOptions object, which includes test data that

we use to render the component in Storybook.

We then added a Story block for Default, into which we passed our

selectOptions array as a prop, along with setting the label property to

an empty string as a starting point and an instance of the selectOptions

array as data for rendering the component. We repeated this step to add

a second story – this time, we marked it as WithLabel and added some

text to the label parameter within our component. Ideally, we’d probably

Chapter 3 Building Action Components

71

set the label property as empty by default so that we can provide text if

needed. It’s something we can look at changing in a future iteration.

We finish by adding a third story, which this time has a disabled

property set to true so that we can disable the SelectBox component when

appropriate.

To round things off, we saved and closed all files before launching

Storybook and previewing the results in our browser. Before we change

tack and explore our next component, I want to cover a few points of note:

•	 You will have noticed that we used the HTML5 native

element as a basis for our components. It does present

a question: Is this the best approach? I don’t think

there is a right or wrong answer; it will depend on the

browsers you want (or have) to support. I hope they

will be recent (within the last 2–3 years), so the issue

of supporting HTML5 should not even be something

we need to worry about. The great thing about our

MVP approach is that we could decide to convert to a

custom, ground-up component; only time will tell!

•	 You will see that we added a SelectBoxDecorator.
svelte file – this is a nifty technique to use! Put simply,

we can add extra markup around a component when

rendering it in Storybook, which we need but don’t

want to include in the component itself. Here, we’re

using it to render the contents of the selected value

exported from the component itself.

For more details, please refer to the main Storybook website at
https://storybook.js.org/docs/writing-stories/
decorators

Chapter 3 Building Action Components

https://storybook.js.org/docs/writing-stories/decorators
https://storybook.js.org/docs/writing-stories/decorators

72

•	 The original version of this component (back in the

first edition of this book) had an icon displayed in the

drop-down. I added this as a bonus, based on a hack I

discovered on the StackOverflow website. I’ve tried to

replicate it but struggled, so I have removed it (at least

for now). Touch wood – if I can get it working, it may

reappear in a future edition!

Let’s move on – we’re making great progress, with our second

component now in place and working. It’s for us to look at the next one

in this bunch. It’s one where we could get into a spin if we’re not careful

(oops – sorry about the pun!). Yes, our next one is a spinner – essential if

you need to render lots of data on the page that might take a while to load...

�Creating the Spinner Component
I’m sure you will have seen data returned on some websites that takes a

while to display, right?

We could display that data, but a better UX experience is to render a

loading element (or spinner) while we retrieve that data. Fortunately, it’s

easy enough to create the basis for something we can develop later – let’s

look at the code required to construct our component.

BUILDING THE SPINNER

To set up our spinner component, follow these steps:

	1.	 First, create a new folder called Spinner inside the \src\
lib\components folder of our project area – this is where we

will store the code for our component.

Chapter 3 Building Action Components

73

	2.	 Next, crack open a new file and add this code – we’ll go

through it block by block, starting with some declarations we

export when using the component:

<script>
 export let color = "#733635";
 export let duration = "0.75s";
 export let size = "60";
 export let variant = "";
 export let unit = 'px';
 export let pause = false;

 �let durationUnit = duration.match(/[a-zA-Z]/)?.
[0] ?? 's';

 let durationNum = duration.replace(/[a-zA-Z]/, '');
 const range = (size, startAt = 0) =>

 [...Array(size).keys()].map((i) => i + startAt);
</script>

	3.	 Next, we need to add the markup for our component, so leave a

line blank and add this code:

<div class="garnet-spinner">
 <!-- Circle spinner -->
 <div>
 <div
 class="circle"
 �style="--size: {size}px; --color: {color};

--duration: {duration}"
 />
 </div>
</div>

Chapter 3 Building Action Components

74

	4.	 To finish off the basic component, we need to add some

styling – go ahead and leave a line blank, then add these rules:

.garnet-spinner {
 display: flex;
}

/* circle spinner */
.circle {
 height: var(--size);
 width: var(--size);

 �border-color: var(--color) transparent var(--color)
var(--color);

 border-width: calc(var(--size) / 12);
 border-style: solid;
 border-radius: 50%;
 �animation: var(--duration) linear 0s infinite normal
none running

 rotateCircle;
}

@keyframes rotateCircle {
 0% {
 transform: rotate(0);
 }
 100% {
 transform: rotate(360deg);
 }
}
</style>

	5.	 Save the file as Spinner.svelte in the Spinner folder, then

close it.

Chapter 3 Building Action Components

75

We now have our Spinner component in place – although a large part

of it is standard HTML and CSS, it does include a few exciting techniques

of note. Let’s pause for a moment and review the code to understand how

it all hangs together in more detail.

�Understanding What Happened
We began by creating our Spinner component folder, into which we started

to assemble the core component code – the first task was to add a bunch of

exports for properties we will use later, such as color, duration, variant, and

size. These have default string values applied, but two will change; more

on this in a moment.

Next, we then added the markup for our component. This uses the CSS

variable function var() to turn string-formatted values (size, color, and

duration) into variables in the format var(--XX). The XX is the variable’s

name; in this case, we use all three exported variables to style our spinner –

for example, color would appear in the markup as var(--color).

The remaining CSS code is standard, so it should be reasonably self-

explanatory – we use a custom @keyframe called rotateCircle to animate

our spinner. The only property of interest, though, is border, where we

specify three properties – we can effectively treat these as three parts of the

circle. Change one, and we change a third of the wheel, which can lead to

some interesting effects!

We then finished by adding the markup – spinners typically don’t need

anything more than an empty <div> element; if we style it correctly, it will

show as our intended spinner in a browser.

Chapter 3 Building Action Components

76

�Adding the Component to Storybook
We have the code in place for our component, so it’s time to add it to

our Storybook instance. The process is largely the same as the previous

components, so the code will look a little more familiar now. Let’s dive in

and take a look at it in more detail.

HOOKING THE COMPONENT INTO STORYBOOK

Adding our Spinner into Storybook is straightforward as we’re able to reuse

much of the same code as before – to see what I mean, follow these steps:

	1.	 First, go ahead and create a new file, then add this code –

as before, we have a reasonable chunk to add. Let’s start

with the initial import block to import the component and

documentation, along with some functions from Storybook:

import Spinner from './Spinner.svelte';

	2.	 Next, we need to create our template and initial configuration.

As before, it adds a title, sets the name of the component we

want to use in the navigation, tells Storybook which component

we are using, and defines the type of arguments we want to

pass to instances of the component in Storybook:

export default {
 title: "Garnet UI Library/Action Components/Spinner",
 component: Spinner,
 argTypes: {
 color: "#733635",
 duration: "0.75s",
 size: "40",
 variant: "circle",
 },

Chapter 3 Building Action Components

77

 parameters: {
 docs: {
 story: {
 height: "100px",
 },
 },
 },
};

	3.	 We can now render our component. For this, we create a story

and pass the properties required to configure our spinner

component. In this instance, we’ll set the default values, which

will show as a Circle spinner – go ahead and add this block:

export const Circle = {
 args: {
 color: "#733635",
 duration: "0.75s",
 size: "40",
 variant: "circle",
 },
};

	4.	 Save the file as Spinner.stories.mdx in the \src\lib\
components\Spinner folder, then close the file.

	5.	 We also need to add a documentation file – for this, go ahead

and download a copy of Docs.mdx from the code download,

then drop it into the \src\lib\storybook folder.

	6.	 We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our cobalt

project area.

Chapter 3 Building Action Components

78

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default link

under Spinner on the left to display the variant we just created,

as shown in Figure 3-2.

Figure 3-2.  Displaying the Spinner component in Storybook

Excellent – the Spinner is now in and working: it’s a shame that we

can’t see it spin in print, so, hopefully, it works as expected for you on-

screen! In this instance, we created a circular spinner as our default; we

can add variants, although there is a little twist.

Remember how we added a disabled property as a variant with

SelectBox? We disable the component, but it still looks like the same

SelectBox. If we add a variant with Spinner, it will look different from our

original spinner – to see what I mean, we will add a variant shortly, and I’ll

take you through how we can pick other examples available elsewhere and

replicate their effect into our component.

Chapter 3 Building Action Components

79

Before we do that, let’s quickly review the code changes we made in the

last demo in more detail. Much of what we added will start to look familiar

(remember that point from earlier about reusability!), but it’s still worth

looking to recap what we added in the demo.

�Breaking Apart the Code
Adding our Spinner component to Storybook should now be a relatively

familiar process – as before, we start by creating our Storybook page and

importing the component.

We then added a default function as our template. This specifies which

settings to use for each variant in the absence of any that we do not set

as part of a specific variant (or story). In this case, we set the title of our

component’s story, which component to use (Spinner), and the various

default settings to use under argTypes. At the same time, we also added

a parameters block, which contained a height of 100px. Without it, the

Spinner component could look as if it had been cut off in some instances!

This height value changes the height of the canvas in Storybook only to

make it easier to view – it does not affect the component itself.

With our default template in place, we then turned our attention to

setting our default instance of the Spinner component. It is a simple object

in which we set args and pass in the properties we want to use, such as

color, size, and duration.

To finish off, we extracted a copy of the Docs.mdx file, which will act

as the documentation for our component. We’ll explore how to set up our

documentation in more detail in Chapter 8, but for now, all we need to

know is that it will display instances of each variant of our components,

plus any ancillary information we want to display. To prove it all works, we

launched Storybook to preview the results in a browser.

Chapter 3 Building Action Components

80

�Creating Variants
In that last demo, we set up the Spinner component to operate in

Storybook. The process should be relatively familiar, as we’ve tried to

keep it similar for all components. However, remember how I stated that

if we added a variant for Spinner, it would likely be very different from

something added for SelectBox?

Spinner is one of those components where we probably wouldn’t

enable or disable a component, such as we did for SelectBox. Instead, we

focus on timing, color, size, and duration, resulting in a different look and

feel! It might sound a little confusing, but trust me – the following exercise

will make it much more apparent, so let’s dive in and take a look.

“CHANGING THE LOOK”

I’ve titled this next exercise slightly differently than the others, but with good

reason. Although we will create a variant, it looks so different from the original

that it could be a separate component in its own right! That aside, here’s what

we need to do to add that new variant to our demo:

	1.	 First, crack open Spinner.svelte, then add this line before

the closing </script> tag:

const range = (size, startAt = 0) =>
 [...Array(size).keys()].map(i => i + startAt);

	2.	 Scroll down to the markup block – we need to tweak the

existing code. First, find this line: <div class="garnet">,

then amend the original <div class = "circle"...>

block to look like this – changes are marked in bold:

 <!-- Circle spinner -->
 {#if variant == "circle"}
 <div>

Chapter 3 Building Action Components

81

 <div
 class="circle"
 �style="--size: {size}px; --color: {color};

--duration: {duration}"
 />
 </div>
 {/if}

	3.	L eave a line blank after that closing {/if} tag, then add this

code for our variant:

 <!-- Jumper spinner -->
 {#if variant =="jumper"}
 <div style="--size: {size}px; --color: {color};
 --duration: {duration};">
 {#each range(3, 1) as version}
 <div
 class="jumper"
 �style="animation-delay: {(1 / 3) *

(version - 1)}s;"
 />
 {/each}
 </div>
 {/if}

	4.	 Next, we need to add the CSS for our variant – go ahead and

add this below the rotate block:

 .jumper {
 height: var(--size);
 width: var(--size);
 border-radius: 100%;
 animation-fill-mode: both;
 position: absolute;

Chapter 3 Building Action Components

82

 opacity: 0;
 background-color: var(--color);
 animation: bounce var(--duration) linear infinite;
 }
 @keyframes bounce {
 0% { opacity: 0; transform: scale(0); }
 5% { opacity: 1; }
 100% { opacity: 0; transform: scale(1); }
 }

	5.	I n the .circle style rule declaration, go to the end of the

block, then change the word rotate to rotateCircle.

	6.	 Scroll down to the line starting @keyframes rotate..., then

change the word rotate for rotateCircle.

	7.	 Save and close all files. Fortunately, the changes required for

Storybook are not so complex! For this, crack open Spinner.

stories.js, then scroll to the bottom of the page and add this block:

export const Jumper = {
 args: {
 color: "#733635",
 duration: "1s",
 size: "60",
 variant: "jumper",
 },
};

	8.	 We have everything in place, so let’s test it! Switch to a Node.js

terminal session, then set the working folder to our project area.

	9.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/.

Chapter 3 Building Action Components

83

	10.	 Click the Jumper link under Spinner on the left to display the

variant we just created in “mid-jump,” as shown in Figure 3-3.

Figure 3-3.  Displaying the Spinner variant

Wow – our Spinner looks different now! This is the beauty of this

component: even though the core markup is largely the same, varying the

properties we pass in can render something completely different.

�Breaking Apart the Code

We began with adding an exported variable called variant, which we will

use to specify which variant to run when calling our component. We also

added a new const for range – we use this in the new effect to create a

splash effect as part of our animation. At the same time, we renamed the

original rotate @keyframes block to rotateCircle – this wasn’t essential,

but it helps provide a better separation of concerns once we add the

@keyframes block for our new variant.

We then switched to adding the CSS styles required for the variant –

this came in two parts, starting with creating the basis for the spinner,

followed by that new @keyframes block to animate it. Next came the

markup – first, we wrapped the original markup in a Svelte {#if}...
{/else} block before adding the new markup for our variant.

Chapter 3 Building Action Components

84

Take a closer look at the markup for our variant: there are a couple

of interesting points of note. We use CSS variables throughout, such

as --size or --color. We also defined exported variables at the top of

the file in the same name, so a statement such as --color: {color}

becomes --color: #733635 in code. The feature of interest, though, is the

#each block:

 {#each range(3, 1) as version}
 <div
 class="jumper"
 �style="animation-delay: {(1 / 3) * (version - 1)

+ "px"};"
 />
 {/each}

Here, we use a standard Svelte {#each...as} block, similar to

React but with slightly different syntax. But, the real magic happens in

the animation-delay style. Our block iterates through three instances

of the div (range(3,1) equates to 3, 2, 1); the calculation provides a

gradual step effect, similar to jumping into a puddle of water, hence the

animation’s name!

�Expanding the Options Available

So far, we’ve created two spinners and set them to display in Storybook –

what if we wanted to create more? There are dozens of examples available

on the Internet, many of which we should be able to replicate in our library,

using similar properties to the ones we use for the existing examples.

To prove how we might do this, I picked one from the svelte-loading-

spinners package, created by Eric Schumertl (and available from https://
schum123.github.io/svelte-loading-spinners/). It’s called Jellyfish

(yes, that is indeed its name!) – with a bit of work, I was able to come up

with this:

Chapter 3 Building Action Components

https://schum123.github.io/svelte-loading-spinners/
https://schum123.github.io/svelte-loading-spinners/

85

<!-- Jellyfish spinner -->
{#if variant == "jellyfish"}
 �<div style="--size: 60px; --color: {color}; --motionOne:
-12px; --motionTwo: 15px; --motionThree: -12px;
--duration: 2.5s;">

 {#each range(6, 0) as version}
 <div
 class="ring"
 class:pause-animation={pause}
 �style="animation-delay: {version * (+durationNum / 25)}

{durationUnit}; width: {version * (+size / 6) + unit};
height: {(version * (+size / 6)) / 2 + unit};"

 />
 {/each}
 </div>
{/if}

You can see how it all fits together in the version I’ve added to

Spinner.svelte in the accompanying code download. Compare that

with the original at https://github.com/Schum123/svelte-loading-
spinners/blob/master/src/lib/Jellyfish.svelte, and you will see

most of the code can lift over with little modification needed.

Okay – let’s continue: next up, let’s look at creating our next

component, the Accordion.

�Creating the Accordion Component
Let me ask you a question.

Hands up, how often have you been on a website where the author (or

company) has added a ton of information but given no thought about its

display? You take one look and think, “Ugh – time to vote with my feet...” as

they say!

Chapter 3 Building Action Components

https://github.com/Schum123/svelte-loading-spinners/blob/master/src/lib/Jellyfish.svelte
https://github.com/Schum123/svelte-loading-spinners/blob/master/src/lib/Jellyfish.svelte

86

That example might sound a little extreme, but I’ve been on thousands

of sites over the years where I still see designers display lots of information

with little regard to how they lay it out on the page. One way to fix that

could be to use an instance of what we will develop next: an accordion.

These are great for storing lots of information – such as product specs,

reviews, and the like – in a compact manner, and we can select which tab

to display for further details. Accordions are not challenging to create,

although they require more code than we’ve done so far. Let’s dive in and

look at creating one as our next component to see what I mean.

BUILDING THE ACCORDION COMPONENT

To set up our accordion component, follow these steps:

	1.	 First, create a new folder called Accordion inside the \src\
lib\components folder within our project area – this is where

we will store the code for our component.

	2.	 We need some sample data for this component to work –

go ahead and extract a copy of accordiondata.json

from the accompanying code download and drop it into the

Accordion folder.

	3.	 Next, crack open a new file and add this code – we’ll go

through it block by block, starting with some declarations we

export for use within the component:

<svelte:options customElement="garnet-accordion" />
<script>
 import AccordionItem from "./AccordionItem.svelte";
 export let data = [];
</script>

Chapter 3 Building Action Components

87

	4.	 We need to add the markup that will form our component – for

this, leave a blank line, then add this code:

<div class="garnet-accordion">
 {#each data as entry}
 <AccordionItem title={entry.title}>
 <p>{entry.text}</p>
 </AccordionItem>
 {/each}
</div>

	5.	 Next, miss a line, then add this block – it will provide some

basic styling for our Accordion container:

<style>
 .garnet-accordion {
 display: flex;
 flex-direction: column;
 width: 450px;
 }
</style>

	6.	 Save the file as Accordion.svelte, then close the file.

	7.	 You will notice a reference to AccordionItem in that code – we

now need to create that component. For this, go ahead and

crack open a new file, then add this code:

<svelte:options customElement="garnet-accordionitem" />

<script>
 import { slide } from "svelte/transition";
 import accordionData from "./accordiondata.json";
 export const data = accordionData;

Chapter 3 Building Action Components

88

 export let title = "";
 let isOpen = false;

 const toggle = () => isOpen = !isOpen
</script>

	8.	L ast but by no means least, we need to add the markup for our

component – this first block defines the button used to open

and close each list item:

<button on:click={toggle} aria-expanded={isOpen}>
 <svg
 width="20"
 height="20"
 fill="none"
 stroke-linecap="round"
 stroke-linejoin="round"
 stroke-width="2"
 viewBox="0 0 24 24"
 stroke="currentColor">
 <path d="M9 5l7 7-7 7"></path>
 </svg>
 {entry[0]}
</button>

	9.	 This second part triggers an animation if the user opens

the drawer:

{#if isOpen}
 �<ul transition:slide={{ duration: 300 }}
class="garnet">

 <slot></slot>

{/if}

Chapter 3 Building Action Components

89

	10.	 We need to add some styling – for this, miss a line after the

closing {/if}, then add this code:

<style>
 �.garnet { display: flex; font-family: Arial,
Helvetica, sans-serif; }

 svg { transition: transform 0.2s ease-in; }

 �[aria-expanded="true"] svg { transform:
rotate(0.25turn); }

 �button.accordionItem { display: flex; align-items:
 �center; background-color: #733635; color: #ffffff;
border: none; }

 button[aria-expanded="false"].accordionItem {
 margin-bottom: 2px; }

 �button.accordionItem:hover { background-color:
#733635; }

 �ul { border: 1px solid #d19c9b; margin: 0;
margin-bottom: 2px; padding: 5px 10px 10px 20px; }

</style>

	11.	 Save the file as AccordionItem.svelte in the

AccordionItem folder, then close it.

Great – we can knock another component off the list of tasks to

create our library! This one is a little special, though, as it is a composite

component or one made up of more than one subcomponent (all of the

others are single component based).

Chapter 3 Building Action Components

90

This structure change presents one interesting point – how do we pass

data down and ensure any that should stay local to their parent do stay

local? Before we move on to the next and final component for this chapter,

now’s a perfect opportunity to review the code to see how our component

hangs together in more detail.

�Understanding What Happened
So far, all the components we’ve added have had one thing in common.

They are effectively unitary components, or, for those of you familiar with

it, atomic components (if you follow the Atomic Design principles created

by Brad Frost, about which he has posted on his website at https://
bradfrost.com/blog/post/atomic-web-design/). Our accordion

component is the odd one out, as this is a molecule – we combined several

elements to form our component.

To understand the difference, let’s break down the steps we took:

we started with the requisite folder creation (as before) before creating

Accordion.svelte – this contained an import to the AccordionItem atom

(or subcomponent), along with an empty object for data within the child

component, AccordionItem:

<script>
 import AccordionItem from './AccordionItem.svelte'
 export let data = [];
</script>

At present, we’re relying on making our data available via a JSON file.

As we can use Web Components in any framework, we must pass values in

string format; other formats are not accepted.

Moving on, we set up the markup for each item within the Accordion.

We iterate through the data block using a Svelte #each function while at the

same time destructuring each item as an instance of entry. This we pass

into the AccordionItem component as a value for the title prop.

Chapter 3 Building Action Components

https://bradfrost.com/blog/post/atomic-web-design/
https://bradfrost.com/blog/post/atomic-web-design/

91

When we explore the AccordionItem component, things get more

interesting – here, we have two imports, one for the slide transition effect

and another for the style sheet. We then export entry (which we use to

pass down the values to each instance of AccordionItem) and title (the

heading for each bar in the Accordion) before defining a scoped variable

isOpen for use within the Accordion component.

Next up, we then moved on to creating the markup for the button that

acts as the trigger for each accordion item. It contains an SVG image of the

chevron icon wrapped inside a button, followed by a Svelte {#if}...{/if}

block to iterate through each entry and display it in the body of the

Accordion item.

You will notice that we define data twice in this demo, but in slightly

different formats (once in Accordion, but again in AccordionItem), even

though data isn’t imported until we get to AccordionItem!

I must admit this is a little odd, but it is needed to ensure we can

pass in a title for each accordion drawer and the correct contents for that

drawer. While it works for now, I would look to refactor this in a future

iteration so that Accordion becomes more of a container and we keep data

in AccordionItem.

An interesting part of this component lies in the use of the <slot> tag

in AccordionItem – this allows us to pass in any data we wish (and, to an

extent, structure too). I’ve wrapped each accordion drawer in a transition

to make for a smoother effect, but the result will be up to you!

�Adding the Component to Storybook
We have the code in place for our Accordion, so let’s add it to our

Storybook instance without further ado. The process for doing this is

pretty much the same as the previous components, so, hopefully, the code

will start to look more familiar by now – let’s jump in and explore what’s

required in more detail.

Chapter 3 Building Action Components

92

LINKING INTO STORYBOOK

Setting up the Accordion to work in Storybook should be straightforward as we

will use the same code process as other components. We only need to make

small changes to our code to reflect using a new component – to see what I

mean, follow these steps:

	1.	 First, go ahead and create a new file in the same way as we’ve

done before, then add this code – we’ll start with the initial

<script> block to import the component and documentation,

along with some functions from Storybook:

import Accordion from "./Accordion.svelte";

	2.	 With the initial configuration in place, we can set up the

Accordion – we first need to insert the template, with only

minor changes of component name required:

export default {
 �title: "Garnet UI Library/Action Components/
Accordion",

 component: Accordion,
 argTypes: {
 isOpen: false,
 data: [],
 },
 parameters: {
 docs: {
 story: { height: "500px", },
 },
 },
};

Chapter 3 Building Action Components

93

	3.	 We can now render our component. We will use the same

format as before and pass the properties required to configure

our accordion component into it. Go ahead and add this block:

export const Default = {
 Component: Accordion,
 args: {
 isOpen: false,
 data: [
 {
 title: "Heading 1",
 �text: "aorem ipsum dolor sit amet, consectetur

adipiscing elit. Sed malesuada, nulla sed lacinia
accumsan, ligula arcu interdum urna, eget rhoncus
sapien orci scelerisque metus.",

 },
 {
 title: "Heading 2",
 �text: "In bibendum commodo orci nec semper.

Nam magna mauris, ornare eu semper sit amet,
vehicula sed metus",

 },
 {
 title: "Heading 3",
 �text: "Mauris tortor mi, scelerisque nec metus

nec, finibus euismod lacus. Maecenas non
porttitor arcu",

 },
],
 },
};

Chapter 3 Building Action Components

94

	4.	 Save the file as Accordion.stories.js in the \src\lib\
components/Accordion folder, then close the file.

	5.	A s with previous components, we need to extract a copy of

Docs.mdx from the code download and then drop it into the

Accordion folder. The markdown in this file will add a page

ready for us to insert documentation for our component.

	6.	 Switch to a Node.js terminal session, then set the working

folder to our cobalt project area.

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default link

under Spinner on the left to display the variant we created, as

shown in Figure 3-4.

Figure 3-4.  The Accordion component on display in Storybook

We’re starting to cook now to coin that phrase! We’ve created the code

for all three components for this chapter and added them to our Storybook

instance. Before moving on to the next chapter and exploring our next

batch of features, let’s review the changes made in the last demo to see

how our Accordion component hooks into Storybook.

Chapter 3 Building Action Components

95

�Reviewing the Code
Adding an Accordion component to Storybook should now be a relatively

familiar process – as before, we start with creating our Storybook page and

then importing the component.

We then added a default function that acts as our default template

(hence the name!), with properties to display the component page in the

correct order. It includes setting the navigation structure in Storybook and

a docs: height property. We first used this in the Spinner component – it

controls the space available in the iframe element that Storybook uses

to render the component. Without it, you wouldn’t see all the accordion

displayed properly – it will look cut off!

We then moved on to the critical part – displaying the Default instance

of our component. Here, we passed the open and data properties to

control when the accordion is open and the data to display. To finish off,

we extracted a copy of the Docs.mdx file, which will act as documentation

for the component, before launching Storybook to preview the results in

our browser.

Before we wrap up this chapter, I want to cover one small but

important point about this component: the use of the JSON data file. We

defined accordiondata.json as our data source; while this works OK, it’s

not ideal, as it introduces a dependency into our component. It would be

better in a future iteration to see if we can remove this dependency – we

may still need to use JSON data, but I think there is scope to make the

component more flexible when importing data.

�Summary
And that's a wrap...!

Yes, indeed – we’ve added all three Action components to our library;

each has its respective page in our Storybook instance. It means we’ve

reached the halfway point of constructing features for our library, with only

Chapter 3 Building Action Components

96

two more categories to add later in the book. Before we get on building the

next category of components, let’s take a moment to review what we have

learned in this chapter.

As we saw in the previous chapter, we focus on adding each

component to our library and setting it up in Storybook. We started with

the SelectBox component before swiftly moving on to creating the Spinner

component. It was a little more involved as we explored adding a new

variant – we learned that even though we use the same markup, changes in

styling effectively meant we had the equivalent of a new component.

We explored setting up an accordion component for the third and

final component in this chapter. It was a little more complex, as we had to

create two components: the main Accordion as the parent container and

AccordionItem for displaying each item in the accordion component.

Okay, let’s crack with creating the next batch: next up is our navigation-

based component group. We’ll look at creating components such as a

navigation bar and buttons, a menu and tabs, and more – intrigued? Stay

with me, and I promise to navigate you through everything in the next

chapter if you pardon that terrible pun!

Chapter 3 Building Action Components

97© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_4

CHAPTER 4

Building Navigation
Components

I may not have gone where I intended to go, but I think I have
ended up where I needed to be.

That quote by the author Douglas Adams, from his 1988 detective novel,

The Long Dark Tea-Time of the Soul, may have had a somewhat humorous

edge, but I think it’s an apt phrase to describe the theme for this chapter –

they are all about navigation.

Good navigation is essential for any site – we can produce a mix of

components (such as the ones we’ve built so far) for different pages, but if

we can’t navigate to them, we might as well pack up and go home!

Over the following few pages, we will build three components – a set

of Tabs, a Breadcrumb trail, and a Chip component (so we can quickly

browse to filtered collections of items). We will use similar methods

throughout to help keep consistency and make it easier to develop; let’s

start with the Breadcrumbs component.

https://doi.org/10.1007/979-8-8688-1180-7_4#DOI

98

�Creating the Breadcrumbs Component
Hands up – how often have you had to navigate around a large website

with less-than-ideal navigation? I’m sure you will have done it at

least once…

We would typically navigate using links or menu options, but we might

also use breadcrumbs. This latter navigation scheme shows where we

are on a site, making it easier to go back and forth without remembering

which menu option to choose or which link to click. Breadcrumbs (or

breadcrumb trails) have only been around for around 20 years, but the

term comes from the Hansel and Gretel tale, where two children leave a

breadcrumb trail to find their way home. It seems somewhat ironic that

a feature synonymous with larger websites dates back to the early 19th

century!

But I digress. We will create a simple Breadcrumbs component for

our first navigation component. We’ll base it around a standard HTML

unordered list, with some styling and the option to use a custom image or

text for the divider. Let’s dive in and look at how to create it in more detail.

For the custom image, I’ve used icons from the Iconify library
(https://icon-sets.iconify.design/). This tool allows us to
choose hundreds of icons from multiple sources by specifying the
icon’s family and name!

Chapter 4 Building Navigation Components

https://icon-sets.iconify.design/

99

BUILDING THE BREADCRUMB TRAIL COMPONENT

To build our Breadcrumbs component, follow these steps:

	1.	 First, create a new folder called Breadcrumbs at the root of the

\src\lib\components folder.

	2.	N ext, crack open a new file and add this code – we’ll start with

importing the style sheet, creating a few variables for export,

and adding some default data from a JSON file:

<svelte:options customElement="garnet-breadcrumbs" />
<script>
 export let divider = "/";
 export let iconFamily = "";
 export let iconName = "";
 export let breadcrumbItems = [];

 import Icon from '@iconify/svelte';
</script>

	3.	 We can now add the markup for our component – much of this

standard HTML markup, but it does include some Svelte tags.

The first takes care of checking to see if we display a custom

image or plain text as a divider:

<div class="garnet-breadcrumbs">
 <ul class="breadcrumb">
 {#each breadcrumbItems as breadcrumbIitem, i}

 <!-- Breadcrumb divider -->
 {#if i !==0}
 {#if !iconFamily && !iconName}
 {divider}

Chapter 4 Building Navigation Components

100

 {:else}
 �<!-- Use icons from https://icon-sets.

iconify.design/ -->
 <Icon icon={`${iconFamily}:${iconName}`} />
 {/if}
 {/if}

	4.	 The second part of this block iterates through each item to

determine if it is the link or end tag:

 <!-- Render each breadcrumb -->
 {#if i === breadcrumbItems.length - 1}
 {breadcrumbIitem.text}
 {:else}
 �<a href={(breadcrumbIitem.href)} data-

testid="breadcrumbLink">
 { breadcrumbIitem.text}

 {/if}

 {/each}

</div>

	5.	N ext, miss a line after the closing </div>, and add these

style rules:

<style>
 .garnet-breadcrumbs {
 display: flex;
 font-family: Arial, Helvetica, sans-serif;
 }
 ul.breadcrumb {
 padding: 10px 16px;

Chapter 4 Building Navigation Components

101

 list-style: none;
 background-color: #eee;
 }
 ul.breadcrumb li {
 display: inline;
 font-size: 18px;
 vertical-align: text-bottom;
 }
 ul.breadcrumb li a {
 color: #733635;
 text-decoration: none;
 vertical-align: text-bottom;
 }
 ul.breadcrumb li a:hover {
 color: #d19c9b;
 text-decoration: underline;
 }
 ul.breadcrumb li span {
 display: inline;
 padding: 8px;
 }
</style>

	6.	S ave the file as Breadcrumbs.svelte, then close any

open files.

Excellent – we have our component in place. The next task is to try

it to make sure it works; as before, we’ll work through adding it to our

Storybook instance. Before we get to that, let’s take a moment to review

the code changes made – most of it should be self-explanatory, but some

interesting Svelte techniques within the code are worth exploring in

more detail.

Chapter 4 Building Navigation Components

102

�Understanding What Happened
At first glance, you might feel a little confused with the double conditional

block in this component – it does feel like we’ve gone a little overboard in

using them! The reality is that we need to perform these nested checks –

the key to making this component work lies in the #each block we use

inside the garnet <div> element.

We started by creating our component folder before adding the core

component file. In this file, we have the now-familiar customElement tag,

followed by defining some exported variables (divider, name of the icon

family, and the icon itself, as well as an empty object for our data – more

on this in a moment). At the same time, we also import the iconify/svelte

library, which we will use later when rendering the icon in Storybook.

Let’s switch back to the data for a moment. Although I’ve created an

object for our data, I’ve set it to as an exported variable: this allows us to

supply the data in instances like Storybook so that we can keep a clear

separation between it and our component.

The real magic happens in the #each block that comes next – we iterate

through the object, first checking to see if we need to display a divider.

If the position of i (the index) is zero, we don’t show one; otherwise, we

display either a text or image-based divider, depending on what we set in

the image or divider properties.

Once we’ve confirmed what to display, we then iterate through the

object – we show a text label if the index matches the position of the last

item or a link for all other entries. We end up with links for each entry in

the chain, except for the last item, which indicates our chosen page. To

round off the task, we added some basic styling, ready for us to test when

adding the component to Storybook.

Chapter 4 Building Navigation Components

103

�Adding the Component to Storybook
I know I’ve mentioned this before, but one of the benefits of careful planning

is making code consistent and reusable. Keeping this level of reusability is

perfect for making development more rapid; after all, why reinvent the wheel

when it’s unnecessary? On that note, let’s continue with our Breadcrumbs

component and set it up to work in our Storybook instance.

ADDING TO STORYBOOK

To get our Breadcrumbs component working in Storybook, follow these steps:

	1.	 First, go ahead and create a new file, then add this code – as

before, we have a reasonable chunk to add. Let’s start with the

initial <script> declaration block to import the component

and assign some example data to a variable:

import Breadcrumbs from "./Breadcrumbs.svelte";

let levels = [
 { href: "/", text: "Dashboard" },
 { href: "/reports", text: "Annual reports" },
 { href: "/reports/2019", text: "2019" },
];

	2.	 With the initial configuration in place, we can now focus on our

component – as before, we first need to add a template. Skip a

line, then add this block in – it’s similar to previous examples,

with only a minor change of component and argTypes:

export default {
 �title: "Garnet UI Library/Navigation Components/
Breadcrumbs",

 component: Breadcrumbs,

Chapter 4 Building Navigation Components

104

 argTypes: {
 BreadcrumbItems: levels,
 image: { control: "boolean" },
 },
};

	3.	 We can now render our component – for this, we will create a

story function similar to earlier components. Go ahead and add

this block:

export const Default = (args) => ({
 Component: Breadcrumbs,
 props: {
 ...args,
 breadcrumbItems: [
 { href: "/", text: "Dashboard" },
 { href: "/reports", text: "Annual reports" },
 { href: "/reports/2024", text: "2024" },
],
 },
});

	4.	L et’s also add a second story – this one will show a custom

image instead of a text-based character, which we set as our

default divider in the component:

export const CustomImage = (args) => ({
 Component: Breadcrumbs,
 props: {
 ...args,
 iconFamily: "material-symbols",
 iconName: "arrow-right-alt",
 breadcrumbItems: [
 { href: "/", text: "Dashboard" },

Chapter 4 Building Navigation Components

105

 { href: "/reports", text: "Annual reports" },
 { href: "/reports/2024", text: "2024" },
],
 },
});

	5.	A lthough we set a / as our default divider, it doesn’t mean

we’re limited to using just this – what if we wanted to use other

characters? No problem: here’s our third story, which this time

uses a double arrow as our divider (highlighted in bold):

export const TextDivider = (args) => ({
 Component: Breadcrumbs,
 props: {
 ...args,
 divider: ">>",
 breadcrumbItems: [
 { href: "/", text: "Dashboard" },
 { href: "/reports", text: "Annual reports" },
 { href: "/reports/2024", text: "2024" },
],
 },
});

	6.	S ave the file as Breadcrumbs.stories.js in the

Breadcrumbs component folder, then close the file.

	7.	 We have one last file to add – our documentation. For this,

extract a copy of Docs.mdx and drop it into the Breadcrumbs

folder in our project area.

	8.	 We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

Chapter 4 Building Navigation Components

106

	9.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default link

under Breadcrumbs on the left to display the variant we just

created, as shown in Figure 4-1.

Figure 4-1.  Displaying the Breadcrumbs component with a
standard divider

	10.	 Click the Custom image link on the left – this variant swaps

out the double slash and replaces it with a custom arrow icon

(Figure 4-2).

Figure 4-2.  Displaying the Breadcrumb variant with a custom image

It never ceases to amaze me how a standard element that has been

around for decades is something we can turn into a useful feature with

little more than a couple of functions and some styling!

Chapter 4 Building Navigation Components

107

List elements are incredibly versatile; Svelte’s light touch means we can

create all manner of components with minimal extra code. This concept

was no different for the Breadcrumbs component we’ve just made – let’s

take a moment to review the code in more detail before cracking on with

our next navigation component.

�Exploring the Code in Detail
Much of this component follows a similar pattern to the others we’ve

already created – we started with the now-familiar customElement tag

before adding a block of test data, which we assign to the levels object.

We then set out our default template, in which we specify our title

(which we will use to create the navigation in Storybook). We also add the

name of our component (here, Breadcrumbs) and the argTypes, which

define the prop types we want to use.

Next up, we added two function blocks that act as our stories – the

first is Default, which defines the data to use. In the second story, I’ve

added iconFamily and iconName – remember how I referred to them

when creating the component? Adding them gives a new edge to our

component – rather than manually pulling in custom images, we set family

and icon names; the Iconify package we import does the heavy lifting! We

might want to specify something specific to us, like an in-house icon, but

that can come in a future update.

Okay – let’s move on: our next component is one you will likely find

at the bottom of online posts, articles, and the like. I’m talking about the

humble chip – not the one you might get in a takeaway fish and chips meal

on a Friday night, but the one we use to categorize items online, such

as posts. These may be small, but they play a crucial part in navigating

to filtered collections of content – let’s dive in and look at how we might

create such a component for our library.

Chapter 4 Building Navigation Components

108

�Building a Chip Component
Any site naturally needs content of some form – after all, an empty site

wouldn’t be very useful to anyone! This content will vary – it might be

posts about a subject such as photography or collections of products for

sale (such as honey – love the stuff!).

Whatever the content, we need a way to quickly see items of a related

type of content, such as all pots of honey for sale or articles for a particular

kind of camera. One way we might do this is by using chips – we can pass

in a link to a collection of items so that the reader can quickly access that

content without difficulty. It’s a valuable component to have in our library,

so let’s dive in and look at how we might create one in more detail.

CREATING A CHIP COMPONENT

To build our chip component, follow these steps:

	1.	 First, go ahead and create a new folder called Chip under \
src\lib\components.

	2.	N ext, crack open a new file and add this code – we’ll start

with the now-familiar svelte:options directive, followed by

importing our icon and a function from Svelte:

<svelte:options customElement="garnet-chip" />
<script>
 import DeleteIcon from './DeleteIcon.svelte';
 import { createEventDispatcher } from 'svelte';

	3.	M iss a line, then add these exported variables – we’ll use these

in the component itself, but also when we add our “story” in

Storybook:

 export let active = true;
 export let close = false;

Chapter 4 Building Navigation Components

109

 export let chipContent = "";
 export let selected = false;
 export let outline = false;

	4.	 We need to add a small function to handle the close button –

we set this to simply pass through the event to the onClose

equivalent in the element:

 const dispatch = createEventDispatcher();
 function onClose(e) {
 active = false;
 dispatch('close', e);
 }

	5.	 This next property will take care of switching between one of

two styles we will use – filled and outline. We’ll return to this

shortly when we add our component to Storybook.

 $: outline = outline;
</script>

	6.	N ext, it’s time for the markup – it’s not a large component, so

go ahead and copy the code below into your document:

<div class="garnet-chip">
 {#if active}
 �<!-- svelte-ignore a11y-no-static-element-

interactions -->
 �<!-- svelte-ignore a11y-click-events-have-key-

events -->
 <div
 class="chip"
 class:selected
 class:outline
 on:click>

Chapter 4 Building Navigation Components

110

 {chipContent}
 {#if close}

 <DeleteIcon />

 {/if}
 </div>
 {/if}
</div>

	7.	 To finish off this part, we need to add some styling – there is a

nice chunk to add, so we’ll begin with the container .garnet

style rule:

<style>
 .garnet-chip {
 display: flex;
 font-family: Arial, Helvetica, sans-serif;
 }

	8.	 This next rule contains most of the styles for the chip itself:

 .chip {
 color: #733635;
 align-items: center;
 cursor: default;
 display: inline-flex;
 line-height: 20px;
 max-width: 100%;
 outline: none;
 overflow: hidden;
 padding: 0 12px;
 position: relative;
 text-decoration: none;

Chapter 4 Building Navigation Components

111

 vertical-align: middle;
 white-space: nowrap;
 border-radius: 25px;
 padding: 10px;
 background-color: #d3d3d3;
 }

	9.	 The remaining styles take care of the close button and setting

an outline style variant (we will use this in Storybook):

 �.close { cursor: pointer; margin-left: 6px; margin-
right: -6px; display: flex; }

 .close:focus, .close:hover, .close:active {
 opacity: 0.72;
 }
 �.outline { background-color: #ffffff; border: 1px
solid #d3d3d3; }

</style>

	10.	A t this point, we can save and close all open files – we will test

our component in the next exercise, which will be up shortly.

Perfect – we now have a working Chip component! We can now pull it

into Storybook and test that it works as expected. This next stage should

be relatively familiar by now, so before we crack on with adding the new

component to Storybook, let’s quickly cover off the changes we made for

our Chip component in more detail.

Chapter 4 Building Navigation Components

112

�Exploring the Code Changes
As with all components in this book, we use a similar pattern – we start

with the now-familiar customElement tag before adding two imports,

one for an icon and another for the createEventDispatcher function

from Svelte.

Next, we created some variables (active, close, chipContent,

selected, and outline), which we set to be exportable – we’ll use them all

later when we add our component to Storybook. At the same time, we then

added a placeholder onClose function. It allows us to set an onClose event

handler when we use the component and pass it directly to the component

itself. We then round out the script part of the code by setting outline as

a reactive statement. We will use this when we create the variant for our

Chip component later in this book.

Okay – now for the more complex part! The markup looks a little

complex for a simple component: in reality, we have a set of spans nested

inside two div elements. We will always display at least one span, but

depending on whether close is set to true or false will determine if we

render the second span in the browser. Outside of this, we pass in several

props to the inside div element, such as class:selected or the on:click

event handler, then wrap all of the content inside the usual garnet div

element.

