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preface

I joined Microsoft Quantum and, by extension, the world of quantum computing in
early 2017, just as the team started developing the quantum programming language
that later became Q#. I spent a big part of the next eight years learning quantum
computing myself and helping others do the same, both as part of my job at Microsoft
and in the course I teach at Northeastern University. And, while doing this, I noticed
several gaps in the way quantum computing was taught.

First, a lot of material on quantum computing focused on its mathematical aspects
only. I am an applied mathematician by training, so I'm comfortable with math. But
I'm a software engineer by trade, and I’'m a lot more comfortable with algorithms
when I can implement them and experiment with running them! My first project
in quantum computing education, the Quantum Katas, focused on introducing the
basics—quantum states and gates, measurements, and simple algorithms—through
a series of programming problems that the learner would solve to internalize the
theory.

The second gap shows up later in the learning journey. There are plenty of
“quantum computing 101” resources that focus on introductory concepts. But, once
you’ve mastered the basics, what’s next? What does “quantum computing 201” look
like? If you’ve only ever run simple circuits, how do you start implementing real
quantum algorithms? How do you test the quantum code you write? What do you need
to know about quantum programming for future fault-tolerant quantum computers?
And, ultimately, how do you figure out whether your quantum solution to the problem
you’re looking at is going to do better than a classical algorithm? This book aims to
answer these questions.

viii



PREFACE ix

The book offers you a selection of problems, from building quantum programming
libraries to solving classical problems using quantum algorithms, and walks you
through the solutions. As part of the discussion, I introduce the quantum software
development workflow, from figuring out the algorithm suitable to solve the problem
at hand to implementing the solution, testing it, and evaluating its performance. Each
problem ends up being implemented as an end-to-end software project. Throughout
the book I use Qiskit and Q#—two of the quantum programming languages used
for quantum computing research today—to make sure the tools and methods I talk
about are relevant to the current quantum programming landscape.

There are, of course, plenty of topics I could not include in the book: domain-
specific applications, the architecture of fault-tolerant quantum computers and
the software stack we’re building for them, and debugging large-scale quantum
algorithms, among others. I hope that this book will show you how to think about
quantum computing as a software engineer and problem solver and thus equip you
with the mindset you’ll need to continue your pursuit of knowledge!
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about this book

Quantum Programming in Depth isn’t designed to teach you quantum computing from
scratch, although I hope that you will learn a lot from it regardless of how much you
already know when you start. It is meant to help you deepen your understanding of
the fundamental concepts and apply them to solve problems, as well as expand your
experience in quantum software development.

This is a book you should not just browse or flick through. Each chapter offers
you a project to do or a series of problems to solve, and, while it walks you through
the mathematical solutions and then the coding implementations, you will learn the
most if you try to solve the tasks and write the code yourself, and then take the time
to attempt the additional projects from Going Beyond idea lists. The more effort you
invest into working through this book, the easier you’ll find quantum computing
problems you’ll encounter afterward.

Who should read this book

This book was written for people who are interested in learning quantum computing
and quantum programming beyond the basics. It is aimed at learners who have taken
an introductory course and want to deepen their knowledge, or perhaps have studied
the theory and want to get hands-on experience putting it into practice. You should
already have an understanding of basic concepts and terminology, such as quantum
gates, measurements, and Dirac notation.

This book will help you go from passing familiarity with the concepts of quantum
computing to using them to solve realistic problems. You will become more confident
as you write quantum programs, test them, and learn to think about their performance
to better understand the potential use cases of quantum computing.
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How this book is organized: A roadmap

This book has nine chapters. The first chapter gives you a quick overview of quantum
computing, the kinds of problems it might solve more efficiently than classical
computing, and quantum hardware and software development.

The remaining chapters are grouped into three parts. Part 1 includes two projects
that can be used as building blocks for other, more complicated algorithms. This
part also shows you how to write quantum code in Q# and Qiskit, run it on simulators,
and test it:

In chapter 2, you’ll create a library that prepares arbitrary quantum states.
In chapter 3, you’ll learn to implement unitary transformations that are not
part of the built-in gate set.

Part 2 offers a collection of smaller projects that focus on learning information about
quantum systems:

Chapter 4 focuses on using measurements to get the necessary information
about quantum states.

Chapter 5 uses the tools from the previous chapter to get information about uni-
tary transformations. A big part of chapter 5 is dedicated to the phase estimation
problem, one of important tools in the quantum computing toolbox.

Part 3 covers the end-to-end process of solving a classical problem using a quantum
algorithm:

Chapter 6 shows how classical functions can be represented and evaluated as
part of quantum computations—this is the first step of quantum solutions to a
lot of classical problems.

Chapter 7 introduces Grover’s algorithm, one of the most famous quantum
algorithms for solving search problems.

In chapter 8, you’ll learn to use Grover’s search algorithm to solve realistic
problems and see the steps that are involved in that.

Finally, chapter 9 discusses the performance of quantum programs and the way
we think about comparing quantum solutions with classical ones to figure out
whether a quantum algorithm can show a practical quantum advantage for a
particular problem.

Each chapter is broken down into sections that focus on solving a specific task,
learning to use a specific tool from the development toolkit, or implementing one
part of the larger project. The goal of each section is to end up with working code in
both Qiskit and Q#.

At the end of each chapter, you’ll find a short section, Going Beyond, which
provides a list of ideas of the ways to further develop the project from this chapter
and similar projects you can do on your own. I encourage you to give them a try!
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About the code

All the code written in this book can be found at https://github.com/tcNickolas/
quantum-programming-in-depth. The project folder for each section includes the
complete tests for the code developed in this section, even if they are omitted from
the book itself. Sections 2.1-2.3, 3.1-3.2, and 6.2 are the exception to this rule, since
I don’t introduce the way to test the code written in these sections until later.

The code for each problem solved is available in both Qiskit and Q#. Installation
instructions for both Qiskit and Azure Quantum Development Kit, as well as the
pytest package, are available in the appendix and in the GitHub repository.

This book contains many examples of source code both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Additionally, comments in the source code have often been removed from the
listings when the code is described in the text. Code annotations accompany many
of the listings, highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of
this book at https://livebook.manning.com/book/quantum-programming-in-depth.
The complete code for the examples in the book is available for download from the
Manning website at https://www.manning.com/books/quantum-programming-in
-depth and from GitHub at https://github.com/tcNickolas/quantum-programming
-in-depth.

liveBook discussion forum

Purchase of Quantum Programming in Depth includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you
can attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive help
from the author and other users. To access the forum, go to https://livebook.manning
.com/book/quantum-programming-in-depth /discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://livebook.manning.com/
discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part
of the author, whose contribution to the forum remains voluntary (and unpaid).
We suggest you try asking the author some challenging questions lest her interest
stray! The forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.
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Other online resources

Are you looking to start with the very basics of quantum computing or even the linear
algebra necessary for getting started? The Quantum Katas (https://quantum.microsoft
.com/experience/quantum-katas) are online tutorials that follow the same practical
hands-on approach to learning as this book. They offer plenty of programming
problems and exercises in Q#, so completing them gives you a head start on the
projects in this book!

As you work your way through the book and the code in each chapter, here are
some additional resources to help you:

Qiskit:

— Qiskit documentation (https://docs.quantum.ibm.com/)—Complete docu-
mentation for using Qiskit and IBM Quantum in a quantum software devel-
opment workflow

— Qiskit on GitHub (https://github.com/Qiskit/)—Repositories that host
Qiskit source code, as well as a collection of tools for working with Qiskit.

Q#:

— Q# documentation (https://learn.microsoft.com/azure/quantum/)—Com-
plete documentation for using Q# and Azure Quantum in a quantum software
development workflow.

— OQf# on GitHub (https://github.com/microsoft/qsharp/)—Source code for
Q# compiler, simulators, and libraries, as well as a collection of Q# sample
programs.
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Quantum computing: 1The
hype and the promise

This chapter covers

The kinds of problems quantum computing
might solve better than classical computing
Three main components of quantum computing
systems: algorithms, hardware, and software

Major milestones of quantum hardware
development, past and future

Quantum software development workflow

Quantum computing uses quantum-mechanical phenomena to perform computa-
tions. It is a new computing paradigm that is fundamentally different from “classical
computing”—the traditional technology that powers our world, from the home
computers and smartphones we use on a daily basis to supercomputers that solve
scientific problems.

Classical computing relies on the concepts that are familiar to us from our daily
lives, and thus it feels intuitive to us, even if we often don’t know the exact algorithms
our computers employ to solve the problems we ask of them. For example, we can
plan a trip using a paper map of the area, so a map application doing the same thing
doesn’t feel odd.



1.1

CHAPTER 1 Quantum computing: The hype and the promise

In contrast, we don’t have a frame of reference for quantum-mechanical phe-
nomena in our lives, so we don’t have an opportunity to develop intuition for a
model of computation that relies on them. Instead, we have to reason about quantum
computing using mathematics and an occasional analogy that may or may not be
helpful. Add to that the often-emphasized belief in the importance of mastering
quantum physics for understanding quantum computing, and it’s no wonder that
this topic can feel mysterious and intimidating!

This chapter offers you the essential context around quantum computing and
introduces a physics-free way to approach learning it—by solving problems and
implementing the solutions to them as quantum programs.

Your second book on quantum computing: The prerequisites

This book is intended for readers who are already familiar with the basic concepts of
quantum computing and seek to deepen their understanding of those basics and
start using them to come up with solutions to nontrivial problems.

Here are the main quantum computing concepts you should be familiar with to
get the most value out of this book:

Quantum states and their representation as state vectors

Quantum gates, their representation as matrices, and the ways to calculate their
effect on quantum states by multiplying the state vector by the gate matrix
Dirac notation for quantum states and performing computations in Dirac nota-
tion directly, without reverting to matrix computations

The main quantum gates: Pauli gates X, Y, and Z, Hadamard gate /1, rotation
gate Ry, phase shift gates S and 7', and CNOT and CCNOT gates

Controlled and adjoint variants of gates

Measurements for single- and multiqubit systems, their outcomes, and the
relationship between the amplitudes of a state vector and the probabilities of
measurement outcomes for it

I will include small refreshers in the text on these topics whenever they are required
for the first time, but they aim to serve as reminders, not as detailed tutorials. Phrases
such as “Given two qubits in the |0) state and an array of four floating-point numbers a,
change the state of these qubits to |) = Z;?:O ai, |k)” (chapter 2) or “Apply a controlled
variant of the rotation gate with the first n — 1 bits as controls and the last bit as the
target” (chapter 3) should make sense to you, even if you don’t know how exactly
to do that right away! If you are looking to get started with quantum computing
from scratch, I recommend you combine this book with an additional resource that
introduces the basic concepts slowly and thoroughly, be it another book, a set of
online tutorials, or a series of video lectures.

The math of quantum computations is expressed in terms of complex numbers,
vectors, and matrices. As you work with quantum computing, you should be com-
fortable doing basic linear algebra operations, such as multiplying matrices, finding
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inner and outer products of vectors, and computing tensor products of matrices. For
example, you should understand the math-heavy sentences such as “The probability
of the state o) being measured as |my) is | (Yo|mo) |27 (chapter 4) or “The state of
the system becomes \l@(|0) —|1)) ® |1)” (chapter 5).

This book assumes familiarity with basic trigonometric functions such as sine,
cosine, and tangent and includes reminders of the trigonometric identities used in
the computations. Some projects additionally require some trigonometry or slightly
more advanced linear algebra concepts such as eigenvectors and eigenvalues (chapter
5). I'will introduce these more advanced concepts in the chapters that rely on them.

Finally, understanding the basics of computational complexity theory will be useful
for the discussions of quantum algorithms’ performance. I do not go into detailed
analysis of asymptotic behavior of quantum algorithms considered in this book, but
you should be familiar with the concept of asymptotic behavior itself and the basics
of the big-O notation (for example, the term “quadratic speedup”).

A great getting started resource is the Quantum Katas (https://mng.bz/GeoO)—an
open source collection of hands-on tutorials and programming exercises that I cre-
ated to help beginners learn the very basics of quantum computing. The tutorials
include an introduction to working with complex numbers and linear algebra tools
that are required to express quantum computations, as well as all basic concepts of
quantum computing and some educational algorithms. Best of all, the programming
exercises in the Quantum Katas provide immediate feedback on your work, helping
you learn more effectively. If you prefer to start learning quantum computing by
reading a book rather than by diving into programming right away, check out the
book Learn Quantum Computing with Python and Q# by Sarah Kaiser and Cassandra
Granade (Manning, 2021).

The hype and the promise: What kinds of problems
can quantum computing solve?

You have most likely heard a lot about quantum computing and its promise to solve
all kinds of problems. There is a lot of hype around quantum computing these days—
one might even get an impression that it will replace classical computing altogether!
This is, in fact, not true.

Even though quantum computing is still in its early days, scientists are quite certain
that it is not going to be useful for every computing task that occurs in our lives. In
principle, a large enough quantum computer can run any classical computation.
However, it will take the quantum computer a lot longer to run an equivalent of a
classical computation than it will take a classical computer to run the original classical
program. So, if a classical computer is doing a good enough job of a mundane task
like checking your email or searching through a database, there is no need to try to
harness a quantum computer to do the same thing.

Instead, scientists are looking for problems that cannot be solved by classical
computers efficiently and for algorithms that quantum computers can use to solve
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them better. Figure 1.1 illustrates the behavior of classical and quantum solutions
for a problem that can benefit from quantum computing.

2 Crossover point: Classical
S point: solution Quantum
° quantum solution has solution
g the same performance
= as the classical one. 1
Practical advantage:
quantum solution
is a lot faster than
the classical one.
Problem size

Figure 1.1 Quantum advantage might be achievable if the time a quantum computer takes to solve a
certain problem grows at a slower rate as the problem size increases than the time a classical computer
takes to do the same. In this case, problem instances that are much larger than the crossover size might
be good candidates for quantum solutions. If the crossover time is months or more, quantum computing
offers no practical advantage, since larger problem instances take much longer to solve, and running a
quantum computer for months or years to solve a single problem is not practical.

A problem has to satisfy multiple requirements to show practical quantum advantage:

A classical computer or even a supercomputer running the best known algorithm
takes too long to solve the problem to be useful (years, decades, or even longer).
A quantum computer can solve the same problem fast enough for the solution
to be useful (at most, days and preferably hours).

The problem is a meaningful, real-world application rather than an artificially
constructed task with no practical value, and the answer is valuable regardless
of how it has been obtained.

It is already clear that the problems that will show quantum advantage will be very
specialized, similar to the ones that today’s supercomputers tackle. Materials science
and simulating quantum systems that occur in chemistry and physics problems are
a few examples of such tasks. (Why? These kinds of problems involve accurately
simulating behavior of quantum systems, such as electrons in molecules, and a
simulation that uses a computer based on the same principles as the system being
simulated turns out to be a lot more efficient compared to a classical simulation.)

Quantum algorithms research to date suggests several properties of the problems
that might exhibit practical quantum advantage. First, the problems best suited for
quantum computation are “small-data big-compute” problems—problems that have
small inputs and require a massive computation to process them. For example, for
integer factorization, a problem for which Shor’s quantum algorithm promises to
outperform the best classical algorithms, the input is a single number, but finding its
divisors is computationally hard. Similarly, for quantum systems simulations, the input
descriptions of the systems being simulated are much smaller than the computation
required to find the required properties of the system.
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Next, the problem has to have some sort of structure that can be exploited by the
quantum algorithm. For example, Shor’s algorithm for integer factorization relies
on periodicity of a specific function defined based on the number that we aim to
factor.

Finally, the asymptotic behavior of the quantum algorithm has to be significantly
better than that of the classical algorithm. There are many factors that affect the
practical performance of a quantum algorithm (we’ll talk about them in chapter 9).
Once we take them into account, we realize that a quantum algorithm that offers
only a quadratic speedup over its classical counterpart (for example, Grover’s search
algorithm, which we’ll discuss in chapter 7) is extremely unlikely to offer practical
advantage. It is possible that only algorithms with exponential or better speedups
will end up being practical.

The research of applications that will benefit from quantum computing is still
ongoing, but even if the pool of these applications ends up being limited to highly
specialized applications such as materials science and quantum systems simulations,
they have the potential for having a huge effect on our lives. This kind of application
can lead to discoveries of new materials with highly desirable properties that have
the potential to revolutionize entire industries such as energy and manufacturing.

A peek inside the fridge: How does quantum computing work?

Quantum computing systems consist of three main components: algorithms, hard-
ware, and software. These components tend to evolve in parallel, each of them inform-
ing the requirements for development of the others and boosting their progress in
turn. Let’s take a closer look at each of them.

NOTE This book focuses on the gate-based model of quantum computation, in
which the computation is represented as a sequence of single- and multiqubit
quantum gates, similar to how digital computers represent the computation as
a sequence of logic gates. Other models of quantum computation exist that are
equivalent to the gate-based model and rely on the same principles, although
implemented differently. Examples of such models are the measurement-based
model, which represents the computation as a sequence of measurements and
single-qubit gates, and the adiabatic model, which is similar to analog classical
computers.

Algorithms

Even though quantum mechanics developed in the first decades of the 20th century,
quantum computing did not emerge until the early 1980s, when Paul Benioff, Yuri
Manin, and Richard Feynman independently suggested that quantum-mechanical
systems can be used to perform computations that cannot be efficiently done on
classical computers, such as simulation of quantum system evolution. It took another
decade for scientists to come up with the first quantum algorithms that promised
speedups for solving purely classical problems not related to physics simulations:
Shor’s integer factorization algorithm and Grover’s search algorithm.
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Quantum algorithms were the driving force behind the emergence of quantum
computing as a separate field. After all, we’re not building quantum computers just
because we can: we do it because of their promise to solve problems that are of prac-
tical interest to the world. Continued progress in quantum algorithms development
and discovery of new problems that quantum computers will be great at solving are
essential to the long-term success of quantum computing.

It is also important to consider quantum algorithms not only in terms of their
abstract computational complexity but also with an eye toward the practicality of
their implementation. Sometimes quantum algorithms that theoretically have a
better computational complexity than their classical counterparts turn out to be
not so attractive under a more rigorous analysis that takes into account all the
implementation details.

Grover’s algorithm for unstructured search, or function inversion, is a great exam-
ple of such an algorithm. It solves the following problem: given a black box function
(a function that you can evaluate for a specific input but don’t have any information
about otherwise) with N possible inputs, find the input that produces a specific
output. Grover’s search can find the solution in O(\/N) calls of this function, while
the classical algorithm acting under the same limitations takes O(N) calls. We say
that the quantum algorithm offers a quadratic speedup in this case.

However, in practice, classical computing tends to take advantage of the structure
of the problem to devise a much more efficient algorithm than the brute-force one
relying on accessing the function as a black box. Database search is often mentioned
as one of the applications of quantum computing, but you don’t see a classical
database searched by randomly picking an entry and checking whether it fits the
search condition; instead, the databases have indices and partitions in place to
improve the data retrieval speed. Grover’s search cannot use the problem structure
as efficiently as the classical algorithms, so for a lot of problems, it ends up being
slower than the best classical algorithms even theoretically.

The search problems that do not have an efficient classical algorithm exploiting
their structure, such as the hash inversion problem, encounter a different problem.
We expect the elementary operations on quantum computers to be quite a bit slower
than on classical ones, and implementing simple classical computations such as
integer or floating-point arithmetic to be a lot more complicated. Consequently,
one function evaluation on a quantum computer can be many orders of magnitude
slower than on a classical one, dwarfing the theoretical complexity improvement. We
discuss these and other factors that have to be taken into account when evaluating
performance of quantum algorithms in more detail in chapter 9.

Increasingly thorough analysis of the quantum algorithms and the speedups
offered by them is an important part of the quantum algorithm discovery. It is aided
by the quantum software progress, and the results of this analysis, in turn, inform the
decisions made about both software and hardware design.
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1.3.2 Hardware
The suggestion to use the principles of quantum mechanics to perform computations
launched the efforts to build a physical implementation of this idea—a working quan-
tum computer. The first experimental implementations of quantum algorithms were
demonstrated in 1998 using small nuclear magnetic resonance quantum computers.

The state of quantum hardware development now, two and a half decades after
those early experiments, is aptly described as “noisy intermediate-scale quantum era”
(NISQ), the term introduced by John Preskill in his keynote at Quantum Computing
for Business in December 2017. The best available quantum devices are large enough
that their behavior cannot be simulated classically, but still too small and too noisy to
solve practical problems.

Multiple companies worldwide are building quantum computers based on differ-
ent underlying technologies. The landscape of the approaches considered to be the
most viable shifts over time; for example, nuclear magnetic resonance devices that
played a prominentrole in early demonstrations of experimental quantum computing
are not suitable for building large quantum computers. The main technologies
pursued today are (in no particular order) superconducting circuits, trapped ions,
neutral atoms, and photons.

To reach maturity, quantum hardware has to hit four milestones shown in figure

1.2.

Proof of concept: Quantum computer

quantum mechanics can can suppress the noise

be used for computation. during computation.
Quantum computer can Quantum computer can
solve an artificial problem solve a practical problem
faster than a classical one. that a classical one cannot.

f f f f
1998 2019-??7 ?2?? ??7?
First quantum computer First supremacy First fault-tolerant Practical quantum
running an algorithm demonstrations quantum computer advantage demonstrations

Figure 1.2 The major milestones of quantum hardware development. The first two, showing the use
of quantum mechanics to perform a computation and having a quantum computer solve an artificial
problem that a classical computer cannot, have already been achieved. The next milestone, building a
fault-tolerant quantum computer that can run long computations, is the current focus. The final goal is
to build a quantum computer that can solve practical problems that a classical computer cannot.

The first milestone is implementing a proof of concept device that shows the funda-
mental possibility of harnessing quantum-mechanical principles for performing a
certain computation. This milestone has been achieved over two decades ago with
the first nuclear magnetic resonance quantum computers that implemented small
algorithms such as Deutsch, Deutsch-Jozsa and Grover’s search algorithm. However,
this milestone remains an important one, since it shifted quantum computation from
being a theoretical conjecture to becoming an area of practical experimentation.
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The second milestone is demonstrating a device solving a problem that cannot
be solved on a classical computer in a reasonable amount of time, without the
requirement that this problem is useful outside this demonstration, focusing on
the scientific merit of the demonstration rather than on the practical one. There is
no clear-cut way to recognize whether this milestone has been accomplished, since
classical algorithms improve over time and such demonstrations can be challenged
later. The first supremacy claims by Google and by the University of Science and
Technology of China, published between 2019 and 2022, were refuted in the next
few years by other researchers who demonstrated efficient classical algorithms for
solving the same problems.

Next, the quantum computers need to become fault-tolerant—able to reduce the
noise to arbitrarily low levels that would allow them to carry out long computations.
This means that they have to run error correction continuously, as a layer that protects
logical programs from the noise that occurs during their execution on hardware. The
current systems cannot do that; instead, they rely on techniques like error mitigation
to improve the accuracy of the results produced by the quantum devices. However,
error correction is one of the requirements for fault-tolerant quantum computers,
together with scaling up the number of qubits significantly. A lot of current research
and experimentation focuses on demonstrating error correction on existing hardware
on a small scale.

The final milestone is demonstrating a quantum computer solving a practically
significant problem that cannot be solved by classical computers in reasonable time.

Notably, the raw parameters such as the number of qubits in a quantum computer
are not the primary criteria for declaring a milestone achieved. What matters more
is the kind of problems you can solve using that quantum computer and the quality
of the results.

Despite the quantum hardware still having a long way to go before it can offer us a
practical advantage over classical computers, it is fascinating to observe the progress
happening in the industry.

When I joined the field of quantum computing in early 2017, IBM had just re-
leased a 5-qubit computer in the cloud for scientists and enthusiasts worldwide to
experiment with, and unveiled a 17-qubit processor shortly after. In mid-2023, when
I started writing this book, a lot of attention was still focused on building devices with
more qubits (the highest number was 433 qubits in an IBM device) and looking for
applications for them. In December 2024, during the final edits for this book, the
world record for the most qubits in a quantum computer was held by a 1,180-qubit
device announced by Atom Computing in October 2023.

By the end of 2023, though, the focus of the quantum computing community
largely switched to the pursuit of the fault-tolerance milestone. The year 2024 saw a
number of exciting error correction demonstrations by multiple companies, includ-
ing Microsoft, Quantinuum, and Google. And the next decade is promising to bring
even faster progress!
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1.3.3 Software

The software stack plays a crucial role for quantum computers, same as it does
for classical computers, serving as an interface between the theoretical algorithms
and hardware that can run them. It includes multiple types of software that enable
quantum application development, testing, evaluation, and execution on quantum
hardware.

Based on its purpose, quantum software can be divided in two large classes: appli-
cation software that utilizes the quantum computer to solve problems and system
software that provides the platform for running application software. Figure 1.3 shows
some of the most prominent layers of the quantum software stack.

I
I
: Algorithms :
\ |
________ oo
I
I
|
. . Y
Software implementations o
of quantum algorithms & App]!t'catr'on
that solve problems sortware Quantum language
l compiler
Programming N .
tools 4—~__ Code libraries
Code optimizations l ]
Quantum simulators
. Middle-layer
Enabling cloud access ——* .-
Error correction l

Software managing
Hardware control «—___ the quantum hardware
software on the physical level

Quantum
hardware

Figure 1.3 A quantum software stack serves as an interface between the quantum algorithms and the
hardware running them. Its components mirror those of the classical software stack.

Let’s take a closer look at examples of software within each layer shown in the
figure. Application software uses the rest of the software stack and the quantum
hardware to solve specific practical problems. This software directly implements the
quantum algorithms developed for solving these problems. A program that evaluates
properties of molecules using a quantum chemistry algorithm is an example of
application software.
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The next layer is the programming tools that support the programming lan-
guage used to develop application software. This language will typically be hardware-
agnostic, expressing the algorithm in terms of abstract concepts such as qubit allo-
cation and gate application rather than commands specific to a certain hardware
platform. This agnosticism enables running the same code on multiple hardware
devices, possibly built based on completely different physical platforms, without
rewriting it for each device. Depending on the language, its programming toolkit can
include a standalone domain-specific language, like Q#, or libraries that allow you to
embed the quantum program elements into a classical programming language, like
Qiskit which is implemented as a Python library. It will also typically include a variety
of quantum libraries—collections of prewritten programs and utilities that make
developing quantum applications easier, similar to the ones available for classical
programming languages.

The middle-layer software takes care of converting high-level application code
into its representation suitable for running on the target hardware. Depending on
the platform, various components of this layer can be responsible for optimizing
the application code, breaking it down into primitive gates and measurements (ele-
mentary operations supported by the underlying system), applying error correction
(that is, encoding each logical qubit used in a program into multiple physical qubits
on a quantum device and each logical gate into a fault-tolerant sequence of gates
applied to those physical qubits), mapping abstract qubits to specific physical objects,
and so on. For cloud quantum computing systems, such as Azure Quantum and IBM
Quantum, middle-layer software also includes the software that enables access to
quantum hardware as a cloud service, exposing the APIs necessary to run programs
on quantum devices.

Finally, control software manages the quantum hardware on the physical level.
This layer communicates with quantum hardware directly and thus is specific to each
hardware platform, since it is defined by the underlying physical implementation
of the qubits. For example, for trapped ion qubits, this software controls the lasers
applied to the ions, and for superconducting qubits, the microwave pulses applied to
the circuits.

In addition to the typical programming tools that enable quantum code develop-
ment, such as compilers, integrated development environments, and code libraries,
quantum programming toolkits include additional tools that have no equivalent
in classical software development. The primary example of such tools are quantum
simulators—classical programs that can run simulations of small quantum systems.
Quantum simulators can plug into the software stack at any layer, depending on the
aspects of the system that need to be simulated. For example, on the highest level,
they allow the developer to run the entire quantum program for small instances of
the problem it solves on a classical computer, without accessing quantum hardware;
on a lower level a quantum simulator can focus on imitating the noisy behavior of
the quantum device, allowing to validate the error correction software. These kinds
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of tools are critically important for testing quantum programs, and you will use them
extensively later in this book.

Quantum application software development workflow

The quantum application developer interacts primarily with the topmost system
software layer, the programming tools (although understanding of the underlying
layers certainly helps, same as in classical software development). These tools have to
support the steps of the quantum application software development workflow, shown
in figure 1.4.

Come up with an algorithm.

Develop «—_ Implement quantum code.

Address the problems Implement classical code.
revealed by testing. ~— | P

Check that the code is

Validate . .

- . correct by running it
Optimize the algorithm on quantum simulators.
based on performance
evaluation results. ! Estimate performance

Evaluate

of the algorithm and
its resource requirements.

'

Run the end-to-end code
Run on hardware |4~ on a quantum computer
to get the problem answer.

Figure 1.4 Quantum application software development workflow. From the developer perspective, it is
similar to the classical software development workflow, with some differences to account for the nature
of quantum computing. For example, using quantum simulators instead of the hardware makes testing

quantum code on small problems faster and easier because it eliminates the need to account for noise.

The first step of creating a quantum software application is coming up with the algo-
rithm to use and implementing it. This does not necessarily mean only the quantum
code! A lot of practical quantum applications are expected to use hybrid algorithms,
combining quantum subroutines that perform heavy computations with classical ones
that take care of the tasks better suited for classical computers. Developing hybrid
applications will include writing both quantum and classical code, tightly coupled
together.

Once the code is written, the next step is validating its correctness. Testing and
debugging quantum programs borrows some concepts from classical software testing,
but the fundamental differences between quantum and classical computing mean
that some techniques have to be reinvented from scratch. For example, the technique
of checking the state of the variables used in a classical program at certain points
of its execution cannot be replicated on quantum hardware, since it is impossible
to get complete information about the state of a quantum system by observing it.
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Instead, the developer can use quantum simulators that, being classical programs,
allow peeking at their internal state, to validate the quantum program behavior on
small problem instances.

After the code is written and tested, it is time to evaluate its performance and
resource requirements. The currently available quantum devices are small and noisy
enough that they can only run programs that require relatively few qubits and gates.
This step helps evaluate whether the program can fit on a device with a certain
number of qubits and be executed before the noise obscures the results. Another use
of resource estimation for quantum programs is evaluating the efficiency of different
implementations of the same subroutine or algorithm, thus enabling optimizing the
program in advance of quantum devices being ready to successfully execute it, as well
as informing hardware designers of the requirements of running large algorithms
on hardware.

The final step of the quantum software development process is running the appli-
cation on quantum hardware to get the answer to the problem it solves. Since the
current quantum devices are still in the NISQ era, they cannot solve problems of
practical importance yet, so this step is used as a part of the application validation
process rather than as the end goal of the application development. As quantum hard-
ware matures, this step will become increasingly more important, as it will provide
the answers to the problems that classical computers cannot provide.

This book focuses on the first three steps of this workflow, developing and testing
quantum programs and evaluating the resources they require.

TIP  You are welcome to extend the projects discussed in this book by trying to
use the cloud quantum computing systems available today to run your programs
on real quantum devices!

Quantum software is the critically important connective tissue between quantum
algorithms and quantum hardware. The progress made in all layers of the software
stack enables us to run new kinds of algorithms on hardware and allows us to shift from
reasoning about quantum algorithms in terms of circuits to reasoning in terms of high-
level programs and from estimating abstract runtime complexity of an algorithm to
implementing it and getting accurate performance information. All these capabilities
enable progress in both algorithms development and hardware design.

Why learn quantum computing?

The recent advances in all areas of quantum technologies bring attention and fund-
ing from governments and industry leaders around the globe. These areas include
quantum computing, quantum communications (using quantum principles to enable
safe communications), and quantum sensing (building sensors based on quantum sys-
tems) with quantum computing being the most promising of the three and attracting
the most notice.
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Governments of multiple countries recognize the potential effect of quantum
science and invest billions of dollars in programs aiming to accelerate its progress.
The National Quantum Initiative Act passed in 2018 defined the United States’ plan of
advancing quantum technology for the next 10 years. In the same year, the European
Union launched a decade-long research initiative called Quantum Flagship with the
goal of consolidating and expanding European scientific work in this area.

For several decades, quantum computing has been an area of primarily theoretical
research. These days, though, industry involvement in the area is growing rapidly. As
of late 2024, over 600 companies—both large companies with quantum-dedicated divi-
sions and startups focused solely on one or several aspects of quantum technologies—
and almost 200 universities worldwide are involved in quantum technologies research
and development.

Increasing numbers of industry and academia jobs related to quantum tech-
nologies is driving the growing demand in workforce development in this area and
broadening accessibility of quantum computing education. Ten or fifteen years ago,
the main career path into quantum computing involved getting a PhD in quantum
physics or theoretical quantum science and then staying in academia. As far as career
choices went, it was an uncommon one. During my time earning a computer science
degree at the Kyiv Polytechnical Institute, I learned about quantum physics but not
about the idea of using its principles for computation, so it never occurred to me to
consider it as an option for further studies. I've discovered the fascinating world of
quantum computing only a decade later and had to learn everything from scratch
after joining Microsoft Quantum.

These days, quantum computing is much more prominent in the public eye, and
the education necessary to get involved in it is much more accessible. As of late 2024,
55 universities worldwide offer master’s degree programs in quantum technologies.
There are also countless software tools and online learning resources that make it
possible to approach learning quantum computing from a computer science angle,
without dedicating years to learning the underlying physics.

The abundance of opportunities to get involved in quantum computing and start
contributing to the area makes the present moment a great time to learn quantum
computing. Even if you end up not working in quantum computing domain full time,
you’ll reap the benefits of learning a new computing paradigm and that, same as
learning new natural languages, is the best kind of brain teaser, making you a better
thinker in the long run!

Learning quantum computing through quantum programming

This book takes a hands-on approach to quantum computing, focusing on problem-
solving and quantum programming practice. It offers you a selection of introductory
problems in quantum computing and walks you through the solutions, treating them
as end-to-end software projects. Each project covers all the steps from the mathe-
matical reasoning to working code, complete with unit tests. The offered projects,
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however, are not the ones that will yield practical advantage once quantum computers
reach their maturity—materials science and quantum systems simulation are far from
introductory topics! Rather, the problems I selected for the book emphasize the
practice of manipulating the basic elements from which quantum algorithms are
constructed and getting comfortable inventing and implementing algorithms, even
if they’re relatively simple.

What kind of projects will we build in this book? Some of them are implementations
of useful library routines, such as preparing a given quantum state or implementing
a given unitary transformation. Others explore well-known quantum algorithms and
using them to solve problems, such as estimating eigenvalues of the given unitary or
finding a solution to a simple classical puzzle using Grover’s search.

At this point in the evolution of quantum computing, plenty of software tools
are available for working with it, from frameworks designed to support the entire
quantum software development workflow to specialized tools focused on specific
areas. So, you have a lot of tools to choose from when solving the kind of problems
discussed in this book.

I use two quantum programming languages, Qiskit and Q#, throughout the book.
Qiskit is a Python library developed by IBM and currently the most popular circuit-
level quantum programming language. Q#is a domain-specific language developed by
Microsoft that focuses on high-level quantum algorithm design and can be integrated
with Python code for pre- and postprocessing (for example, verifying the results of
quantum code execution in tests). Both languages come with open source toolkits
that support all steps of quantum software development workflow discussed earlier
in this chapter. The appendix includes setup instructions for both Q# and Qiskit
development environments. (You can find a pointer to the list of other open source
quantum software tools in section 1.6.)

To get the most out of this book, you should be comfortable working with Python,
creating test projects with it, and using basic language constructs such as variables,
loops, methods, etc. I introduce the basic language elements of both Qiskit and Q#
as we go.

Keep reading to start solving problems and writing your own quantum programs.
And who knows, one day it might be you at the forefront of quantum computing
progress!

Further reading

Here is a short list of references that are good starting points if you want to learn
more about some topics I briefly mentioned in this chapter:

Section 1.2
Hoefler, T., Haener, T., & Troyer, M. (2023). Disentangling hype from practi-
cality: On realistically achieving quantum advantage. https://arxiv.org/abs/2307
00523
Aaronson, S. (2022). How much structure is needed for huge quantum speed-
ups? https://arxiv.org/abs,/2209.06930
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https://arxiv.org/abs/2209.06930
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Preskill, J. (2018). Quantum computing in the NISQ era and beyond. https://arxiv
.org/abs/1801.00862

Section 1.3

Multiple groups demonstrated implementations of quantum algorithms nearly si-
multaneously. Examples include

Jonmes, J. A., & Mosca, M. (1998). Implementation of a quantum algorithm to
solve Deutsch’s problem on a nuclear magnetic resonance quantum computer.
https://arxiv.org/abs/quant-ph,/9801027

Chuang, I., Gershenfeld, N., & Kubinec, M. (1998). Experimental implementa-
tion of fast quantum searching. Physical Review Letters, 80, 3408-3411.
http://cba.mit.edu/docs/papers/98.03.grover.pdf

The shift from the pursuit of useful algorithms that can run on NISQ machines to
focus on overcoming noise in quantum devices is illustrated in

Preskill, J. (2023). Crossing the quantum chasm: From NISQ to fault tolerance.
https://quantumfrontiers.com/2023/12/09/ crossing-the-quantum-chasm-from
-nisq-to-fault-tolerance /

Section 1.5

Quantum Open Source Foundation maintains a list of open quantum software pro-
jects at https://qosf.org/project_list, which includes both general-purpose quantum
software development kits and specialized tools.

Summary

Quantum computing will not speed up arbitrary classical computing tasks. In-
stead, it will let us solve some highly specialized problems such as quantum
systems simulations that are too complicated for classical (super)computers.
To yield practical advantage over the best classical algorithms for the same
problem, quantum algorithms have to offer significant speedups, featuring
at least exponentially better asymptotic complexity compared to that of the
classical algorithms.

Quantum hardware is in its “noisy intermediate-scale” era, with devices too
large to be simulated classically but too small and too noisy to solve practical
problems.

The software stack plays a critical role for quantum computers, enabling the
execution of algorithms on hardware and accessing the quantum systems via
the cloud, accelerating algorithms research and driving the requirements for
hardware design.

Governments and companies worldwide are paying increasing attention to
quantum computing and investing in its continued development.

Learning quantum computing can provide you with a lot of opportunities to
contribute to this domain and, like learning any new computing paradigm,
make you a better thinker!


https://arxiv.org/abs/1801.00862
https://arxiv.org/abs/1801.00862
https://arxiv.org/abs/quant-ph/9801027
http://cba.mit.edu/docs/papers/98.03.grover.pdf
https://mng.bz/zZKQ
https://mng.bz/zZKQ
https://qosf.org/project_list




Part 1

Buwilding your own lLibrary

The first part of the book covers two projects that focus on manipulating quan-
tum states using quantum gates. Conveniently, you can do these projects early on in
your learning process, even before you learn how quantum measurements work!

Both projects in this chapter implement operations that act as building blocks for
other, more complicated quantum algorithms, and can be reused later in the book.
In chapter 2, we develop a library that prepares arbitrary quantum states. In chapter
3, we learn to implement arbitrary unitary transformations on multiple qubits.

This part covers the basics of writing quantum programs in Qiskit and Q#. It
also introduces the principles of testing quantum code by running it on quantum
simulators, as well as the tools that allow you to validate the behavior of quantum
programs.






Preparing quantum states

This chapter covers

= Using quantum gates to change quantum states
= Using Q# and Qiskit to write quantum programs

=  Running and testing quantum programs
using simulators

= Watching the state of a quantum program
during its execution

Quantum algorithms revolve around manipulating the states of quantum systems.
Figure 2.1 shows the flow typical for many quantum algorithms. The algorithm starts
with preparing the quantum system in a certain superposition state and then applies
a sequence of transformations to it before performing a measurement to extract
the results. The goal of the algorithm is to lead the system to a superposition state
in which the basis states that are answers to the problem being solved have large
amplitudes, and all the other basis states have much smaller amplitudes. This allows
the final measurement to yield the answer to the problem with high probability.

NOTE Not all quantum algorithms follow this approach. Some algorithms focus
on estimating the probabilities of measurement outcomes instead; you’ll see an
example in chapter 5 when we discuss different phase estimation algorithms.
However, preparing the quantum system in a certain initial state is an important
step for these algorithms as well.
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Figure 2.1 Any quantum algorithm can be broken down into several steps: prepare the initial state,
evolve it following the algorithm, and measure the end state to get the result. The goal of many algo-
rithms is to end up in a state in which the result of the final measurement is a correct answer with high
probability. (Each block of eight bars represents the eight amplitudes of the basis states in a three-qubit
quantum state.)

In this chapter, we’ll focus on the first step of a quantum algorithm: state preparation.
The goal of this step is as follows: given a freshly initialized system, typically in the
|0) state, change its state to the given superposition state. This state is often simple—
for example, a superposition in which all basis states are present and have equal
amplitudes. (You’ve probably seen plenty of educational algorithms that start with
“Prepare an equal superposition of all the basis states on the input qubits.” Deutsch—
Jozsa, Bernstein—Vazirani, and the basic Grover’s search algorithm are just a few
examples that come to mind.)

But the more elaborate the required state is, the more interesting the task of
preparing it becomes. For example, a modification of Grover’s search algorithm that
we’ll discuss in chapter 8 relies on preparing a state that is an equal superposition
of only the basis states that are included in the search space, rather than of all the
basis states. The first step of the Harrow—-Hassidim-Lloyd (HHL) algorithm—the
algorithm for solving a system of linear equations Ax = b—is preparing the arbitrary
superposition state |b) =Y} b; |k). Variational quantum eigensolver—the algorithm
for estimating the ground energy of the given physical system—relies on preparing
the quantum state that describes the ground state of the system (called ansaiz in this
context).

More broadly, a lot of quantum algorithms, including quantum machine learning
algorithms, rely on quantum random access memory (QRAM), an abstraction that repre-
sents the ability to load a large amount of classical data into a quantum computer fast.
Finding an efficient way to implement qRAM is still an open problem. One variant
of implementing qRAM stores the classical values and allows the algorithm to “read”
all of them at once as a superposition state, which is just another way to describe the
state preparation problem.

Occasionally, state preparation shows up as a part of the second step of the algo-
rithm, state evolution. For example, the “reflection about the mean” step of Grover’s
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search algorithm is commonly implemented using the same state preparation routine
as the one used to prepare the initial state of the algorithm (we’ll see examples in
chapters 7 and 8).

Now that you have some idea about the applications of the state preparation, let’s
take a look at the problem itself, starting with its single-qubit variant and building up
to preparing arbitrary multiqubit states with real amplitudes. Along the way, I will
introduce writing quantum programs in Q# and Qiskit, using simulators to run these
programs and observe their results, and writing tests for quantum software projects.

Why state preparation?

You are not likely to have to write the state preparation code in real quantum
software projects yourself. Both Qiskit and Q# have libraries that do this for you:
Qiskit’s class QuantumCircuit offers a method initialize that initializes the giv-
en qubit array in the state described using the given array of complex amplitudes,
and Q#’s PreparePureStateD and ApproximatelyPreparePureStateCP Opera-
tions from the namespace Microsoft .Quantum.Unstable.StatePreparation do
the same for real or complex amplitudes, respectively. | selected this problem as
the first project for several reasons:
It is easy to define, and the solution relies only on the most basic concepts
such as qubits and gates, not even using measurements. State preparation
problems are some of the first exercises you can try solving when you're learn-
ing quantum computing.
It allows us to start simple and build up to fairly sophisticated concepts such
as applying controlled gates and using recursion in quantum algorithms.
This problem is the kind that a beginner can approach and solve themselves
rather than just implement somebody’s algorithm, and helping you learn to
come up with algorithms yourself is the whole point of this book!

Preparing a single-qubit state

Let’s start with almost the simplest possible state preparation problem. Given a single
qubit in the |0) state and two floating-point numbers @ and S that, when squared,
add up to 1 (a? + f2=1), change the state of this qubit to the state a [0) + 8 |1). In
matrix notation, we’re looking to perform the transformation

1 a
e

0) \B

NOTE The simplest possible state preparation tasks are preparing the qubit
in the |1) state or in the “plus” state—the state %(lO) +|1)). Why not start
with one of these? Neither of these states is a good building block for the state
preparation problem because it’s trickier to transform them into the uneven
superposition state we’re looking for than to start with the |0) state directly.
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For a problem that small, we’re not so much inventing an algorithm to solve it as
looking for a single-qubit quantum gate that can do it. Each quantum programming
language comes with a set of built-in gates that implements the most common quan-
tum logic gates, so a good first step is checking whether any of them performs the
right transformation.

Table 2.1 gives a brief list of commonly used single-qubit quantum gates. You can
find the more detailed explanations of these and other gates and the rules for applying
gates to quantum states in the Single-Qubit Gates kata at https://mng.bz/AQrK.

Table 2.1 Commonly used single-qubit gates with real coefficients and their effects on an arbitrary state

Gate Matrix representation The result of applying the gateto [y )=y |0) + 6 |1)
1 0
I Ty)y=y10)+41)
0 1
0 1
X Xg)=610)+v 1)
1 0
1 0
VA Zlg)y=v10)-4611)
0 -1
H at ! Hp)=J5(y+6)10)+ &= (y =) 1)
vl v V2
COS% —sing . .
Ry(0) Ry(9) |w):(ycosg—6smg) |O)+(ysm%+6cosg) 1)
sin% cos%

Applying quantum gates to quantum states

As a reminder, you can calculate the result of applying a gate to a quantum state by
multiplying the column vector that describes that state by the matrix of that gate.
Dirac notation represents arbitrary quantum states as linear combinations of basis
states, denoting all column vectors as ket symbols. For example,

0 1 0
Xy)=X(y0)+6|1))= ) =0 0 +y ) =610)+v 1)

Y

In our case, both amplitudes o and S are real rather than complex, so we’re looking
for a gate that doesn’t have complex numbers in its matrix representation. (We will
need gates with complex coefficients later, in chapter 5; I’ll introduce them there.)
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We’re also looking for a parameterized gate that acts differently depending on
the value of a parameter or several. Indeed, since we need to prepare a variety of
states described by different parameters a and g, our solution should depend on the
values of these parameters; nonparameterized gates such as X, Z, and H don’t give
us this flexibility.

The gate that looks like a good fit is the last gate in the table, the rotation gate
Ry(0). We can use the Ry gate information from table 2.1 to calculate the result of
applying it to the |0) state:

Ry(6)|0) =cos % |0) + sing [1)
This looks just like the state we want to prepare! All we need to do is find 8 for which
cos §10) +sin § [1) = [0y + B |1)

In other words, cos % =a and sin % =p.

To consider a few examples, the states |0), [1), [+) = %(|0) +[1)) and |-) = %(|0) -
|1)) can be prepared using parameter values 0, 7, §, and -3, respectively. How can
we find the value of the 6 in the general case?

Here and later in the book we’ll often need to find a rotation angle y for which
a =cosy and f =siny. Multiple inverse trigonometric functions can be used. We’ll
choose the two-argument arctangent function atan2(S, a) that returns a value in the
interval (-, 7] and calculate our parameter 6 =2 - atan2(g, @).

Why is this function the best fit for our problem? Figure 2.2 shows several functions
we could’ve used instead and the scenarios in which they return an incorrect angle.

Using the single-argument function atan(g), for example, considers only the ratio
B
a
result for negative cosine inputs. (It also requires separate handling for the case
a =0, making the code more bulky and error-prone.)

Similarly, functions arccos @ and arcsin 8 return angles in intervals [0, 7] and

and always returns an angle in the interval (-5, 5], thus producing an incorrect

[-5, 5], respectively. These functions ignore the sign of the argument they don’t
use (B and a, respectively) completely, so they produce incorrect results for negative
sine and cosine inputs, respectively. For example, if you try to prepare the state |—)
and use the function arccos a to figure out the parameter, you’ll end up choosing
parameter 6 = 5 instead of —F, preparing the state |+) that is orthogonal to the state
you needed!

Using the function atan2(S, @) allows us to preserve the information about the
signs of both amplitudes & and S and thus to implement the required state precisely
without introducing an additional relative phase or a global phase.

TIP  Introducing a global phase does not matter as long as we only use this state
preparation routine as a standalone program. However, later in this chapter,
we’ll use the controlled variant of this routine as a part of a larger program,
and the effect of an incorrect global phase would become very noticeable!
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Y2
AN
LA s cos Y
gz
Vs € (_777 _§>
atan returns 7y, + 7. v € (=%, 0)
arcsin returns —m — ;. arccos returns —ys.

arccos returns —y,.

Figure 2.2 Different inverse trigonometric functions handle the signs of sine and cosine differently.
The angle returned by the function atan2 has correct signs of both sine and cosine. The function atan
preserves only their relative sign, always returning an angle with a nonnegative cosine. Functions

arccos and arcsin ignore the sign of sine and cosine, respectively, assuming it is always nonnegative.

Note that the function atan2 does not require its arguments to be normalized to
equal sine and cosine of some angle—that is, for their squares to add up to 1. We’ll
use that later in the chapter to simplify our code.

Qiskit

Let’s see how to implement this solution in Qiskit. Qiskit is implemented as a Python
library, so Qiskit projects are organized in the same way as the classical Python projects.
The simplest way to set up a Qiskit project is as a standalone Python scriptin a .py
file, so this is what I’ll do for the first several code examples.

Quantum programs in Qiskit focus on constructing circuits—sequences of gates
and measurements applied to a predefined set of qubits. The circuits are represented
as instances of class QuantumCircuit, initialized with the number of qubits and the
number of classical bits in the circuit. The gates are then appended to the circuit
instances using either the append method or the shortcuts defined for the built-in
gates such as Ry.

The ry gate in Qiskit takes two parameters: the rotation angle, in radians, and
the qubit to which the gate should be applied. (The gates that don’t have numeric
parameters take only one argument, the qubit(s) to which they are applied.) The
qubit can be identified in multiple ways, for example, using its index in the array of
qubits on which the circuit is defined. In our case, the circuit contains a single qubit,
so its index is 0.

Listing 2.1 shows the Qiskit code that implements our mathematical solution to
prepare a single-qubit state with the given coefficients. This code creates a circuit
consisting of one qubit that ends up in the required state.
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Listing 2.1 Qiskit code to prepare a single-qubit state

from math import atan2
from giskit import QuantumCircuit

alpha, beta = 0.6, 0.8 Defines an empty
circuit with one qubit
circ = QuantumCircuit (1)
theta = 2 * atan2 (beta, alpha) <—— Calculates the parameter of the Ry gate
circ.ry(theta, 0) .
Appends the Ry gate acting
on qubit 0 to the circuit

You can run this code just like a regular Python file, by navigating to the folder
containing the file and running

python prep one qubit.py

You’ll see, however, that it doesn’t output anything yet. Indeed, so far we only con-
struct a quantum circuit but do not attempt to execute it. We’ll modify the code to
actually run this circuit on a simulator and peek at the state it prepares in section 2.2.

Q#

Now let’s take a look at the same solution in Q#. Q# is a domain-specific language
that uses a separate file type with extension . gs. To start, we’ll look at the simplest Q#
project—a single .gs file that can be executed using Visual Studio Code extension
called the Azure Quantum Development Kit.

Qf# programs represent the computation slightly differently compared to Qiskit:
they allocate qubits as needed using a use statement and then treat them as just
a different kind of variable of type Qubit. Any operations can take parameters of
type Qubit along with the other types. Quantum gates are defined in the namespace
Std.Intrinsic, which is open in Q# programs by default. The ry gate in Q# takes
two parameters: the rotation angle, in radians, and the Qubit variable that defines
the qubit to which the gate should be applied.

Listing 2.2 shows the Q# code that implements our mathematical solution to
prepare a single-qubit state with the given coefficients. This code allocates a qubit
and prepares it in the required state. At the end of the program the qubit is returned
to the |0) state.

Listing 2.2 Q# code to prepare a single-qubit state

import Std.Math.ArcTan2; <— Imports function from the Math namespace

@EntryPoint () <—— Marks the entry point of the code

operation SingleQubitDemo() : Unit { <— The quantum code is defined as operations.
use g = Qubit(); <— Allocates a qubit
let (alpha, beta) = (0.6, 0.8);
let theta = 2.0 * ArcTan2 (beta, alpha); < Calculates the parameter of the Ry gate
Ry (theta, q); <—— Applies the Ry gate to the qubit

Reset (q) ; <—— Resets the qubit to the 0 state
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Releasing qubits in Q#

You might have noticed that the last command in Q# code does not have a match
in the Qiskit listing 2.1 for the same problem. Q# requires that all qubits are
returned to the |0) state before they are released. Reset operation does just that
by measuring the qubit and applying the X gate if the measurement result was 1.

Where does this requirement come from, and how is it enforced? Q# allows you
to allocate and release qubits at any point during the program execution. So far,
you’ve only seen a very small Q# program that uses just one qubit, and it is re-
leased at the end of the program execution, so ending the program with it in a
nonzero state would not have any weird side effects. Generally, when you work with
larger programs that use multiple qubits, you need to be more careful about how
you manage them. Releasing qubits that are entangled with the qubits still in use
can change the computation in unexpected ways, for example, by preventing inter-
ference. (You will see a detailed example of this happening in section 6.5 when we
discuss more complicated quantum programs.) Measuring the qubits automatically
before releasing them is not safe in this scenario either, since doing so would af-
fect the state of the qubits they are entangled with. Returning the qubits to the |0)
state makes sure they are not entangled with any other qubits and can be released
safely.

This restriction cannot be enforced at compile time because it would require
the compiler to keep track of the state of the qubits, effectively simulating the
whole program, and that is impossible for large programs. Instead, the Q# simulator
checks the state of the qubits before releasing them during program execution and
throws a Released qubits are not in zero state exception if the qubits are
in any state other than |0). This way, the Q# developer can notice the potential
problem with quantum memory management when they test their code and handle
it appropriately.

The entry point of the Q# project is the operation from which code execution
starts. Once you’ve annotated an operation as an entry point, the Azure Quantum
Development Kit extension will show you several actions you can take for it (see

figure 2.3).

@EntryPoint()

operation SingleQubitDemo() : Unit {
Figure 2.3 An example of code actions provided by the Azure
Quantum Development Kit extension

The code actions are

Run—Run this code on the simulator once and print any outputs and the return
value. It is the same as using the Run 0# File command under the Play icon
dropdown in the top-right of the editor window, provided by the same extension.
Alternatively, you can press Ctrl + F5 to run your code.
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Histogram—Run this code multiple times and show a histogram of the return
values.

Estimate—Run resource estimation for this code (we’ll discuss this action in
detail in chapter 9).

Debug—Run this code on the simulator with the debugger that allows you to
watch the evolution of classical values and the quantum state during the program
execution.

Circuit—Show the quantum circuit implemented by this code.

In our case, you can use the Run command to run the code. However, its output in
the debug console is rather underwhelming:

Result: " ()"
Finished shot 1 of 1

Q# simulation completed.

This output means that the code ran successfully and returned () —the only value
that the Q# data type Unit can take. It does not, however, offer us any insight into the
quantum state during the program execution. We will learn to peek at the quantum
states in the next section.

TIP  Using Unit as the return type indicates that the operation doesn’t have
areturn value. Instead, it acts through side effects such as printing an output
(we will modify the code to print the state it prepared in the next section) or
changing the state of the qubits passed as its argument, as we’ll see in section 2.3.

What does your solution do?

Now, we’ve written the code that prepares a quantum state, but it doesn’t output
anything. How can we see what it does to check that it’s correct? Let’s learn to do
that.

In a physical quantum system, the only way to learn anything about its state is
measurement, and the information it provides is limited: one bit of information
per measurement performed. In a single-qubit system, this means exactly one bit of
information—definitely not enough to check that the qubit has been prepared in
the right superposition state.

Running the experiment that prepares the state and measures it multiple times
would give us more information. We can collect the statistics of different measurement
outcomes and estimate their probabilities and then estimate the amplitudes of the
basis states as square roots of the corresponding outcome probabilities. However, this
approach has its limitations: it doesn’t preserve the information about the relative
phase between the amplitudes, and it requires a lot of repetitions to get a reasonably
accurate estimate of the amplitudes. Besides, running the program on quantum
hardware yields noisy results, which, depending on the noise type, can introduce a
bias in the amplitude estimates, making it unreliable. The techniques of running
experiments to get an accurate analysis of the quantum system state exist, but are
fairly advanced.
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Fortunately, quantum programming tools offer a much simpler solution to this
problem, at least for its small instances. Quantum simulators are classical programs
that can run simulations of small quantum systems, allowing the developer to run
the quantum program on a classical computer, without accessing quantum hardware.
Since simulators are classical programs running on classical hardware, they are
not subject to the same limitations as the physical processes in quantum systems.
They represent the internal state of the quantum system as a classical data structure,
allowing the developer to take a look at this state at any point of the program. The
benefit of this approach is that the simulations are usually noiseless, so the results you
get will be a perfect representation of the ideal state of your program. Unfortunately,
the memory required to store the state of a quantum program grows exponentially
with the number of qubits allocated, so this approach only works for small programs.

We are going to take advantage of quantum simulators and use toolkit-specific
capabilities of accessing the program state directly to see what our code does.
Qiskit
The most common simulator used to run Qiskit programs is AerSimulator. Once
you’ve obtained an Aersimulator instance to use as the simulator in your code, the
QuantumCircuit class gains additional methods used to save its quantum state. The
save_statevector method saves the current quantum state of the circuit as a vector
of complex numbers, which can then be retrieved from the simulation results using
the get_statevector method.

Listing 2.3 shows you how to modify listing 2.1 to run the circuit and to get the
results of its execution. To do this, the code saves the state vector during the program
simulation and extracts the saved state to print it after the simulation is complete.

from math import atan2
from giskit import QuantumCircuit
from giskit aer import AerSimulator

simulator = AerSimulator (method='statevector') <— Gets a simulator instance to use
alpha, beta = 0.6, 0.8

circ = QuantumCircuit (1)
theta = 2 * atan2(beta, alpha)
circ.ry(theta, 0)

circ.save_statevector() <—— Saves the circuit state at this point
res = simulator.run(circ).result () <— Runs the circuit on the simulator
state vector = res.get statevector() <—— Extracts the saved state

print (state_vector)

The output of this program is

Statevector ([0.6+0.j, 0.8+0.31],
dims=(2,))
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The statevector class is a wrapper around a list of complex numbers—the ampli-
tudes of the basis states of the system, starting with |0). You can see that the state
prepared by this code corresponds to the state 0.6 |0) + 0.8 |1), and that’s exactly the
state we aimed for when we defined @ =0.6 and 8 =0.8 in the code.

Q#

Q# simulators don’t offer a direct way to access their internal state, either from Q#
code itself or from the classical code that calls Q# code. Instead, Q# offers a library
function DumpMachine (Std.Diagnostics namespace) that prints the state of the
program at the point at which this function is called.

The Q# simulator represents the state of the program in the most generic way, as
a vector of complex numbers storing the amplitudes of each basis state. The output
of DumpMachine is the list of all basis states with their amplitudes, measurement
probabilities, and phases.

Listing 2.4 shows you how to modify listing 2.2 to use DumpMachine to print the
state of the program during its execution on a simulator. Unlike Qiskit, Q# code
doesn’t include explicit instructions for executing it on a simulator. The choice
of the execution target—a simulator or a hardware endpoint available via Azure
Quantum—is handled either by the Python host program (we’ll see an example
in section 2.4) or by the Visual Studio Code extension used to run standalone Q#
programs.

import Std.Diagnostics.DumpMachine; i i
) Imports the DumpMachine function from
import Std.Math.ArcTan2; . -
the diagnostics tools namespace

@EntryPoint ()
operation SingleQubitDemo() : Unit {

use g = Qubit();

let (alpha, beta) = (0.6, 0.8);

let theta = 2.0 * ArcTan2 (beta, alpha);

Ry (theta, q);

DumpMachine () ; <— Prints the state of the program
Reset (q) ;

}

The output of this program will look as follows:

DumpMachine:
Basis | Amplitude | Probability | Phase
|0> | 0.6000+0.00001 | 36.0000% | 0.0000
[1> | 0.8000+0.00001i | 64.0000% | 0.0000

Result: " ()"
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The columns of the DumpMachine output include the following information:

The ket representation of the basis state

The amplitude of this basis state as a complex number (only the basis states with
non-zero amplitudes are listed)

The probability to get this basis state when performing a measurement

The phase of the amplitude, in radians

Now that we know how to see what our program does and check that it matches our
intent, we can move on to solving the more challenging problems!

Preparing a two-qubit state

The next larger variant of the state preparation problem is preparing a two-qubit
state. More accurately, the problem can be formulated as follows. Given two qubits in
the |0) state and an array of four floating-point numbers a, change the state of these
qubits to |WYe) =ag |0) + a1 |1) + a2 |2) + a3 |3).

Same as in the single-qubit case, we can assume that the amplitudes we are given
as inputs are normalized—that is, ag + a% + ag + a% =1. We will see, however, that we
don’t need to rely on this assumption: our solution will be able to normalize the
given amplitudes for us when preparing the state.

Note that here we’ve changed the input type from separate numbers to an array
of amplitudes. This change helps us prepare to scale up this solution to handle an
arbitrary number of qubits, since we’ll handle the correspondence between basis
states (represented as bit strings) and the indexes of the amplitudes in the array

(represented as integers).

Converting bit strings into integers: Big-endian vs. little-endian

You’'ll notice that in the problem statement we're labeling the basis states using
integers instead of bit strings. This method sets us up for working with arbitrary
numbers of qubits, but we need to handle this transition with care.

Bit strings can be converted into integers in two ways: big-endian encoding, in
which the least significant bit is stored in the last bit of the bit string, and little-
endian encoding, in which it is stored in the first bit of the string. For example, the
two-qubit basis state |01) corresponds to the integer 1 if interpreted as a big-endian
notation (the least significant bit is 1, and the most significant bit is O) and to the
integer 2 if interpreted as a little-endian binary notation (the least significant bit is
0, and the most significant bit is 1).

Unfortunately, there is no universal agreement on which notation to use in quan-
tum computing when converting basis states and measurement results to integers
(for example, indices in an array of amplitudes). Books typically choose big-endian,
and software tools can lean either way. Qiskit and Q# use different conventions:
Qiskit uses little-endian notation, and Q# uses big-endian.
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In this book, I'll use little-endian notation to work through the math of solving the
problem, and the convention used by the language when implementing the solution
in that language. I'll try to stick to “least significant bit” and “most significant
bit” terminology instead of “first bit” and “second bit” whenever possible. The
advantage of this approach is that it matches the behavior of the libraries native
to each language and simplifies interpreting the quantum states printed by our
programs. The disadvantage is, of course, that Q# and Qiskit solutions will interpret
the same array of amplitudes as different quantum states.

Refresher: Controlled gates in Dirac notation

Unlike the single-qubit case, we won’t find a builtin two-qubit gate to execute the
necessary transformation of the state all at once. Instead, we’ll have to come up with
a sequence of steps using single-qubit gates and their controlled variants. Before
we dive into that, let’s remind ourselves what controlled gates are and how to apply
them to quantum states using Dirac notation.

