
Rajkishore Barik
Rajiv Gupta
Jens Palsberg (Eds.)

Principles and Practices of
Building Parallel Software

F
e

st
sc

h
ri

ft
L

N
C

S
 1

4
5

6
4

LNCS

14564 Essays Dedicated to Vivek Sarkar
on the Occasion of His 64th Birthday

Lecture Notes in Computer Science 14564

Founding Editors

Gerhard Goos

Juris Hartmanis

Editorial Board Members

Elisa Bertino, Purdue University, West Lafayette, IN, USA

Wen Gao, Peking University, Beijing, China

Bernhard Steffen , TU Dortmund University, Dortmund, Germany

Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture

Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),

has established itself as a medium for the publication of new developments in computer

science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the

series counts many renowned academics among its volume editors and paper authors, and

collaborates with prestigious societies. Its mission is to serve this international commu-

nity by providing an invaluable service, mainly focused on the publication of conference

and workshop proceedings and postproceedings. LNCS commenced publication in 1973.

Rajkishore Barik · Rajiv Gupta · Jens Palsberg
Editors

Principles and Practices of
Building Parallel Software

Essays Dedicated to Vivek Sarkar

on the Occasion of His 64th Birthday

Editors
Rajkishore Barik
Gitar Inc.
San Mateo, CA, USA

Jens Palsberg
University of California
Los Angeles, CA, USA

Rajiv Gupta
University of California
Riverside, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)

Lecture Notes in Computer Science

ISBN 978-3-031-97491-5 ISBN 978-3-031-97492-2 (eBook)

https://doi.org/10.1007/978-3-031-97492-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-97492-2

Preface

It is our great pleasure to dedicate this Festschrift volume to the scholarship, leadership,

and teaching of Professor Vivek Sarkar, the John P. Imlay, Jr. Dean of the College of

Computing at Georgia Tech and a distinguished professor in the School of Computer

Science.

The title of this Festschrift, Principles and Practices of Building Parallel Software,

highlights Vivek’s transformative contributions to advancing parallel computing. His

work spans programming languages, compilers, runtime systems, debugging tools, and

verification of programs, all designed to address the challenges of high-performance and

exascale computing. Through pioneering innovations, technical expertise, and dedicated

mentorship, Vivek’s career has profoundly shaped both industry practices and academic

research, establishing him as a role model for generations of computer scientists.

Vivek’s journey began with his foundational Ph.D. work at Stanford University under

the mentorship of Prof. John Hennessy, a luminary in computer science. In the 1980s,

when parallel programming was still in its infancy, Vivek made significant advances in the

scheduling of parallel programs, addressing key challenges in optimizing dependencies

and laying the foundation for modern compiler optimizations that unlock parallelism at

scale.

After completing his Ph.D., Vivek joined IBM Research, where, under the mentor-

ship of Fran Allen, he contributed to the PTRAN Project by developing the PART par-

titioner for automatic parallelization, analyzing cost-benefit tradeoffs while accounting

for overhead and synchronization costs. At IBM Santa Teresa Labs, he led the design and

implementation of the ASTI optimizer for IBM’s XL compiler, pioneering advanced pro-

gram transformations such as loop distribution, tiling, and scalar replacement, seamlessly

integrating cutting-edge compiler techniques into product.

Among Vivek’s most influential contributions is the design of the X10 programming

language, an object-oriented approach to improve the productivity of high-performance

computing. His seminal paper, X10: an Object-Oriented Approach to Non-Uniform Clus-

ter Computing [2], which introduced innovative programming abstractions for parallel

and distributed systems, won the Most Influential Paper Award for OOPSLA 2005 and

continues to shape research in scalable parallel programming.

Vivek also led the development of the Jikes Research Virtual Machine

(RVM) [1, 3], an open-source JVM that enabled experimentation with advanced vir-

tual machine technologies and influenced the evolution of managed runtime systems. It

has been used by over 100 universities worldwide, serving as the foundation for more

than 200 research publications, 40 doctoral dissertations, and 20 universitylevel courses.

The project was honored with the prestigious SIGPLAN System Software Award in 2012.

viii Preface

In academia, Vivek has been a transformative leader, serving as Department Chair

at Rice University and Georgia Tech, and now as Dean of the College of Computing at

Georgia Tech. At Rice, he led the Habanero Extreme Scale Software Research group,

which introduced novel runtime systems and programming models, such as task-parallel

abstractions and data-driven synchronization primitives, that significantly advanced the

productivity and scalability of extreme-scale parallel applications.

Fig. 1. IBM ASTI team photo with Prof. Vivek Sarkar.

Beyond his research, Vivek has played pivotal roles on advisory committees such as

the US Department of Energy’s Advanced Scientific Computing Advisory Committee

(ASCAC) and as co-chair of the CRA-Industry Committee. A recipient of the presti-

gious ACM-IEEE CS Ken Kennedy Award, his influence spans the global computing

community, fostering collaboration between academia and industry.

It was heartwarming to witness the overwhelming response to VIVEKFEST, held

on October 21, 2024, in Pasadena, California, as part of SPLASH’24. This symposium

brought together many of Vivek’s collaborators, colleagues, current and former stu-

dents, industrial fellows, and friends to celebrate his remarkable career. The day-long

event featured an exceptional lineup of technical talks highlighting Vivek’s contribu-

tions to programming languages, compiler technologies, and runtime systems. These

presentations were punctuated with personal anecdotes and references to Vivek’s work.

Attendees traveled from far and wide to honor Vivek’s legacy on October 21, 2024,

underscoring the far-reaching impact of his work. The symposium also provided an

opportunity to relax and socialize during the evening reception, where colleagues and

friends shared their appreciation for Vivek’s mentorship and his tireless efforts to advance

the field. The event was a fitting tribute to a career that has profoundly shaped computing

research and education.

Preface ix

Fig. 2. Vivek with the Jikes Research Virtual Machine (RVM) team in 2001

Fig. 3. Research team led by Prof. Vivek Sarkar, pictured at Rice University

We, as organizers, are deeply thankful to the authors who contributed their research

contributions to this volume and to the reviewers who provided invaluable feedback.

Special thanks to Springer for publishing this Festschrift as part of their Lecture Notes

in Computer Science series.

Beyond his scholarly contributions, Vivek’s leadership and mentorship have inspired

generations of computer scientists, fostering a culture of excellence and collaboration.

A remarkable scholar and visionary, Vivek is also a great human being whose humility

and warmth have touched countless lives. His dedication to his family reflects his values

as a devoted husband and father, embodying the balance of professional achievement

and personal fulfillment. As we celebrate his 64th birthday, we recognize that Vivek’s

journey is far from over and look forward to his continued contributions in addressing

the challenges of exascale computing.

This Festschrift serves as a tribute to his extraordinary achievements and a source of

inspiration for those who follow in his footsteps.

x Preface

Fig. 4. Research team led by Prof. Vivek Sarkar, pictured at Georgia Tech

Fig. 5. Vivek Sarkar with his beloved wife, Ranta Sarkar

Preface xi

Happy 64th birthday, Vivek! Thank you for your lasting contributions, your men-

torship, and your unwavering commitment to advancing the frontiers of computer

science.

November 2024 Rajkishore Barik

Rajiv Gupta

Jens Palsberg

References

1. Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek

Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John Whaley. The

Jalape˜no dynamic optimizing compiler for Java. In Proceedings of the ACM 1999

Conference on Java Grande, JAVA’99, page 129–141, New York, NY, USA, 1999.

Association for Computing Machinery.

2. Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan

Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-

oriented approach to non-uniform cluster computing. New York, NY, USA, 2005.

Association for Computing Machinery.

3. IBM. Jikes Research Virtual Machine (RVM). https://www.jikesrvm.org/, 2005.

https://www.jikesrvm.org/

Photos from the Symposium

Fig. 6. Attendees of the VIVEKFEST Festschrift Symposium (Photo by Madhurima

Chakraborty)

xiv Photos from the Symposium

Fig. 7. A memorable dinner with colleagues on the eve of the VIVEKFEST celebration

Photos from the Symposium xv

Fig. 8. VIVEKFEST kicks off with an opening address by Vivek’s former doctoral student,

Rajkishore Barik

Fig. 9. Prof. Vivek Sarkar delivering his inspiring speech

xvi Photos from the Symposium

Fig. 10. Prof. V. Krishna Nandivada sharing his stories about Vivek

Fig. 11. Prof. Tiago Cogumbreiro sharing his stories about Vivek

Photos from the Symposium xvii

Fig. 12. Prof. Ganesh Gopalakrishnan sharing his stories via pre-recorded video

Fig. 13. Prof. Zoran Budimlić sharing heartfelt stories through a pre-recorded video

Personal Notes for Vivek

From Evelyn Duesterwald Vivek is such an inspiring role model, equal parts technical

brilliance and genuine care for the people around him. I am still a little sad he left IBM

so early, it’s not the same without him.

From John Richards Vivek has made profound contributions to high productivity

systems and X10.

From Michael Hind Vivek was like that great parent, you remember the things he did,

but also later realize the things he didn’t do. He allowed you to be independent, be

innovative, and grow.

From John Field Heartfelt congratulations to Vivek on his 64th year of contributions

to the world!

I had the great pleasure of working under Vivek at IBM Watson. There, he practiced

the fine art of maintaining a protective shield over research projects in his domain while

nudging new work in directions most likely to yield funding and recognition. The lessons

I learned from Vivek played a major role in shaping my own approach to management

at Google.

Vivek, I wish you many more years of influence and renown!

From Mark Wegman Vivek did have an important career at IBM. I think he learned

some stuff here as well as contributing.

From Jinfan Shaw Thank you for your kind invitation to VivekFest in celebration of

Vivek Sarkar’s 64th birthday. It is with great pleasure that I learned of this event honoring

a former colleague whose contributions to the ASTI project at IBM I hold in high esteem.

