
Nathaniel Schutta
& Dan Vega

From Coder to Engineer

Fundamentals of
Software
Engineering

9 7 8 1 0 9 8 1 4 3 2 3 7

5 6 5 9 9
ISBN: 978-1-098-14323-7
US $65.99	 CAN $82.99

SOF T WARE DEVELOPMENT

What do you need to know to be a successful software engineer? Undergraduate curricula and bootcamps
may teach the fundamentals of algorithms and writing code, but they rarely cover topics vital to your career
advancement. With this practical book, you’ll learn the skills you need to succeed and thrive.

Authors Nathaniel Schutta and Dan Vega guide your journey with everything from pointers to deep dives
into specific topic areas that will help you build the skills that really matter as a software engineer.

•	 Understand what software engineering is—and
why communication and other soft skills matter

•	 Learn the basics of software architecture
and architectural drivers

•	 Use common and proven techniques to read
and refactor code bases

•	 Understand the importance of testing and how
to implement an effective test suite

•	 Learn how to reliably and repeatedly
deploy software

•	 Know how to evaluate and choose the right
solution or tool for a given problem

Fundamentals of Software Engineering

“ In this book, Dan and Nate quickly teach the essentials that years
of formal education often fail to touch on. Their decades of experience
shine through these pages as they tactfully distill the many dos and don’ts
for professional developers.”
Dr. Venkat Subramaniam, award-winning author and founder of Agile Developer, Inc.

“Shockingly, no book exists which provides a holistic overview of what
software engineering really entails in the modern world...until now. Filling
a void that in hindsight seems huge, this book provides an outstanding
overview of the many facets of software engineering, told from a
practitioner’s standpoint.”
Neal Ford, Distinguished Engineer at Thoughtworks

Nathaniel T. Schutta is a cloud-focused
architect at Thoughtworks. He coauthored
Presentation Patterns, wrote Thinking
Architecturally and Responsible Microservices,
and teaches at the University of Minnesota.
He’s also a seasoned speaker who regularly
presents at worldwide conferences.

Dan Vega, a Spring developer advocate
at Broadcom and a Java Champion, has over
20 years of software development experience.
A passionate problem-solver, he actively
shares knowledge as a blogger, YouTuber,
course creator, and speaker, inspiring fellow
developers through continuous learning.

Praise for Fundamentals of Software Engineering

Nate and Dan have distilled years of experience into amazing insights
for both experienced and new developers!

—Chris Kramer, principal AI engineer, Thoughtworks

There has never been a more important time for a book like this. As early talent
navigates the disruption of AI in the job market and the strain remote work places

on traditional apprenticeships, this book offers the wisdom and guidance needed to
grow, adapt, and succeed.

—Christopher M. Judd, president of Judd Solutions

In this book, Dan and Nate teach quickly the essentials that years of formal education
often fail to touch on. Their decades of experience shine through these pages, as they

distil tactfully many dos and don’ts for professional developers.
—Dr. Venkat Subramaniam, award-winning author and

founder, Agile Developer, Inc.

Shockingly, no book exists which provides a holistic overview of what software
engineering really entails in the modern world...until now. Filling a void that in
hindsight seems huge, this book provides an outstanding overview of the many
facets of software engineering, told from a practitioner’s standpoint. Like other

books in the Foundations series, this one is an invaluable guide for both new
engineers and experienced ones to backfill parts of the ecosystem they haven’t

touched (or didn’t know about). Highly recommended.
—Neal Ford, distinguished engineer at Thoughtworks

Every professional faces the uncertainty of “unknown unknowns.” How does one
even prepare when they don’t know what to expect? How does one traverse

unfamiliar terrain without having so much as a map?
The journey toward software engineering, the deliberate act of moving away from being

a “programmer” to an “engineer” has, for a long time, presented a similar conundrum.
You are challenged with a tsunami of buzzwords, left navigating the choppy waters of

an ever-changing landscape, and are confronted with the rising tide of AI’s influence in
the workplace. It can be a daunting and overwhelming journey, both for newcomers and

seasoned veterans alike.
Fear not, because Nate and Dan have crafted the map that you’ve been looking for.

This book lays out the fundamentals needed to transform your mindset into that of an
engineer. This book isn’t about technologies—it’s about the skills that will equip you to

not just survive, but thrive in today’s tempestuous enterprise.
—Raju Gandhi, software craftsman, technophile, and teacher;

author of Head First Software Architecture, Head First Git, and JavaScript Next

Nathaniel Schutta and Dan Vega

Fundamentals of
Software Engineering

From Coder to Engineer

978-1-098-14323-7

[LSI]

Fundamentals of Software Engineering
by Nathaniel Schutta and Dan Vega

Copyright © 2026 Code Monkey LLC and Nathaniel Schutta. All rights reserved.

Published by O’Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa Rosa, CA 95401.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Louise Corrigan
Development Editor: Rita Fernando
Production Editor: Aleeya Rahman
Copyeditor: Charles Roumeliotis
Proofreader: Sharon Wilkey

Indexer: Krsta Technology Solutions
Cover Designer: Susan Thompson
Cover Illustrator: José Marzan Jr.
Interior Designer: David Futato
Interior Illustrator: Kate Dullea

November 2025: First Edition

Revision History for the First Edition
2025-10-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098143237 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fundamentals of Software Engineering,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098143237

For Jen, Isabella, and Juliana, my heart, my world, my everything.
—Dan

For Christine and Everett, your love and support mean everything to me.
—Nate

Table of Contents

Preface. xv

1. Programmer to Engineer. 1
An Engineer by Any Other Name 1
Fundamentals Matter 2
The Many Paths to Becoming a Software Engineer 3
What You Were Taught Versus What You Need to Know 4
Embrace the Lazy Programmer Ethos 5
The Value of a Fresh Set of Eyes 7
Don’t Solution Too Quickly 8
Apply the Golden Rule to Software 11
Wrapping Up 11
Putting It into Practice 12
Additional Resources 12

2. Reading Code. 15
The Challenge of Working with Existing Code 15
Cognitive Biases 17
Approaching Unfamiliar Code 18
Software Archeology 20
Effective Code-Reading Strategies 25

Leveraging IDE Features 25
Reading Tests for Insight 31

Practice Makes Perfect 33
Wrapping Up 34
Putting It into Practice 35
Additional Resources 35

vii

3. Writing Code. 37
Don’t Reinvent the Wheel 38
What Is Good Code? 39
Less Is More 41

The Zeroth Law of Computer Science 42
Beware Boilerplate Code 42
Favor Composition over Inheritance 42
Favor Short Methods 43

Write Code to Be Read 43
The Problem with Code Comments 45
Tests as Documentation 46
Avoid Clever Code 47
Code Reviews 48
Avoid the Checkbox Code Review 48
It Is Hard to Be Criticized 49
Fostering Trust 50
Learning New Languages 50
Wrapping Up 52
Putting It into Practice 52
Additional Resources 53

4. Modeling. 55
What Is Software Modeling and Why Do We Do It? 56
Which Diagrams Do You Need? 58

Context Diagrams 60
Component Diagrams 60
Class Diagrams 61
Sequence Diagrams 62
Deployment Diagrams 63
Data Models 65
Additional Diagrams 66

Modeling Best Practices 67
Keep It Simple 67
Know Your Audience 68
Be Careful with Your Color Choices 68
Establish Standards and Templates 69

Tools 69
Wrapping Up 71
Putting It into Practice 71
Additional Resources 72

viii | Table of Contents

5. Automated Testing. 73
Benefits of Automated Testing 73

Acts as Documentation 74
Improves Maintainability 74
Boosts Your Confidence 75
Leads to Consistency and Repeatability 76

Types of Automated Testing 77
Unit Tests 78
Integration Tests 78
End-to-End Tests 79
What Mix of Tests Should You Be Writing? 79
What You Should Not Test 80

Code Coverage 80
Writing Tests 81

Getting Started 81
Assertions 82
Writing Unit Tests 83
Mocking 84
Writing Integration Tests 86
Writing End-to-End Tests 87

Wrapping Up 88
Putting It into Practice 88
Additional Resources 90

6. Exploring and Modifying Unfamiliar Systems. 91
Understanding Unfamiliar Codebases 91

Start with the Big Picture 92
Understand the Execution Flow 95
Build Mental Models Incrementally 105

A Sample Process 109
Making Changes Safely 110

Refactoring Safely 111
The Scout Rule 112
Small, Reversible Changes 114

Wrapping Up 118
Putting It into Practice 118
Additional Resources 119

7. User Interface Design. 121
Designing for Everyone 121

What Is Usability? 123
What Is Accessibility? 124

Table of Contents | ix

What Are Localization and Internationalization? 125
Know Your User 126

Secondary Users 127
You Are Not Your User 127
Impact of Culture 129

Maximizing Usability 130
Principles of Design 131

Contrast 131
Repetition 132
Alignment 132
Proximity 133

Applying the Principles of Design 135
Make the Right Thing the Obvious Thing 139
The Importance of Good Error Messages 145
Destructive Actions 146
Wrapping Up 149
Putting It into Practice 149
Additional Resources 150

8. Working with Data. 151
Understanding Data Types and Formats 152

Structured Versus Unstructured Data 152
Common Data Formats 155
Specialized Data Considerations 158

Storing Your Data Effectively 160
Database Types and Their Use Cases 161
Data Persistence and Management 166
Database Connections and Transactions 170
Consistency Models and Caching Strategies 171
Planning for Data Growth 177

Querying and Managing Data Performance 179
Efficient Query Writing 179
Tools and Best Practices 183

Data Migration and Transformation 188
Understanding Data Movement Fundamentals 188
Handling Schema Changes 190

Wrapping Up 193
Putting It into Practice 194
Additional Resources 195

9. Software Architecture. 197
What Is Architecture? 197

x | Table of Contents

Trade-Offs 199
Architecture Versus Design 201
Quality Attributes 202

Identifying Quality Attributes 203
Gaining Stakeholder Alignment 204

Architectural Styles 206
The Agile Architect 206
Fitness Functions 208
Architectural Diagrams 209
Architectural Decision Records 210
Wrapping Up 212
Putting It into Practice 212
Additional Resources 213

10. To Production. 215
The Complexities of Production Environments 216

Users Are Unpredictable 216
“But It Works on My Machine” 217

Building Production-Ready Code 220
Performance Optimization 220
Environment-Specific Configurations 221
Error Handling and Logging 225
Security Essentials 226

Deployment Pipeline 233
Deployment Environments 234
Version Control Strategies 235
Deployment Automation 239
Deployment Strategies 243
Continuous Integration and Continuous Deployment 244

Production System Monitoring and Maintenance 248
Monitoring 248
System Maintenance 249

Wrapping Up 251
Putting It into Practice 252
Additional Resources 253

11. Powering Up Your Productivity. 255
Optimizing Your Development Environment 255

Know Your Development Tools 256
Build Your Own Lightsaber 256
Leverage the Power of the Command Line 258
Harness the Power of Keyboard Shortcuts 260

Table of Contents | xi

Strategic Automation 263
The Perpetual Pursuit of Productive Habits 264

Collaborative Learning 264
Personal Knowledge Management 265

Wrapping It Up 267
Putting It into Practice 267
Additional Resources 268

12. Learning to Learn. 269
Cramming Doesn’t Work 270
Skills Acquisition 271
The Learning Habit 273
Learning Through AI 275
Fear of Missing Out 278
Where Should You Invest Your Time? 280
Practice Innovation 281
Architectural Briefings 283
Practice Grace 284
Wrapping Up 285
Putting It into Practice 285
Additional Resources 286

13. Mastering Soft Skills in the Tech World. 287
Collaborative Communication 288

Communication Channels 288
Enterprise Operator 295
Know Your Audience 297

Practicing Influence 297
Understanding and Articulating Value 298
Strategic Approaches to Influence 298
Stakeholder Management 300

Time Management 301
Maker’s Schedule 302
Staying on Task 303

Wrapping Up 304
Putting It into Practice 304
Additional Resources 304

14. Career Management. 305
Plan Your Career Path 305

Find What You’re Passionate About 306
Exploring Your Career Options 308

xii | Table of Contents

Walking Backward from Your Goals 312
Deliberate Skill Acquisition 313
Aligning Career Choices with Life Phases 316

Walking Your Career Path 319
Celebrate and Record Your Wins 319
Overcome Imposter Syndrome 320
Build Your Professional Community 322
Cultivating Your Professional Relationships 325
Acing Your Next Interview 326
Create Work–Life Balance 334

Wrapping Up 338
Putting It into Practice 339
Additional Resources 340

15. The AI-Powered Software Engineer. 341
What Is AI Really? 342

Demystifying AI Terminology 342
Understanding AI’s Capabilities and Limitations 348

AI as Your Pair Programmer 351
Standalone Chatbot Assistants 351
Inline IDE Assistants 352
Agentic AI IDE Environments 353

Prompt Engineering Fundamentals 355
What Is Prompt Engineering? 355
Essential Prompt Engineering Techniques 356
Advanced Prompt Engineering Techniques 358

How AI Might Shape Software Engineering 360
Will AI Take My Job? 361
Vibe Code Reviews 362
AI as Your Force Multiplier: From Writing Code to Problem-Solving 365

Wrapping Up 367
Putting It into Practice 368
Additional Resources 368

Index. 371

Table of Contents | xiii

Preface

Programmer, coder, developer—there are any number of titles used to describe peo‐
ple who create software, but what does it mean to be a software engineer? Despite the
way software is often taught, being a software engineer is about far more than simply
producing syntactically correct programs.

Boot camps and universities typically focus on the mechanical aspects of writing
code, creating people who are well-versed in programming. The body of knowledge
required today to be a successful software engineer goes beyond learning a program‐
ming language; you must be well-versed in the full lifecycle of a software product.
You must have a comprehensive understanding of more than just the syntax and
grammar of a programming language; you must be well-versed in testing, architec‐
ture, modeling, and more. You must know how to work effectively with legacy code
and how to reliably and repeatedly deploy code to production. To excel, be promoted,
and to work on the most interesting projects, you must move beyond merely writing
code; you must apply engineering principles across the entire development process.
Even in the era of artificial intelligence (AI) and agentic coding tools, you must have a
solid grasp of the fundamentals to wield AI tools properly.

There are many paths to becoming a software engineer, from associate’s and under‐
graduate programs in computer science to intensive boot camps to teach yourself
(Figure P-1). Early in your software engineering career, it can feel like you’ve just
taken your first steps into a larger world. It can be overwhelming. We know, we’ve
been there! Regardless of your background, if you’re a newly minted practitioner, you
soon discover there is a vast array of critical topics you weren’t taught as part of a
standard curriculum and skills you don’t have, which prevents you from advancing to
more senior roles.

xv

1 A contributing factor to the prevalence of imposter syndrome (discussed in Chapter 14) in the software
industry.

Figure P-1. There is a gap between what early-career software engineers are taught
versus what they need in order to be successful and advance in their career

There is a gap between what you learn in a boot camp or a computer science degree
and what you need to know to become a successful software engineer.1 (Technical
companies like Thoughtworks have stringent hiring practices, yet they still send their
new hires through a boot camp, and they aren’t alone.) This book attempts to bridge
that gap by giving you the context and grounding you need to chart your career path
and helping you identify opportunities for personal and professional growth. Think
of it as an onboarding guide for the early talent software engineer.

This book aims to be your guide on that journey, to show you the things you may not
know you don’t know.

Who This Book Is For
This book is specifically designed for new software engineers. Our goal is to show you
the bigger picture of what it takes to become a true software engineer, beyond “just
coding,” and what it takes to advance your career.

xvi | Preface

But the fundamentals that we’ll discuss in this book aren’t just for beginners. Experi‐
enced engineers can also benefit from mastering these essential skills, especially if
they’re looking to move up and take on more senior roles. Building a strong skill set is
what will unlock opportunities for more responsibilities and promotion.

What You Will Learn
What are the skills you need to succeed and thrive? What separates the beginner
from the experienced software engineer? From reading code, to writing code that’s
readable, to testing, to work–life balance, to learning to learn—we will tell you
everything you need to know (and even some things you didn’t know you needed to
know). Most software engineers learn these things through trial and error, sometimes
costing their projects dearly. But it doesn’t have to be that way! These skills are the
fundamentals of software engineering that will set you up for a successful career
and—unlike the flavor-of-the-day framework or the trendy language—these skills
will last a lifetime.

While this book isn’t meant to be an in-depth guide to any one topic, it will show you
the universe of topics within software engineering, so you have enough information
to understand the basic concepts.

Throughout the book, we will share stories and experiences from our careers, giving
you an opportunity to learn from our mistakes. Each chapter concludes with relevant
resources and practical exercises to help you practice what you’ve learned. If a partic‐
ular chapter resonates with you, we encourage you to dive in and explore the topic!

Navigating This Book
Just as there is no one path to becoming a software engineer, there are many ways
to approach this material. While most readers will likely begin by reading this book
cover to cover, you can also “choose your own adventure” by reading chapters based
on whatever topic interests you at the moment. As you progress in your career, tackle
new projects, and encounter newly relevant topics, you may want to return to certain
chapters for guidance.

The book is broken into four sections. Part 1 begins with the core skills you need
to be a successful software engineer. Part 2 explores the various technical practices
you will encounter on projects, while Part 3 dives into the nuances of designing and
building software. Part 4 focuses on your career growth and steps you can follow to
take control of your journey.

Preface | xvii

Here’s what you’ll find in this book:

Part 1: Core Skills
• Chapter 1, “Programmer to Engineer”, discusses the varied paths to becoming a•

software engineer and emphasizes the importance of foundational skills.
• Chapter 2, “Reading Code”, is about how software engineers spend more time•

reading code than writing it. It provides strategies for navigating unfamiliar code.
• Chapter 3, “Writing Code”, is all about the importance of writing code that is•

readable and maintainable. In essence, it illustrates why it’s more important to
write for the developer than the computer.

Part 2: Technical Practices
• Chapter 4, “Modeling”, dives into the role of software modeling, aka the box-•

and-line diagrams you have encountered (or will encounter) on many projects, as
a crucial aspect of communication among software engineers.

• Chapter 5, “Automated Testing”, covers the benefits of automated testing for code•
quality and developer confidence.

• Chapter 6, “Exploring and Modifying Unfamiliar Systems”, highlights strategies•
for effectively working with existing codebases. Whether you’re joining a new
team or maintaining a legacy system, these skills will help you confidently con‐
tribute to any codebase.

Part 3: Application Development and Design
• Chapter 7, “User Interface Design”, is an overview of user interface design. It•

explains why understanding the user and applying design principles will help
ensure that your software meets your users’ needs.

• Chapter 8, “Working with Data”, is all about working with data, something nearly•
every software application does in some manner. It covers the essential skills you
need to know to make informed decisions about data in your applications

• Chapter 9, “Software Architecture”, explores the complexities of software archi‐•
tecture, giving you some insights into the architectural trade-offs involved in
every software project.

• Chapter 10, “To Production”, talks about taking code to production. It discusses•
the unpredictability of real users and environments, and outlines strategies for
building production-ready code.

Part 4: Professional Development and Growth
• Chapter 11, “Powering Up Your Productivity”, returns to your day-to-day work•

and the importance of building your personal toolkit.
• Chapter 12, “Learning to Learn”, covers the importance of continuous learning.•

The chapter offers strategies for keeping up with an ever-changing field.

xviii | Preface

• Chapter 13, “Mastering Soft Skills in the Tech World”, dives into the importance•
of soft skills to your career. It discusses collaborative communication, influence,
and stakeholder management.

• Chapter 14, “Career Management”, focuses on planning and navigating your•
software engineering career. It discusses finding what you’re passionate about,
exploring career paths, and being deliberate with skill acquisition. It also cov‐
ers building a professional network, acing interviews, and creating a work–life
balance.

• Chapter 15, “The AI-Powered Software Engineer”, touches on one of the most•
disruptive topics in the software space today: AI.

Although a dedicated chapter explores AI, its widespread impact on the software
development lifecycle means you’ll find discussions of AI throughout the book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xix

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/Fundamentals-of-Software-Engineering/book.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Fundamentals of Soft‐
ware Engineering by Nathaniel Schutta and Dan Vega (O’Reilly). Copyright 2026
Code Monkey LLC and Nathaniel Schutta, 978-1-098-14323-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

xx | Preface

https://github.com/Fundamentals-of-Software-Engineering/book
mailto:support@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
141 Stony Circle, Suite 195
Santa Rosa, CA 95401
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata and any additional informa‐
tion. You can access this page at https://oreil.ly/fundamentals-of-software.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
Based on the covers alone, books appear to be the solitary work of an author or two,
but in reality, they are deeply collaborative team efforts. From editors to reviewers
to understanding family members, books are the result of multiple hands. We are
incredibly grateful for the support, patience, and guidance of our wonderful editors
Rita, Virginia, Louise, and the rest of the O’Reilly team. You never lost faith and did
your level best to herd these two cats. Thank you so much!

We cannot say enough about our amazing technical reviewers; their time and atten‐
tion are a gift that we cannot soon repay. This book is far better for your comments,
questions, and real-world examples. Christopher M. Judd probably deserves an
author credit for his prescient insights, which directly impacted the direction of sev‐
eral chapters. We are beyond grateful for the time Dr. Venkat Subramaniam dedicated
to helping shape what you see here today. Thank you as well to Chris Kramer for his
advice on AI and Premanand Chandrasekaran for bringing his decades of experience
to these pages. Special thanks to James Erler for being not only an excellent student
but also a diligent reviewer. We’d also like to express our gratitude to Raju Gandhi,
Sruthi Sathyamoorthy, and Murugan Lakshmanan for their time and input.

We’d also like to thank the multitude of developers, architects, and other software
professionals we’ve worked with throughout our careers. It’d be impossible to name

Preface | xxi

mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/fundamentals-of-software
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

you all, but you’ve shaped us into the people we are today. We would like to thank
Jakub Pilimon, who was instrumental in shaping the proposal (over espresso) as well
as early chapters. Many of you may not know that much of this book began as an
online class on the O’Reilly platform. For those of you who attended those sessions,
thank you for helping us workshop this material!

Nate here. I would like to take a moment to thank my dear friend, co-conspirator,
golf partner, and now co-author, Dan Vega. Thank you for all your hard work, stories,
and ideas. You took the bare bones of some loosely grouped thoughts and shaped
them into some of my favorite chapters! Bet you’d take back that tweet, but I’m glad
we could make one of those goals a reality. Here’s hoping we can get a round of golf
scheduled soon! I’m glad the ladies were willing to share some of your valuable time
with me on this crazy project. Thank you, my friend!

I’d also like to thank my lovely family, Christine and Everett, for their patience and
understanding as I navigated the lengthy, often messy, process of writing another
book. Thank you for indulging these crazy adventures! I’m sorry for the late dinners
and missed family time, but I hope the resulting book makes up for it in some small
way. I won’t promise this will be the last time I take a run at being an author, but I will
take a break for the near term.

Dan here. I would like to thank my wonderful family, Jen, Isabella, and Juliana, for
their patience and support throughout this journey of writing my first book. This
would not have been possible without you. To my co-author, Nate, some people are
just meant to come into your life, and you are one of those people, my friend. I’m
thankful to have been coworkers, now co-authors, but most of all to be able to call
you a friend.

I would also like to thank the many people who have had a lasting impact on my
career, including John Kim, Phil Rodopoulos, Jason Delmore, David Wintrich, and
Tasha Isenberg. While there are too many to name here, please know that you all hold
a special place in my heart for helping me along my journey.

xxii | Preface

CHAPTER 1

Programmer to Engineer

Foundational skills, always tedious to learn, seem to be obsolete. And they might be, if there
was a shortcut to being an expert. But the path to expertise requires a grounding in facts.

—Ethan Mollick, from Co-Intelligence (Portfolio, 2024)

Being a software engineer requires a vast array of skills across a variety of areas.
Understanding what your customer is actually asking for. Translating those needs
into maintainable code. Writing tests to ensure that the software does what you
think it should do. Creating user interfaces that work. Architecture. Working with
data. Getting code to production. If you want to grow your career as a software
practitioner, you must focus on more than just writing code. You must embrace the
entire craft of engineering software.

To get from programmer to engineer, you need to master the fundamental skills
across the software development lifecycle (SDLC), work smart, acknowledge the
things you don’t know, and figure out how to close the gaps on those things. In this
chapter, you’ll get some tips and advice to get you started. You’ll learn about the
various paths to becoming an engineer as well as the key knowledge those approaches
often omit. Ultimately, this chapter will give you hard-earned advice that will help
you on your journey, smoothing the road from programmer to engineer.

But first, let’s talk about what it means to be a software engineer.

An Engineer by Any Other Name
Software is filled with overloaded (often repurposed) terms, leaving ample room
for ambiguity. Ask five software professionals to define a word, and you’ll likely
get at least five answers. Originally, “computers” referred to humans performing
calculations. Now, you’ll hear terms like programmer, coder, developer, and software
engineer. Are they synonyms?

1

1 Incidentally, these are the practitioners most likely to be replaced by agentic coding systems.

No, they’re not. Programmer or coder often implies someone focused on the singular
task of generating, well, code.1 In general, they may be highly skilled in a specific
language and/or framework but may not understand the full SDLC. While many
begin their career as a programmer or coder, the path to promotions requires you to
move beyond simply fixing bugs or implementing random features.

Developers typically have a better understanding of the larger picture of delivering
software. They usually know a few languages and frameworks and have experience
in multiple business domains. Often more seasoned than a programmer or coder,
they’ve started to explore more of the SDLC and may serve as mentors or pairs for
less experienced team members.

But moving into the realm of software engineering requires you bring engineering dis‐
cipline to the entire SDLC. As a software engineer, it is a given that you are proficient
in writing code, but you’re expected to think about scalability, reliability, efficiency,
and security. You’ve moved beyond the cursory understanding of algorithms and
design. You know not only the rules but also when they should be bent and even
when they must be broken. Software engineers are tasked with the most complex and
critical systems in production today.

Boot camps and universities typically focus on the mechanical aspects of writing
code, creating people well-versed in programming. They create developers or pro‐
grammers. That is the starting point for a career in software. To excel, to get promo‐
ted, to work on the most interesting projects, you must move beyond merely writing
code.

There is more to software than creating syntactically correct programs. The body
of knowledge required to be a successful software engineer today extends beyond
learning a programming language; you must also be well-versed in the full lifecycle of
a software product. This book aims to be your guide on that journey, to show you the
things you may not know you don’t know.

Fundamentals Matter
Fundamentals matter. Professional athletes spend most of their time working on
the things they learned when they first started playing their sport. Golfers focus on
stance, grip, and alignment. Basketball players focus on layups, passing, and free
throws. They don’t spend nearly as much time on the things that you see on the
highlight reels. While the fundamentals may not be as exciting, without a solid
foundation, they’d never have reached the pinnacle of their profession.

2 | Chapter 1: Programmer to Engineer

Like every profession, software also has essential underlying principles. Take time
to master them. You will spend the majority of your career working with existing
code; learning how to read code someone else wrote while quickly understanding a
new codebase is vital to your success. Unfamiliar codebases can be very intimidating;
however, you need to be comfortable with ambiguity. Even after many months, you
won’t understand every nuance of a codebase, and you don’t need to comprehend
everything before you make changes to the code.

While you probably know the basics of writing code, you may not be as familiar with
how to write code that simplifies things for the person who comes after you. Technol‐
ogy doesn’t stand still either; you must be able to learn new things. Many program‐
mers obsess about the latest technology or the newest language feature while ignoring
the evergreen soft skills that will help them with that next promotion. Fundamentals
may not generate as much buzz as the newest fad, but they’re the difference between
career stagnation and opportunities with greater scope and responsibilities.

The Many Paths to Becoming a Software Engineer
There are a number of paths to becoming a software engineer. Some people get an
undergraduate computer science degree, while others attend boot camps, and still
others are self-taught. Many have degrees in related fields like electrical engineering
and then migrate to writing code. Honestly, it doesn’t matter how you learned to
build software.

Some people may argue their path is “better,” or “faster,” or “cheaper.” Every approach
has pros and cons. Teaching yourself doesn’t require you to pay tuition fees and,
depending on your aptitude, could take a matter of weeks instead of years. The inter‐
net has no shortage of videos and tutorials; however it can be daunting to navigate
and requires you to be highly self-motivated. Being self-taught can also involve a fair
amount of trial and error as you work your way through material of differing quality
as well.

Fundamentally, the goals of boot camps and degree programs are different. Under‐
graduate computer science programs are designed to prepare you to enter a graduate
school computer science program. They focus on algorithms, language design, com‐
piler theory, operating systems, and related topics. However, they don’t necessarily
prepare you for working day in and day out on real-world applications. The projects
are small and rarely span more than a few months and are nearly always starting from
scratch, free of the baggage of existing applications.

Boot camps cram very specific information in a short timeframe, often a matter of
weeks. They tend to focus more on the language of the day, frameworks, etc. One
could argue this approach is more practical, but you could also claim the knowledge
is more transitory in nature as languages and frameworks’ popularity ebbs and flows.

The Many Paths to Becoming a Software Engineer | 3

2 Like how to use a debugger or familiarity with modern editors.

Boot camps are sometimes housed at universities and may even be taught by the same
people who teach undergraduate computer science courses, so there may not even be
a difference when it comes to the teacher!

Each of these approaches involves different time commitments as well. Boot camps
are often in the neighborhood of 600 hours over several weeks, and you have near
constant access to someone who can get you through a challenging spot. An asso‐
ciate’s degree is typically 850 hours spread out over one or two years, with a bachelor’s
program clocking in at around 1,400 hours over four or five years.

Some claim an undergraduate degree puts you at an initial advantage, though it tends
to even out over time. Of course, traditional computer science programs as you know
them today are relatively new, but it wasn’t that long ago that most programmers were
mathematicians by training.

Early computer science degree programs were often very heavily
weighted toward math, with some essentially being math degrees
with a little bit of computer science thrown in. In fact, many of the
professors had degrees in mathematics. To this day, some people
still think math aptitude is a requirement to be a successful soft‐
ware engineer. It isn’t. Coding is about communication, and most
of your job is communicating with other developers, not the com‐
puter. Language aptitude is far more important than mathematical
skill. Unsurprisingly, writing code is about language, not numbers,
something you will read about in Chapter 2.

Ultimately, success in the software industry is about problem-solving, tinkering, and
creativity. If you have the mindset, you have it. Period. It doesn’t matter how you
developed your skills, and you don’t need to apologize for your path.

What You Were Taught Versus What You Need to Know
Regardless of your learning path, you were taught how to write code. You learned a
language or two, you learned about foo and bar and other generic variable names.
You learned a bit about debugging, efficient algorithm design, and other related
topics. However, a vast number of important things aren’t covered in typical course
curricula or mentioned in self-led learning. Why? Usually, because of a lack of time,
space, or the assumption that the knowledge is a given.2

What these courses and learning materials leave out can critically impact your long-
term success. These missed subjects include how to work with others, how to read

4 | Chapter 1: Programmer to Engineer

https://oreil.ly/qCWAx
https://oreil.ly/qCWAx

3 Though it always pays to ask why something is the way it is, don’t be surprised when your colleagues’ guess is
as good as yours.

code, how to write readable code, and how to work effectively with legacy code. We’ll
cover these topics, and more, throughout the rest of the book.

Most developers learn on greenfield projects, those that begin with a blank slate
and none of the technical debt of existing codebases. Given the time constraints of
semesters and boot-camp curriculum, in most educational situations, you’re starting
from scratch to practice a specific skill or reinforce a concept. The projects are often
very small and isolated, and you often code alone. While that works in a teaching
environment, it isn’t representative of the real world.

As a practicing software engineer, you will spend most of your time working with
existing, legacy, or heritage applications and all the baggage of decisions made before
your time.3 And when you have the luxury of a new codebase, even that will accumu‐
late technical debt in the months ahead. Software projects today consist of hundreds
of thousands or millions of lines of code by teams of people across the globe. You will
work with people constantly, be it with your teammates or your customers. Your code
won’t just exist in a repository for someone to grade; it will be in production, where
real people will rely on it to function as designed, delivering business value. To put it
mildly, your first exposure to the reality of software can be a shock.

In school, most projects are short—a few months, maybe less. However, in the real
world, projects don’t ever really end, though they might be abandoned someday,
like art. Code spends most of its life in the maintenance phase, which is another
way of saying software is full of products with ongoing investments as opposed to
discrete projects that have a well-defined start and end. So long as a software product
continues to deliver business value, there will be continued investment.

Embrace the Lazy Programmer Ethos
The lazy programmer ethos isn’t about spending your day watching cat videos on
your favorite social media site, and it’s not a methodology to shirk your work. The
lazy programmer ethos is a philosophy focused on efficiency. Many new software engi‐
neers instinctively rush to solutioning; they immediately start writing code without
giving themselves a beat to consider the problem domain. Being strategically lazy
gives you time to think, which ultimately helps you be more productive and create
better solutions.

Take the time it takes so it takes less time.
—Pat Parelli, renowned horsemanship trainer (attributed)

Embrace the Lazy Programmer Ethos | 5

4 In a nutshell, big O notation describes how some algorithms are more efficient than others.

Beware the brute-force approach. You may start there, but you should iterate on your
design. It can be helpful to understand things like big O notation.4 For example, you
may have coded a bubble sort routine, but also learned it is not the most efficient
sorting mechanism. As an engineer, you should consider the best case, worst case,
and average case, choosing appropriately from there.

Odds are you’re not, in fact, the first person to solve a particular problem. Spend
some time searching for an existing solution or library. In many cases, 10 minutes of
searching could save you days of work. If it feels like there should be an easier way,
there probably is one. We’ll talk more about this in of “Don’t Reinvent the Wheel” on
page 38.

The Capitalization Assignment
Nate here. Early in my career, I was given a very simple task: capitalize the billing
addresses in a database to ensure consistency for the post office when bills were
printed and mailed. My tech lead walked me through exactly what to do and where to
do it, showing me the routine to modify, as well as the function (written by someone
long gone) I should call to capitalize the billing address. Exploring the capitalization
function, it struck me as overly complicated. In my mind, it should’ve taken one
argument: the string to capitalize. But this function didn’t have one argument. It had
more than a dozen. It would take me hours to understand this homegrown thing.

It seemed to me that this was the kind of problem that the programming language
should solve for us. I did a little searching and, sure enough, the language had a
built-in capitalization function, which I used. Fast-forward to the following week to
our team meeting: as we’re going around the room discussing what we’re working
on, I mentioned the capitalization assignment. One of my colleagues looked in my
direction and said, “Oh, did you use Joe’s capitalization function?” I said no.

Every head in that room turned. It was a record scratch moment. Even though I
was the least experienced developer in that room, no one else knew the language
had a baked-in capitalization function. Maybe the language feature was added after
the previous developer wrote the function; I don’t know. The point is, if you think
there should be an easier way, take time to look for it. Even a few hours investigating
options and alternative solutions could save you days or weeks of effort.

6 | Chapter 1: Programmer to Engineer

The Value of a Fresh Set of Eyes
The most dangerous phrase in the language is, “We’ve always done it this way.”

—Grace Hopper, computer pioneer and naval officer

Although you may not have as many years and lines of code under your belt as your
more senior colleagues, remember that you have a valuable trait as a new developer:
a fresh set of eyes. New people—whether to the codebase, the team, or the software
industry—often see challenges with an unbiased perspective, unencumbered by his‐
torical decisions that have outlived their usefulness. This fresh outlook can lead to
innovative solutions, identify inefficiencies, or challenge long-standing assumptions.
Newcomers can also bring enthusiasm to a flagging project, leading to renewed
energy and engagement on the team.

That’s How We’ve Always Done It
Nate here. Years ago, I helped a client with a performance issue regarding how an
application processed widgets in an overnight batch job. When the company started,
it had only a few customers with a few boxes of widgets, which were easily completed
overnight. As my client became more successful, they had more customers, and those
customers had more widgets. By the time I worked with them, their overnight batch
run wasn’t finishing overnight anymore.

I sat down with them and reviewed the architecture. After a couple of hours, I asked
a simple question: “Does the processing of widget A have anything to do with the
processing of widget B?” No, there is some aggregation done at the end, but the
individual widgets are independent. I made a simple proposal: could you just process
those widgets in parallel? Deploy a set of workers that grab the next widget, process
them, and put the results in a queue to be aggregated.

There was a pregnant pause. Yes. Yes, that would work. While I certainly wanted my
boss to think I had some special insight, I really didn’t. I just wasn’t bound by the
most dangerous phrase you can utter in an organization: “That’s how we’ve always
done it.” Just because we’ve always done it that way doesn’t mean it’s the right way,
and it certainly doesn’t mean it’s the best way. The approach someone took years ago
could have been an accident or just the most expedient option. Chances are, there’s a
better way. Don’t be afraid to ask questions or to look for another approach.

Never underestimate the value of a different perspective and don’t be afraid to ask
why things are the way they are. If you encounter something that seems odd, out
of place, or just doesn’t make sense, ask a teammate to explain it. In some cases, an
unconventional approach will have valid reasons, but more often than not, people
have just copied what was there when they arrived. As long as your questions come

The Value of a Fresh Set of Eyes | 7

from a desire to learn and not as an attempt to embarrass developers past (and
present), most software engineers will engage positively with the discussion.

Don’t Solution Too Quickly
When you encounter a problem, resist the urge to jump to a solution too quickly.
Instead, dedicate time to understand the root cause of the problem. Give yourself
some space to think. We don’t get enough opportunities to just think uninterrupted.
Odds are your work calendar is full of meetings, and your corporate messaging tool
interrupts you multiple times a day. Between a daily standup meeting, your product
owner, your manager, your team lead, and your architect, you’re probably giving a
status update every couple of hours. Your to-do list isn’t shrinking, and the testers
found another raft of tricky bugs. Despite all of the pressure on your time, it is vital
that you take time to think about solutions and not jump to a quick fix.

Although quick fixes resolve your immediate problems, they can cause more issues in
the long run. Jumping to a stopgap solution often creates more challenges. To address
this, there has been a movement to test for problems earlier in the development
cycle—in other words, “shifting left” or earlier on the project timeline. Bugs found
in production are by far the most expensive to fix. Customers have been impacted,
which could cost your company money. Data might be corrupted, which may be diffi‐
cult to reconcile. Fixing the underlying issue often spans multiple routines requiring
complicated refactoring and likely coordination with other teams.

Shifting left isn’t just about fixing problems; it’s ultimately about moving everything
of value earlier in the process. Pair programming moves code reviews from some‐
thing that occurred days (or weeks) after the work was finished to a real-time activity.
Making testing an ongoing proposition simplifies solving problems by identifying
them closer to when they are created. Continuous integration eases the pain of
conflicting code changes by merging early and often and, when paired with contin‐
uous delivery, ensures that any variability in environments is discovered before it
impacts a customer. Building security into the entire development process reduces
the likelihood of catastrophic vulnerabilities.

It is much cheaper to find those issues in testing. When bugs are found closer to when
the code was written, the work is top of mind for the development team, saving them
time deciphering the underlying code. Test datastores can be restored with minimal
fuss. While the issue may be complex to solve, there may be less time pressure to
fix it fast since no customers are impacted. Thus was born quality assurance (QA)
testing and QA engineers. It turns out it’s even cheaper if you find issues during
development, which partially undergirds the drive to test-driven development (see
Chapter 5).

8 | Chapter 1: Programmer to Engineer

5 A glossary can be one of the most impactful, and invaluable, project artifacts. Consider creating one if your
project doesn’t have one.

But what if you never wrote the bug in the first place? What if it was solved in design?

Most of the big problems we have with software are problems of misconception. We do not
have a good idea of what we are doing before we do it. And then, go, go, go, go and we do
everything.

—Rich Hickey, Clojure Conj 2010 keynote

Problems of misconception are endemic in software, and misunderstandings are
a common challenge in software development. Terms like “client” and “customer”
might seem interchangeable, until your product owner says that approach will work
for a client but not a customer. They are similar but distinct things, and the nuance
matters. No amount of testing, no type system will ever find a problem of misconcep‐
tion. A technical solution alone cannot resolve these problems; they stem from a
fundamental difference in understanding.5

Rather than work around a problem created by a misunderstanding, try to avoid it in
the first place. How? Focus on solving problems. Do you know what problem your
application solves? Do you understand the context and the constraints? What are the
related problems? Take the time to think through the problem space.

Developers often tend toward overengineering a solution. While not always an issue,
there are many ways to solve a problem. Never lose sight of the problem you’re trying
to solve and don’t be too quick to jump to solutions. What is your customer asking
for; what is their actual need? With the scars of experience, you never want to paint
yourself into a corner, and it is easy to imagine everything you might need. But you
also don’t want to build a bunch of code you must throw away later. Or worse, keep
around unused.

It can be challenging to achieve, but drive to the “why,” or the root cause behind
the customer’s request (see “The Five Whys” sidebar). Ask questions. Talk to your
customers; talk to your product owners. In many cases, a customer will ask for
one thing but need something else because they can’t see it. They are stuck with
“That’s how we’ve always done it.” Sometimes your customers will come to you with
a very specific solution—for example, “We need to be able to export this table into a
spreadsheet.” It is tempting to immediately build the feature, but a seasoned engineer
asks what the underlying need is first. There is often a disconnect between what your
customers ask for and what solves their business problem.

Don’t Solution Too Quickly | 9

6 Which explains why so many applications seem to devolve to email and spreadsheets.

The Five Whys
Originating as part of the Toyota Production System, the Five Whys is a problem-
solving method that strives to discover the root cause of an issue by repeating the
question “Why?” five times, each time directing the next “why” to address the previ‐
ous answer to “Why?” Doing so allows you to dig beneath the surface-level symptom
or issue to unearth the fundamental problem. For example:

• Problem: The robot stopped working.•
— Why? The circuit overloaded, causing a fuse to blow.—
— Why? There was insufficient lubrication on the bearings, so they locked up.—
— Why? The oil pump did not circulate enough oil.—
— Why? The pump intake is clogged with metal shavings.—
— Why? There is no filter on the pump.—

Let’s walk through a software example. Nate here. Years ago, I ran into a web page
where all the closing tags were on the following line. While the interpreter didn’t care,
it was visually jarring to see closing tags starting every line. I asked a colleague why
someone had used this approach. He responded because of a bug in an old version
of the web server we ran on. OK, why do we still support that version? Oh, we don’t.
OK, why hasn’t that bug been fixed? Oh, it has. OK, then why am I still seeing this
pattern? Well. it was probably an old web page. I told him it had been created a few
days prior. At this point, we agreed we should inform developers that they should
stop following this pattern, and we added a cleanup task to rework the pages that still
used the outdated approach.

In many cases, the primary source of requirements will be a super user of the old
system. While their knowledge can be invaluable, it is also colored by what they
currently have.6 In some cases, they won’t understand the underlying why of a given
feature and may assume it is the only way a given problem can be solved. In other
words, they may (consciously or not) lead you to a copy of the old system in a new
technology.

It is vital to have a broad perspective. Pick the right tool for the job to solve the
problem the customer actually has. Many engineers are overly optimistic. Be realistic;
be ruthlessly pragmatic. Scalability matters, however; not every application can be a
third of internet traffic.

10 | Chapter 1: Programmer to Engineer

7 Or more commonly, “Do unto others as you would have them do unto you.”
8 Again, every developer has stared at some code wondering what fool wrote this only to slowly realize they

actually were the fool that wrote said code.
9 With the exception of certain, very specialized programming examples. You’ll know it when you encounter it.

Prediction is very difficult, especially if it’s about the future.
—Danish proverb

Apply the Golden Rule to Software
Odds are, early in your educational career, you learned about the Golden Rule, which
says you should treat others the way you would like to be treated.7 This principle is
embraced across continents and dates back thousands of years as a basic tenet of how
to live in civilized society. But it turns out, it isn’t just a pithy ethical principle. You
can (and should!) apply the same standard to your code.

Think about the developer who will follow in your footsteps. And again, that devel‐
oper may in fact be you!8 What would your future self like to see in the codebase?
What would make life better for the next developer? Code is ultimately a communi‐
cation mechanism. Yes, it is a way to instruct the computer to perform some task, but
that pales in importance to its ability to speak to other developers. Write code that is
meant to be read. Optimize for the human, not the compiler.9

If you want to stand apart from the crowd, follow the Golden Rule. Write clean code
so those who follow you can understand and maintain it. Update the documentation
to save others from spinning their wheels following an outdated approach. Create
clear diagrams that clarify instead of confuse. Make time to answer questions and
help others. Put it all together, and you’ll be in demand; people will want you on their
teams because you make everyone around you better.

Wrapping Up
A career as a software engineer is about far more than staring at a screen and spewing
out code. Being more than just a coder or programmer requires you to do more
than just produce syntactically correct code; it demands a well-rounded skill set.
It doesn’t matter where or how you learned the trade, be it through a computer
science undergraduate program, a boot camp, or via materials you found online.
What matters is how you package those skills together.

What you were taught isn’t all you need to know to ensure a successful career. This
chapter shared advice on how to avoid some of the more common pitfalls, such as
solutioning too quickly, overengineering solutions, and the dangers of brute-force
approaches. The earlier you learn these lessons, the better.

Wrapping Up | 11

https://oreil.ly/L-bQw

Putting It into Practice
Finding mentors can be incredibly valuable early in your career. Look around your
organization and politely ask a more senior software engineer if you could set up
some time to chat over a cup of coffee, your treat. Talk to them about their experien‐
ces, what they’ve learned, what they wish they had learned earlier, what has made
them more valuable on a team, what they think you should learn, and so on. You can
also reach out to event speakers and authors. Many of them are happy to help those
who seek them out.

The next time you’re assigned a bug or a new feature, pause before immediately
jumping to the code. Ensure that you understand the problem you’re trying to solve.
Spend 30 minutes researching. Is there a ready-made solution you could leverage?
Try sketching out or modeling concepts in your problem domain along with possible
solutions. Consider discussing your options with an experienced coworker.

Look through the table of contents of this book. What topic areas do you feel you’re
strongest at? What could you improve on? Pick a topic area you’d like to learn more
about and make a plan to do so. Act on the “Putting It into Practice” sections and
read the additional resources of those chapters.

Your framework, library, or cloud provider may abstract away certain things from
your daily workload. For example, leveraging Spring Data will save you from writing
countless SQL statements. While you absolutely should embrace the productivity of
these coarser-grained abstractions, you should understand the layer of abstraction
beneath the one you are using. Take time to pop the hood and look around under‐
neath; the knowledge you gain will help you immensely, especially when something
doesn’t quite work as planned.

Additional Resources
• The Pragmatic Programmer: Your Journey to Mastery, 20th Anniversary Edition,•

by Andrew Hunt and David Thomas (Addison-Wesley Professional, 2019)
• The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition,•

by Fred Brooks (Addison-Wesley, 1995)
• Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma•

et al. (Addison-Wesley, 1994)
• Practices of an Agile Developer by Venkat Subramaniam and Andy Hunt (The•

Pragmatic Bookshelf, 2006)
• The Productive Programmer by Neal Ford (O’Reilly Media, 2008)•
• Software Engineering at Google by Hyrum Wright et al. (O’Reilly Media, 2020)•
• The Staff Engineer’s Path by Tanya Reilly (O’Reilly Media, 2022)•

12 | Chapter 1: Programmer to Engineer

https://learning.oreilly.com/library/view/the-pragmatic-programmer/9780135956977
https://learning.oreilly.com/library/view/the-pragmatic-programmer/9780135956977
https://learning.oreilly.com/library/view/mythical-man-month-the/0201835959/
https://learning.oreilly.com/library/view/mythical-man-month-the/0201835959/
https://learning.oreilly.com/library/view/design-patterns-elements/0201633612
https://learning.oreilly.com/library/view/design-patterns-elements/0201633612
https://learning.oreilly.com/library/view/practices-of-an/9781680500325
https://learning.oreilly.com/library/view/practices-of-an/9781680500325
https://learning.oreilly.com/library/view/the-productive-programmer/9780596519780
https://learning.oreilly.com/library/view/software-engineering-at/9781492082781
https://learning.oreilly.com/library/view/the-staff-engineers/9781098118723

• “No Silver Bullet: Essence and Accidents of Software Engineering” by Frederick•
P. Brooks Jr. (The University of North Carolina at Chapel Hill Department of
Computer Science, September 1986)

• Code Complete, 2nd Edition, by Steve McConnell (Cisco Press, 2004)•

Additional Resources | 13

https://www.cs.unc.edu/techreports/86-020.pdf
https://www.cs.unc.edu/techreports/86-020.pdf
https://www.cs.unc.edu/techreports/86-020.pdf
https://www.oreilly.com/library/view/code-complete-2nd/0735619670

1 Sometimes known as vibe coding.

CHAPTER 2

Reading Code

Code is read much more often than it is written.
—Guido van Rossum, creator of Python

Despite the way coding is taught, software engineers spend far more time reading
code than writing it. In most beginner coding courses, you jump immediately into
writing code, focusing on core language concepts and idioms without acknowledging
that you’d never learn Polish or Portuguese in a similar manner. And while most
academic projects start from a blank slate, practicing developers are almost always
working within the confines of code that has taken years to arrive at its current state,
something you can explore in depth in Chapter 6.

With the advent of agentic or chat-oriented programming,1 reading code will become
even more important for software engineers. While it may not be your first choice,
you will work with code you did not write. Take heart, there are techniques to help
you orient yourself when you encounter unfamiliar code. This chapter will go over
why reading code can be challenging, and we’ll give some tips to make the process
simpler.

The Challenge of Working with Existing Code
Regardless of how you learned to code, you probably spent much of your time in
the blissful space known as greenfield development, where you experience the job of
starting from scratch, unencumbered by the baggage of prior work. Yet, in your pro‐
fessional life, you’ve likely had vanishingly few opportunities to build an application
from a blank editor. As a practicing software engineer, much of your time will be

15

2 Or as Neal Ford once said: “Today’s best practice is tomorrow’s anti-pattern.”

spent on brownfield development, working within the limits of an existing codebase
dealing day in and day out with legacy code.

Legacy Code by Any Other Name…
Reading old code is often a task most developers prefer to avoid. We often use the
term legacy code to describe it, and this term is rarely meant as a compliment. There
are any number of definitions of legacy code: code that was written yesterday, code
without adequate test coverage or too much, or just code you didn’t write.

However, you shouldn’t disparage the success of an existing application. If a product
has delivered business value for years and has justified continued investment, that is
worthy of a pat on the back. We prefer a more positive frame, such as heritage code or
existing code. For a more in-depth discussion of the topic, see Chapter 6.

When asked to solve a problem that has to do with existing code, you actually have
four problems to solve.

First and foremost, you need to understand the business problem you are trying
to solve. And the domains that developers work in are very demanding! Software
is eating the world, meaning software engineers are tasked with increasingly more
complex business challenges; much of the proverbial low-hanging fruit has already
been picked.

Second, you must see the problem through the eyes of the developer who came
before you, and that is often the most challenging aspect of software development.
Different developers solve problems in different ways; everyone has their habits and
tendencies. Perhaps your predecessor had a predilection for a more functional style of
programming that you aren’t as familiar with. Maybe they used a pattern that is new
to you or leveraged a library that you haven’t used before. Whether you agree with the
approach taken or not, there are many ways to solve a given problem.

Third, it’s possible the existing code doesn’t have the right level of abstraction. Per‐
haps it is modeled in a way that is too generic or fails to capture the proper nuance
of the domain. Maybe the previous developer conflated two concepts or forced a
favored pattern when another would have been more appropriate. Regardless, a larger
refactoring may be required to make the code more understandable.

Fourth, much like an archaeologist, you are often peeling back layer after layer
of technical debt, old technologies and approaches that may now be considered
anti-patterns. Over time, languages and best practices evolve,2 and you will have to
see the code through the lens of when it was written. You may even be able to “carbon

16 | Chapter 2: Reading Code

https://oreil.ly/lY6A9
https://oreil.ly/qFfTu

3 Michael I. Norton, Daniel Mochon, and Dan Ariely, “The ‘IKEA Effect’: When Labor Leads to Love,” HBS
Working Paper, No. 11-091 (2011), https://oreil.ly/zuETL.

date” the code simply by noticing what frameworks or language features are (or are
not) used! Frameworks like Spring have evolved over the course of many years, often
supporting multiple approaches to a given problem. What is considered the “right”
way to do something changes over time.

It also doesn’t help that you almost always have to deal with patches on top of patches.
Maybe the last developer didn’t have a full understanding of the problem, or they
weren’t up to speed on some new language feature that could greatly simplify the job
at hand. Maybe the last developer had a premium license to an AI coding assistant
and generated 20,000 lines of code per day. Add in the typical demands of fix-it-fast,
and you could spend an afternoon deciphering a single method.

Working with existing code presents technical challenges, making it understandable
why it’s often one of a developer’s least favorite tasks. However, the aversion extends
beyond technical issues to include cognitive biases as well.

Cognitive Biases
When reading existing code, you might compare it unfavorably to your own work.
Of course, you don’t write bad code, do you? On more than one occasion, we, your
humble authors, have struggled with some code, uttering less polite variations of
“What idiot wrote this?” only to discover that it was written by none other than
ourselves. And frankly, if you read code you wrote a few years ago, you should be a
little disappointed—that’s a sign of growth; you know more today than you did then.
That is a good thing!

You also have a couple of cognitive biases working against you when you work
with existing code. First is the IKEA effect, which is when you place a higher value
on things you create. One study found people would pay 63% more for a product
they successfully assembled themselves versus the identical product put together by
someone else.3 If you’ve ever gone to a pick-your-own apple orchard, you are often
charged a premium to, well, do some of the work yourself. You’ll do it, however,
for the experience and the chance to select the very best fruit right off the trees. In
software, developers often have strong opinions about the “right” way to do things
and tend to prefer their own code and approach.

Additionally, there is the mere-exposure effect: you tend to prefer the things you
are already familiar with. This leads to the typical dogmatism many developers have
around programming languages. Developers tend to think time began with whatever
language they learned first. When Java first introduced Lambda expressions, some‐
one on a language-specific mailing list asked why Java needed these “new-fangled

Cognitive Biases | 17

https://oreil.ly/zuETL

4 Said documentation may be out-of-date, trust but verify.
5 To learn more about ADRs, see Chapter 3 of Head First Software Architecture by Raju Gandhi et al. (O’Reilly,

2024)

Lambdas,” not realizing Lambdas are not a new concept in programming languages
and were part of the original plan for Java itself!

Developers can be provincial around their preferred tools, which is something Paul
Graham touches on in his essay “Beating the Averages”. Graham says programming
languages exist on a power continuum, but you often can’t recognize why a language
is more powerful than another. To demonstrate his point, he introduced the hypo‐
thetical Blub language and a productive Blub programmer. When the Blub program‐
mer looks down the power continuum, all they see are languages that lack features
they use every day, and they can’t understand why anyone would choose such an
inferior tool. When they look up the power continuum, all they see are a bunch of
weird features they don’t have in Blub, and they can’t imagine why anyone would
need those to be productive since they aren’t in Blub.

As you work with code, as well as with your fellow developers, keep these biases
in mind. If you aren’t sure why a colleague is so adamant about a certain tool or
approach, ask if it might be an instance of the IKEA effect or the Blub paradox.
Of course, you should also reflect on your own assumptions to ensure you aren’t
exhibiting one of the predispositions yourself.

Approaching Unfamiliar Code
As much as you may wish you could spend all your work hours focused on crafting
new code, you will encounter existing codebases throughout your career. How can
you get up to speed on a new project without losing your mind? First, start with your
teammates. A basic project overview should be part of any onboarding experience.

Spend some time with the documentation. Many projects have a README file that
will help you get your bearings, while others have wikis or websites designed to
give you a concise overview.4 Projects may also have architecture decision records
(ADRs).5 ADRs provide invaluable context and the all-important “why” that often
vanishes in the rush of the latest defect or outage. You could learn more in a few
minutes with the docs than in hours with the debugger. Reading the project’s coding
standards will prepare you for the patterns you will encounter as you wade through
the codebase.

18 | Chapter 2: Reading Code

https://learning.oreilly.com/library/view/head-first-software/9781098134341/ch03.html
https://oreil.ly/1MAVi

If the documentation for the code you’re reading is out-of-date, update it as you learn;
if it is nonexistent, consider building your own as you go. Apply the Golden Rule
(discussed in Chapter 1). Creating the documentation will help you learn the project,
and it will also serve the developers who come after you.

There are any number of things you could document. As you read, write your
documentation to favor lightweight, low-ceremony approaches seeking to answer
common questions such as these:

• What does your service do?•
• How does it work?•
• What does it depend on?•
• How do you run the application?•

Wait, we can hear you now: documentation may be (and often is) out of sync with
the code. But believe us, that doesn’t have to be the case. Documentation can evolve
with the code. The best way to ensure that it does is to use tests as documentation.
Tests written with behavior-driven styles, if written properly, can produce executable
documentation, a topic discussed at greater length in Chapter 5.

Metrics Can Mislead
Code coverage (how much of the codebase is executed when the tests are run) can be
a useful metric on a project. However, there are no silver bullets in software, and it is
possible to fail even with 100% code coverage. A friend of ours joined a project that
was having regressions with every release. As he was getting up to speed on the code,
he asked the tech lead if there were any tests. The tech lead proudly said, “Yes, we
have right around 92% code coverage.” Impressed, our friend was somewhat surprised
they had so many regressions, but he continued his analysis.

Looking at the test code, he found some startling patterns. At first, he thought these
were isolated, but eventually he discovered they were endemic to the codebase. He
went back to the tech lead and said, “I couldn’t help but notice your tests don’t have
any asserts.” The tech lead responded by repeating the code coverage statistic.

The meta lesson is: be wary of any metric, because they can mislead. But don’t
lose sight of the value and purpose of a practice. If it is just about ceremony, you
are unlikely to get the benefit you expect. Project teams should regularly challenge
themselves and their approach; don’t be afraid to change course when warranted.

Approaching Unfamiliar Code | 19

https://oreil.ly/QWpz_

6 Of course, not all applications have such cleanly named files; you may have to make ample use of your favorite
search tools.

Software Archeology
Once you’ve surveyed the team and familiarized yourself with any existing documen‐
tation, it is time to open your editor of choice and practice some software archeology.
Roll up your sleeves and root around in the codebase! To paraphrase Sir Issac
Newton, look for smoother pebbles and prettier shells. Look at the code structure—
how is the code organized? Some languages have first-class constructs for packaging
code; others rely on conventions. How does the code fit together? Is this a monolith
or a distributed architecture with dozens or hundreds of services? What domain
concepts are expressed in the code? Read the tests—what do they tell you about the
functionality? With that information, do you understand the intent of this class?

If the intent isn’t clear, dig further. Modern editors can make it trivially simple to see
who calls a given function, allowing you to work your way backward. Callers should
help you determine what a given class does and how it is used. Your backtracking
may take you all the way to a service endpoint like an HTTP call, but eventually you
should find the connection between a given user action and the code.

Once you have your bearings, run the application. What does it do? Find a specific
element, be it something on a user interface or a parameter to a service call, and map
that back to the code. Look at the issue list; see if focusing on a single feature or bug
allows you to follow the coding path. Hunt for a landmark; if you know a given action
results in an update to the datastore, find that in the code. Use your debugger to walk
through the code—did it work the way you anticipated? Did you end up on a vastly
different code path? Ultimately, you are building a mental model of the code; you are
loading the application into your brain.

What might this look like in practice? Let’s use the Spring PetClinic app as an exam‐
ple. Even if you aren’t an expert in Java or Spring, navigating the app should be fairly
straightforward, plus it has excellent documentation. Once you’ve cloned and run the
application, you’ll see that it has the ability to search for owners (see Figure 2-1). If
you explore the owner templates, you’ll see one helpfully named findOwners.html,6

which references an /owners endpoint. Searching the project for /owners returns
ample results, but a little intuition might lead you to the @GetMapping("/owners")
annotation on the processFindForm method in the OwnerController file.

20 | Chapter 2: Reading Code

https://oreil.ly/1q4UJ

Figure 2-1. Spring PetClinic Find Owners page

Put in a breakpoint, execute the search from the browser, and see what happens! Sure
enough, your debugger should look something like Figure 2-2. If your intuition was
wrong? Repeat the previous steps. Eventually, you will make the connection, allowing
you to walk your way through the code and build your understanding as you go.

Figure 2-2. A breakpoint in OwnerController allows you to inspect the current state of
the application

Use your integrated development environment (IDE) to navigate the code. Many
IDEs make it easy to jump to methods in other classes (see Figure 2-3) as you work
your way through the code. Consider collapsing all the method bodies to give you a
smaller surface area to peruse (see Figure 2-4). Alternatively, many IDEs can show
you an outline of a given class, providing a higher-level view of the code. Read the
method names. What does that tell you about the purpose of the module?

Software Archeology | 21

Figure 2-3. Use your IDE to help you quickly navigate code

Figure 2-4. Collapse methods to orient yourself in the codebase

22 | Chapter 2: Reading Code

Do not assume the code does what the name implies. As code evolves, variable and
method names may no longer reflect reality. Don’t rush; confirm your hunches. Resist
the temptation to cut corners and potentially create more work later on. In other
words, take the time it takes, so it takes less time.

Exceptions can mislead. More than once, we have encountered exceptions that made
incorrect assumptions about possible error conditions. Pay extra care to situations
that catch very high-level exceptions; while expedient for the author, they tend to
obfuscate the possible problems.

Your IDE may also include tools or plug-ins that help you analyze the code. For
example, IntelliJ IDEA can quickly show you dependencies, giving you a sense of how
the code works together (see Figure 2-5). Modern developer tools are powerful; let
them help you understand the code.

Figure 2-5. Dependencies in the owner package of the Spring PetClinic application

Use your source code management tool as well (see Figure 2-6). Many modern tools
allow you to quickly move about your project. Look at the change history of the
files. What changes frequently? What do the commit logs tell you about the updates?
Start with the most frequently modified classes, something Git can show you with a
command like this:

git log -pretty=format: --since="1 year ago" --name-only - "*.java"
| sort | uniq -c | sort -rg | head -10

Software Archeology | 23

7 For example, ⌥⇧⌘U (macOS) / Ctrl-Alt-Shift-U (Windows/Linux) in IntelliJ IDEA will generate a UML
diagram.

You can also use tools like git blame to visualize modifications to the code. If you’ve
just joined a new project, who on your team made the most recent modification or
the most frequent changes? Your IDE can also show you the change history if you
don’t feel like using the command line. However you choose to investigate the code,
don’t be afraid to reach out to your teammates with questions!

Figure 2-6. Modern editors can show you who edited the code and when they did so

While purpose-built project models often fall out of sync with the code as the appli‐
cation evolves, you can always extract diagrams from the codebase. Some IDEs will
do this with a simple key combination (see Figure 2-7, for example),7 but you can also
use tools like Umbrello, Doxygen, or Structurizr to create a visual representation of
the code. Consider adding a step to your build pipeline that automatically generates
fresh diagrams whenever code is committed.

24 | Chapter 2: Reading Code

Figure 2-7. Class diagrams extracted from the code, giving you a high-level overview of
the structure of your classes

Effective Code-Reading Strategies
Now that you have a grasp on the project’s purpose and a good lay of the land, it’s
time to start understanding the code. In this section, you will learn some effective
strategies for reading code, such as leveraging IDE features and analyzing tests for
insight.

Leveraging IDE Features
Your IDE is so much more than a text editor for writing code. IDEs have a wide
range of features that can help you write, debug, and navigate codebases with ease.
When working with existing code, your IDE becomes even more valuable as a tool
for exploration and comprehension.

Continuous learning approach
IDEs are so powerful these days that it would be almost impossible to figure out every
little trick they have. Instead, you should focus on learning something new every
week. For example, JetBrains IntelliJ IDEA is a favorite among Java developers, and it
has a really nice feature called the Tip of the Day. When you open up the IDE, there is
a tip to help you get acquainted with the features.

Effective Code-Reading Strategies | 25

These tips cover everything from shortcuts, tools, refactoring, debugging, and plug-
ins. Learning the shortcuts of your IDE will make you a much more productive
developer, and this is the first place you should start. You will find similar features in
a lot of the IDEs on the market today, so check the documentation and start learning.

If you happen to miss the tip of the day in IntelliJ, you can always find it by choosing
Help → Tip of the day. In the tip shown in Figure 2-8, IntelliJ is teaching us about a
feature called live templates, which can be used to insert frequent code constructs.

Figure 2-8. Enabling the tip of the day on your editor of choice is a simple way to practice
continuous learning

26 | Chapter 2: Reading Code

8 A Java interface is a reference type that defines a contract of methods that implementing classes must provide,
allowing for abstraction and polymorphism in Java programs.

Create a personal IDE Tricks document where you record new
shortcuts or features you discover. Review it regularly to reinforce
what you have learned. Refer back to this document and use the
tips you have recorded to build that muscle memory.

Code navigation tools
One of the most valuable skills when exploring an unfamiliar codebase is the ability
to navigate efficiently through the code. Many IDEs will allow you to jump to and
even create code in other files without having to manually open up that file through
the navigation bar. In the following sections, you will find some practical navigation
features that can dramatically speed up your code exploration.

Find usages and references. When you’re trying to understand a class or a component,
you need to see where in the codebase it is being used. Modern IDEs excel at this task,
and it’s something you should get familiar with.

If you were to open up a Java interface in IntelliJ, such as the one shown in Figure 2-9,
you can click the gutter icon to find all implementations of that interface.8 This is
really handy when you’re trying to understand how an abstraction is used in practice.
Similarly, you can right-click a method name and select Find Usages to see every
place where that method is called.

Figure 2-9. Modern editors can quickly show you where something is used or referenced
and offer the ability to quickly navigate to them

Effective Code-Reading Strategies | 27

Jump to definition. Another useful IDE navigation feature is the ability to jump to
the definition of a class, method, or variable. This lets you quickly move from usage
to implementation, following the code’s logical flow. For example, if you’re writing a
Java application and using an ArrayList and want to learn how it works, you can
Command-click (or Ctrl-click on Windows/Linux) on the ArrayList type to be taken
to the source, where you can view the code and documentation for that type (see
Figure 2-10).

Figure 2-10. Jumping to a definition can help you navigate code quickly

The ability to jump to a definition is valuable when working with the following:

• Third-party libraries•
• Framework code•
• Base classes and interfaces•
• Utility methods used throughout the codebase•

28 | Chapter 2: Reading Code

Call hierarchies and dependency views. Understanding how components interact is cru‐
cial to grasping an unfamiliar codebase. IDEs offer specialized views for visualizing
these relationships:

Call hierarchy
Shows what calls a method and what methods it calls

Type hierarchy
Displays inheritance relationships

Dependency diagram
Visualizes how modules or packages depend on each other

For example, in IntelliJ, you can right-click a method and select Show Call Hierarchy
to see both incoming calls (where this method is called from) and outgoing calls
(methods this method calls). This can quickly show you a method’s role in the larger
system.

Code analysis features
Modern IDEs have powerful tools to help you navigate code, but they can do so much
more. They can actively analyze the code that you’re writing and offer insights that
can both improve your code and help you learn new features you might not have
been aware of.

Automated inspection and suggestions. When you write or modify code, IDEs can offer
suggestions on how to refactor code. It’s important to remember that these are merely
suggestions: you don’t always have to accept them, but it is helpful to review them.
These suggestions often reveal common patterns and best practices that can not only
improve code quality but also teach you something new in the process.

Here’s an example in Java where the code is iterating over a collection of Books. For
each Book in the collection, the code simply prints out the name of the book:

List<Book> books = library.getBooks();
for (Book book : books) {
 System.out.println(book.getTitle());
}

This works, and there is nothing wrong with the code, but IntelliJ might suggest
using a more streamlined approach:

library.getBooks().forEach(book -> System.out.println(book.getTitle()));

These suggestions not only help you write better code but also teach you idiomatic
patterns in the language and frameworks you’re using.

Effective Code-Reading Strategies | 29

Code structure visualization. Another important part of being able to effectively read
code is understanding how the code is structured within a project or even a single
class. IDEs often include features that visualize the structure of your code. If you want
to try to understand how the code in Figure 2-11 is architected, for example, you can
look in the project structure and quickly see that it is a monolithic application and the
code is organized in a package-by-feature arrangement.

Figure 2-11. The project structure can help you see the bigger picture

Suppose you were trying to understand what methods were available in a certain
class. Sure, you could check out the API documentation, but do you even know if
that is the most up-to-date version of the docs? You could manually open up a class
file and begin scrolling through the source code, but this could take some time. Most
IDEs have a way to visualize the structure of a class or component. In the example
shown in Figure 2-12, you are looking at the structure of the OwnerController in a

30 | Chapter 2: Reading Code

project called PetClinic. You can see at a glance what methods are available in the
class, giving you quick insights into the purpose of this class and its functionality.

Figure 2-12. Understanding the functionality of a class at a glance with the structure
view

Reading Tests for Insight
When it comes to exploring a new codebase, tests serve as another form of documen‐
tation for developers. Well-written tests reveal not only what the code does but also
why it does it a certain way. While the code will tell you how something works, tests
will tell you how it’s supposed to work.

Tests as living documentation
Unlike traditional documentation that often becomes outdated, tests must remain
functional to pass continuous integration checks. This makes them a reliable, up-to-
date source of truth about system behavior.

Tests document the expected inputs and outputs of methods, the interactions
between components, and the overall system behavior. By reading tests first, you
can understand what a component is supposed to do before diving into how it
actually does it. This provides crucial context that makes the implementation easier to
comprehend.

The following test verifies that regular customers receive a 10% bulk discount when
placing large orders over a certain threshold, ensuring that the pricing service cor‐
rectly calculates discounts based on order size rather than customer type:

Effective Code-Reading Strategies | 31

@Test
public void shouldApplyBulkDiscountForLargeOrders() {
 // Given
 Customer regularCustomer = new Customer(CustomerType.REGULAR);
 Order bulkOrder = new Order(regularCustomer, 500.00);

 // When
 double finalPrice = pricingService.calculateFinalPrice(bulkOrder);

 // Assert
 assertEquals(450.00, finalPrice, 0.01);
}

With that context, you can now dive into the pricing service class and examine the
calculateFinalPrice method to understand the code that produces that result.

Understanding workflows and processes
Tests can often map to user stories, which often make them a great way of under‐
standing business processes or workflows. If you zoom out and look at integration
tests, they can often show you the big picture of how components work together to
fulfill business requirements.

Look for tests that verify entire processes from start to finish. These tests often
contain setup code that represents real-world scenarios, giving you context about
how the system behaves in production.

The following test verifies that when a user submits a product review, the review
service correctly updates the product’s average rating and sends a notification to
the administrator, ensuring both the data persistence and notification aspects of the
review process work as expected:

@Test
public void submitProductReviewShouldUpdateRatingAndNotifyAdmin() {
 // Given
 Product product = productService.findProductById("XYZ789");
 User user = userService.findByUsername("janedoe");
 Review review = new Review(user, product, 4, "Great quality product!");

 // When
 ReviewResult result = reviewService.submitReview(review);

 // Then
 assertTrue(result.isSuccessful());
 assertEquals(4.2, productService.findProductById("XYZ789")
 .getAverageRating(), 0.01);
 verify(notificationService).sendReviewNotification(anyObject(), eq("XYZ789"));
}

With this context, you now understand the whole flow of what happens when a user
submits a new review.

32 | Chapter 2: Reading Code

Discovering edge cases and boundaries
In software development, an edge case is a situation that occurs at the extreme edge
of a program’s expected input, operating conditions, or usage patterns, and is often
the case where assumptions break down. These inputs or conditions are valid but
unusual, and they will reveal bugs that don’t typically happen during the “typical”
or “happy-path” scenarios. In existing codebases, you might find more tests around
these because they were discovered over time, and a test was written to ensure they
don’t surface again.

Pay special attention to tests with names like shouldHandleEmptyList, shouldReject
InvalidInput, or shouldTimeoutAfterTenSeconds. These tests show you the limits
of the system’s capabilities and highlight potential failure points.

The following test reveals that the system will handle expired credit cards and fail
gracefully. This is something that might not be as obvious if you were just reading
through the implementation:

@Test
public void shouldRejectPaymentWhenCreditCardIsExpired() {
 // Given
 CreditCard expiredCard = new CreditCard("4111111111111111", "05/20");
 Order order = new Order(new Customer(), 50.00);

 // When
 PaymentResult result = paymentService.processPayment(order, expiredCard);

 // Then
 assertFalse(result.isSuccessful());
 assertEquals(PaymentFailureReason.EXPIRED_CARD, result.getFailureReason());
}

With this context, you can go through the implementation of the process payment
method and look for the functionality that will catch this edge case.

With the ability to understand a project and effectively read code, it’s time to modify
the code. But how can you go about doing that safely? We’ll cover that topic in the
next section.

Practice Makes Perfect
At the end of the day, practice some grace with yourself. Modern codebases are often
sprawling. One person cannot understand it in its entirety, and that isn’t the goal.
Your knowledge will grow over time. Rinse and repeat the process as you encounter
new parts of your project. It can be intimidating, but every developer has gone
through it. You will be fine!

Practice Makes Perfect | 33

9 Your organization’s lawyers likely have strong opinions about the use of such tools, so double-check your
corporate policies before you paste your proprietary pricing algorithm into a model that might be using your
code as training data!

How do you improve your code-reading skills? As much as you may dread it, practice
reading code. There are so many well-written, publicly available, open source options
in a variety of languages for you to choose from. There aren’t any shortcuts; you
cannot improve without practice. It does get easier over time, and you will get faster.

What About AI?
Like any discipline, software tooling continues to evolve. From shell-based text
editors to IDEs with integrated refactoring tools and IntelliSense code completion,
writing code has gotten easier. Of course, the size and complexity of the applications
you’re working on has also grown, so perhaps it’s a wash! With the advent of things
like GitHub Copilot and generative AI like ChatGPT, some have even suggested that
developers will soon be replaced. The rumors of the end of developers are often
grossly exaggerated, from COBOL to fourth-generation programming languages to
various drag-and-drop “programming” solutions failing to result in a large-scale
reduction in the demand for software engineering.

These tools have a place in your toolbox—for example, you can ask ChatGPT what
a chunk of code does,9 but you still need to understand the context. AI doesn’t know
the purpose of a given class, so you still need to read the code, wade through the
documentation, and talk to your fellow developers. AI doesn’t (yet) fully understand
an entire enterprise codebase, and the risk of hallucinations is real. While AI can
help you, ultimately, you must understand the nuance and relationships between code
spread across multiple repositories.

As Dan likes to say, when using AI, you are the pilot, not the passenger: trust
but verify. AI can understand code in a vacuum, but it may not understand an
enterprise-grade codebase without possible hallucinations. Modern applications are
often spread across many repositories, leveraging multiple libraries. You, the devel‐
oper, must understand the relationships and intricacies in order to enable the AI tools
to be successful in accelerating development.

Wrapping Up
Arguably, coding is taught backward: you learn to write before you learn to read,
and yet you will spend a significant amount of your career reading code written
by someone else. While you may not enjoy existing code as much as greenfield
development, it comes with the paycheck. Rather than run from the situation, learn
to embrace it, as there is much to gain professionally. Be aware of cognitive biases.

34 | Chapter 2: Reading Code

https://oreil.ly/dFBe2

10 Many projects have lists of bugs marked as “for first-time contributors,” but don’t be afraid to reach out to the
current project contributors; most will happily help you get up and running.

Don’t be afraid to roll up your sleeves and root around in an unfamiliar codebase; you
will learn something. As your understanding grows, leave the code better than you
found it, easing the path of the next developer—which just might be you!

Putting It into Practice
If you want to get better at reading code, there are no shortcuts; you need to read
more code. Luckily, you have a veritable plethora of open source projects at your
disposal! Block out a couple of hours to read some of the code in the framework you
use (or the one you wish you used) at work or in another project you’re interested
in. If you’re not sure where to start, check out the trending repositories on GitHub.
Apply the techniques you learned in this chapter. In a couple of months, pick another
part of the project you explored or try a completely different one; was it easier than
the first time? Keep at it; over time, your code-reading skills will improve.

Working with existing code is also a skill that needs to be developed, and once again,
open source software gives you a massive playground to explore. Contributing to
open source is an excellent learning laboratory, and it isn’t nearly as hard to get
started as you may think.10 Pick a project and spend a few hours working with it.

Additional Resources
• “Code as Design: Three Essays” by Jack W. Reeves•
• “Reading Code Is Harder Than Writing It” by Trisha Gee•
• “Reading Other People’s Code” by Patricia Aas•
• “How to Quickly and Effectively Read Other People’s Code” by Alex Coleman•
• “How to Read Code Without Ripping Your Hair Out” by Sunny Beatteay•

Additional Resources | 35

https://oreil.ly/q27Ze
https://oreil.ly/aDGcn
https://oreil.ly/35Aqv
https://oreil.ly/35Aqv
https://oreil.ly/KVTgx
https://oreil.ly/mr3mU
https://oreil.ly/h_b1O
https://oreil.ly/2QpkE
https://oreil.ly/8JKqG

1 AI doesn’t currently, and likely never will, distinguish between whether it can write code to solve a problem
and whether it should.

CHAPTER 3

Writing Code

Any fool can write code that a computer can understand. Good programmers write code that
humans can understand.

—Martin Fowler, British software developer, author, and international public speaker
on software development

Writing code is, without a doubt, a very important part of software engineering. And
while the act of coding is widely taught, the nuances of writing good code aren’t as
evenly distributed. Just because you can write code to solve a problem doesn’t mean
you should write code to solve a problem!1 With the advent of artificial intelligence
and agentic coding tools, the job of a software engineer is evolving to one with less
hands-on development work and more bug fixing, correcting, and reviewing code
generated by an eager AI tool. However, to be good at reviewing code, you must be
good at writing code. It may seem counterintuitive, but writing good, clean code is an
invaluable skill in the world of AI.

For better or worse, developers often have strong opinions on what constitutes good
code or bad code, but metrics and tooling can give you insights and guidance.
Tests are some of the best documentation money can buy. Code reviews, done well,
can ensure that your team doesn’t rely on error-prone forms or overly clever code.
Ultimately, code should be written to be read by humans.