NOTE In this chapter, we focus on modifying individual states, and it’s more
convenient to express the effects of the gates on them using Dirac notation.
We’ll revisit the controlled gates in their matrix form in the next chapter,
where we’ll focus on matrices and their manipulation. Getting comfortable
with different ways to represent the same computation is very useful, both for
choosing the most convenient way to think about each specific problem and
for following the calculations done, say, in research papers that use different
representations.

A controlled variant of a gate is a gate that acts on two groups of qubits, called conirol
qubits and target qubits, as follows:

If the controlled variant of a gate U is applied to a basis state in which all control
qubits are in the |1) state, the gate U is applied to the target qubits.

If the controlled variant of a gate U is applied to a basis state in which at least
one of the control qubits is in the |0) state, the state doesn’t change.

For the superposition states, the effect of the controlled gate is defined based
on its effect on the basis states. Since all quantum gates are linear, the result
of applying a gate to a linear combination of basis states can be calculated as a
linear combination of the results of applying that gate to each basis state.

The simplest example of a controlled gate is the CNOT gate—a controlled X gate
with one control qubit. The effects of this gate on a two-qubit state can be described
in Dirac notation as follows (assuming the left qubit is the control and the right qubit
is the target):

If the control qubit is in the |1) state, apply the X gate to the target (“flip” its

state):
CNOT |10)=|11),CNOT |11) =|10)
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If the control qubit is in the |0) state, the target state is unchanged:
CNOT |00) =00y , CNOT |01) =|01)

For a superposition state—for example, a [10) + 8 |01)—the CNOT gate is
applied to each term separately:

CNOT(a [10) + 8 [01)) =aCNOT [10) + BCNOT |01y =a |11) + A |01)

A slightly more complicated example of a controlled gate that we’ll be using exten-
sively in this section is CRy(0), a controlled Ry(#) gate with one control qubit. Its
effects on a two-qubit state, if the left qubit is used as the control and the right one
as the target, can be computed directly in Dirac notation as follows:

If the control qubit is in the |1) state, apply the Ry(6) gate to the target qubit:

CRy(6)[10) =1y ® Ry(6) |0) =cos § |10) +sin § |11)
CRy(0) [11) =[1) ® Ry(8) |1) = —sin § |10) + cos § [11)

If the control qubit is in the |0) state, the state doesn’t change:

CRy(6) |00) = |00)
CRy(6) |01) =01)

For a superposition state, for example, a [10) + 8 |01), apply the CRy(6) gate
to each term separately and add the results:

CRy(6)(« |10) + B 101)) =aCRy(6) |10) + BCRy() |01)
=a(cos § [10) +sin § [11)) + B 01)

Similarly, controlled-on-zero variant of a gate applies the original gate to the target
qubits if and only if all control qubits are in the |0) state. This variant is sometimes
called an open-controlled gate to reflect the way it’s drawn in circuit representations
of quantum programs. You can implement a controlled-on-zero variant of a gate by
applying the X gate to the control qubits, then using a regular controlled variant of
a gate, and finally applying the X gate to the control qubits again to return them to
their original state.

NOTE Simplifying the calculation of the effects of gates on quantum states is
one of the advantages of Dirac notation over matrix notation. It is especially
useful when the control and the target qubits of the gate are not adjacent in
the bit string that represents the basis state. For example, to apply a controlled
Ry gate to a three-qubit state with the rightmost qubit as the control and the
leftmost qubit as the target, you use the same conditional logic for each three-
qubit basis state, applying the gate to the leftmost bit if the rightmost bit is 1
and leaving the state unchanged otherwise. (The state of the middle qubit that
is not involved in the gate is always unchanged.) The same gate is a lot trickier
to apply in the matrix form!
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Math

With controlled gates in mind, we’ll take a step-by-step approach: we’ll start by
preparing the least significant qubit in some state and then adjust the state of the
most significant qubit conditionally depending on the state of the least significant
one. Figure 2.4 shows the outline of this approach.

Let’s figure out what each of the steps will look like, knowing their sequence
and reverse-engineering the details based on the state that we want to prepare. As a
reminder, we’re using little-endian notation here, matching amplitude a; with basis
state |10) and amplitude ag with basis state |01).

First, let’s group the terms of the state expression based on the value of the first
qubit:

ao 00) +ay [10) + a2 [01) + a3 [11) =10) (a0 [0) + ag [1)) +[1) (a1 |0) +as [1))

Now, let’s rewrite the expressions in brackets so that the norm of each of them equals
1, moving the normalization coefficients outside the brackets:

1[ag+a§|0> \/2 |0>+\/ |1> \/a +d 1) \/a+ |0>+\/ 1)

Each of the single-qubit states in brackets is normalized, so we can prepare them

using our solution from section 2.1. For the first state, for example, the parameters

and S8 = =
Ho+l12 0+d2

our single-qubit state preparation routine doesn’t require its inputs to be normalized.
Thus, we can use it with simpler parameters & = ao and S = as.
2

we need to use are a = . We can simplify this using the fact that

We can prepare the single-qubit state \/a + a2 |0) + \/a + az |1) using the same

a%+a2 and =11a%+a§.
The sequence of steps for preparing the two-qubit state ends up looking like this:

solution from section 2.1, with parameters a =

Prepare the first (least significant) qubit in the state a% + ag [1).

We can do that using the single-qubit preparation routine with parameters
2 2

— 2 —
a—,/ao+a2 and B =/

the |0) state for now, so the overall state of the system becomes

+ ag. The second (most significant) qubit remains in

(\/a§+a§ |0>+\/a%+a§ |1>)®|0>= a2 +a2|0) ® |0) +Ja? +a 1) ® |0)

Adjust the first term of the superposition /ag + ag |0) ® |0) to ag |00) + ag |01),
leaving the second term unchanged. We can do that using the controlled-on-zero
variant of the single-qubit preparation routine, with the first qubit as control,
the second qubit as target, and parameters a =ap and 8 = ao. After this, the
system state becomes

a9 100) +as [01) +y/a? + a5 |1) ® |0)
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The system starts I
in the |0) state. ~

Apply the Ry gate
¢ v.____—— to prepare the least

significant qubit.
Consider basis states [ [
with least significant \ / .
bits 0 and 1 separately. e S~
» KN
n P
Use controlled-on-zero Use controlled-on-one
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(least significant bit 0). % (least significant bit 1).
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Figure 2.4 Preparing a two-qubit state. Each set of four bars represents the amplitudes of the basis
states: from left to right, |0), |1), |2), and |3). Light bars indicate zero amplitudes (basis states not
present in the superposition state), dark bars indicate nonzero amplitudes (positive or negative). We
prepare the least significant qubit in a superposition state and then adjust the state of the most signifi-
cant qubit depending on the state of the least significant qubit using controlled gates. The left path
handles the case of the least significant qubit being in the |0) state, and the right path handles the |1)
state. Striped bars represent the amplitudes of the basis states that are involved in each path.

Adjust the last term of the superposition a% + a;f 1) ®|0) to ay |[10) + ag |11),
leaving the first two terms unchanged. We can do that using the controlled
variant of the single-qubit preparation routine, with the first qubit as control, the
second qubit as target, and parameters o = a1 and 8 = a3. This process brings
the system to our target state:

ao |00> + a9 |01> +a |10> +as |11>

To implement this algorithm in code, we’ll need to learn several new syntax elements
that allow us to define a custom gate and to apply controlled and controlled-on-zero
variants of a gate.

Qiskit

In Qiskit, you can define a custom gate as a Python function that constructs a circuit,
appends the necessary gates to it, and then converts it into a gate using the to_gate
method of the QuantumCircuit class. Then you can append that gate to other circuits
using the append method of the QuantumCircuit class, passing it that gate and the
array of indexes of the qubits it should be applied to.
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To use a controlled variant of a gate, you can use the control method of a gate.
This method takes an integer parameter that specifies the number of control qubits
and returns a gate that acts on a combined list of target and control qubits, with the
control qubits being first in the list, followed by the target qubits. Then, same as with
any custom gates, you can append this gate to a circuit.

To implement a controlled-on-zero variant of a gate, you can use the additional
parameter ctrl_state of the control method to specify the state on which the gate
application is controlled. The value passed as this parameter should be a string or an
integer representation of the control state. Since in this case there is a single control
qubit and the gate should be applied when its state is |0), the control state should be
"0’ or 0.

Listing 2.5 shows the Qiskit code that implements our mathematical solution to
prepare a two-qubit state with the given coefficients. Note that as the code grows
larger and more complex, we refactor it to break down the logic into smaller functions
to make it easier to read and test. Like listing 2.3, the code executes the circuit that
prepares the required state and prints the resulting state vector.

from math import atan2, sqgrt
from giskit import QuantumCircuit, transpile
from giskit_aer import AerSimulator

{mulat - AerSimulator (method='stat tort) Defines the one-qubit
simulator = AerSimulator (method='statevector state preparation
def prep one qubit (alpha, beta) : as a gate

circ = QuantumCircuit (1, name=f'Prep({alpha}, {beta})')
theta = 2 * atan2(beta, alpha)

circ.ry(theta, 0)

return circ.to_gate()

def prep two qubit(a):
b0 = sgrt(al0]**2 + a[2]**2)
bl = sgrt(alll**2 + a[3]**2)

circ = QuantumCircuit (2) Applies the state prep gate
b1l), [0])

circ.append (prep_one_qubit (b0, to qubit O (least significant)

circ.append ( <—— Applies the controlled state prep gate to qubits 0 (control) and 1 (target)
prep one qubit(a[l], al3]).control (1),
[o, 11)

Applies controlled-on-zero state prep

circ.append ( gate to qubits 0 (control) and 1 (target)

prep_one qubit(a[0], al[2]).control(l, ctrl state=0),
[0, 11)

return circ

def prep_two_qubit_demo(a) :
circ = prep two_qubit (a)
circ.save_statevector()

circ = transpile(circ, backend=simulator)
res = simulator.run(circ) .result ()
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state_vector = res.get_statevector()
print ([d.round(5) for d in state vector.data]l)

prep_two qubit demo([0.36, 0.48, 0.64, -0.48])

This code produces the following output:

[(0.36+03), (0.48+03), (0.64+05), (-0.48+03)]

Note that once you start using custom and controlled gates in your Qiskit circuits,
you’ll need to transpile your circuit—that is, rewrite it to match the capabilities of a
specific simulator or quantum device. In this case, the transpile method breaks the
multiqubit gates down into simpler gates recognized by the simulator.

We observe the prepared state on multiple qubits using the same technique we used
for the single-qubit case: save the state of the program after the state is prepared using
save_statevector and extract the results from running it on the simulator using
get_statevector. (Notice how the list of amplitudes returned by get_statevector
is ordered by basis states as if they were integers in little-endian notation: the first
element corresponds to the basis state |00), the second one corresponds to |10), and
so on.) In this code listing, I changed the output format: instead of printing the
saved state vector as is, the code now extracts just the list of amplitudes and limits the
number of decimal places used to print the floating-point numbers. This change will
come in handy later to keep the output size manageable when we work with larger
states with more amplitudes.

Q#

Now let’s see how to implement the same algorithm in Q#. In Q#, all gates are
implemented as operations that take one or more qubits as one of their arguments
and have return type Unit, indicating that they act by changing the state of these
qubits.

The built-in Q# gates are defined in the std. Intrinsic namespace. You can also
define custom gates in the code just like any other Q# operation and then call them
the same way as the built-in gates. For example, here is how you can modify the code
from listing 2.4 to define a custom gate that prepares a qubit in the state « [0) + 3 |1)
and then use it in the code:

import Std.Math.ArcTan2;

operation PrepOneQubit (g : Qubit, alpha : Double, beta : Double) : Unit {
let theta = 2.0 * ArcTan2 (beta, alpha);
Ry (theta, q);

}

@EntryPoint ()

operation SingleQubitDemo() : Unit {
use g = Qubit();
let (alpha, beta) = (0.6, 0.8);

PrepOneQubit (g, alpha, beta);
Reset (q) ;
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Any Q# operation that implements a quantum gate can have adjoint and controlled
specializations—that is, operations that implement the adjoint and controlled variants
of the corresponding quantum gate. These specializations can be defined only for
operations that act on qubits and have return type Unit, since otherwise an operation
cannot implement a quantum gate. The adjoint specialization of an operation has
exactly the same parameters as the original operation. The controlled specialization
of an operation has two parameters: the first parameter is a qubit array that is used
as the control qubits, and the second parameter is a tuple of parameters that match
those of the original operation.

All built-in Q# gates have adjoint and controlled specializations defined for them.
When defining a custom gate, you have to define its specializations yourself. The
easiest way to do that is to specify the corresponding characteristics of the operation in
its signature and let the Q# compiler generate the specializations automatically. For
example, to specify that the operation PreponeQubit has both adjoint and controlled
specializations (as well as their combination, controlled adjoint), you need to add is
Adj + ctl to the end of its signature:

operation PrepOneQubit (q : Qubit, alpha : Double, beta : Double) : Unit

is Adj + Cctl {
// Operation body ...

}

To use an adjoint or a controlled variant of a gate, you can use Adjoint and Controlled
keywords. These modifiers take an operation as an argument and produce the match-
ing specialization of this operation. For example, Controlled PrepOneQubit re-
turns the operation that implements the controlled specialization of the operation
PrepOneQubit.

Finally, how can we invoke a controlled-on-zero variant of a Q# gate? Q# standard
library offers two operations that allow you to call controlled variants of gates with
various control patterns as long as the operation implementing the original gate has
a controlled specialization defined:

ApplyControlledOnBitString operation applies the original gate to the target
qubits if the control qubits are in the basis state described by the given bit
string—the control pattern. For example, using ApplyControlledOnBitString
with control pattern [false] and the gate PrepOneQubit applies the controlled-
on-zero variant of our custom state preparation gate.
ApplyControlledonInt operation applies the original gate to the target qubits if
the control qubits are in the basis state described by the given integer (converted
into a bit string using little-endian encoding). We can apply the controlled-
on-zero variant of PrepOneQubit by using ApplyControlledonInt with 0 as the
control integer.
Listing 2.6 shows the Q# code that implements our mathematical solution to prepare
a two-qubit state with the given coefficients. Like listing 2.4, the code prepares the
required quantum state and prints its amplitudes.
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Listing 2.6 Q# code to prepare a two-qubit state

import Std.Diagnostics.DumpMachine;
import Std.Math.ArcTan2, Std.Math.Sqgrt;

operation PrepOneQubit (g : Qubit, alpha : Double, beta : Double) : Unit
is Adj + ctl {
let theta = 2.0 * ArcTan2 (beta, alpha);
Ry (theta, q);

}

operation PrepTwoQubits(gs : Qubit[], a : Double[]) : Unit is Adj + Ctl {
let b0 = Sgrt(al0] * a[0] + a[2] * al[2]);
let bl = Sgrt(all]l * a[1] + al[3] * al3]);
PrepOneQubit (gs[1], b0, bl);

Controlled PrepOneQubit ( .
3 0 1 3 . Applies the controlled state prep gate
[qs[1]], (gs(0l, al1], af3])); to qubits 1 (control) and O (target)

Applies the state prep gate
to qubit 1 (least significant)

ApplyControlledOnInt (0, P O: bit, .
pplyControlledonint ( reponeQubi Applies the controlled-on-zero

las(1l]. (gs(o]l, afol, af2])); state prep gate to qubits 1 (control)
} and O (target)
operation PrepTwoQubitsDemo(a : Double[]) : Unit ({

use gs = Qubit[2];
PrepTwoQubits(gs, a);
DumpMachine () ;
ResetAll (gs) ;

}

@EntryPoint ()
operation RunPrepTwoQubitsDemo() : Unit {
PrepTwoQubitsDemo ([0.36, 0.48, 0.64, -0.48]1);

As in the single-qubit case, we use the DumpMachine operation to print the current
state of the program. The output of this program looks as follows:

DumpMachine:

Basis | Amplitude | Probability | Phase
|00> | 0.3600+0.00001i | 12.9600% | 0.0000
|01> | 0.4800+0.00001 | 23.0400% | 0.0000
|10> | 0.6400+0.0000i | 40.9600% | 0.0000
|11> | -0.4800+0.00001 | 23.0400% | 3.1416

Note that bumpMachine uses bit strings instead of integers to represent the basis states
described by each line of its output, but orders the basis states as if they were integers
in big-endian notation: the first line corresponds to the basis state |00), the second
line corresponds to |01), the third line corresponds to |10}, and so on.
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Testing your solution

If you attempted to come up with a way to prepare the two-qubit state and implement
it yourself rather than just read through the section 2.3, you might’ve noticed that
it is very easy to make a mistake in the code. Making mistakes is perfectly normal;
in fact, I made a couple myself when writing the code for this section! And that is
exactly why it is very important to check that your solution is correct.

We’ve seen one way of validating the correctness of your code in section 2.2: run
your code on one input, print the program state after your code finished, and check
that the output matches the state you wanted to prepare. And for a single qubit, this
method worked just fine: there were only a few distinct scenarios that were worth
trying, and you could easily check that your code prepared the basis states and several
superposition states with different amplitudes and relative phases correctly.

However, this semi-manual approach is not sustainable in the long run. When you
work on a larger software project, you cannot run all the checks by hand and look
at the outputs to verify that they are correct every time you change the code. The
number of scenarios to test is just too great, and doing the validations this way would
take a prohibitive amount of time and attention.

Classical software engineering solved this problem a long time ago by introducing
software testing, a stage of software development that examines the software being
developed to evaluate its behavior and analyze its correctness. There are many ap-
proaches to software testing depending on the goals and the resources available. For
example, code reviews done by other engineers are a kind of static testing (software
verification done without running the software), and running the program manually
to check its output against the expected result is a kind of dynamic testing (software
validation done by running the software).

Quantum software engineering can (and should!) borrow a lot of techniques from
its classical counterpart. In this case, we’ll automate the dynamic testing of our code
by developing unit tests, which are automated tests written to ensure that a library
operation behaves as intended by its design. These unit tests will rely on the same
principle we discussed in section 2.2: run the code on a simulator and use the access
to the internal state of the simulator to test that this state matches our expectations.

In this section, we’ll take the next step of developing our state preparation library
by writing unit tests for both Q# and Qiskit solutions that will automate the validation
of the code. This step will let us feel more confident in our existing code as we
approach the final step of our project—preparing a state on an arbitrary number of
qubits.

Testing state preparation code

How do we select the test cases for the state preparation task to use, either in
automated or manual testing? Very often a beginner will run their code on an equal
superposition of all basis states (in the two-qubit scenario, the §(|00> +]10) +|01) +
|11)) state) and stop testing after getting the correct answer on that case.
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(continued)

However, many incorrect programs will still get this state right:
The code that misses the square root when calculating the amplitudes of the
state to be prepared on the first qubit
The code that does not consider negative amplitudes or handles them incor-
rectly, for example, by calculating the rotation angles in the single-qubit state
preparation routine using the wrong inverse trigonometric function
The code that gets the order of amplitudes wrong, using big-endian instead
of little-endian

A better approach here, as when testing classical programs, is to consider the differ-
ent properties of quantum states and pick test cases that exhibit these properties,
as well as some corner cases that can expose various kinds of bugs in the code.
For example, some good test cases for this library include
States with all amplitudes distinct, to expose any bugs in the matching of the
amplitudes to the basis states or in the rotation angles computation
The basis states and other states with one or more zero amplitudes, to check
that zero amplitudes are handled correctly and don’t cause a division-by-zero
exception
States with amplitudes of different signs, to check that the code handles them
correctly in addition to the absolute values of the amplitudes

Generally, there are two ways to write tests for quantum programs. Unit lests verify
the behavior of a single small component, such as our state preparation routine.
These tests typically need access to the detailed program state to implement the test
logic. To implement these tests, you’ll likely use the toolkit-specific capabilities for
accessing the program state at run time on a simulator similar to those you used for
observing it in section 2.2. Integration tests validate end-to-end scenarios to check that
the quantum program gives the correct answer to the problem it solves. Integration
tests are typically implemented as classical code that calls the quantum program to
test it as a whole.

In this chapter, we’ll look at the first approach, since we are testing a single
component and need detailed access to the quantum state of the program to verify
that it matches our expectations. We’ll see examples of the second approach later in
the book, in chapter 8, when we look at using quantum algorithms to solve classical
problems and analyze success rates of a quantum solution.

Qiskit
As we’ve seen earlier, with Qiskit implemented as a Python library, any quantum code
written in Qiskit can be treated as regular Python code. Consequently, we can set up
the tests for our Qiskit code in the same way we’d set them up for any Python code.
In this book, I use pytest, one of the most popular Python testing frameworks.
pytest will discover and run all functions with names starting with test_ in all files
named test_*.py or *_test.py in the current directory. This makes it easy to keep
unit tests separate from the library logic being tested.
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We’ve seen in listings 2.3 and 2.5 that Qiskit allows you to save the state vector of
the program using the method save_statevector and then get it after the program
is executed on a simulator using get_statevector. Once this information has been
extracted, we can treat it as a regular Python list and write arbitrary test logic for it.

In our case, we need to check that the amplitudes of the state that the simulation
yielded match those passed as an argument to the prep_two_qubit function. We
can implement this check using the standard Python tools for comparing lists of
floating-point numbers.

Listing 2.7 shows the test code for the two-qubit state preparation operation in
Qiskit. The code running the testfor one set of amplitudes, run_test_prep_two_qubit,
is very similar to the function prep_two_qubit_demo used in listing 2.5 to print the
amplitudes of the prepared state, except this time instead of printing the state, we
compare its amplitudes with the input list of amplitudes element by element.

from math import sqgrt

from giskit import transpile

from giskit aer import AerSimulator

import pytest

from .prep two qubit import prep two_qubit

simulator = AerSimulator (method='statevector')

@pytest.mark.parametrize("a",
[ [1., 0., 0., 0.1, <—— Several test cases are omitted for brevity.
[o., 1., 0., 0.1,
[0.36, 0.48, 0.64, -0.48],
[1. / sgrt(3.), -1. / sqgrt(3.), 1. / sqgrt(3.), 0.]
1)
def test_prep two_gqubit(a):
circ = prep_ two_gqubit (a)
circ.save_statevector ()

circ = transpile(circ, backend=simulator)

res = simulator.run(circ) .result () Compares amplitudes approximately

using default tolerance
for real numbers

state_vector = res.get_statevector() .data

assert state_ vector == pytest.approx(a)

The statement that imports prep_two_qgubit might differ depending on how you
set up your Python test project. In my case, I placed the test file next to the file
containing the state preparation library.

You can see that we can use any Python testing tools, such as the convenient deco-
rator pytest.mark.parametrize, which allows us to run the test function test_prep
_two_gubit on multiple state vectors we want to use to test our state preparation
code.

Note that this code relies on the number of qubits in the state only implicitly:
the number of qubits in the circuit is defined in the function prep_two_qubit. This
allows us to reuse this test code for the multiqubit case without any changes.
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Q#
Developing tests for Q# code requires splitting the test logic between Q# and Python.
We can set up the tests using the standard Python tools for testing—in this case,
pytest, one of the most popular Python testing frameworks—and then use specialized
libraries to access the state of the Q# program from Python test code and validate it
using Python.

The simplest Q# test project thus consists of several files:

A Python file that defines the tests in the root of the project folder. The name
of the file has to start with test_ or end with _test for pytest to discover and
run the tests defined in it.

Qf# file(s) with the code we want to test in the \src folder within the project
folder.
The manifest file gsharp. json that specifies the properties of the Q# project

such as the author and the license of the project. The shortest possible manifest
file is the empty JSON {}.

As we discussed earlier in section 2.2, Q# doesn’t give you direct access to the state
vector of the simulator in Q# code itself. Instead, when you create a Python host
program for your quantum code, you can use Python functions from the gsharp
module to load the Q# code in the project, simulate a Q# code snippet that prepares
the state you want to examine, and then fetch the state vector of the simulation.
Listing 2.8 shows the Python test code for the two-qubit state preparation operation
implemented in Q#.

from math import sqgrt
import gsharp
import pytest

@pytest.mark.parametrize("a",
[ [1., 0., 0., 0.1,
[0., 1., 0., 0.1, <—— Several test cases are omitted for brevity.
[0.36, 0.48, 0.64, -0.48],
[1. / sqgrt(3.), -1. / sgrt(3.), 1. / sqrt(3.), 0.]
1)
def test_prep two_qubit(a):
gsharp.init (project root='.")
gsharp.eval (f"use gs = Qubit[2]; StatePreparation.PrepTwoQubits(gs, a);")
state_vector = gsharp.dump_machine () .as_dense_state()

Compares amplitudes approximately
using default tolerance for

assert state vector == pytest.approx(a)
real numbers

Let’s take a closer look at the Python functions that enable running Q# code and get
the simulated state of the program for validation:
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gsharp.init loads the Q# project that will be used in the Python code. In our
case, we’ll need to specify the parameter project_root='.’ to load the Q# files
from the current Python folder.

gsharp.eval simulates the Q# code snippet provided as the argument. In our
case, the Q# library code we need to test (listing 2.6) is in the Q# file, so the small
code fragment we’ll define here will do only two things: allocate the qubits and
call the Q# library method StatePreparation.PrepTwoQubits with the given
list of amplitudes as the argument.

NOTE Notice that we don’t want to release the qubits after the prepTwo-
Qubits call, so we're not enclosing the Q# code in the eval statement in
curly brackets. As a result, gsharp.eval ends execution with the qubits
still allocated, and we can access their state or modify it later by calling
gsharp.eval again. Enclosing the two statements in curly brackets makes
them a block, and the qubits allocated within the block are released at its
end.

gsharp.dump_machine returns the current state of the Q# simulator as a State-
Dump object, which includes the number of qubits allocated and the complex
amplitudes of the basis states. This function is the Python API equivalent of the
Qf#f operation DumpMachine you saw in section 2.2.2.

The as_dense state() method of the StateDump class converts the default
sparse representation of the quantum state as a Python dictionary into a dense
list of amplitudes that includes the zero amplitudes. This process allows us to
compare the amplitudes of the prepared state with the input list of amplitudes
element by element, just as we did in Qiskit.

Preparing a multiqubit state

Now that we’ve learned to test our quantum program automatically, we’re finally
ready to approach our main project for this chapter and generalize our code to
handle the preparation of states with arbitrary numbers of qubits. More precisely,
we want to write a library that, given n qubits in the |0...0) state and an array of 2"
floating-point numbers a describing the amplitudes of an n-qubit state, changes the
state of these qubits to

2-1

[Wn)y=a0l0), +ar 1), +...+ag_9|2" = 2), +agm_112" - 1), = Z ajlity

Jj=0
When working with multiqubit basis states, especially those with more than just a few
qubits, representing them using bit strings becomes unwieldy. Basis states comprised
of repetitions of the same bit, |0...0) and |1...1), can be written relatively conveniently,
but any states with a varying bit pattern are not that easy to write out. That’s why in
this chapter I'm using the variant of Dirac notation that represents basis states as
integers in little-endian notation. It allows us to write the state more concisely.
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Using Dirac notation for multiqubit states

Dirac notation that uses integers to denote basis states, while convenient in a lot
of scenarios, comes with its own set of challenges. For example, you need to be
careful to keep track of the number of qubits in the basis states written like this;
without this information, you cannot say whether the state |0) describes 1 or 100
qubits!

Usually, the context in which the state is mentioned clarifies the number of qubits
in it. In our case, the upper limit of the sum is 2" — 1, which, combined with the
mention that this expression describes an arbitrary state, implies that the basis
states in the sum |j) have n qubits.

Since we’ll be dealing with n-qubit, (n — 1)-qubit, and one-qubit states in the same
formulas, I'm using a subscript after the ket symbol to denote the number of bits
explicitly: |0); is the zero state on a single qubit, and |0), is the n-qubit state in
which every qubit is in the zero state. This method makes the notation bulkier, so
most books or papers don’t use it, but it can be convenient when manipulating
states with different numbers of qubits simultaneously.

Math

In the two-qubit case, we used several steps to prepare the state: we started by getting
the least significant qubit into the right state and then modified the state of the most
significant qubit conditionally, depending on the state of the least significant qubit.
To do that, we used a controlled variant of the same operation we used to prepare a
single-qubit state earlier in the chapter.

This pattern of breaking the problem down into subproblems and solving each
of them separately, with some subproblems being simpler versions of the original
problem, looks very much like recursion. Can we come up with a recursive solution
to the state preparation problem? Yes, we can, and figure 2.5 shows the outline of
the general recursive approach.

The general approach is very similar to the one we took to prepare a two-qubit
state: prepare the least significant qubit in some state and then adjust the state of
the remaining n — 1 qubits conditionally using controlled variants of the same state
preparation routine called for n — 1 qubits. Let’s figure out the exact parameters to
use on each step.

First, let’s group the terms of the sum that expresses the state |, ), we’re preparing
in the same manner we did for the two-qubit state: based on the bit value of the
first qubit. The first qubit corresponds to the least significant bit in the little-endian
notation of an integer, so this grouping will separate the terms with even and odd
basis states.

We’ll use the fact that if the little-endian binary notation of the integer j is a bit
string “s”, then integers 2j and 2j + 1 can be written as “Os” and “1s”, respectively.
Translating this to Dirac notation gives us |2j), =10); ® |j),_; and [2j+ 1), =1); ®
-1
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Figure 2.5 To prepare an n-qubit state, we prepare the least significant qubit in a superposition state
and then adjust the state of the remaining n — 1 qubits. Same as in the two-qubit case, controlled
variants of the state preparation operation allow us to adjust the states of the most significant » — 1
qubits conditionally, with separate handling of the least significant qubit being in [0) and |1) states.

With this in mind, we can rewrite the state we’re preparing as follows:
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Now, let’s rewrite the sums so that the norm of each of them is 1 and the normalization
coefficients are outside the sums. As in the two-qubit case, we can prepare the
expressions in brackets as (n — 1)-qubit states.

, _ on-1_1 9 _ on-1_1 9
We’ll define the helper real numbers mg = , /ijo ag; and m; = Z].ZO agiyy-
We know that mé + mf =1, since this sum is the same as the sum of squares of all input
amplitudes. Now we can write the sums as follows:
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And thus we arrive to a clear recursive solution:

Prepare the first qubit in the state mq |0)y +m1 |1); (the remaining n — 1 qubits
remain in the |0),_; state). We can do that using the single-qubit preparation
routine with parameters & =my and g =m;.

. . (0)
Adjust the first term of the superposition mg [0); ® |0),_; tomo [0); ® |, ) .

leaving the second term unchanged. We can do that using the controlled-on-
(0)

zero variant of the operation that prepares the (n — 1)-qubit state |y, )

| with
the first (least significant) qubit as control.

Adjust the last term of the superposition m; |[1); ® |0),_; to my [1); ® |‘//751—)1>n—1’
leaving all the other terms (the terms with the least significant bit 0) prepared
on the previous step unchanged. We can do that using the controlled variant of
the operation that prepares the (n — 1)-qubit state |¢’rfl—)1>n—1 with the first qubit

as control.

With all the work we’ve already done in this chapter, implementing this algorithm will
not require us to learn any new quantum programming tools. We’ll write some extra
classical code to calculate the coefficients for the preparation of the least significant
qubit and to separate the amplitudes into two groups for the recursive calls. Let’s see
how to do that.

Qiskit
Listing 2.9 shows the Qiskit code that implements our recursive solution to prepare
a multiqubit state with the given coefficients.

from math import atan2, sqgrt
from giskit import QuantumCircuit

def prep_one_qubit (alpha, beta):
circ = QuantumCircuit (1, name=f'Prep({alpha}, {beta})')
theta = 2 * atan2 (beta, alpha)
circ.ry(theta, 0)
return circ.to _gate()

def prep multi_qubit(n, a):
circ = QuantumCircuit (n)

if n == 1: <—— Base case of the recursion
circ.append (prep_one_ qubit(al0], all]l), [0])
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return circ

even _amps = al[0 : : 2] <—— Groups amplitudes of even and odd basis states separately
odd_amps = al[l : : 2]

m0 = sgrt(sum(a*a for a in even_amps))

ml = sgrt(sum(a*a for a in odd amps)) Prepares qubit 0

circ.append (prep_one_qubit (m0, ml), [0]) (the least significant)

Prepares basis states with

circ.append (prep multi qubit(n - 1, even_ amps)
)) the least significant bit 0

.to_gate() .control (1, ctrl state=0), range(n

Prepares basis states with

circ.append (prep multi qubit(n - 1, odd_amps)
T the least significant bit 1

.to_gate() .control (1), range(n))

return circ

Note that we didn’t need to renormalize the amplitudes after splitting them in two
groups before passing them as arguments to the recursive state preparation calls. We
end up using the values of the amplitudes only to calculate the rotation angles for
the various Ry gates, and we do that using the atan2 function, which ignores the
magnitudes of its arguments and only uses their relative values. As a result, we don’t
need to normalize the amplitudes we use as the arguments for our state preparation
function. We can always multiply all of them by the same constant value and get the
same state prepared as a result, which certainly makes the code neater!

To test this code, we can reuse the code from listing 2.7, extending the set of test
cases to include single-qubit and multiqubit states. For example, here are the tests
that verify preparation of basis states on one, two, and three qubits and preparation
of random states:

def test_basis_states():
for n in range (1, 4):
for basis in range(2 ** n):
a = [0.] * 2 **x n
albasis] = 1.
run_test prep multi gubit(n, a)

def test_random unequal_superpositions() :
for i in range(10) :
n = randint (2, 4)
a = [uniform(-1.0, 1.0) for _ in range(2 ** n)]
norm = sgrt (sum(a*a for a in a))
a norm = [j / norm for j in a]
run_test prep multi qubit(n, a_norm)

You can find the code for this project, complete with unit tests, in the GitHub
repository.
Q#

Listing 2.10 shows the Q# code that implements our recursive solution to prepare a
multiqubit state with the given coefficients.
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import Std.Math.*;

operation PrepOneQubit (
g : Qubit, alpha : Double, beta : Double
) : Unit is Adj + Cctl {
let theta = 2.0 * ArcTan2 (beta, alpha);
Ry (theta, q);

}

operation PrepArbitrary(
gs : Qubitl[],
a : Doublel[]

) : Unit is Adj + Cctl {

if Length(gs) == 1 { <— Base case of the recursion
PrepOneQubit (gs[0], al0]l, all]);
} else {
let N = Length(gs); Groups _amplitudes of even and
let evenAmps = al0 .. 2 ...1; odd basis states separately
let oddAmps = afl .. 2 ...1; PNorm function calculates the root of the sum
let m0 = PNorm(2.0, evenAmps); of array elements raised to the given power.

let ml

PNorm (2.0, oddAmps) ;
PrepOneQubit (gs [N - 1], m0, ml); -<—— Prepares qubit N-1 (the least significant)

Prepares basis states with the

ApplyControlledOnInt (0, PrepArbitrary,
)i least significant bit 0

[gs[N - 1]1, (gs[... N - 2], evenAmps)

ApplyControlledOnInt (1, PrepArbitrary, Prepares basis states with the
[gsIN - 111, (gs[... N - 2], oddamps)); least significant bit 1

}

As in Qjskit code (listing 2.9), we don’t need to renormalize the amplitudes before
passing them as arguments to the recursive state preparation calls because the func-
tion we're using to compute the rotation angles for Ry gates relies only on the relative
values of its arguments, not their individual magnitudes.

To test this code, we can reuse the code from listing 2.8, extending the set of test
cases to include multiqubit states. The new tests—both the test cases covered, such as
the basis states and random multiqubit states, and the logic of their implementation—
will be similar to those included in section 2.5.2, so I’'m not repeating them here.
You can find the complete code for this project in the GitHub repository.

Further reading

The state preparation algorithm described in this chapter is easy to come up with and
understand, but it is not the most efficient approach to this problem. The following
includes an example of a more efficient state preparation algorithm:
Shende, V. V., Bullock, S. S., & Markov, I. L. (2004). Synthesis of quantum logic
circuits. https://arxiv.org/abs/quant-ph/0406176
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Going beyond

Do you want to spend some more time building out this project before moving on to
the next topic? Here are some additional ideas for ways to extend this project if you
want to try your hand at something more challenging:

Quantum algorithms often require preparing n-qubit states that are a superpo-
sition of only the first K basis states in the space (the basis states described by
integers 0, 1, ..., K — 1) rather than all 2" of them. Modify the project so that if
the input array of amplitudes has fewer than 2" amplitudes, it is padded with
zeroes to the length 2".

Consider n-qubit states that consist of only basis states of the given parity. For
example, a two-qubit state of even parity would be some superposition of [00)
and [11), and of odd parity, a superposition of [01) and [10). Modify the project
to prepare such a state. (We will use this type of states later, in chapter 4.)

The general state preparation problem considers states with arbitrary amplitudes,
which does not leave a lot of space for “Aha” moments. However, if your state
has some structure—for example, it has only a few nonzero amplitudes that
follow some kind of pattern—you can often prepare it more efficiently than in
the general case. Come up with some fun states and think of custom ways to
prepare them. You can check out the Preparing Quantum States kata from the
Quantum Katas project for some examples of such states https://mng.bz/gaQV.
Implement the state preparation algorithm from Shende et al. (see section 2.6).
Note that you can reuse the unit tests developed earlier in this chapter to test
your new code without any modifications!

We looked at preparation of quantum states with only real amplitudes to keep
things simple. There are some algorithms that rely on this kind of states exclu-
sively, such as Grover’s search algorithm, but in general, quantum algorithms
require states with complex amplitudes. How would you change the algorithm
to deal with such states? (Of course, you’ll need more gates than just Ry and its
controlled variants; consider the other rotation gates Rx and Rz.)

Summary

Any quantum algorithm can be represented as several steps: preparing the initial
state, evolving it following the specific algorithm, and measuring the final state
to get the result. The goal of the algorithm is either to get the correct answer
as a result of the final measurement with high probability or to estimate the
probabilities of the outcomes.

The goal of state preparation task is as follows: given a freshly initialized system
in the |0) state, change its state to the superposition state described by the given
list of amplitudes.

State preparation operation can be implemented recursively, by preparing one
of the qubits in a certain superposition state and then using it to control state
preparation operations applied to the remaining qubits.
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Quantum simulators are classical programs that allow you to run small quantum
programs without access to quantum hardware.

Using simulators during quantum software development allows you to inspect
the state of the program mid-execution, which is not possible when running
the program on a quantum device, and to test your code easily.



Implementing quantum
operations

This chapter covers

Implementing quantum operations based on
their matrix notation

Using Q# and Qiskit to write more complicated
quantum programs

Observing the matrix implemented by a
quantum operation

Writing tests for validating quantum operations

Aswe’ve seen in the previous chapter, a typical quantum algorithm can be represented
as a standard sequence of steps (see figure 3.1). In chapter 2, we’ve learned to
implement the first step, preparing the quantum system in the given state.

Chapter 2: prepare Chapter 3: apply unitary Chapter 4: measure
the initial state transformations to change the final state and
of the system. the system state. analyze the results.

—_—

—_—
nm .....I..

Figure 3.1 Any quantum algorithm can be broken down into several steps: prepare the initial state,
evolve it by applying unitary transformations, and measure the final state. In this chapter, we’ll learn to
perform the second step: implementing unitary transformations as the algorithm dictates.
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In this chapter, we’ll focus on the second step: changing the state of the system using
quantum operations. More specifically, we’ll learn to implement quantum operations
that change the state of the system the way the algorithm requires.

What do we mean by “implementing” a quantum operation? Figure 3.2 shows
how quantum algorithms are decomposed into simpler building blocks on multiple

levels.
Algorithm description:
high-level operations — .
y < Developer implements
¢ TNl each operation as a
// “~. & T~ fragment of code
R Tl using language tools.
Quantum program: code
in a quantum language
’ SN Compiler and runtime
/ TNl convert code commands
L T~<_¥ T~ into instructions that
,/ el the device can execute.

Exe.cuti.on on h.ardware: o
native instructions

Figure 3.2 The transformation the quantum state undergoes following a quantum algorithm is
typically broken down into simpler building blocks. First, the whole algorithm is expressed as a
sequence of operations described in terms of the input parameters of the problem. These operations
are further represented as sequences of primitives provided by the high-level programming language
used to implement the algorithm. Finally, to execute the algorithm on a quantum device, programming
language primitives have to be expressed as sequences of low-level instructions that are natively
available on this device.

Most quantum algorithms don’t prescribe the whole transformation that the quantum
system needs to undergo as a single quantum operation. Instead, this transformation
is typically broken down into simpler building blocks, and this process is repeated
several times on different layers of abstraction that serve different purposes.

On the logical level, an algorithm is usually expressed as a sequence of high-level
operations that are easy to understand in the context of the problem it solves. You’ll
find this level of algorithm description in papers and textbooks that propose new
algorithms or explain well-known ones.

For example, Grover’s search algorithm is an algorithm that searches for a value
that satisfies a certain set of constraints. The algorithm is described as a sequence of
Grover’s iterations, where each iteration is composed of two logical operations. The
first one is a quantum oracle that multiplies the amplitudes of certain basis states
by —1 depending on the constraints of the problem. The second operation is the
reflection about the mean—an operation that depends on the search space of the
problem. Both these operations depend on the specific problem being solved, so the
algorithm describes them in enough detail to allow the reader to reason about their
effect in the general case, but not in so much detail as to narrow down the generic
algorithm to a single problem instance.
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NOTE If you’re not familiar with Grover’s search algorithm, don’t worry! We’ll
discuss it in chapters 7 and 8, where you’ll learn about its structure and practice
implementing the algorithm for solving specific problems.

Next, when the algorithm is implemented in a high-level quantum programming
language, each of its logical building blocks has to be broken down into sequences of
programming primitives provided by that language. Depending on the language and
the libraries it provides, these primitives can be relatively high-level, such as quantum
arithmetic operations, quantum Fourier transform, or other standard building blocks
of quantum algorithms, or low-level, such as built-in gates that the language provides
and automatically generated controlled variants of gates. Some of these building
blocks can take input parameters that correspond to the parameters of the problem
instance; these parameters then influence the exact sequence of primitives used to
implement the block. This level of algorithm implementation allows the developer
to run the program on quantum simulators to get the execution results for small
problem instances or estimate the resources required to execute it on a quantum
device.

To continue the Grover’s search algorithm example, the simplest version of the
reflection about the mean operation is implemented using low-level programming
language primitives: /1, X, and controlled Z gates. The more advanced versions
take the search space description as an input and implement the operation using
an additional higher-level state preparation primitive, such as the one we learned
to implement in chapter 2, to prepare an equal superposition of all basis states
that are part of the search space. The quantum oracle in Grover’s search takes the
description of the constraints for the problem instance and evaluates them for the
input quantum state. Implementing this operation can be straightforward or quite
challenging, depending on the problem that is being solved and the structure of its
constraints (we’ll see examples of this in chapter 8).

Finally, to run the algorithm on a quantum device, the program in a high-level
language has to be converted into the lowest-level instructions that can be executed
on that device. This compilation is usually performed by the middle-layer software,
since the compilation algorithms require sophisticated math that is more convenient
to implement in a classical programming language as part of the compiler stack,
rather than in a quantum programming language as part of the quantum libraries
code. In this case, quantum software developers don’t have to do this decomposition
by hand; they can use any gates and libraries provided by the language and trust that
the compiler stack will take care of converting them into instructions for a specific
device.

Hardware-specific compilation: Examples

The exact set of instructions available on a quantum device and the rules of their
execution depend on several factors. Here are a few examples:
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(continued)

Different hardware platforms use different physical objects acting as qubits, and
thus support different gates that can be implemented natively using physical pro-
cesses. The rest of the gates used by a programming language have to be de-
composed into sequences of native instructions that approximate their effect and
can be executed on a quantum device. This decomposition is called unitary gate
synthesis. For example, a multicontrolled Z gate used by our reflection about the
mean operation implementation will be decomposed into a sequence of one- and
two-qubit gates, since most hardware platforms don’t support gates acting on three
or more qubits.

Different devices have different qubit connectivity—the map of pairs of qubits
that are considered adjacent and can have multiqubit gates applied to them. Some
platforms, such as trapped ion devices, might allow all-to-all connectivity. Others,
such as devices based on superconducting qubits, are limited to planar connectivity,
in which only pairs of physically adjacent qubits can share a gate. In this case,
applying a two-qubit gate to two qubits that are not adjacent on a chip can be done
by performing a sequence of other gates, each between two adjacent qubits.

In the long run, once quantum computers can run continuous error correction,
this will affect the logical qubit connectivity and the set of gates natively available
for them. Once a logical qubit is encoded as multiple physical qubits as part of
an error-correction scheme, any gates applied to it have to be performed in a fault-
tolerant manner to limit the spread of errors that occur during gate application.
Quantum devices available today don’t run error correction, but eventually this will
affect the way operations are performed on a fault-tolerant quantum computer.

Now that you understand the levels at which quantum operations can be implemented,
let’s narrow down the problem we’ll be solving and spell out the tools we’re assuming
are available to solve it. In this chapter, we’ll focus on implementing the quantum
operations as high-level programs, without diving into the intricacies of unitary gate
synthesis and other details handled by the compiler stack. Consequently, we can
use any builtin quantum gates offered by our programming languages, as well as
convenient constructs such as controlled variants of gates with arbitrary number
of control bits. We won’t, however, use higher-level abstractions such as library
operations that implement arbitrary unitary operations—that would take all the fun
out of the project!

Why unitary implementation?

Just like with quantum state preparation, you're not likely to write the code to han-

dle the general case of implementing unitaries yourself. This problem is common

enough that quantum programming languages tend to have libraries that solve it for

you. Qiskit’'s unitary method of the QuantumCircuit class and Q#’s ApplyUnitary
operation from the namespace std. Intrinsic both apply a unitary described with

the given matrix of complex coefficients.



3.1

3.1 Implementing a single-qubit gate 55

However, this problem makes for a great learning project.
First, same as the state preparation task, it is easy to define, and the solu-
tion uses only the basic concepts of qubits and gates. However, while state
preparation was easier to discuss in terms of Dirac notation, reasoning about
unitary matrices is best done in matrix notation, so you’ll get to practice a
different, complimentary set of skills.
Second, it has lots of special cases that are easier to handle than the most
general case of the problem, so there are plenty of stepping stones that you
can use for practice before approaching the general problem.
Finally, it is a very practical problem, since most quantum algorithms rely on
the use of nontrivial quantum transformations, and its special cases often
show up in various algorithms on their own. Being able to come up with ways
to handle these special cases can come in handy.

Quantum operations can be described in multiple ways; in this chapter we’ll focus
on implementing operations based on their descriptions as unitary matrices—square
matrices for which their adjoint (also known as conjugate transpose) is equal to their
inverse. In general, matrices that correspond to quantum operations can be complex-
valued, but as in chapter 2, we’ll simplify our project to only handle real-valued
matrices.

Some unitary matrices of special shapes can be implemented more easily using
specialized approaches. One example are permutation matrices—matrices that consist
only of elements 0 and 1, and each row and each column has exactly one element
1. These matrices describe quantum operations that implement reversible classical
computations—computations that map each classical input bit string to exactly one
classical output bit string, and vice versa. Such operations can often be implemented
more efficiently based on the analysis of the corresponding classical computation.
We will revisit reversible computation in chapter 6, but in the current chapter, we
will work with the general case of unitary matrices.

Now that we’ve established the problem we’re solving and the tools we can use, let’s
get started! We’ll begin with its single-qubit variant and build up to implementing
arbitrary multiqubit unitary transformations with real coefficients. Along the way I
will show you how to see the matrix of the unitary transformation implemented by
the given code and how to write unit tests that verify that this matrix matches the
one you want it to be.

Implementing a single-qubit gate

Let’s again start with almost the simplest possible quantum operation implemen-
tation problem. Given a single qubit and a matrix of four floating-point numbers
uo0, %01, %10, #11 that describe a single-qubit unitary transformation, implement an
operation that applies this unitary transformation to the given qubit.
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NOTE Why start with this task? This implementation is the easiest possible
task that does not boil down to just choosing the gate that matches the given
matrix precisely. Instead, it requires some thought to figure out what the inputs
can look like and which gate or gate combination allows us to implement the
solution. In addition, this task is the essential building block for this problem
that we’ll use again and again later in the chapter.

Math

The matrix we need to implement as a quantum operation looks as follows:

upo  U01
U=

uip U1

We know that the matrix we’re given is a valid unitary transformation with real
coefficients. What constraints does this impose on the input values?

By definition, for a unitary matrix its adjoint equals its inverse. In other words, the
product of the matrix and its adjoint (in either order) is the identity matrix:

U-U'=U".U=1

Since our matrix is real-valued, its adjoint equals its transpose (UT=U"), so we can
write this constraint as follows:

ugo u10 \[ %00 Uol 10
ur.u= = =7
upy  uir[\uo ui 0 1

Now we can unpack the matrix equality into a system of equations, one for each of
the elements of the identity matrix. The pair of equations that correspond to the
off-diagonal elements of the identity matrix end up being identical, so I'm listing
only one of them:

2 2 _
gy +ugy =1
upou10 +uo1u11 =0
2 2 _
Uy tuy, = 1

Based on the first equation, we can choose a variable & so that uoy = cos @ and 19 =
sin @. (We always can do that for two numbers that, when squared, add up to 1.) Now,
solving the system of equations completely gives us two options:

The given matrix is symmetric: up1 =sin @ and u11 = — cos . In other words, the
two elements off the main diagonal are equal, and the two elements on the main
diagonal have equal absolute values but opposite signs.

The given matrix is antisymmetric: ug; = —sina and u1; = cos @. In other words,
the two elements on the main diagonal are equal, and the two elements off the
main diagonal have equal absolute values but opposite signs.
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Depending on the input values, we might have one of the two scenarios to implement:

cosa sina cosa —sina
= orU=
sinae —cosa sinae cosa
———————— —————————
symmetric matrix antisymmetric matrix

Validating the solution for single-qubit gates

How can we validate this solution? The simplest “smoke test” is to think about the
most commonly used gates and see whether all of them can be described using
one of these two scenarios. And indeed, looking at the table 2.1, we can see that
Z, X, and H are all examples of gates with symmetric matrices (with parameter
@ being 0, 5, and 7, respectively), while I and Ry(6) have antisymmetric matrices
(with parameters 0 and g, respectively).

(The I gate is symmetric in the informal sense of the term, in that it is equal
to its transpose. In the context of this chapter, however, we require the elements
on the main diagonal of a symmetric matrix to have opposite signs. The elements
on the main diagonal of the I matrix are equal, so by our definition, this gate is
antisymmetric.)

A gate that is described with an antisymmetric matrix can be implemented using a
single Ry(2a) gate, since the matrix describing it matches that of the Ry gate exactly:

cos g —sin g
Ry(@)=| .
Sin 9 COS 9

In the case of a symmetric matrix, though, we need to change the signs of the matrix
elements in the right column, which we can do by applying the Z gate before applying
the Ry gate. In matrix form, the solution can be expressed as Ry(2«) - Z, since the
gates in the matrix product are applied to qubits in the order from right to left:

cosa —sina 1 0 cosa sina
Ry(2a)-Z = . =
sina cosa 0 -1 sina —cosa

The complete solution steps are as follows:

Check whether the input matrix is symmetric by checking that the elements off
the main diagonal are equal and the elements on the main diagonal are the
negation of each other. If the matrix is symmetric, apply the Z gate to the qubit.
Find the parameter o from the given matrix and apply the Ry(2a) gate to the
qubit.
As a final note, we can use the same function atan2 to calculate the angle @ that we
used in section 2.1. We need, however, to take care when identifying the scenario
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described by the inputs to make sure diagonal and antidiagonal matrices are classified
correctly. For example, if the solution only checks that the diagonal elements are
equal to decide that the matrix is antisymmetric, the X gate will be classified as
antisymmetric and thus be implemented incorrectly. We also need to keep in mind
that the elements of the input matrix are floating-point numbers and thus have to be
compared within certain tolerance rather than exactly, especially if the input matrix
is not hardcoded in the tests but calculated on the fly, which we’ll see later in the
chapter.

Qiskit

The code for this task can be written using only the language constructs we’ve already
seen in chapter 2. We’ll implement the operation as a gate right away, since we’ll use
it extensively as a building block later in the chapter. The following listing shows the
Qiskit code that implements a single-qubit unitary with the given real coefficients.

Listing 3.1 Qiskit code to implement a single-qubit unitary

from math import atan2, isclose
from giskit import QuantumCircuit

def apply_one qubit (u) :

circ = QuantumCircuit (1) Uses Python function math.istflose to
if isclose(u[0] [0], -ul[1][1]) and \ compare real numbers approximately

isclose(u[1] [0], u[O0] [1]):
circ.z(0)
theta = atan2 (u[1] [0], ul0] [0])
circ.ry(2 * theta, 0)
return circ.to gate()

This code doesn’t output anything yet because it only defines a function that imple-
ments a gate. We’ll learn to see its effect in the next section.

Q#

Now let’s take a look at the same solution in Q#.

Listing 3.2 Q# code to implement a single-qubit unitary

import Std.Math.*;

operation ApplyOneQubit ( Uses an array of one qubit as an
gs : Qubit[], u : Double(] [] argument to simplify the future code

) : Unit is Adj + Cctl {

if AbsD(u[0][0] - (-u[1][1])) < le-9 and Uses Q# function AbsD to compare
AbsD (uf[0] [1] - ul1]l[0]) < 1le-9 { real numbers approximately
Z(gs[0]1);

}

let angle = ArcTan2 (ull] [0], ul0][0]);
Ry (2.0 * angle, gs[0]);
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As with Qiskit, this code doesn’t produce an output yet (in fact, trying to run it will
cause an error due to a missing entry point operation). We will modify it to see the
result of implementing a unitary in the next section.

What does your solution do?

So far, the code we’ve written does not output anything or even apply the newly
defined gate to any qubits. How can we see what it does to check that it’s correct?

We could use the same technique we saw in the previous chapter to apply our gate
to a quantum state or several (for example, all the basis states this unitary can act
upon), get the amplitudes of the resulting state(s), and then assemble them into a
matrix. But it is easier to use the built-in tools that run the operation on a quantum
simulator to get the matrix representation of the unitary it implements.

Qiskit
One of the simulation methods available as part of AerSimulator is unitary
simulator. Under the hood, this simulator calculates the unitary matrix of the
circuit itself rather than the result of the evolution of a specific initial quantum state.
That’s why it can only be used for simulating circuits that consist of gates that can
be decomposed into gates with matrix definitions and will fail if the circuit contains
measurements or conditional operations (if statements with classical conditions
embedded into the circuit). In our code, we only use conditional statements to build
the circuit; they are not part of the circuit itself, so we can use this simulator. Once
the simulation is complete, the resulting matrix can be retrieved using the method
get unitary.

Listing 3.3 shows you how to modify listing 3.1 to get an instance of the simulator
to use and get the matrix representation of the program after simulation is complete.

NOTE For the rest of this chapter, I'll only include new and modified code
in the listings, rather than the complete code necessary to solve the task. You
can find the complete code for each problem in this chapter in the GitHub
repository.

from giskit import transpile
from giskit_aer import Aer

coef = [[0.6, -0.8], [0.8, 0.6]1]
circ = QuantumCircuit (1) <—— Creates a circuit and appends our gate to it
circ.append (apply one qubit (coef), [0])

simulator = Aer.get backend('unitary simulator')

circ = transpile(circ, backend=simulator)

res = simulator.run(circ) .result ()

matrix = res.get unitary().data <«—— Gets the unitary matrix of this circuit

print (matrix)
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The get_unitary method returns the matrix of a unitary, represented as a two-
dimensional array of complex numbers. The output of this program will look as
follows:

[[ 0.640.5 -0.840.5]
[ 0.840.7 0.6+0.311

Alternatively, we can use the Operator class from the giskit.quantum_info library.
This class is used to represent unitary operations that act on a quantum system and
can be initialized from a circuit or a gate—in this case, the gate apply_one_qubit.
Like the unitary_simulator, this class computes the unitary matrix of the circuit
instead of simulating its action on a specific starting state, and it can only be used for
circuits composed of gates, without measurements or conditionals.

Listing 3.4 shows you how to modify listing 3.3 to convert a circuit or a gate into
an operator and extract the matrix from the properties of this class.

Listing 3.4 Qiskit code to get a gate’s matrix via qiskit.quantum_info

from giskit.quantum_info import Operator

coef = [[0.6, -0.8], [0.8, 0.6]]
op = Operator (apply one qubit (coef)) -<—— Initializes an Operator for our gate
print (op.data) <— Gets the matrix of this Operator

This code will produce the same output as the one printed by listing 3.3: the matrix
of the quantum operation as a two-dimensional array of complex numbers.

Q#
In chapter 2, we saw how developing tests for Q# code that check the quantum state
of the program required us to use Python. The Python module gsharp includes a
function dump_machine you can use to peek at the current quantum state of a program.
Similarly, a helper Python module gsharp.utils offers a function dump_operation
you can use to get the matrix implemented by the given quantum operation.
Listing 3.5 shows you how to add Python code to listing 3.2. The new code uses
dump_operation to print the matrix implemented by the operation ApplyOneQubit
for a specific input set of coefficients. (At this point, you need to switch from working
with Qf# standalone files to using a Python + Q# project structure, as we discussed in
section 2.4.2.)

Listing 3.5 Python code to get the matrix of a Q# operation

import gsharp
from gsharp.utils import dump_ operation

coef = [[0.6, -0.8], [0.8, 0.6]]

gsharp.init (project_root='.")
print (dump_ operation(f"UnitaryImplementation.ApplyOneQubit( , {coef})", 1))
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Partial application in Q#

This is the first time we’re seeing partial application in Q# in this book, so let’s
inspect this code closer.

The Python function dump operation takes two arguments, the Q# operation
and the number of qubits on which it acts, and returns the matrix representation
of this operation. The Q# operation passed as a parameter to dump_ operation
should take a single argument—an array of qubits—and have no return value (other-
wise, it cannot be a unitary and have a matrix representation). That’s why | used
a qubit array as the first argument to the operation ApplyOneQubit instead of a
single qubit.

However, the operation ApplyoOneQubit takes two parameters: a qubit array and
an additional parameter, the matrix of coefficients. We cannot pass it as an argu-
ment to dump operation as is. We need to define another operation that takes a
single parameter, the qubit array, and applies ApplyOneQubit to this array using
the specific hardcoded matrix of coefficients as the second parameter.

We can do this using a partial application. Partial application is the process of
fixing one or several arguments of an operation to produce a new operation with
fewer arguments. In Q#, partial application looks similar to an operation call: the
arguments that are provided indicate the arguments that will be fixed, and the
underscores denote the arguments that are left unbound and will become argu-
ments of the new operation.

Consider the following Q# code snippets:

use gs = Qubit[1];

ApplyOneQubit (gs, [[0.6, -0.8], [0.8, 0.6]1]);

let op = ApplyOneQubit(_, [[0.6, -0.8], [0.8, 0.6]]);
use gs = Qubit[1];

op (gs) ;

The first snippet allocates a qubit array and applies applyoneQubit to it directly.
The second snippet starts by defining an operation op that takes a single argument,
a qubit array. When this operation is applied to a qubit array, it applies the operation
ApplyOneQubit With the given matrix as a second argument to it. Then the snippet
allocates a qubit array and applies the operation op to it. This way, the classical
parameter can be defined before the qubits are allocated.

The code in listing 3.5 takes this approach one step further: it defines a single-
argument operation using partial application and passes it t0 dump_ operation
immediately. dump_operation then allocates the qubits, prepares them in a certain
state, and applies this operation to them to extract its matrix representation.

The output of this program will look as follows:

[[(0.6+03F), (-0.8+03)1, [(0.8+03), (0.6+03)1]
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You can see that, as with the Qiskit code we saw in the previous section, the matrix
is represented as a two-dimensional array of complex numbers. Note that since the
values are floating-point numbers, they might differ slightly from the exact values
we were aiming for (in this case, 0.6 and 0.8) due to floating-point imprecision.
That’s why in the next section, when we develop tests for this code, we’ll compare
the elements of the desired matrix with the elements of the one that was actually
implemented within certain tolerance rather than exactly.

TIP  Q#namespace Std.Diagnostics offers a similar operation DumpOperation
that prints the matrix of a unitary directly from Q#. You can use it when working
with Q# standalone files; we will, however, need to write tests in Python, so I
focused on the Python API of this tool.

Testing your solution

Hopefully your experience with the first project has convinced you that unit tests
are best written as soon as possible! You might have noticed that in this chapter
the project is trickier, and there are more scenarios and corner cases to test even
in the very first task we tackled. Since we’ve already learned the general approach
to writing unit tests for quantum code in chapter 2, let’s learn how to validate the
matrices implemented by quantum operations right now to make our life easier for
the remainder of the chapter.

We will use the same approach we saw earlier: write unit tests to verify that our
implementation of quantum operations indeed has the matrix representation we
expect it to have and use quantum simulators and specialized tools to do this.

Qiskit
As we saw in section 3.2.1, Qiskit provides multiple ways to extract the matrix im-
plemented by the circuit. We can use either of these ways to get the matrix of our
implementation and then compare it to the matrix we needed to implement using
standard Python tools. For the rest of this chapter, I’ll use the approach that relies on
the operator class, since it makes the code more concise and has better performance
for larger test cases we’ll need in the end of the chapter.

The following listing shows the test code for the single-qubit unitary implementa-
tion in Qiskit.

from math import cos, pi, sin

from random import randint, random

from giskit.quantum_info import Operator
import pytest

from .one qubit_unitary import apply one qubit

Defines several sets of diagonal and antidiagonal

@pytest.mark.parametrize("u",
matrices as arguments for the test function
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[ [[1.0, 0.0], [0.0, 1.011,
[[0.0, -1.0]1, [-1.0, 0.0]1 1)
def test_apply one qubit (u) :
op = Operator (apply one qubit(u)) Gets the matrix of the operation
matrix = op.data T implemented by our code
for actual, expected in zip(matrix, u): <—— Compares the matrices row by row
assert actual == pytest.approx (expected)

def random one qubit unitary(): <— Helper function to generate a random unitary matrix
theta = random() * 2 * pi

sign = +1 if randint (0, 1) == 1 else -1
return [[cos(theta), sign * sin(theta)],
[-sin(theta), sign * cos(theta)]l

def test dense(): <— Tests random matrices with no zero elements

for _ in range(1l, 20):
test_apply one qubit (random one qubit unitary())

The tests pay special attention to the diagonal and antidiagonal matrices, since
they are a corner case for figuring out whether the input matrix is symmetric or
antisymmetric. Since at this point the code is covered with tests, it will not print
anything; the expected result of running the code is it passing all the tests.