To wrap things up, we finish by adding a bunch of styling – most of it

applies to the core Chip component, but we also add some for the close

button, so it reacts appropriately when we hover over it or have it in focus

in the browser.

Chapter 4 Building Navigation Components

113

Accessibility

So far, we’ve developed a good set of components, but there is one
thing we’ve not covered: accessibility.

Accessibility is an essential part of any component – with one in five
people living with a disability, illness, or long-term impairment, we
risk excluding up to 20% of the population if they can’t use a site due
to inaccessible components! It raises questions about how far we can
go – we can’t cater for everything from day one, so we need to add
this in as resources allow. I’ve not included it for now, so you will see
some esLint exclusions appear in the code. We’ll go through this, and
more, when we cover accessibility in more detail in Chapter 9.

�Hooking the Component into Storybook
We’ve built the Chip component, so it’s time for us to get it into Storybook.

We will use the same process as previous components, which will help

speed up the process. Let’s look at the steps involved in more detail to see

if the Chip component works as expected in Storybook.

HOOKING INTO STORYBOOK

To get our Chip component working in Storybook, follow these steps:

	1.	 First, go ahead and create a new file, then add this import – this

brings the Chip component into the Storybook file:

import Chip from "./Chip.svelte";

Chapter 4 Building Navigation Components

114

	2.	N ext up, we need to add a template – in a similar manner

to other components, this will display default values in the

absence of anything specific set in each story:

export default {
 �title: "Garnet UI Library/Navigation
Components/Chip",

 component: Chip,
 props: {
 close: false,
 outline: false,
 chipContent: "Test chip",
 },};

	3.	P erfect – with our default template now in place, we can add

the main story. Go ahead and miss a line, then add this block:

export let Default = (args) => ({
 Component: Chip,
 props: {
 ...args,
 close: false,
 chipContent: "Test chip",
 },
});

	4.	S ave the file as Chip.stories.js, then close the file.

	5.	A s a last step, we need to source our Chip documentation file –

for this, extract a copy of Docs.mdx from the code download,

and add it to the Chip folder.

	6.	 We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

Chapter 4 Building Navigation Components

115

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default

link under the Chip entry on the left to display the component

we just created, as shown in Figure 4-3.

Figure 4-3.  The Chip component running in Storybook

	8.	L eave Storybook running in the background for now – we will

return to it shortly.

Excellent – we can now see our Chip component working! Granted, it’s

only a small component, but a useful one – we could use it to tag related

content on blog sites or even provide a link to similar products for sale,

such as screwdrivers (assuming you’re running a hardware ecommerce

offer!).

Okay – let’s crack on: even though this was a relatively simple

component, it still has an important role to play. We’ve used some critical

functions in our component code, so let’s take a moment to explore the

code in more detail.

�Understanding the Changes Made

To get our chip component hooked into Storybook, we started by

importing the Chip component, before creating a default template. This

template contains properties you will be familiar with by now, such as

Chapter 4 Building Navigation Components

116

the title (used for building the index in Storybook) and the name of the

component. We also have our argTypes entry; this time, we’re using it to

create an oninput handler for the component.

It’s worth noting that if you look through the code for each component,

you will notice that it seems like there’s a certain degree of repetition for

those that use event handlers! Truth be told, it does feel like it, but we

have to add these event handlers in several places – the component itself,

the default template, and the Default (or other) templates that use the

component. Think of the one in the default template as a pass-through

from the Storybook entry to the component itself – without it, you will find

a component doesn’t do anything!

As a reminder – we use both default and Default when naming

templates. It’s easy to confuse the two: the first takes care of what happens

if an overriding value is not provided. The Default is more for what

happens out of the box when we don’t change the default configuration.

Ideally, I would choose different names for at least the latter. I’ll return to

this in Chapter 11 when we tidy up the components, ready for release.

Returning to the Storybook file, we have our Default template present –

here, we set similar properties to those shown in default, but this time, we

add the event handler we want to use. The default template references the

type of event handler to expect; we then set the actual handler in the on:

property within each story.

As we’re using Storybook, all of the windows.alert entries will
appear in the Actions tab, not as a separate alert window.

To finish things off, we extracted a copy of the Docs.mdx file as our

documentation, saved everything, and previewed the results of our work in

a browser.

Chapter 4 Building Navigation Components

117

�Building Two Variants
Variants – for a small component, is it possible to have any, let alone more

than one?

The answer is yes: while building a disabled version might not suit this

component (unlike others), we can still change the styling and appearance.

An obvious one we could do is add a close button – this would be perfect

for those occasions when we want to filter out irrelevant products or reset

the filters to show everything. We could change the styling, too – let’s look

at two variants I’ve created as a starting point.

ADDING TWO VARIANTS

To build our two variants, follow these steps:

	1.	 First, go ahead and crack open the Chip.stories.js file – scroll

to the bottom, then add this block to display a close button in

our chip:

export let CloseButton = (args) => ({
 Component: Chip,
 props: {
 ...args,
 close: true,
 chipContent: "Test chip",
 },
});

	2.	 This second variant changes the standard design of the chip

from a solid-filled one to one with an outline only:

export let Outline = (args) => ({
 Component: Chip,

Chapter 4 Building Navigation Components

118

 props: {
 ...args,
 outline: true,
 chipContent: "Test chip",
 },
});

	3.	S ave, then close the file. Switch to your instance of Storybook,

and then refresh the page. If all is well, we should see two new

variants appear, as shown in Figures 4-4 and 4-5.

Figure 4-4.  Displaying the Close button variant

Figure 4-5.  Displaying the Outline variant

Chapter 4 Building Navigation Components

119

Perfect – this is just the start, though, as there are a few more ideas for

variants that come to mind:

•	 Adding an avatar or picture of someone, maybe as the

author of a series of posts or articles on a site.

•	 We could even turn the Chip into a Status chip: What

about adding someone’s name but showing a Teams,

Slack, or social messaging status? You might not want

to alert all visitors to the status of your availability

online, so it’s something we should use with care! At the

moment, I’m only thinking about the technical how-to

for this; deciding if it is something you want to do will

be up to you…

•	 I’ve used an SVG icon of a delete symbol in one variant,

but what about experimenting with the Iconify code we

created for the Breadcrumbs component? I’ll bet there

are a few versions we could make using it!

•	 Here’s another idea: How often have you seen pills

created that contained color names or showed off

themes, such as red for warning or green for success?

It’s a slightly different concept, but the code will likely

be similar and only need minor changes.

Hopefully, these will get you started with something – the great thing

about Svelte is its light touch on code, allowing us to create all manner of

different variants with only superficial changes to code.

Okay – let’s move on to the third and final component for this chapter:

Tabs. Yes, you know the kind: they are everywhere! It’s a great way to

display (and navigate to) content quickly and easily, so let’s dive in and

take a look at the steps needed to build a Tabs component.

Chapter 4 Building Navigation Components

120

�Constructing the Tabs Component
If you buy anything online, such as books or products from the likes of

Amazon, I can guarantee you will see instances of our next component:

Tabs. Tabs components may only serve one purpose, but they serve it

well – they are a perfect way to display lots of information in a small area

while allowing you to view specific tabs as your needs dictate.

For the last component in this chapter, we will build a simple Tabs

component. The basic structure centers around an unordered list, but we

need some Svelte magic to make it hang together – let’s look at how we

create such a component in our next exercise.

BUILDING THE TABS COMPONENT

To construct our Tabs component, follow these steps:

	1.	 To start, go ahead and create a new folder called Tabs inside

the \src\lib\components folder within our project area.

	2.	N ext, crack open a new file and add this code – we set several

variables for export, such as the active tab (activeTabValue),

our data source (items), and vertical, used later in

Storybook:

<svelte:options customElement = "garnet-tabs" />
<script>
 export let activeTabValue = "0";
 export let items;
 if (items == null) {
 items = tabItems;
 }
 �const handleClick = tabValue => () =>
(activeTabValue = tabValue);

</script>

Chapter 4 Building Navigation Components

121

	3.	N ext up, miss a line, then add the markup to render our Tabs

component:

<div class="garnet">

 {#each Object.entries(items) as [id]}
 �<li class={activeTabValue === id ? 'active' : ''}

data-testid="tabHeader">
 �<!-- svelte-ignore a11y-click-events-have-key-

events -->
 �<!-- svelte-ignore a11y-no-static-element-

interactions -->

 �{JSON.stringify(items[id].name).replace

(/['"]+/g, "")}

 {/each}

 <div class="content" data-testid="tabContent">
 {#each Object.entries(items) as [id]}
 {#if activeTabValue === id}
 �{JSON.stringify(items[id].text)
 .replace(/['"]+/g, "")}
 {/if}
 {/each}
 </div>
</div>

Chapter 4 Building Navigation Components

122

	4.	 To finish off the component, we need to add some basic

styling – we first add our library’s theme colors, followed by

some rudimentary styling:

<style>
 .garnet-tabs {
 display: flex;
 flex-direction: column;
 font-family: Arial, Helvetica, sans-serif;
 }
 ul {
 display: flex;
 flex-wrap: wrap;
 padding-left: 0;
 margin-bottom: 0;
 list-style: none;
 border-bottom: 1px solid #dee2e6;
 }
 li {
 margin-bottom: -1px;
 }
 span {
 border: 1px solid transparent;
 border-top-left-radius: 4px;
 border-top-right-radius: 4px;
 display: block;
 padding: 8px 16px;
 cursor: pointer;
 }

Chapter 4 Building Navigation Components

123

 span:hover {
 border-color: #dee2e6;
 border-bottom-color: #ffffff;
 }
 li.active > span {
 color: #ffffff;
 �background-color: #733635; border-color: #dee2e6

#dee2e6 #fff;
 }
 .content {
 padding: 10px;
 min-height: 300px;
 }

	5.	S ave the file as Tabs.svelte in the same Tabs folder and

close it.

Great – that’s the first part done! We now have a Tabs component ready

to pull into Storybook and test that it works as expected. This next stage

should be relatively familiar by now, so let’s crack on with adding the new

component to Storybook without further ado.

�Exploring the Code Changes
In some ways, building a Tabs component is almost a game of two halves –

although we are creating one component, we have to construct code for

the tab header (or tab itself) and the tab content area. Fortunately, Svelte

makes this very easy, with not too much markup required!

We started by creating the requisite folder before adding code to what

would become our core component – the first block imported styles before

setting up two exported values – items[] and activeTabValue. At the

Chapter 4 Building Navigation Components

124

same time, we added the <svelte:options> directive to tell Svelte we are

creating a web component. We also add a handleClick event handler to

switch between each tab, based on which tabvalue we set.

Next, we added the markup for our component based on an unordered

list. We first check that our items object is of type array before iterating

through each item and setting an active class on the list item, depending

on whether we’ve clicked the tab. At the same time, we display item.
name as the header for each tab, then iterate through items and use

ActiveTabValue to determine which content area to display as the tab in

our browser.

You will notice the presence of .replace(…) when we display the

text – this is purely to remove the quotes around each text entry from the

JSON file. It’s a little hacky, so we can’t display quotes in the tab panel, but

it works!

�Hooking the Component into Storybook
With the component now constructed, adding the Tabs component to

our Storybook instance should be straightforward. We will use the same

process as previous components, which will help speed up the process.

Let’s look at the steps involved in more detail to see if the Tabs component

works as expected in Storybook.

HOOKING INTO STORYBOOK

To get our Tabs component working in Storybook, follow these steps:

	1.	 First, go ahead and create a new file, then add these imports –

the first brings in our Tabs component, and the second brings in

a block of test data to display on-screen:

import Tabs from "./Tabs.svelte";
import tabItems from "./tabsdata.json";

Chapter 4 Building Navigation Components

125

	2.	 This next bit should be very familiar by now – leave a line

blank, then add this export block. As before, it adds a title,

sets the component we want to use, and defines the types of

arguments we will use by default in each story unless specified

otherwise:

export default {
 �title: "Garnet UI Library/Navigation
Components/Tabs",

 component: Tabs,
 argTypes: {
 vertical: false,
 items: tabItems,
 },
};

	3.	 We can now render our component. For this, we will create a

default function similar to what we did earlier in the book. Go

ahead and add this block:

export const Default = {
 args: {
 vertical: false,
 items: tabItems,
 },
};

	4.	S ave the file as Tabs.stories.js, then close the file.

	5.	A s a last step, we need to source our Tabs documentation

file – go ahead and extract a copy of Docs.mdx from the code

download and add it to the Tabs folder.

Chapter 4 Building Navigation Components

126

	6.	 We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default

link under the Tabs entry on the left to display the component

we just created, as shown in Figure 4-6.

Figure 4-6.  The new Tabs component on display in Storybook

There – that doesn’t look too shabby, does it? Granted, it doesn’t have

all the features other Tabs components may have, but that will come in

time; we’ve created a solid base for further development.

That isn’t the end of it, though – there is scope to add a variation of

our component, which we will do momentarily (you can see a hint of it in

that last screenshot). Before we do so, let’s pause for a moment to review

the code changes we just made to see how the Tabs component renders in

Storybook in more detail.

�Understanding the Changes Made

By now, I’m sure you will be familiar with how we can add our component

to Storybook – so much so that with a little trial and error, we might be at

a point where you can almost do it without needing help! Don’t worry,

though – I’m not going to leave you just yet: let’s break that code apart to

see how it all hangs together.

Chapter 4 Building Navigation Components

127

We started by adding the now-familiar import call, this time for our

Tabs component. We then also imported tabItems, which is some dummy

data I’ve created as a JSON file. The rest of the Storybook code is very

similar to other components – we include the default function block for

our template and a Default function to render an instance of the Tabs

component out of the box. To round things off, we also obtained a copy

of the placeholder Docs.mdx documentation file before running up the

Storybook development server and previewing the results in our browser.

�Creating a Variant
For the last demo in this chapter, we’re going to modify how our Tabs

component looks – in many cases, we would display the component

horizontally, but there may be occasions where displaying the tab “heads”

on the side would be a preferred option.

Fortunately, the changes needed to implement our new variant are

pretty straightforward; let’s crack on and implement them to see how our

new variant appears in Storybook.

CREATING A VERTICAL VARIANT

To add our variant, follow these steps:

	1.	 First, crack open the Tabs.svelte file, then add this line

immediately below the last export:

export let vertical = false;

	2.	 We also need to add a Svelte reactive statement for this

property, which tells Svelte to update it every time the value

changes. Add this below the handleClick event handler and

just before the closing </script> tag:

$: vertical = vertical

Chapter 4 Building Navigation Components

128

	3.	N ext, scroll down to the opening <div> tag for the markup and

amend the code as highlighted:

<div class="garnet-tabs" class:vertical>

	4.	 We also need to do something similar for these three lines

(at various places in the code) – add class:vertical as

indicated:

<ul class:vertical>
...

...
<div class="content" class:vertical data-testid=…

	5.	S croll down toward the bottom of the page, then add these

three rules before the closing </style> tag:

 /* variant */
 �.garnet-tabs.vertical { display: flex; flex-
direction: row; }

 ul.vertical{
 display: flex;
 flex-direction: column;
 border-right: 1px solid #dee2e6;
 border-bottom: none;
 margin-top: 0;
 }
 �ul.vertical span { border-radius: 0; border-right: 0;
border-color: #dee2e6;

 }

	6.	S ave the file and close it. Switch to the Tabs.stories.js file,

then scroll to the default template block:

Chapter 4 Building Navigation Components

129

	7.	A mend the argTypes function to this:

 argTypes: {
 vertical: false,
 items: tabItems,
 },

	8.	 In the Default block just below it, amend the args block to this:

 args: {
 vertical: false,
 items: tabItems,,
 },
/>

	9.	L eave a line blank after that story, then add this new block for

our variant:

export const Vertical = {
 args: {
 vertical: true,
 items: tabItems,
 },
};

	10.	S ave the file and close it. We have everything in place, so let’s

test it! Switch to a Node.js terminal session, and make sure the

working folder is set to our garnet project area.

	11.	A t the prompt, enter npm run storybook and hit Enter – if all

is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Vertical

link under the Tabs entry on the left to display the component

we just created, as shown in Figure 4-7.

Chapter 4 Building Navigation Components

130

Figure 4-7.  The new variant for the Tabs component

Perfect – with only a few minor changes (most of which were CSS

based), we have a new variant for our Tabs component! Sure, this is only

one variant, and with some work, we could add more variants (such as

different tabs, language support, support for disabling tabs, and so on). It

does show that with minimal changes, we can turn an existing component

into something different and usable by developers consuming our library.

So, how did we get here? We started by adding an exported variable

vertical – this would trigger the component to display our tab set

horizontally or vertically (and which is controlled by the Svelte reactive

statement in the block). We then updated the opening <div> tag, the

element, and the internal tags using the class: directive; this tells

the component to include the vertical class if our variable vertical

is true.

Next up, we added a new markup block for our variant – into this, we

passed the vertical variable, which we set to true (and amended the

Default story to include this new parameter.) We then added a handful

of styles to re-render the Tabs in a vertical format. That’s one of the great

things about Svelte – we do most of the work using CSS, with only minimal

markup required to refactor our component!

Chapter 4 Building Navigation Components

131

�Summary
And that’s the end of this journey, ladies and gentlemen. I
hope you’ve enjoyed what you’ve seen…

Creating excellent navigation for a site is essential – it’s the bread and

butter we need to help customers find what they want and keep them

within the confines of our site. To help with that, we’ve created three

navigation components for our library; each has its respective page in

our Storybook instance. We’re now over halfway, with only one more

component category to add to our library! Before we get on building the

next category of components, let’s take a moment to review what we have

learned in this chapter.

As we saw in the previous chapter, we focused on adding each

component to our library and setting it up in Storybook. We started with

creating the Breadcrumbs trail component before swiftly moving on to

building a Chip component – one that looks simple but belies the complex

code behind it!

We explored setting up a Tabs component for the third and final tool

in our toolbox. It was a little more involved as we examined adding a new

variant – we learned that even though we use the same markup, changes in

styling effectively meant we had the equivalent of a new component.

Okay, let’s crack with creating the penultimate batch of components:

the notification group. We’ll look at creating components such as an

overlay, modal dialog boxes, and more – intrigued? Stay with me, and I’ll

reveal it all in the next chapter…

Chapter 4 Building Navigation Components

133© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_5

CHAPTER 5

Creating Notification
Components
I spend many an hour reading and researching material for the books I’ve

written – I’ve come across all manner of different articles, views, and ideas;

too many to count! There was, however, one thing that I found that I think

is very apt for this chapter:

You can be happy with less and miserable with more.

This little gem from the author and entrepreneur Robert Gill is perfect

for the following few pages – particularly when I say we will look at creating

notification components! One hopes that we never get any indicating an

error of some kind; indeed, the less we get, the more we’re happy!

Keeping that thought, we will create three more components – an Alert,

Dialog, and Tooltip. Much of what you are about to see will reuse many of

the principles we’ve already covered, so without further ado, let’s crack on

with creating the first, which is the Alert component.

�Creating the Alert Component
An essential part of the user experience for anyone browsing a website

is making sure we keep them informed. While we expect things to run

smoothly, there will be occasions when we must notify our customers

https://doi.org/10.1007/979-8-8688-1180-7_5#DOI

134

if there is a problem! We need an alert component – we will develop a

suitable tool for our component toolbox using the standard HTML5 dialog

element.

We could build something from the ground up, but there’s no need to

do so when most recent browsers natively support the <dialog> element.

In our next exercise, we can use that to construct our alert component.

Before assembling the code, we should cover one small point relating to

the icons we use in the exercise.

�Sourcing the Icons
Our alert component will use the SVG markup from icons chosen from

the Ionicons library at https://ionic.io/ionicons. I’ve picked two and

edited versions of them for the exercise; the (renamed) originals will be

available in the code download.

If you want to use different ones, head to the website and enter “alert”

or “warn” in the search box. It will come back with at least two options – to

download the SVGs, click one of the icons, then hit the SVG icon to the

right of the brown box at the foot of the screen in Figure 5-1.

Figure 5-1.  The download icon on the Ionic website

You will need to update the SVG markup used in one of the files in the

next exercise – I will point out which one, at the appropriate point. Okay –

with that in mind, let’s begin with the next exercise to construct our alert

component.

Chapter 5 Creating Notification Components

https://ionic.io/ionicons

135

�Building the Component
Although we’re building for what should be a simple alert component,

the code we need to use is a little more complex than some of our other

components! We will have to create a few files and add the SVGs we talked

about just now, so let’s start with creating the core component first.

BUILDING THE ALERT COMPONENT

To construct our alert component, follow these steps:

	1.	F irst, create a new folder called Alert at the root of the

components folder.

	2.	N ext, crack open a new file and add this code – we’ll start with

setting our usual customElement tag, then importing an Icon

component, and setting a few variables for export:

<svelte:options tag="garnet-alert" />

<script>

 import Icon from './Icon.svelte';

 export let show;

 export let showIcon = true;

 export let type = "";

 export let title = "";

 export let description = "";

 export let showAnimation = true;

 let typeClass;

	3.	N ext, leave a line blank, then add the second part of our script

block, which will determine which style to use for our alert

component:

 switch (type) {

 case "warn":

Chapter 5 Creating Notification Components

136

 typeClass = "alert-warn";

 break;

 case "dark":

 typeClass = "alert-dark";

 break;

 case "error":

 typeClass = "alert-error";

 break;

 case "info":

 typeClass = "alert-info";

 break;

 case "success":

 typeClass = "alert-success";

 break;

 default:

 typeClass = "";

 }

 �const classes = ["alert", typeClass, showAnimation ?

"fade-in" : ""]

 .join(" ");

	4.	T he last part of our script will take care of closing the alert

when triggered by clicking the X in the modal:

 const closeAlert = () => {

 show = false;

 };

</script>

	5.	 We can now add the markup for our component – much of this

standard HTML markup, but with a few Svelte tags. Miss a line,

then add this block:

<div class="garnet">

 {#if show}

 �<!-- svelte-ignore a11y-click-events-have-key-

events -->

Chapter 5 Creating Notification Components

137

 �<!-- svelte-ignore a11y-no-noninteractive-element-

interactions -->

 <dialog class={classes} role="alert">

 <div class="icon">

 {#if showIcon}<Icon iconType={type} />{/if}

 </div>

 <div class="message">

 {title}

 {description}

 </div>

 <div>

 <button on:click={closeAlert}>✖</button>

 </div>

 </dialog>

 {/if}

</div>

	6.	 We have one more section to add, which is the styling. For

this, leave a blank line after the code from step 4, then add

this block:

<style>

 dialog {

 min-width: 300px;

 display: flex;

 justify-content: space-between;

 font-family: Arial, Helvetica, sans-serif;

 border: none;

 }

 button {

 background: none;

 border: none;

Chapter 5 Creating Notification Components

138

 font-size: 21px;

 }

 .icon {

 margin-right: 10px;

 }

 .message {

 display: flex;

 flex-direction: column;

 line-height: 24px;

 min-width: 300px;

 }

 .fade-in {

 animation: fade-in 2000ms both;

 }

 @keyframes fade-in {

 from {

 opacity: 0%;

 }

 }

 .alert-warn {

 background: #ffeb3b;

 color: #000000;

 }

</style>

	7.	S ave the file as Alert.svelte, then close it. Next, crack open

a new file and add this code – this time, we first need to set

three exported variables before adding what will be the markup

for the first of three icons we add to our component:

<svelte:options customElement="garnet-icon" />

<script>

Chapter 5 Creating Notification Components

139

 export let width = "24px";

 export let height = "24px";

 export let iconType = "";

 let icons = [

 {

 box: 512,

 name: "warn",

 �svg: `<path d="M85.57 446.25h340.86a32 32

0 0028.17-47.17L284.18 82.58c-12.09-22.44-44.

27-22.44-56.36 0L57.4 399.08a32 32 0 0028.17

47.17z" fill="none" stroke="currentColor"

stroke-linecap="round" stroke-linejoin="round"

stroke-width="32"/><path d="M250.26 195.39l5.74

122 5.73-121.95a5.74 5.74 0 00-5.79-6h0a5.74 5.74

0 00-5.68 5.95z" fill="none" stroke="currentColor"

stroke-linecap="round" stroke-linejoin="round"

stroke-width="32"/>

 <path d="M256 397.25a20 20 0 1120-20 20 20 0 01-20 20z"/>`,

 },

	8.	N ext up, add these lines – this will form the second icon for

our demo:

 �let displayIcon = icons.find((e) => e.name ===

iconType);

</script>

The markup is available in the code download, so you don’t have to edit
manually! Although I’ve only included markup for one icon, we will add
more later in this chapter when we look at variants for this component.

Chapter 5 Creating Notification Components

140

	9.	 With the SVG markup in place, we now need to call it – for

this, miss a line, then add this markup, which will take care of

choosing the right icons based on the name passed in when

calling the component:

<svg

 class={$$props.class}

 {width}

 {height}

 viewBox="0 0 {displayIcon.box} {displayIcon.box}">

 {@html displayIcon.svg}

</svg>

	10.	S ave the file as Icon.svelte in the Alert folder, and close it

and any other open files.

Great – our component is in place and ready to test! Although much

of the code consists of standard HTML markup and CSS styling, there

are a few interesting points where we use Svelte syntax. Before we add

our component to Storybook, let’s take some time to review the code

and understand how it all works – I know the SVG part will appear a little

confusing at first!

�Understanding What Happened

In an ideal world, we would never need to display alerts to people using a

site or online application – everything would run smoothly, customers get

what they want and where they need to be, and leave happy and content…

However, the reality is that it is all a pipe dream and that we still need

to display the occasional alert! With that in mind, and to construct our

component, we started by creating the usual component folder before

setting some variables for export. At the same time, we imported an Icon

component and set a handful of variables for use internally, such as show,

type, and title.

Chapter 5 Creating Notification Components

141

Next, we set up a somewhat lengthy switch statement for type – this

determines what class to set based on the value assigned to type. For

example, if we had passed in “warn,” we would apply the class alert-warn

to the component, and so on. We then concatenate all classes together,

ready for use in our component.

You will notice that, unlike other components, we’ve not used
createEventDispatcher in this component. In this case, I don’t
believe it’s necessary – the event handler serves a single purpose:
to close the alert. No matter how we write the code, it still serves
the same purpose! In this case, it should be sufficient to run this
internally; if circumstances change, we can always come back and
expose this event handler.

We then moved on to adding the markup for our component – this

is where things get a little more complex. We wrap everything in a Svelte

if block inside our parent garnet div element; we show or hide the

component based on the value of show. We built the core part of the

component around an HTML5 dialog element, passing the classes we set

earlier and setting an on-click event handler to close the alert. The rest

of the markup is standard HTML, except for the second Svelte if block

and the event handler assigned to the close button. To round off that

part, we add some basic styling, including a simple animation to render

the alert.

Right – let’s crack on: we still have plenty to do! It’s time we tested our

component to ensure it works, so as with others, let’s dive in and hook our

component into Storybook.

Chapter 5 Creating Notification Components

142

�Adding the Component to Storybook
So far, we’ve created the core Alert component, added some styling, and

sourced three SVGs to act as icons when displaying the Alert. We’re now at

a stage where we can test the component, so as before, let’s crack on with

adding an instance to Storybook so we can prove it works as we expect.

ADDING TO STORYBOOK

To get our alert component working in Storybook, follow these steps:

	1.	F irst, go ahead and create a new file, then add this import:

 import Alert from './ Alert.svelte';

	2.	T his next part of the process should be very familiar by now –

we need to create a default template that contains values to

display, should we not override them in specific stories:

export default {

 �title: "Garnet UI Library/Notification

Components/Alert",

 component: Alert,

 argTypes: {

 type: { control: "string" },

 title: { control: "string" },

 description: { control: "string" },

 showIcon: { action: "boolean" },

 },

 parameters: {

 docs: {

 story: {

 height: "100px",

Chapter 5 Creating Notification Components

143

 },

 },

 },

};

	3.	N ext, leave a line blank, then this code – it’s the Default story,

to render our Alert component as is (largely) with default values:

export const Default = () => ({

 Component: Alert,

 props: {

 show: true,

 type: "info",

 title: "Simple Info",

 description: "An info description",

 showIcon: "true",

 },

});

	4.	S ave the file as Alert.stories.js, then close the file.

	5.	 You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of Docs.mdx from the code download and then drop it

into the Alert folder.

	6.	 We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default link under

Alert on the left to display the variant we just created, as shown

in Figure 5-2, as a blue dialog box.

Chapter 5 Creating Notification Components

144

Figure 5-2.  Displaying the new Alert warning in Storybook

Excellent – we now have a working component ready for others to use.

It’s a simple affair (even if the code might say otherwise) but an essential

addition to our library!

However, if we had to display any alerts, they wouldn’t just be

information ones – what about warnings or success messages, for

example? Fortunately, these are easy to add as variants – we will add

a couple shortly. Let’s first examine the code we created to get the

component working in Storybook in more detail.

�Exploring the Code Changes

Much of this component follows a similar pattern to the others we’ve

already created – we started with the now-familiar import for the

component, followed by creating a default template to render each story in

the absence of any overriding values.

In the default template, we have the argTypes block, which we’ve used

before – here, we’re setting the types of values to expect for type, title,

description (all strings), and showIcon (boolean). There is an additional

feature, though, and one we’ve used before: parameters. Here, we need to

use it to enlarge the canvas for each story in Storybook – without it, they

are too small! This setting only applies to Storybook and will not feature as

part of the component itself.

Chapter 5 Creating Notification Components

145

Okay – let’s move on: cast your mind back to the end of the last section

but one. Remember how I said adding different variants for the Alert

component is easy, such as displaying a warning message instead?

�Creating a Variant
When adding variants, the structure of our Alert component might not

change much (if at all), but the appearance will be different. To achieve

this, we need to add new markup into the Alert.stories.js file and some

extra styling rules.

This change will just be a small start, though; with a bit of imagination,

we could add more variants – what about adding a (configurable) border

or maybe reworking the Icon functionality to use the Iconify library we’ve

used elsewhere in this book? As they say, “…we gotta start somewhere, so

let’s dive in an’ start with our two variants… ”

CONSTRUCTING THE VARIANTS

To add our variant, follow these steps:

	1.	F irst, crack open Alerts.stories.js, then scroll to the

bottom of the page.

	2.	A dd a blank line, then this code – this will display a warning

style message in our component:

export const Warn = () => ({

 Component: Alert,

 props: {

 show: true,

 type: "warn",

 title: "Simple warning",

Chapter 5 Creating Notification Components

146

 description: "A warning message",

 showIcon: "true",

 },

});

	3.	N ext, miss a line under the last block and add this variant – it

will show an error dialog:

export const Error = () => ({

 Component: Alert,

 props: {

 show: true,

 type: "error",

 title: "Error message",

 description: "An error message",

 showIcon: "true",

 },

});

	4.	 We need to add some extra icon markup for the new variants,

so crack open Icon.svelte and add this code immediately

before the closing square bracket:

 {

 box: 512,

 name: "info",

 �svg: `<path d="M248 64C146.39 64 64 146.39 64

248s82.39 184 184 184 184-82.39 184-184S349.61

64 248 64z" fill="none" stroke="currentColor"

stroke-miterlimit="10" stroke-width="32"/><path

fill="none" stroke="#ffffff" stroke-linecap="round"

stroke-linejoin="round" stroke-width="32" d="M220

220h32v116"/>

 �<path fill="none" stroke="currentColor" stroke-

linecap="round" stroke-miterlimit="10" stroke-

width="32" d="M208 340h88" /><path d="M248 130a26

26 0 1026 26 26 26 0 00-26-26z" fill="#ffffff" />`,

Chapter 5 Creating Notification Components

147

 },

 {

 box: 512,

 name: "error",

 �svg: `<path d="M448 256c0-106-86-192-192-192S64

150 64 256s86 192 192 192 192-86 192-192z"

stroke="currentColor" fill="none" stroke-

miterlimit="10" stroke-width="32"/>

 �<path d="M250.26 166.05L256 288l5.73-121.95a5.74

5.74 0 00-5.79-6h0a5.74 5.74 0 00-5.68 6z"

fill="#ffffff" stroke="currentColor" stroke-

linecap="round" stroke-linejoin="round" stroke-

width="32"/><path d="M256 367.91a20 20 0 1120-20 20

20 0 01-20 20z" fill="#ffffff" />`,

 },

Don’t worry – this markup is in the code download, so you don’t have
to add it manually!

	5.	 We also need to add two new style rules to complement this

markup. Open Alert.svelte, then scroll to the bottom and

add these rules before the closing </style> tag:

 .alert-info {

 background: #2196f3;

 color: #ffffff;

 }

 .alert-error {

 background: #ff0000;

 color: #ffffff;

 }

Chapter 5 Creating Notification Components

148

	6.	 We have everything in place, so let’s test it! Save and close the

open files, then switch to a Node.js terminal session, and make

sure the working folder is set to our garnet project area.

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Warning link under

the Alert entry on the left to display a yellow dialog box with

appropriate text and icon, as shown in Figure 5-3.

Figure 5-3.  Displaying the Warning variant of our Alert component

	8.	 Click the No Border entry below the Warning entry – this will

display a red error dialog variant (Figure 5-4).

Figure 5-4.  Displaying the error dialog variant

Perfect – with only a few styling changes (and the message we display),

we can express something that looks a little different and customize it to

our needs.

A question, though: Notice anything about the styling, say…how

we achieved it? Some of you will undoubtedly see that we added some

switching rules to choose which style to use and the appropriate classes.

Chapter 5 Creating Notification Components

149

While this works, it isn’t the best method we could use. Could we have

done better? It is a great question – let’s take a moment to explore that and

the rest of the variant code in more detail.

�Breaking Apart the Code

As demos go, this is probably one of the simplest we’ve created so far –

we’ve not even had to add any styles, as we made these available when we

created the original component!

Most of the work hangs off steps two and three, where we added

Story blocks to display two new variants – one a warn variant and the

other to display an error variant. In both cases, we changed only the type

parameter; the rest stayed the same as the original default Alert (okay, yes,

we also changed text, but that’s not the critical part of this – the type prop

controls what icon to display!).

Thinking back to that question we asked just now – could we have

improved our code? I think so: Instead of using a switch statement, what

about refactoring our code to include alert as a single class (already in the

join statement) but concatenating it with names such as warn, info, and

error? We could remove the switch block as we already include alert as a

class separately – the join statement would remain as is. We would then

end up with something like Figure 5-5.

Figure 5-5.  An example of reworked classes for Alert

The downside is that there is no checking available as such, if we

remove the switch block. That said, if a class doesn’t exist in the style sheet,

it won’t be applied anyway!

Chapter 5 Creating Notification Components

150

Let’s move on: we still have two more components to add to our

library. The next one we’ll look at is (ironically) also a dialog-based

component intended for more complex occasions when you need to

present more information to your user. Every library should have some

form of dialog component, so let’s look at how we can add one to our

project in more detail.

�Creating the Dialog Component
Although we’ve already added a dialog-based alert component to our

library, it’s meant more for displaying notices, where clicking the X will

acknowledge and close the alert.

For more complex uses, we need something more substantial, where

we can add more text and (hopefully) some markup. Depending on our

needs, we might want to display a dialog with multiple buttons, such as OK

or Cancel, or perhaps something more specific.

Creating a basic dialog isn’t complicated; the key will be adding

our content and responding to any events we generate, such as clicking

OK. We need to start somewhere, so let’s create a simple dialog that closes

when we click an X symbol. We can always come back and add more

functionality at a later date.

BUILDING THE DIALOG COMPONENT

To build our Toast component, follow these steps:

	1.	F irst, create a new folder under \src\lib\components,

called Dialog.

	2.	E xtract a copy of the Close.svelte file from the code

download that accompanies this book, and drop it into the

Dialog folder. This component will act as our close icon in the

component.

Chapter 5 Creating Notification Components

151

	3.	N ext, crack open a new file and add this code – we have a

good chunk to cover, so we will add it in sections, starting with

setting three exported variables and importing an icon file:

<svelte:options customElement="garnet-dialog" />

<script>

 import CloseIcon from "./Close.svelte";

 export let showDialog = true;

 export let showBackground = false;

 export let modalTitle = "Modal title";

 export let modalText = "Click on the X to close me";

</script>

	4.	N ext, leave a line blank, then add this markup:

<button on:click={() => (showDialog = !showDialog)}>Show

dialog</button>

{#if showDialog}

 <div class="garnet">

 {#if showBackground}<div id="background" />{/if}

 <div id="modal">

 <div class="header">

 <h3>{modalTitle}</h3>

 <button

 type="button"

 class="close"

 on:click={() => (showDialog = false)}

 >

 <CloseIcon />

 </button>

 </div>

 <p>{modalText}</p>

 </div>

 </div>

{/if}

Chapter 5 Creating Notification Components

152

	5.	 We also need to add some basic styles, so miss a line and add

this code:

<style>

 .garnet-dialog {

 font-family: Arial, Helvetica, sans-serif;

 }

 @keyframes fadein {

 from {

 opacity: 0;

 }

 to {

 opacity: 1;

 }

 }

 #background {

 position: fixed;

 z-index: 1;

 top: 0;

 left: 0;

 width: 100vw;

 height: 100vh;

 background-color: rgba(0, 0, 0, 0.7);

 backdrop-filter: blur(5px);

 animation: fadein 1s;

 }

 #modal {

 position: fixed;

 z-index: 2;

 top: 50%;

 left: 50%;

 transform: translate(-50%, -50%);

 background: #fff;

Chapter 5 Creating Notification Components

153

 padding: 10px;

 width: 400px;

 height: 250px;

 border: 1px solid #c4c4c4;

 box-shadow: 2.5px 5.0px 5.0px hsl(0deg 0% 0% / 0.42);

 }

 .header {

 display: flex;

 justify-content: space-between;

 border-bottom: 1px solid #c4c4c4;

 }

 button {

 background-color: #733635;

 border: none;

 color: white;

 padding: 15px 32px;

 text-align: center;

 text-decoration: none;

 display: inline-block;

 font-size: 16px;

 }

 button.close {

 background-color: #ffffff;

 padding: 10px 0 10px 0;

 }

 button.close:hover {

 color: #d19c9b;

 }

</style>

	6.	S ave the file as Dialog.svelte, and close it (and any other

files) – construction is complete.

Chapter 5 Creating Notification Components

154

Great – we have a component in place, but I can imagine what your

first question will be: What does it all do? We’ve covered quite a bit of code

over the last few pages, so let’s kick back for a moment and take a closer

look at the changes we made to understand how it all hangs together.

�Understanding What Happened
So, what did we achieve in that last demo? We kicked off by first creating

the now-familiar component folder and file before extracting a copy

of the CloseIcon file from the code download – this we will use in our

component. We then set up a script block in the component file, to import

CloseIcon and set exported boolean variables showDialog, modalTitle,

and modalText – we’ll use the latter two to display a title and text in the

dialog component.

Next, we set our markup. We started by defining a button element with

an event handler to show or hide the Dialog component each time we click

the button. In the main markup, we wrap our code in a Svelte {#if}...

{/if} block – this controls when the code is rendered based on the value

of showDialog.

Inside the dialog markup, we set a title, a button to close the dialog,

and some content within, using the modalTitle and modalText variables

we created at the start of the demo. We then round out the demo with

some basic styling to set elements such as animation and the background

for the modal dialog.

Okay – let’s move on: at this point, we now have a working component,

so we need to test it. Let’s hook it into Storybook to see how it works before

adding a couple of variants later in this chapter.

Chapter 5 Creating Notification Components

155

�Adding to Storybook
Adding a component should by now become a familiar process – granted,

each component may require some tweaks to allow it to run, but the basic

process is the same.

In this instance, we’ll add two variants: one will display the modal

closed when first rendered, and the other will display the modal without

any background. Let’s dive in and look at the steps involved in more detail.

ADDING TO STORYBOOK

To get our Dialog component working in Storybook, follow these steps:

	1.	F irst, go ahead and create a new file, then add this line to

import our Dialog component into Storybook:

import Dialog from "./Dialog.svelte";

	2.	T his next bit should be very familiar by now – leave a line

blank, then add this block. As before, it sets up a default

template, adds a title, sets the component we want to use, and

defines the types of properties to expect:

export default {

 title: �"Garnet UI Library/Notification Components/

Dialog", component: Dialog,

 argTypes: {

 showDialog: { action: "boolean" },

 modalTitle: { action: "string" },

 modalText: { action: "string" },

 },

};

Chapter 5 Creating Notification Components

156

	3.	 With the initial configuration in place, we can now focus on

rendering our component. Skip a line, then add this block

in – it’s similar to previous examples, with only minor changes

to the title and properties being passed into the component:

export const Default = {

 component: Dialog,

 args: {

 showDialog: true,

 modalTitle: "Modal title",

 modalText: "Click on the X to close me",

 },

 parameters: {

 docs: {

 story: {

 height: "300px",

 width: "300px",

 },

 },

 },

};

	4.	S ave the file as Dialog.stories.js, then close the file.

	5.	 We need to add a documentation file for our users, so for this,

extract a copy of Docs.mdx from the code download, then drop

it into the Dialog folder.

	6.	 We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Closed On Open link

under Dialog on the left to display the variant we just created,

as shown in Figure 5-6.

Chapter 5 Creating Notification Components

157

Figure 5-6.  Displaying our Dialog alert component

Why do I love what I see but still feel hungry at this point? In the words

of the great 1968 movie, Oliver!, “…please, can I have some more…?” Okay,

enough with the puns, methinks – let’s keep things going and add a couple

of variants into the mix.

�Creating Variants
Adding the variants for this component will seem like a walk in the park

now that we have the basics in place – it’s just a matter of changing a

couple of properties!

It makes it super easy to create new variants, although it does make

it incumbent on us to ensure we build in the options beforehand. I know

this won’t necessarily happen from the get-go in reality, but hey – code

Chapter 5 Creating Notification Components

158

development is about iterating, so we can always add them in later…

Okay – on that note, let’s go ahead and add those extra variants in now, as

part of the next exercise.

CONSTRUCTING THE VARIANTS

To add our extra variants, follow these steps:

	1.	F irst, go ahead and open Dialog.stories.js, then scroll

down to the bottom of the page.