While I am unable to attend the event in person due to prior commitments, I would

have been honored to participate and share my recollections of our collaboration on the

ASTI project.

I first met Vivek in 1988 during a presentation on Parallel Fortran at Watson Research.

A subsequent conversation during a leisurely post-lunch walk around the Hawthorn

research center proved to be both stimulating and enjoyable.

In early 1990, Vivek joined the VS Fortran team at the Silicon Valley Lab to take

the lead in designing and implementing the transformer component of the ASTI opti-

mizer. Under his direction, the transformer was developed to perform a range of pro-

gram transformations including loop distribution, interchange, reversal, skewing, tiling,

fusion, unrolling, and scalar replacement of array references. The ASTI transformer was

designed to select these optimizations automatically.

Leveraging his research background and connections at IBM Research, Vivek was

instrumental in incorporating static single assignment (SSA) and Interprocedural Anal-

ysis into the ASTI optimizer. Subsequently, he collaborated with the Toronto compiler

xx Personal Notes for Vivek

group to integrate the ASTI optimizer into the IBM XLF compiler for RS/6000 and

PowerPC systems.

I extend my warmest congratulations to Vivek on his birthday and look forward to

hearing more about VivekFest.

Organization

This Festschrift was organized by Vivek’s former doctoral student Rajkishore Barik

(Gitar Inc., USA), alongside his esteemed colleagues and dear friends Rajiv Gupta

(University of California, Riverside, USA) and Jens Palsberg (University of California,

Los Angeles, USA).

Acknowledgments. We sincerely thank Manu Sridharan for his invaluable guidance in

organizing the event and for his support throughout its execution. We are grateful to

Springer for their invaluable advice and support. Last but not least, we would like to

acknowledge the reviewers for their constructive feedback.

Reviewers

Samuel Pollard Sandia National Laboratories, USA

Jun Shirako Georgia Institute of Technology, USA

Tiago Cogumbreiro University of Massachusetts, Boston, USA

Oscar Hernandez Oak Ridge National Laboratory, USA

Jisheng Zhao Georgia Institute of Technology, USA

Akihiro Hayashi Georgia Institute of Technology, USA

Feiyang Jin Georgia Institute of Technology, USA

V. Krishna Nandivada Indian Institute of Technology, Madras, India

Louis-Noel Pouchet Colorado State University, USA

Yonghong Yan University of North Carolina at Charlotte, USA

Contents

Retrieving Unknown SMT Formulas via Structural Mutations 1

Shuo Ding and Qirun Zhang

On the Cloud We Can’t Wait: Asynchronous Actors Perform Even Better

on the Cloud . 11

Aniruddha Mysore, Youssef Elmougy, and Akihiro Hayashi

A Formal Model for Portable, Heterogeneous Accelerator Programming 22

Zachary J. Sullivan and Samuel D. Pollard

Evaluation of Speedup and Energy with Multigrain Parallelizing Compiler 34

John Pickar, Tohma Kawasumi, Hiroki Mikami, Keiji Kimura,

and Hironori Kasahara

Concurrent Collections: An Overview . 50

Kathleen Knobe, Zoran Budimlić, Robert J. Harrison,

Mohammad Mahdi Javanmard, and Louis-Noël Pouchet

Hidden Assumptions in Static Verification of Data-race Free GPU Programs . . . 55

Tiago Cogumbreiro and Julien Lange

Intrepydd: Toward Performance, Productivity, and Portability for Massive

Heterogeneous Parallelism . 64

Jun Shirako, Tong Zhou, and Akihiro Hayashi

Enabling User-Level Asynchronous Tasking in the FA-BSP Model Case

Study: Distributed Triangle Counting . 70

Akihiro Hayashi, Shubhendra Pal Singhal, Youssef Elmougy,

and Jiawei Yang

Learning to Harness In-Vitro Biological Neural Networks 78

Frithjof Gressmann and Lawrence Rauchwerger

Verification of Concurrent Programs Using Hybrid Concrete-Symbolic

Interpretation . 90

Emily Tucker and Louis-Noël Pouchet

Scalable Small Message Aggregation on Modern Interconnects 103

Aaron Welch, Oscar Hernandez, Stephen Poole, and Wendy Poole

xxiv Contents

Preliminary Study on Message Aggregation Optimizations for Energy

Savings in PGAS Models . 114

Oscar Hernandez, Aaron Welch, Wendy Poole, and Stephen Poole

Author Index . 121

Retrieving Unknown SMT Formulas

via Structural Mutations

Shuo Ding and Qirun Zhang(B)

Georgia Institute of Technology, Atlanta, GA 30332, USA

sding@gatech.edu, qrzhang@gatech.edu

Abstract. Satisfiability Modulo Theories (SMT) solvers are fundamen-
tal tools for program analysis and verification. The satisfiability problem

for first-order logic is undecidable. In practice, SMT solvers typically

employ various heuristics and are inherently incomplete. Solvers return

unknown if they cannot solve a particular formula. The unknown results
drastically hinder the usability of SMT solvers and directly affect client
applications. The standard way to reduce unknown cases is to develop

more powerful solvers, which requires significant algorithmic and engi-
neering efforts.

This work-in-progress paper discusses a new perspective on improv-
ing SMT solving: instead of developing more powerful solvers for all
formulas, we focus on mutating “hard” formulas (unknown formulas) to

make them “easier” to solve. That gives us enormous flexibility to pro-
cess unknown formulas without affecting normal formulas. Specifically,
given an unknown formula and a solver, we propose t o repeatedly modify
the formula via structural mutations. Our key insights are (1) structural
mutations make formulas smaller so that they are presumably easier to
reason about, and (2) structural mutations approximate formulas so that
we can reason about the original formulas indirectly. Then, we utilize the
same solver to solve the mutated formulas to retrieve the sat/unsat results
of the original unknown formulas.

1 Introduction

Satisfiability Modulo Theories (SMT) is a powerful formulation that can express
many problems arising in symbolic execution [12,30], formal verification [7,23],
program synthesis [19], etc. An SMT problem instance describes a first-order
logic formula with respect to certain background theories. SMT solvers are soft-
ware tools for deciding the satisfiability of SMT formulas. Z3 [25] and CVC4 [5]
(now succeeded by CVC5 [3]) are two widely used SMT solvers. However, it
is well-known that the satisfiability problem for first-order logic is undecidable.
In addition to theoretical restrictions, modern SMT solvers also face practi-
cal issues, including incomplete implementations and resource limits. T herefore,
practical SMT solvers return unknown results for formulas that they cannot solve.
In the popular Satisfiability Modulo Theories Competition (SMT-COMP), in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 1–10, 2025.
https://doi.org/10.1007/978-3-031-97492-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_1&domain=pdf
http://orcid.org/0000-0003-0843-0729
http://orcid.org/0000-0001-5367-9377
https://doi.org/10.1007/978-3-031-97492-2_1

2 S. Ding and Q. Zhang

many tracks, a solver receives a zero “correctly solved score” if the check-sat

command returns unknown [4]. In practice, SMT solvers strive to offer best-effort
answers by solving a s many formulas as possible.

The standard way to reduce unknown cases is by improving solvers, including

developing new algorithms and engineering better solvers. That is challenging

and time-consuming due to both the theoretical hardness of SMT solving and the

implementation issues of such complex systems. For example, CVC4’s bitvector
rewriting rules contain more than 3.5K source lines of code [32]. From users’
perspective, it is possible to try solvers’ available options or tactics, or even

different solvers to handle unknown cases, but there are usually a limited number
of choices at a given time.

We consider a source-level approach for improving SMT solving. Rather than

developing more powerful solvers for all formulas, we focus on “hard” formulas
for which solvers return unknown. Working directly on unknown formulas enables
unique opportunities for employing solver-agnostic source-to-source transforma-
tions to make “hard” formulas easier to solve. Specifically, given an unknown

formula φ for a specific solver, we propose a technique called structural muta-
tions to pe rform lightweight rewriting on φ and obtain a mutated formula φ′.
Then we apply the same solver on φ′ to reason about φ indirectly. There are two
key observations that underlie structural mutations:

– Small formulas are easier to solve. In general, smaller cases have simpler
structures and are presumably easier to reason about. A similar observation

exists in compiler testing, where developers s trongly encourage submitting
small, reproducible test programs because it is easier to manually inspect
small test cases [36]. Indeed, well-known production compilers such as GCC

and LLVM always advocate test reduction [31] in bug reporting processes [17,
24]. Following the same observation, our structural mutations produce smaller
form ulas that are generally “simpler” to solve.

– Approximations enable indirect reasoning of formulas. Approximations, which

are used in many SMT solving techniques [8,11,20], enables indirect reasoning

of formulas. By mutating the original formula, our technique can either over-
or under-approximate the original unknown formula. For example, we can

perform a structural mutation by deleting a top-level conjunct, which relaxes
the original unknown formula and pro vides an over-approximation. If the over-
approximated formula is unsat, the origin formula must be unsat. Figure 1

describes the rationale for retrieving unknown formulas via ov er- and under-
approximations.

2 Motivating Examples

This section gives two motivating examples of reasoning about unkno wn formulas
via structural mutations.

Figure 2 gives a formula [2] in the LIA (Linear Integer Arithmetic) category

of the SMT-LIB benchmarks. Z31 reports unknown on the original formula in Fig. 2

1 We use commit 11477f1 (December 16, 2020) for Z3.

Retrieving Unknown SMT Formulas via Structural Mutations 3

Fig. 1. Satisfiability relations between the original formula φ, the under-approximated

version φunder, and the over-approximated version φ over. Arrows in the figure represent
implication relations.

due to incomplete quantifiers. We mutate the original formula by deleting the

third assertion (lines 15–20, inclusive). With fewer assertions, we clearly have

obtained a “relaxed” version of the original formula. Z3 can successfully report
unsat on our over-approximated formula. Therefore, w e can conclude that the
original formula is unsatisfiable because even the over-approximated formula is
unsatisfiable (the “←” direction in Fig. 1).