Q#

Similarly to Qiskit, we’ll use the approach from section 3.2.2, which allows us to get
the matrix of a unitary in Python, and then use standard Python tools to compare it
to the matrix we needed to implement. The following listing shows the Python test
code for the single-qubit unitary implementation in Q#.

from math import cos, pi, sin

from random import randint, random
import gsharp

from gsharp.utils import dump_ operation

import pytest Defines several sets of diagonal and antidiagonal

@pytest .mark.parametrize ("u" matrices as arguments for the test function

[ [[1.0, 0.0], [0.0, 1.011,
[(0.0, -1.0], [-1.0, 0.011 1)
def test_apply one_gqubit (u):
gsharp.init (project root='.")
matrix = dump_operation ( <— Gets the operation matrix
f"UnitaryImplementation.ApplyOneQubit (_, {u})", 1)
for actual, expected in zip(matrix, u):

Compares matrices

assert actual == pytest.approx(expected, abs=1le-6)
row by row

def test dense():
for _ in range(1l, 20):

Helper function is the

test_apply one qubit (random one qubit unitary())
same as in Qiskit.
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Since at this point our Q# code for single-qubit unitary implementation is covered
with tests, the expected result of running the project code is passing these tests.

Matrix decomposition

Now that we’ve learned to implement single-qubit unitaries and to test our code, we
can move on to the main problem: implementing multiqubit unitaries. This problem
is challenging, so we’ll break it down into several smaller building blocks, from which
we’ll then construct the solution to the more general case.

We will use a way to represent an arbitrary unitary matrix as a product of several
matrices of simpler structure called cosine-sine decomposition. This decomposition can
be obtained for matrices of even size (2M x 2M) and looks as follows:

oo[too)[c =s\f4 o
o BJ\s c/\o B

Here, A;, A,, B;, B, are unitary matrices of size M XM, and C and S are diagonal
matrices of size M X M that, when squared, add up to identity matrix: C%+S%=1.
Consequently, all three matrices in the decomposition describe unitary transforma-
tions. Since we consider only matrices with real coefficients, all the matrices in the
decomposition will also have real coefficients.

Figure 3.3 shows an example of a cosine-sine decomposition for a simple 4 x 4

matrix.
Left block-diagonal ~ CS Right block-diagonal
matrix matrix matrix
Alg c \ =S A, S
00 06 038 10(00 00/—-1 0 10] 0 0
00 —0.8 06 _ 01(00 000 —1 01 0 0
01 0 0 00|01 1000 O 0 0/—0.6 —0.8
10 O 0 00[10 01,0 O 00/ 0.8 —0.6
Bl S C Br

Figure 3.3 Cosine-sine decomposition for an example 4 x 4 matrix. This matrix is represented
as a product of three matrices: a block-diagonal matrix defined by 2 x 2 matrices A; and By,

a block matrix of special shape called CS matrix defined by 2 x 2 diagonal matrices C and S,
and another block-diagonal matrix defined by 2 x 2 matrices A, and B,.

The left and right matrices in the decomposition are block-diagonal—that is, they
have square blocks of nonzero elements on the main diagonal of the matrix and
zero elements everywhere else. The middle matrix in the decomposition is called the
cosine-sine factor in the literature; for simplicity, I'll refer to it as the CS matrix, and
the unitary transformation described by this matrix, the CS unitary.

This decomposition shows us the path to completing the project we’re working
on in this chapter. If we figure out how to implement each of the matrices used in
the decomposition, taking advantage of their special shapes, we can use these to
implement an arbitrary matrix.



3.4 Matrix decomposition 65

I don’t derive the cosine-sine decomposition or the algorithm of obtaining it here.
This is a well-studied classical algorithm, and I’ll take advantage of it being available in
a lot of matrix algebra software packages, including the SciPy library in Python. If you
want to learn more about this decomposition, check out section 3.11 for additional
resources.

Listing 3.8 shows you how to use the library function cossin from the SciPy library
(https://mng.bz/6edA) to get the cosine-sine decomposition of the matrix from
figure 3.3.

Listing 3.8 Python code for cosine-sine decomposition of a matrix

from numpy import allclose
from scipy.linalg import cossin

u= [[0O, 0, 0.6, 0.8],
fo, o, -0.8, 0.61,
(o, 1, o, ol,
[1, 0

0, 0l] p and q are the dimensions of
left, cs, right = cossin(u, the blocks in the decomposition.
p=len(u) // 2, g=len(u) // 2)

Checks that the original matrix equals

print (allclose(u, left @ cs @ right))
the product of matrices in decomposition

print (left)
print (cs)
print (right)

The output of this code looks like this:

True

[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 1. 0.]1]

[[ 6.123234e-17 0.000000e+00 -1.000000e+00 -0.000000e+00]
[ 0.000000e+00 6.123234e-17 -0.000000e+00 -1.000000e+00]
[ 1.000000e+00 0.000000e+00 6.123234e-17 0.000000e+00]
[ 0.000000e+00 1.000000e+00 0.000000e+00 6.123234e-17]]

[[ 1. 0. 0. 0. 1]

[ 0. 1 0. 0. 1]
[ 0. 0. -0.6 -0.8]
[ o. 0 0.8 -0.61]

We can see that, indeed, the matrices in the decomposition have the expected shapes,
and we can double-check that their product equals the original matrix.

Now we know what building blocks we need to construct the general unitary matrix.
Let’s start with the small case—4 X 4 matrices describing two-qubit operations.
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Implementing a two-qubit block-diagonal unitary with 2 x 2 blocks

The first of the building blocks we’ll need is two-qubit unitaries that implement 4 x 4
block-diagonal matrices of the following shape:

agp ap | 0 O
(A 0) a10 all O 0
U = =
0 B 0 0 |by by
0 0 |by by

Here, U is a 4 x4 block-diagonal matrix, in which the 2x 2 blocks on the main
diagonal are two independent 2 X 2 matrices 4 and B, and the 2 x 2 blocks off the
main diagonal consist of zeros.

In this task we’ll implement an operation that takes two 2 X 2 matrices with real co-
efficients 4 and B and implements the block-diagonal unitary as previously described.

Refresher: Controlled gates in matrix notation

Before we start figuring out how to implement this kind of block-diagonal matrices
in terms of simpler gates, let’s remind ourselves how different types of controlled
gates look in matrix form. We’ll only consider controlled gates acting on two qubits
for now and return to this topic for gates with more qubits later in the chapter.

To start, let’s spell out the row and column indices of 4 X 4 matrices in their binary
form. Figure 3.4 shows these indices written as pairs of least and most significant bits.

0=00 1=10 2=01 3=11

0 =00 Qoo Qo1 0 0
1=10 Q19 Ay 0 0
2 =01 0 0 by by,
3=11 0 0 bio by

Figure 3.4 The row and column indices of 4 X 4 matrices. The indices are written in binary using
little-endian notation: the least significant bit is written first. You can see that the top-left and
bottom-right blocks group the elements for which the most significant (the last) bit of the row index
equals that of the column index: for the matrix A in the top-left block, the most significant bit is 0,
and for the matrix B in the bottom-right block, the most significant bit is 1.

Keep this reference in mind when spelling out the shapes of controlled gates in their
matrix form.

Converting bit strings into integers: Big-endian vs. little-endian
(a refresher)

You'll notice that I’'m describing the qubits as the “least significant bit” and the
“most significant bit” rather than left and right or first and second. This is another
example of the scenario in which we need to convert bit strings into integer indices
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of basis states that correspond to the rows/columns in a matrix, (the first example
was the ordering of state vector amplitudes we discussed in section 2.3). Qiskit
and Q# use different conventions for mapping integers to bit strings: Qiskit uses
little-endian notation, in which the least significant bit is stored in the first/left-
most bit, and Q# uses big-endian, in which the least significant bit is stored in the
last/rightmost bit.

Since the shape of the matrix implemented by a quantum gate depends on how
the indices of the rows/columns are converted to the basis states, it makes sense
to re-emphasize the endianness of this conversion now and again. In this chapter,
like in chapter 2, I'll use little-endian to work through the math of solving the prob-
lem, and the convention used by the language when implementing the solution in
that language. This process will again match the behavior of the libraries native
to that language.

You can apply four different variants of a controlled gate to two qubits if you start
with a single-qubit gate U and use a single control qubit:

A controlled gate with the most significant qubit as control and the least signifi-
cant qubit as target

A controlled gate with the least significant qubit as control and the most signifi-
cant qubit as target

A controlled-on-zero gate with the most significant qubit as control and the least
significant qubit as target

A controlled-on-zero gate with the least significant qubit as control and the most
significant qubit as target

Let’s spell out the process of figuring out the elements of the matrix for the first
variant in detail and then look at the final matrices for the other three cases. We
know how a controlled-U gate acts on the basis states, so we can write the following
transformations in Dirac notation, using the first (the least significant) qubit as target
and the second (the most significant) qubit as control:

|00) — |00)

[10) — |10)
|01) > U 10) ® [1) = (g0 [0) +u10 [1)) ® 1) =ugo |01) +u10 [11)
111) = U [1) @ 1) = (w01 |0) +u11 |1)) ® [1) =uo1 [01) + a1y [11)

Now we can convert the Dirac notation into the matrix notation: the results of
applying the gate to each basis state are written as the corresponding column, and
the element in each row of that column is the amplitude of the corresponding basis
state in the result (or zero if that basis state is not present in the result). For this
variant of the controlled gate, we get the familiar matrix you usually see in books
and tutorials that introduce the matrix form of a controlled-U gate, in which the
bottom-right block of the matrix is the matrix of the U gate itself:
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1 0 O 0
01 0 0
0 Ojug uy
0 0fuy upy

We can use the same approach to produce the matrices for the other three scenarios.
Table 3.1 shows the summary of the results we’ll get: the matrices for the four variants
of controlled single-qubit gates.

Table 3.1 The variants of a controlled single-qubit gate with one control qubit

Control pattern The most significant bit as control | The least significant bit as control
1 0 O 0 1 0 0 O
01 0 O 0fup|0[u
Controlled on one 01
0 0|uy uy 0[uy]0
tgy gy [0 0 ugy | 0 0
Controlled on zero uyg uyy |00 0O 1 0 0
0 0 1 0 U1 0 0
0 0 01 0O 0 0 1

You can see that if the most significant bit is used as control, the matrix U occupies a
contiguous 2 X 2 block: the top-left one if the control is on zero or the bottom-right
one is the control is on one. If the least significant bit is used as control, the elements
of the matrix U are split so that they occupy corners of a square within the larger
matrix.

Equipped with the knowledge on how to implement matrices of these shapes, let’s
see how this helps us solve our task.

3.5.2 Math

As a reminder, our goal is to implement an operation described by a block-diagonal
matrix

agg ap | 00

A 0) ap a;; | 00
0 B) 0 0

0 O

U
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0 A 0
We can implement separately operations described by matrices and as

0 B 0 I
controlled and controlled-on-zero variants of operations B and A, respectively, with
the most significant bit as control. Conveniently, the product of these two matrices
(in either order) is exactly the matrix we’re looking for:

A 0) [4 0\ (I O\ (I 0} (4 O

0 B 0 I/ \0 B 0 B \0 I

So our solution for this problem consists of only two steps:

1 Apply the controlled variant of operation B with the most significant qubit as
control.

2 Apply the controlled-on-zero variant of operation A4 with the most significant
qubit as control.

The order of steps doesn’t matter: because the gates have the same control qubit but
different control patterns, they act independently of each other. (Mathematically, the
matrices that describe these operations commaute: their product is the same regardless
of which matrix is on the left and which one is on the right.)

Qiskit

After all the work with the matrices we did so far, the code implementation is extreme-
ly straightforward and does not require learning any new language constructs or
tools. Listing 3.9 shows the Qiskit code that implements a two-qubit block-diagonal
unitary with the given real coefficients, using listing 3.1 as a building block.

Listing 3.9 Qiskit code for a two-qubit block-diagonal unitary

def apply two qubit_block_diagonal(a, b):
circ = QuantumCircuit (2)
circ.append(apply one qubit (b).control(1), [1, 0])
circ.append (apply one qubit(a).control (1, ctrl_state=0), [1, 0])
return circ

Here, the most significant qubit used as the control (given by the first element in the
qubit indices array) is the last qubit in the circuit.

To test this code, we can modify listing 3.6 to handle two-qubit cases. The following
listing shows the test code for the two-qubit block-diagonal unitary implementation
in Qiskit.

Listing 3.10 Qiskit code to test a two-qubit block-diagonal unitary

from giskit.quantum_info import Operator
from pytest import approx
from .two_qubit block diagonal import apply two_gubit_block diagonal
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def run_ test apply two_qubit block diagonal(a, b):
op = Operator (apply two qubit block diagonal(a, b))
matrix = op.data

complete coef = [
alo]l + [0., O
all] + [0., O
[0., 0.] + bl
[0., 0.] bl

0

, from submatrices A and B
1]]

X Reconstructs complete matrix
1. of the block-diagonal gate

1

1

for actual, expected in zip(matrix, complete coef):
assert actual == approx(expected)

def test two_qubit block diagonal() :
for _ in range(1l, 20):
a = random one_gubit_unitary() <— Reuses the helper function
b = random_one_qubit unitary ()
run_test_apply two_gqubit block diagonal(a, b)

Note that we had to construct the complete matrix U from the matrices 4 and B to
compare it to the program simulation results. I'm also not including any tests for
corner cases: this solution relies on operation apply_one_qubit, which has its own
set of tests (including the corner cases for it), so the new tests only need to check
that the new operation gets assembled from the building blocks correctly. The code
is covered with unit tests, so the result of its execution is passing tests.

Q#

Like Qiskit, Q# code implementation is straightforward and relies on language
constructs and tools we’re already familiar with. The following listing shows the
Q# code that implements a two-qubit block-diagonal unitary with the given real
coefficients.

operation ApplyTwoQubitBlockDiagonal (

gs : Qubit[], a : Double[][], b : Doublel] []

) : Unit is Adj + Ctl {
Controlled ApplyOneQubit ([gs([0]], ([gs[1]], b));
ApplyControlledOnInt (0, ApplyOneQubit, [gs[0]]1, (I[gsl[1]1], a));

}

Notice that in this code the most significant qubit, used as the control for the two
gates we apply, is the first qubit of the register gs. This convention is the opposite of
Qiskit, in which the most significant qubit is the last qubit of the register.

To test this code, we can modify listing 3.7 to handle two-qubit cases. This modi-
fication is very similar to the one we saw in listing 3.10, so I'm not including the
code here. Again, the Q# solution code is covered with unit tests, so the results of its
execution should be a set of passing tests.
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Implementing a two-qubit CS unitary

The next building block we’ll need to implement an arbitrary unitary is the CS
unitary—an operation described by the CS matrix, the middle matrix in the cosine-
sine decomposition. For the two-qubit case, the CS matrix looks like this:

co O |=50 0
— 0 ¢ 0 -—s
oS — <C ) _ 11 11
s C S0 0 | oo 0
0 s O ciy
co O so0 O ] )
Here,C = and S = are 2 X 2 diagonal matrices that have a property
0 0 811
C%2+8%2=] (in otherwords,c‘ +s —1andc flzl).

Math

The matrices C and S themselves are not unitary. A diagonal unitary matrix with real
coefficients can only have values 1 and —1 on the main diagonal, and matrices C and
S can have other elements on the main diagonal. The decomposition from figure
3.3, for example, shows a matrix C consisting of zeroes. However, we can group the
nonzero elements of the CS matrix into two 2 X 2 matrices that are unitary, as shown
in figure 3.5.

|
_ 1€oo1 0 | —Sg91 0
Coo S00 -6-:.4.‘...._--0--_,4.......: ________________
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Figure 3.5 The nonzero elements of a two-qubit CS matrix can be separated and grouped together in
two matrices M, and M. Each of these matrices is unitary.

The elements of these matrices are arranged in two patterns that look just like the
matrices of controlled operations that we saw in the second column of the table
3.1—operations that use the least significant bit as control. Indeed, similarly to the
block-diagonal matrices, we can represent the CS matrix as a product of two matrices
that can each be implemented as a controlled single-qubit gate:

o 0 —sp0 O 1 0 0 O

0 ¢y 0 —s _ 0 0 | -
s 0 cpo O B 0 0 1

0 s3 0 n 0o 0 0 1

Controlled-on-zero M, Controlled M,
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So our solution to this problem consists of only two steps:
1 Apply the controlled variant of operation M7 with the least significant qubit as
control (the right matrix of the product).
2 Apply the controlled-on-zero variant of operation My with the least significant
qubit as control (the left matrix of the product).

As in the previous task, the order of steps doesn’t matter: since the gates have the
same control qubit but different control patterns, they act independently of each
other.

Qiskit
The following listing shows the Qiskit code that implements a two-qubit CS unitary
with the given real coefficients.

Listing 3.12 Qiskit code for a two-qubit CS unitary

def apply two qubit cs matrix(cO0, s0, cl, sl):
circ = QuantumCircuit (2)

m0 = [[cO, -s0], [s0, cO]]

ml = [[cl, -s1], [s1l, c1]]
circ.append(apply one qubit (ml).control (1), [0, 1])

circ.append (apply_one_gubit (m0).control (1, ctrl_state=0), [0, 1])

return circ

The main difference compared to the way we handled two-qubit block-diagonal
matrices is the parameters of the operation apply two_qubit_cs_matrix: instead of
passing the complete matrices C and S, we pass only their nonzero elements and
then construct the unitary matrices My and M7 from them. This will be convenient
later, when we work on implementing the CS matrix for an arbitrary number of
qubits in section 3.9.

The test code for this task and the rest of this chapter is very similar to the code in
listing 3.10, with only minor modifications to the logic of reconstructing the complete
matrix of the operation we aim to implement, so I won’t include the test code in the
chapter. Rest assured, it’s still included in the complete project code in the GitHub
repository, and the code still should pass the tests!

Q#
The following listing shows the Q# code that implements a two-qubit CS unitary with
the given real coefficients.

Listing 3.13 Q# code for a two-qubit CS unitary

operation ApplyTwoQubitCSMatrix (
gs : Qubitl[],
(cO0 : Double, s0 : Double),
(cl : Double, sl : Double)
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) : Unit is Adj + Ctl {

let m0 = [[cO, -s0], [sO0, cO]];

let m1 = [[cl, -s1], [sl, cl1];

Controlled ApplyOneQubit ([gs([1]], ([gs[0]], ml));
ApplyControlledOnInt (0, ApplyOneQubit, [gs([1]], ([gs[0]], mO0));

}

Notice that in this code the least significant qubit, used as the control for the two
gates we apply, is the last qubit of the register gs.

The test code for this task and the rest of this chapter is very similar to the test code
we used earlier in the chapter, in listings 3.7 and 3.10, with only minor modifications to
the logic of reconstructing the complete matrix of the operation we aim to implement,
so I won’t include the test code in the chapter. It is included in the complete project
code in the GitHub repository, and, as usual, the expected result of running the code
is passing tests.

Implementing a two-qubit block-antidiagonal unitary
with 2 x 2 blocks

Now that we have the building blocks for a cosine-sine decomposition of a two-qubit
unitary, let’s use them to implement an example of such unitary. Since this is still
a stepping stone for our final project, we will not implement an arbitrary two-qubit
unitary. Instead, we’ll consider a unitary of a simpler shape for which the cosine-
sine decomposition is simple enough to be derived by hand rather than using the
Python library. The operation we’ll implement in this section has the following matrix
representation:

0 0 |ayw ay
0 A) 0 0 ]ayg ay
B0 by by | O 0
by b1 0 0

-
|
P

Here, U is a block-antidiagonal matrix, in which the 2 X 2 blocks off the main diagonal
are two independent single-qubit unitaries (represented as 2 x 2 matrices, 4 and B),
and the 2 X 2 blocks on the main diagonal consist of zeros.

Math

You can run the code for finding the cosine-sine decomposition from listing 3.8 for
several block-antidiagonal matrices to find out that in this scenario, the CS matrix in
the decomposition does not depend on the specific matrices 4 and B and has the
following shape:

00[-1 0
(01)_ 000 —1
I 0/ | fto]lo o

01/0 0
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Indeed, you can use matrix multiplication to verify the following equality:

0 A I 0\(f0o -I\[I O
B 0 0 BJ\I O0/J\0 -4

This decomposition yields our solution for implementing an operation described
with a block-antidiagonal matrix:

I 0
1 Apply the operation described with a block-diagonal matrix .
0 -4
0 0 1 0
2 Apply the CS unitary described with matrices C = and S = .
0 0 0 1
I 0
3 Apply the operation described with a block-diagonal matrix .
0 B

Qiskit

The following listing shows the Qiskit code that implements a two-qubit block-
antidiagonal unitary with the given real coefficients. Notice how the coefficients
of the matrices C and S in the decomposition are hardcoded rather than computed
on the fly.

Listing 3.14 Qiskit code for a two-qubit block-antidiagonal unitary

def apply two qubit_block_antidiagonal(a, b):
circ = QuantumCircuit (2)

id = [[1., 0.], [O0., 1.]]
minus_a = [[-a[0][0], -al0][1]], [-al1l[o0l, -al1l[1]]]
circ.append(apply_two qubit_block_diagonal (id, minus_a), [0, 1])
circ.append(apply two qubit cs matrix(0., 1., 0., 1.), [0, 1])

(

circ.append(apply two_qubit block diagonal (id, b), [0, 1])
return circ

The results of this code are, again, passing tests, after they are modified appropriately.
Q#

The following listing shows the Q# code thatimplements a two-qubit block-antidiagonal
unitary with the given real coefficients.

Listing 3.15 Q# code for a two-qubit block-antidiagonal unitary

operation ApplyTwoQubitBlockAntiDiagonal (

gs : Qubit[], a : Double[][], b : Doublel] []
) : Unit is Adj + ctl {

let id = [[1., 0.1, [0., 1.11;
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let minusA = [[-a[0][0], -a[0][1]], [-al1l]l([0], -al1]([1]]];
ApplyTwoQubitBlockDiagonal (gs, id, minusA);
ApplyTwoQubitCSMatrix(gs, (0., 1.), (0., 1.));

ApplyTwoQubitBlockDiagonal (gs, id, b);

}

The results of this code are, again, passing tests, after they are modified appropriately.

Implementing a two-block block-diagonal unitary of arbitrary size

We have successfully used a special case of a cosine-sine decomposition to implement
a special case of a two-qubit unitary. Now we can finally approach the task we’ve been
working toward: unitaries acting on an arbitrary number of qubits. The first building
block required by the cosine-sine decomposition for matrices of arbitrary size is a
block-diagonal unitary acting on n qubits consisting of two blocks of equal size:

A 0
0 B

Here U is a block-diagonal matrix of size 2" x 2", in which the 9=1 % 271 blocks on
the main diagonal are two independent unitary matrices 4 and B, and the remaining
matrix elements are all zeros.

Multiplexers: Quantum if-then-else conditionals

This block-diagonal matrix is a special case of a multiplexer—a generalization of i £-
then-else conditionals for the quantum case. In general case, a multiplexer acting
on n qubits is described with a block-diagonal matrix of size 2" with 2° blocks of
size 2"~ each. The s most significant qubits out of n qubits act as the condition of
the multiplexer, and the blocks of the multiplexer describe the effects that should
be applied to the n — s least significant qubits for each value of the condition qubits.

In our case we only need the variant with s =1, so we’ll focus on implementing
this variant alone. Another simple variant of a multiplexer is a diagonal matrix, for
which the number of qubits that act as the condition is s =n. Indeed, consider a
single-qubit diagonal matrix

The result of applying a unitary described by this matrix to a quantum state « |0) +
B 1) isugoa |0) +u11 8 |1), which can be described as “apply a phase uy if the basis
state is |0), and then apply a phase u; if the basis state is |1).” This behavior is
exactly that of a multiplexer with the only qubit acting as the condition, and the
effects that should be applied are 1 x1 matrices—complex numbers applied as
phases.

Multiplexers defined for any value of s can come up in quantum algorithms, so
they are a convenient tool to have in your toolbox.
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In this task, we’ll implement an operation that takes two 2"~! x 2*~! matrices with
real coefficients and implements the previously described 2" x 2" block-diagonal
unitary.

Math

Let’s start with the same step we did when analyzing 4 X 4 block-diagonal matrices:
spell out the binary representation of row and column indices of the matrix elements.
Figure 3.4 shows the row and column indices for 4 X 4 matrices; figure 3.6 does the
same for 8 x 8 matrices, showing the indices written as three-bit binary strings in
little-endian (the string starts with the least significant bit and ends with the most
significant one).

0= 1= 2= 3= 4= 5= 6= 7=

000 100 010 110 o001 101 o011 111
0 = 000 agy  Gor Gy ag3 0 0 0 0
1 =100 Ay A G2 Qg3 0 0 0 0
2 =010 Qg Ggp  Ggp Qg3 0 0 0 0
3 =110 Gzg Gz Az Az 0 0 0 0
4 =001 0 0 0 0 b b bz bo3
5 =101 0 0 0 0 by by by by
6 =011 0 0 0 0 byg  byy  byy  bog
=111 0 0 0 0 byp by by by

Figure 3.6 The row and column indices of an 8 x 8 block-diagonal matrix. The indices are written in
binary using little-endian notation: the least significant bit is written first. The top-left and bottom-right
blocks group the elements for which the most significant (the last) bit of the row index equals that of
the column index, which is 0 for the top-left block and 1 for the bottom-right block.

You can see that in both figures the elements of the top-left and bottom-right blocks
of the matrix that correspond to the smaller matrices 4 and B have the same most
significant bit of their row and column indices. This bit equals 0 for the top-left block
(matrix A4) and 1 for the bottom-right block (matrix B). Larger matrices follow the
same pattern.

Thinking back to section 3.5, the patterns of these blocks of elements look similar
to the patterns we’ve seen in the first column of table 3.1 for controlled gates that use
the most significant bit as control. Indeed, table 3.2 shows the matrices of controlled
variants of n — I-qubit gates that use one additional qubit as control.

Using these two matrices as building blocks, we can construct the block-diagonal
matrix we’re looking for as their product:

A 0) (4 0\ [I O

0 B 0 I/\0 B
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Table 3.2 The variants of a controlled multiqubit gate with one most significant control qubit

Control pattern Matrix representation Effect of the n-qubit
I 0 If the most significant bit is 1, apply the unitary B to the
Controlled on one L . . .
0 B n — 1 least significant qubits; otherwise, do nothing.
A 0 If the most significant bit is 0, apply the unitary A to the
Controlled on zero L . . .
o I n — 1 least significant qubits; otherwise, do nothing.

You’ll notice that this formula is exactly the same one we saw in section 3.5 for the
two-qubit block-diagonal unitaries. The only difference is the sizes of the matrices
involved: in section 3.5, matrices A, B, and [ are 2 X 2 matrices, and this time, they
are matrices of size 2"~! x 271,

Similarly to the solution in section 3.5, our implementation of the general block-
diagonal matrix consists of only two steps:

Apply the controlled variant of operation B with the most significant qubit as
control and the rest of qubits as targets.

Apply the controlled-on-zero variant of operation 4 with the most significant
qubit as control and the rest of qubits as targets.

We have now completed the purely mathematical portion of the solution. However,
before we get to coding it, we need to address one more question: How do we test this
solution? So far in this chapter, we always expressed the solution to each task using
the operations that solved the previous tasks and their controlled versions. But this
time, to implement a general case of a block-diagonal unitary, we need to implement
unitaries described by arbitrary matrices 4 and B, and we will not learn how to do
that until section 3.10.2.

Ultimately, the algorithm for implementing arbitrary unitaries will be recursive,
relying on applying itself for smaller problem instances to solve a larger instance.
To implement an arbitrary n-qubit unitary, the algorithm will use the cosine-sine
decomposition of the corresponding 2" X 2" matrix to represent it as a sequence of
matrices of the same size but of simpler structure, and those will be implemented
using controlled variants of arbitrary matrices of size 2"~! x 2*~. In the final version
of this chapter’s project, we’ll use that recursive algorithm to implement arbitrary
unitaries.

For now, though, we’ll use a temporary placeholder for the building block “imple-
ment an arbitrary unitary of smaller size.” We’ll check whether the arbitrary unitary
fits one of the special cases that we already know how to implement: single-qubit
unitaries or two-qubit unitaries that have a block-diagonal or block-antidiagonal
shape. If it does, we’ll use the corresponding implementation, and if it doesn’t, the
building block will throw an exception. This placeholder, while not being particularly
pretty, will let us test the logic of our implementation of block-diagonal matrices, as
long as we stick to matrices with blocks of these special shapes in our tests.
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3.8.2 Qiskit

The following listing shows the Qiskit code that implements an arbitrary two-block
block-diagonal unitary.

def apply arbitrary unitary(n, u): <— Implements some special cases
if n == 1:
return apply one_ gubit (u) <— We can implement single-qubit matrices, ...
if n == 2:

if all(isclose(v, 0) for v in ... two-qubit block-diagonal matrices

ul0] [2:4] + ull] [2:4] + (if elements in the top-right block

ul2] [0:2] + u[3][0:2]): and bottom-left block are all zeroes,
tl = [ul0][0:2], ul1l]l[0:2]] separate the top-left and bottom-
br = [ul2] [2:4], ul3][2:4]] right blocks of the matrix), ...

return apply two_qubit block diagonal (tl, br) .decompose().to_gate()

if all(isclose(v, 0 ...and block-antidiagonal matrices (if

)
ufo] [0:2] + u[1][0:2] + elements in the top-left block and
ul2][2:4] + ul3][2:4]1): bottom-right block are all zeroes,
tr = [ul0][2:4], ull]l[2:4]] separate the top-right and bottom-
bl = [ul[2][0:2], ul3][0:2]] left blocks of the matrix).

return apply two_gqubit block antidiagonal (tr, bl).decompose() .to _gate()
raise NotImplementedError ("The case of " +
"arbitrary 2-qubit unitaries is not implemented yet™")
raise NotImplementedError (
"The case of 3+-qubit unitaries is not implemented yet")

Uses the last,
def apply two block diagonal(n, a, b): most significant

circ = QuantumCircuit (n) bit as the control

circ.append(apply arbitrary unitary(n - 1, b).control(l),
[n - 1] + list(range(n - 1)))

circ.append(apply arbitrary unitary(n - 1, a).control(l, ctrl state=0),
[n - 1] + list(range(n - 1)))

return circ

The largest block of code is the operation apply_arbitrary unitary. However, at
this point, instead of implementing the universal solution for an arbitrary unitary, it
checks whether the input matrix fits one of the special cases:

Single-qubit unitaries can be implemented using apply one_gubit.

We can implement two special cases of two-qubit unitaries, depending on the
shape of the matrix. If all elements in the top-right and bottom-left blocks of the
matrix are zeros, it is block-diagonal, implemented using apply_ two_gubit_
block_diagonal. If all elements in the top-left and bottom-right blocks of the
matrix are zeros, it is block-antidiagonal, implemented using apply two_qubit_

block_antidiagonal.
Using this operation, apply_two_block_diagonal implements the general case of a

block-diagonal unitary, assuming the ability to implement an arbitrary unitary (but
using the placeholder implementation for now).
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Note that the tests for apply_two_block_diagonal should be implemented based
on the list of special cases handled by the code: if we try to run it for matrices of four
qubits or for three-qubits matrices with arbitrary blocks, the implementation will fail.
However, if the tests only include the cases handled by the code, they should pass as
a result of executing this code.

Q#
The following listing shows the Q# code that implements an arbitrary two-block
block-diagonal unitary.

operation ApplyArbitraryUnitary(

gs : Qubit[], u : Doublel] []
) : Unit is Adj + Ctl { <— Implements some special cases
let n = Length(gs);
if n == {
ApplyOneQubit (gs, u); <—— We can implement single-qubit matrices, ...

} elif n == 2 {
let isZeroD = x -> AbsD(x) < 1le-9;

if All(isZeroD, ... two-qubit block-diagonal matrices

uf0] [2..3] + ufl1]l[2..3] + (if elements in top-right block and
uf2]1[0..1] + ul3][0..11) { bottom-left block are all zeroes,

let tl1 = [u[0][0..1], ul1][0..1]11; separate the top-left and

let br = [ul2][2..3], ul3][2..311; bottom-right blocks of the matrix), ...

ApplyTwoQubitBlockDiagonal (gs, tl, br);

} elif All(isZeroD, ...and block-antidiagonal matrices

ufl0] [0..1] + uf1][0..1] + (if elements in the top-left block
ul2]1[2..3] + ul3]1[2..3]) { and bottom-right block are all zeroes,
let tr = [ul0][2..3], ul1ll[2..311; separate the top-right and bottom-left
let bl = [u[2][0..1]1, ul3]1[0..111; blocks of the matrix).

ApplyTwoQubitBlockAntiDiagonal (gs, tr, bl);
} else {
fail "The case of arbitrary 2-qubit unitaries" +
" is not implemented yet";

}

} else {
fail "The case of 3+-qubit unitaries is not implemented yet";

}

operation ApplyTwoBlockDiagonal (

gs : Qubit[], a : Double[][], b : Doublel] []

) : Unit is Adj + Ctl {
let n = Length(gs); Uses the first, most
Controlled ApplyArbitraryUnitary ( significant bit as the control

[gs[0]1], (gsl[1...], b));
ApplyControlledOnInt (0, ApplyArbitraryUnitary,
[gs[0]], (asll...]1, a));
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As in Qjskit, this listing includes two operations. ApplyArbitraryUnitary is a place-
holder for an arbitrary unitary preparation that for now implements several special
cases we’ve seen before. ApplyTwoBlockDiagonal uses this placeholder to demon-
strate the general logic of implementing a block-diagonal unitary. The tests should
pass after they are modified to include the cases handled by the code.

Implementing a CS unitary of arbitrary size

The second building block required by the cosine-sine decomposition for matrices of
arbitrary size is the CS matrix acting on n qubits—the middle matrix in the cosine-sine
decomposition. It is a 2" X 2" matrix of the following shape:
c =S
CS=
S C

Here C and S are 2"~! x 2"~! diagonal matrices:

o 0 - 0 S0 0 - 0
0 ¢ 0 s
- %1 g_ 11
O 0 0271—1,17271—1,1 0 0 SQn—l,L’Qn—l,l

The matrices C and S, squared, add up to the identity matrix: C2+S%2=].In other
words, these matrices are completely described by their diagonal elements ¢go, ¢11, ...,

Con-1_1 gn-1_1 and g, $11, ---, Sgi-1_1 9n-1_1, and for each index k from 0 to 2*~1 -1,
inclusive, the sum of squares of matching elements is 1: C/? p sf =1

Math

Let’s start our analysis with a slightly simpler scenario: an almost-diagonal matrix
that matches the identity matrix / in all rows and columns except the intersection of
rows and columns with indices # and 2"~' + (here, £ < 2"~!; that is, row & is in the
top half of the matrix). The intersection of these rows and columns matches our CS
matrix. Here, for example, is what this matrix looks like for n =3 (an 8 X 8 matrix)
and k=2:

0= 1= 2= 3= 4= 5= 6= 7=

000 100 010 110 001 101 O11 111

0 = 000 1 0 0 0 0 0 0 0
1 =100 0 1 0 0 0 0 0 0
2 =010 0 0 [ 0 0 0 —S59 0
3 =110 0 0 0 1 0 0 0 0
4 =001 0 0 0 0 1 0 0 0
5 =101 0 0 0 0 0 1 0 0
6 =011 0 0 s9 0 0 0 Coo 0
7=111 0 0 0 0 0 0 0 1
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Using the binary representations of row and column indices of a 2" X 2" matrix from
figure 3.6, we can see that the binary notation of index £ as an n-bit string has 0 as its
most significant bit, since £ is less than 2"~!, and the binary notation of index 2"~! + £
is the same but has 1 as the most significant bit. Thinking back to section 3.6, the
pattern of this matrix resembles the patterns we’ve seen in the second column of the
table 3.1 for controlled gates that use the least significant bit as control. Indeed, you
can verify that this matrix corresponds to a controlled variant of a single-qubit gate
with a matrix
M, = Chk —Sk,k
Stk Chik

which uses n — 1 additional bits as controls. The least significant bits of the n are used
as controls, and the control pattern is exactly the binary representation of the index
k in little-endian notation with n — 1 bits.

Verifying the matrix of controlled single-qubit gate

How can you verify that such controlled variant of a single-qubit gate is described
with this matrix? To start, you can check that, for the two-qubit case (4 x 4 matrices),
the controlled variants of the single-qubit rotation from the second column of the
table 3.1 can be represented this way as well, using £ =0 and k=1 for controlled-
on-zero and controlled gates, respectively. In this case, the control pattern is one
bit long.

To simplify the math for the general case, you can apply this matrix to each of
the basis states in turn. For all indices other than & and 2! + the columns of
the matrix are the same as the corresponding columns of the identity matrix, so
all these basis states remain unchanged. The basis states |k) and |2"~! + k) are
transformed into a superposition of two basis states each, and it's easy to see
that the n —1 least significant bits of these basis states all remain unchanged
(and equal to the binary representation of k), and the most significant bit changes
following the application of a rotation gate M to it. This is exactly the effect of the
described controlled gate!

With this in mind, we can implement the full CS matrix as a product of 9"=1 matrices,
each of them almost diagonal, differing from the identity in just two columns and
two rows. (This is the same idea we used in section 3.6, but with 2*~! matrices in the
product instead of just two.) The complete solution consists of the following steps:

Iterate over indices k from 0 to 2"~! — 1, inclusive.
For each value of k, apply a controlled variant of the rotation gate M} with n —1
least significant bits as controls and the most significant bit as the target, using
the binary notation of & in little-endian as the control pattern.
Since all control patterns are distinct, we’re guaranteed that each controlled gate
affects only two basis states, and no two controlled gates interfere with each other.
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Qiskit
The following listing shows the Qiskit code that implements an arbitrary CS unitary
with the given real coefficients.

Listing 3.18 Qiskit code to implement an arbitrary CS unitary

def apply arbitrary cs matrix(n, cs):
) N o .7 Uses an array of tuples
cire = QuantumCircuit (n) to describe the CS matrix
for (k, (c, s)) in enumerate(cs):

m= [[c, -s], [s, c]]
circ.append(apply one qubit (m).control(n - 1, ctrl state=k), range(n))
return circ

Conveniently, control method accepts both bit strings and integers as the ctrl_state
argument, and interprets integers as their binary notations in little-endian, so we
don’t need to do the conversion manually in our code. With this code, the newly
added tests that cover larger CS matrices should pass.

Q#
The following listing shows the Q# code that implements an arbitrary CS unitary with
the given real coefficients.

Listing 3.19 Q# code to implement an arbitrary CS unitary

import Std.Arrays.*;

operation ApplyArbitraryCSMatrix (

gs : Qubitl(],

cs : (Double, Double) [] <—— Uses an array of tuples to describe the CS matrix
) : Unit is Adj + ctl {

for (k, (¢, s)) in Enumerated(cs) {

let m = [[c, -s], [s, cll;
ApplyControlledOnInt (k, ApplyOneQubit,
Reversed(gs[1l...1), ([gs[0]l]l, m));

}

In this code, the least significant qubits, used as the controls for the gates we apply,
are the last qubits of the register gs. Notice that we reverse their order before using
them as controls with the control pattern k. ApplyControlledonInt uses little-endian
to convert its integer argument into a control pattern bit string, but our convention
for Q## is to store the most significant bit first, which corresponds to big-endian
notation. To reconcile these notations, we need to reverse either the bit pattern we
use or the order of qubits in the array, and reversing the qubits turns out to be easier.
(This reverse doesn’t apply any gates; it just produces an array of qubit variables in a
reverse order compared to the input array.) With this code, the newly added tests
that cover larger CS matrices should pass.



3.10

3.10.1

3.10 Implementing an arbitrary unitary of arbitrary size 83

Implementing an arbitrary unitary of arbitrary size

Now, we can use our code that implements block-diagonal unitaries and CS uni-
taries for an arbitrary number of qubits as building blocks for our final project:
implementing an arbitrary unitary on an arbitrary number of qubits.

Math

As a reminder, the cosine-sine decomposition of a unitary matrix is its representation
as a product of several matrices of special shapes:

A, 0\[C =S\(4, O
0 BjJ\S CJ\0 B

U

This decomposition gives us the solution for implementing an operation described
with an arbitrary unitary matrix:

Obtain the cosine-sine decomposition of the given matrix.

A 0
Apply the operation described with a block-diagonal matrix ' .
0 B,
Apply the CS unitary described with matrices C and S.
. . . . (A0
Apply the operation described with a block-diagonal matrix .
0 B

This is a recursive solution, since implementing operations described as block-
diagonal matrices relies on using controlled variants of unitaries of smaller sizes. As
a result, we’ll also need to update our implementation of the operations described
with block-diagonal matrices to use our new implementation of arbitrary unitaries
instead of the placeholder we used in section 3.8.

Calling Python libraries from quantum code

Getting the cosine-sine decomposition of the given matrix is a big part of the final
solution for this project. This is a purely classical linear algebra exercise, so earlier
in the chapter | opted for doing it using a SciPy library function. We can use the
same function in the Qiskit code, since Qiskit is implemented in Python and allows
easy access to other Python libraries.

Q#, however, does not offer an interface for API calls to arbitrary libraries written
in other programming languages and does not offer its own library implementation
of the cosine-sine decomposition. As | mentioned in section 3.4, implementing this
decomposition by hand is out of scope for this book, so in this chapter, we won’t
implement the final project in Q#.

In practice, this kind of functionality—breaking the arbitrary unitaries down into
sequences of simpler gates—is often implemented as part of the compiler stack
or a specialized library in the quantum programming language rather than as appli-
cation code, so that it can take advantage of the full power of classical software
libraries.
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3.10.2 Qiskit

3.11

The following listing shows the Qiskit code that implements an arbitrary unitary with
the given real coefficients.

Listing 3.20 Qiskit code to implement an arbitrary unitary

from scipy.linalg import cossin

def apply arbitrary unitary(n, u):
if n ==

return apply one qubit (u)

circ = QuantumCircuit (n)
left, cs, right = cossin(u, p=len(u) / 2, g=len(u) / 2)

ar, br = extract_blocks(right)
circ.append(apply_two block_diagonal (n, ar, br), range(n))

cs_pairs = []
for i in range(len(cs) // 2):

cs_pairs += [(cs[i] [i], cs[i + len(cs) // 2]1[i])]
circ.append (apply arbitrary cs matrix(n, cs_pairs), range(n))

al, bl = extract_blocks(left)
circ.append(apply two block diagonal(n, al, bl), range(n))
return circ.decompose () .to_gate()

Helper function to extract two main
def extract blocks (matrix): (_______4 blocks from a block-diagonal matrix
block len = len(matrix) // 2
a = [row[0 : block_len] for row in matrix[0 : block len]]
b = [row[block len : ] for row in matrix[block len : ]]
return a, b

The updated variant of apply_arbitrary_ unitary in this listing now implements
an arbitrary unitary instead of just a few special cases. Note that apply_two_block_
diagonal uses the code from listing 3.16, but now it can handle the general case of the
block-diagonal unitary. The base case of recursion is the operation apply one_qubit
that implements the single-qubit case. In the multiqubit case, the first step is getting
the cosine-sine decomposition, followed by applying the operations implementing
each matrix of the decomposition: the right block-diagonal matrix, the CS matrix,
and the left block-diagonal matrix.

At this point, we can update our tests to include arbitrary unitaries of any size, and
they should pass. (I limited my tests to unitaries acting on at most four qubits in the
interest of keeping the tests fast, but if you’re willing to wait longer, you can include
larger matrices.)

Further reading

Here is a short list of references that are good starting points if you want to learn
more about unitary matrix decomposition:
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Sutton, B. D. (2007). Computing the complete CS decomposition.
https://arxiv.org/abs/0707.1838

Shende, V. V., Bullock, S. S., & Markov, I. L. (2004). Synthesis of quantum logic
circuits. https://arxiv.org/abs/quant-ph/0406176

Mottonen, M., & Vartiainen, J. J. (2005). Decompositions of general quantum
gates. https://arxiv.org/abs/quant-ph/0504100

3.12 Going beyond

Do you want to spend some more time exploring variations of this project before
moving on to the next topic? Here are some additional ideas for simpler examples,
similar problems, and ways to extend this project:

Implement a general case of a multiplexer for an arbitrary number of control
qubits. How would you change the input data and the logic of its implementation
compared to the multiplexer with one control qubit from section 3.8?

In this chapter, we focused on implementing the general case of unitary matrices
and a couple of matrices of special shapes that were the necessary building blocks
for the general case. However, different algorithms rely on different unitaries,
some of which might have different, more efficient implementations. Find some
other matrices of special shapes and try to implement them.

In this chapter, we considered only unitaries with real coefficients. Same as for
the state preparation problem, some algorithms can be expressed using only
this kind of operations, but in general, quantum algorithms rely on unitaries
with complex coefficients. Extend this project to handle arbitrary unitaries
with complex coefficients. You can start by exploring the standard algorithms
for small cases: the Pauli decomposition for single-qubit unitaries and the
Krauss-Cirac decomposition for the two-qubit case. Then, you can look into
the cosine-sine decomposition for complex-valued matrices and implement the
building blocks it uses, same as we did for real-valued matrices in this chapter.
If you’re curious about low-level algorithms of implementing unitaries using a
smaller set of primitive gates than the one we used here, unitary gate synthesis
is a great topic to dig into. In this scenario, the unitaries are implemented
approximately, allowing a small discrepancy between the given matrix and the
matrix implemented by the sequence of gates, and the implementations use a
very limited set of gates (for example, CNOT, H, and T gates).

We will revisit a different aspect of unitary implementation problem later, when
we cover unitary transformations that correspond to classical computations in
chapter 6.


https://arxiv.org/abs/0707.1838
https://arxiv.org/abs/quant-ph/0406176
https://arxiv.org/abs/quant-ph/0504100
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Summary

Quantum operations that make up an algorithm can be expressed in different
ways. On the conceptual level, the operations are described in terms of the
problem solved by the algorithm and its input parameters.

When writing the code, these operations are implemented in a quantum pro-
gramming language as sequences of primitive gates, language constructs, and
library operations available in that language.

On the lowest level, the gates used in the high-level program are represented as
sequences of low-level instructions native to the hardware device and/or the
error correction scheme used with the hardware.

The goal of the unitary implementation task is to convert the matrix description
of a unitary operation into a sequence of quantum gates that implements the
unitary described by this matrix.

Unitary operations can be implemented recursively, by decomposing their
matrices as products of matrices of special shapes and implementing each of
these matrices using controlled variants of unitary operations acting on fewer
qubits.

Many quantum algorithms are hybrid, combining classical and quantum compu-
tation; getting the cosine-sine decomposition as a step of unitary implementation
is one example. Itis important for a quantum programming language to express
hybrid computations efficiently.

We can use quantum simulators and the way they allow us to access quantum
states during the program execution to get the matrices implemented by quan-
tum operations and test that a quantum operation implements the right matrix.



Part 2

Learning information about a
quantum system

The second part of the book focuses on quantum measurements and the ways to
use them to read out information from a quantum system, whether it is information
about a quantum state or a quantum operation.

Chapter 4 focuses on using measurements to get the necessary information about
quantum states in a variety of settings. Chapter 5 builds on top of the previous chapter,
offering several exercises on getting information about unitary transformations. A big
part of chapter 5 is dedicated to the phase estimation problem—finding an eigenvalue
associated with the given eigenvector of the given unitary. A lot of quantum computing
algorithms include phase estimation as a subtask, and the variety of the approaches
they take to solving this problem is a great example of the different types of quantum
algorithms.






Analyzing quantum states

This chapter covers
= Using quantum measurements to extract
information about quantum states

= Implementing quantum measurements using
Q# and Qiskit

= Analyzing quantum measurement outcomes

= Writing tests to validate information
extracted using measurements

As we discussed in chapter 2, a typical quantum algorithm follows a standard sequence
of steps (see figure 4.1): prepare the initial state of the quantum system, modify it as
prescribed by the algorithm, and then extract the answer using measurements. In
chapter 2, we learned to implement the first step, preparing the quantum system
in the given state, and in chapter 3, we covered the second step, implementing the
unitary transformations to modify the quantum state as required by the algorithm.

Chapter 2: Prepare Chapter 3: Apply unitary Chapter 4: Measure
the initial state transformations to change the final state and
of the system. the system state. analyze the results.
D ————— B ——————— —_ = 5
innm EERNANAR

Figure 4.1 Any quantum algorithm can be broken down into several steps: prepare the initial state,
evolve it following the algorithm, and measure the end state to get the result. In this chapter, we’ll
learn to work with the final step, measuring the state of the system to extract information about it.

89
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In this chapter, we’ll focus on the final step of a quantum algorithm: extracting the in-
formation about the state of the system. We will learn to use quantum measurements—
the only way to get information out of a quantum system.

One of the most prominent ways in which quantum computing differs from
classical is how you read out information about the system. In the classical world,

Observing the system to get information about it is a deterministic process: it
always gives the same readout for the same state of the system.

You can get the complete information about the state of the system. If the system
has n bits, it is described with n bits of information, and you can get all n bits
out of it when observing it.

Observing the system doesn’t change the state of the system: after reading out
the information, you can resume your computation as if the observation didn’t

happen.

In the quantum world, though, getting information about the system obeys different
rules:

System observation is a probabilistic process. Observing the system in a super-
position state produces a random outcome, one of the set of possible outcomes
with probabilities defined by the state of the system.

You cannot get the complete information about the state of the quantum system
by observing it. If the system has n qubits, it is described with 2" complex
numbers, but you still can get only 7 bits of information when observing it.
Finally, observing the system generally changes the state of the system. You
cannot take a peek at the system during your computation and then continue it
as if nothing happened; you have to restart your computation from scratch.

The rules of quantum measurement limit the power of quantum algorithms quite a lot.
Extracting information about the problem’s solution in the end of the algorithm is
like trying to drink an ocean through a straw: you have a huge amount of information
in the system, but you can only read out a tiny fraction of it. You have to be mindful of
this limitation when constructing a quantum algorithm: you need to end up in a state
that contains the information necessary to solve your problem, and you need to make
sure that this information can be extracted from the system using measurements.

Using quantum measurements to perform computations

On the bright side, quantum measurements can be used not only to read the in-
formation from the quantum system but also to change its state. This opens new
possibilities for doing quantum computations—you cannot perform a classical com-
putation by just reading the data in the right way!

To give you one example, multiqubit measurements, similar to those we’ll discuss
in section 4.6, enable error correction—a method of protecting quantum informa-
tion from errors caused by noise by encoding it with redundancy and then perform-
ing special kinds of measurements to extract the information about the errors that
occurred without damaging the useful information.
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Unfortunately, error correction and using measurements to purposefully change
the state of a quantum system are out of scope for this book, but if you're curious,
| encourage you to dig deeper into these topics.

In this chapter, I'll take a different approach to selecting our practice problems than
in the previous two chapters. Using measurements to extract information from a
system is a pretty straightforward task on its own; it is more interesting to see what
kinds of problems can be solved using measurements as a tool. So instead of choosing
one large project and building up to it in smaller steps, I'll offer you several smaller
projects that highlight different aspects of using measurements to extract information
about quantum states. Some of these projects will obviously build up on the previous
ones, but some will be a step sideways to consider a different kind of problem. I will
also discuss specific examples of problems rather than their most generic form like
I did in the previous chapters, to simplify the math and the code needed for the
solutions while illustrating the core principles used to solve them.

Let’s dive right into our first problem: how to use quantum measurements to get
information from a quantum system and, ultimately, retrieve the result produced by
our quantum algorithm.

Reading out information from a quantum system

We’ll start with the simplest possible problem in extracting information about a
quantum system. Given a quantum system, represented as an array of qubits, and
knowing that it is in some basis state, how can you find that basis state?

NOTE As usual, this task is an essential building block for all the later ones in
this chapter. It also covers the more general version of the task of extracting
information out of the system, in which the system is in a superposition of basis
states and the measurement extracts information about one of these basis states.
In this scenario, the steps you take to read out the information and the code
you write to implement them are exactly the same as in the simpler version; the
only difference is the outcomes you can get and how you interpret them.

Math

There are many ways to represent quantum measurements depending on what exactly
you need to describe and how you will use it—from the simple verbal description of
the outcomes and their probabilities to the formal Dirac notation of the measurement
as a set of projection operators. (If you're not familiar with the projection operators
formalism, don’t worry; we won’t use it in this book.) I'll use the simplest description
that will do the job: listing the possible measurement outcomes and the probabilities
associated with them.

The smallest case to consider is measuring a single-qubit system in the superposi-
tion state @ |0) + B |1) with real amplitudes @ and . (States with complex amplitudes
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behave similarly, so I’ll stick with real amplitudes for simplicity.) In this case, the
measurement can yield one of the two results: 0, with probability a2, and 1, with
probability 2.

NOTE Unless otherwise specified, “measurement” means the measurement
in the computational basis (the {|0), |1)} basis) that maps the basis state |0)
to measurement outcome 0 and the basis state |1)—to 1. This convention is
commonly used in quantum computing, and this kind of measurement is most
frequently used when describing high-level algorithms. We’ll talk more about
measurements in other bases in section 4.3.

Since in our problem the qubit we are given is guaranteed to be in a basis state,
measuring it gives us the result that corresponds to that basis state with probability 1.
The same logic can be applied to measuring a multiqubit system. Figure 4.2 shows
the possible outcomes of measuring a two-qubit system and their relevance to our
task.

Measuring a superposition state Measuring a basis state
can produce different results produces the corresponding
with different probabilities. result with 100% probability.

[ m 4.

10 I — 10
.,

01 I — 01

11 I —_— 1

Figure 4.2 Measuring two qubits in a superposition of all basis states can give
any of the results 00, 01, 10, and 11, with probabilities equal to squares of the
amplitudes of the corresponding basis states in the superposition state. When
we measure a system that is in a specific basis state, we can only get the result
that corresponds to that state, with 100% probability.

Let’s say our two qubits are in a state ap |00) + a1 [10) + a2 |01) + a3 |11). When we
measure them, the result we get is probabilistic: we get output 00 with probability
ag , 10 with probability af, and so on. The probability of getting each result equals
the square of the amplitude of the corresponding basis state. If the qubits are in a
basis state, for example, |01), the amplitude of that state is 1, and the probability of
getting the corresponding measurement result is also 1. The amplitudes of the other
basis states are 0, so the probabilities of getting them as a measurement result are 0.

For the more general case of n qubits, if the system starts in a superposition state
Z,fial a; |k), measuring all n qubits yields a bit string of Os and 1s that is the binary
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notation of the integer £ with probability af. But, since we’re dealing with a system
in the specific basis state |b), measuring all qubits will yield the binary notation of
this basis state, again with probability 1.

To summarize, to get information about the state of the system that is known to
be in a basis state, all we need to do is measure all qubits. In this scenario, quantum
measurements behave exactly like the information readout from a classical system.
The measurement outcome is deterministic; we get complete information about the
state of the system, and the state of the system doesn’t change when it is measured.
That’s because our system is not in the superposition state at all, but in a much
simpler state—a basis state.

NOTE Ideally, we want to construct our quantum algorithms in such a way that
at the end of the computation, the system ends up in a basis state describing
the answer or a superposition state that is very close to such a basis state. In this
case, reading out the answer from the quantum system is easy.

Before we go into the details of how measurements are implemented in the code, let’s
consider how to test our solution if it involves measurements. Unlike the previous
chapters, now we’re dealing with the code that produces classical values—the results
of the measurements. Consequently, we can use classical tools to validate the results
of the code execution. For this problem, each test should prepare a basis state as the
input to our solution, run our code on it, get the results, and check that the results
of the measurement match the basis state that was prepared.

Qiskit

In Qiskit, measurement results are represented as a part of the circuit, an array of
classical bits to complement the qubit array. The simplest way to define a classical
register in a circuit is by specifying two numbers instead of one when defining a
QuantumCircuit: the first number specifies the number of qubits in the circuit and
the second number specifies the number of classical bits. Then, the measurements
are appended to the circuit using syntax similar to that of gates. A single-qubit
measurement measure has to specify the index of the qubit on which it is performed
and the index of the classical bit to which the result is written. Specifying lists of
indices instead of individual indices means applying single-qubit measurements to
pairs of corresponding qubits/classical bits: the measurement result on the first qubit
in the first list will be stored in the first classical bit in the second list, and so on. The
following listing shows the Qiskit code that measures each of the qubits in the given
array and writes measurement results into an array of classical bits.

from giskit import QuantumCircuit

def read_info(n):
circ = QuantumCircuit (n, n)
circ.measure (range (n), range (n))
return circ



94

CHAPTER 4 Analyzing quantum states

This listing on its own doesn’t output anything. How can we see what this code does,
and how can we test it?

In Qiskit, you cannot write arbitrary post-processing code as part of the circuit
itself. Instead, you have to first run the circuit on a backend (a simulator or, in a
general case, a cloud backend representing a quantum device), fetch the results of
its execution, and then print or analyze those results.

Here is a simple Qiskit code snippet that creates a two-qubit circuit that consists
of one call to read_info, runs this circuit 100 times, and prints the results:

from giskit import QuantumCircuit, transpile
from giskit_aer import AerSimulator
from .read info import read_info

n=2

circ = QuantumCircuit (n, n)
circ.append(read info(n), range(n), range(n))

simulator = AerSimulator (method='statevector')

circ = transpile(circ, backend=simulator)

res map = simulator.run(circ, shots=100).result().get counts()
print (res_map)

The method get_counts of the simulation results returns the results of individual
runs (“shots”), aggregated into a map, where the keys are bit strings representing
measurement results, and the values are the numbers of times that each of these
bit strings occurred in the results. This code snippet prints {'00': 100}, meaning
that all shots returned measurement results 00. Indeed, freshly allocated qubits in
Qiskit start in the |0) state, and we didn’t apply any gates to change their state before
measuring them.

The following listing shows an example Qiskit code that defines a helper operation
to run the code from listing 4.1 on one test case and validate the result, and another
operation to run it on multiple test cases.

from random import randint

from giskit import QuantumCircuit, transpile
from giskit aer import AerSimulator

from .read_info import read_info

sim = AerSimulator (method='statevector')

def run test read info(n, basis_state):
circ = QuantumCircuit (n, n)
for i in range(n): <—— Prepares the input basis state

if basis _state & (1 << 1) > 0: ‘T Uses bitwise AND and bitwise
circ.x (1) left shift to get the i-th bit

circ.append(read info(n), range(n), range(n)) -<—— Measures each qubit

Runs simulation and

circ = transpile(circ, backend=simulator)
fetches the results
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res map = simulator.run(circ, shots=100).result().get_ counts()

assert len(res_map) == 1 <—— Checks that the execution result of all shots is the same
res bitstring = list(res_map.keys()) [0]

res = 1nt(res_b1t§tr1ng, 2) Checks that the execution

assert res == basis_state result equals the input

def test_read info():
for _ in range (1, 20): <—— Runs the test on multiple inputs
n = randint (1, 5)
num = randint (0, 2 ** n - 1)
run_test read info(n, num)

The operation run_test_read_info takes two parameters: the number of qubits and
the basis state to use in the test. The basis state is described as an integer, so we have
to convert it to an array of bits within the operation. We have a choice between using
little-endian or big-endian here, as long as we stay consistent within this operation.
Here, I used little-endian to convert the basis state to an array of bits. Qiskit reverses
the order of measurement results in the output, so the measured bit string uses
big-endian, which is easy to convert to an integer using standard Python tools.

To prepare the given basis state on the allocated qubits, we iterate over all n bits
of the integer denoting the basis state. If a bit is set to 1, we apply the X gate to the
corresponding qubit.

To validate the results, we run the simulation for 100 shots. The result should
be the same for all of them, since we’re measuring a basis state, and in this case,
measurement outcomes are deterministic. As a result, the map should consist of a
single key-value pair, and the value should be 100 (the number of shots we ran), so
we only need to extract and validate the key of this pair.

Finally, we convert the key bit string into an integer using the Python function
int with base 2. We could also print these measurement results as a string or as an
integer, break down the string into measurement results for individual qubits, and
so on.

The method test_read_info uses the operation run_test_read_info to validate
the code behavior on multiple test cases. This method will be recognized as a test by
pytest, so the result of executing these two listings, taken together, is a passing test.

Q#

Qf# has a separate data type, Result, for representing measurement results instead
of reusing integer or Boolean type. This type has two values, Zero and one, which
correspond to the measurement results 0 and 1, respectively.

TIP  Using a separate type to store measurement results emphasizes their
domain-specific meaning and behavior. This type serves to capture results of
measuring quantum systems and does not naturally support arithmetic or logical
operations that are well-defined for integer and Boolean values, respectively.
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Indeed, what does it mean to add or multiply two measurement results? If a
quantum algorithm implicitly treats measurement results as a numeric or a
Boolean type, Q# code will need to convert Result type into the required value
explicitly.

Qff libraries offer several operations for different types of measurements. In our case,
we can use operation MrResetZ from the std.Measurement namespace that is open
by default in all Q# programs. This operation measures a qubit in the computational
basis, resets it back to |0) state, and returns the measurement result. The following
listing shows the Q# code that measures each of the qubits in the given array and
returns the array of measurement results.

Defines a mutable
operation ReadInformation(gs : Qubit[]) : Result[] { array to store the

mutable res = []; measurement results
for g in gs {

set res += [MResetz(q)]; Measures each qubit
}

return res;

and appends measurement
results to the array

TIP  Q# uses two kinds of variables. Immutable variables, declared using the
let keyword, are effectively constants: they keep the value assigned to them
initially and don’t allow it to be reassigned. Mutablevariables, declared using the
mutable keyword, are regular variables: they can be assigned different values
during program execution.

This listing on its own doesn’t output anything. How can we see what this code
does? Measurement results, despite being a quantum-specific data type in Q#, are
classical information. Thus, they can be printed and processed just like any other
classical data type. You can use Q# built-in function Message to print an interpolated
string containing any classical expressions, including arrays and individual variables
of Result type. Here is a simple Q# code snippet that allocates an array of qubits,
calls ReadInformation on them immediately and prints the value returned by this
operation:

@EntryPoint ()

operation DemoReadInformation() : Unit {
use gs = Qubit[2];
Message ($ " {ReadInformation(gs) } ") ;

}

This code prints [Zero, Zero], indicating that both measurement results were 0.
Indeed, newly allocated qubits in Q# always start in the |0) state, and we didn’t do
anything to change their state before measuring them.
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Now, how can we test our code? In Q#, processing the measurement results can
be implemented as a part of the overall program, similarly to many other classical
computations. When we write the tests for the code, we can implement all steps of
the test as a single program and run all of it at once on a simulator.