Despite how it is often taught, programming is first and foremost a communication
activity—and not just between the coder and the compiler. Don’t forget, the computer
understands any code (at least if it’s syntactically correct), but that doesn’t mean a
human will follow what you’re trying to accomplish. The best software engineers

37

focus on writing code that can be understood by the humans reading it. This means
that your code needs to be concise and well-organized. The code should clearly
communicate its intent so a human can figure out what the code is supposed to do. If
it’s easy to read, it’ll be easy to maintain, which is crucial for the long-term success of
a software project.

The first thing you learn when you set out down the path of software development is
how to code. Probably with “Hello World!” What is not always taught, whether in an
undergrad course, boot camp, or self-led tutorial, is what makes code good, how to
write good code, and when to write code to solve a problem. This chapter aims to fill
that gap.

Don’t Reinvent the Wheel
Before you start pounding out line after line of (undoubtedly excellent) code, take
some time to see if the problem at hand has already been solved. Developers often
write too much code, solving problems that others have already worked out. Before
cranking out some fresh code, look around. Is there a library you could leverage?
That isn’t a license to add things ad hoc; don’t forget to analyze those libraries’ depen‐
dencies. Be sure to follow your organization’s policies and procedures surrounding
third-party libraries.

Double-check your primary programming language. Is there a language feature you
could use? Languages evolve (see “The Capitalization Assignment” on page 6); five
minutes of searching could save you hours of effort. What about your application
frameworks? If you think there should be a better way, there just might be. Ask
yourself, are you the first person in the universe who has ever written code like this?
Odds are you are not (see “Embrace the Lazy Programmer Ethos” on page 5).

Before you invest time in writing a new piece of code, it can help to ask yourself a
series of questions. Christopher M. Judd teaches the following decision tree in his
boot camps (modify for your language and frameworks):

• Is this being done anywhere in the current codebase?•
• Does the JDK already do it?•
• Are there any Spring Framework or Spring Boot projects that solve this problem?•
• Does a solution exist in Google Guava?•
• Does a solution exist in Apache Commons?•
• Are there any other libraries in the project already that solve this problem?•
• Are there any open source libraries that solve this problem?•

38 | Chapter 3: Writing Code

https://oreil.ly/euyYh
https://oreil.ly/getTn
https://oreil.ly/QMWgj

If you answered no to all the questions, you’re in the clear to write the code, making
sure to use tests as you go along! If you answered yes to any of the questions,
congratulations, you just saved yourself a lot of time; leverage what’s available!

That said, yesterday’s best practices are often tomorrow’s anti-patterns, and just
because something was the right thing to do five or ten years ago doesn’t mean
it is still the right thing to do today. Never be afraid to ask why, to challenge the
status quo. You may find yourself mindlessly copying patterns or approaches you find
or becoming complacent with code generated from AI without fully understanding
why. Software moves pretty fast; if you don’t stop and look around once in a while
and deliberately adopt an open perspective, you could miss some really important
things (see “The Value of a Fresh Set of Eyes” on page 7). Languages, frameworks,
technologies, and techniques are constantly evolving; keeping up is par for the course
as a software engineer. Ask probing questions and keep a weather eye on the horizon.

What Is Good Code?
All that aside, there won’t always be a library or language feature to solve your
problem. You will, of course, write code! And you may ask yourself, well, what is
good code? To paraphrase Potter Stewart, good code can be hard to define, but you
know it when you see it. Admittedly, good versus bad code can be a very subjective
concept. After a while, you start to develop a sense for it, and you may even say code
has a smell to it. For example, overly long methods are generally a bad thing, but you
still need to examine the code; there may not be a simpler approach. Few developers
will ever admit to writing bad code, but anyone who’s ever opened an editor is guilty
of some less-than-stellar software.

Metrics can provide insight into your codebase. For example, cyclomatic complexity
can tell you the number of paths within your source code, with more paths indicating
more complex code that would likely benefit from refactoring. Many languages have
source code analyzers like PMD, SonarQube, and JSHint, which can help prevent
certain types of bugs and bad coding practices from infesting the source code. Tools
like SonarQube and CodeScene can provide invaluable insight into your codebase.
Odds are your organization has something. If you’re not sure, ask around. If it
doesn’t, why not spearhead the effort to bring one into your project?

What Is Good Code? | 39

https://oreil.ly/ors7V
https://oreil.ly/ors7V
https://oreil.ly/PDUiT
https://oreil.ly/PDUiT
https://oreil.ly/hw_0S
https://oreil.ly/fg6Du
https://oreil.ly/TyPeY
https://oreil.ly/2n5XP

2 Like on the freeway when people notice the state trooper in the median and everyone slows down.

Adding Metrics to Existing Projects
In a perfect world, your project would leverage analysis tools like those mentioned
from the very start of your project. Doing so allows your code to “start clean, stay
clean” (assuming your colleagues fix the detected problems). However, you won’t
always have that luxury, and you’ll have to add a linter or a source code analyzer to a
project that has been in development for months or years.

It is tempting to add a tool like PMD and turn on all the rules! Do not do that.
First of all, some of the rules contradict themselves; if one passes, another will fail.
Second, turning on too many rules will typically result in an unmanageable number
of warnings, which is counterproductive. It can demoralize a team. With hundreds or
thousands of warnings, it is hard to notice when someone checks in code that adds a
few more, and spending a few hours of effort to fix a couple of dozen warnings moves
the graph an imperceptible couple of pixels.

Instead, have a discussion with your team and pick a few rules that you can all agree
on. Finding that subset may prove challenging! Turn those rules on. That should
result in a manageable number of warnings. As a team, work to fix them. Once you
have done so, turn on a couple of more rules. Rinse and repeat. After a few months,
you’ll have a rich set of rules running against your project as well as cleaner code.

Metrics should never be mindlessly followed; some complexity just can’t be avoided!
You must apply common sense to any rule of thumb because, in some instances,
applying the common rule may actually make things worse. However, you can take
advantage of the Hawthorne effect, which says people modify their behavior when
they’re observed.2 You can absolutely use that to your advantage on a project! For
example, if you want more of the code to be covered by tests, prominently display the
code coverage stats.

Increasing Code Coverage Through Metrics
Nate here again. Many years ago, I joined a project that had been churning out code
for a few months. I was pleasantly surprised there were, in fact, tests, but I was
disappointed that all but a small handful were skipped by the build because they “kept
failing.” Not to be deterred, I ran a code coverage report showing how many lines of
code were executed after running all of the tests. Unsurprisingly, it was a single-digit
number. But I posted it, and I talked about it. A lot. During most standups and
retrospectives. Whenever the number ticked up, I heaped praise on my awesome

40 | Chapter 3: Writing Code

https://oreil.ly/CGxL8

teammates. When someone added tests to a particularly tricky part of the code, I had
them discuss how they did it.

Slowly but surely, our code coverage number went up, and the code became less
brittle. It took several months, but by the time I moved on to the next project, the
code was closing in on 70% coverage. By no means were we satisfied, but we were in
a far better place. And it all started by running—and then promoting—a simple code
coverage report.

Metrics can be abused or misused (see “Metrics Can Mislead” on page 19). For
example, many organizations have tried to evaluate technical staff by lines of code
written or deleted or modified. Use these metrics wisely. Consider external coupling
or how many classes are dependent on a given class as another example. In general,
if you see a high degree of coupling, you would consider that an opportunity for
refactoring. What if that class is actually a facade that is essentially hiding a set of
classes? You must contextualize any metric.

Just because you can measure something doesn’t mean it will provide meaningful
insights. Try to link metrics to project goals and focus on the direction your metrics
trend. Are you getting better or worse over time? Favor short time horizons and be
ready and willing to adjust and adapt.

Adding new tools to your pipeline isn’t your only choice. Many IDEs will provide
code-quality metrics, and there are any number of plug-ins you could add to your
personal toolchain that will help you write better code. To shorten the feedback
loop, many of the code analysis tools can be wired into your editor, notifying you
of violations as you type instead of waiting for a build break. Your team may have a
preferred configuration. Ask a colleague if you aren’t sure.

Less Is More
The goal of software design is to create chunks or slices that fit into a human mind. The
software keeps growing, but the human mind maxes out, so we have to keep chunking and
slicing differently if we want to keep making changes.

—Kent Beck

With the size of some codebases, you might think developers are paid by the charac‐
ter. While some problems genuinely require millions of lines to solve, in most cases
you should favor smaller codebases. The less code, the less there is to load into
people’s brains. Many projects reach the size where it is no longer possible for one
developer to understand all of the code, which is one of the forces that has given rise
to microservices and functions as a service.

Less Is More | 41

https://oreil.ly/fjXT0

3 Though with modern monitor sizes, you may want to stick to a single page.

The typical big balls of mud often have dictionary-sized Getting Started guides and
build processes that are measured by weeks and revolutions of the moon. It can take
developers new to the project weeks or months to get productive within the code.
The smaller the codebase, the less time it takes for a new developer to get their head
wrapped around the code and the faster they can start contributing; see Chapter 6
for more details. The following are things to consider when trying to get your code
length under control.

The Zeroth Law of Computer Science
Many of the practices software engineers espouse in an effort to tame code boil down
to the zeroth law of computer science: high cohesion, low coupling. Cohesion is a
measure of how things relate to one another. High cohesion means essentially that
like things are together. The notification function that also contains print logic would
be an example of low cohesion. Coupling refers to the amount of interdependence
between modules or routines. Code with tight coupling can be difficult to modify as
changes to one part of the code unexpectedly affect other, seemingly unrelated parts
of the system. Changing the notification service shouldn’t break the print module.

High cohesion and low coupling tend to result in code that is more readable and
simpler to maintain and evolve. Many patterns are ways of achieving high cohesion
and low coupling, often at different levels of abstraction. At their best, arguably,
microservices are high cohesion, low coupling applied to services.

Beware Boilerplate Code
Boilerplate code, even if it is generated by an editor or a framework, should be
avoided. While you may not have to write it, you will still carry it around for the
lifetime of the project. Classes should be short, a few pages or less.3 Programming
languages will impact your definition of short, as some languages are more verbose
than others. In general, if you have to scroll, your class might be too long.

Favor Composition over Inheritance
Many languages allow classes to inherit from other classes, and while this feature
can be very powerful and there are certainly is a relationships (a cat is a mammal)
in software, it tends to be overused. Some developers use inheritance as a reuse
mechanism. Reuse is a byproduct, not a rationale!

42 | Chapter 3: Writing Code

https://oreil.ly/6DR8g

Let’s look at a concrete example. Say your domain involves cars and trucks. You might
create a vehicle superclass that cars and trucks both descend from that includes a
combustion engine—since all cars and trucks have a combustion engine, defining it
on the superclass ensures that all cars and trucks also have a combustion engine. For
example, see this Ruby pseudocode:

class Vehicle {
 Engine engine
 Integer num_wheels
 Integer num_doors
 Function brake {}
 Function accelerate {}
 }

class Truck < Vehicle {
 Number tow_capacity
}

class ElectricVehicle < Vehicle {
 Number range
 # wait… EVs don’t have engines…
}

But along come electric vehicles with nary a combustion engine to be found. An EV
is-a vehicle, but not like those other vehicles. Composition is more flexible and should
be favored over inheritance. That isn’t to say you should never use inheritance, just
that you should prefer composition.

Favor Short Methods
Write short methods, as in single-digit lines of code. Like a Linux or Unix command-
line tool, methods should do one thing and only one thing, and they should do it
well, working in concert to accomplish larger goals. Any method name that includes
conjunctions (and, or, but) is a sign the method is doing too much. Method names
should be clear and concise and avoid being clever. If you are having a hard time
naming a method, it might be doing too much. Try breaking it apart and see what
happens. Be descriptive. Remove logic duplication, even in small amounts. Simplify,
then simplify some more.

Overall, aim for smaller, more manageable codebases to improve developer under‐
standing and productivity.

Write Code to Be Read
Think about the developer who will follow in your footsteps, the one who will need to
read and maintain your code. Remember to apply the Golden Rule to your code (see
“Apply the Golden Rule to Software” on page 11). How could you write the code so

Write Code to Be Read | 43

that you make life better for the next developer? What do you need to communicate
to the next person?

There are any number of guidelines you can apply when it comes to the “correct”
length of a function, from reuse to picking an often arbitrary number of lines. Martin
Fowler offers sage advice: mind the separation between intent and implementation.
In other words, how long does it take for you to understand what a function is doing?
You should be able to read the name and understand immediately what the code
does without investigating the method body itself. This principle will often lead to
functions with only a few or even just a single line of code; make the intention clear.
The class name should give you context, and the method names help you understand
what the class does.

Code can be written like a newspaper article with an “inverted pyramid.” Articles start
with the lede then move to key facts and then on to deeper background. You, as the
reader, can stop at whatever level of detail you wish—maybe just the first couple of
paragraphs, maybe all the way to the end. As they say in publishing, don’t bury the
lede.

Code should follow the same model. The class name is almost like the headline of an
article. From there you should be able to skim the method signatures to get a general
understanding. If you want to explore a function or a call to another class, you are
free to do so, but you should still understand the gist of the code.

Naming Things Is Hard
Every developer has stared at their editor struggling to name a variable, method, or
class. And while this struggle can indicate an insufficient understanding of the prob‐
lem or some overly complex code, there is a reason foo, bar, and foobar are such
common occurrences. Coming up with meaningful names can be time-consuming.
Don’t rush! Again, take the time it takes so it takes less time. It is worth the effort
to come up with good names. Don’t be afraid to reach out to a teammate for their
input. Sometimes just explaining what you’re working on will be enough to inspire
the perfect moniker.

Your IDE can help! Many developers work backward from the declaration, allow‐
ing the editor to make suggestions. In other words, start with new Arrays.as
List({"Red", "Green", "Blue"});. Your IDE can use a postfix completion to
suggest a variable name. Agentic coding tools can also provide some inspiration.

Don’t hesitate to refactor poorly named code. Modern editors have powerful tools
that make renaming a straightforward endeavor. Just make sure you aren’t con‐
stantly renaming core domain concepts, because that usually indicates a problem
of misconception.

44 | Chapter 3: Writing Code

https://oreil.ly/1WZKx

4 You can often tell the experience level of a developer by their use (or avoidance) of code comments.
5 Dogmatism, whether in software or life, is rarely the right path. Favor pragmatism.

It may also help to play the gibberish game. Often the first word you use to define
a concept isn’t the best option, but it may shape your thinking about the problem
domain. When you are first working through the domain, make up a word! After
you’ve done some additional analysis, go ahead and replace the gibberish with real
words. You’ll likely have come up with something that’s very different, and clearer,
than your first reaction. The next time you’re really stuck on what to call something,
throw in some nonsense words and circle back.

The Problem with Code Comments
Every programming language has some facility for a developer to speak, not to the
compiler or runtime, but to their fellow developers via a code comment. And while it
may seem like one should liberally comment their code, arguably doing so is a code
smell.4 Code comments violate the DRY principle, aka Don’t Repeat Yourself. While
you will most often see DRY violated with code that is copied and pasted or littered
with logic duplication, comments can also be problematic. In most cases, you wrote
the code and then you turned around and wrote about the code.

Code comments can be a maintenance headache as well. You modify the code, but
will you take the time to update the comments too? Often the comments begin
diverging from the code, adding another layer of sediment to the developers who
encounter the code months or years later. Code should be written to be readable.
Your time is better spent making the code simpler to read than in documenting what
you did. Expressive languages definitely aid in achieving readable code, and you may
want to avoid the more nuanced “magic” features of your language of choice. Good
method and variable names are better than comments; if you think you need to write
a comment, try renaming the method or variable. Doing so will nearly always obviate
the need for a comment.

Arguably, the least useful code comment is the code change blocks that are often the
first few hundred (or thousand) lines in a file. And while it can be an interesting
waypoint along your archeological journey, the repetition of tracking numbers, dates,
names, and paragraphs about the change adds noise to the process. Let your source
code management tool do its job.

That isn’t to say code should never have comments.5 If you are doing something that
isn’t obvious, and you couldn’t find a way to simplify the code, comments explaining
the situation can be helpful. These comments should focus on why you did something
instead of what you did. Providing context around a choice of one algorithm over

The Problem with Code Comments | 45

https://oreil.ly/YDkTZ
https://oreil.ly/6LoPG
https://oreil.ly/6LoPG
https://oreil.ly/m-B67

6 Libraries like Spring REST Docs can also help documentation stay in sync with the code.

another or explaining a particularly complex bit of logic can be helpful as well. That
said, if code needs to be explained, rewrite it.

Comments can serve as reminders to our future selves, or as a warning that a hack
works but you don’t (yet) understand why it does. Some developers leave comments
as warnings to future developers, as in the following example:

// Dear maintainer:
//
// Once you are done trying to
// “optimize” this routine,
// and have realized what a terrible
// mistake that was,
// please increment the following
// counter as a warning
// to the next person:
//
// total_hours_wasted_here = 42

Are these comments a good thing? It depends, and many of the examples you will
hear of are likely apocryphal. That said, don’t shy away from leaving behind advice for
future you.

Tests as Documentation
If comments aren’t an appropriate way to document code, what should you do?
Write tests. Tests, especially those written in more fluent styles, are executable specifi‐
cations that evolve along with the production code.6 Documentation, whether code
comments, READMEs, or specifications, tends to diverge from the code as soon as it’s
written. Tests written while you write code allow you to refactor freely and increase
your confidence in the quality of your application. They also act as signposts for the
developers who follow you. Testing is explored in more depth in Chapter 5.

Adding tests to existing code allows you to capture what you’re learning about how
the code works and unlocks your knowledge such that other developers can benefit
from your work. As you rename a method or variable and prune some dead code,
you’re actively leaving the code better than you found it.

Some developers insist they need to write copious comments for those who consume
their services. While these comments are less smelly than those mentioned earlier,
they aren’t your only option. Again, tests make for a more resilient documentation
mechanism. Utilizing consumer-driven contracts allows you to convey what your
service does while also giving you the confidence to iterate as necessary. As long as
you haven’t violated the contract, you can evolve your code freed from the worry that

46 | Chapter 3: Writing Code

https://oreil.ly/VDbKF
https://oreil.ly/h6kSc
https://oreil.ly/nHHcE

7 One of your authors, who shall remain nameless in this instance, spent the better part of two weeks debugging
that code block.

you might inadvertently break a downstream system. Consumers gain confidence in
your services, as they have a set of tests they can execute that simulates the expected
behavior of your code. They can modify their code without fear of introducing a new
defect.

Consumer-driven contracts are a vital part of reliable and resilient software. Many
languages and frameworks have projects you can (and should!) leverage with your
applications. From Spring Cloud Contract to Pact versions for nearly every platform,
you have options.

Avoid Clever Code
Software is hard, and the domains you work in are complex. But not all complexity is
equal. In his widely cited No Silver Bullet essay, and essentialFred Brooks makes the
distinction between accidental and essential complexity. In short, essential complexity
is inherent in software, from the nuance of the business rules, to communicating with
your team, to the ever-changing nature of a codebase. There is nothing you can do
to remove this complexity from software; it comes with the paycheck. On the other
hand, accidental complexity are ways developers make things harder than they have to
be, from noisy technology to heavyweight tooling. When in doubt, keep it simple.

Software is not immune from the proverbial snake oil. Many companies attempt to
sell products or processes that will revolutionize software delivery. It pays to be skep‐
tical. There are opportunities for improvement of course, but the scientific method
reminds us that extraordinary claims require extraordinary evidence. You should be
vigilant about removing accidental complexity wherever possible. See Chapter 6 for a
more detailed discussion.

Languages and frameworks often have error-prone forms. For example, take a look at
the following Java code. Can you spot the problem?7 In Java, brackets are technically
optional on a single statement if block. Now, some developers might argue in favor
of omitting the brackets, as it is less verbose and the (essentially) empty lines are
a waste of vertical space. But what happens when another developer adds a second
statement? Will they remember to add the brackets, or will they be seduced by the
code indent?

if (condition)
 doFoo();
 doBar();

Avoid error-prone forms in your toolchain of choice. Just because you clearly under‐
stand it does not guarantee that the information is widely distributed across your

Avoid Clever Code | 47

https://oreil.ly/1SaQp
https://oreil.ly/fKeT7
https://learning.oreilly.com/library/view/mythical-man-month-the/0201835959/ch16.xhtml
https://oreil.ly/WCFDX

8 Also known as “looks good to me” reviews, they aren’t a good use of a person’s time.

team. Don’t be afraid to update (or establish) coding standards to cover these cases.
There are a number of static analysis tools you can add to your deployment pipeline
to keep you and your team from inadvertently introducing these types of problems.
Take advantage of them.

Code Reviews
Code reviews can vary from asking a colleague for feedback on a method all the
way to hours-long walk-throughs with several developers. Regardless of the specific
implementation details, code reviews are an excellent way to learn, share experience,
and socialize knowledge. More eyes on code is a good thing and part of the reason
some organizations use pair programming.

Whether formal or not, certain practices can improve your code review. First and
foremost, don’t be snarky. Avoid sarcasm. Asking for feedback can be very stressful
for people, and many people take criticism personally. How you share your com‐
ments is critical. Be empathetic to your teammate. While it may be tempting to use a
code review as an opportunity to drop some esoteric bit of trivia on your team, the
goal is to improve the code, not exhibit your technical expertise.

The only way to make something great is to recognize that it might not be great yet. Your goal
is to find the best solution, not to measure your personal self-worth by it.

—Jonas Downey, software designer, developer, and writer

Focus your attention on the most important things. While style points matter, your
effort is better spent lower down on the Code Review Pyramid. You can (and should)
automate formatting and style-related issues;8 let a computer handle those. Your time
and effort should be spent on the things computers can’t detect for you. Are method
and variable names clear and concise? Is the code readable? Is there duplication?
Does the code have the proper logging, tracing, and metrics? Are interfaces consistent
with the rest of the code? Did the developer use any error-prone forms? Is the model
correct? Did they choose the wrong abstraction?

Avoid the Checkbox Code Review
In some instances, code reviews are little more than a checkbox in the source code
management system. Some organizations require all code to be reviewed before it is
merged into the mainline. That goal may be admirable, but more often than not, it
results in little more than one developer asking another to “review” the code, which
usually means checking the box for their compatriot. Even though it comes from a

48 | Chapter 3: Writing Code

https://oreil.ly/i1r_o
https://oreil.ly/Uj3Cj

good intention, such reviews defeat the purpose. Working in small batches makes
reviews simpler and more effective.

Some organizations use pull requests (PRs) as a way of ensuring code quality. While
they can be more comfortable than spending the afternoon on a video call arguing
over code, PRs aren’t always conducive to building team cohesion and trust. Some
developers use PRs as an opportunity to nitpick, start a turf battle, or reignite a
previously closed issue. PRs are also vulnerable to the LFTM (looks fine to me)
response, which may be acceptable in some cases but falls victim to the previously
mentioned checkbox review.

Text-based comments also lack the tone and body language of face-to-face conversa‐
tions. You may not intend a comment to come across in an acidic or biting way, but
it may be taken as such by the person on the other end of the request. Don’t be
surprised if some of your teammates, especially those with less experience, dread a
PR. Once again, practice empathy. Ask yourself how you’d like to be treated and act
accordingly. Senior staff should lead by example.

It Is Hard to Be Criticized
Developers often invest a lot of themselves into their work, so sometimes it is hard
not to take feedback personally. Code reviews are not an opportunity to embarrass
someone because they didn’t know about some new language feature or didn’t imme‐
diately see a simpler way to solve a problem. No one is perfect; everyone makes
mistakes. Code reviews are about building better applications and are about the
code, not the coder. Don’t get personal in a code review. Be humble and ask helpful
questions. Critiques are more digestible when they are sandwiched by compliments,
so be sure to point out the good things too.

Share your experiences. Personal stories carry immense weight and diffuse people’s
natural resistance to change. Offer assistance with things you’ve encountered on
previous projects. Be careful with blanket proclamations. Make sure you have all the
details before you pronounce something won’t work, as you may be missing a key bit
of context. Is there some background you don’t have? Perhaps there are constraints
you aren’t aware of. Stick to the code.

Every single one of us is doing the absolute best we can given our state of consciousness.
—Deepak Chopra, Indian-American author and alternative medicine advocate

If something in someone’s code concerns you, don’t be afraid to talk to the developer
directly. People can be very defensive, especially in group situations. A quick one-on-
one discussion could be the answer. Don’t ambush a teammate; no one wins in those
interactions. Remember, reviews are a chance to learn, an opportunity to teach.

It Is Hard to Be Criticized | 49

Fostering Trust
If you shouldn’t do checkboxes or LFTM reviews, what should you do? Regardless
of your code review process, don’t lose sight of its purpose. You should be sharing
experiences, learning, and growing as a team while avoiding problematic practices
like confusing idioms or deprecated approaches. Encourage your teammates to ask
questions and provide constructive feedback. Code reviews should foster collective
code ownership and foster trust among the team. Promoting a bug of the week or
taking the time to share something you ran into can be incredibly powerful.

A regular meeting where people are encouraged to talk about an interesting defect
they solved is an invaluable learning technique. You might assume everyone knows
what to do when they encounter a particular issue, but discussing those situations
with your teammates spreads knowledge. The simple act of taking time during
Friday’s standup to discuss something interesting people experienced during the week
can pay dividends.

It should go without saying, but treat your teammates with respect. Be kind, do what’s
right, do what works. Don’t be afraid to take a moment to review your approach and
ask if there might be a better way. Whether you’re following an Agile development
methodology or not, you should adapt and adjust on a regular basis. If something
isn’t working, change it!

Learning New Languages
If you want to get better at writing code, you need to, well, write code. But you can
accelerate those skills by learning new programming languages. Think about learning
a foreign language. For months, even years, you will translate that language into your
native tongue. Eventually, you will think, even dream, in your new language. But it
takes time. Programming languages are no different. Well, they have very demanding
grammar rules and far fewer keywords.

The key is immersion. If you really want to learn French, moving to Paris will
accelerate your progress. Picking up a new programming language is much the same.
Build an app in the new language that solves a problem that’s plagued you at work
or at home. Follow the community on social media. Listen to the related podcasts
or watch the videos from the latest conference focused on the language. Better yet,
attend the local user group or go to the next event about the topic.

Developers tend to get very attached to their first language. Be careful here. Program‐
ming languages are just tools. Just as a hammer is a better tool for pounding in a nail
than a screwdriver, some languages are better fits for certain problems than others.
For example, many embedded systems are written in C since it is highly portable and
reliable and can be heavily optimized for specific platforms. Make it a habit to look

50 | Chapter 3: Writing Code

at, explore, and learn other languages. Some influential people suggest learning a new
language every year or two.

Programming Is Fundamentally About Communication
Before computer science departments started springing up at universities around the
world, programming often lived in the math department, and many assumed math‐
ematical aptitude was a prerequisite for success in software. In some instances, uni‐
versities still use math exams to recruit students! Despite this assumption, research
shows that language aptitude is a far better predictor of how quickly someone picks
up a new programming language than skill in mathematics. While certain domains
may be very math heavy, the art of programming isn’t.

Programming is first and foremost a communication activity—and not between the
coder and the compiler. Don’t forget, the computer understands any code (at least if
it’s syntactically correct), but that doesn’t mean a human will follow what you’re trying
to accomplish. The best software engineers focus on the person reading the code.
Good writers (of any kind) always keep the audience front of mind.

Learning a new language takes time. How do you justify the investment it takes learn‐
ing something you might not use daily at work? Learning a new language will change
how you code even if you don’t get to use the new tool day in and day out. When
you seek out a new language challenge, try to pick something that is different from
what you use at work. If you’re an experienced Java developer, look beyond other
C-like languages such as C# (not that there’s anything wrong with learning C#, mind
you) toward different paradigms. Consider instead a dynamic language like Ruby or
a functional language like Haskell. Trust us, even just a cursory examination of a
language outside your normal neighborhood will fundamentally alter your approach
to programming. You may come to appreciate your regular language more, or you
may find yourself writing code in a different way. Take time to learn new things.

Learning new languages gets easier over time. The more languages you know, the
more you have to compare to. Think back to the first language you learned—you
were starting at zero. By the third, fourth, fifth language, you start to see how one
idiom is just like another one from Java, or how some structure was borrowed from
Ruby.

Early in your career, you should focus your attention on going as deep as you can on
the languages and frameworks you use daily. However, don’t neglect exploring other
options. Doing so will not only invigorate you but also make you a better developer.

Learning New Languages | 51

https://oreil.ly/2wY8L
https://oreil.ly/eKIhN
https://oreil.ly/eKIhN

9 Many projects have lists of bugs marked as “for first-time contributors,” but don’t be afraid to reach out to the
contributors; most will happily help you get up and running.

Wrapping Up
Developers write code; it is part and parcel of the job. Avoiding error-prone forms
and overly clever code can be the difference between a codebase that’s a pleasure to
work on and one that developers avoid like the plague. From code reviews to analysis
tools, there are many ways to help you write better code. Favor writing tests over
copious comments. When critiquing code, be empathetic. Never forget, code should
be written to be read by humans; adhering to that principle goes a long way toward
ensuring you write code others will stamp with the elusive “good” label!

Writing good code is an ongoing learning process. Be open to learning new skills and
improving the ones you’ve already developed. Staying up-to-date on best practices in
software engineering is a key to your long-term success in the field.

Putting It into Practice
There are no shortcuts; if you want to improve as a developer, you will need to write
code! As the old joke goes: A pedestrian on 57th Street sees a musician getting out of
a cab and asks, “How do you get to Carnegie Hall?” Without pause, the artist replies
wearily, “Practice.” If you want to be a better developer, you need to practice.

Consider adding some effortful study to your routine. Periodically, say every other
month or so, block out a couple of hours to tackle a code kata. In martial arts, katas
are a series of blocks, kicks, and punches that students study and repeat countless
times. Code katas bring this idea to software, providing simple problems that give
you a chance to practice your craft and to work on things you may not encounter in
your day-to-day coding life.

You can leverage code katas in any number of ways. You could pick one and solve it
in two or three programming languages. You could pair with a friend or colleague to
work through a kata. There are multiple ways to solve a given kata; challenge yourself
to solve the same kata in two or three ways. Perform a code review on a kata you
solved a few months (or years!) ago—what would you do differently today?

Once again, you can leverage the universe of open source software. Block out a
couple of hours to contribute to an open source library you use (or want to use).
If you’re not sure where to start, check out the trending repositories on GitHub.
Contributing to open source is an excellent learning laboratory, and it isn’t nearly as
hard to get started as you may think.9

52 | Chapter 3: Writing Code

http://codekata.com
https://oreil.ly/L_Eef
https://oreil.ly/MhjGr
https://oreil.ly/GeVpy
https://oreil.ly/GeVpy

10 Something that also applies to upgrades to said technologies…

You can still learn a tremendous amount about writing good code without contribu‐
ting. Pick a project and spend a couple of hours reading through the code. What do
you like? What don’t you like? What would you do differently? Run a source code
analyzer against the code: what does that tell you about the project? If you see any
glaring issues, don’t be afraid to raise them or contribute a PR!

Keeping up with change is a core component to a successful career in software; make
it a habit to refresh your knowledge on your core languages and frameworks. You
may not organically encounter new features in your daily work, so take a few hours
once or twice a year to see what has been added to your toolkit. Most technologies
have advocates or champions, so follow or subscribe to keep abreast of changes. Not
every shiny new thing will work for your applications, at least today, but it is simpler
to digest a small handful of updates periodically than to try to learn about dozens or
hundreds of new things every few years.10

Last but certainly not least, consider volunteering your coding talent to a local charity
or nonprofit. Many deserving organizations are constantly looking for help from
the technical community. Volunteering can give you a chance to practice your craft,
maybe using a language or framework you’re trying to learn, while also helping a
cause you care about.

Additional Resources
• “Portrait of a Noob” by Steve Yegge•
• Discussion thread on favoring composition over inheritance•
• The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition,•

by Frederick P. Brooks (O’Reilly, 1995)
• “An Appropriate Use of Metrics” by Patrick Kua•
• “Simple Made Easy” by Rich Hickey•

Additional Resources | 53

https://oreil.ly/Ew3LD
https://oreil.ly/nfvEM
https://learning.oreilly.com/library/view/mythical-man-month-the/0201835959
https://learning.oreilly.com/library/view/mythical-man-month-the/0201835959
https://oreil.ly/wsPB3
https://oreil.ly/AaZYK

CHAPTER 4

Modeling

All models are wrong, but some are useful.
—George E.P. Box, British statistician (attributed)

By now, it should be clear that communication is a central focus of your work as
a software engineer, especially communication between you and other developers.
While the computer cares only about syntactically correct code, communicating
with other humans takes much more. Your code should be well-documented and
organized so it can be understood by other people (see Chapter 3 for more on writing
code), but sometimes you’ll want more. Throughout a project, you will use software
models or box and line diagrams to express your technical intent.

Much like good code, good software models are clear and easy for your stakeholders
to understand. If your models aren’t clear, those consuming your models won’t
understand your technical intent. There is no shortage of consumers for your mod‐
els: users, testers, other developers, security, the people writing the checks, project
managers, and architects. Yourself. Sometimes, the only consumer of a diagram will
be you. That said, you can’t expect to draw some pictures and expect everyone to
understand them. A diagram that’s perfect for a developer might not work so well
for the vice president of engineering. And vice versa. Your challenge is to know what
diagram to create and when to create it.

55

1 As well as terms such as architect and quality assurance, and within the data domain you’ll encounter
librarians, scientists, and ontologists.

2 Though it can be more difficult and expensive than some assume.

What Is Software Modeling and Why Do We Do It?
Software is a relatively young industry, and as such, has borrowed concepts and
approaches from more mature disciplines.1 There have also been various “waves” of
modeling approaches, from the Unified Modeling Language (UML) to the C4 model.
The construction industry creates a full set of blueprints before breaking ground on a
new project; shouldn’t software projects do the same? Maybe.

Software modeling is the process of creating abstract representations of a software
system to better understand, analyze, and communicate its structure, behavior, and
functionality. These models guide developers, designers, and stakeholders through
the system’s design and development process. Good software models reflect the
real-world problem domain, providing insight throughout the development process.

However, it is important to understand the fundamental differences between writing
software and building a house. Refactoring the physical world is difficult and expen‐
sive: a builder cannot afford to test the viability of a load-bearing wall in production,
as it were. Blueprints allow the designers to ensure that the house meets local building
codes and has all the appropriate routing for water, electricity, and heating/cooling.
Before construction starts, the blueprints communicate what is being built, allowing
the owner to agree that everything is as they expect. When construction has finished,
the blueprints can be used to confirm that everything was built to specification. Imag‐
ine the chaos on a building site if all the various contractors were left to improvise.

Software, however, can be refactored.2 Code can be changed in a few hours for a few
hundred dollars. The cost of “refactoring” the physical world is considerably higher;
arguably, houses would be built differently if the cost of nearly every minor change
was a few extra hours and a few hundred dollars. Blueprints wouldn’t be nearly as
integral to the building process. Because software is more malleable, diagramming
may not be as critical to project success.

Diagrams don’t compile; they don’t result in executable code that contributes to
the completion of your project. In fact, you can make a pretty strong argument
that for developers your code is the ultimate design artifact. Jack Reeves, author of
the influential Code as Design papers, argues that programming is fundamentally a
design activity and that the purest expression of that design is the code itself.

If diagrams don’t compile, why are they useful to you? Diagrams can provide con‐
text. They can be used to understand and manage the complexity of a system and

56 | Chapter 4: Modeling

https://www.uml.org
https://c4model.com
https://oreil.ly/hMINX

3 If they are sufficiently out-of-date, one can argue the diagrams are actively harmful.

decompose the problem. You can use them to predict quality attributes, otherwise
known as the nonfunctional requirements or the abilities that you learned about in
Chapter 9. Diagrams can help you design for certain quality attributes.

Some organizations require you to create various diagrams as part of your SDLC.
These requirements can be a blessing and a curse.

Diagrams can help you plan your system design. If drawing a picture helps you
wrap your head around a design, go ahead and draw the diagram. An hour or two
sketching out a solution could save you days of development time.

Diagrams can also help during a software archaeology expedition, such as when
you are learning about a new system or first being exposed to it. Of course, that
assumes those diagrams are accurate. Diagrams can be useful when onboarding new
engineers. Again, assuming they’re accurate. They can also be useful when transfer‐
ring knowledge to a new member of the team, once again assuming they’re accurate.
Diagrams can be critical when debugging a system, as knowing the boundaries of the
system and its core responsibilities can help you design test cases or determine how
to approach debugging.

As you might have figured out by now, a lot depends on whether your diagrams
are accurate and up-to-date. If a diagram isn’t clear or representative of the current
state of the code, its value is greatly diminished.3 That leads to a rather interesting
question: how permanent are diagrams? One could argue that diagrams should have
an expiration date and that it is perfectly acceptable to throw a diagram away once it
no longer proves useful. They can be as ephemeral as a sketch on a whiteboard. They
could also be formal and made with a modeling tool.

If you find yourself drawing the same diagram again and again,
that’s a pretty good indication that you should formalize it in some
way, shape, or form. Take the time to create it with a tool and store
it centrally for your project; if it’s helpful to you, it’ll be useful for
a teammate too. For larger diagrams, leverage a plotter printer; a
physical copy hanging on the wall can be useful for the entire team.
In some cases, printing a diagram on cardstock can make it feel
more real and valuable to people.
Of course, you could also just take a picture of the diagram and add
it to your project documentation if you prefer. Don’t let a tool slow
you down.

There is no shortage of modeling tools at your disposal. They range from simple dia‐
gramming tools to high-end, full-featured enterprise modeling tools. Massive projects

What Is Software Modeling and Why Do We Do It? | 57

4 It is also possible to generate code from models, something that you may encounter primarily in safety-critical
systems.

5 To save you a web search, Z notation is a formal specification language developed in the late 1970s and is
based on mathematics.

with large teams spread across the globe can find significant value in standardizing
on a given enterprise tool. Some tools are for drafting models by hand, while others
can generate models from code.4 You’ll explore tools later in this chapter, but fancy
tools don’t mean that you’ll have better diagrams that’ll suit your needs.

Besides tools, there are many diagram types to choose from as well.

Which Diagrams Do You Need?
When it comes to software modeling diagrams, you have a plethora to choose from.
The challenge is to know which diagram to create and when to create them through‐
out the software development process. In other words, which diagrams do you need?
Which ones are most important at this moment during a project? Of course, the
only answer that we can give you is, “It depends.” What are you trying to do? How
complicated is the problem? How risky is the application? Have you ever built an app
like this before, or is this novel? What is the project budget? Is this project critical to
the business?

Diagrams can be formal or informal. Formal models use technical notation, such as
UML (Figure 4-1). You must understand the audience for your model. The more
formal the model, the more technical the audience has to be to consume it. This
typically means a smaller subset of people will understand your intent. For example,
do you understand Z notation?5 Even if you understand it perfectly, how widely
known is it within your organization?

The less formal the method, the less technical your audience will need to be to
understand what you are trying to communicate. This allows for a larger audience
that can consume your diagram.

58 | Chapter 4: Modeling

6 It has to do with cascading deletes, but you’ll have to look up the nuance.

Figure 4-1. Standard UML diagrams, adapted from Wikimedia Commons

Unified Modeling Language
UML was developed in the mid-1990s as a way of harmonizing various other notation
systems developed in the 1980s and early 1990s. The Object Management Group
adopted it as a standard in 1997, and it was published as the ISO/IEC 19501 standard
in 2005. That said, most software engineers prefer informal diagrams (which often
use UML elements) instead. Why?

Do you know the difference between a filled diamond and an empty diamond in a
UML diagram?6 You may completely understand the nuance of this particular feature.
However, your audience may not. Most software engineers choose to use informal
notation over UML in the interest of reaching a broader audience. Do not shun what
works. Simple is almost always better.

Which Diagrams Do You Need? | 59

https://oreil.ly/6o88c

Context Diagrams
Context diagrams define the boundary between systems or parts of a system. They
show the environment as well as how entities interact. These are logical data entities
that may often include data at least in terms of volume and frequency. Context
diagrams are very high level.

Context diagrams are frequently used by architects, leadership, project managers, and
product owners. They are often used early in a project to define boundaries and get
people on the same page about what is and is not included within a given application.
They provide a useful overview of what we mean by a given system, and they quickly
show you the edges of the map.

Think of context diagrams as the most zoomed-out view of a system. For example,
Figure 4-2 is a context diagram for a system that organizes and manages all the data
from a self-driving car. The car sends back data that can be analyzed by data scientists
and also pushes notifications to the owner of the vehicle.

Figure 4-2. Sample context diagram

Component Diagrams
Component diagrams show the principal elements of a system at runtime. They
show how the system works together, illustrating structure and behavior. They show
information flows and interfaces. Component diagrams are often used by developers,
architects, production support, and DevOps engineers.

60 | Chapter 4: Modeling

7 Cardinality means the number of elements in a set.

Component diagrams are used throughout the project. Originally, they were designed
to define the expected interactions, but they are also useful for telling the story of the
project to a more technical audience. They can be very useful in knowledge transfer
and onboarding.

For example, in Figure 4-3, you have a system that acts as a directory of available
APIs. There are two separate views, one specific to administrators of the system and
another for consumers and creators of the APIs. There is also a user directory for
authentication and authorization, and the information is stored in a database.

Figure 4-3. Sample component diagram

Class Diagrams
As the name implies, class diagrams show how your classes relate to one another.
They show inheritance relationships as well as composition relationships and can
include cardinality.7 They show logical entities and can include methods where
helpful.

Class diagrams are often extracted from existing code as needed because once cre‐
ated, they will quickly become out-of-date with the code. They can be overwhelming
on large systems and may be broken into logical or domain boundaries to make them
more consumable.

The audience for class diagrams is very technical in nature—usually other engineers,
architects, dev, ops, etc. Class diagrams are often created early in a project to
help people understand the overall picture and are typically refined throughout the
project. They can be very helpful for both new and existing developers to understand
the full scope of the system. For example, the class diagram in Figure 4-4 shows that
Person and NamedEntity are subclasses of BaseEntity.

Which Diagrams Do You Need? | 61

Figure 4-4. Sample class diagram

Sequence Diagrams
Sequence diagrams show a sequence of interactions, though they rarely show every
single entity or every single interaction. Typically, they show only the entities
involved in a particular flow. Most systems have nearly limitless interactions and
as such, there is no reasonable way to document every single entity and every single
flow. Sequence diagrams are frequently used to document the most interesting or
architecturally significant interactions or as a way of showing a particular pattern or a
standard use of a library.

Sequence diagrams may show operations, including parameters and return types.
While this can be helpful to developers, it’s also important to understand they can
quickly get out-of-date with the code. It is possible to extract sequence diagrams
from existing code, which can be helpful when starting on a new codebase. These
diagrams are usually built by developers or solution architects. The audience is
typically technical, including developers, architects, and DevOps. QA may also use
sequence diagrams to help them understand what to test.

Sequence diagrams are used throughout a project. Early in a project, they define a
pattern, but they are incredibly useful in knowledge transfer and onboarding. For
example, the sequence diagram in Figure 4-5 returns to the API service, showing that
a search determines whether the user is authorized to perform that function, and if
so, how that request flows to the data store and back.

62 | Chapter 4: Modeling

Figure 4-5. Sample sequence diagram

Deployment Diagrams
Deployment diagrams provide a runtime view of your system. They show the physi‐
cal hardware nodes as well as the software that is running on them. Often, they
show how the hardware is connected and show protocols as well as cardinality.
Deployment diagrams are intended for a more technical audience, such as architects,
developers, DevOps, and production support as well as infrastructure, architects,
security, and your middleware team.

Deployment diagrams can be logical or physical and should be labeled appropriately.
For example, a logical deployment diagram might represent a cluster as a single
entity, while a physical deployment diagram would show the number of a given load
balancer or server running at a given time in said cluster.

Deployment diagrams are used early on in a project to validate quality attributes.
Systems that require 24/7 support will have a very different deployment than those
that have less stringent uptime requirements. Deployment diagrams can help us
understand whether an application will meet our scaling needs as well as validate
business continuity. They also can help us find a more cost-effective deployment.

Which Diagrams Do You Need? | 63

Many organizations will have a standard template for their deployments. Most com‐
panies will have standard cloud environments or on-premises approaches. In many
ways, deployment diagrams are a bit like Lego blocks. Your company may have a
defined set of tools and technologies that you can use, and you will mostly snap them
together. Many organizations have standardized reference architectures that describe
typical applications while at the same time putting some boundaries on your deploy‐
ment options. Very few companies provide an unlimited toolbox. If your company
has standardized on Amazon Web Services (AWS), you wouldn’t create a diagram full
of Azure-specific entities, and if PostgreSQL was your corporate-approved relational
database, you wouldn’t want to model a deployment using MariaDB. For an example
deployment diagram, see Figure 4-6.

This example explores the self-driving car, showing which parts of the application are
deployed within the secure zone versus which aspects live outside the firewall. These
diagrams can also show specific versions of components.

Figure 4-6. Sample deployment diagram

You may encounter a specialization of a deployment diagram known as a security
diagram. This more detailed model describes the security mechanisms of an applica‐
tion. Security diagrams often include protocols and can leverage a deployment or
technology view of the system. These are intended for a more technical audience,
such as developers, architects, and security professionals.

Security diagrams are used throughout a project. They can define a pattern as well as
validate that the solution meets the security needs of the project. It is important to

64 | Chapter 4: Modeling

8 Normalization is a process that reduces redundancy and improves data integrity.

consider personally identifiable information when interacting with a system as well as
any regulations or laws that may apply to your system. For example, see Figure 4-7.

Once again, this example explores the self-driving car, showing which parts of the
application are deployed within the secure zone versus which aspects live outside the
firewall and must be treated as such. Notice the addition of protocols like HTTPS and
LDAP.

Figure 4-7. Sample security diagram

Data Models
Data models show data entities as well as relationships. They can be at different levels
of granularity, from more conceptual to logical, all the way to the physical layout of
the datastore. Essentially, they progress from high-level to concrete implementation.
Conceptual models are very high level and are not normalized.8 Logical models show
business terms, often in a normal form. Physical data models show implementation
details including data types. Again, they progress from less detail to more.

The audience for data models can range from customers to information architects
to database administrators, as well as software architects, developers, and support
personnel. Data models are often created very early on in a project to illustrate
the domain, though they are often refined throughout the lifetime of a project. For
example, Figure 4-8 shows some of the data entities from the API system. A given

Which Diagrams Do You Need? | 65

technology has one to many versions, and a vendor has one to many technologies and
platforms.

Figure 4-8. Sample entity–relationship diagram

Additional Diagrams
You might create any number of other diagram-like artifacts during the lifespan
of a project. Again, in most instances, the creation process can be invaluable to
understanding your domain, a specific problem, or a tricky interaction. You will
often discover that people don’t have a shared understanding of the problem. In no
particular order, here are additional diagrams you might use:

Event storming
A workshop-based technique for exploring a business domain. It can be done
in person or virtually but involves business and technical stakeholders outlining
domain events and the command that creates said domain events as well as the
actor that executes the command. Different-colored sticky notes represent the
various categories. Event storming is a very flexible and lightweight process that
can be used in a variety of ways.

Value stream mapping
A way of analyzing the current state of a system as well as modeling a future end
state. It can be done in person or virtually. Value stream mapping allows you to
see where there is friction or bottlenecks in a process.

66 | Chapter 4: Modeling

https://oreil.ly/6kUM4
https://oreil.ly/sZIgA

9 Trust us, there’s always someone who will want a print copy.

User story mapping
Uses sticky notes along with rough sketches to map out the user experience of a
software system. It can be done in person or virtually and involves business and
technical stakeholders working together to explore the system. High-level tasks
are represented as activities, with the requisite steps and details laid out below.

Disaster recovery models
Provide a detailed view of a system and help define the business continuity
requirements for your project. It is important to consider the number of people
impacted by an outage as well as the cost of downtime. These models show
runtime entities as well as the hardware they are running on. They are used
throughout a project lifecycle, though they increase in importance as you get
closer to full production releases.

Modeling Best Practices
As discussed, models can be incredibly useful to communicate technical intent. An
informal diagram is relatively quick to draft, which can be both a blessing and a
curse! Diagrams can get out of hand. The following are a few practices that can help
you rein them in.

Keep It Simple
Diagrams can be very noisy. It is easy to create a diagram for shock and awe purposes,
an effort to overwhelm and bewilder an audience. Some diagrams are so crammed
with text that they make you wonder if you need to get your eyes checked. Others
have distracting visuals, with lines going everywhere and elements of all shapes and
sizes. These diagrams show so much, they ultimately don’t communicate anything but
confusion.

Though common, these diagrams are rarely useful. Again, the point of a diagram is
to help you communicate something to others. If someone can’t decipher your diagram,
it’s useless. As your application grows, you will have more and more entities and more
and more diagrams. Should you try to show everything on one diagram? While it
can be useful to have an overview of your application, these diagrams tend to be very
challenging to consume. If someone were to print it out, would it be legible?9

There is no rule to include everything on one and only one diagram. In many cases,
you are better off breaking a diagram apart to make the individual diagrams easier to
consume. One diagram can easily point to another diagram. Take a component dia‐
gram as an example. Were you to show every single component of your application,

Modeling Best Practices | 67

https://oreil.ly/hb59p
https://oreil.ly/e8fYy

10 OK, maybe I was expecting a cookie.

the diagram would quickly become unusable. However, you can typically break the
diagram apart at logical points and have one diagram refer to another. You may still
want to have an overview diagram that shows all of the components in one view, but
it should rarely be your only model of the system.

Know Your Audience
Much like writing code (see Chapter 3), the best software engineers focus on the
person consuming their diagrams. A highly technical diagram that’s perfect for a
developer might not work so well if you’re showing it to a nontechnical person.

Diagrams Require Context
Nate here. Many years back, I was the lead developer on a new web application. As
part of my work on this project, I was very proud of the class diagram I had created—
despite its complexity, it had no crossing lines! I scheduled time with my architect to
review my work. I proudly passed my diagram across the table for his review, only to
have him shrug and pass it back. I’ll admit I was a little heartbroken; after all, there
were no crossing lines. While I wasn’t expecting a cookie for my efforts, I certainly
expected some praise.10

What I didn’t understand at the time is that my architect did not have enough
context to understand my class diagram. While I had hoped he would appreciate my
craftsmanship, he had no way of identifying mistakes that weren’t clear and obvious.
He did not understand our business domain to the level that I did on that project and
thus couldn’t effectively comment on it. He had to trust that my work was correct.
That isn’t to say these diagrams aren’t helpful, just that you must understand their
limits.

Be Careful with Your Color Choices
You will often use color to designate certain things in your diagrams. For instance,
new, modified, or untouched components may all have different colors. If you are
going to use color, be sure to include a key identifying your color choices. Just
because your team uses green for new, do not assume that everyone else does as well.

Even if you haven’t printed anything in years, you should assume that someone in
your organization will at least attempt to print your diagram. A diagram may look
fantastic in its chromatic splendor on your monitor; however, once it’s printed out in
grayscale, it may lose much of its meaning. You should also expect that someone in
your audience is color blind. The moral of the story: have an alternative to colors.

68 | Chapter 4: Modeling

Establish Standards and Templates
It can be very helpful to define a set of standards within your organization. A set of
diagrams that you routinely use along with a set of colors that you expect will give
you consistency across projects. Just don’t be overly prescriptive. Allow room to add
or remove diagrams as required on a given project.

Do I Really Need This?
Nate here. Years ago, I worked in an organization with a particularly prescriptive
approach to project documentation. As an architect, I was expected to create any
number of diagrams; however, I was quick to throw out things I did not need.
For example, our template at the time required me to include a use case diagram.
Considering this was an Agile project using stories and not use cases, I thought it was
odd to create a diagram just for the sake of creating a diagram. So I didn’t. Don’t be
afraid to push back on a template.

Tools
Your organization probably already has a modeling tool or two available to you.
However, you can produce perfectly suitable diagrams without instigating a lengthy
procurement process.

If your company doesn’t have anything, consider the following (nonexhaustive list):

• OmniGraffle is a diagramming tool for MacOS and iOS from the Omni Group. It•
includes dozens and dozens of stencils that allow you to quickly create standard
software diagrams. With a WYSIWYG drag-and-drop environment, the learning
curve is relatively low.

• Microsoft Visio is a diagramming tool for Windows. Visio allows you to create•
various diagrams, from flow charts to mind maps, as well as UML diagrams. Like
OmniGraffle, Visio uses a WYSIWYG drag-and-drop environment, making it
very easy to pick up. If your work laptop includes the Microsoft Office suite, odds
are you’ve already got Visio installed. There are several downloadable stencils
specific to software engineering and public cloud providers such as Azure, AWS,
and GCP.

• Mural, Miro, and Lucidchart are browser-based tools that act as a distributed•
collaborative whiteboard. They allow you to create any number of diagrams.
Multiple people can interact with the same canvas simultaneously, making them
ideal for collaborative sessions.

• Mermaid is a JavaScript-based diagramming and charting tool that uses•
Markdown-inspired text definitions to create and modify diagrams dynamically.

Tools | 69

11 Today developers just vibe code solutions, amirite?

It’s particularly popular for embedding diagrams in documentation, GitHub
wikis, and other platforms that support Markdown. Mermaid can create flow‐
charts, sequence diagrams, class diagrams, state diagrams, and more using simple
text syntax.

• Structurizr follows the diagram-as-code model, allowing you to create any num‐•
ber of diagrams using the Structurizr DSL. Though designed to support the C4
model, it is not limited to those visualizations and includes themes for common
cloud-based architectures.

• PlantUML supports many common UML diagrams, allowing you to generate•
models from text files via a command-line or GUI interface.

• Your IDE. Odds are, your IDE natively supports directly creating models as well•
as extracting them from your codebase. You may need to add a plug-in or two,
but today’s editors often include serviceable modeling tools.

• Presentation software such as PowerPoint, Keynote, and Google Slides are also•
incredibly commonly used, largely because of their ubiquity within most enter‐
prises. Though not designed as modeling tools, stencils specific to software
engineering can supplement the basic shapes included by default. They can also
facilitate collaborative sessions, allowing multiple people to work together on a
diagram.

• AI tools are becoming more common, and many are capable of extracting•
diagrams from a codebase. Hallucinations are always possible, though, so you
should carefully review the output.

When in doubt, choose a tool that everybody has access and/or a license to use.

Generating Code from Models
Many years ago, some modeling tools would allow you to generate code from dia‐
grams. While this could be helpful when starting a project, these approaches have
largely been consigned to the dustbin of software history.11 That’s because these tools
had a major flaw: unless developers carefully observed the rules of the tool, any code
they added to the generated files would often get deleted the next time code was
generated from the model.

Some tools worked bidirectionally, at least in theory—modifying the models as you
updated the code, and vice versa. Unfortunately, they didn’t result in the huge produc‐
tivity gains they promised.

70 | Chapter 4: Modeling

https://oreil.ly/nZ_oS

Regardless of what tools you employ, don’t forget to version control your diagrams.
While the diagrams-as-code tools are a more natural fit for versioning, modern
versioning tools can handle visual elements fairly well.

While more complex tools often include powerful features, they usually come with
steep price tags as well as a lengthy learning curve. Regular use can remedy the latter,
but these tools can make things more complicated than is strictly necessary. Do not
be afraid to use a simpler tool if it allows you to get your message across more easily
and more quickly.

However, understand that the message you are trying to get across with your diagram
is the most important part of the equation. The tool is merely there to help you
express that intent. If you like a tool and it helps you be more productive, by all
means you should use it. However, don’t let the tool hold you back. Paper and pencil
make for excellent modeling tools as do whiteboards. When in doubt, keep it simple.

Remember, diagrams are not a substitute for working code. They can be very helpful,
but they can also be out-of-date with the code. Some diagrams can be extracted from
the code itself, either on demand or as part of a build pipeline, which can alleviate the
out-of-sync issue. However, you should always consider the code the ultimate source
of truth.

Wrapping Up
Models and diagrams are an important part of a software engineer’s toolkit. While
code is the ultimate source of truth, diagrams can help you communicate key con‐
cepts to technical and nontechnical stakeholders; the challenge is knowing when to
use a particular approach and when to skip it. Use modeling tools when and where
they make sense.

Putting It into Practice
Pick an interesting flow in an application you know well, or if you’re feeling brave,
an open source library you’re familiar with. Draw a sequence diagram or two. Ask a
colleague for some feedback.

Extract a class diagram from your application. What surprises you about the relation‐
ships? What insights does the resulting model give you about your application?

Ask your architect to share any diagrams they’ve created for your systems. Spend
some time getting comfortable with them. If you have any questions about them, ask!
What would you do differently if you were asked to create one of those diagrams?
If something isn’t clear to you, discuss it with your architect. Some projects generate
diagrams as part of the CI/CD pipeline; if yours doesn’t, it may be worth adding.

Putting It into Practice | 71

Additional Resources
• The C4 model for visualizing software architecture•
• User Story Mapping by Jeff Patton (O’Reilly, 2014)•
• Communication Patterns by Jacqui Read (O’Reilly, 2023)•
• Creating Software with Modern Diagramming Techniques by Ashley Peacock•

(Pragmatic Programmers, 2023)
• UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd•

Edition, by Martin Fowler (Addison-Wesley Professional, 2003)

72 | Chapter 4: Modeling

https://c4model.com
https://learning.oreilly.com/library/view/user-story-mapping/9781491904893
https://learning.oreilly.com/library/view/communication-patterns/9781098140533
https://learning.oreilly.com/library/view/creating-software-with/9798888650219
https://learning.oreilly.com/library/view/creating-software-with/9798888650219
https://www.oreilly.com/library/view/uml-distilled-a/0321193687
https://www.oreilly.com/library/view/uml-distilled-a/0321193687

CHAPTER 5

Automated Testing

Quality is not an act, it is a habit.
—Philosopher Will Durant, paraphrasing Aristotle

When a new year begins, many set goals to live and maintain a healthier lifestyle.
Those goals aren’t achieved by eating a single healthy meal or by going to the gym one
time. It is about consistently making healthy choices most of the time. Similarly, pro‐
ducing high-quality, maintainable software is the result of consistently practicing good
habits when it comes to writing, reviewing, and testing your code. Like maintaining a
healthy lifestyle, this doesn’t come easy, and excuses only set you back.

However, the path to consistency isn’t always smooth. Many developers struggle
with self-doubt, wondering if they’re making the right decisions or if their problem-
solving approach will be questioned. Writing high-quality software is a discipline that
requires regular practice, but over time, your testing efforts will serve as effective
safeguards that your teammates and future self will appreciate. In this chapter, you
will learn the benefits of automated testing, the different types of tests you will
encounter, and how to write them.

Benefits of Automated Testing
It’s natural to be skeptical of writing additional code to verify your existing code, and
it can sometimes feel not worth the effort. You might wonder if it’s just another trend
or resume-building exercise. However, automated testing is far more than that. It’s a
valuable skill to have and an important investment in your codebase.

In the following sections, you’ll explore the concrete benefits of writing automated
tests. You’ll examine how this practice can enhance your code quality, boost your
confidence in your work, and ultimately make you a more efficient engineer. By
understanding these advantages, you’ll gain a clear focus for your testing efforts and

73

1 It’s even rarer for the documentation to be up-to-date and accurate.

appreciate why investing time in automated testing is worthwhile for your professio‐
nal growth.

Acts as Documentation
Joining an existing project can be overwhelming (see Chapter 6 for what to do when
joining an existing project). It’s a luxury for a project to have documentation.1 If
you’re fortunate, you might be able to confer with lead developers or domain experts
to get a high-level overview before you begin work. This isn’t always possible, and
documentation can be sparse or even nonexistent. Your saving grace is a project that
has well-written tests.

Consider a scenario where you’re tasked with fixing payment-processing issues with
a particular type of card. Without proper documentation or tests, you’d have to sift
through unfamiliar (likely complex) code or rely on colleagues for guidance.

Now imagine finding a comprehensive test suite for payments. You’d see a Payment
ProcesserTests class with descriptive test names like these:

• shouldValidateValidCreditCardNumber•
• shouldProcessCreditCardTransaction•
• shouldProcessOrangePay•

These tests provide insight into the module’s features and point to relevant code
sections. Modern IDEs allow easy navigation to the specific services being tested (see
Chapter 2 for effective code-reading strategies). A failing test leads you to the likely
culprit within the codebase.

You might discover a test named shouldFailWhenCreditCardTypeIsOrangePay,
revealing that Orange Pay isn’t supported. This information helps you quickly iden‐
tify and fix the issue, update the frontend, and improve documentation.

This example demonstrates how tests can serve as documentation, helping you learn
a codebase faster. By focusing on improving test suites, you can enhance code quality,
reduce production issues, and speed up your ability to contribute to projects.

Improves Maintainability
Writing good, maintainable code is a skill that typically takes years to develop (see
Chapter 3 for more on this). Writing tests first is like thinking before you speak:
it helps you plan and structure your thoughts. The primary goal of beginners is

74 | Chapter 5: Automated Testing

often just to make code work. While this remains important, writing tests help you
recognize areas for improvement much sooner.

Consider this example of a BlogPostController (code has been omitted for brevity):

public class BlogPostController {
 public void publish(Post post) {
 // save blog post to the database (flip isPublished to true)
 // log blog post has been published
 // send email to subscribers about the new post
 }
}

At first glance, this might seem perfectly acceptable. However, if you attempt to write
tests for this method, you’ll soon realize it’s doing too much:

• Communicating with a database•
• Logging information•
• Sending emails•

This approach violates the single responsibility principle, which states: “A class should
have only one reason to change.”

By thinking about how to test this code, you naturally identify its flaws. You can then
refactor each part of the publishing process into separate classes, making them easier
to test and maintain.

Writing tests not only verifies functionality but also guides you toward better code
design. It helps you spot potential issues before they become problems, leading to
more maintainable and reusable software.

Boosts Your Confidence
Among the many benefits of automated testing, one stands out: the confidence to
code freely. As in many scenarios in life, projecting confidence can help you deal
with pressure and tackle personal and professional challenges. Software development
is inherently iterative, as we constantly write, experiment, and refactor. Without
tests, you might code with caution, trying to avoid introducing changes that break
things. You might be afraid to try new techniques or a creative solution. But with a
robust test suite, you are given a safety net. This freedom fundamentally changes how
you approach coding. You can make changes, try new solutions, and refactor with
confidence knowing your tests will catch any issues.

Changing and refactoring code can be a stressful experience. You might not have a
complete understanding of the application, and side effects can be difficult to predict.
Working without tests is like climbing a mountain without ropes. If everything goes
well, it can be an adrenaline rush, but one mistake can be catastrophic.

Benefits of Automated Testing | 75

Tests act as a safety net when navigating a codebase and give you the ability to act
with confidence. While your initial goal is to make a feature work, you need to
consider how your changes might affect the entire system. Without comprehensive
tests, everything might appear functional and then result in issues during production.

A robust test suite allows the team to do the following:

• Refactor code confidently•
• Ensure that changes don’t break existing functionality•
• Identify potential issues before they reach production•

By writing and maintaining a comprehensive set of tests, we can do the following:

• Better understand the system’s behavior•
• Catch bugs early in the development process when they are simpler and cheaper•

to fix
• Reduce the likelihood of introducing regressions•
• Ensure features meet specifications and maintain code quality through automa‐•

ted testing

This approach not only improves code quality but also boosts your confidence as a
developer. You can make changes, add features, and refactor with the assurance that
your tests will catch potential issues.

Confidence in coding comes from a combination of knowledge, experience, and
tools. Automated tests are a powerful partner in building and maintaining confidence
throughout your development career.

Leads to Consistency and Repeatability
At one time, developers often relied on countless hours of manual testing. You’d
create a list of steps to put stress on your new feature. While you might have followed
the script most of the time, a manual approach is prone to errors, isn’t repeatable,
and is very labor and time intensive. Human beings are inherently incapable of
performing the same task repeatedly without variation.

Automated testing delivers consistent, repeatable results. Unlike humans, test scripts
follow the exact same steps every time without errors or omissions. These tests run
quickly with minimal effort at the click of a button or during builds. Regression tests
specifically verify that existing functionality continues to work as your code changes.

76 | Chapter 5: Automated Testing

2 Likely on every check-in as part of a continuous integration process.

With a comprehensive suite of tests, you can ensure they run consistently and repeat‐
edly, regardless of the environment. Automated tests can be executed frequently,2

providing effective regression testing. These tests ensure that previously fixed bugs
don’t mysteriously return; the tests also identify new bugs introduced by changes in
the codebase. When testing a new feature, skip the expensive manual testing and rely
on automated tests.

Types of Automated Testing
Now that you know why you should test, let’s explore what you should (and should
not!) test. Automated testing is a broad category that covers UI tests, end-to-end tests,
and integration tests, as well as unit tests. It is common to think of these types of
testing as a pyramid, shown in Figure 5-1.

Figure 5-1. Pyramid showing the three types of automated tests you will have to write,
and the recommended amount of each type relative to the others

The testing pyramid is an important concept in software testing, yet it’s often mis‐
understood or ignored entirely. Created by Mike Cohn, this model provides visual
guidance for the types of tests you should have in your application.

Types of Automated Testing | 77

These are the three types of automated testing:

Unit tests
Designed to cover individual components for functions in isolation from the rest
of the system, ensuring that each part works correctly on its own

Integration tests
Verify how the different components or modules of a system work together as a
cohesive unit

End-to-end tests
Cover the entire application, starting from the user interface and extending all
the way to the backend system

This structure is based on fundamental trade-offs in software testing. As you move
up the pyramid, tests become slower to run, more expensive to maintain, and more
likely to break. A unit test might run in microseconds, while an end-to-end test
could take several minutes. When you have hundreds or thousands of tests, these
differences add up dramatically. Let’s take a closer look at each one.

Unit Tests
Unit tests form the foundation of the testing pyramid, representing the largest portion
of your test suite. Think of them as a contract that your code must fulfill. If the code
changes in any functional way, the corresponding unit tests should break, alerting
you to potential issues. These tests examine individual components or functions in
isolation, ensuring that each piece works correctly on its own.

Unit tests serve as your first line of defense against defects, working alongside static
analysis and code reviews. They should be quick to write and execute, providing
rapid feedback during development. When a unit test fails, it typically points to a
specific function or line of code, making debugging straightforward. This speed and
precision make unit tests invaluable during feature development and continuous inte‐
gration, giving developers the confidence to iterate and improve their code quickly.

Integration Tests
An integration test is a detailed process that thoroughly verifies how different compo‐
nents or modules of a system work together as a cohesive unit. While unit tests focus
on individual parts of the code in isolation, integration tests cover a broader scope by
examining the interactions between these parts.

However, they are still narrower in focus compared to full system tests, which eval‐
uate the entire system’s performance and functionality. Integration tests are crucial
because they help catch issues that arise only when individually tested components
are combined, ensuring that the integrated system functions correctly and efficiently.

78 | Chapter 5: Automated Testing

This step is essential in the SDLC to maintain the integrity and reliability of the
system as a whole.

Because of their scope and complexity, integration tests typically take longer to run
than unit tests and are often executed less frequently. When integration tests fail,
more investigation is usually needed to identify which interaction between modules
caused the issue.

End-to-End Tests
An end-to-end (E2E) test is a comprehensive testing procedure that covers the entire
application, starting from the user interface and extending all the way to the backend
systems. These tests are designed to simulate real user scenarios, ensuring that the
application functions as expected in a real-world environment.

Because of their complex and thorough nature, these tests are typically slow to
execute and require significant resources and time to run. As a result, you will
generally find fewer end-to-end tests compared to other types. They are often run
less frequently, usually as part of a scheduled process. End-to-end tests can be brittle
and are more susceptible to false negatives (it is possible for a test to fail because of
a trivial change to a user interface element as opposed to an actual issue with the
functionality). Failing end-to-end tests may require substantial debugging efforts to
identify and rectify the issue.

Despite this, end-to-end tests are invaluable as they provide a high amount of confi‐
dence in the system’s overall functionality, helping to ensure that all components of
the application work together seamlessly.

What Mix of Tests Should You Be Writing?
The actual number of tests will vary from project to project, depending on the com‐
plexity of the application, the technology stack being used, and the criticality of the
application. Additionally, the number of tests could be based on your organization’s
standards and practices, which may include specific guidelines or benchmarks for test
coverage and quality. It’s important to tailor your testing strategy to suit the unique
needs of your project while ensuring that you maintain a balanced approach covering
all necessary aspects of the application.

Types of Automated Testing | 79

3 The maintainers of the language and framework are responsible for testing their code, not you.

What You Should Not Test
While comprehensive testing is essential for software quality, it’s equally important to
be strategic about what you test. Here are key guidelines for what to avoid in your
testing strategy:

• Your focus should be on your code, and you should not be testing language•
features or framework code.3

• Avoid testing generated code like getters, setters, builder methods, and auto-•
generated data transfer objects (DTOs).

• Avoid testing private methods directly. Instead, focus on the public interface that•
calls these private methods.

• Avoid writing tests that depend on external services. Instead, use mocks for unit•
tests or test doubles for integration tests.

A well-designed test suite should be comprehensive yet maintainable, providing
thorough coverage without becoming unwieldy. By focusing on testing your own
code and avoiding unnecessary tests, you can create more effective and efficient test
suites. Now that you understand the types of automated tests that exist and where you
should and should not focus your efforts, it’s time to talk about code coverage.

Code Coverage
Code coverage is a metric used to measure the percentage of your code that is
executed when your tests are run. Think of code coverage like a map in a video
game. When you begin, the entire map is dark, but as you begin to move around and
explore areas, they become visible. Tests that execute parts of your code “light up”
those sections, showing you’ve been there. High coverage means you explored most
of the map, while low coverage means there are blind spots where bugs can be hiding.

Because code coverage is important in the world of testing, you will find a variety
of IDEs that support code coverage as well as tools for the language of your choice.
As a developer, you can run coverage right in your IDE to get instant feedback on
your coverage. There are also tools that integrate into your CI/CD pipeline to enforce
a minimum code coverage threshold. If the coverage falls below that, they can fail,
which in turn blocks a PR from being merged.

Code coverage tools analyze your test runs and generate reports showing exactly
which lines, branches, and functions were executed. You might see percentages like

80 | Chapter 5: Automated Testing

“85% line coverage” or “72% branch coverage,” indicating how much of your code
was executed during testing.

While code coverage provides valuable insights, it’s important to understand its limi‐
tations. A common misconception is that higher code coverage automatically means
better testing. Some organizations will even require minimum coverage thresholds of
80%–90% coverage before it can be deployed. While there is good intention behind
these requirements, they can also lead to counterproductive behaviors.

As a developer, you can write tests that execute code without actually verifying
meaningful behavior, essentially “gaming” the coverage metrics. A test that calls a
method but doesn’t assert anything useful still counts toward coverage yet provides
no real protection against bugs.

Instead of striving for 100% coverage, which is often a vanity metric, use it as a
feedback mechanism for the tests you’re writing. Low coverage in mission-critical
business logic might indicate an area of the code that needs more attention. High
coverage in areas where you’re simply testing data carrier classes or configuration
might suggest that you’re testing code that doesn’t require it.

Focus on writing meaningful tests that verify behavior and let code coverage guide
you to areas of your code needing more attention. The goal isn’t to hit an arbitrary
number, just to meet a requirement. The point of testing is to build confidence in the
code you’re writing and ultimately shipping to production. Now that you understand
code coverage, let’s start writing some tests so you can begin using these tools.

Writing Tests
It’s time to get down to business and learn the mechanics of writing tests.

Getting Started
No matter what programming language, framework, or meta-framework you’re
using, multiple testing tools are likely available to you. In this section, we are going
to use the Java programming language. While the setup and syntax might be different
for your language of choice, the ideas remain the same.

Once you have created a project, your next decision will be the testing framework
to use. There are many great options to choose from, but the most popular testing
framework for Java is called JUnit. To include JUnit, you can declare the appropriate
dependencies in your Maven POM file and install them.

We won’t cover the details of JUnit here, but if you’re interested in learning more
about it, you should check out the excellent documentation in its user guide. Once
you have JUnit installed, you can begin writing tests.

Writing Tests | 81

https://oreil.ly/JIAwL

There are two main approaches to writing tests, test first and test last:

• Test-first methodologies, such as test-driven development (TDD), follow a “red-•
green-refactor” cycle. First, you write a failing test (“red”), then implement the
minimum code to pass the test (“green”), and finally improve the code without
changing its behavior (“refactor”).

• Test-last approaches involve writing tests after implementing the functionality.•

Both methods have their merits, and deciding between them often depends on
project requirements and team preferences. Regardless of the approach, all testing
methodologies use assertions to verify expected outcomes.

AI Note

Writing tests is an excellent use case for AI assistance. You can
provide AI tools with examples from your existing test suite to
help them understand your organization’s preferred testing style,
naming conventions, and coding standards. AI can help generate
test cases, suggest edge cases you might have missed, write boiler‐
plate test code, and even help refactor existing tests for better
readability. This can significantly speed up the testing process while
maintaining consistency with your team’s established patterns.

Assertions
An assertion is a function or method that can be used to verify that certain conditions
are met during the execution of a program. There are a number of assertion libraries
in Java, all offering different features.

JUnit 5 comes with a number of assertions for performing a wide range of verifica‐
tions. All of the assertions are static methods in the org.junit.jupiter.Assertions
class. Let’s say you want to verify that the sum of a mathematical operation is correct.
There is an assertEquals method that will take two integers, shown in the following
code block. The first argument is the expected value, and the second argument is the
actual value:

@Test
void shouldAdd2Numbers() {
 int expected = 3;
 int actual = 2 + 1;
 assertEquals(expected,actual);
}

82 | Chapter 5: Automated Testing

If the two numbers are equal, the assertion passes and therefore so does this test. If
they are not equal, the assertion fails and causes the test to fail. To get familiar with
available assertions, read through the documentation for whatever assertion library
you are using.

Writing Unit Tests
Remember, unit tests are isolated tests that run independently and very fast. Imagine
a class that performs mathematical operations necessitating tests for each of them.
Here is an example class called Operations:

package com.fose;

public class Operations {
 public double add(double a, double b) {
 return a + b;
 }
 public double subtract(double a, double b) {
 return a - b;
 }
}

Before you can create your first test, you need to pay attention to where your source
code is located. Code for this class is in the package com.fose. When you create a
test class, you will want to place it in /src/test/java and in the same package that your
source code is in. In the following example, we have an add and subtract test to cover
all of the functionality from the Operations class.

Here you are following test-last approaches, which involve writing tests after imple‐
menting the functionality. You can start by adding the method stubs for each of the
tests you’re going to write:

package com.fose;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class OperationsTest {
 @Test
 void add() {
 }

 @Test
 void subtract() {
 }
}

Writing Tests | 83

First, you need an instance of the Operations class. You will often hear this referred
to as the system under test (SUT) because it refers to the specific component, module,
or part of your system that you are currently testing. This is a unit test that is focused
on testing the Operations class and nothing else:

class OperationsTest {

 private final Operations sut = new Operations();
}

With an instance of the system under test available, you can now fill in the test
methods. We aren’t doing anything special here, but you will want to make sure you
cover any edge cases because you don’t want your users to catch them for you:

package com.fose;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class OperationsTest {
 private final Operations sut = new Operations();
 @Test
 void add() {
 assertEquals(5, sut.add(2,3));
 assertEquals(0, sut.add(-1,1));
 assertEquals(-5, sut.add(-2,-3));
 }
 // Additional tests omitted for brevity
}

Mocking
In software testing, mocking is a technique used to create a simulated version of a
dependency (often called a stunt double in this context) that allows you to test code in
isolation.

What is a dependency? In the context of writing a unit test, a dependency is any other
class the system under test relies on to complete a task. While mocking helps you
isolate dependencies in unit tests, it presents a significant challenge in integration
testing. In integration tests, you aim to verify how these dependencies work together,
which can be tricky. Managing multiple dependencies, ensuring they’re in the correct
state, and handling their interactions can quickly complicate your integration tests.
It’s like trying to juggle multiple balls at once—you need to keep track of how each
dependency behaves and impacts the others.

The following example has a class called UserService with two dependencies: User
Repository and EmailService. The UserRepository class is responsible for reading

84 | Chapter 5: Automated Testing

and persisting users to your database while EmailService is responsible for sending
out emails:

package com.fose;

public class UserService {

 private UserRepository userRepository;
 private EmailService emailService;

 public UserService(UserRepository userRepository, EmailService emailService) {
 this.userRepository = userRepository;
 this.emailService = emailService;
 }

 public void registerUser(String username, String email) {
 // register user
 }
}

If you want to write a unit test for the UserService class that focuses on testing
the registerUser method, how would you do it? Right now this class has two
dependencies, and if you include both, you’re no longer writing a unit test, you’re
writing an integration test.

This is where a mocking framework comes into play. Instead of using the production
UserRepository, you will use a mock of that class; the mock looks like the class but
isn’t. You’ve probably heard the phrase “it acts like a duck, quacks like a duck, but isn’t
a duck.” This mock will look like a UserRepository but isn’t one and won’t perform
the actual business logic like persisting a new user to a database. Instead, it will do
whatever you program the mock to do.

Focus only on testing your UserService class; the dependencies will be tested in their
own unit tests. In this example, we use a popular mocking framework for the Java
world named Mockito, but again the concepts should translate to whatever language
you’re using.

With Mockito in place, you can write a UserServiceTest:

@ExtendWith(MockitoExtension.class)
class UserServiceTest {

 @Mock
 private UserRepository userRepository;
 @Mock
 private EmailService emailService;
 @InjectMocks
 private UserService userService;

 @Test

Writing Tests | 85

 public void testUserRegistration() {
 String username = "newuser";
 String email = "newuser@example.com";
 when(userRepository.existsByUsername(username)).thenReturn(false);
 userService.registerUser(username, email);
 verify(userRepository).save(any(User.class));
 verify(emailService).sendWelcomeEmail(email);
 }

}

In the preceding test code, mock objects are created using the @Mock annotation
to simulate dependencies, which allows for controlled testing without needing real
implementations. These simulated dependencies are then automatically injected into
the class being tested.