	2.	M iss a line, then add this code for our first variant:

export const ClosedOnOpen = {

 component: Dialog,

 args: {

 showDialog: false,

 modalTitle: "Modal title",

 modalText: "This modal is closed on launch",

 },

 parameters: {

 docs: {

 story: {

 height: "300px",

 width: "300px",

 },

 },

 },

};

	3.	 We also need to add the code for the second variant – miss a

line, then add this block. It will look very similar to the previous

one, as we only need to change a couple of properties to create

this variant:

Chapter 5 Creating Notification Components

159

export const NoBackground = {

 component: Dialog,

 args: {

 showDialog: false,

 showBackground: false,

 modalTitle: "Modal title",

 modalText: "This modal doesn't show a background",

 },

 parameters: {

 docs: {

 story: {

 height: "300px",

 width: "300px",

 },

 },

 },

};

	4.	N ext, we need to update the documentation file. Crack open

Docs.mdx from the Dialog folder, then scroll to the end and

add these lines:

ClosedOnOpen

This state shows the Dialog closed, when launched:

<Canvas of={DialogStories.ClosedOnOpen} />

NoBackground

This state shows the Dialog displayed without a

background:

<Canvas of={DialogStories.NoBackground} />

Chapter 5 Creating Notification Components

160

MDX is space-sensitive, so please add the code as shown above;
otherwise, it might not appear correctly in the browser!

	5.	S ave and close any open files. We have everything in place, so

let’s test it! Switch to a Node.js terminal session, then set the

working folder to our garnet project area.

	6.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Closed On Open link

under Dialog on the left to display the first variant we created,

as shown in Figure 5-7.

Figure 5-7.  The first variant for the Dialog component

	7.	G o ahead and click the No Background link under Dialog on the

left. We should see our second variant if all is well, as shown in

Figure 5-8.

Chapter 5 Creating Notification Components

161

Figure 5-8.  The second variant for the Dialog component

Perfect – that’s the first iteration of our Dialog component, which is

done and ready for use. Adding the two variants was easy enough; we

inserted two stories and changed the parameters passed to each story. You

will notice that we’ve also used the parameters block again to resize the

canvas in Storybook – this was necessary as our dialog is a little too large to

display without this change! As before, this only affects Storybook and will

not be an issue when rendering in normal code.

Okay – we’re almost done with creating components for the

Notifications part of our library; before we move on to the next category,

there is one more we’ll develop. This next component might seem an

intriguing choice for some, but it does notify people – and you have to

have one in your toolkit at some point! I’m talking about the Tooltip

component – over the next few pages, we will develop our own version for

the library.

Chapter 5 Creating Notification Components

162

�Creating the Tooltip Component
The ubiquitous tooltip has been around for years – it’s one of those

components that just works. It’s not meant to offer anything outrageously

different or complex, but it is still valuable as a tool for our toolbox.

This time, though, we’re not going to use a standard HTML5 element

like <dialog> (primarily as one doesn’t exist for tooltip), but, instead, build

our component from scratch. We’re also not going to create a standard

Tooltip component, but one we might use to help guide visitors through

our site.

For example, if we had to ask age (for age-restricted sites, such as

breweries), we could explain why we need the information. It is a little

more complex, but most of the code required is standard HTML – let’s dive

in and take a look.

BUILDING THE TOOLTIP COMPONENT

To set up our Tooltip component, follow these steps:

	1.	F irst, create a new folder called Tooltip at the root of the \

components\src\lib folder.

	2.	N ext, crack open a new file and add this code – we’ll start

with importing the fade function from Svelte, creating a few

variables for export, and setting three internal variables for use

within the component:

<svelte:options customElement="garnet-tooltip" />

<script>

 import { fade } from "svelte/transition";

 export let id = "tooltip";

 export let label;

 export let tip;

Chapter 5 Creating Notification Components

163

 export let timeout = "400";

 export let showHTML = false;

 let active = false;

 let enterTrigger;

 let leaveTrigger;

	3.	 We still need to add the second half of our script. For this, leave

a line blank and then add this code. We have four functions that

take care of when the mouse or keyboard is used – the first two

are the equivalent of onMouseEnter and onKeyboardDown:

 function handleKeydown(e) {

 if (e.key === "Escape") {

 active = false;

 e.target.blur();

 }

 }

 function handleMouseEnter() {

 enterTrigger = setTimeout(() => {

 active = true;

 }, parseInt(timeout, 0));

 }

	4.	 Leave a line blank, then add the remaining two functions – they

deal with onMouseLeave and handling interaction:

 function handleMouseLeave() {

 if (enterTrigger) {

 clearTimeout(enterTrigger);

 enterTrigger = null;

 }

 leaveTrigger = setTimeout(() => {

 active = false;

 }, parseInt(timeout, 0));

 }

Chapter 5 Creating Notification Components

164

 function handleInteraction() {

 if (leaveTrigger) {

 clearTimeout(leaveTrigger);

 leaveTrigger = null;

 }

 }

</script>

	5.	 We can now add the markup for our component – much of this

standard HTML markup, but it does include some Svelte tags.

We’ll do it in two sections – first, leave a new line blank, then

add this code:

<div class="garnet-tooltip">

 <div>

 <button

 aria-describedby={id}

 type="button"

 class="trigger"

 on:click={() => (active = true)}

 on:keydown={handleKeydown}

 on:mouseenter={handleMouseEnter}

 on:mouseleave={handleMouseLeave}

 >

 ?

 </button>

	6.	I mmediately after the previous block, add the remaining code

for our markup:

<div aria-hidden={!active} {id} role="tooltip" aria-

label={label}>

 {#if active}

 �<!-- svelte-ignore a11y-no-static-element-

interactions -->

 <div

Chapter 5 Creating Notification Components

165

 transition:fade

 class="content"

 on:mouseenter={handleInteraction}

 on:mouseleave={handleMouseLeave}

 >

 {#if showHTML}

 {@html tip}

 {:else}

 {tip}

 {/if}

 </div>

 {/if}

 </div>

 </div>

</div>

	7.	F or the last part of this component, we need to style it – we

only need a handful of styles, so leave a line blank and add

these rules:

<style>

 .garnet-tooltip {

 position: relative;

 z-index: 2;

 }

 .trigger {

 padding: 0;

 margin: 0;

 width: 19px;

 height: 19px;

 line-height: 15px;

 font-size: 17px;

 text-align: center;

 background-color: transparent;

Chapter 5 Creating Notification Components

166

 border-radius: 50%;

 border: 3px solid #733635;

 color: #999999;

 cursor: pointer;

 font-weight: bold;

 }

 .content {

 all: initial;

 position: absolute;

 left: 0;

 top: 100%;

 width: 300px;

 margin-top: 10px;

 padding: 10px;

 border-radius: 8px;

 box-shadow: rgba(0, 0, 0, 0.24) 0 3px 8px;

 font-size: 14px;

 font-family: Arial, Helvetica, sans-serif;

 }

 .trigger:focus {

 outline: 2px solid #000000;

 }

 [role="tooltip"]:empty {

 display: none;

 }

</style>

	8.	S ave the file as Tooltip.svelte, then close the file.

Excellent – we have our component in place: the next task is to try

it to make sure it works! As before, we’ll work through adding it to our

Storybook instance. Before we get to that, let’s take a moment to review

Chapter 5 Creating Notification Components

167

the code changes made – most of it should be self-explanatory, but some

interesting Svelte techniques within the code are worth exploring in

more detail.

�Understanding What Happened
As components go, this is probably one of the more complex components

to put together for our library – it’s a real mix of HTML markup and Svelte

script! Most of it hangs around exported variables and some reasonably

standard markup.

We created our file before adding those exported variables, such as

showHTML, label, and id. At the same time, we also set some internal

variables for use within our component. Next, we added four event

handlers to respond to mouse events – handleMouseEnter/Leave,

handleKeyboardDown, and handleInteraction – which fire when triggering

or exiting a tooltip. Notice that we define a value for setTimeout (and its

partner, clearTimeout); these add a short delay before triggering the tooltip.

With the script functionality out of the way, we then turned our

attention to the markup; it looks a little complex at first, but in reality, it is

just a set of nested #if…/else statements. The inside one determines if we

want to show rendered HTML, while the parent if block will control the

tooltip display if active is set to true.

While most of the rest of the code is standard HTML, there are a couple

of interesting Svelte keywords in use. The first one is transition:fade (in

the nested div statement) – this shorthand defaults to a delay of 0, duration

of 400ms, and an easing value of linear. We also have two event handlers

using the Svelte on:… format; these hook up to the handleMouseEnter and

handleMouseLeave handlers, respectively. The third keyword of note is @

html, which we use in rendering the HTML markup. This keyword escapes

any markup we provide but does not sanitize it – that’s something we have to

do as developers! We finish the component with some basic styling so it will

at least look presentable when displayed in a browser.

Chapter 5 Creating Notification Components

168

�Adding the Component to Storybook
You should hopefully know the drill by now – it’s time to test our

component!

As with other components, we’ll add the now-familiar default

template to render a preset version of the Tooltip out of the box. For the

variant (which will come shortly), we will add a story to Storybook that

displays rendered HTML in the tooltip. Let’s start by setting up the default

instance of our Tooltip component in Storybook.

ADDING TO STORYBOOK

To get our Tooltip component working in Storybook, follow these steps:

	1.	F irst, go ahead and create a new file, then add this code – as

before, we have a reasonable chunk to add. Let’s start with

the initial <script> block to import the component and

documentation, along with some functions from Storybook and

a test function for the button we will use in our example:

import Tooltip from ". /Tooltip.svelte";

	2.	 With the initial configuration in place, we can now focus on our

component – as before, we first need to add a template. Skip a

line, then add this block in – it’s similar in structure to previous

examples but adapted to suit our component:

export default {

 �title: "Garnet UI Library/Notification Components/

ToolTip", component: Tooltip,

 argTypes: {

 �tip: '<p>This is an informational tooltip - to learn

more click here</p>',

 showHTML: false,

Chapter 5 Creating Notification Components

169

 timeout: "400",

 label: "more info",

 },

 parameters: {

 docs: {

 story: {

 height: "120px",

 },

 },

 },

};

	3.	 We can now render our component. For this, we will create a

default object for our story. Go ahead and add this block:

export const Default = {

 args: {

 �tip: '<p>This is an informational tooltip - to learn

more click here</p>',

 showHTML: false,

 timeout: "400",

 label: "more info",

 },

};

	4.	S ave the file as Tooltip.stories.svelte, then close

the file.

	5.	 You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of Docs.mdx from the code download and then drop it

into the Tooltip folder.

	6.	 We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

Chapter 5 Creating Notification Components

170

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default link under

Tooltip on the left to display the variant we just created, as

shown in Figure 5-9.

Figure 5-9.  Displaying the Tooltip component in Storybook

Great – we should now have our Tooltip component displayed in

Storybook! It is a valuable addition to our library and one we should

be able to expand in the future; we might want to control where the

tip displays, for example. However, that’s for another time –let’s take a

moment to review the code changes before cracking on with the next

component.

�Exploring the Code Changes
Adding our Tooltip component will be a walk in the park – we’ve added a

few components already, which all use the same process, so adding Tooltip

would not have been any different!

To get us started, we created our story file before adding the now-usual

import for our component. We then set up a default function, which acts

as our template without overriding specific variables such as title or text. In

Chapter 5 Creating Notification Components

171

this block, we provided the title for our story (which acts as the navigation

in Storybook) and an argTypes block with entries for showHTML, timeout,

and label.

You will see that I’ve also added the same parameters block as in
previous examples (albeit with a different height value) – we have
the same issue as before, where our demo is just a little too large for
Storybook’s default canvas size!

Next, we then dropped in an exported object for Default – this is to

show users what is available out of the box, changing too many settings.

Remember that although we use default and Default, they are technically

two separate items! The former is the default setup that fills in gaps and

sets what types of values to expect, while the latter is the starting view

in Storybook before we add any variants. You will see that, here, we’ve

provided values for both – the former really should be updated to show the

value type (i.e., Boolean) and not the value itself.

With all that done, all that remained was to save and close the file,

then run up Storybook in a browser so we could preview the results and

make sure everything rendered as expected. We can now move on and add

variants – I have two in mind, so let’s dive in and see what we need to do as

part of the next demo.

�Creating a Variant
Throughout the last few chapters, we’ve created a host of different variants

for our components – in most (if not all) cases, we’ve added various

properties that we can change, such as iconName (Breadcrumbs) or step

(for the Slider component).

Chapter 5 Creating Notification Components

172

However, there is something we need to be mindful of when creating

our Tooltip variant – did you spot what this might be? There’s a big clue in

Figure 5-8: Notice how we were rendering raw HTML? There is a reason

why we will need to be careful here; I’ll come back to this shortly, but for

now, let’s look at setting up that variant in Storybook.

CONSTRUCTING THE VARIANT

To add a variant for the Tooltip component, follow these steps:

	1.	F irst, go ahead and crack open Tooltip.stories.js – scroll

down to the bottom of the file, then add this block:

export const CustomHTML = {

 args: {

 �tip: '<p>This is an informational tooltip with custom

markup - to learn more click

here</p>',

 showHTML: true,

 timeout: "300",

 label: "more info",

 },

};

	2.	S ave and close any files open.

	3.	 We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

	4.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Custom HTML link

under Tooltip on the left to display the variant we created, as

shown in Figure 5-10.

Chapter 5 Creating Notification Components

173

Figure 5-10.  Displaying the custom version of our Tooltip component

Excellent – we’ve completed our Tooltip component and tested it:

it’s now ready for use. If you were expecting more code, I’m sorry to

disappoint – earlier versions of Storybook might have meant adding a few

more lines, but not in Storybook 8!

On that note, it brings us to the close of this chapter, where we move on

to the next batch of components to add…but before we do so, let’s quickly

cover the changes made in this last demo.

The only change we had to effect was to change showHTML from false

to true; this triggers the showHTML check in our code, allowing us to use

HTML. The rest of the code is the same, albeit with a slightly different

result; you will notice, though, that it renders the markup correctly this

time, not as plain text in our demo.

�Summary
No one likes getting more notifications than necessary – getting the

balance right is essential. Otherwise, we are likely to end up irritating our

customers! We still need to have something available, and while getting

the balance right is something that only comes with testing, we can at least

ensure we have suitable components available for use.

Chapter 5 Creating Notification Components

174

To help with that, we’ve created three components for our library;

each has its respective page in our Storybook instance. It brings us up

to the penultimate component group in our library, with only one more

component category to add to our library! Before we build the final

category of components, let’s take a moment to review what we have

learned in this chapter.

As we saw in the previous chapter, we focused on adding each

component to our library and setting it up in Storybook. We started with

creating the Alert trail component before swiftly moving on to building

the more complex Dialog component. Both follow the same principle of

displaying a notification, but Alert works one way, whereas we can use

Dialog to develop something that allows for more interaction.

We then explored setting up a Tooltip component as this category’s

third and final tool. For this one, we were a little more limited in what we

could offer – tooltips can only display information and allow us to click on

links. This constraint means we only have one variant, which is to render

custom HTML properly; that said, we can always look at styling options for

different tooltip designs in future iterations!

Okay, let’s crack with creating the final batch of components: the Grids

group. It will depart a little from the usual practice as we’re only going to

make a single component this time! But this component will be flexible

and allow us to create different layouts. Intrigued? Stay with me, and I will

explain all in the next chapter.

Chapter 5 Creating Notification Components

175© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_6

CHAPTER 6

Creating Grid
Components
So far, we’ve created a reasonably sized collection of components, all of

which we’ve added to Storybook and checked that they run as expected

in a browser. We have two more sets of components to create before we

update the documentation in Chapter 8 – over the next few pages, we’ll

look at the penultimate batch of components, which are…an Image Grid.

Hold on a moment. That’s just one component, right? Well, yes – and

no: it is one component as such, but due (in part) to how Web Components

work in Svelte, we need to make it from no less than three components!

I’m sure you’re probably a little confused by now – don’t worry; we will

still use the same approach as before, but this time, I’ll show you how, with

a bit of planning, we can bring all three components together to create a

starting point for our Image Grid component. Let’s begin with setting the

scene for the construction of this component.

�Determining the Approach
When I started researching for this chapter, I had initially planned to

create a layout grid component (or set of components). However, this soon

proved too large for this book’s scope – it would have meant subsuming

https://doi.org/10.1007/979-8-8688-1180-7_6#DOI

176

a large part of the CSS Grid or CSS Flexbox layout concepts, which could

almost form a book itself! So, how can I scale this back to something more

manageable?

I was still keen to use native CSS standards where possible and not use

third-party libraries to help keep the component light and dependency-

free (so to speak). One component came to mind that fitted the bill –

what about an Image Grid? We can use these in ecommerce sites to

display products; this is a perfect fit for using CSS Grid to build a working

component. So, where to start?

To keep things light, I decided to split our component into three

smaller ones – in the middle will be a Cell component, to house our

content. We’ll wrap this in a Grid component, which will build out a grid

of cells, and then wrap everything in a container, which will be our Table

component. As it so happens, this will help us when it comes to displaying

it in Storybook. Ideally, we would use a template in Storybook, but its

current documentation isn’t solid in this area. To get around it, we can

render the Table as a single component in Storybook, which will then call

the other two when needed.

With this in mind, let’s begin with building the first of our three

components – the Table component – which will act as our container for

the ImageGrid.

�Building the Table Component
As always, we must start somewhere – we know Storybook doesn’t make

it easy to display composite components in the same format as individual

ones, so it makes sense to create our container component for the

Image Grid.

This first component will be a relatively lightweight one, to begin with,

but one I am sure we can develop in the future – along with the two child

components we will create later in this chapter. Let’s dive in and look at

what is involved in more detail.

Chapter 6 Creating Grid Components

177

BUILDING THE TABLE COMPONENT

To construct our table component, follow these steps:

	1.	 First, create a new folder called Table at the root of the \src\
lib\components folder.

	2.	N ext, open a new file and add this code – save it as Table.
svelte. We’ll start with setting the svelte:options tag,

followed by importing two components and a bunch of variables

for export:

<svelte:options customElement="garnet-table" />
<script>
 import Grid from "./Grid.svelte";
 import Cell from "./Cell.svelte";
 export let columnCount = 4;
 export let rowCount = 4;
 export let itemCount = 0;
 export let border = "";
 export let displayImages = false;
 export let label = "Test Label";
 export let imageLabel = "untitled";
 export let displayImageLabels = false;
</script>

	3.	N ext, we have the markup – first, miss a line, then add this

block of code:

<h1>{label}</h1>
<Grid columns={columnCount} rows={rowCount} {border}>
 {#each { length: itemCount } as _, i}
 <Cell
 {displayImages}

Chapter 6 Creating Grid Components

178

 imageLabel={imageLabel}
 displayImageLabels={displayImageLabels}
 />
 {/each}
</Grid>

	4.	 We have one more block to add – miss a line, then add this

style rule:

<style>
 h1 {
 font-family: Arial, Helvetica, sans-serif;
 border-bottom: 0.8px solid rgba(38, 85, 115, 0.15);
 }
</style>

	5.	S ave the file and close it.

That was a short exercise – it doesn’t look like it does much at face

value! It still performs an important role, though – to understand how it fits

into the larger picture, let’s take a moment to review the code changes in

more detail.

�Understanding What Happened
Although this last exercise was brief, it serves an important role. You may

remember my earlier comments about Storybook not making it easy to

host a component made up of subcomponents, such as ours. In this case,

we managed to get around it by using the Table component as a container

for everything else. We may use the Cell and Grid components too, but as

far as Storybook is concerned, we host everything inside Table.

Chapter 6 Creating Grid Components

179

In terms of code, there is very little going on in this component – we

set the now-familiar svelte:options tag before importing both the Grid

and Cell components into our component. We then set eight variables for

export, including columnCount, rowCount, and border.

The (other) important part of this component, though, is in the call

to <Grid...> – here, we pass into it values for columnCount (number of

columns), rowCount (number of rows), and border (dictates if one should

be displayed). We then iterate through itemCount; for each instance of

itemCount, we call the Cell component and tell it whether it should display

placeholder images when viewing the component in our browser.

Okay – let’s move on: we’ve referenced the Grid and Cell components

in our last demo, but the Table component won’t work yet, as neither Cell

nor Grid exists! That’s easy to fix: let’s dive in and look at setting up both;

we’ll start with Grid as the next component.

�Creating the Grid Component
With the container component now complete, we can focus on the second

component for this chapter – the Grid component. It will act as a container,

too, but this one reformats each cell into the correct order based on what

we set using Flexbox. Setting up this component is a little more complex

than the previous one, so let’s dive in and take a look.

CONSTRUCTING THE GRID COMPONENT

To set up our Grid component, work through these steps:

	1.	 First, create a new file called Grid.svelte inside the \src\
lib\components\Table folder.

Chapter 6 Creating Grid Components

180

	2.	N ext, crack open a new file and add this code – we’ll start with

setting the svelte:options tag, followed by setting four

variables for export and two for internal use in the component:

<svelte:options customElement="garnet-grid" />
<script>
 export let columns = 2;
 export let rows = 4;
 export let border = "1px solid #000000";
</script>

	3.	N ext, we need to add the markup for our component – skip a

line, then add this code:

<div
 style="
 grid-template-rows: repeat({rows}, 1fr);
 grid-template-columns: repeat({columns}, auto);
 border: {border};
 "
>
 <slot />
</div>

	4.	T o finish off the component, let’s add some styling – we’re

hard-coding most of the properties for now, but with the

intention that if we develop the component further, we can

make them dynamic:

<style>
 div {
 font-family: Arial, Helvetica, sans-serif;
 display: grid;
 grid-column-gap: 10px;
 grid-row-gap: 5px;

Chapter 6 Creating Grid Components

181

 grid-auto-flow: column;
 border: 1px solid #000000;
 }
</style>

	5.	G o ahead and save and close the file – the changes for this

component are complete.

Excellent – that’s two components down, one left to complete our

Image Grid! We base most of this component around standard HTML

markup and CSS styling, but we’ve used a couple of exciting code features

from Svelte. Let’s review our code changes to understand how they work in

more detail.

�Breaking Apart the Code
There is one thing I love about Svelte – we could have spent time creating

an elaborate Grid component, but, instead, Svelte allows us to use existing

techniques, such as CSS Grid, with very little need for extra coding to make

it all work!

To build our Grid component, we began first by adding the now-

familiar svelte:options tag before creating three variables for export:

columns, rows, and border. These will take care of the number of columns

we should display, the number of rows that should be present, and

whether our table should have a border.

The key part of this component comes next – most of the hard work

is done using CSS styling, which makes it superefficient. We set a <div>

element to which we apply the CSS Grid grid-template-rows and grid-
template-columns attributes. We use these to define the number of rows

and columns to display on the page, using 1fr to set cells of equal spacing

in each case. At the same time, we also set some typical CSS styling that

Chapter 6 Creating Grid Components

182

you might see when using CSS Grid elements – such as display: grid or

grid-row-gap. These are hard-coded for now, but there is no reason why

we might not want to make them more dynamic sometime in the future.

You will also notice the presence of <slot /> – this we use to
display whatever HTML or text is rendered inside the call to Grid
when using the component.

Right, let’s crack on – we have one more component to create, which

is Cell.

�Creating the Cell Component
At this stage, we now have two of the three components in place – there is

one more component left to add: the Cell component.

This one isn’t as complex as Grid – here, we need to create a container

representing the cell of our grid and determine if we want to show a

placeholder image or leave it blank.

Admittedly, the former is something we might want more control

over, but that’s the beauty of creating a component – it’s something we can

develop further at a later date. For now, though, let’s focus on building the

base cell component, which we will do as part of the next exercise.

CONSTRUCTING THE CELL COMPONENT

We’ve reached the third and final component for this chapter – to set it up,

follow these steps:

	1.	 First, crack open a new file, saving it as Cell.svelte in the \
src\lib\components\Table folder.

Chapter 6 Creating Grid Components

183

	2.	N ext, go ahead and add this code to the top of that file:

<svelte:options customElement="garnet-cell" />
<script>
 export let displayImages = false;
 export let imageLabel = "untitled";
 export let displayImageLabels = false;
</script>

	3.	 We need to add markup for our component – miss a line after

the code from step 2, then add this:

<div class="cell">
 {#if displayImages}
 <div class="container">
 �<img src="https://loremflickr.com/320/240/

camera" alt="placeholder" data-
testid="placeholderImage" />

 {#if displayImageLabels}
 <div class="description">
 {imageLabel}
 </div>
 {/if}
 </div>
 {:else}
 <slot />
 {/if}
</div>

	4.	A s the last part, let’s finish our component off with some

styling:

<style>
 �.cell { border: 1px solid #000000; min-height:
100px; }

Chapter 6 Creating Grid Components

184

 .container { position: relative; }
 .description {
 padding: 10px 0;
 position: absolute;
 bottom: 0%;
 left: 50%;
 transform: translate(-50%, 0%);
 background-color: rgba(0,0,0, 0.7);
 color: #ffffff;
 font-size: 16px;
 width: 100%;
 }
 span { padding-left: 10px; }
 img { display: block; width: 100%; height: auto; }
</style>

	5.	S ave the file and close it – we have completed all necessary

changes for now.

Perfect – we have everything in place, ready to link into Storybook!

Although this last component wasn’t substantial, we can still gain some

valuable tips from this code, so let’s review it in more detail before moving

on to the next stage.

�Understanding What Happened
In that last demo, we created the Cell component, which means we now

have all the constituent elements we need for our ImageGrid component.

This final component was a little more involved than the others – to

construct it, we first added the usual svelte:options tag before setting

three variables for export, namely, displayImages, imageLabel, and

displayImageLabels.

Chapter 6 Creating Grid Components

185

We then set a div element as a container before using displayImages

to determine if the component should display markup for a placeholder

image. If so, we include an image that uses the LoremFlickr website to

pick a random image as our placeholder; I’ve set it to use the camera as

a search term, but we could change it to something else if required. The

critical thing to note is that if a placeholder image is not needed, we use

<slot /> to render whatever markup is between the component tags.

At the same time, I use a similar process to determine if we should also

display a label – this we control with the displayImageLabels property,

which determines whether to render the markup on-screen.

Our next task is to add our new ImageGrid component to Storybook so

we can see how it looks in practice – before we do that, there is one small

point I want to cover: displayImages.

You will see from the cell component markup that we’ve added an

option to display placeholder images or our own but have not yet used

it. The reason for this is that we will use it in Storybook when we come to

add a variant later in this chapter. It’s all about preparation and thinking

ahead – as you will see, it makes adding our displayImages variant

much easier!

�Adding to Storybook
By now, I suspect this next part should be somewhat familiar to you –

we’ve added all of our components (except one) to Storybook, so there

isn’t likely to be anything too new for our next task. We’re now at a stage

where we can test the Image Grid component. As before, let’s crack on

adding an instance to Storybook so we can prove it works as we expected.

Chapter 6 Creating Grid Components

186

HOOKING INTO STORYBOOK

Although we’ve created a component, we won’t see how it works until we get

it into our demo. To do so, follow these steps:

	1.	 First, create a new file, then add this code – as before, we have

a reasonable chunk to add. Let’s start with the initial block to

import the component and documentation, along with some

functions from Storybook:

import Table from "./Table.svelte";

	2.	A s in previous demos, we also need to add a template – go

ahead and miss a line, then add this default declaration:

export default {
 title: "Garnet UI Library/Grid Components/Grid",
 component: Table,
 label: "Example ImageGrid",
 argTypes: {
 val: 1,
 min: 0,
 max: 100,
 step: 10,
 ticks: false,
 },
 parameters: {
 docs: {
 story: {
 height: "100px",
 },
 },
 },
};

Chapter 6 Creating Grid Components

187

	3.	 We can now add the Story to our file, which will render the

component on the page (largely) out of the box:

export const Default = {
 args: {
 columnCount: 1,
 rowCount: 4,
 border: "none",
 displayImages: false,
 itemCount: 12,
 label: "Example Grid",
 },
};

	4.	S ave the file as Table.stories.js in the Table folder, then

close the file.

	5.	 You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of Docs.mdx from the code download and then drop it

into the Table folder.

	6.	 We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default link under

Table on the left to display the variant we created, as shown in

Figure 6-1.

Chapter 6 Creating Grid Components

188

Figure 6-1.  Our newly created Image Grid component in Storybook

Great – we now have a working Image Grid component available in our

component library! We’ve covered a good chunk of code in this last demo,

so while most of it will be similar to what we’ve already used earlier in the

book, let’s take a quick look through it as a bit of a refresher.

�Exploring in Detail
By now, you will hopefully be familiar with most of the steps we’ve used

to add our component to Storybook – using the same format may seem a

little repetitive, but the flip side is that it does make it quicker to replicate

for other components. In our case, we set up an instance of the Storybook

page for the ImageGrid component, even though we’re using Table as

the main container for our component (and specify it as such in the

configuration).

Chapter 6 Creating Grid Components

189

We added a single import, namely, the Table component, and then

created a default template to render the component (largely) out of the

box, so you can see what it will look like without too many changes!

You will notice that I’ve had to set the height: parameter again, as we

have done before: Storybook’s canvas is too short to display all of the

component in our desired format. All of the values we pass are arbitrary –

getting a feel for what it will look like when rendered on-screen is more

important.

�Adding a Variant
We now have our ImageGrid displayed in Storybook – it looks good and

resizes well (or at least within the confines of Storybook). The trouble is it

seems a little…well, plain. Can we do anything about this?

As it happens, yes, we can – you’ve probably guessed it: we could add a

variant at this point! I think two would work well here – what about adding

a placeholder image and maybe a label?

ADDING A VARIANT

To add in both an image and a label will require some changes to the story we

set up in Storybook – to see what needs changing, follow these steps:

	1.	 First, crack open Table.stories.js from within the Table

folder – take a copy of the entire "Default" story block and

paste it below, leaving a line blank between each story. Amend

the properties passed to the story, as shown below:

export const WithPlaceholderImages = {
 args: {
 columnCount: 1,
 rowCount: 4,

Chapter 6 Creating Grid Components

190

 border: "none",
 displayImages: true,
 itemCount: 12,
 displayImageLabels: false,
 label: "Example Grid with Placeholder Images",
 },
};

	2.	N ext, leave a line blank and do the same with this block:

export const WithImagesAndLabels = {
 args: {
 columnCount: 1,
 rowCount: 4,
 border: "none",
 displayImages: true,
 itemCount: 12,
 displayImageLabels: true,
 imageLabel: "This is a test image",
 �label: "Example Grid with Placeholder Images and

Labels",
 },
};

	3.	S ave the file, then close it.

	4.	 We need to test the change – to do so, revert to a Node.js

command prompt, then make sure the working folder is set to

our project area if it is not already there.

	5.	A t the prompt, type npm run storybook, then press Enter.

Chapter 6 Creating Grid Components

191

	6.	S torybook’s development server should fire up – if all is

well, we can preview the results of our change at http://

localhost:6006/. Find the Grid entry on the left, then click Image

Grid ➤ With Placeholder Images or With Images and Labels to

view the new variants (Figures 6-2 and 6-3).

Figure 6-2.  The new Placeholder Images variant showcased in
Storybook

Figure 6-3.  The new Placeholder Images and Labels variant
showcased in Storybook

Chapter 6 Creating Grid Components

192

This change looks a little more enticing, wouldn’t you agree? There will

be cases where we aren’t ready to display our images, so having something

in place gives a little more visual interest.

As you will have seen, we’ve used an image placeholder service, so

images are not instant – this would be a perfect candidate for updating to a

fetch feature (more on this later). For now, though, let’s concentrate on the

code changes we made – most of it should be self-explanatory by now, but

it’s still worth reviewing the code in more detail.

UNDERSTANDING HOW IT WORKS

This last demo has to be one of the simplest we’ve done – it might seem a

little long at seven steps, but in reality, we only need to do one thing: copy and

rename the story! A lot of this comes from a little careful preplanning; it shows

that thinking ahead makes a repetitive task more straightforward to complete.

Even though we only made one change, it’s still an important one – we

added two new instances of a story block, but this time, we changed the

displayImages property to true for both and displayImageLabels to

true for the second one only. It tells the component to render placeholder

images from the LoremFlickr service we added earlier, along with the labels

in an overlay below each picture for the second variant. These were the only

changes we needed to make – we finished by running the usual steps to

preview the results in our browser.

�Summary
Adding the ImageGrid/Table components marks a significant milestone –

we only have one set of components left to set up in our library and make

available in Storybook! It might have taken a while, but we are indeed

Chapter 6 Creating Grid Components

193

there. Or are we? I’ll return to that question in a moment, but we’ve

covered some important material in this chapter, so let’s pause to review

what we have learned.

We briefly looked at how we would approach this particular group. We

noted that Storybook’s documentation doesn’t make things easy for us, so

we created an ImageGrid component as a basis for the subcomponents in

this chapter.

In total, we created three components based on the CSS Grid

framework supported natively in most browsers, which makes them more

lightweight and easier to develop. We started first with Table, which acts as

our entry point for Storybook, and followed this with Grid, then Cell – all

three used minimal markup, with styling that you might typically use when

styling with CSS Grid.

We then rounded off the chapter by looking at how to hook the

components into Storybook as the ImageGrid before adding a simple

variant to display placeholder images in our component.

Phew – almost all components are now up and running; what’s next?

We have one group left to add: animation components! If all goes well (and

I have no doubt it will!), we will add a Collapsible DropDown component,

an Animated ProgressBar, and a Switch component. Once all three of these

are in, we will finally have all our components in place: stay with me, and I

will take you through creating all three in the next chapter.

Chapter 6 Creating Grid Components

195© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_7

CHAPTER 7

Creating Animation
Components

To animate or not to animate, that is the question, your honor…

Some of you may recognize the (somewhat) modified quote, based on

the original in Hamlet, written by the famous bard himself, William

Shakespeare – it’s from Act 3, Scene 1, in case you’re wondering! English

literature aside, you might be wondering why I started with that modified

quote: there is a good reason for doing so. Let me explain.

When using animation in code – and Svelte is no different – we face that

perennial question: Should we animate or not animate? How much should

we animate? I’ll add to that by saying that if we want to use animation,

should we use JavaScript (in this case, Svelte), pure CSS, or a mix of both?

As I am sure you will know, there is no right or wrong answer: the most

straightforward answer is that “it depends.” It sounds like a cop-out, but

there is no right or wrong answer: the best rule of thumb is usually CSS

for simple animations and JavaScript for when you need more control or

create more complex effects. It gets more interesting if you use a cubic-

bezier-based animation (see https://www.cubic-bezier.com) or the new

linear() in CSS – the latter particularly looks like it should only be used in

JavaScript!

https://doi.org/10.1007/979-8-8688-1180-7_7#DOI
https://www.cubic-bezier.com

196

To learn more about the linear( ) function, head over to https://
developer.mozilla.org/en-US/blog/custom-easing-in-
css-with-linear/ for more details.

Fortunately, Svelte can use either – over the following few pages, we’ll

work through adding three more components to our library; one will use

Svelte-only animation, the second CSS, and the third will use both forms.

Let’s start by animating a progress bar as our next component.

�Animating a Progress Bar Component
Although our next component contains a fair chunk of code, there are

only two elements we can animate when working with progress bars – the

progress itself and any labels we use to indicate progress.

For this next demo, we’re going to steer away from using a native

<progress> element so we can insert text inside the bar – at the same time,

we’ll animate both the progress element (a div in our case) and that label,

using pure Svelte animation.

CREATING THE PROGRESS BAR COMPONENT

To see how we can animate our component, follow these steps:

	1.	 First, go ahead and create a new folder called ProgressBar at

the root of the \src\lib\components folder.

	2.	 We can now create our component – for this, crack open a new

file in your editor, then add the following code, which sets up

a bunch of declarations and imports two animation functions

from Svelte:

<svelte:options customElement="garnet-progressbar" />

Chapter 7 Creating Animation Components

https://developer.mozilla.org/en-US/blog/custom-easing-in-css-with-linear/
https://developer.mozilla.org/en-US/blog/custom-easing-in-css-with-linear/
https://developer.mozilla.org/en-US/blog/custom-easing-in-css-with-linear/

197

<script>
 import { cubicOut } from 'svelte/easing';
 import { tweened } from 'svelte/motion';

 export let progressAmt = 52;
 // export let precision = 0;
 export let tweenDuration = 400;
 export let animate = true;
 export let labelInside = true;
 export let labelTextOutside = "This is a test";
 export let easing = cubicOut;
 export let color = '#733635';

 const progress = tweened(0, {
 duration: animate ? tweenDuration : 0,
 easing
 });

 $: progress.set(Number(progressAmt));
</script>

	3.	N ext, leave a line blank, then add this markup – this takes care

of creating the progress bar, with the label inside or outside,

depending on the properties we set:

<div class="garnet-progressbar">

 <!-- Adds label inside progressbar -->
 {#if labelInside}
 <div class="labelInsideClass">
 �<div class="progressbar" style="width:

{$progress}%; background-color: {color}">

 {$progress.toFixed(precision)}%

 </div>

Chapter 7 Creating Animation Components

198

 </div>
 {:else}
 <div class="labelOutsideClass">
 �{labelTextOutside}

 {$progress.toFixed(precision)}%

 </div>
 �<div class="progressbar" style="width: {$progress}%;
background-color: {color}; height: 10px;"></div>

{/if}
 </div>

	4.	 We have one more block of code to add, which is the

styling – after all, we need to make sure our progress bar

looks somewhere near presentable! It won't win any style

awards – add these styles to get us started:

<style>
 .garnet-porgressbar {
 display: flex;
 flex-direction: column;
 font-family: Arial, Helvetica, sans-serif;
 }

 .progress {
 font-size: 14px;
 line-height: 20px;
 font-weight: 500;
 }

 .progressbar { border-radius: 9999px; }

Chapter 7 Creating Animation Components

199

 .labelInsideClass {
 display: flex;
 flex-direction: column;
 font-size: 12px;
 line-height: 16px;
 font-weight: 500;
 text-align: center;
 padding: 0.5rem;
 border-radius: 9999px;
 color: #000000;
 }

 .labelOutsideClass {
 display: flex;
 justify-content: space-between;
 margin-bottom: 1px;
 color: #000000;
 }
 </style>

	5.	 Save the file as ProgressBar.svelte in the ProgressBar

folder – the component is now built and ready for testing, which

we will do in the next demo.

Excellent – we have our core component ready for testing: we can

now progress to adding it to Storybook! Puns aside, this can now test our

component in Storybook! It is one of three components we will create for

this chapter, using a mix of animation principles; let’s take a moment to

explore how we set it up in more detail so we can get a feel for how the

animation works from Svelte.

Chapter 7 Creating Animation Components

200

�Exploring the Code Changes
At the start of this book, I made a promise to use native HTML elements

where possible – and in particular, HTML5 ones! You will notice that we’ve

not kept that promise for this component, but it’s with good reason: we

want to be able to put a label inside the progress bar, and the best way to

do it is to use the <div> elements we have used in our component.

So, how did we create our component? We started with setting the

now-familiar Web Component tag, using svelte:options and specifying

a name of garnet-progressbar as our customElement. Next, we imported

two animation functions from Svelte – cubicOut from svelte/easing and

tweened from svelte/motion. At the same time, we also created various

variables – progress, precision, and animate, to name but three – which

we will use within the component or when we render it in Storybook.

Moving on, we set a const called _progress, which gives a numerical

representation of where our progress is. This part is a little more complex,

as we use tweened to animate it; we only do this if animate is set to

true; otherwise, it is not animated. We then store this value in a reactive

statement (the $: line just below), forcing Svelte to update it every time the

value of progress changes.

The next block is our markup for the component – it looks complex,

but it will be easier to understand if you look at it as a sizeable conditional

{#if}...{:else}...{/if} block. Most of the code is standard HTML

markup, but we use the if…else… block to first check if labelInside

is true. If so, we put our progress value inside the bar; if not, we set it

outside, along with a span that contains the labelTextOutside text. We

finish the component with a set of basic styles – .garnet takes care of the

parent container, followed by progress for the text, .progressbar to style

the progress bar, and the two .label... classes that look after the text

displayed in the component.

Chapter 7 Creating Animation Components

201

�Adding to Storybook
We now have our progress bar component ready for testing, so our next

task is to add it to Storybook – we’ll create our usual Storybook file,

followed by a default fallback template and the first of several stories.

It’s no different from the other components we’ve already added to our

Storybook instance, so let’s crack on with our next demo.

ADDING TO STORYBOOK

To set up our progress bar component in Storybook, work through these steps:

	1.	 First, crack open a new file in your editor, then add these

imports:

import ProgressBar from "./ProgressBar.svelte";
import { fn } from "@storybook/test";
import { action } from "@storybook/addon-actions";

	2.	N ext, miss a line, then add this default fallback template, which

tells Storybook what properties to use if we don’t override any:

export default {
 �title: "Garnet UI Library/Animation Components/
ProgressBar",

 component: ProgressBar,
 argTypes: {
 disabled: { control: "boolean" },
 label: { control: "string" },
 oninput: { action: "changed" },
 },
 on: { change: fn().mockName("on-change") },
};

Chapter 7 Creating Animation Components

202

	3.	N ext, leave a line blank, then add this block of code – this

will be our Default story, which renders our component with

(largely) out-of-the-box properties:

export const Default = (args) => ({
 Component: ProgressBar,
 props: {
 ...args,
 labelTextOutside: "ProgressBar",
 disabled: false,
 color: "red",
 on: { change: fn().mockName("on-change") },
 },
});

	4.	 Save the file as ProgressBar.stories.js in the Alarm

folder, then close the file.

	5.	 You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of Docs.mdx from the code download and then drop it

into the Alarm folder.

	6.	 We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default link

under ProgressBar on the left to display the variant we created,

as shown in Figure 7-1.

Chapter 7 Creating Animation Components

203

Figure 7-1.  Our animated progress bar component

Perfect – granted, the choice of color is perhaps not one I would use,

but hey, it’s more to prove that we can choose what color we want to use

and not be limited to any particular choice!

It’s a shame we can’t see the animation run in print, so you’ll have

to believe me that it runs – in the meantime, let’s pause for a moment to

explore how the code hangs together and, in particular, the way we have

used animation to create our progress bar.

�Understanding the Changes Made

By now, you will hopefully be familiar with most of the steps we’ve used to

add our component to Storybook. I appreciate that using the same format

might bring a case of déjà vu, but practice makes perfect!

For this component, we first imported our component, followed by two

modules from Storybook – these we use to help render our component in

our Storybook instance. We then set our default fallback template to render

if properties are not otherwise provided before adding the Default story to

give us a feel for how the component will render (largely) out of the box.

To finish, we fired up Storybook before checking to ensure our component

rendered as expected in the browser.

Chapter 7 Creating Animation Components

204

�Adding Variants
We’ve now added our component to Storybook and seen it render as

expected – what’s next?