The following listing shows Q# code that defines a helper operation to run the
code from listing 4.3 on one test case and validates the result and another operation
to run the tests on multiple test cases.

import Std.Diagnostics.Fact;
import Std.Random.DrawRandomInt;
import AnalyzeStates.ReadInformation;

operation RunTestReadInformation(n : Int, basisState : Int) : Unit {
use gs = Qubit[n];
for 1 in 0 .. n - 1 { <—— Prepares the input basis state
if basisState &&& (1 <<< i) > 0 { Uses bitwise AND and bitwise
X(gslil); left shift to get i-th bit
1
1
let res = ReadInformation(gs); -<—— Measures each qubit
mutable resInt = 0;
for i inn - 1 .. -1 .. 0 {
set resInt = resInt * 2 + (res[i] == One ? 1 \ 0);
1
Fact (resInt == bas.lSState’ Compares the obtained integer to
$"Expected {basisState}, got {resInt}"); the input; fails if they are different
1
operation TestReadInformation() : Unit ({

for in 1 .. 20 { <—— Runs the test on multiple inputs
let n = DrawRandomInt (1, 5);
let basisState = DrawRandomInt (0, 2
RunTestReadInformation (n, basisState) ;

A

n - 1);

The operation RunTestReadInformation takes two parameters—the number of
qubits and the basis state to use in the test. The basis state is described as an in-
teger instead of an array of bits, so we have to do the conversion within the operation.
Qf#t libraries offer functions to convert integers to arrays of bits of different types and
vice versa, but for the purpose of learning to deal with measurement results, I'm
doing these conversions by hand.

First, we prepare the given basis state on the allocated qubits by iterating over
all n bits of the integer denoting the basis state and, if a bit is set to 1, applying the
X gate to the corresponding qubit. Then, we call the operation ReadInformation
to measure all qubits and convert the measurement array back into an integer. To
do this, we iterate over the elements of the array, from the most significant bit to



98

4.2

CHAPTER 4 Analyzing quantum states

the least significant one. On each iteration, we double the current integer, and if
the measurement result is equal to the Result literal one, we add 1 to the current
integer. The resulting integer should match the integer basisState used to initialize
the qubit state.

TIP  In this test, we have the freedom to choose the way to map integers to bit
strings, since our project doesn’t impose any limitations on this; we only need
to make sure we use the same encoding to convert basisState to a bit string
and the measurement results back to an integer. I chose to use little-endian
encoding, to match Q# library operations that do similar conversions.

The operation TestReadInformation uses the operation RunTestReadInformation
to validate the code behavior on multiple test cases.

The final code fragment that we need to run the code from section 4.4 as a test
is a Python wrapper. (The test project will follow the structure we saw earlier in
section 2.4.2.) In this case, the Python code will be very simple: since all the testing
logic is implemented in Q#, the Python code only needs to call the Q# operation

TestReadInformation:

import gsharp
def test_read info():

gsharp.init (project_root='.")
gsharp.run (" Test.TestReadInformation() ", shots=100)

Here, I use the method gsharp.run instead of gsharp.eval to execute the Q# test
100 times, each one with a new simulator instance and with different random test
cases. To reproduce the Qiskit test behavior and run each of random test cases 100
times, you can modify the Q# code from listing 4.4 to call RunTestReadInformation
in a for loop once each test case is generated. The result of executing these listings,
taken together, is a passing test.

Distinguishing superposition states consisting
of distinct basis states

Now that we’ve learned to use measurements to read out the information about
the basis state the quantum system is in, let’s see what kind of tasks can we try to
accomplish using measurements as a tool. We’ll spend most of this chapter on tasks
of one type: given a quantum system in one of the known states, figure out which
state it is in. These kinds of tasks are known as quantum state discrimination.

In the simplest scenario, you are given the complete list of states in which the
system can be, and all of these states are orthogonal to each other. More formally,
you are given a quantum register in a state ) and a promise that this state is one of
the given list of K orthogonal states [g) , - - , [¥x-1). You have to figure out which
one of this list of states you are given by doing the appropriate measurements on it.
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NOTE Why is this scenario the simplest? The principles of quantum computing
dictate that you can distinguish orthogonal states perfectly in one experiment,
but you cannot do the same with nonorthogonal states. We’ll explore dealing
with nonorthogonal states in section 4.4.

This problem has two main variants with different solutions. Let’s start with the
simpler variant of the problem and say that each pair of the states in this list consists
of different basis states. In other words, each basis state can be present in, at most, one
of the states on the list or might not be present in either of these states. (We’ll consider
the more sophisticated variant in the next section.) For example, the following list of
four states fits this description:

lWo) = 75(1000) +[111))

1) = 75 (1100) +[011))

o) = 75 (1010) +[101))

lws) = 7 (1001) +[110))
Indeed, each of the eight three-qubit basis states is present in exactly one of the states
from this list. For two states to be nonorthogonal, they have to share at least one basis

state. All pairs of the states from the list are orthogonal, so we don’t need to check
this condition separately.

Math

Figure 4.3 illustrates the solution to this problem: just measure the given state!

Measuring a superposition state Since all basis states are
can return only a basis state different, measurement results
that is part of the superposition. can be mapped to states.

I I 2 000 g\>
 : - State 0
11

100 e
 : . State 1

011

010 -_—
 : e State 2

101

001 -
q - State 3

110

Figure 4.3 Measuring a quantum system in a superposition state can only return a basis state that
was part of that superposition. Since all states consist of different basis states, the measurement result
points back to the state that was measured uniquely.

Indeed, quantum measurement can only return one of the basis states that were a
part of the superposition state being measured (the probability of getting any other
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basis state is 0). Since each basis state is part of, at most, one state from the list, we
can use the measurement result to track the state that included the measured basis
state.

Let’s look again at our example list of four three-qubit states. If we measure all
three qubits, we can map the results to the input states as follows:

Measurement results 000 or 111—The input state is % (]000) +|111)).
Measurement results 100 or 011—The input state is \/%(IIOO) +]011)).
Measurement results 010 or 101—The input state is \/%(IOIO) +1(101)).
Measurement results 001 or 110—The input state is \/%(IOOI) +(110)).

To simplify comparing the measurement results to specific bit strings, we can convert
the array of bits we get as a result of measurement into an integer, like we did when
writing the tests in the previous section, and compare these integers.

TIP  In this particular case, there is a nice formula to convert the integer rep-
resentation of the basis states that comprise the input states into the indices
of these states. Indeed, basis states [000), [100), |010), and |110) correspond to
little-endian notations of numbers 0, 1, 2, and 3—the indices of the states in
which they are included. The basis states |111), |011), [101), and |001) corre-
spond to notations of the numbers 7, 6, 5, and 4—the numbers that equal 7
minus the index of the input state. In general, such a neat formula might not
exist, so you might have to map each combination of measurement results onto
an output value separately.

Now, before we jump into writing the code, let’s consider how we will test it. As in the
previous section, the code we want to test returns a classical value—the index of the
input state it recognized. We can use the same general approach to testing: prepare
the input state, pass it to the solution, and check that its return identifies the input
state correctly. However, this time, the exact measurement results for each possible
input state will vary from run to run because each input state is a superposition and
will yield different measurement results. So, we should run the code on each possible
input state multiple times to make sure that the code identifies each input state
correctly, regardless of the basis state the measurement yielded.

Depending on how likely the code is to be refactored and how helpful we want the
test outputs to be in case of a failure, we could process incorrect returns of the code
being tested in different ways. The most straightforward approach that I use here is to
fail the test as soon as one of the input states is identified incorrectly and to include
the index of the actual input state and the value returned by the code. If you want
the test code to provide more detailed information about the failure (for example,
if you're developing the tests and somebody else will write the code), you can keep
running the test on this and other input states and gather the statistics: which input
states were identified incorrectly, how often this happened, and which values the
code returned instead of the correct ones. This information can help pinpoint the
cause of code failure:
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If astate is consistently misidentified as another state, the problem may be related
to labeling the results of an otherwise correct measurement and classification
process.

If a state is misidentified as another one only sometimes, check whether mapping
of basis states to input states matches the problem description.

If multiple states are misidentified as others part of the time, the measurement
procedure itself might be incorrect. In the next section, we’ll see a task in which
this problem is a lot more likely.

Qiskit

The following listing shows the Qiskit code that distinguishes the four three-qubit
states we discussed earlier by measuring all qubits and analyzing the results, as well
as the test code for it.

Listing 4.5 Qiskit code to distinguish four three-qubit states

from giskit import QuantumCircuit, transpile
from giskit_aer import AerSimulator

def prep test state(ind):

circ = QuantumCircuit (3) Prepares the first state
. as the starting point
circ.h(0)

circ.cx (0, 1)

circ.cx (0, 2) J To prepare one of the other states,

if ind > 0: flips the state of the right qubit
circ.x(ind - 1)

return circ

def read info(n):
circ = QuantumCircuit (n, n)
circ.measure (range (n), range(n))

return circ Interprets bit string of measurement

def interpret measurements (str) : results as the index of a state

res = int(str, 2)
return res if res < 4 else 7 - res

def test_distinguish states():
for state_ind in range(4):
circ = QuantumCircuit (3, 3)
circ.append (prep_test state(state_ind), range(3))
circ.append(read info(3), range(3), range(3))

simulator = AerSimulator (method='statevector')

circ = transpile(circ, backend=simulator)

res_map = simulator.run(circ, shots=100).result().get counts()

for key in list(res_map.keys()): Goes through all possible
assert interpret measurements (key) == state_ind measurement results and

checks that each one is
interpreted correctly
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In this case, the measurement results for each of the input states can be different. The
operation interpret_measurements contains the logic of converting the measure-
ment results into the index of the state they correspond to. The test logic focuses on
validating that each of the measurement results is converted to a state index correctly.
This code includes the test code, which should pass as a result of its execution.

Q#
The following listing shows the Q# code that distinguishes the four three-qubit states
we discussed earlier by measuring all qubits and analyzing the results.

Listing 4.6 Q# code to distinguish four three-qubit states

operation ReadInformationInt(gs : Qubit[]) : Int ({
mutable res = 0;
for k in Length(gs) - 1 .. -1 .. 0 {
set res = res * 2 + (MResetZ(gs[k]) == One ? 1 | 0);

}

return res;

}

operation DistinguishStates(gs : Qubit[]) : Int {
let res = ReadInformationInt (gs) ;
return res < 4 ? res | 7 - res;

}

Operation ReadInformationInt combines measuring all qubits and converting the
results into an integer, the steps that were done separately in listings 4.3 and 4.4.
We don’t need to store measurement results between these steps because they are
converted into an integer on the fly. This code should be invoked from a test similar
to that in section 4.1.3 (see the GitHub repository for the complete code), so the
result of its execution should be a passing test.

Distinguishing superposition states consisting
of overlapping basis states

Now let’s consider the more general variant of the problem of identifying one of a
set of orthogonal states. This time, we remove the constraint on all states consisting
of different basis states. Consequently, some states in the list can include the same
basis state; in other words, a basis state can be present in at least two of the states on
the list.

The smallest example of such problem is distinguishing |+) = %GO) + 1)) from
|-y = %(|O> —|1)). These states are orthogonal, and each includes both |0) and |1)
basis states.

Another, slightly larger, example is the following list of four two-qubit states
(known as Bell states) that also fits this description:
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o) = 5 (100) +11))
1) = 5 (100) = [11))
o) = 5 (101) +]10))
lws) = (101) = [10))

Indeed, each of the four two-qubit basis states is present in exactly two of the Bell
states. In this scenario, the states can still be orthogonal (and you can check that
Bell states are), but you might want to check this separately to convince yourself,
especially if the states have complex amplitudes so that their orthogonality is not
immediately obvious.

Math

This time, just measuring the states right away won’t solve our problem: we can’t
always track the basis state that is the measurement result back to the unique input
state that could’ve produced it. For example, if our measurement gives us result 00,
we don’t know if we measured state |) or |1).

Instead, we need to find a way to set up the measurement in a way that gives a
unique outcome for each of the possible input states. To do this, we need to perform
a measurement in a different basis.

So far in this chapter, we’ve only considered measurements in the computational
basis. They are convenient in many cases—for example, when the state we measure is
a single basis state or when different superposition states consist of non-overlapping
sets of basis states. However, now we need a different way to extract information
about orthogonal states that would map outcomes 0 and 1 (or longer strings of
measurement outcomes) to orthogonal states other than |0) and |1).

Let’s start with an example of how we can do that for |+) and |-) states (this me-
asurement is called measurement in the Hadamard basis) that is illustrated in figure 4.4.

Iy |1>
‘_\d After this, measurement

n in the computational basis
RN +) yields O if the state was |+)
N and 1 if the state was |—).

Apply Hadamard gate
to convert |+) to |0)

and |—)to|1). | ;

Figure 4.4 To do a measurement in Hadamard basis, we need to find a unitary transformation that
maps the states of the Hadamard basis, |+) and |-), into the computational basis states |0) and |1).
This is exactly the effect of the Hadamard gate! After this, a measurement in the computational basis
will let us figure out which of the states we started with, |+) or |-).
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If we can apply some unitary to these states to convert them into |0) and |1) states,
we can then measure the qubit in the computational basis to figure out which input
state we had originally. If the measurement yields 0, we know the input state was |+),
and if it yields 1, we know it was |—). And this unitary is easy to find: it's a Hadamard
gate!

This small example leads us to the general strategy of performing measurements
in a basis other than the computational basis, shown in figure 4.5:

Find a transformation that maps each of the basis states of the other basis (in
our case, the states we want to distinguish) to the computational basis states.
This is always possible (although this transformation will not always look as neat
as the one we just saw!), since the main property of unitary transformations is
that they preserve orthogonality of the states they’re applied to, and both sets
of states are orthogonal.

Apply this transformation to the input state.

Perform the measurement in the computational basis.

Interpret the results, keeping in mind the mapping of the input states to the
computational basis states.

If we need the quantum system to end up in the state that matches the measure-
ment outcome in that basis (in the example of measurement in the Hadamard
basis, the qubit should end up in the state |+) or |-) after the measurement
yielded 0 or 1, respectively), we need to apply the adjoint of the unitary transfor-
mation we applied on the first step. However, for our problem, we don’t care
about the state of the qubits after the measurement because we’re not planning
to run further computation on them, so we can skip this step.

Apply a transformation Measure the state (optional) Apply adjoint

that maps each input and interpret the of the first transformation
state to a basis state. result. ) to restore the input state.
1 L, | ———sueo 1
__________________________ -
I | — - stte I
el | | | [ -1
m ] e T
__________________________ -
| - . I — > State 3 |
| I || | . S |

Figure 4.5 Performing a measurement in a noncomputational basis, using the Bell measurement as
an example. First, we apply an operation that maps the basis states of the measurement basis (in this
case, the Bell states) to the computational basis states. Then, we measure the qubits in the computa-
tional basis and interpret the measurement results. Finally, if the state of the system after the measure-
ment has to match the measurement outcome, we apply the adjoint of the operation we applied in the
first step.
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Let’s see how to apply this strategy to our second example, distinguishing the Bell
states. The measurement we’ll do in this case is called Bell measurement. We need to
find a transformation that maps the four Bell states to the four basis states of the
computational basis. Alternatively, we can start by finding a transformation that maps
the states of the computational basis to the Bell states and then use its adjoint in
the first step of the measurement process. (This method often turns out to be more
convenient because it’s easier to reason about converting basis states to some other
states than vice versa.)

For the Bell states, this transformation is well known: you need to apply the
Hadamard gate to the first qubit, followed by a CNOT gate with the first qubit as
the control and the second qubit as the target. Table 4.1 shows the evolution of the
two-qubit basis states when these two gates are applied to them.

Table 4.1 Preparing the Bell states from the basis states

Initial basis state | State after applying the Hadamard gate | State after applying the CNOT gate
|00) %(|00>+|10>) 35 (100) +111)) = [go)
[10) 25 (100) - 10)) -5 (100) = [11)) =y1)
|01) 5101 +[11)) 35 (101) +110)) = [y)
I11) 3 (101) = [11)) %(IOI)—|10>)=W3>

We can see that, conveniently, the integer representation of the basis state (using little-
endian notation) is exactly the index of the Bell state [};) into which it is transformed
by these two gates. Therefore, we can apply the adjoint of these pair of gates—first
the CNOT gate and then the Hadamard gate—to our input state, measure both
qubits, and convert the measurement results into an integer to get our answer. Now
let’s see what this looks like in the code.

Qiskit
The following listing shows the Qiskit code that distinguishes the four Bell states.

from giskit import QuantumCircuit

def distinguish bell states():
circ = QuantumCircuit (2, 2)
circ.cx (0, 1)
circ.h(0)
circ.measure (range(2), range(2))
return circ

The tests for this code look very similar to the ones used in the previous section. The
only part that is different is the operation that prepares the input states for this code.
The outcome of executing this code should be a passing test.
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Q#
The following listing shows the Q# code that distinguishes the four Bell states, reusing
the operation ReadInformationInt from listing 4.6 as a building block.

operation DistinguishBellStates(gs : Qubit[]) : Int (
CNOT (gs [0], gs[1]);
H(gs[0]);

let res = ReadInformationInt (gs) ;
return res;

The tests for this code look very similar to the ones used in the previous section. The
only part that is different is the operation that prepares the input states for this code.
The outcome of executing this code should be a passing test.

Distinguishing nonorthogonal states with minimum error

So far in this chapter, we’ve dealt only with orthogonal states, which can be distin-
guished perfectly with the right choice of measurement. Now let’s switch gears and
talk about what happens if we try to distinguish nonorthogonal states.

Two quantum states that are not orthogonal cannot be distinguished perfectly (this
rule can be derived from the main principles of quantum computing). As a result,
we cannot aim to write a program that identifies which one of the nonorthogonal
states it is given perfectly every time. Instead, we need to adjust the requirements to
account for the inevitable error or uncertainty in the state identification.

One of the variants of this problem is called state discrimination with minimwum error,
and its simplest case is formulated in the following way. You participate in multiple
independent trials; in each trial, you are given one of the two nonorthogonal states,
selected randomly with equal probability. You have to devise a measurement that will
let you identify which state you are given in each trial as often as possible (in other
words, you have to minimize the probability of being incorrect, averaged across all
trials).

To make the problem more specific, let’s say that the two nonorthogonal states we
aim to distinguish are the single-qubit states |¢¢) =|0) and [y1) =a |0) + 8 |1) (with
known coefficients @ and ). For simplicity, we will consider the case of real positive
a and .

Math

Let’s dig into the problem statement in a way that will help us start looking for a
solution. We know that the only way to get information about the state of a qubit is to
measure it, but we can choose whatever measurement basis we want to use. This basis
will consist of two orthogonal states, |mg) and |m), that correspond to measurement
outcomes 0 and 1. Figure 4.6 shows the geometric representation of all four states
involved in the problem on a unit circle.
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If measurement [ma) Iy
yields |1 ), R e 1 The axis bisecting
classify state as |1/} ) .- r;e >angl:; Ir;tv;een
X 0/ and |
N L
) 20 l1ho) = 10)

If measurement yields
|my), classify state as |1),)

Figure 4.6 Choosing the measurement basis for distinguishing () =|0) from |y1) = % 10) + g 1)
with minimum error. We can describe the state |/ ) using only one parameter, the angle 6 (for this
example, 20 = %), and the measurement basis using the second parameter, the angle y. We want to
choose the measurement basis states so that they are as close to the states being distinguished as
possible while remaining orthogonal.

Let’s spell out our states |¢1), |mo), and |m) using sines and cosines of two angles to
reduce the number of parameters we’re working with:

Y1) =a [0) + B |1) = cos 20 |0) +sin 26 |1)
Imo) = cos(5 =) |0) +sin(5 =) [1) =siny |0) —cosy |1)
|m1) =cosy |0) +siny |1)
Next, we know that the only information we can use to make the decision about
which state we were given is the measurement outcome. So, the simplest way to make
our decision is to say that if the measurement outcome is 0, we were given the state
|¥0); otherwise, we were given the state |y1).

With this strategy in mind, how can we calculate the probability of our guess being
correct (which is the value that we need to maximize)? The probability of the state
|¥o) being measured as |mg) is

| (Wolmo) |* =sin® y
The probability of the state |y;) being measured as |mp) is
| (Y1]m1) |> = (cosy cos 20 +sin y sin 20)? = cos® (y — 26)
The total probability of a state being identified correctly is the average of these two

probabilities (remember that we’re given one of the states [) or |¢1) with equal
probability):

Psuccess = % (Sin2 v+ COSQ('y - 20))

Our goal is to find the value of the angle y that would maximize this expression.
We can do this mathematically, by taking the derivative of this expression as a function
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of v, equating it to 0, and solving the resulting equation. The solution will give us
y=0+7%
The maximum success probability that can be achieved using this y is then

P = % (51112(9 +7)+ cos? (6 — Z ) = % (1 +sin26)

NOTE Alternatively, we can look at figure 4.6 again to consider the geometric
properties of the optimal measurement basis. The probability of the input state
|;) identified correctly is proportional to the square of the cosine of the angle
between it and the corresponding state of the measurement basis |m;), which
grows larger as the angle between these vectors grows smaller. The basis states
|mo) and |m1) should be as close to the states [y9) and |y1), respectively, as they
can be while remaining orthogonal. The input states are selected with equal
probability, so our solution will be symmetric with respect to the axis that bisects
the angle between the states |o) and [1) (the axis tilted at 6 radians to the
horizontal axis). The angles between [¢;) and |m;) should be equal for both
pairs of basis states. These angles then have to equal %(% —-20)=7% -0, giving
us the final answer y =260 + (5 - 60) =% +6.

Before we implement this solution in code, let’s run it through a couple of sanity
checks. What happens if the states we aim to distinguish are orthogonal, thatis, 1) =
[1)? In this case, 6 = 7, ¥ = §, and the basis we need to use for measurement is the
basis that consists of the input states themselves. The probability of distinguishing the
states correctlyis Py, = % @ + sin %) =1, asitshould be when dealing with orthogonal
states.

What happens if the states we aim to distinguish are the same—that is, |¢1) =
|0)? In this case, 8 =0, y = 7, and each of the states has a 0.5 probability of being
identified correctly, giving us a 50% probability of the overall success. This matches
our expectation: we cannot really guess which label was assigned to the |0) state when
it was given to us as an input, |o) or |¢), so we cannot do better than a random
guess.

To summarize, two steps to our solution are as follows:

Perform the measurement in the basis {|mo) , |m1)} using the procedure de-
scribed in the previous section. The transformation that maps the states |mo)
and |m) to the computational basis states is the Ry gate with the parameter
2 (% —6). (You can see this from figure 4.6: you need to rotate the states |mg)
and |m;) counterclockwise by the angle § —y =7 — 6 for them to become |0)
and |1), respectively.)

If the measurement result is 0, identify the input state as |); otherwise, as |y1).

To test this solution, we need to account for a certain percentage of our attempts
to identify the given state ending up incorrect, so we’ll need to gather the statistics
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about the percentage of states identified correctly and then compare it with the
theoretically computed maximum success probability. If our solution fails to identify
the state too often, it is probably incorrect. However, if it identifies the state correctly
too often, that’s not great either. It might mean that our test setup is incorrect, and
the states prepared as the input for the solution are wrong.

Qiskit
The following listing shows the Qiskit code that distinguishes the given nonorthogonal
states with the minimum possible error.

Listing 4.9 Qiskit code to distinguish nonorthogonal states

from math import atan2, pi
from giskit import QuantumCircuit

def distinguish_zero_ and_sup(alpha, beta):
circ = QuantumCircuit (1, 1)
theta = atan2(beta, alpha) / 2
circ.ry(- 2 * (theta - pi / 4), 0)
circ.measure (0, 0)
return circ

The test for this code, included in the GitHub repository, shows how to gather statistics
across multiple trials and verify that the success probability is in the expected range.
The outcome of executing the complete code should be this test passing.

Q#
The following listing shows the Q# code that distinguishes the given nonorthogonal
states with the minimum possible error.

Listing 4.10 Q# code to distinguish nonorthogonal states

import Std.Math.*;

operation DistinguishZeroAndSup (
g : Qubit, alpha : Double, beta : Double

) : Int {
let theta = ArcTan2 (beta, alpha) / 2.;
Ry(- 2. * (theta - PI() / 4.), Q) ;
return MResetZ(g) == Zero ? 0 | 1;

}

The test for this code, included in the GitHub repository, shows how to gather statistics
across multiple trials and verify that the success probability is in the expected range.
The outcome of executing the complete code should be this test passing.

Reconstructing the state from multiple copies

The next problem we’ll tackle is reconstructing a quantum state by using measure-
ments on a set of identical quantum states. More specifically, you’re given multiple



110

4.5.1

CHAPTER 4 Analyzing quantum states

systems, each in the same quantum state, and your goal is to reconstruct this state as
accurately as possible.

For simplicity, we’ll focus on a single-qubit state again, @ |[0) + 8 |1), and aim to
estimate the unknown real coefficients @ and . Since there is no physical way to
distinguish a state from the same state multiplied by a global phase of —1, we’ll assume
that @ is nonnegative.

NOTE This problem and the processes used to solve it are collectively known as
quantum state tomography. It is based on the general idea that while performing
a measurement on a single quantum system yields very little information about
its state before measurement, performing different measurements on multiple
copies of the same system and analyzing the results allows us to reconstruct the
original state with high accuracy.

Math

In this section, I'm aiming to give you a general sense of the kinds of problems
that can be solved using measurements, rather than the state-of-the-art algorithms
for solving each problem. In this vein, the algorithm for reconstructing the state
from measurements I show here will be very straightforward and built on top of
the topics we’ve covered earlier in the chapter, but it will not provide statistically
accurate analysis. Figure 4.7 shows the geometric representation of the two steps of
the approach we’ll take to reconstruct the state.

Estimate the absolute Find whether there is a relative
values of the amplitudes. phase between the amplitudes.
‘ ‘ The final
272 -
o estimate
?7?7?

Figure 4.7 Reconstructing a single-qubit state « |0) + 8 |1) from multiple copies. We start by estimat-
ing the absolute values of the coefficients @ and S and then figure out whether these coefficients have
the same sign or different signs.

First, we estimate the absolute values of the coefficients @ and 8. We can do this
by measuring multiple copies of the state and collecting frequency counts of the
measurement outcomes 0 and 1. As we know from the properties of quantum measure-
ments, these frequencies are proportional to squares of the coefficients @ and g,
respectively, so we can estimate the coefficients as square roots of the frequencies.
Let’s call our estimates @’ and 8’ (both values are nonnegative).
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Second, we need to figure out the sign of the coefficient § (remember we assumed
« is nonnegative, since a global phase doesn’t affect the behavior of a state during
measurements and thus is undetectable). We can treat this task as a problem of
deciding which of the states a’|0) + 8’ [1) or a’|0) — 8’ |1) we are given. This is
exactly the problem we solved in section 4.4! We’ll have to modify the solution
slightly to account for the fact that this time the possible nonorthogonal states we’re
given are both different from |0).

Our solution in section 4.4 effectively boiled down to rotating the input state so
that the axis that bisects the angle between the possible input states became tilted at
the degree 7 to the horizontal axis. We can generalize this for our current problem
without doing all the math: the axis that bisects the angle between the possible input
states now is just the horizontal axis, so we need to rotate our input states by & before
measuring them. (Remember the angle used as a parameter of the rotation gate
Ry is double the angle of the geometric rotation.) If these measurements yield 0
more often than 1, our state estimate ends up being @’ |0) — 8’ |1); otherwise, it is
a0y + B |1).

Notice that some quantum states are easier to reconstruct than the others. For
example, if you run measurements on 100 copies of the state i?(|0> +11)), you’ll
get a reasonable estimate of two approximately equal amplitudes, and afterward,
you’ll need just a couple of experiments to find out the relative phase. However,
for the state %(\/9_9 |0) +]1)), the probability of measuring 1 is only 1%. After doing
measurements on 100 copies of this state, you might not even realize that the state is
not exactly |0). Similarly, the states %(\/@ [0) +]1)) and %(@ |0) —|1)) are almost
the same, so it takes more experiments to decide which of these states we are given.

Generally, the smaller the absolute value of one of the amplitudes, the more
experiments you need to run to get a good estimate of that value and to figure out
the relative phase between the basis states. I will not go into further details of deciding
how many trials are needed in each phase of the algorithm to make an estimate with
a certain absolute or relative precision; you can experiment with that by tweaking
the code and the input states.

Qiskit
The following listing shows the Qiskit code that reconstructs the coefficients of the
given state.

from math import pi, sqgrt
from giskit import QuantumCircuit, transpile
from giskit_aer import AerSimulator

simulator = AerSimulator (method='statevector')

def reconstruct state (state prep) : Step 1: Fstimate the absolute values
circl = QuantumCircuit (1, 1) of amplitudes alpha and beta.
circl.append(state prep, [0])

circl.measure (0, O0)
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Runs multiple trials

circl = transpile(circl, backend=simulator)
on the same circuit

n_trials = 200
res map = simulator.run(circl, shots=n trials) .result () .get_counts()
if '0' in res_map:

(n0, nl) = (res_map['0']l, n_trials - res map['0'])

else: .
. Special case: The
(n0, nl) = (n_trials - res map['l']l, res map['1l']) input state is |1>.

alpha = sgrt(n0 / n_trials)
beta = sgrt(nl / n_trials)

Step 2: Figure out whether

circ2 = QuantumCircuit (1, 1)
there is a relative phase of -1.

circ2.append(state prep, [0])
circ2.ry(pi / 2, 0)
circ2.measure (0, 0)
circ2 = transpile(circ2, backend=simulator)

res_map = simulator.run(circ2, shots=n trials) .result () .get_counts()
if '0' in res map and 2 * res map['0'] > n trials:

return (alpha, -beta)
else:

return (alpha, beta)

Note that this code is different from the earlier Qiskit listings in this chapter: it handles
all steps of working with a Qiskit circuit, from constructing the circuits required for
each step of the algorithm to running them on a simulator and analyzing the results.
This code needs to construct a complete circuit, including the preparation of the
input state before measuring it, rather than just a fixed part of the circuit like the
previous listings did. To enable this, the code takes the circuit that prepares the input
state as an input parameter and uses it in the circuits it constructs.

The test for this code, included in the GitHub repository, is also different from the
tests for the previous problems. Since all the quantum logic used in the algorithm is
handled by the solution code, the test does only one completely classical check to
see how close the estimate of the state coefficients is to the actual coefficients. The
outcome of executing the complete code should be this test passing.

Q#
The following listing shows the Q# code that reconstructs the coefficients of the given
state.

import Std.Convert.IntAsDouble;
import Std.Math.*;

operation ReconstructState (statePrep : Qubit => Unit) : (Double, Double) {

mutable nzeljﬁos = 0; Step 1: Estimate the absolute
mutable nTrials = 200; values of amplitudes alpha and beta.
for in 1 .. nTrials {

use g = Qubit();
statePrep(q) ;
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if MResetZ(q) == Zero {
set nZeros += 1;
1
1

let alpha = Sgrt (IntAsDouble (nZeros) / IntAsDouble (nTrials)) ;
let beta = Sgrt (IntAsDouble (nTrials - nZeros) / IntAsDouble (nTrials)) ;

set nZ?ros = 0; . Step 2: Figure out whether
for _ in 1 .. nTrials { there is a relative phase of -1.
use g = Qubit();

statePrep (q) ;

Ry(PI() / 2., a);

if MResetZ(q) == Zero {
set nzZeros += 1;

}
}

return 2 * nZeros > nTrials ? (alpha, -beta) | (alpha, beta);

This solution, unlike the Qiskit code for the same task, doesn’t call a quantum
simulator explicitly. Instead, the program expresses both the quantum parts of the
computation and the classical analysis of their outputs in Q#, and then the whole
program is executed on a simulator to get the result.

The test for this code, included in the GitHub repository, is also different from the
Qff tests for the previous problems (and similar to the Qiskit test for this task). Since
all the quantum logic used in the algorithm is handled by the solution code, the test
does only the classical check to see how close the estimate of the state coefficients is
to the actual coefficients. The outcome of executing the complete code should be
this test passing.

Joint/parity measurements: Extracting partial information
from a state

To wrap up this chapter, let’s pivot to a completely different kind of problem: How
can we extract some information about a quantum state while preserving the super-
position (that is, without collapsing the state of the system all the way to a single
basis state that corresponds to the measurement result)? Figure 4.8 shows a typical
example of such problem.

The parity of a basis state is 0 if it has an even number of 1s in its bit string notation,
and 1 otherwise. For example, in the two-qubit case, basis states |00) and |11) have
parity 0, and [01) and |10) have parity 1.

You are given a state that is either a superposition of basis states with parity 0 or a
superposition of basis states with parity 1. You want to figure out what kind of state
you are given. However, you don’t know the exact superposition you might be given,
and you want to find the parity of the state while preserving the superposition.

If you measure both qubits as usual, like we did in section 4.2, you can count the
number of 1s in the measurement results and thus learn the parity of the state you
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were given, but you will collapse the superposition in the process and have no way of
restoring it. In fact, measuring even one of the qubits will ruin the superposition (but
not actually answer your question). Is there a different way to extract information
from a quantum state?

We want to perform a ... but also gives us
measurement that doesn’t some information
change the state . . . about it (its parity)

I I Parity 0

\

I > I Parity 0

I I > I I Parity 1

I I > I I Parity 1

Figure 4.8 Measuring the parity of a quantum state. You are given
a state that is a superposition of basis states with the same parity:
100) and [11) or |01) and [10). The goal is to perform a measurement
to learn the parity of this state in a way that doesn’t change the state.

4.6.1 Math

A special type of measurements called joint measurements allows us to solve this problem.
Joint measurements are a multiqubit generalization of single-qubit measurements;
they allow us to extract some information about the correlations between the qubits,
where single-qubit measurements focus on information about the states of individual
qubits.

Joint measurements can give information about different kinds of correlations,
but for the purposes of this chapter, I'll talk only about one kind of measurements,
parity measurements, which measure the parity of the state. Focusing on this special
case will also let us avoid discussing the general-scenario math that is bulkier than we
need at the moment.

To perform a parity measurement, we need to perform the following steps:

Allocate an auxiliary qubit in the |0) state.
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Calculate the parity of the state and store it in the auxiliary qubit. We can do this
using a series of CNOT gates, one per qubit of the input state, with each of the
input qubits as control and the auxiliary qubit as the target. This computation
is based on the use of the CNOT gate to compute XOR of its arguments (we’ll
talk about this in more detail in chapter 6).

Measure the auxiliary qubit to read out the parity of the state. Importantly, in
our case this measurement doesn’t change the state of the input qubits! Since
all the basis states that are included in that superposition state have the same
parity, the value of the parity bit computed for all of them will be the same.
The auxiliary qubit will end up not being entangled with the input qubits, and
measuring it will not affect their state.

Let’s see what the math for these steps looks like for the case of two input qubits.
Table 4.2 shows the states of the system after each step of the process, using two
examples of states of different parity as the input states.

Table 4.2 The steps of performing a parity measurement on a two-qubit state

The input state 0.8]100) +0.6|11) 0.8]01) +0.6|10)
Parity of the input state 0 1
Allocate auxiliary qubit (last bit) 0.8]00) [0)+0.6[11)|0) | 0.8]01)|0)+0.6]10) |0)

Apply a CNOT gate with the first qubit as 0.8]00) [0)+0.6[11)[1) | 0.8]01)|0)+0.6(10) |1)
control (the state becomes entangled)

Apply a CNOT gate with the second qubit 0.8]00) [0)+0.6[11)]0) | 0.8]01)|1)+0.6(10) |1)
as control (the state becomes unentangled)

The state of the auxiliary qubit (the same |0) |1)
for both basis states)

Notice that the basis states in each of the example states used in table 4.2 have
different amplitudes (0.6 and 0.8). Using such uneven superposition states simplifies
tracing the state changes during the computation; this way, you won’t miss the basis
states of the superposition changing into each other. (For example, if you start with
an even superposition of |00) and |11}, you won’t notice if your transformation swaps
these basis states accidentally.)

You can see that, indeed, the auxiliary qubit ends up in the same state for all the
basis states in each of the input states (you can try out this computation yourself
for the three-qubit case). This result makes sense because the state of this qubit is
the parity of all bits of the basis state, and we are solving this problem under the
assumption that each input state consists of basis states of the same parity.

NOTE If the input state had basis states of different parities, measuring the
auxiliary qubit would have changed the input state, leaving only the basis states
with parity matching the measurement outcome. This effect allows us to use
measurements for computation, including error correction!
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Before we start writing the code, let’s take a moment to think about how we will test it.
For this scenario, testing has to differ slightly from the previous cases in this chapter.
Until now, we were willing to sacrifice the state of the quantum system to learn the
necessary information about it, so we didn’t care about the state of the qubits after
the measurement. This time, though, we’re trying to learn some information about
the state without changing this state. Consequently, our tests need to check that the
state of the qubits after the measurement is the same as their initial state, in addition
to verifying that the information we learned about that state is accurate. There are
two ways to do this:

We can reuse the approach we saw in section 2.4: use the built-in language tools
to access the quantum state after the measurement and check that it matches
the input state. I’ll use this approach for testing the Qiskit code for this problem.
Alternatively, we can change our quantum code to do an extra step after the
measurements are complete. We’ll take the operation we used to prepare the
input state from the |0) state (let’s call it U and note that U |0) = |¢)) and apply
its adjoint U to the post-measurement state:

— If the state after the measurement is the same as it was before the measure-
ment, |y ), applying U to it will convert it to U |y)=UTU |0) =|0).

— If the state after the measurement is different, applying U to it will result in
some state other than |0) (remember U and U are unitary transformations
and always map different states to different states).

Thus, we can distinguish these two scenarios by accessing the quantum state of
the program and checking whether it is |0). I'll use this approach to test the Q#
implementation of the solution to this problem.

Now, let’s see how this solution looks implemented in code.
Qiskit
The following listing shows the Qiskit code that measures the parity of the given state.

from giskit import QuantumCircuit

def state_parity(n):
circ = QuantumCircuit(n + 1, 1)
for i in range(n) :
circ.cex(i, n)
circ.measure (n, 0)
return circ

Note that this circuit requires one extra qubit in addition to the qubits that represent
the given state and a classical bit used to store the measurement results. This auxiliary
qubit is assumed to start in the |0) state and is used to compute the parity of the state.
It is measured in the end, so its state is returned to |0). Since Qiskit requires that all
the qubits used in a circuit are allocated up front and doesn’t allow allocating and
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releasing auxiliary qubits during the program execution, you have to keep in mind
the behavior of the auxiliary qubits when you use operations that rely on them. We’ll
practice writing programs that use auxiliary qubits a lot more in chapter 6.

The test for this program will repeatedly generate states of a certain parity (either
random or predetermined), prepare input qubits in those states, run this measure-
ment on them, check that the parity obtained this way matches the parity of the state
that was prepared, and finally check that the state itself has not been modified by the
measurement. You can use the code we wrote in chapter 2 to prepare the input state,
but I used the built-in library method QuantumCircuit.initialize, which helps
keep the code shorter. You can find the complete test code in the GitHub repository.
The result of running the project should be a passing test.

Q#

The following listing shows the Q# code that measures the parity of the given state.

Listing 4.14 Q# code to measure the parity of a state

operation StateParity(gs : Qubit[]) : Int {
use parityQ = Qubit () ;
for g in gs {
CNOT (g, parityQ);

}

return MResetZ (parityQ) == Zero ? 0 | 1;

}

This code takes the same approach as the Qiskit code in listing 4.13, allocating an
auxiliary qubit and using it to compute the parity of the state. Q# allows you to
allocate qubits temporarily to be used within the scope of one operation, so there is
no need to preallocate extra qubits in the main program and pass them as arguments
to the parity measurement operation like we did in Qiskit.

Alternatively, the same logic can be implemented using a built-in library operation
MeasureallZ (listing 4.15). This operation is a special case of a more general oper-
ation, Measure, which supports a variety of multiqubit measurements in different
bases. The operation MeasureallZz is a wrapper for one of its simplest variants that
measures the parity of the given array of qubits.

Listing 4.15 Q# code to measure parity using MeasureAllZ

operation StateParityBuiltIn(gs : Qubit[]) : Int {
return MeasureAllZ(gs) == Zero ? 0 | 1;

}

The test for this program would repeatedly generate states of a certain parity (either
random or predetermined), prepare input qubits in those states, run this measure-
ment on them, check that the parity obtained this way matches the parity of the state
that was prepared, and finally check that the state itself has not been modified by
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the measurement. You can use the code we wrote in chapter 2 to prepare the input
state, but I used the built-in library operation preparebureStateD, which helps keep
the code shorter. You can find the complete test code in the GitHub repository. The
result of running the project should be a passing test.

Further reading

Here is a short list of references that are good starting points if you want to learn
more about extracting information about quantum states:

Chefles, A. (2000). Quantum state discrimination. https://arxiv.org/abs/quant
-ph/0010114
Bagan, E., Monras, A., & Munoz-Tapia, R. (2004). Estimation of pure qubit
states with collective and individual measurements. https://arxiv.org/abs/quant
-ph/0412027

Going beyond

Do you want to spend some more time exploring variations of the problems discussed
in this chapter before moving on to the next topic? Here are some additional ideas
for simpler examples, similar problems, and ways to extend these problems if you
want to try your hand at something more challenging:

In section 4.2, our code solved only one specific problem instance. Try to
implement the solution to the general problem of identifying one state from
an arbitrary list of states that don’t share a basis state.

Note that we don’t care about the exact amplitudes of the basis states within
the given states, only that they are all distinct. In the code for the general case,
you can describe the states as arrays of basis states they’re composed of instead
of a more complicated structure that would also include their amplitudes.

In section 4.3, we solved only the problem of distinguishing the Bell states. Try
implementing the solution for a more general variant of the problem.

The hardest part of the general solution is finding the transformation that
maps the states we want to distinguish to basis states (or vice versa). To do this
in general case, remember that the columns of a unitary matrix describe the
results of applying the unitary to the computational basis states. If you need to
distinguish 2" orthogonal states on n qubits, you can write down the complete
matrix of the transformation by just writing the amplitudes of these states in
each of the matrix columns. If you have fewer than 2" states to distinguish, you’ll
need to figure out how to fill the missing columns of the matrix with values that
would make the matrix unitary first.

In section 4.4, we considered the simplest case of state discrimination with
minimum error: in each trial, each of the two nonorthogonal states was selected
as the input state with equal probability. Consider the more complicated variant
of the same problem, in which one of the states is selected as input more often
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than the other—that is, the probabilities of the two states being selected are
p and 1-p, respectively, with p # 0.5. How does this affect the choice of the
measurement basis and the probability of identifying the state correctly?

An alternative approach to the problem of distinguishing nonorthogonal states
is called unambiguous state discrimination. In this variant, you are given one of
the two nonorthogonal states at random across multiple trials, but this time
you’re allowed to either identify the state as one of the input states or say “I
don’t know.” The goal is to never give an incorrect answer while minimizing
the frequency with which you use the third option. After all, it wouldn’t be
very useful to never be wrong by always saying “I don’t know”! How would you
approach this problem?

Play with quantum state tomography; try to come up with a better algorithm than
the one discussed in this chapter or a solution for the two-qubit (or multiqubit!)
case.

We will keep using measurements for accomplishing different tasks in chapter 5, when
we talk about analyzing operations. After all, measurements are a key component
of quantum algorithms, so it’s natural to learn to use them in as many contexts as
possible!

Summary

Measurements are an important part of quantum algorithms, since they’re
the only way to learn information about the state of a quantum system. They
also limit the power of quantum computing, since they limit the amount of
information you can get out of a system!

Measurement allows us to identify the basis state in which the system is or, if
the system is in a superposition state, to read out one of the basis states that
have nonzero amplitudes in the superposition. The probability of getting each
state as the result of a measurement equals the square of its amplitude in the
superposition.

The goal of many quantum algorithms is to get the quantum system into a state
in which a measurement produces a problem solution with high probability.
Some algorithms aim to estimate the probabilities of different measurement
outcomes instead.

Orthogonal states can be distinguished with perfect accuracy, as long as you
use the right measurement procedure. This procedure can involve doing a
measurement in a basis other than the default (computational) basis.
Nonorthogonal states cannot be distinguished with perfect accuracy. A measure-
ment procedure can be set up to maximize the probability of identifying the
given state correctly over multiple independent trials.
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Quantum state tomography allows us to learn more detailed information abouta
quantum state compared to the information returned by a single measurement,
as long as we’re given multiple copies of the state.

Joint measurements are a way to extract partial information about the quantum
system—for example, the parity of the basis states included in the superposition—
while preserving the state of this system. Joint measurements extract information
about correlations between qubit states, while single-qubit measurements extract
information about individual qubit states.



Analyzng quantum
operations

This chapter covers

Getting information about quantum operations

Finding the matrix that describes the given
quantum gate

Estimating the eigenvalues of quantum gates
Using Q# and Qiskit to analyze operations

In chapter 4, we learned to use measurements to analyze quantum states in different
situations. In this chapter, we’ll consider several new types of tasks that involve
analyzing unitary transformations. Of course, these tasks will build on top of our
learnings from the earlier chapters, since you can only learn things about operations
by preparing certain states, applying these operations to those states, and then
extracting information about the resulting states using measurements.

Quantum states are the most common kind of input data for quantum algorithms,
but they are not the only ones. While typically unitary operations appear in algorithms
as their building blocks, they can also be used as input data. In fact, algorithms that
take a unitary as an input and aim to learn something about it can be just as important
as the ones that learn something about a quantum state.

121
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For example, the phase estimation problem, the task of estimating the eigenvalue of
a unitary operation, is used as a subroutine in a lot of other quantum algorithms, in-
cluding Shor’s integer factorization algorithm, Harrow—Hassidim-Lloyd (HHL) algo-
rithm for solving a system of linear equations, and the quantum counting algorithm
that estimates the number of solutions for a search problem. The phase estimation
problem uses both types of inputs: a unitary operation and a quantum state that is
an eigenvector of this unitary. (We will spend a lot of time discussing different phase
estimation algorithms in this chapter!)

Algorithms that are designed to learn a property of the given unitary operation
follow a pattern, shown in figure 5.1, similar to that of the algorithms designed to
learn a property of a quantum state:

We start by choosing the initial state and preparing it.

We apply one or several unitary transformations. Each of these transformations
can be the unitary we’re analyzing, its controlled or adjoint variant, or a different
unitary that allows us to extract useful information from the system. Of course,
at least one of these unitaries has to be related to the one we’re analyzing;
otherwise, we won’t learn anything about it!

We measure the resulting state to get the information out of the system and use
this information to learn something about the unitary.

In fact, this pattern follows the generic pattern of quantum algorithms we saw in
figure 2.1, applied to our problem.

Apply a unitary or Measure to extract
Choose and prepare . A . .
... several, including the information about
an initial state. . .
2 unitary we analyze. the experiment.
l_-l -_I- Information

Repeat the experiment multiple times, possibly
with different initial states and unitaries.

Figure 5.1 To learn a property of a given unitary operation, we choose an initial state, apply one or sev-
eral quantum operations, including the operation we’re analyzing or its variants, and measure the resul-
ting state. Depending on the problem we’re solving, we might have to repeat this sequence of steps mul-
tiple times to gather statistics about the measurement outcomes and/or vary the initial state and the
unitaries applied.

Depending on the problem we’re solving, running this sequence of steps just once
might give us all the information we need, or we might need to run it multiple
times to gather enough statistics about the measurement outcomes to arrive to
the answer. We might even have to vary the initial state and the unitaries applied
on each run to gather statistics on different aspects of the problem represented by
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different numerical properties of the unitary. We’ll see examples of all these scenarios
throughout this chapter.

In this chapter, I’ll once again lean toward using specific examples of problems to
illustrate the principles of extracting information about quantum operations. This
approach will lead to simpler solutions compared to attempts to solve the general-case
scenarios, which would now be even bulkier than they were in chapter 4. We’ll start
with the task of figuring out which of the two possible quantum gates you were given
and solve several example problems for it. Then, we’ll switch gears to an algorithm
that learns the matrix representation of an unknown single-qubit gate. Finally, we’ll
explore several algorithms that solve the phase estimation problem—the task of
finding the eigenvalue that corresponds to the given eigenvector of the given unitary
gate.

Distinguishing unitaries

We’ll start with a task similar to one of the problems we learned to solve in chapter 4:
distinguishing two quantum operations. In this task, you are given an operation and
a promise that it is one of the two specific unitaries. Your goal is to figure out which
unitary you are given by running some experiments with it and analyzing the results.

When we talked about distinguishing quantum states in chapter 4, we had a clear
condition they had to satisfy to make it possible to identify the given state in a single
experiment: each pair of the states in the list had to be orthogonal. Now that we’re
talking about unitaries, there is no such obvious condition. Some pairs of unitaries are
easy to distinguish by running a single experiment which includes applying the input
unitary or its variant only once. Sometimes you can make do with one experiment
but have to apply the unitary several times during it. And sometimes, if the unitaries
you want to distinguish are similar enough, you have to run a lot of experiments to
gather enough information.

In this section, we’ll look at several tasks that can be solved using one experiment
each. I'll try to use as few unitary applications as possible for each task we solve, but I
won’t dig into the mathematical proofs of the results being optimal.

TIP I encourage you to experiment with similar tasks involving different pairs
of unitaries that are not as easy to distinguish. Even a set of standard single-qubit
gates such as the Pauli gates, the Hadamard gate, and the Ry gate offers plenty
of possibilities for exploration!

Let’s take a look at some examples of pairs of single-qubit unitaries that are easy to
distinguish and see some common approaches to solving this problem.

Math

The general approach to attempting to solve the task of distinguishing two unitaries
in a single experiment is shown in figure 5.2. The solution has two main components:
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Choose the initial state and the sequence of unitaries that will convert that
initial state to orthogonal states when we use each of the two unitaries we aim
to distinguish as a part of that sequence. Then, we can prepare that initial state
and implement any additional unitaries using the techniques from chapters 2
and 3, respectively.

The examples we’ll explore in this chapter, though, will be small enough
that we won’t need the general multiqubit state preparation and unitary imple-
mentation routines. We can use simple single- and two-qubit gates instead.
Figure out a way to distinguish the orthogonal states we obtain as a result of the
first step for each of the two unitaries we aim to distinguish. This is exactly what
we did in chapter 4, though again, we will need to do this only for very simple
states.

Apply unitaries, Measure to find out  Identify the unitary
including the given one. which state we got. based on the result.
Choose an initial
state and prepare it. I
3 —————— State 0 ————  Unitary 0

State 1 ——— Unitary 1

Depending on the given unitary,
the system will end up in one
of two orthogonal states.

Figure 5.2 To distinguish two unitaries in one experiment, we need to choose an initial state that can
be converted to different orthogonal states by applying each of these two unitaries, possibly as part of
a longer sequence of unitaries. We then run the experiment by preparing that initial state, applying that
sequence of unitaries, and identifying which of the orthogonal states we got using measurements.

Let’s see how this approach works for several simple examples.

XOR 2?

In the first example, we are given a single-qubit gate, and we need to decide whether
itis the X gate or the Z gate. We know that the X gate flips the basis states it acts on,
transforming |0) to |1) and vice versa, and the Z gate leaves the basis states unchanged,
affecting only the relative phase of the |1) state. This observation leads us to our
solution right away:

We can apply our input gate to the |0) state.

— If the resulting state is |[0), our input gate was the Z gate.
— If the resulting state is |1), our input gate was the X gate.



5.1 Distinguishing unitaries 125

We can distinguish the resulting states by measuring them in the computa-
tional basis: measurement results 0 and 1 indicate the input gate being Z or X,
respectively.

XORH?

Can we always find an initial state that we can use to distinguish the given unitaries
without using any additional unitaries? Let’s think about this in the next example, in
which we need to decide whether the given single-qubit gate is the X gate or the H
gate.

Can we find an initial state |/) = |0) + 8 |1) that will be converted to orthogonal
states by applying each of the given gates? For this to work, the states we get after
applying our unitaries to this state X ) and H |¢) have to be orthogonal:

X|y)=p10)+a 1)
Hly)=k(a+p)10)+L(a—p)I1)

We can check whether these states are orthogonal by writing their inner product.
This product will look as follows (here, we rely on the fact that |y) is a quantum state
and thus its norm aa* + 88" is 1 to simplify the result):

WIXH p)= 5B (0 + p) + o' (a-B) = (aa” + B +aB"~a"B)
=1

For the states X |¢) and H |¢) to be orthogonal, their inner product should equal 0.
This leads us to the following equation:

af’—(ap’) =-1

This equation, however, doesn’t have a solution, since the difference between a
complex number a8 and its conjugate is either a complex number or 0 and cannot
be equal to —1.

Does this mean that we cannot solve this task in a single experiment? Turns out
that we can, as long as we apply the unitary we’re given more than once during that
experiment! We can use the Hadamard gate to switch between the computational
basis and the Hadamard basis, and as part of that switch, it can convert the X gate into
the Z gate and vice versa. With that in mind, let’s consider the following sequence of
gates: our input unitary—the X gate—our input unitary again:

If our input unitary is X, this triplet of gates becomes XXX = X.
If our input unitary is /, this triplet becomes HXH =Z.

We can solve our problem by distinguishing X and Z gates, which we learned to
do earlier in the chapter. To do this, we start with a qubit in the |0) state; apply
our input unitary, the X gate, and our input unitary again; and measure the qubit.
Measurement results 0 and 1 point to the input gate being /1 and X, respectively.
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X OR -X?

Can we always solve this kind of tasks by applying only the input unitary and some
other gates, using only as many qubits as the input unitary itself acts upon? We’ll
think about this question in the next example, in which we need to decide whether
the given single-qubit gate is the X gate or the —X gate. The —X gate is a gate that
acts as the X gate but additionally multiplies the resulting state by the global phase
of —1.

Remember that the global phase of a quantum state is not observable, since it
doesn’t affect the outcomes of any measurements that can be done on this state.
Consequently, if we use only one qubit, we can’t figure out whether the input gate
is the X gate on its own or whether it introduces the additional global phase to the
state.

We can, however, detect this additional global phase using the controlled variant
of the input gate. Table 5.1 shows the effects of the controlled X and controlled —X
gates on all two-qubit basis states, with the first qubit as control and the second qubit
as target.

Table 5.1 Effects of controlled X and controlled — X gates on two-qubit basis states

The basis state | After applying controlled X | After applying controlled — X

100) 100) 100)
|01) |01) |01)
[10) [11) -11)

[11) [10) -110)

You can see that if we apply the controlled variant of the input gate to any one of the
basis states, we still can’t detect the phase this basis state might have acquired. But
some basis states acquire the phase, and some don’t. This means that if we apply the
controlled unitary to the right superposition state, the phase becomes relative rather
than global, and it can be detected! We just need to decide which superposition state
to use as the input to make detecting the relative phase easy.

The simplest input state we can use is an even superposition of all four basis states,
|[++) = %(|O) +[1))(]0) +|1)). It can be prepared by applying an H gate to both qubits.
Indeed, when we apply the controlled variant of the input unitary to this state with
the first qubit as control and the second qubit as the target, we get the following
results:

If our input unitary is X, applying controlled X to this state doesn’t change it.
If our input unitary is —X, applying controlled X to this state changes it to
%(|O) —[1))(]0) + |1)), since both basis states that have the first (control) qubitin
the |1) state acquire the relative phase —1. This effect is called phase kickback—the
fact that controlled operations can change the state of their control qubits, not
only of their target qubits, by changing the relative phase of some basis states.



5.1.2

5.1 Distinguishing unitaries 127

After applying the controlled variant of our input unitary we need to check the state
of the first qubit: if it is |+), our gate is X, and if it is |-}, our gate is —X.

How did we select this state to use as the input? The control qubit has to be in a
superposition state to allow us to convert the global phase introduced by applying
the gate to the second qubit into a relative phase. The states |+) and |-) are the most
convenient ones to use on the control qubit to detect the —1 phase introduced on
one of the basis vectors, since they are two orthogonal states that differ by a relative
phase of —1. If we used a different superposition state for the control qubit, such
as 0.6 ]0) + 0.8 1), the relative phase —1 would convert it into a state 0.6 |0) — 0.8 1)
that is not orthogonal to the original state. In this case, we would need multiple
experiments to figure out whether a relative phase was introduced, as we discussed
in section 4.4.

The target qubit has to be in a state that doesn’t change when the gate is applied
besides getting multiplied by a global phase. Such states are called eigenstates of the
gate, and we’ll talk a lot more about them later in this chapter. For the X and —X
gates, we see that |[+) and |-) are such states.

TIP  The phase kickback trick can be applied in other scenarios as well: whene-
ver we need to detect a global or relative phase introduced by a gate or to use
it in computations. We will learn more about it in section 5.3.1 and then again
in chapter 7, when we use it to implement the quantum oracle for Grover’s
search algorithm. In particular, we’ll talk more about the choices of the states
that are the best inputs to algorithms that detect the introduced phase.

We cannot always solve this kind of problems in a single shot, the way we could do for
these three examples. Generally, we need to find states that are converted into states
that are as different as possible by applying the input unitaries (or their variants) and
then run the experiment loop multiple times and analyze the aggregated statistics,
similar to what we did in section 4.4. The closer the resulting states are to being
orthogonal, the easier it is to distinguish them. We will see an example of how to do
this in the next section, where we’ll need to distinguish between two unitaries as part
of the unitary reconstruction problem.

Testing these solutions is very similar to how we tested the code that distinguished
quantum states in chapter 4. The test for each pair of unitaries needs to select one
of the two unitaries at random, pass it to the solution, and check that the solution
identifies the input unitary correctly. The main difference is the type of the input
to the solution: instead of qubits in the input state (for Q#) or circuits that prepare
the necessary state (for Qiskit), we pass it quantum operations (Q#) or circuits that
apply them (Qiskit). Let’s see how to implement these solutions as code.

Qiskit

For Qiskit, the code written to solve the problem has an extra requirement. Qiskit
circuits cannot do any classical decision-making steps based on the measurement
outcomes: the result of a circuit execution is a measurement result or several, not an
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arbitrary return value like in Q#. Consequently, the measurement outcomes 0 and 1
have to correspond to the first and second unitaries in the pair of unitaries being
distinguished, respectively. If we chose the input state and the sequence of gates
applied to it so that the first unitary maps the state to |1) and the second unitary maps
it to |0), we’ll need to switch these states right before doing the final measurement by
applying the X gate (you’ll see this in the code for the first two tasks). Alternatively,
we can keep the circuit as is and take this mapping into account when analyzing the
circuit execution results later, in the classical code. Q# code can calculate the index
of the unitary based on the measurement outcome, so you won’t see those extra X
gates applied in Q# solutions.

Listing 5.1 shows the Qiskit code that solves three examples of distinguishing the
unitaries problem discussed in this section.

Listing 5.1 Qiskit code to distinguish three pairs of unitaries

from giskit import QuantumCircuit

def distinguish x z(unitary circ):
circ = QuantumCircuit (1, 1)
circ.append (unitary circ, [0])
circ.x(0)
circ.measure (0, 0)
return circ

def distinguish x h(unitary circ):
circ = QuantumCircuit (1, 1)
circ.append(unitary circ, [0])
circ.x(0)
circ.append (unitary circ, [0])
circ.x(0)
circ.measure (0, O0)
return circ

def distinguish x minusx(unitary circ):
circ = QuantumCircuit (2, 1)
circ.h(0)
circ.h(1)
circ.append(unitary circ.to _gate() .control (1), [0, 1])
circ.h(0)
circ.h(1)
circ.measure (0, 0)
return circ

The complete test code for these solutions is included in the GitHub repository. The
results of running the whole project should be three passing tests, one per pair of
unitaries we want to distinguish.

Q#
Listing 5.2 shows the Q# code that solves three examples of distinguishing the unitar-
ies problem discussed in this section. You can see that this code includes only the
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steps described in the mathematical solution, without the extra X gates needed in
Qiskit.

Listing 5.2 Q# code to distinguish three pairs of unitaries

operation DistinguishXZ(gate : Qubit => Unit is Adj+Ctl) : Int ({
use g = Qubit();
gate(q) ;
return MResetZ(g) == One ? 0 | 1;
}
operation DistinguishXH(gate : Qubit => Unit is Adj+Ctl) : Int {
use g = Qubit();
gate(q) ;
X(q) ;
gate(q) ;
return MResetZ(g) == One ? 0 | 1;
}
operation DistinguishXMinusX(gate : Qubit => Unit is Adj+Ctl) : Int ({
use gs = Qubit[2];
H(gs[0]);
H(gs[1]);
Controlled gate([gs[0]], gs[1]);
H(gs[0]);
H(gs[1]);
return MResetZ(gs[0]) == Zero ? 0 | 1;

The complete test code for these solutions is included in the GitHub repository. The
results of running the whole project should be three passing tests, one per pair of
input unitaries.

Reconstructing the unitary

Let’s now consider a more challenging task: given an unknown unitary operation,
find out what unitary it is. More specifically, you are given an operation that applies
a single-qubit gate to a qubit, and you need to reconstruct its matrix representation
U. For simplicity, we’ll limit the problem to unitary gates with real-valued matrices
and assume that the top-left element of the matrix is nonnegative.

NOTE The more general case of this problem is called quantum process tomogra-
phy. In this problem, you aim to reconstruct the description of a given process.
In general, this process can be more complicated than just a unitary transfor-
mation. For example, it can involve choosing a random unitary from the list
and applying it, or applying noise of unknown model to the qubits. Here we’ll
look at the simplest example just to get a feeling for what steps are involved in
solving this type of problems.
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5.2.1 Math

As we’ve seen in section 3.1, the matrix representation of a single-qubit unitary gate
can have one of the two following shapes:

a b U a -b
Udiag = or antidiag =
—a a

Here, we denoted a =cos @ and b =sina. We’re not interested in the parameter &
like we were in chapter 3, since we’re focusing on learning the coefficients of the
matrix rather than on finding a way to implement it using rotation gates, and the
notation change emphasizes this.

Figure 5.3 shows the two phases of the approach we’ll take to reconstruct the
unitary, adapting the general flow of the algorithm from figure 5.1 to our specific

task.
Estimate the first Determine the signs
column of the matrix. of the second column.
a b
?
? 07 a ? b —a a —b
?7 7 b 7 a —b b a
?
" \b  a

Now the matrix can have
one of two shapes.

Figure 5.3 Reconstructing a single-qubit unitary from multiple experiments. We start
by running a series of experiments to estimate the coefficients in the first column of the
matrix and then a second series of different experiments to figure out the relative signs
of the coefficients in the second column.

First, we estimate the coefficients ¢ and b in the first column of the matrix we’re
looking for. The first column of the matrix U describes the amplitudes of the state
U |0)=a|0)+b]|1) that we can get by applying the given operation to the |0) state.
We can estimate these amplitudes—both their absolute values and their relative
sign—using the state tomography code we implemented in section 4.5.

Second, we need to figure out which of the scenarios we’re looking at—a diagonal
matrix (elements off the main diagonal have the same sign) or an antidiagonal matrix
(elements off the main diagonal have opposite signs). To determine the scenario,
let’s consider the effects of the diagonal and antidiagonal matrices when they are
applied to a qubit in the state a |0) +5 |1):

NOTE Conveniently, we don’t need to use our estimates of ¢ and b from the
first step to prepare this state! Instead, we can prepare it exactly by applying
our given unitary U to the state |0).