Figure 3 gives a formula [1] in the AUFLIA (Arrays, Uninterpreted Func-
tions, and Linear Integer Arithmetic) category of t he popular SMT-LIB bench-
marks. CVC42 reports unknown on the original formula in Fig. 3a because the

solver is incomplete in this case. We mutate the original formula by instan-
tiating the free variable n (line 3) to the constant 0. Clearly, this is an under-
approximation because it restricts the value of n. CVC4 can successfully solve the

under-approx imated formula and return sat. Because the under-approximated
version is satisfiable, it implies that the original formula is satisfiable (the “→”
direction in Fig. 1). Moreover, CVC4 can generate a model in Fig. 3b for the

under-approximated formula. The model assigns false and 0 to the uninterpreted

functions f and v, respectively. It is straightforward that appending n = 0 to the

model gives us a model of the original formula, because if we evaluate the for-
mula on this model, the assertion becomes “there does not exist an x such that
1 ≤ x ≤ 0 and . . . ”, which is clearly true.

3 Structural Mutations

SMT formulas are first-order logic formulas with respect to different background

theories. A theory over a signature Σ could be defined as a set I of interpretations
for Σ, and I is also called the models of T . Under a background theory T , we

use φ(�x) to represent a SMT formula with free variables �x as a vector. φ(�x) is

satisfiable if and only if there exists a model of T in which φ(�x) evaluates to

true. Otherwise, the formula is unsatisfiable. In practice, a model M of φ(�x)
usually refers to a function that maps each free variable in �x to a value of the
corresponding sort, such that φ(�x) evaluates to true under this assignment and
the corresponding theory. We adopt this function-mapping view of models in
later sections. Moreover, we assume a fixed background theory T over a signature
Σ. Let FΣ be the set of formulas over Σ.

2 We use commit 80e0246 (December 16, 2020) for CVC4.

4 S. Ding and Q. Zhang

Fig. 2. An over-approximation example for Z3, where the over-approximation is real-
ized by removing the third assertion (line 15–20, inclusive).

Fig. 3. An under-approximation example for CVC4, where the under-approximation

is realized by instantiating the free variable n (line 3) to 0.

Definition 1 (Structural Mutations). A structural mutation M is a func-
tion from FΣ to FΣ such that for each φ ∈ FΣ, M(φ) could be obtained by replac-
ing n (n > 0 and n may depend on φ) non-overlapping subterms f1, f2, ..., fn in

φ with n new terms g1, g2, ..., gn simultaneously, where for each i ∈ {1, 2, ..., n},
fi and gi are of the same sort.

The essence of structural mutations is approximating unknown formulas. The

usefulness of retrieved satisfiability results is strongly correlated to the approx-
imation directions. Based on Fig. 1, if solvers return sat for over-approximated

formulas φover, the result is uninformative. Similarly, the unsat result from

under-approximated formulas φunder is uninformative as well. Straightforward

and unguided approximations can easily lead to uninformative results. In the
ideal case, approximations achieved by structural mutations need to be effec-

Retrieving Unknown SMT Formulas via Structural Mutations 5

tive (i.e., they could make unknown formulas solvable) and admissible (i.e., they

should not lead to uninformative results).
Unfortunately, there is a tension between effectiveness and admissibleness,

and finding a sweet spot of approximations is challenging. To tackle the chal-
lenge, we devise fine-grained mutations to strike a balance between these two

competing needs. Specifically, by repeatedly applying small structural mutations
to the original formula, we get a directed acyclic graph (DAG) of mutated for-
mulas whose nodes are formulas and edges are approximation steps. The graph

is acyclic because our mutations strictly reduce formulas. Then, based on the

satisfiability results of running solvers o n mutated formulas, we can perform a
backtracking search on this DAG to refine the approximated formulas φ′. Con-
sequently, the feedback-based iteration guides structural mutations toward the

useful directions (depicted as “
implies

−−−−−→” and “
implies

←−−−−−”) in Fig. 1. Our fine-
grained mutation process resembles abstraction refinements. However, common

abstraction refinement techniques for SMT solvers (e.g. the mixed abstraction
technique [8]) are not directly applicable because they (1) do not explicitly handle

the unknown cases and (2) finally, always resort to the most p recise abstraction
(the original formula) but in our case, the original formula is unknown.

We propose four concrete structural mutations. The mutations are both

reducers and approximations (i.e., they can both reduce and approximate the

original formulas). Moreover, they are all theory-independent, meaning that they

could be applied to all background theories. In our mutations, a top-level disjunc-
t/conjunct denotes a disjunct/conjunct whose corresponding disjunction/con-
junction is at the root of the formula’s abstract syntax tree (AST). For example,
in P ∨ Q, P is a top-level disjunct. A non-trivial disjunct/conjunct is a disjunc-
t/conjunct that is not the literal false/true. A non-trivial subterm is a subterm
that is not a single free variable.

– Removing Top-Level Disjuncts (U∨): Replacing the first top-level non-trivial
disjunct (if it exists) with false is a structural mutation. It is a reducer with

respect to the number of top-level non-trivial disjuncts. It is also a domain-
preserving under-approximation. Note that changing P ∨ Q to false∨Q could
still be regarded as domain-preserving, because false ∨ Q could be regarded
as a formula with free variables {P,Q} while P is not used.

– Instantiating Free Variables (Uin): Replacing all occurrences of the first
occurred free variable (if it exists) with one value in its sort is a structural
mutation. It i s a reducer with respect to the number of free variables. It is
also a domain-adjusting under-approximation.

– Removing Top-Level Conjuncts (O∧): Replacing the first top-level non-trivial
conjunct (if it exists) with true is a structural mutation. It is a reducer with

respect to the number of top-level non-trivial conjuncts. It is also a domain-
preserving over-approximation.

– Abstracting Subterms (Oterm): Replacing the first non-trivial subterm that
does not contain variables bound by quantifiers (if it exists) with a new free

variable of the same sort is a structural mutation. It is a reducer with respect

6 S. Ding and Q. Zhang

to the number of non-trivial subterms. It is also a domain-adjusting over-
approximation.

Note that some mutation steps could be interpreted as several different
approximations. For example, replacing P in P ∧ Q with true could be regarded

as a domain-adjusting under-approximation Uin or a domain-preserving over-
approximation O∧. The actual effect is preserving the satisfiability because both
the original formula P ∧ Q and the modified formula true ∧ Q are satisfiable.

The definitions in Sect. 3 impose constraints such as “replacing the first top-
level disjunct” when there are multiple top-level disjuncts, so each application of
mutation produces only one transformed formula. It is possible to remove those

constraints and get multiple mutated formulas in each step. Therefore, we can

get more mutated formulas to use in practice. If we regard the mutated formulas
as nodes and approximation steps as directed edges, we form a directed acyclic
graph (DAG). It is a DAG because there is no cycle due to the reducer property.
We call the graph “under-approximation DAG” or “over-approximation DAG”.

Our unknown formula retrieval algorithms repeatedly apply and revert muta-
tions on the original formula. Thus, it forms a process of adjusting the approxi-
mations (making more or fewer approximations) along the corresponding under-
or over-approximation DAG. Recall that approximations can be uninformative

(e.g. over-approximating a formula φ to a sat formula φ′ is uninformative since

it provides no information about φ). To avoid encountering too many uninfor-
mative cases, our structural mutation framework prunes the adjusting process
based on over- or under-approximation DAG: if we over-approximate the for-
mula φ to a satisfiable formula, we don’t need to continue the current branch of
over-approximation since further over-approximations can only produce uninfor-
mative approximations. Similarly, if we under-approximate the formula φ to an
unsatisfiable formula, we can stop the current branch of under-approximation.

4 Related Work

Formula simplification techniques have been developed to simplify form ulas
for SMT solvers [14,33,34]. These techniques, however, produce equivalent or
equisatisfiable formulas, and thus often need to do sophisticated reasoning

about Boolean logic and underlying theories. Our structural mutations relax

the requiremen t from equivalence or equisatisfiability to approximations, and
thus produce transformations that are easier to reason about.

Approximations have also been widely used to solve SMT form ulas. The
DPLL(T) framework [15,28,29], which forms the basis of many modern SMT

solvers, leverages the Boolean abstraction of the original formula and then refines
the abstraction using information provided by theory-specific solvers. De Moura
and Rueß [27] have proposed lemmas on demand, which is also an abstraction

refinement process. Approximations can also be done in the theory/first-order
layer [10,26]. Bauer et al. have proposed a technique that can ignore parts of
the Boolean abstraction that do not affect the overall truth value [6]. Explicit

Retrieving Unknown SMT Formulas via Structural Mutations 7

approximations have been introduced to SMT solvers to m odel bit-vector oper-
ations [20,37] and bit-vector values [9]. SMT solvers can also alternate between

over-approximations and under-approximations [11,21,22], as well as mixing

them altogether [8]. Approximations also help to simplify formulas [33], to change

the decidability of certain formulas [16], etc. In the refinement aspect, techniques
similar to counter-example guided abstraction refinement [13] are well-developed

in SMT solvers. Approximating formulas can also happen o utside solvers. For
example, concolic testing [18,35] simplifies formulas by instantiating variables
before using solvers to solve them. Compared with those existing techniques, our
structural mutations are solver/theory-independent, are not part of any solver
or automated reasoning tools, and can be applied to almost all types of formulas.

5 Conclusion

This paper has discussed a source-level approach to improve SMT solving:
instead of improving solvers for all possible input formulas, we focus on mutating

(approximating) formulas that are already unknown to solvers. As the next step,
we plan to conduct an extensive study to validate the idea on real-world SMT

constraints.