Well, it’s all good having a single instance of our component running,

but as I am sure you will appreciate from earlier demos, a component

only becomes useful if we can create different variants! Our progress

bar component is no different – for our next demo, I’ll take you through

modifying Storybook to show a new variant where the label sits outside the

component.

ADDING VARIANTS

To enable our variant, follow these steps:

	1.	 First, crack open ProgressBar.stories.js, then scroll to

the bottom – go ahead and add this code:

export const LabelOutside = (args) => ({
 Component: ProgressBar,
 props: {
 ...args,
 labelInside: false,
 labelTextOutside: "This is a test progress bar",
 disabled: false,
 color: "blue",
 on: { change: fn().mockName("on-change") },
 },
});

	2.	 Save and close the file – revert to a Node.js terminal prompt,

and make sure the working folder is set to our project area.

Chapter 7 Creating Animation Components

205

	3.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in

our browser at http://localhost:6006/. Click the Label

Outside link under ProgressBar on the left to display the variant

we created, as shown in Figure 7-2.

Figure 7-2.  A variant for our ProgressBar component

Excellent – we have our variant in place and working. Granted, it is

only one, but this is intentional: I want to see what you can come up with!

What variants do you think we could use here? Let me give you a couple of

examples as a starter for ten:

•	 The animation: We used cubicOut as one of the

animations, but how about choosing a different one?

•	 We’ve defined a height for our progress bar, but what if

we wanted a thinner (or even thicker) one?

•	 We set a single color for the background, but could we

adopt a striped background? It would require using

something like a repeating-linear-gradient()

function in CSS – could we create something abstract?

•	 It’s a little more complex, but what about setting a color

for the label text? If we have it inside the progress bar,

it should be light-colored, while outside, it could be

darker (or even black).

These are just some ideas I came up with – I’m sure you can think

of more! In the meantime, let’s take a moment to break apart the code

changes from that last demo to see how it all hangs together.

Chapter 7 Creating Animation Components

206

We added a new story, which we called LabelOutside. You may or may

not have noticed that we already included this entry in our Docs.mdx file,

similar to the one for Default. Inside this variant, we set labelInside to

false and labelTextOutside to a test label – this tells Storybook to switch

from showing the progress amount inside the bar to showing it outside the

component.

Okay – let’s crack on: it’s time to move on to our next component,

which will be an alarm. No – not something you might want to hurl halfway

across the room at some ungodly hour in the morning, but something

more delicate: a way to tell you if you’ve got a new message. Let’s dive in

and take a look in more detail.

�Creating the Alarm Component
We live in an age where so much is happening – dozens of jobs to do,

people to see, and places to go. It’s impossible to manage without some

form of notification; we’ve already covered some notification components

that would be a perfect tool.

However, there is one more we can add – what about an alarm? No –

I’m not thinking of something to wake you up in the morning (and yes,

we all need that), but something to tell you of a new message or alert.

We’re not going to create a static alarm but an animated one; it’s a perfect

opportunity to mix in a little animation from Svelte. Let’s take a look at

how, in the next demo.

BUILDING THE COMPONENT

To create our alarm component, follow these steps:

	1.	 First, go ahead and create a new folder called Alarm at the root

of the \src\lib\components folder.

Chapter 7 Creating Animation Components

207

	2.	 We can now create our component – for this, crack open a

new file in your editor, then add the following code, which

sets up some declarations and imports an animation function

from Svelte:

<svelte:options customElement="garnet-alarm" />

<script>
 import { scale } from 'svelte/transition'

 export let notifications = 26;
 export let label = "This is a test label";
 export let countColor = "#733635";
 export let countBackgroundColor = "#f4f4f4";
 export let filled = false;
 export let small = false;
</script>

	3.	M iss a line, then add this markup – this forms the basis of our

component:

<div class="garnet-alarm">
 <h3>{label}</h3>
 <div class="notifications">
 �<div class="count {small ? 'small': ''}" style="--

countColor: {countColor}; --countBackgroundColor:
{countBackgroundColor}">

 {#key notifications}
 {notifications}
 {/key}
 </div>

Chapter 7 Creating Animation Components

208

	4.	 The second part of the markup is a little more complex – this

looks after the markup for the bell SVG, and whether certain

properties will be set, based on what we provide to the

component:

 <svg
 �class="bell {small ? 'small': ''} {filled ?

'filled' : 'outline'} {notifications > 0 ?
'ring': ''}"

 xmlns="http://www.w3.org/2000/svg"
 viewBox="0 0 24 24"
 stroke-width="1.5"
 stroke="currentColor"
 >
 <path
 �d="M14.857 17.082a23.848 23.848 0

005.454-1.31A8.967 8.967 0 0118 9.75v-.7V9A6 6 0
006 9v.75a8.967 8.967 0 01-2.312 6.022c1.733.64
3.56 1.085 5.455 1.31m5.714 0a24.255 24.255 0
01-5.714 0m5.714 0a3 3 0 11-5.714 0"

 stroke-linecap="round"
 stroke-linejoin="round"
 />
 </svg>
 </div>
</div>

	5.	 With the basic markup in place, we can now focus on the all-

important styling. Leave a blank below the markup and then

add this style block – there is a fair bit to add, so we'll do it

in sections, starting with one for the title and the notifications

container:

Chapter 7 Creating Animation Components

209

<style>
 h3 {
 font-family: Arial, Helvetica, sans-serif;
 }

 .notifications {
 position: relative;
 font-family: Arial, Helvetica, sans-serif;
 }

	6.	N ext, add these rules – the first takes care of styling the

number of notifications on display:

 .notifications .count {
 position: absolute;
 left: 120px;
 top: 5px;
 display: grid;
 place-content: center;
 padding: 16px;
 font-size: 20px;
 font-weight: 700;
 color: var(--countColor);
 background-color: var(--countBackgroundColor);
 border-radius: 50%;
 width: 22px;
 }

	7.	 For this component, we're using a mix of CSS and Svelte

animation – this next block is a keyframe animation called ring,

which we will use to animate the bell:

Chapter 7 Creating Animation Components

210

 @keyframes ring {
 0% { transform: rotate(0); }
 1% { transform: rotate(30deg); }
 3% { transform: rotate(-28deg); }
 5% { transform: rotate(34deg); }
 7% { transform: rotate(-32deg); }
 9% { transform: rotate(30deg); }
 11% { transform: rotate(-28deg); }
 13% { transform: rotate(26deg); }
 15% { transform: rotate(-24deg); }
 17% { transform: rotate(22deg); }
 19% { transform: rotate(-20deg); }
 21% { transform: rotate(18deg); }
 23% { transform: rotate(-16deg); }
 25% { transform: rotate(14deg); }
 27% { transform: rotate(-12deg); }
 29% { transform: rotate(10deg); }
 31% { transform: rotate(-8deg); }
 33% { transform: rotate(6deg); }
 35% { transform: rotate(-4deg); }
 37% { transform: rotate(2deg); }
 39% { transform: rotate(-1deg); }
 41% { transform: rotate(1deg); }

 43% { transform: rotate(0); }
 100% { transform: rotate(0); }
}

.ring {
 animation: ring 4s .7s ease-in-out infinite;
}

Chapter 7 Creating Animation Components

211

	8.	 These last few styles are primarily for variants – they control

both size and whether the icon is filled in, depending on the

variant selected:

 .notifications .bell {
 width: 140px;
 height: 140px;
 }

 .filled{
 fill: #000000;
 }

 .outline {
 fill: none;
 }

 svg.bell.small {
 width: 70px;
 height: 70px;
 }

 .count.small {
 font-size: 12px;
 position: absolute;
 top: -20px;
 left: 65px;
 padding: 10px;
 }

</style>

	9.	 Save the file as Alarm.svelte in the Alarm folder – the

component is now built and ready for testing, which we will do

in the next demo.

Chapter 7 Creating Animation Components

212

Excellent – we can now test our component in Storybook! Even though

this was a small component, we’ve created a fair chunk of code – before

we test it all, let’s pause for a moment to review what we created in more

detail, ready to see it in action.

�Breaking Apart the Code
To create our component, we first set our customElement tag before

importing the scale animation function from svelte/transition. We

then set a bunch of variables such as notifications, label, and filled –

some of these will be for the core component, while others will be more for

use in displaying our component in Storybook.

Next up, we then created the markup for our component – most of this

is standard HTML, but we include checks such as whether small is set to

true (so rendering the smaller version of our component) or determining

which background color to use from --countBackgroundColor. You will

notice that I’ve prefixed some variables with a double hyphen; this allows

us to set the value at the top and will filter down wherever we use it in the

component. The addition of export means we can also set the property

from outside the component!

At the same time, we set an in:scale property for the span that

contains notifications – this should slide numbers down each time we

update them, but it’s not working as well as expected, so something we

should target in a future version!

Moving on, we then set up the markup for our SVG – here, we set

three properties in addition to the markup for the SVG: small, filled,

and notifications. The first controls the size (which we will use as a

variant), and filled determines whether the icon should be opaque. We

use the notifications properties to add a .ring class if the count is greater

than zero.

Chapter 7 Creating Animation Components

213

The last part of this component is the somewhat lengthy style sheet

we set to style our component. The rules we set cover areas such as the

text of the notification, the label’s position, and the keyframe animation

for our bell. You will see that I’ve used CSS variables in a couple of places

to expose that value outside of the component so we can specify what that

value should be. For example, I set --countColor in the .notifications
.count rule – we use this to determine what the text color for the number

of alerts should be. The remaining rules are primarily for the variants – we

use them to determine if the icon should be an outline, filled in, or whether

we want to display a smaller size than the current default of 140px.

�Adding to Storybook
By now, you’re probably familiar with the process we’ve been following –

we create our component (or components, in the case of Grid we created

earlier) before adding them individually to Storybook.

The process won’t be any different for Alarm – we’ll create our usual

Storybook file, followed by adding a default fallback template and the first

of several stories. So, without further ado, let’s crack on and set up our

component in Storybook.

ADDING TO STORYBOOK

We have a component ready for use, but we can't use it until we set it up in

Storybook! To do so, follow these steps:

	1.	 First, crack open a new file in your editor, then add these

imports:

import Alarm from "./Alarm.svelte";
import { fn } from "@storybook/test";
import { action } from "@storybook/addon-actions";

Chapter 7 Creating Animation Components

214

	2.	N ext, leave a line blank, then add this export – this creates a

template to determine what Storybook should render by default

as a fallback:

export default {
 �title: "Garnet UI Library/Animation
Components/Alarm",

 component: Alarm,
 argTypes: {
 disabled: { control: "boolean" },
 label: { control: "string" },
 small: { control: "boolean" },
 oninput: { action: "changed" },
 notifications: { control: "integer" },
 },
 on: { change: fn().mockName("on-change") },
};

	3.	 With our default template in place, we can now turn our

attention to the Default template we've seen before – this

shows off the Alarm component using (mostly) out-of-the-box

settings:

export const Default = (args) => ({
 Component: Alarm,
 props: {
 ...args,
 id: "1",
 label: "Alarm with label",
 notifications: 12,
 disabled: false,
 filled: false,

Chapter 7 Creating Animation Components

215

 on: { change: fn().mockName("on-change") },
 },
});

	4.	 Save the file as Alarm.stories.js in the Alarm folder, then

close the file.

	5.	 You will see from the code that we've specified a file as our

documentation but haven't yet added it. We need to extract a

copy of Docs.mdx from the code download and then drop it

into the Table folder.

	6.	 We have everything in place, so let's test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

	7.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Default link

under Alarm on the left to display the variant we created, as

shown in Figure 7-3.

Figure 7-3.  The default variant of our Alarm component

Chapter 7 Creating Animation Components

216

Perfect – if all is well, we should see an alarm ringing after a few

moments; it’s a shame I can’t show you in print! That all aside, we’ve

covered some valuable tips in the last demo, some of which I know you will

have seen in earlier demos.

It’s still a great opportunity, though, to explore the changes we made

just now, so grab a drink, and let’s go break apart the code to see how it all

hangs together in more detail.

�Exploring the Changes

To get our alarm ringing (so to speak), we had to work through a series of

steps that will no doubt be reasonably familiar by now – we first imported

our component, followed by two modules from Storybook, to help render

the component in our Storybook instance.

We then set our default fallback template to render if properties are

not otherwise provided before adding the Default story to give us a feel for

how the component will render (largely) out of the box. In this instance,

we provided the name of our component, plus set a handful of properties

with the appropriate values – such as marking disabled to false – so that

Storybook knows how to render our component. To finish off, we fired up

Storybook before checking to ensure our component rendered as expected

in the browser.

�Adding Variants
At this point, we should now have a working alarm bell that rings just like

the real thing (but without the noise!). It looks a little dull, though – what

can we do to add a little variety?

Well, as a starting point, we could change whether we use an outline or

a filled icon; what about the size of the icon, too? To see how we could do

this, let’s dive into our next demo.

Chapter 7 Creating Animation Components

217

ADDING VARIANTS

To add our new variants, follow these steps:

	1.	 First, crack open Alarm.stories.js, and scroll to the bottom

of the file.

	2.	N ext, add this block of code – this will change the icon we use

from an outline version to a filled one:

export const Filled = (args) => ({
 Component: Alarm,
 props: {
 ...args,
 id: "1",
 label: "Alarm with label",
 notifications: 12,
 disabled: false,
 filled: true,
 on: { change: fn().mockName("on-change") },
 },
});

	3.	 Leave a line blank, then add this second block of code – the

name of the story will give it away: this will resize the icon to

something smaller.

export const Small = (args) => ({
 Component: Alarm,
 props: {
 ...args,
 id: "1",
 label: "Alarm with label",
 notifications: 12,

Chapter 7 Creating Animation Components

218

 disabled: false,
 filled: true,
 small: true,
 on: { change: fn().mockName("on-change") },
 },
});

	4.	 Save and close the file. Switch to a Node.js terminal prompt,

and make sure the working folder is set to our project area.

	5.	A t the prompt, enter npm run storybook and press Enter. Go

ahead and browse to http://localhost:6006/ – if all is well,

we should see two new variants listed on the left under Alarm ➤

Default – Filled and Small. The first of these is shown in Figure 7-4.

Figure 7-4.  The Filled variant of our Alarm component

	6.	 We can see the second one for Small, shown in Figure 7-5.

Figure 7-5.  The Small variant for our Alarm component

Chapter 7 Creating Animation Components

219

Superb – our progress bar component is now starting to come to life!

Even though we only added two more blocks, this is enough to show off

what is possible with this component – we’ve used the same format as

other components but set slightly different properties to give us our new

variants.

For the first variant, we set the filled property to true – this tells

Storybook to apply a fill: to the SVG we use as the bell icon. We’ve not

set a fill color property as such; instead, we use the outcome of filled:
true to set a filled CSS property, in which we tell it to use #000000,

or black.

In the second variant, we use the same principles to set the size –

here, we set the small property to apply a small class to the SVG to reduce

its size by 50%. As part of this, we also reduced the count circle size and

repositioned it to allow for the new size.

While these (and other) components may be limited in scope and

variants, they do show one important point – they are not the finished article

by any stretch of the imagination. Indeed, I’m a big fan of the MVP approach,

where we can create a basic version to start with and iterate so it becomes a

more refined article. If it works, that’s OK – people can still use it!

To add to that point, here's an example of what we can and should
do: What about adding a property for fill color so it is controllable?

Okay – let’s crack on: we have another component to create in this

chapter. We’ve so far used Svelte-only animation and a mix of both: for this

last component, it’s time to switch to using CSS only….

Chapter 7 Creating Animation Components

220

�Creating a Switch Component
Ouch – that was a terrible pun: given the nature of what we’re about to do,

I’m sure you can appreciate why I included it!

Yes, we will create a classic switch for the last component in this

chapter; these are essential for instances such as turning on or off

properties in an online account. Our component will be a little more

complex than others, so let’s crack on exploring the code in the next demo.

BUILDING THE SWITCH COMPONENT

To get started with creating our Switch component, follow these steps:

	1.	 First, create a folder called Switch under \src\lib\
components.

	2.	N ext, go ahead and add the following code into a new file – we

have a fair amount to get through, so we will start with the now

usual customElement tag and variable definitions:

<svelte:options customElement="garnet-switch" />

<script>
 export let id = "";
 export let label = "";
 export let css = "";
 export let size = "";
 export let isChecked = false;
 export let disabled = false;

	3.	 We also need to add a reactive statement and a function:

 $: switchContainer = [
 "switch-container",
 css ? css : "",

Chapter 7 Creating Animation Components

221

 disabled ? "disabled" : "",
].filter(c => c).join(" ");

 �let classes = ["switch", size ? `switch-${size}` :
""].join(" ");

</script>

	4.	 With our script in place, we can turn our attention to the

markup – go ahead and add this block:

<label class={switchContainer} for={id}>
 <input
 type="checkbox"
 class="switch-input"
 id={id}
 bind:checked={isChecked}
 disabled={disabled}
 on:change
 on:input
 role="switch"
 />

 {label}
</label>

	5.	E xcellent – we have one more stage to complete: styling! We

do have a lot of styles to add, but that's only to be expected as

we're building from the ground up:

I've compressed the code for space reasons: I'd recommend copying
and pasting this from the code download accompanying this book!

Chapter 7 Creating Animation Components

222

<style>
 �.switch-container { display: flex; min-height: 36px;
width: 100%; padding: 8px; position: relative;

 align-items: center; }

 .switch-container:hover { cursor: pointer; }

 .switch::before,
 �.switch::after { border: 1px solid #ccc; content:
""; position: absolute; top: 50%; transform:
translateY(-50%); }

 �.switch::after { background: #fff; border-radius:
100%; width: 22.4px; height: 22.4px; right: 22.4px;
transition: right 200ms ease-in-out; }

 �.switch::before { background: #eee; border-radius:
28px; width: 44px; height: 28px; right: 4px;
transition: background 300ms ease-in-out; }

 �.switch-input:checked + .switch::after { right:
6.4px; }

 �.switch-input { margin: 0; opacity: 0.01%; position:
absolute; left: 0; top: 0; width: 100%; height: 100%;
pointer-events: none; }

 .switch-input:focus + .switch::before {
 box-shadow: 0 0 0 3px rgb(55 149 225 / 50%); }
 �.switch-input:checked + .switch:not(.switch-
border)::before { background: #733635; }

 .switch-input[disabled] + .switch,
 .switch-input[disabled] + .switch-label,

Chapter 7 Creating Animation Components

223

 �.switch-container.disabled { color:#717171;
appearance: none; box-shadow: none; cursor:
not-allowed; opacity: 80%; }

 </style>

	6.	 Save the file as Switch.svelte, in the Switch folder – the

component is now built and ready for testing, which we will do

shortly in the next demo.

Perfect – our switch is ready: we just need to “switch it on” in Storybook

(groan!). Okay, leaving aside my terrible jokes, we now need to set up

an instance of it in Storybook to see if it works as expected. Our demo

contains some valuable tricks worth exploring in more detail, so before we

crack open Storybook, let’s dive into the codebase again to see how our

component hangs together in more detail.

�Breaking Apart the Code
For a component that only took five steps to create, we sure covered a lot

of code! A lot of it will follow the same format as for other components,

namely, setting variables first, followed by markup and finishing

with styles.

To get us there, we first set seven different variables, such as label,

css, and size; all of these we marked for export, so they are available

externally. We then created a reactive statement (the block starting $:
switchContainer = [...), which we use to pull together some of the style

properties for our component and, more importantly, make sure they are

updated if values change. Note how, in this instance, we are only focusing

on what we might call outside (or container) properties – in this case, a

generic switch-container, plus disabled and any external properties we

want to set. These properties will likely need to change more often than

those set internally, hence setting them in a reactive statement.

Chapter 7 Creating Animation Components

224

Moving on, we perform a similar operation, but for classes inside

the Switch – these are pulled together and assigned to classes. Here,

we concatenate a generic switch class with size – we’re not using that

latter style for the moment, but we could easily use it to create a new

variant later.

Next up comes the markup – here, we used a standard <label> element

with an <input>. We format the latter as a checkbox to form the basis for

our switch. You will notice that we provide a set of standard properties,

such as class, type, and id – three of these properties are Svelte-specific.

We used on:change, which is the same as onChange={handleChange};
bind:checked, which ties the value of checked to isChecked so we

can pipe out the result if needed, and on:input, which equates to

onInput={handleInput}. We then finished up by supplying a host of styling

rules for our Switch component, before previewing the results of our work

to make sure it functions as expected in a browser.

Okay – let’s crack on: we’ve created our component, so it’s time now to

add it to our Storybook instance. It should be a relatively straightforward

process by now, so let’s dive in and take a look at how we do it in

more detail.

�Adding to Storybook
By now, you’re probably familiar with the process we’ve been following –

we first create the component (or components, in the case of Grid) before

adding them one by one to Storybook.

As before, we’ll continue with that process for Switch – it will contain

our usual Storybook file, with a fallback template and the first of our

two-Story setups. So, without further ado, let’s crack on and set up our

component in Storybook.

Chapter 7 Creating Animation Components

225

ADDING THE SWITCH COMPONENT TO STORYBOOK

Setting up our Switch component to run in Storybook requires a little more

work than previous demos – to see how, follow these steps:

	1.	 First, open a new file, then add this markup:

<div>
 <slot />
</div>

<style>
 �div { width: 300px; font-family: Arial,
Helvetica, sans-serif; border: 1px solid #d4d4d4;
display: flex; }

</style>

	2.	 Save the file as SwitchDecorator.svelte, then close it. We

will only use this in Storybook, but it doesn't become part of the

component.

	3.	N ext, we need to create our Storybook file. For this, crack open

a new file, then add the following code, starting with some

imports:

import Switch from "./Switch.svelte";
import { fn } from "@storybook/test";
import { action } from "@storybook/addon-actions";
import SwitchDecorator from "./SwitchDecorator.svelte";

	4.	N ext, leave a line blank, then add this story – as we have done

in previous demos, this will provide default values if we don't

specify any in a story:

Chapter 7 Creating Animation Components

226

export default {
 �title: "Garnet UI Library/Animation Components/
Switch",

 component: Switch,
 decorators: [() => SwitchDecorator],
 argTypes: {
 disabled: { control: "boolean" },
 label: { control: "string" },
 oninput: { action: "changed" },
 },
 on: { change: fn().mockName("on-change") },
};

	5.	 Last but by no means least, we need to add the Default story,

which will render our Switch component with a (largely) out-of-

the-box configuration:

export const Default = (args) => ({
 Component: Switch,
 props: {
 ...args,
 id: "1",
 label: "Switch with label",
 disabled: false,
 on: { change: fn().mockName("on-change") },
 },
});

	6.	 Save the file as Switch.stories.js in the Switch folder,

then close the file.

Chapter 7 Creating Animation Components

227

	7.	 You will see from the code that we've specified a file as our

documentation but haven't yet added it. We need to extract a

copy of Docs.mdx from the code download and then drop it

into the Switch folder.

	8.	 We have everything in place, so let's test it! Switch to a Node.

js terminal session, then set the working folder to our garnet

project area.

	9.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006. Click the Default link

under Switch on the left to display the variant we created, as

shown in Figure 7-6.

Figure 7-6.  Our new Switch component

Nice – we now have our Switch component in place and tested;

hopefully, it worked just as well for you as it did for me!

It does, however, mean that we have reached a milestone in this project

since we have now created all of the initial components for our library. We

still have one more task to complete before moving on to the next stage of

this project – we have one more variant to add to our Switch. It’s a simple

change to make, so let’s crack on with adding it so that we can wrap up the

component creation process.

Chapter 7 Creating Animation Components

228

�Creating a Variant
For this last variant, we will keep it simple and add a Disabled story – this

will show what the component looks like if we disable it from running

in code. This is a simple change: we need to add a new story and set the

disabled property to true – let’s take a quick look at how as part of our

next demo.

ADDING A SWITCH VARIANT

To add what will be the last variant for our project, follow these steps:

	1.	 First, crack open Switch.stories.js, then scroll to

the bottom.

	2.	 Leave a line blank, then add this block – it does as it says

on the tin; it will render a disabled version of our Switch

component:

export const Disabled = (args) => ({
 Component: Switch,
 props: {
 ...args,
 id: "1",
 label: "Disabled switch with label",
 disabled: true,
 on: { change: fn().mockName("on-change") },
 },
});

	3.	 Save and close the file. Revert to a Node.js terminal session,

then make sure the working folder is set to our project area.

Chapter 7 Creating Animation Components

229

	4.	A t the prompt, enter npm run storybook and hit Enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click the Disabled

link under Switch on the left to display the variant we created,

as shown in Figure 7-7.

Figure 7-7.  The variant for our Switch component

And there we are – our final variant in place, at least for now! To get

us here was a quick process, similar to one we’ve already used on other

components elsewhere in this book.

We added a new story to the Switch.stories.js file, which uses the

same config object as the Default, but this time with disabled changed from

false to true. Sorry to disappoint if you were hoping for more, but that’s the

beauty of Storybook – in most cases, we only need to alter the properties

set each time! Granted, if you use a composite component like the Grid

components we developed in Chapter 6, things become slightly more

complex. In the main, though, it’s still passing values, provided you set up

the architecture of your components to support a parent/child structure.

�Summary
Phew – we covered a lot over the last few pages!

Animation is a crucial topic in today’s modern world – long gone are

the days of torrid gray pages with HTML marquee tags dotted everywhere

(yes – anyone remember those?); we have to strike a delicate balance

between animating enough content to provide interest and not too much

to put people off.

Chapter 7 Creating Animation Components

230

It is why I deliberately kept animations simple in this chapter – we

worked our way through three examples of components for our library,

but with emphasis on using pure CSS in one, Svelte-only animations in

another, and a mix of both in the third component.

We started by looking at how we might animate a progress bar – it’s

a common element, but one where we had to take a different route to

building it as we wanted to put content inside the progress, which (to the

best of my knowledge) is not possible to do.

Next up came the Alarm – leaving aside the small joke about wanting

to throw it somewhere early in the morning(!), we explored how to use a

keyframe animation to make a bell ring realistically while at the same time

providing a visual indication that we had a notice that should be read. We

used pure CSS and a Svelte transition; Svelte is happy to work with both,

and given that it has some built-in animations, it is effortless to use!

The third and final component for this chapter was a Switch – for

this one, we used pure CSS to animate the sliding effect; this ties in with

providing enough animation to give a component extra polish but not to

get in the way of the user experience and ultimately put people off!

Okay – we’ve come to the end of the construction process: it’s time

to move on to the next area! We have all of our components in place, but

one thing that we’ve not really spent any time on is that all-important

documentation! Let’s put that to rights by exploring how some of the

documentation files hang together and using the opportunity to make sure

it’s all shipshape in the next chapter.

Chapter 7 Creating Animation Components

231© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_8

CHAPTER 8

Writing
Documentation
Throughout this book, we’ve created a host of new components to form

our component library – they may only be simple ones, but as they say, we

must start somewhere!

There is one important task we need to perform, and that is to

document how these components work. Given that we’re using Storybook,

we can add documentation files to each component, accessible from the

Docs tab at the top of Storybook, as shown in Figure 8-1.

Figure 8-1.  An example of the Docs tab in Storybook

https://doi.org/10.1007/979-8-8688-1180-7_8#DOI

232

You will undoubtedly notice that we’ve already done this for most (if

not all) components. The trouble is that many of them are a little rough

around the edges and could use a little tidying! This updating is easy

enough to do – the placeholder pages we’ve added so far use Markdown,

which is similar to what you might use if you’re creating pages in GitHub,

for example.

Don’t worry if you’re unfamiliar with Markdown – most of it is text

based, with a relatively simple syntax for creating items such as titles. I’ll

take you through everything as we go through this chapter. Rather than

being too prescriptive about the final article, we’ll keep each relatively fluid

so you can use them to expand and develop your versions in the future.

With all that in mind, let’s explore the process we will use to check each

documentation page to see what we can improve in our existing offer.

�Setting the Scene
Cast your mind back to the last component we created – in each instance,

we added a file called XXXXX.stories.js to the storybook folder for each

component (where XXXX is the component’s name, such as Slider).

This file contains our placeholder documentation – each will, of

course, vary depending on the components and variants we create, but all

should have some key elements for consistency:

•	 Title and introduction (we must start somewhere!)

•	 Jump links to each variant

•	 An example of the code for each component or variant

•	 Add-on badges to confirm status, for example, Stable,

Experimental, etc.

•	 A list of argument types where appropriate

Chapter 8 Writing Documentation

233

Okay – let’s crack on: we know what we need to do, so let’s make a start!

We’ll come to making sure the content is up to date shortly, but first, let’s

begin with adding some status badges for each component so we know if

they are alpha, beta, or ready, and so on.

Copies of the source files will be in the code download if you
get stuck.

�Adding Status Badges
Our first task is to set up badges – this is one of the features we listed back

in the previous section as something we want to have on all component

pages. The process comes in two parts. In the first part, we’ll set up the

feature for use in Storybook, and then I’ll show you how to add labels to

the documentation page for each component.

In the first edition of this book, I used a package called storybook-
addon-badges, by @geometricpanda – this was not working in
Storybook 8, at the time of writing. It hadn’t had an update for some
time, so I used a forked version which works fine; the original may
now have SB8 support by the time this book goes to print.

Chapter 8 Writing Documentation

234

ADDING STATUS BADGES

To add status badges, follow these steps – we’ll use the Checkbox component

as our example:

	1.	 First, we need to install the storybook-addon-badges package.

To do this, crack open a Node.js terminal session, then change

the working folder to our project area.

	2.	A t the prompt, run this command:

npm install storybook-addon-badges

	3.	N ode will go away and install it – minimize the session, as we

will need it later in this exercise.

	4.	O nce we've installed the package, switch to your editor and

open the main.js file in the \.storybook folder.

	5.	 We need to tell Storybook about our new package, so add the

highlighted line as indicated:

 "addons": [
 "@storybook/addon-links",
 "@storybook/addon-essentials",
 "@storybook/addon-interactions",
 "storybook-addon-badges",
],

	6.	N ext, open Breadcrumbs.stories.js in your editor, then

add this line immediately after the last import statement at the

top of the file:

import { BADGE } from "storybook-addon-badges";

Chapter 8 Writing Documentation

235

	7.	 Scroll down to the end of the Default story, then add the line

as shown:

],
 },
});
Default.parameters = { badges: ["beta"] };

	8.	 Save and close all open files. Revert to the Node.js terminal

session from earlier, then at the prompt, enter npm run
storybook and browse to http://localhost:6006/. If all is well,

we should see the Experimental badge shown in Figure 8-2,

with a BETA tag to the top right of the image.

Figure 8-2.  An example of a Storybook add-on badge

Great – we can now add badges to our site! Adding a BETA tag like this

one might scare a few people, but we must remember that our components

are not yet production-ready, and there will be things we need to do or test

before we hit that stage.

It’s a realistic indication of where we are, so people know what to

expect. Either way, it’s a valuable feature to have in Storybook, so let’s

spend a few moments reviewing the changes in more detail.

Chapter 8 Writing Documentation

236

�Understanding What Happened
Since I started working with Storybook several years ago, adding badges

has always been one of my top tasks for customizing Storybook. It gives a

clear, unambiguous way to show what state a plugin is in, such as stable,

experimental, or even (dare I say it) deprecated!

It is an easy plugin to install – we first ran a typical npm install

command to download and set up the plugin as a development

dependency. The install is only part of the story, though, as next we had

to tell Storybook about the plugin; we added it to the list of add-ons in

the .\storybook\main.js configuration file. To finish the demo, we

added an import statement to Breadcrumbs.stories.js (our demo file

for this exercise). We followed this by setting the badge configuration in

the parameters: block below the story template before saving the file and

restarting Storybook to view the results in our browser.

Adding a badge is great, but what about statuses that are not included

as options by default? The package already contains some common

options, but we might want to add something like Alpha as a possible

option. Fortunately, it’s straightforward to customize the plugin – let’s take

a look at how, as part of the next demo.

�Customizing the Badges Plugin Configuration
Okay, we can now add a status label to each component as needed; we’ve

done one for the Default version of the Breadcrumbs component, which

works well.

There is one question I’m sure will be on your minds, though: What

if we want a label that isn’t one of the predefined batches available with

this add-on? It’s pretty easy to add one for whatever we need – we need to

define how it will look and add the configuration for it into the preview.js

file. Let’s take a look at how, in the following demo, where I will add one for

an ALPHA status.

Chapter 8 Writing Documentation

237

When adding a custom badge, you need to decide your color
scheme – you need to have suitable colors for a border, background
color, and text color. We'll use three shades of yellow for this demo as
our scheme. If you need inspiration or color values, then https://
www.colorhexa.com is a good place to start!

ADDING A CUSTOM LABEL

To add a custom label, follow these steps:

	1.	 First, go ahead and crack open preview.js in the

\.storybook folder – immediately below the controls: {} line

and before the matching closing bracket, add this code as

highlighted:

/** @type { import('@storybook/svelte').Preview } */

const preview = {
 parameters: {
 controls: {},
 badgesConfig: {
 Alpha: {
 title: "Alpha",
 styles: {
 backgroundColor: "yellow",
 borderColor: "#ffbf00",
 color: "#000000",
 },
 },
 },
 },
};
export default preview;

Chapter 8 Writing Documentation

https://www.colorhexa.com
https://www.colorhexa.com

238

	2.	 Save and close the file. Next, open the Breadcrumbs.
stories.js file and add these lines immediately after the

import for Breadcrumbs.svelte:

import { BADGE } from "storybook-addon-badges";

const BADGES = {
 ...BADGE,
 ALPHA: "Alpha",
};

	3.	 Scroll down to the CustomImage variant. Miss a line, then add

this line:

CustomImage.parameters = { badges: [BADGES.ALPHA] };

	4.	 Save and close all open files. Revert to a Node.js terminal

session, enter npm run storybook, and press Enter. Browse

to http://localhost:6006/ – if all is well, we should see the

ALPHA badge appear, as shown in Figure 8-3 with an ALPHA

tag to the top right of the image.

Figure 8-3.  A newly defined custom label in use

Chapter 8 Writing Documentation

239

Perfect – to quote a phrase, the world is our oyster! Okay, so I’m

probably thinking a little too loftily about what we’re doing, but we now

have a mechanism to add any label we need. We’ve covered some essential

tips in this demo, so let’s pause for a moment to review the changes we

made in more detail.

If you need practice, why not try to add the same badge to each of
the other variants? Hint: If you add to the default entry (and not the
Default entry), it will automatically add all variants in that file.

�Breaking Apart the Changes
At first glance, it might take a moment to work out how it all hangs

together, but it’s simpler than it might appear. All of the action happens in

preview.js; inside this file, we have the badgesConfig object, where we

can add as many badge types as we require.

Our example has one at present, which is Alpha – we might want

to add labels such as Discontinued, Windows Only, Mac Only, and so

on. Whatever labels we add will entirely be based on our requirements,

although I recommend not adding more labels than necessary!

The key to making it all work is two properties – styles and title.

Both should be self-explanatory, but to confirm, styles contain the CSS

styles for the badge and title the name for each label.

As a test, try changing the Alpha set against title: to something else

(say, Node 18+) in preview.js – the code changes would look something

like this:

...
badgesConfig: {
 "Node 18+":{
 title: "Node 18+",

Chapter 8 Writing Documentation

240

 styles: {
 backgroundColor: "#b1b1ff",
 borderColor: "#3b3bff",
 color: "#000000",
 },
 },
 },
},
...

and like this for Breadcrumbs.stories.js:

const BADGES = {
 ...BADGE,
 NODE18PLUS: "Node 18+",
};

...more code...

CustomImage.parameters = { badges: [BADGES.NODE18PLUS] };

If all is well, we should see the ALPHA label replaced with a NODE 18+

one, as shown in Figure 8-4.

Figure 8-4.  Displaying a Node 18+ version label

Chapter 8 Writing Documentation

241

The remaining styles for each label are just standard CSS color

properties – this will vary according to the color palette you’re using for

your site. I would recommend using HEX or name values, though – a

quick test suggests that Storybook doesn’t support RGB (or, by extension,

RGBA) values!

You will see from the code that I've used NODE18PLUS as a property
name – it is probably easier to spell out the title in full if you use
special characters such as plus or minus symbols. If you use a name
with a space, enclose the full name in quotes when adding it to
preview.js!

Okay – let’s crack on with updating the documentation! There is plenty

to do, but as a fair bit is very similar, we won’t work through all the steps

for adding documentation. Instead, we’ll go through an example to show

you the kind of changes we can make so that you can apply these to the

remaining files. Let’s take a closer look at what is involved.

�Updating the Documentation
Documentation. Everyone’s least favorite topic, but it’s one of those things

that needs to be done!

While writing documentation isn’t everyone’s favorite task, Storybook

makes it easier to create. There are several ways to do it, from Storybook’s

autodocs facility to writing in CSF format or Markdown. I prefer to use

the latter – it is easier to edit, and with a good text editor, you can see it

formatted properly in color, too!

Chapter 8 Writing Documentation

242

�Breaking Apart an Example
So, what’s involved in writing documentation?

For us, it revolves around creating an MDX file for each of the 15 core

components we have in our library and hooking them as metadata into the

stories file for that component. Some of them have child components, but

we’ll return to this later in the chapter.

Most of the files follow the same format – we import a few functions,

set a Meta tag, add an introduction, and then add sections for each of the

variants of the component. Rather than go through all 15 (which will take

a while and become tedious!), let’s crack open one and walk through it

step by step so you see how it hangs together in more detail as part of the

next demo.

WALK-THROUGH – BREADCRUMBS

To see the format used to create our documentation files, follow these steps:

	1.	 First, crack open the Docs.mdx file in the Breadcrumbs

folder – once open, you should see the code begin with two

imports:

import { Canvas, Meta } from "@storybook/addon-docs";
import * as BreadcrumbsStories from "./Breadcrumbs.
stories";

These imports are required for setting up the story file, which

ties into the Storybook stories file and uses each story as a

basis for a documentation page.

	2.	N ext, we miss a line (line spacing is critical in Markdown)

and add a Meta of=... statement – this links in the

documentation file to the Breadcrumbs stories file in Storybook:

<Meta of={BreadcrumbsStories} />

Chapter 8 Writing Documentation

243

	3.	 We miss another line, then start by adding an introduction for

our component. This one says we have three variants (including

default). Notice the block below the introduction – this is the

Markdown syntax for named anchors, where the text in square

brackets is displayed to the developer, and the hashtag in

normal brackets is the link:

Breadcrumbs is the primary component. It has three
possible states.
- [Default](#default)
- [CustomImage](#customimage)
- [TextDivider](#textdivider)

	4.	 We miss a line, then start each story with an href link – this

is the named anchor for the story, and the ID given must match

the text shown against the hashtag above:

Default

This is the default version of the Breadcrumbs
component.
<Canvas of={BreadcrumbsStories.Default} />

	5.	 We miss another line and then display the next block – this time,

it's for the custom image variant. We have the named anchor set to

customimage, then the title and text for the story, followed by the

Canvas object, which renders an example of the variant on-screen:

CustomImage

This version of the Breadcrumbs component displays an
icon from the Iconify library.

<Canvas of={BreadcrumbsStories.CustomImage} />

Chapter 8 Writing Documentation

244

	6.	 We miss another line and then display the next block – this

time, it's for the text divider variant. We have the named anchor

set to textdivider, then the title and text for the story,

followed by the Canvas object, which renders an example of the

variant on-screen:

TextDivider

This version of the Breadcrumbs component displays
a text-based divider.

<Canvas of={BreadcrumbsStories.TextDivider} />

We must remember two things of note when using this approach – the

first is using hash symbols, and the second is spacing.

We need to use the hash notation to determine how to format the

text, so one hash is equivalent to an H1 tag, two hashes equate to H2, and

so on. Using hashes is standard practice when using Markdown, but it is

relatively easy to get used to once you’ve written a few files! The other is

that Markdown is super fussy about spacing, particularly when leaving

blank lines – it is tempting to compress the text, but doing so will alter how

it’s laid out on-screen and make it harder to view when editing the text.

Okay – enough of that, let’s crack on: next up, we need to run through

some checks for our documentation. While we may already have files

in place, there will likely be things we can do to tidy up or improve our

documentation, such as spelling, removing redundant imports, and

making sure named anchors work. Let’s take a closer look at what we can

do – I know some of the tasks will be a formality, but hey: it’s always worth

checking!

Chapter 8 Writing Documentation

245

�Making Improvements
So far, we’ve been through a breakdown of one of our documentation files

to see how it all hangs together – while it works well, there is always room

for improvement!

Don’t worry – this is not something that needs lots of resources, but

we should perform some basic checks to ensure everything is as expected.

At the same time, we can also add some improvements – before we get to

some examples, let’s quickly run through some example areas we should

check in the documentation:

•	 The most obvious is spelling: not everyone is blessed

with great spelling skills! If you’ve copied the files from

the code download, any spelling errors should be

minimal; if you’ve added anything, it’s worth checking

to ensure it is spelled correctly.

•	 Do all of the named anchor links in the introduction

point to the correct part of the documentation file? For

example, does Custom Image in the Breadcrumbs file

go to the section with the same name if you click it?

•	 Is there any glaringly obvious issue, such as the

documentation saying the Breadcrumbs component

has five variants when it only has three, including the

Default?

•	 We use the hash symbol to signify the font size, so three

hashes equate to an H3, for example – have we used the

correct number of hash symbols for each title?

•	 We will be adding a panel with all of the argument

types for each component – once we do so (in the next

demo), are there any issues that pop out, such as using

the wrong type for a variable (string when integer might

Chapter 8 Writing Documentation

246

work better, for example)? Or have we used a series of

props that are inconsistent across each variant, which

we need to move into the default fallback so we can set

reasonable defaults throughout?

Okay – let’s move on: assuming our documentation content is up

to scratch, let’s take a moment or two to see how we can step up our

documentation to the next level.

Before you start on this demo, I recommend starting up Storybook if
it isn't already running, then browse through each component and
its variants. Have a look at how they appear – if we get it right, we
should be able to make our code more concise without affecting how
they look!

IMPROVING THE DOCUMENTATION

For this next demo, we'll use the Breadcrumbs component as our example, but

the changes apply to all of our components across the board. To see what we

can do, follow these steps:

	1.	T he first task is to add an argsType entry to each document

file – this will create a table of all of the properties for a

component. For this, we'll use the Breadcrumbs component as

our example – go ahead and crack open the Docs.mdx file,

then scroll to the bottom of the page.