Writing Integration Tests
In the previous section, you saw an example with UserService, which depended on
both UserRepository and EmailService. When writing a unit test, you wanted to
isolate that class and thus mocked out the two dependencies.

In an integration test, you want to test how UserService interacts with its dependen‐
cies. Start by creating a new test named UserServiceIntTest. The Int as part of the
name clearly identifies this test as an integration test.

UserService depends on both the repository and email service, so you will need
instances of each of those classes to create an instance of the UserService. In a
real-world application, you might be using a framework with dependency injection,
allowing you to just ask for an instance, but here you will need to create them
manually:

class UserServiceIntTest {
 private UserRepository userRepository;
 private EmailService emailService;
 private UserService userService;

 @BeforeEach
 void setUp() {
 userRepository = new UserRepository();
 emailService = new EmailService();
 userService = new UserService(userRepository,emailService);
 }

}

Now that you have an instance of UserService that contains real (not mocked)
versions of your dependencies, you can write some integration tests:

86 | Chapter 5: Automated Testing

@Test
void shouldNotRegisterUserWithUsernameOfUser() {
 // Test valid user registration
}

@Test
void shouldRegisterValidUser() {
 // Test invalid user registration
}

Writing End-to-End Tests
E2E testing focuses on the backend API. These tests require a real environment to
run, in this case, Spring Boot with an embedded Tomcat server. The goal is to ensure
that a real server is running, sending requests, and validating responses. Here’s a
concise example of an E2E test (the full example can be found on GitHub):

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
@AutoConfigureMockMvc
class UserRegistrationE2ETest {

 @Autowired private MockMvc mockMvc;
 @Autowired private UserRepository userRepository;
 @Autowired private EmailService emailService;
 @Autowired private ObjectMapper objectMapper;

 @BeforeEach
 void setUp() {
 userRepository.deleteAll();
 }

 @Test
 void testUserRegistration() throws Exception {
 String username =
 "testuser";
 String email = "testuser@example.com";
 User request = new User(username, email);

 // Perform the request
 mockMvc.perform(post("/api/users/register")
 .contentType(MediaType.APPLICATION_JSON)
 .content(objectMapper.writeValueAsString(request)))
 .andExpect(status().isOk());

 // Verify that the user was saved in the database
 Optional<User> savedUser = userRepository.findByUsername(username);
 assertTrue(savedUser.isPresent());
 assertEquals(email, savedUser.get().email());

 // // Additional verifications (welcome email sent) omitted for brevity
 }
}

Writing Tests | 87

This test does quite a bit:

1. Configures a random port for the server1.
2. Uses MockMvc for server-side Spring MVC test support2.
3. Cleans the database before each test3.
4. Simulates a user registration request4.
5. Verifies the response and database state5.

This approach allows you to test the entire flow from API request to database
interaction, ensuring that your system functions correctly end to end.

Wrapping Up
Throughout this chapter, you’ve explored the world of automated testing and its
crucial role in software development. You’ve seen how tests serve as valuable docu‐
mentation, improve code quality, and act as a safety net for refactoring. From unit
tests to end-to-end tests, each type plays a vital part in ensuring that your software
works as intended.

Remember, just like maintaining a healthy lifestyle, writing good software is about
establishing positive habits and making consistent, healthy choices. Coding with a
robust test suite is like having a trainer and a well-defined exercise plan. Tests give
you the confidence to move forward, try new things, and make changes without the
constant fear of slipping up. This confidence empowers you to navigate the complex‐
ities of software development, enabling continuous improvement and adaptation to
new requirements without fear of breaking existing functionality.

As you move forward in your career, strive to make testing a habit. It might seem
like extra work at first, but the long-term benefits to your code quality, project
maintainability, and professional growth are immeasurable. Remember, quality isn’t a
one-time act—it’s a consistent practice. By embracing automated testing, you’re not
just catching bugs; you’re becoming a more effective, confident, and skilled developer.

Putting It into Practice
Testing isn’t a skill that is perfected overnight; it is developed through consistent
practice. The following practices offer various entry points into the world of automa‐
ted testing, whether you’re working on a new feature, fixing a bug, or improving
a codebase. Don’t feel overwhelmed by trying to implement all of these at once.
Instead, choose one or two practices that resonate with your current situation and
start there. As you become comfortable with these habits, gradually incorporate

88 | Chapter 5: Automated Testing

others. Remember, even writing a single test today is better than writing none. Here
are some practices to help you build your testing skills:

Learn from open source libraries
Explore your favorite open source library:

• Read through its tests.•
• What do you learn about the library’s functionality that you didn’t know•

before?
• How do their testing practices differ from yours?•
• Consider adopting some of their testing strategies in your own projects.•

Use tests as documentation
Take these steps when assigned to work on an unfamiliar part of the codebase:

• Look for existing tests first.•
• If tests are missing or inadequate, write new ones as you learn about the•

code.

Improve existing codebases
Take these steps if you find your project has an inadequate number of tests:

• Don’t try to fix everything at once. Instead, make incremental improvements.•
• Challenge each developer (including yourself) to write one new test a day.•

Start with tests for new features
The next time you’re assigned a new feature, begin by writing tests. This practice
will help you clarify requirements and design better code from the start.

Address bugs with tests
When tackling a bug, do the following:

• First, write a test that verifies the bug exists. This test should fail initially.•
• As you’re writing the tests, this might present an opportunity to refactor the•

code to improve the quality, readability, or maintainability.

Advocate for testing
Do the following if you find an issue that could have been prevented with proper
tests:

• Add tests that would have caught the problem.•
• Use this as a learning opportunity for the team.•
• Discuss with your manager how improved test coverage could prevent simi‐•

lar issues in the future.

Putting It into Practice | 89

Practice
The only way to get better at writing tests is to practice. Consider practicing with
code katas to build your testing skills in a structured, iterative way.

Remember, building a robust test suite is an ongoing process. Each small step you
take toward better testing practices contributes to the overall quality and maintaina‐
bility of your codebase.

Additional Resources
• Single responsibility principle•
• Mockito•
• JUnit 5•
• AssertJ•
• Hamcrest•
• Clean Code: A Handbook of Agile Software Craftsmanship by Robert C. Martin•

(Pearson, 2008)

90 | Chapter 5: Automated Testing

https://oreil.ly/Ui_00
https://oreil.ly/DkLzi
https://oreil.ly/eWw_h
https://oreil.ly/b5rLP
https://oreil.ly/fOAgm
https://www.oreilly.com/library/view/clean-code-a/9780136083238
https://www.oreilly.com/library/view/clean-code-a/9780136083238

CHAPTER 6

Exploring and Modifying
Unfamiliar Systems

Some of the most valuable experience I gained was from supporting a legacy app. I highly
recommend it, but I wouldn’t wish it on anyone.

—Dalia Abo Sheasha, software developer

While many developers love the blank canvas of greenfield projects, the harsh reality
of software development is that most of the work we do will be on established
systems. Don’t let this reality discourage your view on the profession of software
development. Working with existing codebases has its advantages. Many key deci‐
sions have already been made, allowing you to focus directly on the problems at hand
instead of worrying about infrastructure.

As someone getting onboarded to a new project or simply exploring a new codebase,
you will need to develop skills to explore and modify unfamiliar systems. In this
chapter, you’ll discover how to navigate and understand unfamiliar code and how
to make changes safely. Whether you’re joining a new team or maintaining legacy
systems, these skills will help you confidently contribute to any codebase. This builds
on the mechanics of reading code that we covered in Chapter 2.

Understanding Unfamiliar Codebases
Whether you’re onboarding at a new company or moving to a new project at your
current employer, working with unfamiliar codebases can be stressful and anxiety
inducing. This can be caused by the unknown or working with languages, frame‐
works, or tools that you aren’t familiar with. However, if you approach this challenge
with a clear plan and techniques to navigate these uncharted waters, you’ll boost both
your success rate and confidence.

91

In this section, you will learn techniques for understanding the big picture or goals of
the project. You’ll learn how to get familiar with a new project by following the flow
or execution path of the code. Finally, you’ll learn how to incrementally build mental
models by breaking complex systems into manageable pieces. As you work through
this chapter or explore a new project, remember that it’s OK to not immediately
understand everything in a new codebase. Even team members who have worked on
the project for years don’t know everything about it.

Start with the Big Picture
“You can’t see the forest through the trees.” This means that if you’re so focused on
tiny details (which version of your framework you’re using), you fail to understand
the bigger picture or overall situation (the goal of this project). You probably want to
dive in and start contributing to the project and proving your worth to the team right
away. It’s always nice to have a plan, and here are some tips for getting a grasp on the
big picture.

Understanding the project
Before you can begin to even understand the code, you need to understand the
purpose and intent of the project. Start with a high level: what is the overall reason for
this project existing? Who are the stakeholders of this project? What does this project
mean to your employer? Is it a large part of the business?

There are many ways to do this, but a good place to start is with someone who
has deep knowledge of the product, like a product manager. See if you can set up a
meeting with this person and be prepared to learn. Take notes as much as you can so
that you can refer back to them later. If this is a virtual meeting, ask if you can record
it so you can review it again later. Most importantly, ask questions. The only dumb
questions are the ones you don’t ask.

After talking with a product owner and getting a high-level overview of the project,
it’s time to dive deeper into the technical side of things. At this point, reach out to any
software engineers who currently work on the project, and if you can find any who
originally developed the system, consider this like striking gold during the gold rush.
Ideally, you will want to reach out to someone in a tech lead or architecture role who
can provide valuable insights about decisions that were made.

Who are the customers of this product? Go out and find any public information
about this project. If there is any, try to look at this from the customers’ perspective.
Some companies develop user personas for their products, which are fictional profiles
of the actual users that can help you understand different types of users, their goals,
and pain points. This will give you valuable context for why certain technical deci‐
sions were made.

92 | Chapter 6: Exploring and Modifying Unfamiliar Systems

Reviewing available documentation
After talking to stakeholders, the next step on the path to understanding a codebase
is to comb through any and all available documentation, including ADRs. With a
high-level understanding of the project itself, some of this documentation should
start to make some sense. At this point, you are trying to learn as much about the
codebase as you can through the documentation.

A big part of this is the infamous “onboarding documentation” to a project. This will
tell you everything you need to know to get this project up and running on your local
machine. This documentation has gotten better over the years with tools like Docker,
but a review can still be a tedious process.

While your job is not to write documentation at this point because you’re still getting
familiar with everything, you should be taking notes and identifying gaps in the
documentation. This will be something you can come back to later and fix and is a
great way to contribute to the team.

The Documentation Trap
Dan here. I once spent three days trying to understand a complex authentication sys‐
tem, carefully reading through what I thought was up-to-date documentation. When
I finally asked a teammate for help, they laughed and said, “Oh, that documentation
is from two versions ago. We completely rewrote the auth system last year.” The
lesson? Documentation can lie, but the code never does. Always verify what you read
against what’s actually running. And don’t be afraid to ask for help. A three-minute
conversation would have saved me three days.

Understanding architecture and project structure
After understanding the overall project and reading through all of the available doc‐
umentation, it’s time to examine the architecture and organization of the codebase.
This is an important step before diving in and reading any code or configuration or
writing code. The project’s structure can reveal a lot of information and give you a
more holistic view of the project that will help you when navigating the codebase.

Most projects follow some form of architectural pattern, whether by deliberate design
or through organic evolution. Start by identifying which pattern (or combination of
patterns) the codebase follows.

Package by layer organizes code horizontally based on technical responsibilities. You’ll
often see top-level directories like controllers, services, repositories, and models. This
approach groups similar technical components together, making it easy to find all
components of a particular type. The following code is packaged by layer:

Understanding Unfamiliar Codebases | 93

src/
 ├── controllers/
 │ ├── UserController.java
 │ └── ProductController.java
 ├── services/
 │ ├── UserService.java
 │ └── ProductService.java
 ├── repositories/
 │ ├── UserRepository.java
 │ └── ProductRepository.java
 └── models/
 ├── User.java
 └── Product.java

Package by feature organizes code vertically around business capabilities or features.
You’ll see top-level directories representing business domains like users, products,
and orders. This approach encapsulates all aspects of a feature together, making it
easier to understand complete business workflows. The following is an example of
code packaged by feature:

src/
 ├── users/
 │ ├── UserController.java
 │ ├── UserService.java
 │ ├── UserRepository.java
 │ └── User.java
 └── products/
 ├── ProductController.java
 ├── ProductService.java
 ├── ProductRepository.java
 └── Product.java

Hexagonal architecture (also known as ports and adapters) organizes code to separate
business logic from external concerns. Look for a core domain model surrounded
by adapters that connect to the outside world. This pattern emphasizes isolation of
business rules from technical implementations. The following is an example of code
that has a hexagonal architecture:

src/
 ├── domain/ // Business logic
 │ ├── model/
 │ └── service/
 ├── application/ // Use cases, orchestration
 │ └── service/
 ├── ports/ // Interfaces for adapters
 │ ├── input/
 │ └── output/
 └── adapters/ // Technical implementations
 ├── web/
 ├── persistence/
 └── messaging/

94 | Chapter 6: Exploring and Modifying Unfamiliar Systems

Microservices architecture splits functionality into multiple independent services. If
you’re working in a microservices environment, you’ll need to understand both the
architecture of your specific service and how it fits into the larger ecosystem. In the
following example, each top-level service like user-service is its own microservice:

microservices-system/
├── user-service/
│ ├── controllers/
│ ├── services/
│ ├── repositories/
│ ├── models/
│ └── Dockerfile
├── product-service/
│ ├── controllers/
│ ├── services/
│ ├── repositories/
│ ├── models/
│ └── Dockerfile
├── order-service/
│ ├── controllers/
│ ├── services/
│ ├── repositories/
│ ├── models/
│ └── Dockerfile
├── api-gateway/
│ ├── config/
│ ├── filters/
│ └── routes/
└── shared/
 ├── common-models/
 └── utils/

Understand the Execution Flow
Execution flow is the sequential path of instructions that a program follows during
runtime, including all decisions, loops, and function calls that determine which code
executes and in what order.

Now that you have the big picture of the project and understand its purpose, you
can begin looking at code. We aren’t actually writing any code or doing any in-depth
analysis at this point; we are just trying to understand how the code flows. In this
section, you will learn techniques for understanding the execution flow by finding
application entry points, tracing requests and responses, and learning how to locate
external dependencies.

Finding application entry points
An application has a set of doors that act as entry points into your application. These
doors come in the form of an application’s main method, public APIs, web UIs, and

Understanding Unfamiliar Codebases | 95

1 We’ll be using the Spring PetClinic app for examples throughout this chapter. Even if you aren’t an expert in
Java or Spring, it should be fairly straightforward to understand.

more. These doorways into the application are a great place to start if you want to
learn about the different execution flows in an application.

For example, in a Spring Boot web application,1 you can find the main class by
looking for the @SpringBootApplication annotation and locating the main method:

@SpringBootApplication
public class PetClinicApplication {
 public static void main(String[] args) {
 SpringApplication.run(PetClinicApplication.class, args);
 }
}

When you have identified one of the application’s entry points, you can begin to fol‐
low the code’s execution flow. This is where using your IDE’s debugger can be a really
valuable tool. Set a breakpoint on the run method and then use the step-through
functionality. This will give you insight into what the framework is doing under the
hood and provides an excellent starting point for understanding the codebase.

To learn more about the application’s entry points, you can locate the public APIs,
which in this PetClinic example application are the REST endpoints. The following
@GetMapping section tells us that we can send a request to /pets/new and that this
is the method that will execute. Now we can use the features of the IDE and our
debugging tools to follow the execution path:

@GetMapping("/pets/new")
public String initCreationForm(Owner owner, ModelMap model) {
 Pet pet = new Pet();
 owner.addPet(pet);
 return VIEWS_PETS_CREATE_OR_UPDATE_FORM;
}

There are many entry points that can help you map out the execution flow of an
application. Here are some common ones, but there are many more:

Main/bootstrap methods
The traditional starting point of execution (like Java’s main())

Public APIs/controllers
Endpoints that expose functionality to external systems

Event handlers/listeners
Code that executes in response to specific events or triggers

Scheduled tasks/jobs
Functionality that runs at predetermined intervals

96 | Chapter 6: Exploring and Modifying Unfamiliar Systems

https://oreil.ly/t-KON

Lifecycle hooks
Methods called during component creation, startup, or shutdown

Plug-in/extension points
Interfaces designed for extending application functionality

Message consumers
Code that responds to messages from queues or message brokers

Command-line argument processors
Logic that handles startup parameters

Database triggers/stored procedures
Server-side code that executes in response to data changes

The key is knowing how to find the right doors to open. When you have identified
them, you can use them as entryways into understanding the flow of an application.

Following the data: Tracing request journeys
When working with existing codebases, especially web applications and APIs (REST,
GraphQL, gRPC), tracing the journey of a request through a system is a great way to
understand how the code works and the systems involved. While documentation or
tests might tell you what is supposed to happen, following a request will reveal what
actually happens.

Request tracing is valuable because it does the following:

• Reveals the actual path of execution through multiple components and systems•
• Helps identify all the involved layers (controllers, services, repositories, etc.)•
• Exposes data transformations that happen along the way•
• Uncovers hidden business logic and validation rules•
• Shows how errors are handled in practice•

As a developer exploring a new codebase, some really great tools are at your disposal
for tracing requests. In this section, you’ll learn about a few of these tools. You might
not need to use all of them, but knowing what is available is helpful. Try a few of them
out and see what tools work well for you in your workflow.

Browser developer tools. When working with web applications, browser developer
tools are a good first place to inspect a request and response. In the following
example, we are running the PetClinic application and adding a new pet to an owner
(Figure 6-1).

Understanding Unfamiliar Codebases | 97

Figure 6-1. The Spring PetClinic application: adding a new pet to an owner form

When you fill out the form and click the Add Pet button, it will send a request to the
following endpoint:

@PostMapping("/pets/new")
public String processCreationForm(Owner owner, @Valid Pet pet,
BindingResult result,
 RedirectAttributes redirectAttributes) {

 if (StringUtils.hasText(pet.getName()) && pet.isNew() &&
 owner.getPet(pet.getName(), true) != null)
 result.rejectValue("name", "duplicate", "already exists");

 LocalDate currentDate = LocalDate.now();
 if (pet.getBirthDate() != null && pet.getBirthDate().isAfter(currentDate)) {
 result.rejectValue("birthDate", "typeMismatch.birthDate");
 }

 if (result.hasErrors()) {
 return VIEWS_PETS_CREATE_OR_UPDATE_FORM;
 }

98 | Chapter 6: Exploring and Modifying Unfamiliar Systems

 owner.addPet(pet);
 this.owners.save(owner);
 redirectAttributes.addFlashAttribute("message", "New Pet has been Added");
 return "redirect:/owners/{ownerId}";
}

If you open up the developer tools and inspect the Network tab, you will see the
POST request to the /pets/new endpoint where you can examine the headers, payload,
response, and more, as shown in Figure 6-2.

Figure 6-2. Chrome developer tools showing a POST request to /pets/new

API testing tools. If you want to test an API endpoint directly and it’s a simple GET
request, you can put the URL in your browser and see the result. When it’s any other
request method like POST/PUT/PATCH/DELETE, you will need to reach for an API
testing tool. There are some really great tools on the market like Postman, Insomnia,
and Bruno. You will also find plug-ins for a lot of the major IDEs out there that
contain similar functionality.

In the previous section, we submitted the form from the browser and used developer
tools to inspect the POST request under the hood. What if you didn’t want to go
through the UI and test the API endpoint directly? This is where API testing tools
shine, giving you the ability to send a POST request along with headers, authoriza‐
tion, a request body, and more. After sending the request, you then have the ability to
inspect the response, allowing you to bypass the UI altogether (Figure 6-3).

Understanding Unfamiliar Codebases | 99

Figure 6-3. Postman API testing tool sending a POST request to the endpoint /posts/new

You can test this endpoint with a tool like Postman and examine the following:

Required fields and data types
Identify which fields are mandatory in the request body and what format they
expect (strings, numbers, arrays, etc.).

Input validation behavior
Test how the API handles invalid data, missing fields, malformed JSON, and edge
cases like empty strings or null values.

Authentication and authorization
Verify that protected endpoints properly reject unauthorized requests and accept
valid credentials.

Response structure and status codes
Examine what data is returned on successful requests versus different types of
failures (400, 401, 404, 500, etc.).

Error message quality
Assess whether error responses provide clear, actionable feedback for debugging.

100 | Chapter 6: Exploring and Modifying Unfamiliar Systems

Performance characteristics
Measure response times and identify any endpoints that are unusually slow.

Logging. Logs provide insight into the system’s internal behavior. In many applica‐
tions, logs might be the only tool available for debugging issues or tracing the journey
of a request in production. When examining the code, look for logging statements
like this:

log.info("Finding owner with id: {}", ownerId);

The following endpoint will list out all the pets for a particular owner. If you make
a request to this endpoint with a valid owner ID, you will see two new lines in the
log (Figure 6-4). You will also notice that the curly braces are replaced with the actual
values:

@GetMapping("/owners/{id}/pets")
public List<Pet> findAllPets(@PathVariable("id") int ownerId) {
 log.info("Finding owner with id: {}", ownerId);
 Optional<Owner> owner = ownerRepository.findById(ownerId);
 if (owner.isPresent()) {
 var pets = owner.get().getPets();
 log.info("Found {} pets for owner", pets.size());
 return pets;
 }
 return null;
}

Figure 6-4. IntelliJ IDEA console displaying the log messages from the findAllPets
method

Debugging. Your IDE’s debugging features are invaluable for stepping through code
execution, especially when you need to understand complex business logic. Let’s
revisit the pet creation validation from earlier:

@PostMapping("/pets/new")
public String processCreationForm(Owner owner, @Valid Pet pet,
BindingResult result
 RedirectAttributes redirectAttributes) {

 // Set breakpoint here
 if (StringUtils.hasText(pet.getName()) && pet.isNew()

Understanding Unfamiliar Codebases | 101

 && owner.getPet(pet.getName(), true) != null)
 result.rejectValue("name", "duplicate", "already exists");

 // Additional validation...
}

You know that the application is rejecting a value for a new pet, but why? This
conditional has multiple parts that all need to be true for a duplicate name error to
occur. By setting a breakpoint on this line, you can step through and examine the
following (Figure 6-5):

What each condition evaluates to
Does StringUtils.hasText(pet.getName()) return true? Is pet.isNew() true?

The state of objects
What pets does this owner already have? What’s the exact name being checked?

Method call results
What does owner.getPet(pet.getName(), true) actually return?

Figure 6-5. Using the debugger in IntelliJ to step through business logic

102 | Chapter 6: Exploring and Modifying Unfamiliar Systems

When you use debugging tools in your IDE to step through complex business logic,
the debugger reveals not just what path the code takes, but why it takes that path. This
is especially valuable when behavior doesn’t match your expectations. For instance,
if logs indicate that a pet name already exists but you’re certain that’s incorrect, the
debugger allows you to verify this directly.

Locating external dependencies
Rarely will you find an application that runs in isolation. Modern applications depend
on external services in the form of public APIs and internal services that they com‐
municate with. An important part of understanding the execution flow is locating any
and all of the external dependencies your application communicates with. This could
be in the form of other APIs, databases, caches, and more.

Without a complete understanding of the entire application, how will you locate
these dependencies? A really good place to start is by examining configuration
files. In our PetClinic application that is built on Spring Boot, you can look at the
application.properties or application.yaml configuration to see what dependencies are
declared. In the following example, you can see that this application depends on a
PostgreSQL database, an external service, and an email host:

database
spring.datasource.url=jdbc:postgresql://db-server:5432/petclinic \
 spring.datasource.driver-class-name=org.postgresql.Driver
external service
payment.service.endpoint=https://payments.example.com/api/v2
email host
email.service.host=smtp.company.com

For containerized applications, check Docker Compose files or Kubernetes manifests
to identify linked services:

In docker-compose.yml
services:
 app:
 image: petclinic:latest
 depends_on:
 - mysql
 - redis
 - kafka

Understanding Unfamiliar Codebases | 103

Locating internal frameworks and libraries
One of the biggest challenges in exploring existing codebases is encountering internal
or homegrown frameworks and libraries. These are custom solutions built in-house
to solve specific business problems or technical challenges. While they might have
been the right decision at the time of creation, they often present unique obstacles for
new team members trying to explore and modify the codebase.

Why would a team decide to build something internally versus going with an external
solution? Internal frameworks typically emerge for several reasons:

• The original team needed functionality that wasn’t available in existing libraries.•
• They had specific security or performance requirements.•
• The total cost of bringing in an external solution was too high.•
• They built something to quickly solve a problem that evolved over time.•
• They didn’t know a solution existed or didn’t fully understand it.•

Meta work is more interesting than real work.
—Neal Ford, director and software architect at Thoughtworks; author and speaker

Unfortunately, these solutions often suffer from poor documentation, lack of access
to the original developers, and inconsistent maintenance.

Identifying internal frameworks. Internal frameworks can be harder to spot than exter‐
nal dependencies because they’re embedded directly in the codebase. Here are the key
indicators you’re dealing with a homegrown solution:

Package naming patterns
Look for packages with company-specific prefixes or generic names like
com.yourcompany.framework, utils.common.core, or internal.shared.

Custom base classes
Many classes extending from custom base classes with names like BaseService,
AbstractController, or CommonEntity indicate framework code.

Custom annotations
Nonstandard annotations that aren’t part of popular frameworks often signal
internal solutions:

@Entity
@CompanyTable(name = "users", audit = true)
public class User extends BaseCompanyEntity {

 @CompanyField(encrypted = true)

104 | Chapter 6: Exploring and Modifying Unfamiliar Systems

 private String email;

}

Utility classes with broad scope
Classes named AppUtils, BusinessHelper, or SystemManager that handle diverse
responsibilities across the application often.

Heavy configuration
Extensive custom YAML/XML files or configuration classes that don’t match
standard library patterns.

Working with internal frameworks. The following tips will help you explore internal
frameworks and leave the code in a better place than you found it:

Find usage examples first
Search the codebase for how other developers use the framework. Real examples
are often more instructive than documentation.

Look for tests
Framework code sometimes has better test coverage since it needs to work across
multiple scenarios. Tests reveal intended behavior and edge cases.

Document as you learn
Create notes about what the framework does and how to use it. Even basic
documentation helps future developers.

Check version control history
Use git blame and commit messages to understand why the framework was
built and how it evolved.

Evaluate the trade-offs
Consider whether the framework still provides value or is becoming a mainte‐
nance burden. Sometimes replacing internal solutions with standard libraries is
the right long-term choice.

Make incremental improvements
Apply the scout rule (more on this later in the chapter) by improving nam‐
ing, adding documentation, or enhancing test coverage as you work with the
framework.

Build Mental Models Incrementally
A mental model is your internal representation of how the system works, and devel‐
oping a robust model takes time and deliberate practice. If you’re going to build
a mental model of a system, it’s much easier to do if you break down the system
incrementally. Instead of trying to build a mental model of an entire ecommerce

Understanding Unfamiliar Codebases | 105

application, take a single path like the checkout process and build from there. It’s
also helpful to avoid letting tools or perfectionism get in the way. Often, a simple
hand-drawn model on a scratch pad will suffice.

In this section, you will learn some practical methods for building mental models
such as breaking complex systems into smaller ones, visualizing those models, and
gradually expanding your knowledge.

AI Note

Another benefit these days of text-based diagramming is that gen‐
erative AI can help you with an initial draft that you can refine
further manually. You can describe your system or process to an
AI tool and ask it to generate Mermaid syntax, then iterate on the
output to match your specific needs.

Breaking down complex systems
Breaking down complex systems is an important part of building mental models.
When you join a new project with a large codebase, trying to understand everything at
once is overwhelming and inefficient. Instead, you should focus on breaking complex
systems into manageable pieces.

You learned about application entry points in a previous section, and this is a great
place to start. For example, in an ecommerce application, you might have defined
some of these execution flows:

New customer flow
A new user signs up, becomes a customer, and receives a promotional coupon.

Checkout flow
What happens when a user completes a purchase with products in their cart.

Product review flow
A customer provides feedback on a purchased product.

These are great examples of breaking a complex system into smaller manageable
pieces that you can wrap your head around. Once you have seen how a new product
review is recorded and you have seen the code associated with those steps, you can
begin to build a mental model of this process. Everyone learns differently, and maybe
you’re someone who wants to build a mental model around the code and not a
process. If your application uses a package-by-feature arrangement, you could build
models of each feature. In the following example, we can see all of the code associated
with the cart feature:

src/
├── cart/
│ ├── CartController.java

106 | Chapter 6: Exploring and Modifying Unfamiliar Systems

│ ├── CartService.java
│ ├── CartRepository.java
│ ├── Cart.java
│ ├── CartItem.java
│ └── dto/
│ ├── CartDTO.java
│ └── CartItemDTO.java

Visualizing your mental models
Visualizing code relationships can help you build these mental models. In Chapter 4,
you learned about software modeling and some of the types of diagrams at your dis‐
posal. Your visualizations do not need to be professional: they can range from simple
sketches to full UML diagrams. Use whatever level of detail helps you understand
the system. The first part of visualizing your mental model is to choose your visual‐
ization type. Different types of visualizations serve different purposes in software
engineering:

Flowcharts
Help you understand sequential processes and decision points

Entity–relationship diagrams
Clarify data structures and their relationships

Sequence diagrams
Illustrate how components interact over time

Component diagrams
Show the high-level architecture and dependencies

Mind maps
Help organize related concepts hierarchically

You can begin by starting with a simple representation and add details as your
comprehension of the system grows. For example, when visualizing the checkout
flow in an ecommerce system, you might start with just the major components.
The following is a simple flowchart written in Mermaid syntax, which is a popular
Markdown-based diagramming tool:

graph TD
 A[Shopping Cart] --> B[Checkout Form]
 B --> C[Payment Processing]
 C --> D[Order Confirmation]

The previous code can generate a flowchart like the one shown in Figure 6-6.

Understanding Unfamiliar Codebases | 107

Figure 6-6. A flowchart for a sample checkout process in an ecommerce application

As you learn more, you can expand this flowchart to include specific services, data‐
base interactions, and external integrations. For example:

sequenceDiagram
 participant U as User
 participant FE as Frontend
 participant API as API Layer
 participant CS as CartService
 participant PS as PaymentService
 participant OS as OrderService
 participant DB as Database
 participant PP as Payment Provider

 U->>FE: Click "Checkout"
 FE->>API: POST /checkout
 API->>CS: validateCart()
 CS->>DB: getCartItems()
 DB-->>CS: cartItems
 CS-->>API: validation result
 API->>PS: processPayment()
 PS->>PP: authorizeCharge()
 PP-->>PS: authorization
 PS-->>API: payment result
 API->>OS: createOrder()
 OS->>DB: saveOrder()
 DB-->>OS: orderConfirmation
 OS-->>API: order details
 API-->>FE: success response
 FE-->>U: Display confirmation

This code generates the flowchart shown in Figure 6-7.

108 | Chapter 6: Exploring and Modifying Unfamiliar Systems

Figure 6-7. A larger flowchart for an ecommerce application

Gradually expanding your scope
Once you understand individual components, incrementally expand your focus to the
larger system’s behavior:

1. Start with single methods in isolation.1.
2. Move to classes and their direct dependencies.2.
3. Continue to feature-level flows that span multiple components.3.
4. Finally, understand cross-cutting concerns like security or transaction handling.4.

This incremental approach prevents cognitive overload while building a comprehen‐
sive view of the system.

By investing time in building accurate mental models, you’ll make better decisions
when modifying the codebase. Remember that this is an ongoing process and takes
time. Even experienced team members continue refining their understanding of the
system as a whole as it evolves. Now that you have learned how to understand
unfamiliar codebases, let’s look at a sample process for working with existing code.

A Sample Process
Over time, you will develop a feel for working with existing code. However, it can
help to have a process. Christopher Judd teaches the following method in his boot
camps:

A Sample Process | 109

https://oreil.ly/G4f5f

1. Clone the project from the source code management system.1.
2. Review the README, coding standards, architecture, and other supporting doc‐2.

umentation.
3. Take notes (architecture, build commands, common SQL, industry standards,3.

terms, etc.) as you go. Don’t be afraid to share these notes with your teammates!
4. Review build scripts.4.
5. Review the project dependencies.5.
6. Review the project structure (packages, namespaces, modules, artifacts, etc.).6.
7. Review the CI/CD pipelines.7.
8. Install any project dependencies (build tools, runtimes, languages).8.
9. From your IDE:9.

a. Run and debug the application.a.
b. Add breakpoints to interesting methods, connecting them back to the runningb.

application.
c. Run and debug unit tests.c.
d. Add breakpoints to interesting methods, connecting them back to the runningd.

application.
10. From the command line:10.

a. Build the project artifacts.a.
b. Run the unit tests.b.
c. Start any required containers (such as the datastore).c.
d. Run the application locally (ports, URLs, etc.).d.

Remember that understanding an existing codebase is an iterative process. You won’t
be able to comprehend everything on your first pass, and that is completely normal.
Each time you work on an issue or a new feature, you will gain deeper knowledge.

Making Changes Safely
Now that you have some tips and a process for understanding an existing codebase,
it’s time to learn how to safely modify one. Existing systems have likely gone through
numerous iterations, features, and more. You can’t just run into the ring like a wild
boxer swinging away and expending all of your energy in the first round. You need
to navigate the codebase methodically and be careful that you don’t break things. You
have likely heard the phrase “move fast and break things,” and that might have a place
in certain scenarios, but this is not one of them.

110 | Chapter 6: Exploring and Modifying Unfamiliar Systems

Refactoring Safely
When working with legacy systems and existing codebases, there is often potential for
refactoring code to improve readability, performance, and more. In this situation, you
want to make sure you have a plan and don’t try to do too much at once.

Rely on existing tests
As you learned in the previous section, tests play a big role in understanding a
codebase, but they also make your job of refactoring code safer and easier. If the
project has a comprehensive suite of tests, you’ll want to lean on them heavily. Tests
serve as your safety net, allowing you to make small changes, run the tests, and
ensure that you haven’t affected something elsewhere in the project.

In the following example. you are refactoring the calculateTotal method to separate
out the calculation of the subtotal and application of a discount. When refactoring,
you should avoid modifying the tests since the goal is to improve the code structure
while preserving its behavior. After each step of this refactor, you should run the tests
associated with this method to ensure that behavior remains unchanged:

// Before refactoring
public double calculateTotal(Order order) {
 double total = 0;
 for (OrderItem item : order.getItems()) {
 total += item.getPrice() * item.getQuantity();
 }
 if (order.hasDiscount()) {
 total = total * (1 - order.getDiscountRate());
 }
 return total;
}

// After refactoring
public double calculateTotal(Order order) {
 double subtotal = calculateSubtotal(order);
 return applyDiscount(subtotal, order);
}

private double calculateSubtotal(Order order) {
 return order.getItems().stream()
 .mapToDouble(item -> item.getPrice() * item.getQuantity())
 .sum();
}

private double applyDiscount(double amount, Order order) {
 return order.hasDiscount()
 ? amount * (1 - order.getDiscountRate())
 : amount;
}

Making Changes Safely | 111

Add tests before refactoring
In the previous example, we leaned on the tests to ensure that nothing else was
affected in the larger scope of the project. If the application doesn’t have adequate
test coverage on the changes you’re proposing, this is your chance to add tests before
refactoring any existing code. This approach, sometimes called test-driven refactoring,
follows these steps:

1. Write tests that document the current behavior.1.
2. Verify that tests pass with the current implementation.2.
3. Refactor the code.3.
4. Verify that tests still pass with the new implementation.4.

The following unit test verifies that the order service correctly applies a 10% discount
when calculating the total for an order that qualifies for discounting:

@Test
public void calculateTotalAppliesDiscountWhenOrderHasDiscount() {
 // Given
 OrderItem item1 = new OrderItem("Product1", 10.0, 2);
 OrderItem item2 = new OrderItem("Product2", 15.0, 1);
 Order order = new Order(Arrays.asList(item1, item2), true, 0.1);

 // When
 double total = orderService.calculateTotal(order);

 // Then
 assertEquals(31.5, total, 0.001); // (10*2 + 15*1) * 0.9 = 31.5
}

Adding tests like this before making changes helps you understand the existing
behavior and gives you confidence that your refactoring preserves that behavior.

It’s important to remember that when adding tests to existing code‐
bases, your first goal is to document the existing behavior, not
change it. Even if you know of a better way to refactor the code or
fix something that you are sure is a bug, you should first write the
tests to confirm the current behavior. You can then come back and
address bugs or additional refactoring after your tests are in place.

The Scout Rule
The scout rule is a principle in software development that states: “Always leave the
code better than you found it.” It’s inspired by the camping philosophy from the Boy
Scouts of America, where scouts are taught to leave a campsite cleaner than they
found it.

112 | Chapter 6: Exploring and Modifying Unfamiliar Systems

The scout rule encourages making small, incremental improvements to code quality
whenever you touch a file. These improvements might include the following:

• Adding missing documentation•
• Improving variable or method names for clarity•
• Breaking down overly complex methods•
• Removing dead code•
• Fixing minor bugs you discover•

In the following example, simply by improving the method name, adding type
parameters, using an enhanced for loop, and adding documentation, you’ve made
the code significantly more maintainable without changing its core functionality:

// Before applying the Scout Rule
public void prcs(List l) {
 for (int i = 0; i < l.size(); i++) {
 Object o = l.get(i);
 // Process object
 // ...
 }
}

// After applying the Scout Rule
/**
 * Processes a list of customer records and updates their status in the database.
 *
 * @param customers The list of customers to process
 */
public void processCustomers(List<Customer> customers) {
 for (Customer customer : customers) {
 // Process customer
 // ...
 }
}

While the scout rule encourages you to clean up code as you go, you need to find a
balance between cleanup and the task at hand. In larger codebases, you could spend
all your time simply improving code, only to realize you haven’t fixed what you
originally set out to fix.

Not all code that could be improved should be improved immediately. Consider these
factors when deciding whether to refactor.

You can refactor code in these circumstances:

• The code you’re working on is difficult to understand.•
• You need to add a feature to the area.•

Making Changes Safely | 113

• You’re fixing a bug in the code.•
• The code is causing performance issues.•
• Multiple developers frequently work in this area.•

You should consider deferring refactoring in these cases:

• The code works fine and rarely needs changes.•
• You’re under tight deadline pressure.•
• The risk of breaking the code outweighs the benefits.•
• The refactoring would require extensive changes beyond your current task.•
• You don’t have adequate test coverage to ensure safety.•

Small, Reversible Changes
Making incremental, easily reversible changes is the safest way to modify existing
code without affecting the entire system. This is a skill you’ll need to continually
practice to master. While you might be tempted to tackle complex problems all at
once, and product owners might push for bigger, more impactful changes, your goal
should be to make smaller modifications that don’t disrupt the system as a whole.

Change management strategies
A change management strategy for software teams is a structured approach to han‐
dling modifications in your applications. It’s essentially a system for proposing,
reviewing, implementing, and tracking changes to maintain code quality and team
alignment. When aligning with small, reversible changes, your change management
strategy should prioritize safety and visibility.

Here are some practical strategies you can use in your change management approach:

Make changes visible
Ensure that your changes are well-documented and easy to understand by others.
This doesn’t need to be exhaustive and should explain what drove the change and
how you implemented it.

Build in verification
Include ways to verify that your changes work as expected. Verification methods
for teams can include automated tests, code reviews, and static analysis.

Plan for rollback
Murphy’s law states that what can go wrong will go wrong. Always have a plan
to revert changes if problems arise. When you make smaller changes as we are
proposing here, rolling them back should be easier.

114 | Chapter 6: Exploring and Modifying Unfamiliar Systems

Monitor effects
Watch for unexpected consequences of your changes. This is where having good
observability into your applications really pays off.

Small, testable increments
Once you get into the mindset of working in smaller increments that you can test,
your job of modifying existing codebases becomes less stressful and easier to manage.
When you adopt this approach, you will see the following benefits:

• Reduces risk by limiting the scope of each change•
• Makes testing more focused and effective•
• Makes code reviews more manageable•
• Allows for easier troubleshooting if issues arise•

This may mean pushing back on feature requests if they are too large and breaking
them into smaller features to control the size of the change. Remember that it’s better
to deliver several small, successful changes than one large change that introduces
bugs.

Let’s say that you receive a request to modify the way your system will process an
order. In the following example, you can see that the process order already does too
much and is a candidate for refactoring. Instead of trying to change the logic for
the entire method, consider breaking some of the functionality into smaller methods,
writing tests for those methods, and validating that each works correctly before
moving on to another one:

// Instead of changing this entire method at once...
public void processOrder(Order order) {
 // Validate order
 // Calculate totals
 // Apply discounts
 // Calculate shipping
 // Apply taxes
 // Process payment
 // Update inventory
 // Send confirmation
}

// Break it down into smaller, separate changes:
// 1. First, extract the validation logic
private boolean validateOrder(Order order) {
 // Validation logic here
 return isValid;
}

// 2. Next, extract the totals calculation

Making Changes Safely | 115

private double calculateOrderTotal(Order order) {
 // Total calculation logic here
 return total;
}

// 3. Continue with other extractions, testing after each change

Version control best practices
Most of the new projects you work on probably already have version control in place.
In some scenarios, you might find yourself working with existing code that lacks
proper version control or might need to establish best practices from the start:

Legacy codebases
You may encounter older projects that have version control but lack best practi‐
ces. These applications might commit everything to main with no branching
strategy in place. They might contain inconsistent commit messages, massive
unmerged changes, and repositories with generated files or dependencies that
should have never been tracked in the first place.

Personal or small-scale projects
When starting your own projects or working in very small teams, it’s tempting
to skip version control. You might think “it’s just me” or “we can communicate
directly,” but establishing good habits early prevents technical debt and makes it
easier when the project grows or when you need to onboard others.

Open source contributions
When forking repositories or contributing to open source projects, you need to
understand and follow the project’s version control conventions while maintain‐
ing your own fork properly.

Contractor or consultant work
When joining existing projects, you may need to establish or improve version
control practices that weren’t previously prioritized.

No matter which scenario you find yourself in, version control systems like Git
are essential for making safe changes to existing codebases. When used effectively,
they provide safety nets that allow you to experiment, track history, and collaborate
without fear of losing work or breaking functionality.

Commit strategically. When working with existing code, your commits should tell a
story of how the code evolved:

Make atomic commits
Each commit should represent a single logical change that can stand on its own.
This makes it easier to understand, review, and, if necessary, revert changes.

116 | Chapter 6: Exploring and Modifying Unfamiliar Systems

Write meaningful commit messages
A good commit message explains both what changed and why. Future developers
(including your future self) will thank you for the context. The following code
demonstrates good and bad commit message examples:

Poor commit message
Fix bug

Better commit message
Fix order calculation when a discount code is applied twice

The system was double-applying discount codes when customers
entered them in both mobile and desktop sessions. This fix
ensures the discount is only applied once per order.

Commit frequently
Don’t wait until you’ve made dozens of changes before committing. Small, fre‐
quent logical commits make it easier to identify when and where issues were
introduced.

Branch wisely. Branching strategies will vary by organization, team, and project, but
certain principles will apply when working on existing code:

Create feature branches
Isolate your changes in a dedicated branch until they’re ready for integration.
This keeps the main branch stable and allows you to experiment freely.

Keep branches short-lived
Long-lived branches diverge further from the main codebase over time, making
integration more difficult. Aim to merge your changes back within days, not
weeks.

Rebase before merging
When appropriate, rebase your changes on top of the latest main branch to
ensure you’re working with the most current version of the codebase. Important:
Rebasing rewrites commit history, so use it carefully on shared branches.

Pull requests and code reviews. A PR is a developer’s proposal to merge changes from
one branch into another, opening the work for review, discussion, and automated
checks before integration. You will want to keep your PRs focused and manageable. A
PR that changes 1,000 lines of code across 20 files is difficult to review. Instead, aim
for smaller, focused PRs that address a single concern.

In the code review, make sure you explain what problem you’re solving and how
your changes address it. Include any references you have to relevant issues or require‐
ments. Code reviews are about improving the solution, not criticizing the developer.
Be open to suggestions and willing to iterate on your approach.

Making Changes Safely | 117

As you can see, although you shouldn’t charge into modifying existing codebases with
wild abandon, there’s no need to be afraid of making a mark. Refactor safely with
tests, follow the scout rule, and focus on small, reversible changes.

Wrapping Up
Working with existing code is one of those fundamental skills that can take you
from coder to software engineer. Throughout this chapter, we’ve explored strategies
for navigating, understanding, and safely modifying codebases. You’ve learned how
to understand unfamiliar codebases by starting with the big picture, reviewing docu‐
mentation, and grasping the project’s architecture. We’ve covered how to follow the
execution flows by finding entry points, tracing request journeys, and identifying
external dependencies. You now know how to build mental models incrementally
by breaking down complex systems and visualizing relationships. We also examined
how to make changes safely through careful refactoring, following the scout rule, and
using version control best practices.

These skills aren’t just nice to have; they are essential for your growth as a software
engineer. While creating new applications from scratch can be fun and exciting, the
reality is that most of your career will involve working with existing code. Mastering
these techniques will help you quickly and confidently contribute to any codebase,
regardless of its size or complexity.

Putting It into Practice
Implementing what you’ve learned requires action, not just knowledge. The following
practical steps will help you apply these code navigation and modification skills when
working with existing code:

1. Find an open source project that interests you and spend 30 minutes exploring1.
its codebase without writing any code. Focus on understanding its structure and
organization.

2. Practice request tracing end-to-end by selecting a web application (like the Pet‐2.
Clinic example) and tracing a complete user journey from UI interaction through
API calls to database changes by using browser dev tools, logging, and debugging
in sequence.

3. Pick a method from an open source project that’s difficult to understand and3.
refactor it to improve readability without changing its behavior.

4. Find a legacy project with minimal test coverage and practice adding tests that4.
document existing behavior.

5. Create a mental model diagram by picking one business process from a real5.
codebase and create a visual representation (hand drawing, flowchart, sequence

118 | Chapter 6: Exploring and Modifying Unfamiliar Systems

diagram, or component diagram) that shows how the code actually flows, then
validate it with a team member.

6. Make a complex change to an existing codebase by using small, reversible com‐6.
mits. Get feedback from a peer on your commit strategy.

7. Apply the scout rule to a project you’re working on by identifying three small7.
improvements you can make to leave the code better than you found it.

8. Practice safe dependency changes by identifying an external dependency in a8.
project and researching how to safely upgrade or replace it, including impact
analysis and rollback planning.

Additional Resources
• Refactoring: Improving the Design of Existing Code by Martin Fowler (Addison-•

Wesley Professional, 2018)
• Working Effectively with Legacy Code by Michael Feathers (Prentice Hall, 2004)•
• Getting to Know IntelliJ IDEA by Trisha Gee and Helen Scott (JetBrains, 2021)•

Additional Resources | 119

https://martinfowler.com/books/refactoring.html
https://martinfowler.com/books/refactoring.html
https://www.oreilly.com/library/view/working-effectively-with/0131177052
https://leanpub.com/gettingtoknowIntelliJIDEA

CHAPTER 7

User Interface Design

Good design is also an act of communication between the designer and the user, except that
all the communication has to come about by the appearance of the device itself. The device
must explain itself.

—Donald A. Norman, author of The Design of Everyday Things

In far too many instances, user interface (UI) design often boiled down to putting
input fields wherever they would fit, irrespective of all else. While that may have been
the most expeditious approach for the developers, it rarely resulted in the most usable
application. Remember, the UI is the what of user experience (UX) and to nearly all
users, the UI is the application. Good UI design is based on accomplishing the goals
set forth by UX.

UI design is more than just a polished look and feel; it’s about making your applica‐
tion easy to use for your intended audience. Ease of use encompasses a number of
topics, including accessibility and inclusivity of UI design. Of course, few software
engineers are ever taught the basics of UI design. Although this chapter won’t make
you an expert, you’ll be a step ahead of most by the time you’re done reading!

Designing for Everyone
Accessibility, usability, and inclusion are distinct yet interconnected concepts in
design that aim to make products usable by people of different backgrounds and
abilities. You’ll often see them referred to by their numeronyms: a11y for accessibility,
L10N for localization, and I18N for internationalization.

121

A numeronym is a word that is partially or wholly composed of
numerals. Although it can describe many constructs, you’ll often
see it as a contraction with all of the letters between the first
and last replaced by the number of letters that were omitted. For
those who like regular expressions, numeronyms of this type would
follow this pattern: [a-zA-Z]\d{1,2}[a-zA-Z].

Challenges can arise in balancing these aspects, ensuring that they are integrated
throughout the design process, and addressing different user needs effectively. Each
of these can make or break your application and in some instances are subject to
laws and regulations such as the Americans with Disabilities Act (ADA), which
requires accessible design; Section 508 of the Rehabilitation Act, which stipulates US
federal agencies must make information technology accessible; and the European
Accessibility Act (EAA), which mandates products be designed to maximize usability
by those with disabilities, among other things.

The Retrofit Challenge
Nate here. Years ago, I worked on the UI team at a software company. We had
a mature web application used extensively by professional engineers. Our product
managers decided accessibility would be a focus for an upcoming release and set our
team to retrofit the application to be more hospitable to screen readers and direct
keyboard interaction. To say the app was built without these concepts in mind would
be an understatement; the first time we walked through the page with a screen reader,
the enormity of the effort was clear.

Fields lacked clear labels, and there were almost no keyboard shortcuts to speak
of. Moving around the application without a mouse was laborious. I can’t speak to
decisions that were made well before my tenure, but suffice it to say, it is far simpler to
build with accessibility, localization, and internationalization in mind from the start.
I will say that the app did an excellent job of supporting multiple languages, though!
And yes, with a massive amount of effort, we managed to (mostly) make the app
usable from the keyboard, and at least it wasn’t overly hostile to screen readers.

As we go through usability, accessibility, and localization in the coming sections, keep
in mind that unless you are building software for other software engineers, you may
not be representative of your user base. Consider users with different abilities; access
to and quality of hardware, software, and internet connectivity; and geographic loca‐
tions. Your vision may be comparable to an eagle’s, but that isn’t a universal ability.

122 | Chapter 7: User Interface Design

1 Your dentist already praises your flossing regiment? Replace flossing in this analogy with regular exercise,
sufficient sleep, or proper eating.

2 Never forget, you are not the audience for your application (unless you’re building developer tools). Just
because something is obvious to you does not mean it will be obvious to your customers.

What Is Usability?
Usability is the software equivalent of flossing your teeth: everyone knows it’s impor‐
tant, but it’s usually one of the first things to get cut from a project.1 You may be
lucky enough to have UI experts at your disposal, but odds are you’ll shoulder some
(or all) of the work. Despite what some people think, usability matters, at least if
you’d rather not cause users to run screaming from your application. While most
software engineers are well schooled in the practices of algorithms and compiler
theory, they often lack even a basic grounding in the art and science of UI design.
Add in the long-standing myth that usability is best left to those with PhDs and
graphic designers, and you’ve got an “ility” that has been ignored for too long.

Despite what many software engineers have been led to think, building usable appli‐
cations is not an impossible task. Over the next few pages, you’ll explore the basics of
what it takes to make an application usable and dispel the myths that surround this
misunderstood ility. So what is usability?

Usability boils down to one simple question: how easy is your application to use for
its intended audience?2 Of course, that’s a fairly broad concept and can be interpreted
in different ways. Usability is often defined by various quality components:

Learnability
How easy is it to learn your application’s interface? Can a new user pick it up in
minutes, or does it take years to master? Can your application be used by both
novices and experts? Can “training wheels” be added or removed as necessary?
In other words, can the application grow with your users? Does the application
include adequate contextual help and documentation that is easy to find and
access?

Efficiency
How efficient are users of your application? Are clicks minimized, or does even
the simplest task require several screens?

Memorability
How memorable is your application’s interface? Is your application like riding
a bike and easy to pick up after some time away, or do users feel like they’re
learning to walk all over again every time they start it up?

Designing for Everyone | 123

3 About 8% of men and 0.4% of women have some form of color blindness.

Discoverability
How easy is it to fathom the features of your system? Is the right thing always
obvious to your users, or are even the core functions hiding in obscure places?

Error handling
How does your application handle and recover from errors? Does it gracefully
handle any omissions by a user, or does a mistake cause a blue screen of death?
Does your application protect your users from data loss when error conditions
occur? Does your application prevent errors through hints, validations, field
masks, and visual cues?

User satisfaction
How happy are your users after working with your application? Are they sitting
on cloud nine or cursing those responsible for the hideous mess they’re forced to
work with day in and day out?

Accessibility
Is the interface accessible? Does the interface enable assistive technologies?

As you can see, multiple factors ultimately affect the overall usability of your applica‐
tion. It may seem overwhelming, but with the right approach and thoughtful design,
you can ensure that your application will be one that delights users instead of being
overtly hostile to their needs.

What Is Accessibility?
While usability is about the ease of use and satisfaction of all users, accessibility is
about making your software usable for people with different abilities. Users of all
abilities should be able to navigate and interact with your interface. Depending on
the laws or regulations that apply to your situation, you may need to consider specific
aspects, but in general, you should be mindful of the following challenges:

Visual challenges
Low vision to blindness to color blindness3

Auditory challenges
Deaf or hard of hearing

Dexterity challenges
Repetitive strain injuries or motor impairments that may make precise mouse
movements difficult

Cognitive challenges
Conditions such as autism or dyslexia or poor reading or communication skills

124 | Chapter 7: User Interface Design

4 For example, English-to-German translation can expand the text by 35%.

Making software accessible doesn’t just help those with disabilities; it helps all your
users. Though vital for those in wheelchairs, a curb cut or ramp also helps the traveler
dragging their rollerboard through an airport. An interface with larger tap or pointer
targets doesn’t just help those using alternative input devices, and keyboard shortcuts
benefit power users as much as those who can’t use a mouse or trackpad. Software
that doesn’t rely on a high-bandwidth internet connection helps those without access
to broadband as well as those on a mobile device as they roam in and out of coverage
areas.

When you are building a UI, think in terms of inclusivity, ensuring that your software
can be used by as many people as possible. Many modern platforms and operating
systems support APIs and features you can leverage to make your application more
accessible. Apple operating systems include multiple assistive technologies, from
color filters to live captions to eye tracking support. Microsoft includes many of the
same in its products as well as a collection of customizable adaptive buttons and
mice.

What Are Localization and Internationalization?
Though often used interchangeably, localization (L10N) and internationalization
(I18N) are distinct but related concepts. I18N is the process of designing and building
your application to be adaptable to different languages and cultural expectations. For
example, instead of hardcoding labels, you build your UI such that the label text is
loaded from a properties file. It’s also important to design for label expansion; some
translations can add a significant amount of text for the same words or phrases.4

Not all cultures are left-to-right (LTR) oriented; several languages such as Arabic
and Hebrew are read right-to-left (RTL), while Japanese can also be oriented top to
bottom!

L10N, on the other hand, is the process of adapting your interface to the cultural
and linguistics of your target markets. In other words, L10N is translating labels and
fields to match the local language and using the proper currency symbols as well as
expected date formats and units of measurement. Internationalization is the founda‐
tion that allows you to adapt to different languages and cultures, while localization
implements those necessary customizations.

Unless you can guarantee that your application will never be used outside of a specific
locale, you should design with I18N and L10N in mind from the start of your project.
If there is even the possibility your application will expand beyond a single market,
build with a global audience in mind. Your future self will thank you!

Designing for Everyone | 125

Know Your User
You cannot build a usable application without an understanding of your audience
and the environment within which they will utilize your interface. It can be danger‐
ous to overly generalize about your users (see the following sidebar “Don’t Assume”);
be sure to challenge assumptions. While you certainly could spend months in the
field analyzing users, asking some basic questions about how they’ll use your applica‐
tion can go a long way toward building a usable application. For instance:

• Are your users experienced with computers? What operating systems?•
• Do any of your users have a functional limitation? How does your application•

respond to screen readers? What happens if a user increases the font or changes
the resolution on the screen?

• Will your users access your application with a phone? A tablet? A laptop? A•
headset? A television? All of the above?

• What is the expected education level of the user population?•
• Is the user group fairly stable, or is there significant turnover?•
• How frequently is the application used?•
• Where will the application be used? An office? At someone’s dining room table?•

On the couch? In the field?
• What is the environment like? Noisy? Quiet? Stressful?•
• Will your users receive any training on your application?•

Don’t Assume
It can be tempting to make assumptions about your users as a shortcut to performing
user research, but doing so can lead to unforced errors. Years ago, a retirement
community reached out to a local company to see whether it would donate its
older computers. The office manager laughingly agreed, assuming that older people
weren’t tech savvy enough to utilize them and felt they’d just gather dust. When
the retirement community reached out again a few months later, the office manager
thought they’d want to return the devices. In fact, they wanted more keyboards as the
residents were wearing them out. It turns out residents loved staying in touch with
family and friends online. Take the time it takes to learn about your audience.

Asking basic questions about your intended users is invaluable. The responses will
tell you how to make your app more usable and valuable to them. If your application
is used in a loud environment, users will probably miss notification sounds. Plan
to have alternative notifications. While some designs can assume a lengthy training

126 | Chapter 7: User Interface Design

period, odds are users won’t, in fact, read the manual. In that case, ensure that the
easy thing to do is the right thing to do—for example, don’t let a user enter characters
when only numbers are permitted. Applications designed for a ruggedized tablet used
by hydrologists measuring groundwater in the field have different constraints than
those targeting office workers with large monitors and trackpads.

A more usable and valuable app will lead to better user satisfaction. Many developers
scoff at the idea of user satisfaction; some go so far as to say, “My users don’t have
a choice.” Some of you may develop for internal customers who are required to
use your application, but having a captive audience isn’t a license to poke people in
the eye with a stick. Your users deserve better! This factor is more obvious when
you’re competing on the open market with healthy competitors—customers will often
navigate to the more usable solution. Whichever situation you find yourself in, don’t
underestimate the importance of happy users.

If at all possible, shadow or observe a representative set of your customers while they
use your application; you’ll be amazed at what you learn. Again, this kind of research
does not require months in the field. Spending a few days understanding actual users
in the space the application will be used can mean the difference between an app that
delights and one that disgusts.

Secondary Users
While your focus should be on the primary users of your software, don’t forget about
the secondary users! In many cases, the people using your application are themselves
working on behalf of another person, the secondary user. Anytime you’ve interacted
with a customer service representative or made an appointment to get your car
serviced, you’ve been a secondary user.

Think about the last time you were a secondary user: did the customer service
representative say some variant of “Give me a minute, I’m looking up your order,
my system is really slow to respond.” Did you enjoy that experience? Nate once
watched a scheduler take several minutes to book an appointment; she apologized,
saying the new software takes “11 clicks, we counted,” and they already had all of his
information on file!

Real costs are associated with poor usability. Not only does it directly impact the end
users and their work, but it also bleeds into your reputation in the marketplace.

You Are Not Your User
It should go without saying, but (unless you’re designing an application for other
developers) you are not representative of your actual users. Just because something
is obvious to you doesn’t mean it is to someone with a different background. Your
comfort level typing cryptic commands into a terminal may not translate to a broader

Know Your User | 127

5 Raise your hand if you’ve ever increased the font to make something more readable!
6 Or even giving your users the ability to submit feedback, even something as simple as a thumbs up or down,

can provide valuable insights.

audience. And just because something looks great on a massive curved-screen moni‐
tor doesn’t mean it will work on a smaller screen.

Users are also likely to do some things that you won’t. For example, a few years
back, a very reputable polling organization was approached by a political campaign
because its candidate wasn’t one of the options given to several campaign volunteers
who had been randomly contacted. The polling company assured the campaign that
its candidate was included in the survey and promised to get to the bottom of the
issue. When the polling company actually went to one of its call centers, it quickly
discovered the problem: some of the call center staff had increased the font to make
the questions more readable.5

While not a surprising action from an end user, it turns out no one had tested the
consequences of doing so. To remove bias, candidates’ names were displayed in a
changing random order from poll to poll; however, with the font increased, some
names were no longer visible to the call center workers! In the end, the poll had to be
thrown out, and the polling organization’s reputation suffered.

The Tyranny of Defaults
Never underestimate the power of defaults. Quick check, on your phone, what appli‐
cation do you use for mail? For browsing the web? For turn-by-turn directions? Most
likely, the defaults of your mobile operating system. Being the default can be worth a
lot of money: it is estimated Google pays Apple several billion dollars to be the default
search engine across its devices.

Odds are your defaults won’t be chosen by a multibillion-dollar arrangement, but
that doesn’t mean you shouldn’t actively consider what they should be. One of Nate’s
students was demoing a feature to a customer, and the very first thing the customer
did was change everything the app had defaulted. The student was surprised and
asked about it, to which the customer replied, “We always change those.” His student
went back to his desk, updated the default configuration, and then returned to his
customer who was thrilled with the update. The lesson? Don’t assume you know what
the proper defaults are; don’t be shy to ask your customers. Better yet, test it!

While you might have ample usage data for an existing application, you will need
more insights when you’re building something new. In other words, it is not always
possible to know a priori what the right thing to do actually is. In these instances,
embedding telemetry features into the user interface can help gain a fuller under‐
standing of how the application is used, allowing you to react to data instead of
hunches.6 You can then evolve the interface accordingly.

128 | Chapter 7: User Interface Design

Also, if your users change the settings, your application should remember them
moving forward. How many times have you changed a setting to your preference
only to have an application decide it knew better the next time you launched it?

Lastly, defaults should be “safe,” especially when users are stressed or distracted. If an
action is destructive and cannot be undone, adding friction to the process is actually a
good thing. The default shouldn’t be “delete account,” especially on a dialog that users
have been effectively trained to click through automatically.

Impact of Culture
It is also important to understand the impact of culture. Users’ mental models will
differ, something any tourist in London can see firsthand while crossing the street
(see Figure 7-1). There are obvious differences; for example, languages that are read
right to left will require a different UI layout than those read left to right. Things
that may be normal to you may in fact be offensive to someone living on a different
continent. Color can even have different connotations as well; for example, red
represents luck and good fortune in many Eastern cultures, but in South Africa it is
the color of mourning.

Figure 7-1. London crosswalks remind visitors that vehicles approach from the right

Know Your User | 129

7 Of course, many applications autosave.
8 Don’t think that training is an excuse for producing an unusable mess, though. Training is another compo‐

nent of software that is quick to get the ax.

Cultural differences can even extend to the visual design of icons. Some cultures may
prefer more concrete icons, while others may prefer more abstract representations.
And that’s before you consider historical symbols like a diskette to represent Save,
considering an ever-growing share of people have never used a computer with a
disk drive!7 Localization could be an entire chapter, and while it may be relatively
straightforward to translate your interface elements from one language to another,
don’t be surprised if interface elements need to be resized or relocated afterward.

Taking the time to investigate who your users are and how they’ll use your software
will help you avoid choices that can seem overly hostile to them. It may seem like
a waste of precious time, but basic user research pays for itself again and again.
You never get a second chance to make a first impression: never underestimate the
goodwill you can earn by simply listening to those on the other side of your code.

Maximizing Usability
At this point, you might be tempted to ask which aspects of usability (learnability,
efficiency, memorability, discoverability, error handling, user satisfaction, and accessi‐
bility) you should focus on. Before you run off and try to maximize each and every
one of these qualities, you have to think about the most important question: how
will your application be used? Some applications are used all day, every day (making
efficiency, memorability, and user satisfaction important) or are inherently complex
(think CAD software); in cases such as these, users will typically get a side of training
with their application or they’ll learn the interface through sheer force of repetition.8

If your application is an attempt to be the next social networking unicorn, you can’t
expect users to tolerate the need to learn much of anything (meaning learnability
and discoverability are key); the app better be intuitive, or they’ll leave your site for
one that is. In other words, you have to consider the purpose and context of your
application in relation to your user population.

Efficiency follows a similar rule. If your users will spend most of their day in your
application, then saving even a couple of clicks can add up in a hurry. Shaving even a
few seconds off an interaction adds up when it is performed thousands of times a day.
Never forget, a small number times a big number is a big number!

In some cases, your users are judged on how many “tasks” they finish in an hour or
a day, so making their workflow as streamlined as possible could have a significant
impact on the bottom line. By the same token, a rarely used application can suffer a

130 | Chapter 7: User Interface Design

bit on the efficiency scale, especially if it improves another aspect of usability such as
memorability or learnability.

The importance of memorability, learnability, and discoverability are closely related.
Ideally, an application is both memorable and learnable, but again, context matters.
For instance, an application that is used every day will probably be memorable
(hopefully, for positive reasons). In these cases, you can include some interactions
that might not be as easy to learn or as discoverable. If your application is used spor‐
adically, you can’t expect your users to invest hours of time learning your approach;
in cases like these, learnability and discoverability are vital but memorability isn’t.
Puzzle games are deliberately designed so that discoverability is low; figuring things
out is the whole point. Again, context is your guide.

Principles of Design
It takes time to develop design skills; however, by following well-worn principles,
even the novice can create a compelling design. In her highly regarded book The Non-
Designer’s Design Book (Peachpit Press), Robin Williams introduces the apprentice
designer to the importance of contrast, repetition, alignment, and proximity.

Though primarily aimed at creating attractive and effective documents, newsletters,
and business cards, the concepts apply equally well to application interface design.
The concepts are simple and easy to apply, but ignoring them has serious conse‐
quences for the usability of your application.

As you advance in your career, you’ll discover the power in bending or breaking these
rules; however, you have to consider what you’re designing. While a jagged alignment
might make for a memorable advertising campaign, it may not work out as well for a
corporate time-tracking application.

Contrast
Contrast is one of the most effective tools you have at your disposal. You typically
think of contrast as a difference between two colors, but any two things that are
different gives you contrast. Pitting a large font against a small font, a thick line
versus a thin line, or a small image counter a large one all create visual contrast.
Different colors, shapes, and even different alignments can help make your page pop.

Effective use of contrast provides visual interest to your design, but to be effective,
use things that are really different. Be bold, or as Williams says, “Don’t be a wimp.”
Contrasting two shades of gray isn’t nearly as effective as using two distinct colors
such as red and black. Don’t be afraid to really push the envelope; it’s better to go a bit
overboard than to have elements that are too similar.

Principles of Design | 131

Contrast also acts as an organizational tool. Glancing at a page, a user should quickly
grasp the flow of the design; applied poorly, contrast can confuse the user, creating
visual groups where none are meant to exist. Headings, subheadings, and body text
should be distinct and vary enough that users can clearly tell them apart.

Repetition
Repeating key visual elements across a design provides a sense of familiarity and
cohesiveness to an application. Though most often seen in a persistent navigational
element or header image, the effect can be subtler. Using the same font, color scheme,
screen layout, a type of bullet, italics—anything that helps tie the design together can
be repeated.

You may think of this as just being consistent, but visually it is key to creating good
designs. At the most basic level, repetition lets users know they’re still on the same
site; imagine how disconcerting it would be to use an application whose visual design
constantly shifts.

Once you’ve made sure all of your headings are the same font and weight, start
thinking about other items you can intentionally repeat; a persistent line or bullet
point can serve as that little extra element that takes a design to the next level. On one
application Nate worked on, the bottom of the page had a single thin line separating
the main body content from the boilerplate privacy/copyright section. This footer was
repeated, but to further emphasize the repetition, we added a double thin line. It may
not seem like an important distinction, but it made the section stand apart from the
rest of the application.

Like contrast, repetition creates visual units that help your users work with your
application. Users will quickly achieve a comfort level with a layout and learn what
they can safely “ignore” as they go about their daily work. The repeated shapes help
the user quickly parse the page—and make differences stand out.

It is easy to go overboard with a repeated element, especially color. Red might be
highly identified with your brand, but that doesn’t give you license to inundate your
application with it. There’s a fine line between a unifying element and gaudy excess:
proceed with caution.

Alignment
Alignment is one of the easiest principles to put into practice. Place every element
with care; don’t just drop an element somewhere because there happens to be some
space on the page. Aligning elements creates a sharp, cohesive look and ties visual
elements together. Using alignment, items that aren’t located near one another still
have a visual connection.

132 | Chapter 7: User Interface Design

Aligning left or right creates sharp vertical edges; sharp edges lead to a polished,
professional look. Avoid centering as this leads to jagged edges that aren’t as pleasing
to the eye and also results in harder-to-read text. Alignment isn’t just for text, though.
Images or icons should be aligned with other visual elements on the page; whenever
you place an element, find something to align it with.

Pick an alignment approach and repeat it throughout your design. Using the same
alignment throughout a design is reassuring to your users and makes the organiza‐
tion more evident.

Proximity
Proximity plays a vital role in how people assess what they see. Items that are grouped
together are perceived to be related even if they aren’t. Take this list:

• Shorts•
• Sunscreen•
• Socks•

• Sunglasses•
• Sandals•
• Shirts•

Since the items are grouped together, you instinctively see them as one visual unit.
How these items are related isn’t relevant, and even if you didn’t suspect someone
was preparing for a trip—and had a thing for stuff that starts with s—you sense some
similarities in the items. Let’s tweak the list just a bit:

• Shorts•
• Sunscreen•
• Socks•

• Sunglasses•
— Sandals—
— Shirts—

At a glance, sandals and shirts appear to have a special association within the overall
list. It isn’t evident what that relationship is, and some users will (consciously or not)
try to determine just what that connection is.

As another example, Apple’s Fitness app keeps tabs of the various awards you earn.
At one point, all the various badges were listed together, making it rather challenging
to navigate. An update changed the interface to group like awards together under
category cards (see Figure 7-2). The main Awards screen shows you the status of your
latest challenges, while tapping into the category will show the other badges you were
awarded for that category.

Principles of Design | 133

Figure 7-2. Proximity in action on the Awards section of Apple’s Fitness application

134 | Chapter 7: User Interface Design

Conversely, items that aren’t related shouldn’t be grouped together; if you don’t want
to confuse your users, keep unlike things apart.

As you create these visual units, be sure to leave some whitespace between them.
Separating groups of items with a buffer further enhances the bond between the items
and helps your users understand the page. Proximity creates visual groups that your
eye will naturally follow. To avoid confusion, minimize the number of visual groups
on the page. If you have too many (more than five or so), try to alter the placement to
form new groups.

Applying the Principles of Design
Let’s analyze these principles further by looking at the O’Reilly learning platform.
Throughout its design, you see the principles of design at work, resulting in an
easy-to-use site that is pleasing to the eye.

Take a look at Figure 7-3: we see contrast in action. The large cover art stands out,
and the contrasting color draws the eye while providing a nod to the brand identity.
Note too the contrasting color indicating the format type of a given resource. The
current topic area is prominently identified by utilizing a larger font than anything
else on the page.

Figure 7-3. Design principles illustrated by the O’Reilly learning platform

Applying the Principles of Design | 135

In Figure 7-4, you can see some of the various blocks that make up the result page.
The Search box clearly links to the topic area, while the two drop-downs will further
refine the results area. Note the contrasting color of the Topics You Follow button,
which clearly stands out on the page, inviting your gaze.

Figure 7-4. Notice the various blocks of related material

These building blocks continue through to the details page of a specific piece of
content (see Figure 7-5). Notice again the familiar contrasting color—just enough to
draw the eye, not too much to overwhelm. The same font family provides reassurance
you’re still on the same site, and the main menu at the top of the page provides
consistency. Again, you have one button set in a constrasting color, inviting you to
start this material.

136 | Chapter 7: User Interface Design

Figure 7-5. Repetition of design elements

Applying the Principles of Design | 137

These principles aren’t the sole purview of web applications, though. Take the side‐
bars from Apple’s Music, Books, and App Store applications in Figure 7-6. While
all three are clearly customized for their given domain, each contains a search bar,
consistent fonts, and related icons. A subtle color change further reinforces the
specific application. Had they used the exact same colors across apps, users might
have been confused about which application they were actually in!

Figure 7-6. Apple sidebar similarities

138 | Chapter 7: User Interface Design

9 If they learn it at all—hide the feature well enough, and they will assume your application can’t do it!

Make the Right Thing the Obvious Thing
Discoverability is key to learning an application. If every feature is hiding where
people aren’t expecting, learning the system will take them much longer.9 While a less
than obvious approach might work if it’s memorable or the system is used daily, it’s
best to stick with obvious approaches unless your interaction is radically better than
the alternatives.

For example, let’s look at some software one of your authors suffered through nearly
daily many moons ago. Given the dialog in Figure 7-7, how would you record the
audio? Go ahead, ponder away.

Figure 7-7. An example of a less than discoverable feature: how do you record the audio?

Make the Right Thing the Obvious Thing | 139

First-time users of this software usually couldn’t figure out how to record the
audio without either the help of a frequent user or the detailed instruction manual.
This dialog is a perfect example of bad discoverability. Oh, the answer lies (again
obscurely) in Figure 7-8. Give up? You have to click Test Audio (after setting up the
conference number) and don’t forget to check “Remain connected to meeting audio
after testing.” See, piece of cake.

Figure 7-8. This is where you record audio: can you figure out how?

Now, you could argue that this is memorable in the sense that it’s so bad, most people
will vaguely recall that there’s some “odd” thing you need to do to make it work.
However, what would happen if you didn’t record a session for a few months? Would
you still remember the trick? Don’t count on it. Research indicates that discoverability
contributes to memorability; when in doubt, go with the more obvious approach.

How would you fix this example? First and foremost, why do you even need to “test”
the audio? The audio level meter could simply be part of the initial dialog, negating
the need for this challenging second dialog entirely. If that approach isn’t feasible,
then selecting “Include audio with meeting recording” should be sufficient to, well,
include audio. A user shouldn’t have to select “Remain connected to meeting audio
after testing” at all: that should be removed.

Wherever possible, you should also prevent the user from doing the wrong thing. The
simple act of choosing the right field type on a form can eliminate a host of errors
from ever occurring. Use hints, field masks, visual cues, and formatted examples to
make the right choice obvious to your users.

140 | Chapter 7: User Interface Design

10 There’s even a plug-in called Key Promoter that will (nicely) tell you when you’ve missed using a shortcut.

Does Every Feature Need to Be Discoverable?
In some instances, a perfect interaction isn’t discoverable. Some applications have so
many features, they can’t all take center stage: some have to move to secondary areas.
With more and more software taking flight as mobile first or mobile only, you may
have even less space to work with than during the desktop era of software.

Take, for example, the iPhone’s pinch-to-zoom feature. Starting from scratch, a new
user might not even realize you could zoom on a web page or a picture. Looking at
the interface, it certainly isn’t obvious that pinching will cause anything to happen;
however, it takes only two seconds to teach someone that pinch equals zoom. This
approach is an eminently learnable, very memorable feature, and once discovered,
it is obvious and seems perfectly natural. It’s so natural, you’ve actually broken your
users’ mental model if your interface doesn’t support it!

Pinch to zoom is a special case, though. The interaction is really well designed and
clear: the benefits of this “hidden” feature greatly outweigh the possible downsides. In
this case, Apple made zooming a central part of its initial ad campaign, so it’s likely
that most users are aware of the feature. Apple also provided a variety of instructional
videos on its iPhone website. And, the interface was usable even without pinching to
zoom. When the situation dictates it, discoverability can suffer, but the benefits of the
interaction should be readily apparent before you hide a key feature.

Sometimes interfaces are very discoverable but not all that memorable. Keyboard
shortcuts are a must for user efficiency and provide much needed support for
expert users, but they aren’t always memorable. Used often enough, shortcuts become
ingrained: most users can rattle off Save, Copy, and Paste without much effort. But
when it comes to more infrequent combinations, it pays for them to be discoverable.
Many IDEs do a fantastic job of doing exactly this. For example, IntelliJ includes a
universal Find Action option (see Figure 7-9) that allows you to type in the name of
an action to find something you otherwise couldn’t recall.10

Make the Right Thing the Obvious Thing | 141

Figure 7-9. IntelliJ IDEA’s Find Action option

It’s also wise to reinforce the shortcuts by including them in the menu hierarchy; this
way, as people use the menus, they’ll pick up on the shortcuts. For example, modern
development tools offer quick ways to navigate from file to file, but they may not
be the same from one editor to another. For example, see VS Code’s Go menu in
Figure 7-10 and IntelliJ IDEA’s Navigate menu in Figure 7-11.

142 | Chapter 7: User Interface Design

Figure 7-10. VS Code’s Go menu

Some operating systems and tools support powerful search functionality enabling
you to quickly find and learn menu items. For example, Figure 7-12 shows searching
for “file” in IntelliJ IDEA.

Make the Right Thing the Obvious Thing | 143

Figure 7-11. IntelliJ IDEA’s Navigate menu

144 | Chapter 7: User Interface Design

Figure 7-12. Searching Help for “file” in IntelliJ IDEA

The Importance of Good Error Messages
As much as you might like to think otherwise, your users aren’t perfect and will make
mistakes. Responding appropriately to errors is often a determining factor in the
overall usability of an application. As much as you can, you want to prevent errors
from happening in the first place, but when your users inevitably step off the happy
path, they should be greeted with a meaningful message (something more meaningful
than “Interface not registered” please, as shown in Figure 7-13). Good error messages
also help you debug and fix issues your users encounter.

Figure 7-13. A less than helpful message

The Importance of Good Error Messages | 145

In addition to giving the users some sense of context, your application should allow
your users to recover; don’t reformat their hard drive because they entered the wrong
zip code. Providing support for undo or revert is a key factor in allowing users to
explore. They won’t try things if they can’t recover from them.

Good error messages do more than just tell the developer what line of code ran
into problems; they should help the user understand what went wrong and suggest
alternatives. In Figure 7-14, Google’s Gmail ran into an issue. Rather than just giving
us a cryptic message, you quickly see you have an internet connectivity issue, and the
app will attempt to connect automatically while also offering you an option to “Try
now.” The message is clear and concise: the application defaults to retrying on the
user’s behalf and allows the user to take an action if they wish.

Figure 7-14. An excellent error message: the user has an option

Destructive Actions
The edict of making tasks easy for your users has one major exception, and that
revolves around any action that is destructive. You rarely want to make it harder for
customers to edit data. But when it comes to irreversible decisions—like deleting an
account—adding a step or three to the process is often the right thing to do.