5.2.2

5.2 Reconstructing the unitary 131

Udiag(a |0y +b 1)) =a(a|0) +b 1)) +b(b]0) —a|l))
= (a®+b%)|0) + (ab—ba) |1) = |0)
Uanidiag(a 10y +b11)) =a(a |0) +b[1)) +b(=b]0) + a|1))
= (a®-b%)]0) +2ab |1)

We can decide whether our given unitary is more likely to have a diagonal matrix or
an antidiagonal matrix by applying it to the state a |0) + b |1) and deciding whether
the resulting state is more likely to be |[0) (which corresponds to the diagonal matrix)
or (a®=0%)]0) +2ab |1) (the antidiagonal matrix). And this turns out to be exactly
the problem of distinguishing nonorthogonal states that we’ve solved in section
4.4! The only difference with the problem we considered in section 4.4 is that the
amplitude 2ab of the basis state |1) of the second state might be negative. We can
account for this either by flipping the sign of the basis state |1) in the state we prepare
before measuring it or by modifying the math we did to decide on the measurement
to perform. The first approach turns out to be easier—just apply a Z gate to the state
if b is negative.

These two steps, put together, let you reconstruct the matrix of the unitary you
are given. The more experiments you run, the better your estimate will end up.
Similarly to the state tomography problem from section 4.5, matrices that have some
coefficients with very small absolute values take more experiments to reconstruct
accurately compared to matrices in which all coefficients have roughly the same
order of magnitude.

NOTE This solution is an excellent illustration of how the basic problems you
learn to solve become tools that come in handy again and again. The more you
practice solving these kinds of tasks, the larger and more versatile your toolbox
becomes!

Qiskit

Listing 5.3 shows the Qiskit code that reconstructs the matrix representation
of a given single-qubit unitary. It reuses the function reconstruct_state from
listing 4.11.

from math import atan2, pi, sqgrt
from giskit import QuantumCircuit, transpile
from giskit aer import AerSimulator

simulator = AerSimulator (method='statevector')

def reconstruct unitary(gate) : Step 1: Reconstruct the first

(a, b) = reconstruct_state(gate) column of the matrix.

circ = QuantumCircuit (1, 1) Step 2: Figure out the relative
sign of the second column.
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circ.append(gate, [0]) < Prepares the state a|0> + b|1> using the unitary itself

circ.append(gate, [0]) <—— Applies the unitary again
if b < 0: <——— Makes sure the amplitude of |1> is not negative
circ.z(0)

theta = atan2(2 * a * abs(b), a * a - b * b) / 2
circ.ry(- 2 * (theta - pi / 4), [0])
circ.measure (0, 0) Decides which of the
circ = transpile(circ, backend=simulator) states this likely is to

. figure out the relative sign
n_trials = 200

res map = simulator.run(circ, shots=n _trials) .result () .get counts()

if '0' in res map and 2 * res map['0'] > n trials:
return [[a, bl, [b, -all

else:
return [[a, -bl, [-b, all

You can find the complete project, including the test for this operation, in the GitHub

repository. Running the project should result in passing tests.
P ry g proj p g

Q#
Listing 5.4 shows the Q# code that reconstructs the matrix representation of a given
single-qubit unitary. It reuses the operation ReconstructState from listing 4.12.

import Std.Convert.IntAsDouble;
import Std.Math.*;

operation ReconstructUnitary(gate : Qubit => Unit) : Doublel[][] {
let , b) =R t tStat te) ; i
et (a ) econstruce ate(gate) Step 1: Reconstruct the first
column of the matrix.

let nTrials = 200; Step 2: Figure out the relative
mutable nZeros = 0; sign of the second column.
for in 1 .. nTrials {

use q = Qubit () ;

gate(qg); <—— Prepares the state a]0> + b|1> using the unitary itself

gate(qg); <—— Applies the unitary again

if b < 0. { Makes sure the amplitude
z(q) ; of |1> is not negative

let theta ArcTan2 (2. * a * AbsD(b), a * a - b * b) / 2.;

Ry(- 2. * (theta - PI() / 4.), q); Decides which of the states
if MResetZ(q) == Zero { this likely is to figure out

set nZeros += 1; the relative sign

}

return 2 * nZeros > nTrials ? [[a, bl, [b, -all | [[a, -b]l, [b, all;
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You can find the complete project, including the test for this operation, in the GitHub
repository. Running the project should result in passing tests.

Finding eigenvalue of the given eigenvector:
The phase estimation problem

The last problem we’ll discuss in this chapter is a key building block of multiple
quantum algorithms. Unlike the first two tasks we solved in this chapter, it does not
aim to identify the given unitary itself but rather to estimate its numerical properties.
Before I define the problem itself, let me introduce several new concepts, illustrated
in figure 5.4, and show several examples.

Unitary Eigenvector Eigenphase

— —

Uy =A)  A=emie

Eigenvalue

Figure 5.4 An eigenvector of a unitary is a vector that is multiplied by a

scalar when this unitary is applied to it. This scalar is called the eigenvalue.

An eigenvalue of a unitary can only be a complex number with absolute value 1,
so it can be represented as an exponent using the real-valued eigenphase.

An eigenvector of a unitary transformation U, sometimes called an eigenstate, is a
quantum state |yr) that, when this unitary is applied to it, is only multiplied by a global
phase and remains unchanged otherwise. For example, consider the Z gate: it has
two eigenvectors, |0) and |1), since Z |0) =]0) and Z [1) =—|1).

NOTE Of course, any quantum states that differ from one of these eigenvectors
by a global phase, such as —|0) or i |1), are also eigenvectors of the Z gate. It is
common to use the simplest possible quantum state to represent the class of
eigenvectors that differ from each other by a global phase, usually states with
real amplitudes.

The global phase by which an eigenvector is multiplied as a result of applying the
unitary is called the eigenvalue that corresponds to that eigenvector. In the Z gate
example, the eigenvalues that correspond to eigenvectors |0) and [1) are 1 and -1,
respectively.

Since the transformations we’re considering in quantum computing are unitary
and thus preserve the norm of the vectors they act upon, we know that any eigenvalues
we encounter have to be complex or real numbers with absolute value equal to 1. As
a result, we can write any eigenvalue 1 as A =¢?™? where 6 is a real number between
0 and 1. The number 6 is the eigenphase that corresponds to the eigenvector. For the
Z gate, the eigenphases that correspond to eigenvectors |0) and |1) are 0 and 0.5,

respectively, since ¢*70 =1 and ¢*705 = ¢ = —1.
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Now that we’re familiar with the concepts of eigenvectors, eigenvalues, and eigen-
phases, we can finally define the problem we aim to solve. You are given a unitary
transformation U and one of its eigenvectors |y ). These inputs are given as quantum
operations that you can use to apply the unitary U and to prepare the state /) instead
of their matrix and vector representations that you could analyze mathematically.
You need to find the eigenphase that corresponds to the eigenvector |y).

Formulating the phase estimation task in terms of eigenphases and not eigen-
values is customary. These two descriptions are equivalent, but the applications of
this problem usually rely on the value of the real phase rather than the complex
eigenvalue.

NOTE Phase estimation problem is an important part of several quantum algo-
rithms, including Shor’s algorithm for integer factorization, quantum counting
algorithm that estimates the number of solutions to the given search problem,
and the HHL algorithm for solving a system of linear equations. In each of
them, the input problem is converted into a unitary transformation and its
eigenvector, and the corresponding eigenphase can be used to calculate the
answer to the problem. Unfortunately, these algorithms are out of scope for
this book.

Before we start thinking about solving this task, let’s list several examples of unitaries
and eigenvector—eigenphase pairs (table 5.2) that we’ll use to walk through the math
of our solutions and then to test our code.

Table 5.2 Unitaries, their eigenvectors, and corresponding eigenphases with different values of phase

) . . Eigenphase Eigenphase
Unitary U Eigenvector |¢) Eigenvalue Eeetel) L)
1 0 |0) 1 0.0 0.0
7=
0 -1 1) -1 0.5 0.1
0 0 0 1 3(10) +11) +12) +18)) 1 0.0 0.00
0 0 0 Lgoy—-1my+12y-138 -1 0.5 0.10
INC = 3(10) = 1) +12) - [3))
0O 1 0 O é(lO)—ill)—|2)+i|3)) i 0.25 0.01
0 0 1 0| $70)+il1)—12)-iI3)) —i 0.75 0.11
- 1 0 10) 1 0.0 0.000
0 e/t 1) e/ 0.125 0.001

The unitaries Z, INC, and T have eigenphases that require one, two, and three bits
of precision, respectively, to represent their eigenphases in binary. Z and T gates
are called phase shift gates—gates that don’t change the |0) state but multiply the
|1) state by a relative phase—in this case, —1 and ¢/"/*, respectively. Another phase
shift gate, the S gate, is commonly used to illustrate phase estimation for phases
with two bits of precision, but it only has two different eigenvalues, 1 and ¢/7/2. 1
wanted to use a unitary with all four possible two-bit eigenphases corresponding to



5.3 Finding eigenvalue of the given eigenvector: The phase estimation problem 135

four different eigenvectors, which requires a gate to act on two or more qubits. For
this reason, I chose /N C—a unitary that increments a two-bit integer modulo 4. It
has the following effect on the basis states:

10) = (1), [1) =12),|2) = [3), [3) = 10)

Verifying that a state is an eigenvector of the unitary
How can we check that these states are indeed eigenvectors of these unitaries?

Mathematically, we can calculate the result of applying each unitary to each
eigenvector and verify that it matches the result of multiplying this eigenvector by
the corresponding eigenvalue. For example, to verify that the second eigenvector
of the unitary INC has eigenvalue —1, we apply the unitary INC to it:

INC5(10) ~ 1) +12) ~13)) = §(11) ~ 2) +13) ~ 0))

Then we verify that the result is, indeed, (-1) - %(|O) — 1) +12)—3)).
In our code, we can use a technique similar to that we saw in the test code for
chapter 2: prepare a qubit register in the state that is the eigenvector of the unitary,

apply the unitary to this register, and check that the resulting state vector matches
the result of multiplying the eigenvector by the eigenvalue.

Alternatively, we can prepare the eigenvector and apply a unitary and then apply
the adjoint of the procedure we used to prepare the eigenvector. The resulting state
should be the |0) state (up to a global phase). This approach, however, doesn’t allow
us to verify the eigenvalue associated with this eigenvector, just that this state is an
eigenvector. You can see the implementation of this approach in the tests | wrote
for this section in the GitHub repository.

The phase estimation problem has a plethora of ways to approach solving it. I'll
introduce three algorithms that represent different classes of quantum algorithms,
not just slight variations of the same algorithm, and are each interesting in their
own way:
The iterative phase estimation algorithm (section 5.3.2) runs the same circuit
multiple times and estimates the answer based on the evaluated probability
distribution of the outcomes.
The quantum phase estimation algorithm (section 5.3.5) obtains the answer
from the most likely outcome of running a circuit.
Adaptive phase estimation algorithms (section 5.3.3) learn the answer piece by
piece, adjusting the program they execute on the go based on the parts of the
answer they already learned.

NOTE Sometimes you’ll see the last class of algorithms referred to as “iterative
phase estimation.” I prefer the terms “iterative” and “adaptive” to emphasize the
difference between iterating over the same circuit multiple times and adapting
the circuit on the later steps based on the information learned earlier.
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Before we proceed to learning these algorithms, let’s take a closer look at the common
principle on which they’re all built, known as the phase kickback trick.

Phase kickback

All phase estimation algorithms rely on the same technique—the phase kickback
trick we’ve seen in section 5.1. It makes use of the fact that applying the controlled
version of a unitary can “kick” a relative phase back to the control qubit instead of
changing the state of the target qubit. Figure 5.5 shows the structure of the phase
kickback trick as used in phase estimation algorithms.

Basis state | 1) of the control qubit gains
relative phase equal to the eigenvalue.

Control qubit State that depends
in superposition | " onthe eigenphase
Apply
controlled
i unitary
inT fr:geetig::gt(ast)e EE— Target qubit(s) in
of the unitary the same eigenstate

The state of the target
qubit(s) doesn’t change.

Figure 5.5 To use the phase kickback trick for phase estimation, we need a control qubit

in a superposition state (the |+) state is commonly used) and a target register of qubits in
the state that is an eigenvector of the unitary we’re exploring. When we apply the controlled
variant of this unitary, the target register remains unchanged, but the control qubit acquires

a relative phase on the basis state |1). This relative phase can be analyzed to extract informa-
tion about the eigenphase that corresponds to the eigenvector.

Let’s see how the phase kickback trick allows us to get information about the eigen-
phase that corresponds to the given eigenvector. We’ll use the Z gate and its two
eigenvectors as the simplest example of a phase estimation problem that we can solve
with a single measurement:
We start with two qubits: the control qubit in the state |+) = L2(|0> +{1)) and
the target qubit in the eigenstate—either the |0) or |1) state.
When we apply the controlled Z gate, one of the following scenarios happens:
— If the eigenvector we used was |0), the state of the system remains %UO) +
|1)) ® |0}, since the Z gate has no effect on the |0) state.
— However, if the eigenvector we used was |1), the state of the system becomes
%(|O) —|1)) ® |1), since the Z gate flips the sign of the |1) state, and this only
happens to the basis state in which the control qubitis [1).
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We see that depending on the value of the eigenvalue that corresponds to the
eigenvector we used (+1 for |0) or —1 for |1)) the state of the control qubit
either remains |+) or becomes |—). At the same time, the state of the target qubit
doesn’t change, and the target qubit remains unentangled with the control
qubit.

We can figure out whether the eigenvalue that corresponds to the given eigen-
vector is +1 or —1 by measuring the control qubit to find out whether it ended
up in the [+) or |-) state after the application of the controlled Z gate.

This example shows how to learn the eigenvalue of the unitary, although only in the
simplest scenario, in which itis exactly +1 or —1. Nonetheless, it is a great introduction
to the phase kickback trick. And now that we’re familiar with this trick, we can build
more sophisticated phase estimation algorithms on top of it.

5.3.2 Iterative phase estimation

The first algorithm we’ll see is iterative phase estimation. It follows the pattern shown
in figure 5.6.

Start with the eigenstate Apply controlled unitary Now the probabilities

of the unitary and a control to encode eigenphase of measurement outcomes

qubit in the |_|_> state. into the state. depend on the eigenphase.
/—/%

|+> k' H

0) U]

Run the circuit multiple times to estimate
probabilities of measurement outcomes.

Figure 5.6 In iterative phase estimation, we come up with a fixed quantum circuit that
produces measurement outcomes with probabilities that are a function of the eigenphase.
The circuit starts with the qubits in a specific state, applies a controlled variant of the unitary
to get the information about the eigenphase into the phase of the control qubit and then
performs a specific measurement. We run this circuit multiple times, gather enough statistics
about the measurement outcomes to estimate the probabilities of measurement outcomes,
and calculate the eigenphase from them.

In the iterative phase estimation algorithm,

We start by finding a quantum circuit that uses the eigenvector of our unitary
and an additional control qubit. This circuit applies a controlled variant of the
unitary to extract information about the corresponding eigenphase and encode
it in the amplitudes of the state of the control qubit. Finally, it measures the
control qubit.

We run this circuit multiple times, enough to estimate the probabilities of differ-
ent measurement outcomes. These probabilities depend on the information
about the eigenphase that was encoded in the amplitudes of the state.
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Finally, we estimate the eigenphase from the probabilities of the measurement
outcomes we obtained experimentally.

Let’s see what the algorithm looks like and what information phase kickback encodes
in the state of the control qubit if the eigenphase of the eigenvector is not 0 or 0.5
but an arbitrary real number 6 between 0 and 1:

As in the previous example, we start with the control qubit in the state %UO) +
|1)) and the target qubit or qubit register in the state |¢) that is an eigenvector
of the unitary U with eigenphase 6:

F(0+ 1) @)

We apply the controlled U gate to the qubits, which leads to the eigenvalue
270 being kicked back as the relative phase of the basis state |1) of the control
qubit:

F0W) + F DU ) =5(10) + > (1) @ )

The target qubits are not entangled with the control qubit after this, so we can
safely ignore their state.

If we measure the control qubit in the computational basis right now, we’ll
get 50% chance of each outcome, since the absolute values of both amplitudes
are .

V2
Instead, we need to figure out a way to change the state of the control qubit
to make the probabilities of the measurement outcomes depend on the value 6.
This way, we can determine 6 by analyzing the measurement outcomes we get.
We can do that by applying a Hadamard gate to the control qubit:

H 10y +¢2 1)) = L (30) + 1) + F5e270 (0} - 1))

=31+ [0) + 11 —0) (1)

What is the probability of getting the result 0 when measuring the control qubit
now? It’s the absolute value of the amplitude of |0), squared, which we can
rewrite using Euler’s formula ¢! = cos y +1 sin y as follows:

P(meas=0) = i|1 + 202 = }}|1 +c0s 270 +1 sin 276>

= }1 ((1 +cos 2710)? + (sin 27r0)2) = }t (1 +2cos 276 + cos® 270 + sin® 2719)

2 2

Now, we rewrite this expression using trigonometric identities cos® o +sin” o = 1

and 1 + cos 2a =2 cos? a:
P(meas=0)=1% (1+2cos2r0 +1) =% (1+cos 270) = cos® 7

If we run the described circuit N times and we get the measurement outcome

0 Ny times of them, we can approximate the probability of measuring 0 as %
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This allows us to estimate the cosine of 76 and, finally, the eigenphase we’re
looking for:

N
2 0

0~ —
Ccos™ 1 N

0 1 [ No
X — arccos | —
n N

We can validate this solution by checking it on the two cases we’ve already seen when
exploring the phase kickback trick:

For the Z gate and its eigenvector |0), the state of the control qubit before and
after applying the Hadamard gate is |[+) and |0), respectively, so the probability
of measuring 0 in the end is 1. The estimated phase we get from this probability
% arccos 1 =0, which matches the eigenvalue +1 we know this eigenvector to

have.

is

Similarly, for the Z gate and its eigenvector |1), the state of the control qubit
after applying the Hadamard gate is |1), the probability of measuring 0 is 0, the
estimated phase is 1 arccos 0= 0.5, which matches the known eigenvalue —1.

Vs

The downside of this method is that it doesn’t allow us to estimate phases between
0.5 and 1 because the arccosine of a nonnegative value is always between 0 and 5. If
we know our phase can lie in that interval, we need to estimate its most significant bit
differently. I won’t spend time modifying this algorithm to account for this scenario,
since we have more interesting algorithms ahead of us that will handle this case easily.

Adaptive phase estimation

The next algorithm I’ll show you is one of the group of adaptive phase estimation
algorithms. It takes a different approach, and figure 5.7 shows how to apply it to
learn eigenphases with two binary bits of precision, such as 0.25 and 0.75.

This gate is applied only if the
least significant bit learned
from the first circuit is 1.

Run the first circuit multiple times Run the second circuit multiple times
to learn the least significant bit. to learn the most significant bit.

Figure 5.7 In adaptive phase estimation, we learn the phase one binary digit at a time. We start by run-
ning a circuit that allows us to learn the least significant binary digit. After this, we use a different circuit,
parts of which depend on the information we’ve discovered so far, to learn the second least significant
binary digit. If there are more digits to learn, the process is repeated, with different circuits for each digit.
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In the adaptive phase estimation algorithm, we learn the information about the
phase in pieces, one binary digit at a time, adjusting the circuit we use for learning

the subsequent digits based on the digits we learned previously (thus the name
“adaptive”):
We start by learning the least significant binary digit by running a fixed circuit
multiple times and analyzing the statistics of measurement results.
Then, we learn the second least significant digit by running a circuit that depends
on the value of the least significant digit.
We repeat the process for each digit we need to learn, ending with the most
significant digit. For each one, the circuit we use to learn it depends on all the
information we learned about the less significant digits.

NOTE This algorithm an example of a broader class of adaptive quantum al-
gorithms. These algorithms perform their task by running a series of circuits,
learning some information from the results of running each circuit, and modi-
fying the circuits executed afterward based on the information learned so far.

Let’s see what the circuits used on each step of adaptive phase estimation algorithm
look like. We’ll focus on eigenphases that can be represented as a binary fraction
with exactly two binary digits, such as the eigenphases of the unitary INC (see table
5.2), to simplify our analysis. In other words, we’ll assume that the eigenphase is a
multiple of }T'

To start, let’s write the eigenphase 6 of the unitary U that corresponds to the
eigenvector |i) as a binary fraction with exactly two binary digits, 8; and 6s:

0=0.0102=01-5+05-1

How can we use phase kickback trick to isolate just the information about the least
significant digit 89 from the rest of the phase? Let’s see what happens if we use phase
kickback just like before, starting with the control qubit in the state \/Li(l(» +]1)) and
the target qubit(s) in the state | ), but apply the controlled U twice instead of just
once.

The |1) basis state of the control qubit is multiplied by the eigenvalue each time
the controlled U gate is applied. After two applications, it will end up multiplied by

the square of the eigenvalue ¢2™*?:

. e/rz-(ig

(6,2”1'-0)2 — 0 _ 64"1“(9!'%”2']1) = p27i-0
Since 67 is a binary digit, 0 or 1, we know that 2701 = 1 50 we can simplify this
702 The complete state of the control qubit after applying two
controlled U gates will be

expression to e

L(l0) +em% 1))
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Now, we can extract information about the value of 62 same way we did in the past:
If 69 = 0, the control qubit is in the state %@(|O) +11)).
If 69 =1, the control qubit is in the state %(|O) +e™ 1)) = %(|0) —1|1)).
We can apply a Hadamard gate to the control qubit and then measure it to
figure out which of these states it is in.
Now that we know the value of the least significant digit 69, we can learn the value of
the most significant digit ; accurately. To do that, we use the same phase kickback
trick, this time with a single controlled U. This will result in a control qubit in the
following state:

\L@(w) 4 p2mi0 1)) = \/LQ 0) +€2ﬂi'(ﬁl'%+92'%> |1>) — \/LQ (|0> LR _eénz‘-f& |1>)

Since we know the value of f2, we can eliminate its impact on this state:
If 65 =0, its contribution to the relative phase of |1) is ¢’ =1, and we don’t need
to do anything to eliminate it.
If 65 =1, its contribution to the relative phase of |1) is 2" =i. We can eliminate
it by applying the ST gate. As a reminder,

1.0y . (1 O
S= ,S8tT=
0 i 0 —i
We decide whether to apply the ST gate based on the classical value @y that we
learned on the previous step, adjusting our circuit using the information we
already have.
With this adjustment used after the application of controlled U gate, we are left with
the control qubit in the now familiar state

(10} +e™ 1 1))

Now, we can learn the value of 61 as usual, by applying the Hadamard gate and
measuring.
To summarize, the complete adaptive phase estimation algorithm for learning an
eigenphase with two bits of precision is
Learn the least significant bit of the phase 65:

a) Start in the state |[+) [¢/).

b) Apply controlled U gate twice.

c) Apply the Hadamard gate to the control qubit.
d) Measure the control qubit to get the bit 5.
Learn the most significant bit of the phase 6;:

a) Startin the state |[+) |¢).

b) Apply controlled U gate.

c) If 69 =1, apply the ST gate to the control qubit.
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d) Apply a Hadamard gate to the control qubit.
e) Measure the control qubit to get the bit ;.

How do we modify this algorithm to learn the phase with more binary digits of
precision? A similar analysis can show that applying increasing powers of controlled
U gates allows us to isolate information about less significant digits: we use controlled
U to extract 61, controlled U2—92, controlled U*—gs, controlled U8—8,, and so on.
Constructing the circuit for learning the £-th digit follows the same principle: use
the appropriate power of controlled U to cancel the contribution from the more
significant digits 61...6;_; in the relative phase kicked back to the control qubit,
and then use phase gates to correct the contribution from the less significant digits
Op+1...0, to that phase.

Quantum Fourier transform

Before we continue to the third and final phase estimation algorithm of this chapter,
we need to learn a useful tool that is an important part of this algorithm. Quantum
Fourier transform (QFT) is the quantum equivalent of the discrete Fourier transform
(DFT). QFT performs DFT on the amplitudes of a quantum state, transforming it
into another quantum state with amplitudes that are the DFT of the amplitudes of
the initial state.

Applications of quantum Fourier transform

Quantum Fourier transform is commonly used in quantum algorithms that rely on
identifying hidden patterns in quantum states, such as periodicity of the amplitudes
of the quantum state. This is similar to the way discrete Fourier transform allows
us to extract frequency information from a signal.

Discrete Fourier transform works by switching between the time domain—the
signal sampled at fixed intervals of time—and the frequency domain—the distri-
bution of different frequency bands in the signal. Being its quantum equivalent,
quantum Fourier transform switches between amplitude encoding, in which the in-
formation is encoded in the absolute values of the amplitudes of the basis states,
and phase encoding, in which the information is encoded in the phases of the
complex numbers that represent the amplitudes.

However, QFT is not used as a way to speed up the classical computation of the
DFT. Encoding the input vectors into a quantum state and then extracting the results
of the transformation from the amplitudes of another quantum state introduce too
much overhead, so such a use of QFT is less efficient than fast Fourier transform.

In this book, I'll use quantum Fourier transform only as a building block for phase
estimation. Following the approach I took for discussing adaptive phase estimation,
I'll focus on the one- and two-qubit QFT definition and behavior that are necessary
for learning phases with one and two bits of precision we’re using as an example,
and won’t dive into the general form of QFT or its implementation for an arbitrary
number of qubits.



5.3 Finding eigenvalue of the given eigenvector: The phase estimation problem 143

Quantum Fourier transform for one qubit is the Hadamard gate: for a basis state

),
1
QFT ) =5 3" (<" by = 5 (10) + (=1)" 1))
k=0

For two qubits, quantum Fourier transform takes a slightly more elaborate form: for
a basis state |x),

3
QFT |y =} 3% [k = 1 (10) +4* [1) + (=1)7 [2) + (=0)" [3))
k=0

How can we implement the two-qubit QFT? To start, we can rewrite this expression
as a tensor product of two single-qubit terms:

QFT |x) = 35(10) + (=1)" 1) ® 35(10) +4" 1))

Let’s write the basis state x as x1x9 = 2x] + X9, where x; and x9 are the most and the

least significant digits of x. We can use this notation to rewrite this expression further,
. o ; e

using the facts that (=1)* = (=1)%1%%2 = (=1)*2, -1 =¢'" and i = 2'":

QFT |2) = (10 +¢¥ 472 [1)) @ L (0) + o370 herin) 1)

L
L
This expression allows us to implement the two-qubit QFT. Let’s walk through the
implementation, assuming that it acts on an arbitrary basis state x. Since we’ll only
use quantum gates and no measurements, this implementation will also act correctly
on all superposition states due to the linearity of unitary transformations:

Start with a basis state |x) = |x1) |x9).
Apply a Hadamard gate to the first (most significant) qubit:

L(10) + (1) 1) ®laz) = I (10) + 271 1)) ®|az)

Apply a controlled S gate with the second qubit as control and the first qubit as
) I,
target to introduce a relative phase i*2 = 2™ to the basis state |1) of the first
qubit:
o s (1, 1
L (10) + e Bnvien) 1)) g |ay)

Apply a Hadamard gate to the second (least significant) qubit:

1 omi-(da+Lay) ) 1 ( omi- b )

L (10) + 2t in) 1)) @ L (j0) + e2eivde 1)
This expression is exactly the same as QFT" |r), but with the order of bits reversed.
To fix that, we apply a SWAP gate to the qubits.

The final expression for the effects of the quantum Fourier transform for a two-qubit
basis state might look familiar. Indeed, its terms are very similar to the expressions we
saw earlier when discussing the effects of phase kickback when applying controlled
U gate one time and two times in adaptive phase estimation. With this in mind, let’s
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see how we can use QFT in our final algorithm in this section—quantum phase
estimation.

Quantum phase estimation

Quantum phase estimation algorithm takes an approach that is different from both al-
gorithms we’ve seen so far. Figure 5.8 shows the outline of quantum phase estimation
algorithm used to learn the eigenphase with two bits of binary precision.

Measurement results
are close to eigenphase
with high probability.

Convert phase encoding

Encode the eigenphase to amplitude encoding.

in relative phases
of control qubits.

+) B

QFT!
B

Run the circuit a few times to find the
most likely measurement outcome.

Figure 5.8 In quantum phase estimation algorithm, we use multiple control qubits to encode the infor-
mation about the eigenphase in phases of their states. Then, we use inverse quantum Fourier transform
to convert that information from phase encoding to amplitude encoding, increasing the amplitude of the
basis state that encodes the eigenphase compared to the amplitudes of other states. Finally, we measure
the control qubits, reading out the bits of the phase as measurement results with high probability.

In the quantum phase estimation algorithm,

We use phase kickback to get the information about the eigenphase of the
unitary that corresponds to the given eigenvector encoded in the relative phases
of the control qubits, similar to the way we did it in other phase estimation
algorithms. However, this time we use multiple control qubits, one for every bit
of precision we want to get, and encode different information in every control
qubit. In this encoding, all basis states of control qubits have equal amplitudes,
and the information is stored in the relative phases of the basis states.

Next, we convert the information about the eigenphase from phase encoding to
amplitude encoding. After this, the basis state that encodes the best approxima-
tion of the eigenphase has the largest absolute value in the state of the control
qubits, the basis states that encode the next best approximations have smaller
absolute values, and so on, with the amplitudes of basis states becoming smaller
as they become worse approximations. This can be done using the inverse of
quantum Fourier transform.
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With this encoding in place, reading out the eigenphase from the state of the
control qubits becomes easy. We only need to measure them and interpret the
measurement results as the notation of a binary fraction—our eigenphase.

Let’s see how this process will work out for estimating an eigenphase with exactly
two bits of precision. We’ve already convinced ourselves that the eigenvector of the
unitary U remains unchanged when we use it as the target of a controlled U gate,
so we’ll ignore it when doing the math and focus on the state of the control qubits
exclusively. We explored the effect of applying multiple controlled gates to such
quantum states in detail when we talked about adaptive phase estimation, so if you
need a refresher on that, see section 5.3.3.

The quantum phase estimation algorithm for learning an eigenphase with two
bits of precision follows these steps:

Use two additional qubits as the control register, each in the |+) state: [+) ® |+).
Apply a controlled U gate with the second qubit as control:

i(0,-1409-1
5 (10 0 )
Apply two controlled U gates with the first qubit as control:
9. oni-[67-1+6o-1
10+ ) 0 g (1027

The state of these two qubits now is exactly QFT |6), so we can apply inverse
QFT (the adjoint of the QFT implementation we saw in 5.3.4) to transform it
into |8).

Measure the state to get the two bits of precision of eigenvalue 6, using big-
endian for the notation (first qubit stores the most significant bit).

This is the last of the phase estimation algorithms I wanted to show you in this chapter.
Now we can finally write some code to experiment with their implementations!

Comparing phase estimation algorithms

Each of these three algorithms has its pros and cons in terms of efficiency. Iterative
phase estimation uses the simplest circuit, so it is the least prone to noise, but it
requires a lot of repetitions to estimate the phase with reasonable precision.

Adaptive and quantum phase estimation algorithms also rely on circuit repetition
if the eigenphase cannot be represented exactly with the number of bits of precision
we chose to work with (or if it can, but we don’t know that up front). They require a
lot fewer repetitions, though, compared to the iterative algorithm.

Quantum phase estimation requires fewer circuit repetitions compared to adap-
tive phase estimation, since it seeks the most likely measurement outcome rather
than estimates the probabilities of different outcomes. However, the circuit used
in quantum phase estimation is much more complicated than the ones used in
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(continued)

adaptive phase estimation, with more qubits and much larger circuit depth, so it is
a lot more susceptible to noise. In fact, adaptive phase estimation emerged as a
way to replace the single run of a large circuit of quantum phase estimation with
multiple runs of much smaller circuits, better suited for noisy devices without error
correction.

Qiskit

The three algorithms we explored in this section have different mathematical under-
pinnings, but their implementations end up having a lot in common. To start with,
they all solve the same problem based on the same input: the unitary and eigenvector
pair and the number of qubits on which this unitary acts. The circuits they use also
have similar structure: they all prepare the given eigenvector of the unitary and an
additional |[+) state on one or two extra qubits and then apply the controlled unitary
or several, followed by some extra gates to decode the result and a measurement to
read it out.

The complete project code for this section includes implementation of all four
phase estimation algorithms we looked at in this section: the one-bit phase estimation
algorithm that illustrates the simplest phase kickback and the iterative, adaptive, and
quantum phase estimation algorithms. However, they ended up being so similar that
I decided to include only one of them in the text as the illustration of our discussion
and leave the other three to the GitHub repository.

The following listing shows the Qiskit code that implements the quantum phase
estimation algorithm for learning eigenphases with two bits of precision.

from math import acos, pi, sqgrt

from giskit import QuantumCircuit, transpile

from giskit.circuit.library.standard gates import SdgGate
from giskit_aer import AerSimulator

simulator = AerSimulator (method='statevector')

def two_bit gquantum phase estimation(n, eigenvector, u):
circ = QuantumCircuit(n + 2, 2)

C}rc -h(0) The circuit uses two control qubits,
circ.h(1) one per precision digit of the phase.

elg = range(2, n + 2)

circ.initialize (eigenvector, eig) <—— Prepares the last n qubits in the eigenstate

circ.append(u.control (1), [0] + list(eig)) eigenphase in the relative phases

circ.append(u.control (1), [1] + list(eig)) Encodes information about the
of control qubits

circ.append(u.control (1), [0] + list(eig))

circ.swap (0, 1) Uses inverse QFT to switch from phase
encoding to amplitude encoding
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circ.h(1)
circ.append (SdgGate () .control (1), [1, 0])
circ.h(0)
circ.measure ([0, 1], [0, 11) <—— Measures control qubits
circ = transpile(circ, backend=simulator)
res map = simulator.run(circ) .result () .get counts() L
- . ) - Runs the circuit once
return int (list(res_map.keys()) [0][::-1]1, 2) / 4 T and return the result

In the Qiskit code, we pass the eigenvector as a list of amplitudes and use the library
method initialize to prepare the corresponding eigenstate based on these ampli-
tudes. We could’ve used the methods we developed in chapter 2 instead or designed
circuits tailored specifically for the preparation of these states, but this approach
leads to shorter and more elegant code.

Each of these algorithms returns a classical value, the eigenphase associated with
the given eigenvector, so testing them requires only classical tools. The test for
each algorithm needs to select several unitaries and their eigenvectors, run the
algorithm on each of them, and compare the results with the eigenvalues calculated
mathematically. The unitaries listed in table 5.2 are a good starting point, since they
offer examples of phases with different precision. You can, of course, come up with
your own test cases as well!

The following listing shows a unit test for the quantum phase estimation for two-bit
phases.

def t :
ef z_gate() 1) Defines circuits for the gates

circ = QuantumCircuit ( used in the test: Z and INC
circ.z(0)

return circ

def inc_gate():
circ = QuantumCircuit (2)
circ.cx (0, 1)
circ.x(0)
return circ.to_gate()

z_eigenvectors = [[1, 0], [0, 1]] Defines eigenvectors of these

inc_eigenvectors = [ gates as lists of amplitudes
[0.5, 0.5, 0.5, 0.5],

[0.5, -0.5, 0.5, -0.51,

[0.5, -0.5j, -0.5, 0.5j1,

[0.5, 0.5, -0.5, -0.57]

] Defines eigenphases that correspond
to the eigenvectors of these gates

z_eigenphases = [0, 0.5]
inc_eigenphases = [0.0, 0.5, 0.25, 0.75]

def test_quantum phase estimation() :
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for (n_qubits, n_eigenvectors, unitary, eigenvectors, eigenphases) in [

(1, 2, z gate(), z_eigenvectors, z_ eigenphases), Runs the test
(2, 4, inc_gate(), inc_eigenvectors, inc_eigenphases) for each gate
1:
for ind in range (n_eigenvectors): <— Runs the test for each eigenvector of that gate
for _ in range(10):

est_phase = two_bit_ guantum phase_estimation(
n _qubits, eigenvectors[ind], unitary)

assert est phase == approx(eigenphases[ind]) Checks that the
estimated phase

matches the actual one
The test code includes the definitions of Z and I N C gates, as well as their eigenvectors
and eigenphases. These gates are reused by the tests for other algorithms, so it makes
sense to define them outside this specific test and to add an extra test to verify
that these vectors are indeed eigenvectors of these unitaries with the matching
eigenphases.

The complete code for this project, including unit tests for each algorithm, is
included in the GitHub repository. Running the project should result in tests passing.
You can convert the project from running as a test to running as a Python script
to print the phases returned; this can be useful for experimenting with different
variants of the algorithms.

Q#

The three algorithms we explored in this section have different mathematical under-
pinnings, but their implementations end up having a lot in common. To start, they
all solve the same problem based on the same input: the unitary and eigenvector
pair and the number of qubits on which this unitary acts. The circuits they use also
have similar structure: they all prepare the given eigenvector of the unitary and an
additional |[+) state on one or two extra qubits and then apply the controlled unitary
or several, followed by some extra gates to decode the result and a measurement to
read it out.

Same as with Qiskit, the complete project code for this section includes imple-
mentation of all four phase estimation algorithms we looked at in this section: the
one-bit phase estimation algorithm that illustrates the simplest phase kickback and
then the iterative, adaptive, and quantum phase estimation algorithms. However, the
code for each algorithm ended up being so similar that I decided to include only
one of them in the text and leave the rest in the GitHub repository.

The following listing shows the Q# code that implements the quantum phase
estimation algorithm for two-bit eigenphases.

import Std.Convert.*;
import Std.Math.*;
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operation TwoBitQuantumPhaseEstimation (

n : Int,
eigenstatePrep : Qubit[] => Unit,
unitary : Qubit[] => Unit is Ctl
) : Double { J The circuit u§e.s tw? clzontrol qubits,
use (phase, eig) = (Qubit[2], QubitI[n]); one per precision digit of the phase.

ApplyToEach (H, phase);

eigenstatePrep (eig) ; <—— Prepares qubits in the eigenstate

Controlled un}tary( [phase [11], e%g) i Encodes information about eigenphase in

Controlled unitary ([phase[0]], eig); relative phases of control qubits

Controlled unitary([phase[0]], eig);

ResetAll (eigenstate) ; Uses inverse QFT to switch from

SWAP (phase [0], phase[1]); phase encoding to amplitude encoding

H(phase[1]);

Controlled Adjoint S([phase[1l]], phasel[0]);

H(phase[0]) ;

let res = (MResetZ(phase[0]) == One ? 2 | 0) + Measures control qubits
(MResetZ(phase[1]) == One ? 1 | 0); and returns the result

return IntAsDouble(res) / 4.0;

In the Q# code, we pass the eigenstate of the unitary as an operation that prepares it
on an array of qubits, rather than an array of amplitudes. This allows us to choose
whether we want to prepare the eigenstates by hand, which we can do easily for the
Z gate, or using a library operation, which is more convenient for the /NC gate.

Each phase estimation algorithm returns a classical value, the eigenphase associat-
ed with the given eigenvector, so testing them requires only classical tools. The test
for each algorithm needs to select several unitaries and their eigenvectors, run the
algorithm on each of them, and compare the results with the eigenvalues calculated
mathematically. The unitaries Z, INC,and T' (see table 5.2) are a good starting point,
since they offer phases with different number of binary bits. You can, of course, come
up with your own test cases as well!

The following listing shows an example of a Q# unit test for one of the algorithms,
the quantum phase estimation for two-bit phases.

operation ZGate(gs : Qubit[]) : Unit is Adj + Ctl { Defines the gates used
in the test: Z and INC
Z(gs[0]);
}
operation IncrementGate(gs : Qubit[]) : Unit is Adj + Ctl {

CNOT (gs [1], gs[0]);
X(gs[1]);
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operation ZEigenvector (gs Qubit[], ind : Int) : Unit is Adj {

if ind ==
X(gs[0]); { of these gates as
g ! operations that
} prepare them

}

operation IncrementEigenvector (gs
let eigenAmps = [

Qubit[], ind : Int) : Unit is Adj {

[(xz., 0.), (., 0.), (1., 0.), (1., 0.)1,
[(x., 0.), (-1., 0.), (1., 0.), (-1., 0.)1,
[(r., o.), (0., -1.), (-1., 0.), (0., 1.)],
[(1., 0.), (O 1.), (-1., 0.), (0., -1.)]
1;
let cp = (a, b) -> ComplexAsComplexPolar (Complex(a, b)) ;
ApproximatelyPreparePureStateCP (0.0, Mapped(cp, eigenAmps([ind]), gs);
} Runs the test

operation TestQuantumPhaseEstimation() : Unit for each gate

for (nQubits, unitary, unitaryStr, eigenstatePrep, eigenphases) in [
(1, ZGate, "Z", ZEigenvector, [0.0, 0.5]),
(2, IncrementGate, "INC", IncrementEigenvector, [0.0, 0.5, 0.25, 0.75])

I

Message ($ "Running QuantumPhaseEstimation for {unitaryStr}");

Length (eigenphases) - 1 Runs the test
for _in 0 10 { for each eigenstate
let estPhase = TwoBitQuantumPhaseEstimation (

for ind in 0

nQubits, eigenstatePrep(_, ind), unitary);
Fact (AbsD (eigenphases[ind] - estPhase) < le-2,
$"Expected phase {eigenphases([ind]}, got {estPhase}");

} Checks that the estimated
phase matches the actual one

The test code includes the definitions of Z and INC gates, as well as the operations
that prepare their eigenstates. These definitions are reused by the tests for other
algorithms, so it makes sense to define them separately and to add a test to verify that
the states prepared are indeed eigenstates of these unitaries.

The complete code for this project, including unit tests for each algorithm, is
included in the GitHub repository. Running the project should result in tests passing.
You can convert the project from running as a test to running as a Q# executable
to print the phases returned; this can be useful for experimenting with different
algorithms.

Going beyond

Do you want to spend some more time exploring variations of the problems discussed
in this chapter before moving on to the next topic? Here are some additional ideas
for simpler examples, similar problems and ways to extend these problems if you
want to try your hand at something more challenging:

Defines eigenstates
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In section 5.1, we’ve considered only three example problems, all of them
focused on distinguishing two single-qubit unitaries. Come up with additional
examples of similar problems and solve them. For example, you could try
distinguishing the Z gate from the S gate, or distinguishing four Pauli gates
from each other. You don’t have to limit yourself to standard single-qubit gates;
analyzing multiqubit gates and arbitrary unitaries can be interesting too!
Consider unitaries that can not be reliably distinguished in one shot, for exam-
ple, Ry gate and H gate, or Ry gates with different parameters. Write a program
that will distinguish them with high probability.

In section 5.1, we focused on distinguishing unitary transformations. Think
about a similar problem that would aim to figure out which of the list of possible
measurements the given operation implements (for example, whether the given
operation performs a measurement in the Bell basis or a measurement in the
computational basis). How would you solve this problem?

In section 5.2, we looked at learning the matrix of a single-qubit unitary with real
coefficients. How would you generalize this to multiqubit unitaries? Unitaries
with complex coefficients?

Learn about quantum process tomography for noisy processes. How does the
description of the process you're learning look like?

Most phase estimation algorithms we saw in this chapter were designed for
estimating the phase with a certain precision. Experiment with running them
on inputs with eigenphases that require higher precision to be represented
exactly or don’t have an exact representation in binary. You can use the existing
code for this: try to run one-bit phase estimation on the /NC and T gates, and
two-bit phase estimation on the T" gate. How do different algorithms behave in
this scenario?

Generalize the implementation of the adaptive phase estimation from section
5.3.3 to learn the phase with three or more bits of precision.

Generalize the implementation of the quantum phase estimation algorithm
from section 5.3.5 to learn the phase with three or more bits of precision. (Start
with learning the general form of quantum Fourier transform and implementing
it to run on an arbitrary number of qubits.)

Summary

We can use measurements to learn information not only about quantum states
but also about quantum operations.

To learn a property of a given quantum operation, we use it as a part of a larger
quantum experiment that chooses and prepares a certain initial state, applies
a sequence of operations to it, and measures the result. After we run enough
experiments, we analyze their results to extract the information we’re look-
ing for.
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Similarly to how we can distinguish quantum states using measurements, we
can figure out which of the list of possible gates we are given by applying the
given gate to a carefully selected initial state and analyzing the resulting state.
Quantum process tomography allows us to learn detailed information about an
unknown unitary or a noisy process, similar to how quantum state tomography
allows us to learn information about an unknown quantum state.

Phase estimation task focuses on finding the eigenvalue and eigenphase of the
given unitary that correspond to its given eigenstate. It is an important building
block of many quantum algorithms, most prominently Shor’s algorithm for
integer factorization, quantum counting algorithm, and HHL algorithm for
solving systems of linear equations.

The phase kickback trick relies on the fact that applying a controlled version of a
unitary with the target qubit(s) in a special state can kick a relative phase back to
the control qubit(s) instead of changing the state of the target. Phase kickback
is broadly used in quantum algorithms, and all phase estimation algorithms rely
on it.

There are multiple ways to approach solving phase estimation task. In this
chapter, we considered three solutions that illustrated different classes of algo-
rithms, each of them with their own advantages and disadvantages, depending
on whether they will be executed on small noisy devices or on large fault-tolerant
ones.

Iterative phase estimation algorithm constructs a very simple circuit and runs
it a lot of times to estimate a function of the eigenphase. It uses the smallest
circuit of all phase estimation algorithms but has to run it the most times to get
a reasonable precision on the results.

Adaptive phase estimation algorithms construct a series of different small circuits
that each learn a fragment of information we’re looking for, and run them one
after another, tweaking the later circuits based on the information learned from
the previous ones. These algorithms use fewer circuit runs compared to the
iterative algorithm, but the circuits themselves are more complicated.
Quantum Fourier transform is a common primitive in quantum algorithms.
It is used to convert information between amplitude encoding, in which the
information is encoded in the absolute values of the amplitudes of the basis
states, and phase encoding, in which the information is encoded in the phases
of the complex numbers that represent the amplitudes.

Quantum phase estimation algorithm runs a single circuit that encodes the
information about the eigenphase in relative phases of multiple control qubits
and then applies inverse quantum Fourier transform to make sure that the
basis states that are the closest to the binary representation of the eigenphase
have the largest amplitudes and the highest probabilities of being measured.
Quantum phase estimation uses the fewest circuit runs of all phase estimation
algorithms, but it requires the most qubits and the most complicated circuit.



Part 3

Solving a classical problem
using a quantum algorithm

B y this point of the book, we’ve covered a lot of building blocks of quantum
algorithms and ways to test them. Now, it’s time to put them to practice! The third
and final part of the book follows the end-to-end process of solving a problem using a
quantum algorithm. It includes formulating the problem in quantum terms, coming
up with an algorithm to solve it, implementing the solution, testing it, and evaluating
its quality.

Chapter 6 covers the first step of the workflow, showing how classical functions
can be represented and evaluated as part of quantum computations. Chapter 7
introduces Grover’s algorithm for solving search problems—one of the most famous
quantum algorithms. In chapter 8, you use Grover’s search algorithm to solve the
N queens puzzle, learning to apply a theoretical algorithm to a realistic problem.
Finally, chapter 9 discusses the performance of quantum programs running on
fault-tolerant quantum computers. It dives into comparing quantum solutions with
classical ones to figure out whether a quantum algorithm has the potential to show
practical quantum advantage for a given problem.






Evaluating classical
Junctions on a
quanium compuler

This chapter covers

Implementing classical functions on a
quantum computer as reversible computations

Implementing Boolean logic functions as
guantum operations

Using Q# and Qiskit to implement reversible
computations

Testing reversible computations

The problems we considered in the previous four chapters, versatile as they are,
all have something in common. These problems either have no classical analogue
(how do you even define an eigenphase of a classical function?) or that analogue
is so simple that it doesn’t make sense to think of it as a separate problem, such as
assigning a value to a variable or reading out the value of the variable.

But ultimately, the goal of quantum computing is to solve problems that are for-
mulated irrespective of whether they are going to be solved on a classical computer
or a quantum one. These problems can be classical or quantum in nature, but they
have classical inputs and aim to find classical answers. For example, the N queens
puzzle that we’ll consider in chapter 8 is a purely classical problem, with the puzzle
dimensions serving as the input and the queens’ placement as the output. Finding
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the ground state energy of a molecule, on the other hand, is a quantum-mechanical
problem, but its input is a set of numbers that describe the molecule structure, and
its output is a single number, the ground state energy. The tasks we solved so far
were not the problems we aim to solve, but rather the building blocks for algorithms
that will solve these problems.

In this chapter and the next three, we will switch gears and discuss solving classical
problems on a quantum computer. Figure 6.1 illustrates the general outline of the
steps involved in doing that.

Convert classical Pick and implement Evaluate quantum
problem description quantum algorithm program performance to
to quantum. to solve the problem. compare with classical.
Classical Quantum Code Performance
problem problem . . y
s o implementation evaluation
description description
We start with the Quantum description Quantum program We want our quantum
classical problem allows us to come up with allows us to run and solution to perform
we aim to solve. a quantum algorithm. evaluate our solution.  better than classical.

Figure 6.1 To solve a classical problem on a quantum computer, we start by converting the problem
to its “quantum” formulation to which we can apply a quantum algorithm. After this, we implement the
algorithm itself as a quantum program. Finally, we evaluate the performance of the quantum program
and compare it to that of the best classical algorithm for solving the same problem. This way, we can
see whether this quantum algorithm offers a practical advantage over the classical approaches.

First, we take the problem we’re aiming to solve and convert its classical description
into “quantum” terms. This can involve rephrasing it from informal language into
formal mathematical definitions or extracting the parts of the problem that can be
solved using quantum methods and leaving the other parts to be handled by a classical
computer. For example, in Shor’s integer factorization algorithm, the task of finding
prime factors of the given number is rephrased in terms of finding a period of a
classical function that multiplies the number by a constant modulo another constant.
Only a small part of the end-to-end solution is quantum. The final answer is obtained
using classical postprocessing of the results produced by the quantum component.
Some intermediate parts of the solution can also be classical, such as calculating the
cosine-sine decomposition we used to implement unitaries in chapter 3.

Next, we implement the algorithm for the quantum formulation of the problem
as a quantum program. If some parts of the solution end up being classical, we get a
hybrid program that will include both quantum and classical code acting together.

Once we’ve implemented the algorithm, we test it, checking that our code doesn’t
have bugs and produces the results we’re looking for. We might write unit tests that
test individual building blocks of the algorithm separately or end-to-end tests that
run the whole algorithm and check that its results are correct. We will see examples
of both in the next two chapters.
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The final step is evaluating the algorithm performance on large problem instances.
Since our goal is to find quantum algorithms that offer practical advantage over their
classical counterparts, we need to make sure that we can compare the performance
of our quantum program to that of the best classical algorithm solving the same
problem. We will discuss the performance of quantum algorithms in chapter 9.

The example I will use throughout the next four chapters is the search problem—the
problem of finding a set of variable values that satisfy a certain set of conditions. The
search problem example I’ll use in this chapter is Boolean satisfiability problem—the
problem of finding an assignment of values to the Boolean variables that turns the
given Boolean expression true. The search problem is a great getting started task for
the topics I'll cover in these chapters for several reasons:

The classical problem description is simple enough that understanding it does
not require specialized knowledge, unlike problems in chemistry and material
simulation.

Solving this problem involves converting classical task descriptions into their
quantum representations, which is an extremely important topic in quantum
computing (we will discuss it in this chapter).

The algorithm for solving this problem, Grover’s search algorithm, is straight-
forward to implement, as we will see in chapter 7.

Finally, Grover’s algorithm is a gateway to fascinating discussions of quantum
algorithms’ performance. This algorithm offers a theoretical advantage over its
classical counterpart in the most general case, but it turns out to be unlikely
to offer a practical advantage when we take into account all the aspects of its
implementation and execution on a quantum computer!

In this chapter, we will focus on the first step of solving a classical problem: converting
the problem into quantum terms that can be implemented on a quantum computer.
This subdomain of quantum computing is called reversible computing. We will start
with a definition of what “reversible computing” means in classical and quantum
context.

We’ll look into implementing some simple example functions next and discuss
testing our code. This will be very important later in the chapter, once we start
implementing more complicated functions that are more prone to bugs creeping in.

The final project for this chapter will focus on evaluating classical functions de-
scribed as Boolean expressions—the core of the Boolean satisfiability problem. As
I walk you through solving it, you’ll learn all the main principles of working with
quantum reversible computations that you will need for the problem we consider in
the next chapter.

Reversible computing: Mapping classical computation
onto quantum
When we want to run a classical computation on a quantum computer, we start by

establishing the rules we’ll use for mapping classical variables onto quantum states
and classical operations onto quantum gates. Let’s consider a classical function f(x)
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that acts on a classical input x and produces a classical output f (). The input and
the output can be represented in multiple equivalent ways; figure 6.2 shows several
simple examples.

Array of

Boolean values /\¥| true true false |
Array of bits /\,| 1 1 0 |
Integer \

(big-endian) ~ v 6

Integer 3
(little-endian) ~ v

Figure 6.2 The inputs and outputs to any function can be represented in several
equivalent ways. An array of Boolean values true and false is the same as an array
of bits 0 and 1, which can then be interpreted as a binary notation of an integer.
For integers, make sure to track whether the notation you use is big-endian (most
significant bit stored first) or little-endian (least significant bit stored first)!

Classical values that serve as input or output for the function might be arrays of
Boolean values, arrays of bits 0 or 1, or integers written as their binary notations.
(More complicated types such as real numbers or data structures follow the same
principles, but we won’t need them in this book.) These representations can be easily
converted one into another. We usually map Boolean values true and false onto
bits 1 and 0, respectively. When mapping an integer onto a bit array, you have to
keep track of the endianness used for this: a bit array 110 can represent an integer
6 if interpreted as big-endian (most significant bit written first) or an integer 3 if
interpreted as little-endian (least significant bit written first).

How can we implement a quantum algorithm that takes an input « and calculates
the value of the classical function f(x)? We will use an array of qubits to represent
the quantum input to this algorithm, with each qubit corresponding to one bit of the
classical input. We map classical bits 0 (false) and 1 (true) onto the basis states |0)
and |1), so any classical input x is mapped onto a basis state |x). Any superposition of
the basis states is then interpreted as a superposition of several classical inputs. Our
ultimate goal is to find a sequence of quantum gates that takes an array of qubits as
the input and transforms its state in such a way that the values of the function f for
all basis states that were part of the initial state are encoded in the resulting state.

NOTE This phrasing might seem a bit vague. This is intentional! The precise
definition of the quantum analogue of a classical computation can depend on
the function we want to compute and on the way we plan to use the results
later. In this chapter, we’ll work through several possible interpretations and
see examples of simple functions for which they work and, just as importantly,
examples for which they don’t.
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Before we start looking at examples of functions and figuring out how to implement
them, we need to discuss some key differences between classical and quantum com-
putations. Classical computing allows us to do a lot of things that cannot be done in
quantum computing or have to be done differently. You might have heard of the
no-cloning theorem, which shows that you cannot replicate an arbitrary unknown quan-
tum state. Its less known counterpart, the no-deletion theorem, shows that you cannot
erase arbitrary information from one part of a quantum system using only quantum
gates. This means that we need to come up with special tricks to use whenever we
need to copy a variable value, erase the old information stored in a variable, use
temporary local variables, and in other scenarios that are perfectly commonplace in
classical computing.

The key property of quantum systems that causes these limitations is the reversi-
bility of quantum computations. Figure 6.3 illustrates reversible and nonreversible

functions.
flx)=0 flx)y=a2mod2 f(z)=(zx+1)medd flz)=3—2x
00—=@0 00—=00 0 ®0 0 0
1 o1 1 1 1 @1 1 @1
2 @2 2 @2 2 o2 2 @2
3 @3 3 o3 3 ®3 3 3
Nonreversible functions Reversible functions

Figure 6.3 A classical function is reversible if it converts each input to exactly one output,
and each output is produced by exactly one input. In other words, the input that produced
a certain output can be restored from that output.

We call an operation (classical or quantum) reversible if the input (or the initial state)
can be computed from the output (or the final state), and vice versa. In mathematical
terms, reversible operations are known as bijections or one-to-one mappings: each input
is mapped to exactly one output, and each output—to exactly one input.

NOTE We are discussing logical reversibility, which deals with the properties of
the logic of computation. You might encounter a different kind of reversibility
in physics: physical reversibility describes physical processes that result in no
increase in entropy. Since we discuss only the logic of computation in this book,
I use “reversibility” to refer to the first meaning without extra qualifiers.

For example, a classical function on n-bit integers f(x) = (2" — 1) —x is reversible,
since the input x¢ that produced a certain output value f can be recovered easily by
applying the same function to the output:

Jo)=2"-1-fo=2"-1-f(x9) =2"-1-(2" -1 -x0) =0
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A classical function f(z) =0, on the other hand, is not reversible. Any input could
have produced the output value 0, and we don’t have a way to figure out which input
it was.

In quantum computing, all quantum gates are reversible by definition. Remember
that all quantum gates are unitary; each gate has an adjoint variant that acts as its
inverse. If you apply a unitary gate U to an initial state |¢/) and get the final state
|¢) =U |y}, you can recover the initial state from |¢) by applying the adjoint of U to
that state:

U gy =U"U ly) =1y)

Quantum measurements, on the contrary, are not reversible: multiple quantum states
can yield the same measurement result, and there’s no way to revert the collapse
of the quantum state caused by measurement. We do not use measurements to
implement reversible classical functions on a quantum computer, since they would
make it impossible to carry out the computations on superpositions of basis states.

While the classical function that we want to evaluate on a quantum computer may
or may not be reversible, the resulting quantum operations have to be reversible.
This limitation makes implementing classical computations on a quantum computer
somewhat tricky, but there are techniques that allow us to do that in a standardized
manner.

In the rest of this chapter, we’ll look at evaluating increasingly complicated classical
functions on a quantum computer and learn the key techniques of working with
reversible computations in the process.

Evaluating single-bit functions

To start with, let’s look at the simplest possible classical functions: the functions that
take one bit input and produce one bit output. There are only four such functions,
so let’s analyze them in detail. Figure 6.4 shows these functions and the ways they
map the input bit to the output bit.

flz)=0 flz)=1 fl)== fla)=1-z
00—=00 @0 00—=00 0 @0
0/01 1&01 1@0—@1 :><

—

Nonreversible functions Reversible functions

Figure 6.4 Functions f (x) =0 and f (x) =1 are nonreversible: both inputs give the same
output. Functions f (x) =x and f (x) =1 — x are reversible: different inputs are mapped to
different outputs, so you can figure out which input produced the given output.

Despite their simplicity, these functions illustrate some important aspects of reversi-
ble computations, so they are a great place to start. Let’s see how we can compute these
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functions on a quantum computer, and what challenges we face when implementing
functions that are not reversible.

Math

Rather than jump right into the correct way of implementing classical functions
on a quantum computer, I’ll walk you through several approaches that look more
intuitive and show why they don’t work or work only for a limited set of functions.
This way, you should have an easier time understanding the reasoning behind the
final, correct approach.

FIRST ATTEMPT: IN-PLACE COMPUTATION

The functions we’re looking at have one-bit input and one-bit output. This means
that the easiest thing to try is computing the function in-place: find a transformation
that would act on one qubit and have the following effect:

lx) = |f (2))

And for the two of the functions that are reversible it’s actually possible to do that:

For f(z) =z, the in-place transformation is |x) — |f (x)) = |z}, which corresponds
to just applying no gate (or applying the identity gate ).

For f(x) =1 -z, the in-place transformation is |x) — |f(x)) =|1-x)=|1 ®x) =
X |x), which can be implemented by applying an X gate. @ is addition modulo
two, an extremely common operation in reversible computing.

Unfortunately, this idea doesn’t work out for nonreversible functions. No quantum
gate can perform the transformation |x) — |0), since it is not reversible: it maps
multiple initial states to the same resulting state and thus cannot have an adjoint
defined for it. We need to come up with a different approach that we can use for
implementing nonreversible functions and then apply it to the reversible functions
too, so that we have a universal approach to implementing all functions regardless of
their reversibility.

TIP  We will keep the trick of implementing the function 1 -z in-place in
mind for later. This is the negation function NOT if the input and output are
interpreted as Boolean variables, and it is an extremely common building block
for other functions.

SECOND ATTEMPT: PRESERVING THE INPUT AS PART OF THE OUTPUT

We just saw a straightforward attempt to implement a function on a quantum compu-
ter run into issues because of its nonreversibility. Can we make the classical function
reversible first, before mapping it onto a quantum computation?

Following the definition of reversibility, we need to make sure that we can recover
the input to the function from its output value. Let’s try extending the definition
of our single-bit function f(z) to define a new function F(z, y) that acts on two bits
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instead of one: the first bit x will be used as the input, and the second bit y—as
the output. When the new function F acts on these two bits, it leaves the first bit x
unchanged and sets the second bit y to the value of the function:

F(x,y)=(z, f(2))

Now, we can easily find the input « that was used to calculate f(x): it is just the first
bit of the two-bit output!

Unfortunately, this approach doesn’t bear fruit for any functions, not just the
nonreversible ones. It erases the information about the second bit of the input y,
replacing it with information about f (x). And we need to make sure that our function
F(x) is reversible in terms of its complete inputs and outputs; that is, we should be
able to recover both bits x and y that were used as its input.

THIRD ATTEMPT: MAKE THE CLASSICAL FUNCTION COMPLETELY REVERSIBLE

It is actually possible to make the classical function reversible before mapping it onto
a quantum computation by extending the function to act on two bits. We just need
to be a bit more careful about doing that in a way that allows us to recover both bits
of the extended input, not just the bit that stores the original input.

Let’s modity the definition of the extended function F'(z, y) that acts on two bits as
follows. When the function F acts on two bits (x, y), it leaves the first bit x unchanged
and flips the second bit y if the value of the original function f(x) is 1, leaving it
unchanged if f(x) = 0. This tweak allows us to preserve the information about the
input bit y as well:

F(x,y)=(z,y® /()

Table 6.1 shows the examples of converting single-bit functions to two-bit functions
for two of our four functions: f(x) =1 and f(x) =z. This conversion works similarly
for the other two single-bit functions; I encourage you to try and write it down as an
exercise!