	2.	I n the imports, add this line:

import { ArgTypes } from "@storybook/blocks";

Chapter 8 Writing Documentation

247

	3.	A t the bottom, miss a line after the last entry, then add

this code:

Properties of component

Below is a list of arguments available for this
component:

<ArgTypes of={BreadcrumbsStories} />

	4.	 Save and close all open files. Revert to the Node.js terminal

session from earlier, then at the prompt, enter npm run
storybook and browse to http://localhost:6006/. If all is well,

we should see the Experimental badge shown in Figure 8-5.

Figure 8-5.  An example ArgTables table in Storybook

	5.	T he next change we can make is simple, but it could have

implications – the name we use for each Docs page. There are

a couple of ways to do this, but the easiest way is to rename

the Docs.mdx file for a component or something else, such as

Docs – Breadcrumbs.mdx. While this will make it easier to

Chapter 8 Writing Documentation

248

determine which Docs.mdx file belongs to which component,

it's important to bear in mind that the length will make the

menu wider, and you might even end up with truncated names!

I won't make this change, as the naming convention is personal – I
suggest trying a few combinations to see what works best for you.

	6.	I f you click Show code to the right of each demo in Storybook,

you will see it show something like this:

<Breadcrumbs />

	7.	I t isn't the best we can do here – granted, it shows the

component's name, but what about props? To show a

more accurate view of what code was used, add this to

the Default.parameters block we created earlier in

Breadcrumbs.stories.js, like so:

Default.parameters = {
 badges: ["beta"],
 docs: { source: { type: "code" } },
};

Beware – it will show what you used in the story file, so you may find
it's not as good as expected! I've included it here for demonstration
purposes but not in the code files – feel free to add it if you wish.

You will have noticed by now that I've also made references to

both a default template and a Default template. Yes, they aren't

the same thing, although they will look similar – they both

serve different roles. There are some changes we can make to

simplify things and make it easier to determine which is which.

Chapter 8 Writing Documentation

249

	8.	 First, let's move this block to just below the BADGES entry we

created earlier and before the default fallback template:

let levels = [
 { href: "/", text: "Dashboard" },
 { href: "/reports", text: "Annual reports" },
 { href: "/reports/2019", text: "2019" },
];

	9.	 We can also move the argTypes block into the default fallback

template, like so:

 parameters: {
 badges: [],
 },
 argTypes: {
 BreadcrumbItems: levels,
 image: { control: "boolean" },
 },
};

	10.	T o spread our configuration properties over each story, we need

to add the meta object – look for …args, then immediately

below each one, add this:

 ...meta,

	11.	 We have three instances of this block across the variants –

replace the content inside the square brackets with the word

levels so we can use the predefined block already in our

stories file:

 breadcrumbItems: levels,

Chapter 8 Writing Documentation

250

	12.	 Save and close all open files. Revert to a Node.js terminal

session, enter npm run storybook, and press Enter. Browse

to http://localhost:6006/ – if all is well, we should see no

change to any of the variants for the Breadcrumbs component,

but it's now running more optimized code.

Now we’ve made changes to Breadcrumbs – how about trying the

same changes to the other components? Remember that you won’t need

to make the same change, but look particularly at the default and Default

templates.

Can any be rationalized so we’re not duplicating too much code? Note

that we have to have a title in each variant, though – if you change anything

else, you can always revert back!

Do not be alarmed if you can’t optimize anything or if the code is
such that it's not worth refining: it's more important to keep that
mentality of checking and not treat it as a one-off process.

Excellent – our code looks tidier, and everything still works as

expected! I’m sure there will be more changes we can make in the future,

but for now, let’s take a moment to review the changes we’ve made so far

in more detail.

�Exploring the Changes in Detail
Adding documentation may not be everyone’s favorite task, but one of the

great things about Storybook is its flexibility, particularly when writing

stories! We’ve only touched the surface of what is possible, but even still,

the changes we made will make the documentation a little better.

Chapter 8 Writing Documentation

251

So, what did we do? We started by adding an argsType entry to

the Breadcrumbs documentation file. This block shows anyone using

the component what properties are available, what type of property is

available, and whether we have set a default value. It’s important to note

that this is not available from core Storybook – we had to add this from the

@storybook/blocks module.

Moving on, we then discussed how we can rename the Docs entry to

make it less generic – my initial research indicated there appeared to be a

name or title property you can set in each story, but can I find details? No!

Instead, the simplest way to do it – at least for now – is to rename the Docs.
mdx file for each component, as Storybook will use that name automatically

when rendering the index. There isn’t any absolute right or wrong

approach to take, but remember that the longer the name, the more likely

Storybook will truncate it. I recommend keeping it short so you can see the

full name without issue.

The next change we made was to add a property to the parameters

block – when rendering the component in Storybook, we can see the

source code used to display that component. It frequently just shows the

name of the component, though – to see the exact code used, we added

docs: { source: { type: "code" } }, which forces Storybook to display

the code we used. We touched on a downside of doing this – it will show

exactly what you used so that unexpected results may appear!

To finish the demo, we worked through several changes to reduce

some of the duplication, such as not repeating the levels block twice

or moving the argTypes properties into the default fallback template.

Although we only made the changes to the Breadcrumbs component

(to keep the demo short), we could quickly make similar changes to the

remaining components. Indeed, something like this should be an ongoing

task to ensure we’re keeping duplicated code to a minimum. We then

rounded out the demo by firing up Storybook to preview the results of our

changes in the browser and make sure that even though we’ve optimized

our code, it’s not had any impact on people using our components.

Chapter 8 Writing Documentation

252

�Summary
Documentation of how a component works is an oft-neglected but

essential part of any component library; I’ve lost count of the number

of libraries I’ve seen where the developer provides the bare minimum,

making it awkward to work out how to achieve a task! Even though there

may be gaps, it’s important to have accurate documentation in one place

(such as Storybook) – over the course of this chapter, we looked at how to

add documentation to Storybook using MDX files, as well as provide some

added extra finish with badges. Let’s take a moment to review what we

have learned.

We started by exploring how to add Storybook badges. We saw how

this is a helpful tool for identifying the state of any component, such as

experimental, stable, or (heaven forbid) deprecated. Adding this feature

was a simple change; at the same time, we learned how to customize the

labels to display our text.

Next up, we began the lengthy process of updating the documentation

files for each component. We focused on using the Breadcrumbs

component as our example and as a basis for making similar changes

throughout the documentation files for the other components. We

touched on topics such as rationalizing code, setting Storybook to

render the complete code used for a component, and a way to rename

documentation files to something more explicit – keeping in mind that

conciseness works better than something lengthy.

Phew – it may seem we haven’t done much in this chapter, but don’t

forget the importance of accurate documentation! It plays an essential part

in our toolkit, as we will see in the next chapter. Get ready, my friends, for

testing times (if you pardon the pun)…

Chapter 8 Writing Documentation

253© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_9

CHAPTER 9

Testing Components
So far, we’ve spent time creating our masterpiece, but can we be sure it

all works? What guarantee do we have that it won’t suddenly collapse in a

heap the first time someone tries to use it?

Before we release our library to the outside world, we need to test

each component to ensure it works as expected. In this chapter, we will

go through setting up unit testing for our library before exploring some

examples of tests we can write, so end users can see how each component

performs in a real-world capacity.

�Setting Expectations
When it comes to testing our code, we can do a host of things – anything

from simple snapshot testing to checking accessibility and even writing

tests to test every feature of each component to the bitter end!

While testing is essential to the success of any library, there is a limit

to what we can do in this book. Some people might not like this, but I’m a

big fan of the MVP approach (which we will use in this chapter). Instead

of trying to get everything done before release, we can write the basic tests

and set up a starting point for our code coverage.

This way, we can release things quicker – if we’re making our code

available as open source, then it’s always open to others to contribute

changes to help improve the quality of our code and tests. From the outset,

https://doi.org/10.1007/979-8-8688-1180-7_9#DOI

254

it’s essential to clarify that this is the approach we will use – who knows,

your initial work can become a real collaborative effort! Keeping that in

mind, let’s start with our testing. So, where do we start?

�Setting Up the Testing Environment
Well, the first task is to choose the right testing library for our needs. I know

this might sound a little odd, given you might already have a preferred tool

and assume that you can use that, right?

When I wrote the first edition of this book, I decided to use Svelte

Testing Library – I had wanted to go with my preferred suite, Cypress,

but it barfed over the use of the <svelte:options> directive, making it

impossible to use!

Since then, I think things may have improved – I’ve decided this time

to go with Vitest, an upcoming test suite compatible with Jest, which is

gaining wide acceptance. Given we’re already using Vite, it makes sense

to keep it in the family (so to speak) – it also makes it easier to install and

configure! The irony is that we still need three functions from the Svelte

Testing Library, but it’s much less than we needed before when using that

package outright. With that in mind, let’s dive in and take a look at how to

set up our test suite, ready for use.

INSTALLING VITEST

To get Vitest set up within our project area, follow these steps:

	1.	 First, fire up a Node.js command prompt, then change the

working folder to our project folder.

	2.	 We need to install Vitest, so go ahead and enter npm
install -D vitest at the prompt, and press Enter.

Chapter 9 Testing Components

255

	3.	 We have two more packages to install – for this, enter npm
install -D jsdom @vitest/browser and press Enter.

	4.	 While Node installs these, crack open your package.json file,

then scroll down to the closing } of the scripts: block, and add

this entry (as highlighted):

"test": "vitest",
},

	5.	 Next, open a new file and add this line:

import "@testing-library/jest-dom";

	6.	S ave it as setupTest.js in the \src folder. We need to

reference this file, so open vite.config.js and edit the

contents as shown:

 plugins: [svelte()],
 test: {
 globals: true,
 environment: "jsdom",
 setupFiles: ["src/setupTest.js"],
 },

	7.	S ave and close any open files – the setup process is complete.

We now have Vitest ready for use – we will test it to ensure it works in

the next exercise when we start to write tests for our library. Before we do

so, it’s worth spending some time going through the setup – there are some

interesting points we should cover in more detail.

Chapter 9 Testing Components

256

�Breaking Apart the Code Changes
Testing our components is an essential part of the development process.

To facilitate testing, I could have picked any one of several possible tools

(even if the selection is a little more limited than for, say, React or Vue!). I

chose Vitest as it works well with Vite – what did we do to set it up?

We kicked off by installing two dependencies, jsdom and vitest/
browser, to help with the tests and, of course, vitest itself. Next, we added

a reference to the scripts block to make it easier to run tests before setting

up setupTest.js in the \src folder. This file provides some DOM utilities

that are helpful with testing; as you will see later, we use it to test the Dialog

component. We finished by adding a reference to the setupTest.js file in

Vite’s config so it knows how to use it when running tests.

Okay – let’s crack on: with the testing suite up and running, it’s time to

test it to see if it works as expected. There is no better way to do this than

by writing a test, so let’s dive in and look at what is involved in more detail.

�Testing the Components
So, what should we test? How in depth should our tests be?

These are both great questions – we’d test everything in an ideal world

to ensure we have covered all possible eventualities. However, that isn’t

always possible (or even practical) – you can bet that someone will find

a way to use a component that wasn’t in the manner we intended and

so could claim it’s not working as expected! This “use” opens up that

proverbial back-and-forth can of worms about what should or shouldn’t

have been tested…you get the picture.

Leaving thoughts about the scope of our testing aside for a moment,

let’s start creating the tests for our library. Many of the tests I’ve created for

this book follow the same format, so I will work through Accordion as an

example, and we’ll extract the rest from the code download accompanying

this book. With that in mind, let’s crack on with the next demo.

Chapter 9 Testing Components

257

WRITING/PUTTING TOGETHER TESTS

To get the tests set up, follow these steps:

	1.	 First, we need to create our folder structure – for this, go ahead

and add a new folder called __tests__ under the \src\lib\
components\Accordion folder.

	2.	O pen a new file in your editor, then add this code – there is

a fair bit to cover, so we’ll do it in blocks, beginning with the

imports:

import { describe, test, expect } from "vitest";
import {
 render,
 screen,
 fireEvent
} from "@testing-library/svelte";
import Accordion from "../../Accordion/Accordion.
svelte";

	3.	 Next, we need to open our test suite, so miss a line and add this

opening block:

describe("Tests for Accordion", () => {
 const mockText = "This is a Accordion";

 const props = {
 data: [
 { title: "Heading 1", text: "aaa" },
 { title: "Heading 2", text: "bbb" },
 { title: "Heading 3", text: "ccc" },
],
 };

Chapter 9 Testing Components

258

	4.	 This next test checks to make sure that our Accordion displays

the correct titles for each drawer:

 test("should have the correct title", () => {
 render(Accordion, props);

 �expect(screen.queryByText(props.data[0].title)).
toBeInTheDocument();

 �expect(screen.queryByText(props.data[1].title)).
toBeInTheDocument();

 �expect(screen.queryByText(props.data[2].title)).
toBeInTheDocument();

 });

	5.	 This test takes care of checking that the first item in our

Accordion renders the correct content:

 �test("should have the correct text for the first
AccordionItem", async () => {

 render(Accordion, props);

 �const AccordionObj = await screen.
getAllByRole("button")[0];

 await fireEvent.click(AccordionObj);

 �const accordionText = await screen.
findByText(/aaa/i);

 expect(accordionText).toBeTruthy();
 });

	6.	 Next, miss a line, then add this block – this test is a check

for the presence of aria-expanded when we click the first

Accordion item:

 �test("should show aria-expanded as true when first
item clicked", async () => {

Chapter 9 Testing Components

259

 render(Accordion, props);
 �const AccordionObj = await screen.

getAllByRole("button")[0];
 await fireEvent.click(AccordionObj);
 �expect(screen.getAllByRole("button", { expanded:

true })[0]).not.toBeNull();
 });

 test("get a snapshot of component", () => {
 const { tree } = render(Accordion, props);
 expect(tree).toMatchSnapshot();
 });

	7.	S ave and close the file. Next, extract a copy of the src folder from

the code download and drop it into the root of our project folder.

This folder contains the remaining tests for our components,

prepopulated in the relevant folder for each component.

	8.	S witch to a Node.js terminal session, then change the working

folder to our project area.

	9.	A t the prompt, enter npm run test and press Enter – if all is

well, we should see it run through each test, rendering results

on the screen, similar to this extract:

 ✓ �src/lib/components/Slider/__tests__/Slider.
spec.js (3)

 ✓ �src/lib/components/Spinner/__tests__/Spinner.
spec.js (2)

 ✓ �src/lib/components/Switch/__tests__/Switch.
spec.js (4)

 ✓ �src/lib/components/Tabs/__tests__/Tabs.spec.js (3)
 ✓ �src/lib/components/Tooltip/__tests__/Tooltip.

spec.js (4)

Chapter 9 Testing Components

260

Test Files 17 passed (17)
 Tests 57 passed (57)

There will likely be some warnings/errors around unknown prop
names and a deprecation warning for punycode – these are to be
expected. We will explore these later in the book when we come to
do the tidy-up ready for release.

Congratulations if you manage to get a successful set of results – granted,

we may have seen some warnings, but the critical point is that we now have

a basic set of tests in place and can start to build confidence that everything

works as expected. Let’s pause and explore what we created in more detail.

�Exploring the Changes in Detail
Look closely at the tests we copied from the code download. Do you notice

anything in particular?

I suspect many of you will say no – after all, each component is

different, so surely tests will be different, right? It’s a valid point and a true

statement: all of the tests will be different.

However, even with us testing different components, we can still

maintain a common format throughout – we can make sure tests are

consistent and reuse elements where appropriate. For the tests I’ve

created, we start by importing up to three functions from Vitest and three

from the Svelte Testing Library.

It’s important to note that I’ve written the tests to run in Vitest, not the
Svelte Testing Library. The latter three functions are because Vitest
doesn’t have an equivalent, and the developers recommend using
those from the Svelte Testing Library instead.

Chapter 9 Testing Components

261

We finished that part by importing the relevant component for our test –

in this case, it was Accordion, but the same principle applies to all of the tests.

Moving on, we then focus on writing the tests, starting with opening

a describe block. Here, we define any prop values needed for the test,

such as the mockText and data block for Accordion, before starting with

each test assertion. In most cases, we first start with a test to ensure the

component renders as expected, followed by two to three tests for specific

functions, such as checking text displays when clicking an Accordion

drawer. We finished by taking a snapshot before running through the tests

to ensure we got a successful result for each test.

Okay, let’s crack on: We’ve run tests on each component in isolation, but

what about in a more practical context? It is possible – we need to do some

work first to build them into a package suitable for testing. Before we do this,

there are a few points I want to cover relating to how we can improve our tests.

�Improving on the Tests
Although we now have tests in place for all of our components, I think

there is scope for us to do more – after all, there is only so much we can do

in the limited space we have in this book!

So far, we’ve followed a relatively consistent format for each test – first

defining any values before making sure it renders, then running two to

three tests specific to each component before finishing with a snapshot of

the component. It’s not a bad format per se, but there are more things we

could add:

•	 One that should be at the top is checking variables and

properties that we define – do they all work, given that

we are using Web Components and may have to use

string-based properties (owing to a limitation with Web

Components)?

Chapter 9 Testing Components

262

•	 In Chapter 10, we will look at accessibility – as part

of that, we will use the vitest-axe package to perform

accessibility checks using the accessibility tool Axe

(albeit in a limited capacity). For now, it will be a basic

check, but I suspect there will be improvements we can

make there!

•	 We will look at adding test coverage later in this book,

but for now, it’s worth thinking of how much code is

covered by our tests and whether there is anything we

need to do to expand coverage for each component.

•	 One area we may need to consider is which queryBy…

or getBy… methods we use with Vitest. We should

mimic how users will use our components as much

as possible, so the Vitest developers recommend

an order of usage – queryByRole first, right down to

getByTestId.

There is more on this in the official Vitest documentation
at https://testing-library.com/docs/queries/
about#priority.

These are just a few things we can consider – I’m sure you will come

up with more! The critical point is that we must balance the number of

tests with what we test. Some people will say we need to test absolutely

everything, but sometimes that isn’t practical – I’ve seen libraries and

repos with over 2000 individual tests! We must be thorough, but I think

2000 may be too excessive…

But I digress. We’ve spent quite a bit of time putting together tests,

but there is one test we need to do: What about checking our components

visually?

Chapter 9 Testing Components

https://testing-library.com/docs/queries/about#priority
https://testing-library.com/docs/queries/about#priority

263

�Testing the Components Visually
So far, we’ve run tests using Vitest, but there is an additional step we can

take – what about running some visual tests? Sure, we could use a service

such as Chromatic (https://www.chromatic.com/storybook – works very

well in Storybook), but this costs money.

However, we can do a lot by doing some simple testing with our eyes.

To do this, we need to set up a simple demo to run our components. With

that in mind, let’s use the Spinner component as an example to render it

on-screen as part of our next demo.

TESTING VISUALLY

To test our components visually, follow these steps:

	1.	 First, crack open the App.svelte from the \src folder in your

editor. Edit the file so it looks like this:

<script>
 �import Spinner from './lib/components/Spinner/
Spinner.svelte'

</script>

<main>
 <h1>Garnet UI Web Component Test Page</h1>

 <garnet-spinner
 color="#733635"
 duration="0.75s"
 size="40"
 variant="circle">
 </garnet-spinner>
</main>

Chapter 9 Testing Components

https://www.chromatic.com/storybook

264

<style>
 main { padding: 20px; }
 h1 { font-family: Arial, Helvetica, sans-serif; }
</style>

	2.	S ave the file and close it. Next, switch to a second Node.

js terminal session, then change the working folder to our

project area.

	3.	A t the prompt, enter npm run dev and press Enter.

	4.	I f all is well, we should see an instance of the Spinner

component running if we browse to http://
localhost:5173, as shown in Figure 9-1.

Figure 9-1.  The newly compiled Spinner component working in
our demo

This demo looks great, but how can we prove it’s our new component and

that it’s coming from the newly built file? For the more adventurous, feel free

to look at the compiled code from within a developer console. You should

see something similar to that shown in Figure 9-2, where we reference the

component <garnet-spinner> from the newly generated distribution file.

Chapter 9 Testing Components

265

Figure 9-2.  Proof that we're using the newly compiled component

Perfect – hoping that all went well, we’ve set up a simple demo and

now seen it working in our browser! It was an easy demo to set up, using

standard (semantic) tags – the only point of real note is that we used the

Web Component name for our component, even though we imported it

directly from our codebase.

Strictly speaking this would normally not be the correct way to import
it – we should use a compiled JavaScript bundle file to reference
the component, not the Svelte import we’ve used. I’ve done this
deliberately for a reason – I will explain why in the next section.

It’s worth noting that we passed through all of the properties as

strings – in the previous edition of this book, I mentioned that this was a

requirement for web components; I have seen evidence that suggests this

may no longer be the case and that we could potentially use integers and

Booleans instead. We’re not going to change things now, but it’s worth

testing this in more detail nearer that time when it comes to preparing

for launch.

I touched on this earlier in the book, as part of improving our testing.

Okay – let’s move on; we’ve run a visual test – what now? We’ve

reached the point where we can start making our code available for

people to use.

Chapter 9 Testing Components

266

�Bundling the Components
With the testing complete, we can move on to the next stage, bundling our

components. Bundling, I hear you ask – what exactly is that, I wonder? It

is where we prepare the components for release in a format that makes it

easy to drop into projects – let me explain what I mean.

So far, we’ve created our Svelte components using HTML, CSS, and

vanilla JavaScript, and we’ve seen how they all work great in Storybook.

However, one of the benefits of Svelte components is the ability to release

them as web components that we can use in other environments, such

as React. You will have seen from the previous demo too that we used

the Web Component name for our component, but imported the Svelte

file – this won’t work if we tried to use this method in React. It worked for

our demo, as Svelte is aware of the web component name specified in the

component, so is able to display it correctly.

To avoid this issue of importing Svelte component files directly, and to

make components available outside of Svelte, we need to bundle the code

into files that we can consume outside of our development environment –

in the same way, we might import a third-party library into our code. There

are several ways to do this, depending on our requirements; before we

explore them, let’s first set up our library, ready to bundle our components.

�Configuring the Build Process
Bundling our components isn’t a complex process – we need to set up the

main index file for them and make sure we have a place to demo them.

The latter might sound a little odd, as it’s not something anyone

consuming our components would need to use, but trust me: if that file is

not present, Svelte will complain! With that thought in mind, let’s dive in

and look at what we need to do to get our library ready for bundling.

Chapter 9 Testing Components

267

CONFIGURING THE BUILD PROCESS

To bundle our components ready for use, follow these steps:

	1.	 First, we need to create a barrel import file – for this, fire up

your editor and add this code to a new file:

// Main components
export { default as Accordion } from "./Accordion/
Accordion.svelte";
export { default as Alarm } from "./Alarm/Alarm.
svelte";
export { default as Alert } from "./Alert/Alert.
svelte";
export { default as Breadcrumbs } from "./Breadcrumbs/
Breadcrumbs.svelte";
export { default as Checkbox } from "./Checkbox/
Checkbox.svelte";
export { default as Chip } from "./Chip/Chip.svelte";
export { default as Dialog } from "./Dialog/Dialog.
svelte";
export { default as Table } from "./Grid/Table.svelte";
export { default as Input } from "./Input/Input.
svelte";
export { default as ProgressBar } from "./ProgressBar/
ProgressBar.svelte";
export { default as SelectBox } from "./SelectBox/
SelectBox.svelte";
export { default as Slider } from "./Slider/Slider.
svelte";
export { default as Spinner } from "./Spinner/Spinner.
svelte";

Chapter 9 Testing Components

268

export { default as Switch } from "./Switch/Switch.
svelte";
export { default as Tabs } from "./Tabs/Tabs.svelte";
export { default as Tooltip } from "./Tooltip/Tooltip.
svelte";

// Ancillary components
export { default as AccordionItem } from "./Accordion/
AccordionItem.svelte";
export { default as Icon } from "./Alert/Icon.svelte";
export { default as Close } from "./Dialog/Close.
svelte";
export { default as Cell } from "./Grid/Cell.svelte";
export { default as Grid } from "./Grid/Grid.svelte";

	2.	S ave this as main.js at the root of the \src\lib\
components folder.

Saving it here avoids conflict with a second main.js, which is at the
root of our project area and used elsewhere; it also makes it easier to
read the imports! This main.js file is also on the code download if
you need help editing it.

	3.	 We also need to add a new configuration file and update a

second one – create a new file and save it as vite.lib.
config.js at the root of the project folder. Add this code:

import { defineConfig } from "vite";
import { svelte } from "@sveltejs/vite-plugin-svelte";

// https://vitejs.dev/config/
export default defineConfig({
 build: {

Chapter 9 Testing Components

269

 lib: {
 entry: "./src/lib/components/main.js",
 name: "Garnet UI Library",
 },
 output: {
 format: "es",
 },
 },
 plugins: [
 svelte({
 compilerOptions: {
 customElement: true,
 },
 }),
],
});

	4.	S ave and close both configuration files – the configuration part

of the process is now complete.

Excellent – we’re ready to bundle! It’s at this point that we will have

some decisions to make. Do we release packages for each component

individually, in groups, or one that covers all components?

If we did the latter, does that mean people have to download the entire

library if they only want one component? That doesn’t seem sensible, but

we need to balance that against maintenance and where package versions

might diverge if we update one and not the other. It’s just a few questions

we must ask; before we do so, let’s first explore the changes we’ve made in

more detail.

Chapter 9 Testing Components

270

�Understanding the Changes in Detail

Throughout this book, we’ve created a set of functional components for

our library and tested them in Storybook. This is all good, but most of

these components wouldn’t operate if we used them outside a Svelte

environment. Why? The reason lies in our configuration – if we didn’t

complete the steps we’ve just taken, we will likely have a space or an empty

page where our component should be.

To fix this, we first created a central main.js file – inside this file, we

added exports to all the components and some child components used by

a handful of the parent components.

The key to the bundling process is the changes we made to the Vite

configuration. We first added a vite.lib.config.js file; inside this, we

imported two functions from Svelte and Vite. Then, we defined a build:

setup for Vite to specify the library’s name and the main entry point for our

components.

As an aside, you will see the customElement property we added
earlier in the book. This property tells Svelte to make the component
available to other frameworks. Without it, we will end up with a
warning such as this one:

09:22:07 [vite-plugin-svelte] C:/cobalt/src/lib/
Accordion/Accordion.svelte:1:16 The 'tag' option
is used when generating a custom element. Did you
forget the 'customElement: true' compile option?

Right – let’s crack on with running the build process. We have our

configuration in place, so it should just be a matter of running a command,

right? There’s more to executing a single line of code – it all hangs around

how we want to make our code available to others. To see what this means,

let’s dive in and look at the second part of this process in more detail.

Chapter 9 Testing Components

271

�Running the Build Process
Remember how we alluded to the fact that we can run this process in one

of three ways? We could

•	 Bundle all components together: Typically producing

multiple files in the same process.

•	 Generate a single file: Larger but more manageable to

move around for portability.

•	 Generate single files for each component: It creates

more files but keeps them smaller, with less redundant

code to download.

The first two options are straightforward – we can run the first now without

any further configuration, and the second only requires changing the file we

run during the process. The third option is a little more complex; let’s dive in

and look at all three to understand what this means for us in practice.

RUNNING THE BUILD PROCESS

With the build process set up and ready to go, we can now run it – to do so,

follow these steps:

	1.	 We’ll start with the option that includes everything – fire up

a Node.js terminal prompt, then enter this command and

press Enter:

npm run build

	2.	I f all is well, we should see the files listed on the screen:

$ npm run build

> garnetui@0.0.0 build
> vite build

Chapter 9 Testing Components

272

vite v5.2.8 building for production...
✓ 28 modules transformed.
dist/index.html 0.39 kB │
gzip: 0.27 kB
dist/assets/index-tOrlJ_cJ.js 13.24 kB │
gzip: 5.01 kB
✓ built in 424ms

This output is good, but if we look closer at the number of the files we

have and work the approximate total size, something won’t seem right –

we have approximately 160 KB of components squeezed into 13 KB. You’d

be right for thinking something doesn’t add up – we’ll come back to why

at the end of the demo. For now, let’s continue with the next part.

	3.	O ccasionally, we might get more than one JavaScript file

appearing when running that command, which is not ideal. We

can use the lib option in the build process to generate a single

JavaScript file to get around it.

	4.	A t the Node.js terminal prompt, run this command:

$ npm run build -- -c=vite.lib.config.js

	5.	I f all is well, we should see output similar to this:

> garnetui@0.0.0 build
> vite build -c=vite.lib.config.js

vite v5.2.8 building for production...
✓ 56 modules transformed.
dist/garnetui.js 163.74 kB │ gzip: 40.91 kB
dist/garnetui.umd.cjs 104.58 kB │ gzip: 33.50 kB
✓ built in 1.18s

Chapter 9 Testing Components

273

This option takes the garnetui name from the name field in your
package.json file.

It is better – but what if we wanted to produce a package purely for specific

components? To do this:

	6.	 We need to make a change to vite.lib.config.js. Crack

this file open, then replace the contents of the build: option

with this code:

export default defineConfig({
 build:{
 // lib: {
 // entry: "./src/lib/components/main.js",
 // name: "Garnet UI Library",
 // },
 rollupOptions: {
 �input: ["./src/lib/components/Spinner/Spinner.

svelte"],
 },
 output: {
 format: "es",
 },
 },
},

Commenting out the original code means we can always revert it
if needed!

Chapter 9 Testing Components

274

	7.	S witch to the Node.js terminal session from earlier in this

demo, then at the prompt, enter this command and press Enter:

npm run build -- -c=vite.lib.config.js

	8.	I f all is well, we should see output similar to this appear:

> garnetui@0.0.0 build
> vite build -c=vite.lib.config.js

vite v5.2.8 building for production...
✓ 23 modules transformed.
dist/assets/Spinner-7EA5ytIy.js 11.96 kB │
gzip: 4.48 kB
✓ built in 327ms

	9.	O ur build file is ready for testing, which we will do momentarily.

With the build process done, it’s time to test it! We already have the

demo in place (we created it as part of running the initial npm run build

command). We need to make one change to it, though, to test the new file

we’ve just built. Before making that change, let’s pause for a moment to

review the code changes we’ve made to see how it all hangs together.

�Breaking Apart the Changes

This is one of those occasions where writing code is arguably less

important than the decisions behind it. We could take this in several ways:

we’ve proven that the demo works with individual components, but as a

starting point, it (kind of) makes sense to have a single file and split it into

smaller components once we develop them. All thoughts aside, it’s still

essential to understand how this part of the process works, so let’s review

the code we created in the previous demo.

Chapter 9 Testing Components

275

We started by simply running the npm run build command without

any further changes – this was possible as it uses the vite.config.js file

to specify how the build should run. It gave us two files, an index.html and

a JavaScript asset file containing…well something. I say something, as it

looks to work fine at first glance. However, there are a couple of problems

with this approach:

•	 If we crack open the asset file, we find that everything

is not as it seems: on closer inspection, I’ve seen that it

contains our component as well as the contents of an

index.html file and that it’s just one component.

•	 The naming convention it uses isn’t ideal, to say the

least, but we can do better!

So, what gives? The first issue is that Vite builds anything set to run

in the App.svelte file; I set this to run Spinner in a demo I ran as part of

researching for this book, hence why we only have one component present

and the index.html file (which subsequently appears empty, with only

a basic HTML structure). The markup in this file doesn’t look like it will

run anything – this isn’t the case: it’s designed to run the App.svelte as a

regular Svelte application.

We will rectify the naming convention shortly when we adapt the
build process.

It’s a good starting point, but what if we didn’t want to download

multiple files? To get around this, we switched to the alternative

configuration in vite.lib.config.js, which we set up in the previous

demo and gives us two files. In both cases, all components are bundled

into one file but formatted for use as JavaScript modules (we can set this

using the formats option, depending on your preference).

Chapter 9 Testing Components

276

Let’s turn this on its head – if we wanted the best of both worlds (i.e.,

one component, one file), can we do anything? As it so happens, there is:

we set a rollupOptions property in the build options. Here, we can specify

which components we want to include – in our example, we listed the files

for Spinner, but we could list them for any component in our library. It

means that we could have multiple configuration files that group several

components in the same way.

By default, the build.lib options will bundle your library in two
formats: es and umd (depending on how many files are created). You
can configure it by adding the formats property to the lib settings.
Available options are 'es' | 'cjs' | 'umd' | 'iife' – you
can see more details at https://vitejs.dev/config/build-
options#build-lib.

To round out the demo, we ran the final build option, which gave

us the compiled files for Spinner. The naming is better, although it’s still

not perfect – we’ll have to rename it at some point! Okay, let’s continue.

We’ve tested our components and bundled them into a format suitable for

release. It’s time to put these bundles to a proper test: let’s add them to a

demo to see how they perform.

�Updating Our Demo
When it comes to testing our component bundle files, there are several

ways we can do this. We could do it in something like a CodeSandbox

demo, but we’ll do that later when we test our component with React.

For this next demo, I will use what we already have – remember how I

mentioned I had already updated my copy of App.svelte? Well, let’s look

at the changes I made to test our newly created bundle in action.

Chapter 9 Testing Components

https://vitejs.dev/config/build-options#build-lib
https://vitejs.dev/config/build-options#build-lib

277

UPDATING OUR STAND-ALONE DEMO

To update the App.svelte app so it uses our new bundle, follow these steps:

	1.	 First, we need to make a change to the main.js file that sits in

\src\lib\components – comment out all but the references

to Spinner and Input; this should leave you with two lines not

commented out.

	2.	S ave and close the file, then run this command to build a

package with these two components:

vite build -c=vite.lib.config.js

	3.	I f all is well, we should see something akin to this:

> garnetui@0.0.0 build
> vite build -c=vite.lib.config.js

vite v5.2.8 building for production...
✓ 56 modules transformed.
dist/garnetui.js 163.74 kB │ gzip: 40.91 kB
dist/garnetui.umd.cjs 104.58 kB │ gzip: 33.50 kB

Make sure you uncomment those components you commented out
in step 1. Otherwise, your bundle might be a little on the light side for
future demos!

	4.	 Next, crack open the index.html file at the root of the project,

and make sure the first script import is set to import your new

bundle – in this example, mine sits in the ./dist folder and is

called garnetui.js:

 �<script type="module" src="./dist/garnetui.js">
</script>

Chapter 9 Testing Components

278

	5.	S ave and close the file. Next, open App.svelte and change

the content in <main> to match the code below – we already

added the spinner from earlier, but we now also add the Input

component:

<main>
 <h1>Garnet UI Web Component Test Page</h1>

 <garnet-spinner
 color="#733635"
 duration= "0.75s"
 size= "40"
 variant= "circle">
 </garnet-spinner>

 �<garnet-input label="Text:" placeholder="Enter your
text here"></garnet-input>

</main>

	6.	A t the same time, remove the import at the top of App.
svelte – we replaced it with the script import we added back

in step 3:

<script>
 �import Spinner from './lib/components/Spinner/
Spinner.svelte'

</script>

	7.	S ave and close the file. Switch to a Node.js terminal session,

then at the prompt, enter npm run dev and hit Enter.

After a few moments, go ahead and browse to http://
localhost:5173 – if all is well, we should see something

akin to that shown in Figure 9-3.

Chapter 9 Testing Components

279

Figure 9-3.  Proof that our new component bundle works

Okay, so it won’t win any style awards any time soon, but it works! Sure,

we can spend time rearranging how components appear on the page, but

the important point here is that we are now displaying web components.

To verify, a quick check in the browser console log shows references to our

components (Figure 9-4).

Figure 9-4.  Proof that we are using our new web components

Chapter 9 Testing Components

280

While our demo was very straightforward, we should still take a closer

look at that code – let’s pause for a moment to understand how it all hangs

together in more detail.

�Breaking Apart the Code
This demo is one where we didn’t have to do too much – most of the hard

work we’ve already done! For this demo, we updated the App.svelte page

to pull in our new Spinner and Input components from the bundle created

earlier in the chapter rather than as a direct import from the source files.

We started by commenting out all but two of the components from

the main.js file in the components folder. This change allowed us to

regenerate the component bundle with just these two components, not the

ones we do not need in this demo.

Next up, we altered the index.html file to point to our new bundle file,

which was in the \dist folder – for this, we used the expanded version, but

you could equally have pointed to the minified version. We then updated

the contents of the <main> object in our code to add the Input component

before removing the original import statement at the top of App.svelte.

We finished by running up the page in our browser before previewing

the results to confirm that we do at least have a Spinner and Input

displayed, even if the page isn’t styled that well!

Perfect – we’ve completed the initial test, but the real test is yet to

come! One of Svelte’s features is that any web component we create should

work in a non-Svelte environment, such as a React demo. After all, it is just

plain CSS, HTML, and JavaScript, so why not? Let’s put this to the test and

explore what might happen if we were to use one of our components in a

React demo.

Chapter 9 Testing Components

281

�Testing with Other Frameworks
At this point, I must admit to a slight air of trepidation and doubt – I, like

many of you, will be familiar with React components running in React

demos, Angular ones in Angular, and so on, right? Svelte is an exception: it

claims to run in any framework, so how can we test it?

There are a couple of ways to achieve this, but I prefer creating a

CodeSandbox demo using a React template. Thanks to its predefined

template options, CodeSandbox makes this a cinch to complete, so let’s

dive in and take a look at an example using the Spinner component.

If you get stuck, my version is available in a CodeSandbox
at https://codesandbox.io/p/sandbox/runtime-
snow-9frpdj. You will need to sign in either with a GitHub, Google,
or Apple account to view the demo.

USING OUR COMPONENT IN A REACT DEMO

To set up the example, follow these steps:

	1.	 First, browse to https://www.codesandbox.io, then click

Create in the top-right corner once you are there.

You might be prompted to log in. A good option is to use a Google
account, which will allow you to save your work.

	2.	 From the list of templates that appear, click React, then wait for

it to prepare a new demo.

Chapter 9 Testing Components

https://codesandbox.io/p/sandbox/runtime-snow-9frpdj
https://codesandbox.io/p/sandbox/runtime-snow-9frpdj
https://www.codesandbox.io

282

	3.	 We need to add a copy of our component. First, create a folder

called dist at the top level, and then inside this, create one

called assets.

	4.	 Take a copy of the Spinner-XXXX.js file you created in the

Running the Build demo, then drag and drop it into the assets

folder to upload it.

You might wonder why I’ve replicated the same folder structure
here when it isn’t entirely necessary. It’s purely to replicate what we
receive when we run the bundling process – keeping it similar helps
prove that the component works as expected outside of Svelte.

	5.	 With the component file imported, switch to App.js in the

CodeSandbox editor. At the top of the file, add this import

immediately above the existing one for styles.css:

import "./dist/assets/Spinner-7EA5ytIy.js";

Note R eplace the Spinner-7EA5ytIy name with the name your
system created when you ran the build process in the earlier demo.

	6.	 Next, find the line with the <h2> tag, and add this code

immediately below it, as highlighted (and before the last

</div> tag):

<h2>Start editing to see some magic happen!</h2>
<div className="layout">
 <garnet-spinner
 color="#733635"
 duration="0.75s"

Chapter 9 Testing Components

283

 size="40"
 variant="circle"
 ></garnet-spinner>
</div>

	7.	 Click File from the hamburger menu on the left, then Save

to save the demo – if all is well, we should see our spinner

running, as shown in Figure 9-5.

Figure 9-5.  The Spinner component running inside a React app

Yay – we finally have one of our web components working in a non-

Svelte environment! It might have taken us a while to get there, but in the

tradition of “best things come to those who wait,” we finally got there.

This is one of the best things about Svelte: unlike other frameworks, we

can create reusable components in any framework, including Svelte. On

a more practical matter, this demo has a few interesting points of note, so

let’s review the code in more detail.

Chapter 9 Testing Components

284

�Understanding What Happened
This last demo might seem like déjà-vu, but that is to be expected – most of

the hard work in bundling our components has already been done, so all

that remains is to add our component to a demo.

For this demo, we created a simple React demo based on one of

the templates available in CodeSandbox. We first set up an asset folder

structure before uploading a copy of our Spinner...js bundle. We could

have used a different folder structure (and in production, probably would),

but replicating the existing one created in the bundling process makes it

easier to build our demo.

Next, we added an import to the Spinner file in App.js before inserting

the Spinner component into the React markup. Once done, we previewed

the results in the mini browser window to confirm that the Spinner

component worked as expected within our demo.

�Adding Test Coverage
So far, we’ve focused on creating tests for our components – all follow

a similar format, where we include tests to prove they render correctly

on the screen and that we can start to perform limited checks, such as

checking that the Dialog box is not present when clicking the close button

of the modal.

This testing is all very good, but it leaves out an important stage – what

about test coverage? Are we using all of the code in each test, or is there

code that we haven’t thoroughly tested yet?

This step was left out in an earlier version of this book – possibly due to

issues with setting it up locally. However, using Vitest makes setting up our

coverage checks a doddle – support is already partially baked in, so to see

how we can get it working, let’s dive into the next demo.

Chapter 9 Testing Components

285

ADDING TEST COVERAGE

To set up coverage using Vitest, follow these steps:

	1.	 First, crack open vite.config.js and add these lines as

highlighted:

// https://vitejs.dev/config/
export default defineConfig({
 plugins: [svelte()],
 test: {
 globals: true,
 environment: "jsdom",
 setupFiles: ["src/setupTest.js"],
 coverage: {
 provider: "istanbul",
 },
 },
 compilerOptions: {
 customElement: true,
 },
});

	2.	S ave and close the file. Next, switch to a Node.js terminal

session and change the working folder to our project area.

	3.	A t the prompt, enter npm run coverage and press Enter. You

should see a message asking to install @vitest/coverage-
istanbul – enter y when prompted:

$ npm run coverage
> garnetui@0.0.0 coverage
> vitest run --coverage

Chapter 9 Testing Components

286

 �MISSING DEPENDENCY Cannot find dependency '@vitest/
coverage-istanbul'

√ Do you want to install @vitest/coverage-
istanbul? ... yes

	4.	A fter a few moments, we should see a message similar to this

to confirm it’s installed:

added 38 packages, and audited 877 packages in 10s
172 packages are looking for funding
 run `npm fund` for details
found 0 vulnerabilities
Package @vitest/coverage-istanbul installed, re-run the
command to start.

	5.	A t this point, enter the same command again and press Enter –

we will see a lot of entries similar to these:

<garnet-input> was created with unknown prop 'id'
<garnet-input> was created with unknown prop 'class'

These are to be expected – we will return to this later in the chapter.

	6.	 We should have a set of results similar to the extract shown in

Figure 9-6.