Let’s take deleting a repository from GitHub as an example. First and foremost, the
designers have put the destructive settings at the bottom of the page (also an example
of proximity); forcing you to scroll down to them ensures that you won’t accidentally
click one of these actions. The clear Danger Zone title explicitly indicates that these
settings involve danger (see Figure 7-15). Notice as well the text of the buttons
include a pop of color to further draw the eye (an example of contrast).

146 | Chapter 7: User Interface Design

Figure 7-15. Dangerous settings are set apart visually, labeled accordingly, and use a
contrasting color (in this example, red) to further emphasize caution

Clicking the “Delete this repository” button does not, in fact, immediately delete
the repository! You must click another button that explicitly describes the action
(Figure 7-16), and then you receive a warning that further explains what is about to
happen, stating the action is irreversible, with another button that describes the action
(Figure 7-17).

Figure 7-16. Step 1 in the process of deleting a repository: note the button’s label isn’t
merely Delete, but fully spells out the action the user will take by clicking this button

Destructive Actions | 147

Figure 7-17. Step 2 in the process of deleting a repository includes a warning about the
result of the action, and again the label fully spells out the action the user will take by
clicking

But you’re still not done! Because deleting a repository isn’t something you want to
do by accident, GitHub asks you to fully spell out the repository name, activating
the final, explicitly labeled “Delete this repository” button only if you correctly enter
the repository name (Figure 7-18). It may seem like overkill, but the alternative is
worse. And these highly destructive actions should be relatively rare use cases for
your application.

Figure 7-18. The final step in the process of deleting a repository: the fully labeled button
isn’t active until the user correctly spells the repository name

148 | Chapter 7: User Interface Design

Wrapping Up
Usability may not be the first thing you think about on your projects, but it’s impor‐
tant to never lose sight of the end user. Do not underestimate the cost of poor
usability and haphazard design. While it is helpful to have design expertise on your
application team, a bit of knowledge goes a long way! Contrast, repetition, alignment,
and proximity may seem simple and basic, but combined with thought, they mean
the difference between an average application and a top-notch user experience. In
this chapter, you’ve seen these principles applied to real-world applications, providing
you with inspiration for using them in your own systems.

Designing good user interfaces also requires you to consider accessibility, localization,
and internationalization. Building a usable application means making it work for
everyone, not just those fluent in English or with perfect vision.

Putting It into Practice
On a given day you likely interact with several applications, some with well-designed
user interfaces, others…not so much. Now that you’ve read this chapter, you should
have a better understanding of what separates an application that is a joy to use from
one that is a chore. Looking at one of those applications now, identify examples of
contrast, repetition, alignment, and proximity.

Examine the user interface for an application you’ve worked on: are there any obvious
usability issues? Armed with what you know after reading this chapter, what changes
would you make to your application? Take an hour to redesign the interface. Spend
an hour or two analyzing the UI design of an application you use regularly: what
principles can you find from this chapter? What would you change? Give yourself an
hour and see how many violations of these principles you can find in the applications
on your laptop or phone. Again, what would you do differently?

Lastly, shadow actual users of your application in their environment. Take notes on
what works, what doesn’t, and what can be improved. Ask your customers what they
like and don’t like about the interface. What would they change? Are the defaults
correct? Are interactions as efficient as possible? Don’t be surprised if your customers
have opinions!

Putting It into Practice | 149

Additional Resources
• The Design of Everyday Things, Revised and Expanded Edition, by Donald A.•

Norman (Basic Books, 2013)
• The Non-Designer’s Design Book, 4th Edition, by Robin Williams (Peachpit Press,•

2014)
• About Face: The Essentials of Interaction Design, 4th Edition, by Alan Cooper et al.•

(John Wiley & Sons, 2014)
• Designing Interfaces, 3rd Edition, by Jennifer Tidwell et al. (O’Reilly, 2019)•
• The Work of Edward Tufte•

150 | Chapter 7: User Interface Design

https://learning.oreilly.com/library/view/the-non-designers-design/9780133966350
https://learning.oreilly.com/library/view/the-non-designers-design/9780133966350
https://learning.oreilly.com/library/view/designing-interfaces-3rd/9781492051954/
https://oreil.ly/QTviB

CHAPTER 8

Working with Data

Data is a precious thing and will last longer than the systems themselves.
—Tim Berners-Lee, computer scientist

When you’re getting started with your career as a software engineer, it’s easy to get
lost in the idea of learning programming languages, frameworks, and tools. The real‐
ity is you will spend a lot of time in your career working with data in various forms,
and data forms the backbone of everything you do. You will model applications
around data, collecting it, storing it, transforming it, and ultimately figuring out the
best way to transform back to your users in a meaningful way.

When you think of data, the first thing that might come to mind is the data that
you store in some type of database. There’s way more to data than that, including
understanding different data types, selecting appropriate storage solutions, designing
efficient data models, optimizing queries, ensuring data integrity, and managing data
evolution over time. These skills are just as critical to your success as a developer as
your fundamental coding abilities.

Learning how to work with data well can be challenging. What works in development
might fail in production—from slow customer databases to complex migrations
and inefficient queries. These real-world challenges are common in software develop‐
ment, and it’s important to be prepared for them.

This chapter lays the foundation for working with data effectively, serving as your
guide to becoming a data-savvy developer. You’ll learn to identify different data types,
select appropriate tools, explore efficient storage solutions, optimize queries, and
manage smooth migrations. While not diving into the depths of database administra‐
tion or data engineering, you’ll gain the essential skills every developer needs to make
informed decisions about data in your applications and avoid common pitfalls that
plague many developers.

151

Understanding Data Types and Formats
When you build software, you are often creating systems that process, transform,
and present data. Whether you’re building small or enterprise applications, a project’s
success can be tied to its data and how you choose to structure, validate, and process
it.

When working with data types and formats, consider these factors:

Audience
Who will read or process this data? Humans or machines?

Performance requirements
Is size or processing speed critical?

Compatibility
What systems will consume this data?

Complexity
How nested or variable is your data structure?

Validation needs
Do you need schema validation?

In this section, you’ll learn concepts for effectively working with different types
of data in your applications. You’ll explore the fundamental distinction between
structured and unstructured data, understanding their characteristics, advantages,
and limitations.

Structured Versus Unstructured Data
Data has two main types: structured and unstructured. Structured data is organized
like a spreadsheet, with clear categories and connections that make it easy to store
in databases and search through. Unstructured data includes regular text, pictures,
and documents; these need special tools to work with them. Understanding the dis‐
tinction between structured and unstructured data is important for making effective
design decisions in your applications. Let’s explore these fundamental concepts.

Structured data
Structured data is organized according to a predefined model or schema, with con‐
sistent field types and relationships. Think of it as information that can easily fit
into the rows and columns of a spreadsheet or relational database. In programming,
this structure is often represented through classes that define the data model. In the
following example, a Java class called Customer defines the properties of a Customer:

152 | Chapter 8: Working with Data

public class Customer {
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 private LocalDate birthDate;
 private Address address;

 // Getters and setters omitted for brevity
}

The key characteristics of structured data include the following:

Consistent format
Every record follows the same schema. Each time you create a new customer in
your application, they will have the properties defined in the class.

Well-defined relationships
Clear connections between data entities.

Easy to query
Supports precise search and filtering operations. In the case of the customer, you
could find it by first name, last name, or a combination of both.

Efficient storage
Optimized for databases with fixed-length fields. The customer object maps well
to columns in a table.

Structured data shines in scenarios requiring strict data integrity, complex queries,
and well-established business rules. Examples include financial transactions, inven‐
tory management, and user profiles.

If you’re working with relational databases like PostgreSQL or
MySQL, you’re most likely dealing with structured data. The table
and column definitions in your schema dictate existing fields and
the type of data each can contain.

Structured data sounds pretty great, right? It is, but it also comes with its limitations.
It’s relatively inflexible because if you need to add or change fields, this often requires
modifying both your database schema and application code. Structured data also
struggles to represent complex or nested information efficiently.

Understanding Data Types and Formats | 153

AI Note

When you need realistic test data that matches your structured
schema, AI tools can be helpful. Instead of manually creating
dozens of fake customer records or searching for the right data
or generation library, you can simply ask: “Generate 20 realistic
customer records with names, emails, addresses, and birth dates in
JSON format.” AI lets you be specific about what you want, like
“Generate e-commerce product data for a vintage bookstore” or
“Create user profiles for a fitness app with varied activity levels.”
This is particularly useful when you’re learning or prototyping, as
you can quickly get meaningful data that makes your applications
feel real.

Unstructured data
Unstructured data has no predefined data model. It does not fit neatly into rows
and columns. This includes free-form text like emails, social media posts, and chat
transcripts. Other examples of unstructured data are images, audio, video, logs with
inconsistent formats, and documents (PDF and Word) that have no clearly defined
structure.

When you work with unstructured data, you generally need to take a different
approach to process it because of its raw nature. This can involve natural language
processing (NLP) for text analytics or computer vision for images and audio.

In the following example, this function takes in some raw customer feedback and
uses NLP to determine whether the feedback is positive or negative, identifies key‐
words or topics, and then saves that information along with the original feedback:

// Processing unstructured data often requires different approaches
public void processCustomerFeedback(String feedbackText) {
 // Extract sentiment using natural language processing
 Sentiment sentiment = nlpService.analyzeSentiment(feedbackText);

 // Identify key topics or keywords
 List<String> keywords = nlpService.extractKeywords(feedbackText);

 // Store both the original unstructured text and extracted insights
 feedbackRepository.save(new Feedback(feedbackText, sentiment, keywords));
}

The defining traits of unstructured data include the following:

Variable format
No consistent schema or structure

Rich content
Contains nuanced information like emotions, opinions, or visual details

154 | Chapter 8: Working with Data

Difficult to query traditionally
Requires specialized techniques like full-text search

Storage challenges
Often requires specialized systems optimized for large objects

Unstructured data is invaluable for applications dealing with human communication,
creative content, or complex real-world information. Working with unstructured data
typically requires different tools than structured data. Instead of SQL queries, you
might use full-text search engines like Elasticsearch, NLP libraries, or specialized data
lakes designed for flexible storage.

Common Data Formats
As a software engineer, you’ll encounter various data formats throughout your career.
It is your job to understand the formats, their strengths and weaknesses, and when
to use one or the other. Sometimes you have the choice to pick the appropriate
format, and sometimes that decision has already been made for you. Either way,
understanding them will help you make better design decisions and work more
effectively within your applications. Let’s explore some of the more common data
formats you’ll encounter along your journey.

JSON
JavaScript Object Notation (JSON) has become the de facto standard for data
exchange in modern applications because of its readability and simplicity. Even
though the name suggests that it’s made for JavaScript, it’s language independent and
supports types like objects, arrays, strings, numbers, Booleans, and null values. The
following is an example of a JSON object that contains information about a user:

{
 "id": 1001,
 "firstName": "Jane",
 "lastName": "Smith",
 "email": "jane.smith@example.com",
 "birthDate": "1985-03-15",
 "address": {
 "street": "123 Main Street",
 "city": "Boston",
 "state": "MA",
 "zipCode": "02108",
 "country": "USA"
 }
}

Understanding Data Types and Formats | 155

JSON is a really great choice for web APIs, configuration files, and document data‐
bases. Its limitations include no support for comments, date formats, or binary data
without encoding. For most modern applications, especially those with JavaScript
frontends, JSON is the natural choice.

XML
XML, or eXtensible Markup Language, is more verbose than JSON but offers robust
validation through XML Schema Definition (XSD) and Document Type Definition
(DTD). XSD provides schema definition capabilities, allowing you to specify data
types, constraints, and structural rules for your XML documents. You can also use
XPath expressions for precise data selection and transformations (XSLT) to convert
XML to other formats within your XML documents.

XML supports namespaces, which help avoid naming conflicts in complex docu‐
ments by providing unique identifiers for elements from different vocabularies or
XML schemas. For processing really large XML documents, multiple specialized
parsers are available that can significantly improve performance through streaming,
event-driven parsing, or memory-efficient techniques. The following is an example of
an XML document that contains information about a user:

<?xml version="1.0" encoding="UTF-8"?>
<customer>
 <id>1001</id>
 <firstName>Jane</firstName>
 <lastName>Smith</lastName>
 <email>jane.smith@example.com</email>
 <birthDate>1985-03-15</birthDate>
 <address>
 <street>123 Main Street</street>
 <city>Boston</city>
 <state>MA</state>
 <zipCode>02108</zipCode>
 <country>USA</country>
 </address>
</customer>

XML remains prevalent in enterprise systems, document formats (like DOCX, SVG),
and configuration files for complex applications. Choose XML when schema valida‐
tion, namespaces, or compatibility with document-oriented systems is important.

CSV
Comma-separated values (CSV) stores tabular data as plain text, using commas to
separate values, and newlines to separate records. The first row typically contains
column headers. While CSV is straightforward, it lacks built-in data type definitions
and consistent rules for handling special characters. The following example contains
columns for user information and one row of sample data:

156 | Chapter 8: Working with Data

id,firstName,lastName,email,birthDate,address.street,address.city,address.state,
address.zipCode,address.country
1001,Jane,Smith,jane.smith@example.com,1985-03-15,"123 Main Street",
Boston,MA,02108,USA

CSV works well for data exports, simple data exchange, and compatibility with
spreadsheet applications. Use it for tabular data with a simple structure, but be
cautious with international characters, commas within fields, and complex data types.

When working with CSV, always consider how to handle special
cases: empty fields, fields containing commas or quotes, and new‐
lines within fields. Most CSV libraries provide options for these
scenarios, but you need to configure them explicitly.

YAML
YAML Ain’t Markup Language (YAML) offers a more human-friendly syntax than
JSON or XML, with support for comments, references, and multiline text. The use
of indentation defines structure, which improves readability but requires careful
attention to formatting as even a single misplaced space can cause parsing errors.
Best practices include using a consistent indentation (usually two spaces), validating
YAML files before deployment, and using a YAML-aware editor to catch formatting
issues early. The following is an example of a user defined in YAML format:

customer:
 id: 1001
 firstName: Jane
 lastName: Smith
 email: jane.smith@example.com
 birthDate: 1985-03-15
 address:
 street: 123 Main Street
 city: Boston
 state: MA
 zipCode: 02108
 country: USA

YAML is ideal for configuration files, especially in DevOps tools like Docker Com‐
pose, Kubernetes, and CI/CD pipelines. Its readability makes it excellent for human-
edited files, though you should be careful with indentation and special characters.

Most applications use multiple formats like JSON for APIs, YAML for configuration,
and a CSV for downloading customer data. The right choice depends on your specific
requirements and constraints.

Understanding Data Types and Formats | 157

Specialized Data Considerations
Beyond the common formats you learned about in the previous section, you’ll
encounter specialized data types that are less common but are still important to
understand and require a particular approach in handling them.

Binary data
Binary data encompasses everything from images and documents to audio files and
encrypted content. Unlike text-based formats, binary data can’t be directly read or
manipulated without proper encoding and decoding. The following example demon‐
strates reading in an image and converting it into binary data, in this case a byte
array:

// Reading an image file as binary data
try (FileInputStream fis = new FileInputStream("dogs-playing-poker.png");
 ByteArrayOutputStream bos = new ByteArrayOutputStream()) {

 byte[] buffer = new byte[1024];
 int bytesRead;
 while ((bytesRead = fis.read(buffer)) != -1) {
 bos.write(buffer, 0, bytesRead);
 }

 byte[] imageBytes = bos.toByteArray();
 // Now you can work with the binary data
}

Once you have loaded an image file into memory as a byte array, you can do
numerous things with it:

• Display the image in a GUI application•
• Process or manipulate the image (resize, crop, apply filters, etc.)•
• Convert it to a different image format (PNG to JPEG, etc.)•
• Upload it to a server or cloud storage•
• Send it as part of an HTTP request•
• Embed it in a PDF document•
• Extract metadata from the image•

When working with binary data, there are several key practices to follow. Use
dedicated libraries designed for specific file formats. Base64 encoding helps when
binary data must be included in text formats. Hexadecimal representation provides
a readable way to examine individual bytes during debugging and analysis. Large
binary files require careful memory management. Always implement error handling
to catch corrupt or incomplete data files.

158 | Chapter 8: Working with Data

Date and time data
The software engineering community often jokes that the hardest problems in com‐
puter science are naming things and cache invalidation (see “Naming Things Is
Hard” on page 44). Date and time handling deserves a place near the top of that list
because of its deceptive complexity. Working with temporal data presents numerous
challenges stemming from time zones, daylight saving time adjustments, various
calendar systems, and formatting conversions.

In the following Java application, we take a local date and time, associate it with a
specific time zone, and then add travel time before converting it to another time
zone. Finally, we format the resulting ZonedDateTime for display, allowing us to
cleanly present the arrival time in the target region:

// Reading an image file as binary data
try (FileInputStream fis = new FileInputStream("dogs-playing-poker.png");
 ByteArrayOutputStream bos = new ByteArrayOutputStream()) {

 byte[] buffer = new byte[1024];
 int bytesRead;
 while ((bytesRead = fis.read(buffer)) != -1) {
 bos.write(buffer, 0, bytesRead);
 }

 byte[] imageBytes = bos.toByteArray();
 // Now you can work with the binary data
}

The following are key considerations for working with date/time data:

• Always store dates in UTC internally, converting to local time zones only for•
display

• Use ISO 8601 format for date/time exchange between systems•
• Leverage modern date/time libraries rather than building custom solutions•
• Be explicit about time zones in user interfaces to avoid confusion•

Large datasets
As applications scale, so will the data that you’re working with. What once was
a simple system using basic data types now contains very large datasets that are
too large to process in memory all at once, requiring a specialized approach. In
the following example, we demonstrate how to process large CSV files by using a
streaming approach that reads and processes records one at a time:

// Stream processing approach for large CSV files
try (Reader reader = new FileReader("massive-data.csv");
CSVParser parser = CSVFormat.DEFAULT.withHeader().parse(reader)) {

Understanding Data Types and Formats | 159

parser.forEach(record -> {
 // Process one record at a time
 // without loading everything into memory
 processRecord(record);

 });
}

When handling large datasets, consider the following:

• Use streaming approaches that process data incrementally•
• Implement pagination for API responses and user interfaces•
• Consider database optimizations like indexing and query tuning•
• Evaluate specialized technologies like data warehouses or distributed processing•

frameworks for extremely large datasets
• Implement proper concurrency control by using locks, atomic operations, or•

immutable data structures to prevent data races when multiple threads access
shared data simultaneously

• Test with realistic data volumes early in development•

These specialized considerations become increasingly important as your applications
grow in complexity and scale. While you don’t need to be an expert in all these
areas immediately, awareness of these considerations will help you recognize when
standard approaches might not be sufficient, and when to seek more specialized
solutions or expertise.

In this section, you learned about different data types like structured and unstruc‐
tured data. You also took a look at some common and specialized data types that you
will work with throughout your career. Now that you have an overview of data types,
we’ll look at how to store that data effectively next .

Storing Your Data Effectively
After you have determined the data structures you’re working with, you need to
choose the right storage mechanism for your data. Making the right storage choice
early on can prevent problems later. In this section, you’ll learn how to select the
appropriate database for your application’s needs and understand the strengths and
limitations of different database types. These fundamentals will help you make well-
informed decisions that will impact your application’s performance, scalability, and
maintainability.

160 | Chapter 8: Working with Data

Database Types and Their Use Cases
Selecting a database for your next application isn’t about following social media
trends or copying your colleagues’ preferences. Instead, make an informed decision
based on your application’s specific requirements. When choosing a storage solution,
consider these key factors:

Data structure complexity
How complex are the relationships in your data?

Read versus write patterns
Will your application perform more read or write operations?

Query complexity
What types of questions will you ask of your data?

Scalability needs
How much will your data grow over time?

Consistency requirements
How important is data consistency to your application?

Let’s examine two applications with different database requirements. First, consider
a blog application for sharing your knowledge and passion. You’ll start by defining
entities (users, posts, tags, comments, etc.) and their relationships: users write many
posts, and posts have many tags and comments. This clearly defined structure sug‐
gests a relational database would be the right choice.

Second, imagine building a product catalog for custom merchandise. Here, your
products don’t follow a uniform structure, and they have varying attributes that
might change frequently. For this scenario, a document database would likely be more
suitable.

Database choices can evolve with your application, and no choice
is permanent. Many successful projects start simple and migrate to
more complex solutions as needs change. Don’t feel pressured to
pick the “perfect” solution or overengineer from day one.

Now, let’s explore the types of databases and when you might choose each one.

Storing Your Data Effectively | 161

Relational databases
Relational databases organize data into tables with rows and columns, establishing
relationships between tables through keys. They’re built on solid mathematical foun‐
dations (relational algebra) and ensure data integrity through ACID properties:

Atomicity
Transactions are all-or-nothing operations. Either all changes in a transaction
complete successfully, or none of them do. If any part fails, the entire transaction
is rolled back to maintain data consistency.

Consistency
The database remains in a valid state before and after each transaction. All data
integrity rules, constraints, and relationships are preserved, ensuring that the
database never enters an invalid state.

Isolation
Concurrent transactions don’t interfere with one another. Each transaction
appears to execute in isolation, even when multiple transactions run simultane‐
ously, preventing issues like dirty reads or lost updates.

Durability
Once a transaction is committed, its changes are permanently stored and survive
system failures. The data persists even if the database crashes or loses power
immediately after the commit.

Use relational databases in these cases:

• Your data has clear relationships among entities.•
• You need complex queries and joins.•
• Transactions and data consistency are critical.•
• You have structured data that changes infrequently.•

Popular examples include PostgreSQL, MySQL, Oracle, and SQL Server.

Here’s a simple example of creating tables in a relational database in Java:

// Using JDBC to create tables
String createUserTable = """
 CREATE TABLE users (
 id SERIAL PRIMARY KEY,
 username VARCHAR(50) UNIQUE NOT NULL,
 email VARCHAR(100) UNIQUE NOT NULL,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
 """;

162 | Chapter 8: Working with Data

String createPostTable = """
 CREATE TABLE posts (
 id SERIAL PRIMARY KEY,
 user_id INTEGER REFERENCES users(id),
 title VARCHAR(200) NOT NULL,
 content TEXT NOT NULL,
 published_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
 """;

try (Connection conn = dataSource.getConnection();
 Statement stmt = conn.createStatement()) {
 stmt.executeUpdate(createUserTable);
 stmt.executeUpdate(createPostTable);

 // Insert a user
 String insertUser = "INSERT INTO users (username, email) VALUES (?, ?)";
 try (PreparedStatement pstmt = conn.prepareStatement(insertUser)) {
 pstmt.setString(1, "john_doe");
 pstmt.setString(2, "john@example.com");
 pstmt.executeUpdate();
 }
}

Document databases
Document databases store data in flexible, JSON-like documents rather than rigid
tables. Each document can have a different structure, allowing for greater flexibility
than relational databases.

Use document databases in these cases:

• Your data structure varies among records.•
• You need horizontal scalability for large datasets.•
• Your application requirements change frequently.•
• You’re building content management systems or catalogs.•

Popular examples include MongoDB, Couchbase, and Firebase Firestore.

Here’s how you might store a blog post in a document database:

// Using MongoDB Java driver
Document post = new Document()
 .append("title", "Getting Started with MongoDB")
 .append("author", new Document("name", "Jane Developer")
 .append("email", "jane@example.com"))
 .append("tags", Arrays.asList("database", "nosql", "mongodb"))
 .append("comments", Arrays.asList(
 new Document("user", "reader1").append("text", "Great article!"),
 new Document("user", "reader2").append("text", "Thanks for sharing!")

Storing Your Data Effectively | 163

))
 .append("publishedAt", new Date())
 .append("createdAt", new Date());

try {
 collection.insertOne(post);
} catch (MongoException e) {
 log.error("Error: " + e.getMessage());
}

Key-value stores
Key-value stores are the simplest form of NoSQL databases, storing data as a collec‐
tion of key-value pairs. They’re extremely fast for simple operations but limited in
query capabilities.

Use key-value stores in these cases:

• You need blazing-fast read/write performance.•
• Your data access patterns are simple (mostly by key).•
• You’re building caching layers, session stores, or preferences.•
• Your use case values speed over complex queries.•

Popular examples include Redis, Amazon DynamoDB, and Riak.

Here’s an example of using a key-value store for session management:

// Using Jedis (Redis Java client)
try (Jedis jedis = jedisPool.getResource()) {
 // Store session with 30-minute expiration
 String sessionId = generateSessionId();
 jedis.setex("session:" + sessionId, 1800, userJson);

 // Retrieve session
 String storedSession = jedis.get("session:" + sessionId);
}

Graph databases
Graph databases are designed to efficiently store and query highly interconnected
data by representing information as nodes (entities) and edges (relationships among
those entities). Unlike relational databases that use tables and foreign keys, graph
databases make relationships first-class citizens in the data model. Graph databases
use common query languages that make it easy to find patterns and follow connec‐
tions in your data.

164 | Chapter 8: Working with Data

Use graph databases in these cases:

• Your data is highly interconnected.•
• Relationships are as important as the data itself.•
• You need to perform complex traversals or pathfinding.•
• You’re building social networks, recommendation engines, or knowledge graphs.•

Popular examples include Neo4j, JanusGraph, and Amazon Neptune.

Here’s a practical example in Neo4j using Java, showing how to create a person node
with properties and establish a “follows” relationship between two users:

// Using Neo4j Java driver
try (Session session = driver.session()) {
 session.writeTransaction(tx -> {
 tx.run("CREATE (user:Person {name: $name, email: $email})",
 parameters("name", "Alice", "email", "alice@example.com"));
 tx.run("MATCH (a:Person {name: $person1}), (b:Person {name: $person2}) " +
 "CREATE (a)-[:FOLLOWS]->(b)",
 parameters("person1", "Alice", "person2", "Bob"));
 return null;
 });
}

Graph databases are really good at revealing hidden patterns and connections that
would be difficult to discover in traditional relational databases. They use a simple
model and are great for finding connections in your data. They’re the best tool
when your application needs to understand and use relationships among pieces of
information.

Vector databases
Vector databases are specialized database systems designed to handle high-
dimensional numerical vectors and perform similarity searches efficiently. Unlike
traditional databases that store discrete values like text or numbers, vector data‐
bases store mathematical representations of data (embeddings) that capture semantic
meaning and enable AI-powered applications.

When it comes to vector databases, there are two key concepts to understand: vector
embeddings and similarity search.

Vector embeddings are how you store your data. You have arrays of numbers (typ‐
ically hundreds to thousands of dimensions) that represent data points in a high-
dimensional space. Similar items have vectors that are close together in this space,
while dissimilar items are far apart.

Storing Your Data Effectively | 165

Similarity search is how you access your data. It’s the core operation—finding items
that are most similar to what you’re looking for. Think of it like asking, “Show me
things that are like this” rather than “Show me things that exactly match this.”

Vector databases power many modern AI applications, and you might use them in
the following scenarios:

Semantic search
Finding documents based on meaning rather than keywords

Recommendation systems
Suggesting similar products, content, or users

Retrieval-augmented generation (RAG)
Providing relevant context to large language models (LLMs)

Image/video search
Finding visually similar media

Anomaly detection
Identifying outliers in high-dimensional data

Deduplication
Finding near-duplicate content

Popular examples include: Pinecone, Weaviate, Chroma, and Qdrant.

Selecting the right database is about understanding the shape of your data and your
application’s requirements. Relational databases offer structure and consistency for
well-defined relationships. Document databases provide flexibility for evolving sche‐
mas. Key-value stores deliver speed for simple data access patterns. Graph databases
excel at managing complex relationships. Vector databases power many modern AI
applications.

When choosing a database, remember that it’s not a decision that will make or break
your career. While having millions of users might require switching databases later,
that’s actually a sign of success! The key is to choose based on your current needs and
keep moving forward.

Data Persistence and Management
Now that you understand the types of databases available to you, it’s time to explore
how to effectively work with them. No matter what language or framework you’re
using, chances are there are different abstraction levels. Just like choosing the right
database, you need to decide what level of abstraction makes sense for the application
you’re working on.

166 | Chapter 8: Working with Data

In this scenario, team dynamics also play a big part in decision making. If you have
a large team of developers who have experience with SQL but don’t have any experi‐
ence with object relational mappers (ORM) like Hibernate, then maybe it doesn’t
make a lot of sense to introduce the Java Persistence API into your project.

In this section, you’ll learn about different persistence patterns, connection manage‐
ment, consistency models, and planning for data growth. Most of the examples here
are in Java, but if that isn’t your language, don’t worry about it. Instead focus on the
patterns and abstraction level and how it might apply to your favorite language or
framework.

Let’s look at some options for persistence patterns. The level of abstraction you
choose for data persistence can significantly impact your development speed, code
maintainability, and application performance. There’s no one-size-fits-all solution
here. Your choice should be influenced by your application’s complexity, your team’s
expertise, and your project’s timeline.

Direct database access
Direct database access is the lowest level of abstraction, where you write raw SQL
or database-specific query languages. This approach gives you complete control but
requires deep database knowledge.

In the following example, the query selects the columns required from the users table,
executes that query, and then iterates over the result set:

// Direct JDBC access example
String query = "SELECT id, username, email FROM users WHERE active = true " +
 "ORDER BY created_at DESC";
try (Connection conn = dataSource.getConnection();
 PreparedStatement stmt = conn.prepareStatement(query);
 ResultSet rs = stmt.executeQuery()) {

 while (rs.next()) {
 User user = new User(rs.getLong("id"),
 rs.getString("username"),
 rs.getString("email"));
 users.add(user);
 }
}

Repository pattern
The repository pattern provides an abstraction layer between your business logic and
data access code. It acts as a collection-like interface for accessing domain objects,
hiding the complexity of database operations. This pattern offers several key benefits:

Separation of concerns
Isolates data access logic from business logic

Storing Your Data Effectively | 167

Testing
Makes unit testing easier by allowing mock repositories

Code organization
Centralizes data access logic in one place

Looking at the following code example, you can see how the UserRepository imple‐
ments these principles:

1. The repository encapsulates all SQL queries and database operations.1.
2. Database abstraction shields the application from database schema changes and2.

implementation details.
3. It provides a clean, domain-focused interface (findActiveUsers).3.
4. Error handling is standardized through the RepositoryException.4.
5. Connection management is properly handled with try-with-resources.5.

// Repository pattern example
public class UserRepository {
 private final DataSource dataSource;

 public UserRepository(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 public List<User> findActiveUsers() {
 List<User> users = new ArrayList<>();
 String query = "SELECT id, username, email FROM users WHERE " +
 "active = true ORDER BY created_at DE";

 try (Connection conn = dataSource.getConnection();
 PreparedStatement stmt = conn.prepareStatement(query);
 ResultSet rs = stmt.executeQuery()) {

 while (rs.next()) {
 User user = new User(rs.getLong("id"),
 rs.getString("username"),
 rs.getString("email"));
 users.add(user);
 }
 } catch (SQLException e) {
 throw new RepositoryException("Failed to find active users", e);
 }

 return users;
 }
}

168 | Chapter 8: Working with Data

Object relational mapping
Object relational maping (ORM) frameworks such as Hibernate, JPA, and Entity
Framework provide the highest level of abstraction in database interaction. These
tools bridge the gap between object-oriented programming and relational databases
by mapping domain objects directly to database tables, eliminating the need for
manual SQL writing and result mapping in most cases.

The following code demonstrates how JPA annotations define a User entity with
database mapping metadata. The repository uses a simplified query language instead
of raw SQL to retrieve active users sorted by creation date:

// JPA/Hibernate example
@Entity
public class User {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 private String username;
 private String email;
 private boolean active;
 private LocalDateTime createdAt;

 // Getters and setters...
}

// Using the entity with JPA
@Repository
public class UserJpaRepository {
 @PersistenceContext
 private EntityManager entityManager;

 public List<User> findActiveUsers() {
 return entityManager.createQuery(
 "SELECT u FROM User u WHERE u.active = true " +
 "ORDER BY u.createdAt DESC",User.class)
 .getResultList();
 }
}

A common mistake new developers make is assuming that higher
abstraction (like ORMs) is always better. Sometimes, direct SQL
gives you better performance and more control. ORMs might make
it easier to get started but are often harder to debug. Learn to eval‐
uate the trade-offs for your specific needs rather than mindlessly
following a single approach.

Storing Your Data Effectively | 169

1 A connection pool is a cache of database connections maintained in memory so that they can be reused
when future requests to the database are required, eliminating the overhead of repeatedly establishing new
connections.

Database Connections and Transactions
Once you have made a decision on the database you will use and how you will inter‐
act with it, there are a couple of other features that can improve the performance and
reliability of your application. Database connections define how your applications
will connect to your database, and transactions define how multiple operations in a
single unit of work will operate.

Database connections
When you first learned about databases and how to connect to them, you probably
wrote code that allowed for a single connection. When you begin working with
real-world applications, understanding proper connection management is crucial
for performance and reliability. Most applications use a connection pool to reuse
database connections instead of creating a new one for each operation.1

The following example demonstrates how to use the Hikari Connection Pool (Hikar‐
iCP) in Java to connect to a local PostgreSQL database:

// HikariCP connection pool configuration
HikariConfig config = new HikariConfig();
config.setJdbcUrl("jdbc:postgresql://localhost:5432/myapp");
config.setUsername("user");
config.setPassword("password");
config.setMaximumPoolSize(10);

HikariDataSource dataSource = new HikariDataSource(config);

If you’re using a framework like Spring in Java, this is automatically configured and
handled underneath the hood for you.

Transactions
A database transaction is a logical unit of work containing one or more database
operations (like insert, update, delete) executed as a single atomic operation that
either completely succeeds or completely fails. The transaction maintains data integ‐
rity by ensuring that partial changes aren’t applied. The following example shows a
money transfer between accounts, using a transaction to ensure that both operations
succeed or both fail, maintaining the integrity of the account balance:

// Concise transaction example
try (Connection conn = dataSource.getConnection()) {
 conn.setAutoCommit(false);

170 | Chapter 8: Working with Data

try (PreparedStatement withdrawStmt =
 conn.prepareStatement(
 "UPDATE accounts SET balance = balance - ? WHERE id = ?");
 PreparedStatement depositStmt =
 conn.prepareStatement(
 "UPDATE accounts SET balance = balance + ? WHERE id = ?")) {

 // Withdraw from source account
 withdrawStmt.setBigDecimal(1, amount);
 withdrawStmt.setLong(2, fromAccountId);
 withdrawStmt.executeUpdate();

 // Deposit to destination account
 depositStmt.setBigDecimal(1, amount);
 depositStmt.setLong(2, toAccountId);
 depositStmt.executeUpdate();

 conn.commit();
} catch (SQLException e) {
 conn.rollback();
 throw e;
}

The responsibility of enforcing transactions depends on your data‐
base system and client setup. While databases typically guarantee
ACID properties for properly defined transactions (as we’ll discuss
in the next section), the application developer is usually responsible
for defining transaction boundaries. You will need to ensure that
related operations are grouped within the same transaction scope.

Consistency Models and Caching Strategies
You started out this chapter learning that data is the backbone of most applications
you work on. This means that the foundation of any system lies in its ability to man‐
age data reliably while delivering high performance. This section explores two critical
concepts that address these needs: consistency models and caching strategies. While
often discussed separately, these elements work together in modern data-driven
applications to create a balance between data reliability and speed.

Consistency models
Building on the transaction concepts you learned earlier, consistency models define
how your application will handle the accuracy of data across different parts of your
system. While transactions maintain data integrity on individual operations, consis‐
tency models determine how that integrity is maintained across multiple servers or
when multiple users access the same information simultaneously.

Storing Your Data Effectively | 171

Consistency in databases refers to the guarantee that any transaction will bring the
database from one valid state to another, ensuring that all data adheres to defined
rules, constraints, and relationships without contradiction. This principle is one of
the four ACID properties (atomicity, consistency, isolation, durability) that ensure
reliable transaction processing in database systems.

Types of consistency models. Applications have different needs for how quickly
changes to data should appear everywhere in the system. Databases offer various
consistency models to meet these requirements:

Strong consistency
Guarantees that each part of your system sees the same data at the same time,
with changes appearing in the exact order they occurred. In PostgreSQL, when
you update a user’s account balance, all subsequent reads immediately reflect
that change. As a result of this, the system may temporarily block operations to
maintain this guarantee, prioritizing accuracy over availability.

Eventual consistency
Prioritizes keeping your application running by allowing temporary inconsisten‐
cies that resolve over time. In Amazon DynamoDB, updating a product price
might take seconds to propagate globally. The result is that users in different
regions could briefly see different prices, but the system remains available during
outages. This mode works well when immediate consistency isn’t critical.

Causal consistency
Maintains order only between causally related operations. In collaborative editing
tools like Google Docs, if User A comments on User B’s edit, everyone sees
the edit before the comment, but unrelated edits from User C might appear in
different orders to different users. This provides a middle ground between strong
and eventual consistency.

Session consistency
Ensures consistency within individual user sessions while allowing differences
between users. In ecommerce applications, once you add an item to your cart,
you’ll always see it there during your session, even if other users’ views of inven‐
tory might be slightly outdated. This creates a consistent experience for each user
without requiring global synchronization.

CAP theorem and its implications. The CAP theorem explains a fundamental trade-off
in distributed systems. When your data is spread across multiple servers, you can
guarantee only two of these three properties simultaneously:

Consistency
All servers show the same data at the same time.

172 | Chapter 8: Working with Data

Availability
The system continues working even if some servers fail.

Partition tolerance
The system continues working even if network connections between servers
break.

These trade-offs create the following system designs:

CP systems
CP systems prioritize consistency and partition tolerance at the expense of avail‐
ability. If there’s a network problem, the system might stop accepting requests
rather than risk showing incorrect data. Examples include traditional banking
applications, inventory management systems, and financial services where data
accuracy is critical. Technologies like Apache HBase and Google Spanner fall into
this category.

AP systems
AP systems focus on availability and partition tolerance, accepting eventual con‐
sistency. These systems are ideal for content delivery networks, social media
feeds, and recommendation engines where immediate consistency is less critical
than system uptime. Technologies like Amazon DynamoDB and Cassandra are
good examples of this approach. It’s better to show a slightly outdated social
media post than to make the entire feed unavailable.

CA systems
CA systems offer consistency and availability but cannot tolerate network parti‐
tions. These systems work well in single-node databases or tightly coupled clus‐
ters on reliable networks. Traditional Relational Database Management Systems
(RDBMS) like MySQL or PostgreSQL configured without distributed capabilities
operate in this mode.

Choosing the right consistency model. Modern applications will often employ multiple
consistency models for different data types within the same system. The key here is to
match the consistency requirements to the business impact.

Use strong consistency for operations where accuracy is critical and temporary
unavailability is acceptable. Financial transactions, inventory updates, and user
authentication typically require this approach.

Use eventual consistency for data where slight delays are acceptable and availability is
crucial. User activity logs, recommendation systems, and content feeds can tolerate
temporary inconsistencies in exchange for better performance and uptime.

Storing Your Data Effectively | 173

Use session consistency for user-facing features where individual consistency matters
more than global synchronization. Shopping carts, user preferences, and draft con‐
tent work well with this model.

When choosing the right consistency model, remember that this is not permanent.
The important part of this process is understanding the requirements as they exist
right now, balancing the trade-offs, and selecting the appropriate model.

Optimizing performance with caching
Caching is a technique that stores frequently used data in faster storage locations
to reduce response time and database load. It’s like keeping your most-used apps
on your phone’s home screen instead of searching through all your apps each time.
When your application requests data, the cache serves as a quick-access storage layer
between your application and the database.

When you make a database call, even a simple one, network calls and disk reads
are involved that can take tens or hundreds of milliseconds. A cache stores data in
memory, reducing response times by 10× to 100× or more, depending on the context
and architecture.

However, caching comes with trade-offs. It introduces complexity regarding data
freshness and adds another potential point of failure. This is why defining a caching
strategy is critical. A good strategy determines how your application manages the
relationship between cached data and the source of truth in your database.

Common caching strategies. Modern applications use three primary caching strategies,
each with different trade-offs among performance, consistency, and complexity:

Cache-aside (lazy loading)
With cache-aside, your application code is responsible for managing both the
cache and the database. When a request is made for data, your application will
first check the cache to see whether it’s available. If the data is unavailable (a
cache miss), the application retrieves the data from the database and stores it in
the cache for future requests. If the data is available (a cache hit), the application
retrieves it from the cache.

In the following example, a blog post is looked up in the cache by its ID. If the ID
is found, the application will return that post. If not, the application will find the
blog post in the database and then store it in the cache for the next request:

public BlogPost getPostById(Long id) {
 BlogPost cached = cache.get(id);
 if (cached != null) return cached;

 BlogPost post = database.findById(id);
 cache.put(id, post);

174 | Chapter 8: Working with Data

 return post;
}

This strategy works well for read-heavy applications where you want fine-grained
control over what gets cached. The trade-off is that your application code
becomes more complex, and the first request for any piece of data will always
be slower because of the cache lookup and miss.

Write-through
With write-through caching, every write operation updates both the cache and
database simultaneously. This ensures that both the database and cache contain
the same data but can slow performance since the write happens in both loca‐
tions. In the following example, the database and cache are updated within the
same method:

public void updatePost(BlogPost post) {
 database.save(post);
 cache.put(post.getId(), post);
}

This strategy works well when you need strong consistency between your cache
and database, and when read performance is more important than write perfor‐
mance. The trade-off is slower performance on writes and potentially caching
data that might not get read often.

Write-behind (write-back)
Write-behind caching writes the data to the cache immediately but will update
the database asynchronously. This gives you fast performance on your write
operations but introduces the risk of data loss if the cache fails before the
database is updated. In the following example, the cache is updated, and then
a background process is spawned to update the database:

public void updatePost(BlogPost post) {
 cache.put(post.getId(), post);
 asyncQueue.schedule(() -> database.save(post));
}

This strategy works well for write-heavy applications that can handle some risk of
data loss in exchange for better performance. Some examples of the write-behind
strategy include user activity, logging, or metrics where losing some data points is
acceptable.

When to use caching. Caching is a powerful tool in your toolbelt, but it doesn’t come
without trade-offs. A cache is another moving part in your system that can fail, go
stale, or consume resources. The question isn’t whether caching is good or bad, but
whether the benefits of adding it to your application justify the added complexity.

Storing Your Data Effectively | 175

Consider an online store’s product catalog. When a user visits the store and searches
for a product, the application needs to retrieve information from multiple tables
like product details, inventory, reviews, and pricing. If each product page takes an
average of 200 ms to complete and 1,000 shoppers are using the store simultaneously,
your application could be making 4,000 requests to the database in a short period
of time. The database must handle this high volume of simultaneous queries while
maintaining acceptable response times.

Most of these requests are for information that rarely changes. Here, caching makes
sense because you can serve requests at an average of 5 ms from memory while your
database handles the truly dynamic operations like order processing.

Let’s compare this to another scenario like a real-time trading platform where prices
change multiple times per second. Even if you were to set a cache eviction policy
(removing data from the cache) at 30-second intervals, you could still be displaying
outdated prices, potentially costing your users money. The complexity of cache inva‐
lidation and the risk of displaying stale data here far outweigh the performance
benefits.

When evaluating whether caching is right for a particular scenario, ask yourself these
questions:

• How often does this data change?•
• What are the costs of serving users stale data?•
• How expensive are my current queries?•
• Are there any current performance bottlenecks?•

The answers to these questions will guide you toward the right solution for your
specific use case.

Caching and consistency. Caching introduces its own challenges when it comes to
consistency, which you learned about earlier in this section. When you cache data,
you’re creating a temporary copy that might become stale when the original data
changes. Different caching strategies handle this differently:

• Cache-aside with TTL (time to live) provides eventual consistency by automati‐•
cally expiring cached data after a set time.

• Write-through caching maintains strong consistency between cache and database•
but at the cost of write performance.

• Write-behind caching accepts temporary inconsistency in favor of performance.•

176 | Chapter 8: Working with Data

The key is weighing the trade-offs with your business requirements. In the financial
world, data might require write-through caching for strong consistency, while a per‐
sonal blog could use cache-aside with eventual consistency through TTL expiration.

Distributed Systems Considerations
When your application scales across multiple servers, you face additional challenges:

• Cache consistency becomes more complex.•
• Distributed transactions may be necessary.•
• You might need to implement eventual consistency patterns.•
• Data replication and sharding strategies become important.•

These topics deserve their own chapter, but be aware that as your application grows,
your persistence strategy will need to evolve.

Planning for Data Growth
As you have learned throughout this chapter, there is no “perfect” plan when it comes
to your data, but you should avoid going in with no plan at all. Putting some thought
into your data strategy up front can save you significant effort, time, and stress later.

Planning for growth means regularly reviewing performance metrics and capacity
needs. This is best done as a joint effort among the development team, database
administrators, and operations staff. Watch for key indicators like query response
times exceeding acceptable thresholds, database CPU consistently above a certain
percentage, memory usage climbing steadily, or an increase in user complaints about
slow load times. These conversations should happen monthly for growing applica‐
tions, allowing you to address issues before they become critical.

Using scaling strategies
When growth indicators appear, you have several options, each appropriate for differ‐
ent situations:

Vertical scaling
Adds more resources (CPU, RAM) to your database server. This is often your
first move because it’s simple and doesn’t require architectural changes, but you’ll
eventually hit hardware limits.

Storing Your Data Effectively | 177

Horizontal scaling
Distributes your data across multiple servers. This becomes necessary when
vertical scaling reaches its limits or when you need geographic distribution for
global applications.

Read replicas
Create copies of your database for read operations, reducing load on the pri‐
mary database. Consider this approach first for read-heavy applications. This
is easier to implement than full horizontal scaling and can provide significant
performance improvements.

Sharding
Partitions your data across multiple databases based on a shard key. This is the
most complex option but necessary for applications with massive data volumes
that can’t fit on a single server.

Read Replicas Versus Caching
While read replicas and caching improve read performance, they work differently:

• Read replicas are complete copies of your database that stay synchronized with•
the primary database through replication.

• Caching stores frequently accessed data in memory as a temporary copy that may•
become stale.

Read replicas provide eventual consistency at the database level and don’t require
application code changes, while caching requires your application to manage cache
invalidation and consistency. Read replicas are particularly useful for geographic
distribution and read-heavy workloads, whereas caching excels at reducing response
times for frequently accessed data.

Maintaining performance during growth
Regular data maintenance becomes increasingly important as your application scales.
You can maintain performance as follows:

• Implement data archiving strategies for old data to keep working sets•
manageable.

• Set up appropriate database indexes and review them regularly as query patterns•
evolve.

• Schedule regular database maintenance tasks like analyzing query performance•
and optimizing slow queries.

178 | Chapter 8: Working with Data

Understanding various database types and levels of persistence abstractions can help
you make informed decisions about the architecture and direction of your applica‐
tion. The right choice depends on your application’s requirements and the skills of
your team, and there is no universal best solution.

Querying and Managing Data Performance
A slow application will frustrate users, no matter how good it looks. While the back‐
end team focuses on getting data to users, it sometimes forgets about performance;
the team is happy as long as the application works. Whether you’re building a small
web application or a complex enterprise system, the way you query and manage data
can make or break your applications’ performance.

This section covers the fundamentals of efficient data access knowledge that can help
you avoid performance issues in the future. These core principles are so common that
you’ll encounter them across many applications. You’ll learn practical techniques for
optimizing queries, understand database indexing, and discover when to use specific
performance tools. These skills will not only enhance your applications’ performance
but also demonstrate your deep understanding of database fundamentals.

Efficient Query Writing
When you’re getting started, you just want to write the query that gets the results
you’re looking for. The next step should be to ask, “How can I improve the perfor‐
mance of this query?” Understanding how to write efficient queries is a fundamental
skill that dramatically impacts your application’s performance. A poorly optimized
query can consume excessive server resources, create bottlenecks, and lead to a
frustrating user experience.

The difference between a good and poorly optimized query can be huge, sometimes
reducing execution time from seconds to milliseconds. Let’s explore some essential
techniques that will help you optimize your data access and build applications that
remain responsive even under high throughput.

Basic query optimization
The first step in writing efficient queries is understanding what makes them ineffi‐
cient in the first place. Consider this common scenario:

public List<User> getAllActiveUsers() {
 return jdbcTemplate.query(
 "SELECT * FROM users WHERE active = true",
 (rs, rowNum) -> {
 User user = new User();
 user.setId(rs.getLong("id"));
 user.setUsername(rs.getString("username"));

Querying and Managing Data Performance | 179

 user.setEmail(rs.getString("email"));
 user.setActive(rs.getBoolean("active"));
 user.setCreatedAt(rs.getTimestamp("created_at"));
 // ... mapping 15 more fields
 return user;
 });
}

This query looks innocent enough, but it has two significant issues. First, SELECT *
retrieves all columns from the database, even if you need only one or two. Second, it’s
loading potentially thousands of records into memory at once. Let’s improve it:

public List<UserSummary> getActiveUserSummaries() {
 return jdbcTemplate.query(
 "SELECT id, username, email FROM users WHERE active = true LIMIT 100",
 (rs, rowNum) -> {
 UserSummary summary = new UserSummary();
 summary.setId(rs.getLong("id"));
 summary.setUsername(rs.getString("username"));
 summary.setEmail(rs.getString("email"));
 return summary;
 });
}

By selecting only the columns you need and limiting the result set, you’ve dramati‐
cally reduced the amount of data transferred from the database to your application.
This simple change can improve performance by orders of magnitude, especially
when dealing with large tables.

Always be specific about the columns you select and consider using
pagination (splitting results into smaller chunks like 20 records per
page) when retrieving large sets of data. Not only does this improve
performance, but it also makes your code more maintainable by
clearly documenting exactly what data your application needs.

Prepared statements
Once you have gone through some basic query optimizations, the next step is to
make sure the database can execute it as efficiently as possible. A prepared statement
is a precompiled SQL query that lets you safely insert data values at runtime while
improving performance and preventing SQL injection. In the following example, the
statement is constructed by concatenating values directly into SQL:

public User findUserByEmailAndStatus(String email, boolean active) {
 String sql = "SELECT id, username, email FROM users WHERE email = '" +
 email + "' AND active = " + active;
 return jdbcTemplate.queryForObject(sql, User.class);
}

180 | Chapter 8: Working with Data

Every time this method executes, the database must parse, compile, and optimize a
completely new query. Now compare it with a prepared statement:

public User findUserByEmailAndStatus(String email, boolean active) {
 return jdbcTemplate.queryForObject(
 "SELECT id, username, email FROM users WHERE email = ? AND active = ?",
 new Object[]{email, active},
 User.class);
}

With prepared statements, the database parses and optimizes the query once, then
reuses that execution plan for subsequent calls with different parameters. This query
plan caching can reduce execution time by 20%–50% for frequently executed queries.

Beyond performance, prepared statements automatically handle parameter escaping,
protecting your application from SQL injection attacks without requiring manual
input sanitization.

Index management
Imagine trying to find relevant mentions of “caching” in this entire book without an
index. You would have to read every single page, taking notes along the way. Database
indexes solve the same problem by creating a looking table that maps values directly
to where they are stored, transforming slow full-table scans into fast retrievals. In the
following example, the query has no indexes and will take approximately 2,000 ms to
execute:

// Query execution time without an index: ~2000ms
UserProfile profile = jdbcTemplate.queryForObject(
 "SELECT * FROM user_profiles WHERE email = ?",
 new Object[]{"john.doe@example.com"},
 UserProfile.class);

Without an index on the email column, the database performs a full table scan. Now,
let’s add an index:

CREATE INDEX idx_user_profiles_email ON user_profiles(email);

With this index, the same query might now execute in 5 ms instead of 2,000 ms,
a 400× improvement! However, indexes aren’t free. They take up storage space and
slow down write operations because the database must update each index when data
changes.

When deciding what to index, consider these guidelines:

• Index columns used frequently in WHERE clauses.•
• Index columns used in JOIN conditions.•
• Index columns used in ORDER BY or GROUP BY clauses.•

Querying and Managing Data Performance | 181

• Consider composite indexes for queries that filter on multiple columns.•
• Avoid indexing columns with low cardinality (few unique values).•

Handling large result sets
When you’re working in development, one of the easiest problems to overlook is
the sheer volume of data that might exist in your production environment. Without
a large dataset, it’s easy to forget that returning large collections of objects in produc‐
tion can cause performance issues. As mentioned earlier, one way to address this is by
limiting the number of records returned in a query. This is where pagination comes
into play, by allowing you to navigate through the results in manageable chunks.

In the following example, a Java method retrieves paginated product data filtered by
category. The method executes two database queries: one to fetch the specific page of
products and another to get the total count. The method then assembles these results
into a page object containing both the product data and pagination metadata needed
for the client application:

public Page<Product> getProductsByCategory(String category, int page, int size) {
 int offset = page * size;

 List<Product> products = jdbcTemplate.query(
 "SELECT id, name, price FROM products WHERE category = ? " +
 "ORDER BY name LIMIT ? OFFSET ?",
 new Object[]{category, size, offset},
 (rs, rowNum) -> {
 Product product = new Product();
 product.setId(rs.getLong("id"));
 product.setName(rs.getString("name"));
 product.setPrice(rs.getBigDecimal("price"));
 return product;
 });

 int totalCount = jdbcTemplate.queryForObject(
 "SELECT COUNT(*) FROM products WHERE category = ?",
 new Object[]{category},
 Integer.class);

 return new Page<>(products, page, size, totalCount);
}

This approach has a potential performance issue: the second query counting all
matching rows can become expensive as the table grows. The code uses offset-based
pagination, which requires the database to scan and discard all rows before the offset
point, becoming increasingly inefficient with larger offsets.

182 | Chapter 8: Working with Data

Here are some alternatives to consider:

• Replace offset pagination with keyset pagination (using WHERE id > last_•
seen_id).

• Cache count results when they don’t change frequently.•
• Estimate counts for very large datasets.•
• Consider UI patterns like infinite scroll that don’t require total counts.•

Tools and Best Practices
Consider the old adage, “If a tree falls in a forest and no one is around to hear it,
does it make a sound?” Now imagine your users are in that forest hearing the tree
fall on your database while you’re at home, completely unaware of what’s happening.
Problems will inevitably arise, but the key question is: how will you gain visibility into
those issues?

Understanding query execution plans
A database query planner (also called an optimizer) is a critical component of any
database management system that translates your SQL statements into executable
programs called execution plans. Think of it as a compiler that takes your SQL code
and determines the most efficient way to retrieve the requested data.

What is a database query planner?. Query planners work by analyzing your SQL query,
considering available indexes, table statistics, and various execution strategies to
generate an optimal plan. Query planners have two main types: rule-based optimizers
follow strict rules (like always using available indexes), and cost-based optimizers
generate multiple execution plans and select the one with the lowest estimated cost.
Most modern database systems use cost-based optimizers.

Database-specific query planners. Each database system has its own query planner with
unique features:

PostgreSQL
PostgreSQL’s planner/optimizer creates an execution plan by generating possible
plans for scanning each relation (table) in the query, determining which indexes
to use, and examining different join sequences to find the cheapest one. For
complex queries with many joins, PostgreSQL uses a genetic query optimizer to
find a reasonable (though not necessarily optimal) plan in a reasonable time.

MySQL
MySQL’s query optimizer also uses a cost-based approach, focusing on optimiz‐
ing read operations where it particularly excels. It evaluates different access
methods, join types, and join orders to find the most efficient execution plan.

Querying and Managing Data Performance | 183

Oracle
Oracle’s optimizer is highly sophisticated and offers additional enterprise-level
features for optimization, including adaptive execution plans that can change
during query execution based on runtime statistics.

Using query execution plans. Most databases provide the EXPLAIN command to view
the execution plan for a query. Here’s how to use it:

 -- Basic EXPLAIN in PostgreSQL
EXPLAIN SELECT u.username, p.bio
FROM users u JOIN profiles p ON u.id = p.user_id
WHERE u.active = true;

-- More detailed analysis with EXPLAIN ANALYZE (PostgreSQL)
EXPLAIN ANALYZE SELECT u.username, p.bio
FROM users u JOIN profiles p ON u.id = p.user_id
WHERE u.active = true;

-- MySQL EXPLAIN format
EXPLAIN SELECT u.username, p.bio
FROM users u JOIN profiles p ON u.id = p.user_id
WHERE u.active = true;

EXPLAIN is supported by PostgreSQL, MySQL, Oracle, and other major database
systems, though the syntax and output format may vary. PostgreSQL and MySQL also
offer EXPLAIN ANALYZE, which runs the query and provides additional information
about how the optimizer’s expectations matched the execution.

The execution plan output typically shows the following:

• Which tables will be accessed and in what order•
• What join methods will be used (nested loop, merge join, hash join)•
• Which indexes (if any) will be used for each table•
• What types of scans will be performed (sequential scan, index scan)•
• Estimated and/or actual costs in terms of time and resources•
• Row counts (estimated versus actual when using ANALYZE)•

Learning to read execution plans takes practice but is one of the most valuable skills
for debugging slow queries. When analyzing plans, look for warning signs like these:

• Full table scans when indexes should be used•
• Inefficient join methods for the data volume•
• Missing or unused indexes•

184 | Chapter 8: Working with Data

• High estimated costs or row counts•
• Large discrepancies between estimated and actual values (when using ANALYZE)•

Regular use of EXPLAIN helps you understand how your database thinks and makes
decisions, allowing you to write more efficient queries and design better schemas and
indexes.

Beyond optimizing individual queries, comparing execution plans
across environments (development, staging, production) can reveal
critical deployment issues. Environment inconsistencies like miss‐
ing indexes, outdated statistics, or different data distributions can
cause queries that perform well in testing to fail in production.
When performance suddenly degrades after a deployment, com‐
paring execution plans across environments often reveals the root
cause faster than other debugging approaches.

Database monitoring and analysis

Understanding how your queries perform under ideal conditions by using EXPLAIN
is important, but real-world performance depends on how your application interacts
with the database under load. Simply relying on database-native tools like slow query
logs or statistics tables (pg_stat_statements) gives only part of the picture.

To get a holistic view, you need to incorporate monitoring from the application’s
perspective. This is where application-level observability comes in, providing insights
into how database interactions affect overall application health and performance.
In software engineering, observability refers to how well you can understand the
internal state of a system based on the outputs it produces.

Modern application frameworks often provide powerful tools for observability, inte‐
grating metrics, logging, and tracing. Spring Boot, through its Actuator module and
the Micrometer metrics library, excels at this, offering deep insights into database
interactions with minimal configuration.

Here are the key concepts to learn when talking about observability:

Logging
Recording events and errors, which can be correlated with metrics and traces to
diagnose issues.

Metrics
Gathering quantitative data about system performance. For databases, this
includes connection pool usage (active, idle, pending connections), query execu‐
tion times, transaction times, and error rates.

Querying and Managing Data Performance | 185

Tracing
Following a request as it propagates through different parts of your application
and even across distributed systems. This helps pinpoint where latency occurs,
including time spent in database calls.

Here are some real-world scenarios where observability provides actionable insights:

Is the connection pool a bottleneck?
High values for jdbc.connections.pending metrics indicate threads are waiting
too long for a connection. Seeing jdbc.connections.active constantly hitting
the jdbc.connections.max limit suggests the pool is too small or connections
aren’t being released properly (potential leaks or long-running transactions).

Are we wasting database resources?
If jdbc.connections.active is consistently low, while jdbc.connections.idle
is high, your pool might be oversized, consuming unnecessary memory and
database resources.

Why is a specific user request slow?
Distributed tracing can show you the entire lifecycle of a request. If a trace
reveals that 90% of the request time is spent in a single database span (represent‐
ing a query or transaction), you know exactly where to focus your optimization
efforts (likely needing EXPLAIN on that specific query).

Is there an N + 1 query problem?
A trace might show dozens of rapid, small database queries being executed
sequentially within one logical operation. This classic N + 1 problem, often
originating from ORM mapping misconfigurations, becomes immediately visible
in a trace.

Are specific queries getting slower over time?
By monitoring metrics for query execution time (if enabled) and correlating
them with application deployments or data growth, you can proactively identify
queries that need optimization before they cause major incidents.

How do database errors impact users?
Correlating database error logs or metrics spikes with application-level error
rates or failed request traces helps understand the user impact of database issues
(e.g., constraint violations, deadlocks, connectivity problems).

Spring Boot Actuator exposes production-ready endpoints for monitoring, while
Micrometer provides a vendor-neutral application metrics facade. When used
together, they can automatically instrument your DataSource beans (like HikariCP,
the default in Spring Boot) to collect many of the vital statistics we’ve mentioned,
providing the raw data needed to gain these insights.

186 | Chapter 8: Working with Data

Balancing complexity and performance
As a software engineer, one of the most critical skills you’ll develop is making
informed decisions about trade-offs in your code. This is particularly evident when
working with databases, where you often need to balance code readability and
maintainability against query performance. Let’s explore this balancing act with a
real-world scenario involving order processing.

In the following example, we’ll look at two approaches to fetching order data. The
first approach uses Spring Data JPA with method chaining and stream operations;
it’s clean and easy to understand, but may not perform well at scale. The second
approach uses raw SQL; it’s more efficient but requires more careful maintenance:

// Simple but potentially inefficient approach
List<Order> recentOrders = /n
orderRepository.findByUserIdAndStatusOrderByCreatedAtDesc(
 userId, OrderStatus.COMPLETED);

List<OrderDto> result = recentOrders.stream()
 .filter(order -> order.getTotal().compareTo(new BigDecimal("100.00")) > 0)
 .map(orderMapper::toDto)
 .collect(Collectors.toList());

// More efficient but complex approach
List<OrderDto> efficientResult = jdbcTemplate.query(
 """
 SELECT o.id, o.created_at, o.total, u.name AS user_name
 FROM orders o JOIN users u ON o.user_id = u.id
 WHERE o.user_id = ? AND o.status = ? AND o.total > 100.00
 ORDER BY o.created_at DESC
 """,
 new Object[]{userId, OrderStatus.COMPLETED.name()},
 (rs, rowNum) -> {
 OrderDto dto = new OrderDto();
 dto.setId(rs.getLong("id"));
 dto.setCreatedAt(rs.getTimestamp("created_at"));
 dto.setTotal(rs.getBigDecimal("total"));
 dto.setUserName(rs.getString("user_name"));
 return dto;
 });

The second approach is more efficient because it pushes filtering to the database and
retrieves only necessary data. However, it’s also more complex and tightly coupled to
the database structure.

When deciding between approaches, consider these factors:

• The scale of your data•
• Performance requirements•
• Maintenance overhead•

Querying and Managing Data Performance | 187

• Team familiarity with SQL•
• Future flexibility needs•

Often, a hybrid approach works best: use ORM for most operations and drop to raw
SQL for performance-critical paths.

Efficient data access isn’t just about fast queries; it’s about understanding the entire
data lifecycle in your application. By selecting only the data you need, leveraging
appropriate indexes, using pagination for large result sets, and monitoring perfor‐
mance, you can build applications that remain responsive even as your data grows.

Data Migration and Transformation
Data migration is a common challenge that every software engineer faces at some
point. Development teams regularly need to upgrade database systems between data‐
base types (such as migrating from relational to NoSQL databases or vice versa),
connect with external services, or combine data from multiple sources. These tasks
happen frequently throughout your career. Understanding how to properly handle
data migration and transformation is a core skill.

In this section, you’ll learn the essentials of data migration and transformation,
including strategies for moving data between systems, handling schema changes, and
ensuring data integrity throughout the process. These skills will help you tackle these
challenges with confidence and avoid common mistakes that could lead to data loss
or corruption.

Understanding Data Movement Fundamentals
As a software engineer, one of your primary tools in your tool belt is your ability
to solve problems. On the surface, the problem of moving data from one system to
another might seem pretty straightforward. All you need to do is just copy the data
from one system and paste it in another, right? Unfortunately, the process is rarely
that simple. A successful data migration requires careful planning, execution, and
validation.

The good news is that you can use some really helpful migration strategies as
templates for moving your data from one system to another. Like every decision
you make, the strategy you choose depends on factors such as data volume, system
complexity, available downtime windows, risk tolerance, and business requirements.
Understanding these factors will help you select the most appropriate approach for
your specific migration scenario.

188 | Chapter 8: Working with Data

Big bang versus phased migration
Big bang migration moves all the data at one time, usually during a downtime win‐
dow. This can be an easier approach but also comes with a lot of risk. Let’s use the
example of moving employees from one database to another. In a big bang approach,
you might move all the employees in the entire database over to a new one.

In contrast, a phased migration moves data in stages. You are still probably doing this
in a downtime timeframe, but you’re moving only a segment of the data, validating
and then moving onto another segment of data. In our employee example, maybe you
move only employees from HR in this phase. This is where careful planning comes
into play as it will help determine how you will divide this phased migration. You can
start with the group or groups that might feel the impact the least if something does
go wrong.

If you have never worked on a data migration project, starting with a phased
approach might be the safer strategy. While it might take longer, it significantly
reduces the risk and gives you the opportunity to learn early on before moving on to
more critical data.

If you’re processing these datasets in code, make sure to process
them in batches to avoid overwhelming system memory. A batch of
1,000 to 10,000 records may typically be a good starting point, but
this is where you want to perform proof-of-concept (PoC) tests to
determine your system’s capabilities.

ETL processes
ETL (extract, transform, load) is a process for moving data between systems:

Extract
Pulls data from the source system

Transform
Converts data to match the target system’s format and requirements

Load
Inserts the transformed data into the target system

This three-step approach clearly defines the boundaries of each process. While iso‐
lated as part of a larger process, each one of these steps will present its own chal‐
lenges. During extraction, you might encounter rate limits or performance impacts
on production systems. Transformation often presents data quality issues that weren’t
visible during smaller PoC testing. Loading can trigger constraints or validation
failures in the target system.

Data Migration and Transformation | 189

While implementing an ETL process, you will need to invest time in detailed error
handling and logging to catch and identify issues. You will want to know when and
why records failed to migrate so that you can quickly iterate on the process.

Data synchronization
In some cases, you will need to keep multiple systems in sync during a transition
period. Let’s go back to our employee database example where you took a phased
migration approach. While this mitigates risk, it does present another challenge:
as you onboard new employees, they will need to exist in both databases until the
phased migration is complete.

For synchronization scenarios consider using the following:

• Message queues to handle updates asynchronously•
• Change data capture (CDC) to track database modifications•
• Reconciliation processes to identify and fix inconsistencies•

In this section, you learned some data migration and transformation strategies for
moving data between systems. In the next section, you’ll learn how to make changes
to the underlying database schema.

Handling Schema Changes
As projects evolve over time, changes to the underlying database schema are inevi‐
table. Table structures may change, and fields get added, removed, renamed, or
have their types modified. The ability to manage these changes while preserving
data integrity is important for maintaining reliable applications. In this section, you
will learn about version control for database schemas, migration tools like Flyway,
techniques for data transformation during schema changes, and best practices for
seamless updates with minimal system disruption.

Using version control for data structures
Close your eyes and imagine your entire codebase stored without version control.
That thought should send shivers down your spine. Just as you wouldn’t develop soft‐
ware without tracking changes or enabling streamlined collaboration, your database
schema deserves the same protection.

Without version control, you risk losing critical history, overwriting colleagues’ work,
and lacking the ability to roll back problematic changes. Your schema, the foundation
of your data infrastructure, requires the same careful versioning that safeguards your
application code.

190 | Chapter 8: Working with Data

Tools like Flyway, Liquibase, and Rails Migrations provide frameworks for versioning
database schemas. These tools track which schema changes have been applied to each
environment, ensuring consistency across development, testing, and production.

Let’s look at a practical example with Flyway. Flyway takes a straightforward approach
to database migrations. At its core, Flyway does the following:

• Maintains a special table in your database (typically called flyway_schema_•
history) that tracks which migrations have been applied

• Scans a designated folder for migration scripts that follow a specific naming•
convention

• Compares the available scripts against what’s recorded in the history table•
• Executes any new scripts that haven’t been applied yet•

For example, you might organize your migrations as SQL files with version numbers:

V1__Create_users_table.sql
V2__Add_email_to_users.sql
V3__Create_orders_table.sql

Most migration tools, including Flyway, are designed to execute
migrations sequentially. This means migrating from version 100 to
version 250 requires running each migration script in order (100 →
101 → 102... → 250). While this might seem inefficient, it’s actually
a safety feature that ensures data integrity and allows each migra‐
tion to build properly on the previous state. Some advanced scenar‐
ios allow for “squashing” migrations or creating direct migration
paths, but the sequential approach is the standard practice because
it guarantees consistency and makes troubleshooting easier when
issues arise.

The following are the most important practices for schema versioning:

• Make each change script idempotent (can be run multiple times without harm)•
• Ensure that scripts are backward compatible whenever possible•
• Include both the change and any necessary data transformations in the same•

script

Managing data dependencies and transformations
When schema changes require data transformations, version them alongside your
schema changes. This ensures that your database structure and its data remain in
sync across all environments.

Data Migration and Transformation | 191

Building on our Flyway example, migrations aren’t limited to SQL scripts. Flyway
supports both SQL and Java-based migrations, giving you flexibility to handle com‐
plex transformations with the full power of your programming language:

// V4__Add_Address_Components.java - Flyway Java-based migration
public class V4__Add_Address_Components implements JdbcMigration {

 public void migrate(Connection connection) throws Exception {
 // First, alter the schema to add new columns
 try (Statement stmt = connection.createStatement()) {
 stmt.execute("ALTER TABLE users ADD COLUMN street VARCHAR(255)");
 stmt.execute("ALTER TABLE users ADD COLUMN city VARCHAR(255)");
 stmt.execute("ALTER TABLE users ADD COLUMN state VARCHAR(255)");
 stmt.execute("ALTER TABLE users ADD COLUMN zip_code VARCHAR(10)");
 stmt.execute("ALTER TABLE users ADD COLUMN country VARCHAR(255)");
 }

 // Then, migrate the existing data
 try (PreparedStatement select = /n
 connection.prepareStatement("SELECT id, address FROM users");
 PreparedStatement update = connection.prepareStatement(
 "UPDATE users SET street = ?, city = ?, state = ?, zip_code = ?,
 country = ? WHERE id = ?")) {

 ResultSet rs = select.executeQuery();
 while (rs.next()) {
 long id = rs.getLong("id");
 String fullAddress = rs.getString("address");

 // Parse components for new schema
 AddressComponents components = addressParser.parse(fullAddress);

 // Update user with new format
 update.setString(1, components.getStreet());
 update.setString(2, components.getCity());
 update.setString(3, components.getState());
 update.setString(4, components.getZipCode());
 update.setString(5, components.getCountry());
 update.setLong(6, id);
 update.executeUpdate();
 }
 }
 }
}

This code-based approach allows you to leverage your application’s existing business
logic, handle complex parsing, and implement validation during migration that
would be challenging with SQL alone.

192 | Chapter 8: Working with Data

This approach ensures the following:

• The schema change and data transformation are versioned together, maintaining•
consistency.

• The migration is atomic—either both the schema and data changes succeed, or•
neither does.

• You can track which environments have the transformation applied by using•
Flyway’s schema history.

For complex transformations, consider these options:

• Running transformations as background jobs to minimize system impact•
• Implementing a dual-write approach during transition periods•
• Creating a rollback plan in case transformation issues arise•

Remember that data quality issues often surface during transformations. Be prepared
to handle missing data, invalid formats, and edge cases you never anticipated.

When working on data transformations, start with a small sample and validate the
results thoroughly before processing your entire dataset. This approach can save you
from considerable headaches.

Wrapping Up
Data is the backbone of a large percentage of applications you will probably build
throughout your career. While you might be tempted to focus solely on languages,
frameworks, and tools, your ability to effectively work with data will be a valuable
skill and will often determine your application’s success.

Throughout this chapter, we’ve explored various aspects of working with data:

• Understanding different data types and formats (structured versus unstructured)•
• Selecting appropriate database types for your specific use cases•
• Implementing effective data persistence patterns and connection management•
• Optimizing queries for better performance•
• Planning for data growth and migrations•

An important takeaway from this chapter is that there are rarely perfect solutions in
data management, only appropriate ones for your specific application. No decision
you make is finite, and you should try to make an informed decision about what
data structures to use or what type of database to build on top of and move on. It’s
better to make a decision based on your current requirements rather than playing the

Wrapping Up | 193

what-if game for an application that might be around for the time period or user base
you’re planning for.

This is called overengineering, and it often leads to unnecessarily complex systems
that are harder to maintain and adapt to actual needs. Instead, focus on solving
today’s problems effectively while keeping your design reasonably flexible, rather than
building elaborate architectures for hypothetical future scenarios.

Putting It into Practice
Working with data effectively is a skill that develops with experience. The concepts
we’ve covered form the foundation of your data journey. But as with any craft,
mastery comes through practical application.

Here are concrete ways you can start practicing these concepts today:

Analyze an existing application’s data model
Take an open source project on GitHub (like a simple ecommerce platform or
blog engine) and map out its data structures. Identify the relationships among
entities and evaluate whether the chosen database type suits the application’s
needs.

Optimize a slow query
Find a query in your current project that’s underperforming. Use the EXPLAIN
command to analyze its execution plan, then implement improvements like
adding appropriate indexes or rewriting the query to be more efficient.

Create a mini migration
Build a small application with a basic database schema, then practice evolving it.
Add new fields, change data types, or split tables while preserving existing data.
Use a migration tool like Flyway or Liquibase to manage these changes.

Implement a basic caching strategy
Choose a read-heavy feature in an existing application and implement a
simple caching layer. Measure performance before and after to quantify the
improvement.

Practice with multiple data formats
Take a dataset in one format (like CSV) and write code to transform it to another
format (like JSON). Focus on handling edge cases like special characters, missing
values, and proper type conversion.

Design a storage strategy for unstructured data
Choose a scenario (like storing user-generated content) and design a solution
that addresses both storage and efficient retrieval. Consider hybrid approaches
that combine structured metadata with unstructured content.

194 | Chapter 8: Working with Data

Prototype a data intensive application
Build a small application that processes a large dataset—perhaps analyzing log‐
files or visualizing public datasets. Focus on efficient data loading, transforma‐
tion, and query optimization.

Start small when implementing new data concepts. Jump in today with something
simple that interests you! Each hands-on exercise builds your confidence and devel‐
ops that special intuition for making smart data decisions. This practical knowledge
will become one of your most valuable assets throughout your career, opening doors
and helping you solve problems that might otherwise seem overwhelming. Remem‐
ber, everyone starts somewhere: your first data project doesn’t need to be perfect; it
just needs to exist!

Additional Resources
• Designing Data-Intensive Applications, 2nd Edition, by Martin Kleppmann and•

Chris Riccomini (O’Reilly, 2026)
• Seven Databases in Seven Weeks, 2nd Edition, by Luc Perkins et al. (Pragmatic•

Programmers, 2018)
• Mastering SQL for Web Developers: Full Course (at freeCodeCamp)•
• Refactoring Databases: Evolutionary Database Design by Scott W. Ambler and•

Pramod J. Sadalage (Addison-Wesley Professional, 2006)
• Fundamentals of Data Engineering by Joe Reis and Matt Housley (O’Reilly, 2022)•
• NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence by•

Pramod J. Sadalage and Martin Fowler (Addison-Wesley Professional, 2012)

Additional Resources | 195

https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781098119058/
https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781098119058/
https://learning.oreilly.com/library/view/seven-databases-in/9781680505962/
https://learning.oreilly.com/library/view/seven-databases-in/9781680505962/
https://oreil.ly/vGKvH
https://www.oreilly.com/library/view/refactoring-databases-evolutionary/0321293533/
https://www.oreilly.com/library/view/refactoring-databases-evolutionary/0321293533/
https://www.oreilly.com/library/view/fundamentals-of-data/9781098108298/
https://www.oreilly.com/library/view/nosql-distilled-a/9780133036138/
https://www.oreilly.com/library/view/nosql-distilled-a/9780133036138/

CHAPTER 9

Software Architecture

Architecture is about the important stuff…whatever that is.
—Ralph Johnson, computer scientist and co-author of Design Patterns: Elements of
Reusable Object-Oriented Software

Software architecture is a massive topic. One of your authors teaches a class on the
topic at the University of Minnesota and can only scratch the surface in a semester of
graduate school. Seemingly everyone has their own definition of the topic, but they
all agree it is important to a project’s long-term success. This chapter won’t make you
a software architect, but it will ensure you’ll understand the importance of trade-offs,
why the answer is almost always “it depends,” and why quality attributes are key to
building applications that can evolve.

What Is Architecture?
Have you ever put 20 Agile engineers in a room and asked them each to write down their
definition of architecture? I did once. I got 20 different answers.

—Matt Parker, author and engineering leader

As discussed in Chapter 4, the software industry is very young and, as such, termi‐
nology is often borrowed from more mature disciplines. Architecture is a perfect
example: the term comes from the building industry. Before digging the foundation
of a new home, an architect designs the structure, making sure the resulting house
conforms to the local building codes while also meeting the needs of the future
occupants. The architect is responsible for the big picture, the structure, the vision
of the project—in other words, the things that are hard to change later, such as
electrical, plumbing, and ventilation. Once the concrete is poured, it’s really hard to
refactor!

197

1 Sometimes there are too many answers.
2 While you cannot predict the future, good architectural decisions can make it simpler to change things in the

future by carefully considering how the application is likely to evolve.

In software, architecture is much the same. On a software project, the architect is
responsible for the overall design of the system, taking into consideration all of the
often unstated requirements related to scale, performance, security, and the other
quality attributes often referred to as the “illities.” While past experience will help you
navigate those waters, every application is different. When you encounter an error
message from your datastore, an internet search will likely find an answer.1 However,
no amount of querying will ever give you a satisfying answer to “Which datastore
should I use for the Foo App?”

Architecture is the stuff you can’t Google.
—Neal Ford and Mark Richards, authors of Fundamentals of Software Architecture,
2nd Edition

Architecture is sometimes defined as the decisions that are hard to change later.
Much as a single-family detached home has different requirements than an apartment
building, a software architect must understand the overall landscape of the applica‐
tion. While software can be refactored more easily than a house, some architectural
decisions can be devilishly hard to rework later.2 For example, imagine you decide
to build your application by breaking it into many small, independent pieces (called
microservices) written in Java on top of Spring, only to change your mind six months
into the project; you have a challenge ahead of you. Architecture requires critical
thinking! Architects identify the key quality attributes for a given project and ensure
that the design meets those requirements.