Acknowledgements. We thank the anonymous reviewers for their feedback. This
work was supported, in part, by the United States National Science Foundation (NSF)
under grants N o. 2114627 and No. 2237440; and by the Defense Advanced Research
Projects Agency (DARPA) under grant N66001-21-C-4024. Any opinions, findings,
conclusions, or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the above sponsoring entities.

References

1. A Test Case of AUFLIA (Arrays, Uninterpreted Functions, and Linear
Integer Arithmetic) Logic. https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-
benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.
smt2. Accessed J an 2021

2. A Test Case of LIA (Linear Integer Arithmetic) Logic. https://clc-gitlab.
cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-
UltimateAutomizerSvcomp2019/Problem15 label00 false-unreach-call.c 5.smt2.
Accessed J an 2021

3. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Tools
and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on

Theory and Practice of S oftware, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 13243, pp. 415–442.
Springer (2022). https://doi.org/10.1007/978-3-030-99524-9 24

4. Barbosa, H., Hoenicke, J., Hyvarinen, A.: 15th International Satisfiability Modulo

Theories Competition (SMT-COMP 2020): Rules and Procedures. https://smt-
comp.github.io/2020/rules20.pdf. Accessed Feb 2021

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFLIA/-/blob/master/20170829-Rodin/smt4391808662368180273.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA/-/blob/master/20190429-UltimateAutomizerSvcomp2019/Problem15_label00_false-unreach-call.c_5.smt2
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://smt-comp.github.io/2020/rules20.pdf
https://smt-comp.github.io/2020/rules20.pdf
https://smt-comp.github.io/2020/rules20.pdf
https://smt-comp.github.io/2020/rules20.pdf
https://smt-comp.github.io/2020/rules20.pdf
https://smt-comp.github.io/2020/rules20.pdf
https://smt-comp.github.io/2020/rules20.pdf
https://smt-comp.github.io/2020/rules20.pdf

8 S. Ding and Q. Zhang

5. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

6. Bauer, A., Leucker, M., Schallhart, C., Tautschnig, M.: Don’t care in SMT: building

flexible yet efficient abstraction/refinement solvers. Int. J. Softw. Tools Technol.
Transf. 12(1), 23–37 (2010)

7. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifi-
cation. J. A utom. Reason. 60(3), 299–335 (2018)

8. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: Proceedings of 9th Int ernational Conference on Formal Methods in
Computer-Aided Design (FMCAD 2009), pp. 69–76 (2009)

9. Brummayer, R., Biere, A.: Effective bit-width and under-approximation. In:
Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009.
LNCS, vol. 5717, pp. 304–311. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04772-5 40

10. Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays.
J. Satisf. Boolean Model. Comput. 6(1–3), 165–201 (2009)

11. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007). https://

doi.org/10.1007/978-3-540-71209-1 28

12. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation

of high-coverage tests for complex systems programs. In: Proceedings of the 8 th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2008), pp. 209–224 (2008)

13. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement. In: Proceedings of the 12th International Conference on
Computer Aided Verification (CAV 2000), pp. 154–169 (2000)

14. Dillig, I., Dillig, T., Aiken, A.: Small formulas for large programs: on-line constraint
simplification in scalable static analysis. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 236–252. Springer, Heidelberg (2010). https://doi.org/

10.1007/978-3-642-15769-1 15

15. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
fast decision procedures. In: Proceedings of the 16th International Conference Com-
puter Aided Verification (CAV 2004), pp. 175–188 (2004)

16. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: Proceedings
of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS 2012)
pp. 305–314 (2012)

17. GCC: A Guide to Testcase Reduction. https://gcc.gnu.org/wiki/A guide to

testcase reduction. Accessed J an 2021
18. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.

In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language

Design and Implementation, Chicago, IL, USA, June 12-15, 2005, pp. 213–223.
ACM (2005)

19. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: Proceedings of the 32nd A CM/IEEE International Conference
on Software Engineering (ICSE 2010), pp. 215–224 (2010)

20. Jonáš, M., Strejček, J.: Abstraction of bit-vector operations for BDD-based SMT

solvers. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp.
273–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02508-3 15

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-642-15769-1_15
https://doi.org/10.1007/978-3-642-15769-1_15
https://doi.org/10.1007/978-3-642-15769-1_15
https://doi.org/10.1007/978-3-642-15769-1_15
https://doi.org/10.1007/978-3-642-15769-1_15
https://doi.org/10.1007/978-3-642-15769-1_15
https://doi.org/10.1007/978-3-642-15769-1_15
https://doi.org/10.1007/978-3-642-15769-1_15
https://doi.org/10.1007/978-3-642-15769-1_15
https://doi.org/10.1007/978-3-642-15769-1_15
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-02508-3_15

Retrieving Unknown SMT Formulas via Structural Mutations 9

21. Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O.: Abstraction-based sat-
isfiability solving of presburger arithmetic. In: Alur, R., Peled, D .A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 308–320. Springer, Heidelberg (2004). https://doi.org/

10.1007/978-3-540-27813-9 24

22. Lahiri, S.K., Mehra, K.K.: Interpolant based decision procedure for quantifier-free

presburger arithmetic. J. Satisf. Boolean Model. Comput. 1(3–4), 187–207 (2007)
23. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.

In: Proceedings of the 16th International Conference on L ogic for Programming,
Artificial Intelligence, and Reasoning (LPAR-16), pp. 348–370 (2010)

24. LLVM: How to submit an LLVM bug report. https://llvm.org/docs/

HowToSubmitABug.html. Accessed J an 2021
25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9 1

27. de Moura, L., Rueß, H.: Lemmas on demand for satisfiability solvers. In: Pro-
ceedings of the Fifth International Symposium on the Theory and Applications of
Satisfiability Testing (SAT 2002), pp. 244–251 (2002)

28. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and

its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005). https://doi.org/

10.1007/11513988 33

29. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-
ries: From an abstract davis-putnam-logemann-love land procedure to DPLL(T).
J. ACM 53(6), 937–977 (2006)

30. Palikareva, H., Cadar, C.: Multi-solver support in symbolic execution. In: Shary-
gina, N., Veith, H. (eds.) C AV 2013. LNCS, vol. 8044, pp. 53–68. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 3

31. Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case reduc-
tion for C compiler bugs. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2012), pp. 335–346
(2012)

32. Reynolds, A., et al.: Rewrites for SMT Solve rs Using Syntax-Guided Enumer-
ation. http://homepage.divms.uiowa.edu/∼ajreynol/pres-smt2018.pdf. Accessed

Fe b 2021
33. Reynolds, A., Nötzli, A., Barrett, C., Tinelli, C.: High-level abstractions for sim-

plifying extended string constraints in SMT. In: Dillig, I ., Tasiran, S. (eds.) CAV
2019. LNCS, vol. 11562, pp. 23–42. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-25543-5 2

34. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling

up DPLL(T) string solvers using context-dependent simplification. In: Ma jumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 453–474. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63390-9 24

35. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: Pro-
ceedings of the 10th European Software Engineering Conference held jointly with

13th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2005, Lisbon, Portugal, September 5-9, 2005, pp. 263–272. ACM (2005)

https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://llvm.org/docs/HowToSubmitABug.html
https://llvm.org/docs/HowToSubmitABug.html
https://llvm.org/docs/HowToSubmitABug.html
https://llvm.org/docs/HowToSubmitABug.html
https://llvm.org/docs/HowToSubmitABug.html
https://llvm.org/docs/HowToSubmitABug.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24

10 S. Ding and Q. Zhang

36. Sun, C., Li, Y., Zhang, Q., Gu, T., Su, Z.: Perses: syntax-guided program reduc-
tion. In: Proceedings of the 40th International Conference on Software Engineering
(ICSE 2018), pp. 361–371 (2018)

37. Teuber, S., Büning, M.K., Sinz, C.: An incremental abstraction scheme for solving

hard smt-instances over bit-vectors. CoRR abs/2008.10061 (2020). https://arxiv.
org/abs/2008.10061

https://arxiv.org/abs/2008.10061
https://arxiv.org/abs/2008.10061
https://arxiv.org/abs/2008.10061
https://arxiv.org/abs/2008.10061
https://arxiv.org/abs/2008.10061
https://arxiv.org/abs/2008.10061

On the Cloud We Can’t Wait:

Asynchronous Actors Perform Even Better

on the Cloud

Aniruddha Mysore(B), Youssef Elmougy, and Akihiro Hayashi

Georgia Institute of Technology, A tlanta, USA
{animysore,yelmougy3,ahayashi}@gatech.edu

Abstract. This study investigates the performance of asynchronous
actor programming and synchronous Partitioned Global Address Space

(PGAS) versions of graph kernels on a Cloud platform and a High-
Performance Computing (HPC) platform. Using the Bale suite of
graph microkernels, we compare the execution times of kernels imple-
mented with OpenSHMEM (synchronous PGAS) and HClib-actor (asyn-
chronous) on both Azure Cloud with Ethernet and an HPC cluster
with InfiniBand. Our results reveal significant performance differences
between these platforms. While the asynchronous version outperforms
the synchronous version in both settings, the performance gap is dra-
matically wider on the Cloud platform, with the asynchronous version

showing up to 1,000x improvement over the synchronous version in some

cases. Moreover, we observe highly v ariable execution times in the Cloud,
likely due to shared resource interference and unpredictable data center
traffic. These findings highlight the importance of choosing appropriate
programming models for different computational platforms, especially as
Cloud platforms are becoming more affordable and easier to access com-
pared to traditional HPC clusters. Our work provides valuable insights
for both researchers and practitioners in optimizing parallel program-
ming strategies across diverse computational settings.