Table 6.1 Single-bit functions and their reversible two-bit extensions

Function f (x) | Extended function F'(x, y) | Extended input | Extended output
(0,0) 0,1)
0,1 0,0
flx)=1 F(z,y)=(z,y®1) ©.D ©.9
(1,0) (1, 1)
1,1) (1,0)
(0,0) (0,0)
0,1 0,1
fla)=x F(z,y)=(z,y01) ©.D ©.D
(1,0) (1, 1)
(1,1) (1,0)

Figure 6.5 illustrates the two-bit functions constructed this way and shows that they
are reversible even if the original single-bit function was not reversible.
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flz)=1 F(z,y) = (z,y®1) flz)=x F(x,y) = (v,y ®x)

(0,0) :><. (0,0) (0.0) @—@ (0.0)
0 \. 0 (0,1) @® (0.1) 00—00 01) &—@ (0.1
10—01 (1,0) :><. (1,0) 10—0@1 (1,0) :><. (1,0)
(1.1 @ (1.1) (1.1 @ (1.1)

May or may not /\J

be reversible Always reversible

Figure 6.5 The single-bit function can be reversible, like f (x) =, or not, like f (x) = 1. Adding
an extra bit to the input and output allows us to define the extended function F'(x, y) to be reversible
regardless of whether the original single-bit function was reversible.

With the updated definition of F'(x, ¥), we can find a quantum transformation that
implements it on the two-qubit basis states. Indeed, the effect of the transformation
(z,y) = (x,y ®1) is the same as leaving the first bit alone and changing the second
bit to its negation, and we just saw that this can be implemented by applying an X
gate to the second qubit. For the second transformation, (x, y) — (x, y ®x), its effect
is exactly that of a CNOT gate applied with the first qubit as control and the second
qubit as target.

Similarly, we can analyze the remaining two functions f(z)=0and f(x)=1-x
to realize that the first one can be implemented by doing nothing and the second
one—by applying a controlled-on-zero X gate. This completes the implementation
of all single-bit functions we saw earlier in the figure 6.4.

Evaluating classical functions for inputs in superposition

So far, we only talked about mapping classical functions to quantum operations
that act on basis states. However, we know that quantum operations have to act
on arbitrary quantum states, including superposition states. How can we define the
effect of a quantum operation constructed from a classical function on superposi-
tion states?

Remember that all quantum gates are linear transformations, and superposition
states are linear combinations of basis states. As a result, the effects of a gate U
on a superposition input state 3’; «; |j) can be defined as a linear combination of
the effects of that gate on each basis state:

U ailiy=> a1
Jj j

We can use the linear behavior of quantum operations to derive the effects of an
operation U constructed from a classical function f. Once we've established that
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(continued)

the operation Uy transforms the basis states |x) [y) — |z) [y ® f (x)), we can define
its effect on superposition states:

U D ey ) 9= ) aayU ) ) = D ary 2} ly @ f (2))
z,y z,y €,y

The final approach we end up with includes two steps:

Make the function reversible by preserving its inputs as part of the output and
using a separate bit to calculate the function value. This is the key technique of
reversible computations!

Enumerate all input-output pairs of the reversible variant of the function and
guess the quantum gate that performs the necessary transformation on the basis
states of a quantum system.

The second step was easy to do with our single-bit functions: their reversible variants
act on two qubits, so we needed to analyze only four input-output pairs. However,
for more complicated functions we cannot use this approach. The number of input-
output pairs grows exponentially with the increase of the number of bits in the
function inputs and outputs, so enumerating them becomes a challenge, and guessing
the sequence of quantum gates that maps the inputs to the outputs correctly, an
impossibility.

Later in this chapter, we’ll learn a more structured approach that will allow us to
come up with sequences of gates to compute classical functions on quantum comput-
ers systematically and even generate quantum programs that do that automatically.
But first, let’s see the code that implements these single-bit functions and learn to
test this kind of programs.

Observing the effects of reversible implementations
of classical functions

There are multiple ways to showcase the unitary transformation and its effects. We
saw one way to do that in section 3.2, where we used the built-in tools of Qiskit
and Q# to get the unitary matrix implemented by a quantum program.

This approach is not ideal for reversible computations, especially once we move
on from single-bit functions to functions of multiple arguments. Since each opera-
tion we implement corresponds to a classical function, it converts each basis state
to another basis state. This means that the unitary matrices of these operations are
sparse: each row and each column of the matrix has exactly one nonzero element
which marks the output state that corresponds to that input basis state. Sparse
matrices can be inconvenient to read and interpret, especially for matrices of larger
sizes that are extremely common when working with reversible computing.

In this chapter, | use a different way to inspect and later test the effects of
quantum operations that is specific to reversible computations. Since each basis
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state is converted to just one basis state, we can construct a quantum equivalent
of a truth table for the operation: a table that lists all input basis states and their
matching output basis states, similar to the last two columns of table 6.1. We can
generate this table by iterating through all possible basis states and printing the

basis states to which they are converted by the application of the unitary.

In this section, though, we can simplify this approach further. Since our classical
functions only have two inputs, 0 and 1, we can prepare a two-qubit input state
(a]0) + B 1)) ®]0), apply the unitary to it, and print the resulting state. The basis
states |00) and |10) will be converted to |0, f(0)) and |1, f(1)). Using different
amplitudes a and B for these basis states will allow us to keep track of which
basis state was converted to which result.

Qiskit

Functions that implement reversible computations as circuits look just like any other
circuit in Qiskit. We saw examples of such functions in chapter 3 and discussed them
in detail. Here, I’ll focus on the elements that are different when writing the code
and observing its results for reversible computations. The following listing shows the
Qiskit code that implements the four single-bit functions we discussed in this section
as circuits and demonstrates their effects on a simple quantum state.

from math import acos

from giskit import QuantumCircuit, transpile

from giskit.circuit.library.standard gates import XGate

from giskit_aer import AerSimulator

def quantum_zero() :
return QuantumCircuit (2)

def quantum_one () :
circ = QuantumCircuit (2)
circ.x(1)
return circ

def quantum x() :
circ = QuantumCircuit (2)
circ.cx (0, 1)
return circ

def quantum_one minus_x() :

circ = QuantumCircuit (2)

<— f(x) = 0; does nothing

<— f(x) = 1; applies X gate to the second qubit

<— f(x) = x; applies CNOT gate

<— f(x) = 1 - x; applies controlled-on-zero X gate

circ.append (XGate () .control (1, ctrl_state=0), [0, 1])

return circ

simulator = AerSimulator (method='statevector')
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for (quantum_op, f) in [ <— Runs the same demo for each function
(quantum_zero, "f(x) = 0"),
(quantum one, "f(x) = 1"),
(quantum x, "f(x) = x"),
(quantum one minus x, "f(x) =1 - x") ]:
circ = QuantumCircuit (2)
circ.ry(2 * acos(0.6), 0) <— Prepares input qubit in superposition
circ.append (quantum op(), [0, 1]) <—— Applies the reversible operation

circ.save_statevector()

circ = transpile(circ, backend=simulator)

state vector = simulator.run(circ).result () .get statevector()

print (£"Applying operation {f} to the state (0.6]0> + 0.8|1>) [0>:")
print (state_vector.draw(output='latex source'))

The output of this code looks as follows:

Applying operation f(x) = 0 to the state (0.6|0> + 0.8|1>) |0>:
\frac{3}{5} |00\rangle+\frac{4}{5} |0l\rangle

Applying operation f(x) = 1 to the state (0.6|0> + 0.8|1>) |0>:
\frac{3}{5} |10\rangle+\frac{4}{5} |1l\rangle

Applying operation f(x) = x to the state (0.6|0> + 0.8|1>) |0>:
\frac{3}{5} |00\rangle+\frac{4}{5} |11l\rangle

Applying operation f(x) = 1 - x to the state (0.6|0> + 0.8|1>) |0>:

\frac{4}{5} |01\rangle+\frac{3}{5} |10\rangle

The method state_vector.draw(output='latex_source') prints the state vector
of the system as the raw ASCII source of its LaTeX representation. The first formula,
for example, corresponds to the state %lOO) + %|Ol). Using this format makes the
output a bit easier to read compared to the default format (a list of all amplitudes),
since it omits the zero amplitudes and spells out the basis state associated with each
amplitude explicitly.

Notice that in this output, Qiskit reverses the order of qubits printed compared to
their indices in the code: the first qubit of the circuit is printed last in the state, and
the second qubit is printed first. The output produced by the unitary for f(x) =0,
§|OO) + gIOl), is actually our input state, with the input qubit in the state 0.6 |0) +
0.8 1) and the output qubit in the state |0}, just with the order of qubits reversed.

You can see that the effects of the unitaries are exactly what we would expect
them to be: f(x) =0 doesn’t change the quantum state, f(x) =1 always flips the state
of the output qubit, and the other two functions flip the state of the output qubit
conditionally based on the state of the input qubit.

Q#

Operations that implement reversible computations look just like any other opera-
tion that implements a unitary transformation in Qjskit. We saw examples of such
operations in chapter 3 and discussed them in detail. Here, I’ll focus on the elements
that are different when writing the code and observing its results for reversible com-
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putations. The following listing shows the Q# code that implements the four single-bit
functions we discussed in this section as unitary operations and demonstrates their
effects on a simple quantum state.

Listing 6.2 Q#: Single-bit functions as quantum operations

import Std.Diagnostics.DumpMachine;
import Std.Math.ArcCos;

operation QuantumZero(x : Qubit, y : Qubit) : Unit { } <«— f(x)=0;does nothing

operation QuantumOne (x : Qubit, y : Qubit) : Unit ({ jf(x)_l_ applies X gate to
= -y

X(y); the second qubit
1
operation QuantumX(x : Qubit, y : Qubit) : Unit { <— f(x)=x;applies CNOT gate
CNOT (x, V) ;
}
operation QuantumOneMinusX(x : Qubit, y : Qubit) : Unit ({
ApplyControlledOnInt (0, X, [x], y); f(x) = 1 - x; applies
} controlled-on-zero X gate
@EntryPoint ()
operation DemoSingleBitFunctions () : Unit {
fo antumOp, f) in
r (qu ;m P ")f * [_ . Runs the same demo
(QuantumZero, (x) = 0"), for each function
(QuantumOne, "f(x) = 1"),
(QuantumX, "f(x) = x"),
(QuantumOneMinusX, "f(x) =1 - x")
1A
Message ($"Applying operation {f} to the state (0.6]|0> + 0.8|1>) [0>:");
use (x, y) = (Qubit(), Qubit());
Ry (2.0 * ArcCos(0.6), x); <—— Prepares input qubit in superposition
quantumOp (x, y); <—— Applies the reversible operation
DumpMachine () ;

ResetAll ([x, vy1);

The output of this code looks as follows:

Applying operation f£(x) = 0 to the state (0.6]/0> + 0.8|1>) |0>:
Basis | Amplitude | Probability | Phase
00> | 0.600040.0000i |  36.0000% |  0.0000
[10> | 0.8000+0.00001i | 64.0000% | 0.0000
Applying operation f(x) = 1 to the state (0.6]|0> + 0.8|1>) |0>:

Basis | Amplitude | Probability | Phase
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|01> | 0.6000+0.00001 | 36.0000% | 0.0000
[11> | 0.8000+0.00001 | 64.0000% | 0.0000
Applying operation f(x) = x to the state (0.6]|0> + 0.8|1>) |0>:
Basis | Amplitude | Probability | Phase
|00> | 0.6000+0.00001 | 36.0000% | 0.0000
[11> | 0.8000+0.00001i | 64.0000% | 0.0000
Applying operation f£(x) = 1 - x to the state (0.6]|0> + 0.8]|1>) |0>:
Basis | Amplitude | Probability | Phase
|01> | 0.6000+0.00001 | 36.0000% | 0.0000
[10> | 0.8000+0.00001i | 64.0000% | 0.0000

The operation DumpMachine we saw in earlier chapters prints the quantum state as a
list of basis states and their amplitudes. Unlike in Qiskit, the ordering of qubits in
the outputs matches their order in the program.

You can see that the effects of the unitaries are exactly what we would expect
them to be: f(x) =0 doesn’t change the quantum state, f(x) =1 always flips the state
of the output qubit, and the other two functions flip the state of the output qubit
conditionally, based on the state of the input qubit.

Testing reversible computations

How can we test our code that implements classical computations on a quantum
computer? These tests should ascertain that the results of the computation done by
the quantum program match the expected results calculated classically. We can check
this directly using a similar approach to the one we saw in the previous section. Figure
6.6 shows the logic of testing reversible computations by comparing the results of
the quantum computation to the results of the classical computation it implements.
These tests rely on listing all possible inputs to the classical function and checking
that the quantum computation gives a correct answer for each of these inputs. The
sequence of steps for one input x looks as follows:
Use the classical function f to calculate the expected output value f(x). We will
use this result later to validate the results of the quantum computation.
Prepare the basis state that encodes the classical input |x) and the basis state |0)
to be used as the inputs to the quantum operation.
Apply the quantum operation to the state |x) |0).
The state of the system after this should be |x) |f(x)). The test needs to run
several checks on the resulting state:
Is the resulting state a basis state or a superposition state? The result of
applying a properly implemented reversible computation to a basis state
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Calculate the expected output
using the classical function.

Classical input 5 Classical output

T f(z) .

AN
N

Prepare the basis : h
state that encodes —— 1 Is the output
the classical input. Y register | f(2))?

Quantum initial state Quantum resulting state Is the input
|z} |0) 2 |z) | f(x)) \ register |2)?

Is the result
Calculate the actual output a basis state?

using the quantum operation.

Figure 6.6 To test reversible calculations, we verify that the quantum operation produces the expected
results on all basis states. For each input xr, we prepare the quantum input in the state |x) and the output
in the |0) state and apply the quantum operation. The test then runs a series of checks on the resulting
state, using the classically computed value f (x) as part of the verification process.

should be a basis state. However, if you know your code uses only the X
gate and its controlled variants, as is typically the case for the code that
implements reversible computations, and doesn’t use any gates that can
introduce superposition, you can skip this check.

Are the qubits that store the output value indeed in the |f(x)) state? This
check uses the classically computed value of the function. Notice that we can
skip running a similar check on the input |x) |1) and verifying that the result
of the computation is |z) |1 ® f (x)). As long as the code doesn’t do any weird
things like using the output qubit as control for any gates (it shouldn’t!), this
check would not give us any new information.

Are the qubits that store the input value still in the |x) state? This check is
important, since reversible computations are not supposed to change their
inputs. We will see examples of more complicated reversible computations
that show the importance of preserving the input state later in this chapter.

Why are these checks sufficient to convince ourselves that our code is correct in all
cases, not just when we apply it to the basis states? Remember that we defined the
effects of the operation we’re implementing based on its effects on the basis states
using the linearity of quantum operations. If our code doesn’t use any nonlinear
operations (measurements) or any gates that can introduce superposition (gates
such as i and Ry) or a relative phase (phase gates such as Z, S, and 7', or rotation
gate Rz), but only the X gate and its controlled variants CNOT, CCNOT, and so on,
we can show mathematically that the behavior of the code on superposition states
will be correct as long as it behaves correctly on the basis states. Later in this chapter,
we’ll see that the general method of implementing reversible computations relies
only on the X gate and its variants, thus this approach to testing has merit.



170

6.3.1

CHAPTER 6  Evaluating classical functions on a quantum computer

The exact way these checks can be implemented depends on the toolkit you’re
using and the tools it offers. Let’s see how to write the tests for the four single-bit
functions we implemented in section 6.2 in Qiskit and Q#.

Qiskit

We use the Aer simulator and the method save_statevector it adds to the circuit to
get the state of the system at the end of the program. If you need a refresher of how it
works, see section 2.2 in which we used the same approach to test our state preparation
code. The following listing shows the Qiskit test code for the implementations of
single-bit classical functions from listing 6.1.

from cmath import isclose

from giskit import QuantumCircuit, transpile
from giskit_aer import AerSimulator

import pytest

from .single bit functions import *

def f_zero(arg): Defines classical functions implemented
return False by each reversible operation

def f one(arg):
return True

def £ x(arg):
return arg

def f one minus x(arg) :
return not arg

Uses matching pairs of classical
functions and quantum
operations for tests

simulator = AerSimulator (method='statevector')

@pytest.mark.parametrize ("quantum op,f",
[ (quantum_zero, f_zero),
(quantum _one, f one),
(quantum x, f x),
(quantum_one minus_x, f_ one minus_x)])
def test reversible computation(quantum op, f):

for input in [False, True]l: <— lterates over all classical inputs
circ = QuantumCircuit (2)
if input: <~—— Prepares basis state as quantum input
circ.x(0)
circ.append(quantum op(), [0, 1]) <— Applies quantum operation

expected = f (input) . .
Flips the state of the output qubit

if expected: if classical function value is 1
circ.x (1)

if input: <—— Uncomputes the input basis state
circ.x(0)
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circ.save_statevector()

circ = transpile(circ, backend=simulator) If the result is correct, state
. . vector should be |00>.
res = simulator.run(circ) .result ()

state_vector = res.get_statevector () .data

non_zeros = [not isclose(amp, 0, abs_tol=1le-9) for amp in state_vector]
if any(non_zeros[1l:]): <— Result is incorrect.
prefix = f"Error for x={input}:"

count = non_zeros.count (True) Mo&thanone
. basis state present.
if count > 1:
raise Exception(f"{prefix} the state should not be a superposition")

index = non zeros.index (True{)—l 0_utp.u-t is the_ most
if index // 2 > 0: significant bit.

raise Exception(f"{prefix} expected {expected}, got {not expected}")
else:

raise Exception(f"{prefix} the state of the input qubit changed")

In this code, we aim to end with the qubits in the |00) state if the results of the quantum
operation are correct. To do this, we take two additional steps after applying the
quantum operation to the input:

We flip the state of the output qubit if the value of the classical function is 1 and
leave it unchanged if the value is 0. This returns the state of the output qubit to
|0) if its state matched the function value and makes it |1) if it didn’t.

We undo the preparation of the qubit that served as the input by applying an
X gate if the input bit was 1. This returns the state of the input qubit to |0) if
its state was unchanged by the quantum operation and makes it |1) if it was
changed.

The expected result of running the code is four passing tests, one for each function.

There are multiple ways to write Q# tests for reversible computation. We saw one
way to do that in section 2.4, where we used the Python API to get the state of the
program after its execution and then analyzed it using Python. Here, I will use a
different approach, keeping the test logic in Q# code and using a Python wrapper
only to call Q# tests.

Listing 6.4 shows the Q# test code for the implementations of single-bit classical
functions from listing 6.2.

import Std.Diagnostics.CheckAllZero;

function FZero(arg : Bool) : Bool { Defines classical functions
return false; implemented by each

reversible operation
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function FOne(arg : Bool) : Bool {

return true;

function FX(arg : Bool) : Bool {

return arg;

function FOneMinusX(arg : Bool) : Bool ({

return not arg;

operation AssertOperationImplementsFunction (

op : (Qubit, Qubit) => Unit,

f : Bool -> Bool

: Unit {

use (x, y) = (Qubit(), Qubit()); Iterat.es o.ver all
for input in [false, true] { classical inputs

if input { ‘ Prepares basis state
X (%) ; as quantum input

1

op(x, y); —<—— Applies quantum operation

let expected = f (input) ; . .
Flips the state of the output qubit

if e(XI)OECted { if classical function value is 1
X(y);

1
if input { <—— Uncomputes the input basis state
X(x);

}

if not CheckAllZero([y]) ({

fail $"Error for x={input}: expected {expected}, got {not expected}";

}

if not CheckAllZero([x]) ({

fail $"Error for x={input}: the state of the input qubit changed";

The logic of this test is the same as the one we just saw in Qiskit code: we aim to end
with both qubits in the |0) state if the code was correct. Q# operation CheckallZero
returns true if all qubits in the given array are in the |0) state and false otherwise. We
can use it to access the internal state of the simulator from Q# code without going

through Python.

Listing 6.5 shows the Python test code used to invoke the tests from listing 6.4.

Listing 6.5

Python wrapper for Q# tests for reversible single-bit functions

from gsharp import init, eval

import pytest
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@pytest.mark.parametrize("op", ["Zero", "One", "X", "OneMinusX"])
def test single bit function (op) :

init (project_root='.")

eval ("Test.AssertOperationImplementsFunction (" +

f"ReversibleComputing.Quantum{op}, Test.F{op})")

You can see that the only logic implemented in Python is calling the Q# tests for match-
ing pairs of classical functions and their quantum implementations. The expected
result of running this code is four passing tests, one for each single-bit function we
implemented.

Evaluating Boolean operations

Now that we have defined how we want to map classical computations onto quantum
ones and looked at simple single-bit examples, let’s take the next step and think
about how we can construct the mappings for more complicated functions. Ideally,
we want to do this systematically in a way that can be automated, rather than by
coming up with an ad-hoc quantum circuit for every classical function we need to
implement.

A similar problem arises in classical computer engineering when a high-level
description of the desired circuit behavior needs to be converted into a low-level
implementation of logic gates. This step is called logic synthesis, and is carried out
by tools called synthesis tools. Can we borrow some ideas and tools from this classical
approach to address our quantum problem? The answer is yes!

Figure 6.7 shows a systematic approach to solving our problem based on classical
logic synthesis techniques. In quantum computing literature, it is typically referred
to as synthesis of reversible logic circuits.

Break down high-level
function description
into primitive gates.

Replace primitive
logic gates with their
reversible equivalents.

Replace classical
reversible logic gates
with quantum gates.

High-level Circuit of Circuit of

) - . Quantum
classical primitive reversible B

- . } circuit
function logic gates logic gates

Figure 6.7 To convert a classical function into its quantum implementation, we start by representing it
as a sequence of Boolean logic gates. Then, we replace each gate with its classical reversible equivalent.
Finally, each classical reversible logic gate is replaced with a quantum gate that implements it.

Synthesis of quantum circuits for reversible computations consists of several steps:
A high-level description of the classical function we want to implement is broken
down into a sequence of primitive Boolean logic operations, such as AND, OR,
and NOT. This can be done automatically using classical synthesis tools!
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Each Boolean logic operation is replaced with its classical reversible equivalent.
This step is similar to what we did to make our single-bit functions reversible
before mapping them onto quantum gates.

Finally, the classical circuit of reversible Boolean gates is converted into a quan-
tum circuit. This is not as straightforward as just replacing each classical gate
with a quantum one (later in this chapter we’ll see why), but this can be done
systematically.

In the rest of this chapter, we will see how this process works for a specific problem.

We’ll start with looking at a small set of primitive Boolean logic operations com-
monly used in synthesis to see how they can be implemented as quantum circuits.
Table 6.2 shows the truth tables of the main Boolean operations that act on one and
two bits.

Table 6.2 The truth tables of the main Boolean operations

xo | x1 NOTxy | xg ANDx; | 2o ORx; | x9 XORx; | x9 EQUAL x;
0 0 . 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 0
0
1 1 1 1 0 1

This set of operations includes both the basic operations of Boolean algebra and
some higher-level operations that we’ll use in the remainder of this chapter and the
next one:

AND, OR, and NOT are the basic operations of Boolean algebra.

Equality and XOR (also known as sum modulo 2) are commonly used secondary
operations—operations composed of a few basic Boolean operations.

Two additional operations not shown in the table are the generalizations of the
AND and OR operations that act on more than two arguments. The truth tables
for these generalizations are both unwieldy and not particularly interesting: the
AND of multiple bits is 1 if and only if all the bits are 1, and the OR of multiple
bits is 1 if and only if at least one of the bits is 1.

Let’s see which of these operations are reversible already, how to make the rest
reversible, and how to convert them into quantum operations.

Math

In this section, I’ll take a uniform approach to implementing all Boolean operations
that matches the last two steps of the more general approach we saw in figure 6.7:

Make the Boolean operation reversible.

We’ll use the tricks we came up with for single-bit functions in section 6.2:
preserving the input as part of the output and using a separate bit to compute
the output. To do this, we will replace a function f (x) with an extended function
F(x,y)=(x,y® f(x)). Unlike in section 6.2, the input  can consist of several
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bits. The output y will still be a single bit, since all Boolean operations we’ll
consider have one-bit outputs.
Replace the reversible operation with its quantum implementation.

Some Boolean operations are already reversible and thus allow a different, in-place
implementation that doesn’t use an extra bit to store the output. I'll note these
alternative implementations whenever this happens, since they can be convenient in
some cases.

NOT

Classical NOT gate is the only Boolean logic operation that is already reversible.
Indeed, NOT 0=1 and NOT 1 =0, and we can recover the input value that produced
the given output value by applying the NOT gate to that output value.

This means that for the NOT gate, we can skip the step of making it reversible,
and compute it in-place. The effect its quantum implementation on the basis states
looks familiar too: a gate that converts |0) to |1) and vice versa is just the X gate!

However, sometimes it can be useful to apply the NOT gate out-of-place, using an
extra bit to store the output. For example, evaluating more complicated functions
that we’ll see in section 6.5 requires calculating several intermediate values based
on the input bits and then using these intermediate values to get the final result. If
one of these intermediate values is the negation of one of the input bits, we cannot
compute it in-place, since this would affect the calculation of the other intermediate
values evaluated later.

The extended function that calculates the NOT gate out-of-place is

Ivor(z,y)=(x,y®NOT x)=(z,y®xd 1)

The quantum circuit that evaluates this function consists of two gates:

A CNOT gate converts the input |x) [y) into |x) [y ®x).

After that, an X gate applied to the second qubit converts |z) |y ®x) into
|z) [y ®@x @ 1). This X gate can also be applied before the CNOT; these gates
commule, that is, the order in which they are applied does not change the result.

NOTE You might have noticed that the Boolean function f(x) =NOT z is the
same as the one-bit function f(x) =1—-x we saw earlier in this chapter, but
the circuit we use to calculate it is different. Different sequences of gates can
end up performing equivalent transformations! You can check that applying
a CNOT gate followed by an X gate on the target qubit is equivalent to a
controlled-on-zero X gate.

XOR

Classical XOR gate is not one of the basic Boolean operations, but it’s a good startin
g P 8 g

point for the discussion about implementing two-bit Boolean operations. The XOR

gate is not reversible, since each of its outputs is produced by two different inputs.
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Pigeonhole principle

More broadly, if an operation has more input bits than output bits, it cannot be
reversible, since it's impossible to establish a one-to-one mapping between inputs
and outputs. This follows from the pigeonhole principle—the observation that if you
put n items into m < n containers, at least one container will have more than one
item. In our case, the items are inputs and the containers are outputs.

In particular, this means that none of the two-bit Boolean operations are reversi-
ble, since each of them has four possible inputs and only two outputs.

However, we can make XOR reversible by preserving only part of its input, rather
than the whole input. One possible definition of the extended XOR function is

Fxor(xo, 1) = (20, 20 XOR 1) = (20, 10 ® 21)

This function is its own inverse, so we can use it to implement the XOR function
in-place. Its quantum implementation is familiar again: it’s just the CNOT gate!

The extended function that calculates the XOR gate out-of-place acts on three bits
(two input bits that we preserve and one bit to calculate the output) and is defined
as follows:

Fxor(xo, x1,¥) = (20, x1, y ®x90 XOR 1) = (20, X1,y ® 20 D 21)

There is no single standard quantum gate that would implement this function. Instead,
we can use two CNOT gates, with each of the inputs x9 and x; as control and the
outputy as the target:

CNOT,, CNOT,,
(0, x1,y) —  (xo,21,¥y®x0) — (20, 21,y D20 Dx1)

EQUALITY

Classical equality function is very similar to XOR and can, in fact, be implemented as
a combination of two functions we’ve seen earlier:

20 EQUAL z; =NOT (29 XOR 17)

TIP  Any time you need to check that two reversible computations are the same,
you can do it by writing down their truth tables and comparing them. Remember,
quantum computations that don’t involve measurements are linear and thus
are completely defined by their effects on the basis states, which for reversible
computations are the same as the truth tables of classical computations.

Since we’ve seen that the NOT function can be computed in-place, the out-of-place
quantum implementation of the equality function can be done on three qubits (same
as XOR) as follows:

Implement XOR out-of-place using two CNOT gates, with each of the inputs x
and x; as control and the output y as the target.
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Apply in-place NOT to the result stored in the output bit.

This scenario is an excellent example of evaluating the NOT function in-place. Since
it’s the last step of the computation, and we’re negating the final result rather than
an input or an intermediate variable, we don’t need to use out-of-place evaluation.

AND AND MULTI-BIT AND

The next classical function on the list is AND. It is even “less reversible” than XOR,
since it has three different inputs mapped to the same output 0. This means that
we cannot implement it in-place, we have to preserve both bits of input to make it
reversible.

The extended AND function acts on three bits and can be defined as follows:

Fano (20, @1, ) = (20, 21, y ® 20 AND 27)

The quantum implementation of this function is just the CCNOT gate, or, in other
words, the controlled-NOT gate with two control qubits. Indeed, we need to flip the
state of the output qubit if and only if the AND of the two inputs equals 1, that is,
when both inputs are 1—and that’s exactly the definition of a controlled gate!

The generalization of the AND function that acts on three or more inputs follows
the same principle. Since all inputs except one produce the same output 0, we know
that we need to preserve all bits of inputs to make the function reversible. We can
implement the logic using a controlled-NOT gate with all inputs as controls and the
output as a target.

OR AND MULTI-BIT OR

The last classical function in this section is OR. It behaves very similarly to AND: it
has three different inputs mapped to the same output 1, so we have to preserve both
input bits to make it reversible.

The extended OR function acts on three bits and can be defined as follows:

For(xg, x1,y) = (20, 21,y ®x9 OR 21)

However, we don’t have a standard quantum operation that would implement this
transformation. Instead, we’ll represent the OR function as a combination of AND
and NOT functions using De Morgan’s laws:

xXo OR x = NOT ((NOT x()) AND (NOT xl))

This formula allows us to evaluate OR of two bits in the following steps:

Evaluate the negations of the input bits NOT xy and NOT x;. We can do this
in-place, since each input is used in the computation only once, and modifying
them will not accidentally impact a different part of the computation. We’ll
need to keep in mind that we’ve modified the input bits for later, though.
Evaluate the AND of these two values.
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Evaluate the negation of the AND to get our OR value. We can do this in-place
as well, since this is the final result of the computation.

Finally, we need to undo the changes we did to the input bits on the first step,
since the overall computation must leave the inputs unchanged.

These steps correspond to the following sequence of quantum gates:

Apply X gates to each of the input qubits.

Apply a CCNOT gate with two input qubits as controls and the output qubit as
the target.

Apply an X gate to the output qubit.

Apply X gates to each of the input qubits again.

We can swap the last two steps and rewrite them to simplify the quantum program
and to express its logic better. Applying a controlled gate with a series of X gates
applied to each of the control qubits before and after the controlled gate itself is
equivalent to applying the controlled-on-zero variant of the same gate. (Again, you
can check this by verifying its effect on all basis states.) Indeed, the effect of the OR
function can be described as “0 if all inputs are 0, and 1 otherwise”, which is the
negation of “I if all inputs are 0, and 0 otherwise”—and this last function is exactly
the effect of the controlled-onzero X gate.
This gives us the final implementation of the OR function:

Apply a controlled-on-zero X gate with two input qubits as controls and the
output qubit as the target.
Apply an X gate to the output qubit.

The generalization of the OR function that acts on three or more inputs follows the
same principle as that of the AND function and uses the same implementation as
the two-input OR function, with the controlled-on-zero X gate using all input qubits
as controls.

Now, let’s see the implementations of these functions in the code.

Qiskit

Listing 6.6 shows the Qiskit code that implements the Boolean operations we dis-
cussed in this section as circuits. The code is very similar to that we saw earlier in this
chapter and doesn’t use any new language features.

from giskit import QuantumCircuit
from giskit.circuit.library.standard gates import XGate

def quantum_not () :
circ = QuantumCircuit (2)
circ.cx (0, 1)
circ.x(1)
return circ

def quantum_xor () :
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circ = QuantumCircuit (3)
circ.cx (0, 2)

circ.cx (1, 2)

return circ

def quantum_equal () :
circ = QuantumCircuit (3)
circ.cx (0, 2)
circ.cx (1, 2)
circ.x(2)
return circ

def quantum_and() :
circ = QuantumCircuit (3)
circ.cex (0, 1, 2)
return circ

def quantum_or() :
circ = QuantumCircuit (3)
circ.append (XGate () .control (2, ctrl state=0), [0, 1, 2])
circ.x(2)
return circ

def quantum multiand(n) :
circ = QuantumCircuit(n + 1)
circ.append (XGate () .control (n), range(n + 1))
return circ

def quantum multior (n) :
circ = QuantumCircuit(n + 1)
circ.append (XGate () .control (n, ctrl_state=0), range(n + 1))
circ.x(n)
return circ

There are multiple ways to show what this code does, for example, use it to print
the truth tables of these Boolean operations. The complete code for this section in
the GitHub repository includes the tests that verify that these circuits are correct by
comparing their effects on the basis states with the results of evaluating the matching
Boolean operations classically. The source code of the tests is effectively the same as
the code from listing 6.3, so I'm not including it here.

6.4.3 Q#
Listing 6.7 shows the Q# code that implements the Boolean operations we discussed
in this section. The code is very similar to that we saw earlier in this chapter and
doesn’t use any new language features.

Listing 6.7 Q#: Implementing Boolean operations as quantum operations

operation Negation(x : Qubit[], y : Qubit) : Unit is Adj + Ctl {
CNOT (x[0], y);
X(y) i
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operation Xor(x : Qubit[], y : Qubit) : Unit is Adj + Ctl {
CNOT (x[0], vy);
CNOT (x[1]1, y);

}

operation And(x : Qubit[], y : Qubit) : Unit is Adj + Ctl {
CCNOT (x[01, xI[11, y);

}

operation Or(x : Qubit[], y : Qubit) : Unit is Adj + Ctl {
ApplyControlledOnInt (0, X, X, V);
X(y)

}

operation Equality(x : Qubit[], y : Qubit) : Unit is Adj + Ctl {
CNOT (x[0], vy);
CNOT (x[1]1, y);
X(y) s

}

operation MultiAnd(x : Qubit[], y : Qubit) : Unit is Adj + Ctl {
Controlled X(x, y);

}

operation MultiOr(x : Qubit[], y : Qubit) : Unit is Adj + Ctl {
ApplyControlledOnInt (0, X, x, Vy);

X(y);

There are multiple ways to show what this code does, for example, use it to print
the truth tables of these Boolean operations. The complete code for this section in
the GitHub repository includes the tests that verify that the implementation of these
operations is correct by comparing their effects on the basis states with the results of
evaluating the matching Boolean operations classically. The source code of the tests
is effectively the same as the code from listing 6.4, so I'm not including it here.

Evaluating Boolean expressions

The last problem of this chapter focuses on evaluating Boolean expressions—functions
built from Boolean variables, Boolean operators AND, OR, and NOT, and parentheses
that define the order in which the expressions should be evaluated.

The Boolean operations xg AND x1, xgp OR x1, and NOT xy we saw in the previous
section are examples of Boolean expressions. However, we already know how to
evaluate Boolean expressions that are as simple as that. In this section, we’ll look
at evaluating slightly more complicated expressions that will allow us to learn more
useful tools for implementing reversible computations.

Evaluating a Boolean expression boils down to evaluating several intermediate
values and then evaluating the top-level expression using the results of calculations
done on the previous steps. This is pretty much how all classical computing works!
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Most reversible computations follow this structure as well, combining results of evalu-
ating multiple smaller functions into a single result. Once you learn to implement
this pattern on a simple example of Boolean expressions, you’ll know how to apply it
to more complicated problems.

We’ll need a couple of definitions to describe the shape of the expressions we
want to evaluate. If you have ever looked at the definition of the Boolean satisfiability
problem, you’ll find them familiar, but they’re worth repeating.

A literal is either a Boolean variable or its negation. Here we only consider
variables that are part of the expression input x, not any values obtained from
them using other Boolean operators. For example, o and NOT x; are literals.
A clause is the result of applying the OR operator to several literals. A clause
can also be a single literal. For example, zo OR x1 and NOT xy OR NOT 7 are
clauses.

A conjunctive normal form (CNF) of a Boolean expression is a single clause or
the result of applying the AND operator to several clauses. For example, the
following expression is a Boolean expression in conjunctive normal form:

(z9 OR x1) AND (NOT zy OR NOT z)

NOTE Is CNF the only way to describe Boolean expressions, or the simplest
one? Neither, actually! Boolean expressions can be written down in many ways.
For example, the lengthy expression above is equivalent to the much simpler
XOR operator xg ® x1. However, every Boolean expression has a CNF, so itis a
convenient universal way to write them down.

We can now formulate the problem we will consider in this section. We are given a
CNF of a Boolean expression with n variables. Our goal is to evaluate this expression
on a quantum computer.

This problem is a great getting started project for this topic. It is easy to define and
covers all the necessary machinery involved in implementing reversible computations.

Math
The classical computation of a Boolean expression takes two steps:

Evaluate each clause as the OR of'its arguments and store the results in temporary
variables.
Evaluate the expression as the AND of the clause evaluation results.

Let’s try and replicate this logic in a quantum computation.

We saw earlier in this chapter that both AND and OR operators have to be com-
puted out-of-place, with their inputs separate from their outputs, to make them
reversible. This means that we’ll need to use extra bits to store the evaluation results
of the OR clauses that will be used as inputs to the final AND. This is easy to do in a
classical program. We can do something similar in the quantum computation as well,
but it will be a little trickier.
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In a quantum program, we can allocate extra qubits temporarily, use them in just
one part of the computation, and then de-allocate, or release, them. Such qubits
are usually referred to as auxiliary, to distinguish them from the qubits that serve as
the inputs and outputs of our computation and thus remain in use throughout the
computation.

Translating the steps of the classical evaluation process into their quantum equiva-
lents naively, we would get the following quantum program:

Allocate auxiliary qubits, one per clause, to store the results of their evaluation.
Evaluate each clause as the OR of its arguments with the matching auxiliary
qubit as the target.

Evaluate the expression as the AND of all auxiliary qubits with the output qubit
as the target.

Release the auxiliary qubits.

This sequence of steps works perfectly, as long as we only ever do quantum computa-
tions on basis states. However, the whole point of evaluating classical functions on a
quantum computer is to carry out the computations on superposition states. And
this is where using the auxiliary qubits starts to become tricky.

In classical computations, we can use any temporary variables and just discard
them whenever we don’t need them any longer. The same is not as easy to do with the
auxiliary qubits once we don’t need the information we stored in them. The auxiliary
qubits can be entangled with the input and output qubits of our computation, and
ignoring this or handling this incorrectly can affect the results of our computation.

Why is leaving auxiliary qubits entangled with the ones we use later in our com-
putation is a bad idea? Remember that entangled qubits cannot be considered in
separation, since by definition they form a single system that cannot be represented
as a combination of two independent groups of qubits. Auxiliary qubits that are
unaccounted for in the theoretical computation can prevent interference in any com-
putation that happens afterward, causing the overall algorithm to produce incorrect
results.

Example: Entanglement preventing interference

Let’s take a look at a small example of how exactly entanglement can prevent
interference from happening properly.

As a reminder, interference is the phenomenon of the amplitudes of certain basis
states cancelling each other out and the amplitudes of other basis states ampli-
fying each other. The simplest example of interference happens when you apply a
Hadamard gate to a qubit to figure out whether it is in the |+) or the |-) state.

If the qubit is in the |+) state, the result of applying a Hadamard gate will be

5 %(I0>+|1>)+%(|0>—I1>))=I0>
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In this case, the amplitudes of the basis state |1) in the sum cancelled each other
out, and the amplitudes of the basis state |0) amplified each other. Measuring the
qubit now will give the result 0 that points to the |+) state. Similarly, if the qubit is in
the |-) state, the amplitudes of the |0) state cancel each other out, and measuring
the qubit gives the result 1, pointing to |-) state.

However, if the same qubit is entangled with another one, the same action of
applying a Hadamard gate and measuring the qubit gives very different results!

For example, let’s say that the qubit is the first qubit in the Bell pair, and we want
to figure out the relative sign between the two basis states in the pair, that is, to
decide whether the state is %(|oo> +[11)) or ‘/i§(|oo> —|11)).

Now, applying a Hadamard gate to the first qubit of the two-qubit system trans-
forms it to one of the following states: 3(|00) +[01) +|10) — [11)) or $(|00) +[01) —
|10) +|11)). These two states behave identically when the first qubit is measured,
giving 0 and 1 results with 50% probability each.

This simple example shows how a single-qubit algorithm stops working if this

qubit is entangled with another. The same happens with other, more complicated
algorithms.

The next natural thing to try is returning the auxiliary qubits to the |0) state to
disentangle them from the main qubits. This is the right approach, as long as it is
executed carefully.

We can not, for example, just measure the auxiliary qubits to break the entangle-
ment. Why? Remember that measuring a superposition state collapses it to a basis
state that matches the measurement outcome. If we measure only the auxiliary qubits,
the state will collapse to a superposition of only those basis states for which the state
of the auxiliary qubits matches the measurement outcomes. Sometimes this can be
useful, but when working with reversible computations, we need to preserve all the
basis states in the input, not just a subset of them, so we can’t have any state collapse,
even a partial one.

The correct approach to disentangling the auxiliary qubits from the main qubits is
called Bennett’s trick. The general form of Bennett’s trick relies on using extra qubits
to store an auxiliary copy of the output; its steps are shown in table 6.3.

Table 6.3 The steps of the Bennett’s trick

Step Input | Auxiliary qubits | Auxiliary output | Final output
Initialize |y |0) |0) [y
Compute the result and
store it in the auxiliary output |x) |aux) |f(x)) [v)

Copy the result to
the final output |) |aux) |/ (x)) lyef(x))

Uncompute the auxiliary output
to return auxiliary qubits to |0) |x) |0) |0) ye/f(x))
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Let’s walk through these steps in more detail. Note that here we discuss all the
transformations as they are applied to the input z, encoded as the basis state |x). In
this context, “copy” means “use CNOT gates to copy the basis states” rather than
“violate the no-cloning theorem by copying the entire state of the register.”

We start with four qubit arrays (some of them might consist of just one qubit,
depending on the problem definition):

The input qubits in the |x) state.

Two auxiliary qubit registers: the auxiliary qubits necessary to compute the
output, and the temporary output register, both in the |0) state.

The output qubits in the |y) state.

At this point, the state of the system is
lz) ®10) ®0) @ |y)

We run the computation using the first three registers. After this, the state of
auxiliary qubits is something we don’t care about beyond them being entangled
with the rest of the qubits, so we’ll denote it [aux):

[z) ® |aux) ® |/ (x)) ® |y)

For our example problem of evaluating Boolean expressions, we would evaluate
the OR clauses and store the results in the auxiliary qubits, then evaluate the
final AND expression and store the result in the auxiliary output qubits.

We copy the computation result from the auxiliary output qubits to the final
output qubits using CNOT gates, one per output bit:

r) ® laux) ® |/ (x)) ® |y & f (2))

Finally, we uncompute both registers of the auxiliary qubits to return them to
the |0) state without measurements. To do this, we apply the adjoint of the
computation we ran on step 2. By definition, it has the following effect on the
system:

lr)®]0)®[0)® |y & f(x))

This sequence of steps can sometimes be simplified, depending on the problem.
For example, when evaluating Boolean expressions, we can avoid using the auxiliary
output qubit and write the computation result directly to the final output qubit.
This will also simplify the uncomputation step. Here is the sequence of steps that is
sufficient to evaluate a Boolean expression:

Allocate auxiliary qubits, one per expression clause, to store the results of their
evaluation. Do not allocate any qubits for auxiliary output.

Evaluate each clause as the OR of its arguments with the matching auxiliary
qubit as the target. If any literals in the clause are negations of input variables
rather than variables themselves, apply an X gate to the corresponding input
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qubits to evaluate the negation of the variable before applying the OR operation
to the inputs. Remember to apply an X gate to those qubits again afterward to
uncompute the changes done to them, same as we did when constructing the
OR operation itself.

Evaluate the expression as the AND of all auxiliary qubits with the final output
qubit as the target.

Uncompute the auxiliary qubits using the adjoint of step 2. In this case, the
adjoint of the transformation is the same as the transformation itself, so we can
just repeat the same steps.

Release the auxiliary qubits now that they were returned to the |0) state.

This kind of procedure can be tricky to wrap your head around at a glance. It takes
practice and experimentation with different problems to really get the grasp of all
the nuances involved. Fortunately, by now you have all the necessary tools at your
disposal! Writing the code allows you to can experiment with the solution by varying
the input states, exploring the system states at different steps, and so on.

Let’s see what the code for our problem looks like.

Qiskit
Listing 6.8 shows the Qiskit code that evaluates a Boolean expression given as its con-

junctive normal form. It relies on circuits quantum multior and quantum multiand
from listing 6.6 as building blocks.

from giskit import QuantumCircuit

def evaluate_clause(n, literals): <—— Circuitthat evaluates one clause
circ = QuantumCircuit(n + 1)
if len(literals) == 0:

return circ

controls = [] Constructs a list of qubits
in literals:

for (ind, neg) to serve as OR inputs

controls.append (ind)

if I_wt neg: Negates inputs that are included
circ.x(ind) in literals with negations

circ.append (quantum multior (len(controls)), <«—— Applies OR to luate the cl
controls + [n])

for (ind, neg) in literals: <—— Uncomputes negation of inputs
if not neg:
circ.x(ind)

return circ
Circuit that evaluates

def evaluate_expression(n, expression): ‘Agjtheexmesmon

n_clauses = len(expression)
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All qubits allocated

at the same time

circ = QuantumCircuit(n + n_clauses + 1)
if n_clauses ==

circ.x(n)
return circ

Evaluates individual clauses and

for (ind, clause) in enumerate (expression) :
T store the result in auxiliary qubits

circ.append(evaluate clause(n, clause),
list(range(n)) + [n + indl)

circ.append (quantum multiand(n_clauses) <— Applies AND to evaluate the expression

range(n, n + n_clauses + 1))

Uncomputes individual clauses

to free auxiliary qubits

for (ind, clause) in enumerate (expression) :
circ.append(evaluate clause(n, clause),

list(range(n)) + [n + ind])

return circ

Notice that in Qiskit, you build circuits that act on a fixed number of qubits, and
you need to specify that number upfront, including any auxiliary qubits you’ll need
to use during the computation. In the circuit produced by evaluate_expression,
the first n qubits are inputs, the next n_clauses qubits are auxiliary qubits, and the
last qubit is the output. You need to always keep the order of qubits in mind when
you're using circuits, whether to interpret the measurement results or to append
these circuits to other, larger circuits that carry out more complicated computations.

The logic of the tests is effectively the same as the one we used in listing 6.3, so
I'm not including it here. The GitHub repository includes the complete project code
with tests for both evaluate clause and evaluate expression. The results of code
execution should be passing tests.

Q#
Listing 6.9 shows the Q# code that evaluates a Boolean expression given as its con-
junctive normal form. It reuses operations Multiand and Multior from listing 6.7.

import Std.Arrays.*;

operation EvaluateClause( <—— Operation that evaluates one clause
X : Qubitl[],
y : Qubit,
literals : (Int, Bool) []
) : Unit is Adj + Cctl {
let controlQubits =
Mapped((ind, ) -> x[ind], literals); <«—— List of qubits to serve as OR inputs

let controlPattern =

Mapped((_, pos) -> pos, literals); -<—— Listof negations in clause literals
within {
Negates inputs that are

ApplyPauliFromBitString (PauliX, false,
T included in literals with negations
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controlPattern, controlQubits);

} apply {
MultiOr (controlQubits, y); <—— Applies OR to evaluate the clause
} Uncomputation done automatically
} by the within-apply construct

operation EvaluateExpression( <—— Operation that evaluates the expression
X : Qubitl[],

y : Qubit,
expression : (Int, Bool) [][]
) : Unit is Adj + ctl {
let nClauses = Length (expression) ; (AAJA”O?“esau“"aqubns
use clauseResults = Qubit[nClauses]; within the operation

within {
for (clause, result) in
Zipped (expression, clauseResults) { Evaluates individual clauses
EvaluateClause (x, result, clause); and stores the result
T in auxiliary qubits

}

} apply {
MultiAnd (clauseResults, y); <—— Applies AND to evaluate the expression
} Uncomputation done automatically
} by the within-apply construct

Qf# has several convenient features that let us express this kind of computation neatly.
First, the language allows you to allocate extra qubits at any time, thus sparing you the
need to keep track of all auxiliary qubits used by the libraries and helper operations
you rely on. Here, operation EvaluateExpression allocates qubits in addition to
those passed to it as the arguments, and no code that calls this operation needs to
know about them. The qubits allocated within an operation start in the |0) state and
have to be returned to the |0) state by the time they are released at the end of the
scope in which they were allocated.

Second, the code uses the within-apply construct called conjugation. This is a
control flow statement that implements the following pattern:

Compute intermediate results using the code in the within block.
Compute the final results using the code in the apply block.

Uncompute the intermediate results using the adjoint of the code in the within
block.

This pattern is common in quantum programs, and having a dedicated language
construct that implements it helps keep the code cleaner and eliminate the bugs
that would be introduced by writing the uncomputation code by hand every time.

The logic of the tests is effectively the same as the one we used in listing 6.4, so
I'm not including it here. The GitHub repository includes the complete project code
with tests for both EvaluateClause and EvaluateExpression. The results of code
execution should be passing tests.



188

6.6

CHAPTER 6  Evaluating classical functions on a quantum computer

Going beyond

Do you want to spend some more time exploring variations of the problems discussed
in this chapter before moving on to the next topic? Here are some additional ideas
for simpler examples, similar problems, and ways to extend these problems if you
want to try your hand at something more challenging:

In section 6.5, we looked at just one form of Boolean expressions, the conjunctive
normal form. For other problems, it can be useful to consider expressions of
similar structure that use different Boolean operations in the clauses. In general,
each clause could use a different Boolean operation to combine literals, and
the formula could use an operation other than AND to combine the clauses.
Modify the code we wrote in this chapter to handle this generalized form of
Boolean expressions.

Consider other examples of classical problems that can be expressed as search
problems for a specific function, such as the graph coloring problem. How
would you approach implementing the functions that describe them? (We will
return to this question in chapter 8.)

In this chapter, we focused on problems that were formulated in terms of
Boolean variables. The other big class of problems are formulated in terms of
numbers—integers or fractions. Try to implement some arithmetic operations
on integers, such as addition, multiplication, or comparison with an integer
constant, as a reversible computation. How do you need to change the test
code to accommodate the switch from functions that have single-bit outputs to
functions that return multiple bits?

Summary

Solving a classical problem on a quantum computer starts with converting the
classical problem description to a “quantum” formulation, which then is used
to implement the quantum algorithm for solving this problem. This is called
reversible computing.

When converting a classical function f(x) to a quantum computation, classical
variables are mapped onto qubit arrays, and classical computations are mapped
onto unitary transformations. The goal is to find a sequence of quantum gates
that mimics the classical function evaluation, transforming the input array in
any basis state |x) so that the value of f(z) is encoded in the result.

A classical function is reversible if it converts each input to exactly one output,
and each output is produced by exactly one input.

The systematic approach to implementing a classical function as a quantum
computation starts with writing the process of its evaluation as a sequence of
primitive logic gates. Each logic gate is then replaced by its reversible equivalent,
and finally, these are replaced with their quantum gate implementations.
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Reversible computing defines the behavior of a quantum operation by specify-
ing its effects on all basis states based on the classical function this operation
implements. Its effect on a superposition state is then defined as a linear combi-
nation of its effects on individual basis states that are part of that superposition
state.

You can make any nonreversible function reversible by extending its inputs and
outputs, keeping the inputs as part of the output and using a separate output
bit to calculate the function value.

You can allocate extra qubits, called auxiliary qubits, to store the values of
temporary variables during the computations.

Uncomputation involves applying adjoint of the parts of the computation you
used to get the final result. You need to uncompute any changes you have done
to the states of the input qubits and the auxiliary qubits to make sure your
computation doesn’t introduce any unexpected side effects.



Grover’s search algorithm

This chapter covers

Using Grover’s algorithm to solve simple
search problems

Implementing simple classical functions on a
quantum computer

Implementing and testing end-to-end quantum
algorithms

Using Q# and Qiskit to implement Grover’s
algorithm

As we saw in chapter 6, solving a classical problem on a quantum computer takes
several steps (see figure 7.1). It starts with converting the classical problem to its
“quantum” formulation that allows us to come up with a quantum algorithm for it.
Then, this algorithm has to be implemented as a quantum program. Finally, we need
to compare the performance of the quantum solution to that of the best classical
solution for the same problem to decide whether using the quantum algorithm for
this problem is a good idea.

In chapter 6, we learned the general approach to the first step, converting a classical
computation that describes the problem into an equivalent quantum computation.
In this chapter, we’ll consider the second step and learn an example of a quantum
algorithm for solving a classical problem. In the last two chapters, we’ll see how to
implement this algorithm as an end-to-end solution for a specific problem and to
evaluate its performance.

190
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Chapters 7-8: implement Chapter 9: compare
performance of quantum
and classical solutions

Chapter 6: convert
classical problem the end-to-end
description to quantum quantum algorithm

Classical
problem
description

Quantum

problem
description

Code
implementation

Performance
evaluation

Figure 7.1 Solving a classical problem on a quantum computer involves converting the problem to its
“quantum” formulation, implementing the quantum algorithm as code, and evaluating the performance of
the quantum solution to compare it to that of the classical algorithms for solving the same problem.

Generally, quantum algorithms are not limited to only quantum computations. In-
stead, they follow a hybrid quantum-classical structure shown in figure 7.2.

Classical postprocessing:
Convert quantum output
to the final answer

Classical preprocessing:
Prepare inputs for
the quantum algorithm

Quantum
processing

Classical Input to Output of Final
problem the quantum the quantum problem
description algorithm algorithm answer

)

Iterative algorithms include multiple
runs of the quantum step with
parameters computed dynamically.

Figure 7.2 A quantum algorithm can combine classical and quantum computations. Typically, it starts
with a classical data preprocessing step that prepares input data for the quantum computation and
passes it to the quantum subroutine. The results of the quantum computation are then fed into another
classical step, postprocessing, that converts them into the final problem solution. Some of these steps
can be omitted for simple algorithms or repeated with some variation for iterative algorithms.

In general, a program that solves a classical problem using a quantum algorithm
consists of several parts. The first step is classical preprocessing of the data that is used
as the input for the quantum algorithm. This step can include getting the classical
problem description (for example, reading it from a file or a database or calculating
it on the fly using a classical program) and converting it into the format required by
the quantum subroutine. For example, a program that calculates the ground state
energy of a molecule needs a description of that molecule’s structure to work with.
The classical preprocessing step will read this description from a file (for example,
using the FCIDump file format common for a lot of chemistry software packages)
and use that information to calculate the values that will be passed to the quantum
algorithm.
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Quantum computation is the core of the quantum algorithm. It carries out the
computations that are inefficient to do on a classical computer, thus providing the
potential quantum speedup over purely classical solutions.

The results of the quantum computation are then fed into classical postprocessing
step that converts them into the final problem solution or the decision about the
further calculations the program needs to run. For example, the quantum part of
Shor’s integer factorization algorithm finds the period of a certain function, and
the classical postprocessing turns this value into the final answer—the factors of the
given number. This step could involve formatting the outputs in a human-readable
way, formulating the next iteration of an iterative algorithm, and so on.

The examples of quantum programs you’ve seen so far in this book didn’t always
obviously follow this structure, either because the inputs and the outputs of the
quantum routines were simple enough to be hardcoded rather than computed, or
because the quantum libraries we developed didn’t have an “output” beyond the
changes they applied to quantum states. Now, we’ll finally solve a classical problem
that will make the distinction between quantum and classical parts of the solution
explicit!

The problem we’ll consider in this chapter is called the unstructured search problem,
and it is defined in the following way. You are given a function f that takes a bit string
of n bits as the input and returns a single bit, 0 or 1. This function is guaranteed to be
deterministic, that is, to always return the same output for a certain input. However,
you do not know anything else about this function! You can only learn something
about this function by using the given oracle— a tool that allows you to find the value
returned by f(zx) for any input & you give it but does not expose any information
about its internals.

Your goal is to use this oracle to invert the function: to find an input value xy for
which the value of the function will be 1 or, in other words, to find any solution to
the equation f(x¢) = 1. You want to do it in as few function evaluations, called queries,
as possible.

In this formulation of the problem, you cannot analyze the internal structure
of the function to figure out how it behaves. For all you know, it could store the
mapping of outputs to inputs in a massive lookup table that was generated randomly,
so it might not have any meaningful internal structure at all! This way, any algorithm
that solves the problem has to stay generic and independent of the specific function
given to it.

A lot of classical problems can be either represented as instances of the search
problem or solved using this problem as a building block. For example, all constraint
satisfaction problems are very straightforward to formulate in terms of the search
problem:

The variables that describe the constraint satisfaction problem are the input x.
The value of the function f for a specific variable assignment x is defined as

follows: if the variable assignment x satisfies all the constraints of the problem,
f(x) =1; otherwise, f(x)=0.
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The search problem then looks for any value xy for which f(xp) = 1—that is, any
variable assignment that satisfies all constraints.

More broadly, most problems can be formulated as search problems: just define
the value you’re looking for as the input «, and say that f(x) =1 if the value x is
the answer to your problem, and f(z) =0 if it’s not! However, this approach is not
practical for a lot of real-life problems; we’ll talk more about this in chapter 9.

To begin the discussion of a quantum solution to the search problem, I'll introduce
the concept of quantum oracles—the quantum equivalent of the tool used to evaluate
the function in the classical search problem. I’ll show two types of quantum oracles
and their implementation for a simple example problem of looking for a bit string
that belongs to the given list.

Next, we’ll discuss Grover’s search algorithm—the quantum algorithm for solving
the search problem. I’ll walk you through the theory and the basic implementation
of the algorithm using the same simple problem to showcase the behavior of the
algorithm.

In chapter 8, we’ll use Grover’s search to solve a more complicated classical
problem, the N queens puzzle—a simple constraint satisfaction problem that will allow
us to implement and compare different approaches to solving search problems. This
will set the scene for chapter 9, in which we’ll talk about evaluating the performance
of quantum algorithms, comparing different quantum programs in terms of their
efficiency and comparing quantum algorithms with their classical counterparts.

Quantum oracles

In classical computing, an oracle is a tool that can solve a certain problem in one
operation (called a query to the oracle). The concept of oracles is broadly used in
complexity theory to study decision problems.

In quantum computing, oracles play a similar role. A quantum oracle is a unitary
operation that implements a classical function in some way that allows a quantum
algorithm to use it to solve a classical problem. The quantum oracle serves as an
input to the algorithm, separating the generic logic of the algorithm from the imple-
mentation details of the function that describes the specific problem instance.

Grover’s search covered in this chapter is probably the most famous quantum
algorithm among those that rely on quantum oracles. The quantum oracle used as
the input to Grover’s algorithm implements the classical function f(z) that describes
the search problem—the problem of looking for the value o for which f(x¢) =1. As
we’ll see later in the book, this function can describe a variety of constraints on the
value we search for.

Other well-known examples include Deutsch and Deutsch—Jozsa algorithms that
aim to decide whether the given function is constant or balanced, and Bernstein—
Vazirani and Simon’s algorithms that learn the hidden bit string for the given function
of a certain structure. In these cases, the oracle typically implements a simpler classical
computation. For example, a function f(z) defined as the sum of bits in the binary



194

7.1.1

CHAPTER 7 Grover’s search algorithm

notation of x modulo 2 has a very straightforward implementation as a quantum
oracle and can be used as an input to both Deutsch—Jozsa and Bernstein—Vazirani
algorithms.

To start, let’s see how to define and implement two most commonly used types of
quantum oracles. In this section, I'll use a very simple classical function: f(x) =1 if x
is one of the bit strings on the given list, and 0 otherwise.

Table 7.1 shows an example of a function that acts on three-bit strings and “marks”
two of them, 001 and 110. The function returns 1 for each of these two inputs and 0
for the other six possible inputs.

Table 7.1 The function that acts on three-bit strings and “marks” bit strings 001 and 110

x 000 001 010 011 100 101 110 111
f(x) 0 1 0 0 0 0 1 0

NOTE Technically, this function takes two parameters: the input x and the
list of “marked” bit strings. However, once we specify the problem instance
we want to solve, such as the function from table 7.1, the list of bit strings is
fixed based on that specification, so that all function evaluations within one
run of the algorithm will differ only in the first argument and share the second
argument.

Math

There are two main types of quantum oracles used in most quantum algorithms:
marking oracles and phase oracles. Both these types encode the n-bit function input
x into a state of an n-qubit basis state:

x = (20, X1, - Ty—1) = |2) = |20) ® |71) ® ... ® |T)-1)

The two types of quantum oracles differ in how they encode the output of the function
f(x) in the effects of the unitary operation that implements the oracle.

PHASE ORACLES

A phase oracle is a unitary that acts on n qubits, same as the function f itself, and
encodes the return values of the function in the relative phases of the input basis
states. Specifically, a phase oracle multiplies the amplitudes of all basis states for
which f(x) =1 by a relative phase —1 and leaves the amplitudes of all basis states
for which f(x) =0 unchanged. Figure 7.3 shows the effects of the phase oracle for
the function described in table 7.1 on a superposition state. You can see that the
amplitudes of two “marked” basis states, [001) and |110), are multiplied by —1. All
other amplitudes in the superposition are not affected.
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Amplitudes of the marked
states are multiplied by -1.

T

- —— = - —— =

000) 1001) 1 010) [011) [100) [101) 1 [110) 1 [111)
Y

Figure 7.3 The effect of the phase oracle for the function that marks values

001 and 110 on a superposition state with real amplitudes. The amplitudes of the
basis states that correspond to the marked values (striped bars) are multiplied by
—1. The rest of the amplitudes do not change.

Mathematically, the effect of the phase oracle U, on the basis state |x) can be expressed
as follows:

Uy lz) = (=1)/ @) |z)

The effect of the phase oracle on a superposition state is defined via its effects on
individual basis states and the linearity of unitary transformations:

U, Z a |x)y = Z(—l)f(x)az | )

MARKING ORACLES

By contrast, a marking oracle is a unitary that acts on n + 1 qubits and encodes the
return value of the function in the state of that additional qubit (usually called the
“target qubit”). When acting on the input qubits in the state |z) |y), where y isa 0
or 1 bit, the marking oracle flips the state of the target qubit for all basis states for
which f(x) =1, and leaves it unchanged for all basis states for which f(z) = 0. Figure
7.4 shows the effects of the marking oracle for the function described in table 7.1 on
a superposition state.

You can see that the amplitudes of the two basis states that correspond to the
input value 001, |001) |0) and |001) |1), are swapped, meaning that the state |[001) |0)
became [001) [1) and vice versa. The same swap happens for the two basis states that
correspond to the input value 110. The rest of the basis states are unaffected.
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For each marked value, the
amplitudes of the basis states with
input qubits in that state are swapped.
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Figure 7.4 The effect of the marking oracle for the function that marks values 001 and 110 on a super-
position state with real amplitudes. For each marked value, there are two basis states with the input
qubits in the corresponding state (marked with striped bars): for one of them, the target qubit is in the
|0) state, and for the other one, it’s in the |1) state. The amplitudes of these pairs of basis states are
swapped. The rest of the amplitudes do not change.