Ultimately, architecture is about making decisions about things that are difficult to
change later based on trade-off analysis. As such, architects will take time to explore
the problem space in an effort to ensure that the application can meet more than just
its functional requirements. An architect will often ask questions like these:

• How many users does this application have to support? How many of those are•
concurrent?

• Where are those users located? Are they mostly in the same area, or are they•
spread out around the world?

• What is the availability target for this application?•
• What can cause a spike in demand or usage of the application?•
• When will this application typically be used? Business hours? Any time of day?•
• What constraints exist? What does this application integrate with?•

198 | Chapter 9: Software Architecture

3 Your authors may even wear “It Depends” T-shirts to save time in meetings.

• Which cloud provider(s) does the organization contract with?•
• What is the competitive landscape? What does your competition require you to•

match or exceed?
• What is the ideal deployment environment?•
• What is the current deployment environment?•
• What data should the application store? How long should that data be retained?•
• What is the carbon footprint of the application, and how can it be optimized?•
• What is the cost of this application, and how can it be optimized?•
• What laws and regulations must be adhered to?•
• What are acceptable response times for various aspects of the systems?•
• What security policies must this application meet or exceed?•
• What privacy concerns does this application have?•

These questions have no generic answers, as your applications are unique! That is
why there is no “right answer” when it comes to choosing an architecture. You
must weigh the pros and cons of every decision. For example, if you’re building a
document management system for 300 people in Brazil, you’d locate your application
in data centers in or near Brazil, you’d want to consult your legal department to
understand any specific laws or regulations in the Brazilian market, and you’d want to
know how many documents the application was expected to process a month as well
as how large those documents typically are. It’d also be wise to ask if there were any
plans to expand beyond Brazil, if there would be a need for any document translation,
and what type of document analysis would need to be supported.

Trade-Offs
Programmers know the benefits of everything and the trade-offs of nothing. Architects need
to understand both.

—Rich Hickey, creator of the Clojure programming language

Architecture concerns itself with the questions that don’t have a simple answer, which
is why architects answer nearly every question with, “It depends.”3 In school you
learned there was an answer that got you an A, an answer that got you a B, and an
answer that got you a C. However, in software, to quote Neal Ford, “There are no
right or wrong answers in architecture—only trade-offs.” And to further complicate
matters, in software, there isn’t a “best” answer; in most cases you will have to accept

Trade-Offs | 199

4 And, for that matter, every decision you make in life.

the least worst answer. Every decision you make on a software project involves a
trade-off.4

An architect’s job is to perform the trade-off analysis on the (many) options you will
consider for a given project. Every architectural style can be said to have various
“star ratings” across various architectural characteristics, but the analysis isn’t just as
simple as picking the one with the most stars. Certain characteristics might matter
more for your application than others, thus pushing you toward a style that may
appear less than ideal at first glance. Many projects fail in their attempt to create
an academically perfect architecture, something that isn’t attainable. Good architects
make the best decisions they can while still meeting project deadlines.

The Accidental Architect
Many organizations can be a bit…territorial…with titles, and it is very common for
engineers to perform architectural tasks even without holding the title of architect,
something your authors can personally attest to. We’ve also never seen an organiza‐
tion that had more architects than they knew what to do with, and most architects are
spread thin across many projects. You may find yourself with limited (or no) access
to “an architect,” making you the accidental architect. If you find yourself playing the
role of architect, make sure you’re taking the time to see the bigger picture and don’t
be afraid to get feedback from your team and others in your organization.

You must perform due diligence to weigh the trade-offs. For example, engineers will
often pull out common functionality used across modules into a reusable library to
facilitate reuse and simplify maintenance. However, should that library be a service
that is called at runtime or a library that is built with the caller? In other words,
should it be a runtime dependency or a build-time dependency? It depends!

But what does it depend on? You can assess a few factors in this situation. You might
first ask how volatile the library is, how frequently does it change? Relatedly, how
critical is it for callers to have the latest version? If the library is in near constant flux,
a runtime dependency would make sense; you can deploy new versions of the library
as needed, and you can rest assured every caller will have the latest version at the
same time.

However, you’ve introduced an out-of-process call into your application, which
provides surface area for a new set of errors. What does your application do if it
cannot reach the external library service? Does that library need to be geographically
distributed? Depending on what the library did, you might have to include an alter‐
native, a cached answer, or a default result. If you choose to make the library a

200 | Chapter 9: Software Architecture

build-time dependency, you remove any network hops, which removes a set of errors
and is simpler to test. Upgrades to that library are now more difficult to roll out to an
organization, though, and there’s a strong likelihood different users of that library will
deploy with different versions.

Software architecture hot tips:

• Good things are better than bad things, except when they’re not.•
• Also, nothing is good or bad.•
• It depends.•
• The answer to every question is “it depends,” except for when it doesn’t. It depends.•
• Name three things you like. You can’t have them at the same time.•
• No.•
• There are many definitions of software architecture, but none of them are correct.•
• There’s no such thing as software architecture.•

—Ken Scrambler

Which approach is “correct”? It depends! For example, consider a utility that calcu‐
lates sales tax based on the shipping destination. Clearly that can change on a regular
basis, and it’s important for the system to use the most up-to-date rules, but if
a network issue prevents your application from calculating tax, there better be a
backup in place, or you should expect an urgent message from people high up in the
organizational chart. What would you recommend in this situation?

Architecture Versus Design
The boundaries between architecture and design are fuzzy. On any given project,
design decisions will affect the architecture, and vice versa. This is sometimes
referred to as the Twin Peaks Model, describing the many chicken-and-egg situations
often found on a software project. In this case, the current design may limit your
architectural maneuverability, and the current architecture will impact your design
space! Some decisions will neatly fit into either the architecture or design bucket, but
the vast majority live along a continuum between the two. For example, choosing
which architectural style is best for your application is clearly an architectural deci‐
sion, while choosing a data type in a class is a design decision.

If the distinction between architecture and design is often a matter of degrees, does
the distinction matter? It depends! In many cases, it comes down to who is best posi‐
tioned to make the ultimate decision. Architects and developers should be prepared
(and willing) to work together on those decisions that fall between the two ends of
the continuum.

Architecture Versus Design | 201

5 Take the time it takes so it takes less time.
6 Don’t be surprised when that short-term fix is still running years later.
7 Which isn’t to diminish its importance or its ability to spark a spirited debate.
8 The running joke is that simply adding the suffix -illity to any word results in something an architect cares

about.

Another lens you can apply is to ask yourself: is this decision strategic or tactical?
Strategic thinking requires you to think ahead, focusing on long-term goals and the
overall direction of the project. In many cases, the strategic thing to do might take
a bit longer or even require you to backtrack a bit.5 Tactical decisions are often short-
term actions that solve an immediate, acute problem that may require a longer-term
solution at a later date.6 Think of it as the equivalent of securing something with duct
tape, knowing it isn’t a permanent fix.

The more tactical a decision, the closer it is to design. The more strategic a decision,
the more it veers into architecture. How many people does it take to make the
decision? What are their roles? Anything that can be decided by a developer or two is
a prime example of a tactical decision. If a decision requires weeks of meetings up to
and including the CTO, it’s strategic.

Another way of looking at the difference is to ask yourself: what is the cost of change?
Refactoring a method is mechanical and can be done by your IDE. Changing the
signature on a widely used service is not. Refactoring a method is tactical; refactoring
a monolith into microservices is strategic. Naming a method is tactical,7 but naming
an external service used by countless customers is strategic. Throughout any project,
you will face countless tactical and strategic choices, and you will often have to make
decisions with incomplete information and insufficient time.

Quality Attributes
As discussed earlier, an architect’s focus is broader than the feature and functional‐
ity of the application; they have to think about the quality attributes necessary to
deliver the complete solution. These are sometimes referred to as nonfunctional
requirements, the architectural characteristics, quality goals, constraints, quality of
service goals, the architecturally significant requirements or, more colloquially, the
“illities.”8 One of your most important jobs as an architect is to understand the quality
attributes that matter most to your application.

202 | Chapter 9: Software Architecture

9 More architects should strive for simplicity.
10 We weren’t kidding about “it depends” being the answer to every question in architecture.

Nonfunctional Requirements
Many of you may be familiar with the idea of nonfunctional requirements and may
wonder why we don’t use that common term. Our choice boils down to this realiza‐
tion over many years: when you talk to a stakeholder about nonfunctional things,
they often stop listening as they (consciously or not) think, “I don’t want any of that
nonfunctional stuff, focus on my business requirements.”

Stakeholders are often laser-focused on what they need the application to do, which
is important; you need to meet those needs. But you also need to see the bigger
picture, the considerations most stakeholders aren’t thinking about. Using the quality
attributes changes the tenor of the conversation. Most customers are delighted to
discuss quality.

You are likely familiar with several quality attributes such as maintainability, scal‐
ability, reliability, security, deployability, simplicity, usability, compatibility, fault
tolerance—the list is long.9 Which quality attributes matter most to you? It depends!10

The type of applications you build determine which of these are most important. For
example, if you are writing a device driver, performance may be far more important
than maintainability, while an ecommerce platform will prioritize availability and
scalability.

To make matters more complicated, you can’t turn every knob up to 11 either. In
fact, some quality attributes have inverse relationships with each other: maximizing
one will minimize another. Security and usability can sometimes be at odds with
each other. You could design a system that is completely secure, not connect it to
the network, run it in a locked room, and better yet, not have a login screen. While
secure, it certainly isn’t very usable.

Your challenge is to identify the quality attributes, then orient them in the correct
tension with one another. Additionally, you often have to convince your stakeholders
of the value of some of the less visible quality attributes.

Identifying Quality Attributes
How do you know what quality attributes matter on a project? Certain words and
phrases should stand out to you that signal quality attributes. For example, consider
the following Concert Comparison kata.

Quality Attributes | 203

https://oreil.ly/phDwU

11 Can you say Taylor Swift?

A concert ticketing site with big acts and high volume needs an elastic solution to sell
tickets:

• Users: Thousands of concurrent users, bursts of up to 10,000/second when tickets•
go on sale.

• Requirements:•
— Allow concurrent ticket buying.—
— Do not sell a seat more than once!—
— Shoppers can see an overview of remaining seats.—

• Additional context:•
— Consider an implementation in both space-based and microservices architec‐—

ture style.
— Identify the trade-offs for each solution.—

Reading through these requirements, a few things should catch your eye. Having
thousands of concurrent users with huge bursts when tickets go on sale implies a
highly scalable solution that is also very resilient.11 And it can likely scale down to
near zero after the initial surge of activity.

Obviously, you can’t sell the same seat twice, meaning you’ll need to come up with a
way of locking a seat but in a manner that doesn’t allow individual users to block out
dozens or hundreds of seats. Oh, and unstated here, but what is your solution to weed
out bots?

Once you have an idea of which quality attributes matter most for your situation, take
time to rank them. Ordering can be done with a mind map, a table, or even just a
numbered list. Once you have your list ready, it’s time to get feedback. Share your
artifact with interested stakeholders, consider their feedback, and iterate.

Gaining Stakeholder Alignment
Speaking of interested stakeholders, how do you get a stakeholder to understand the
importance of a quality attribute? This is where your influencing skills can come in
handy (see Chapter 13 for more on practicing influence and managing stakeholders).
While explaining the importance of security to a decision maker may be straightfor‐
ward, helping them understand the value in maintainability or simplicity requires
you to flex your influence muscles.

You can start by outlining the benefits of quality attributes by using terms and
examples that are relevant to them. Be careful you aren’t framing things purely in a

204 | Chapter 9: Software Architecture

12 And frankly some of the worst customers to work with are those who think they know more about software
than you do.

13 No, that isn’t actually a title on the org chart, but it was clear this person was respected by leadership.
14 It also helped that the proposal was introduced by someone with more organizational clout.

technical manner; while important to you, customers, for example, really shouldn’t
concern themselves with purely technical choices.12 Find common ground and have
a conversation with them about their concerns. While you may not think their
concerns are important, hear them out: there is almost always a nugget to mine, and
it’s important to consider their concerns. At the end of the day, a conversation needs
to take place.

It is also important for you to find the influential people in your organization, which
often has little to do with the organizational chart. As an architect, you won’t always
have a direct line of sight to the decision maker. You may have to work through
someone else to get what you want accomplished. Approach as an equal, and rely on
the strength of your ideas and your reputation. Find common ground and wield the
power of reciprocity.

A reform often advances most rapidly by indirection.
—Frances Willard, American temperance activist and suffragist

The Power of Indirection
Nate here. Years ago, I tried to introduce Git into an organization. We put together
a very compelling argument (as a gist no less) outlining why we wanted to replace
our existing version control tool. Our presentation earned the go-ahead from our
architecture group; however, once we tried to convince the team that managed the
existing tool, we were shut down. Hard. We were informed that we already had a tool
and that they weren’t open to anything new.

We took a step back and recruited a more influential ally, the person who acted as the
right hand of the CTO.13 After explaining our approach, he had a powerful insight:
don’t introduce Git as a replacement but rather as a complement to our existing
toolkit. He positioned Git as a solution to our code collaboration problem, a tool that
would enable us to more easily share artifacts. This indirect approach was enough to
deactivate the negative sentiment from the team that supported the existing tool; after
all, it was additive.14 We quickly spun up a pilot, discovered multiple opportunities for
reuse, and had an enterprise-wide solution set up within a few months.

The lesson? The direct path often leads to the most resistance. Consider an alternative
approach or framing when introducing new ideas, technologies, and tools.

Quality Attributes | 205

15 For a complete discussion, see Fundamentals of Software Architecture by Mark Richards and Neal Ford
(O’Reilly, 2022).

16 It depends.

Architectural Styles
After identifying the key quality attributes for your application, you can analyze
and choose the proper architectural style. An architectural style describes the overall
structure of the code as well as how it interacts with the datastore. You can choose
from any number of styles for an application, and as you can probably guess, there’s
no-one-size-fits-all solution.

Broadly speaking, architectural styles can be categorized into two main types: mon‐
olithic (a single deployable unit) or distributed (multiple deployable units). While
monoliths are often derided as being unmaintainable, the fault lies with a poorly
structured system, not the deployment topology. Maintainable modular monoliths
are possible, and without the proper discipline and attention to technical debt, heav‐
ily distributed systems can be extremely challenging to evolve.

Monolithic styles include the big ball of mud, layered, microkernel, and pipeline.
Distributed styles include space based, service oriented, microservices, and event
driven. A full accounting of the various architectural styles is beyond the scope of
this book.15 However, it is important to understand that each architectural style has
different strengths and weaknesses across the various architectural characteristics.
For example, a microservices architecture gives you excellent elasticity and scalability
but comes with additional network hops, which can hurt performance, and increased
complexity and cost compared to other options. Microservices also require monitor‐
ing and observability, and it can be challenging to debug and trace errors.

Choosing the correct style is all about trade-offs. If your application needs scalabil‐
ity and elasticity, microservices can be an excellent choice. But if those aren’t key
characteristics, another style is probably a better option. The right approach for one
application could be wrong for another. Again, there’s no way to search the internet
for “What architectural style should I use?”16 You have to look at the trade-offs.
Identifying the proper architectural style for a given situation is one of the most
important things an architect does.

The Agile Architect
Architecture is often defined as the decisions that are hard to change later, but
change is the one constant in technology. Does that mean architecture is inherently
antithetical to Agile projects? Some organizations (proudly) proclaim that they are
Agile and as such don’t have architects. Regardless of titles, you have people making

206 | Chapter 9: Software Architecture

https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/
https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/

17 If you’ve ever worked with procurement or legal, you quickly realize you are not in control of the schedule.

architectural decisions on your projects. Hopefully, they’re making good ones: you’ll
know in a year or two if they did.

Architecture and agility can absolutely coexist, though some, perhaps most, archi‐
tectural activities won’t complete within an iteration boundary.17 Creating an agile
architecture may require you to change your assumptions a bit, though. Instead of
trying to create an architecture that can effortlessly handle future requirements, what
if you designed your architecture expecting things to change? That idea is one of the
core tenets of evolutionary architecture.

An evolutionary architecture supports guided, incremental change across multiple dimen‐
sions.

—Building Evolutionary Architectures, 2nd ed., by Neal Ford et al.

Evolutionary architectures allow you to change incrementally as required by shifting
business needs, priorities, and technological change. The key word here is incremen‐
tal. Agile software development is ultimately about nested feedback loops. Rather
than spend months working on a bunch of features only to discover you’ve missed
the mark, regular demonstrations provide opportunities for key stakeholders to react
and adjust to actual working software. Hypothesis-driven development is one method
that can help you gather data and proceed accordingly.

Hypothesis-driven development utilizes a structure like this:

• We believe <this change>•
• Will result in <this outcome>•
• We will know we have succeeded when <we see X change in this metric>•

For example:

• We believe adding a distributed cache•
• Will result in faster startup times•
• We will know we have succeeded if startup time is less than 15 seconds•

Decisions based on data are better than arguing for an hour and defaulting to the
loudest voice in the room.

The Agile Architect | 207

18 In a nutshell, the second law of thermodynamics establishes that, without intervention, entropy within an
isolated system will never decrease. In other words, a teenager’s bedroom.

A Rose by Any Other Name…
Titles can be a funny thing in many organizations, with roles and responsibilities
varying widely across companies. “Architect” is no different and may in fact be worse.
Some companies will award the title of architect to only the select group of people
who report to the VP of architecture. Regardless of title, it is quite common for senior
developers to be actively involved in decisions that are squarely in the architect’s
domain.

Architects are often spread thin and may delegate certain architectural tasks to devel‐
opers. This not only spreads the workload but also provides an excellent growth
opportunity for anyone who aspires to one day be an architect.

Of course, some companies don’t have the title of architect at all. It bears repeating:
regardless of titles, you have people making architectural decisions on your projects.
Hopefully, they’re making good ones; you’ll know in a year or two if they did.

Fitness Functions
Many architects and organizations invest heavily in the process of creating the appro‐
priate architecture for a project. However, they don’t often give much thought to how
to maintain that architecture over time. Sadly, the second law of thermodynamics
applies to software, and without effort to counteract disorder, your architecture will
devolve.18

From the first commit, your architecture is changing, and while those steeped in its
development may intimately understand the nuance of the key architectural consid‐
erations, new team members may not have that background. If you’re not diligent,
your customers will be complaining about performance or scalability or some other
vital quality attribute.

The Performance Problem
Nate here. Early in my architectural career, I was tasked with fixing a performance
problem on an ancient VB6 application. Being new to the project (and the role!), I
asked when the performance problem first started, hoping we could tie it to a recent
update. When I was told the problem started sometime in the last three years, I knew
we had a lot of work in front of us. And I started to question my desire to be an
architect.

208 | Chapter 9: Software Architecture

19 Hope is not a strategy. But it is what rebellions are built on.

In retrospect, diagnosing the problem didn’t have to be so challenging. Had the team
created a fitness function that tested performance on a regular basis, it would have
discovered the problem sooner, probably before customers even noticed.

You could hope that your application somehow avoids devolving into a big ball
of mud.19 Or you could be more proactive. You could leverage fitness functions to
continuously test your architecture, alerting you when something goes out of band.
Essentially, a fitness function measures how closely an architecture comes to meeting
the objectives. The concept of fitness functions comes from evolutionary computing.
Algorithms are mutated with the results tested—is this mutation a success? Applied
to architecture, fitness functions allow you to identify and maintain the key architec‐
tural characteristics of your application.

Fitness functions are tests you create to ensure that a refactoring or new feature
doesn’t violate your architecture. You can think of fitness functions as a to-do list for
developers from architects as well as lightweight, low-ceremony, governance. Essen‐
tially, fitness functions are a set of tests you execute to validate your architecture. For
example, you could write tests that ensure the following:

• Service calls respond within an average of 100 milliseconds.•
• Cyclomatic complexity shall not exceed 5.•
• Average response times as the number of users and requests increases are•

reasonable.

Ideally, your fitness functions are all automated and run within your CI/CD pipelines.
However, some tests may be manual depending on what you need to test. As an
architect, you will identify fitness functions early in a project lifecycle; however, they
will evolve and change over time. You should periodically review them to ensure they
are still relevant. You may discover a better way to test them as well.

Architectural Diagrams
Ultimately, like everything else in software engineering, architecture is about commu‐
nication, and one of the ways you will express yourself is via models. (See Chapter 5
for more about modeling.) There is no shortage of architectural diagrams you could
utilize, but you need to know when to use which one and with which audience. An
architecture diagram that’s perfect for a developer will be incomprehensible for the
VP of engineering.

Architectural Diagrams | 209

20 Not to shortchange the importance of well-named variables, mind you.
21 Using plain text also aids in searchability, which is very important.

Before creating any diagram, consider your audience. Is this model for a developer?
A fellow architect? A business partner? Sometimes you’ll build a diagram solely for
yourself, to help decompose a problem or just explore a possible solution. Diagrams
can provide context, explain and manage complexity, and identify quality attributes.

From component diagrams to deployment diagrams to sequence diagrams, there is
no shortage of options at your disposal. Crafting the right picture at the right moment
is an important skill for architects to master. When in doubt, ask yourself whether a
given diagram will help you tell the story. If so, by all means build it. If not, don’t be
afraid to skip it.

Architectural Decision Records
On any software project, you will make a plethora of decisions. Some are small,
like naming a variable, while others are more consequential, like choosing a cloud
provider.20 Inevitably, you will encounter a fork in the road forcing you to make a
tough call regarding how your project should proceed. Architects often have to make
decisions with insufficient time and inadequate information. After a few hours or
days of deliberation, your team will make a choice and soldier on. But did you take
any time to write down why you made the choice you made? The second law of
software architecture states: why is more important than how.

Sure, you know what led to that decision, at least in the moment. But what about the
person who comes after you? What about you in a few short weeks when today’s crisis
dominates your thinking? Architectural decision records (ADRs) turn organizational
knowledge into a sequential log that future team members can read to understand
how your project arrived at the current day.

ADRs were introduced by Michael Nygard as a way to record the motivation behind
decisions. They are not meant to be epic tomes, but they should include enough
detail to explain the “why.” While you can create them in nearly any word processing
tool, using plain text like Markdown or AsciiDoc is very common.21

Several templates are available on the web, but the basic outline of an ADR includes
the following:

Title
Description of the decision prefixed with a three-digit sequential ID. The ID
allows you to easily sort the ADRs in order, allowing you to quickly see the path
to today. Use descriptive names.

210 | Chapter 9: Software Architecture

https://oreil.ly/yQfLw
https://oreil.ly/z8H19
https://oreil.ly/PYV5G

Status
While different organizations may use different statuses, you will typically see the
following:

• Request for comment: This ADR is in active review by the team and relevant•
stakeholders.

• Proposed: This ADR is a work in progress awaiting approval.•
• Accepted: This ADR has been reviewed and adopted.•
• Superseded: ADRs are immutable, but a later ADR might make an earlier•

ADR obsolete. The superseded ADR can be updated to point to the overrid‐
ing ADR.

Context
Every decision involves constraints and unique circumstances. For example, your
CIO may have a set of preferred vendors, which may artificially limit your
choices. Do not skimp on the context.

Options
What options did you consider? If you eliminated any from consideration, why?

Decision
What did you decide to do? Why did you decide to do it? What options did you
reject and why? Again, err on the side of too much information.

Consequences
Every decision you make has consequences (positive and negative). What are the
consequences of this ADR? Again, err on the side of too much information.

Governance
How will you ensure that the decision is actually followed? What fitness func‐
tions will you create to enforce this ADR?

Notes
This section includes other information as needed as well as metadata about the
ADR such as author(s), various dates (accepted, superseded, etc.), and approvers.

Real-world examples can be extremely helpful but also hard to come by; after all,
most companies aren’t going to publish the inner workings of their software projects
on the internet. Thankfully, the results of the first Architectural Katas live training
are an invaluable resource for the aspiring architect. Groups of three to five built out
the architecture for a health food startup, including ADRs. Their work is available on
GitHub. Here are three examples of ADRs: ArchColider, Miyagi’s Little Forests, and
Jiakaturi.

It is very common for ADRs to include additional diagrams or other supporting
material. It may be tempting to omit things that are “common knowledge,” but

Architectural Decision Records | 211

https://oreil.ly/7NL2O
https://oreil.ly/colarCH
https://oreil.ly/-l5vz
https://oreil.ly/zv-E5

22 Even as a party game. With the right audience, at least.

eventually someone will read your ADRs with completely fresh eyes. What would you
need in order to understand the decision if it was your first day on the project?

ADRs are often stored in version control, and some organizations have built simple
tooling around their ADRs. Others rely on a wiki, but whatever you choose, make
sure it can be searched. Odds are you won’t remember exactly which ADR covered
that tricky problem with the network settings. When in doubt, keep things simple:
software projects are hard enough already; don’t overcomplicate things needlessly.

Wrapping Up
Architecture is a massive topic taking up several books, videos and podcasts, and
countless hours of practice. Many developers aspire to be architects, and for many it
is the pinnacle of their career. But being an architect is far more complicated than
choosing a frontend library and drawing on the whiteboard.

Architecture requires you to see the bigger picture of the application, identify the
key quality attributes, and navigate the trade-offs of decision after decision, all while
navigating the politics of your organization communicating up, down, and across the
org chart. Being an architect is a challenging but very rewarding path. Hopefully,
these guideposts will help you navigate that journey should you choose to make it.

Putting It into Practice
There’s an old joke about a tourist in New York City asking someone carrying a violin
case how to get to Carnegie Hall, to which the musician replies, “Practice.” Architec‐
ture is no different: if you want to improve, you need to architect a lot of systems! But
few architects get to work on hundreds of systems in a career, prompting Ted Neward
to ask: “So how are we supposed to get great architects, if they only get the chance
to architect fewer than a half-dozen times in their career?” Ted’s astute observation
inspired him to create a set of architectural katas covering a variety of domains, with
common constraints and just enough detail to allow ample room for interpretation.

You can use architectural katas in many ways.22 You could pick one or let fate decide
and spend an hour or two working through it on your own or with a small group.
What questions would you need answered to create an architecture? What quality
attributes matter most for your kata? What is the most complex or risky part of the
application? What scares you most as an architect? What architectural style would
you recommend?

Put your solution aside for a few days or even a few weeks. Take another look.
What would you change? Did you miss anything the first time? Would you advise a

212 | Chapter 9: Software Architecture

https://oreil.ly/4PBOM
https://oreil.ly/cPY8w
https://oreil.ly/8d4kO

different approach now? Perform an informal architectural review. What questions
do your colleagues have? What are the gaps in your proposed solution? Every month
or two, tackle a different kata or continue to refine your previous solution.

Keen on putting your architectural chops to a sterner test? Get a team together and
register for an upcoming live Architectural Katas session on the O’Reilly learning
platform. You will get a chance to practice your craft on a real problem in a fun and
safe environment.

Katas also make for an excellent interview technique. Rather than asking questions
about the quantity of piano tuners in a given metropolitan area or testing someone’s
ability to memorize computer science facts, walk through a kata with them. The ques‐
tions they ask illustrate how they think and approach problems, and the inevitable
collaboration will give you an excellent sense of what it would be like to work with
this person on a real project.

Additional Resources
• Thinking Architecturally by Nathaniel Schutta (O’Reilly, 2018)•
• Head First Software Architecture by Raju Gandhi et al. (O’Reilly, 2024)•
• Fundamentals of Software Architectures by Mark Richards and Neal Ford•

(O’Reilly, 2020)
• How to Win Friends and Influence People by Dale Carnegie (Simon & Schuster,•

1936)
• Building Evolutionary Architectures , 2nd Edition, by Neal Ford et al. (O’Reilly,•

2022)
• “Code as Design” by Jack W. Reeves•
• Influence, New and Expanded: The Psychology of Persuasion by Robert B. Cialdini•

(Harper Business, 2021)
• The C4 model for visualizing software architecture•
• Communication Patterns by Jacqui Read (O’Reilly, 2023)•
• Creating Software with Modern Diagramming Techniques by Ashley Peacock•

(Pragmatic Programmers, 2023)
• UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd•

Edition, by Martin Fowler (Addison-Wesley Professional, 2003)

Additional Resources | 213

https://learning.oreilly.com/live-events/architectural-katas-q4-2025-ai-enabled-architecture/0642572249625/
https://learning.oreilly.com/live-events/architectural-katas-q4-2025-ai-enabled-architecture/0642572249625/
https://learning.oreilly.com/library/view/thinking-architecturally/9781492034421/
https://learning.oreilly.com/library/view/head-first-software/9781098134341/
https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/
https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/
https://learning.oreilly.com/library/view/building-evolutionary-architectures/9781492097532/
https://learning.oreilly.com/library/view/building-evolutionary-architectures/9781492097532/
https://oreil.ly/tNgFe
https://c4model.com
https://learning.oreilly.com/library/view/communication-patterns/9781098140533/
https://learning.oreilly.com/library/view/creating-software-with/9798888650219/
https://learning.oreilly.com/library/view/creating-software-with/9798888650219/
https://www.oreilly.com/library/view/uml-distilled-a/0321193687/
https://www.oreilly.com/library/view/uml-distilled-a/0321193687/

CHAPTER 10

To Production

Anything that can go wrong will go wrong.
—Murphy’s law

When you’re starting your career as a programmer, production can feel both intimi‐
dating and exciting. Production is where your code moves from development into
a live environment used by real people. This is the culmination of all the planning,
problem-solving, and late nights.

Production represents one of the final stages in the SDLC. It’s where your application
will face its true test: serving real end users, handling real data, and operating under
extensive workloads.

You’re leaving the safety net of your local development environment where it’s just
you and your code and entering a space where actual people are depending on
your work. When issues arise, they are visible to everyone. You might think of your
codebase as just another application, but in the hands of users, it becomes a tool that
drives business value and creates meaningful change in the world.

In this chapter, you’ll gain a better understanding and appreciation for production.
You will begin to start thinking about building production-ready code earlier on in
the SDLC. A key component of this is understanding the fundamental differences
between development and production environments and how to bridge that gap
effectively.

215

The Complexities of Production Environments
“Houston, we have a problem.” These famous words from the near-disastrous Apollo
13 mission remind us that things can go wrong even in controlled environments.
While software development rarely involves life-or-death stakes, unexpected issues
can arise when transitioning to different environments, especially production.

Imagine you and your team have been working on a new product for months. You
have sufficient test coverage, and your QA teams have put it through the wringer in
various environments. You get sign-off from all teams involved, and you’re ready to
go.

All the right buttons are pushed, and your project takes its maiden voyage to pro‐
duction. At first, everything seems fine as traffic starts flowing in. But suddenly,
chaos erupts. Users report bugs, performance issues appear unexpectedly, and your
monitoring system along with your inbox becomes flooded with alerts.

What happened? The code worked on your machine. It worked in every environment
you tested. If you’ve experienced this scenario, you’re not alone. It underscores why
production matters so much. It’s not just the final stop for our code. It’s the real
world, the ultimate test, where actual users interact with our applications.

Although your software might work in test environments, its true value is determined
in how it performs in production with real users. The differences between develop‐
ment and production often manifest in two ways: users interacting with your applica‐
tion in unpredictable ways, and the infamous “it works on my machine,” where code
behaves differently across environments. Let’s explore both challenges and discover
some practical strategies for bridging this gap.

Users Are Unpredictable
Developers often fall into the trap of thinking that they can anticipate how their users
will interact with their applications. Sometimes you may lack a complete picture of
your user base. Sometimes you think you know more than you actually do. Both
scenarios can lead to misaligned expectations between developers and users.

While this is absolutely important to the success of a project, there is no number
of tests that you can write or scenarios that you can simulate that can replicate the
unpredictable nature of real-world usage. This is why users are your ultimate test.

216 | Chapter 10: To Production

A “Users Are Unpredictable” Story
Dan here. One of my first jobs out of college was as a Level 2 support specialist. A
user called me asking why the “drink holder” on his computer was malfunctioning.
I replied, “Sir, computers don’t have drink holders.” It turned out he was referring
to the CD-ROM drive. This incident perfectly illustrates how no amount of testing
could have prepared us for a user mistaking a CD-ROM drive for a drink holder.

The following are factors that contribute to user unpredictability:

Real-world data
Even the most meticulously designed test data can’t anticipate the creative ways
users will interact with your forms. They’ll input data in ways that would seem
plausible only in a Hollywood screenplay.

Scale and concurrency
Real-world traffic can expose scalability issues that weren’t apparent in controlled
environments with test data.

Diverse environments
Real users have all sorts of environments. This includes varying operating sys‐
tems, system resources, security settings, browser vendor and version, network
latency, and more.

Environmental drift
Different versions of software or libraries in different environments can cause
inconsistent behavior that wasn’t present during testing.

Unexpected use cases
Users might interact with your software in ways developers didn’t anticipate,
revealing edge cases or unforeseen scenarios.

To prepare for the unknown of the real world, you can adopt practices like canary
releases, A/B testing, and robust observability (comprehensive monitoring through
logging, metrics, and distributed tracing). These methods leverage the power of
real-world user testing while minimizing risk.

“But It Works on My Machine”
You get a notification for a new issue that was filed in production. You read through
the description and realize this is a feature you worked on. You turn to your laptop to
run through the scenario and see whether you can reproduce the issue and, of course,
you can’t. Works on my machine, must be user error. “Unable to reproduce” is the
phrase developers use to close issues in these situations.

The Complexities of Production Environments | 217

In software development, “works on my machine” is a phrase developers use when
their code runs correctly on their own computer but fails when deployed to other
environments. While “It works on my machine” might help you quickly close a bug
report, it does not solve the problem for your end user, and you need to determine
what is causing the discrepancies between development and production.

The following are variables that can change between environments:

Environment differences
Imagine you’ve been developing on your MacBook Pro with 16 GB of RAM,
but production runs on Linux servers with different memory constraints. Your
local MySQL database might be version 8.0, while production uses PostgreSQL
14. These differences in operating systems, available resources, network configu‐
rations, database vendors, and dependency versions can cause code that runs
perfectly on your machine to fail spectacularly in production.

Configuration management
In development, your application might connect to a local database running on
your laptop. You might be logging everything to help you debug issues, sending
requests to a payment provider’s test API that uses fake credit card numbers. But
when you deploy that same code to production, it needs to automatically switch
to a secure cloud database, reduce logging to only capture errors, and connect to
a real payment processor that charges actual money.

Concurrency and load
Imagine this scenario: you’ve been testing your shopping cart feature locally by
clicking Add to Cart a few times to make sure it works. But on Black Friday,
thousands of customers hit that same button simultaneously. Suddenly your
database, which handled your solo testing with ease, is overwhelmed by requests.
Your server’s memory, which was cruising along at 30% usage, spikes to 95% as it
tries to process hundreds of user sessions at once. This is the reality gap between
development and production.

Data diversity
Your local test database probably has a handful of clean, well-formatted records
that you created yourself. Maybe “John Smith” has a perfect phone number
like “555-123-4567” and a well-formatted email address. But production tells a
different story. Real customer data is messy and unpredictable. Legacy systems
might have stored data differently that now breaks validation logic. Then there’s
the sheer volume problem. Your test queries run instantly against hundreds of
records, but production has millions of customers spanning years of business.
This is why testing with realistic, diverse datasets matters. Production data will
always have a way of surprising you.

218 | Chapter 10: To Production

External dependencies
Modern applications are like team sports: no single player is going to win you
the game alone. Your application might handle the user interface, but it passes
to a payment processing system to handle payments. It might send requests to
an external system for email delivery. It might rely on Google for user authenti‐
cation. But in production, when one of your “teammates” is having an off day
(payment processor is slow, the email service hits rate limits, or the authentica‐
tion provider goes down), your well-put-together team (application) can still lose
the game.

Security constraints
Production environments are locked down in ways your local machine isn’t.
Your laptop might happily accept HTTP requests from anywhere, but production
servers sit behind firewalls that block unexpected traffic. Your local API calls
work fine over plain HTTP, but production requires HTTPS with valid TLS
certificates. That frontend you’re testing locally can freely call your backend, but
production enforces CORS policies that might block the same requests. These
security layers protect real user data and money, but they can cause your code to
fail in production even when it works perfectly on your development machine.

To bridge the gap between “works on my machine” and “works in production,”
consider the following:

Containerization
Use tools like Docker to create consistent environments across development and
production, eliminating the “but it works on my machine” scenario.

Observability
Implement comprehensive logging, metrics, and distributed tracing to under‐
stand how your application behaves in production and catch issues before they
impact users.

Environment parity
Maintain staging environments that closely mirror production, allowing you to
catch environment-specific issues early.

Continuous integration and continuous deployment
Practice CI/CD to ensure that your code is regularly tested in production-like
conditions. You will learn more about CI/CD later in this chapter.

Remember, your users don’t care that it works on your machine. They care that it
works on theirs. These are the complexities of production and some tips on how to
bridge the gap between testing environments and the unpredictability of real users.
In the next section, you’ll learn how to avoid some of these issues by thinking about
them throughout the development lifecycle.

The Complexities of Production Environments | 219

Building Production-Ready Code
If you’re a parent preparing to send your child off to their first day of school, you
have to think about so many details. You wouldn’t just wake them up, hand them
their backpack, and push them out the door, would you? Of course not. You’d make
sure they’re well-fed, dressed appropriately, have all their supplies, and know how to
contact you if something goes wrong. You’d prepare them for the world they’re about
to face.

The same applies when preparing your code for production. Your code is your
baby, and you need to be certain it’s ready to face the unforeseen challenges of the
real world. Just as parents can’t predict every scenario their child might encounter,
developers can’t anticipate every possible issue in production. However, with proper
preparation, you can give your code the best chance of success by considering
performance optimizations, environment-specific configurations, error handling and
logging, and security essentials throughout the development process.

Performance Optimization
Performance optimization isn’t a dial you simply turn up when you want things to
run smoothly. It’s a mindset you need to adopt before writing any code, and it should
be an area of your application you constantly review throughout the development
process.

While performance can indeed be about making your code run faster, ultimately it’s
about providing the best possible experience for your users. You can employ several
key strategies to improve performance. Think of these as building blocks: you don’t
need to implement all of them at once but can gradually incorporate them into your
development process:

Asynchronous programming
Instead of waiting for a task to complete before moving on to the next one
(synchronous execution), asynchronous programming allows tasks to run in
the background, notifying the main program upon their completion. This is a
common solution to this problem, but use it cautiously as it introduces its own
complexities and trade-offs.

Reducing network calls
Every request your application makes has a cost associated with it, and the
currency is time and resources. Instead of making multiple smaller calls, consider
batching them together into a single request.

Caching strategies
If you can identify frequently accessed data that doesn’t change, you can store it
in memory or some type of fast storage system. This will reduce database load

220 | Chapter 10: To Production

and increase response times. You can learn more about the trade-offs of caching
in Chapter 8.

Database query optimization
Use efficient queries, proper indexing, and avoid N + 1 query problems.

Code minification
In modern frontend development, code minification removes unnecessary char‐
acters from your code without changing its functionality. Think of it like remov‐
ing all the spaces and line breaks from a book while keeping all the words:
the meaning stays the same, but it takes up less space. Minification removes
characters like whitespace, newlines, and comments to make files smaller and
faster to download.

Code bundling
Bundling combines multiple separate code files into fewer, larger files. Instead
of your browser downloading 20 separate JavaScript files, it downloads 1 or 2
bundled files. Modern build tools like Webpack or Vite can perform bundling
alongside other optimizations like tree shaking (removing unused code) and
minification.

Lazy loading
Load resources (images, code chunks, components) only when they’re actually
needed rather than up front. This reduces initial page load time.

Content delivery networks (CDNs)
CDNs complement optimizations like minification and bundling by serving your
assets from locations physically closer to your users, which can significantly
reduce load times.

Performance optimization is not just about making code run faster, but about provid‐
ing the best possible experience for your users. You can do this by changing your
mindset and thinking about some of the optimizations you learned about in this
section.

Environment-Specific Configurations
You might hear the phrase, “Configuration is code,” but unlike code, configurations
vary across environments. Configuration is similar to adjusting your phone’s camera
settings for different lighting conditions. Just as settings optimized for bright sunlight
might falter in low light, your application needs tailored configurations to perform
reliably in each specific environment.

Let’s look at a common anti-pattern and its solution. In the following example, the
developer has hardcoded the database credentials for their local machine. Instead

Building Production-Ready Code | 221

of hardcoding credentials like this, favor a configuration that can be set for each
environment:

// DON'T DO THIS
public class DbConnection {
 private final String url = "jdbc:postgresql://localhost:5432/fose";
 private final String username = "admin";
 private final String password = "secret";
}

// DO THIS INSTEAD
public class DbConnection {
 private final String url;
 private final String username;
 private final String password;

 public DbConnection(AppConfiguration config) {
 this.url = config.getDatabaseUrl();
 this.username = config.getDatabaseUsername();
 this.password = config.getDatabasePassword();
 }
}

You just saw an example of hardcoding a database connection string that is specific to
a development environment. This doesn’t scale as you move your code into different
environments. Here are some more examples of configurations that might change
across environments:

• Logging settings•
• External service endpoints•
• Database settings•
• Cache settings•
• Email settings•
• Security settings•
• Feature flags and app behavior•

Now that you know that this is something you need to be aware of, let’s look at some
ways to configure these items across environments.

Configuration files
We can use configuration files to configure everything from database connection
strings to API keys to application-specific settings. While they might be code, they are
often human-readable, which makes them appealing. Configuration files also offer
you the option to have a file for each environment you are deploying to.

222 | Chapter 10: To Production

In the following example, we define two configuration files: one for development and
one for production. This lets you define the properties for each environment:

application.yaml (dev)
services:
 service1:
 url: http://localhost:8080
 api-key: 123456
database:
 url: jdbc:postgresql://localhost:5432/fose
 username: postgres
 password: postgres
logging:
 level: INFO

application-prod.yaml
services:
 service1:
 url: http://real-service1.com
 api-key: 789012
database:
 url: jdbc:postgresql://fosedb.com:5432/fose
 username: postgres
 password: f@3ser#4il_m$%@$LW0
logging:
 level: ERROR

Environment variables
If you were paying attention to the configuration files in the previous section, you
may have noticed some sensitive information in there. Even though these configura‐
tion files are specific, they still pose problems. The first problem is that you are
exposing sensitive information that will be checked into version control. The other
problem is that sensitive information like API keys is usually rotated at scheduled
intervals. This means that to change an API key, you will need to redeploy the
entire application, which isn’t ideal. In this example, the sensitive information is now
defined in an environment variable and is no longer hardcoded:

application-prod.yaml
services:
 service1:
 url: ${SERVICE1_URL}
 api-key: ${SERVICE1_API_KEY}

Feature flags
Feature flags (also known as feature toggles) are a software development technique
that allows developers to enable or disable features at runtime without deploying new
code. Consider them like a control panel for your application’s features.

Building Production-Ready Code | 223

Feature flags offer several benefits for both your development teams and your users.
You can ship code to production while keeping features hidden from users, allowing
for safer deployments and better separation of code releases from feature releases.
They enable gradual rollouts to specific user groups, letting you test features with
a subset of users before full deployment. Feature flags also make A/B testing straight‐
forward by allowing you to compare different user experiences, and they provide the
ability to quickly roll back features without requiring a code deployment.

There are three common types of feature flags to consider. Release flags help you
hide incomplete features in production, keeping your main branch deployable while
work continues. Experiment flags are designed for comparing user experiences and
gathering data on user behavior. Permission flags control feature access based on user
roles or subscription levels, making them useful for tiered product offerings.

Feature flags should be regularly reviewed and cleaned up. Tempo‐
rary flags that become permanent create unnecessary complexity
in your codebase. Establish a cleanup schedule that works well for
your team and set expiration data when creating new feature flags.
Create documentation that clearly states the purpose and expected
lifespan of each flag.

Secrets
Secrets are sensitive configuration values like API keys, passwords, and tokens that
require special care. Managing secrets properly is crucial for application security and
requires following several important practices.

Never store secrets directly in your code or commit them to version control. This
security violation can cost you money and damage user trust. If you do commit these
to version control, it will require you to rewrite Git history, which can be a complex
process. Additionally, sharing source code with third parties becomes a significant
security risk when secrets are embedded in the codebase.

Instead, use dedicated secrets management services like AWS Secrets Manager,
HashiCorp Vault, or Azure Key Vault. These services provide secure storage, encryp‐
tion, and access controls specifically designed for sensitive data. Make credential
rotation a regular practice, ideally automated through your secrets management
platform. This limits the window of vulnerability if credentials are ever compromised.

Access to production secrets should be strictly controlled and limited to team mem‐
bers who absolutely need it. Use the principle of least privilege and implement proper
authentication and authorization controls. Finally, maintain separate secrets for each
environment the application gets published to. Development, staging, and production
should never share the same credentials. This isolation prevents accidentally exposing
production environments during development and testing.

224 | Chapter 10: To Production

As you can see, there are a number of things to remember when configuring
your application for multiple environments. The next consideration for building
production-ready code is to employ proper error handling and logging to catch issues
when they arise.

Error Handling and Logging
As you have already learned, the world of production can be an unpredictable place.
Murphy’s law reminds us that if something can go wrong, it will go wrong. In
this unforgiving environment, proper error handling and logging are not just good
practices; they are essential survival skills for production applications. They enable
us to catch issues before they cascade into system-wide failures and provide critical
insights when solving the problems that will inevitably arise.

When you begin building out a new feature, it’s natural to focus on the “happy path.”
This is the ideal scenario your users take where everything works perfectly. However,
in the real world of software development, this represents only a small portion of
what you need to consider. Following the Pareto principle, while the happy path
might represent 20% of your code, handling edge cases and errors often accounts for
80% of your time and effort. This is where you’ll spend most of your development
time and where experienced developers distinguish themselves.

Error handling
So what does effective error handling actually look like in practice? Here are some
concrete strategies you’ll use regularly:

Graceful degradation
When a feature fails, provide a simplified version instead of breaking entirely. For
example, if your weather API is down, show cached weather data with a note that
it might be outdated rather than displaying an error page.

Meaningful error messages
Replace technical jargon with user-friendly language. Instead of “Database con‐
nection failed,” tell users “We’re having trouble loading your data right now.
Please try again in a few minutes.”

Logging for debugging
Record what went wrong behind the scenes so you can fix it later. Log the
technical details (like error codes and stack traces) that help developers, while
showing users only what they need to know.

Fallback options
Always have a Plan B. If your primary payment processor fails during checkout,
automatically switch to a backup processor so customers can still complete their
purchases.

Building Production-Ready Code | 225

Logging
Effective logging provides insight into production issues. The challenge lies in strik‐
ing the right balance. Insufficient logging can leave you in the dark, while excessive
logging can create noise that obscures crucial information.

While the implementations might vary across programming languages the concept
of logging levels is common. Here are the logging levels in Java that help developers
categorize and filter log messages based on their severity and importance:

ERROR
Use for serious issues that need immediate attention

WARN
For potentially harmful situations

INFO
Normal business process events

DEBUG
Detailed information for debugging

When logging, try not to be too verbose. Focus on the critical items. You should not
log the following:

• Sensitive information, such as passwords, API keys, authentication tokens, or•
secrets.

• Personally identifiable information (PII). You will learn more about this later in•
this chapter.

• Large objects or entire response payloads. Instead, log meaningful information•
that will help identify the issue at hand.

• Duplicate logging of the same information across multiple layers of your•
application.

As you just learned, error handling and logging are vital to getting visibility when
things go wrong in production. Another important aspect of building production-
ready code is making sure that it is secure.

Security Essentials
Security isn’t something you think about once and move on with your life. It is an
ongoing process that requires vigilance and regular attention. As you deploy applica‐
tions to production, remember that security should be built into your development
process from the start, not bolted on at the end. While you don’t need to be a
security expert, understanding these fundamentals will help you build more secure
applications and make you a more valuable team member. One really good resource

226 | Chapter 10: To Production

for learning about web application security is the Open Web Application Security
Project (OWASP). OWASP provides free, practical security guidance that’s widely
trusted by developers worldwide. In this section, you will learn some ways you can
make your applications more secure.

Securing communication with HTTPS
While you’re developing locally you might be inclined to use Hypertext Transfer
Protocol (HTTP) because it’s frankly just more convenient. However, it is important
to test with HTTP Secure (HTTPS) before deploying to production. There are tools
that allow you to create trusted certifications for local development.

There are certain messages that can be seen by anyone, and there are messages that
you want only the recipient to see. Imagine a postcard you send to someone while
you’re on vacation. The postcard has a picture of the beach on the front and on the
back a handwritten message for anyone to see. This is what it is like to send data
over HTTP. HTTP transfers plain text data between your browser and the server. Any
sensitive information like passwords, credit card numbers, secrets, or personal data is
visible to anyone who intercepts the traffic.

If you want to keep your vacation message private, you would put it inside a sealed
envelope; this is what HTTPS does for you. HTTPS adds a layer of encryption using
Transport Layer Security (TLS) protocols.

TLS certificates are like digital ID cards for websites. When you visit an HTTPS site,
the server presents its certificate to prove its identity. These certificates are issued by
trusted certificate authorities (CAs) who verify the website owner’s identity.

Once your browser verifies the certificate, TLS uses this trusted connection to set up
strong encryption for all data transfer. This encryption ensures that your information
can’t be read by prying eyes and also means that the information can’t be modified
while it’s being transmitted between your browser and the server.

While Secure Sockets Layer (SSL) is an older protocol that TLS
has replaced, many people still use the term “SSL” out of habit.
SSL has known security vulnerabilities and should not be used in
production applications. When someone refers to SSL today, they
usually mean TLS, but it’s important to verify that systems are
actually using TLS protocols.

Building Production-Ready Code | 227

HTTPS isn’t going to fix all of your security problems. It is one layer of security that
you should be thinking of as you take your applications to production. Here are some
best practices you can follow:

• Use HTTPS everywhere, not just for login pages.•
• Redirect HTTP to HTTPS automatically.•
• Keep certificates up-to-date (consider using automated certificate management•

tools).
• Use secure TLS versions (1.2 or higher).•

Authentication best practices
Security breaches can cause a lot of problems within your organization, like exposing
sensitive data, damaging customer trust, and potentially resulting in significant finan‐
cial and reputational losses. Proper authentication is a good defense against these
threats.

Authentication is the process of verifying that users are who they claim to be, while
authorization determines what verified users are allowed to do. The first and most
important rule is: never, under any circumstances, create your own security measures.
While crafting your own authentication systems might seem straightforward, security
experts have spent decades identifying and mitigating complex vulnerabilities that
aren’t always obvious.

Spring Security in the Java world represents over 20 years of security work. It offers
proven solutions for common security problems like password storage. It includes
password encoders that prevent storing passwords as plain text, which is very danger‐
ous. In the following example, we create a new BCryptPasswordEncoder, which will
be used to encode passwords:

@Bean
public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
}

And then use that password encoder to encode the password before saving it off to a
database:

// Create new user entity
User user = new User();
user.setUsername(registrationDto.getUsername());
user.setEmail(registrationDto.getEmail());

// Encode the password before saving
user.setPassword(passwordEncoder.encode(registrationDto.getPassword()));
// Save and return the new user
return userRepository.save(user);

228 | Chapter 10: To Production

Authentication is a vital component to application security, serving as the first line
of defense against unauthorized access. Let’s explore the building blocks of a robust
authentication system.

Strong password management is essential for protecting your systems against unau‐
thorized access. For example, enforce passwords with a minimum of 12 characters,
combining uppercase, lowercase, numbers, and special characters. Check against
databases of common or compromised passwords and prevent users from reusing
previous passwords. Use modern hashing algorithms with unique salts for each pass‐
word. A salt is random data added before hashing to prevent rainbow table attacks.
Encourage and support the use of password managers with auto-fill capability.

Even with all these technical protections in place, remember that passwords ulti‐
mately depend on human behavior. The strongest password policy won’t help if
users write passwords on sticky notes or share them with colleagues. This is why
implementing multiple layers of security (like multifactor authentication, covered
later) is so important

Securing user accounts requires multiple layers of defense against unauthorized access
attempts. For example, implement exponential backoff for failed login attempts, start‐
ing with short delays like 5 seconds and gradually increasing to 30 minutes or more.
Track failed attempts across multiple accounts from the same IP address and monitor
when single accounts are being targeted from multiple locations. Add CAPTCHA
after several failed attempts to prevent automated attacks, and alert users when login
attempts occur from new devices or unfamiliar locations. Finally, implement secure
account recovery flows with appropriate verification steps to help legitimate users
regain access while keeping attackers out.

Effective session management protects users while they interact with your system and
prevents unauthorized access to active sessions. Use cryptographically secure tokens
with sufficient entropy to ensure that sessions cannot be easily guessed or hijacked.
Implement both idle and absolute session timeouts. For instance, automatically log
users out after 30 minutes of inactivity or 8 hours total, with shorter timeouts for
sensitive operations like banking. Maintain a blocklist of revoked tokens until their
natural expiration to prevent reuse of compromised sessions.

Adding multiple layers of verification strengthens your authentication security beyond
just passwords. Support multiple authentication methods like authenticator apps,
security keys, and biometrics to give users options that work for their situation. While
SMS and email are convenient and widely used, be aware they are more vulnerable to
attacks such as SIM swapping.

You can trigger additional verification based on unusual behavior. For example,
require extra authentication when users log in from new locations or devices. Require
MFA during account recovery processes to prevent attackers from bypassing your

Building Production-Ready Code | 229

security. Provide secure backup codes so users are not locked out when their primary
MFA method is unavailable. Consider allowing trusted device caching with appropri‐
ate security controls so users are not constantly challenged on their regular devices.

Safeguarding user data
Your users are trusting you with their data, and you have both a professional and
ethical responsibility to protect that trust. Beyond legal requirements, respecting user
privacy and data security is simply the right thing to do. Your decisions as a developer
can genuinely impact people’s lives, financial security, and personal safety.

When you start building applications that handle user data, you will most likely come
across the term personally identifiable information (PII). This type of data can include
obvious details like a name and social security number but also less obvious ones like
IP addresses or device identifiers. Some data is considered PII when it is combined
with other data.

One way to start thinking about this in development is by marking data as sensitive.
In the following example, written in Java, a custom annotation marks data as PII.
Within that custom annotation, you can use various masking methods:

public class UserProfile {
 private String userId;
 private String hashedPassword;
 @Sensitive // Custom annotation to mark PII
 private String email;
 @Sensitive
 private String phoneNumber;
 @Sensitive
 private LocalDate dob;
}

Encryption: Your last line of defense
What happens when you have sensitive data like financial information (credit cards,
bank account numbers, tax returns, etc.) and you need to store it in a database? This
is information you absolutely should not store in plain text. While in development,
you should start thinking of encryption and consider it your safety net. Think of it as
a secure vault: even if someone breaks in, they can’t use what they find without the
key.

The following class provides a secure method for encrypting sensitive data in Java. It
uses the Advanced Encryption Standard (AES), a highly secure encryption algorithm
that provides both confidentiality and data integrity protection. When implementing
AES, you’ll need to choose a key length—currently 128 bits provides strong security
for most applications, though many developers are moving to 256-bit keys for future‐
proofing against advancing computing power:

230 | Chapter 10: To Production

class DataEncryptionService {
 private final SecretKey key;
 DataEncryptionService(SecretKey key) { this.key = key; }

 String encrypt(String s) throws GeneralSecurityException {
 byte[] iv = new byte[12]; new SecureRandom().nextBytes(iv);
 Cipher c = Cipher.getInstance("AES/GCM/NoPadding");
 c.init(Cipher.ENCRYPT_MODE, key, new GCMParameterSpec(128, iv));
 byte[] ct = c.doFinal(s.getBytes(StandardCharsets.UTF_8));
 byte[] out = ByteBuffer.allocate(iv.length + ct.length)
 .put(iv).put(ct).array();
 return Base64.getEncoder().encodeToString(out); // encodes IV||ciphertext
 }
}

Compliance requirements
Software compliance means following specific rules, standards, and regulations. This
includes both internal company policies and external legal requirements. As you
write code, keep these compliance practices in mind:

• Start with privacy by design: build data protection in your systems from the•
beginning.

• Apply secure coding standards in your daily work.•
• Implement proper data encryption for sensitive data both in transit and at rest:•

— In transit: Use HTTPS for all data transmission (this protects data while—
traveling between user and server).

— At rest: Encrypt sensitive data stored in your database (this protects data even—
if someone gains database access).

— Be extra cautious when decrypting data in server memory, as skilled attackers—
might find ways to access it there.

• Create clear mechanisms for data deletion and export requests.•
• Document all interactions with sensitive information.•

You don’t need to memorize every regulation but recognize when your code touches
regulated data and ask for help from someone on your team. Security is a team
effort. While you’ll implement secure best practices, your organization’s security
professionals should be involved in design decisions from the start of each project.
As a developer, you won’t always recognize when you’re approaching something that
could create security risks, and that’s normal.

Building Production-Ready Code | 231

The following outlines some key privacy regulations developers should be aware of:

General Data Protection Regulation (European Union) and California Consumer Pri‐
vacy Act (California)

Major privacy regulations that affect how we handle user data. These regulations
essentially require the following:

• Clear user consent for data collection•
• The ability to delete user data (“right to be forgotten”)•
• Data minimization (collect only what you need)•
• Proper data handling and security measures•

Health Insurance Portability and Accountability Act (HIPAA)
If your application handles any health information (medical records, insurance
data, even fitness tracking), HIPAA applies. Key developer considerations include
the following:

• Encrypt all health data both in storage and transmission.•
• Implement strict access controls: users should see only their own health•

information.
• Maintain detailed audit logs of who accessed what health data and when.•
• Ensure that any third-party services you integrate with are also HIPAA•

compliant.
• Never store health information longer than necessary for your application’s•

purpose.

Payment Card Industry (PCI)
If your application handles credit card data, you’ll need to follow Payment
Card Industry Data Security Standard (PCI DSS) requirements. While the full
standard is complex, here are key points to consider as a developer:

• Never store sensitive authentication data (like CVV codes).•
• Encrypt cardholder data during transmission and storage.•
• Implement strong access controls.•
• Maintain secure systems and applications.•

Software bill of materials (SBOM)
An SBOM functions as an ingredient list for your application. It documents every
library, framework, and dependency your code uses along with their version
numbers. Think of it as an inventory of all building blocks in your software. For
compliance purposes, SBOMs matter because security vulnerabilities frequently
appear in popular libraries. With an SBOM, you can quickly identify if your

232 | Chapter 10: To Production

application uses affected components and update them promptly. Most devel‐
opment tools generate SBOMs automatically, eliminating the need for manual
maintenance.

Always log security-related actions, but never log sensitive data!
When in doubt, consult your security team for guidance. Create
a maintenance schedule for updating your dependencies. Set a
regular cadence (monthly or quarterly) to review your SBOM for
known vulnerabilities and update to the latest secure versions of
your libraries.

Remember that security is about layers. No single security measure is perfect, but
implementing multiple layers of security makes it significantly harder for attackers to
compromise your system. This is something you need to be thinking about during
the development process, so try to layer on security to get into a good practice of
being security conscious.

Now that you have some security essentials to keep in mind about building
production-ready code while still in development, it’s time to discuss the deployment
process itself.

Deployment Pipeline
A deployment pipeline is your roadmap for safely and reliably moving your code from
one environment to production. Think of it as a well-oiled assembly line where each
component plays a specific role in transforming your code into a running application
that real users can access.

Your deployment pipeline consists of four interconnected components that work
together like gears in a machine:

Deployment environments
These are the stages where your code will live and run, from your local devel‐
opment setup to the production servers where customers interact with your
application. Each environment serves a specific purpose in validating your code
before it reaches users.

Version control strategies
Coordinates how multiple developers contribute changes to the same codebase
without stepping on each other’s toes. These strategies become your safety net for
managing releases and handling emergencies.

Deployment Pipeline | 233

Deployment automation
Eliminates the manual, error-prone steps of moving code between environments.
Instead of following a checklist and hoping you don’t miss anything, automation
ensures that the same reliable process runs every time.

CI/CD (continuous integration and continuous deployment)
Ties everything together by automatically moving your code through the
pipeline—from the moment you commit changes to when they’re running in
production.

By the end of this chapter, you’ll understand how these pieces fit together to create a
deployment process that’s both reliable and stress-free.

Deployment Environments
Before you can grasp the deployment process within your company, it’s crucial to
understand the environments that you will be deploying code to. These will vary
across organizations and even among teams within the same organization. Here is a
list of common environments you might find and their purposes:

Local development
This is your local playground where your coding journey begins. While it’s your
personal workspace for experimentation, remember that your fellow developers
share a similar setup.

Testing/QA
Although you hopefully have a comprehensive test suite to run locally, the testing
environment is your first shared checkpoint. This is where quality assurance
takes place, and your test suite might behave differently than it does locally.

Staging
Think of staging as the dress rehearsal for the big show. It’s a production-like
environment that serves as the final testing ground before going live. This is ideal
for performance testing and user acceptance testing.

Production
This is the main stage and your ultimate goal. Here, real users will interact with
the application you’ve invested so much time and energy in creating.

Earlier in this chapter, you learned about configuration management. A crucial part
of moving an application between environments is ensuring correct configuration
for each stage. Configuration management should be an integral part of your deploy‐
ment process, not an afterthought. To understand how to move code from one
environment to the next, you must understand what will change between those
environments.

234 | Chapter 10: To Production

Version Control Strategies
Version control strategies become especially important in production environments
where code stability, reliability, and deployment efficiency are critical. In production,
these strategies enable teams to manage feature releases without disrupting live serv‐
ices, quickly address problematic deployments (either by rolling back to a previous
version or rolling forward with a fix), and maintain detailed audit trails for compli‐
ance purposes.

Through education or work, you likely have some experience with version control.
You’ve probably used it in personal projects and have a good understanding of
basic Git concepts like cloning repositories, adding and removing files, and pushing
changes. This foundation is great for getting started, but as you move into an organi‐
zational setting, the introduction of teams brings new complexities to version control.

The following are popular workflows for handling these issues:

Git Flow
Uses multiple long-lived branches to separate different types of work (features,
releases, hotfixes). This provides strong isolation between development and pro‐
duction code. We’ll take a closer look at Git Flow in this section.

GitHub Flow
A simpler approach that uses just a main branch and short-lived feature
branches. Changes go directly from feature branches to production after review.

Trunk-based development
Emphasizes frequent integration where all developers work on a single main
branch with very short-lived feature branches (often less than a day).

Release train
Coordinates regular, scheduled releases (like weekly or monthly) where features
are bundled together for deployment.

Let’s explore Git Flow because its clear structure makes it excellent for understanding
how teams collaborate with version control. This branching strategy organizes work
by using different types of branches, each with a specific purpose. Some of the
branches will remain throughout the lifecycle of the project, while others will exist
only long enough to complete a particular task.

We’ll explore each type of branch and learn how teams work together without step‐
ping on one another’s toes.

Core branches
Git Flow is built around two core, long-running branches that form the foundation of
your project.

Deployment Pipeline | 235

The main branch represents your production-ready code. It is your source of truth.
This branch should always be stable and deployable. When working in a team:

Keep the main branch protected from direct commits
In Git Flow, the main branch receives code that has already been reviewed and
tested through the develop branch, so protection here focuses on preventing
accidental direct commits rather than code review.

Ensure that the main branch passes all automated tests
Automated testing is your safety net for detecting problems before they reach
production.

The main branch was traditionally called master, but many organi‐
zations now use main to adopt more inclusive terminology. Both
terms refer to the same concept.

The develop branch is where the day-to-day action happens in Git Flow. Think of it as
your team’s shared workspace, where individual features come together before they’re
ready for production.

When working with the develop branch:

Protect the develop branch with code review requirements
This is where code review actually happens in Git Flow. When feature branches
merge into develop, team members review changes, catch issues, and ensure
coding standards.

Keep the develop branch always buildable
While it may contain incomplete features, the code should always compile and
pass basic tests.

Test integration regularly
Since develop contains multiple features being worked on simultaneously, run
your full test suite frequently to catch integration issues early.

The develop branch acts as a staging area where features are tested together before
being packaged into a release and ultimately merged to main.

Supporting branches
Besides the core branches, Git Flow uses temporary, short-lived branches for specific
tasks. These supporting branches help keep work organized and prevent conflicts
among team members.

236 | Chapter 10: To Production

Feature branches are where you’ll spend most of your development time. When you
start working on a new feature or bugfix, you create a dedicated feature branch from
the develop branch. This isolates your work so you can experiment and make changes
without affecting other developers or the stable code.

Giving these branches clear names tells other developers (and future you) what work
is happening on that branch. Table 10-1 shows examples of good versus poor branch
names.

Table 10-1. Branch name examples

Good branch names Poor branch names

• feature/user-authentication•
• bugfix/login-timeout•
• enhancement/performance-optimization•
• feature/JIRA-123-user-authentication (when using ticket tracking)•
• bugfix/GH-456-login-timeout (GitHub issue number)•

• my-branch•
• stuff•
• feature/123 (without context about what 123 refers•

to)

Beyond feature branches, you may be wondering: “Why not just merge develop
directly to main when you’re ready to release?” That is a really good question to ask.
Release branches solve several issues that might come up when working in a team
environment:

Stabilization period
While your release branch undergoes final testing and bug fixes, your team can
continue adding new features to develop for the next release.

Release preparation
Version number updates, final documentation, and deployment configuration
changes need a dedicated space that won’t interfere with ongoing development.

Quality gates
Many organizations require a “release candidate” phase where stakeholders can
approve the exact code that will go to production.

Scheduled releases
If your team releases every two weeks, you need a way to “freeze” a set of features
while continuing development for the next cycle.

Not every team needs release branches; it really depends on your organization’s
practices. When your team has a formal release process or scheduled deployment
windows, release branches provide good separation.

You can also have hotfix branches. You also might be wondering: “Why do I need
a separate branch for a hotfix when I can just use develop?” What happens when

Deployment Pipeline | 237

production has a serious issue, but your develop branch contains half-finished fea‐
tures that aren’t ready for production?

Hotfix branches solve this emergency scenario by doing the following:

Bypassing unstable code
You can fix the production issue without deploying incomplete features from
develop.

Maintaining clean history
The fix gets applied to both main (for immediate deployment) and develop (so
it’s not lost in future releases).

Speed and focus
Your team can work on the critical fix without worrying about other ongoing
development work.

Minimal risk
Since hotfixes branch from the stable main branch, you’re changing only what’s
absolutely necessary

In this section, you learned about the branch types in Git Flow. As you can see,
each branch type serves a specific purpose in keeping your team’s work organized
and properly versioned. The core branches (main and develop) provide stability and
coordination, while the supporting branches (feature, release, and hotfix) handle
specific tasks without disrupting the main workflow. This might seem overwhelming
at first, but the more you work with a strategy like this one, the more you will see how
it creates clear boundaries that help teams work together safely.

The version control lifecycle
So, how do all of these branches work together to form a version control strategy?
In Git Flow and many other strategies, development occurs in feature branches, gets
merged into a develop branch, and finally placed into main after release, with hotfixes
applied directly to both master and develop when necessary.

The Git Flow workflow is illustrated in Figure 10-1.

238 | Chapter 10: To Production

Figure 10-1. Git Flow workflow

By understanding Git Flow, you have a solid foundation for team-based development,
but remember that it’s just one approach among many. As you work with different
teams and projects, you’ll encounter variations of these strategies, but the goals will
remain the same. Provide a way to protect your code, isolate your work, and create
a clear process for integrating changes. In the next section, we’ll explore how to auto‐
mate deployments to ensure that your carefully managed code reaches production
reliably and consistently.

Deployment Automation
Manual deployments to production are often time-consuming, error-prone, and
stressful. This is because you need to reproduce a deployment step-by-step with
human intervention that involves code preparation and packaging, testing and ver‐
ification, server preparation, deployment execution, post-deployment verification,
and more. The good news is that we can address this problem by automating our
deployments. In this section, you’ll learn about several key elements that will help
streamline your deployment process.

Deployment Pipeline | 239

Scripting deployments
Manual deployments are like handcrafting a custom bookshelf every single time
you need one. Even if you’ve built the same bookshelf as before, you’re likely to
miss a step, make small variations, or take much longer than necessary. Deployment
automation is like having a factory that can build identical bookshelves to your exact
specifications—precise, repeatable, and without human error. A deployment script
serves as your factory instructions, documenting every step needed to consistently
move your application from development to production.

Here’s a simple example of a deployment script that will run steps like creating
directories, backing up existing directories, deploying the application, and starting it:

#!/bin/bash

Configuration
APP_NAME="myapp"
JAR_FILE="target/${APP_NAME}.jar"
DEPLOY_DIR="/opt/applications/${APP_NAME}"
BACKUP_DIR="${DEPLOY_DIR}/backups"
LOG_FILE="${DEPLOY_DIR}/app.log"
PID_FILE="${DEPLOY_DIR}/${APP_NAME}.pid"
JVM_OPTS="-Xmx512m -Xms256m"

Create directories
mkdir -p "${DEPLOY_DIR}" "${BACKUP_DIR}"

Backup existing deployment
if [-f "${DEPLOY_DIR}/${APP_NAME}.jar"]; then
 mv "${DEPLOY_DIR}/${APP_NAME}.jar" \
 "${BACKUP_DIR}/${APP_NAME}-$(date +'%Y%m%d_%H%M%S').jar"
fi

Stop running application
if [-f "${PID_FILE}"]; then
 kill $(cat "${PID_FILE}") 2>/dev/null || true
 rm -f "${PID_FILE}"
 sleep 2
fi

Deploy new version
if [-f "${JAR_FILE}"]; then
 cp "${JAR_FILE}" "${DEPLOY_DIR}/${APP_NAME}.jar"
else
 echo "Error: JAR file not found: ${JAR_FILE}"
 exit 1
fi

Start application
nohup java ${JVM_OPTS} -jar "${DEPLOY_DIR}/${APP_NAME}.jar" \
 > "${LOG_FILE}" 2>&1 &

240 | Chapter 10: To Production

echo $! > "${PID_FILE}"

Quick health check
sleep 5
if kill -0 $(cat "${PID_FILE}") 2>/dev/null; then
 echo "Deployment successful. PID: $(cat ${PID_FILE})"
else
 echo "Deployment failed. Check ${LOG_FILE} for details."
 exit 1
fi

While this example is basic, it illustrates key components of deployment automation:

• Clear, documented steps•
• Error handling•
• Backup procedures•
• Systematic approach•

Even a simple script is better than no script. Start small and gradually improve your
deployment automation over time. Your future self will thank you for putting in the
time to automate this process now.

Rollback procedures
We’ve established that automating your deployment will save time and reduce stress.
However, even with a well-tested automated deployment, things can occasionally go
wrong.

Nothing is perfect, so you need to be prepared for unexpected issues. Having a plan
to quickly revert changes to a working state ensures that your customers can continue
using your application without interruption.

Here’s an example of a rollback script that will look for the most recent backup, stop
the application, restore, start, and then verify that the application is up and running
correctly:

#!/bin/bash

Configuration (should match deploy.sh)
APP_NAME="myapp"
DEPLOY_DIR="/opt/applications/${APP_NAME}"
BACKUP_DIR="${DEPLOY_DIR}/backups"
LOG_FILE="${DEPLOY_DIR}/app.log"
PID_FILE="${DEPLOY_DIR}/${APP_NAME}.pid"
JVM_OPTS="-Xmx512m -Xms256m"

Find most recent backup
LATEST_BACKUP=$(ls -t ${BACKUP_DIR}/${APP_NAME}-*.jar 2>/dev/null | head -1)

Deployment Pipeline | 241

if [-z "${LATEST_BACKUP}"]; then
 echo "Error: No backup found in ${BACKUP_DIR}"
 exit 1
fi

Stop current application
if [-f "${PID_FILE}"]; then
 kill $(cat "${PID_FILE}") 2>/dev/null || true
 rm -f "${PID_FILE}"
 sleep 2
fi

Restore backup
cp "${LATEST_BACKUP}" "${DEPLOY_DIR}/${APP_NAME}.jar"

Start application
nohup java ${JVM_OPTS} \
 -jar "${DEPLOY_DIR}/${APP_NAME}.jar" \
 > "${LOG_FILE}" 2>&1 &
echo $! > "${PID_FILE}"

Quick health check
sleep 5
if kill -0 $(cat "${PID_FILE}") 2>/dev/null; then
 echo "Rollback successful. Restored: $(basename ${LATEST_BACKUP})"
 echo "Application running with PID: $(cat ${PID_FILE})"
else
 echo "Rollback failed. Check ${LOG_FILE} for details."
 exit 1
fi

Before implementing a rollback script, you should have these prerequisites in place:

• Verify that backup versions exist before deployment.•
• Test rollback procedures regularly.•
• Document database migration rollback steps.•
• Keep multiple backup versions.•
• Monitor the system during rollback.•

The goal of deployment automation isn’t just to save time. It’s to create a reliable,
repeatable process that gives you confidence in your deployments. Start small, per‐
haps with a simple script that automates a few steps, and gradually build up to more
comprehensive automation. Each improvement reduces risk and brings you closer to
the ideal of predictable, stress-free deployments.

242 | Chapter 10: To Production

Deployment Strategies
There is no one-size-fits-all strategy when it comes to deploying your code into pro‐
duction. The strategy you choose for your application can be the difference between a
smooth rollout and being on pager duty all weekend. Let’s take a look at some of the
most popular approaches and when to choose them.

All-at-once deployment (big bang)
This strategy replaces the entire application in one go. The old version is completely
swapped out for the new version at once. It’s simple to implement but carries a high
risk, as any issues will immediately affect all users. There is no gradual transition
period, making rollbacks complex if problems come up. This approach is best suited
for smaller applications with thorough testing or in environments where downtime is
acceptable.

Big bang deployment is best for the following:

• Small applications with limited users•
• Development and testing environments•
• Systems that can tolerate some downtime•

Gradual deployment (phased approach)
A gradual deployment is like your favorite restaurant introducing a new recipe to
a small number of customers at a time. This allows the chef to gather feedback,
iterate, and gradually expand the recipe’s availability. Gradual deployment follows this
approach by rolling out changes to a subset of users or servers before wider release.
This controlled approach allows for early issue detection and course correction.

Common examples include canary deployments (which deploy to a small percentage
of users first) and rolling deployments (which gradually update servers one by one).
Both can often be done with zero downtime using techniques like blue-green infra‐
structure or load balancer traffic shifting.

Gradual deployment is best for the following:

• Large-scale applications•
• Features that benefit from user feedback•
• Systems requiring careful monitoring•

Zero downtime considerations
Whether you choose all-at-once or gradual deployment, you can minimize or elim‐
inate downtime by using techniques like blue-green deployment (maintaining two

Deployment Pipeline | 243

identical environments and switching between them) or rolling updates. While more
complex to set up, these provide the smoothest user experience for mission-critical
applications and high-traffic services.

Choosing your strategy
When should you choose each approach? By now, you probably have already guessed
that the answer is usually “it depends.” Consider factors like system complexity,
tolerance for downtime, and monitoring capabilities when selecting the right strategy
for your application.

Remember: There’s no shame in starting simple and evolving your deployment strat‐
egy as your application and team mature.

Continuous Integration and Continuous Deployment
In Chapter 5, you learned that automated testing provides confidence during the
time of writing and committing code while helping identify issues early in the
development lifecycle. But how can you ensure that these tests are run each time
a release is promoted to a new environment like production? How do you guarantee
that your code is built, tested, and deployed without the errors that manual human
intervention can introduce?

This is where continuous integration and continuous deployment, or CI/CD (or
delivery) comes in. It’s a set of automated processes that takes your code from
development all the way to production, where your users live. Continuous integration
automatically combines and tests changes from your entire development team. Con‐
tinuous delivery prepares your tested code for release, while continuous deployment
can automatically release it to production.

For example, say it’s your second week on the job and the team has asked you to help
with the deployment of a smaller microservice. You open the lengthy deployment
document that is filled with vague steps like “build the application,” “run the tests,”
“update the database,” and “deploy to the server.” Your panic builds as you check
off each item, knowing that if you miss even one little step, you could bring down
production.

Sounds pretty stressful, right? This is exactly why you need automation. Automation
can eliminate a lot of issues by creating a repeatable, reliable process. The benefits of
automation include the following:

Consistency
Remember the “works on my machine” scenario where the application works
locally but has problems when promoted to another environment? When you
automate your build process, you minimize that problem.

244 | Chapter 10: To Production

Automated tests
Instead of relying on developers to run a suite of tests before committing their
code, your CI/CD process can run tests automatically.

Reduced stress
Instead of worrying about manually checking off each step in a deployment
process, you can be sure your automation is run the same way every single time.
A script never skips a step or mistypes a command.

Early detection of integration issues
A well-defined CI/CD process can prevent issues from sneaking into production,
saving you time and money.

Reduced time between code and production
Go to production frequently by leveraging a well-defined automated process that
minimizes deployment time. Remember, code has no real value until it reaches
end users.

Building a basic CI/CD workflow
A CI/CD workflow is like a recipe: it defines the steps needed to take your code from
development to production. Let’s look at a basic workflow:

Code
A developer pushes code to the repository.

Build
The application is compiled and built.

Test
Automated tests are run.

Package
The application is packaged for deployment.

Deploy
The application is deployed to the target environment.

To put this into practice, let’s create a basic GitHub Actions workflow. A GitHub
workflow is an automated process that you can set up in your GitHub repository to
build, test, package, release, or deploy your code. GitHub Actions is a popular choice
for implementing CI/CD pipelines because it’s easy to get started with and integrates
naturally with your GitHub repository.