Keywords: The Actor Model · PGAS · Cloud Computing · HPC ·

High-Performance Graph Analytics

1 Introduction

1.1 Background

Large-scale clusters have grown rapidly in recent times - a phenomenon under-
stood to be the consequence of the end of Moore’s law and Dennard scaling,
which has led to limits on the potential performance gain from a single chip.
This has led to the rise of scalable programming models that can utilize the
capabilities of such clusters effectively. In particular, there has been a growing
interest in employing the Partitioned Global Address Space (PGAS) model [13],
which gives the programmer an illusion of shared memory programming for such
large-scale platforms.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 11–21, 2025.
https://doi.org/10.1007/978-3-031-97492-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-97492-2_2

12 A. Mysore et al.

Coordination between nodes in PGAS is typically done with Bulk-
Synchronous-Parallel (BSP) communication, but recent work [11, 12] shows the

promise of enabling actor-based fine-grained asynchronous messaging with mes-
sage aggregation in large-scale graph applications. Specifically, [11, 12] show that
the abstraction of asynchronous actor/selector programming allows graph algo-
rithms to be expressed very e fficiently while allowing for intuitive programming.
HClib-actor [11] is a PGAS runtime that leverages the concept of selectors -
independent computational entities, or actors, that communicate via message

passing - to achieve high levels of concurrency without the pitfalls of traditional
locking mechanisms. Selectors are derived from [8] and are a modification of the

more conventional actor model (originally proposed in the 1970s [7]), where each

actor possesses multiple mailboxes.
Cloud computing and high-performance computing (HPC) clusters represent

two prevalent environments where these programming strategies are deployed.
Cloud computing offers scalable, on-demand resources via platforms such as
Azure, AWS, GCP, and numerous others, coupling flexible resource allocation

and cost efficiency. Historically, Cloud infrastructures were predominantly uti-
lized for internet services, which relied on inexpensive off-the-shelf hardware,
with their computing capabilities not matching those of dedicated HPC clusters.
This disparity was not only due to the differences in processing power but also

due to the faster communication networks used in clusters, like Infiniband, com-
pared to the slower Ethernet-based connections in Cloud setups. However, recent
advancements have significantly bridged this gap. Improvements in Cloud tech-
nologies, such as the availability of specialized interconnects like Mellanox Infini-
band in the public Cloud, have enhanced communication efficiencies, allowing
Cloud infrastructures to become more comparable to traditional clusters. Despite
these advancements, the Cloud environment still poses unique challenges, such
as issues related to virtualization and the non-deterministic nature of locality,
which can significantly affect performance. Conversely to the heterogeneity of
the Cloud, HPC clusters are characterized by dedicated, largely homogeneous
hardware and optimized network topologies designed for maximum performance
and efficiency in executing large-scale computations.

1.2 Motivation

The HPC community has identified that network noise in the Cloud can be a

performance bottleneck in previous studies [6]. In this study, we build upon

past works by seeking to understand how composing HPC programs, either

using asynchronous actor programming or synchronous SHMEM models, affects

their performance on the Cloud versus HPC clusters. Industry practitioners and

researchers often assume that the performance characteristics observed in one

environment will translate to another, yet this is not always the case. The unique
architectural and operational differences between Cloud platforms and HPC clus-
ters can significantly impact the performance of parallel programming models.

Our preliminary experiments have shown that the performance difference

between asynchronous message passing and blocking strategies is more pro-

Asynchronous Actors Perform Even Better on the Cloud 13

nounced in the Cloud compared to traditional HPC clusters. This observation

prompts a deeper investigation into the factors contributing to this discrep-
ancy. Understanding these factors is crucial for making informed d ecisions about
deploying concurrent systems in various environments and optimizing perfor-
mance and resource utilization.

1.3 Objectives

This work studies the performance of asynchronous actor programming and syn-
chronous PGAS (SHMEM) strategies in Cloud environmen ts versus HPC clus-
ters. More specifically, we:

– measure and compare the performance of graph kernels written in HClib-
actor (an asynchronous actor programming runtime) and an equivalent n on-
asynchronous version on both Azure Cloud and HPC clusters.

– identify and analyze the factors contributing to the observed performance dif-
ferences in these environments and provide insights and recommendations f or
industry practitioners on deploying these programming strategies effectively
in different computational settings.

By addressing these objectives, this paper seeks to bridge the knowledge gap

between theory and practice in the realm of HPC-on-the-Cloud, offering valuable

guidance to academia and industry. The findings of this study are expected to

inform future researc h and development in optimizing the deployment of asyn-
chronous and blocking strategies in diverse computational environments.

2 Related Work

2.1 Partitioned Global Address Space (PGAS)

PGAS [1, 13] is a parallel programming model that provides a global memory

address space partitioned among the pro cessors. Languages such as Unified Par-
allel C (UPC) [3], Chapel [2], and X10 [5] have implemented PGAS concepts to

simplify the memory access semantics, thereby enhancing the productivity and
performance of parallel application development.

The OpenSHMEM programming model [4], one implementation of PGAS,
provides efficient one-sided communication primitives that allow a process to

directly access the memory of another process without the involvement of the

target process’s C PU. This feature is particularly beneficial for achieving low-
latency communication in HPC environments.

2.2 Asynchronous Actor Programming

The asynchronous Actor programming model has been the subject of active

research and development for several decades. Initially introduced in the late

14 A. Mysore et al.

1970s, it is designed to provide a natural abstraction for concurrent compu-
tation. In this model, “actors” are the fundamental units of computation that
encapsulate state and behavior, communicate via asynchronous message pass-
ing, and make decisions based on the messages they receive. This decoupling of
computation and communication helps achieve high concurrency and scalability
levels.

Recent advancements in Actor-based programming frameworks, such as
Akka, Erlang, and Orleans, have demonstrated the effectiveness of this model in

building robust, scalable, and fault-tolerant distributed systems. These frame-
works leverage the actor model to manage complex concurrency issues, making

them popular choices for developing distributed applications in industry and
research settings. The actor model’s adaptability to various domains, including
real-time data processing, telecommunications, and Cloud computing, under-
scores its relevance and potential.

2.3 Cloud Environments

With the growing adoption of Cloud computing for large-scale computational
tasks, there has been increasing interest in evaluating the performance of parallel
programming models in Cloud environments. Cloud platforms such as Microsoft
Azure, Amazon Web Services (AWS), and Google Cloud offer scalable and cost-
effectiv e solutions for running parallel applications. Though, they still introduce
new challenges, such as network virtualization, variable latency, and resource
contention.

Little prior research explores how these Cloud-specific factors impact the

performance of asynchronous actors and PGAS models. The authors believe

that Cloud environments’ inherent elasticity and resource abstraction can lead

to performance differences from those observed in traditional HPC settings. For
example, the virtualization layer in Cloud platforms can introduce additional
latency, which may affect the efficiency of synchronous communication patterns
more than asynchronous ones.

2.4 Gaps and Opportunites

While there is extensive literature on the performance of asynchronous actor and

PGAS programming models in HPC environments, relativ ely few studies focus
on their performance in Cloud computing contexts.

This study aims to fill this gap by providing a detailed comparative analysis of
asynchronous actor-based programming (HClib-actor) and PGAS programming

(OpenSHMEM) on the Azure Cloud platform. By focusing on graph microker-
nels, which are representative of a wide range of real-world applications, this
research offers actionable insights for industry practitioners looking to optimize
Cloud-based applications and academics interested in advancing the state of
parallel computing research.

Asynchronous Actors Perform Even Better on the Cloud 15

3 Methodology

3.1 Experimental Setup

Our experiments involve running the same set of kernels on a Cloud platform

and an HPC cluster. We use the PACE [10] cluster for the HPC platform and

Azure D-series virtual machines for the Cloud platform. Since we are focused on

the latency overheads introduced by the network, we utilize only one core per
machine on both platforms. PACE nodes use Intel Xeon Gold 6226 CPUs, while

Cloud nodes utilize Intel Xeon Platinum 8473C CPUs. PACE is equipped with

InfiniBand networking; all nodes are in the same data center. The networking

between Cloud nodes is far more heterogeneous and more liable to changing

data center traffic. There exists only a region-level locality guarantee. Finally,
to keep findings general to most Cloud networks, we chose not to enable Azure-
only networking features like single-root input/output virtualization (SR-IOV)
or proximity placement. The latter does not offer locality guarantees beyond

best effort and, in practice, the performance benefit observed was small enough
that we chose to turn it off to make our results more generalizable. In the same
spirit of targeting a “generic cloud” machine and network, we decided not to
use Azure’s “HPC-optimized” offering, which includes a setup very similar to an
HPC Cluster, such as having Infiniband networking between nodes. The D-series
VMs we picked for experiments use Ethernet.

3.2 Benchmark and Metric

In this study, we employ the Bale suite of graph microkernels to evaluate the per-
formance of asynchronous actor-based programming and blocking PGAS models.
The Bale suite includes seven k ernels designed to capture a wide range of irreg-
ular access patterns common in many applications:

1. Histogram: Builds histogram from a set of randomly generated data, some
remote and some local.

2. Index Gather: Gathers elements from a (remote) array b ased on a list of
indices.

3. Permute: Permutes the elements of a n array.
4. Randperm: Generates and stores a random permutation of array elements.
5. Transpose: Transposes a large, s parse matrix.
6. Triangle: Count the number of triangles (three-degree c ycles) in a sparse

graph.
7. Toposort: Topological sort on a sparse DAG.

These benchmarks collectively cover a variety of computational tasks over
sparse matrices. For each kernel, we study three PGAS versions - one that is
implemented in OpenSHMEM (and uses synchronous communication) and two
asynchronous versions - one implemented using the Conveyors message aggre-
gation library [9], while the other uses the HClib-actor runtime [11, 12] which is

built on top of the Conveyors library. The measured metric is execution time in
seconds.

16 A. Mysore et al.

Fig. 1. Comparing relative Speedup of Selector over OpenSHMEM variant for two

graph kernels on an HPC Cluster and the Cloud. Note that the vertical axis is loga-
rithmic.