Mathematically, the effect of the marking oracle U, on the basis state with the input
qubits in the state |z) and the target qubit in the state |y) can be expressed as

Un |2} ly) =2} ly @ f (2))

NOTE This expression should look familiar to you. Indeed, this is exactly the
approach to making classical functions reversible and evaluating them on a
quantum computer that we saw in chapter 6!

Similarly, to phase oracles and other unitaries, the effect of the marking oracle on a
superposition state is defined based on its linearity. Note that both the input qubits
and the target qubit can be in superposition in this expression:

U Y ary |2y )= aryl2) v @ f(2))
z,y z,y

CONVERTING ONE TYPE OF ORACLES INTO ANOTHER

Marking oracles are typically easier to implement, especially once you go beyond
the trivial examples and start working with classical functions that rely on general
reversible computing techniques in their implementation. We will see examples of
such functions in chapter 8 when working on solving the N queens puzzle.
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Quantum algorithms, on the other hand, usually rely on a function implementa-
tion as a phase oracle. Grover’s search is a prominent example of an algorithm that
works with a phase oracle, as we’ll see in section 7.2.

Conveniently, the two types of oracles can be converted into each other easily.
Implementing an algorithm that relies on a phase oracle often starts by implementing
a marking oracle for the required function and then converting it into a phase oracle.

How can we implement a phase oracle for a function if we already have the marking
oracle for that function implemented? We can use the phase kickback trick similar
to the one we saw in chapter 5.

TIP  Asareminder, phase kickback refers to the fact that applying a controlled
unitary to target qubit(s) in a special state can “kick” a relative phase back to
the control qubit(s). We can think of the marking oracle as a controlled X gate
that is applied to the target qubit when the control qubits are in one of the
basis states that correspond to marked bit strings. With the idea of the oracle
reframed this way, phase kickback becomes an obvious trick to try!

Let’s see what happens if you apply a marking oracle U, to a state |z) |-):
Um |x> |_> = Um |x> ‘/L§(|O> - |1>) = \/LQ(UM |I> |0> - Um |x> |1>)
l2) 35(10) =11) if /(2) =0
) 5 (1) =10)) if f(2) =1

_ ) 5(10) = 1) if f(2) =0
o)y 510y = 11) if f(x) =1

You can see that the state of the target qubit |-) = \/L§(|O> —|1)) remains unchanged,

and the input register x is multiplied by (1)), That’s exactly what we want to
happen when we apply a phase oracle to the input register alone! Therefore, to
implement a phase oracle for a function, we can temporarily use an extra qubit in
the |—) state and apply the marking oracle for the same function to our input register
and that extra qubit. The extra qubit can be released afterward, or kept around in
the same state for the next time we need to apply the phase kickback trick.

Converting a phase oracle into a marking oracle

Since marking oracles are much easier to implement than phase oracles, the con-
version in the other direction, from a phase oracle into a marking oracle, is almost
never required. However, it is possible to implement a marking oracle for a function
if you only have access to a phase oracle for that function, as long as that phase
oracle has a controlled version defined.

How can you do that? The phase kickback trick comes in handy again—that’s
why you need a controlled version of the phase oracle. Let’s start with a basis state
|2) |0) and perform the following sequence of steps:
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(continued)
Apply a Hadamard gate to the target qubit |0):

) 10) = |z} 25(10) +11))

Apply a controlled variant of the phase oracle U, with the target qubit as
the control and the input qubits |x) as the target. The term |x)|0) of the
superposition remains unchanged, since the control qubit in it is in the |0)
state. The term [z)|1), however, becomes (U, |x)) 1), and this expression
depends on the value of f(x): if f(x)=0, U, [z)=|z), and the term remains
unchanged, but if f(z) =1, U, |x) = - |x), and the term acquires the relative
phase of —1.
Put together, the effect of the controlled phase oracle on the state is

l2) 35(10) +11)) if f(2)=0
l0) 5(10) = 11)) if f(2) =1

Apply a Hadamard gate to the target qubit again. This does not affect |x), and
the state of the target qubit becomes

{%(IOHID) iff(x)=0_){|o> if f(x)=0
%(I(D—Il)) if f(x)=1 1) if f(x)=1

Ix>%(lo>+|1>)—>{

You can analyze the scenario in which the target qubit starts in the |1) state in the
same way, and the result will be the same: the state of the target qubit remains
unchanged if f(x) =0, and it is flipped if f(x)=1. And this is exactly the behavior
of the marking oracle for this function!

With these definitions of marking and phase oracles in mind, let’s implement both
kinds of oracles for the example we’ll be using in the first part of this chapter: the
function f(z) =1 if x is one of the bit strings on the given list, and 0 otherwise.

The marking oracle for this function is a unitary that acts on the input qubit
register and the target qubit. It should flip the state of the target qubit if the input
qubit register is in one of the basis states from the given lis and leave the target qubit
unchanged for all other basis states.

We have actually encountered a quantum gate with a similar effect earlier in
the book when implementing a CS unitary in section 3.9. We applied a series of
controlled single-qubit gates for that, with each gate using multiple control qubits
and a control pattern that corresponded to a binary notation of an integer. This is
exactly the kind of gate we need here as well, since we need to apply a state flip (an
X gate) to the target qubit if the control register is in a basis state from the given list.

The implementation of the marking oracle ends up being very straightforward: for
each state on the given list, apply a controlled gate with the input register as control
and the target qubit as the target, using that state as the control pattern. For the
earlier example of the list [001, 110], the marking oracle will use two controlled X
gates with control patterns [001) and [110).
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NOTE In the code, it can be more convenient to represent the list entries as
integers rather than as bit strings. If you do this, you need to keep an eye on
the endianness of the encoding you use to map integers onto bit strings and
qubit arrays to keep it consistent throughout the program.

We won’t try and implement the phase oracle for this function by hand. Instead, the
phase kickback trick we just discussed will give us the phase oracle automatically!
Before we move on to the code for these two oracles, let’s take a moment to
consider our plan for testing it. Fortunately, we don’t need to reinvent the wheel!
We spent a fair amount of time in previous chapters learning to test different kinds
of unitaries, so we can just reuse our learnings from earlier. For phase oracles, we
can take the same approach we introduced in section 3.3: use the built-in language
tools to extract the matrix of the unitary and compare it with the expected matrix.

The matrix of a phase oracle

What does the matrix of a phase oracle look like? Remember that the columns
of a unitary matrix U describe the results of applying this unitary to each of the
basis states: the first column of U is the vector U |0), the second column is U |1),
and so on, and the last column is U |2" —1). We can construct the matrix of a
transformation if we know its effect on each basis state.

When a phase oracle is applied to a basis state, it doesn’t change the state,
other than possibly multiplying it by —1. For any basis state |x), the vector U |z) is
either |x) itself or —|x), depending on the value of the function f(x).

This means that the matrix of any phase oracle has a very simple shape: it is
a diagonal matrix with each element on the main diagonal either 1 or —1. We can

figure out which elements are 1 and which ones are —1 by calculating the function
/ for each basis state.

We could use a similar approach for testing marking oracles as well, but their matrix
representations are slightly more tricky to spell out. Instead, it is more convenient to
use the approach to testing reversible computations from section 6.3: compare the
results produced by the oracle with those returned by classical function evaluation.
Now, let’s see how to convert those ideas for oracles and tests for them into code.

Qiskit
The following listing shows the Qiskit code that implements the marking oracle for

the function that marks the states from the given list and the phase kickback trick
that allows to apply it as a phase oracle.

from giskit import QuantumCircuit
from giskit.circuit.library.standard gates import XGate
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def mark_states(n, marked states):
circ = QuantumCircuit(n + 1) Reverses control bit
string since controls
use little-endian

for state in marked_states:
stateBE = (£"{{:0>{n}b}}".format (state)) [::-1]
circ.append (XGate () .control (n, ctrl state=stateBE),
range (n + 1)
return circ

def phase oracle(n, marking oracle) :

circ = QuantumCircuit(n + 1) Uses an extra qubit in the minus state
. that remains a part of the circuit

circ.h(n)

circ.z(n)

circ.append (marking oracle, range(n + 1))
circ.z(n)

circ.h(n)

return circ

The function that constructs the circuit for the marking oracle, mark_states, is
similar to those we saw in chapter 6. It takes two classical parameters, the number of
input qubits and the list of the states to be marked, and returns the circuit built from
this information.

Phase kickback trick is implemented as the function phase_oracle. It takes two
arguments, the number of input qubits # and the circuit implementing the marking
oracle, and constructs a circuit that acts on n + 1 qubits. Notice that here, unlike
in the Q# code you’ll see next, the auxiliary qubit used to implement the phase
kickback trick cannot be released immediately after use. Any auxiliary qubits you
need in Qiskit subcircuits have to remain a part of the whole circuit, although they
can be reused in the later subcircuits.

The persistence of the phase kickback qubit affects the way we have to write the
unit tests for Qiskit code. When we get the matrix of the unitary implemented by
the circuit returned by phase_oracle, its dimensions will be 2"+! x 2**! instead of
2" x 2" like one would expect from the phase oracle acting on n qubits. What will
this matrix look like, taking into account that the rightmost qubit of the register (the
qubit with index n) is the phase kickback qubit?

In Qiskit, the rightmost qubit corresponds to the most significant bit of the matrix
indices (for a refresher on the matrix indices and their endianness, see our discussion
in section 3.5). The sequence of gates applied in the phase kickback implementation
leaves the state of the qubit unchanged: whether it was |0) or |1), it will return to that
state and remain unentangled with the input qubits. This means that the resulting
matrix will still be diagonal, with 1 or —1 elements on the main diagonal and 0
elements everywhere else.

However, —1 elements will only be found in the top left block of the matrix, which
corresponds to the phase kickback qubit starting in |0) state. Indeed, phase kickback
only changes the input qubits if the target qubit is in the |-) state. If it is in the |+)
state, applying the marking oracle doesn’t have a —1 phase to kick back into the state
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of the input qubits, so their state will remain unchanged. The bottom-right block of
the matrix will be just an identity. Overall, the matrix will look as follows, where U, is
the matrix of the phase oracle we’re looking to implement:

U, 0
0 I

You can find the complete code for this project, including tests for the marking
oracle and the phase oracle implemented using it, in the GitHub repo.

Q#

The following listing shows the Q# code that implements the marking oracle for the
function that marks the states from the given list and the phase kickback trick that
allows to apply it as a phase oracle.

import Std.Arrays.Reversed;

operation MarkStates(x : Qubit[], vy : Qubit, markedStates : Int[]) : Unit ({
for state in markedStates {

Reverse order of qubits to
use big-endian notation

}

ApplyControlledOnInt (state, X, Reversed(x), y); *41

}

operation ApplyPhaseOracle (

X : Qubit[], markingOracle : (Qubit[], Qubit) => Unit
) : Unit {

use aux = Qubit () ;

within {

H ;
(aux)' ¢AT|_|ses;«1r|extraqubit
Z (aux) ; in the minus state

} apply {
markingOracle (x, aux);

The signature of the operation implementing the marking oracle, MarkStates, is
similar to those of the operations implementing reversible computations we saw in
chapter 6. This operation acts on a register of input qubits and a target qubit and
takes additional classical parameters—in this case the list of marked states.

Phase kickback trick is implemented as the operation ApplyPhaseOracle. It takes
two arguments, the input qubit register and the marking oracle, allocates an auxiliary
qubit in the |—-) state, and applies the marking oracle to that input register and the
auxiliary qubit. Taken together, the ultimate effect of using ApplyPhaseOracle is
that of applying a phase oracle that matches the given marking oracle to the input
register. Since the auxiliary qubit ends up not entangled with the input qubits, it can
be uncomputed, its state returned to |0), and released.
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With these two operations implemented, you don’t need to write the code for the
phase oracle for this function separately. Instead, you can apply this phase oracle
using a combination of these operations:

operation Main() : Unit {
use x = Qubit[3];
ApplyToEach (H, x);
let markingOracle = MarkStates(_ , _, [1, 6]);

ApplyPhaseOracle (x, markingOracle) ;
DumpMachine () ;

The output of this code looks as follows:

Basis | Amplitude | Probability | Phase

|000> | 0.3536+0.00001 | 12.5000% | 0.0000
|001> | -0.3536+0.00001 | 12.5000% | -3.1416
|010> | 0.3536+0.00001 | 12.5000% | 0.0000
[011> | 0.3536+0.00001 | 12.5000% | 0.0000
|100> | 0.3536+0.00001 | 12.5000% | 0.0000
|101> | 0.3536+0.00001 | 12.5000% | 0.0000
|110> | -0.3536+0.00001 | 12.5000% | -3.1416
|111> | 0.3536+0.00001 | 12.5000% | 0.0000

You can see that two of the basis states, |[001) and [110), acquired a relative phase
of —1, which is the expected effect of the phase oracle. You can find the complete
code for this project, including tests for the marking oracle and the phase oracle
implemented using it, in the GitHub repo.

Note that the marking oracle in this listing is very specific to the problem we’re
solving, although not the instance of that problem. If we have a different problem to
solve—for example, the N queens puzzle we’ll consider in chapter 8—we’ll need to
implement the marking oracle for it from scratch. However, the phase kickback trick
implementation is universal: we can use it to convert any marking oracle to a phase
oracle regardless of the specific function implemented by this oracle.

Grover’s search algorithm

Now that we’re familiar with quantum oracles and their implementation, we’re ready
to discuss the quantum algorithm for solving the unstructured search problem—
Grover’s search algorithm. The formulation of the search problem for the quantum
algorithm is very similar to that for the classical algorithm. You are given a determi-
nistic classical function f that converts a bit string of n bits into a single bit, 0 or 1.
Your goal is the same, find any bit string zy for which f(x9) =1.

However, this time the way you can access the function is different: instead of
using a classical oracle that allows you to calculate f(x) for any single bit string x, you
are given a quantum oracle that implements this function. The algorithm relies on a
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phase oracle—a unitary U, that acts on n qubits in superposition and encodes the
values of the function in the relative phases of the basis states in that superposition:

Uy o) = (-1 ) |z)

TIP  Sometimes you’ll see a description of the search problem that provides a
marking oracle that implements the function f(z) instead of a phase oracle.
In this case, you can use the phase kickback trick we discussed in the previous
section to convert the marking oracle to a phase oracle.

Just like any algorithms that rely on oracles, classical or quantum, Grover’s search
algorithm is generic and doesn’t depend on the specific problem we’re solving. I'll
discuss the algorithm in abstract terms and implement it in a way that takes the
quantum oracle as the code argument, emphasizing this generic approach. However,
once we get to testing our code and exploring its behavior, we will need an example
problem to use. For now, I’ll use the oracle that marks a fixed set of bit strings, the
one we discussed and implemented in section 7.1.

NOTE Searching for one bit string from a list is not a particularly interesting
problem. It literally takes a list of problem solutions as the input, so it feels like
an overkill to use a quantum algorithm to solve it! This is very true, but this will
allow us to test our generic algorithm implementation on a simple problem
with a well-understood set of solutions. In the next chapter, we’ll work with a
more interesting problem that is a much better illustration of using Grover’s
search to solve a problem end to end.

Definitions

Before we discuss Grover’s algorithm itself, let’s introduce several definitions of the
quantum states and operations it uses. Figure 7.5 shows the main quantum states we’ll
use in our discussion of the algorithm and its steps. This visualization is very useful
because it allows us to derive Grover’s algorithm without using lengthy trigonometric
formulas, so I'll use it throughout this section.

The quantum states used in the algorithm are equal superpositions (superpositions in
which all nonzero amplitudes have the same value) of basis states that correspond to
groups of input bit strings with certain properties. The first group of bit strings is the
search space of the algorithm (all bit strings that might be solutions to the problem).
The size of the search space (the number of bit strings in it) is commonly denoted
as N. The corresponding quantum state is a superposition of matching basis states,
each with amplitude % It is called the mean:

|mean) = \/LN ; |y

The mean does not only serve to describe the search space; it plays an important role
in Grover’s algorithm itself! We’ll see this in just a few pages, once we define the rest
of the states involved in it.
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Equal superposition solutions ) 4 Equal superposition

of all basis states —/ | ) of all basis states

that are solutions in the search space
|mean>

| non-solutions>

—

Equal superposition
of all basis states
that are not solutions

Figure 7.5 The main states used in Grover’s search algorithm. |[mean) is the superposition of all basis
states in the search space (that is, states that correspond to bit strings that are potential solutions to the
problem). These bit strings can be split in two groups: the ones that are solutions (included in the super-
position [solutions)) and the ones that are not (|non-solutions)). The angle 6 is defined by the number of
problem solutions and the size of the search space.

Very often, we don’t know anything about the structure of the search space, so we
define it simply as all possible bit strings of length 7. In this case, the size of the search
space is N =2", and the mean is just an equal superposition of all n-qubit basis states.

However, if the problem we’re solving has some structure, we can exploit that
when defining the search space for the algorithm. We will see how modifying the
search space can reduce its size, simplify the quantum oracle implementation, and
improve the algorithm runtime later, once we go through the basic structure of
the algorithm and apply it to a realistic problem in chapter 8; we explore this topic
further in chapter 9.

The next kind of bit strings we’re interested in is all bit strings that are solutions to
our problem—all x for which f(x) = 1. The number of problem solutions is denoted
as M and is assumed to be nonzero. The corresponding quantum state is

|[solutions) = L Z |x)
=/ (@)=1
The last kind of bit strings is all bit strings that are in the search space but are not
solutions to our problem—all & for which f(x) =0. This is the complement of the set
of solutions, so it has NV — M bit strings in it, and the corresponding quantum state is

[non-solutions) = ; Z |x)
m :f (x)=0
The states |solutions) and |non-solutions) are orthogonal, since each basis state is
part of one or the other, never both at once. This allows us to use the visualization
from figure 7.5 with these states acting as orthogonal axes. It turns out that all the
steps of the algorithm will treat all solutions to the problem in the same way and all
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non-solutions in the same way, so all the other states we’ll see during the algorithm
can be expressed as linear combinations of [solutions) and |non-solutions).

These definitions let us plot the state |mean) on figure 7.5. Indeed, this state can
be represented as the following linear combination:

|mean) = Z \/N Z |y

xf(x) 1 a:f (x)=0
Z T u
rf(x) 1 xf(x) 0
=1 / N |solutions) + |non-solutions)
4

We can then represent ,/% and \W as sine and cosine of some angle 6, respec-

tively, since their squares add up to 1:

/M_ o N-M p
N—sm, N =cos

On the circle plot shown in figure 7.5, 4 is the angle between the horizontal axis (the

N

non-solutions) and the mean. You can see that these two states are shown to be close
to each other. Grover’s search is used for problems in which there are relatively few
solutions, so most of the states in the search space are non-solutions, and the mean
of them is close to the mean of all non-solutions.

What if the problem has a lot of solutions?

What happens if the assumption about the small number of solutions doesn’t hold?
Can Grover’s search be applied if problem solutions make up a large portion of the
search space?

In this case, you don’t need a complicated quantum algorithm at all! Just pick
a value x at random and check whether it is a solution to your problem. Repeating
this a few times will give you the answer with high probability. This kind of algorithm
is called Monte Carlo methods.

Indeed, let’s say 25% of the search space are solutions:

The first value you pick will be a solution with 25% probability.

In the 75% of the cases that your first pick is not a solution, you pick a second
value that will be a solution with 25% probability as well. This means that the
probability of getting a solution in at most two tries is 0.25 + 0.75 % 0.25 ~ 0.44.
The third value you pick will bring your success probability to 0.25 +0.75 =
(0.25+0.75%0.25) ~0.58, and so on.

Generally, if the ratio of the number of solutions M to the search space size N is
% =p, the probability of getting a correct answer after trying K values at random
is 1 - (1-p)X. The higher » is, the faster this probability grows with the increase
of K, and the fewer attempts you need to get a reasonable success probability.
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(continued)

This simple classical approach will also be much faster than any quantum al-
gorithm you can come up with for this scenario. We will discuss the performance
of quantum algorithms in chapter 9, but for now it’s enough to say that a single
call to a quantum oracle is going to be orders of magnitude slower than a single
computation of the same function on a classical computer. Therefore, you want to
use quantum algorithms only in cases when the asymptotic speedup they offer is
very significant.

With these definitions in mind, we’re ready to discuss the algorithm itself. Figure 7.6
shows the effects of two operations that are the core of the algorithm.

3. The second operation |solutions)

reflects the state 1. The starting state

before operations
about the |mean). | A ‘/—)
/20 O |mean>
v
0

I |non-so|utions>

4. Two reflections
together rotate
the state by 26.

2. Applying the oracle
reflects the state
about horizontal axis.

Figure 7.6 The main operations used in Grover’s search algorithm. Applying the phase oracle

reflects the system state about the horizontal axis, the average of all non-solutions. “Reflection about
the mean” reflects the system state about the mean state, the average of all states in the search space.
Together, these two operations rotate the state of the system counterclockwise by a fixed angle.

The first operation we use in Grover’s algorithm is the phase oracle itself. To plot the
effect of the phase oracle on a state in our visualization, let’s see what happens when
we apply the oracle to a linear combination of states [solutions) and [non-solutions).

For each basis state |x) that is part of [non-solutions), f (x) =0, so the phase oracle
doesn’t change it. On the other hand, for each basis state |x) thatis part of [solutions),
f(x) =1, so the phase oracle multiples this basis state by —1. Overall, we can see that

Uy (a |solutions) + § [non-solutions)) = —« [solutions) + 8 [non-solutions)

On the plot, the effect of the phase oracle is a reflection about the horizontal axis,
the state |non-solutions).

The second operation we use is called “reflection about the mean,” and it is exactly
what the name says: reflection of the state about the axis defined by the state |[mean).
As figure 7.6 shows, this operation leaves the component of the state that is parallel
to |mean) unchanged, and multiplies the component orthogonal to [mean) by —1.
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These two operations are the only ones used in Grover’s search algorithm.

Implementing reflection about the mean

How can we implement reflection of a quantum state |¢) about a fixed quantum
state |¢) as a quantum operation? Mathematically, you can describe reflection
about a state using ket-bra notation:

W) Wi+ (=1)- (I =1y) (p))

The first term in this expression describes taking the component of the state |¢)
that is parallel to |¢) and leaving it unchanged. The second term corresponds to
taking the remainder of the state |¢) (that is, the component of this state that is
orthogonal to |y )) and multiplying it by —1.

The easiest way to implement this transformation relies on knowing how to pre-
pare the state |y) from some simple initial state—for example, |0). Let's say you
can implement a unitary transformation /~ that converts the state |0) into the state
[¥): V'|0) =|¢). Then, you can rewrite the reflection unitary as follows:

) W1+ (=1) - (=) W) =21p) (|- 1=2V 0y | V"1
Since V" is a unitary, you know that /7T =1, and you can rewrite this as follows:
WO T =T=210) 0|V =1 VT =1 (210) 0| -V

This gives you the sequence of steps that implements the reflection unitary:

Apply the unitary /T (remember that the rightmost unitary in product expres-
sions gets applied to the quantum state first!).

Apply the unitary 2|0) (0| - 1.

Apply the unitary /.

The unitary 2|0) (0| — I is the reflection about the |0) state, which flips the signs of
all basis states except |0). It is the same as flipping the sign of only the |0) state
and then applying a global phase —1. Grover’s search algorithm is not sensitive to
the global phase (although some of its derivatives, such as the quantum counting
algorithm, are!), so you can ignore the global phase and implement this unitary as
follows:

Apply an X gate to each qubit to convert the |0...0) state to the |1...1) state.
Use a controlled Z gate to flip the sign of only the |1...1) state.

Apply an X gate to each qubit again to uncompute the initial changes, conver-
ting the |1...1) state back to |0...0).

The exact implementation of the reflection about the mean will thus depend on the
structure of the search space in the problem. If the search space is all bit strings
of length n, the state |mean) is an equal superposition of all basis states on n bits,
and it is really easy to prepare: just apply a Hadamard gate to each qubit!
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7.2.2 Math

The overall structure of Grover’s algorithm is shown in figure 7.7:

You start by preparing the initial state of the algorithm, |[mean).

You apply several iterations, each one consisting of two steps shown in figure
7.6. On each iteration, you apply the phase oracle and then the reflection about
the mean.

Finally, you measure the state of the system to get the algorithm results. If you
chose the right number of iterations (more on that later), the measurement
will produce a correct answer—one of the M solutions to the problem—with

high probability.
Prepare initial Apply reflection Measure to
state|mean> Apply the oracle about the mean get the answer

Repeat the iteration
multiple times.

Figure 7.7 The overall structure of Grover’s search algorithm. You start by preparing the system in the
mean state, the average of all states in the search space. Then you apply several iterations, each com-
posed of applying the phase oracle followed by a reflection about the mean. Finally, you measure the
system and check whether the result is an answer to the problem.

Why does this algorithm work? If you look at the figure 7.6, you’ll notice that the
two operations that compose the iteration are both reflections about different axes.
Taken together, their effects amount to a counterclockwise rotation by the angle 26.
Figure 7.8 shows how the state of the system evolves with each iteration of Grover’s
algorithm.

The initial state of the system will be close to the horizontal axis, the [non-solutions)
state. With each rotation, the state will move counterclockwise by a fixed angle,
further away from |non-solutions) and closer to [solutions). The closer the state is
to |solutions), the larger the amplitudes of all the basis states that correspond to
problem solutions are, and the higher the probability of the measurement returning
one of those basis states is.

TIP  Grover’s search is a probabilistic algorithm. In most cases, there is a
nonzero probability of getting an incorrect answer after the final measurement,
even if itis a very small one. To account for this, make sure to verify the algorithm
result by calculating the value of the function for it.

You’ll notice that the success probability of the algorithm doesn’t plateau. If you
keep applying iterations after the state of the system is vertical (or as close to vertical
as possible), the state will keep rotating counterclockwise, now reducing the success
probability with each iteration. Eventually, once the state is nearly horizontal and
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Highest success

probability!
3. Further iterations |solutions) 4 2. First iterations
rotate the state £ T~ rotate the state
away from vertic:;ll.\> »——— closer to vertical.

1. Starting
A~ state

|

|non-so|utions>

4. At some point, next
iterations rotate
the state closer to
vertical again.

Figure 7.8 Each iteration of Grover’s algorithm rotates the state of the system in counterclockwise di-
rection by the angle 26. Up to a certain point, each iteration rotates the state closer to the vertical axis,
the |solutions) state. The closer the state is to |solutions), the higher the probability of the measurement
yielding a correct answer is. If you apply too many iterations (in this case, three or more), the state will go
beyond vertical, and further iterations will decrease success probability.

success probability becomes minimal, subsequent iterations will increase success
probability again, and so on. The probability of getting the correct answer oscillates,
starting with low and then increasing and decreasing in turns.

How can we figure out the number of iterations we should use when running
Grover’s algorithm? It turns out that the strategy of choosing the optimal number of
iterations depends on how much you know about the problem and its solutions.

If you know the number of problem solutions M, you can simply calculate the
optimal number of iterations—the number that gives the best success probability.

Looking at the figure 7.8, you can see that the angle between the initial state of
the system and the horizontal axis is €, and each iteration increases it by 26. After K
iterations, the angle will be (2K +1)6. Your goal is to get to the point where the state
of the system is close to vertical axis—that is, the angle between it and the horizontal
axis is close to 5. This gives you the following equation for the number of iterations:

T
K+1)0~—
(2K +1) 5

Recall that we defined 6 so that sin § = \/g . Usually, we assume that the solutions
are a very small portion of the search space, so the angle 6 is very small. This al-
lows us to make some simplifications. For small angles, sin § = 8, so we can use the
approximation

H—M
VN
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If each iteration rotates the state of the system by only a small angle, we’ll need a lot
of iterations, so K >> 1. We can then discard the +1 term in 2K + 1 to get the final

equation:
M n
VN2

The optimal number of iterations is thus

What if | don’t know the number of solutions up front?

When you're setting out to solve a problem, you often don’t know the exact number
of solutions to it. Fortunately, you don’t need to!

First, you’ll notice that while there is only one number of iterations that yields
the highest success probability, there are multiple values for which the success
probability is high enough. Often, doing several iterations fewer or more will change
the success probability from 99% to maybe 95%, which is still pretty good. If you can
estimate the number of solutions to the problem approximately, you can use that
approximation to get the rough number of iterations that will likely still be useful.

Second, if you cannot estimate the number of solutions at all, you can try and get
the answer using a simple heuristic. Run a sequence of searches with increasing
number of iterations: 1, 2, 4, and so on, until one of the runs gives you the correct
answer. It is possible to show that this approach introduces only a small overhead
in terms of the number of iterations compared to the optimal number of iterations.

In comparison, the best classical algorithm that runs under the same assumptions
involves picking a random bit string from the search space and checking whether it is
a solution to the problem using the classical oracle. This algorithm would take an aver-
age of %[ queries to produce an answer. We say that Grover’s search algorithm offers
a quadratic asymptotic speedup over the classical algorithm, since it takes approximately

% queries.

NOTE We’ll discuss whether this asymptotic speedup translates to a potential
practical advantage in chapter 9!

Before we move on to writing the code, let’s consider how we are going to test it.
There are two main approaches to testing larger quantum algorithms that solve
classical problems:

Testing individual building blocks of the implementation.
Testing the end-to-end algorithm by checking that it produces correct results.

In the case of Grover’s search, the first approach means testing the quantum oracle
for the classical function and the operation / that prepares the state |mean) used
to implement reflection about the mean. In practice, it makes a lot of sense to test
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the oracle implementation using the techniques we learned in chapter 6. However,
the state preparation operation is usually either trivial, such as in the case of the
search space of all n-bit strings, or done using a state preparation library operation,
so writing separate tests for it is usually not worth the trouble. Any problems in the
implementation of the simpler components of the algorithm are likely to show up in
the distribution of the end-to-end algorithm results.

Checking the results of probabilistic algorithms can be a bit tricky: since the results
are not deterministic, some portion of runs is expected to produce incorrect results.
Conveniently, there are some instances of problems for which Grover’s algorithm is
deterministic! For example, if the number of solutions M is exactly a quarter of the
size of the search space N, running the algorithm with exactly one iteration gives us
a 100% success rate.

To see this, recall the equation sin 6 = \/g If % = 41'1’ sin @ = %, and 0 = %. One
iteration will bring the angle between the state of the system and the horizontal axis
to 30 = §, which means that this state will be exactly [solutions), and measuring it is
guaranteed to give a correct answer.

Consequently, for a two-qubit search space, we need to use oracles that mark
exactly one basis state out of four; for a three-qubit search space, two basis states out
of eight; and so on. We also need to make sure the tests validate that our solution has
the right endianness, so the test cases must include integers that have asymmetric
binary representation. For example, if a test uses a two-qubit oracle that marks only
the |00) state (a symmetric bit string) or a three-qubit oracle that marks the pair
of states |[001) and |100) (bit strings that are mirror images of each other), it won’t
detect a bug in the solution that accidentally reverses the order of bits in the returned
bit string. Now, let’s see how to implement Grover’s algorithm as a quantum program.

Qiskit
The following listing shows the Qiskit code that implements generic Grover’s

search algorithm. Qiskit offers a library implementation of Grover’s iteration called
GroverOperator, but for the purposes of this chapter, let’s write all the code by hand.

def grovers search(n bits, marking oracle, prepare mean, n_iterations):

iter = QuantumCircuit(n_bits + 1) <—— Defines circuit for Grover’s iteration

Converts marking oracle

phase or = phase oracle(n bits, marking oracle)
T to phase oracle

iter.append (phase or, range(n_bits + 1)) <—— Applies the phase oracle

iter.append (prepare mean.inverse(), range(n_bits))

iter.x(range(n_bits))

iter.append (ZGate () .control (n_bits - 1), Applies reflection
range (n_bits)) about the mean

iter.x(range(n_bits))
iter.append (prepare_mean, range (n_bits))
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circ = QuantumCircuit (n bits + 1, n_bits) <—— The complete algorithm circuit

circ.append (prepare mean, range(n bits)) <— Prepares the mean

circ.append(iter.to_gate() .power(n_iterations), <—— Applies multiple iterations
range (n_bits + 1))

circ.measure (range (n bits), range(n bits)) <—— Measures to get the results

return circ

This code creates the circuit for Grover’s search algorithm, given the parameters of
the problem it solves:

The integer n_bits gives the number of qubits used to encode the input x.
The gate marking_oracle implements the marking oracle for the function f(x).
(The conversion from a marking oracle to a phase oracle is handled within the
algorithm itself.)

The gate prepare_mean, when applied to the state |0), prepares the state |mean).
It is used both to prepare the initial state of the algorithm and to implement
reflection about the mean.

The integer n_iterations defines the number of Grover’s iterations to be
applied before the final measurement. This algorithm implementation leaves
the choice of the iteration number to the user, allowing you to experiment with
different strategies.

The code is mostly based on the same language constructs you’ve seen earlier in the
book. The two new elements are the methods of Qiskit Gate class that allow us to
construct more complex circuits easily: the method inverse () returns the adjoint of
the gate, and the method power (n) returns the n-th power of the gate.

The tests for this code are built similarly to those you’ve seen in chapter 4. Since
this circuit ultimately produces a classical value—an array of measurement results—
the process of verification is similar to that of verifying a much simpler circuit in
section 4.1 that measures a basis state. The tests need to run the circuit multiple
times and check that each time the result is one of the marked states.

The complete project includes the marking oracle and the phase kickback trick
from listing 7.1, as well as the testing code. It can be found in the GitHub repository.

Q#
The following listing shows the Q# code that implements generic Grover’s search
algorithm.

import Std.Arrays.*;

operation RunGroversSearch (
nBits : Int,
markingOracle : (Qubit[], Qubit) => Unit,
prepareMeanOp : Qubit[] => Unit is Adj,
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nIterations : Int Converts marking oracle
) : Booll]l { to phase oracle
let phaseOracle = ApplyPhaseOracle(_ , markingOracle) ;

use gs = Qubit [nBits];

prepareMeanOp (gs) ; <— Prepares the mean

for in 1 .. nIterations ({
phaseOracle (gs) ; <—— Applies the phase oracle
within {

Adjoint prepareMeanOp (gs) ;

ApplyToEachA (X, gs); Applies reflection
about the mean

} apply {
Controlled Z(gs[1...1, gsl([0]);
1
}
let meas = MResetEachZ(gs) ; <—— Measures to get the results
return Mapped(m -> m == One, meas); <—— Converts Result variables to Booleans

The code relies on the same language constructs you’ve seen earlier in the book,
including the use of partial application to define the phase oracle based on a marking
oracle and passing operations as arguments to other operations.

The tests for this code are built similarly to those you’ve seen in chapter 4. Since
this program returns a classical value (an array of Boolean values that encode the
measurement results) the process of verification is similar to that of verifying a much
simpler program in section 4.1 that measures a basis state. The tests need to run the
program multiple times and check that each time the result is one of the marked
states.

The complete project includes the marking oracle and the phase kickback trick
from listing 7.2, as well as the testing code. It can be found in the GitHub repository.

Going beyond

Do you want to spend some more time exploring variations of the problem discussed
in this chapter before moving on to a more advanced example of a problem solved
using Grover’s search? Here are some additional ideas for topics to explore:

Modify the code that runs the end-to-end Grover’s algorithm (section 7.2) to
include problem instances that do not have a 100% success rate. Calculate and
print success rate of the algorithm depending on the number of iterations
chosen. Does the algorithm behave the way you expected it to behave?
Consider other simple problems you could solve using Grover’s algorithm and
try implementing them using the techniques you’ve learned in chapter 6.
Quantum counting is an algorithm for estimating the number of solutions for a
given search problem. As we saw in figure 7.6, Grover’s iteration is effectively
a rotation by the angle 26 that depends on the search space size N and the
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number of solutions in it M. The properties of rotation matrices suggest that the

i-260 and €_i'20.

unitary that implements Grover’s iteration has two eigenvalues, e
Quantum counting applies phase estimation to Grover’s iteration to estimate
its eigenvalues and to derive the number of solutions from that estimate. Try to
implement quantum counting algorithm and explore its behavior on different

problem instances.

Summary

Programs that utilize quantum algorithms are often hybrid: they combine
quantum computations with classical preprocessing for preparing the inputs to
the quantum subroutine and post-processing for interpreting its outputs and
producing the final answer or making decisions about the next computation
to run.

Unstructured search problem gives you a deterministic function that converts
an input bit string into a single bit 0 or 1. Your goal is to find an input xo for
which the value of the function f(xg) =1.

An oracle is a tool that allows you to calculate the function for any given input
but does not expose any information about the internal implementation of that
function. Oracles are used in both classical and quantum computing to discuss
generic algorithms that do not depend on the specific problem instance.
Phase oracles encode the values of the functions in the signs of amplitudes of
the input basis states.

Marking oracles encode the values of the functions in the state of an additional
qubit.

You can convert a marking oracle into a phase oracle and vice versa using
variants of the phase kickback trick.

Grover’s search algorithm can solve the unstructured search problem for a
function given as a quantum oracle. It offers a quadratic speedup in the num-
ber of queries to the quantum oracle compared to the “brute force” classical
algorithm that has access to the function only via a classical oracle.

Grover’s algorithm is a probabilistic algorithm; it produces the correct result
with high probability, but not in 100% of cases. You need to validate the answer
x it gives you by calculating the value f(x¢) using a classical computation and
checking that it is indeed 1.



Solving N queens puzzle
using Grover’s algorithm

This chapter covers

Applying Grover’s algorithm to a nontrivial
search problem

Implementing search problem constraints on a
quantum computer

Implementing and testing quantum algorithms
end to end

Using Q# and Qiskit to write hybrid programs

In chapter 7, we learned to use Grover’s algorithm for solving search problems—
problems that, given a black box implementation of a function that returns 0 or 1,
aim to find a function input x for which f (x) = 1. There are plenty of problems that
can be formulated as a search problem, since pretty much any task can be phrased
as a “yes/no” problem: “Is the value x a solution to the problem I'm looking at?
f(x)=1ifitis, and 0 if it’s not.”

The problem we used to test our implementation of Grover’s algorithm was a
very simple one: looking for elements of the given list. This example allowed us to
experiment with the algorithm without putting a lot of effort into implementing
the oracle that describes the problem, so it was a good starting point. Its downside,
however, is that the algorithm looks for one of the values from a predefined list that
is literally hardcoded into the solution. We know the answer up front before we can
start looking for it!

215



216 CHAPTER 8  Solving N queens puzzle using Grover’s algorithm

In this chapter, we’ll continue discussing search problems and Grover’s algorithm.
This time, however, we’ll work through a more complicated problem example that
is a much better illustration of the workflow of developing a quantum solution to a
classical problem. Figure 8.1 shows the steps to solve a search problem using Grover’s

algorithm.
Formalize Convert f(z) Combine into a
the problem into the oracle. complete solution.
description.
Marking
/ oracle \
Classical Classical input x Solution using
search and Grover’s search
problem function f(w) algorithm
Mean state /
preparation

Prepare the mean.

Figure 8.1 Solving a search problem using Grover’s algorithm starts with deciding on the representation
of the function input x and the way to calculate the function / (x) based on it. Then, we implement the
marking oracle for this function and the operation that prepares the state [mean) based on that decision.
Finally, these building blocks are used in Grover’s search to get the end-to-end solution.

First, we decide how to represent the problem description as the function input
2 and how to calculate the function f(x) classically based on that input.
Then, we use the techniques from chapter 6 to convert the classical function
calculation into an equivalent reversible computation and implement a marking
oracle.

Additionally, we need to represent the search space of all possible inputs x as
the operation that prepares the state |[mean). This operation does not depend
on how we decide to calculate the function f(z), only on which inputs we’re
going to search through and how we decided to represent them. To implement
it, we might use the state preparation library from chapter 2, the language
library tools, or develop a custom state preparation routine tailored to a specific
problem.

Finally, we use Grover’s search as described in chapter 7 with the marking oracle
and the state preparation operation as the building blocks to solve the problem.

In the example used in chapter 7, these steps were trivial. The problem looked for
a bit string of certain length, so it was natural to use bit strings of that length as
function inputs. The function f(x) was defined as “is this bit string on the list of
answers?” so we didn’t need to get creative with calculating it either.

For this chapter, I picked the N queens puzzle—a well-known constraint satisfaction
problem that is often used to illustrate various programming techniques. Here, it will
let me showcase several important techniques used in solving search problems and
optimizing the solutions and make the steps of the workflow much more pronounced.
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The N queens puzzle seeks to place N queens on an N X N chessboard in such a
way that no two queens attack each other. Consequently, no two queens can occupy
the same row, column, or diagonal. Figure 8.2 shows several placements of four
queens on a 4 X 4 chessboard, both valid and invalid ones.

W w w
w W w
w W W
W W W
)

Invalid: two queens
in the same column

Invalid: two queens

Valid placement on the same diagonal

Figure 8.2 Valid and invalid placements of queens on a 4 x 4 chessboard. The middle placement is valid:
all queens are in different rows, columns, and diagonals. The left placement has two queens in the same
column, and the right placement has two queens on the same diagonal, so they are invalid.

The valid queen placement shown in figure 8.2 and the placement that mirrors it
vertically or horizontally (the resulting placement is the same either way) are the
only two problem solutions for four queens. As the problem size grows, though, the
number of solutions grows as well, and finding them becomes more challenging.

The key difference between the example we considered in chapter 7 and this
problem is the way they are formulated. The example from the previous chapter was
described in terms of the problem solutions right away: we know that the function
/ returns value 1 for inputs from this list, so let’s find one of these inputs. The N
queens puzzle, on the contrary, focuses on the properties the solution must have:
we don’t know up front where exactly the queens should be placed on the board,
but we know the constraints on their placement. This kind of formulation, in which
the problem describes the constraints that the solution should satisfy rather than the
solution itself, is much more typical for search problems and makes a lot more sense!

We’ll start with the naive solution to the N queens puzzle. This approach, though
straightforward, will turn out to be impossible to run on a quantum simulator even
with minor tweaks (more on that later!), so we will not spend time implementing
it in code. Instead, we’ll move on to discussing two optimized solutions that take
different approaches to encoding the queens’ placement and checking whether
it satisfies all the constraints of the puzzle. Later, in chapter 9, we’ll use these two
solutions to illustrate how we think about the performance of quantum algorithms
and comparing their efficiency.

The problem instance we’ll use throughout the chapter will be the 4 x 4 puzzle
shown in figure 8.2. The N queens puzzle doesn’t have any solutions for N =2 or 3,
and it’s not particularly interesting to try and place a single queen on a 1 x 1 board;
N =4 is the smallest nontrivial problem instance that has solutions. It will also allow
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us to run our code on a quantum simulator to get the results for the two optimized
solutions. Unfortunately, even the optimized solutions become prohibitively large to
simulate for larger problem instances.

I cannot emphasize enough the importance of writing tests for your code. In this
case, it is extremely important to test the oracle you write for the puzzle constraints.
This puzzle is nontrivial, and the correctness of the end-to-end solution can be
affected by so many factors, you want to exclude at least some of them.

NOTE When writing the code for this chapter, I initially got a 0% success rate
for the end-to-end search. The problem turned out to be not in the quantum
code at all, but a typo in Python code I used to check that the result was correct.

Naive solution

Let’s try to solve the N queens puzzle following the flow shown in figure 8.1, starting
with formalizing the problem. What is the most straightforward thing you can do to
encode the placement of the queens on an N X N board? We can use the encoding
shown in figure 8.3.

iy o100
iy o 0| o1
Wy 1100/ o0
By o 0| 1]o0

Figure 8.3 The naive input encoding uses one bit per board cell.
This bit is 1 if there is a queen in this cell and O if the cell is empty.

In this encoding, we represent each cell of the board with one bit that indicates
whether there is a queen placed there (bit set to 1) or not (0). For an N X N board,
we need N2 bits to represent the queens’ positions on it.

Since this encoding doesn’t impose any constraints on the queens’ placement,
the function f(x) will need to check all constraints required by the puzzle.

One way to do this is to find all pairs of board cells that are in the same row,
column, or diagonal, and check that none of the pairs have queens in both of the
cells at once. How many such pairs are there?

If we have M cells on the same line (whether this line is horizontal, vertical, or
diagonal), there are w different pairs on it.

Rows and columns are lines with N cells each, so the number of pairs on the
same horizontal and vertical lines of cells is 2N - w =N2(N-1).

The number of pairs of cells on the same diagonal is w for each

direction of diagonals. This gives a total of w

same diagonal.

pairs of cells on the
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NOTE You can prove this by induction: calculate the value explicitly for n =2
and then see how many extra pairs appear with the move from an (N —1) x
(N —1) board to an N X N one. Alternatively, you can write a script to compute
the number of pairs for the first few values of N and find the matching sequence
in The On-Line Encyclopedia of Integer Sequences (https://oeis.org/)!

When we convert a classical computation to a reversible one, we usually need to add
extra bits to store the intermediate steps of the computation (we saw an example in
section 6.5). A good rule of thumb to estimate the number of extra bits is “one bit
per constraint you want to check,” although the exact number can vary depending
on the implementation.

TIP  To reduce the number of qubits used by your solution, you could evaluate
the row constraints first, use an extra qubit to check whether all row constraints
are satisfied and uncompute them, thus freeing these qubits for reuse when eval-
uating the column constraints. The downside of this approach is that it makes
the computation longer, since you need to do more rounds of computation
and uncomputation.

How many bits would we need to check whether all constraints hold using this
encoding for our smallest example with NV =4? If we add up the bits used to store the
input, the output, and all the constraints, we’ll get 16 + 1 + 48 + 28 =93 bits. What
does this mean for our solution and our goal to run it on a simulator?

Simulating quantum programs

Is it possible to run Grover’'s search for a function that takes about a hundred
bits to calculate on a quantum simulator? Each bit used in the computation of a
classical reversible function is mapped to a qubit, so the quantum program for this
algorithm will use about a hundred qubits total. Remember that a state of N qubits
is described using 2 complex numbers, so just storing the amplitudes of a state
for N =30 takes several gigabytes of memory! Generally, quantum simulators work
perfectly well for arbitrary programs that use under 30 qubits; they might be able
to run certain programs that use up to 40 qubits, but they balk shortly after that.

If the program that needs to be simulated has a special structure, these limits
can be stretched. For example, sparse simulators store only the nonzero amplitudes
and the associated basis states of the superposition state rather than all amplitu-
des. If a program acts on sparse states—that is, uses a lot of qubits but relatively
few basis states—sparse simulators will be much better at handling it than regular
simulators and will manage to run larger problem instances.

Reversible computations are a particularly good candidate for sparse simulation,
since the computation they implement is often sparse. They allocate extra qubits
to store the intermediate computation results, but the way these qubits are used
does not increase the number of basis states in the computation. We can take
advantage of this, for example, to test reversible computations on basis states the
way we did in section 6.3.
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(continued)

The bulk of the computation in Grover’s search happens within the oracle that
implements the function f(x) as a reversible computation. Thus, Grover’s algorithm
is well-suited for sparse simulation too.

The search space for the problem encoding we chose includes all bit strings of
length N2, so the quantum program will manipulate approximately 9N* = 916 = 65536
basis states. (This number will be temporarily doubled whenever phase kickback
is in action, since the qubit used for it is in a superposition state.)

Another factor to consider is the number of iterations necessary to run Grover’s

algorithm for this problem. With the search space size 2!6 and only 2 valid queen

placements, the optimal number of iterations is %J% ~142. Even if the sparse si-

mulator can handle that many terms in the superposition, this number of iterations
will take a while to run.

We can estimate that this solution is not going to allow us to solve the small problem
instance on a simulator. Since this is our goal for this chapter, it doesn’t make much
sense to try to implement it as quantum code, unless we can optimize it to run much
faster. Can we do that? One way to optimize this solution is to find a more efficient
way to evaluate the constraints in the marking oracle, shown in figure 8.4.

Each row/column has Each diagonal has
exactly one queen. at most one queen.

vy NN N\ S S/
- o N /
- W N W,
adl Wy
- W 4
of atioons n sach row and each column and check tha tore s exactly

one. We can do the same for the diagonals, checking that the number of
queens in each diagonal is zero or one.

Consider a single row of the board. Instead of looking at all pairs of cells in it and
checking that no pair contains two queens, we can count the number of cells that
contain queens and check that this number is exactly one. Indeed, if we need to
place N queens on a board with N rows without having two queens in one row, the
only way to do this is to place one queen per row. This tweak takes some extra bits to
count the queens in the row, but it reduces the number of constraints we need to

N(N-1)

check from to just one!
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We can apply the same optimization to check that no queens share a column. The
check that no queens share a diagonal can be done similarly, as long as we check
that the number of queens on each diagonal is zero or one rather than exactly one.
Indeed, unlike rows and columns, it is possible to have diagonals with no queens on
them in a valid placement.

These optimizations reduce the number of qubits used in the marking oracle
significantly. However, tweaking the oracle implementation in this manner doesn’t
reduce the size of the search space, so we’re still looking at 65, 536 basis states to
search through and over a hundred iterations to do that. With this in mind, I’ll skip
the code for this solution and move on to the next topic: coming up with a more
efficient solution.

Encoding constraints in the search space

Can we change the way we describe the problem inputs 2 and the function f(x)
to make the solution faster? In this section, we’ll explore a way to do just that by
reducing the size of the search space. This will allow us to reduce the number of
iterations and simplify the calculations done in a single iteration.

Math

The search space is the set of all inputs that can possibly be the solutions for our
problem. If we can rule out some of the inputs that are definitely not the solutions,
we’ll make the search space smaller while not losing any of the inputs that are actually
solutions.

To do this, we need to analyze the structure of the problem we’re solving and see
if there is an easy way to identify some non-solutions. This will effectively encode part
of the constraints imposed by the problem into the structure of the search space.

N queens puzzle is a very well-structured problem, so it is very easy to find inputs
that are not solutions:

Let’s keep the input representation the same for now: use one bit per the board
cell to indicate whether there is a queen placed there.

We’re looking to place N queens on the board, so we know that any inputs that
have more than N or less than N bits set to 1 cannot be valid solutions.
Furthermore, we know that each row has to have exactly one queen in it. This
means that any inputs that have no queens or two or more queens in one of the
rows cannot be valid solutions either.

This gives us a way to reduce the search space: we need to limit our search only to
the inputs that have exactly one bit set to 1 in each row.

The |mean) state that describes this search space looks differently from the one
we used in the previous section. Instead of an equal superposition of all basis states
of length N2, it will be a tensor product of N special N-qubit states, known as the W
states, each representing one row of the board. The W state on N qubits is an equal
superposition of N basis states, each consisting of N —1 0 bits and one 1 bit:
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Wy = L( [10...0) +[010...0) + ... +0...01) )
VN
How does this additional restriction on the possible inputs affect the oracle imple-
mentation? It turns out that it allows us to simplify the oracle quite a bit.

To start, we don’t need to check that no two queens share a row any longer. Since
this constraint is built into the structure of the search space, any basis states that
don’t satisfy it will never be included in the superposition state Grover’s search acts
on, so the oracle doesn’t need to handle them.

We still need to check the other two constraints, but we can simplify that too.
Figure 8.5 shows how to check that no two queens share a column.

Two or more queens in one
of the columns means no
queens in another column.

bbb Vo
w w
W W
W W
W w

Figure 8.5 Check that each column has exactly one queen, knowing that each row

has exactly one queen. We can count the parity of the number of queens in each column
and check that it’s odd. Any placement for which this constraint is not satisfied will have
at least one empty column with even parity.

Each column has an
odd number of queens.

Instead of counting queens in each column and checking that the number is one,
we can count the parity of the number of queens (the number modulo 2) using a
sequence of XOR gates. For a placement in which every column has exactly one
queen, all parities will be odd. However, if one of the columns has two or more
queens, at least one other column will have no queens and even parity. Notice that
this way we can’t detect columns with an odd number of queens greater than one in
them. We don’t need to, though: the goal of the oracle is to figure out that the set of
constraints as a whole is not satisfied, not to find each constraint that is not satisfied,
and we can do this using just the empty columns.

We can also skip checking the number of queens in the last column. If the column
constraints are not satisfied, either there is a column with two queens and another
column with no queens, or there is a column with three or more queens and two
or more columns with no queens. In either case, there are at least two columns for
which the queen count is even, so we can skip any single column and still detect the
problem.
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We cannot use the parity trick to replace counting the queens on each diagonal,
since a diagonal can have zero or one queens on it without making the placement
invalid. Instead, let’s see how to reorganize this check to improve it. Figure 8.6 shows
how to check that no two queens share a diagonal by focusing on pairs of rows.

o i e row o i o
/><><><>(><\ b ‘)k o b o
PAVERNR

i N

Figure 8.6 To check that no two queens share a diagonal, we check each pair of rows separately.

For each pair of rows, we go through all pairs of cells within them that are on the same diagonal.

Since each row has exactly one queen, at most one of these pairs of cells will have two queens in them
at once, so we can combine the results of all checks for a pair of rows in the same bit using XOR.

If we look at two rows of the board that have d rows between them, we need to check
all pairs of cells that have d columns between them. If any of these pairs has queens
in both cells, the placement is invalid. The fact that each row has exactly one queen
means that at most one pair of cells can have queens in both cells, so we don’t need
to use complicated logic to combine the results of individual pair checks. Instead,
we can use just one bit per a pair of rows and use a sequence of CCNOT gates to
compute XOR of checks for each pair of cells within these rows.

How do these optimizations impact the number of bits used by the solution and
the size of the search space? For an N x N board,

We still use N2 bits to store the problem input and 1 bit to store the output of

the marking oracle.
We need N — 1 extra bits for the column checks (and none for the row checks!).
Checking the diagonals needs one bit per a pair of rows, for a total of w

bits.

. . N2+N
The total number of bits is 2X+Y

2

The search space consists of all bit strings of length N2 for which the first N bits
contain exactly one 1 bit, the second N bits contain exactly one 1 bit, and so on. Each
of the N-bit chunks of the bit string can take one of the N possible values, so the
search space has a total of NV bit strings. (Compare this with oN* = (2V)N bit strings
that the naive solution has to search through!)

For our smallest example with N =4, the number of bits used by the solution is
26, the search space size is 4* = 256, and the optimal number of iterations is only
'y % ~ 9. This is much better than the naive solution! A simulator can run this

program easily now. With these estimates in mind, let’s see what the code looks like
for this puzzle.
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8.2.2 Qiskit

Listing 8.1 shows the Qiskit code that prepares the |[mean) state for the N queens
puzzle solution that we discussed in this section. This approach uses one qubit to
represent each cell of the board and indicates whether there is a queen placed there.
However, we optimize the search by only considering inputs that have exactly one
queen in each row and encoding this constraint in the |mean) state preparation
routine.

Listing 8.1 Qiskit: Solving N queens puzzle—state preparation

from math import sqgrt
from giskit import QuantumCircuit
from giskit.circuit.library import StatePreparation

def prep mean bits(n):

wstat':eTamps = [0l > {2 ) Calculates the amplitudes

for i in range(n): of the W state on n qubits
wstate amps[l << 1] = 1 / sqgrt(n)

wstateprep = StatePreparation(wstate_ amps)

circ = QuantumCircuit(n * n) Prepares the W state on

. each row of n qubits
for r in range (n) :

circ.append (wstateprep, range(r * n, (r + 1) * n))
return circ.to _gate()

This code uses the library class Statebreparation that prepares the quantum state
with the given amplitudes.

The following listing shows the Qiskit code that implements the marking oracle
for this approach.

Listing 8.2 Qiskit: Solving N queens puzzle—the marking oracle

from giskit import QuantumCircuit, QuantumRegister

from giskit.circuit.library.standard gates import XGate

def oracle bits(n): ‘J The presence of a queen in row r and
X = Quan;umRegister (n * n) column c is described with x[r * n + c].

y = QuantumRegister (1) Qubits for

valid column = QuantumRegister(n - 1) column constraints

Qubﬂsfor[_* invalid_rowpair = QuantumRegister(n * (n - 1) // 2)

diagonal circ = QuantumCircuit (x, valid column, invalid rowpair, y)
constraints - -
def one queen per column() :
Evaluates - -
column for ¢ in range(n - 1): Computes XOR of all
) ) qubits in this column
constraints for r in range (n):

circ.cx(x[r * n + c], valid columnl[c])
<— All valid_column qubits should be 1.
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def one_queen per diagonal() :

ind = 0 Evaluates diagonal constraints

for r1 in range (n) : for each pair of rows

for r2 in range(rl + 1, n):

for cl in range(n): ) Computes AND of each qubit pair on
rl

for c2 in [el + (r2 - ' the same diagonal in these two rows
cl - (r2 - rl)l:

if ¢2 >= 0 and c2 < n:

circ.cex(x[rl * n + cll, Computes XOR of all ANDs because,

x[r2 * n + c2], at most, one of them will be 1
invalid_rowpair [ind])

ind += 1

) . ) . All invalid_rowpair qubits should be 0;
circ.x(invalid rowpair) switch them to 1s using X gates.

one_queen per_column() <—— Evaluates all constraints .
one queen per diagonal () J Checks. tflrat all constraints
circ.append (XGate () .control (len(valid column) + are satisfied

len(invalid_ rowpair)),
valid column[:] + invalid rowpair[:] + yI[:1)
one_queen per column () <—— Uncomputes the constraints
one queen per diagonal ()

return circ

Since the constraint on the number of queens in each row is handled by the state
preparation, the marking oracle focuses on the other two constraints: each column
must have exactly one queen, and each diagonal must have at most one queen. The
code allocates extra qubits to store the results of validating the constraints for each
column and each pair of rows and then evaluates these constraints.

Are reversible computations their own adjoints?

Notice that this code uncomputes the evaluation of the constraints by calling the
same code that was used to evaluate them rather than its adjoint. Is there a pro-
perty of reversible computations that allows us to take this shortcut?

Turns out that the adjoint of a reversible computation that evaluates a classical
function is the same as the computation itself! Indeed, recall section 6.2: to make
a function f(x) reversible, we define another function F(z, y) as follows:

F(x,y)=(x,y o f(x))
What happens if we apply the function F'(x, y) twice in a row?
F(F(z,y))=F(x,y®f(2))=(x,y®f(x) ®f(x)) = (z,)

This means that the reversible function F(x, y) is its own inverse. This property
transfers to its implementation as a quantum operation too!
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(continued)

For the N queens puzzle, each of the individual constraints checks is done inde-
pendently: we don’t use the results of constraint evaluation to check other constra-
ints, only to get the final answer. As a result, we can uncompute them in any order
and use the same code we used to compute them for uncomputation.

In general, if you're computing several reversible functions and some of them
use the results of evaluating others as inputs, you cannot use the same shortcut
for uncomputation. Instead, you have to reverse the order of computation the way
adjoint does: start by uncomputing the functions that were evaluated last.

Let’s say you compute A(x)=g(f(x)) using the reversible implementations F
and G of the functions f and g, with the implementation of G relying on an auxiliary
variable y that acts as the input to g:

F(x,y)=(z,y® f(x))
G(x,y,2)=(x,y,20g(y))

The reversible function H (x, y, 2) will not be its own inverse:
H(z,y,2)=G(F(z,9),2)=G(z,y® [ (x),2) = (x,y® [ (2), 20 g(y & f (2)))

H(H(z,y,2))=H(x,y®f(x),z@g(y &/ (x)))
=(z,ye /()@ f(z),z0800/(x)) @gly® f(z)®f(2)))
=(z,y,z0g(y0/(v) @g()) # (z,y,2)

The second expression corresponds to uncomputing the auxiliary variables first and
then attempting to uncompute g using incorrect inputs for it.

For N queens problem, Grover’s search doesn’t offer a deterministic solution, so it
is easier to test parts of the implementation rather than the end-to-end algorithm.
We’ll test the marking oracle implementation and skip tests for Grover’s search
implementation and mean state preparation, since those are standard components
at this point.

The tests for this marking oracle implementation are very similar to those you’ve
seen in section 6.3, so I do not include them in the text. They apply the oracle
to multiple basis states and check that the result matches the classically computed
function value for each input. For Grover’s algorithm, we only care about the behavior
of the oracle on the basis states from the search space, since the oracle is never applied
to any other basis states. So, we can speed up the tests by running them on just these
basis states instead of all basis states on N? qubits.

In addition to tests, we’ll want to run the end-to-end solution to explore its success
probability. Listing 8.3 shows Python code for checking that the classical answer
produced by the solution—the placement of N queens on the board—is correct. This
code is used in both Qiskit and Q# projects that run the solution end to end.
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Listing 8.3 Python: Validating the answer for N queens puzzle

def check_pl?cement_blts(n, bits) : Validates queens
board = [bits[n * row:n * (row + 1)] placement classically

for row in range (n)]

for r in range (n): Checks that one queen

ng-=20 is placed in each row
for ¢ in range(n) :

if boardlr][c] == '1':
ng+=1
if n g != 1:
return False
indices = [row.index('l') for row in board]
return check one gueen per_column_diagonal (n, indices)

def check one queen per column diagonal (n, indices):

for rl in range(n): Checks that at most one

for r2 in range(rl + 1, n): queen is placed in each
diff = indices[rl] - indices[r2] column and each diagonal
if diff == 0 or abs(diff) == r2 - rl:

return False
return True

Finally, listing 8.4 shows the code that runs an end-to-end Grover’s search for the
N queens puzzle and gets its results. To make things more interesting, the code
runs Grover’s search multiple times with different numbers of iterations and gathers
statistics on the way the number of iterations affects the success rate of the algorithm.

Listing 8.4 Python: Evaluating Qiskit solution for N queens puzzle

from time import time

from giskit import transpile

from giskit_aer import AerSimulator
from n_queens import *

n_rows = 4

print (£ "Running for board size {n rows}, mode = Bits")
simulator = AerSimulator (method='statevector')

n_runs = 100

for n_iter in range(1l, 18): <— Tries different numbers of iterations
circ = grovers_search(n_rows, n_iter)
circ = transpile(circ, backend=simulator) .decomposed ()
start_time = time()
res_map = simulator.run(circ, shots=n_runs).result () .get_counts()
end_time = time()

n _correct = 0 Calculates the success rate

for (bitstring, num) in res_map.items|() : of the quantum algorithm

if check placement bits(n rows, bitstring):
n_correct += num



228

8.2.3

CHAPTER 8  Solving N queens puzzle using Grover’s algorithm

print (£"{n iter} iterations - success rate {n correct / n_runs * 100}%" +
£" ({round (end time - start time)} sec)")

For this encoding, ignore the fact that Qiskit measurement results are returned in
reversed order compared to the order of qubits in the code. Reversing the encoding
rotates the queens’ placement by 180 degrees. Since N queens placement is a sym-
metric problem, the rotated placement is valid if and only if the intended placement
is valid.