Deployment Pipeline | 245

Here’s an example workflow file that implements these steps for a Java application:

name: Java CI/CD Pipeline

on:
 push:
 branches: [main]
 pull_request:
 branches: [main]

jobs:
 build-and-test:
 runs-on: ubuntu-latest

 steps:
 # Check out your repository code
 - uses: actions/checkout@v4

 # Set up Java development environment
 - name: Set up JDK 25
 uses: actions/setup-java@v4
 with:
 java-version: '25'
 distribution: 'temurin'

 # Build the application
 - name: Build with Maven
 run: ./mvnw -B package --file pom.xml

 # Run automated tests
 - name: Run tests
 run: ./mvnw test

 # Package application (creates a JAR file)
 - name: Package application
 run: ./mvnw package -DskipTests

 # Store the package as an artifact
 - name: Upload artifact
 uses: actions/upload-artifact@v4
 with:
 name: app-package
 path: target/*.jar

This workflow file demonstrates several key concepts:

• The on section defines when the workflow runs (on push to main or PRs).•
• Each job runs in a fresh virtual environment (ubuntu-latest).•
• Steps are executed sequentially, with each step depending on the success of•

previous steps.

246 | Chapter 10: To Production

• The workflow handles building, testing, and packaging our application.•

By implementing this workflow, you’ve automated several critical steps in your devel‐
opment process. When you push code or create a PR, GitHub automatically does the
following:

• Builds your application to catch compilation errors early•
• Runs your test suite to catch potential bugs•
• Creates a deployable package•
• Stores the package for later use•

A CI/CD workflow automates the journey of code from development to production
through a series of predefined steps. This automation eliminates manual intervention,
catches errors early, enforces quality standards, and ultimately delivers software more
reliably and effectively in a repeatable pattern.

Advanced CI/CD patterns
Don’t stress out about having to learn everything at once. Start simple and build
on the foundations that you have learned in this chapter. Begin by automating your
build and test process. As it begins to make more and more sense, you will feel more
confident, and then you can gradually add more advanced deployment strategies.

As you move forward in your career, you’ll come across more sophisticated CI/CD
patterns like these:

Canary releases
Deploy new code to a small subset of users or servers first to test in production
with minimal risk, expanding gradually if no issues are found.

Blue-green deployments
Maintain two identical production environments (blue and green), with only one
active at a time. New versions deploy to the inactive environment and, once
verified, traffic switches over completely.

Here are some ways to introduce advanced patterns and gradually improve your
CI/CD process:

1. Start with a basic pipeline that builds and tests your code.1.
2. Gradually incorporate more automated checks and validations.2.
3. Maintain a fast pipeline to ensure quick feedback loops.3.
4. Regularly monitor and optimize your pipeline based on team needs.4.
5. Document your pipeline to facilitate team collaboration.5.

Deployment Pipeline | 247

CI/CD is not just about tools and automation. It is about fostering a culture of
continuous improvement and reliable software delivery. By embracing these practices
early in your career, you’ll build a strong foundation for professional growth and
become an invaluable team member.

Production System Monitoring and Maintenance
You have written your code, tested it thoroughly, and now it’s ready for production.
Your application went through the proper CI/CD pipeline and is now live in pro‐
duction. It’s time to kick up your feet and relax, right? Not quite. The journey of
a working application on your machine to a reliable system in production is an
ongoing one.

Monitoring
Proper monitoring and logging can tell you a lot about the state of your application.
Without these in place, you won’t know how your system is performing currently or
over time. Too many developers want to throw their app into production and hope
for the best. They think that no news is good news. The truth is, users rarely tell you
when something is wrong. They just leave.

Your application relies on two types of monitoring systems:

Real-time monitoring
Tracks what’s happening right now. Is your application’s response time too slow?
Is the server load or throughput too high? Individual metrics never tell the
complete story. A 300 ms response time might seem fast, but if your application
normally responds in 50 ms, this could indicate a problem.

Logs
Serve as your historical record. When issues arise, good logs help you reconstruct
what went wrong and when. They provide the context for troubleshooting.

After experiencing several critical incidents with our application, we established these
vital monitoring rules:

1. Log information you will need when problems occur.1.
2. Always include timestamps and user identifiers.2.
3. Mark errors as errors. Do not bury important alerts in info logs.3.
4. Keep private data out of logs (no passwords or personal details).4.
5. Delete old logs before they consume your storage.5.

248 | Chapter 10: To Production

Keep your monitoring system simple at first. Watch your response
times, error counts, and server resources. That’s enough to start.
The fancy tools can come later.

Good monitoring provides peace of mind. Problems will eventually occur; that is the
nature of software. When they do, you’ll be thankful you have metrics and logs to
help you diagnose and fix issues quickly.

AI Note

Once you have logs and metrics in place, AI tools can significantly
enhance your monitoring capabilities. AI can search through large
volumes of logs to identify anomalies or patterns that might indi‐
cate emerging issues before they become critical. Additionally, AI
can help generate monitoring dashboards from your metrics data,
which traditionally requires tedious manual configuration, giving
you a solid starting point and accelerating the dashboard creation
process.

System Maintenance
When a system is deployed to production, it is not the end of the journey; it’s just
the beginning. System maintenance is a critical aspect of keeping software running
efficiently, securely, and reliably. This section covers how to maintain the production
system to prevent costly issues and ensure optimal performance.

Keeping systems up-to-date
Software that has been deployed to production needs regular maintenance. While
everything is performing well in production, it might be tempting to postpone main‐
tenance, but this would be a mistake. What might start off as minor, inexpensive
issues can quickly transform into major, costly problems.

When you are dealing with systems that users depend on, the costs are high. Critical
infrastructure requires consistent upkeep to ensure safety and reliability. But some‐
how in software development, teams will frequently delay necessary updates despite
the risks.

Production System Monitoring and Maintenance | 249

System updates
Operating system updates and security patches form your first line of defense for
running into major, costly problems. These updates often address the following:

• Critical security vulnerabilities•
• Performance improvements•
• Bug fixes•
• New features and capabilities•

Never ignore security updates. While feature updates can sometimes wait, security
patches should be applied promptly to protect your systems from vulnerabilities.

Dependency management
Dependency management is arguably the most overlooked aspect of system mainte‐
nance. Your application may rely on dozens or even hundreds of external libraries,
each potentially harboring security vulnerabilities. Remember the SBOMs we dis‐
cussed earlier in this chapter? This is exactly why maintaining an accurate SBOM is
important for tracking and updating your dependencies.

The following code shows a dependency in a Java app that declares an outdated
version with known vulnerabilities:

// Example dependency in pom.xml
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <version>2.5.5</version> // Outdated version with known vulnerabilities
</dependency>

When you generate an SBOM for this application, security tools can scan it against
vulnerability databases to identify that version 2.5.5 has known security issues and
recommend updating to a newer, secure version.

Modern build tools like Maven and Gradle offer dependency analyzers that can alert
you to known vulnerabilities. To catch these issues early, set up automated scans. In
this example, a GitHub Action runs dependency checks on your code:

// Example GitHub Actions workflow snippet
jobs:
 security:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - name: Run Dependency Check
 uses: dependency-check/Dependency-Check@main

250 | Chapter 10: To Production

Taking action
You can start to improve system maintenance by establishing an update policy for
your team or project:

1. Set regular update intervals.1.
2. Define emergency patch procedures.2.
3. Implement automated scanning.3.
4. Document update processes.4.
5. Maintain an update log.5.

Remember, prevention costs less than recovery. Make system updates a priority
in your development workflow. Set calendar reminders for regular update reviews.
Despite automation, human oversight remains crucial for maintaining system health.

Wrapping Up
Moving your code from the safety of your local machine to the unpredictable world
of production can be intimidating at first. Just know that you are not alone and
most developers have felt that same stress at one point in their career. Preparation
is the key to ensuring you have a good deployment process in place. Taking code to
production is a skill that will improve over time with experience.

Remember these key takeaways:

• Think production ready from day one. Consider performance, security, and error•
handling while you code.

• Configure your applications properly for different environments by using envi‐•
ronment variables and feature flags.

• Monitor your application’s health and set up proper logging, but never log sensi‐•
tive data.

• Use version control strategies like Git Flow to collaborate safely with your team.•
• Automate your deployments with CI/CD to make them reliable and repeatable.•
• Remember, your users don’t care if the application works on your machine. They•

care if it works on theirs.

As you begin deploying your own applications to production, you will face challenges
and sometimes might even fail: that is OK. Each failure you encounter is a chance to
learn something new and will make you a better software engineer.

Wrapping Up | 251

Focus on building good habits now, and production deployments will become a
natural part of your development workflow. Before long, you will be an experienced
developer helping others ship code to the promised land of production.

Putting It into Practice
It’s hard to envision how an entire application will perform in production, so incre‐
mentally adopt some of the best practices you learned in this chapter. The following
are good habits that can be applied at various points before deploying to production.
The next time you’re assigned a feature, pick one or two items from each of these
categories to apply to your work. Don’t try to do everything at once; instead, focus on
building these habits gradually.

Before you code:

• Create a simple list of what could go wrong with your feature.•
• Plan what information you might need to log to debug these issues.•
• Identify what configuration might change from your local machine to other•

environments in your workflow.

While coding:

• Create a feature branch with a clear, descriptive name before starting work.•
• Add basic error handling for the top three things that could fail.•
• Include logging statements for key actions (but avoid logging sensitive data!).•
• Write a test that mimics real user behavior.•
• Use configuration values for anything that might change between environments.•

Before deployment:

• Write down your deployment steps as you do them.•
• Create a simple rollback plan. How would you turn off this feature if things go•

wrong?
• Have a teammate review your changes with production in mind.•

After deployment:

• Begin monitoring your logs after deployment for an hour or two. Does anything•
stand out?

252 | Chapter 10: To Production

• Put together a retrospective about this deployment. This is a meeting or discus‐•
sion held after completing a project or deployment, where the team can reflect on
what went well, what challenges they faced, and what lessons can be learned.

Additional Resources
• Continuous Delivery by Jez Humble and David Farley (Addison-Wesley Professio‐•

nal, 2010)
• The Phoenix Project by Gene Kim et al. (IT Revolution Press, 2013)•
• Head First Git by Raju Gandhi (O’Reilly Media, 2022)•
• Learning GitHub Actions by Brent Laster (O’Reilly Media, 2023)•
• Feature Flags by Ben Nadel (self-published, Lulu, 2024)•

Additional Resources | 253

https://learning.oreilly.com/library/view/-/9780321670250/
https://learning.oreilly.com/library/view/-/9780321670250/
https://learning.oreilly.com/library/view/the-phoenix-project/9781457191350/
https://learning.oreilly.com/library/view/head-first-git/9781492092506/
https://learning.oreilly.com/library/view/learning-github-actions/9781098131067/
https://featureflagsbook.com

CHAPTER 11

Powering Up Your Productivity

Focus on being productive instead of busy.
—Tim Ferriss, American entrepreneur, investor, and author

You may have heard of the so-called 10× developer, the software engineer who is
thought to be 10 times as productive as an average developer. Whether they truly
exist is debatable, but it’s undeniable that there are people who get tasks done faster
and more efficiently than others. To become one of them, always look for ways to
improve—starting with your developer toolkit, code editor, command line, and all
those little utilities senior engineers seem to know about. This chapter will help you
customize your development environment and become a more productive software
engineer. You’ll learn how to take control of your editor, how to navigate the com‐
mand line with ease, and why mastering keyboard shortcuts is a superpower.

Optimizing Your Development Environment
Early developers had to make do with fairly rudimentary tools. Luckily, you have a
veritable plethora of amazing, full-featured editors like IntelliJ IDEA and VS Code.
But installing a tool isn’t the end of your journey; it’s only the beginning.

Feel free to explore different settings, but take care not to let it
become a time sink. If you aren’t careful, you might find your‐
self tinkering with fonts and themes when you really should be
working. It is wise to timebox your experiments. Taken too far,
customizations can also make it nearly impossible to pair or work
effectively with others. Nate once tried to pair with a developer
who could work only inside Vim. Using a specialized keyboard.
With the Dvorak settings. It did not go well.

255

Know Your Development Tools
In many professions, you are responsible for your tools. There is no communal knife
block in a professional kitchen; the chefs are responsible for bringing their own
knives to the job. Mechanics often have their own toolbox with their preferred tools
organized to their standards. In many professions, purchasing the required tools is
the cost of entry to the trade. While your company may cover the cost of software
licenses, you’re still responsible for your toolkit, and you shouldn’t be afraid to make
it your own.

As a software engineer, you should take ownership of your development tools.
Modern IDEs encourage you to create the perfect environment through the selection
of the right set of plug-ins. You must learn the instruments of your craft. That doesn’t
mean you need to know every nook and cranny and every obscure command or
menu item. But you should know the things you use day in and day out like the back
of your hand.

Your goal is to stay in the flow state as described by Mihaly Csikszentmihalyi in Flow:
The Psychology of Optimal Experience (Harper & Row). Flow states are periods of deep
concentration where you are completely absorbed in the tasks at hand. Code will
seem to magically appear on the screen. Stopping every few minutes to look up a
command or reach for the trackpad when you could have used a keyboard shortcut
can disrupt flow and break your concentration. (You’ll read more about keyboard
shortcuts later in this chapter.)

The code just kind of flows from brain to IDE and, before you realize it (since you know your
IDE’s key combinations by heart), you’re building/testing/running.

—Mark Heckler, author of Spring Boot: Up and Running

Take time to learn more about your editor and your source code management tool
of choice. You’d rather not be the person who causes the team to lose three weeks of
work by inadvisedly forcing a push to the main branch.

Modern IDEs boast immense capabilities, making it nearly impossible to stumble
upon all their functionalities. A more effective approach is to commit to learning a
new feature weekly. For example, as we’ve mentioned in Chapter 2, JetBrains IntelliJ
IDEA offers a helpful ‘tip of the day’ on launch. This is a great way to discover
shortcuts, tools, refactoring, debugging, and plugins you might not have encountered
on your own. Look for comparable features in other IDEs and learn something new!

Build Your Own Lightsaber
When you get behind the wheel of a car, you adjust the seat, the steering wheel, and
the mirrors to fit you; using the proverbial factory defaults wouldn’t be comfortable
(or safe). In the same vein, you should customize your development environment to

256 | Chapter 11: Powering Up Your Productivity

1 Once you’ve found a great theme, you may want to change a thing or three, you don’t have to settle for
off-the-rack settings.

suit your unique needs. Your tools have an array of settings, so you owe it to yourself
to spend some time optimizing them for your preferences. Think of it as building
your own lightsaber; you want your tools to fit your hands, your personality, and
your needs. Never be afraid to make your environment your own.

You will spend hours upon hours staring at code in your editor. While the default
font might be great, your eyes will thank you for taking some time to explore your
options. A different font not only might look better to you but also can offer another
way to customize your environment to reflect your personality.

There is no shortage of excellent monospace options to pick from. A quick search
of the internet will surface many lists of best monospaced fonts for coding and
programming. Perform an experiment: try one out for a day or two and see what
you think. Don’t be afraid to try another. There’s also nothing magical about 11- or
12-point font; if you find that something else fits your eye better, change it!

Most editors have countless themes that alter the appearance of nearly everything in
the tool. Many developers love dark mode, as staring at a very bright display all day
can be hard on your eyes. That said, dark themes may or may not fit your eye, so
try a few until you find a good fit.1 Some operating systems will automatically adjust
the display brightness to your surroundings and/or the time of day which, again, can
reduce eye strain. Regardless of your preference, you should modify themes and find
what works best for you.

Don’t stop with your editor either. Odds are your operating system of choice can be
tuned to your exact needs; the default settings may not be right for you, so tweak
them to suit your preferences. Try putting the dock in a different place, change the
magnification, or update the background image to something that resonates for you.

An entire ecosystem of free or low-cost utilities exist to unlock any number of
features to customize your working environment. From clipboard utilities to more
granular sound control to apps that let you rearrange your menu bar, it’s highly likely
that removing some friction from your day is just a short install away. If you see
something you don’t recognize in a colleague’s menu bar, ask them about it; such a
discovery could save you hours a month just by asking. An internet search will lead to
any number of tools that you can add to your utility belt!

Don’t forget that you can customize your physical environment too. Adjust your chair
and monitor to a comfortable height that puts your body in a neutral position. Some
people prefer a standing desk, and there are many excellent options that allow you
to change your position throughout the day.2 If your company has an ergonomics
department, ask it to perform an assessment of your workspace and don’t be afraid to

Optimizing Your Development Environment | 257

https://oreil.ly/nMxA7
https://oreil.ly/6dMwg
https://oreil.ly/6bztj

2 If you find yourself dealing with strange aches and pains, relief could be as simple as changing from sitting to
standing throughout the day.

3 While the price of a high-end chair and desk may give you sticker shock, quality gear lasts a long time.
4 Don’t wait for the pain of a repetitive strain injury. If you are facing issues, a better keyboard can work

wonders.

request a better chair or an adjustable desk. If you work from home, your company
may offer a stipend to purchase equipment, but if it doesn’t, you should invest in a
quality desk and chair; your back will thank you.3

Eye strain is a real thing, and staring at screens all day can be problematic. Take
breaks throughout the day to focus at distances other than your monitor. If you
wear glasses, make sure your optometrist knows you spend significant time staring
at screens. From different coatings to special lenses, there are many options that can
ease eye strain. Some developers even have a separate set of frames with a modified
prescription for use when coding.

Buy a Better Keyboard
Speaking of keyboards, don’t be afraid to purchase a better one. Odds are, whatever
your company bulk-purchased isn’t right for you. An ergonomic split keyboard such
as the infinitely customizable ErgoDox EZ can make a huge difference in your daily
life. With the ability to choose the exact keyswitch you like, you should use whatever
works best for you. Many companies will pick up some or all of the cost if you ask.4

Leverage the Power of the Command Line
Before the advent of windowing systems and “what you see is what you get” com‐
puter environments, computers were purely text-based systems that required arcane,
cryptic, and often unforgiving commands. You should absolutely take advantage
of today’s modern computing systems, but as a software engineer, you should be
comfortable with the command-line interface (CLI) as well.

While the command line can be intimidating at first, leveraging the CLI quickly
becomes a superpower and a force multiplier. Many common tasks can be done far
more efficiently via a few keystrokes. Spend a few minutes a week trying out new
commands.

Don’t forget, the manual is baked into the command line! If you’re
not sure what something does, just look it up with the man com‐
mand.

258 | Chapter 11: Powering Up Your Productivity

Shell commands are your friend. You are probably familiar with things like cd, pwd,
ls, and mkdir, but there are so many more at your disposal. From the command line,
you can easily launch an application via open. Commands like cat, cut, grep, and
pbcopy can save you valuable time. Of course, these can all be combined using the
pipe (|) command. Pipe allows you to string together simple, single-purpose tools to
get more complicated outputs. For example, have you ever wanted the URL for a Git
repo? cat .git/config | grep url | cut -f2 -d= | pbcopy to the rescue.

Have you ever wanted to make your computer talk to you? Try this:

say I can’t let you do that Nate.

You can also use other CLI tools. Have you ever wanted cat but with syntax high‐
lighting? Give bat a try. Would you like nice diffs? Take a look at diff so fancy. Do
you spend a lot of time staring at JSON? Consider adding fx to your toolbelt. Would
you like ls but with better colors? Try installing exa.

Many developers take the time to create shell aliases for things they do often at the
command line. By simply adding a line or two to your shell’s configuration file (for
example, ~/.bashrc for bash or ~/.zshrc for Z shell), you can save yourself countless
keystrokes. These are very helpful until you’re working on a machine that doesn’t
have your specific modifications on them, so use them wisely. Take advantage of them
for things you do often or things that are lengthy to type. For example:

alias k=kubectl

alias d='docker'

alias dc='docker compose'

Don’t forget about shell history either. The shell history is one of the most underrated
aspects of working at the command line, enabling you to scroll up through your
recent commands and press Tab to autocomplete anything you’ve done recently. The
history command will give you a list of what you’ve previously entered, and Ctrl-R
will allow you to perform a reverse search of your command history.

Optimizing Your Development Environment | 259

https://oreil.ly/g15BD
https://oreil.ly/BeBJp
https://oreil.ly/PHrKh

5 Home row is the row of keys your fingers naturally rest on when touch typing, and most keyboards include a
tactile marker for where your index fingers should rest.

All of that is tunable: you could increase history size or even ignore certain com‐
mands. There are any number of shell hacks that you can take advantage of. Add
in a fuzzy finder to your setup and there’s a decent chance you may never type a
command more than once again!

Finally, don’t limit yourself to your operating system’s default shell. There are many
excellent options available to you, such as Oh My Zsh. In addition to many helpful
built-in functions, Oh My Zsh has thousands of plug-ins, themes, and helpers.

Harness the Power of Keyboard Shortcuts
Modern operating systems leverage the power of the pointer, be that a mouse, a
trackpad, or your own finger. While that has certainly made computers far more
accessible, your goal should be to keep your hands on the home row of your key‐
board.5 Learn your keyboard shortcuts. They’re not only faster and more efficient but
also save you the time of constantly moving your hand to a mouse or a trackpad.
Using shortcuts also reduces strain on your wrists and hands.

If you don’t touch type, you should learn to do so. Seriously.
The smartphone taught an entire generation how to type with
their thumbs, and while that is useful when conversing with your
friends, as a developer you should use all of your digits when
writing code. Touch typing is faster and easier on your hands, eyes,
and neck. Odds are you didn’t learn typing in school, but there are
many online options that have gamified the process. Please learn to
touch type; you’ll thank us, we promise.

Mastering keyboard shortcuts separates beginners from seasoned pros, and they
quickly become a force multiplier. While you should learn the keyboard shortcuts for
your editor of choice, you should also learn them for your operating system.

Some shortcuts are so hardwired that your hands just do them without you even
thinking. Most computer users are well acquainted with options like Cmd-C and
Cmd-V, but far more are at your disposal. How many browser windows do you have
open right now? If you want to see all the windows of the frontmost app, Ctrl-down
arrow will do the trick. Need to hide the frontmost application? Cmd-H to the rescue.
In IntelliJ, if you pick any two files and hit Cmd-D, you will see a diff of those two
files. This works on JARs and ZIPs as well.

260 | Chapter 11: Powering Up Your Productivity

https://oreil.ly/PueTb
https://oreil.ly/HHYdF
https://ohmyz.sh

6 Meta is usually mapped to Alt, Caps Lock, or Escape, depending on your operating system.

Many applications and operating systems work with the Emacs key bindings, many
of which are incredibly helpful, especially when it comes to navigating text (like
code files, for example). Moving forward or backwards by a single character can be
accomplished with Ctrl-F and Ctrl-B. You can also move forward or backward by
an entire word by using a Meta-F and Meta-B, respectively.6 You can move to the
beginning or end of a line via Ctrl-E and Ctrl-A. A few minutes learning a handful of
Emacs key bindings could save you significant time.

Emacs Versus vi
If you really want to start a battle royale in a project room, debate Emacs versus vi.
Seriously, it makes tabs versus spaces seem quaint by comparison. Suffice it to say,
“Emacs is a great operating system, lacking only a decent editor,” while “Vim is a great
editor, utterly lacking a decent window manager.” You’ve been warned.

That said, learning vi basics can be incredibly useful. In some instances, it may be the
only editor you have available. And again, learning Emacs key bindings can make you
a file-navigating savant.

Even the most used keyboard shortcut combination, Ctrl-C, Ctrl-V, can be optimized.
Consider using a tool like Pastebot, as shown in Figure 11-1, which gives you access
to your paste history. How often have you needed to copy five things from one
application to another? Did you enjoy flipping between windows? Probably not. A
tool like Pastebot allows you to batch your copy and pastes, which can save you
considerable time. Pastebot also allows you to go back in your history (be careful with
passwords and other sensitive information) to repaste something you copied earlier
in the day.

Optimizing Your Development Environment | 261

https://oreil.ly/nBVek
https://oreil.ly/lr61H

Figure 11-1. Pastebot gives you access to your clipboard history

Text expanders are another excellent productivity tool. Standalone tools like
TextExpander can massively boost productivity. Many operating systems also have
built-in text replacement (see Figure 11-2) that is completely tunable by you. Again,
little savings add up over time.

As you can see, your environment is ripe with customization options. Don’t settle for
the defaults: you shouldn’t bend to your tools; they should conform to you. The time
you take tweaking your environment is an investment in your productivity.

262 | Chapter 11: Powering Up Your Productivity

https://oreil.ly/geQcT

Figure 11-2. Text replacement options can improve your productivity

Strategic Automation
You spend all day writing code for others, so don’t be afraid to write some to help
yourself. A few lines of code could ultimately save you hours and hours of work,
and it also provides a really good excuse to play around with other languages and
techniques. Many developers have a love-hate relationship with regular expressions,
but learning even just a little bit of regex can be incredibly helpful.

Never forget, in computer science there are only three numbers. There’s something
you do zero times, something you do once and only once, and then n. If you do
something more than once, you should expect you’re going to do it countless times.
You should consider taking the time to automate anything you do more than once.

Strategic Automation | 263

7 Teams may decide on a basic level of tool consistency to ensure ease of pairing.

The pursuit of automation can be a dangerous time sink. Some‐
times, writing the code can take longer than the task itself. If a task
really is just a one-off you’re unlikely to repeat, automating it away
isn’t time well spent. Consider waiting until you’ve done something
a handful of times before you try to automate it out of existence,
and even then, be sure to timebox your effort. At the end of the day,
use your best judgment.

To this end, write helper scripts. Thirty lines of Python could save you hours. The
moral of the story is automation is your friend; let the computer do more work
for you. And if you don’t feel like writing the script yourself, you could always let
AI write one for you! You should still read and test the code, but the barrier to
automation is lower than ever.

The Perpetual Pursuit of Productive Habits
The sheer volume of shortcuts, utilities, and commands is practically endless, so
learning them can seem overwhelming. Don’t attempt to pick them all up in a month
or two; it is an ongoing process. The goal is to improve a little bit each day; try to
learn a new thing every week. This method is more approachable and sustainable,
and it also makes it more likely you’ll retain what you’re learning.

Collaborative Learning
One of the best sources of tips and tricks is your coworkers. Get in a habit of
asking your teammates about their productivity practices. If a colleague uses a tool,
command, or shortcut that you haven’t seen before, ask them about it. Don’t feel
bad that you aren’t familiar with it. By the same token, if you see a teammate doing
something the hard way, take the time to show them the simpler approach. To
reinforce the concept, take the time to repeat it three or four times before moving on.
If your coworker doesn’t know how to get started with one of your favorite tools, help
them get up and running. Doing so not only further ingrains your knowledge, but
also enables you to have a familiar environment at your disposal.7

Commit a few minutes each week to learning something new about your tools, and
consider sharing what you’ve learned with your friends and colleagues. If you are pair
programming and your pair is using a tool or utility that’s new to you, ask them to
teach it to you. If your pair doesn’t use a shortcut that you know, teach it to them.
Consider having a semi-regular lunch-and-learn session as a forum for people to
share cool things they use; don’t assume everyone knows all the things you know.

264 | Chapter 11: Powering Up Your Productivity

https://oreil.ly/iCp0Q

8 Many languages and frameworks encourage community contributions. Don’t be afraid to shape the future of
your environment by getting involved.

They probably don’t. By the same token, don’t skip that session or webinar about a
tool you know well; don’t assume there’s nothing new for you to learn.

This approach extends to your language of choice. Languages evolve,8 so your coding
has to as well. When a new version drops, study the release notes and take the time to
explore new features. Teach others what you’ve learned and be aware of opportunities
to put those new approaches into practice. Lead a study group: the see one, do one,
teach one approach is effective.

Personal Knowledge Management
Technology changes at an incredibly rapid pace, meaning you will be inundated with
information. From podcasts to blog posts to videos to tutorials, it behooves you to
have a personal knowledge management strategy. It needn’t be complex or involve
dedicated tooling, but you should have a repository where you can stash interesting
bits of information for later use. You need to be prepared to capture and organize the
flow of information in your world. Nothing is quite as frustrating as knowing you had
the exact answer to a question, but you just don’t remember where it is.

Take notes. You will run into that problem again. So will a teammate. Write it down.
You won’t remember for next time. Offload it from your brain—external storage for
the win. Doesn’t matter how, doesn’t matter if it’s formal. A binder clip with random
scraps of paper? That works too, though electronic variations are definitely easier to
search, and paper can be more challenging to share the results with colleagues.

Some developers keep a note or document on their laptop. Others prefer a simple
notebook like those from Field Notes or Moleskine along with a pocket-sized pen like
the Mark Two or Space Pen. Many opt for a more technical solution like Org Mode,
Evernote, or Notion. Consider as well how you want to handle the various web-based
resources you will unearth throughout the day. Syncing your (organized) bookmarks
across devices is one option, but you can also use dedicated bookmark managers like
Pinboard.

The Perpetual Pursuit of Productive Habits | 265

https://oreil.ly/CtA8_
https://oreil.ly/4-Nr-
https://oreil.ly/HJ9U2
https://oreil.ly/spenn
https://oreil.ly/B45xe
https://oreil.ly/nnd8U
https://oreil.ly/U9i4U
https://oreil.ly/OLAtu

Notion
Dan here. As a software engineer and someone who loves staying organized, I have
experimented with numerous knowledge management tools, and Notion is my favor‐
ite. I love it because it gives me the flexibility to use it as little or as much as I need.
Here are just some ways that I use Notion as a software developer:

Learning
When learning a new language, framework, or tool, I consolidate all my research
in Notion. By combining notes, code snippets, images, and resources, I accelerate
my learning process.

Documentation
For documenting new processes or features, I start in Notion. Its free-form
editor supports Markdown while providing a real-time preview, enhancing my
documentation workflow.

Checklists
I store various checklists in Notion, such as my code review checklist. It helps me
ensure I’m covering all necessary points during a review.

Note taking
Notion serves as my central hub for notes, allowing me to structure them in a
way that works best for me. The mobile app keeps my notes accessible on the
go, while the Notion Clipper browser extension helps me save items for later
reference.

The real power of Notion lies in its versatility and customizability. It enables me
to create a personalized workspace that adapts to my unique needs and workflows.
Notion serves as my second brain, and I couldn’t imagine life as an engineer without
it.

That said, there’s no shortage of tools in this space, and while Notion is a vital part of
my workflow, your mileage may vary. You should use what works best for you.

Attending conferences is an invaluable way to learn new skills and hone existing ones.
But you’ll want to capture what you’ve learned for future study. Many conferences
post videos of the presentations after the event. Take some time to identify the
talks you’re most interested in and curating your own playlist of videos for simpler
playback or recall later. Some developers will even treat these talks like a podcast,
queuing them up to listen when they take a walk, work out, or are commuting. You
may even be able to listen at greater than 1.0 speed, allowing you to consume more
content faster.

266 | Chapter 11: Powering Up Your Productivity

https://oreil.ly/Vzym9

Whatever approach you take, make sure it isn’t locked to just one device; it should be
portable and work in a mobile context. You never know when the muse will strike,
giving you a key insight for a problem at work—be prepared to capture it. You never
know when a friend will recommend an amazing book or podcast—be prepared to
capture it.

Keep It Simple
Nate here. There’s nothing wrong with simple. I had a colleague early in my career
who had a bunch of pieces of scrap paper held together with a binder clip. He’d
scrawled various commands, tips, instructions, and other ephemera gathered over the
years. When you asked him a question, there was a high likelihood he’d page through
his scrap paper notes and find the exact bit of information you needed. Although
he had a simple knowledge management system, it worked for him, and that’s what
matters.

Wrapping It Up
A good software engineer takes control of their toolkit. Just as you’d spend a few
minutes adjusting the seat, mirrors, steering wheel, and temperature in a new car,
your development environment should fit you and your needs. Don’t just accept the
default settings. Make your editor and your operating system your own. Power users
use power tools: keyboard shortcuts and the command line can be force multipliers
for you. You’d be amazed at how much a free or low-cost utility can change your day,
so don’t be afraid of trying out something new.

Keeping track of all these shortcuts and utilities can be overwhelming, so don’t rely
on memorization. Hone your knowledge management practice as you grow your
toolkit. Learn from, and teach, your colleagues.

Putting It into Practice
Experiment with new ways to make yourself more productive but take care not to
let your experiments become time sinks. Take a repetitive task and see if you can
automate away the toil. Consider evolving an existing automation to cover something
more significant. Share what you learn with your colleagues.

Commit to learning one new keyboard shortcut a week for the next few months.

Take 15 minutes on a Friday afternoon to peruse the documentation for your favorite
editor. What did you learn that you didn’t know before? Turn on the tip of the day
feature for your editor or terminal: what feature surprised you?

Putting It into Practice | 267

Examine your knowledge management approach: is it working for you? If not, try
something different. It doesn’t need to be complex or involve fancy tools; it just has to
work for you.

When you learn a new command, write it down! Leverage an external brain.

Additional Resources
• Flow: The Psychology of Optimal Experience by Mihaly Csikszentmihalyi (Harper•

& Row, 1990)
• The Productive Programmer by Neal Ford (O’Reilly, 2008)•
• Building a Second Brain: A Proven Method to Organize Your Digital Life and•

Unlock Your Creative Potential by Tiago Forte (Simon Element / Simon Acumen,
2022)

• The Passionate Programmer, 2nd Edition, by Chad Fowler (Pragmatic Press,•
2009)

268 | Chapter 11: Powering Up Your Productivity

https://learning.oreilly.com/library/view/the-productive-programmer/9780596519780/

CHAPTER 12

Learning to Learn

Live as if you were to die tomorrow. Learn as if you were to live forever.
—Mahatma Gandhi

If you’ve been in the technology space for any length of time, you’re familiar with the
reality that technology changes. Constantly. Which means you will be challenged to
learn new things regularly. Many engineers believe they are paid to write code, which
is true. However, you are also paid to think. You earn a living by using your brain, so
you have to feed your brains with knowledge, which means learning.

Arguably, the ability to learn new things quickly is the most important skill of a
successful engineer. Additionally, you need to not only understand new things but
also apply what you’ve learned to real-world scenarios. Many people benefit from the
“see one, do one, teach one” approach.

The Shiny New Thing Paradox
Software engineers are attracted to “new” like moths to a flame, and when something
first appears, it is often accompanied by a flurry of activity that makes it seem like
you’ll be left behind if you don’t immediately embrace it. In the early days though,
technologies might not be ready for prime time; the rough edges haven’t been sanded
down yet. Over time, the hype fades. But that is often when the new thing is most
ready for adoption. Never forget, new technologies are like buses: another one will
come along in 15 minutes.

269

1 Someone your authors may or may not have direct experience with themselves.
2 Say, a phone number from your youth or the name of your favorite elementary school teacher.
3 What did you say your name was again?

Cramming Doesn’t Work
Odds are at some point in your educational career you crammed for an important
test. And it might have succeeded—at least in the short term. But did you retain the
information? To truly learn something, you must encode the information: it must
be elaborate, meaningful, and have context. Stories are incredibly effective and have
been used for millennia to teach and share. Learning often involves repetition and,
when spaced out appropriately, increases knowledge and retention.

How do stories apply to you as an engineer? It’s one thing to have someone tell
you to be very careful when using commands like rm, especially with the -f flag.
It is something altogether different for someone to share the story about how they
inadvertently wiped their laptop hard drive while working on a script that included
rm -f.1

Despite your best efforts, you will forget things, which is actually a feature, not
a bug! Your brain is incredibly good at purging information you no longer need.
While some bits may never leave,2 and others vanish far too quickly,3 your brain is
actively “taking out the trash,” as it were. Information decay is predictable, but it
isn’t the same for everyone or every fact. Computers can help by repeating questions
at proven intervals (which, along with some pretty slick gamification, is how some
people succeed at learning new languages). Some of you have likely availed yourself of
the low-tech but very effective technique of leveraging flash cards!

If you find yourself struggling with something, it is often better to put it aside for a
bit rather than continuing to beat your head against the wall. The simple act of taking
a shower, going for a walk, or making dinner can distract you enough to unleash
the answer. Your brain has two distinct processing modes: R-mode and L-mode.
R-mode is the nonverbal, search-and-retrieve aspect of your brain. It runs in the
background and isn’t directly controllable, which leads to some unpredictable results.
When you’re watching a movie and you can’t quite remember that actor’s name—and
then five minutes later it just pops into your head—that’s the R-mode at work.

The L-mode, by contrast, is verbal, analytical, and linear and is focused on logic and
computation. By distracting the L-mode, you can free up the R-mode to do what
it does best. Think about the problem and then do something routine like taking a
shower or cleaning up the house.

270 | Chapter 12: Learning to Learn

As an engineer, you can use these two processing modes to your advantage. If you
find yourself stuck on an issue, pushing harder might not be the most effective
solution. Don’t be afraid to put the issue aside for a bit, distract the L-mode by doing
a more mundane task (or take a walk), and see what happens. More often than not, a
solution will spring to mind later.

Skills Acquisition
The best investment you can make is in yourself. The more you learn, the more you earn.

—Warren Buffett, American investor and philanthropist

There are several models of skills acquisition that all have similar concepts. One
example that comes out of the martial arts is Shu Ha Ri, or as Bruce Lee once said,
“Learn the principle, abide by the principle, and dissolve the principle.” Another
way of thinking about this comes from Clark Terry: Imitate, Assimilate, Innovate.
In the Shu or Imitate phase, students follow the instructor exactly. The focus is on
duplicating the teacher without much concern for the why or the underlying theory.

In the Ha stage, you start to branch out. You understand the basics and have enough
muscle memory to repeat the core movements. Now is when you begin to fill in the
theory and start to seek out other teachers or sources of information, which you can
then assimilate into your understanding of the topic. At the Ri stage, you are learning
from yourself, essentially. Your practice drives the learning instead of following the
path laid out by others.

The Dreyfus model expands on this concept by dividing learning into five distinct
stages (outlined in Figure 12-1) that work in a progression. In the Novice stage,
learners require recipes: do this exact thing. If you’re learning a new sport, this is
the stage when your coach might move your foot a few degrees or have you repeat a
move seemingly endlessly. At the Advanced Beginner stage, you start to move beyond
the rigid rules; you start experimenting to see what happens when you change your
grip or modify a stance.

At the Competent stage, you can start to troubleshoot. You may recognize what your
mistake was by watching the ball flight. If you make it to the Proficient stage, you
can self-correct. You can see or feel the mistake and fix it without needing a coach
to point it out. If you work at something long enough, you’ll enter the Expert stage,
where it all happens by intuition. As a golfer, you just think, “I need this ball to cut”
and…it cuts! In fact, at this stage, you’d likely struggle to explain what or how you
accomplished something; it just seemed right.

Skills Acquisition | 271

4 Plus, who doesn’t need another to-do list, amirite?
5 How many to-do list applications have you built?

Figure 12-1. The Dreyfus model captures the journey of acquiring new skills

It should be clear that telling someone who just picked up a golf club to “hit a cut by
thinking about hitting a cut” won’t work very well. When you are just starting out,
you need step-by-step instructions, which is why so many languages and frameworks
have Getting Started tutorials.4 Rules and recipes are vital to beginners, but they can
absolutely stifle experts because they inhibit their hard-earned intuition. And just as
with improving your short game, simply watching a video or reading tip will take you
only so far: you have to practice!

Think about how you learn a new framework. Do you immediately jump into build‐
ing a complex application? Probably not. You start with the proverbial “Hello World!”
example.5 At first, you’re copying code directly out of a tutorial, relying on search or
a chatbot to troubleshoot errors. Over time though, your intuition develops, and you
start to recognize patterns; you’ll know where the problem is as soon as you see the
error message. After even more time, you’ll discover where the edges of the map are,
the parts of the framework that you’d change if you could. As you approach mastery,
you’ll no longer be translating what you want; you’ll simply be expressing your intent
through the framework. When given a task, you’ll “see” how to do it.

272 | Chapter 12: Learning to Learn

The Learning Habit
The most important skill to have as a programmer is the ability to teach yourself new
things effectively and efficiently. You’re going to be constantly growing and picking up new
technologies. The ability to do that is more important than any individual tool or technology.

—Ali Spittel, software engineer

While there are few hard-and-fast rules, becoming an expert takes a significant
amount of time, which is why most people don’t go much beyond advanced beginner.
Given the pace technology moves, that has startling ramifications. Technology moves
fast; how much time do you get with something before you move on to the next big
thing? That isn’t to say a successful career requires you to become an expert on every
aspect of software. Over your career, your expertise will grow in some areas while
other skills remain in the advanced beginner phase, and there’s nothing wrong with
that!

The challenge is getting the most out of your limited learning time. Make a list of
what you want to explore, prioritizing what you want to learn over the next few
months. Your list and priorities will be fluid; as your interests change, so too will your
learning goals.

Not all learning requires the same level of focus or attention: the depth you choose
to pursue changes based on the topic. Christopher Judd refers to this approach as a
Learning Depth Strategy:

Survey
Listen to podcasts, attend user group or conference sessions, watch technology
conference keynotes, peruse the release notes.

Shallow dive
Watch short videos, read blog posts and articles, work through tutorials.

Deep dive
Attend a live, in-person or online workshop or training course, read books about
the topic.

Ultra deep dive
Deliver a presentation on the topic or lead a workshop or training class.

Learning has to be a habit as humans forget things. In the 1880s, Hermann Ebbing‐
haus studied memory, discovering people forgot half of what they learned a mere 30
minutes after learning it! However, when you are repeatedly exposed to the material,
the decay slows considerably. He proposed the idea of spaced repetition: essentially,
reviewing the material at gradually increasing intervals after you learn it reinforces
the concepts before they are completely lost. Consider how you could schedule this
approach throughout your year:

The Learning Habit | 273

https://oreil.ly/OrgJ2

6 Both of your authors can attest to finding some of their own material they had completely forgotten they’d
created.

Weekly
Listen to podcasts, watch a video or two, read an article or two.

Monthly
Read a technical or business book, attend a user group or meetup, take an online
course.

Yearly
Attend a technical conference, learn a new programming language, invest in a
side project, get a certification, teach or deliver a technical presentation.

It can also be helpful to “learn out loud.” Consider posting your progress on social
media; you will often discover a community of like-minded people offering support
and encouragement. As you uncover new things, think about creating a video or
write-up of what you’ve learned; don’t be surprised when a future search on a
question returns something you’ve created!6 You’ll be thankful you took the time
to document what you did.

The Technology Merry-Go-Round
Nate here. Early in my career, I was talking to my then manager and asked why
they’d moved out of tech into management. They told me they were tired of having
to constantly learn new things, of always being on the technology merry-go-round;
they’d seen enough new things! While I didn’t fully appreciate that insight newly out
of university, I completely understand the sentiment today. How many languages or
frameworks or frontend libraries or datastores have you learned in your career?

That isn’t to say management is the path of least resistance: there are plenty of unique
challenges guiding people. But being a software engineer means a near constant
stream of adding to your knowledge portfolio. It can be very invigorating, but don’t
underestimate how hard it can be either.

274 | Chapter 12: Learning to Learn

7 Anyone who schedules a meeting on a Friday afternoon has committed a hostile act.

Knowing there will always be more to learn, how do you keep up? You need to
make it a habit. Develop a routine that works for you. Block out time on your
calendar to read and explore; you may have to schedule over it from time to time.
Friday afternoons are generally quieter,7 but maybe for you it is Tuesday morning
or Thursday over lunch. Ultimately, you must be the guardian of your own time.
Some people plot out a year’s worth of learning on a Trello board or set reminders
throughout the calendar. Experiment with what works best for you, but whatever you
do, set aside specific blocks of time to learn.

You should strongly consider a practice we refer to as morning coffee. Take the first
15–30 minutes of your day, when you’re sitting down with your preferred beverage
(whether it’s a shot of espresso, tea, an energy drink, or something else) and peruse
the news, whatever that means for you. It could be spending some time on social
media, listening to a podcast, walking through a tutorial, or reading an early edition
of a new tech book. But make it a habit and do it before your day gets away from you.
You’ve had those days that just seem to disappear down a rabbit hole of fire drills!
Prioritizing that time will also help on those days where you were so busy you felt like
you didn’t get anything done; at least you’ve learned something new!

Learning Through AI
AI can be a learning accelerator. While it isn’t a substitute for hands-on experience,
using a chatbot can help you research topics. Chatbots can be great resources for
tailored learning paths and deep-diving technology in a conversational, digestible
manner. For example, let’s say you need to use a Java class you aren’t familiar with or
want more info on a reference model. You certainly can read the docs, but you can
also have AI do it for you, as seen in Figures 12-2 and 12-3.

Learning Through AI | 275

Figure 12-2. An example of a chatbot explaining a class

276 | Chapter 12: Learning to Learn

Figure 12-3. An example of a chatbot explaining the OSI model.

You do need to be aware of hallucinations, and you should double-check with the
source material, but there’s no doubt AI can help you learn new information and
brush up on concepts from your past.

Learning Through AI | 277

8 Time is a nonrenewable resource. Use it wisely.

Fear of Missing Out
There are a lot of bits out there: new languages, new techniques, new approaches.
How do you keep up? Your preferred learning style has a lot to say about your
approach. Some people prefer to read articles and books, some prefer to listen or
watch, while others learn best by doing. There is no shortage of learning sources at
your disposal, from searching the web, following a reading list, listening to podcasts,
watching videos, attending user groups and conferences, and leveraging industry
resources like the Technology Radar.

Attention is a precious resource, and you can’t just scale it up. Don’t waste it. You
cannot read or watch or listen to everything; you are going to have to be selective.
Many developers have a legitimate fear of missing out (FOMO), where if they aren’t
actively consuming “everything,” something vital will slip by.

Sorry to burst your bubble, but you literally cannot read or watch or listen to
everything. In fact, in the time it takes you to read this paragraph, roughly another
week’s worth of video will have been uploaded to YouTube! And that doesn’t take into
account podcasts or Getting Started guides or social media or any other content you
might want to consume.

Technology FOMO is real, but take solace in the reality that if something really big
happens in technology, you will hear about it. You might miss the initial announce‐
ment, but that’s OK. Heck, there are areas you aren’t overly interested in but you still
heard about! Don’t be afraid to leverage your network too. Odds are your friends and
colleagues all have different interests than you. Take advantage of that. In fact, you
could share interesting information you find in your specialization areas with them,
and vice versa. There’s nothing wrong with sharding your learning across multiple
people!

Focus means you won’t get to surf every wave in the ocean.
—Kelsey Hightower, American software engineer, developer advocate

Your time and attention are incredibly valuable resources.8 And they are resources:
you can’t just scale them up. You cannot afford to waste your attention; you must be
selective with how you spend it. Don’t practice resume-driven development; you need
a why to learn something new. There will always be another hot new thing on social
media, and it’s OK to wait to learn something until you need it. Evaluating a new
technology is tricky, but with experience you’ll start to spot the patterns, and you’ll
see how this “new” thing is actually very similar to something from a few years back.

278 | Chapter 12: Learning to Learn

https://oreil.ly/LCQ02

9 More often than not, you are choosing the least worst approach.

If your instincts tell you something is overhyped, there’s nothing wrong with taking a
beat before investing time in it.

Your professional network can be very useful here as well, as sometimes you can
outsource the learning to someone else. If you know a friend is exploring a space
you’re not sure of just yet, touch base with them periodically to see how it’s going.
Their experience can guide you, and in some cases they’ll work through problems,
allowing you to skip over some rough patches.

Attention is a bit like real estate, in that they’re not making any more of it. Unlike real estate,
though, it keeps going up in value.

—Seth Godin, American author, marketing expert, and entrepreneur

Let Your Passion Guide You
Nate here. I once tried to learn more about databases so I sat down on a random day
and started going through a book on the topic. After about 20 minutes, I put the book
down and literally went upstairs and organized my sock drawer. Not a euphemism:
I decided my sock drawer was a higher priority. That was an unambiguous signal I
did not, in fact, have a passion for the particular topic of databases. While you can
schedule some learning time pretty easily, that still leaves a rather important question:
what should you be studying? Ultimately, this is up to you, but you should let your
passion guide you. If you aren’t excited about a topic, you’ll find it difficult to make
time in your day to practice.

Pick something that energizes you and go deep on it. Follow the experts, listen to
the podcasts, watch the videos, and read the documentation. Read “Find What You’re
Passionate About” on page 306. Keep in mind you can switch to something different
at any time. There’s nothing wrong with putting a book down or closing a tab or
leaving a video half watched; there aren’t extra points for finishing. If you’re still
excited about a given topic, great, keep going! If it no longer sparks joy, fantastic, pick
something new. Rinse and repeat.

Just as you cannot keep up with every new thing in software, you also can’t adopt
every new thing either. Your passion about a given tool or technology doesn’t auto‐
matically mean it is a good fit for your project or organization. Many developers have,
at one time or another, practiced resume-driven development. In other words, they
adopted a new technology because they wanted to add it to their resume, not because
it would meaningfully benefit the project.

You must be a critical consumer of new things. Software is a constant set of trade-offs,
and despite the way it is often taught, there is rarely a “best” way.9 Don’t focus on just

Fear of Missing Out | 279

10 Or a technology initially created for one purpose may later re-emerge to solve a different problem. For
example, the internet was repurposed for civilian use after being initially developed by the military.

the positives of a technology, but consider all of the consequences. Be an informed
consumer and remember Rich Hickey’s wise words: “Programmers know the benefits
of everything and the trade-offs of nothing.”

Where Should You Invest Your Time?
Intuition grows with experience, and over the years you will start to have a sense
of what things have staying power and what is probably just a flash in the pan.
Ultimately, you’ll see where the trends are taking the industry. You should temper
your hunches a bit, though. Paul Graham once wrote of the hacker’s radar, describing
some of the criteria he considers when looking at a new technology.

After applying that hacker’s radar to Java, he concluded that “I have a hunch that
[Java] won’t be a very successful language.” Now, he made this statement in 2001
when Java was fairly new. More than 20 years later, with the full value of hindsight,
Java is obviously one of the most successful languages of all time. If someone as
experienced and successful as Graham can be that wrong, you may want to temper
your own intuition a bit.

That said, judging covers can be useful. In software, patterns often repeat themselves,
and things tend to swing like a pendulum between extremes. It is common for old
things to be dusted off, refined, renamed, and introduced again as if no one has ever
done that before. Consider this description:

“An approach that allows software components written in different program‐
ming languages and running on various computers to communicate and work
together.”

What technology do you think that definition describes? Are you thinking about
microservices? It fits! However, that’s a definition of Common Object Request Broker
Architecture (COBRA), which was popular in the mid to late 1990s, many years
before anyone had even contemplated a microservice architecture.

With experience, you will start to see how a new technology is just like one you
used a few years back.10 Maybe problems with that technology have been resolved, or
maybe not. You should ask probing questions. Just because something is new doesn’t
mean it will benefit your projects.

The wisdom of the crowd can be a helpful guide. What is capturing the attention of
the community? That can lead you to interesting things. But sometimes the masses
get caught up in the hype. Again, apply your own experiences as well.

280 | Chapter 12: Learning to Learn

https://oreil.ly/IyYUl

You can avail yourself of industry resources such as the Technology Radar from
Thoughtworks. Updated twice a year, the Technology Radar is a snapshot of tools,
techniques, platforms, languages, and frameworks. The radar assimilates experiences
across multiple projects to generate as objective an analysis of technology as possible.
Tracking the Radar can introduce you to new things as well as providing a sense of
where those technologies are in the adoption cycle.

Build Your Own Technology Radar
Hopefully, your company offers a rich set of learning opportunities that you can take
advantage of. However, as a software engineer, you are ultimately responsible for your
career journey. With a never-ending river of new languages and technologies, it can
be incredibly challenging to decide how to allocate your precious attention. It is very
easy to get stuck in analysis paralysis, something you can short-circuit by building
your own technology radar.

It doesn’t have to be overly complex nor does it need to be as graphically impressive as
the Thoughtworks product. But establishing the habit of periodically checking in with
what you find interesting and exciting can make all the difference in your learning.
You can read more about how to do so in Chapter 14.

Practice Innovation
As you learn and explore, you will find something that absolutely will benefit your
project, your team, or your organization. Bringing those ideas into your organization
can give you increased visibility in your company, helping you earn raises and
promotions. But how do you go about introducing new things?

A book club can be one of the simplest and most effective ways to bring in new
technologies. Find a group of like-minded engineers, pick a technical book, and have
at it. Try to meet weekly, perhaps first thing in the morning or over lunch. Nearly
every organization will cover the cost of books, and many are even willing to pick up
catering for lunch or breakfast. Book clubs also serve as motivators: it’s a lot easier to
read a chapter when you know you’re talking about it with your team on Tuesday.

Many organizations practice some variant of innovation day, often called hacker days
or hackathons. No matter the term, the concept is the same: provide people a safe,
hands-on space to explore new technologies. Hacker days act like a relief valve for the
inevitable desire to play with new technology. Without it, many developers will try to
just sneak that new library or language into a project, betting on the utility of asking
for forgiveness later rather than asking for permission.

If your company doesn’t have a recurring hacker day concept, introduce it! Pitch it as
an experiment and start small—maybe even just a Friday afternoon. Involve as many

Practice Innovation | 281

https://oreil.ly/sEOtv
https://oreil.ly/evKiw
https://oreil.ly/evKiw

11 Or as one organization termed it, “chew and spews.” Not our preferred moniker, mind you.
12 Volunteering to give a talk at a local event is an excellent on-ramp to conference speaking if that path is of

interest to you.

parts of your organization as you can; you’ll be surprised by just where some game-
changing ideas lay dormant. While the resulting code may never see production, you
will learn something. Maybe a new framework seemed really promising, but when it
made contact with your particular context, you quickly realized it would require a
near ground-up rewrite. Perhaps that new language elegantly solves a tricky problem
you’ve been struggling with for weeks. You won’t know until you try it.

Periodic project showcases, whether department-wide or companywide, are an excel‐
lent way to learn what technologies are being used in your organization. The mechan‐
ics range from short, lightning-talk-length demos all the way to a set of booths, where
different groups present their work. Demo days are not only a great way to learn
about the technologies being used in the company, but also an opportunity to identify
the people you can go talk to when a need arises on your project.

Hackathons aren’t the only innovation option. Regular tech talk series are an invalua‐
ble way to introduce new concepts into a company. Whether the speakers are sourced
from your colleagues or industry experts, providing a steady diet of lunch-and-learn
sessions is one of the simplest ways to keep up with the changing technology
landscape.11 Again, if your company doesn’t have an existing talk series, create it!
Volunteering to deliver a talk on a technology you’re trying to learn is a powerful
motivator.

Lunch-and-learn sessions don’t need to be companywide to be effective. More local‐
ized approaches are great too. Have you read an interesting article or watched an
insightful video? Share it with your team. Looking for some extra motivation to read
a new book? Start a book club with a few like-minded souls, trading off who is
responsible for leading the discussion. If you’re really excited about new technologies,
start a biweekly tech discussion meeting!

Most decent-sized metropolitan areas have a regular schedule of local meetups and
user group meetings. Odds are, you can find an interesting tech talk most evenings
(and you’re likely to get dinner or at least some refreshments out of the deal).12 While
the large industry events in Las Vegas or San Francisco may get more attention from
the tech press, there are many excellent regional events that won’t require you to
spend thousands of dollars on travel.

If you’ve already got a well-attended lunch-and-learn series, and you’ve attended a
regional event, you could take things up a notch and organize an internal conference.
These can range from informal half-day events with a handful of internal speakers
to full-on multiday, multisite affairs including industry experts from outside your

282 | Chapter 12: Learning to Learn

13 Your authors have participated in many of these events for our clients; reach out if we can help.
14 If you ever succeed, please drop your authors a note; we’d love to hear more.

organization.13 Do not underestimate the effort it takes to organize and deliver on
even small internal events. But the payoff can be huge.

Internal events bring people together and help new ideas spread. They offer a chance
for people to interact with those they don’t normally encounter day to day. They are
also an excellent chance for you to put your presentation skills to the test. While
presenting provokes primal fear in many, it is an excellent motivator if you’re trying
to learn something new. Not to mention the visibility can accelerate your career
growth, setting you up for a promotion or increased project responsibility.

Architectural Briefings
Some organizations have a formalized approach using architectural briefings. Essen‐
tially one person does some research and presents the results back to the team. And
no, you don’t have to be an architect to deliver an architectural briefing. While there
are any number of questions you can explore, you should be sure to hit on these:

• Why should you use this technology? Why should you not use this technology?•
• What do you need to know in order to answer the previous question?•
• What do you need to know in order to use this technology?•

The resulting presentation doesn’t need to be a multiple-hour affair; 45–60 minutes
is more than sufficient. It isn’t a deep dive how-to but should get beyond the basic
Getting Started documentation. These sessions should be interactive and encourage
two-way participation. Attendees should be taking notes and asking good questions,
bringing their own experiences to bear on the topic.

If you get past the briefing phase, it’s time to roll up your sleeves and get your hands
dirty. It’s time for a workshop. Unfortunately, you will never get enough time to per‐
form a workshop. Trying to decide between two competing frontend technologies?
There’s a surefire way to make that choice: build the app twice, once with each, and
throw away the one you don’t like. Good luck getting that approved.14 You will have to
determine the most important things to prove with your limited time.

Focus on exploring the key features and have a simple setup for participants. Clearly
state your objectives and offer follow-up material for those who wish to dig deeper
after the session. Don’t be afraid to try things out and poke around the nooks and
crannies; you may be pleasantly (or unpleasantly) surprised by what you discover.
What works? What doesn’t? What happens when you venture off the happy path?

Architectural Briefings | 283

https://oreil.ly/nDbse

Ensure that your workshop is subject to any constraints the technology will
encounter on the target project. If you will be adding this to an existing legacy
project, test the technology with those legacy limitations. Getting something to work
in a greenfield environment can be helpful but may leave you with an incomplete
picture.

Legacy Project Constraints
Nate here. Years ago a participant in one of my workshops shared their experience
trying to use a new user interface technology on their project. They had hit a wall
with the library they had chosen years before and needed to make a change. The
team surveyed the field, narrowing the options to three. They divided up the libraries
and performed some greenfield workshops. Eventually they settled on one option that
they planned to sprinkle into their application.

Six months later they now fully realized this library couldn’t be added in here and
there; to truly use it, they would need to completely refactor their application. They
admitted they’d been caught up in the hype around the library they chose, but it’s
also clear they should have performed their exploitation using a fork of their existing
project. They likely would have discovered the need for a greater refactoring much
earlier. Now, it is possible they would still have chosen that library! But at least they
would have gone into it eyes wide open.

The moral of the story: just because you can get the to-do list to work greenfield
doesn’t mean a given technology will survive contact with your environment. You
play how you practice; don’t try new things in a vacuum.

Once you’ve had some hands-on time, you can make informed decisions about a
technology. If everything checks out, it’s time to find a trial project in your organiza‐
tion. Make sure the trial project is a good fit and ensure that a failure won’t doom a
critical strategic project.

Practice Grace
Keeping up with the rapidly changing technology landscape is important and, frankly,
a vital part of your software engineering skill set. However, it can be very overwhelm‐
ing. Be kind to yourself; practice some grace. It can be incredibly easy to burn out by
trying to stay on top of an industry as diverse as software. Learning should be fun,
not a point of stress in your life. Don’t let it come at the expense of a good night’s
sleep or your mental (or physical) health.

There’s nothing wrong with waiting until the last responsible moment to learn
something. Technology is full of hype cycles; don’t be afraid to let something play

284 | Chapter 12: Learning to Learn

15 Time is a nonrenewable resource. Spend it wisely.

out before you commit your time to it.15 Patience is a virtue; the software space is
littered with the abandoned remains of last month’s new hotness. There’s no statute
of limitations on when you can learn something: if something proves it has staying
power, you can always pick something up next week or next month or next year.

Wrapping Up
Technology changes. Fast. Over the course of your career, you will work with a wide
variety of tools, languages, and technologies; your ability to learn, adapt, and adjust is
vital to your success. Keeping your skills up-to-date must be a habit, so block out time
in your schedule to play with new things. A regular cadence is more sustainable than
cramming a year’s worth of learning into a long weekend. Enjoy the process!

Putting It into Practice
Ultimately, to learn a new technology, you have to literally put it into practice.
Consider building a personal app to scratch an itch; maybe you want to manage your
burgeoning wine collection or you want to build an application to keep track of your
child’s sports statistics. If you don’t have any burning needs, reach out to your local
school or nonprofits, as they’re often looking for technology help and will usually
give you wide latitude to try things out.

Take a moment to survey the technology field; what is generating the most interest
today? Does it speak to you? If not, pick something that does! Go deep on the thing
that excites you, follow the thought leaders on social media, and subscribe to pod‐
casts, streams, newsletters, and videos. Is there a local user group you can attend? Are
there any conferences focusing on it? What about virtual events? Immerse yourself in
that space. Try building a personal project using it. Give a presentation on it to your
colleagues, at your local user group, or at a conference.

Every month or two, reassess. Are you still passionate about that technology? If not,
pick something new! Rinse and repeat. Don’t be afraid to return to something you
explored earlier; you won’t have to relearn everything, and you’ll likely expand on
your knowledge.

At the end of the day, nothing is quite as effective as spending a few days or weeks
producing working code. It doesn’t have to be elegant, doesn’t have to cover every
possible edge case, and can be just enough to prove the technology out. There are no
shortcuts to learning, no way to just “load the information into your head.”

Learning out loud can also be an effective teacher. Don’t be afraid to join forces
with a couple of friends or colleagues working through a small project together.

Putting It into Practice | 285

Even just one additional set of eyes can help, so pairing is an effective approach.
Consider open sourcing your project or at least hosting it on a public repository
so others can comment and contribute. You could also consider live streaming your
learning; while it can be intimidating, the communal effect is powerful. Others have
likely encountered similar problems and will typically offer their advice. Just the
simple realization that you aren’t alone on your learning journey can be incredibly
reassuring.

Additional Resources
• “Thinking Architecturally” (report) by Nathaniel Schutta (O’Reilly, 2018)•
• The Pragmatic Programmer by Andrew Hunt and David Thomas (Addison-•

Wesley Professional, 1999)
• The Passionate Programmer by Chad Fowler (Pragmatic Bookshelf, 2009)•
• Thoughtworks Technology Radar•
• The First 20 Hours: How to Learn Anything…Fast! by Josh Kaufman (Portfolio,•

2014)
• Pragmatic Thinking and Learning by Andy Hunt (Pragmatic Bookshelf, 2008)•

286 | Chapter 12: Learning to Learn

https://learning.oreilly.com/library/view/thinking-architecturally/9781492034421/
https://learning.oreilly.com/library/view/the-pragmatic-programmer/9780135956977/
https://learning.oreilly.com/library/view/the-pragmatic-programmer/9780135956977/
https://learning.oreilly.com/library/view/the-passionate-programmer/9781680500165/
https://oreil.ly/QXCHr
https://www.oreilly.com/library/view/pragmatic-thinking-and/9781680500196/

CHAPTER 13

Mastering Soft Skills in the Tech World

When dealing with people, remember you are not dealing with creatures of logic, but
creatures of emotion.

—Dale Carnegie in How to Win Friends & Influence People

Every skill you learn has a shelf life, something you should consider when allocating
your precious time. You’ve probably figured out by now that technologies are con‐
stantly changing; APIs evolve and are replaced, approaches that were best practices
in a previous version of a language are obviated by a new feature. If it seems like
something becomes irrelevant just as you start to understand it, you’re not wrong.
And you’re not alone.

Regardless of your path to becoming a software engineer, you probably focused on
developing your technical skills. After all, they are fundamental to the field; it’s pretty
hard to write code if you don’t understand programming languages. To progress in
your early career, your focus tends to be on growing your technical toolkit, learning
more frameworks, becoming proficient with a cloud provider, and staying on top of
the latest advancements in your programming language of choice.

However, one set of skills will last you your entire career: the soft skills many
engineers tend to ignore. Learning how to work with others and communicate clearly
is just as important to your success as mastering the next language or framework.
Human beings don’t change as quickly as technology; it takes millennia to update
our operating system. That’s why soft skills never go out-of-date. Learning how to
communicate effectively, work with and influence others, and manage your time pays
dividends for your entire career.

Time spent learning a skill that will last you 30 or 40 or even 50 years is a pretty
good return on your investment. Obviously, you still need to keep up with changes
to your technical toolkit; to set yourself apart, don’t neglect more evergreen skills. It

287

may seem daunting, but ultimately, developing strong soft skills mostly boils down to
developing good habits. Let’s dive in!

Collaborative Communication
Some people enter the technology field today with the expectation that doing so
allows them to avoid some of the messier aspects of human interaction. The stereo‐
type of developers as introverted loners can be traced back to the early days of com‐
puting when projects were smaller and often driven by individuals. Go far enough
back, and the word computer meant a person who performs mathematical calcula‐
tions. Companies didn’t have legions of software engineers working on multimillion-
line codebases. These days though, if you want to thrive in your career, you must
master the art of communication.

That doesn’t mean you must be an extrovert to succeed in software; in fact, many
conference speakers are themselves introverts! While it may require more effort for
some than others, software projects are team sports. With the sheer size of most
applications today, the era of the “lone wolf ” developer is over. No longer can one
individual hold the entire codebase in their head; modern codebases require teams
working together.

Even the way teams work has evolved. Instead of people toiling away in windowless
cube farms, many teams work in a project room setting. Though very effective for
collaboration, project rooms can be exhausting for introverts. Some developers will
actually block out some alone time on their calendar. Taking a break away from
the project room for some solo time gives them a chance to recharge their social
batteries. You may need to have a conversation with your manager, but don’t be afraid
to advocate for what you need to be successful.

Software is a collaborative endeavor that requires you to utilize an array of techniques
to work effectively with your team. As Kent Beck once said so eloquently, “Software
design is a human process…done by humans for humans”. While it may not come
as naturally to you as picking up a new programming language, mastering technical
communication is something you can learn. Communication involves more than just
words coming out of your mouth: it means picking the right communication channel;
preparing for enterprise operator; and learning how to communicate up, down, and
across your organization.

Communication Channels
Of course, you won’t communicate only via a programming language, and you face
no shortage of communication channels. They range from warm to cold, personal to
impersonal, high touch to low touch. Some produce a record of the encounter; others
allow for plausible deniability. You have a veritable plethora of options, so choosing

288 | Chapter 13: Mastering Soft Skills in the Tech World

https://oreil.ly/iLvNB
https://oreil.ly/iLvNB

1 There are also different communication styles.

the proper approach is vital. Your challenge is to choose the right method at the right
time, which is easier said than done. It can help to visualize those various channels as
in Figure 13-1, the Communication Continuum.1

Figure 13-1. The various ways you can communicate with your teammates

There are times when having a record of a discussion is critical. Perhaps there
is a critical vulnerability that requires you to upgrade a key component of your
application. Ensuring that everyone is aware of the problem and the resolution can
prevent your organization from facing a crippling hack.

You should also consider your audience when choosing a communication channel.
Some people live on email; others haven’t checked their inbox in months. Your orga‐
nization may run on a corporate message tool, while others believe everything should
happen in a meeting. Understanding how information flows in your world will guide
your decision making. Covering each and every component of communication is

Collaborative Communication | 289

https://oreil.ly/dMOV8

2 Whichever one you’re required to use is probably the one you hate the most. Sorry about that.
3 Alternatively, treat your coworkers as you would treat your manager.

beyond the scope of this book. Let’s explore some of the most common options and
those that are most important for your career growth.

Messaging
Regardless of your organization’s stance on remote work, you will likely spend a
significant amount of time dealing with a corporate messaging tool like Microsoft
Teams, Slack, or Google Chat.2 Messaging tools allow you to easily send asynchro‐
nous text messages to individuals or groups, and many allow you to include files,
code, images, GIFs, or just something you can copy and paste instead of having to
retype. Messaging is usually informal and excellent for quick questions or a heads-up
about an issue. The asynchronous aspect of messaging is one of its primary strengths;
you can ping a teammate knowing they can respond when it’s convenient for them.

Depending on how flat (or not) your company’s organizational chart is, messaging is
generally appropriate for your immediate team. However, that may or may not extend
to more senior leaders. Many companies live on messaging these days. Even if your
entire team is in the same physical location, messaging someone sitting near you is
incredibly common, whether to tamp down on office chatter or to avoid interrupting
someone. It can also be a simple way to offload specific details, such as a function that
needs to be refactored in the next commit, from your short-term memory.

Because of its asynchronous nature, your recipient may not see your message in
a timely fashion. Setting team standards around messages may be useful, but be
mindful of people’s time. Even a “quick question” can blow up a person’s morning;
pay attention to people’s notification settings, focus time, and meeting entries.

Again, soft skills are ultimately a set of good habits. For example, if you’re swamped
but someone messages you a question, try to respond in a timely fashion even if it’s
just to say your plate is full today but you’ll have some time to chat later in the week.
Remember to apply the Golden Rule (as discussed in Chapter 1). Treating others
the way you’d like to be treated is one of the simplest things you can do to advance
your career.3 Promotions aren’t based solely on a mathematical formula or earning a
certification; they often reflect how you are perceived in an organization. What other
people say about you when you aren’t in the room is often a deciding factor. You want
people to have a positive view of you and your work.

Despite your organization’s retention policy, you should assume anything you type
into a messaging tool is logged and can be forwarded or retrieved later by lawyers or
executives. Corporate culture often shines through in policies and practices around
a messaging tool. However, it is generally not a good idea to use it to workshop

290 | Chapter 13: Mastering Soft Skills in the Tech World

your new standup material. You should assume anything you type into a corporate
messaging tool can be retrieved later.

Finally, remember that tone doesn’t always transfer in a written medium, and your
reader may miss the nuance you intended. You may write something to be sarcastic
or as a joke, but your reader may take it literally and seriously. In other words, it may
sound different outside your brain. Err on the side of caution.

Meetings
Surveys routinely show that developers spend a significant amount of time in meet‐
ings. Not coincidentally, if you ask the average software engineer what they like least
about their job, the answer “too many meetings” is likely in the top five. That said,
sometimes meetings are the fastest path to resolving an issue or communicating a
new initiative.

Meetings are synchronous and ephemeral, though they are often recorded for later
viewing, and slide decks may be shared. A meeting can have any number of purposes,
ranging from a morning standup to a one-on-one with your manager to an all-hands
meeting to discuss recent financial reports. They can be the fastest route to a solution,
but people still may not be on the same page afterward.

An Hour Can Cost You Thousands
Nate here. For part of my career, I had a standing two-hour meeting every Thursday
morning. A quick glance at the stock attendee list showed more than 200 names, all
senior technologists within the company. A rough calculation tells you this meeting
routinely cost the organization thousands of dollars a week. But it was probably
worth the expense; it was all about changes to the environment, from applications
performing routine deployments to bringing new infrastructure online.

Making sure everyone was informed minimized disruptions and allowed people to
interject if a given change had a possible impact that hadn’t been spotted. Luckily, this
meeting was also incredibly well run. The organizer sent out a detailed agenda every
week, allowing people to step in and out as needed. Just because a meeting can be
costly doesn’t mean it isn’t worth the time and money.

Odds are you’ll find yourself double or triple booked at some point. Sometimes meet‐
ings are sent to very broad distribution lists, or your role means you’ll be looped in
by default. In some cases, the organizer isn’t specifically including you or requesting
your input; you’re just on the list. Your time is valuable, and it’s perfectly reasonable
to be deliberate with meeting attendance. Don’t be afraid to reach out to the organizer
and clarify your role in the meeting or consult with your manager, who should be
able to provide guidance.

Collaborative Communication | 291

4 Or making snide comments about the meeting in question…
5 Darth Vader–level heavy breathing might be worse.

An agenda is a minimum courtesy in any meeting, but asking what you are there to
speak to can be clarifying. Meetings have a variety of purposes: what is the goal of this
one? Are you required to be there the entire time? Would an email suffice?

You will eventually find yourself in the meeting, the one with the CTO or the VP of
Engineering, the big client, or some other “very important person.” While it is often
a sign of career growth, these meetings can be intimidating. Don’t be afraid to ask
the organizer some questions! If this is a recurring meeting, ask regular attendees as
well as the other people on the invitation for background on how things work and
how the meeting tends to flow. Is it a collaboration session where the boss is looking
for input, or is the purpose just to pass out marching orders? Should you feel free
to interject a question or comment, or is there an implicit wait-to-be-called-on rule?
Some senior managers have certain expectations that may not be common knowledge;
without insider information, you may inadvertently make a bad impression with the
person who controls your next promotion.

In many contexts, recruiting allies such as your manager or a senior technical person
can be incredibly helpful, especially if it is the first time you’ve interacted with
leadership. Sometimes just having a friendly face is enough to calm the nerves. These
allies can also help clarify if your remarks aren’t quite landing with the boss, and they
can also give you personal feedback for future meetings.

Do your homework before the meeting. If there are specific points to review, block
out time to read them before the meeting. Whether you’re in person or on a video
call, be sure to pay attention to nonverbal cues—furrowed brows, crossed arms,
smiles, etc. Try to determine the power structure for the meeting: who is the decision
maker? Are they in the meeting or are they external?

Even with return-to-office mandates, most organizations have multiple sites, mean‐
ing you will spend some of your time on audio or video calls. Virtual meetings have
etiquette too. Depending on your culture, virtual meetings may have implicit “rules”
about turning on cameras or ensuring that your background is tidy. Invest in a good
headset, and if you get a new one, take it for a test spin before you hop on a call
with the CTO; many headsets allow you to adjust the sensitivity of the microphone.
Adjust accordingly. It should go without saying, but if you’re not speaking, mute your
microphone, especially if you are eating.4 Few things are quite as annoying as hearing
a person finishing their lunch.5

Back-channel communication via your corporate messaging tool can be useful during
many meetings. Whether it’s to ask a clarifying question or inject a comment without

292 | Chapter 13: Mastering Soft Skills in the Tech World

6 Of course, the appropriate question is “Then why did you book the entire hour?”
7 More often than not, the simplest solution is the best solution.

interrupting, having a conversation about the conversation is quite common. In some
instances, you may need to use messaging as a way to assert yourself in a meeting.

Make sure as well that you know exactly who is in a meeting. Is it just IT people? Are
there customers? Senior management? Don’t assume! Modern video conferencing
technology has largely limited the anonymous lurker, but it still pays to know who’s
on the call.

You will run meetings as well. Practice good meeting hygiene. Have an agenda. Keep
the audience to those required to be there. If possible, ask a colleague to take notes.
Just because the typical corporate calendar client defaults to 60 minutes does not
mean you have to schedule all of your meetings to 60 minutes. As you’ve no doubt
experienced, many meetings expand to the size of their container; how many times
have you heard some variation of “This shouldn’t take the entire hour”?6 Constraints
can be freeing: scheduling a meeting for 30 minutes forces you to stay on task. And,
if you booked an hour but you’ve covered everything in the first 30 minutes, give
everyone some time back; don’t fill the remainder with fluff.

Many calendaring systems do allow you to change the default
meeting interval. Don’t be afraid to try something “radical” like 50
minutes for longer meetings and 25 minutes for shorter meetings.
You might also consider starting meetings 5 or 10 minutes past
the typical top or bottom of the hour to allow for travel time
or just the inevitable meeting overrun. This will help you focus,
and your attendees will appreciate having time to hit the restroom
or grab another cup of coffee before their next meeting. Some
organizations have globally modified the event settings, but there’s
nothing that says you can’t do so locally for your meetings.

Be respectful by starting the meeting on time!7 Inevitably, some meetings will run
long, or people will need a bio break, but do your best to keep the trains on schedule.
Be mindful of lead times: if you’re asking someone to review a complicated design,
make sure they have a chance to look over the materials. If you’re booking rooms
for people in a different location, you may want to check with them about what
is actually nearby; calendaring systems aren’t always up-to-date when it comes to
booking physical resources.

As the organizer, you should work to keep the meeting on schedule. You may need
to curtail tangents, and some discussion points may require a follow-up meeting.
Also, work to keep everyone involved: circle back to people to make sure they have
an opportunity to contribute. Meetings may not be your favorite activity, but unless

Collaborative Communication | 293

8 While you may not literally run into them in the elevator, you never know when you’ll have 45 seconds at the
start of a meeting to deliver your message.

9 You may need to provide incentives for your test audience. Food works well.

you’re a team of one, they’re unavoidable. That doesn’t mean they have to be pure
misery.

Presentations
Ask people about their fears, and public speaking is bound to come up. Many people
hate presenting, but if you want to grow in your career, you will have to deliver some
talks. While you may never become a regular on the conference circuit, you need to
be comfortable presenting to various audiences.

Presentations take various forms and aren’t always hour-long blocks. Consider having
a short, one-minute “elevator pitch” at the ready. You never know when you’ll have a
quick, impromptu chance to chat with a senior leader in your organization.8 Shorter
talks are often more challenging; try not to bury the lede, and focus on the key point
you need to get across.

You may be asked to give a short, 5- to 10-minute presentation to an audience beyond
your project team. It could be a project update to the engineering organization, the
architecture team, or the CTO’s direct reports. Learning to shape your message to
resonate with a given audience is key: you may have to adjust the content to meet
them where they are.

There are no shortcuts to improving as a presenter. If you want to improve, you need
to give a lot of presentations. Consider volunteering to present at a local user group
or meetup; many of the speakers you know and admire got their start in their own
backyards. Giving a presentation is also a great motivator for learning something
new, as the commitment acts like an immovable wall, forcing you to be ready to
present.

Practice is essential. Dry runs in front of your pet will give you a sense of timing,
while enlisting a test audience can give you vital feedback.9 Presentations, like code,
evolve over time; you often discover a nugget you weren’t even looking for. You’ll
discover that the real value of the talk lies somewhere you weren’t expecting. For
example, Nate once created a talk comparing React and Angular, but after the third or
fourth delivery, he realized that he could extract from it a more generalized talk about
comparing and contrasting any technology.

There are any number of excellent resources for improving your speaking skills.
Many cities and some large companies have one or more Toastmasters chapters.
Some chapters are even focused on more technical presentations. While the

294 | Chapter 13: Mastering Soft Skills in the Tech World

https://oreil.ly/3fxk4

10 And never forget, you are often the person that follows you…
11 That doesn’t, of course, imply it is correct or meets the business needs, but that’s a different problem.

Toastmaster curriculum can teach you important techniques, having a safe space
to practice the craft is key to learning and improving.

There are many excellent resources on the topic as well. One of your authors co-
wrote Presentation Patterns and also recorded several videos you can find on the
O’Reilly learning platform. Resonate by Nancy Duarte and Presentation Zen by Garr
Reynolds are also excellent.