4 Experimental Observations

This section details our observations from running the Bale suite on both plat-
forms. To restate our goal, we are empirically studying the question: How many
times faster is the selector version compared to the synchronous Open-
SHMEM version? The speedup comparisons across these two platforms are
depicted in charts for two kernels in Fig. 1. Aggregates of execution time for
each kernel across three programming models and both platforms are provided
in Table 2. Charts depicting this data are provided in Fig. 2 - since the difference

in execution times between kernel versions is extreme on the Cloud, we have

used a logarithmic axis (base-10) for the columns on the right, e xcept for the
very first figure where we use a linear scale to show the standard error better.

Table 1. Speedup gained from asynchronous actors over Bale graph kernels. Speedup

on the HPC cluster is displayed in the shaded (blue) columns and Speedup on the

Cloud is displayed in unshaded (white) columns. Speedup is computed as the quotient
resulting from the selector version running time divided by the OpenSHMEM version
running time from Table 2.

Number of PEs

Kernel 2 2 4 4 8 8 16 16

histogram 11.9 56.5 11.6 124.2 13.1 171.7 12.6 146.2

index-gather 14 196.7 20.2 387.3 23.1 442.1 23.9 379.1

permute 13.8 249.8 20.1 582.5 22.9 704.6 23 690.9

randperm 9.8 155.8 11.3 335.7 11.7 397.9 11.5 387.6

topological sort 39 555.6 46.8 905.9 50.5 921.6 48.2 380.9

matrix transpose 22.7 451.2 25 792.7 26.1 1206.9 25.5 833.9

triangle counting 15.7 356 22.6 725.3 26 914.5 27.1 876.5

Asynchronous Actors Perform Even Better on the Cloud 17

Table 1 provides speedup data across the Cloud and Cluster platforms for all
kernels .

From the observations, the easy-to-predict insight is that the HPC cluster
is faster than the Cloud due to the cluster having a dedicated interconnect.
However, this study also revealed several interesting performance facts, including

the variation in execution times on the Cloud and the incredible improvements
wrested by switching to asynchronous communication on such slower networks.

Table 2. Bale suite running times on an HPC cluster and a Cloud environment. All
running times are in seconds. Cluster running times are in shaded (blue) columns and

Cloud running times are in unshaded (white) columns. All values are computed as
averages of five executions.

Average running time per kernel Number of PEs

Kernel Version 2 2 4 4 8 8 16 16

conveyor 0.2832 2.8876 0.2926 1.7036 0.2934 2.023 0.3032 6.3998

selector 0.3608 2.7106 0.3644 1.9702 0.3548 1.7934 0.3798 5.0764histogram

shmem 4.2676 153.053 4.202 244.629 4.6294 262.0524 4.7478 608.085

conveyor 0.6378 9.0226 0.6548 6.9162 0.662 6.0698 0.6724 6.7602

selector 0.8116 8.633 0.815 6.7688 0.82 6.2924 0.85 7.5202index-gather

shmem 11.3134 1697.404 16.3852 2620.942 18.9024 2781.248 20.2506 2850.5

conveyor 0.285 2.4858 0.2922 2.5552 0.2892 1.9004 0.3132 2.3514

selector 0.3304 2.6586 0.3312 1.8768 0.3376 1.695 0.3606 2.029permute

shmem 4.5272 664.108 6.6486 1093.146 7.6992 1194.291 8.2578 1401.715

conveyor 0.2338 1.3418 0.2396 1.0888 0.2416 1.1378 0.2558 1.4236

selector 0.265 1.6654 0.2682 1.2648 0.273 1.3332 0.2872 1.51randperm

shmem 2.594 259.461 3.007 424.518 3.1876 530.468 3.2786 585.274

conveyor 0.1088 1.2472 0.1112 1.189 0.1128 1.344 0.1162 2.3386

selector 0.1464 1.2074 0.1492 1.1246 0.1518 1.2526 0.1676 3.172topological sort

shmem 5.7026 670.719 6.979 1018.718 7.6578 1154.388 8.0726 1207.932

conveyor 0.2568 1.4614 0.2584 1.0742 0.2606 1.1566 0.2758 1.6644

selector 0.2824 1.422 0.2874 1.2322 0.2918 0.934 0.3072 1.578matrix transpose

shmem 6.3982 641.528 7.1758 976.745 7.588 1127.212 7.8224 1315.747

conveyor 0.5196 3.8704 0.5206 3.3188 0.5176 2.8854 0.5398 2.9268

selector 0.6004 4.1872 0.604 3.2088 0.6088 2.59075 0.6266 3.0792triangle counting

shmem 9.3682 1490.288 13.6376 2327.121 15.7818 2369.132 16.955 2698.743

Broad Advantages of Networking in Sparse Graph Operations. As can

be seen in Table 2, in our experiments, all kernels perform much better on the

HPC cluster, which is to be expected b y virtue of the latter having a n Infiniband

100HDR interconnect.

Highly Variable Cloud Execution Times. We observe that the workloads
on the Cloud have extreme variation, especially when executing the slower ker-
nels. For instance, the OpenSHMEM histogram kernel had a 68-second differ-
ence b etween the slowest and fastest observation on the C loud. However, on

18 A. Mysore et al.

Fig. 2. Bale performance on the two test environments - HPC cluster (left column)
and Cloud (right column). Note the vertical axes (i.e., execution times) use a linear
scale in the figures in the left c olumn and a logarithmic scale in the figures (excl. the

first row) in the right column. Continued to next page.

Asynchronous Actors Perform Even Better on the Cloud 1 9

Fig. 2. (continued)

the Cluster, we observe that the variation between the slowest and fastest his-
togram kernel was in the order of milliseconds. We theorize that this is due to the

non-deterministic nature of data-center traffic since we use shared resources. We

control f or this variation by repeating each experiment 5 times with significant
delay between runs. Each value in Table 2 represents the average execution time

of 5 runs while the error bars in the left columns of Fig. 2 (and in the first row

of the right column) represent the v ariation in times.

Orders-of-Magnitude Performance Boost with Asynchronous Actors.
The results reveal a stark benefit of using asynchronous approaches like conveyors
and selectors on the Cloud; on the HPC cluster, the selector version is at most

20 A. Mysore et al.

one order of magnitude (10×−− 30×) faster, but this difference becomes two to

three orders of magnitude (1000×) when we move to the Cloud. We attribute this
performance gain to non-bloc king point-to-point communication with automatic

message aggregation. We highlight the speedups in Fig. 1 and Table 1.

5 Conclusion

Our study reveals significant performance disparities between asynchronous
actor programming and synchronous PGAS strategies in Cloud versus HPC clus-
ter environments. Asynchronous approaches show dramatically amplified bene-
fits in Cloud settings, with performance gaps widening from one order of magni-
tude in HPC clusters to two or three orders in the Cloud. We also observe high

execution time variability in Cloud environments, underscoring the challenges
of shared resources and fluctuating data center traffic. These findings emphasize

the critical role of network infrastructure in sparse graph operations and suggest
that asynchronous programming mo dels should be preferred for Cloud-based

HPC applications, especially for workloads with irregular access patterns.

5.1 Opportunities and Future Work

This work could be extended to perform cost modeling or estimation as an

additional dimension to the performance executions we have presented. Future

work could augment this study with the dollar values of running these kernels
on each test environment. This study also limits itself to the most generally

available type of virtual machine on the Cloud, where future work could study

how specific configurations (usually restricted to a particular vendor) could offer
performance improvements. Lastly, future work can focus on developing adaptive

runtime systems to handle the unpredictable nature and elasticity of shared

Cloud resources and further optimize asynchronous programming models for
Cloud environments.

Acknowledgments. We acknowledge Microsoft’s generous support of Azure credits
made available for this research via GT Cloud Hub. The authors would also like to

thank Professor Vivek Sarkar of the College of Computing, Georgia Institute of Tech-
nology, for his support of this work.

References

1. Almasi, G.: PGAS (Partitioned Global Address Space) Languages, pp. 1539–1545.
Springer US, Boston, MA (2011). https://doi.org/10.1007/978-0-387-09766-4_210

2. Callahan, D., Chamberlain, B.L., Zima, H.P.: The cascade high productivity lan-
guage. Ninth International Workshop on High-Level Parallel Programming Models
and Supportive Environments, 2004. Proceedings, pp. 52–60 (2004). https://api.
semanticscholar.org/CorpusID:5217126

https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://api.semanticscholar.org/CorpusID:5217126
https://api.semanticscholar.org/CorpusID:5217126
https://api.semanticscholar.org/CorpusID:5217126
https://api.semanticscholar.org/CorpusID:5217126
https://api.semanticscholar.org/CorpusID:5217126
https://api.semanticscholar.org/CorpusID:5217126

Asynchronous Actors Perform Even Better on the Cloud 2 1

3. Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K.A., Brooks, E.D., War-
ren, K.H.: Introduction to UPC and language specification (2000). https://api.
semanticscholar.org/CorpusID:59868665

4. Chapman, B., et al.: Introducing openSHMEM: SHMEM for the PGAS community.
In: Proceedings of the Fourth Conference on Partitioned Global Address Space

Programming Model. PGAS ’10, Association for Computing Machinery, New York,
NY, USA (2010). https://doi.org/10.1145/2020373.2020375

5. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 519–538. OOP-
SLA ’05, Association for Computing Machinery, New York, NY, USA (2005).
https://doi.org/10.1145/1094811.1094852

6. De Sensi, D., De Matteis, T., Taranov, K., Di Girolamo, S., Rahn, T., Hoefler, T.:
Noise in the clouds: Influence of network performance variabilit y on application

scalability. Proc. ACM Meas. Anal. Comput. Syst. 6(3) (Dec 2022). https://doi.
org/10.1145/3570609