Chapter 9 Testing Components

287

Figure 9-6.  Results of our coverage tests

	7.	 Notice that we also get an indication of how long it takes to run

the process – above the results, we should see something akin

to this:

Test Files 17 passed (17)
 Tests 57 passed (57)
 Start at 18:58:19
 �Duration 16.47s (transform 9.45s, setup 21.93s,

collect 25.04s, tests 1.92s, environment 27.94s,
prepare 4.30s)

	8.	 Leave the Node.js terminal prompt open but minimized – we

will use it in the next demo.

Mmm…we now have coverage in place, even if it’s not showing the

best results! It’s good to see that most of the results show 100% coverage,

but % Branch definitely needs attention – I suspect that much of that will

improve when we look at some of the uncovered lines.

In the meantime, you may have noticed that the results returned are

somewhat lengthy. We can make a few tweaks to make it easier to manage

getting these results, so let’s take a look at how in more detail.

Chapter 9 Testing Components

288

�Refining the Results
Although it’s important to show all of the results, we may not want to do so

each time – it takes longer to display and contains information that isn’t

immediately relevant if we’re working on a specific component!

To get around this, we can tweak the coverage results to only show

results for one component at a time (or all of them, when needed). Vitest

also includes several files that shouldn’t be part of the coverage – they are

the ones primarily used in Storybook, not the final component. We can set

Vitest to exclude those files that are not relevant – to see how, let’s crack on

with our next demo.

REFINING THE RESULTS

To refine the results, follow these steps:

	1.	 First, crack open vite.config.js – in the section marked

coverage, add the include and exclude statements, as

shown below:

coverage: {
 provider: "istanbul", // or 'v8'
 include: ["src/lib/components/**/*.svelte"],
 exclude: ["src/lib/components/**/*Decorator.svelte"],
},

	2.	 Next, extract a copy of the file additional test
commands.txt from the code download for this book, and

copy and paste the contents into package.json immediately

below this line:

"coverage": "vitest run --coverage",

Chapter 9 Testing Components

289

	3.	S ave and close the file. We need to make a series of changes

to the test spec files now – this is key to making the individual

tests work correctly. We’ll start with Grid, so crack open

ImageGrid.spec.js from the __tests__ file.

	4.	 Look for the line starting import Table from…, and change it

to this:

import Table from "../../Grid/Table.svelte";

	5.	S ave and close the file. Switch to a Node.js terminal prompt,

enter npm run coverage, and press Enter.

	6.	I f all is well, the tests will all run – we should get 17 test files

showing a pass, with 57 tests also showing a pass.

Do not be tempted to terminate the tests from running – we need
them to execute while we complete the remaining steps in this demo.

	7.	 For the remaining tests, we need to perform a similar change –

crack open each in turn, then change them following this

format (using Accordion as an example):

	 a.	 Look for the line beginning import Accordion from…, where

Accordion is the name of the component.

	 b.	 Before the name of the file, change the format from

../Accordion.svelte to ../../Accordion/
Accordion.svelte.

	 c.	S ave and close the file.

	8.	R epeat step 8 for all the remaining tests, replacing Accordion

with the name of the updated component.

Chapter 9 Testing Components

290

If you encounter any difficulties, the updated files are in the code
download.

	9.	O nce the last test is updated, switch to that Node.js terminal

session from the previous demo. We need to test these new

commands work, so using Accordion as our example, enter npm
run coverage:accordion at the prompt and press Enter.

	10.	I f all is well, we should see some results appear similar to this:

% Coverage report from Istanbul
✓ �src/lib/components/accordion/__tests__/Accordion.

spec.js (5)
 ✓ Tests for Accordion (5)
 ✓ should render properly
 ✓ should show the first heading with correct text
 ✓ should have the correct title
 �✓ should show aria-expanded as true when first

item clicked
 ✓ get a snapshot of component
 Test Files 1 passed (1)
 Tests 5 passed (5)
 Start at 19:39:05
 �Duration 2.62s (transform 807ms, setup 156ms,

collect 1.21s, tests 125ms, environment 586ms,
prepare 195ms)

	11.	 The key part is in the coverage results – notice this time how

we’re only showing results for Accordion (Figure 9-7).

Chapter 9 Testing Components

291

Figure 9-7.  Coverage results for the Accordion component

Okay – if you were expecting the results to change to 100% across the

board suddenly, I’m sorry to disappoint you: we still have work to do to

fix them!

However, these tweaks make it easier to view the results on a per-

component basis rather than all of them in one go. We can still do the latter

if we want to – this will probably be more useful once we get the results

nearer 100% across the board. In the meantime, the changes we’ve made

raise a few key points, so let’s take a moment to digest the changes we’ve

made and explore where we go from here as our next steps.

�Breaking Apart the Code Changes
Adding code coverage can be a double-edged sword – while it’s great for

identifying dead code, it can also open up the argument of where we set

the thresholds!

Some might say it should be 100% without fail, but that puts extra

pressure on us to ensure it all works. Equally, is setting it at 100% a realistic

prospect? Some might see setting it lower as lowering standards, but I

think it’s closer to reality. We can always set low and then work to increase

the thresholds over time.

But I digress. To get code coverage enabled, we worked through several

steps – we started by adding a block to the vite.config.js, to tell Vite

(and Vitest) how we want to run coverage. Here, we set our provider as

Chapter 9 Testing Components

292

Istanbul (we could choose v8 as an alternative, but istanbul is as good

as any to start with). We then ran npm run test in a terminal session –

this automatically recognized that coverage wasn’t set up and installed

the @vitest/coverage-istanbul package for us. We then reran the

command, and this time, Vitest automatically worked out the coverage

for us, displaying the results on-screen, along with a record of the time

taken, the number of tests covered, and a breakdown of the times taken for

each stage.

Granted, the results are not perfect, but this is to be expected – we’ve
not spent any time refining our code yet. I’ll come back to this point
later in the chapter.

Moving on, we then worked on refining the setup, as coverage included

files we didn’t need to test, such as decorators for Storybook. To fix this,

we added include and exclude statements; we set this to cover only Svelte

files and exclude decorator files. We then worked through adding separate

commands to test coverage for individual files – we have a fair few that take

time to test; setting up individual commands makes it easier for us to test

those files when needed.

We can run the entire suite anytime, but this should only be needed
as a final test once we update a specific component.

At the same time, we had to adapt the imports in each component –

this isn’t ideal, but not doing so will result in an error if testing a

parent component that subsequently calls a child component (such as

Accordion). It doesn’t change how the component runs but makes it easier

to assess coverage at a more granular level.

Chapter 9 Testing Components

293

Once that lengthy part was done, we finished the demo by testing the

Accordion component using the new component-specific command.

It showed that the tests were still successful, but the coverage was now

limited to the Accordion component. Although we only tested this one,

the same principle will apply to all of the others – it’s meant a lot of extra

commands now showing in package.json, but this is only because I

couldn’t find a better way to be more dynamic!

�A Parting Thought
When I was setting up coverage on my local version of the project, it did

bring up a couple of interesting points, which I think are worth sharing.

The obvious one is (at least for anyone familiar with the principles of

code coverage) what level do we set it at so that it knows when to show an

overall pass or failure? Something in me says that 100% would be ideal, but

is this representative of what we’re aiming for?

I think it’s better to start relatively low and gradually build up the

success rate using an MVP approach. After all, we already know from the

previous demo that we have work to do, so let’s get that fixed before we

think about going any higher!

We set up basic coverage support in our demo, but Vitest offers more
options that could help fine-tune our setup. If you would like to learn
more about them, please head over to the Vitest documentation at
https://vitest.dev/config/#coverage.

Chapter 9 Testing Components

https://vitest.dev/config/#coverage

294

�Summary
Testing is essential to creating any code, period – be it a simple one-liner

right through to a whole website! We must ensure it works (to the best of

our ability) and does what we expect. In this chapter, we’ve covered a lot of

material about testing our library, so let’s review what we have learned.

We started by working through the steps to set up our testing

environment. We chose to use Vitest as it fits perfectly with our Vite-

based project and has no problem supporting Svelte Web Components.

Next, we moved on to creating tests – as many of them follow the same

format, we explored one, then extracted the rest from the code download

accompanying this book.

We then switched focus to exploring how to bundle our components –

this is essential to preparing them for use in a production environment,

although we know they are not yet ready for that stage! This process had

two parts: the first was configuring the build steps before we switched to

running through that process and generating the files.

In the last stage, we rounded off the chapter by looking at how to test

our components in an environment outside our current project area. We

updated the local demo to verify that we can see examples running before

replicating something similar to a React demo. At the same time, we saw

how the component worked fine in both cases, proving that Svelte works in

pretty much any environment we might use!

Okay – we’ve come to the end of this chapter, but we have the most

critical part left: release the library into production! The state of our

library is such that we would have other things to do first, but it’s crucial to

understand how the release process might look for our library. Stay with

me, and I will reveal it all in the next chapter…

Chapter 9 Testing Components

295© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_10

CHAPTER 10

Accessibility
Crack open the Tabs.svelte file for a moment – notice anything

interesting about two lines that look like they are commented out? The two

lines I’m thinking of are these two:

<!-- svelte-ignore a11y-click-events-have-key-events -->

<!-- svelte-ignore a11y-no-static-element-interactions -->

So why have I highlighted these lines, and what makes them so

unique? It all boils down to two things – linting and accessibility. Let me

explain where I’m coming from.

Accessibility is one of those topics where either one of two things

(or both) can happen – first, it frequently gets left until much later in the

development process (as a bit of an afterthought), and second, it can often

open something of a can of worms when it comes to dealing with it! What if

we could do it during the development process?

This feature is where Svelte is different – it has accessibility linting

already built into the framework, so if you were to create something that

wasn’t accessible, it would flag it as such. It’s not perfect – and we’ll return

to that shortly – but it will catch quite a few things!

Accessibility testing is a whole subject in its own right, but there are

a few things we can do to get started. Throughout this chapter, we’ll work

through some of these basic checks and tests – before we do so, let’s begin

with a quick experiment.

https://doi.org/10.1007/979-8-8688-1180-7_10#DOI

296

�A Quick Experiment
I could talk about accessibility testing in Svelte for ages, but to be honest,

the best way to understand what’s going on is to see it in action. With that

in mind, let’s run through this quick test – I will assume you’re using VS

Code; you should still see the same effect in other editors.

WHY IS ACCESSIBILITY LINTING GOOD IN SVELTE?

To see what makes Svelte’s accessibility checking worthwhile, follow

these steps:

	1.	 Switch to that Tabs.svelte file you (hopefully) had open at

the start of the chapter.

	2.	 Find the two commented lines and remove them.

	3.	 You will notice that the block will be highlighted (with

a yellow wavy line), and you will see these two issues appear in

the Problems tab (Figure 10-1).

Figure 10-1.  Two accessibility linting issues in VS Code

	4.	 Undo the change, and you should see the issues disappear.

	5.	 Next, try adding role=button above the line shown below

in the Dialog component – notice how we get an immediate

warning for a11-no-redundant-roles? We can see it

appear, as shown in Figure 10-2.

Chapter 10 Accessibility

297

Figure 10-2.  Adding a redundant role flags a warning

	6.	R emove the role type, and the alert will disappear.

See what I mean? The checking is already built into the development

process, and it has been since we first installed Svelte. This is in stark

contrast to other frameworks, where this would frequently be left as an

afterthought – mainly because it can open a real can of worms that no one

likes to deal with! So, now that we’ve seen what happens, let’s dig into the

details of these errors.

�Understanding What Happened
Take another look at the picture in the last demo – you will notice I

highlighted two entries:

svelte(a11y-click-events-have-key-events)

svelte(a11y-no-static-element-interactions)

If we hover over each of the errors in VS Code in turn (in the Problems

tab), we get the following explanations:

A11y: visible, non-interactive elements with an on:click event

must be accompanied by a keyboard event handler. Consider whether

an interactive element such as <button type="button"> or <a> might

be more appropriate. See https://svelte.dev/docs/accessibility-

warnings#a11y-click-events-have-key-events for more details.

A11y: with click handler must have an ARIA role

Chapter 10 Accessibility

298

These are perfect examples of what Svelte can flag as we write code –

we can deal with any that pops up in real time, not as an afterthought! I

know the demo was a quick test, but it was to highlight how these checks

happen in real time and not as part of any extra process we have to run to

get the same results.

�Setting Expectations
Okay – now we’ve seen something of what Svelte’s accessibility checking

can do, what next? It’s time for us to get stuck in with testing.

As mentioned earlier, accessibility testing is a whole subject in its own

right – we could easily fill a book on its own! Instead, we will focus on some

of the basics to see what low-hanging fruit we can identify and fix as a

starting point for our library. With that in mind, I want to outline the areas

we’re going to focus on for this book:

•	 We will use an NPM package called vitest-axe, available

from https://github.com/chaance/vitest-axe,

which uses axe under the covers. For those unfamiliar

with axe, it’s one of the best accessibility testing tools

available. It’s created by the company Deque Systems

and is available from https://www.deque.com/axe/.

There is one downside, though – we must use a pre-

release version! We cannot avoid it, so I’ve chosen the

most recent version available for use in this book.

•	 We’ll run a simple test with the plugin to see what (if

anything) it catches – based on the results, we’ll go

through how to fix it so the results show success. We’ll

use the Alert component as the basis for our tests, but

at the same time, go through what we need to do to fit

the same tests for the other components.

Chapter 10 Accessibility

https://github.com/chaance/vitest-axe
https://www.deque.com/axe/

299

•	 While axe (and vitest-axe) may be one of the best tools

available, it (to quote an expression) is only human and

can’t fix everything – it has its limits! We’ll work through

what these are, whether any may affect what we need to

do, and whether we might have to make any changes.

Excellent – with that all in mind, let’s crack on and take a look at how

we can get stuck in with testing. We will look at two methods – we can use

the vitest-axe package I mentioned earlier (which requires some work to

set up). However, there is a quick and dirty way to run some checks – how

about using a plugin directly into our browser?

�Testing with the Chrome Extension
The easiest way to test our components for accessibility is to use a Chrome

plugin. Deque has made one that ties in with their axe testing tool, which

is available from the Chrome Store and will be the one we’ll use for our

next demo.

Before we get started, though, it’s important to remember while we

run through a project that this won’t give us a 100% representative picture.

We’re running on a page set in time, so the results will be what axe sees

at that point. If we import that component into a site, new issues, such as

for contrast, may appear. That is why it’s crucial to test now and again to

ensure we can fix all issues where possible!

Right – let’s make a start: we’ll do this in two halves as there are a few

steps to work through. We’ll cover examining the results in the next demo,

but we’ll begin with setting up the browser plugin.

Chapter 10 Accessibility

300

SETTING UP THE AXE PLUGIN IN CHROME

To set up the plugin, follow these steps:

	1.	 First, go ahead and browse to the Google Web Store at

https://chromewebstore.google.com/, then enter axe

in the search box.

	2.	 You should see one item listed as axe DevTools – Web

Accessibility Testing. Click it, then click Add to Chrome on

the right.

	3.	I t will prompt you to confirm that you want to add the extension.

Click Add extension. It will show a page in Chrome to confirm it

is installed – we can close it when this appears.

	4.	 Next, open a Node.js terminal session and change the working

folder to our project area.

	5.	A t the prompt, enter npm run storybook and press Enter –

this will fire up Storybook, ready for testing. When Storybook

appears, click Notification Components ➤ Alert ➤ Default.

	6.	 When on that page, click Open canvas in new tab – it’s the

middle icon of three, at the top right of the screen. Shift+Ctrl+I

(or Shift+Cmd+I) to open the Developer Console.

	7.	 Click the axe DevTools tab – you will be prompted to customize

the experience: choose Developer, then hit the checkbox by I

accept… and the Start using… button.

	8.	 Next, click Full Page Scan and wait a few moments for the

results to appear.

Chapter 10 Accessibility

https://chromewebstore.google.com/

301

Phew – we had to work through a few steps there, and that’s only for

setting up! The good thing is that the first five steps are a one-off; we only

need to do steps 6–11 when testing in the future. Leaving that aside for a

moment, let’s take a moment to explore the results of our test and see what

we need to resolve in more detail.

�Understanding the Results
Once the test is completed, we end up with a set of results similar to that

shown in Figure 10-3.

Figure 10-3.  Results of running Axe Tools on the Alert component

Although we are displaying the component inside Storybook, it’s only

showing two issues – both relate to color contrast. If we click the arrow, we

get the compiled markup and details of why it has failed:

<div class="message s-4Y75ZjC11XWf"><strong

class="s-4Y75ZjC11XWf">Simple Info An info

description</div>

Element has insufficient color contrast of 3.12 (foreground
color: #ffffff, background color: #2196f3, font size: 12.0pt
(16px), font weight: normal). Expected contrast ratio of 4.5:1

So far, so good? Well, maybe not. Let me explain.

Chapter 10 Accessibility

302

The #2196f3 color is the blue background for our alert, which

we’re using against white text as our content text color. It’s a reasonable

combination, but here’s the kicker – it’s not necessarily the combination

we will end up using in a project!

The problem lies not necessarily in the color we get when selecting

the alert type, but in that it’s hard-coded into the component, which

makes it less useful. If we use the Color Contrast checker at https://

dequeuniversity.com/rules/axe/4.10/color-contrast, we can see the

results confirm a fail for the design we’re using (Figure 10-4).

Figure 10-4.  Confirmation of the failing accessibility checks

To fix this issue, the ideal solution would be to revamp the component

to accept custom foreground and background colors, allowing us to use

any preset color palettes we need. Alternatively, we could override the

styles manually, although it’s not ideal!

If we went down the route of overriding colors, we’d have to ask ourselves

whether we want to go to Web Content Accessibility Guidelines (WCAG) AA

level compliance or for the stricter AAA level. For the former, we’d have to

change the background color to something like #0A6EBD (a darker shade of

blue) – we would have to alter the latter to something like #064474, an even

darker shade of blue! It’s definitely something worth considering…

Chapter 10 Accessibility

https://dequeuniversity.com/rules/axe/4.10/color-contrast
https://dequeuniversity.com/rules/axe/4.10/color-contrast

303

Tip  Sites like https://www.colorhexa.com/ are a great help
here – this site shows different shades of the target color, so with a
little trial and error, you can choose a more accessible color that fits
any palettes you need to use in your projects.

Okay – let’s move on: we’ve seen some quick wins we can have with axe

in the browser, but what about more complex or in-depth issues? We can

still use Axe, but we must switch focus to the codebase and use a dedicated

plugin. Fortunately, various people have created plugins that feed into axe,

based on using Jest, Vitest, and the like. We will use one for Vitest – let’s

look at what’s involved and how it works in more detail.

�Implementing Vitest-Axe
To assess accessibility in our codebase, we will use the vitest-axe plugin,

which is available from https://github.com/chaance/vitest-axe. The

plugin is just a wrapper for axe but written to share the same API and

library implementation as jest-axe, with which some of you may already be

familiar.

Installing the plugin is very easy – we can do it the same way as many

npm plugins, then extend our existing test setup globally or (as I prefer)

on a per-test basis. Let’s take a closer look at the steps required to install

and configure the plugin, using the Alert component as the basis for our

next demo.

In this next demo, I’ve set it to use the Default variant, but the
principles are the same for any variant, and the code can be adapted
accordingly.

Chapter 10 Accessibility

https://www.colorhexa.com/
https://github.com/chaance/vitest-axe

304

SETTING UP VITEST-AXE

To set up vitest-axe in our environment, follow these steps:

	1.	 First, crack open a Node.js terminal session, then change the

working folder to our project area.

	2.	A t the prompt, enter npm install --save-dev vitest-

axe and press Enter.

	3.	 Open Alert.spec.js, then add these two lines at the top:

import { axe } from "vitest-axe";

import * as AxeMatchers from "vitest-axe/matchers";

	4.	 Next, crack open a copy of adding alert markup.txt from

the code download accompanying this book. Miss a line, then

add the contents.

I’ve added copies of the code for each component to the code
download to make it easier to update your tests.

	5.	 Scroll down to the bottom of the spec file, and add this before

the closing brackets at the end:

 �test("should demonstrate no issues with

accessibility", async () => {

 const render = () => AlertHTML;

 const result = render();

 expect(await axe(result)).toHaveNoViolations();

 });

});

Chapter 10 Accessibility

305

	6.	R evert to the Node.js terminal session you had opened earlier,

then at the prompt, run this command:

npm run test:alert

	7.	I f all goes well, we should see a lengthy response – we’ll go

through what it means section by section, starting with this:

> garnetui@0.0.0 test:alert

> vitest --dir=src/lib/components/alert

 DEV v2.0.5 C:/garnetui

(node:23072) [DEP0040] DeprecationWarning: The

`punycode` module is deprecated. Please use a userland

alternative instead.

(Use `node --trace-deprecation ...` to show where the

warning was created)

	8.	 The next block highlights an issue we need to address with

unknown props being passed or used in our component or story file:

stderr | src/lib/components/alert/__tests__/Alert.spec.
js > Tests for Alert > should render properly

<garnet-alert> was created with unknown prop 'icon'

<garnet-alert> was created with unknown prop 'close'

stderr | src/lib/components/alert/__tests__/Alert.spec.
js > Tests for Alert > should disappear when close

button clicked

<garnet-alert> was created with unknown prop 'icon'

<garnet-alert> was created with unknown prop 'close'

stderr | src/lib/components/alert/__tests__/Alert.spec.
js > Tests for Alert > get a snapshot of component

<garnet-alert> was created with unknown prop 'icon'

<garnet-alert> was created with unknown prop 'close'

Chapter 10 Accessibility

306

	9.	 We finally get confirmation of the results of our test – it shows

that three tests pass, but the accessibility one fails:

 ❯ src/lib/components/alert/__tests__/Alert.spec.js (4)
 ❯ Tests for Alert (4)
 ✓ should render properly

 ✓ should disappear when close button clicked

 ✓ get a snapshot of component

 × should demonstrate no issues with accessibility

	10.	 We then get details of why our test has failed – this time, it’s

because we’re using a role type that is not supported:

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Failed Tests 1 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 FAIL src/lib/components/alert/__tests__/Alert.spec.js

> Tests for Alert > should demonstrate no issues with

accessibility

Error: expect(received).toHaveNoViolations(expected)

Expected the HTML found at $('dialog') to have no

violations:

<dialog class="alert alert-info fade-in s-4Y75ZjC11XWf"

role="alert">

Received:

"ARIA role should be appropriate for the element (aria-

allowed-role)"

Fix any of the following:

 ARIA role alert is not allowed for given element

https://dequeuniversity.com/rules/axe/4.10/aria-

allowed-role?application=axeAPI

Chapter 10 Accessibility

307

	11.	 We finish with confirmation of where the issue was triggered in

our test, and confirmation of the number of passes and failures,

as well as the time taken to run the test:

 ❯
src/lib/components/alert/__tests__/Alert.spec.js:50:31

 48| const result = render();
 49|
 50| �expect(await axe(result)).

toHaveNoViolations();

 | ^
 51| });
 52| });
⎯⎯⎯[1/1]⎯
 Test Files 1 failed (1)

 Tests 1 failed | 3 passed (4)
 Start at 18:37:48

 �Duration 2.05s (transform 311ms, setup 139ms,

collect 907ms, tests 129ms, environment 471ms,

prepare 147ms)

 FAIL Tests failed. Watching for file changes...

 press h to show help, press q to quit

Ouch – at first glance, those results look horrible! However, most of it

is clouded by the fact that we have an issue with unknown props that we

should address, in addition to the role type problem, even though it’s not

strictly accessibility related! Before we look at fixing both, let’s look at the

changes we made in more detail.

Chapter 10 Accessibility

308

�Exploring the Changes
So, what did we do in our somewhat lengthy demo? We kicked off by

installing the vitest-axe using the typical npm install process – this is no

different from any other package, which makes it very easy to install! Next,

we added two imports for axe in Alert.svelte – one for axe and the other

for the axe-matches package.

Moving on, we added a const value for AlertHTML that contained the

markup for our Alert component – this we use to mount the component

before running any accessibility tests. Unfortunately, there is no quick way

to get this markup – the simplest is to

•	 Run up Storybook

•	 Tag on &viewMode=story to the URL and press Enter

(this removes the Storybook markup and shows just the

component)

•	 Open Developer Console, right-click the garnet <div>

in the markup, and select Extract as HTML.

Assuming we have the markup, we then added our test at the foot of

the test spec file – it contains this command:

expect(await axe(result)).toHaveNoViolations();

This statement is key to performing the check – when run, it generates

a report of any accessibility issues it finds. In our case, it found two:

an unsupported role type and the lack of an accessible name for our

component. This, plus the issues with unknown prop names, we will look

at in the next section when we come to fix the errors found in this demo.

Chapter 10 Accessibility

309

Even though we’ve used the vitest-axe component, this is just a
wrapper for axe – it’s worth having a dig in the documentation on
Deque’s website to learn more about the settings. At present, we
have tested the WCAG 2.1 standard, but we may want to change
the specifics. How about setting it to triple AAA level to really up
our game?

�Fixing the Issues
Now that we’ve seen how vitest-axe can highlight accessibility issues, we

should turn our attention to fixing them. We may not be able to resolve all

problems, but we should at least consider what vitest-axe returns!

In short, we only need to make a few changes to this component –

one of them isn’t strictly accessibility, but hey, if we’re making changes,

why not fix it anyway? It’s a simple fix and a good one to know about with

Svelte – to see what I mean, let’s dive in and look.

MAKING THE CHANGES

To fix the issues highlighted by vitest-axe, follow these steps:

	1.	 The first issue isn’t strictly one of accessibility, but given we’re

fixing issues, it’s a good opportunity to fix this one – we have

unknown prop warnings appearing when running the tests:

<garnet-alert> was created with unknown prop 'icon'

<garnet-alert> was created with unknown prop 'close'

Chapter 10 Accessibility

310

	2.	 To fix the first one, which is for icon, we need to change in the

props const to showIcon, like so:

 const props = {

 show: true,

 description: "An info description",

 title: "Simple Info",

 showIcon: "true",
 type: "info",

 close: "false",

 };

	3.	 The next change we need to make is to remove the entry for

close from the same block shown in step 2 – this was likely a

copy/paste issue, and as it’s not needed, we should remove it.

We should end up with this:

 const props = {

 show: true,

 description: "An info description",

 title: "Simple Info",

 showIcon: "true",

 type: "info",

 };

	4.	 We can now fix the issues raised by vitest-axe – the first one is

for an invalid role type for Alert. We used alert for this, which is

not permitted – change it to alertdialog in Alert.svelte:

<dialog class={classes} role="alertdialog">

	5.	 The next error logged by vitest-axe is due to the lack of an

accessible name for the component. To fix this, add a title to the

markup in Alert.svelte, like so:

dialog class={classes} role="alertdialog" title="Alert

Dialog">

Chapter 10 Accessibility

311

	6.	 Save Alert.svelte and close it. Next, look for Alert.

spec.js.snap and delete it – it will be in the \src\lib\

components\Alert__tests____snapshots__ folder.

	7.	A t this point, we can rerun the tests. Switch to a Node.js

terminal session, then make sure the working folder is set to

our project area.

	8.	A t the prompt, enter npm run test:alert and press Enter –

if all is well, we should get results similar to this:

(node:25060) [DEP0040] DeprecationWarning: The

`punycode` module is deprecated. Please use a userland

alternative instead.

(Use `node --trace-deprecation ...` to show where the

warning was created)

 ✓ src/lib/components/alert/__tests__/Alert.

spec.js (4)

 ✓ Tests for Alert (4)

 ✓ should render properly

 ✓ should disappear when close button clicked

 ✓ get a snapshot of component

 ✓ should demonstrate no issues with accessibility

 Test Files 1 passed (1)

 Tests 4 passed (4)

 Start at 17:37:18

 �Duration 3.13s (transform 531ms, setup 193ms,

collect 1.57s, tests 164ms, environment 730ms,

prepare 169ms)

 PASS Waiting for file changes...

 press h to show help, press q to quit

Chapter 10 Accessibility

312

If you would like to learn more about ARIA role types, then a good
starting point is the documentation on the Mozilla Developer website
at https://developer.mozilla.org/en-US/docs/Web/
Accessibility/ARIA/Roles.

Excellent – I’m sure you will agree that this is already an improvement!

I know the deprecation warning for punycode will still need fixing, but that

will have to wait until a newer version of Storybook is available. For now,

though, we’ve covered some important points in this demo, so let’s take a

moment to review the changes we made and see how we can apply them

to other components in our library.

�Breaking Apart the Code

Testing for accessibility is a vital part of any development process. While it

can be a double-edged sword in terms of the amount of work it can create,

it’s still essential to make anything we produce available to all. Over the

last few pages, we’ve worked on doing this for the Alert component, with

a view to (eventually) replicating similar changes throughout the library.

Let’s have a look at the changes we made in more detail.

We started by fixing some unknown prop issues from the report

generated in the previous demo, setting up vitest-axe. While these are

not strictly accessibility related, it is still good to fix them. They cloud any

issues reported by Axe, making it just a little harder to work out whether

something is valid or just noise! In each case, it was a matter of either

renaming an incorrect prop name or removing it completely.

Moving on, we then turned our attention to fixing the real issues

flagged by vitest-axe – we had to add a missing title value and change

the role name given to the component. The good thing about vitest-axe is

Chapter 10 Accessibility

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles

313

that it usually indicates what we need to do to fix issues such as these two.

For example, we could have fixed the second issue by adding one of the

following:

•	 The aria-label attribute does not exist or is empty.

•	 The aria-labelledby attribute does not exist,

references elements that do not exist, or references

elements that are empty.

•	 Element has no title attribute.

In this case, I chose the title option, but I could equally have used

either of the other two to fix the issue. We then rounded out the demo

by running the npm test:alert command to rerun the tests – while we

still got the deprecation warning (which was to be expected), it didn’t

complain about any accessibility issues.

Thinking further afield, we could easily apply the same fixes to other
components in the library. Much of what we have to do will depend
on what vitest-axe returns, but I suspect most will be invalid prop
names and missing aria or title tags! I have been through all of the
remaining components and added, modified, or changed code to
ensure all pass basic accessibility checks.

Okay – let’s move on: using Svelte to check and notify us of any

accessibility issues is a great step forward, but like all processes, it’s

not infallible. We should be aware of some limitations when using this

approach, so it will do us no harm to appreciate where we might have to

make manual checks – let’s look at this in a little more detail.

Chapter 10 Accessibility

314

�Limits of Testing
While one of Svelte’s standout features is its checking for accessibility

issues, there is a limit to how much it can catch. To put this in perspective,

let me give you a figure:

With axe-core, you can find on average 57% of WCAG issues
automatically.

That sobering thought was taken from Deque’s website while writing

this book – it’s quite a shock! Even though we have a great process in place

for checking accessibility with Svelte, it’s not as good as people expect.

Don’t get me wrong: it’s a significant step in the right direction. But we

need to be mindful that accessibility is a huge topic and that we’ll never

manage to get 100%, as we can’t predict how our components will be used.

There is a big issue that we must be mindful of first, which did not pop

up immediately when writing the tests for this book but surfaced a little

later. When I ran tests, I was frequently getting this error returned for most

of the components:

"All page content should be contained by landmarks (region)"

It turns out that Vitest treats tests as if we’re working on a page, not an

individual component – this behavior is undesirable if not expected. To fix

it, we have to edit the test for accessibility to use this format instead – the

example below is set for Alarm, but you will need to amend the AlarmHTML

property to suit other components:

 �test("should demonstrate no issues with accessibility",

async () => {

 const render = () => AlarmHTML;

 const result = render();

 const results = await axe(result, {

 rules: {

Chapter 10 Accessibility

315

 region: { enabled: false },

 },

 });

 expect(results).toHaveNoViolations();

 });

While this is a bit of a pain, it is necessary; otherwise, the tests will still

record a failure even if we’ve fixed any other issues that appear. Using this

format also raises a few things we should fix at some point – they are as

follows:

•	 I’ve included the exclusion rules here in the code for

now, but, ultimately, it would be great to move these

into a helper file, so we don’t have to update all 17

components manually!

•	 In making this change, we are effectively extending

axe – it would be great to do this more centrally, so

we don’t have to extend it in each test manually. The

trouble is, I found scant documentation on how to set

this up when researching for this book, so I’ve gone

with the option of what works best for now. We can

always take the MVP approach and look to improve this

setup at some point in the future.

Looking further afield, Svelte can catch a fair few issues, which include

•	 Required attributes that are missing (e.g., no alt

attribute)

•	 Misplaced attributes that shouldn’t be there (e.g., aria-

hidden on a heading)

•	 Invalid attributes (e.g., writing role="potato")

Chapter 10 Accessibility

316

We can also catch a mix of issues that fall into a bag of accessibility

best practices, such as not using the <marquee /> tag, autofocus, and

positive tabindex values. So, what is Svelte not able to catch? One of the

core developers of Svelte, Geoff Rich, has highlighted a few areas in a great

article that is worth keeping in mind. They include

•	 Dynamic values: If we use as an anchor,

it will fire a warning, but if this is assigned to a constant

that is later used, we won’t get a warning.

•	 Anything that requires a larger view of the app: If you

use, say, an <h2> tag in a component, Svelte won’t

know if you’re going from <h2> to <h3> or jumping to

something like <h4>; this will therefore not trigger a

warning.

•	 Svelte won’t trap styling issues related to accessibility:

These need to be picked up by a dedicated Axe plugin

or checked in the browser. A typical example would be

color contrast, such as the one we found earlier for the

Alert component.

•	 Svelte will only pick up those issues that are objective:

for example, if you’ve used markup that could be

improved or alt text for images isn’t great, then these

won’t trigger an alert.

These are just a few things for us to think about! I’m sure there will be

more, but let’s be pragmatic – Svelte is still relatively young, and (at the

time of writing) quite a few accessibility issues have not yet been resolved,

so that support will improve over time.

If you want to read Geoff’s original article, please visit https://
geoffrich.net/posts/svelte-a11y-limits/.

Chapter 10 Accessibility

https://geoffrich.net/posts/svelte-a11y-limits/
https://geoffrich.net/posts/svelte-a11y-limits/

317

Okay, let’s crack on – we’ve covered a lot in this chapter! There is one

more topic we should cover, which is – to quote that oft-used term – “next

steps.” Where can we go from here? Is there anything worth exploring as a

result of the issues we find in our repo?

�Exploring Next Steps
So far, we’ve created a basic test for the Alert component and dealt with

some issues – where can we go from here?

It’s a great question: the answer depends (at least partly) on what

results you get from the remaining components! It might not be what you

expected to hear, but we can start by adding checks for specific names or

properties and add these as explicit tests in our test suite. For example, we

could write something similar to these:

expect(container.querySelector('.btn'))

.toHaveProperty(

 'role',

 'button'

);

expect(container).toHaveAccessibleName('Click me');

Note  These are just examples that may or may not work in Vite;
please check before you add any of them!

An excellent place to start would be the options documentation on

the Deque website at https://github.com/dequelabs/axe-core/blob/

master/doc/API.md#options-parameter. Vitest-axe is just a wrapper for

axe, so all options listed should be compatible if we decide to use them in

our library at some point in the future.

Chapter 10 Accessibility

https://github.com/dequelabs/axe-core/blob/master/doc/API.md#options-parameter
https://github.com/dequelabs/axe-core/blob/master/doc/API.md#options-parameter

318

There are a few other areas we should investigate to help improve our

testing:

•	 Refine the exclusion setup so it is hosted centrally

and doesn’t require us to manually edit each test file

to add or change existing rules! We may or may not

need to add new ones, but doing it once, which applies

automatically across all tests, is infinitely preferable to

editing each file.

•	 I had to manually extract the (compiled) markup for the

component we used in our accessibility demo. While it

worked, it was not ideal. We should see if there is a way

to improve this – initial checks suggested that rendering

the component as <XXXX /> wasn’t accepted, but I’m

not sure why.

•	 I think the component format isn’t 100% consistent –

for example, do all of them have a parent <div> in the

format of <div class=" garnet-XXXX">? It is critical

not only for styling and separation of concerns but

also because of the region landmark issue I mentioned

just now – can we find a landmark tag that works

better and potentially means we can do away with the

exclusion rule?

These are just a couple of things to think about – I’m sure you’ll come

up with more! The point here is that we don’t consider this done and

dusted but keep iterating on what we’ve done until the library is no longer

used and retired from active service.

Chapter 10 Accessibility

319

�Summary
Phew – we’ve covered a lot of valuable content over the last few pages!

I’ve already mentioned that testing is essential to the development

process. While it is a huge topic, we’ve made a good start in ensuring our

components work as expected in the library. We’ve worked through some

critical steps throughout this chapter, so let’s take a moment to review what

we have learned.

We began with a quick experiment to see the effects of including

markup in our example component that is not accessible; we noted that

Svelte has accessibility checking built in, and (as we later found out) it’s

not perfect, but can pick up a fair few of the basic areas where accessibility

can be an issue.

Next up, we moved on to testing a component with the Axe DevTools

plugin for Chrome – this was designed as a quick and dirty check as it is

a manual process and not one suited to lots of regular checking for more

than a handful of components! That said, it picked up a valid issue with

color contrast, which we delved into and figured out some of the options

available for fixing the problems.

We then worked through setting up vitest-axe as an automated way of

checking for accessibility – we saw how this highlighted two to three issues

that were straightforward to fix and that implementing suitable changes

meant we could get a 100% pass on that component when retesting it.

We then rounded out the chapter with a quick look at some of the limits

of testing accessibility with Svelte’s built-in checker before touching on

a couple of ways to take our checking further as we develop the library

over time.

Okay. Big sigh – it’s time, ladies and gentlemen…to release our work

into the wild! Hold your horses, though, as our library isn’t yet ready for

that, but I will take you through the process for getting our code ready to

release into the wild, as well as some options on making our components

available for general use in the next chapter.

Chapter 10 Accessibility

321© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_11

CHAPTER 11

Deploying
to Production
This chapter is the most critical part: we’ve spent all this time creating our

new library, but no one can use it unless we release it into production.

In this chapter, we will go through releasing our library into the wild and

explore what documentation is required so that others can use the library

for the first time. I know you’ll be keen to get everything released and out for

people to use, but as they say, hold your horses: the release process is critical

to the success of your library, so it’s essential to get it right!

It means we need to cover a little theory before getting stuck in, but it

will be worth it in the long run. With that in mind, let’s start with a simple

task: perform some final checks to make sure all is good before release.

�Performing Final Checks
Throughout this book, we’ve done some great work in creating our

component library – it would be a shame to release it out into the wild

without at least making sure we’ve tidied up loose ends.

We should do this task by default, but I’ve encountered dozens of

instances where developers haven’t performed this task. For example, I’ve

https://doi.org/10.1007/979-8-8688-1180-7_11#DOI

322

seen sites containing components without documentation (or minimal

at best), spelling mistakes, or poorly formatted code. I’ve even seen the

occasional spelling mistake, too, which isn’t great.

It is a symbolically important step, too – we may not need to make many

(if any) final changes, but doing the last check is also a way to say, “I’m happy

with what is there and ready to sign off.” Let us be realistic, though: I know our

library still needs work, so we won’t do this until we release the site.

Leaving that aside for a moment, let’s consider what we might want to

do at this point. To get you started, here are a few ideas:

•	 Check each file in the repository: Is it still needed, or is

it one that is no longer required and can, therefore, be

removed?

•	 Do all of the component files have a consistent layout?

For example, I usually start each component with the

<script> block, followed by the markup, and finish

with the <style> block, but you may prefer to change it.

•	 Are all the filenames correctly named (i.e., in title case),

where appropriate? Do filenames relate to the content

within? For example, we have a Grid folder, but the

component inside it is called ImageGrid.

•	 In the test files, we import the same functions, along

with the target component – are all of the imports

required, or can we tidy up by removing any that are no

longer needed? The same applies to components – can

we remove imports if we’re not using them?

•	 Have you pushed up any final changes in your local

version?

•	 We have a .gitignore file in the book: Is this up to

date, or are there any other folders or files we need to

exclude?

Chapter 11 Deploying to Production

323

•	 For each component, we used Default as the out-

of-the-box version in Storybook – while this works

technically, it’s not considered standard practice to use.

Ideally, we should rename any instance of Default (and

note, not the default fallback) to something else – as

long as we can come up with an appropriate option!

We might want to make more changes to tidy up, but this will

depend on your circumstances. The critical point here is that we take the

opportunity to make sure our library is as tidy as realistically possible

before we release it into the wild. I know it’s a task that ideally is done as

we work, but let’s be honest: Can we guarantee this happening without a

cleanup/check at the end?

A minor point: This is not about tidying to the nth degree but getting
things to a sensible stage, bearing in mind that we’re following the
MVP approach we discussed earlier in the book.

Okay – let’s crack on: now that we’ve completed the final checks for

our site, we should look at deploying our library. Getting our library out

into the wild will require a few steps, such as pushing our code into a

repository, releasing packages, ensuring good documentation, and more.

Before we get stuck into the various tasks, let’s first take a quick look at

what we need to do in more detail.

�Understanding the Deployment Process
Throughout this chapter, we will transition our library from being a locally

hosted project into something available for others to use (and hopefully

help improve and develop, too). From the outset, though, there is one

thing we need to be mindful of.

Chapter 11 Deploying to Production

324

Although we’ve done much to develop our library, I would not

consider it production-ready. We can add plenty more, such as more

extensive testing or making CSS styles more consistent – I’m sure there

will be more we can do! It’s important to note, therefore, that while we

will cover the process, tips, and hints on deployment, we should only

do these at the appropriate moment when we deem our code to be

production-ready.

Okay, enough of the doom and gloom, let’s move on. We’ve mentioned

that the process of deployment will include various tasks, which will

include the following:

•	 GitHub: If we don’t upload our code somewhere, nobody

will be able to use it! I’ve chosen to use GitHub for

convenience (primarily because I already have many

repos on this platform). Feel free to change it to a different

platform, such as GitLab, Azure, or even Bitbucket.

•	 We need to release our code in a format that’s easy for

others to use – we have several options:

•	 We can release it as one or more npm packages.

•	 We also have an opportunity to bundle components

as compiled JavaScript files.

•	 We could even push code to a Content Delivery

Network (or CDN) – this would be outside the scope

of this book, but it’s something to consider for future

projects.

•	 In addition to releasing code, we should also release

our version of Storybook to a public hosting webspace,

such as Netlify.