Code as a communication medium
As a software engineer, code itself is one of the most common ways you will transmit
information to other developers. In the technical world, having good communication
skills extends to your ability to write clear and effective code. Code is the ultimate
source of truth, and it is vital that you can convey your meaning to other developers.

As you learned in Chapter 3, it is crucial to craft code with the human reading it in
mind. Using good naming practices, keeping code concise, and avoiding clever code
are crucial for the developer who follows you into the codebase.10 Optimize for the
human reading your code.

Any fool can write code that a computer can understand. Good programmers write code that
humans can understand.

—Martin Fowler, British software developer, author, and international public speaker
on software development

Virtually every document on a software project is outdated shortly after it is written.
But not the code. The code itself is the source of truth;11 it is the most up-to-date
documentation you have. From tests to following good coding practices, take the
time to ensure that your code communicates clearly and effectively.

Communication is a massive topic, and you’ve just scratched the surface. As your
career progresses, you’ll learn and master different parts of the communication con‐
tinuum. Being an effective communicator is important for your career. Though it may
not all come easily or naturally, invest the time to learn these skills, and future you
will thank you!

Enterprise Operator
At school or a party, you may have played the game Telephone or Operator. Sitting in
a circle, one person whispers a phrase to the person to their right, who then repeats
the phrase to the person to their right, and so on until the last person, who says the
message out loud.

Collaborative Communication | 295

https://learning.oreilly.com/library/view/presentation-patterns-techniques/9780132963381/
https://learning.oreilly.com/course/presentation-patterns/9781491954980/
https://learning.oreilly.com/library/view/resonate-present-visual/9780470632017/
https://learning.oreilly.com/library/view/presentation-zen-simple/9780135897751/
https://learning.oreilly.com/library/view/presentation-zen-simple/9780135897751/

Unsurprisingly, the message shifts as it goes from person to person. Perhaps someone
doesn’t enunciate, or the listener interprets what they hear instead of repeating the
message verbatim. Perhaps one person isn’t familiar with the phrase and inserts
something they are more used to.

The same thing occurs in organizations on a shockingly regular basis. Sometimes
someone misspeaks in a meeting, and other times people just hear what they want
to hear. Regardless, at some point, you may unwittingly find yourself in a game of
enterprise operator. Even with all the best intentions and your considerable communi‐
cation skills, you cannot avoid it, but you can be prepared for it.

Enterprise operator is particularly common around enterprise standards. Don’t be
surprised if you hear “Alice said we’re out of compliance” or “I heard Foo is the corpo‐
rate standard.” Is there actually such a standard? Does it apply to your application?
Don’t be afraid to bring proverbial receipts.

What should you do if you find yourself in a game of enterprise operator? First, keep
your wits about you and recognize that it’s happening. There will often be a lot of
noise and some people in a less than sanguine mood. Second, try to identify where
the message was garbled. Did someone get only part of the story? In many instances,
knowing where the communication went sideways will pinpoint where you need to
focus your remediation efforts.

Third, figure out who is involved. Is there a stakeholder you weren’t aware of that
you need to keep in the loop? Proactively reach out and discuss the issue with them.
Lastly, perform a retrospective on the situation. Is there anything you could have
done differently to prevent it?

Dealing with a Hostile Room
Nate here. Several years ago, I created a best practice around client-rendered user
interfaces; it was extremely common across the industry at the time. With the prolif‐
eration of smartphones, tablets, and other modalities, applications couldn’t be built
for one specific monitor resolution anymore. Instead, applications evolved to a series
of services that acted as JSON pumps while building the UI that was appropriate
for each client. Though not controversial, the best practice still required a significant
amount of teaching and presenting to make sure our portfolio was following the
approach.

A few months later, the chief architect of one of our divisions asked if I would come
talk to his team about the best practice, as the team members had some concerns. He
set up some time on my calendar, and I dutifully ran them through my presentation
on the topic. When I stopped for questions, one person was clearly irate, saying that
I was asking them to completely redesign their application to use Windows MVC and
how unreasonable that request was.

296 | Chapter 13: Mastering Soft Skills in the Tech World

12 Most people recognize Spring as a season, not a popular Java framework.

His response surprised me as I’d made no comment on specific implementation
technologies. I asked them to walk me through their architecture, and it turned out
they were already about 90% of the way to complying with the best practice.

Digging further, it turns out one of their business partners had heard one of my
presentations on best practices that mentioned JavaScript MVC libraries. They didn’t
know what that was but interpreted it as Windows MVC and were worried the
application was violating a standard. Once we cleared that up, the meeting became
quite positive.

Know Your Audience
As a software engineer, you will spend a significant amount of your time communi‐
cating with other technical people, be they fellow engineers, architects, testers, or
product managers. As you progress in your career, though, you will have to be
comfortable sharing technical concepts with less technical stakeholders. Learning to
translate from developer to business speak is an important skill that requires practice.
You need to know your audience and adjust your messaging accordingly.

As proud as you may be of your in-depth knowledge of arcane technical trivia, audi‐
ences outside the project room are rarely impressed by your command of jargon.12

Learn from sales engineers: success in their jobs requires the ability to describe deeply
technical products in a way that resonates with their specific audience, tailoring
their message appropriately. Some vendors are very good at “speaking exec” (in
other words, tying technology back to solving business problems), a skill you should
learn. Decision makers are rarely swayed by “It’s a cool new technology,” so learn to
articulate how that cool new technology will deliver business value.

How you communicate matters a great deal. While it may be tempting to tell some‐
one in your management chain to “read the manual,” cynical, derisive personas rarely
enjoy the career progression of those with a less confrontational approach.

It’s also important to understand and elucidate the business value of software. Do
you understand the domain you’re working in? Do you know what your business
partner’s top concerns are?

Practicing Influence
Leadership is influence, nothing more, nothing less.

—John Maxwell, American author and speaker

Practicing Influence | 297

Influence is the art of getting someone to do what you want them to do, ideally with
them thinking it was their idea. As you learned in Chapter 9, too many think they can
just issue a command, but unless you are a founder or the CEO, you won’t be able to
just order people to do things. Instead, you’re going to have to master the subtle art
of influence. From deciding which framework you should use on your next project to
which snacks should populate the break room, there is no shortage of opportunities
for you to practice influence. But how do you get what you want if you aren’t the
ultimate decision maker?

Your company has influential people, something that isn’t always obvious by the org
chart. If you’re not sure who they are, take note of who gets the majority of the really
interesting assignments. The best managers recognize the edge of their expertise and
cultivate a set of experts they rely on for information and advice. While you may not
have a direct line of sight to the CTO, you can likely work through someone in their
orbit; influencing the influencers is very effective.

Understanding and Articulating Value
Start by articulating the benefits of your preferred option to the person you’re trying
to influence. Seek out common ground. Shape your message based on the reality
of your organization. Is the decision maker focused on time to market? Developer
efficiency? Reducing costs? Don’t cut against the grain; show how your desired
outcome helps them drive their mission home. For example, if you know the decision
maker wants to reduce the drama from a release, align your arguments to how your
approach delivers on that goal.

By the same token, understand the information ecosystem the decision maker lives
in. What sources do they trust? Some leaders rely on a particular analyst organiza‐
tion, or they’re particularly receptive to articles from a given technology vendor. Cite
those sources.

Strategic Approaches to Influence
It’s hard to convince people to change their minds if they disagree with you. There are
two basic approaches: the hammer, where you order someone to do something, and
the ninja, where you make them think what you want them to do was their idea. If
you’ve ever been in a relationship with another human being, you know the former
rarely works. You have to be subtle, to nudge.

Some resort to being a bully; they choose to yell louder in an effort to bend people to
their will. That approach nearly always backfires. Instead, engage in a conversation!
Don’t underestimate the challenge in front of you: it can be very hard to convince
someone to change; it takes patience and perseverance. Don’t be afraid to start small,
show success, and grow from there.

298 | Chapter 13: Mastering Soft Skills in the Tech World

Your passion may be interpreted as aggression, so take time to listen to those you are
trying to influence. What are they saying? What are their concerns? What resonates
with them? Sometimes it is as simple as adjusting your phrasing to match their
expectations.

Your reputation is just as important as the strength of your ideas. It speaks for you
when you’re not in the proverbial room; do you know what yours is like? If you aren’t
sure, don’t be afraid to ask. You may not love the answer, but it’s the only way you can
change things.

Don’t be afraid to recruit allies. Reach out to others who share your stance and work
together to achieve your goal. There is often strength in numbers, and another set of
eyes may see an angle you don’t.

Who delivers the message can also be a key aspect of influence. Sometimes, your
preferred viewpoint needs to come from, well, someone other than you.

The Messenger Matters
Years ago, one of your authors joined a new company and decided he’d “make his
mark” by introducing test-driven development (TDD). He prepared and delivered an
overview on TDD, how it would help reduce defects, and why it really wasn’t as hard
as you might think. His message was not met with the warmth he was expecting.

However, one of his friends (let’s call him Steve) was eager to add testing so he
worked closely with Steve’s team. Over the course of a few months, that part of the
codebase rose out of the proverbial muck. After seeing how much of an impact it had
on his team and their code, Steve essentially presented the aforementioned TDD talk
again, nearly verbatim. This time though, the reception was different. It was met with
near universal praise and determination to extend what Steve’s team had done to the
rest of the codebase.

What was the difference? Everyone knew Steve, Steve had tenure, Steve had been
at the company for years. Your author was “the new guy”; what could he possibly
know? The messenger matters. Who will the decision maker turn to for advice? Is
that person on the same page with you? Don’t be afraid to work through someone
with more clout or influence in your company. While it may not be as satisfying as
being in the spotlight, it can be incredibly effective.

How you communicate with your stakeholders matters too. You also need to be
aware of what messaging works best within your organization. Some companies
fixate on speed to market; others care about cost savings above all else. Shape your
message accordingly. For example, if you’re working in a startup, emphasize how your
approach will get features to customers faster. If you work in a more established firm
and you know there are budget constraints, focus on how your idea will save money.

Practicing Influence | 299

Wielding influence is not something taught to most software engineers. But learning
how to do so can help you get things done, and it can advance your career. An
important aspect of influencing people is understanding and managing stakeholders,
which we’ll discuss next.

Stakeholder Management
You have to know who your stakeholders are and understand them in order to
effectively communicate with them. Every project has multiple interested parties,
from your teammates, to your management, to the people ultimately using the
software you build. Some stakeholders are very obvious—if you’re working on the
CTO’s number one initiative, they’re clearly going to be involved. However, some
stakeholders may be more obscure.

Sometimes there are people who aren’t directly involved but who can absolutely help,
or hurt, your project. You can often feel the presence of these level 2 players in
comments like, “The VP will never go for that.” In some instances, the mere idea
of these people can be disruptive. It is difficult to negotiate with someone who isn’t
there; it may require getting them in the proverbial room to break a logjam.

Not all stakeholders are equal, and they often require different levels of your time
and energy, depending on their interest level and power within your organization
(see Figure 13-2). Low interest, low power won’t be your focus. But high-interest,
high-power people are key to the success of the project.

Figure 13-2. Understanding the power/interest matrix can make or break your project

Looking at the upper-left quadrant, you’ll want to ensure that those stakeholders
have the information they need to have peace of mind about your project. Respect

300 | Chapter 13: Mastering Soft Skills in the Tech World

13 Yes, you might need to put a cover sheet on your TPS report.
14 Some calendaring systems make it very easy to set up focus time along with core work hours.

their time and let them come to the information as they want or need it. Sometimes
they’ll quickly pivot from low to high interest. Transparency is key with high-power,
low-interest stakeholders.

Moving to the upper-right quadrant, you’ll find the people who are instrumental in
successful projects. These are the people who can make or break an initiative. Never
underestimate their voice when it comes to promotions and bonuses. High-power,
high-interest people can be challenging to work with, and their jam-packed schedule
can be an impediment. They cannot be ignored, and they will occasionally show up at
the last moment and upend any number of things.

You must be proactive and engage with high-power, high-interest people. And you
may have to adapt your working style to better fit their needs. Have a conversation
about how you can best work together to ensure a successful project.

It’s also important to note, unlike the command line, silence is not always golden.
Keep them informed using whatever method works best for them. That could be
regular demos, a high-level summary, or one-to-one meetings.13

Disregard those in the lower-right quadrant at your own peril. High-interest, low-
power people can be extremely helpful. Use their passion to your advantage; their
enthusiasm can be contagious. They will often be some of your best advocates within
the organization, and they will often volunteer to help. They may have connections
to some of the high-power, high-interest people as well. Whether it’s testing a new
feature, allowing you to shadow them for a few hours, or sitting for an interview,
high-interest people are invaluable. If you ignore them, they may actively work
against your project; keeping them in your camp can result in smooth sailing.

Despite all the zeros and ones, software is ultimately about people. Understanding the
web of stakeholders who surround your project can be the difference between a failed
initiative and a smashing success.

Time Management
Managing your time is vital. Time is a nonrenewable resource; it does not scale, and
there’s no way to get more. There is no shortage of demand on your schedule. From
meetings, to code reviews, to dealing with a production issue, to filling out your TPS
report, there’s rarely enough time in the day. You must be the guardian of your own
time. Again, don’t be afraid to block out uninterrupted time to work of the most
important things on your plate.14 Give yourself some room to breathe.

Time Management | 301

15 Alternatively, slow is smooth, and smooth is fast.

You also need to be mindful of your personal rhythm: are you a morning person,
or are you most alert in the early afternoon? As best you can, build your schedule
around when you are at your best, performing more rote work when you know you’re
not as sharp. While you will need to be flexible, working with your cadence and
setting reasonable expectations can make you happier and more productive.

Giving yourself some space to think can make all the difference in finishing a feature
or fixing a defect. Rich Hickey gave an excellent talk on hammock-driven develop‐
ment, emphasizing the importance of uninterrupted time to think. It’s obvious that
fixing bugs found in production is the most costly approach; that’s why many devel‐
opers write automated tests, and software processes involve quality assurance steps.
However, the cheapest solution is to never introduce the bug in the first place.

“Most of the big problems we have with software are problems of misconception. We do not
have a good idea of what we are doing before we do it. And then, go, go, go, go and we do
everything.”

—Rich Hickey, creator of the Clojure programming language

Problems of misconception are endemic in software. Terms are often overloaded and
many seem like synonyms, only to be delineated by critical nuance. Blocking out your
schedule can give you crucial time to think through the consequences of a design.
Take the time it takes so it takes less time.15 It’s also important to understand that
different roles have different types of schedules. There’s a stark difference between
those who spend their days making (like software engineers) and those that focus on
managing.

Maker’s Schedule
Software is closer to a craft than a science; it requires what Paul Graham refers to
as a maker’s schedule. A manager’s schedule is just a series of hour-long blocks of
meetings. Literally any hour is the same as another. Thus managers have a “find an
open spot on my calendar” approach to scheduling. And that approach works for
getting a consensus on a decision or working through a budget proposal. It doesn’t
work very well for building software, though.

As a software engineer, what unit of time do you typically think in? A full day? Half
a day? Your day isn’t a series of one-hour blocks. A 30-minute meeting at 10 a.m.
could completely destroy your morning by breaking your time into blocks that are
too small to do anything meaningful. There’s no point starting anything hard because
you’ll just have to put it down and context switch out for the poorly timed meeting.
You must be the guardian of your own time. That’s the maker’s schedule.

302 | Chapter 13: Mastering Soft Skills in the Tech World

https://oreil.ly/uoX_I
https://oreil.ly/uoX_I
https://oreil.ly/aPQld

16 Bonus points if it’s a pomodoro (tomato) timer.

Software is ultimately about loading the problem into your brain, creating a mental
model of the application. Think about debugging: you’re setting breakpoints, rerun‐
ning the program, re-creating the issue, working through the internal state of the
system, and then BANG. Someone interrupts you. You’ve stacked the stones in your
mind, and now it’s gone. How long will it take for you to return to that point?

All is not lost. You can take steps to protect your productivity. Use technology to
your advantage, and don’t be afraid to turn off interruptions. Close your email and
messaging apps if you can’t resist the song of the sirens. Tune notifications and
leverage “do not disturb” settings to minimize distractions when you need to focus.
Consider restructuring your week. Some organizations have set times or even days
of the week that are free of meetings, allowing their engineers to focus on work.
Scheduling your meetings for one or two days a week allows you to concentrate the
disruptions, allowing you more focused time. If your company doesn’t do something
like that, propose an experiment!

Staying on Task
Part of managing your time is staying focused, which can be incredibly difficult to do.
Between a never-ending flood of emails and instant messages, let alone the infinite
distraction of the internet, staying on task can be a struggle. Sometimes that mental
battle is an indication you’re working on something that can be deferred, but don’t
be afraid to bring some structure to completing your to-do list! Having a plan or
approach can reduce the cognitive load, ultimately turning focus into a habit. Instead
of getting pulled in random directions, you give yourself a framework to get work
done.

Consider adopting the Pomodoro technique. In a nutshell, it is Agile software devel‐
opment on a very micro scale. Pick a task to work on, set a timer for 25 minutes, and
work on that task.16 If you think of something else you need to do, jot it down and
return to the task at hand. When the timer goes off, switch contexts and take a break.
Rinse and repeat. At the end of four tasks, reward yourself with a longer break.

Other techniques, like the Focus Course, can give you tools to help you set and
achieve your goals. Habits can be very powerful, as illustrated by the likes of James
Clear. Don’t be afraid to consume some high-quality content outside of the computer
science section of the internet!

As a practicing software engineer, it can seem like there is never enough time in a day
to accomplish everything on your agenda. Learning to proactively manage your time
will help you focus on the important things and be more productive.

Time Management | 303

https://oreil.ly/6Wl00
https://oreil.ly/p1Jrp
https://oreil.ly/-lvOQ
https://oreil.ly/-lvOQ

Wrapping Up
Soft skills may not be the first thing you learn on your journey as a software engineer.
Effective communicators tend to get promoted: deploying the right techniques at the
right time can make all the difference in achieving your goals. Managing your time
will help you keep your head while all those around you are losing theirs. And while
you may be more passionate about the latest technology, you can’t afford to neglect
the soft skills that will benefit you for your entire career.

Putting It into Practice
Practicing your soft skills can be done in any number of situations. Volunteer to
deliver a presentation to your teammates or at a local user group. Proactively block
out time on your calendar to work and think. Be more thoughtful the next time
you schedule a meeting—include an agenda, invite only those required, and try
scheduling it for a time frame other than 60 minutes.

Experiment with the Pomodoro technique for a few weeks. Did it improve your
productivity? Before sending off yet another email, pause and consider whether a
different communication channel would be more effective. Practice your influence
skills by introducing a new idea, tool, or technique to your team.

Additional Resources
• Thinking Architecturally (report) by Nathaniel Schutta (O’Reilly, 2018)•
• How To Win Friends & Influence People by Dale Carnegie (Simon & Schuster,•

1936)
• Influence, New and Expanded: The Psychology of Persuasion by Robert B. Cialdini,•

PhD (Harper Business, 2021)
• “Maker’s Schedule, Manager’s Schedule” by Paul Graham•
• “Hammock-Driven Development” by Rich Hickey•

304 | Chapter 13: Mastering Soft Skills in the Tech World

https://learning.oreilly.com/library/view/thinking-architecturally/9781492034421/
https://oreil.ly/S7vkU
https://oreil.ly/otsDg

CHAPTER 14

Career Management

The only way to do great work is to love what you do. If you haven’t found it yet, keep
looking. Don’t settle.

—Steve Jobs

When you begin your career as a software engineer, the path might seem pretty
straightforward: learn to code, get better at coding, and keep coding. As you grow
in your career, you’ll find that tech offers many paths forward, combining technical
skills, creativity, and opportunities for growth.

In the first section of this chapter, you’ll learn how to plan your career path. This
is all about finding out what you’re passionate about, which can lead to a long and
satisfying career. Once you discover what you’re interested in, it’s important to know
the options available to you.

In the second section of this chapter, you will learn some practical tips and tricks you
can use while walking your career path. You’ll discover strategies for documenting
your accomplishments, overcoming imposter syndrome, building a professional net‐
work, and mastering the interview process to advance your career.

While seeing so many possibilities may feel overwhelming at first, this chapter will
help you navigate your journey and make the most of your career. You need to take
ownership of your path and make deliberate decisions about where you want to go.

Plan Your Career Path
You might find yourself deeply passionate about coding early in your career, and
that’s excellent. Later on, your interests may shift; it’s important to recognize that
interests and goals can evolve over time.

305

This chapter begins by helping you develop a career plan. We’ll start with the crucial
first step: discovering your passions and identifying your core interests. This founda‐
tion will guide you toward a career path that remains both fulfilling and sustainable.

Next, we’ll explore various career opportunities you might not have considered
before. After you’ve identified your passion and chosen a career direction, we’ll
discuss how to make strategic decisions to advance along your chosen path.

Find What You’re Passionate About
Every developer has a unique combination of skills, interests, and values that will
shape their career. While writing code serves as the foundation for your technical
career, discovering what gets you excited about coding will help build a fulfilling
and sustainable career path. (For more strategies on identifying and nurturing your
interests, see “Let Your Passion Guide You” on page 279.)

Exploring different domains and technologies
You might have already found a technology or domain that you’re interested in, but
if you haven’t, the world of software development encompasses countless business
domains and technologies. Early in your career, try working across different areas to
discover what truly excites you. Here are some possible project types to explore:

• Consumer applications that millions of people use daily•
• Enterprise systems that power businesses•
• Data-intensive applications for analytics and insights•
• Infrastructure and DevOps that keep systems running•
• Gaming and interactive experiences•
• Educational technology that helps people learn•
• Healthcare systems that improve patient outcomes•
• Ecommerce platforms that connect buyers and sellers•
• Mobile application development•
• Artificial intelligence and machine learning systems•

Each domain can present different challenges, impacts, and cultures. For instance, if
you find satisfaction in impacting customers, consumer applications might be your
calling. If you have always loved video games and have longed to create your own,
gaming and interactive experiences might be your path.

If you don’t know which technologies or domains you’re interested in, the only way
you are going to find out is by experimenting with different ones.

306 | Chapter 14: Career Management

Experiment with side projects
If you’re early in your career, chances are you could be limited to the types of
projects you’re working on. You might be working in the same domain with the same
technologies every day, and you’re not getting exposed to different things.

Side projects offer a low-risk environment to explore technologies and domains that
might be of interest to you. Unlike your day job, you have complete freedom to
choose what to build and how to build it. If you’re primarily a backend developer
and interested in frontend work, take on something that requires you to build a
good-looking frontend.

When selecting what to build with, consider looking at job postings from 10 compa‐
nies you’d like to work for. Identify the technologies that appear repeatedly across
these listings. These are clearly in demand and worth investing your time in.

However, don’t limit yourself only to what’s currently popular. Consider deliberately
choosing technologies different from your day job. A different programming lan‐
guage, development environment, or platform can challenge you and provide real
growth as a software engineer. This approach expands your mental map of how
software works and gives you more opportunities to discover what excites you.

Working on personal side projects or contributing to open source is an excellent way
to stand out on your resume. While not required, these activities can significantly
differentiate you from other candidates when applying for positions internally or at
other companies.

As you experiment, pay attention to which aspects energize you versus which feel
draining.

Here’s what to track while coding:

• Which types of problems get you excited to solve?•
• Do you prefer building user interfaces or working with data and algorithms?•
• Does debugging complex systems energize you or frustrate you?•
• Do you enjoy the creative aspects of design or the logical precision of backend•

systems?

Keep a simple journal noting +1 (energizing) or –1 (draining) for different coding
activities, along with a brief note about why. Look for patterns: you might discover
that pixel-perfect CSS alignment isn’t for you, or you might find that building interac‐
tive web experiences is exactly what excites you about programming.

Plan Your Career Path | 307

Side Projects That Solve Your Own Problems
Dan here. When working on a side project, it’s helpful to build something that is
useful to you or solves your own problem. I have had a personal website for as long as
I can remember. This allows me to have my own little corner of the internet and show
off the things I am working on. I started a blog so that I could get involved with open
source projects and teach what I learned back to the community. The point is, I really
enjoy working on this, and this has exposed me to frameworks and tools that I would
have never used in my day job.

Exploring Your Career Options
Early on in your career, you’re so focused on learning your craft that it’s hard to see
the forest for the trees. You’re learning the fundamentals of software development
to land that first job or improving for that highly coveted promotion. As far as you
know, writing code and getting better at what you do will be your entire career.

What you might not have been told is that software development encompasses
diverse career trajectories that go far beyond just writing code. The key to a fulfilling
career is being flexible and open to opportunities while maintaining a general direc‐
tion that aligns with your interests and strengths.

In this section, you’ll explore paths you can take, from being a technical expert, to
leadership, to some alternative paths that are available. It’s all about knowing what
options are out there so you can start making decisions now to get on the right path.

Only two career decisions are truly permanent: serious ethical vio‐
lations or burning bridges with colleagues. Everything else can be
changed. Technologies, companies, and even career paths can all be
redirected with proper planning and effort.

Technical expert path
The technical expert path (also called the individual contributor or IC track) offers
developers a way to advance their careers while remaining hands-on with technology
rather than transitioning into management. This track rewards deep technical knowl‐
edge, system design skills, and technical leadership. Companies typically organize
these roles into ladders that progress from senior engineer through staff, principal,
and sometimes distinguished or fellow engineer levels, though titles and structures
vary across organizations:

Architect
Software architects design the overall structure of systems and make high-level
technical decisions that shape entire projects or organizations. They translate

308 | Chapter 14: Career Management

http://danvega.dev

business requirements into technical solutions while establishing standards that
guide development teams. Despite their high-level focus, effective architects stay
hands-on with code to ensure that their designs are practical and to maintain
credibility with development teams. Technical architects do the following:

• Design system architectures and make critical technology decisions•
• Balance technical trade-offs while considering business needs•
• Need strong communication skills to explain technical concepts to nontech‐•

nical stakeholders
• Maintain curiosity and hunger for learning to stay current with evolving•

technologies
• Usually have 8+ years of development experience•

Staff engineer
Staff engineers are senior technical leaders who combine coding with broader
influence. They solve complex problems while guiding technical direction
beyond their immediate team. This path is for developers who want to stay
hands-on with code while having broader impact:

• Focus on technical excellence and engineering best practices•
• Mentor other developers and influence technical decisions•
• Often work across multiple teams or projects•
• Typically need deep technical expertise in specific domains•
• Can match or exceed management compensation at senior levels•
• Potential titles could be senior developer, technical lead, principal engineer,•

or staff engineer

These technical career paths offer developers fulfilling alternatives to management
roles, allowing you to grow your impact and compensation while continuing to solve
challenging technical problems that you love.

Leadership path
The leadership path offers developers opportunities to guide teams, shape product
direction, and drive organizational success. This track rewards strategic thinking,
interpersonal skills, and the ability to align technical work with business objectives.
Companies typically structure these roles into management hierarchies that pro‐
gress from team lead to director, VP, and C-level positions, with variations across
organizations:

Engineering manager
Engineering managers lead development teams by focusing on people, processes,
and delivery. They build effective teams, remove obstacles, and align technical

Plan Your Career Path | 309

work with business goals while supporting individual growth. Management isn’t
for everyone, but it’s a valuable path for those interested in people and process:

• Focus on team building, career development, and project delivery•
• Require strong interpersonal and organizational skills•
• Often maintain technical knowledge but write little to no code•
• Need to balance team happiness with business objectives•
• Compensation often includes significant bonus and equity components•

Technical product manager
Technical product managers bridge the gap between business needs and technical
implementation. They define product vision, prioritize features, and collaborate
with both technical teams and business stakeholders to deliver valuable solutions.
For developers who enjoy bridging business and technology:

• Transform business requirements into technical solutions•
• Work closely with stakeholders across the organization•
• Require both technical understanding and business acumen•
• Often do less coding but more strategic thinking•
• Can lead to senior product or strategy roles•

These leadership paths allow technically minded professionals to leverage their expe‐
rience while developing new skills in people management, strategic thinking, and
business alignment.

Alternative paths
Beyond the traditional technical expert and leadership tracks, software engineers can
pursue innovative careers that combine technical expertise with other disciplines.
These alternative paths often leverage your coding knowledge while developing com‐
plementary skills in communication, education, business, or specialized domains. As
technology continues to evolve, these hybrid roles frequently offer exciting opportu‐
nities to make unique contributions to the tech ecosystem:

Developer advocate
Developer advocates serve as a bridge between companies and their technical
communities. They help users understand and adopt technologies while bridging
community feedback into product teams. This newer path combines technical
skills with community engagement:

• Create content, give talks, and build developer communities•
• Require strong communication and teaching skills•
• Often travel and perform public speaking•

310 | Chapter 14: Career Management

1 Inviting someone to coffee or lunch may increase your odds of success.

• Need to stay current with technology trends•
• Can lead to developer relations or technical marketing roles•

Sales engineers
Sales engineers combine deep technical knowledge with a passion to help cus‐
tomers find the right solutions to their problems. They serve as technical experts
during the sales process by demonstrating products, addressing technical con‐
cerns, and building trust with prospective customers. For developers who enjoy
explaining technology and working with people:

• Bridge technical capabilities with business value for customers•
• Require strong presentation and interpersonal skills alongside technical•

expertise
• Often travel to client sites and trade shows•
• Need the ability to understand and articulate complex technical concepts to•

varied audiences
• Can lead to senior sales roles, technical sales management, or customer•

success positions

Technical entrepreneur
Technical entrepreneurs leverage their engineering expertise to build products
and businesses from the ground up. They identify market opportunities, develop
solutions, and navigate the challenges of creating sustainable ventures. For those
interested in building their own ventures:

• Combine technical skills with business development•
• Higher risk but potential for significant rewards•
• Require broad knowledge across technology and business•
• Often start as side projects while maintaining regular jobs•
• Can lead to founding successful companies or joining startups early•

Developer advocate, sales engineer, and technical entrepreneur aren’t the only alter‐
native paths for software engineers. There are many possible career paths such as site
reliability engineer, Development and Operations (DevOps), and more. Remember
that, as we mentioned at the beginning of this section, being flexible and open
to opportunities throughout your career while maintaining a general direction is
essential for growth.

Talk to people who work in the spaces you’re interested in exploring. Ask them
for guidance;1 many people are happy to mentor others. Mention your interests to

Plan Your Career Path | 311

your manager; if they don’t know what you want, they can’t help you get it. Many
companies will provide opportunities to formally or informally shadow people or to
even spend a period of time working in a different area. Don’t be afraid to advocate
for yourself, as you are responsible for your career progression!

Walking Backward from Your Goals
As a software engineer, you’ve developed a valuable skill that allows you to break
complex problems into smaller, manageable pieces. This approach allows you to
tackle challenges that would be overwhelming if viewed as a single problem state‐
ment. The same principle applies to career development.

An effective way to achieve career aspirations is to work backward from your long-
term vision by breaking it into smaller, achievable milestones. Think about where
you want to be in three to five years. Do you see yourself as a technical architect
designing complex systems? As an engineering manager overseeing a team of devel‐
opers? Working with clients to set the direction of a product? Whatever your path,
identifying the intermediate steps will help you get there systematically.

For example, here are some milestones if your goal is to become a technical architect:

Year 5+
• Drive architectural decisions for major projects•
• Develop cross-team technical standards•
• Build influence beyond your immediate team•
• Work on your nontechnical skills such as presenting and leading effective•

meetings

Year 3–5
• Lead technical projects•
• Mentor junior developers•
• Gain experience with distributed systems•
• Build expertise in scalability and performance optimization•
• Work with your architect to assist with their deliverables where possible•

Year 1–2
• Master your current tech stack•
• Take on increasingly complex technical challenges•
• Start learning system design principles•
• Schedule periodic one-on-ones with an architect or two in your organization•

312 | Chapter 14: Career Management

Connect with people in positions you aspire to reach. If you work
with architects, ask them about their journey from junior → senior
→ architect. Learning from their experiences will help inform your
own career decisions.

Deliberate Skill Acquisition
If you enjoy learning, you’ve made an excellent career choice. As a software devel‐
oper, you’re committing to a lifetime of learning. But here’s the reality: you can’t learn
everything. No matter how much you might want to, there simply isn’t enough time.

In the previous section, you learned how to create a roadmap for your career. To stay
on track, avoid chasing every new technology just because it’s trending. The truth is,
many of these trendy tools may not exist in a few years. This behavior is sometimes
called resume-driven development, where you learn technologies solely to add them
to your resume rather than for meaningful career growth.

In Chapter 12, you learned some valuable tips on how to learn. This invaluable
skill, combined with deliberate skill acquisition, can help you reach your goals faster.
Random learning produces random results. To progress effectively in your career,
you need a structured approach to acquiring new skills.

To help with deliberate skill acquisition, you can build a strong foundation of the
fundamentals, develop your expertise in the shape of a T, and focus on strategic
learning.

Core skills
Core skills form the bedrock of your technical expertise and remain valuable
regardless of changing technology trends. These skills represent the foundation, the
vertical bar of your T-shaped expertise. Building a strong foundation is essential
before adding complexity. Focus first on mastering these fundamentals of software
engineering:

• Data structures and algorithms•
• Design patterns•
• Testing methodologies•
• Version control•
• Database design•

Plan Your Career Path | 313

T-shaped development
Once you have developed a solid foundation, you can expand your expertise. T-
shaped development creates a powerful combination of depth and breadth that makes
you both specialized and adaptable in an industry that is constantly evolving:

• The vertical bar represents deep knowledge in your primary technology stack.•
• The horizontal bar represents broader knowledge across related technologies.•

For example, if you’re a backend Java developer:

• Deep knowledge: Java, Spring Framework, data storage (SQL/NoSQL)•
• Broad knowledge: Basic frontend skills, DevOps practices, system design•

Strategic learning
Before investing your limited time in acquiring new skills, evaluate each opportunity
against these critical criteria:

• Does this align with your career goals?•
• Is this technology/skill likely to be relevant in three to five years?•
• Will this knowledge give you a competitive advantage?•
• Will this make you more valuable in your current role or team?•
• Does this new thing excite you?•

Deliberate skill acquisition transforms your learning from random to strategic. By
focusing on core skills first, developing T-shaped expertise, and evaluating learning
opportunities against your career goals, you’ll make better decisions about where to
invest your time. This targeted approach not only accelerates your growth but also
ensures that you develop mastery in the areas that truly matter to your unique career
journey.

Build a personal technology radar
Now that you understand the importance of deliberate skill acquisition, it’s time
to put it into action by learning about technology radar. A technology radar is a
decision-making and communication tool that helps organizations track and catego‐
rize emerging technologies, tools, frameworks, platforms, and techniques over time.
It’s especially valuable for software development teams, product innovators, and
technology leaders. Originally developed for organizations by Thoughtworks, you
can adapt this concept for personal use.

314 | Chapter 14: Career Management

https://oreil.ly/n3p-r

Your radar should have four quadrants:

1. Language & Frameworks1.
2. Tools & Infrastructure2.
3. Platforms & APIs3.
4. Techniques & Methodologies4.

Within each quadrant, categorize technologies into rings:

Adopt
Technologies you’re currently using and mastering

Trial
Technologies you’re actively learning or experimenting with

Assess
Technologies you’re researching but haven’t started learning

Hold
Technologies you’ve decided not to pursue right now

Creating your first technology radar might seem overwhelming, but beginning with
what you know provides solid footing. Start by mapping your current technical
landscape and gradually expand outward. You could create this by doing something
as simple as writing it on a piece of paper all the way up to using a tool from
Thoughtworks called Build Your Own Radar, or BYOR. Whatever works for you and
your team, the important thing is capturing your technology ecosystem in a way that
sparks meaningful discussion and guides future decisions:

1. List technologies in your current stack. Include languages, frameworks, and tools1.
you use daily. Note your proficiency level with each and identify any knowledge
gaps worth addressing.

2. Add technologies used in job postings that interest you. Review positions you’d2.
like to have in the next one to two years. What technologies appear frequently in
these listings? Which ones are listed as “required” versus “nice-to-have”?

3. Include emerging technologies from tech blogs and conferences. Pay attention to3.
solutions gaining traction in your specific domain. Don’t chase every trend, but
identify patterns in what industry leaders are adopting.

4. Review and update periodically. Set a quarterly reminder to reassess your radar.4.
Technologies may move between categories as their relevance to your career
changes.

Plan Your Career Path | 315

https://oreil.ly/MxSJv

Remember: Your radar should reflect both current popular tech‐
nologies and future trends. It is a tool to help you focus your
attention on what you want to learn in the near and medium term.

To make this practical, Table 14-1 presents an example of what a junior developer’s
technology radar might look like.

Table 14-1. Example of a junior developer’s technology radar

Adopt Trial Assess Hold
Techniques & Methodologies System design patterns Microservices

architecture
Tools & Infrastructure Git for version control Docker & Kubernetes
Platforms & APIs SQL for data access Cloud Platforms /

GraphQL
Languages & Frameworks Java, Spring Boot Technologies in

decline, experimental
frameworks

Try to come up with a regular cadence to review and update your radar. Technology
moves quickly, and what is relevant today could be obsolete tomorrow. Use your
radar in combination with your career roadmap to stay the course. None of these
decisions are permanent; you should adapt as your needs and desires change. Your
own interests will evolve as well: your passion matters. If you’re not excited about the
topic, you’ll never invest your most precious assets: your time and attention.

Aligning Career Choices with Life Phases
Your career decisions won’t happen in a vacuum. They are deeply influenced by your
current life phase and personal circumstances. Everyone’s story on why they got into
software development and how they got to where they are today is unique. What
might have made sense as a career path right out of school might not be the same
later in life with young kids at home, let alone as a freshly minted empty nester.

Five main factors typically drive career decisions:

Compensation (salary, benefits, equity)
Are you paid adequately for your work?

Team and workplace culture
Do you like the people and organization?

Work content and technical challenges
Do you like the work?

316 | Chapter 14: Career Management

Growth opportunities and future prospects
Will this job help you get the next job? Also consider the opportunity cost: what
other experiences, skills, or connections might you miss by choosing this path
over alternatives?

Work–life balance
Does this role allow you to maintain your personal relationships and well-being?

While all of these factors should be taken into consideration, their priority may shift
based on your life phase. For instance:

Early career
You might prioritize growth opportunities and challenging work, accepting lower
pay to gain experience at a cutting-edge startup.

Family formation
Health insurance, stable hours, and predictable income might become crucial,
making established companies more attractive.

Mid-career
With experience under your belt, you might focus on maximizing compensation
through strategic moves between companies.

Later career
Work–life balance and team culture often become more important than rapid
career advancement. Many experienced developers also find motivation in cre‐
ating a lasting legacy through mentoring others, contributing to meaningful
projects, or building something that will have lasting impact.

When aligning your career choices with your life phases, you should consider the
type of company you want to work for as well as some practical considerations such
as whether you are willing to relocate or travel for work.

Company types and their work–life fit
When searching for your next opportunity, it might help to examine the types of
companies out there and how they align with your different life phases:

Startups
A newly established business focused on developing a novel product or service

• Pros: Rapid and diverse learning opportunities, as you’ll likely need to wear•
many hats and tackle diverse challenges

• Cons: Long hours, high risk of failure, and limited resources or benefits•

Plan Your Career Path | 317

Traditional companies
Companies across various industries (healthcare, finance, retail, manufacturing,
etc.) that use technology to support their primary business but aren’t technology
companies themselves

• Pros: Stability, predictable hours, strong benefits packages, good work–life•
balance

• Cons: Typically slower-paced development, less bleeding-edge technology,•
lower total compensation

Big tech
Large, influential technology companies such as Alphabet (Google), Amazon,
Apple, Meta (Facebook), and Microsoft

• Pros: Financial security, strong benefits, credibility, cutting-edge technology•
opportunities

• Cons: Highly selective hiring process, lengthy interview preparation requir‐•
ing algorithm study

Consulting
Companies that provide expert advice and services to other organizations,
through consulting firms or as an independent freelancer

• Pros: Broad experience across multiple companies and technologies, expo‐•
sure to a variety of industries, often higher compensation. As an independent
consultant, you get to pick your own projects and have greater flexibility.

• Cons: Requires quick adaptation to new environments and technology•
stacks, potential travel requirements. Independent consulting adds the chal‐
lenge of finding your own clients and managing business operations.

Practical considerations
When evaluating potential job opportunities, it might not come down to just the type
of company you want to work for. If all things are considered equal, some of these
practical factors might matter more depending on your current phase of life:

• Do you need comprehensive health insurance, or can you get it through a•
partner?

• Is geographic stability important to you?•
• Can you handle the financial uncertainty of equity over salary?•
• Do you have the time and energy for an intense learning curve?•
• Do you want to travel more or less?•
• Will this move help you build your own personal brand?•

318 | Chapter 14: Career Management

• Do you prefer to work from home or in an office? If the latter, is the commute•
reasonable?

• What is your tolerance for risk?•
• Does this opportunity offer you the work–life balance you need?•
• Do you like the business domain or product? Are you excited to learn it?•

There’s no single right path, just the right choice for your current circumstances.
Different company types (startups, big tech, consulting) will align with your changing
life phases, while practical considerations like health insurance needs, location stabil‐
ity, and work–life balance preferences will help guide your decision making.

Also, plan with flexibility. When making career decisions, set ambitious goals but try
to build in flexibility for unexpected challenges or changes in your personal life. Your
career path rarely unfolds exactly as you planned it, and that is OK. This is often
where the most valuable growth and learning happens. Focus on maintaining steady
progress over time rather than burning out on an aggressive predetermined timeline.

Walking Your Career Path
Now that you understand how to plan your career path, let’s explore practical tips
for the journey ahead. As you progress, remember to enjoy each step along the
way. We often focus so intently on our destination that we forget to celebrate our
current accomplishments. In this section, you’ll learn strategies for documenting your
achievements, managing imposter syndrome, building your professional network,
and succeeding in interviews.

Celebrate and Record Your Wins
The world of software development moves at a rapid pace. You pour everything into
solving one problem before quickly moving on to the next. Whether you’re fixing
a complex bug, implementing a new feature, or receiving positive feedback from
colleagues or community members, every win matters, no matter how small it seems.
Take the time to record these victories, both large and small, as they happen.

A “wins document” serves multiple purposes. It acts as a powerful reminder when
imposter syndrome (we’ll talk about this later in the chapter) strikes, and it provides
a confidence boost during tough times. It’s also a valuable resource for performance
reviews, resume updates, and job interviews. Moreover, it helps you track your
professional growth and identify patterns in what you’ve considered wins throughout
your career.

To document your wins, find a place where you can keep a running log of your
achievements. A digital artifact synced across devices and backed up to the cloud is
ideal, but if you prefer writing it down on good old-fashioned paper, go ahead and do

Walking Your Career Path | 319

2 Including dates can be extremely helpful for reviews and resume updates.

that. It doesn’t need to be a standalone knowledge management application or have
fancy structure to it; an Apple Note or Google Document can easily be accessed on
your phone and laptop. Here are some things you can include in your document:2

• Technical wins (successfully implemented features, solved bugs)•
• Process improvements you have initiated•
• Positive feedback from a colleague, stakeholder, and members of the community•
• New skills you learned•
• Presentations or knowledge-sharing sessions you’ve led•

Be specific rather than exhaustive when documenting your work; you’ll want to
remember the details later. Instead of writing “Improved performance in our flagship
application,” write “Improved performance by 25% in our flagship application by
enabling virtual threads and improving customer experience.” The second version is
much more impactful. Such specific achievements are perfect for your resume when
seeking new opportunities, whether within your current company or elsewhere.

Overcome Imposter Syndrome
Does persistent doubt ever creep into your thoughts and ask questions like, “Do I
belong here?” or “Can I really do this?” or “Am I smart enough to do this?” It’s
called imposter syndrome, and here’s the truth: those feelings might stick with you
throughout your entire career. But here is the good news: that’s completely healthy,
and it can actually be a driving force for growth.

What imposter syndrome really is
As you move through your career, you will one day realize that those initial feelings of
imposter syndrome weren’t because you didn’t belong; they were signs that you care
about doing good work. Imposter syndrome is also an indication you understand
how vast the ocean of things you don’t know actually is. Beware the person who
“knows everything.” They don’t, and they can often be dangerous on a project.
Software is a specialized field, and you cannot know every detail. It takes humility
and confidence. There are things you know, and there are things you don’t know, and
that’s perfectly fine.

Here are some common signs of imposter syndrome as a software developer:

• Hesitating to speak up in technical discussions•
• Feeling like you need to know everything before contributing•

320 | Chapter 14: Career Management

3 You cannot learn it all.

• Comparing yourself to more experienced developers•
• Attributing your successes to luck rather than skill•
• Worrying that others will “discover” you don’t belong•

These feelings are completely normal. People often feel overwhelmed by the vast
amount of knowledge they think they need to possess. The field of software develop‐
ment is enormous,3 and it’s impossible to know everything, and that’s perfectly fine.

How to overcome imposter syndrome
While it’s easy to feel like an imposter, these feelings don’t have to hold you back. In
fact, they can be a sign that you’re challenging yourself and striving for improvement.
This section focuses on transforming those feelings into a powerful force for positive
change.

Using doubt as motivation. Instead of viewing imposter syndrome as purely negative
self-doubt, you can transform these feelings into powerful motivation for growth.

Don’t see failure as a bad thing but as an opportunity to learn. Yes, there will be
bumps along the journey, but that’s OK. Once you stop fearing failure, real growth
begins. That doubt about your technical expertise in a language or framework? Use it
to fuel your mastery. You can overcome those feelings we saw in the previous section:

Hesitating to speak up in technical discussions
Speak from your experiences. No one can invalidate your personal experience. If
you’re wrong, learn from it.

Feeling like you need to know everything before contributing
Accept that you’ll never know everything. The sooner you embrace this, the
faster you’ll grow.

Comparing yourself to more experienced developers
There will always be someone more knowledgeable—embrace it. Being in their
presence is an opportunity to learn.

Attributing your successes to luck rather than skill
Luck is preparation meeting opportunity. When you learn from failures and keep
improving, your successes come from skill, not chance.

Worrying that others will “discover” you don’t belong
You belong here. The sooner you believe this, the sooner you can enjoy your
career. It won’t be easy, but with dedication, you can accomplish anything.

Walking Your Career Path | 321

Building confidence through action. You gain confidence by encountering the same
problem multiple times. The first time you face a challenge, your mind might race
with panicked thoughts of “How do I fix this?” while feeling completely lost.

When you complete your bug fix or new feature and submit it for code review,
welcome the feedback you receive. The reviewers aren’t necessarily smarter than you;
they’ve just encountered similar problems more frequently. Consider a lightweight
retrospective: what worked, what didn’t, what would you do differently in the future?

While it’s important to embrace feedback, you also need to learn to stand firm on
decisions you feel strongly about. This demonstrates conviction in your thoughts,
not argumentativeness. The next time you encounter this challenge, you’ll draw from
your experience and know exactly what to do. Eventually, confidence and experience
become one and the same. Like riding a bike, facing the same problem repeatedly
makes it second nature. What was once intimidating (like those first wobbly attempts
on a bike) becomes effortless.

Recognizing opportunities for growth. When browsing your issue tracker, challenge
yourself by picking a complex task. While it’s tempting to grab another ticket similar
to your last 10 fixes, that won’t help you grow. Don’t be afraid to pick up an issue
from an unfamiliar area of the system. You’ll not only gain broader knowledge of
the entire system but also strengthen your problem-solving skills by tackling diverse
challenges.

By taking on issues in parts of the application that other developers avoid, you’ll
become more valuable to your team. You’ll establish yourself as the domain expert for
“payment systems” or whichever area you master.

Remember that imposter syndrome is completely normal and those feelings may
persist throughout your career. Use them as a daily driver of force for growth rather
than a barrier. Another driver for growth is who you surround yourself with, and in
the next section, you’ll learn how to build your professional community.

Build Your Professional Community
Networking is not just for computers. When it comes to career growth, developers
often focus solely on technical skills, which are obviously important to your career.
However, the personal connections you build throughout your career are just as
valuable. Building a professional community isn’t about the number of followers you
have on a social network; it’s about the genuine relationships that you build through‐
out your career. Having people you can reach out to for advice, job opportunities, or
to just vent about something that happened on your project is key to your success.

If the word “networking” makes you think of crowded conference mixers and forced
small talk, you’re not alone. But that’s not what effective networking looks like.

322 | Chapter 14: Career Management

Networking doesn’t require you to be the most outgoing person in the room or attend
every social event. Success comes from leaning into your strengths and finding the
networking approaches that align with how you naturally connect with others.

In this section, you’ll explore several key aspects of building your professional com‐
munity. You’ll learn about the types of communities available to you, both local and
online. As you begin to get involved in these communities, you’ll learn effective ways
to contribute to them, from sharing your knowledge to active participation. You’ll
learn principles for building lasting professional relationships based on authenticity,
consistency, and mutual value. Finally, you’ll explore common pitfalls to avoid, such
as prioritizing quantity over quality, and explore the long-term benefits that a strong
professional network can provide throughout your career.

The Impact of My Professional Network on My Career
Dan here. I’m not exaggerating when I say that every opportunity in my career
has come from building my professional community. While the connections haven’t
always directly led to opportunities, they’ve always influenced my journey in some
way. Early on in my career I would attend user group meetings and conferences and
met some incredible people along the way that I am still friends with today. I’m not a
believer of random meetings in life. I believe that some people come into your life and
present opportunities, and it’s up to you to take advantage of them.

Professional communities exist far beyond your coworkers. This network can include
mentors, former colleagues, conference speakers, open source contributors, recruit‐
ers, and fellow developers. Each of these connections represents an opportunity for
learning, collaboration, and professional development. Let’s explore both local and
online communities.

Local tech communities
Local tech communities are groups in your geographic area that facilitate face-to-face
connections and meaningful relationships. These might include the following:

• User groups focused on specific technologies•
• Local hackathons and coding events•
• Tech meetups and social gatherings•
• Professional organization chapters•

The primary benefit of local communities is forming deeper connections through
regular, in-person interactions. Most user group meetings include networking oppor‐
tunities before or after the main presentation, where you can connect with fellow

Walking Your Career Path | 323

community members. You’re also likely to be more engaged during presentations
compared to watching a virtual meeting in the background while multitasking at
home.

Of course, there are trade-offs to consider. Depending on the meeting location and
schedule, commuting could be a factor. Whether it’s a short drive or a longer journey,
the total time investment including travel, networking, and the actual event might
amount to three to four hours.

Regardless of where you live or what technology interests you, you’ll likely find
numerous meetups and user groups covering various languages, technologies, and
areas of interest. If you can’t find a group that matches your interests, consider taking
the initiative to start one.

Online communities
Online communities are groups that exist in digital spaces, facilitating connections
with technology professionals regardless of geographic location. These might include
the following:

• GitHub repositories and discussions•
• Stack Overflow•
• Tech-focused Discord servers•
• Professional Twitter/X communities•
• LinkedIn groups•

The primary benefit of online communities is access to a global network of profes‐
sionals with diverse expertise and perspectives. Most online platforms offer asynchro‐
nous communication, allowing you to participate at times convenient for you. You
can also easily join multiple communities simultaneously, expanding your knowledge
across technologies and specializations.

Of course, there are trade-offs to consider. Online interactions often lack the depth
and personal connection of face-to-face meetings. It can be harder to form meaning‐
ful relationships through text-based communications alone. Additionally, the 24/7
nature of online communities can sometimes lead to information overload or feeling
pressured to constantly stay engaged.

Regardless of your technology interests, you’ll find numerous online communities
covering virtually any language, platform, or specialty. If you can’t find a community
that matches your specific interests, many platforms make it simple to create your
own space and invite like-minded professionals.

324 | Chapter 14: Career Management

Cultivating Your Professional Relationships
Building a network through meaningful connections is essential for career growth,
but like any relationship, these connections need fostering and nurturing over time.
Remember that building a community isn’t about what you can extract from it;
this transactional mindset won’t lead to meaningful relationships. Instead, focus on
creating mutual value through genuine contribution, and professional growth will
naturally follow.

Core principles of professional relationships
Professional relationships that last are built on core principles that reflect both your
technical expertise and interpersonal skills:

Authenticity
Be yourself and be genuine in all of your interactions. If you don’t understand
a technical concept during a meeting or code review, admit it and use it as a
learning opportunity. Your colleagues will appreciate your honesty and be more
willing to help out.

Dependability
Dependability is an important skill across all walks of life. Deliver on your com‐
mitments reliably. If you say you’ll have a feature ready for review by Thursday,
make it happen. When you can’t meet a deadline, communicate it early. If you
regularly meet people in your network for coffee or lunch, show up on time and
don’t cancel at the last minute. This dependability builds trust with both team
members and individuals in your professional community

Mutual value
Don’t just rely on that coworker with strong frontend skills for answers; build a
relationship where both of you benefit. Share your knowledge freely while being
open to learning from others.

Respect
Be open to the possibility that you don’t have all the answers. Acknowledge
and value diverse perspectives and experiences. When discussing technical
approaches, listen actively to alternative solutions, even if they differ from your
preferred method. Remember that in software engineering, there are often multi‐
ple valid ways to solve a problem.

Communication
Communication is the foundation of any relationship, and it’s no different when
it comes to your professional network. Clear, effective communication is cru‐
cial in software development. Whether you’re explaining your code changes,

Walking Your Career Path | 325

discussing architectural decisions, or providing status updates, strive for clarity
and consider your audience’s technical background.

Maintain and engage your network
Building connections is important, but maintaining meaningful relationships with
your existing network is equally crucial for long-term career success. This requires
ongoing investment of time and energy.

Deliberately engage your communities by sharing your unique perspective and
actively participating. Write about problems you’ve solved, contribute to discussions
on GitHub or Stack Overflow, and ask thoughtful questions during meetings. Docu‐
ment your solutions: you’ll thank yourself later when you encounter the same prob‐
lem again. Being a passive observer isn’t enough. Offer help when you can, share
relevant resources, and provide constructive feedback on others’ work.

Reach out to people periodically just to see how they’re doing and check in on what
they’re working on. If people hear from you only when you need something, they will
pick up on that and may start avoiding you.

It may seem overly mechanical, but don’t be afraid to set periodic reminders to
yourself to touch base. Schedule a recurring coffee meeting or lunch. If you find an
article or podcast you think someone would appreciate, send it to them. Nurturing
your network is time well spent.

When you focus on these core principles while actively engaging with your com‐
munities and maintaining your relationships over time, you’ll build a professional
network that supports your entire career journey.

Choose Quality, Not Quantity
This is probably easier said than done, but you should avoid worrying about how
many followers you have on a given social media platform. Instead, focus on cultivat‐
ing the followers you do have by engaging with them and fostering real connections.

Having 5,000 LinkedIn connections doesn’t mean anything if none of them will
recommend you for a position. Focus on building meaningful relationships instead of
the vanity metrics that seem to mean something in our society.

Acing Your Next Interview
Interviewing isn’t just about landing your next job; it’s a fundamental skill that
will pay dividends throughout your career. Whether you’re looking for an internal
promotion, exploring new opportunities outside of your company, or trying to land

326 | Chapter 14: Career Management

4 And you may discover a connection that can help you stand out from other candidates.

your first job, mastering the art of interviewing is important for career growth in the
field of software engineering.

The professional network that you’ve been cultivating plays an important role too.
Your connections can provide helpful knowledge about companies, make introduc‐
tions, and even serve as references.

Even if you’re content in your current role, maintaining sharp interviewing skills will
prepare you for unexpected opportunities, internal promotions, or something all too
common in our industry: layoffs.

In the following sections, you’ll explore how to prepare for an interview, navigate the
interview itself, and follow up professionally. These skills, like any other in software
engineering, improve with practice and preparation.

Interview preparation
This section explores preparation strategies that will help you stand out from other
candidates and approach interviews with confidence. From leveraging research tools
and your professional network to practicing common questions and honing your
soft skills, you will learn how to showcase your technical expertise and professional
value effectively. Remember that preparation is not just about technical knowledge;
it is about presenting yourself as a well-rounded professional who can contribute
meaningfully to an organization’s success.

Strategic research. Before applying to any position, thoroughly research both the
company and the specific role to determine whether they align with your career goals
and values. This initial research will help you determine what positions are a good
fit. After you have secured an interview, deepen your research to understand the
company’s culture, technical stack, business challenges, and interview process. Just
by spending a little time doing this research, you have set yourself apart from other
candidates who are probably submitting their 100th resume of the day.

Many resources are at your disposal for research, and it’s your job to use them to get
the results you’re looking for. If you’re not already on LinkedIn, you should join, as
it gives you another tool to build your professional network. It also provides insights
into your interviewers, company background, and work culture.4 Your network can
also provide invaluable insider perspectives about the interview process and company
dynamics and even helpful information about your interviewers.

When preparing for an interview, modern AI tools like LLMs and research assistants
can provide comprehensive insights into companies that go far beyond what’s avail‐
able in job postings. These tools can analyze recent company news, surface detailed

Walking Your Career Path | 327

information about their technology stacks, reveal their market positioning and com‐
petitive landscape, and even identify trends in their hiring patterns and company
culture. This deep research capability allows you to better understand potential
employers and prepare more effectively for interviews. Here is an example prompt
you can use with your favorite AI tool to generate some research for your upcoming
interview:

I have an upcoming interview with [COMPANY NAME] for a [POSITION] role.
Please help me prepare by providing comprehensive research on
the following:

1. Company background: Brief history, mission, values, and
current leadership team.

2. Recent developments: Major news, product launches, acquisitions,
or strategic shifts in the past 6-12 months.

3. Technical information: Primary tech stack, notable open-source
contributions, engineering blog highlights, and technical challenges
they might be facing.

4. Market position: Main competitors, market share, unique selling
points, and recent performance indicators.

5. Culture and work environment: Employee reviews, work-life balance,
remote/hybrid policies, and development opportunities.

6. Interview process insights: Common interview questions,
technical assessments, and valued skills based on employee experiences.

7. Potential questions I could ask during the interview that
demonstrate my research and genuine interest.

Please format this information in a way that's easy to review
and highlight any points that would be particularly valuable
to mention during the interview.

Modern AI assistants like ChatGPT, Google Gemini, and Anthro‐
pic’s Claude can perform “deep research” by synthesizing informa‐
tion across multiple online sources. These tools do more than
return search results. They analyze company data from many
sources including news sites, tech blogs, financial reports, and
employee reviews. From this analysis, they deliver comprehensive
insights about technology stacks, business strategies, and company
culture. Leverage these capabilities by asking specific questions and
using follow-up queries to drill down into relevant areas for your
interview preparation.

328 | Chapter 14: Career Management

5 FAANG refers to Facebook (now Meta), Amazon, Apple, Netflix, and Google (now Alphabet).

While AI tools can help with research, you need to be careful not to overuse them or
use them without validating their results. HR departments and recruiters can easily
spot AI-generated cover letters and resumes. If you need assistance with spelling,
grammar, and overall writing improvement, use AI tools carefully but do not blindly
accept entire cover letters. This is your first impression, and you want it to sound
authentic and highlight the unique qualities that make you who you are.

Another effective research tool is determining the company’s interview style. This
could be a mix of technical and soft skill questions, FAANG-style algorithmic chal‐
lenges, or take-home coding projects.5 Understanding what type of interview you are
walking into will help you be more prepared and give you the confidence you need to
ace that next interview.

Finally, you might need to get your boots on the ground and do some manual
research. This could involve talking to people who are currently working there or
who have worked there in the past.

Being prepared can help put you at ease and give you confidence as you work your
way through what is often a stressful interview process. Knowing what to expect
means you won’t be caught off guard. Bringing your research into the interview
process shows your potential new employer that you are engaged and serious about
the opportunity, which can be the difference in getting an offer or not and may also
result in a better compensation package.

Evaluating mutual fit. Your research shouldn’t just help you answer the interview
questions; it can also be used to determine the questions you ask your interviewers.
Remember that you’re interviewing them just as much as they’re interviewing you.
Use your research to prepare questions that demonstrate your genuine interest while
also helping you determine whether this opportunity aligns with your career goals.
For example, ask about the following:

• Team dynamics and culture•
• Technical challenges and decision-making processes•
• Tech stacks and development practices•
• Growth and mentorship opportunities•
• Travel requirements and percentage of time on the road•

Handling common questions. You will never be prepared to answer every question that
an interviewer throws at you, but you can prepare yourself for some common ques‐
tions that will come up in a lot of interviews. The first one you should be prepared

Walking Your Career Path | 329

6 “Where do you see me in N years?” is also an excellent question to ask your interviewer: they now imagine
you are hired and progressing in your career with this organization.

for is “Why are you leaving your current position?” In this case, it’s important to be
honest but also professional. It’s acceptable to respond with the following:

• Seeking better compensation•
• Looking for new technical challenges•
• Pursuing growth opportunities•

Avoid speaking negatively about your current employer, as it reflects poorly on
your professionalism and interviewers will take note. Remember that professional
networks are interconnected, and even with anonymized details, your references may
be recognizable to others.5

Another common question you will need to prepare for is “Where do you see
yourself in N years?”6 This question helps employers evaluate your ambition, com‐
mitment, and whether your career goals align with their company’s direction. They
want to understand whether you’re dedicated to professional development in both
technical skills and leadership.

When answering, focus on your plans for professional growth and making an impact
in the organization. You might discuss aspirations toward technical leadership, archi‐
tecture roles, or mentoring others while keeping your goals realistic and aligned with
typical career progression. This is an excellent opportunity to reference your career
roadmap, discussed earlier in this chapter.

Technical questions software engineers should expect. Beyond general interview ques‐
tions, software engineering roles will include technical questions that help a potential
employer understand your approach to problem-solving and experience. Here are
some common questions that you can prepare for:

“Walk me through how you would approach debugging a performance issue in
production”

This tests your systematic thinking and understanding of debugging methodolo‐
gies. Practice explaining your step-by-step process, from identifying symptoms to
implementing solutions.

“Describe a challenging technical problem you solved and your thought process”
Focus on your reasoning process, not just the final solution.

“How do you stay current with new technologies and decide what to learn?”
Demonstrate that you’re proactive about professional development. Mention
specific resources you use and how you evaluate new tools or frameworks.

330 | Chapter 14: Career Management

“How do you approach code reviews and giving/receiving feedback?”
Shows your collaboration skills and commitment to code quality. Discuss both
the technical and interpersonal aspects of effective code reviews.

“Explain how you would design a simple system like a URL shortener or chat
application”

This tests your ability to think through system architecture, data modeling, and
scalability considerations. Start with basic requirements, then walk through your
design decisions and potential trade-offs.

Remember those wins you have been tracking? They are about to
become a tool you can lean into. Those technical problems you
solved, the bugs you squashed, and those projects you delivered
ahead of schedule are accomplishments that are yearning to be
told. Make sure you find a way to review those wins and incorpo‐
rate them into your conversations.

Practice makes perfect. Preparation is a crucial step on your path to acing that next
interview, with mock interviews serving as one the most effective tools at your
disposal. This is much more than simply rehearsing answers: these practice sessions
create a foundation that helps you enter the real interview with confidence, poise,
and clarity of thought. Regular practice interviews transform potentially stressful
encounters into familiar territory, allowing your authentic professional self to shine
through when it matters most.

To get the most out of your practice sessions, carefully select partners who can
provide meaningful feedback. You’re not looking for a yes person or “That was great”;
you want tangible feedback from someone who has been on that side of the interview
before. If you can’t find a friend or coworker who fits that bill, try reaching out to
someone in your professional network who might be willing to help out. There are
also online platforms that specialize in technical interviews, such as interviewing.io,
that offer structured practice opportunities with experienced professionals. Those
local or online tech communities that you just learned about might also be a good
resource to find suitable practice partners.

AI Mock Interviews
Finding the right practice partner to help you prepare for that next interview isn’t
always easy. This is where AI tools can be really helpful. Modern AI chatbots can gen‐
erate realistic interview questions tailored to a specific role, create coding challenges,
and help you practice answering technical questions clearly. Many AI chatbots now
offer a voice mode, allowing you to practice speaking your answers out loud. The
chatbot can then give you follow-up questions just like in a real interview. This verbal

Walking Your Career Path | 331

http://interviewing.io

practice is valuable for building confidence with answering unknown questions and
getting comfortable thinking on your feet. While AI can’t totally replace human
feedback, it’s available 24/7 and can help you in the initial stages of preparation before
moving on to human-led mock interviews.

To get the most out of each practice session, you need to approach it with the same
seriousness you would bring to an actual interview:

• Record your sessions for self-review, allowing you to observe both strengths and•
weaknesses from an outside perspective

• Pay close attention to both verbal content and nonverbal communication cues•
• Request specific feedback on your technical explanations, focusing on clarity and•

depth
• Practice responding to common behavioral questions by using concrete examples•

from your experience
• Work consistently on maintaining professional body language and appropriate•

eye contact

By incorporating regular, structured practice into your interview preparation strat‐
egy, you transform the interview process from an intimidating obstacle into a well-
rehearsed opportunity to showcase your qualifications and potential. Now that you
are prepared for that upcoming interview, let’s discuss some practical tips you can use
during the actual interview.

During the interview
This section prepares you for the crucial moments when you’re face-to-face with
your interviewers. You’ll learn some practical strategies for commanding technical
conversations, demonstrating problem-solving skills beyond just syntax, and present‐
ing yourself professionally, whether in-person or virtually.

Command the technical interview. Remember that you have prepared for this interview,
so enter with confidence and the mindset that you are going to ace it. When pre‐
sented with coding challenges it’s important to resist the urge to immediately start
typing or writing on the whiteboard. Instead, try to think through and verbalize your
thought process. This is a key skill that the person interviewing you is looking for
more often than the semantics of writing code, which we assume you know how
to do. Begin by clarifying requirements and constraints, then outline your approach
before implementing a solution.

When solving an unfamiliar problem, show your value through a clear approach:
break the problem into smaller parts, think about different solutions, and explain

332 | Chapter 14: Career Management

your chosen path. Use your documented technical wins as examples to show your
expertise when talking about past projects and how they might relate to this problem.

Be professional. Beyond your technical prowess, professionalism can have a huge
impact on your interview. The following are some practical insights on how to
present yourself effectively in an in-person or virtual interview.

The following are some general steps you can take to prepare for your interview:

• Research your interviewers’ names and roles. This shows attention to detail and•
helps you address them personally.

• Prepare thoughtful questions about aspects of the role not covered in the job•
description.

• Bring multiple copies of your resume, even for virtual interviews (you can refer‐•
ence it during the conversation).

• Dress for success. This goes for in-person or virtual interviews.•
• Get a good night’s sleep before.•
• Silence your device notifications.•

When it comes to in-person interviews, make sure to arrive early to account for
unexpected delays, giving yourself time to mentally prepare. This might seem obvi‐
ous, but arriving late or rushing to get there can negatively affect your mindset and
performance.

For virtual interviews, all the general interviewing tips apply, but with additional
technical considerations. The following are tips for preparing your environment:

• Test your technology. Make sure your camera, microphone, and lighting are all•
ready to go. Also test your virtual meeting application to make sure you can log
in at the scheduled interview time.

• Silence all application notifications.•
• Close unnecessary applications that might slow down your system during live•

coding exercises.
• Make sure the background you display on camera is clean and tidy.•
• Let household members know you need uninterrupted time.•

Embrace the experience. The interview experience is all about finding the right match,
for both sides. There is a chance that you might not land that first interview or
even the first three, and that is OK. Treat each interview as an opportunity to build
experience and professional connections. If you make a lasting impression, future

Walking Your Career Path | 333

opportunities could arise from this experience. Show genuine enthusiasm for the
opportunity and the company.

After the interview
The interview is over, you’ve done your best, and now begins the waiting game.
The good news is, there are usually only two possible outcomes: you either get an
offer or you don’t. If you receive an offer, congratulations! It’s time to evaluate the
opportunity, negotiate your compensation package, and prepare for your first day.
However, not every interview leads to a job offer, and that’s perfectly normal in the
journey of a software engineer.

The following sections focus on handling those situations where you don’t get the
position, not because they’re more common, but because they present valuable
growth opportunities that are often overlooked.

Learning from the experience. As with dating, you will need to accept the reality that
not all interviews will go well, and you will face rejections. Most of the time job
rejections have little to do with your capabilities. Companies might have decided to
go with an internal candidate, change priorities, hit a hiring freeze, or simply find
a closer skill match to what they are looking for. The key here is you can’t take it
personally.

Growing from feedback. If you didn’t get the job, you could hang your head and
deliberate internally on why the interviewers didn’t want you, or you could use this
as another chance to grow. This is a perfect opportunity to request feedback about
their decision. This information can be extremely valuable for your professional
development. If they have identified areas for improvement, use this as insight and
motivation to focus your learning, and give yourself a better chance in the next one.
Because there will be a next one!

Again, you never know what can happen. Another position might open up that might
be a better fit or a more interesting opportunity. They might be able to connect you
to a friend of theirs who’s hiring at a different company. Heck, they might move to a
new organization and recommend you to a hiring manager. The point is simple: don’t
burn bridges.

Create Work–Life Balance
Being a software engineer can consume your entire life if you let it. Between the con‐
stant pressure to learn the latest technologies, tackle increasingly complex problems,
and meet (sometimes unrealistic) project deadlines, the boundaries between work
and personal life can easily blur.

334 | Chapter 14: Career Management

Understanding the challenges of software development
Every profession brings its own set of unique challenges, and software development
is no different. If you can first identify these challenges, you will be able to look out
for them and be ready to deal with them. The following are some common challenges
and how to deal with them:

Keeping up with rapid technological change
One of the biggest challenges you will face is the pace at which technology
changes. This requires constant learning and adaptation to stay current with
tools, frameworks, and languages.

How to deal with it:

Continuous learning

• You learned a lot about this in Chapter 12, but you need to be deliberate•
about what you’re learning and continue your education through books,
courses, workshops, and conferences to stay updated.

Tech radar

• As you learned earlier in this chapter, a tech radar is a useful tool for•
deciding what to learn next and aligning those options with your career
goals.

Networking

• Collaborating with coworkers and friends to share knowledge and stay up-•
to-date with industry trends.

Problems that are mentally engaging are hard to “turn off”
When you work on mentally challenging problems, it can be difficult to walk
away from the problem, which can quickly take over your personal life.

How to deal with it:

Step away

• Some of your best solutions will come to you when you step away from the•
keyboard and let your subconscious work on the problem. Go for a walk or a
run and let your mind wander.

Rubber ducking

• Sometimes talking the whole problem out to someone else (or some inani‐•
mate object like a rubber duck or AI chatbot) can provide gaps in your logic
or help you understand the issue more clearly.

Walking Your Career Path | 335

Navigating distributed teams and flexible hours
Working with distributed teams in Agile environments can be challenging
because teams are spread out across time zones, cultures, and communication
styles.

How to deal with it:

Effective communication

• Establish clear communication channels and regular meetings to make sure•
the team is aligned with its goals.

Standardized processes

• Implement consistent tools and practices across all teams to maintain coher‐•
ence.

Maintaining physical and mental health
The demands on software developers can lead to stress and burnout if not
managed properly.

How to deal with it:

Work–life balance

• Try to set clear boundaries between work and personal life to prevent burn‐•
out.

Self-care

• Prioritize activities that promote physical and mental well-being such as time•
with friends and family, regular exercise, healthy eating, and mindfulness
practice. Practice grace and give yourself a break when you need it.

Recognizing the challenges you’ll face as a software developer will better prepare you
to overcome them.

Working remotely
Software development has undergone a significant transformation in recent years,
with remote work becoming a viable and common option. While software developers
have long proven that remote work can be successful, many other professions have
now adopted this approach too. As a developer, understanding the benefits and
challenges of remote software development is crucial for your career growth.

If software development were simply about writing code, working remotely would
have no downside. However, as you’ve read in this book, the role involves much
more than coding. Software development centers on collaboration, effective commu‐
nication, mentorship, and team dynamics, all of which present unique challenges in a
remote environment.

336 | Chapter 14: Career Management

Benefits of remote working. Working remotely as a software engineer offers several
benefits that can greatly improve your work–life balance:

Cost and time savings
Say goodbye to rush-hour traffic and long commutes. You’ll save hours each
week and avoid the stress of dealing with bad drivers.

Increased productivity
Remote work provides uninterrupted time to focus on complex problem-solving
and coding. No more desk drop-bys from coworkers asking questions that could
have been sent through Slack, interrupting your flow while you’re deep in con‐
centration.

Flexibility
Not a fan of the traditional nine-to-five structure? Many remote teams embrace
asynchronous work, letting you work during your most productive hours. Want
a change of scenery? Head to your favorite coffee shop to tackle your next task.

Health benefits
Working remotely means avoiding crowded offices where germs spread easily,
potentially reducing how often you get sick. You can prepare healthier meals at
home instead of defaulting to restaurant lunches with colleagues. Plus, you can
easily fit in a morning or lunchtime workout to energize yourself or break up
your day.

Global opportunities
Without commuting restrictions, you have unlimited possibilities for where you
can live and work. This opens up access to a broader range of opportunities that
often come with better compensation packages.

Custom development environment
Particular about your coding setup? Have a favorite chair, desk, or monitor?
Many companies provide financial support to help you create your ideal remote
workspace, a significant upgrade from the standard-issue office cubicle.

Challenges of remote software development. Remote work isn’t without its challenges
and being aware of what they are can help you better prepare how to handle them:

Isolation and loneliness
Not everyone thrives in isolation, and many people crave human interaction.
Working from home can feel lonely without the social connections an office
provides. If you’re feeling isolated, consider starting your day with a gym class or
working from a coffee shop several times a week to break up the monotony of
your home environment.

Walking Your Career Path | 337

Distractions at home
While some people have a distraction-free home office, others contend with
distractions such as the bustle of family life, the allure of a cozy bed, or entertain‐
ment. Though it’s tempting to watch TV or tackle household chores, maintaining
work focus requires discipline.

Communication
Remote software development depends on digital communication tools, which
can sometimes lead to misunderstandings. With team members spread across
time zones, getting quick answers isn’t always possible. Unlike the immediate
feedback you’d get from tapping a colleague’s shoulder in the office, remote
communication requires more patience.

Technical mentorship
This challenge hits particularly hard early in your career. While office settings
allow for quick, informal questions to mentors, remote work often requires
deciding whether an issue warrants scheduling a video call.

Work–life boundaries
Though remote work can improve work–life balance, it can also blur important
boundaries. When your office is at home, it’s tempting to quickly address work
issues during personal time. Setting clear boundaries between work and personal
life becomes crucial.

Technology dependency
Remote work requires reliable internet and technology, and outages can halt
productivity. It’s wise to identify at least two backup locations near your home
where you can work reliably during technical difficulties.

Career visibility and growth
Remote workers can feel overlooked or “out of sight, out of mind” when it comes
to recognition and promotions.

Software engineering careers bring unique challenges. You need clear boundaries to
thrive. Focus on strategies that help you excel at work while protecting your personal
life.

Wrapping Up
If you take anything away from this chapter, it’s that your career in software engineer‐
ing is a journey, not a destination. No matter where you are in your career, being
a software developer may seem daunting at times, but take time to appreciate your
current position and the path you’re on.

By defining your career path with intention, building your skills deliberately, fos‐
tering meaningful professional relationships, and maintaining a healthy work–life

338 | Chapter 14: Career Management

balance, you’ll be well-positioned to navigate the ever-changing landscape of software
development. The key is to remain adaptable while staying focused on your career
goals.

A software developer’s career offers many paths to growth and success. You can dive
deep into technical expertise, move into leadership roles, or forge your own path as
an entrepreneur. Whatever path you choose is possible if you start making deliberate
choices today.

Embrace challenges and failures as opportunities for growth and remember that
imposter syndrome often signals that you’re pushing yourself to learn and improve.
Your journey in software engineering is uniquely yours, so make the most of it.

Putting It into Practice
Implementing what you’ve learned requires action, not just knowledge. The following
practical steps will help you apply these career development concepts immediately,
transforming theory into tangible professional growth:

1. Create your personal technology radar, identifying technologies in each ring1.
(Adopt, Trial, Assess, Hold).

2. Reach out to one person who has a career that you would like to emulate. Ask2.
them if you can buy them coffee and talk about their journey. Who doesn’t love
free coffee?

3. Write down your one-year, three-year, and five-year career goals.3.
4. Join at least one local meetup group in your area. It’s best if you can find a group4.

that regularly meets in person.
5. Start a “wins document” to track your accomplishments and growth.5.
6. Start a blog, even if it’s just a document on your laptop. “Today I solved this really6.

interesting problem (had to learn it twice: once to understand it, then again to
explain it clearly).”

7. Practice a mock interview using AI tools. Use voice mode if available to simulate7.
real interview conditions. Ask the AI to act as an interviewer for a specific role
you’re targeting, then practice answering both technical and behavioral questions
out loud. After the session, ask for feedback on your responses and areas to
improve.

8. Find a peer or mentor and schedule a one-hour mock interview. Record it (with8.
permission) and review your performance.

9. Pick your dream company and research its interview process. Create a prepara‐9.
tion document covering its tech stack, recent news, and three to five specific
questions you’d ask in an interview.

Putting It into Practice | 339

Additional Resources
• Developer Career Masterplan by Heather VanCura and Bruno Souza (Packt Pub‐•

lishing, 2023)
• The Manager’s Path by Camille Fournier (O’Reilly, 2017)•
• Developer, Advocate! by Geertjan Wielenga (Packt Publishing, 2019)•
• Help Your Boss Help You by Ken Kousen (Pragmatic Bookshelf, 2021)•
• The Passionate Programmer by Chad Fowler (Pragmatic Bookshelf, 2009)•
• The Pragmatic Programmer by David Thomas and Andrew Hunt (Addison-•

Wesley Professional, 1999)
• Never Eat Alone by Keith Ferrazzi and Tahl Raz (Crown Currency, 2014)•

340 | Chapter 14: Career Management

https://learning.oreilly.com/library/view/developer-career-masterplan/9781801818704/
https://learning.oreilly.com/library/view/developer-career-masterplan/9781801818704/
https://learning.oreilly.com/library/view/the-managers-path/9781491973882/
https://learning.oreilly.com/library/view/developer-advocate/9781789138740/
https://learning.oreilly.com/library/view/help-your-boss/9781680508871/
https://learning.oreilly.com/library/view/the-passionate-programmer/9781680500165/
https://learning.oreilly.com/library/view/the-pragmatic-programmer/9780135956977/
https://learning.oreilly.com/library/view/the-pragmatic-programmer/9780135956977/

CHAPTER 15

The AI-Powered Software Engineer

It is not the strongest of the species that survives, nor the most intelligent, but the one most
responsive to change.