7. Hewitt, C.E., Bishop, P.B., Steiger, R.: A universal modular actor formalism for
artificial intelligence. I n: International Joint Conference on Artificial Intelligence

(1973). https://api.semanticscholar.org/CorpusID:18601146

8. Imam, S.M., Sarkar, V.: Selectors: actors with multiple guarded mailboxes. In:
Proceedings of the 4th International Workshop on Programming Based on Actors
Agents & Decentralized Con trol, pp. 1–14. AGERE! ’14, Association for Computing

Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2687357.2687360

9. Maley, F.M., DeVinney, J.G.: Conveyors for streaming many-to-many communica-
tion. In: 2019 IEEE/ACM 9th Workshop on Irregular Applications: Architectures
and Algorithms (IA3), pp. 1–8. IEEE (2019)

10. PACE: Partnership for an Advanced Computing Environmen t (PACE) (2017).
http://www.pace.gatech.edu

11. Paul, S.R., Hayashi, A., Chen, K., Elmougy, Y., Sarkar, V.: A fine-grained asyn-
chronous bulk synchronous parallelism m odel for PGAS applications. J. Comput.
Sci. 69, 102014 (2023). https://doi.org/10.1016/j.jocs.2023.102014, https://www.
sciencedirect.com/science/article/pii/S1877750323000741

12. Paul, S.R., Hayashi, A., Chen, K., Sarkar, V.: A productive and scalable actor-
based programming system for PGAS applications 13350, 233–247 (2022). https://

doi.org/10.1007/978-3-031-08751-6_17

13. Yelick, K., et al.: Productivity and performance using partitioned global address
space languages. In: Proceedings of the 2007 International Workshop on Paral-
lel Symbolic Computation, pp. 24–32. PASCO ’07, Association for Computing

Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1278177.1278183

https://api.semanticscholar.org/CorpusID:59868665
https://api.semanticscholar.org/CorpusID:59868665
https://api.semanticscholar.org/CorpusID:59868665
https://api.semanticscholar.org/CorpusID:59868665
https://api.semanticscholar.org/CorpusID:59868665
https://api.semanticscholar.org/CorpusID:59868665
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/3570609
https://doi.org/10.1145/3570609
https://doi.org/10.1145/3570609
https://doi.org/10.1145/3570609
https://doi.org/10.1145/3570609
https://doi.org/10.1145/3570609
https://api.semanticscholar.org/CorpusID:18601146
https://api.semanticscholar.org/CorpusID:18601146
https://api.semanticscholar.org/CorpusID:18601146
https://api.semanticscholar.org/CorpusID:18601146
https://api.semanticscholar.org/CorpusID:18601146
https://api.semanticscholar.org/CorpusID:18601146
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
http://www.pace.gatech.edu
http://www.pace.gatech.edu
http://www.pace.gatech.edu
http://www.pace.gatech.edu
http://www.pace.gatech.edu
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://www.sciencedirect.com/science/article/pii/S1877750323000741
https://www.sciencedirect.com/science/article/pii/S1877750323000741
https://www.sciencedirect.com/science/article/pii/S1877750323000741
https://www.sciencedirect.com/science/article/pii/S1877750323000741
https://www.sciencedirect.com/science/article/pii/S1877750323000741
https://www.sciencedirect.com/science/article/pii/S1877750323000741
https://www.sciencedirect.com/science/article/pii/S1877750323000741
https://www.sciencedirect.com/science/article/pii/S1877750323000741
https://doi.org/10.1007/978-3-031-08751-6_17
https://doi.org/10.1007/978-3-031-08751-6_17
https://doi.org/10.1007/978-3-031-08751-6_17
https://doi.org/10.1007/978-3-031-08751-6_17
https://doi.org/10.1007/978-3-031-08751-6_17
https://doi.org/10.1007/978-3-031-08751-6_17
https://doi.org/10.1007/978-3-031-08751-6_17
https://doi.org/10.1007/978-3-031-08751-6_17
https://doi.org/10.1007/978-3-031-08751-6_17
https://doi.org/10.1007/978-3-031-08751-6_17
https://doi.org/10.1145/1278177.1278183
https://doi.org/10.1145/1278177.1278183
https://doi.org/10.1145/1278177.1278183
https://doi.org/10.1145/1278177.1278183
https://doi.org/10.1145/1278177.1278183
https://doi.org/10.1145/1278177.1278183
https://doi.org/10.1145/1278177.1278183

A Formal Model for Portable,

Heterogeneous Accelerator Programming

Zachary J. Sullivan(B) and Samuel D . Pollard

Sandia National Laboratories, Livermore, CA, USA
{zsulliv,spolla}@sandia.gov

Abstract. Programming on modern computer architectures requires
logic to utilize both multi-threaded CPUs and accelerators such as GPUs.
This can be fraught with errors relating to transmitting and accessing

memory not available to all compute resources. Moreover, once the pro-
grammer writes correct code for one system, it is often slow or incorrect
when run on a different architecture. A bottom-up approach to solv-
ing this problem is reified in the C++ library Kokkos. We approach the

problem top-down, distilling and generalizing concepts found therein. We

design a small language, called H-IMP—which builds on an earlier model
of Kokkos called MiniKokkos—with a type system that includes notions
of device memory, accelerators, and safe memory access. We show that
a well-typ ed program is safe, which in this context means that there are
no heterogeneous memory errors. Our type system enables us to define a
precise notion of a portable program as a program with free variables rep-
resenting where data is stored and kernels are executed. Finally, we prove
a portability theorem for heterogeneous programs: that the program can
run safely when instantiated on a specific set of architectures.

Keywords: programming languages · high-performance computing ·
heterogeneous c omputing · portability

1 Introduction

Modern compute nodes are structured with a host CPU together with other
kinds of accelerators, typically GPUs. While writing any programs that
exploit this hardware is already a difficult task, writing programs that are also

meant to be portable is compounded by the wide variety of GPU and on-CPU

accelerator systems. To ease programming with such mac hines and to abstract
over the different hardware architectures, there exist many libraries and lan-
guages which offer a programming model to handle multiple parallel architec-
tures abstractly [2– 6, 8– 10, 13, 15]. In Kokkos [6, 13]—a library designed specifi-
cally for portability—accelerators are abstracted into a notion of execution spaces
that we can run kernels on; an obvious example would be a GPU, but another
example is an OpenMP kernel running on the CPU. To abstract different kinds
of memory accessible to different execution spaces, Kokkos has memory spaces;

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 22–33, 2025.
https://doi.org/10.1007/978-3-031-97492-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-97492-2_3

A Formal Model for Portable, Heterogeneous Accelerator Programming 23

for example, a GPU will have its on-chip memory. Importantly, these have dif-
ferent performance and accessibility properties depending on which execution

space is being used. The host code, and only the host c ode, can allocate objects
which exist in these memory spaces; Kokkos calls these objects views.

While Kokkos provides an abstraction that enables portability, using the

C++ library alone does not give us the extra reasoning to know whether our
code is indeed portable. Consider the following program:

Kokkos::View<int *, Kokkos::HostSpace> view ("V", 32);

Kokkos::parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

view(index) = index;

});

Implicit in this code is where the parallel for-loop is executed. Behind the

scenes, this location is chosen by a configured default; this is how Kokkos code

can be instantiated for different systems. If this execution space is configured

to be some on-CPU space like OpenMP, then this code will run without issue.
However, there exist instantiations of this default that will produce problems;
for instance, using a CUDA execution space will result in a memory error when

the code attempts to write to view. Thus, the code is only portable to a spe-
cific subset of systems. Kokkos allows us to avoid declaring the memory space

explicitly and it will choose the memory space so that it matches the execution

space, but then a portable program must include copying between host and this
memory space.

To describe a portable, heterogeneous program as a formal property, we
develop a small, formal language including these features alone. Our language
includes a type system that takes from two lines of work: region-based memory
management and security type systems. First, our system can be seen as a mod-
ification of the region calculus [1, 12] wherein locations are added to variables
to automatically handle allocation and deallocation of objects. Our type sys-
tem also adds locations, i.e. memory spaces, to where Kokk os views are stored.
Second, we take inspiration from languages with features for information-flow
security [11] wherein code is tagged with either low or high security to restrict
permissions. In Kokkos, we think of code being tagged with an execution space

that restricts its permission to access certain memory spaces and operations.
P ortability can then be defined by polymorphism over spaces in a manner which
respects these permissions.

Previous work [7] on modeling Kokkos as a small programming language,
called MiniKokkos addressed the problem of deadlocks. Our language H-IMP,
simplifies their execution model to focus on heterogeneous memory and device
permissions. Our contributions include the following:

– A core language (H-IMP) for heterogeneous hardware (Sect. 2).
– An operational semantics that captures notions of different kernel-executing

machines within a global execution of a program (Sect. 3).

24 Z. J. Sullivan and S. D. Pollard

Fig. 1. H-IMP Syn tax.

– A type system that provides static checks on the spaces for both computa-
tions and memory (Sect. 4). Our appendix contains the detailed proof that
well-typed programs are free of heterogeneous memory errors by means of a

realizability m odel of the type system over its operational semantics.1

– An extension to H-IMP to include variables, like default , for execution and

memory spaces. Thereby, we can give a concise, formal definition of what it
means for a program to be portable to other architectures (Sect. 5). More-
over, our space variables allow us to write programs for portable, multiple-
accelerator nodes that are curren tly not expressible in the Kokkos library.

2 A Syntax for Computing with Accelerators

Figure 1 presents the syntax of H-IMP. The language is a heterogeneous mod-
ification of the language IMP, a common model for imperative languages [16];
similarly, we construct programs from statements which consist of commands
and expressions. Whereas commands are used to modify program state imper-
atively, expressions compute pure values from the program state. To model the

heterogeneity in a similar manner to Kokkos, H-IMP has execution and mem-
ory spaces. Execution spaces, denoted χ, are more general than mere devices;
e.g. OpenMP is an execution space but may run on CPUs or accelerators. Simi-
larly, several different kinds of memory spaces, denoted µ, can exist on the same
device; each with different characteristics. For instance, some memory spaces,
like CudaUVM, are accessible from multiple execution spaces.