Chapter 11 Deploying to Production

325

There’s plenty to do! It might seem like a lot, but it’s important to

remember that much of this will be one-off. Once we complete steps such

as setting up GitHub, we can switch to applying updates and new features

throughout the lifetime of the component library. With that in mind, let’s

begin the process by getting a GitHub site set up and ready for use.

�Publishing to GitHub
Although publishing content on GitHub requires quite a few steps, we can

split the process into two distinct parts – the first is to create the repository

and get it ready for use, while the second is uploading our code.

Let’s focus first on setting up the repository: if you’ve already used sites

such as GitHub, then much of what you will see shortly will be familiar.

Before we get stuck in, though, there are a couple of points we should be

aware of as part of setting up our repository:

•	 Although I’ve elected to use GitHub (and Netlify) for

hosting, this part is more about the process of pushing

up code into production and less about the specifics

of where we host it. For this book, I will assume you

are using GitHub and Netlify; please feel free to adapt

where appropriate.

•	 The instructions over the next few pages are written

for Windows, as this is the author’s regular platform;

please adapt if you use macOS or Linux.

For the demos, I will assume the repo’s name is garnet and that it
is available at https://github.com/alexlibby/garnet. Please
adapt the name accordingly, depending on what you choose to use.

Okay – with that in mind, let’s dive in and start setting up the library’s

repository.

Chapter 11 Deploying to Production

https://github.com/alexlibby/garnet

326

�Setting Up a GitHub Repository
At this point, things start to take shape – we are stepping ever closer to

releasing our site into the wild.

The first task will be to set up a GitHub repository; I will use garnet

for the account name so you can see how to configure your version,

particularly if you use a different name. Setting up the repository uses the

standard GitHub process – let’s take a look:

SETTING UP THE REPOSITORY

To set up our GitHub Pages account, follow these steps:

	1.	T he first step is to sign in to your GitHub account using the

details you registered with before this demo; once done,

browse to https://github.com/new to set up a new

repository.

	2.	O nce you are on the Create a new repository page, go ahead

and enter your repository name (Figure 11-1).

Figure 11-1.  Creating the repository

Chapter 11 Deploying to Production

https://github.com/new

327

	3.	G itHub has already populated the Owner field, so leave this

unchanged.

	4.	N ext, give it a description – it’s optional, so you can skip past it

if you like, and it won’t affect how the demo works.

	5.	Y ou should see two fields present, Public and Private – GitHub

has preselected the former, as private repositories are not

available on a free tier.

	6.	N ext, set all three options under the Initialize this repository

with… label – you should end up with a configuration similar to

that shown in Figure 11-2.

Figure 11-2.  Settings to use for the new repository

	7.	H it Create a repository to generate our new repository.

	8.	I f all is well, we should end up with a new repository with a URL

of https://github.com/alexlibby/garnet – it should

look something like the screenshot shown in Figure 11-3

(allowing for your username and repository name).

Chapter 11 Deploying to Production

https://github.com/alexlibby/garnet

328

Figure 11-3.  Screenshot of our GitHub repository, ready for use

	9.	O ur repository is ready for deployment.

Excellent – we have a working repository ready to upload content from

our project area. To achieve this, we worked through the standard process

for creating a GitHub repository, including setting appropriate values for

entries such as name or whether to include a license or .gitignore file.

With our repository in place, we can now move on to the next task:

upload our library code, which, fortunately, is easy enough to do using

standard Git commands. I suspect some of this will be familiar to many

of you already; for those new to Git, don’t worry – let’s dive in and take a

closer look at what’s involved.

�Uploading Components to GitHub
With our repository set up and ready for use, it’s time we turned our

attention to uploading our code. We can achieve this in several ways:

uploading directly from editors, Git GUI clients, or via the command line.

For this next exercise, I will keep it simple and use the Git command

line; feel free to adapt if you already have a process for uploading to

GitHub. Let’s make a start.

Chapter 11 Deploying to Production

329

UPLOADING TO GITHUB – PART 1: THE COMMIT

To upload our code to the repository, follow these steps:

	1.	 We first need to rename the original garnet folder to

 garnet-source – this will allow the upload process to

continue.

If you already have Git installed for your platform, please skip the next
step and proceed to step 3.

	2.	N ext, we need to install Git – head over to https://git-

scm.com/downloads, then download and install the version

appropriate for your platform. When asked, please accept

default settings – this should be sufficient for this exercise.

	3.	 With Git installed, fire up a Git Bash session, then change the

working folder to the same level as the garnet-source folder

we renamed in the first step.

	4.	N ext, we need to clone the empty repository down to your PC

so that we can upload content – for this, enter this command at

the prompt to pull down a copy of the repository, where XXXXX

is your account name:

git clone https://github.com/XXXXX/garnet.git

You can also get this URL from GitHub by visiting the Code tab, then
clicking Clone, and hitting the icon to the right of the URL to copy the
address.

Chapter 11 Deploying to Production

https://git-scm.com/downloads
https://git-scm.com/downloads

330

	5.	O n pressing Enter, you should see something akin to this:

Cloning into 'garnet'...

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 5 (delta 0), reused 0 (delta 0),

pack-reused 0

Receiving objects: 100% (5/5), done.

	6.	N ext, extract a copy of .gitignore from the code download

and drop it into the root of the garnet folder.

	7.	 Switch to your file manager, then copy all the files from garnet-

source to garnet. You may be prompted to overwrite README.

md and .gitignore – if so, hit Skip, as the files in the garnet

repo are better versions than the local ones.

There is a reason for doing this at this stage – I will return to it at the
end of the demo.

	8.	 With the files copied over, revert to a Node.js terminal session,

then change the working folder to the cobalt folder, and run npm

install at the prompt.

	9.	O nce this is complete, we need to add the files together, ready

to push up as a commit to our repository. Run this command at

the prompt:

git add .

	10.	 With the files ready, enter git commit -m "Initial

release" to bundle the code into a commit, similar to this

extract:

[main 4d38b60] Initial release

 103 files changed, 52901 insertions(+), 106 deletions(-)

Chapter 11 Deploying to Production

331

 rewrite .gitignore (94%)

 create mode 100644 .storybook/main.js

 create mode 100644 .storybook/preview-head.html

 create mode 100644 .storybook/preview.js

 rewrite README.md (100%)

 create mode 100644 __test__/Accordion.spec.js

 create mode 100644 __test__/Alert.spec.js

 create mode 100644 __test__/Breadcrumbs.spec.js

 create mode 100644 __test__/Checkbox.spec.js

...

Excellent – that brings us to the end of Part 1, with code ready to push

up. Technically, this process will be a lot slicker as we perform the first few

steps as a one-off. In future iterations, we will just add the files to a commit

and push it up. Take a breather for a moment, then let's continue with Part

2, which will push the code up into GitHub.

UPLOADING TO GITHUB – PART 2: PUSHING UP

To complete the process of getting the code into GitHub, follow these steps:

	1.	 Before we can push up, we need to create a PAT (or Personal

Access Token). First, browse this page: https://github.

com/settings/tokens.

You can also access this page by clicking Profile ➤ Settings ➤
Developers setting ➤ Personal access tokens. Don’t be tempted to
go to the repository settings page – you must do this within your
profile settings page!

Chapter 11 Deploying to Production

https://github.com/settings/tokens
https://github.com/settings/tokens

332

	2.	 Click Generate a new token, log in if prompted, and enter the

name Garnet UI for the Note field.

	3.	 Set the expiration as high as you feel comfortable with or is

permitted in your environment, then click workflow and repo as

selected scopes. Make a copy of the token – you will need it –

then hit Generate token at the bottom of the page.

	4.	 Switch to your desktop, then search for a Windows application

named Credential Manager. Open it, then click Windows

Credentials.

	5.	P lease complete either step 6 or step 7, depending on whether

you have an entry for github.com, but not both. Once done,

please continue from step 8.

	6.	L ook for an entry marked github.com – if it is there, then edit

it to replace the password with the token you generated in

GitHub. Hit Save and close the Manager.

	7.	I f you do not have it, then hit Add a Windows credential and

enter the details as follows:

Entry Value

Internet or network

address

github.com

Your username The username you use to log in to

your GitHub account

Your password Your PAT token created in step 12

	8.	H it Save, then close the Manager.

	9.	 Switch back to your Node.js terminal, then at the prompt, enter

git push.

Chapter 11 Deploying to Production

333

	10.	Y ou will likely be prompted to log in to GitHub. When prompted,

click the Token open, paste your PAT token into your PAT token,

and then hit Enter to sign in.

It may appear as a small window, which might be hidden under
others – check your taskbar to see if anything appears.

	11.	A ssuming your login is successful, Git will continue to push

items up; if all is well, you should see something akin to this:

Enumerating objects: 131, done.

Counting objects: 100% (131/131), done.

Delta compression using up to 8 threads

Compressing objects: 100% (118/118), done.

Writing objects: 100% (128/128), 429.01 KiB | 5.72
MiB/s, done.

Total 128 (delta 26), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (26/26), done.

To https://github.com/alexlibby/cobalt.git

 be80a29..4d38b60 main -> main

	12.	 Switch to your GitHub repository and check the Code tab to

confirm that all files are present and correct, as shown in the

extract in Figure 11-4.

Chapter 11 Deploying to Production

334

Figure 11-4.  Files uploaded to Git

Phew – we covered a fair few steps over the last few pages! However, we

have now gotten all of our content into GitHub, ready for release. It took

some work, but we only need to do some of the steps as a one-off, so we

won’t have to do it too often.

Chapter 11 Deploying to Production

335

With the content available on GitHub, we can now take a breather – the

code is ready to release as component packages on npm or bundling into

compiled files we can download and use in demos and projects. Before we

explore that, let’s take a few moments to explore what we covered in that

last demo in more detail.

�Exploring the Code in Detail
So, what did we achieve in that monster two-part demo?

We began this exercise with a small but essential step: rename the

cobalt folder. It was necessary to allow us to clone the remote Git folder to

our PC without Git complaining of a folder already present. In hindsight,

though, we could have avoided the need for this, as we could have done

the Git cloning step first; renaming it now means we have a backup copy

just in case anything goes wrong!

Moving on, we installed Git (at least for those who didn’t have it

present already) before cloning the empty garnet repository down to our

PC. We then copied files from our original project area to the new one

before creating a commit for our new repository. At the same time, we also

updated the .gitignore exclusion file in the new area – a few files had

crept into the existing project area, which we don’t need to upload; this

was as good an opportunity to use the exclusion file to control what we

subsequently commit to GitHub.

To push the files up, we had to set up a PAT or Personal Access Token;

once done, we completed the upload before checking to see if they had

successfully been committed to the repository.

Okay – let’s crack on: we now have our component code in the

repository, so we can release it for others to use! Other developers can

access the code directly, but what about publishing a component or

two to npm?

Chapter 11 Deploying to Production

336

�Releasing Components to npm
Yikes – releasing a component…will it work?

It’s a perfectly valid question, and I’m sure you will feel a sense of

trepidation as we take that leap into the unknown! But don’t worry,

though – while there may be a few steps involved in releasing our

components, it is a straightforward process, and we will only need to

do some of it for the first time. To understand what I mean, let’s quickly

summarize the steps involved:

•	 Update our component folder into a monorepo or a

subrepository, ready for publishing.

•	 Set up a configuration file to tell Svelte how to release a

compiled version of our component.

•	 Publish the component onto npm, ready for use.

The first two steps only need to be done once for each component –

step three is the one we will repeat each time we publish a new version

of our component(s) or library. Perfect – now we know what is involved,

so let’s get stuck! Before we get to writing code, there are a few points of

housekeeping we need to be aware of:

•	 Please make sure you log in to https://www.

npmjs.org with your account (including two-factor

authentication, if enabled) before you start this

exercise.

If you don’t have an account, you will need to create one, which you
can do at https://www.npmjs.com/signup – there is plenty of
documentation online if you need assistance.

Chapter 11 Deploying to Production

https://www.npmjs.org
https://www.npmjs.org
https://www.npmjs.com/signup

337

•	 We should complete the upload to npm after uploading

to GitHub and not before – the upload process relies

on GitHub.

•	 We will use the Checkbox component as our example –

please feel free to adapt if you want to try a different

component.

•	 Please create a new folder called dist at the root of the

Checkbox component folder. We will use this to store a

compiled version of the component.

We need to be mindful of another point before we get a little trigger-

happy and create packages. We must remember that what we’re building

is still a pre-production version, and we will need to do more work before

releasing a production version.

For this reason, I’ve marked the version in the upcoming exercise as

alpha1, and it’s still important to be aware of the release steps and ready

for when we’re ready to release it into production. With all that in mind,

let’s crack on creating our package to upload to npm.

RELEASING TO NPM

Before starting this exercise, there are a couple of tasks we need to perform:

•	 I strongly recommend logging in to npmjs.com with your

chosen account – particularly if you have multiple accounts!

The npm publish command will publish to whichever account

is currently logged in – to log in, use npm login and follow

the prompts.

Chapter 11 Deploying to Production

338

•	 We will use some filenames that may not make sense

immediately, but there is a reason for doing so. I will come back

to why when we go through the changes after the demo. For

now, please use the filenames given, but I recommend reading

the review at the end to understand the reasons behind using

the filenames and what we can do going forward.

Assuming you’ve completed these two steps, let’s make a start – to release a

component from our library to npm, follow these steps:

	1.	 First, we need to turn our chosen component into a

“monorepo”; for this, fire up a Node.js terminal session, then

change the prompt to the Checkbox component folder within

our project area.

	2.	A t the prompt, enter this command and press Enter:

npm init --y

Leave the session open but minimized throughout this exercise – we
will use it a few times.

	3.	I t creates a package.json file with a few fields

prepopulated – go ahead and open it, then modify it so it has

these fields:

Note  Change XXXXX to your npm account name, where shown.

{

 "name": "@XXXXX/checkbox",

 "version": "1.0.0-alpha1",

 �"description": "A simple checkbox component from the

Garnet library, for Svelte",

Chapter 11 Deploying to Production

339

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "repository": {

 "type": "git",

 "url": "git+https://github.com/XXXXX/garnet.git"

 },

 "keywords": [

 "svelte",

 "react",

 "custom elements",

 "web components"

],

 "author": "Alex Libby",

 "license": "MIT"

}

	4.	N ext, switch to your editor, then create a new file and add

this code:

import { defineConfig } from "vite";

import { svelte } from "@sveltejs/vite-plugin-svelte";

// https://vitejs.dev/config/

export default defineConfig({

 build: {

 rollupOptions: {

 �input: ["./src/lib/components/Checkbox/Checkbox.

svelte"],

 },

 lib: {

 entry: "/dist/assets/Checkbox-CWDZuXaz.js",

 fileName: "Checkbox-CWDZuXaz",

 formats: ["es", "cjs"],

Chapter 11 Deploying to Production

340

 },

 },

 plugins: [

 svelte({

 compilerOptions: {

 customElement: true,

 },

 }),

],

});

	5.	 Save the file as vite.checkbox.config.mjs, at the root of

our project area.

	6.	R evert to your Node.js terminal session, then from the root of

the project area, run this command:

npm run build -- -c=vite.checkbox.config.js

	7.	I n the Checkbox folder, create a folder called dist. Inside the

\dist folder at the top level, you will see two files, which start

with the name Checkbox but have different file extensions.

Copy both from this folder to the new folder inside the

Checkbox folder.

	8.	E dit the entry in package.json for main: with this entry:

"main": "./dist/Checkbox-CWDZuXaz.js",

	9.	 We’re almost there – just a few steps to go! The next task is to

publish the component. Revert to your Node.js terminal session

and set the working folder to the root of the Checkbox folder in

your project area.

	10.	A t the prompt, enter this command and press Enter:

npm publish -access=public

Chapter 11 Deploying to Production

341

Depending on how you are set up, you might get a prompt to
authenticate yourself in your browser – please follow prompts as
appropriate.

	11.	Y ou should see something similar to this response appear,

allowing, of course, for the change in account ID:

npm notice

npm notice @alexlibby/garnet-checkbox@1.0.0-alpha1
npm notice === Tarball Contents ===

npm notice 289B __tests__/__snapshots__/Checkbox.

spec.js.snap

npm notice 1.9kB __tests__/Checkbox.spec.js

npm notice 1.1kB Checkbox.stories.js

npm notice 1.6kB Checkbox.svelte

npm notice === Tarball Details ===

npm notice name: @alexlibby/garnet-checkbox

npm notice version: 1.0.0-alpha1

npm notice filename: alexlibby-garnet-

checkbox-1.0.0-alpha1.tgz

npm notice package size: 10.3 kB

npm notice unpacked size: 31.0 kB

npm notice shasum: a259677968a6cd48d99baff4160f557

64b79fd05

npm notice integrity: sha512-6fcQZBTFwWdMN[...

]yLJ70kL/UDDCQ==

npm notice total files: 9

npm notice

npm notice Publishing to https://registry.npmjs.org/ with

tag latest and public access

+ @alexlibby/garnet-checkbox@1.0.0-alpha1

Chapter 11 Deploying to Production

342

	12.	A t this point, the component is published! To check this is the

case, navigate to https://www.npmjs.org, then search for

@XXXXX/garnet-checkbox, where XXXXX is your account

ID. If all is well, we should see something similar to that shown

in Figure 11-5.

Figure 11-5.  Confirmation that our initial package has been
published

Alternatively, you can find the package listed on this page: https://
www.npmjs.com/settings/XXXXX/packages, where XXXXX is
your account ID.

	13.	Y ou will also receive a confirmation email if you have entered a

valid email address!

Brilliant – we have published our first component! Granted, it’s only an

alpha version, and we can still do more to develop and improve on it, but

it’s a good step in the right direction.

Chapter 11 Deploying to Production

https://www.npmjs.org
https://www.npmjs.com/settings/XXXXX/packages
https://www.npmjs.com/settings/XXXXX/packages

343

�Building a Demo
Of course, though, there is one thing we should do: How about testing to

see if it works? We know it’s now available on npm, but (as they say) the

proof is in the pudding – we should test it in a demo.

This testing is easy enough, so let’s dive in and look at what we need to

do in more detail.

TESTING THE NEW COMPONENT

Testing our component is a quick job – to see how to follow these steps:

	1.	 First, navigate to https://www.codesandbox.io, then

create a new React site using their template.

	2.	N ext, click inside the Add Dependency box on the left, and

start typing the name of your component – in my case,

@alexlibby/garnet-checkbox, but yours will be whatever

name you decide to use.

	3.	Y ou should see the component’s name appear in a list after just

a few characters – when you do, click it, then click DEV to the

right, to add it as a dependency.

	4.	 CodeSandbox will install it automatically – this will take a

moment or two, so be patient!

	5.	O nce done, click the App.js entry in the file list at the top of

the page – add a reference to the Checkbox component as

highlighted after the import for styles.css:

import "@alexlibby/garnet-checkbox/dist/Checkbox-

CWDZuXaz.js";

	6.	N ext, add an instance of our new Checkbox component,

as shown:

Chapter 11 Deploying to Production

https://www.codesandbox.io

344

<main>

 <h1>Hello CodeSandbox</h1>

 <h2>Start editing to see some magic happen!</h2>

 �<garnet-checkbox checked={true} label="This is a

test"></garnet-checkbox>

</main>

	7.	 Wait a few moments for CodeSandbox to save the change – if

all is well, we should see something akin to that shown in

Figure 11-6.

Figure 11-6.  The newly published component available from npm

Yes – we have finally arrived! In the hope that this wasn’t too

premature, we now have a working component and have proven it works

in a demo.

What is interesting to note is the use of this component’s web

component reference. We’re not using it as <Checkbox /> (which we

would in a Svelte environment), but by using <garnet-checkbox>

</garnet-checkbox>. You will also notice that I’ve used the full name, not

Chapter 11 Deploying to Production

345

the shorthand; I’ve noticed instances where the latter doesn’t work well.

It is why you will see me using the longhand version when referencing

components in a web component capacity.

Okay – let’s move on: we covered a lot of practical steps in the previous

demo, so now’s a perfect opportunity to review the changes in more detail,

understand how they all work, and what we need to do when releasing

further changes.

�Breaking Apart the Code Changes
Our last demo was a complex affair – who would have known that

publishing to npm could require so many steps? In reality, many of these

steps will be a one-off – if not for the repo, at least for each component

package we create and publish to npm.

The key to making this process work is compiling it into a file that other

developers can use. To understand what I mean, let’s take a look at the

changes we made.

We began by converting the Checkbox folder into a monorepo – for the

uninitiated, this is effectively a repository within a larger parent. To do this,

we created a package.json, to which we added a host of fields required for

publishing the component as a package.

Next came the addition of the vite.checkbox.config.mjs file – this

tells Svelte how to compile the component into a format we can pull into

future projects. A key point here is that we created this file purely around

the Checkbox component and as an ES Module. We could have included

other components, too – we need to add their names and sources to

a comma-delimited list in the input: field. The ES Module format is

required to ensure that Vite bundles the files in the correct format for use

in other frameworks.

We then ran the build process, which resulted in a compiled file –

this we copied from the \dist folder into a new \dist folder, ready for

packaging. At this point, we ran the npm publish command, which created

Chapter 11 Deploying to Production

346

a package for us on npm. To finish this part of the process, we ran a quick

check to confirm that our package had been published successfully on

npm and that we got a confirmation email to boot!

By comparison, the second part of this process was a far more

straightforward affair – we used CodeSandbox to create a basic React site

using their template. To this, we added the newly published component.

Once CodeSandbox saved the update, we saw the component appear in

the preview window in our browser.

Now that we’ve published our component on npm, there are a couple

of interesting points of note that we should be aware of:

•	 You will notice that when we check that the component

exists in npm, we only see limited information if we

click through to the package’s page. The package’s

README file provides all of this if one is available;

I’ve gone ahead and pushed one up on my version of

the Checkbox component in the library at https://

github.com/alexlibby/garnet/tree/main/src/lib/

components/Checkbox.

•	 We have had to use the format @XXXXX/YYYYYY to

publish the package, where X is your account name and

Y is the package. This naming is known as a scoped
package – there used to be a time when we didn’t have

to provide the name. Since GitHub took over npm,

GitHub is now enforcing the use of scoped names – in

the background, we are publishing to GitHub Packages,

not npm. It means that we also had to provide the

–access=public tag. Otherwise, the component won’t

publish on what is a free repository.

Chapter 11 Deploying to Production

https://github.com/alexlibby/garnet/tree/main/src/lib/components/Checkbox
https://github.com/alexlibby/garnet/tree/main/src/lib/components/Checkbox
https://github.com/alexlibby/garnet/tree/main/src/lib/components/Checkbox

347

•	 An essential part of the publishing process is managing

the version number. I’ve started with 1.0.0-alpha1 to

clarify that this is a pre-production version and that

we should assume the usual caveats around using

it. I recommend researching how to automate this

manual process to apply the correct version number

for each release automatically. An excellent example

is the semantic-release package available on npm at

https://www.npmjs.com/package/semantic-release.

•	 As a small change, you may want to add an exclusion

to .gitignore, for the /dist folders – while these

are needed, it’s unnecessary to upload those folders

as they stand, as content will be pushed up in the

package anyway.

•	 Do you remember how I said we’d use filenames that

may not initially make sense? I used the filename

generated when testing the code for this book – Vite

automatically adds a series of random letters to

the file package during the bundling process. This

name needs to be added to the local package.json

in the component folder (Checkbox) for it to publish

correctly – while this works OK for now, it would be

worth trying out a few changes to see what names you

can use that make more sense!

•	 While researching this book, I noticed a few times when

newly created packages were not initially available in

CodeSandbox. You may have to wait a while before

they appear, so don’t be alarmed if they are not present

immediately. I waited overnight, which I think was

more than long enough – you may not have to wait as

long before the new package is listed.

Chapter 11 Deploying to Production

https://www.npmjs.com/package/semantic-release

348

Okay – what’s next? Now that we have our component on GitHub, it’s

time to make our component documentation available for others to view

online. The easiest way to do this is by publishing a static version of our

Storybook instance; let’s dive in and look at how we can do this as part of

our next demo.

�Publishing Storybook to Netlify
Wow – I’m sure you’ll agree when I say that the last few pages were a little

intense! Nevertheless, the steps we covered were critical to getting our first

component out; we still have work to do in this respect, but that will come

with time.

In the meantime, we should move on to the next important step:

making our documentation available for others. We could do this in several

ways, such as hosting on AWS, Vercel, Surge, or Now – I’ve chosen to use

Netlify as I’m a big fan of this tool and have used it in the past.

Getting our content published is straightforward – Netlify links into

GitHub seamlessly, so we need to complete a few steps, and our content

will appear online. Let’s take a look at what is involved in more detail.

PUBLISHING THE COMPONENT STORYBOOK

To publish our instance of Storybook, follow these steps:

	1.	 We first need to export Storybook as a static application. To do

this, fire up a Node.js terminal, then change the working folder

to our project area.

	2.	A t the prompt, enter npm run build-storybook and

press Enter.

Chapter 11 Deploying to Production

349

	3.	I t may or may not show warnings, but we can deal with any

later. The critical point is that it must not show any errors,

indicating a failed build.

	4.	L et it churn through the process – it will finish with lines similar

to this:

info => Manager built (1.03 min)

info => Output directory: C:\garnet\storybook-static

	5.	N ode will have created a few files and folders – we need to

push these up to GitHub. At the prompt, enter these commands

and press Enter after each:

git add .

git commit -m "Add exported version of Storybook"

git push

Assuming no errors appeared, we have our files ready for the next

part of the process: publishing the content for other developers to view

and use.

At this stage, we have our Storybook exported content ready for

publication – people won’t see it until we hook it into our hosting. As you

have already noted, I’ve elected to use Netlify; feel free to use a different

system if you prefer. I recommend selecting one that hooks into GitHub to

get the best from the next exercise.

�Setting Up Netlify
Although Netlify has only been around since 2014, it has quickly become

one of the most popular ways to host content. It’s perfect for hosting our

JAMStack-based site – all the content is already on GitHub, so we need to

link it to a Netlify account and let it publish the site onto the Internet. Let’s

take a look at what we need to do in more detail.

Chapter 11 Deploying to Production

350

If you see a reference to XXXXX in the following demo, change it to
your GitHub account name.

SETTING UP NETLIFY

To set up our site, follow these steps:

	1.	 We first need to sign up – for this, browse to https://app.

netlify.com/signup, follow the prompts, and then, when

directed, hit GitHub.

	2.	 When prompted, click Yes to authorize Netlify to access your

GitHub account.

	3.	N ext, click Add new site, then Import an existing project.

	4.	A t this point, select GitHub, then Authorize Netlify.

	5.	 When prompted, enter garnet – it won’t find it: don’t worry,

this is to be expected! It will prompt to configure Netlify so that

we can give Netlify the permissions it needs to access your

GitHub site.

	6.	 Click Configure Netlify on GitHub. Scroll down on the next

window to Repository Access, then choose Only select

repositories ➤ Select repositories ➤ XXXXX\garnet. If all

is well, you should have settings similar to those shown in

Figure 11-7.

Chapter 11 Deploying to Production

https://app.netlify.com/signup
https://app.netlify.com/signup

351

Figure 11-7.  The settings for updating permissions for Netlify

	7.	O nce done, hit Save. On the previous screen, click XXXXX\

garnet, then in the Basic build settings, enter these values –

any other fields should remain unchanged (Figure 11-8).

Figure 11-8.  Settings to trigger the build process

	8.	O nce you’ve entered the values, click “Deploy….” If everything

goes well, you should be able to deploy and follow along with

the build log – click the Site Overview link at the top of the

page, then on the text “Site deploy in progress.”

Chapter 11 Deploying to Production

352

	9.	A ssuming no errors appear, you will see a Published in green

text in the box marked Production deploys on the Overview

page. You will be able to see your site if you click the name of

your site at the top of the page.

Yay – we have published our site! Publishing is only the start, as we will

need to update it as and when we make changes to our components. That

comes later, though; for now, let’s review the code changes we made in

more detail to understand better how this fits into the broader picture.

�Understanding the Changes Made
When releasing code onto a hosting site, dozens of different providers are

available – sometimes, it can be hard to decide which to use! Of course,

you might already use an existing system, which makes choosing one a

moot choice…

But I digress. I chose to use Netlify as it is one of the more popular

hosting systems: it also links to GitHub seamlessly and has an excellent

API for more custom development.

To set up our Storybook instance, we first had to sign up – for this, we

used its GitHub authentication process and pointed it at our repository. All

that remained was to provide some values for the basic build process and

hit Deploy site! As the last step, we checked that Netlify published the site

successfully before viewing the final result in our browser.

�Adding Polish to the Repository
Now that we’ve set up our Storybook installation, pushed our code up into

GitHub, and released (albeit an experimental) version of our component,

it’s time to start adding polish to our library so that it looks the best it can

be for people using our library.

Chapter 11 Deploying to Production

353

We could do different things, such as adding more screenshots, better

documentation, or creating templates for raising issues. Unfortunately,

there’s too much for us to do in the confines of this book, so I’m going to

focus on two items:

•	 Adding a README for the Checkbox component file

•	 Installing a custom domain name for the Storybook

installation

There are a few steps required for us to complete both tasks, which we

will do over two separate exercises; let’s dive in and look at the first, which

will be adding a custom domain name.

�Adding a Custom Domain Name
Before you all start worrying, I should point out from the outset that adding

a custom domain name is not an essential part of running our site – the

Storybook installation will run perfectly fine with the subdomain URL

given to us by Netlify!

For me, though, adding a custom domain name makes it easier to

access the site, as it is easier to remember; depending on what name you

use, the cost isn’t too expensive either! There are various ways to do this,

depending on whether you want to use a custom subdomain or a top-level

domain from Netlify or provide your own.

For simplicity, I will assume that if you do this step, we will register

that name directly through Netlify so that it can take care of provisioning

the domain for us. Before we start with the purchase and configuration

process, there are a couple of assumptions we should be aware of:

•	 I’m assuming that the domain name you select is not

already registered to anyone.

•	 We’re purchasing directly from Netlify, so Netlify will

hold the DNS and domain.

Chapter 11 Deploying to Production

354

If either of the above is different for you, you will need to follow
other steps, such as making sure your host points the DNS entries to
Netlify.

Let’s begin setting up our custom domain as part of the next exercise.

ADDING A CUSTOM DOMAIN

To add a custom domain, follow these steps:

	1.	 From the site overview page, click Domain management.

	2.	 Click Add a domain.

	3.	G o ahead and enter your chosen domain using the format

shown in the text box, then hit Verify to confirm availability.

	4.	 Click Add payment method, then enter your payment details in

the modal. Note that this will auto-renew at a slightly higher

price in year two; this is to be expected.

	5.	E nter your address, then hit Save. Back on the previous screen,

hit Register domain now for…, and wait for it to complete.

At this point, Netlify will likely state that an SSL/TLS certificate

can’t be provisioned to secure the site until the domain is

validated. If you scroll up the page, you will see the primary

DNS entry has changed and that it shows “Check DNS

configuration” against it.

This process requires 24 hours for the newly created domain to
propagate, so you will want to return later to complete the next part
of this process.

Chapter 11 Deploying to Production

355

Assuming you have waited 24 hours, follow these steps to

complete the process:

	6.	H it Verify DNS configuration. Assuming it returns “DNS

verification was successful,” click Provision certificate twice.

	7.	N etlify will trigger a request to Let’s Encrypt to provision the

certificates. You may get a “missing certificate error” – if you

do, cancel and return to the previous Settings page.

	8.	 Keep refreshing the page – if Netlify has managed to

provision the certificate, you will eventually see the “Check

DNS configuration” entry replaced with something similar to

Figure 11-9.

Figure 11-9.  Confirmation that DNS has been updated

	9.	T ake a quick look down on that page – you should also see that

the SSL certificate has been successfully provisioned.

Please note this period can take up to 24 hours to complete; I was
able to view these details after about 5–6 hours, but it may be longer
for you.

Chapter 11 Deploying to Production

356

	10.	T he real test is to browse to the site – go ahead and browse

to your new domain (in my case, https://www.garnetui.

dev). If all is well, we should see our Storybook appear, as

shown in Figure 11-10.

Figure 11-10.  The Storybook installation, under the new domain

Perfect – we have a domain name that points to a working site!

Although we could have stayed with the default name assigned by Netlify,

I’m sure you will agree this one is a much nicer name to use.

Let’s move on, and look at the second exercise we’ll complete as part of

this process – adding a readme file with a version badge.

Chapter 11 Deploying to Production

https://www.garnetui.dev
https://www.garnetui.dev

357

ADDING A README WITH VERSION BADGE

To update the documentation readme file for our component, follow

these steps:

	1.	 We will first begin with adding a version badge for our

component – head over to https://www.shields.io/

badges, then click Version at the bottom of the list.

	2.	O n the next page, you will see a long list of license types –

scroll down until you see the entry for NPM Version and click

it. It’s a long list, so you might want to use the search option in

your browser!

	3.	I n the package name field on the right, enter your account ID

and the name of your package in the format of @<account

name>/<package> (I will assume garnet, but change it if you

decide to use something different).

	4.	I f all is well, you should see a black and orange badge with the

version number of your package appear. Click the Markdown

tab, then copy the contents of the field below the tab.

	5.	I n your editor, open the README.md at the root of the project,

then edit the file as shown:

Welcome to the Garnet UI Library

This library accompanies the second edition of my

upcoming book, Creating Web Components with Svelte.

Components available:

Checkbox - ![NPM Version](https://img.shields.io/npm/

v/%40alexlibby%2Fgarnet-checkbox)

Chapter 11 Deploying to Production

https://www.shields.io/badges
https://www.shields.io/badges

358

Package available on NPM: https://www.npmjs.com/package/

@alexlibby/garnet-checkbox

To install, run this command: `npm install @alexlibby/

checkbox`

License: MIT

Please change the account and/or package names to match your
version. Feel free to adapt the contents of the text to match your
requirements – the key takeaway is the use of the Shield badge.

	6.	 Save the file – we can always come back and add more later,

but this will be enough to get us started.

	7.	 We need to push this change up – fire up a Node.js terminal

prompt, then change the working folder to the project area.

	8.	A t the prompt, enter git add . && git commit -m "Add

README", then press Enter.

	9.	O nce done, enter git push to complete the upload.

	10.	T o confirm all is well, browse to your GitHub site – you should

see our updated README.md file, similar to that shown in

Figure 11-11.

Chapter 11 Deploying to Production

359

Figure 11-11.  The updated README for the Checkbox component

Wow – we now have a working GitHub repository, a Storybook site,

and we released the first version of our component to our unsuspecting

audience! Congratulations if you managed to get this far; it’s been a lot of

work, but hopefully an enjoyable and worthwhile experience.

However, it is just the start of our journey: there is more we can do!

We’ll touch on some of this in the next chapter, but before we do so, let’s

take a moment to review the changes we made in this demo to understand

how they all hang together.

�Breaking Apart the Code

Adding a custom domain is one way to add that extra touch – I know

many people might be happy with the default URL provided by services

such as Netlify. Don’t get me wrong – this is a perfectly valid option.

However, going that extra distance means your library should make it more

memorable and encourage people to return.

Chapter 11 Deploying to Production

360

That, only time will tell – for now, what did we do to get here? We

started by working through Netlify’s standard process for purchasing a

domain name and initiating domain registration. We kicked off a request

for Netlify to provision a certificate using the Let’s Encrypt service; this

initially failed me while researching this book, but I believe it was just

waiting for the service to kick in once the domain had replicated around

the Internet.

The lesson here is that it does pay to be patient – I would strongly

recommend making the payment at the end of the day so that you stand

a chance of it being available the following morning! Once the request for

the SSL certificate was provisioned, we ran a quick check to verify that the

site had been updated and was now available via an HTTPS address.

In the second demo, we switched to creating our component’s

README file – we began first by visiting the Shields.io website to generate

a badge with the appropriate version of the current package available on

npm. We took a copy of the link for this badge as markdown text before

adding it to a new README file; once saved, we committed this to the

repository before checking the results in our browser.

�Summary
Phew – this might have been a long chapter, but we’ve finally reached the

point where our Storybook site and the component library will now be live!

We’ve covered a lot of content in this chapter, so let’s relax for a moment

and review what we have learned.

We began way back when (yes, it does feel like a while ago!) with

a quick discussion around performing the final checks. Not only did

we cover some areas to consider, but we also understood that this is a

symbolic way of confirming that we are ready to sign off the results and

release them into production.

Chapter 11 Deploying to Production

361

Next up, we moved on to pushing our code into GitHub; we first walked

through setting up the repository before exploring the steps required to

commit our code into our new library. We then switched to releasing a test

component into the npm repository as a package – we covered that this

was an alpha package and a way to explore the process; we would do this

for real once we were ready to release our code.

Moving on, we worked our way through publishing the Storybook

instance to a hosting site, using Netlify as our preferred platform. We first

set up the authorization between GitHub and Netlify before configuring

Netlify to run the build step for Storybook and create our site. As a final

touch, we explored creating a new README file with a version badge

and the steps we would need to take to release our site through a custom

domain for our customers.

And relax! We’ve done most of the hard work now – the library is

available on GitHub, we’re hosting our instance of Storybook on Netlify,

and we released our component’s first instance as a package. There is still

more to do, but the focus of our journey changes – it’s time now to focus

on how we can develop and expand our library. There’s plenty we can

do in this respect, so stay with me, and I’ll reveal more details in the next

chapter.

Chapter 11 Deploying to Production

363© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7_12

CHAPTER 12

Taking Things Further
Now that we’ve almost reached the end of the book, there is one more

question we should answer: What next?

At times like this, I am reminded of the phrase, “The world is our

oyster.” It is up to us to decide where to go next…as well as maybe have

a little fun too! To answer that question, we’ll explore a range of topics,

which might include

•	 With the library now up and running, is there anything

we want to change or improve?

•	 What’s next – how about setting a road map?

•	 Convert components from other frameworks.

•	 Revisit some of what we’ve already done.

•	 Can we optimize specific areas, such as CSS?

•	 Should we add themes at a component level or the

target site?

These are just some of the questions we should answer – I’m sure I can

think of more! To get us started, let’s first review what we’ve done so far to

see where we might have any gaps we need to fill.

https://doi.org/10.1007/979-8-8688-1180-7_12#DOI

364

�Reviewing the Site
Although we completed some of these tasks during the release process,

I can almost guarantee that there will be things we want to add or change.

I’m not talking about adding new components, although that will

come. We must also consider areas such as tidying existing code, leveling

the number of variants for each component, or improving test coverage.

With that in mind, let’s take a quick look at a few likely candidates for

improvement in the immediate future:

•	 Improve test coverage

•	 Implement a dependency update mechanism to keep

the site secure and free from code vulnerabilities

(where possible)

•	 Add more detailed documentation

•	 Expand the variants for each component, and level up

to a minimum of three where possible

•	 Augment the CSS Grid properties for ImageGrid and

make the filenames for this component more consistent

•	 Release more component packages – individually and

as a whole

•	 Realign components into a named group for npm – not

under my name, but a collective name of garnetui (or

similar, depending on availability)

•	 Implement better chunking of Storybook to improve

its speed

•	 Consider upgrading to Svelte 5 when available

•	 Use of props – should we consider using $$restprops,

even though it’s not really recommended, or should we

be specific about what we expose?

Chapter 12 Taking Things Further

365

That’s just a tiny selection of what we could do to improve the

codebase within the first three months of release – I’m sure there will be

others! I prefer not to commit to many changes too early and to focus

on our gaps before expanding with new components. (As you will see, I

will break that “preference,” but hey – rules are meant to be broken!) The

critical point here is that we take note of what we need to do and create a

plan for implementing the changes.

You can see a more extensive road map in the GitHub repository, in
roadmap.md, at the root of the library.

The plan doesn’t need to be complex – we could list everything we

want to do, then put rough dates against each one (ideally quarters rather

than months – it helps give yourself some flexibility). Remember that you

must keep your promises in some form or another!

�Setting a Road Map
Ouch – where does one start with setting a road map? The truth is that it

will depend on one of two things:

•	 Where do you want to take the library?

•	 What features are others asking for?

Deciding on what to add can be a double-edged sword – there could be

some no-brainer features that you have to incorporate, or you might find

you want to add something that others will hate!

In some cases, others will make the decision easy – you might

want to add components that your colleagues could use in a corporate

environment and that releasing to the outside world will be a bonus.

However, we need to balance this against those instances where you are

Chapter 12 Taking Things Further

366

in control of what you add – we have to prepare for those who dislike what

you might have in mind. Still, as long as you are transparent about it and

go with the majority decision, you will at least maintain a good audience.

Keeping all of that in mind, let’s pause for a moment to consider some

examples of what we might want as future components in our library:

•	 Avatar

•	 Cards – such as for product information

•	 HTML5 form field elements, such as email or telephone

•	 Popover

•	 ListBox

I’m sure there will be more, but as mentioned before, let’s not get too

ahead of ourselves! Most of our focus should be on leveling up existing

components and strengthening what we’ve developed in our library – at

least in the immediate future!

�Converting Our Next Component
Okay – enough talking: we need to get stuck into some coding.

For the first demo of this chapter, we will look at our next component:

Avatar. Usually, I would work through creating one, adding it to Storybook,

and so on…you know the drill by now!

However, that would mean missing out on a helpful tip when

creating Svelte components. If you’re converting from an existing feature

found on the Internet to Svelte, then forget the lift and shift approach.

What do I mean by this, I hear you ask?

Well, it comes down to one simple principle: instead of focusing on the

technical elements, look at the functionality offered by the component.

Svelte requires a different mindset, which can be weird for developers

Chapter 12 Taking Things Further

367

using other frameworks. You can lift and shift values such as imports (if

appropriate) or variables already declared in the React code, but that’s

probably as much as we can use!

To illustrate this, I’ve picked a React example of what our next

component could be – Avatar. The original code is by the CoreUI team and

is available at https://github.com/coreui/coreui-react/blob/main/
packages/coreui-react/src/components/avatar/CAvatar.tsx; it uses

standard React/TypeScript to create a simple component. Now, let’s dive

in and look at how this component might look if we rebuilt it in Svelte.

CREATING THE AVATAR COMPONENT

To create our new Avatar component, follow these steps:

	1.	 First, we need to find a suitable avatar image. For this, look

online to see if any image libraries have one that suits your

fancy! I recommend keeping the size as close to 128px square

as possible for this exercise; the file format isn’t critical. Please

save the file as avatar.png. If you change the file format or

name, please adjust the code to suit.

An excellent place to try is the icon collection at https://www.
flaticon.com, if you don’t already have icons available.

	2.	 Once you have a suitable image, drop it into the \public

folder at the root of the garnet-source folder.