—Charles Darwin

In 1801, Joseph Marie Jacquard invented a loom controlled by punch cards that could
weave intricate patterns automatically. Professional weavers watched with alarm as
this new machine replicated work that once required years of practice. Many predic‐
ted that this would be the end of their craft as they knew it.

Yet something unexpected happened. Rather than eliminating weavers, the Jacquard
loom transformed them. Skilled artisans became pattern designers, machine opera‐
tors, and textile engineers. The most successful weavers were those who understood
both the traditional craft and the new technology. Production soared, creating
entirely new roles that hadn’t existed before.

Fast-forward two hundred years, and we find ourselves in a similar situation. AI
is writing code, fixing bugs, and designing entire systems. Developers are having
those same “Am I about to be replaced?” thoughts that weavers had back then. But
here’s the thing: history tells us it doesn’t usually work out that way. This pattern
has repeated itself with every major technological breakthrough, and each time, the
people who adapted came out ahead.

The Jacquard loom didn’t put skilled weavers out of work. Instead, it gave them a
superpower: the ability to produce far more in the same amount of time. A weaver
who once took days to create a complex pattern could now produce multiple pieces
in a single day. The same fundamental shift is happening with artificial intelligence
(AI) for developers. You can now build applications, debug code, and solve problems
much faster than ever before.

341

So where does that leave developers like you today? If you can learn to master the
fundamentals of software engineering and learn to leverage AI as your pair program‐
mer, you will be in high demand, not obsolete. Your ability to learn, solve problems,
and adapt are your greatest strengths, and as long as you continue developing these
skills, you will remain relevant. In the next section, you will learn what AI is by
breaking down some of the concepts you’ll encounter as a developer.

What Is AI Really?
While AI has seemingly worked its way into every conversation we have today, it
isn’t new. Computer scientists have been chasing the dream of AI since the 1950s,
when computers filled entire rooms and had less processing power than the phone
in your pocket. Research in AI has progressed in waves of excitement followed
by “AI winters” when funding for general-purpose AI dried up. Yet, practical AI
never disappeared. Behind the scenes, AI quietly powered things like fraud detection,
image recognition, and search engines. Then, in November 2022, OpenAI released
ChatGPT to the public. Within five days, it had a million users. Within two months,
100 million. Suddenly, AI wasn’t just a research curiosity but a tool anyone could
harness.

When it comes to answering the question “What is AI?”, there isn’t a simple answer
because it is such a broad discipline. AI is an umbrella term that covers everything
from simple rule-based systems to neural networks that attempt to mimic how the
human brain processes information. To keep this relevant to software developers,
we’ll focus on a specific set of techniques that have proven effective at solving some
very interesting problems.

In this section, we’ll make AI more approachable by demystifying some of the key
terminology that might seem intimidating. You’ll learn where AI excels and where
it falls short. Finally, we’ll explore what AI can specifically do for you as a software
engineer.

Demystifying AI Terminology
Learning a new technology can often feel daunting, particularly when it comes to
mastering all the terminology that can be found in a new domain. In AI, you’ll
encounter terms like machine learning (ML), deep learning, generative AI (GenAI),
and large language models (LLMs), depicted in Figure 15-1. At its core, modern AI
teaches computers to recognize patterns or probabilities and select the statistically
most likely answer, unlike traditional programming, where you write step-by-step
instructions.

342 | Chapter 15: The AI-Powered Software Engineer

Figure 15-1. The relationships among AI, machine learning, deep learning, and
generative AI

As a software engineer, you don’t need to become an AI researcher, but understand‐
ing these core concepts will help you integrate AI capabilities into your applications
and communicate effectively with data scientists and AI engineers on your team.

Machine learning
Machine learning (ML) is the foundation of modern AI. Instead of explicitly pro‐
gramming every decision, ML algorithms learn patterns from data. The classic exam‐
ple is facial recognition software. You don’t write code to describe every possible face.
Instead, you feed the system thousands of face images, and it learns to identify the
patterns that make each face unique.

In traditional programming you follow a model of “input + program = output” by
writing explicit rules. In ML you reverse this to “input + output = program” by
providing examples of inputs and their correct outputs. The algorithms will then
figure out the rules automatically.

This approach works out particularly well for problems that are easy for humans
to reconcile but harder for us to program explicitly. Imagine you were tasked with
detecting which emails should be classified as spam. Just by opening up and reading
through the email, your knowledge and experience of seeing thousands of spam
emails would allow you to quickly identify which ones are spam.

But how would you write code to identify these patterns? You would need to set
up rules for suspicious phrases, sender patterns, formatting quirks, or thousands of
other factors. Even after setting up all of these rules, spammers would constantly
evolve their tactics, allowing them to bypass your rules. ML avoids this complexity by

What Is AI Really? | 343

learning from the examples of spam and legitimate emails, automatically adapting as
new patterns are identified.

For developers, ML typically shows up in three main types of problems:

Classification
Determining which category something belongs to. Think of it as answering
“What is this?” Examples include spam detection (spam versus legitimate),
medical diagnosis (disease versus healthy), or content moderation (appropriate
versus inappropriate). The algorithm learns to recognize patterns that distinguish
between categories.

Regression
Predicting numerical values. Instead of categories, you’re asking, “How much?”
or “How many?” Examples include predicting house prices based on location and
features, estimating delivery times, or forecasting sales numbers. The algorithm
learns relationships between input features and numerical outcomes.

Clustering
Grouping similar items together without knowing the groups beforehand. This
answers “What natural groupings exist?” Examples include customer segmenta‐
tion (finding different buyer personas), organizing large document collections,
or identifying user behavior patterns. Unlike classification, you don’t tell the
algorithm what groups to look for: it discovers them.

As a developer, you’ll most commonly use ML through APIs and pretrained models
rather than building algorithms from scratch. Here’s how you might integrate ML
into a typical application:

// Using a pre-trained ML model through an API
public class EmailClassifier {
 public boolean isSpam(String emailContent) {
 MLPrediction prediction = mlService.classify(
 emailContent,
 "spam-detection-model"
);

 return prediction.getConfidence() > 0.85
 && prediction.getLabel().equals("spam");
 }
}

Deep learning
Deep learning is a subset of ML that uses neural networks with multiple layers, hence
“deep.” But what is a neural network? Think of it as a simplified model inspired
by how the human brain processes information. Your brain has interconnected neu‐
rons (approximately 86 billion) that pass signals to one another. A neural network

344 | Chapter 15: The AI-Powered Software Engineer

contains nodes that mimic this functionality (artificial neurons) and passes data
through those connections.

In a neural network, the layers act as a processing layer, where each one is assigned
a specific task. In a deep neural network, you might have an input layer that receives
that raw data and several hidden layers that process and transform that data. When
the layers are done processing the data, an output layer produces a final result. These
networks contain multiple layers (typically, three or more make it “deep”), which
allows it to learn complex patterns.

These networks are really good at finding complex patterns in data. If traditional ML
teaches a computer to recognize patterns, deep learning gives it the ability to capture
nuance and context. In facial recognition, the first layer might detect simple edges
and lines, the next layer might combine those to recognize basic shapes, and deeper
layers could identify more complex features like eyes or facial structures. The final
layer puts it all together to classify the entire image as “Dan” or “Nate.”

As a developer, you’ll most often interact with deep learning through pretrained
models rather than building neural networks from scratch. These are models that
have already been trained on massive datasets and can be integrated into your appli‐
cations. Let’s look at a practical example of how you might use a pretrained image
recognition model in a Java application:

// Using a pretrained deep learning model
public class ImageClassifier {
 public String identifyImage(byte[] imageData) {
 DeepLearningModel model = ModelLoader.load("face-recognition-v1");
 return model.classify(imageData);
 }
}

Generative AI
Generative AI (GenAI) represents a fundamental shift in what AI can do. While
traditional AI analyzes and categorizes existing data, GenAI creates new content
that didn’t exist before. If ML is like teaching a computer to recognize what a
good painting looks like, GenAI is teaching it to create new original paintings. This
is possible because the AI models are trained on massive amounts of data across
multiple modalities, all created by humans. The models learn the patterns, styles, and
structures of how humans create, then use those patterns to generate new content that
feels human like.

GenAI works across multiple types of content, each opening new possibilities for
developers:

What Is AI Really? | 345

Text and code
AI can write articles, documentation, code functions, and even entire appli‐
cations based on descriptions. This includes everything from generating user-
friendly error messages to creating realistic test data.

Images
Create custom artwork, generate icons that match your app’s style, produce
marketing visuals, or create placeholder images that relate to your content. AI
understands concepts like “a friendly robot icon in a modern flat design style.”

Audio
Generate natural-sounding speech for accessibility features, create background
music for applications, or produce sound effects.

Video
Produce demonstration videos, create animated explanations of complex con‐
cepts, or generate marketing content. AI can understand requests like “create a
30-second video showing how to use this mobile app feature.”

Here’s an example of how you might use GenAI in your development workflow:

// Using generative AI to create test data
public class TestDataGenerator {

 private final ChatClient chatClient;

 public TestDataGenerator(ChatClient.Builder builder) {
 this.chatClient = builder.build();
 }

 public List<User> generateTestUsers(int count) {
 var userList = chatClient.prompt()
 .user((u) -> {
 var prompt = """
 Generate {n} realistic user profiles with
 name, email, age, and interests""";
 u.text(prompt).param("n", count);
 })
 .call()
 .entity(UserList.class);

 return userList.users();
 }
}

While GenAI creates new content, remember to validate its out‐
put. Generated code should be tested, generated data should be
reviewed, and any user-facing content should be checked for accu‐
racy and appropriateness.

346 | Chapter 15: The AI-Powered Software Engineer

While most software developers aren’t directly involved in developing ML algorithms
or building foundational language models, you regularly interact with AI technolo‐
gies through APIs and services. Understanding these basics helps you build better
applications and work well with AI experts on your teams.

Large language models
Large language models (LLMs) combine the concepts we’ve discussed in this chapter
so far. They use deep learning neural networks and are a leading type of GenAI.
These models derive patterns from vast amounts of data to understand and generate
human-like content. ChatGPT, Claude, and GitHub Copilot are all powered by LLMs.

What makes LLMs particularly powerful is their ability to understand context and
nuance in human language. Unlike earlier AI that might recognize keywords, LLMs
can comprehend meaning, maintain conversations, and even understand implied
information. This is why ChatGPT can help you debug code, Claude can explain
complex concepts, and GitHub Copilot can suggest relevant code completions.

LLMs excel at tasks involving language understanding and generation. Here’s a prac‐
tical example that shows how you might use an LLM to automatically generate docu‐
mentation. This example takes in code as input and generates JavaDoc comments,
which document the purpose and usage of code for developers:

// Integrating an LLM into your application to generate documentation
public class CodeDocumentationGenerator {
 private final LLMService llm;

 public String generateDocumentation(String code) {
 String prompt = String.format(
 "Generate JavaDoc comments for this method:\n%s",
 code
);

 return llm.complete(prompt, new CompletionOptions()
 .setMaxTokens(200)
 .setTemperature(0.3) // Lower = more focused output
);
 }
}

The temperature in LLM settings controls randomness. Lower val‐
ues (0.0–0.5) produce more predictable output, while higher values
(0.7–1.0) increase creativity. For code generation, stick to lower
temperatures. Higher temperatures increase creativity but also raise
the risk of hallucinations, which are confident-sounding but incor‐
rect responses. For factual tasks, lower temperatures help maintain
accuracy.

What Is AI Really? | 347

Understanding AI’s Capabilities and Limitations
Since its inception, AI has evolved significantly, but despite its current capabilities, it
has important limitations you should understand. Being aware of these limitations up
front will help you better recognize when and how to use AI effectively in your daily
tasks.

This section explores AI’s strengths, helping you identify when to incorporate it
into your workflows. Just as importantly, you’ll examine the limitations of LLMs,
providing insights into areas where you might want to employ a little more caution.

What AI excels at for software developers
AI is improving efficiency and productivity across many professions, but how does
it affect you as a software developer? Let’s look at examples of how AI can automate
routine tasks that slow you down every day. Taking these tasks off your plate allows
you to focus on more meaningful work and improve overall happiness:

Repetitive coding tasks
Repetitive coding tasks are where AI can give you the most return on investment
(ROI). AI can serve as an intelligent coding partner, helping you implement
similar patterns across multiple files, create consistent APIs, and even assist with
the development of entire features. This can help free up your time, allowing
you to focus on the unique problems of your application rather than writing
boilerplate code.

Automation scripts and “glue” tasks
This is an area where AI can provide value in your day-to-day workflow. As a
developer you often need to handle routine operational tasks like downloading
files from servers, organizing directories, or automating deployment steps. AI is
really good at generating shell scripts, bash files, and automating scripts for these
“human glue” activities.

Code explanation
Code explanation is one of AI’s most valuable features for developers learning
a new language, framework, or getting onboarded to a new codebase. With
access to a codebase, you can ask AI questions like: “What does this application
do at a high level?” “What are the key entry points?” “What are the major
dependencies?” When learning something new, you can also ask AI to create a
comprehensive learning plan for the topic.

Generating documentation
This is another area where AI excels. Let’s face it, developers generally do not
like writing documentation unless they are required to. AI can help generate
code documentation at every level, from individual methods and classes to

348 | Chapter 15: The AI-Powered Software Engineer

comprehensive project documentation. It can also convert documentation from
one format (like Markdown) to another (like HTML).

Refactoring and optimization suggestions
Refactoring and optimization suggestions is like having a senior engineer review
your code and provide feedback. It can identify bottlenecks, suggest cleaner
implementations, and recommend modern language features or libraries that
might improve your code.

Generating test cases
This is another area where AI can step in and allow you to focus on more creative
and complex problems. Like documentation, tests are another area that is usually
neglected, which can benefit from AI assistance. Even with a comprehensive test
suite, you might miss tests for important edge cases. When given context about
your application, AI can generate tests that align with your existing test suite’s
style and patterns.

Code conversion
Code conversion helps developers translate code between languages, frameworks,
and data types. This works particularly well for higher-level languages like
Python, JavaScript, or Java, but it has its limitations. It can be less reliable for
low-level languages, hardware-specific code, or systems with complex dependen‐
cies. Always remember to test converted code thoroughly, as AI can miss subtle
but critical details.

User interface design and mockup creation
User interface design and mockup creation allows AI to rapidly generate UI
layouts, component structures, and even interactive prototypes based on your
descriptions. AI can create HTML/CSS layouts, suggest responsive design pat‐
terns, and help you visualize different interface approaches before committing to
implementation.

Understanding language and framework features
With the proper prompting, LLMs can save you a tremendous amount of time
scouring documentation. Asking a chatbot to explain an API or the nuances of
a library can be like having an infinitely patient and experienced pair at your
fingertips.

AI’s current limitations
While AI can help us be more productive in many areas, it isn’t perfect. Understand‐
ing where AI falls short is important for using it effectively without compromising
your code quality.

When reviewing the following limitations, it’s crucial to distinguish between the
model and the product. When you use a chatbot, you’re interacting with a product

What Is AI Really? | 349

that sits on top of and communicates with a specific model. These limitations primar‐
ily exist at the model level, though products often augment capabilities to address
them. For example, if you ask ChatGPT for the current price of your favorite stock,
it won’t know the answer because it was trained on a dataset that goes up to only
a certain date. However, ChatGPT can invoke a tool to search the web for the
information it needs.

No real-time knowledge is a significant limitation of current AI systems. They cannot
access up-to-date documentation, understand recent tools or frameworks, or process
real-time events. These constraints limit their ability to provide the most accurate and
relevant responses.

Hallucinations represent one of AI’s most dangerous limitations. AI systems don’t
intentionally provide incorrect answers, but they can generate responses based only
on their pretrained data and the context they are given. They may confidently provide
inaccurate answers that sound plausible but are incorrect. This happens because AI
generates responses based on patterns in training data, not by knowing facts.

Lack of contextual information about your codebase means AI cannot understand your
project’s architecture, existing conventions, or business rules. Without this context, it
generates code in isolation, struggling to properly integrate with your existing system
or adhere to your team’s coding standards and preferences.

Embedded biases in training data can lead to AI generating problematic patterns or
making assumptions that don’t reflect diverse perspectives. AI models are trained on
existing code repositories and documentation, which may contain outdated practices,
cultural biases, or approaches that don’t consider accessibility and inclusivity. This
can result in generated code that may inadvertently exclude certain groups.

Inability to understand business requirements limits AI’s decision-making capability.
It cannot weigh trade-offs between performance and maintainability, understand
regulatory compliance needs, or make decisions that require domain expertise about
your specific industry or user base.

Inconsistent performance across different domains means AI excels with popular lan‐
guages and common patterns but struggles with niche technologies, newer frame‐
works, or specialized domains where training data is limited.

Privacy and security risks happen when sharing code or data with AI tools. Many
AI platforms store conversation history, use inputs to improve their models, or
may inadvertently expose sensitive information. Sharing proprietary code, API keys,
database schemas, or confidential business logic with AI tools can create security
vulnerabilities and intellectual property concerns that require careful consideration.

350 | Chapter 15: The AI-Powered Software Engineer

Always treat AI-generated code with the same rigorous processes
as code written by a human. Consider it a first draft that needs
thorough testing, code reviews, and careful integration planning.
The time saved during initial code generation should be reinvested
in thorough validation.

By understanding both AI’s strengths and limitations, you can create a plan for
incorporating these tools into your development workflow while maintaining code
quality. In the next section, you’ll explore specific tools that can boost your day-to-
day productivity.

AI as Your Pair Programmer
Imagine having a knowledgeable colleague sitting right next to you, ready to answer
questions, suggest solutions, and help you think through problems. Available 24/7,
never gets tired, and never judges you for asking “obvious” questions. That’s exactly
what AI can be for you as a developer: the ultimate pair programming partner.

When it comes to coding, AI is really good at tasks ranging from inline assistance
to full-scale project planning. In this section, we’ll explore categories of AI coding
assistants. We’ll examine specific products in each category that are available at the
time of writing this book. While individual products may come and go because of
AI’s rapid advancement, these fundamental categories are likely to remain stable.

Standalone Chatbot Assistants
Standalone chatbot assistants like ChatGPT, Google Gemini, and Anthropic Claude
are conversational AI systems you interact with through a text or voice interface, sep‐
arate from your development environment. Think of them as your always-available
coding mentor.

These tools excel at helping you understand concepts, debug complex problems, and
plan architecture decisions. Use them when you need thoughtful code generation
with explanations, complex problem-solving, or extended conversations about coding
challenges.

The following are best practices for code-focused conversations:

• Provide context about what you’re trying to accomplish.•
• Share relevant code snippets when asking about specific problems.•
• Prompt with a persona as well as who you are. Ask for explanations, not just•

solutions.
• Use the AI assistant for learning new technologies or frameworks.•

AI as Your Pair Programmer | 351

For example, if you have a list of objects that need to be sorted, a prompt such as
“How do I sort this?” is unlikely to give you a useful response. It doesn’t tell the AI
what kind of code you need. Instead, a prompt such as the following is likely to be
more helpful: “I have a list of Customer objects and want to sort by registration date,
most recent first, using Java 24.”

As you’ll continue to see in “Prompt Engineering Fundamentals” on page 355, the
quality of the prompt you provide to an AI heavily influences the quality of the
results you receive.

Inline IDE Assistants
Inline IDE assistants are AI-powered tools that work directly inside your IDE, offering
real-time suggestions and auto-completions as you type. These tools integrate into
your development environment through plug-ins or built-in features, helping speed
up your coding by handling routine tasks.

Popular options include GitHub Copilot, JetBrains AI Assistant, and Amazon Code‐
Whisperer. Most modern code editors support these AI assistants, making them
accessible to developers at any level.

You should use inline assistants when doing the following:

• Writing repetitive code like getters/setters or constructors•
• Implementing standard patterns (singleton, builder, etc.)•
• Generating unit tests based on existing code•
• Creating code comments and documentation•
• Needing quick API and syntax suggestions•

If you want to get the most out of an AI assistant, you should keep these points in
mind:

• Review generated code before accepting it.•
• Use suggestions as starting points, not final solutions.•
• Pay attention to patterns the AI learns from your codebase.•
• Don’t let AI suggestions override your architectural decisions.•
• Start with simple, repetitive tasks and gradually use them for more complex•

patterns.

352 | Chapter 15: The AI-Powered Software Engineer

Let’s see how an inline assistant can help with both code and documentation:

public class Calculator {
 // Start typing "public int add..." and AI suggests:
 public int addNumbers(int a, int b) {
 return a + b;
 }

 // Or start typing "/** Calculate..." for documentation:
 /**
 * Calculates the sum of two integers
 * @param a the first number
 * @param b the second number
 * @return the sum of a and b
 */
}

With any AI-generated code, you should avoid falling into the
trap of accepting the code and moving on. Ask yourself, “Do I
understand what this code does and why it works this way?” If
you don’t, do your own research to understand it more clearly. You
should be able to explain every line during a code review. Remem‐
ber: AI is a tool to maximize productivity, not a replacement for
understanding. The goal is to learn faster, not to avoid learning
altogether.

Agentic AI IDE Environments
The newest category of AI pair programming tools includes AI-powered develop‐
ment environments like Cursor, Junie, and Cline. These tools go beyond suggestions
to actively participate in coding tasks, potentially writing entire functions or files
based on your requirements.

These environments can understand your entire codebase context and make more
sophisticated changes across multiple files. They’re particularly powerful for refactor‐
ing, implementing features, and maintaining consistency across your project.

Here are examples of when to use agentic environments:

• Large-scale refactoring across multiple files•
• Implementing features that require changes in several places•
• Code migration or modernization tasks•
• When you need AI to understand broader project context•

AI as Your Pair Programmer | 353

Here are best practices when working with agentic environments:

• Start with clear, specific requirements.•
• Define nonfunctional requirements up front (code style, security standards, test‐•

ing approach).
• Review all changes carefully before committing.•
• Use version control to track AI-generated changes.•
• Break large tasks into smaller, manageable pieces.•

Consider a practical example. Imagine you have a dashboard application with five
existing widgets: WeatherWidget, StockPriceWidget, NewsWidget, CalendarWidget,
and TaskListWidget. You ask an agentic AI to create a new StatusWidget that shows
system health metrics.

Here’s how an AI agent approaches this task:

Analysis phase
The AI first examines your existing widgets to understand patterns:

• Reviews the base Widget class structure•
• Identifies common methods like render(), updateData(), and getConfig()•
• Notices the consistent use of a data service pattern•
• Observes styling conventions and component organization•

Planning phase
The AI creates a plan:

• “I need to create StatusWidget extending the base Widget class”•
• “I’ll need a StatusService to fetch system metrics”•
• “The widget should follow the same refresh pattern as others”•
• “I’ll need to add the new widget to the dashboard registry”•

Implementation
Only after this analysis does the AI begin writing code, creating the following:

• StatusWidget.java following established patterns•
• StatusService.java matching the existing service architecture•
• Updated dashboard configuration to include the new widget•
• Consistent styling that matches the other widgets•

This demonstrates the power of agentic AI: it doesn’t just generate code; it under‐
stands your project’s context and maintains consistency across your entire codebase.

354 | Chapter 15: The AI-Powered Software Engineer

Remember: you are the pilot, not the passenger. AI tools are pow‐
erful assistants, but you remain responsible for understanding the
code, making architectural decisions, and ensuring quality. Use AI
to amplify your capabilities, not replace your thinking. Ultimately,
you bear responsibility for all code in your project, regardless of
whether you or AI generated it.

The key to success with any AI coding tool is understanding its strengths and limita‐
tions, then choosing the right tool for each situation. As you grow as a developer,
these AI assistants will evolve alongside you, becoming more sophisticated partners
in your coding journey.

Prompt Engineering Fundamentals
When it comes to becoming a software developer who leverages AI, prompt engi‐
neering is one of the most valuable skills that you will need to understand. Whether
you’re a complete beginner or experienced user, mastering how to craft clear, effective
prompts will dramatically improve your results when working with AI assistants,
code generation tools, and agentic IDEs.

The reality is that many developers struggle with AI tools not because the technology
is lacking, but because they haven’t learned how to communicate their needs effec‐
tively. This skill often presents itself in the real world when writing clear requirements
for a teammate or documenting your code. When working with AI, you need to treat
it like a conversation you would have with a coworker and use clear and thoughtful
communication.

What Is Prompt Engineering?
As you learned earlier in this chapter, there are some terms that make working with
AI a little bit intimidating, and prompt engineering is another example of that. Prompt
engineering is just learning how to effectively communicate with AI. Think of it like
learning how to effectively use a search engine. It is a skill everyone needs to develop,
not something that is reserved for specialists.

Imagine you’re at the office and turn to a junior developer in the next cubicle, asking
them to “fix the login bug.” Without context, this simple task can become a complex
problem. They might waste time searching through the ticket system for open issues.
Since there are multiple login forms, which one needs fixing? They could spend hours
testing the login system, finding nothing wrong. But what if instead you said, “The
login form on the user dashboard isn’t validating email formats correctly, allowing
users to submit invalid email addresses that are causing issues downstream.” You
would get much better results from this interaction.

Prompt Engineering Fundamentals | 355

The same principle applies to AI. The quality of your prompt directly correlates with
the quality of the AI’s response.

Essential Prompt Engineering Techniques
Getting the most out of AI isn’t just about asking questions; it’s about asking the right
questions in the right way. In this section, you’ll discover techniques that will help
you transform the way you interact with AI tools. Instead of getting generic respon‐
ses that require extensive iterations, you’ll learn to write prompts that consistently
produce the results you’re looking for.

Clear communication is key
If you want to get good results from AI, you need to be specific. This is a technique
you will learn over time by iterating on your prompts when you don’t get your
desired output. For example, consider the following prompts.

Bad prompt:

Write some Java code for sorting

This prompt is too vague. It doesn’t specify what to sort, how to sort it, or what data
structure to use. The AI has to guess whether you want to sort numbers, strings,
objects, or something else entirely.

Good prompt:

Write a Java method that sorts an ArrayList of Employee objects by their salary
in descending order. Include error handling for null inputs.

This prompt gives the AI everything it needs: the specific data structure (Array
List), what you’re sorting (Employee objects), the sorting criteria (salary), the order
(descending), and even an edge case to consider (null inputs).

Structure determines success
A well-structured prompt can help AI understand not just what you want, but how
you want the output delivered. For example, compare the following two prompts.

Bad prompt:

Explain database indexing

This prompt gives no guidance about depth, perspective, or format. The AI might
respond with anything from a single sentence to a graduate-level computer science
explanation.

Good prompt:

As an experienced Java developer, explain database indexing in 3 parts:

356 | Chapter 15: The AI-Powered Software Engineer

1. What indexes are and why they matter for performance
2. When to use clustered vs non-clustered indexes
3. One practical example of creating an index in PostgreSQL

Keep each section to 2-3 sentences and include one code example.

This prompt provides clear structure (three numbered parts), specifies the audience
perspective (Java developer), sets length expectations (two to three sentences each),
and requests a concrete example.

Think of it as teaching, not commanding
If you are a good mentor for a junior developer, you wouldn’t walk over to them and
demand a result on a specific task. Instead, you would give them as much context as
possible and teach them through examples that might already exist in your codebase.
Instead of commanding results, guide the AI through your thought process. This
approach, called chain-of-thought prompting, leads to more accurate responses. For
example, compare the following two prompts.

Bad prompt:

Optimize this code.

[paste your code here]

This prompt provides no context about what “optimize” means to you. The AI
doesn’t know if you want faster execution, less memory usage, better readability, or
something else entirely.

Good prompt:

I need to optimize this Java method that searches through a large dataset.
First, help me identify the current time complexity. Then suggest specific
improvements. Finally, show me the refactored code with comments explaining
the performance gains.

[paste your code here]

This prompt breaks the task into logical steps, specifies the optimization goal (perfor‐
mance for large datasets), and requests explanations alongside the code changes.

Practical tips for immediate improvement
The following are practical prompt engineering techniques you can use immediately
to improve your AI-generated results:

Be specific about context
Always provide relevant background information. Is this a greenfield project or
an existing legacy one that isn’t able to take advantage of modern best practices?
Is this a personal project or a mission-critical application at work?

Prompt Engineering Fundamentals | 357

Use examples
Show the AI what good output looks like. If you want code formatted a certain
way, provide an example.

Give context about your environment
Mention your Java version, frameworks you’re using, or constraints you’re work‐
ing within.

Specify a role
Give the AI a specific persona or expertise to embody. For example, “Act as a
senior Java architect reviewing this code” or “As a performance optimization
expert, analyze this query.” This helps frame the response with the appropriate
level of detail and perspective.

Iterate and refine
Don’t expect perfection on the first try. Use the AI’s response to refine your
prompt and get closer to your desired output.

Use AI to improve your prompts
When you’re not getting the results you want, ask the AI to help you craft a
better prompt. Try something like, “I’m trying to get you to help me debug
this performance issue, but your response wasn’t quite what I needed. Can you
suggest how I should rephrase my request to get more specific debugging steps?”

Save good prompts
When you craft a prompt that works well, save it. You’ll likely need similar
requests in the future. For more detailed tips and tricks on this topic, see “Per‐
sonal Knowledge Management” on page 265.

Advanced Prompt Engineering Techniques
Once you’ve mastered the basics, advanced techniques can help you tackle more
complex development tasks. We’ll explore two main categories of advanced tech‐
niques: structuring techniques that help you format and frame your requests, and
organizational techniques that help you manage complex, multipart prompts.

Structuring techniques
Let’s take a look at some common prompting techniques and how to use them.

Zero-shot prompting is asking the AI to perform a task without providing any exam‐
ples. There is nothing wrong with this approach, and at times, this will give you
exactly what you are looking for. For example:

Create a Java class that implements the Observer pattern for a
stock price monitoring system.

358 | Chapter 15: The AI-Powered Software Engineer

One-shot prompting provides a single example to establish a pattern you would like
the AI to follow. For example, let’s say you provide AI the following:

// Here's an example of the coding style I prefer:

public Optional<User> findUserByEmail(String email) {
 if (email == null || email.trim().isEmpty()) {
 return Optional.empty();
 }
 return userRepository.findByEmail(email.toLowerCase());
}

// Now create a similar method called findUserById that takes a Long id parameter.

In the example, you taught the AI about your preferences when it comes to writing a
particular type of method. Based on that, you should be able to get similar methods
generated for you that follow that style.

Few-shot prompting teaches AI models through examples rather than just instruc‐
tions. Instead of explaining what you want, you show the AI several examples of the
desired input-output pattern. For example, say you want the AI to classify customer
review sentiment:

Classify the sentiment of these customer reviews:

Example 1: "The software is intuitive and saves me hours of work" → Positive
Example 2: "Great documentation and excellent support team" → Positive
Example 3: "Buggy interface and crashes frequently" → Negative

Now classify: "The new features are helpful but the UI is confusing"

If you remember back to our AI terminology, this comes back to classification and
giving the model enough examples so that it can correctly classify future examples.

Organizational techniques
Organizational techniques help you structure requests to get better, more accurate
responses from AI systems. By clearly organizing your prompts, you reduce uncer‐
tainty and help the AI focus on what matters most.

XML tags (and other structuring formats like Markdown or JSON) help structure
complex requests by clearly separating different types of information. This makes it
easier for the AI to understand what each piece of information is for and how to
prioritize it. For example:

<task>
Create a RESTful API endpoint for user management
</task>

<requirements>
- POST /users for creating users

Prompt Engineering Fundamentals | 359

- Include validation for email and password
- Return appropriate HTTP status codes
- Use Spring Boot annotations
</requirements>

<constraints>
- Java 17
- Spring Boot 3.0
- No external dependencies beyond Spring starter
</constraints>

The XML structure helps the AI distinguish between what you want built (task),
what it must include (requirements), and what limitations it must work within
(constraints). Without this structure, all the information gets mixed together, and the
AI might miss important details or prioritize them incorrectly.

Task decomposition breaks complex problems into manageable pieces. This is some‐
thing we as software engineers do all the time. Just as you would break this into
smaller tasks for yourself or for a junior developer, you should do the same for the
AI to improve your results. This is important because AI models can become over‐
whelmed by large requests and produce incorrect or incomplete responses. Breaking
your request into phases lets you get a more thorough analysis of each component
and adjust along the way. For example:

I'm building a file processing system in Java. Help me break this down:

Phase 1: Design the file reading strategy (stream vs batch)
Phase 2: Create the data validation logic
Phase 3: Implement error handling and logging
Phase 4: Add unit tests

Start with Phase 1 - analyze the pros and cons of each approach
for processing 1GB+ files.

The key to becoming productive with AI tools isn’t about memorizing frameworks
or techniques; it’s about developing clear communication habits and understanding
what approaches work best. Start by writing specific prompts that teach the system
your desired output. Give context about yourself and your project and be willing to
refine your approach through iteration.

Now that you understand how to get the most out of AI, let’s explore what the future
of software development might look like.

How AI Might Shape Software Engineering
What does the future of work look like for software engineers? While no one can
predict with certainty what lies ahead, AI will undoubtedly play a significant role
in software development. As AI continues to grow and change over time, it is impor‐
tant to consider what makes you stand out from other engineers. As AI becomes

360 | Chapter 15: The AI-Powered Software Engineer

increasingly proficient at writing code, your unique qualities and valuable soft skills
will become more important than ever, whether that is your collaboration abilities,
empathy, mentoring capabilities, or other distinguishing traits.

This section explores how AI is reshaping the developer’s role. Rather than replacing
developers, AI serves as a powerful tool that enhances productivity and transforms
how we write and review code. Learn how to leverage AI to become a more effective
problem solver while highlighting your existing skills.

Will AI Take My Job?
In this chapter, you have seen how AI can automate tasks, generate code, write tests,
and create documentation. As these capabilities improve, software developers at all
levels are asking, “Will AI take my job?” To answer this question, we can draw some
reasonable conclusions from historical patterns and current trends.

As you have learned throughout this book, being a software engineer involves much
more than writing code. In Chapter 2, you learned that you will spend far more
time reading code than writing it. This fundamental skill, the ability to understand
and comprehend code, remains essential, whether that code comes from another
developer or AI.

This is just one example of the many things you do as a software developer outside
of writing code. Let’s take this opportunity to review some of the tasks that make up
your role. Before writing any code, you have the responsibility of turning incomplete
and ambiguous requirements into working systems. As you learned in Chapter 9,
you make judgment calls (“it depends”) about trade-offs between features like perfor‐
mance and maintainability. You navigate office politics, mentor junior developers,
and explain technical concepts to nontechnical stakeholders. You understand not just
how to build something, but why it should be built and who it serves.

AI has been trained on millions of examples, both good and bad, and can generate
new code based on this pretrained data. But it doesn’t understand your company’s
specific business model, your users’ unique needs, or why the CEO’s “simple request”
is actually a complete architectural nightmare. It can’t be present in a meeting and
figure out that the product manager’s requirements don’t match what the sales team
promised. These human elements of software development aren’t edge cases; they’re
the job.

AI won’t replace developers, but developers who use AI will replace those who don’t.
—Jeff Atwood (attributed), software developer, author, blogger and entrepreneur

Remember the Jacquard loom from this chapter’s introduction? The weavers who
thrived were not the ones who fought the technology, but the ones who learned to

How AI Might Shape Software Engineering | 361

operate it, designed patterns for it, and used it to create things that were impossible
before.

There is a similar pattern playing out today for software developers. AI is eliminating
the mundane tasks that programmers often find tedious. This is everything from
writing boilerplate code to creating repetitive tests, creating documentation, and
more. You could look at this as a threat, or you could see it for what it is: liberation.
When you spend less time on unchallenging tasks, you have more time for the
creative and strategic work that makes software development exciting.

If you step back and look at the evolution of programming, the industry has gone
from assembly languages to high-level languages, from simple text editors to power‐
ful development tools, sophisticated IDEs, and automated CI/CD pipelines. Through
all of the technology advancements that might have made programmers obsolete, the
demand for developers has grown year over year instead.

The developers who are going to succeed in the AI future are those who see AI as
their coding partner—a partner who has superpowers and never gets tired, has the
historical knowledge of the internet, and can do basic tasks so you can work on
bigger and more complex problems. What makes you valuable is not your ability to
write a for loop when called upon or how to implement a bubble sorting algorithm,
but in knowing when to use them, why they matter, and how they fit into the larger
application that you’re building.

So will AI take some jobs? Possibly. But will it take the majority of jobs? Not anytime
soon. Some roles will be reimagined, and that’s OK. If you are able to embrace that
change, you will find yourself more productive and capable of building things that
wouldn’t have been possible just a few years ago. The question isn’t whether AI will
replace you; it’s whether you’ll be one of the developers harnessing this powerful new
tool or one of the few still hanging on to your ability to simply write code like it’s
2010.

So if AI isn’t replacing us, how exactly will it change our day-to-day work? Let’s
explore how the developer role is evolving and what new skills will set you apart.

Vibe Code Reviews
On February 5, 2025, Andrej Karpathy, one of the most influential figures in AI
and deep learning, made a post on X that encapsulated his current experiences in
software development and coined the term vibe coding. The term itself is deliberately
tongue-in-cheek. Karpathy coined it to highlight problematic development practices,
not to endorse them.

362 | Chapter 15: The AI-Powered Software Engineer

https://oreil.ly/0zwB9

What is vibe coding?
Vibe coding refers to the practice of using agentic IDEs to generate entire applications
through well-crafted prompts. Instead of going through the mundane task of typing
out every line of code manually, developers can describe what they want to build, and
AI tools generate a significant amount of the codebase autonomously.

This approach has made software development accessible to a whole new group of
creators. Someone with a great idea no longer needs to hire a team of developers or
spend years learning code just to build out a basic prototype. They can describe their
vision to an AI assistant and watch their concept come to life right before their eyes.

Think about the implications for a moment. A restaurant owner who wants to create
a simple ordering system, a teacher building an interactive quiz for their students, or
an artist developing a portfolio website can now bring their ideas to reality without
traditional coding experience.

The benefits and dangers
As Karpathy noted in his original tweet, vibe coding works well for “throwaway
weekend projects,” but the key word here is “throwaway.” There is an enormous
difference between building a personal project that only you will use and developing
software that powers the backbone of Fortune 500 companies.

Consider these two scenarios:

Scenario 1
You want to build a personal expense tracker to categorize your monthly spend‐
ing. You use vibe coding to generate the application over a weekend. If a bug
miscalculates your coffee expenses, the worst outcome is a slightly inaccurate
budget.

Scenario 2
Your company needs a payroll system that handles thousands of employees
across multiple states with different tax requirements. A bug here could mean
employees don’t get paid correctly, tax obligations aren’t met, and the company
faces legal consequences.

The stakes couldn’t be more different.

The enterprise reality check
When you read headlines claiming that “25% of code at major companies is now
written by AI,” it’s important to understand what this actually looks like in practice.
This AI-assisted code isn’t the result of casual coding sessions where entire applica‐
tions are magically generated from simple prompts.

How AI Might Shape Software Engineering | 363

A realistic example is the workflow that companies like Microsoft have demonstrated.
A developer creates a detailed issue describing the problem statement. An AI coding
agent reads that issue, generates the actual code changes, and then creates a PR
with those changes. A human developer (or team of developers) reviews the code
and decides whether to merge this change into the codebase. AI is handling the
routine implementation work, but humans remain in control of quality assurance and
decision making.

The enterprise environments that you work in have something these weekend war‐
riors are lacking: rigorous processes. It’s not to say that some level of vibe coding
isn’t happening within the enterprise, but here they have checks and balances. They
have code reviews, testing frameworks, deployment pipelines, and quality assurance
procedures. This new AI-generated code still needs to go through the same scrutiny
as human-written code. In fact, these processes are more critical than ever.

Why code reviews are more important than ever. While AI tools can generate code faster
than ever before, it doesn’t mean that your timelines shrink exponentially or that they
don’t come without hidden costs. The generated code (like human-written code) can
contain subtle bugs, security vulnerabilities, or architecture decisions that might not
be right for your application. Expert developers like Neal Ford warn of a potential
“tsunami of bad code” as teams rush to implement AI-generated solutions without
proper review processes.

This is why code reviews have become more critical than ever, not less important. As
the developer of this feature, you need to understand what every line of generated
code does and why certain decisions were made. As a reviewer, you need to under‐
stand that regardless of who wrote it (human or machine), it needs your attention
to every detail. Do you want to discover the problem on pager duty one weekend or
spend the time during a code review to catch these issues?

Because code reviews are going to become a more important part of the SDLC,
there is an important takeaway. If you are going to use AI to generate a method,
class, or entire functionality, you need to understand and explain “your” code. Before
submitting a PR for code review, you need to vigorously go through your code and be
able to explain why that code exists and what it does. You can’t use the excuse that AI
generated that code and that it wasn’t your fault. Whether you write it or AI does, you
are responsible for it and accountable for the results.

The new developer mindset. As a developer in this AI-assisted era, the key is avoiding
the vibe coding trap. While AI tools can accelerate development, the casual, prompt-
and-pray approach that Karpathy satirized represents everything you should avoid.
Instead, you need to think of yourself as both a creator and a curator of code. You
should use AI thoughtfully while maintaining rigorous standards.

364 | Chapter 15: The AI-Powered Software Engineer

This means developing the following skills:

• Writing effective prompts that generate better AI code•
• Quickly reviewing and understanding generated code•
• Identifying potential issues in both human and AI-written code•
• Identifying any potential biases or exclusivities•
• Communicating effectively during code reviews•

Vibe coding represents an exciting change in software development, but it doesn’t
eliminate the need for careful, thoughtful development practices. If anything, these
processes become more important than ever. As you grow in your career, embrace
the tools that make you more efficient and productive, but don’t lose sight of the
fundamental responsibility to ship reliable, maintainable software.

AI as Your Force Multiplier: From Writing Code to Problem-Solving
A force multiplier is both a military and business concept: it’s a tool or capability that
amplifies your existing skills. For example, most people use their smartphones for
taking photos. Today’s smartphone cameras are excellent and come with features to
help you take high-quality photos. Yet there’s a whole range of upgrades available in
the form of DSLR cameras. These professional cameras can cost thousands of dollars
and produce stunning photos if you know how to use them.

If you were given a $5,000 camera and handed a professional photographer with
20 years of experience just a smartphone, who would take better pictures? The
professional photographer would likely win because they understand concepts like
aperture, exposure, lighting, and composition, plus they have the artistic vision to
capture exactly the image they want. The expensive camera is a force multiplier. It
amplifies the photographer’s existing skills, but it can’t create skills that aren’t already
there.

This is similar to the current state of AI in software development. The tool doesn’t
make you a better developer any more than an expensive camera makes you a
photographer. Your knowledge, experience, and problem-solving abilities are what set
you apart. AI is your smartphone, a powerful tool that amplifies what you already
know.

At the end of the day, no matter what technology you use, you are still building soft‐
ware. The fundamental shift that developers need to consider is not what you build,
but how you spend your time building it. Traditional software development follows
patterns. You might spend 70% of your time writing boilerplate code, debugging
syntax errors, and implementing repetitive patterns. This leaves 30% of your time for

How AI Might Shape Software Engineering | 365

creative problem-solving and all of the other administrative tasks that go into your
job.

AI allows us to flip this equation. It can now handle the routine code generation and
debugging of issues. This allows you to dedicate 70% of your energy to requirement
analysis, architectural decisions, and solving complex business problems. In theory,
we are shipping products at the same rate, but now they are going to production well
thought out and with fewer bugs and edge cases to deal with.

Let’s take a look at a problem you might be familiar with. Consider building a REST
API for whatever domain you are working in. Prior to AI, you might have to spend
hours creating domain objects, validation logic, controllers, repositories, and more.
With AI, good prompting techniques, and a template of what REST APIs look like in
your organization, you can generate these components in minutes.

With time saved on writing boilerplate code, you can now focus on some of the
strategic decisions that matter. Instead of just shipping that API, you can spend some
more time thinking about the design of the API and whether it’s intuitive. Have
you considered how this API is going to handle high throughput?. Are you taking
advantage of concurrency features in the language or framework you are working
with? Will this API both scale and fail gracefully under load? Yes, your application
has to work first, but these are the types of complex problems that you should be
spending your time on.

Dan here. If you’re worried about AI reducing the lines of code you
write, don’t be. Lines of code isn’t actually a meaningful measure
of productivity or value. I’ve reviewed countless resumes over the
years, and I’ve never seen anyone list “wrote 10,000 lines of code”
as an accomplishment, nor would I be impressed If I did. Real
accomplishments focus on impact: “Saved the company 20% on
our cloud bill by optimizing our application architecture” tells a
much more compelling story than any line count ever could.

The shift from writing code to problem-solving doesn’t diminish your role one bit; it
elevates it. You’re solving bigger problems and making decisions that have a greater
impact on the team and applications you work on.

366 | Chapter 15: The AI-Powered Software Engineer

Wrapping Up
AI isn’t going to replace software developers, but developers who effectively leverage
AI will have a significant advantage over those who don’t. Just as the Jacquard
loom transformed weavers rather than eliminating them, AI is transforming how we
approach software development.

AI works best as your pair programming partner, not your replacement. Whether
you’re using standalone chatbots for architectural discussions, inline IDE assistants
for boilerplate code, or agentic environments for complex refactoring, the goal is
the same: amplify your existing skills and free up mental energy for higher-level
problem-solving.

Understanding AI’s capabilities and limitations is an important component for using
it effectively. AI excels at repetitive tasks, code explanation, documentation genera‐
tion, and pattern recognition. However, it struggles with real-time knowledge, can
hallucinate incorrect information, lacks business context, and may introduce security
risks. Treating AI-generated code with the same rigor as human-written code through
thorough testing and code reviews isn’t just good practice—it’s essential.

The future of software development shifts your focus from writing code to solving
problems. Instead of spending 70% of your time on boilerplate implementation,
you can dedicate that energy to architectural decisions, requirement analysis, and
complex business logic. This doesn’t diminish your role as a developer; it elevates it to
work on more meaningful and impactful challenges.

As you begin incorporating AI into your development workflow, remember that
prompt engineering is a learnable skill that dramatically improves your results. Be
specific about context, provide examples, structure your requests clearly, and don’t
hesitate to iterate on your prompts. Most importantly, maintain ownership of your
code regardless of who or what generated it.

The developers who will thrive in this AI-enhanced future are those who embrace
these tools while maintaining their commitment to code quality, continuous learning,
and the fundamentals of software engineering. AI gives you superpowers, but you are
responsible for wielding them correctly.

Throughout this book, we have shared the hard-earned lessons that we’ve learned
throughout our careers. We feel humbled to share our experiences to help you, the
next generation of software engineers, achieve your goals. We hope that you have
enjoyed the book as much as we enjoyed writing it.

We can often be found at meetups and conferences, and we hope you’ll take a
moment to introduce yourself if our paths cross. Thank you for taking the time to
read this book. We appreciate it more than you will ever know!

Wrapping Up | 367

Putting It into Practice
Implementing what you’ve learned requires action, not just knowledge. The following
practical steps will help you integrate AI tools into your development workflow while
maintaining code quality and building essential prompt engineering skills:

1. Take an existing method in your codebase and ask AI to explain what it does,1.
identify potential improvements, and suggest test cases. Compare its analysis
with your own understanding.

2. Practice prompt engineering by crafting three well-structured, detailed, contex‐2.
tually specific prompts using the techniques from this chapter for common
coding tasks like debugging, code review, or documentation.

3. Create a personal “AI prompt library” by saving five to ten effective prompts3.
you’ve crafted for common development tasks like code reviews, documentation
generation, and debugging.

4. Choose one AI coding assistant and use it for one week on a personal project.4.
Document what tasks it excels at and where it struggles.

5. Practice “vibe code reviews” by having AI generate a simple class or method,5.
then conduct a thorough code review as if a junior developer had written it.
Document what issues you find.

6. Use AI to help convert a small piece of code from one programming language to6.
another (like Python to Java), then manually verify that the conversion is correct
and follow best practices.

7. Establish your AI usage guidelines by defining when you will and won’t use7.
AI assistance, what types of code require extra scrutiny, and how you’ll handle
sensitive or proprietary information.

Additional Resources
• AI Engineering by Chip Huyen (O’Reilly, 2024)•
• Beyond Vibe Coding by Addy Osmani (O’Reilly, 2025)•
• Prompt Engineering for LLMs by John Berryman and Albert Ziegler (O’Reilly,•

2024)
• “No Silver Bullet” by Fredrick P. Brooks Jr. (University of North Carolina at•

Chapel Hill)
• Rebooting AI: Building Artificial Intelligence We Can Trust by Gary Marcus (Vin‐•

tage, 2020)
• Co-Intelligence: Living and Working with AI by Ethan Mollick (Portfolio, 2024)•

368 | Chapter 15: The AI-Powered Software Engineer

https://learning.oreilly.com/library/view/ai-engineering/9781098166298/
https://learning.oreilly.com/library/view/beyond-vibe-coding/9798341634749/
https://learning.oreilly.com/library/view/prompt-engineering-for/9781098156145/
https://learning.oreilly.com/library/view/prompt-engineering-for/9781098156145/

• Human Compatible: Artificial Intelligence and the Problem of Control by Stuart•
Russell (Penguin Books, 2020)

• Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig•
(Pearson, 2021)

• Deep Learning with Python by Francois Chollet (O’Reilly, 2021)•
• Taming Silicon Valley by Gary Marcus (Tantor Media, Inc., 2025)•
• Simon Willison’s Weblog•
• Marcus on AI•
• Practical AI podcast•

Additional Resources | 369

https://www.oreilly.com/library/view/deep-learning-with/9781617296864/
https://www.oreilly.com/videos/taming-silicon-valley/9798331910372/
https://simonwillison.net
https://garymarcus.substack.com
https://oreil.ly/WZtuI

Index

A
a11y (see accessibility (a11y))
accessibility (a11y), 124-125

(see also usability)
challenges addressed by, 124
laws and regulations, 122

ACID properties (see Atomicity, Consistency,
Isolation, and Durability (ACID) proper‐
ties)

ADA (see Americans with Disabilities Act
(ADA))

ADRs (see architectural decision records
(ADRs))

Advanced Encryption Standard (AES), 230
agentic programming (see vibe coding)
AI (see artificial intelligence (AI))
AI-powered software engineer, 365

force multiplier, 365
Americans with Disabilities Act (ADA), 122

(see also accessibility (a11y))
architect, types of, 200-201, 206-207

accidental architect, 200-201
Agile architect, 206-207
senior developers as architects, 208

architectural decision records (ADRs), 18, 93,
210-212
examples, 211
template, 210

architectural patterns, 93
hexagonal architecture (ports and adapters),

94
package by feature, 94
package by layer, 93

architectural styles, 205-206

monolithic versus distributed, 206
artificial intelligence (AI), 34, 341-367

capabilities and limitations, 348-351
limitations of, 349-350
strengths of, 348-349

as a force multiplier, 365
for generating diagrams, 106

(see also diagrams as code)
for generating test data, 154
impact on software engineering, 360-366
for interview preparation, 327, 331
as a learning accelerator, 275-277
for monitoring, 249
as pair programmer, 351-355

(see also pair programming)
agentic AI IDE environment, 353
inline IDE assistant, 352
standalone chatbot assistant, 351

prompt engineering, 355-360
few-shot prompting, 359
meta-prompting, 358
one-shot prompting, 359
techniques, 356-360
zero-shot prompting, 358

risk of hallucination, 34
role in code comprehension, 34
terminology, 342-347

deep learning, 344-345
generative AI (GenAI), 345-347
large language models (LLMs), 347
machine learning (ML), 343-344

for writing tests, 82
assertions, 82
atomic commits, 114, 116

371

Atomicity, Consistency, Isolation, and Durabil‐
ity (ACID) properties, 162

automated testing, 73-88
benefits of, 73-77

boosting confidence, 75-76
(see also regression testing)

consistency and repeatability, 76-77
(see also manual testing)

improving maintainability, 74-75
(see also single responsibility princi‐

ple (SRP))
mocking, 84
types of, 77-79

end-to-end (E2E) tests, 79
integration tests, 78
testing pyramid, 77-78
unit tests, 78

what to avoid, 80
AWS Secrets Manager, 224
Azure Key Vault, 224

B
big O notation, 6
Blub paradox, 18

(see also cognitive biases)
brittle tests, 79

(see also false negatives)
brownfield development, 16

(see also greenfield projects; legacy code)

C
C4 model, 56
caching, 174-177

considerations alongside consistency, 176
strategies for, 174-175, 221

cache-aside (lazy loading), 174
write-behind (write-back), 175
write-through, 175

California Consumer Privacy Act (CCPA), 232
CAP theorem, 172

(see also consistency models)
AP systems, 173
CA systems, 173
CP systems, 173

cardinality, 61
career management, 305-339

navigating your path, 319-338
building professional community,

322-326

(see also soft skills)
imposter syndrome, overcoming,

320-322
interviewing, 326-334
work-life balance, 334-338

planning your path, 305-319
alternative paths, 310
career options, exploring, 307-312
choosing the right company type, 317
factors for consideration, 316-319
finding your passion, 306-307
goal setting (working backwards),

312-313
leadership path, 309
skill acquisition, deliberate, 313-316

(see also learning)
technical expert path, 308

CCPA (see California Consumer Privacy Act
(CCPA))

CDC (see change data capture (CDC))
CDNs (see content delivery networks (CDNs))
change data capture (CDC), 190
change management strategy, 114
CI/CD (see continuous integration and contin‐

uous deployment (CI/CD))
Clear, James, 303
code as design, 56
code comments, 45-46

(see also Don't Repeat Yourself (DRY) prin‐
ciple; tests as documentation)

as code smell, 45
code coverage, 80-81

as a vanity metric, 19, 81
code kata, 52
code reviews, 48-50, 362

(see also pair programming)
of artificial intelligence (AI) output, 364
checkbox code review (anti-pattern), 48
Code Review Pyramid, 48
empathy, 49
fostering trust, 49

(see also collective code ownership)
“looks fine to me” (LFTM) response, 49

code smells, 39
(see also good code, definition of)

coder, definition of (see programmer, definition
of)

cognitive biases, 17-18
IKEA effect, 17

372 | Index

mere-exposure effect, 17
collective code ownership, 50

(see also code reviews)
complexity, 47

accidental complexity, 47
essential complexity, 47

composition over inheritance principle, 42
connection pool, 170
consistency models, 171-174

(see also CAP theorem)
types of, 172

consumer-driven contracts, 46
(see also tests as documentation)
tools for, 47

Pact, 47
Spring Cloud Contract, 47

containerization, 219
content delivery networks (CDNs), 221
continuous integration and continuous deploy‐

ment (CI/CD), 244-248
(see also deployment automation)
GitHub Actions, 245
workflow, 245

D
data, 151-194

(see also data migration; data types; data‐
bases)

specialized considerations for, 157-160
binary data, 158
date and time data, 158-159
large datasets, 159-160

data formats, 155-157
CSV (Comma-Separated Values), 156-157
JSON (JavaScript Object Notation), 155-156
XML (eXtensible Markup Language), 156
YAML (Yet Another Markup Language),

157
data migration, 188-193

big bang versus phased migration, 188
data dependencies and transformations,

management, 191
data synchronization, 190
extract, transform, load (ETL) processes,

189
schema changes, management, 190-193

data persistence, patterns for, 167-169
direct database access, 167
object relational mapping (ORM), 169

repository pattern, 167
data types, 152-155

structured data, 152-154
characteristics of, 153

unstructured data, 154-155
characteristics of, 154

databases, 160-177
consistency models (see consistency mod‐

els)
transactions, 170

(see also Atomicity, Consistency, Isola‐
tion, and Durability (ACID) proper‐
ties)

types of, 160-166
document databases, 163
graph databases, 164-165
key-value stores, 164
relational databases, 161-163
vector databases, 165-166

deployment pipeline, 233-248
deployment automation, 239-242

(see also continuous integration and
continuous deployment (CI/CD))

deployment environments, 234
deployment strategies, 243-244

all-at-once deployment (big bang), 243
blue-green deployment, 243
canary deployment, 243
gradual deployment (phased), 243
rolling deployment, 243

design principles (CRAP), 131-135
alignment, 132
applied example, 135-138
contrast, 131
proximity, 133-135
repetition, 132

destructive actions, 146-149
destructive actions, designing safeguards for,

146-149
developer, definition of, 2
diagrams, 58-67

(see also software modeling)
for architecture communication, 209
class diagrams, 61
component diagrams, 60
context diagrams, 60
data models, 65
deployment diagrams, 63

security diagrams, 64

Index | 373

disaster recovery models, 67
as ephemeral artifacts, 57
event storming, 66
formal versus informal, 58
sequence diagrams, 62
user story mapping, 67
value stream mapping, 66

Document Type Definition (DTD), 156
documentation, 18

the documentation trap, 93
for unfamiliar code, 18
verifying against code, 93

Don't Repeat Yourself (DRY) principle, 45
DTD (see Document Type Definition (DTD))

E
edge cases, 33
end-to-end (E2E) tests, 79
error messages, 145-146

effective design of, 145-146
error-prone forms, 47
European Accessibility Act (EAA), 122

(see also accessibility (a11y))
exceptions, misleading, 23
execution flow, 95-105

application entry points, 95-97
common entry points, 96

request tracing, 97-103
API testing tools, 99
browser developer tools, 97
debugging, 101
logging, 101

F
false negatives, 79

(see also brittle tests)
fear of missing out (FOMO), 278
fitness functions, 208-209

(see also evolutionary architecture)
Five Whys, 9-10
Flyway, 191

(see also data migration)
FOMO (see fear of missing out (FOMO))
fresh outlook, value of, 7

(see also “We’ve always done it this way”
mindset)

functions as a service, 41

G
General Data Protection Regulation (GDPR),

232
GitHub Actions, 245
golden rule of software, 11, 290

optimizing for humans, 11
good code, definition of, 39

(see also code smells)
greenfield projects, 5, 15

(see also legacy code)

H
HashiCorp Vault, 224
Hawthorne effect, 40
Health Insurance Portability and Accountabil‐

ity Act (HIPAA), 232
heritage code (see legacy code)
HTTPS (HTTP Secure), 227
Hypertext Transfer Protocol (HTTP), 227
hypothesis-driven development, 207

(see also software architecture)

I
I18N (see internationalization (I18N))
illities (see quality attributes)
integrated development environments (IDEs),

25-31
code analysis features, 29-31
code navigation tools, 27-29

call hierarchies, 29
find usages and references, 27
jump to definition, 28

intent versus implementation, 44
(see also naming conventions)

internationalization (I18N), 125
(see also localization (L10N))
right-to-left (RTL) support, 125

inverted pyramid method, for code writing, 44
“it works on my machine” problem, 217

(see also production environment, complex‐
ities of)

reasons for, 218
solutions for, 219

J
Java interface, 27
JUnit, 81

(see also writing tests)

374 | Index

L
L10N (see localization (L10N))
language aptitude versus math aptitude, 4, 51
large language models (LLMs), 347
lazy programmer ethos, 5-6

versus brute-force approach, 6
Capitalization Assignment example, 6

learning, 269-285
burnout, avoiding, 284
evaluating new technology, 280

in legacy environments, 284
fear of missing out (FOMO), 277-280
how the brain works, 269-271

brain processing modes (R-mode/L-
mode), 270

cramming, ineffectiveness of, 270
innovation, practicing in organizations,

281-283
architectural briefings, 283-284
book clubs, 281
hackathons, 281

learning habit, 272-275
Learning Depth Strategy, 273
morning coffee routine, 275
spaced repetition, 273

learning paths, 2-4
boot camps, 3
computer science degrees, 3
self-taught, 3

new languages, 50-51
“shiny new thing” paradox, 269
skill acquisition models, 271-272

Dreyfus model, 271-272
Imitate, Assimilate, Innovate, 271
Shu Ha Ri, 271

legacy code, 5, 16-17
(see also greenfield projects)
problems to solve, 16

leveraging existing solutions, 38-39
(see also lazy programmer ethos)
libraries to check, 38

Apache Commons, 38
Google Guava, 38

LLMs (see large language models (LLMs))
localization (L10N), 125

(see also internationalization (I18N))

M
machine learning (ML), 343

manual testing, 76
(see also automated testing)

mental models, 105
breaking down complex systems, 106
building incrementally, 105
visualization, 107-109

metrics, for code quality, 39-41
cyclomatic complexity, 39
source code analyzers, 39

JSHint, 39
PMD, 39
SonarQube, 39

microservices, 41, 95, 198, 206, 280
ML (see machine learning (ML))
mocking, 84-86

as stunt double, 84
Mockito, 85

(see also mocking)
MockMvc, 87
modeling, best practices, 67-69

color choices in diagrams, 68
simplicity, 67-68
standards and templates, 69
target audience, 68

modeling, tools for, 69-71
collaborative whiteboards, 69

Lucidchart, 69
Miro, 69
Mural, 69

diagrams as code, 69
Mermaid, 69
PlantUML, 70
Structurizr, 70

Microsoft Visio, 69
OmniGraffle, 69
presentation software, 70

monitoring, 248-249
(see also observability, logging)

N
naming conventions, 44

gibberish game, 45
natural language processing (NLP), 154
Nygard, Michael, 210

O
object relational mapping (ORM), 169
observability, 185-186, 219

N+1 query problem, 186

Index | 375

pillars of, 185
logging, 185
metrics, 185
tracing, 185

Open Web Application Security Project
(OWASP), 227

ORM (see object relational mappers (ORM))
overengineering, 9, 193

(see also solutioning, premature)
OWASP (see Open Web Application Security

Project (OWASP))

P
pair programming, 48, 264

(see also code reviews)
Pareto principle, 225
Payment Card Industry Data Security Standard

(PCI DSS), 232
personal knowledge management (PKM),

265-267
(see also productivity)
note-taking strategies, 265
tools for, 265

personally identifiable information (PII), 230
pinch to zoom feature, 141

(see also usability)
PKM (see personal knowledge management

(PKM))
PoC (see proof of concept (PoC))
power of indirection, 205

(see also stakeholder alignment)
principles of design (see design principles

(CRAP))
problems of misconception, 9, 302
production environment, 215-252

complexities of, 215-219
differences between environments, 218

(see also “it works on my machine”
problem)

user unpredictability, 216-217
production-ready code, building, 219-233

configuration management, 221-225
configuration files, 222
environment variables, 223
feature flags, 223

(see also canary releases)
secrets management, 224

error handling, 225
logging, 226

(see also error handling, monitoring)
performance optimization, 220-221

productivity, 255
10x developer concept, 255
automation, strategic, 263

helper scripts, 264
collaborative learning, 264
command-line interface (CLI), 258-260

tools for, 259
development environment, optimizing,

255-262
customization of, 256
mastering IDEs, 256

(see also integrated development
environments (IDEs))

physical environment (ergonomics), 257
flow state, 256
keyboard shortcuts, mastering, 260-262

clipboard managers, 261
text expanders, 262
touch typing, 260

programmer to engineer transition, 1-11
programmer, definition of, 2
programming as communication, 37

(see also golden rule of software)
proof of concept (PoC), 189
pull requests (PRs), 49, 117

(see also code reviews)

Q
quality attributes, 202-205

(see also software architecture)
Concert Comparison kata, 203
inverse relationships between, 203
nonfunctional requirements, 203
stakeholder alignment, 204-205

(see also power of indirection)
query optimization, 179-188

basic optimization, 179
database indexes, 181
pagination, 182-183
prepared statements, 180-181

query planners (optimizers), 183-185
database-specific planners, 183
EXPLAIN command, 184
types of, 183

376 | Index

R
RAG (see retrieval-augmented generation

(RAG))
read replicas, 177

(see also caching; scaling strategies)
reading code, 15-35

diagrams, extracting from code, 24
integrated development environments

(IDEs), 25-31
source code management tools, 23

Reeves, Jack, 56
(see also code as design)

refactoring safely, 111-112
(see also automated testing; unfamiliar sys‐

tems, safely modifying)
adding tests before, 112

regression testing, 76
remote work, 336-338

(see also work-life balance)
resume-driven development, 313

(see also skill acquisition, deliberate)
retrieval-augmented generation (RAG), 166

(see also databases, types of, vector data‐
bases)

runtime versus build-time dependencies, 200
(see also software architecture)

S
SBOM (see software bill of materials (SBOM))
scaling strategies, 177

horizontal scaling, 177
sharding, 177
vertical scaling, 177

scout rule, 112-114
SDLC (see software development lifecycle

(SDLC))
Second Law of Software Architecture, 210
Section 508, Rehabilitation Act, 122

(see also accessibility (a11y))
Secure Sockets Layer (SSL), 227
security, 226-231

authentication and authorization, 228-230
multi-factor authentication, 229
password management, 229
securing user accounts, 229

compliance, 231-233
encryption, 230
HTTPS (HTTP Secure), 227-228

(see also Transport Layer Security (TLS))

user data, safeguarding, 230
(see also personally identifiable informa‐

tion (PII))
semantic search, 166

(see also databases, types of, vector data‐
bases)

shifting left, 8
side projects, 306-308

(see also career management, planning your
path)

similarity search, 166
(see also databases, types of, vector data‐

bases)
single responsibility principle (SRP), 75
small, reversible changes, 114-118

(see also atomic commits)
soft skills, 287-304

collaborative communication, 288
code as communication medium, 295

(see also writing code)
communication continuum, 289
enterprise operator, 295-297
knowing your audience, 297
meetings, 291-294
messaging (Slack, Teams, etc.), 290-291
presentations, 294-295

influence, practicing, 298-301
articulating business value, 298
power/interest matrix, 300
stakeholder management, 300-301
strategic approaches, 298-299

time management, 301-303
hammock-driven development, 302
maker’s schedule, 302
pomodoro technique, 303

software archeology, 19-24
building mental models (see mental models)

software architecture, 197-212
(see also architectural styles)
architectural katas, 212
considerations for, 198
versus design, 201-202
evolutionary architecture, 207
as foundational decisions, 198
the performance problem, 208
strategic versus tactical decisions, 202

(see also software architecture, versus
design)

trade-offs in, 199-201

Index | 377

software bill of materials (SBOM), 232
(see also dependency management)

software development lifecycle (SDLC), 2, 364
software engineer, 1

definition of, 1
versus programmer and developer, 1-2

software modeling, 55-58
(see also diagrams)

solutioning, premature, 8
(see also Five Whys; problems of miscon‐

ception)
source code management tools, 23

for code reading, 23
Spring Boot, 185
Spring REST Docs, 46

(see also documentation)
Spring Security, 228
SQL injection, 181

(see also prepared statements)
SRP (see single responsibility principle (SRP))
SSL (see Secure Sockets Layer (SSL))
strategic versus tactical decisions, 202

(see also software architecture, versus
design)

SUT (see system under test (SUT))
system maintenance, 249-251

dependency management, 250
(see also software bill of materials

(SBOM))
system under test (SUT), 84

T
T-shaped development, 314
TDD (see test-driven development (TDD))
technical debt, 16
Technology Radar, 281, 314-316

(see also skill acquisition, deliberate)
Build Your Own Radar (BYOR), 314

test-driven development (TDD), 82
red-green-refactor cycle, 82

test-driven refactoring (see refactoring safely,
adding tests before)

test-last approach, 82
(see also test-driven development (TDD))

testing (see automated testing; manual testing;
writing tests)

tests as documentation, 31-33, 46, 74
(see also documentation)
discovering edge cases, 33

living documentation, 31
Transport Layer Security (TLS), 227
Twin Peaks Model, 201

(see also software architecture, versus
design)

U
UI (see user interface (UI) design)
UML (see Unified Modeling Language (UML))
unfamiliar systems, 91-118

safely modifying, 110-118
(see also scout rule)
small, reversible changes, 114-118

(see also atomic commits)
sample process for exploring, 109
understanding, 91-109

(see also reading code)
external dependencies, 103
internal (homegrown) frameworks,

104-105
unified modeling language (UML), 59
usability, 122-124

(see also accessibility (a11y))
discoverability, 124, 139-143
efficiency, 123
error handling, 124

(see also error messages)
learnability, 123
memorability, 123
user satisfaction, 124

user interface (UI) design, 121-149
user personas, 92
user research, 125-130

defaults, importance of, 128-129
“Don’t Assume” principle, 126
impact of culture, 129-130

(see also internationalization (I18N))
secondary users, 127
telemetry for, 128

UTC (Coordinated Universal Time), 159
(see also date and time data)

V
vector embeddings, 165

(see also databases, types of, vector data‐
bases)

version control best practices, 116-118, 235-239
atomic commits, 116

(see also small, reversible changes)

378 | Index

branch naming, 237
branching strategies, 117
commit messages, 117
frequent commits, 117
git blame, 24
Git Flow, 235-239
hotfix branches, 237
trunk-based development, 235

vibe coding, 15, 362-365

W
“We’ve always done it this way” mindset, 7
Williams, Robin, 131
writing code, 37-52

boilerplate code, avoiding, 42
clever code, avoiding, 47

(see also complexity)

inverted pyramid method, 44
smaller codebases, 41-43

writing tests, 81-88
end-to-end (E2E) tests, 87
integration tests, 86
unit tests, 83-86

X
XML Schema Definition (XSD), 156

Z
Z notation, 58
zeroth law of computer science, 42

high cohesion, 42
low coupling, 42

Index | 379

About the Authors
Nathaniel T. Schutta is a software architect and Java Champion focused on cloud
computing, developer happiness, and building usable applications. A proponent of
polyglot programming, Nate has written multiple books and appeared in countless
videos and many podcasts. He’s also a seasoned speaker who regularly presents at
worldwide conferences, meetups, universities, and user groups. In addition to his day
job, Nate is an adjunct professor at the University of Minnesota, where he teaches
students to embrace (and evaluate) technical change. Driven to rid the world of
bad presentations, he coauthored the book Presentation Patterns with Neal Ford and
Matthew McCullough, and he also published Thinking Architecturally and Responsible
Microservices, which are available from O’Reilly.

Dan Vega, a Spring developer advocate at Broadcom and Java Champion, has over 20
years of software development experience. A passionate problem-solver, he actively
shares knowledge as a blogger, YouTuber, course creator, and speaker, inspiring fellow
developers through continuous learning.

Colophon
The animal on the cover of Fundamentals of Software Engineering is a gold-lined
rabbitfish (Siganus lineatus). Found in the western Pacific Ocean, these colorful fish
thrive in lagoons and coral reef communities.

Gold-lined rabbitfish have pale blue bodies with wavy orange lines that run from
their heads to their forked tails. Their bodies are laterally compressed and have a
maximum length of 17 inches; the average length of these fish is approximately 9
inches. They have sharp spines on their dorsal fins that produce venom, which is used
for protection against predators.

Thanks to their unique colors, gold-lined rabbitfish are able to seamlessly blend into
their coral habitats. These fish are herbivores and mostly feed on algae, which they
scrape off from beach rocks or coral reefs; they also consume seaweed and seagrass.
Gold-lined rabbitfish play an important role in coral reef communities, as they help
control algae growth and serve as a food source for larger reef fish.

Gold-lined rabbitfish are not an endangered species and have been classified as
Least Concern by the International Union for Conservation of Nature. However, they
do face certain threats, including overfishing, habitat loss, climate change, and the
aquarium trade. All animals on O’Reilly covers are important to the world.

The cover illustration is by José Marzan Jr., based on an antique line engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O’Reilly learning platform free for 10 days.

©2025 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. 718900_7x9.1875

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	What You Will Learn
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Programmer to Engineer
	An Engineer by Any Other Name
	Fundamentals Matter
	The Many Paths to Becoming a Software Engineer
	What You Were Taught Versus What You Need to Know
	Embrace the Lazy Programmer Ethos
	The Value of a Fresh Set of Eyes
	Don’t Solution Too Quickly
	Apply the Golden Rule to Software
	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 2. Reading Code
	The Challenge of Working with Existing Code
	Cognitive Biases
	Approaching Unfamiliar Code
	Software Archeology
	Effective Code-Reading Strategies
	Leveraging IDE Features
	Reading Tests for Insight

	Practice Makes Perfect
	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 3. Writing Code
	Don’t Reinvent the Wheel
	What Is Good Code?
	Less Is More
	The Zeroth Law of Computer Science
	Beware Boilerplate Code
	Favor Composition over Inheritance
	Favor Short Methods

	Write Code to Be Read
	The Problem with Code Comments
	Tests as Documentation
	Avoid Clever Code
	Code Reviews
	Avoid the Checkbox Code Review
	It Is Hard to Be Criticized
	Fostering Trust
	Learning New Languages
	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 4. Modeling
	What Is Software Modeling and Why Do We Do It?
	Which Diagrams Do You Need?
	Context Diagrams
	Component Diagrams
	Class Diagrams
	Sequence Diagrams
	Deployment Diagrams
	Data Models
	Additional Diagrams

	Modeling Best Practices
	Keep It Simple
	Know Your Audience
	Be Careful with Your Color Choices
	Establish Standards and Templates

	Tools
	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 5. Automated Testing
	Benefits of Automated Testing
	Acts as Documentation
	Improves Maintainability
	Boosts Your Confidence
	Leads to Consistency and Repeatability

	Types of Automated Testing
	Unit Tests
	Integration Tests
	End-to-End Tests
	What Mix of Tests Should You Be Writing?
	What You Should Not Test

	Code Coverage
	Writing Tests
	Getting Started
	Assertions
	Writing Unit Tests
	Mocking
	Writing Integration Tests
	Writing End-to-End Tests

	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 6. Exploring and Modifying Unfamiliar Systems
	Understanding Unfamiliar Codebases
	Start with the Big Picture
	Understand the Execution Flow
	Build Mental Models Incrementally

	A Sample Process
	Making Changes Safely
	Refactoring Safely
	The Scout Rule
	Small, Reversible Changes

	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 7. User Interface Design
	Designing for Everyone
	What Is Usability?
	What Is Accessibility?
	What Are Localization and Internationalization?

	Know Your User
	Secondary Users
	You Are Not Your User
	Impact of Culture

	Maximizing Usability
	Principles of Design
	Contrast
	Repetition
	Alignment
	Proximity

	Applying the Principles of Design
	Make the Right Thing the Obvious Thing
	The Importance of Good Error Messages
	Destructive Actions
	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 8. Working with Data
	Understanding Data Types and Formats
	Structured Versus Unstructured Data
	Common Data Formats
	Specialized Data Considerations

	Storing Your Data Effectively
	Database Types and Their Use Cases
	Data Persistence and Management
	Database Connections and Transactions
	Consistency Models and Caching Strategies
	Planning for Data Growth

	Querying and Managing Data Performance
	Efficient Query Writing
	Tools and Best Practices

	Data Migration and Transformation
	Understanding Data Movement Fundamentals
	Handling Schema Changes

	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 9. Software Architecture
	What Is Architecture?
	Trade-Offs
	Architecture Versus Design
	Quality Attributes
	Identifying Quality Attributes
	Gaining Stakeholder Alignment

	Architectural Styles
	The Agile Architect
	Fitness Functions
	Architectural Diagrams
	Architectural Decision Records
	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 10. To Production
	The Complexities of Production Environments
	Users Are Unpredictable
	“But It Works on My Machine”

	Building Production-Ready Code
	Performance Optimization
	Environment-Specific Configurations
	Error Handling and Logging
	Security Essentials

	Deployment Pipeline
	Deployment Environments
	Version Control Strategies
	Deployment Automation
	Deployment Strategies
	Continuous Integration and Continuous Deployment

	Production System Monitoring and Maintenance
	Monitoring
	System Maintenance

	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 11. Powering Up Your Productivity
	Optimizing Your Development Environment
	Know Your Development Tools
	Build Your Own Lightsaber
	Leverage the Power of the Command Line
	Harness the Power of Keyboard Shortcuts

	Strategic Automation
	The Perpetual Pursuit of Productive Habits
	Collaborative Learning
	Personal Knowledge Management

	Wrapping It Up
	Putting It into Practice
	Additional Resources

	Chapter 12. Learning to Learn
	Cramming Doesn’t Work
	Skills Acquisition
	The Learning Habit
	Learning Through AI
	Fear of Missing Out
	Where Should You Invest Your Time?
	Practice Innovation
	Architectural Briefings
	Practice Grace
	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 13. Mastering Soft Skills in the Tech World
	Collaborative Communication
	Communication Channels
	Enterprise Operator
	Know Your Audience

	Practicing Influence
	Understanding and Articulating Value
	Strategic Approaches to Influence
	Stakeholder Management

	Time Management
	Maker’s Schedule
	Staying on Task

	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 14. Career Management
	Plan Your Career Path
	Find What You’re Passionate About
	Exploring Your Career Options
	Walking Backward from Your Goals
	Deliberate Skill Acquisition
	Aligning Career Choices with Life Phases

	Walking Your Career Path
	Celebrate and Record Your Wins
	Overcome Imposter Syndrome
	Build Your Professional Community
	Cultivating Your Professional Relationships
	Acing Your Next Interview
	Create Work–Life Balance

	Wrapping Up
	Putting It into Practice
	Additional Resources

	Chapter 15. The AI-Powered Software Engineer
	What Is AI Really?
	Demystifying AI Terminology
	Understanding AI’s Capabilities and Limitations

	AI as Your Pair Programmer
	Standalone Chatbot Assistants
	Inline IDE Assistants
	Agentic AI IDE Environments

	Prompt Engineering Fundamentals
	What Is Prompt Engineering?
	Essential Prompt Engineering Techniques
	Advanced Prompt Engineering Techniques

	How AI Might Shape Software Engineering
	Will AI Take My Job?
	Vibe Code Reviews
	AI as Your Force Multiplier: From Writing Code to Problem-Solving

	Wrapping Up
	Putting It into Practice
	Additional Resources

	Index
	About the Authors
	Colophon