The output of this code will look something like this:

Running for board size 4, mode = Bits

1 iterations - success rate 7.0% (15 sec)
2 iterations - success rate 19.0% (30 sec)
3 iterations - success rate 33.0% (45 sec)
4 iterations - success rate 61.0% (57 sec)
5 iterations - success rate 77.0% (71 sec)
6 iterations - success rate 82.0% (90 sec)
7 iterations - success rate 92.0% (108 sec)
8 iterations - success rate 98.0% (127 sec)
9 iterations - success rate 97.0% (137 sec)
10 iterations - success rate 89.0% (150 sec)
11 iterations - success rate 78.0% (165 sec)
12 iterations - success rate 63.0% (180 sec)
13 iterations - success rate 52.0% (194 sec)
14 iterations - success rate 33.0% (209 sec)
15 iterations - success rate 15.0% (225 sec)
16 iterations - success rate 5.0% (239 sec)
17 iterations - success rate 0.0% (254 sec)

The output matches the expected behavior of Grover’s search algorithm: as the
number of iterations increases, the success probability grows up to the optimal
number of iterations (8-9 in this case). After the number of iterations surpasses the
optimal number, the success probability starts to decrease until it drops to near zero.
You can experiment with the code to increase the number of iterations further to
observe the full periodic behavior of success probability.
The complete project for this section consists of the following components:

Problem-specific code (listings 8.1 and 8.2)

Generic Grover’s search implementation (listing 7.3)

The code that runs the end-to-end problem solution and calculates its success

rate (listings 8.3 and 8.4)

The test code (not included here)

You can find the complete project code in the GitHub repository.

Q#
Listing 8.5 shows the Q# code that implements the operation that prepares the
|mean) state for the described approach to solving the N queens puzzle.
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As a reminder, this approach uses the straightforward input representation: each
qubit represents one cell of the board and indicates whether there is a queen placed
there. However, we only consider inputs that have exactly one queen in each row,
and we encode this constraint in the |mean) state.

import Std.Arrays.Chunks;

import Std.Convert.IntAsDouble;

import Std.Math.Sqgrt;

import Microsoft.Quantum.Unstable.StatePreparation.PreparePureStateD;

Calculates the amplitudes

function GetWStateAmps(n : Int) : Double[] {
of the W state on n qubits

mutable amps = [0.0, size = 2 * nl;
for 1 in 0 .. n - 1 {
set amps w/= (1 <<< i) <- Sgrt(l1.0 / IntAsDouble (n));

}

return amps;

}

Operation that prepares the

x
operation PrepareMean Bits( ¢44Jmeanshneonn n board

n : Int,
gs : Qubit/[]
) : Unit is Adj {

let wstateAmps = GetWStateAmps (n) ; Prepares the W state on

for row in Chunks(n, gs) | each row of n qubits separately

PreparePureStateD (wstateAmps, row) ;

Notice that the logic of calculating the amplitudes of the W state for a given number
of qubits is implemented as a separate function, rather than as a part of the operation
PrepareMean Bits. Why is this necessary?

We’ll need the adjoint of the state preparation operation to implement reflection
about the mean in the Grover’s iteration, so the operation PrepareMean_Bits has to
have its adjoint variant defined. The easiest way to ensure that is to implement the
operation in a way that allows the Q# compiler to generate its adjoint automatically.

However, Q# compiler cannot generate adjoint of operations that use mutable
variables in the code. Instead, we move the classical computation out of the operation
and into a separate function. Q# functions are deterministic and cannot have side
effects, so calling the function GetWStateAmps with the same parameter n in the
operation and in its adjoint variant is guaranteed to produce the same return value.
This makes it safe to use when generating the adjoint of an operation.

The following listing shows the Q# code that implements the marking oracle for
this approach.
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function GetRowPairind( Function that converts the pair of

n : Int, rows (rowl, row2) into an integer index
rowl : Int, row2 : Int
) : Int { Iterates through all pairs in order of rowl
mutable ind = 0; increasing and then row2 increasing
for r1 in 0 .. n - 1 {
for r2 inrl +1 .. n - 1 {

if rl == Ir°W1 and r2 == row2 { Returns the index of the pair
return ind; that matches the input

}

set ind += 1;

}

return -1;

operation Oracle_Bits( <—— The marking oracle

n : Int, The presence of a queen in row r and

x : Qubit(], column c is described with x[r * n + c].
y : Qubit
) : Unit {
use validColumn = Qubit[n - 1]; <—— Qubits for column constraints
use invalidRowPair = Qubit[n * (n - 1) / 2]; <—— Qubits for diagonal constraints
within {
for ¢ in 0 .. n - 2 { <— Evaluates column constraints
for r in 0 .. n - 1 { <—— Computes XOR of all qubits in this column
]

CNOT (x[r * n + c], validColumn|[c]) ;

}

} <— All qubits in validColumn should be 1.

for r1 in 0 .. n - 1 { <— Evaluates diagonal constraints for each pair of rows
for r2 in rl + 1 .. n - 1 {
let rowPairInd = GetRowPairInd(n, rl, r2);

for ¢l in 0 .. n - 1 { Computes AND of each qubit pair on
for c2 in [el + (r2 - rl), <Tthesamediagonal in these two rows
cl - (r2 - rl)]

if ¢2 >= 0 and c2 < n {
CCNOT (x[rl * n + c1],

x[r2 * n + c2],

Computes XOR of all ANDs since,
at most, one of them will be 1

invalidRowPair [rowPairInd]) ;

}
}
}
} <—— All qubits in invalidRowPair should be 0.
ApplyToEachA (X, invalidRowPair); <—— Switches them to 1s using X gates
} apply {

Checks that all
constraints are satisfied

}

Controlled X(validColumn + invalidRowPair, vy); <441
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Since one of the constraints is handled by the state preparation, the marking oracle
has to check only the other two constraints: each column must have exactly one
queen and each diagonal must have at most one queen. The code allocates extra
qubits to store the results of validating the constraints for each column and each pair
of rows and then evaluates these constraints.

Notice that the code uses the within-apply construct to evaluate the constraints,
calculate the final value of the function based on those results, and then uncompute
the constraints’ evaluation automatically. We’ve used this construct earlier, starting
with chapter 6. Here, you can see that it grows more and more convenient as the
computations that need to be uncomputed become more complicated.

For N queens puzzle, Grover’s search doesn’t offer a deterministic solution, so
it makes sense to separate the tests from the end-to-end algorithm execution. The
key component that requires testing is the marking oracle implementation. Grover’s
search implementation and mean state preparation are standard components at this
point, so we can skip writing the tests for them.

The tests for this marking oracle implementation are very similar to those you’ve
seen in section 6.3, so I'm not including them in the text. They apply the oracle
to multiple basis states and check that the result matched the classically computed
function value every time. Note that for Grover’s algorithm, we only care about the
behavior of the oracle on the basis states that belong to the search space—the oracle
is never applied to any other basis states. As a result, we can speed up the tests by
limiting them to just these basis states, not all basis states on N? qubits. However, we
do need to write Python code to run the algorithm end-to-end, since we want to see
it solve the actual N queens puzzle!

Listing 8.7 shows the Python host code that calls the Q# implementation of Grover’s
search for the N queens puzzle. To make things more interesting, the code runs
Grover’s search multiple times with different numbers of iterations and gathers
statistics on the way the number of iterations affects the success rate of the algorithm.

from gsharp import init, eval
from time import time

n_rows = 4
oracle = f"NQueens.Oracle Bits({n_rows}

PR
prep mean = f"NQueens.PrepareMean Bits({n_rows}, )"

print (£ "Running for board size {n rows}, mode = Bits")
init (project_root='.")

£ it i 1, 18):
or n_iter in range( )t 1ries different

n_runs = 100 numbers of iterations
n_correct = 0
start_time = time() Calculates the success ]
. rate of the quantum algorithm
for _ in range(n_runs):

res_bits = eval ("GroversSearch.RunGroversSearch (" +
£ {n rows ** 2}, {oracle}, {prep mean}, {n iter})™")
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if check placement_bits(n_rows, res_bits):
n_correct += 1
end_time = time()
print (£"{n iter} iterations - success rate {n correct / n_runs * 100}%" +
£ ({round (end time - start time)} sec)")

As a reminder, check_placement_bits is the function from listing 8.3 that checks
whether the queens placement is valid.
The output of this code will look something like this:

Running for board size 4, mode = Bits

1 iterations - success rate 7.0% (2 sec)

2 iterations - success rate 22.0% (4 sec)

3 iterations - success rate 36.0% (6 sec)

4 iterations - success rate 49.0% (8 sec)

5 iterations - success rate 65.0% (10 sec)
6 iterations - success rate 89.0% (11 sec)
7 iterations - success rate 89.0% (13 sec)
8 iterations - success rate 100.0% (15 sec)
9 iterations - success rate 100.0% (16 sec)
10 iterations - success rate 94.0% (19 sec)
11 iterations - success rate 79.0% (20 sec)
12 iterations - success rate 65.0% (22 sec)
13 iterations - success rate 49.0% (25 sec)
14 iterations - success rate 32.0% (27 sec)
15 iterations - success rate 20.0% (29 sec)
16 iterations - success rate 1.0% (31 sec)
17 iterations - success rate 1.0% (34 sec)

You see that the output shows the expected behavior of Grover’s search algorithm:
as the number of iterations increases, the success probability grows at first. After the
number of iterations surpasses the optimal number, the success probability starts to
decrease until it drops to near zero. You can experiment with the code to increase
the number of iterations further to observe the full periodic behavior of success
probability.
The complete project for this section consists of the following components:

Problem-specific Q# code (listings 8.5 and 8.6)

Generic Grover’s search implementation in Q# (listing 7.4)

The Python code that runs the end-to-end problem solution and calculates its

success rate (listings 8.3 and 8.7)

The test code (not included here)

You can find the complete project code in the GitHub repository.

Changing problem encoding

We just saw how using the naive solution can be improved by tweaking the search
space to encode part of the problem constraints in its structure. Can we take this
approach one step further and change the input representation to reflect part of the
problem constraints?
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Math

In the previous section, we noticed that any viable solutions to the N queens puzzle
will always have exactly one queen in each row. This observation, while very simple,
is key to significantly reducing the search space size and simplifying the logic of the
oracle.

We can use the same observation to change the input encoding. Since we know
up front that each row has only one queen, we don’t need to use NV bits to represent
the individual cells of the row. Instead, we can encode the queen’s position in a row
as the integer index of the column it occupies. Figure 8.7 shows an example of this
encoding for N =4.

This encoding uses only [logy N bits for each
@ - 1 row. For our example of N =4, the possi-
ble column indices we need to represent are
@ —» 3 0,1, 2, 3, and we need just 2 bits to store the
binary representation of these numbers.

@ — 0 The new encoding does not reduce the
search space size of the problem; we’re still

‘@ — 2 looking at all inputs that have one queen in

each row, for a total of NV possible inputs. But
Figure 8.7 The new input encoding relies the inputs are now encoded more compactly,
on the fact that only inputs in which each ith NT1 N1 bi ded h
row has exactly one queen can be solutions wit |— 082 1 lts‘ needed to represent the
to the puzzle. We represent each row of the ~ input instead of N2 we had in the previous
board as just one integer, the column index approach.

f th in that row.
ofthe queen in that row The |mean) state has to change to reflect

the new representation. Since we encode each row independently, the |mean) state
remains a tensor product of N identical states that describe each row. But each of the
per-row states will now use [loge N qubits, and the superposition that describes a row
will include the N basis states that correspond to integers from 0 to N — 1, inclusive:

|EN)=\/LN(|O)+|1>+|2)+...+|N—1))

For the case of N =4, this state will be simply an equal superposition of all basis states
on two qubits.

Now, let’s see how the encoding change modifies the oracle implementation.
Same as with the previous approach, we don’t need to check that no two queens
share a row. This is handled by the encoding itself, since it explicitly uses only one
number to represent the queen’s position in the row.

The other two types of constraints, exactly one queen in each column and, at
most, one queen on each diagonal, look very different now. Figure 8.8 shows how to
evaluate these constraints with the new encoding.

Since we already know the indices of the queens’ positions in each row, we don’t
need to check all possible pairs of cells that might have queens in the same column
or on the same diagonal any longer. Instead, we can iterate over all pairs of rows and
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Adijacent rows: diff Rows with one row Rows with two rows
carlmot be 0 1' or -1 between them: diff between them: diff
7 ’ cannot be 0, 2, or -2. cannot be 0, 3, or -3.
=, w Wy

w w W

w

wl [ Wy

W W W

Figure 8.8 To check that no two queens share a column or a diagonal, we need to check each pair of
rows separately. For each pair of rows, we calculate the difference of the indices of queens within them.
This difference cannot be equal to zero or to the difference between the indices of these rows.

calculate the difference between the indices of the queens in each pair of rows. This
difference cannot be 0, since this would mean that these two queens are in the same
column. It also cannot be A or —A, where A is the difference between the indices of
the two rows, since this would mean that these two queens are on the same diagonal.

How many bits we need for a solution implemented based on this input encoding?

We need N [logy N1 bits to store the problem input and 1 bit to store the output
of the marking oracle.

The column and the diagonals checks need one bit for each pair of rows, for a
total of # bits.

We might need a couple more auxiliary qubits to implement the computations
themselves. The main part of the constraints check is calculating the difference
of two integers, which, depending on the implementation, can take several
additional bits to act as carry bits. The Qiskit code will need 2 extra qubits
for this, and the Q# code—1, so we’ll use 2 as the number of auxiliary qubits.
However, these bits are used only temporarily when subtracting two integers,
and thus they can be reused in the next subtraction.

The total number of bits is N [loge N+ w + 3.

For our small example, N =4, and the number of bits used by the solution is 17,
which means that the quantum simulator will use less memory to run this program
compared to the solution we’ve seen in the previous section. The search space size is
still 4% = 256, though, so the optimal number of iterations is still 9.

Can we improve the solution further?

The input description that relies on queens’ indices in their respective rows allows
us to reduce the search space size even further. We only need to consider the po-
tential solutions in which all indices of queens’ positions in their rows are distinct.
In other words, the search space can consist of only the inputs which are permuta-
tions of all integers from 0 to N — 1, inclusive. We can prepare the |mean) state as
an equal superposition of basis states that are such permutations and drop the
check for queens being in the same column from the oracle.
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With this improvement, the search space size goes down from NV to N!, which
for N =4 means the reduction from 256 to 24. The optimal number of iterations
goes from 9 to 3, which is a significant improvement, especially for such a small
test case. On the other hand, each iteration is likely to become more complicated
due to the |mean) state becoming harder to prepare.

You can see that even for a problem as simple as this puzzle, there are multiple ways
to approach the solution and multiple decisions to make when implementing the
chosen approach. Making the right choice can mean the difference between getting
the problem solution in minutes, in hours, or even not getting it at all.

How can we compare the different solutions to the same problem and decide
which implementation choices are the best? That’s exactly what we’ll talk about in
chapter 9! Meanwhile, let’s see how to implement the solution that uses the new
input encoding.

Qiskit

Listing 8.8 shows the Qiskit code that prepares the |[mean) state for the N queens
puzzle solution described in this section. With the new representation, the position
of a queen in each row is represented as an integer, stored in an array of [loge N
qubits. The state preparation needs to split the board representation into N chunks,

one per row, and prepare the state |[Ey) (the equal superposition of basis states from
|0) to [N — 1)) on each of them.

from math import sqgrt
from giskit import QuantumCircuit
from giskit.circuit.library import StatePreparation

def bits_per_row (n)l : Calculates the number of bits
return (n - 1).bit_length() in binary representation of n

def prep mean indices(n):
bitsize = bits_per row(n)
mean_amps = [1 / sgrt(n)] * n + [0] * (2 ** bitsize - n)
meanstateprep = StatePreparation(mean amps)

circ = QuantumCircuit(n * bitsize)

for r in range (n) : Prepares the equal superposition

) on each row of bitsize qubits
circ.append (meanstateprep,

range(r * bitsize, (r + 1) * bitsize))

return circ.to_gate()

The following listing shows the Qiskit code that implements the marking oracle for
this approach.
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from giskit import QuantumCircuit, QuantumRegister
from giskit.circuit.library import CDKMRippleCarryAdder
from giskit.circuit.library.standard _gates import XGate

def oracle indices(n) : ]
- Uses library adder

for integers of
the given bit size

bitsize = bits_per row(n)
adder = CDKMRippleCarryAdder (bitsize) .to_gate()

X = QuantumRegister (n * bitsize)

y = QuantumRegister (1)

invalid rowpair = QuantumRegister(n * (n - 1) // 2)
carryin = QuantumRegister (1)

carryout = QuantumRegister (1)

circ = QuantumCircuit (x, invalid rowpair, carryin, carryout, y)

cire.x(carryout) Carryout in state |1> used to keep
subtraction from overflowing

] Evaluates column and diagonal
ind = 0 constraints for each pair of rows

for rl in range(n):

def one queen per column diagonal () : j

for r2 in range(rl + 1, n): Arguments to subtract column

diff inds = carryinl:] + \ indices of queens in rows rl and r2

x[bitsize * r2:bitsize * (r2+1)] + \
x[bitsize * rl:bitsize * (rl+1)] + \ Subtraction and addition done in

carryout [:] place, with the result stored in
the input register r1

circ.append(adder.inverse(), diff inds) <—— Subtracts two indices
for diff in [0, Checks that the difference of indices
rl - r2, is not equal to O, r1-r2, or r2-r1

r2 - rl]:

circ.append (XGate () .control (bitsize + 1,
ctrl_state=diff + (2 ** bitsize)),
x[bitsize * rl:bitsize * (rl+l)]

If equal to 0, r1-r2,
or r2-r1, marks the row
pair as invalid

carryout [:] +

[invalid_ rowpair[ind]])
circ.append(adder, diff inds) <— Uncomputes subtraction
ind += 1

one_gqueen_per column_diagonal ()

Checks that all

circ.append (XGate () .control (len(invalid rowpair),
row pairs are valid

ctrl state=0),
invalid rowpair[:] + yI[:])
one queen per column diagonal ()

circ.x(carryout)

return circ

As in section 8.2, the constraint on the number of queens in each row is handled by
the state preparation, so the marking oracle only needs to check that no two queens
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are in the same column or diagonal. To do this, it calculates the difference of the
queens’ column indices in each pair of rows and checks that it is different from zero
and the difference between the row indices.

Subtraction is done as an adjoint of the library adder cDKMRippleCarryAdder that
performs in-place addition of two integers with carry-in and carry-out bits. The carry-
out bit starts as 1 before subtraction to make sure the difference between the two
indices never ends up negative. We can handle all three checks for the difference
in the same way, using a controlled X gate, without considering representation of
negative integers.

The structure of the code that runs end-to-end Grover’s search and calculates its
success rate is very similar to the code we saw in section 8.2, since the only difference
between these two implementations is in the encoding of the queens’ placement;
the high-level logic of the solution is similar.

The output of this code will look something like this:

Running for board size 4, mode = Indices
1 iterations - success rate 9.0% (0 sec)

2 iterations - success rate 27.0%(0 sec)
3 iterations - success rate 31.0%(0 sec)
4 iterations - success rate 56.0%(0 sec)
5 iterations - success rate 75.0%(0 sec)
6 iterations - success rate 85.0%(0 sec)
7 iterations - success rate 93.0%(0 sec)
8 iterations - success rate 98.0%(0 sec)
9 iterations - success rate 99.0%(0 sec)
10 iterations - success rate 89.0%(0 sec)
11 iterations - success rate 82.0%(1 sec)
12 iterations - success rate 58% (1 sec)

You can find the complete code of this project in the GitHub repository.

Q#

Listing 8.10 shows the Q# code that implements the operation that prepares the
|mean) state for the approach to solving the N queens puzzle described in this section.
With the new representation, the position of a queen in each row is represented as
an integer, stored in an array of [loge N qubits. So, the state preparation operation
needs to split the board representation into N chunks, one per row, and prepare
the state |[Ey) (the equal superposition of basis states from |0) to [N — 1)) on each of
them.

import Std.Arrays.Chunks;

import Std.Convert.IntAsDouble;

import Std.Math.*;

import Microsoft.Quantum.Unstable.StatePreparation.PreparePureStateD;
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operation PrepareMean Indices(n : Int, gs : Qubit[]) : Unit is Adj
let meanAmps = [1.0 / Sgrt(IntAsDouble(n)), size = n];
for row in Chunks (BitSizeI(n - 1), gs) {
PreparePureStateD (meanAmps, row) ;

The amplitudes of the state |Ey) in this code are straightforward to define, so we
don’t need a separate function to calculate them like we did in listing 8.5.

Listing 8.11 shows the Q# code that implements the marking oracle for this
approach. It reuses the function GetRowPairInd from listing 8.6 that maps pairs of
rows to unique indices.

import Microsoft.Quantum.Unstable.Arithmetic.*;
operation Oracle Indices(n : Int, x : Qubit[], y : Qubit) : Unit {

The column of a queen in row r

let indices = Chunks (bitSize, x); is indices[r] in big-endian encoding.

let bitSize = BitSizeI(n - 1); <441

use invalidRowPair = Qubit[n * (n - 1) / 2];

within {
use aux = Qubit(); Extra | 1> qubit used as the most significant
X(aux) ; bit to keep subtraction from overflowing
for ¥Y1 in 0 .. n -1
for r2 inrl + 1 .. n - 1 { Reverses column
let rowPairInd = GetRowPairInd(n, rl, r2); indices to make

let indl = Reversed([aux] + indices|[rl]) ; them little-endian

let ind2 = Reversed(indices[r2]) ;
within { Calculates ind1 - ind2

Adjoint IncByLE (ind2, indl); and stores In ind1

} apply {
for diff in [OL,
IntAsBigInt (rl - r2),
IntAsBigInt (r2 - rl)] {
ApplyIfEqualL (X, diff + (1L <<< bitSize), If equal to 0, r1-r2,
indl, invalidRowPair [rowPairInd]) ; or r2-r1, marks the

Checks that the difference of indices
is not equal to O, r1-r2, or r2-r1

} row pair as invalid.
}
1
1
X (aux) ;
} apply { Checks_thataurd
ApplyControlledonInt (0, X, invalidRowPair, y); row pairs are vali

}

As in section 8.2, the constraint on the number of queens in each row is handled by
the state preparation, so the marking oracle has to check only that no two queens
are in the same column or diagonal. However, the new approach combines these
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two checks into one, iterating over all pairs of rows and checking that the queens’
placement in them does not violate either constraint. Consequently, the code doesn’t
need to allocate a separate qubit register for columns checks like the oracle from
listing 8.6 did.

For each pair of rows, the oracle needs to find the difference between the column
indices of the two queens in it. This can be done using a library operation IncByLE,
which adds its first argument to its second argument. Since subtraction is the inverse
of addition, adjoint of this library operation will subtract the first argument from the
second argument. Padding the second argument with a most significant bit equal to
1 makes sure that subtraction result remains positive; this simplifies our check. (This
is the same trick we used in Qiskit by setting the carry-out bit to 1.)

Finally, the difference between the column indices is compared with 0 and with the
differences between the row indices. These are classical values, so the comparison can
be done using another library operation 2ApplyIfEqualL. This operation is effectively
a controlled gate: it applies the given gate (in this case, X) if the given quantum
integer equals the given classical integer.

The structure of the Python code that runs end-to-end Grover’s search based on
this encoding and calculates its success rate is very similar to the code we saw in
section 8.2, since the only difference between these two solutions to the N queens
puzzle is in the representation of the queens’ placement.

The output of the complete code will look something like this:

Running for board size 4, mode = Indices

1 iterations - success rate 8.0% (1 sec)

2 iterations - success rate 18.0% (2 sec)

3 iterations - success rate 31.0% (4 sec)

4 iterations - success rate 48.0% (6 sec)

5 iterations - success rate 68.0% (8 sec)

6 iterations - success rate 85.0% (10 sec)
7 iterations - success rate 97.0% (13 sec)
8 iterations - success rate 100.0% (16 sec)
9 iterations - success rate 99.0% (20 sec)
10 iterations - success rate 94.0% (24 sec)
11 iterations - success rate 80.0% (29 sec)
12 iterations - success rate 56% (35 sec)

You can find the complete code of this project in the GitHub repository.

Going beyond

Do you want to spend some more time exploring variations of the problem discussed
in this chapter before moving on to the next topic? Here are some additional ideas
for similar problems if you want to try your hand at something more challenging:

In the oracle we implemented in section 8.3, we merged the checks for columns

with the checks for diagonals, since their implementations were very similar.
Try to do the same for the oracle from section 8.2.
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Consider boards of different shapes, for example, a rectangular N x M board
or a square N X N board with a square area cut out from the middle. How do
you need to modify the solution in this case? Which of the tricks you learned
can still be used?

The domination number of an N X N board is the minimum number of queens
necessary for each cell to be either occupied by a queen or under attack from
one. This number is typically less than NV, for example, for the standard chess
board with N =8 the domination number is 5. How would you search for a
placement of queens that achieves domination on an N x N board?

A'lot of other logic puzzles focused on filling squares of a grid with values that
satisfy certain constraints allow you to explore Grover’s search. Here are a few
examples:

— In Latin squares, the goal is to fill the cells of an N X N square with digits
1 through N in such a way that each row and each column includes all N
digits.

— In Kakuro puzzles, grid cells have to be filled with numbers that should add
up to the given row and column sums.

— In Sudoku puzzles, the goal is to fill the squares with numbers so that each
row, column, and subsquare have no duplicate numbers.

— In Takuzu puzzles, grid cells have to be filled with Os and 1s so that each row
and column has equal numbers of 0s and 1s and no row or column has three
copies of the same digit next to each other.

Summary

A search problem usually has multiple ways to describe it as the input x and the
function f(z). Different descriptions can lead to solutions of different efficiency.
The best way to speed up the solution to a search problem is reducing the search
space size by analyzing the constraints and encoding part of them in the search
space representation. This can lead to both simpler oracle implementation and
fewer algorithm iterations necessary.

If reducing search space size is not practical, it might be possible to change the
encoding of the inputs within the search space to allow for simpler function
evaluation and more efficient oracle implementation.

When you implement a quantum algorithm to run on a quantum simulator, it
is important to consider the total number of qubits used in the program, the
length of the program, and, if running on a sparse simulator, the number of
basis states in superposition states that are manipulated during the program
execution.

Sparse simulators are more efficient compared to full-state simulators for pro-
grams that act on a large number of qubits but only use a small subset of all
basis states.



Evaluating the performance
of quantum algorithms

This chapter covers

Comparing quantum algorithms with classical
algorithms for the same problem

Factors that affect performance of quantum
algorithms

Using Azure Quantum Resource Estimator
to estimate performance of quantum
programs on future quantum computers

In chapter 8, we came up with two quantum algorithms for solving the N queens
puzzle—variants of Grover’s search that relied on different problem encoding and
oracle implementation. How can we compare these two algorithms to decide which
of them is better? And how can we figure out whether either of these algorithms can
beat the classical solution to the N queens puzzle for large boards?

These questions arise whenever somebody comes up with a quantum algorithm to
solve a problem. Comparing quantum solutions with each other and with classical
ones is a critical part of quantum algorithm development. After all, we’re building
quantum computers to achieve practical quantum advantage—to solve useful prob-
lems that classical computers cannot handle. Understanding what kinds of problems
these can be and what the quantum solutions to them look like gives us important
information for making decisions about the architecture of the future quantum
computers as we build them.
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Before we start looking for answers for these questions, let’s pause and think
about the root question: How can we define the “quality” of a problem solution? You
probably spend more time considering quality of classical solutions, but the same
fundamental principles apply to quantum ones.

There is no single metric to define the quality of a software solution. Instead, it is
usually defined as a combination of several metrics, illustrated in figure 9.1.

The first metric is the accuracy of the result. The

search problem is not the best example to

Result
accuracy

illustrate this metric, since it doesn’t define
approximate solutions: a value is either a valid
answer or not. For other problems, such as the
phase estimation problem we saw in section
5.3 or the problem of evaluating the energy

of the ground state of a molecule in quantum

Monetary
cost

Execution
time

chemistry, the answer is a number—an esti-

mate of the true value of the eigenphase or

the energy, respectively. The closer to the true
Figure 9.1 The key metrics that describe
the quality of a problem solution are the
accuracy of the result and the time and cost
required to get it. We can often trade off For the solution to be useful in practice, it

these metrics by using different algorithms has to yield the result in hours or days, not in
or implementations.

value this estimate is, the better the solution.
The second metric is time to get the solution.

years or decades. A solution that returns the
answer in minutes is better than another that produces the same result but takes
days.

The third, less commonly discussed metric, is monetary cost. Let’s say you have two
algorithms that produce the answer with the same accuracy in the same time, but one
of them runs on your laptop and the other one requires a supercomputer or a whole
cluster of virtual machines from your favorite cloud provider. The first algorithm is
clearly the winner, since it’s so much easier and cheaper to run.

We can often choose which of these metrics we want to optimize by choosing the
algorithm we use to solve the problem or tweaking its hyperparameters. Sometimes,
it is possible for one solution to beat another one across all metrics; in other cases,
we need to choose which ones are important for us and which ones we’re willing to
sacrifice.

In this chapter, we’ll talk about the performance of quantum algorithms and the
ways we compare them with each other and with classical algorithms. The discussion
will follow the flow shown in figure 9.2.

We’ll start with a purely classical question: How to choose the classical solution
that we will compare with the quantum one. Establishing a fair baseline is extremely
important for making the comparison candid, even if it ends up unfavorable for the
quantum algorithm!

Then, we’ll talk about the high-level principles of comparing the performance
of algorithms. As with classical algorithms, asymptotic complexity is not the only
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consideration when comparing algorithms. Here, you will learn about the factors
that affect the complexity of a quantum solution even before it makes it to the actual
quantum computer.

...that runs on
a fault-tolerant
quantum computer.

Evaluate the actual
quantum program...

Theoretical Quantum Code execution
quantum code on a quantum
solution implementation computer
Do not stop
at comparing Compare with
asymptotic x «— the best known
behaviors classical solution.
of solutions.
Theoretical Baseline:
classical best classical
solution solution

Figure 9.2 To understand performance of a quantum algorithm, you need to take into account not only
its asymptotic complexity but also its practical behavior. The performance estimates are affected by
the overheads introduced by the algorithm implementation and then by its execution on a fault-tolerant
quantum computer. You also need to choose the best known classical algorithm as the baseline for
comparison.

Next, we’ll dig deeper into the factors that affect the performance of a quantum
solution when it is executed on a real quantum computer. Most of this discussion
assumes using fault-tolerant quantum computers running error correction. The
quantum computing community agrees that we will need fault-tolerant quantum
computers to achieve practical quantum advantage, so it makes sense to focus on
the effect their architecture will have on the performance of quantum algorithms
running on them.

Lastly, I’ll introduce an example of a tool that estimates performance of quantum
programs assuming their execution on fault-tolerant quantum computers, Azure
Quantum Resource Estimator, and show you how to get and to interpret the resource
estimates it does. This will finally allow us to discuss our solutions to the N queens
puzzle and compare them to the classical solutions to this problem.

I’ll use the N queens puzzle as the example problem in the bulk of this chapter.
The two algorithms from chapter 8 will act as the example quantum algorithms
whenever I talk about comparing performance of specific algorithms.

NOTE Grover’s search is my favorite algorithm for teaching quantum comput-
ing. While it is unlikely to offer a practical advantage, it makes for a fantastic
illustration of the many reasons why a quantum algorithm can be less efficient
in practice than on paper!
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Choosing the classical solution for comparison

In chapter 7, we discussed Grover’s algorithm and compared it with the classical
search algorithm. For the purposes of that chapter, we represented our problem
as unstructured search problem, which assumed that we don’t have any information
about the internal structure of the problem that would help us solve it. Under this
assumption, we developed a generic quantum algorithm suitable for solving any
search problems—a quantum equivalent of a brute-force classical algorithm.

However, once we start solving a specific problem instead of a generic search
problem, this assumption becomes too limiting. Grover’s algorithm indeed uses no
information about the problem structure, other than the information used in the
oracle implementation and mean state preparation. But is this the case for all classical
algorithms as well?

In chapter 8, we solved the N queens puzzle by representing it as a search problem,
implementing the quantum oracle for it, and running Grover’s search based on
that oracle. But even for this quantum algorithm, you have seen firsthand how the
information about the problem structure affects the solution: encoding part of the
constraints in the search space allows us to both reduce the search space size and
simplify the oracle implementation and thus speeds up the algorithm significantly.

The same thing happens with classical solutions, although the effects are even
more pronounced. The problems we want to solve often have an internal structure,
and the solutions that exploit it are much more efficient than the naive brute-force
approaches.

Let’s consider the N queens puzzle again. There are plenty of classical approaches
to this problem that rely on the structure of the puzzle; figure 9.3 shows just a few
examples.

Brute-force algorithms consider all possible placements of N queens on the
board that satisfy a certain subset of constraints and then check whether each
placement satisfies the rest of constraints. There are a lot of variants of brute-
force solutions that vary in their definitions of “possible placements”:

— The most straightforward solution places N queens independently, with N2
possible cells for each queen, for a total of (N2)" possible placements.

— The slightly optimized variant places one queen in each of N rows (N
placements total).

— An even better algorithm generates N! permutations of numbers from 1
to N and places the queens in the corresponding columns in each row,
guaranteeing that all queens are in different columns.

Either way, each placement is considered as a whole, and invalid placements

are not used to inform the next steps.

Backtracking algorithms try to place queens one by one, eliminating a lot of

non-solutions without needing to complete them.
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Backtracking: place queens one by one;
if a conflict is found, backtrack;
otherwise, try placing the next one.
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Figure 9.3 The classical solutions to the N queens puzzle range from brute-force solutions similar to
those we considered as the equivalent to Grover’s search to methods that exploit all the available
information about the problem to construct the solution mathematically.

Local search algorithms start with a random initial placement and tweak it by
moving one or two queens at a time to reduce the number of attacks on the
board.

Finally, a mathematical formula allows us to build a solution (although not all
possible solutions) for an arbitrary board size without using a computer at all!
(B. Bernhardsson, “Explicit Solutions to the N-queens Problem for All N,”
https://dl.acm.org/doi/10.1145/122319.122322)

When we look to show a practical quantum advantage for a given problem, our goal
is not to find a quantum algorithm that is better than some classical solution for
it. Rather, we want the quantum algorithm to be better than all classical solutions,
including the best ones designed specifically for this problem with full understanding
of its structure.

Is Grover’s algorithm going to speed up database search?

If you've heard about Grover’s algorithm before, you've probably heard that it’s going
to speed up all search applications we have, including database search. In the light
of our discussion in this chapter, does this sound plausible?

Databases are collections of data designed specifically to facilitate efficient stor-
age and retrieval of information. | have yet to see a database that runs queries by
picking a random entry and checking whether it fits the search criteria. Instead,
they use techniques such as indexing to allow locating the relevant entries faster.
Additionally, database queries aim to find all entries that satisfy the search crite-
ria rather than just a single one, which makes them even worse applications for
Grover's search.


https://dl.acm.org/doi/10.1145/122319.122322

246

9.2

CHAPTER 9 Evaluating the performance of quantum algorithms

In practice, we’re looking to apply quantum computing algorithms to problems that
do not have efficient classical solutions. If a problem has a known classical solution that
is efficient enough for practical purposes, it’s very unlikely that quantum computing
will offer us an improvement over it.

Performance comparisons: Asymptotic vs. practical

Algorithms, quantum and classical both, are often described in terms of their asympto-
tic complexity—the rate at which the amount of resources required to solve a problem
grows as the problem size increases.

Asymptotic complexity can be expressed in terms of any resources that are impor-
tant for the algorithm. For example, classical multiplication algorithms are analyzed
in terms of the number of single-digit multiplications required to multiply two n-digit
numbers; for sorting algorithms, we typically consider the numbers of comparisons
and swaps and the amount of additional memory required to sort an array of n
numbers, and so on.

When we discussed the performance of Grover’s algorithm and its classical coun-
terpart in chapter 7, we focused on the asymptotic complexity of these algorithms,
expressed in terms of the number of oracle queries. We compared the average
asymptotic number of oracle calls necessary to get the solution and concluded that
Grover’s search offered us a quadratic speedup compared to the classical brute-force
algorithm.

Asymptotic complexity is a useful tool for getting the big picture of algorithm
behavior and the relative performance of two algorithms. If one algorithm has a linear
complexity (the resources it uses grow at most as fast as ¢n for some constant ¢ and
input size n) and another algorithm has a quadratic complexity (dn? for some other
constant d), we know that the first algorithm will perform better than the second one
for problems larger than a certain threshold. This threshold is called the crossover
point—the problem size for which the two algorithms offer similar performance.
For smaller problems, one algorithm is better, and for larger problems, the other
algorithm is better.

However, asymptotic behavior is not the only thing we need to consider. Itis an
abstraction that hides away a lot of implementation complexity of the algorithms. We
need to do a more thorough analysis to figure out where the crossover point of the
two algorithms is and where the problems of sizes we care about are located relative
to that point. This idea is illustrated in figure 9.4.

The fact that an algorithm has a better asymptotic complexity than the other one
doesn’t mean it’s always better. For example, the Karatsuba algorithm is a multiplica-
tion algorithm that is asymptotically faster than the traditional multiplication: it uses
O(n'-58) single-digit multiplications to multiply n-digit numbers, while the traditional
algorithm uses n%. However, in practice, it is less efficient for numbers commonly
used in most computations and is used only for very specialized applications that rely
on multiplication of very large numbers, such as cryptography.
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Two exponential solutions
perform very differently.

Time to solve

If problem sizes are here,
exponential solution is
better than the linear one.

Problem size

Figure 9.4 When comparing the performance of algorithms, it’s important to consider not only their
asymptotic behavior but also the details. Algorithms can have the same asymptotic behavior but vastly
different growth rates once you take into account all the factors. The solution with worse asymptotic be-
havior can be better in practice if the problem sizes are smaller than the crossover point—the problem
size for which two algorithms have similar performance.

When we consider algorithms that involve oracles, the difference between the costs of
an oracle call in the quantum and classical implementations can be very significant.

Quantum oracles implement classical computations in a way we saw in chapter
6, by breaking them down into primitive logical operations, making each operation
reversible, and then replacing reversible operations with their quantum equivalents.
This procedure introduces a considerable overhead in terms of the number of quan-
tum gates used to implement a quantum oracle compared to the number of logical
operations used to compute the same function on a classical computer. As a result, a
computation that is trivial to do on a classical computer, such as multiplication, can
take noticeable amount of time on a quantum computer.

To summarize, it is very important to not stop the discussion of quantum and
classical algorithms at the comparison of their asymptotic behavior. Instead, we
need to implement the quantum algorithm we have in mind and to estimate its
performance on problems of practical sizes to compare it to the real performance of
a classical algorithm.

Estimating performance of a quantum solution

Let’s say that you have already implemented the quantum algorithm you have in mind.
How can you estimate its performance and compare it to that of another algorithm,
quantum or classical? The naive measure of a quantum program performance is
the time it takes to run this program on a quantum simulator. This approach is
misleading for several reasons.

First, different quantum simulators can be better for simulating different kinds
of programs. For example, let’s take a look at the two quantum solutions to the N
queens puzzle from chapter 8 that we implemented in Q# and Qiskit. Their run time
on a simulator depends not only on the algorithm, but also on the implementation
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language and the simulator used for that language. Table 9.1 shows the simulation
time for Q# and Qiskit implementations of each algorithm, running for the optimal
number of iterations (9) and repeated a hundred times.

Table 9.1 Simulation times for different solutions to the N queens puzzle

Algorithm Qiskit run time Q# run time
Section 8.2 137 sec 16 sec
Section 8.3 <1sec 20 sec

If we compare the execution time of Qiskit implementations, the second algorithm
(section 8.3) is much faster: it completes a hundred runs in under a second, while
the first algorithm (section 8.2) takes over two minutes to do the same. But if we look
at the run times of Q# programs, the first algorithm will turn out to be slightly faster:
16 seconds versus 20 seconds for the second algorithm.

NOTE This discrepancy comes from the fact that Qiskit simulator is full state,
in which case the time of simulation is heavily influenced by the number of
qubits allocated by the program. The Q# simulator is sparse, and the time of
simulation depends primarily on the number of the basis states manipulated
by the program, which is the same for both algorithms.

More importantly, the time it takes to run a program on a quantum simulator is
not really a good indicator of the time it will take it to run on a quantum computer.
Remember that quantum simulators are classical programs themselves and run on
classical computers. So, they need to put in a lot of extra work into pretending to be
quantum computers by maintaining the state of the program as a vector of complex
numbers and simulating the effects of the gates and measurements by updating this
vector. Something as simple as applying a gate to one qubit might require updating
all elements of the vector representing the quantum state of the system, and the size
of this vector can grow exponentially with the number of allocated qubits. At the
same time, on a quantum computer, applying a gate is a physical process that acts on
just a few qubits regardless of the total number of qubits used by the program.

Our ultimate goal is to run quantum algorithms on fault-tolerant quantum com-
puters, so we need to take that into account when estimating the performance of our
programs. We also need to keep in mind that quantum computers are not mature
enough yet to be fault-tolerant, so we cannot just grab a computer, run our algorithm
on it, and measure how long it took! Instead, we need to make an informed predic-
tion about the possible architecture of the future fault-tolerant quantum computers
and estimate the resources required to run our program on them based on this
prediction.

WARNING  This section and the next one are based on the current assumptions
about how future fault-tolerant quantum computers might work. There are still
a lot of open scientific and engineering problems to solve before we get there,
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so while the main principles are most likely to stay unchanged, the details are
almost certain to change.

How does the architecture of a fault-tolerant quantum computer affect the perfor-
mance of quantum algorithms running on it? Figure 9.5 shows the main factors we

need to take into account.

Slow

gates
Overhead introd

Limited
gateset

Overhead introduced
by approximation

by error correction of arbitrary gates

Figure 9.5 Physical qubits are noisy, they support a limited set of gates, and these gates are slow. We
have to use error correction to enable reliable computation on noisy qubits. We also have to use a special
process to implement arbitrary logical gates on logical qubits. These factors affect both the run time of
algorithms on the quantum computers and the numbers of qubits required to run them.

First, applying gates and measurements to the physical systems we use as qubits—
photons, or atoms, or small manufactured devices that behave according to the laws
of quantum mechanics—is slower than applying classical logical gates to bits used in
a classical computer. Depending on the physical implementation of qubits, a single
gate or measurement can take from tens of nanoseconds to microseconds to apply.
In contrast, classical logical gates take nanoseconds or less. Even if the quantum
program used the exact same number of gates as the classical one, it would take
longer to run.

Second, the physical qubits are all inherently noisy due to their physical nature.
The error rates for gates and measurements are projected to reach 10~* or 1070 in
optimistic scenarios. This means that it is impossible to carry out a long computation
using physical qubits directly: the noise will ruin it really fast, effectively rendering
the results random.

NOTE For example, consider a program that uses Grover’s search to find one
value out of 16 or 32—a very short computation that uses less than 10 qubits.
When you run it several times, on a simulator you will get the correct answer in
the majority of the runs, and just a few incorrect answers. However, if you run
it on the current NISQ devices (or on noisy simulators that imitate them), you
will get all possible results with roughly equal probability.

Instead, fault-tolerant computers will use error correction, a technique that enables
reliable computation using unreliable (noisy) qubits. It encodes logical qubits—
qubits used in the quantum programs—in states of multiple physical qubits and
represents logical gates—gates the quantum programs apply to qubits—as sequences
of gates and measurements applied to those physical qubits. Error correction does
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not make the computation completely noise-free, but it allows us to reduce the error
rates to values as low as we need.

Error correction is one of the major sources of overhead when running quantum
programs on fault-tolerant quantum computers. Since each logical gate can take
dozens or even hundreds of physical gates and measurements to implement, it takes
a lot longer to apply a single logical gate than a physical gate.

Logical architecture of a fault-tolerant quantum computer describes the error
correction code used, logical qubit connectivity (the way logical qubits are arranged
and can interact with each other), and the operations available for logical qubits.
You can use arbitrary gates in your quantum program, including arbitrary rotations
and multicontrolled gates, and apply them to any subsets of qubits. But while the
quantum simulator can just construct the matrices of any gates and apply them to the
quantum state directly, the actual quantum computer cannot do that—this operation
is just not available to it. Instead, the software stack that runs the quantum program
has to transform each gate used in the program into a sequence of simpler operations
that can be applied to logical qubits.

Depending on the logical architecture, logical qubits are likely to have limited
connectivity: it might only be possible to apply a gate to two qubits if they are right
next to each other. If your program needs to apply a gate to two qubits that are
placed far from each other, it cannot do that directly. Instead, this gate needs to be
replaced by a sequence of gates, each of them applied to pairs of adjacent qubits.

To facilitate this, the software stack will typically use auxiliary qubits in addition
to the data qubits—the qubits used to carry out the main computation. For example,
the data qubits can be arranged in rows that are separated by rows of auxiliary qubits.
The only goal of those auxiliary qubits is to enable applying multi-qubit gates to
distant data qubits; they are not used in the main computation.

The other factor to consider is that you can apply only a very limited set of oper-
ations directly to logical qubits. If your program uses other gates—for example,
arbitrary rotation gates such as Ry—these gates need to be constructed from the
available operations.

To extend the set of gates that can be used on a quantum computer, we use
so-called magic gates and their companion magic states. Magic gates are not supported
by the logical architecture directly. Instead, we prepare rough approximations of
magic states and refine them through a process called magic state distillation. Finally,
we use these magic states to apply magic gates in the sequences of operations that
approximate arbitrary gates.

Magic gate: The T' gate
A typical example of a magic gate is the T' gate and its matching T' state:
1

T= ) IT)=T |+) = &=(10) + /% 1))
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Together with some simple gates that are supported by a typical logical architecture,
the T gate allows us to approximate any single-qubit gate as precisely as we want.

Currently, we assume that magic state distillation is necessary for fault-tolerant quan-
tum computation. This process runs in parallel with the “main” computation in
a separate area of the quantum computer, and its only goal is to supply magic
gates to the main computation. Depending on your program and the gates you use
in it, producing magic states can be a major contributor to the overall resource
requirements of running the program.

This is a very high-level overview of the things that you need to account for when
estimating the run time of your program on a fault-tolerant quantum computer. It
mentions just a few main factors that have significant effect, but even they are a lot
to keep in mind! Doing all these calculations for every program you write can seem
daunting.

Fortunately, we don’t need to do these estimations by hand. Specialized software
tools can do quantum resource estimation automatically based on the program you
have and a few numeric parameters. Let’s take a look at one such tool.

Azure Quantum Resource Estimator: An overview

Multiple software tools for programmatic quantum resource estimation emerged in
the past few years. They work with different algorithm descriptions as inputs and use
different assumptions about the architecture of quantum computers the algorithms
will run on. I will not offer an overview of all these tools here, since their list is growing
and their capabilities are changing very fast.

In this section, I’ll show you one example of a software tool for resource estimation—
Azure Quantum Resource Estimator (AQRE), part of Azure Quantum Development
Kit. Conveniently, AQRE can estimate the resources required to run programs written
in both Qiskit and Q#, which makes it perfect for this book.

Using Azure Quantum Resource Estimator with Qiskit and Q#

The exact way of invoking AQRE for the given quantum program and getting the
results depends on the language. As of November 2024,

You can run resource estimation for Q# programs locally, via the Azure Quan-
tum Development Kit extension for VS Code or via the Python package gsharp.
To run AQRE for Qiskit programs, you need to use Azure Quantum cloud ser-
vice.

The resource estimates done by AQRE do not depend on the language of the input
program but rather on what the program does. For simplicity, | will use the estimates
done for Q# programs from chapter 8. Qiskit estimates will have the same structure
and very similar numeric values.
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(continued)

Creating an Azure account and using Azure Quantum workspace to run programs
on quantum hardware or cloud simulators, including AQRE, is out of scope for
this book, so | will not discuss the details of running AQRE for Qiskit programs.
If you want to reproduce this chapter’s estimates for Qiskit programs from chap-
ter 8 or to use AQRE with your own Qiskit programs, | encourage you to refer to
the Azure Quantum documentation on setting up an Azure Quantum workspace
(https://mng.bz/W244) and running AQRE for Qiskit programs from it (https:/mng
.bz/80eZ).

You can run Azure Quantum Resource Estimator for a Q# operation that doesn’t
have inputs, such as an operation marked as @EntryPoint (), directly from Visual
Studio Code using Azure Quantum Development Kit extension. Our N queens code
from sections 8.2 and 8.3 doesn’t have an entry point defined for it yet, since we
called it from the Python host code. We can add an entry point operation to the Q#
code from section 8.2 as shown in listing 9.1.

@EntryPoint ()
operation Main() : Booll[] {
let nRows = 4;
let nIter = 9;
let nBits = nRows ~ 2;
return RunGroversSearch(nBits, Oracle Bits(nRows, _, _),
PrepareMean Bits(nRows, _), nlIter);

This code does the same thing as the Python wrapper from listing 8.7. It defines the
values that describe the specific puzzle instance and the oracle/state preparation
operations that we want to use and calls generic Grover’s search with these parameters.

The list of code actions provided by the Azure Quantum Development Kit exten-
sion for this operation includes the Est imate command that runs resource estimation
for this operation. Once you click on it, the extension will prompt you for several
parameters; leave all of them set to default values. After you enter the last parameter,
you’ll get the resource estimates for this code that will look similar to figure 9.6.

The resource estimates overview consists of two parts. The Results section shows
the resources required to achieve the fastest estimated run time. The space-time
diagram shows the possible tradeoffs between the two metrics, run time and the
number of physical qubits.

NOTE In this chapter, we’ve been focusing on execution time and monetary
costas the quality metrics. You can think of the number of qubits as a contributor
of the cost metric: the more qubits the algorithm needs, the more expensive it
is to run it—and to build a quantum computer that can do that!
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Figure 9.6 An example of resource estimates produced by Azure Quantum Resource Estimator

The main information you can gain from the plot is the ballpark estimates of how fast
you can execute the program and how many physical qubits a fault-tolerant quantum
computer will need to do that. For the example in figure 9.6, you need a computer
with about a hundred thousand physical qubits, and it will be able to run the program
in about a second. A larger computer will be able to run the program faster.
How does AQRE get these estimates? The high-level scheme is shown on
figure 9.7.
AQRE takes multiple inputs that can be grouped as follows:
The quantum program in Qiskit or Q# that we want to estimate
The error budget, which is the maximum allowed probability of the algorithm
failure
The parameters of the assumed fault-tolerant quantum computer architecture:

— Physical qubit parameters: their error rates and operation times
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— The error correction scheme and its parameters
— The magic state distillation protocol and its parameters

Quantum
program
Algorithm
input
Logical
estimates
Error [ Resource Physical
budget L estimation estimates

Magic state

Architecture distillation

input

Error
correction
Physical qubit
parameters

Figure 9.7 The high-level inputs and processing logic of Azure Quantum Resource Estimator. The first
step reduces the quantum program to a set of logical resource estimates. Then, AQRE looks for the pa-
rameters of the different architectural components of the quantum computer that allow to execute the
program within the given error budget.

In our example, we used one of the default configurations that roughly corresponds
to a realistic model of a quantum computer based on superconducting qubits running
surface code, a commonly assumed error correction code. You can choose a different
default configuration or tweak the individual parameters separately.

The resource estimation algorithm used by AQRE takes several steps:

The resource estimation algorithm goes through the input program and collects
logical estimates, the information about the logical resources it uses. This step
tracks several numeric values: the number of logical qubits allocated by the
program, the numbers of certain types of gates and measurements, and the
number of steps in the program execution (the circuit depth).

The logical estimates are converted into lower-level parameters to account for
the layout and connectivity of logical qubits and the decomposition of the
logical gates into sequences of magic gates and gates supported by the logical
architecture.

The resource estimation algorithm searches for the numeric parameters of the
error correction code and magic state distillation process that allow to execute
the program with desired level of reliability.

This overview should give you an idea of what is going on when we use AQRE to
estimate the resources used by our programs. This is sufficient for the purposes of
this chapter, so I will not go into more details here. If you want to dig deeper into
the internals of AQRE, check out its documentation (https://mng.bz/EaNo).


https://mng.bz/EaNo

9.5

9.5 Solutions’ performance for the N queens puzzle 255

Solutions’ performance for the N queens puzzle

Now that we’ve discussed the basic ideas that you need to take into account when
evaluating performance of quantum solutions, it’s finally time to return to the original
questions we posed in this chapter:

Which quantum algorithm is better, the one from section 8.2 or from 8.3?
Is either of these algorithms better than the best classical solution?

Let’s do a comparison using a slightly larger problem instance than we used in
chapter 8, with N =10 queens. It is large enough that we cannot run our code on a
simulator, so resource estimation is the only way for us to get information about its
performance.

The 10 queens problem has 724 different solutions. With the search space size
NV =10', both quantum solutions will need approximately a hundred iterations
(109, to be precise) to return one of the correct answers with high probability.

To start, let’s run resource estimation for these parameters and compare the
results based on the slowest of the estimates we get on the run-time/qubit number
plot.

NOTE Remember that sometimes you can trade off fewer physical qubits re-
quired to run the algorithm for longer run time. Waiting for 30 minutes instead
of 1 minute makes a lot of sense if this means you can run your algorithm on a
computer with 700k qubits instead of 3.5M .

If you run resource estimation for both quantum algorithms with these inputs and
the default resource estimation parameters, you’ll get the following results:

A solution that encodes each board cell with one bit (section 8.2): 37 minutes,
670k physical qubits

A solution that encodes each queen with its column index (section 8.3): 3
minutes, 340k physical qubits

The solution that uses a more efficient encoding turns out to be better not only in
the number of physical qubits used but also in the run time.

We could push this comparison further to analyze larger problem instances, but
it is more interesting to switch to the second question: How do quantum solutions
compare with the classical ones? Unfortunately, the results are unfavorable for our
quantum algorithms:

The simplest brute-force algorithm without any optimizations written in Python
solves the 10 queens problem in under 0.1 second on my laptop. Additionally, it
finds all valid placements instead of a single one like the quantum solutions do.
More sophisticated algorithms such as local search can solve the problem for N =
1, 000, 000 in minutes, if not seconds. The 1992 paper “Minimizing Conflicts”
by Minton et al. (https://ntrs.nasa.gov/citations/19930006097) showed the
heuristic solution that solved it in under 4 minutes. A modern classical computer
would take seconds to do the same.
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Finally, the explicit construction solution solves the problem as fast as it can
print out the result!

This exercise shows us the importance of approaching the analysis of quantum
algorithms’ performance with care, both in accounting for all factors that affect the
run time and execution cost of quantum programs and in comparing it with the
classical solutions.

Further reading

Here is a short list of references that are good starting points if you want to learn
more about estimating the performance of quantum algorithms and comparing it to
the classical algorithms:

Hoefler, T., Haener, T., & Troyer, M. (2023). Disentangling hype from practi-
cality: On realistically achieving quantum advantage. https://arxiv.org/abs/2307
.00523

Viamontes, G. F., Markov, I. L., & Hayes, ]. P. (2005). Is quantum search practical?
https://arxiv.org/abs/quant-ph/0405001

Beverland, M. E., Murali, P., Troyer, M., et al. (2022). Assessing requirements
to scale to practical quantum advantage. https://arxiv.org/abs/2211.07629

Going beyond

Do you want to spend some more time digging deeper into the topics discussed in
this chapter? Here are a couple of project ideas you can tackle if you want to try your
hand at something more challenging:

In this chapter, we analyzed the performance of Grover’s search for the N queens
puzzle. Consider other classical problems that can be solved using Grover’s
search and compare the estimated performance of their quantum solution to
the best classical solutions.

Comparing performance of different algorithms that solve the same problem is a
common application of quantum resource estimation. Think of other quantum
algorithms you could implement and compare. You can start with the quantum
state preparation algorithm from chapter 2 and compare it with the Qiskit and
Qf#f library operations, or the unitary implementation algorithm from chapter 3
and compare it with the Qiskit library operation.

Summary

The quality of a problem solution is a combination of the accuracy of the answer
it gives and the time and the expense needed to produce that answer. When
comparing quantum and classical solutions, it is important to use these practical
metrics rather than more abstract properties such as the asymptotic behavior of
the algorithms.

When we look for practical quantum advantage for a classical problem, we have
to compare the quantum solution with the best known classical solution of all.
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Such a solution will typically be designed specifically for this problem and take
advantage of all information about the problem structure.

If a problem has an efficient classical solution, quantum computing is unlikely
to offer an improvement over it. The search for practical quantum advantage
focuses on problems that don’t have a known efficient classical solution.
Quantum algorithms aim to run on future fault-tolerant quantum computers,
so any estimates of the algorithms’ performance have to take into account the
overhead introduced by the architecture of these computers.

Error correction is a technique that enables reliable computation using noisy qu-
bits. It encodes logical qubits and gates—the ones used in quantum programs—
as multiple physical qubits and gates on an actual quantum device.

Magic gates are gates that are not supported by the quantum computer directly
but have to be generated using a separate process. These gates allow us to
approximate any gate the program needs with required accuracy.

Error correction and magic state distillation are several of the key factors that
affect the resource requirements of quantum algorithms. The other factors
include execution time of quantum gates and measurements and the limitations
on the qubit connectivity.

You have to take into account a lot of information about the logical architec-
ture of quantum computers to make realistic estimates of your algorithm’s
performance. Specialized software tools such as Azure Quantum Resource Esti-
mator allow you to make these estimates automatically based on your quantum
program.






appendix A
Setting up your
environment

The first step of starting a software project is setting up the development environment
for it. If you’re already familiar with the language you’ve chosen to use for the projects
in this book, feel free to skip the setup step and dive right in! In case you’re new to
quantum programming or are comfortable with one of the languages and looking
to add the other one to your toolbox, this appendix includes brief instructions for
setting up the development environment for both Qiskit and Q#.

Multiple environments support Q# and Qiskit. Jupyter Notebook, for example,
provides a great environment for getting started and learning the basic concepts,
since it supports a broad variety of visualization tools. Azure Quantum offers Jupyter
Notebook-based cloud programming environment for Q#, and several cloud devel-
opment platforms do the same for Qiskit, allowing you to start coding without any
local setup.

For larger projects, however, especially multifile projects that involve unit tests
like the ones discussed in this book, you’ll want to set up a local environment and use
your preferred IDE and/or command line for building and running these projects.
I recommend using Visual Studio Code to work with Q#. You can use any IDE
that supports Python to develop Qiskit projects; I use Visual Studio Code for Qiskit
as well.

Both Qiskit and Q# distributions include Python packages. It is recommended to
set up different Python-dependent programming tools as separate virtual environ-
ments to simplify their management and isolate their dependencies. I use Miniconda,
a minimal installer of Conda package manager (https://docs.conda.io/en/latest/
miniconda.html), to manage Python environments.
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APPENDIX A Setting up your environment

Qiskit
Qiskit is a Python library developed by IBM and currently the most popular circuit-
level quantum programming language.

Running Qiskit online
You can run Qiskit code online using one of the cloud platforms from the list

of recommended notebook environments for Qiskit (see “Explore Newly Recom-
mended Notebook Environments for Qiskit,” https://mng.bz/BX40).

Installing Qiskit locally

Qiskit is distributed as a set of Python packages, so you only need to install these
Python packages to get started with Qiskit. I used Python 3.12, Qiskit 1.3.1, and
qiskit-aer 0.15.1 to develop the Qiskit code for this book. Once you have a Python
environment set up, you can install the latest version of Qiskit using pip or conda:

pip install giskit giskit-aer

Now, you can run files containing Qiskit code just like regular Python files, by navigat-
ing to the folder containing the project and using

python giskit example.py

If you run into any problems setting up your Qiskit environment, check the latest
documentation (https://docs.quantum.ibm.com/start/install) to see any changes to
the installation instructions that occurred since this book has been released. Note
that you don’t need to install Qiskit Runtime because this book doesn’t require you
to run your code on quantum hardware.

Q#
Q# is a domain-specific language developed by Microsoft that focuses on high-level
quantum algorithm design. It can be integrated with Python.

Running Q# online

You can run small Q# code snippets using Code with Azure Quantum (https://mng.bz/
dX5N). This tool will run your code and show you the results of its execution on a
simulator. However, it does not support multifile projects, Python integration, or
unit tests.

Alternatively, you can use Azure Quantum to run Q# code as Jupyter Notebooks
(https://mng.bz/rKOB). This environment supports Python integration but not
multifile projects or unit tests. It also allows you to run your code on quantum
hardware, but this is not necessary for this book.
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Installing Q# locally

To access all Q# functionality you’ll need for running this book’s samples, I recom-
mend setting it up in Visual Studio Code. Azure Quantum Development Kit extension
for Visual Studio Code (https://mng.bz/VVNP) provides language support in the edi-
tor: running code on the simulator and debugging, as well as convenient IntelliSense
features such as syntax highlighting, autocompletion, and error checking.

There are three ways to run standalone Q# code snippets (for example, the code
in the first two sections of chapter 2) after you install this extension:

Use the Run Q# File command under the Play icon dropdown in the top-right
of the editor window.

Use the Run code action from the list of code actions shown next to the operation
that serves as the entry point to the code.

Press Ctrl+F5.

The output produced by the Q# code will appear in the debug console.

Qf# unit tests and examples of hybrid quantum-classical processing are implemen-
ted via Python integration, so you will need to set it up to work with the majority of
the code in this book. I used Python 3.12 and Q# 1.11.1 to develop the Q# code for
this book. You can install the latest version of Q# using pip or conda:

pip install gsharp

Now, you can run Python projects that include Q# projects just like regular Python
projects by navigating to the folder containing the project and using

python classical_host.py

If you run into any problems setting up your Q# environment, check the latest docu-
mentation (see “Set Up the Quantum Development Kit Extension,” https://mng.bz/
xK9W) to see any changes to the installation instructions that occurred since this
book has been released.

pytest

Unit tests in this book are Python-based and use the pytest testing framework. Once
you have a Python environment set up, you can install the latest version of pytest
using pip or conda:

pip install pytest

Now, you can run the tests for Qiskit projects and Python-based tests for Q# projects
just like regular Python tests by navigating to the folder containing the tests and
running pytest. If you used separate virtual environments for Q# and for Qiskit,
you’ll need to install pytest in both of them separately.


https://mng.bz/VVNP
https://mng.bz/xK9W
https://mng.bz/xK9W
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A4

APPENDIX A Setting up your environment

Getting the code

The code for the projects developed in this book is available in a GitHub repository
located at https://github.com/tcNickolas/quantum-programming-in-depth. You can
get a local copy of the code by cloning this repository using the standard GitHub
tools.

The repository contains folders for each chapter of the book and subfolders for
each section of the chapter. Each chapter folder contains complete code developed
in each section of that chapter, both in Qiskit and in Q#. Follow the instructions in
the repository’s README file to run the samples.


https://github.com/tcNickolas/quantum-programming-in-depth
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