Remember, we’re working on the garnet-source folder now that
we have set up GitHub; we can always use the original garnet area as
a test bed if needed!

Chapter 12 Taking Things Further

https://github.com/coreui/coreui-react/blob/main/packages/coreui-react/src/components/avatar/CAvatar.tsx
https://github.com/coreui/coreui-react/blob/main/packages/coreui-react/src/components/avatar/CAvatar.tsx
https://www.flaticon.com
https://www.flaticon.com

368

	3.	 We now need to create a new folder for our component – go

ahead and add one called Avatar into the \src\lib folder.

	4.	N ext, open your editor and create a new file, saving it as

Avatar.svelte in the newly created Avatar folder.

	5.	I n the file, we need to add quite a bit of code – as before, we’ll

do it in sections, starting with the svelte:options tag and a

handful of export statements:

<svelte:options customElement="garnet-avatar" />

<script>
 export let src = "";
 �export let status = "available" || "busy" || "away" ||
"unavailable";

 export let statusSize = "small" || "medium" || "large";

	6.	N ext, we need to add a reactive statement block to look after

updating values if the size or status should change:

 $: statusClasses = () => {
 let inputClasses = [status, statusSize];
 �inputClasses = inputClasses.filter((class) =>

class.length);
 return inputClasses.join(" ");
 };
</script>

	7.	N ext is the markup for our component:

<div class="cobalt-avatar">
 {#if src}

 {/if}
 <slot />

</div>

Chapter 12 Taking Things Further

369

	8.	 We can finish off the component with some styling – first, add

an empty <style></style> block:

<style>
...
</style>

	9.	N ext, go ahead and add the following styles inside that style

block from the previous step – the first is the container for our

component and a common style rule for the indicator:

 .cobalt-avatar {
 position: relative;
 display: inline-flex;
 align-items: center;
 justify-content: center;
 vertical-align: middle;
 border-radius: 800px;
 width: 32px;
 height: 32px;
 font-size: 12.8px;
 }

 .base {
 border-radius: 800px;
 position: absolute;
 border: 1px solid #373737;
 }

	10.	N ext up, we have two styles for size – small and medium:

 .small {
 width: 8px;
 height: 8px;

Chapter 12 Taking Things Further

370

 top: 25px;
 right: 0px;
 }

 .medium {
 width: 12px;
 height: 12px;
 top: 22px;
 right: -4px;
 }

 .large {
 width: 16px;
 height: 16px;
 top: 22px;
 right: -4px;
 }

	11.	 We also need some styling for availability – for this, we have

four rules for available, busy, away, and unavailable:

 .available { background-color: #00ff00; }
 .busy { background-color: #ff0000; }
 .away { background-color: #ffff00; }
 �.unavailable { background-color: #ffffff;
border: 1px solid #000000;}

	12.	T his last style is for the avatar image:

 �.avatar-img { width: 100%; height: auto;
border-radius: 800px; }

	13.	S ave and close the file – we are done with the changes for now,

and we’ll do the first test of our new component shortly when

we link it into Storybook.

Chapter 12 Taking Things Further

371

Perfect – we have a component ready to test; we’ll do this shortly when

we add it to Storybook. Although much of the code should be relatively

familiar by now, there are some critical highlights I want to touch

on – with that in mind, let’s review the changes we made in the last demo

in more detail.

�Dissecting the Code
In our current age of social media, avatars are probably one of the most

widely seen features you will see. It doesn’t matter if they show letters or

a fancy picture; the basic premise of identifying you as a person is still the

same. We’ve taken the opportunity to create such a component for our

library and base it on an original, built using React – let’s take a moment to

review the changes we made in more detail.

We began by looking for a suitable image online. We understood it

needed to be around 128 pixels square where possible to ensure it works

as expected in our component. Next, we created the component itself – we

began setting the now-familiar svelte:options tag before creating three

variables for export: status, src, and statusSize.

We then moved on to creating a reactive block, which uses the $

keyword in Svelte – as a reminder, this reacts (hence the name) to any

changes in the current state or value in variables and updates them

accordingly. In this instance, we’re using it to update changes to the status

symbol based on the availability of the person using it.

Next, we added the markup for our demo – this we kept simple for

now, using a standard if block ({#if}...{/if}). Svelte uses this {#if}...
{/if} to determine if we should display an image. Everything else will go

in the <slot />, including text, markup, or other components we might

use. We then finished this off with styling – we created .cobalt-avatar for

the container, three styles to cover the size of the status indicator in our

component, and status to cover most of the presence statuses we might

want to use as developers.

Chapter 12 Taking Things Further

372

There is one last point I want to cover from this component before we

move on: the translation process from React to Svelte. While researching

for this book, I found a great article on using Svelte for those who usually

develop using React. It’s by Sina Farhadi and available on the Plain English

website at https://javascript.plainenglish.io/svelte-for-react-
developers-7edc099e03ed. Suffice it to say, Svelte requires a different

mindset to React, which can be a challenge for some; if you get it (so to

speak), it often means resulting code that is cleaner and frequently faster

to boot!

�Adding to Storybook
So far, we’ve explored how to create an equivalent Avatar component in

Svelte and seen that it’s not just a lift and shift of existing code but that it’s

better to focus on functionality rather than technical code.

We now need to test our component – as we’ve done previously, there

are two ways we can test it: writing a test case for it using Vitest and adding

it to Storybook.

LINKING AVATAR INTO STORYBOOK AND ADDING A TEST

To set up our Avatar component in Storybook, follow these steps:

	1.	 First, fire up your editor, then create a new file, saving it as

Avatar.stories.mdx in the \src\lib\storybook folder.

	2.	 We have a lot of code to add, so as usual, we’ll break it into

sections – we’ll start with the imports and a const for Badges,

similar to what we’ve done earlier in the book:

import Avatar from "../Avatar/Avatar.svelte";
import { BADGE } from "storybook-addon-badges";

Chapter 12 Taking Things Further

https://javascript.plainenglish.io/svelte-for-react-developers-7edc099e03ed
https://javascript.plainenglish.io/svelte-for-react-developers-7edc099e03ed

373

const BADGES = {
 ...BADGE,
 ALPHA: "Alpha",
};

	3.	T o display the component, we need a template to tell Storybook

how to display it; for this, miss a line after the code from step 2

and add this block:

export default {
 title: "Garnet UI Library/React Components/Avatar",
 component: Avatar,
 props: {
 status: "available",
 src: "/avatar.png",
 },
};

	4.	 With the template in place, we can add stories for each variant

of the Avatar component we want to display. The first one is the

Default, which displays a green status to show that the person

is available:

export const Default = () => ({
 Component: Avatar,
 props: {
 statusSize: "small",
 src: "/avatar.png",
 },
});

Default.parameters = {
 badges: [BADGES.ALPHA],
};

Chapter 12 Taking Things Further

374

	5.	N ext, miss a line, then add this next story – this takes care of

cases where the person is busy and displays a red status:

export const Busy = () => ({
 Component: Avatar,
 props: {
 status: "busy",
 src: "/avatar.png",
 },
});

Busy.parameters = {
 badges: [BADGES.ALPHA],
};

	6.	 For this next story, we’ll display the Away status, which shows a

yellow circle, but this time in a larger size:

export const Away = () => ({
 Component: Avatar,
 props: {
 status: "away",
 statusSize: "large",
 src: "/avatar.png",
 },
});

Away.parameters = {
 badges: [BADGES.ALPHA],
};

	7.	 For the last example, we’ll display the Unavailable symbol in a

medium size – this is a white status:

export const Unavailable = () => ({
 Component: Avatar,
 props: {

Chapter 12 Taking Things Further

375

 status: "unavailable",
 statusSize: "medium",
 src: "/avatar.png",
 },
});

Unavailable.parameters = {
 badges: [BADGES.ALPHA],
};

You will notice that I’ve also included a parameters object to set the
badge status to Alpha, similar to other components in this book.

	8.	S ave and close the file.

	9.	 We also need a copy of the Docs.mdx file as our

documentation – this is available in the code download for

this book, so extract a copy and put it into the root of the

Avatar folder.

At this point, we should have a handful of files to push up to our repo – to get

them committed, follow these steps:

	10.	N ext, switch to a Node.js terminal session and change the

working folder to our project area.

	11.	 We need to push up all of the changes we’ve made so far. At

the prompt, enter git add . and press Enter to pull all of our

files together, and we’re ready for committal.

	12.	N ext, enter git commit -m "Add storybook support
for Avatar component" to create a commit and

press Enter.

Chapter 12 Taking Things Further

376

	13.	 Finally, enter git push to upload all of the changes to our

repo – assuming you set up Netlify earlier, this will kick in and

build the library.

	14.	I f all is well, we should see updates appear on our Storybook

pages, as shown in Figure 12-1.

Figure 12-1.  Storybook with the updated Avatar component
on display

We have one last step to perform, which is to add some tests – as this is only

a status icon, we’ll keep it simple and set it to run a snapshot for now. To do

this, follow these steps:

	1.	 Crack open a new file, saving it as Avatar.spec.js, in the

__tests__ folder at the root of the Avatar folder.

	2.	G o ahead and add the following code into the file – we’ll begin

with the imports:

import { describe, test, expect } from "vitest";
import { axe } from "vitest-axe";
import * as AxeMatchers from "vitest-axe/matchers";
import { render, screen, fireEvent } from "@testing-
library/svelte";
import Avatar from "../../Avatar/Avatar.svelte";

Chapter 12 Taking Things Further

377

const AvatarHTML = `<div class="garnet-avatar s-
q7VgqBOCP_sX"><img src="/avatar.png" class="avatar-
img s-q7VgqBOCP_sX" alt="avatar"> <span class="base
available small s-q7VgqBOCP_sX"></div>`;
expect.extend(AxeMatchers);

The code for this file is in the download, so don’t worry – you don’t
have to enter all of it by hand manually!

	3.	N ext up, let’s add the opening part of the test – this contains a

props declaration for our component:

describe("Tests for Avatar", () => {
 const mockText = "This is a Avatar";

 const props = {
 status: "available",
 src: "/avatar.png",
 statusSize: "small",
 };

	4.	 We should test it renders correctly – for that, miss a line, then

add this assertion:

 test("should render properly", () => {
 const result = render(Avatar, { props });
 expect(() => result).not.toThrow();
 });

Chapter 12 Taking Things Further

378

	5.	N ext, we’re going to add a test to make sure that it shows the

right CSS property when displaying a busy status:

 �test("show show a label with a red busy
status", () => {

 �const result = render(Avatar, { ...props, status:
"busy" });

 const element = document.querySelector("span");
 // element has a class
 expect(element.classList).toContain("busy");
 });

	6.	T his next test is a snapshot, which we can use for visual testing

and to see where any differences may come from:

 test("get a snapshot of component", () => {
 // �Create a new container for the test and mount

component
 const host = document.createElement("div");
 document.body.appendChild(host);
 �const instance = new Avatar({ target: host, props:

props });

 // check that all rendered OK
 expect(instance).toBeTruthy();

 // Take snapshot
 expect(host.innerHTML).toMatchSnapshot();
 });

	7.	T o close off the test, add this step – it performs a check for

accessibility:

 �test("should demonstrate no issues with
accessibility", async () => {

Chapter 12 Taking Things Further

379

 const render = () => AvatarHTML;
 const result = render();

 const results = await axe(result, {
 rules: {
 region: { enabled: false },
 },
 });

 expect(results).toHaveNoViolations();
 });
});

	8.	 Last but by no means least, we need to add two more

commands to the package.json – crack that file open, then

add this code immediately before the test:breadcrumbs

command:

"test:avatar": "vitest
--dir=src/lib/components/avatar",
"coverage:avatar": "vitest run --coverage --dir=src/
lib/components/avatar --coverage.all=false",

Both lines should be on one line each, not wrapped around in
your editor.

	9.	S ave and close the file. Switch to your Node.js terminal session,

ensuring the working folder is still set to the project area.

	10.	A t the prompt, enter npm run test and press Enter – if all is

well, we should see our tests pass without issue.

	11.	N ext, switch to a Node.js terminal session and change the

working folder to our project area.

Chapter 12 Taking Things Further

380

	12.	A t the prompt, enter git add . and press Enter to pull all of

our files together, ready for committal.

	13.	N ext, enter git commit -m "Addition of tests for
Avatar component" to create a commit and press Enter.

	14.	 Finally, enter git push to upload all the changes to our repo.

Assuming you set up Netlify earlier, this will kick in and rebuild

the library with the new changes.

Excellent – assuming all went as planned, we now have a new Avatar

component that we’ve written based on the original created in React and

that we’ve plumbed into our Storybook instance.

By now, most of what you’ve seen will seem somewhat familiar,

particularly as we’ve created over 15 components for our library! That said,

it’s still good to review what we’ve created, so let’s pause and dig into the

code in more detail.

�Understanding the Changes Made

Although the last exercise was quite lengthy, most of it covers steps we’ve

seen before – it may have been for different components, but that doesn’t

matter: reusing the same principles makes life much easier! So, what did

we achieve in this latest addition to our library?

We began by creating a story for our instance of Storybook – we

imported a set of functions from Storybook, along with the documentation

file and our component. At the same time, we added the now-familiar

<Meta> tag tag to tell Storybook where to place the new component in our

setup. You will notice that I’ve used the React Components location; this is

purely to keep any new additions separate from the original components,

at least for now!

Chapter 12 Taking Things Further

381

Next, we added various stories to our Story file – all four follow the

same format as others. We call the component and pass in different values

for the src, status, and statusSize arguments. We then finished the

first part of this demo by committing all of the changes thus far into our

repository before previewing the changes on the Netlify site.

We’re not quite finished yet, though – there is still one more addition: a

test! We need to add a test file to our existing collection to show we have at

least basic test coverage for this component.

Adding this test was straightforward – we created a test spec file

before importing Vitest (as we did for other components) and the Avatar

component. We then added the describe block, starting with setting some

prop values to pass to our component, before creating the first assertion to

test that the component renders without issue.

We then added more assertions to cover a scenario where the avatar

shows a busy status, an assertion to get a visual snapshot, and one to check

for accessibility; once we saved the test, we ran it to confirm a successful pass

before uploading all changes to our GitHub repository. Before we move on,

though, I want to call out one small but important point: the location of our

Avatar image. You will notice that we put it into the public folder at the top,

but there is no reference in the URL path within our component. What gives?

Well, this is down to the power of Svelte – it is clever enough to know

that the public folder is really for static images, so we will treat this as if it

were the root of any website. It means that even though we used / in the

URL path for our avatar image, it translates to the public folder – Svelte

links to it during the build process.

If we had used a relative URL to this folder, as one might have
expected to do so, then you would get this warning in the
console log: ...files in the public directory are
served at the root path. Instead of /public/avatar.
png, use /avatar.png.

Chapter 12 Taking Things Further

382

Okay – let’s crack on. At the start of this chapter, I mentioned two

words, key to where we go from here – they were “what next”? As I am sure

you will appreciate, we can go in any direction we want, although much of

that will be determined by your project needs!

As part of answering that bigger question at the top of this chapter, I

want to explore one topic more and see what we could or should do. We’ve

created a set of valuable components, but what about theming them?

Could we add a theme capability – should we?

�Adding a Theme Manager
These are all great questions and sensible ones at face value. After all, it

would be good to provide components that follow a consistent format

regarding properties such as color, padding, or fonts.

However, as you will soon see, there is more to this than it seems.

Before we get to that, let’s consider some of the questions we could ask to

help determine what theme support could look like for our library.

�Determining the Approach
Setting the approach is so critical – after all, we’re creating components

that we can reuse; how should we add a capability to theme them as well?

It sounds like a reasonable premise…but as is often the case, there is more

to this story than initially seems! The more I dug into this, the more I found

something of a sting in this tale – before we get into that, let’s have a look at

some of the questions we need to ask to create a theme:

•	 Should it be an existing package or combined with

one or more components? We can create one theme

component but use Vite’s power to bundle it with

different components as we see fit.

Chapter 12 Taking Things Further

383

•	 Should we design and build our own theme manager

(and theme) or attempt to build in support for themes

based on packages such as Tailwind?

•	 Do we only provide our themes, or can we offer the

capability to create a custom theme provided by

whoever uses our components?

•	 Do we use CSS and/or JavaScript to handle overriding

our styles? What about the styles we have implemented

in each component already?

•	 What colors would we use? Not everyone will want

to use our choice of colors…so is it even practical to

choose them?

…and it’s that last question that got me thinking: Should we even add

a theme manager, at least for now? Let’s assume that, for the moment,

we will start adding something and look at one possible option before we

explore why theme support may not be so helpful for our library.

�Implementing the Changes
For this next demo, I’ve simplified code from a Svelte REPL playground

demo I found online to remove some toggling functionality so it only

renders one theme.

I will treat this demo as a proof of concept, so I will host it in Storybook

but in a separate section outside the core library and use a folder structure

that differs from the original version. It won’t matter, as what we’re doing

is a proof of concept; if we were to go ahead with this change, we would

need to tweak the naming to make it more consistent with our core library

components.

Chapter 12 Taking Things Further

384

The original code for this demo can be found at https://svelte.
dev/repl/7c8a6f2f0dff4f82a998bbff608c890a?versi
on=3.59.2.

DEMO – ADDING THEME MANAGER SUPPORT

To set up the proof of concept, follow these steps:

	1.	 First, we need to create the folder structure for our proof of

concept – for this, create a folder called themes under

\src\lib.

	2.	I nside this folder, create two subfolders – one called Button

and the other called Button-Themed.

	3.	 With the folder structure in place, we can now start adding

code – open a new file, then add this block, saving it as

Button.js in the \src\lib\themes\Button folder:

<svelte:options customElement = "garnet-button" />
<button class="bg-primary">Checkout</button>

	4.	N ext, we need to create the theme manager support

component – for this, open a new file and then add this code:

<script>
 export let primary = '255, 0, 0';
 export let smallBorder = '2px';
</script>

<div style={
 `--theme-primary: ${primary};` +
 `--theme-small-border: ${smallBorder};`
}>

Chapter 12 Taking Things Further

https://svelte.dev/repl/7c8a6f2f0dff4f82a998bbff608c890a?version=3.59.2
https://svelte.dev/repl/7c8a6f2f0dff4f82a998bbff608c890a?version=3.59.2
https://svelte.dev/repl/7c8a6f2f0dff4f82a998bbff608c890a?version=3.59.2

385

 <slot/>
</div>

<style>
 :global(h1) {
 color: rgb(var(--theme-primary));
 border: var(--theme-small-border) solid black;
 }
 :global(.bg-primary) {
 background-color: rgba(var(--theme-primary), .2);
 }
</style>

	5.	S ave the file as Theme.js in the \src\lib\themes folder.

With that component now in place, we can begin to use it – we

will do so in a Storybook decorator file. Open a new document

in your editor, then add this code:

<script>
 import Theme from '../Theme.svelte'

 let theme;
 theme = {primary: '0, 255, 0', smallBorder: '4px'};
</script>

<div>
 <Theme {...theme}>
 <slot />
 </Theme>
</div>

	6.	S ave the file as ButtonDecorator.svelte in the \src\
lib\themes\Button-Themed folder.

Chapter 12 Taking Things Further

386

	7.	 We’re almost done with the code – there are two more files

to add! The next one is for Storybook support – this follows a

similar format to others we’ve created earlier in the book. Crack

open a new file, then add this code, starting with defining some

imports and two constants:

import Button from "../Button/Button.svelte";
import ButtonDecorator from "./ButtonDecorator.svelte";
import { BADGE } from "storybook-addon-badges";

const BADGES = {
 ...BADGE,
 ALPHA: "Alpha",
};

const meta = {
 title: "Garnet UI Library Themed/Button",
 decorators: [() => ButtonDecorator],
 parameters: {
 badges: [],
 },
};

	8.	N ext up comes the default fallback template for Storybook:

export default {
 title: "Garnet UI Library Themed/Button",
 component: Button,
 ...meta,
};

	9.	 We end with the base variant and parameters block to display

an Alpha badge and code used:

export const Default = (args) => ({
 Component: Button,

Chapter 12 Taking Things Further

387

 props: {
 ...args,
 },
});

Default.parameters = {
 badges: [BADGES.ALPHA],
 docs: { source: { type: "code" } },
};

	10.	 Last but by no means least, we need a copy of the

documentation file for this component – go ahead and extract

a copy of Docs.mdx from the code download for this book and

drop it into the \src\lib\themes\Button-Themed folder.

	11.	S ave and close everything. Revert to a Node.js terminal

session, then make sure the working folder is set to our Garnet

project area.

	12.	A t the prompt, enter npm run storybook and press Enter – if all

is well, we should see our Button proof of concept displayed

when browsing to http://localhost:6006 and clicking

Garnet UI Themed Library ➤ Button ➤ Default (Figure 12-2).

Figure 12-2.  Preview of the themed button in Storybook

Chapter 12 Taking Things Further

388

Phew – for a simple demo, there were a lot of changes! Admittedly,

some of these are similar to what we’ve done before, so we’d expect to have

to add something similar for any new components we create. That said,

this demo highlights some critical points about how we might add theme

support, so let’s take a moment to explore them in more detail.

�Understanding What We Changed
When I started to research the updates for this edition of this book, one of

the topics I wanted to cover was theme support – at face value, it looked

like a sensible addition to the library. However, the more I delved into the

code changes, the more it became less attractive as an option!

Even though we created a proof of concept, we’ve had to make what

looks like a fair few changes in this last demo – it has raised the question

of whether this is the right thing to do (and I’ll come back to this in a

moment). For now, though, let’s consider the changes we had to make. We

began by setting up a new folder structure so that it didn’t conflict with the

core components (at least for now).

We then moved on to creating a simple Button component – I was keen

to keep this part as a proof of concept, so creating something quick and

dirty outside of the core folders means we can do things without getting in

the way of our library.

Next came the trickier part – we assembled the Theme.js file, which

includes the styling to use if we set a primary theme. We can see it using

CSS variables, such as --theme-primary; this allows us to pass in values

from props into our style sheet and for it to pick up the changes. To show

off using the theme, we created a decorator file for Storybook called

ButtonDecorator.svelte. This allows us to use the theme in Storybook

without modifying the component.

Chapter 12 Taking Things Further

389

To finish, we added a Storybook file for the new component – this

shows off the Default variant of the button, currently set to show a (less

than ideal) shade of green. Granted, it’s not consistent with our current

theme color, but hey – this is a proof of concept!

�“And Now to Answer That Question…”
Yes, indeed – it’s time to come back to that so-called sting of why adding

theme support may not be such a useful idea. Let me explain what I mean.

When it comes to adding features, I’m sure you will agree that we can

always add them as a technical exercise, but doing so may not necessarily

be the right thing to do. In this case, while researching the code for this

edition of the book, it got me thinking about whether adding theme

support would be sensible for our library:

•	 What is a theme? It’s just providing properties such

as font-size or color, so would this be set at a

component level or (more likely) at the site level?

•	 How do we deal with overriding existing properties?

The option we created had used :global, which

potentially would be needed but is likely to create

issues around styling specificity.

•	 When creating a theme, it’s too easy to become

opinionated about what a theme should look like or

offer – is this right? People may use the components,

but they could be put off if they present an issue that

requires extra code to circumvent.

•	 Remember how I touched on whether we should

use $$restprops in our components or make sure

our components offer the right props explicitly? The

previous comment about what a theme is ties into

Chapter 12 Taking Things Further

390

this – we can use $$restprops to tell Svelte to accept

any props not expressly provided, but this can lead

to poor optimization, as Svelte doesn’t know what to

expect. Instead, it would be better to offer explicit props,

including any we might otherwise include in a theme.

•	 At a basic level, a theme is just providing properties

such as font-size or color – do we need a theme

manager for this, or would a simpler option be to make

sure that the component offers the right props instead?

There is one overriding question that trumps all of the above – do we

need to invent the wheel? While researching for this book, I came across

many examples of how developers had written theme components, such

as the one we’ve used in this chapter.

However, it seems (at least for now) that no one has written anything

about theme manager support for web components – therein lies the

difference: Does this mean it’s not possible, or is it even needed?

Remember that this component library is designed to work with other

frameworks and Svelte, so would adding theme support work anyway? I

think it would be much better to focus on providing components that work

reliably and consistently across different frameworks and let those using

them deal with theming – they will know what they need. If required, we

can tweak properties to suit if they need to change!

�Summary
All good things must come to an end sometime…

Although I can’t proclaim to know who said these wise words, their

meaning is very true – sadly, we have indeed come to the end of our

adventure with Svelte Web Components! We’ve covered a lot over the

last few pages of this book, so let’s take a moment to review what we have

learned.

Chapter 12 Taking Things Further

391

We began this chapter with a look at reviewing the site – we learned

that it’s essential to have that final check over our content to ensure we

don’t let any (at least apparent) mistakes fall through into production. At

the same time, we understood that this step acts as a way to sign off the

content – we can treat it as confirmation that development has finished

and we’re ready to move our code into production.

Next up, we then talked about setting a road map – I highlighted the

importance of basing this around two critical decisions: what you want to

see in it as the library author and what it might be used for if working in

a corporate environment. We then started converting what would be our

next component – this time, we based it on one written initially in React

while learning that understanding the component’s functionality is a

better way to translate it into an equivalent in Svelte than simply doing a

“lift and shift.”

We then finished by exploring a proof of concept for adding a theme

manager to our library. We worked through some example code before

discussing how, even though it might be a nice feature to have, there are

several reasons why it may not be the right thing to implement in a web

components library.

Phew – we have come to the end of our adventure! I’ve had a great

time building and writing this book – it’s had its ups and downs while

highlighting that Svelte is still a relatively new technology with a few

quirks. But hey – all frameworks create their little quirks over time; it’s just

a case of learning how to get around them to achieve your desired result. I

hope you’ve enjoyed the content and found something helpful, as much as

I have, and that you can put it to good use in your future projects.

Chapter 12 Taking Things Further

393© Alex Libby 2025
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/979-8-8688-1180-7

Index

A
Accessibility, 262, 295

chrome extension, 299–303
expectations, 298, 299
experiment, 296–298
testing, 295

Accordion, 90, 96, 256, 261, 293
Accordion component

adding with Storybook, 91–94
code reviewing, 95
creation, 85–90
JSON file, 90
unitary components, 90

AccordionItem, 87, 90, 91
Accordion.stories.js, 94
Accordion.svelte, 87, 90
ActiveTabValue, 120, 123, 124
Alarm component

code breaking, 212, 213
creation, 206–212
default story, 216
Storybook addition, 213–216
variants, 216–219

AlarmHTML property, 314
Alert component

basic styling, 141–146
building, 135–140

codes, 149, 150
components to

Storybook, 142–145
icons, 134
reality, 140
statement, 141
variants, 145–150

AlertHTML, 308
Animation components, 195

alarm component, 206–219
cubic-bezier-based, 195
progress bar, 196–206
switch component, 220–229

App.svelte app, 277
App.svelte file, 275
argTypes, 43, 70, 103, 116, 144, 171,

249, 251
aria-label attribute, 313
aria-labelledby attribute, 313
autofocus, 316
Avatar components, 366

code, 371, 372
creation, 367–371
documentation file, 380
public folder, 381
scenario, 381
Storybook, 372–380

https://doi.org/10.1007/979-8-8688-1180-7#DOI

394

Axe DevTools, 300, 319
AXE plugin in chrome, 299–301

accessibility, 302
alert component, 301
overriding colors, 302

B
Badge configuration, 236
badgesConfig object, 239
Base cell component, 182
bind:value spread operator, 25
BitBucket, 9, 324
Breadcrumbs component, 236

code exploration, 107
creation, 98–102
documentation writing, 246–250
double conditional block, 102
exported variable, 102
Storybook addition, 103–107
Svelte techniques, 101

Breadcrumbs.stories.js file, 105,
234, 236, 238, 248

Button component, 388
ButtonDecorator.svelte, 385, 388
Button element, 154

C
called _progress, 200
Cards, 366
Cell component, 176

constituent elements, 184
construction, 182–184

desired format, 189
Storybook addition, 185–188
variant addition, 189–192

Checkbox component
building, 34–38
code, 38, 39
code breaking, 42–44
variations addition, 39–42

CheckboxDecorator.svelte file, 41, 43
Checkbox folder, 41, 340, 345
Checkbox.svelte, 35, 38, 43
Chip component

code exploration, 112–114
creation, 108–111
with Storybook, 113–116
variants, 117–119

Chrome extension, 299–303
Classic switch, 220
CloseIcon file, 154
Close.svelte file, 150
Code breaking, 6, 7
CodeSandbox, 281, 284, 343, 346
CodeSandbox demo, 276, 281
columnCount, 179
Component library, 1, 14, 322, 323

GitHub(see GitHub)
ideas, 322, 323

Components bundling
code writing, 274–276
configuring, 266–269
running, 271–274
third-party library, 266
Vite configuration, 270

Consistency, 38, 97, 232, 233

INDEX

395

Content Delivery Network
(CDN), 324

CoreUI team, 367
--countBackgroundColor, 212
countColor, 213
createEventDispatcher

function, 38, 112
CSS styles, 83, 239, 324
cubicOut, 200, 205
Custom domain name, 353–359
customElement tag, 102, 107, 112,

200, 212
CustomImage variant, 238, 243
Custom label, 236–239
Cypress testing, 10

D
Default divider, 104, 105
default function, 67, 95, 127
Default link, 63, 78, 94, 115, 170, 202
Default template, 43, 59, 95, 116,

144, 189, 248, 250
Demo building, 343–348
Demo component, 5–7
Demo updation

code breaking, 280
stand-alone demo, 276–280

Deployment process
production-ready, 324
tasks, 324, 325
transition, 323

describe block, 261, 381
Dialog box, 131, 143, 148, 284

Dialog component
button element, 154
content and responding, 150
creation, 150–154
dialog markup, 154
Storybook addition, 155–157
variants, 157–162

Dialog.stories.js file, 156, 158
display:grid, 182
displayImageLabels property,

185, 192
displayImages, 184, 185, 192
displayText function, 65
div element, 112, 185
Docs.mdx file, 32, 58, 116, 206,

242, 251
Documentation writing

breadcrumbs, 242–244
breadcrumbs

component, 246–250
changes exploration, 250, 251
CSF format, 241
hash notation, 244
improvements, 245, 246
scene setting, 232, 233
status badges, 233–235
Storybook, 231
text-based, 232
variants, 242

E
e-commerce, 8, 51, 61, 115, 176
<dialog> element, 134, 162

INDEX

396

Error variant, 149
Exported variable, 35, 75, 84, 102,

130, 167

F
Fall-back template, 213
Filled property, 219

G
garnet div element, 112, 141
garnet folder, 15, 329, 330
garnet-progressbar, 200
garnetui.js, 277
Garnet UI lLibrary, 8, 9
git commit-m “Initial release”, 330
GitHub, 4, 9, 324, 337

authentication, 352
code exploring, 335
components uploading, 328–335
repository, 325
screenshot, 328
setting up, 326–328
working repository, 328

.gitignore file, 322, 328, 330, 335
GitLab, 9, 324
Grid components, 175

cell component, 182–192
code breaking, 181, 182
construction, 179–182
CSS grid, 176
table component, 176–179
third-party libraries, 176

grid-row-gap, 182
grid-template-columns, 181
grid-template-rows, 181

H
handleMouseEnter, 167
Hash symbol, 244, 245
HTML elements, 200
HTTPS address, 360

I
Icons, 98, 134, 140, 367
ImageGrid component, 176, 185,

188, 192, 322
index.html file, 7, 275, 277, 280
Input component

code breaking, 24, 25
creation, 22–24
Docs file, 30
Storybook hooking, 26–29
variants, 30–34

Internet access, 11, 12
itemCount, 179
item.name, 124

J
JAMStack-based site, 349

K
Keyframe animation, 209, 213, 230
@keyframes, 75, 83

INDEX

397

L
labelTextOutside, 200, 206
ListBox, 366

M
main.js file, 234, 268, 270, 277, 280
Meta tag, 242

N
Named anchor, 30, 243–245
Naming templates, 116
Navigation components, 97

breadcrumbs component, 98–107
chip component, 108–119
tabs component, 120–130

Netlify, 349–352, 356, 360
No-brainer features, 365
Node 18+ version, 241
Notification components

alert component, 133–161
dialog component, 150–161
tooltip component, 162–174
variables, 167

Notifications container, 208
npm install command, 5, 13, 15, 236
NPM package, 2, 298, 324
npm publish command, 337, 345
npm run coverage, 285, 289
npm run storybook, 28, 106, 115,

148, 156, 160, 170, 172, 202,
205, 218, 227, 235

npm run test:alert, 305, 311

O
on:input operator, 25
onChange={handleChange}, 224
onClose function, 109, 112
oninput event, 70
oninput handler, 116
onInput={handleInput}, 224
onKeyboardDown, 163
onMouseEnter, 163

P, Q
package.json file, 7, 255, 273,

338, 339
Placeholder documentation, 232
Placeholder Images, 179, 185,

191, 193
Popover, 366
preview.js file, 236, 237, 239, 241
Progress bar components

changes, 203
code exploration, 200
creation, 196–199
Storybook addition, 201–205
variants addition, 204–206

ProgressBar.stories.js, 202, 204
Punycode, 260, 312

R
RadioButton component

addition, 44–46
challenges, 50, 51
Storybook adding, 46–49

INDEX

398

React demo, 280–284, 294
React/TypeScript, 367
README addition, 356–358
Releasing components to

npm, 336–342
repeating-linear-gradient()

function, 205
Reworked classes, 149
rollupOptions property, 276
rotateCircle, 75, 82, 83

S
Script functionality, 167
SelectBox component

building, 61–64
codes, 70–73
markup, 64
to Storybook, 65–69
variables, 64

selectOptions object, 70
setTimeout, 167
setupTest.js file, 255, 256
showHTML, 173
Site reviewing

code base, 365
improvement, 364, 365
road map, 365, 366

Slider component
building, 51–56
code, 59
Storybook, 56–59

Snapshot testing, 253
Spinner component

addition with Storybook, 76–79
building, 72–75
core component code, 75
CSS code, 75
CSS variable function, 75
default function, 79, 80
variants, 80–85

Spinner-XXXX.js file, 282
Static alarm, 206
Status badges

addition, 233, 234
Alpha set, 239, 240
common options, 236
documentation page, 233
plugin configuration, 236–239
properties, 239
with Storybook, 236

Status chip, 119
Storybook publishing

code, 352
components, 348, 349
documentation, 348
GitHub, 352
Netlify setting up, 349–352

Storybook tool, 15–18, 324, 383
Accordion component, 91–94
alarm component, 213–216
alert component, 142–145
Avatar components, 372–380
breadcrumbs

component, 103–107
cell component, 185–188
chip component, 113–116
dialog component, 155–157

INDEX

399

input component, 26–29
progress bar

components, 201–205
RadioButton component, 46–49
SelectBox component, 65–69
Slider component, 56–59
Spinner component, 76–79
switch component, 224–227
tabs component, 124–127
tooltip component, 168–170

Styling rules, 145, 224
svelte:options, 50, 108, 200
svelte:options tag, 179, 181, 371
Svelte animation, 196, 209
Svelte components, 6, 70,

266, 366–372
Svelte demo site, 13–15
Svelte functions, 35, 50, 64
Svelte-loading-spinners package, 84
Svelte’s accessibility, 296–298
Svelte’s architecture, 2, 3
Svelte Testing Library, 254, 260
Switch component

building, 220–223
code breaking, 223, 224
Storybook addition, 224–227
variants, 228, 229

switch-container, 223
Switch.stories.js file, 226, 228, 229

T
tabindex values, 316
tabItems, 127

Table component, 176, 189
creation, 176–178
image grid, 176
subcomponents, 178

Table.stories.js, 187, 189
Table.svelte, 177
Tabs component

code exploration, 123, 124
construction, 120–124
Storybook addition, 124–127
variants, 127–130

Tabs.svelte file, 123, 127, 295
Test coverage

addition, 284–287
code, 291–293
refining, 288–291
testing, 284

Testing
accessibility issues, 314
components, 314
exploration, 317, 318
limits of, 314–318

Testing components
acceptance, 254
bundling, 266–281
code, 256
demo reaction, 283–285
eventualities, 256
format, 260
improvement, 261, 262
installing Vitest, 254, 255
MVP approach, 253
scope, 256
snapshot, 253

INDEX

400

test set up, 256–260
visual testing, 263–266

textdivider, 244
Theme manager, 382

approach determining, 382, 383
implementation, 383–388
library, 389, 390
proof of concept, 388
Storybook file, 389

Time-honored tradition, 2
Tooltip component, 162

codes, 170, 171
creation, 162–168
HTML markup, 167
Storybook addition, 168–170
variants, 171–173

Top-level domain, 353
transition:fade, 167
Two-way binding, 34

U
Unitary components, 90

V
Variables

chip component, 112
notification components, 167

Variants, 364
alarm component, 216–219

alert component, 145–150
cell component, 189–192
chip component, 117–119
dialog component, 157–162
input component, 30–34
progress bar

components, 204–206
Spinner component, 80–85
switch component, 228, 229
tabs component, 127–130
tooltip component, 171–173

Variations
checkbox component, 39–42

Version badge, 356–358
vite.config.js file, 17, 19, 255, 275,

285, 291
vite.lib.config.js, 268–270, 273, 275
Vitest-Axe

code breaking, 312, 313
exploration, 308, 309
fixing, 309–312
plugin, 303
setting up, 303–307

vitest/browser, 256
Vitest set up, 254, 255

W, X, Y, Z
Web Accessibility Testing, 300
Web components, 1–4, 265,

266, 390
Web Component tag, 200

Testing components (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Changes in This Edition
	Chapter 1: Getting Started
	What Are Web Components?
	Taking First Steps
	Breaking Apart the Code

	Background to the Project
	Our Approach and Strategy
	Determining Our Needs
	Setting Up the Project
	Understanding What Happened

	Integrating a Playground
	Understanding What Happened

	Summary

	Chapter 2: Creating Basic Components
	Creating the Input Component
	Breaking the Code Apart
	Hooking the Component into Storybook
	Understanding What Happened
	Adding Variants

	Building a Checkbox Component
	Exploring the Code Changes
	Adding Variations in Storybook
	Breaking the Code Apart

	Adding a RadioButton Component
	Exploring the Changes Made

	Constructing the Slider Component
	Adding the Component to Storybook
	Exploring the Code

	Summary

	Chapter 3: Building Action Components
	Creating the SelectBox Component
	Understanding What Happened
	Adding the Component to Storybook
	Exploring the Code in Detail

	Creating the Spinner Component
	Understanding What Happened
	Adding the Component to Storybook
	Breaking Apart the Code
	Creating Variants
	Breaking Apart the Code
	Expanding the Options Available

	Creating the Accordion Component
	Understanding What Happened
	Adding the Component to Storybook
	Reviewing the Code

	Summary

	Chapter 4: Building Navigation Components
	Creating the Breadcrumbs Component
	Understanding What Happened
	Adding the Component to Storybook
	Exploring the Code in Detail

	Building a Chip Component
	Exploring the Code Changes
	Hooking the Component into Storybook
	Understanding the Changes Made

	Building Two Variants

	Constructing the Tabs Component
	Exploring the Code Changes
	Hooking the Component into Storybook
	Understanding the Changes Made

	Creating a Variant

	Summary

	Chapter 5: Creating Notification Components
	Creating the Alert Component
	Sourcing the Icons
	Building the Component
	Understanding What Happened

	Adding the Component to Storybook
	Exploring the Code Changes

	Creating a Variant
	Breaking Apart the Code

	Creating the Dialog Component
	Understanding What Happened
	Adding to Storybook
	Creating Variants

	Creating the Tooltip Component
	Understanding What Happened
	Adding the Component to Storybook
	Exploring the Code Changes
	Creating a Variant

	Summary

	Chapter 6: Creating Grid Components
	Determining the Approach
	Building the Table Component
	Understanding What Happened

	Creating the Grid Component
	Breaking Apart the Code

	Creating the Cell Component
	Understanding What Happened
	Adding to Storybook
	Exploring in Detail
	Adding a Variant

	Summary

	Chapter 7: Creating Animation Components
	Animating a Progress Bar Component
	Exploring the Code Changes
	Adding to Storybook
	Understanding the Changes Made

	Adding Variants

	Creating the Alarm Component
	Breaking Apart the Code
	Adding to Storybook
	Exploring the Changes

	Adding Variants

	Creating a Switch Component
	Breaking Apart the Code
	Adding to Storybook
	Creating a Variant

	Summary

	Chapter 8: Writing Documentation
	Setting the Scene
	Adding Status Badges
	Understanding What Happened
	Customizing the Badges Plugin Configuration
	Breaking Apart the Changes

	Updating the Documentation
	Breaking Apart an Example
	Making Improvements
	Exploring the Changes in Detail

	Summary

	Chapter 9: Testing Components
	Setting Expectations
	Setting Up the Testing Environment
	Breaking Apart the Code Changes

	Testing the Components
	Exploring the Changes in Detail
	Improving on the Tests
	Testing the Components Visually

	Bundling the Components
	Configuring the Build Process
	Understanding the Changes in Detail

	Running the Build Process
	Breaking Apart the Changes

	Updating Our Demo
	Breaking Apart the Code

	Testing with Other Frameworks
	Understanding What Happened

	Adding Test Coverage
	Refining the Results
	Breaking Apart the Code Changes
	A Parting Thought

	Summary

	Chapter 10: Accessibility
	A Quick Experiment
	Understanding What Happened

	Setting Expectations
	Testing with the Chrome Extension
	Understanding the Results

	Implementing Vitest-Axe
	Exploring the Changes
	Fixing the Issues
	Breaking Apart the Code

	Limits of Testing
	Exploring Next Steps

	Summary

	Chapter 11: Deploying to Production
	Performing Final Checks
	Understanding the Deployment Process
	Publishing to GitHub
	Setting Up a GitHub Repository
	Uploading Components to GitHub
	Exploring the Code in Detail

	Releasing Components to npm
	Building a Demo
	Breaking Apart the Code Changes

	Publishing Storybook to Netlify
	Setting Up Netlify
	Understanding the Changes Made

	Adding Polish to the Repository
	Adding a Custom Domain Name
	Breaking Apart the Code

	Summary

	Chapter 12: Taking Things Further
	Reviewing the Site
	Setting a Road Map

	Converting Our Next Component
	Dissecting the Code
	Adding to Storybook
	Understanding the Changes Made

	Adding a Theme Manager
	Determining the Approach
	Implementing the Changes
	Understanding What We Changed
	“And Now to Answer That Question…”

	Summary

	Index