Though we specify a number of execution and memory spaces in Fig. 1, these

are not intended to be fixed sets, which is why they are written with ellipses. In

later sections, we will see how one can expand and contract these sets as w ell
as describe their accessibility properties to influence the strength our portability
theorem for a specific program.

The imperative features of H-IMP are for mutating variables and views as
well as launching kernels. There are two kinds of commands for declaring local
variables: the first declares a local variable for an expression and the second

declares a view in memory space µ while binding a pointer to it locally. Here,
we require that a view declaration include an explicit memory space where its
data is allocated; this is a necessary intermediate step to describing portable

1 The paper with appendix is available at https://proof.sandia.gov/#himp24.

https://proof.sandia.gov/#himp24
https://proof.sandia.gov/#himp24
https://proof.sandia.gov/#himp24
https://proof.sandia.gov/#himp24
https://proof.sandia.gov/#himp24

A Formal Model for Portable, Heterogeneous Accelerator Programming 25

Fig. 2. Operational Semantics S yntax.

programs with default spaces in Sect. 5. Similar to the two kinds of variable

access, we have two different notions of mutating variables: those for views and

non-views. Other commands available are those for synchronizing the host with

a particular execution space, copying between memory spaces, and launching

new kernels on a particular execution space. The notion of a kernel in H-IMP is
the more general than those found in Kokkos; that is, our kernels consist only
of a particular execution space in which they execute and a set of variables they
copy from the host into the runtime environment (which may itself be the host).

Excluded from this study are loops and conditionals because we focus on the

features related to portability of heterogeneous systems, i.e. those which launch

and control kernels of different accelerators while communicating through shared

variables. We include two key features that enable communication and synchro-
nization: deep copy and fence, respectively. Deep copy enables the movement of
data between views, while a fence blocks until completion of all asynchronous
operations. We do include constants c from a set of base types Bi and operations
over them E0 opi E1 for use in our examples. Indexing into views is done with
natural numbers, which are an example of these constants for the base type N.

3 Operational Semantics

The goal of operational semantics is to model the concurrent execution of ker-
nels from different accelerators alongside a collection of memory s paces within
an abstract machine. The syntax for it is found in Fig. 2. It contains three

different kinds of program state for which we define three different notions of
evaluation. All states contain a local environment L that contain local variables.
The largest state, i.e. global state, has access to all of the memory spaces avail-
able, written M, as well as the queues of work for the execution spaces available,
written S. Local states are for kernel execution and consist of local memory, one

statement for execution, and a restricted set of available memory spaces. Local
states cannot access any work queues for execution spaces. Expression evaluation

configurations contain the same information.
The available memory spaces (M) are a partial map from memory spaces to

pointers to indices to values of base types (such as integers). To access a specific
index n of a view π in a memory space µ, we write M(µ)(π)(n); if we just wanted
the particular view, then we would write M(µ)(π); and so on. For simplicity, we

26 Z. J. Sullivan and S. D. Pollard

Fig. 3. Expression Ev aluations

assume that if a view is defined then any index into it is defined. This syntax

follows similarly for local memory, but there fewer levels of indirection; that is, we

need only write L(x). Additionally, whereas views can only contain values of base

types c, local memory can contain both values of base types and pointers to views
in memory (µ, π). We use the syntax L[x �→ V] to denote either replacing the

current mapping of x in L or to insert a new mapping for x when it does not yet
exist in L. Likewise, we can update our available memory spaces; M[µ, π, n �→ c]
updates (or inserts) c at the nth index of the view at location π in memory space

µ. We use Dom (short for domain) to ensure variables exist in their respective

environments (local or memory spaces). Finally, we use M|P (µ) to denote the

restriction of the memory spaces to those in the set of memory spaces µ that
satisfy the proposition P .

The execution space queues, denoted S, contained within the global state

is an execution-space-indexed first-in-first-out queue. All of the operations on this
object include a specific memory space. S.empty(χ) is a proposition that is true
if the work queue for execution space χ is empty. S.pusht(χ, (L, S)) publishes a
new task to the end of χ’s work queue. S.head(χ) merely looks at the front of
the queue; whereas S.poph(χ) removes the front of the queue. Finally, we have
S.replaceh(χ, (L, S)) which updates the head of the queue to a new work state.

We first present big-step reduction of expression configurations to machine
values in Fig. 3. For variables, we merely look it up in the local memory. For
accessing views, we first evaluate the index with the current state to get a pointer
to a particular view in a memory space, and then we index into M with it. If
the view that we are trying to dereference is not in the local M then we would

not be able to construct an evaluation derivation. In a real program, t his would
occur if the current execution space does not have access to that memory space,
since it would not be included in local instance of M. Such a restriction is upheld
when instantiating a kernel by the GXStep rule in Fig. 5.

Taking steps locally, which includes execution spaces transitioning, is defined
by the deterministic relation in Fig. 4. Declaring and mutating variables both

happen by evaluating the expression and using the result to manipulate the

local environment L. Of course, failing to declare a local variable before setting
it will result in a local memory error, so no transition is possible. We may

A Formal Model for Portable, Heterogeneous Accelerator Programming 27

Fig. 4. Local T ransitions.

also mutate views from execution spaces, which has a similar restriction that
the location must be already defined before changing it. Like with the big-step

rule for expressions, M may or may not contain the particular memory spaces
and views to complete a transition depending on the instantiation of the kernel.
Finally, local transitions operate over statements, but do not have the permission
to allocate new views, deep copy, or fence; thus, such statements would be stuck.

Global transitions are described in Fig. 5. Intuitively, these transitions rep-
resent the host program, which orchestrates all of the memory and execution

spaces. The first rule GHStep is for when the host takes a step locally in the same

manner as an execution space. Unlike other execution spaces, the host can also

declare a view, with GDeclView , given an unused view location π. We take

M[µ, π �→ init] to mean that for any n that M(µ)(π)(n) is defined. In GKernel ,
the host program publishes a new unit of work to an execution space’s work

stack; note that it also copies the local variables captured by the λ-expression in

the kernel definition, which can get stuck if the variables are undefined. In

GFence, we see that the program is stuck until the execution space, for which

we are waiting, completes its stack of work. Finishing a unit of work in the

stack is achieved by the two concurrent steps of GXPop and GXStep. The first
removes the work when ret is the waiting statement. The latter selects one of
the execution space q ueues and takes a single step on it. It is in this rule that we
restrict the valid memory spaces for each execution space when it takes a step;
we use µ ⊲ χ for the restricted set of memory spaces µ that are accessible from
χ. Note that because global transitions are non-deterministic, these steps model
the concurrency implicit in the Kokkos machine model.

The following definitions describe how to run programs in our abstract
machine; we will later define safe executions of the machine and our static anal-
ysis will show well-typed H-IMP programs imply safe execution (Theorem 1).

Definition 1 (Initial State). Initial(〈〈M ‖ S ||= L ‖ S〉〉) where M contains a

set of empty memory spaces and S contains all empty work stacks.

Definition 2 (Final States). For local states, Final(〈〈M ||= L ‖ ret〉〉).

28 Z. J. Sullivan and S. D. Pollard

Fig. 5. Global Tr ansitions.

Fig. 6. H-IMP Type S yntax.

For global states, Final(〈〈M ‖ S ||= L ‖ ret〉〉) where S contains all empty work

stacks.

4 Type System

We present the syntax of the H-IMP type system in Fig. 6. Memory spaces are

referenced by view(µ, Bi) types, which are pointers to data structures over the

base type Bi and housed within a memory space µ. As a simplification from
Kokkos, we consider views to be arrays of type Bi.

To reason statically about memory spaces and execution spaces of H-
IMP programs, the judgements of our type system require information about
where their computations occur and the information about the memory spaces
accessible from each execution space must be supplied. The type system’s rules
are presented in Fig. 7. There are three main judgements that all end in @ χ

signifying the execution space wherein the expression, statement, or command

is to take place. For instance, Γ ⊢ E : τ @ χ states that with the local type
environment Γ the expression E computes a value of type τ in the execution

A Formal Model for Portable, Heterogeneous Accelerator Programming 29

Fig. 7. H-IMP Typing R ules.

space χ. Certain commands are only available to the host execution space, the

orchestrater of H-IMP programs. Specifically, the host is the only execution space

that may declare views, fence execution spaces, deep copy views, and launch ker-
nels. However, we cannot launch kernels for the host; one would instead need to
use the Serial execution space.

Note that the typing environment Γ will only contain variables local to that
execution space. During computation this is thread-local memory; see that the

TKernel rule specifies explicitly the variables that will be copied to its local
memory.

Indexed by some sets of memory and execution spaces, our typing system

depends on a relation µ ⊲ χ on Mem. Space × Ex . Space, which occurred in th e
operational semantics. For the set of execution and memory spaces we gave in
Fig. 1, this relation is defined as the following:

30 Z. J. Sullivan and S. D. Pollard

(⊲) = {(Host, Host), (Host, Serial), (Host, Threads), (Host, OpenMP), (Cuda, Cuda)}

∪ { (CudaUVM, χ) | χ ∈ Ex. Space}

In this relation, CudaUVM can safely be accessed by any execution space χ; of

course, this may not be true if we wanted to consider GPUs from another ven-
dor. The rules TViewDeref and TSetView check that every view referenced is
accessible to the current execution space.

4.1 Safety

We must define a notion safety for each class of computable syntax. Expression

configurations are the simplest: they are safe if they evaluate to a machine value.
Both global and local machine states are safe if they take a ny number of steps
to either a final state or they can continue to step; i.e. they cannot reach a stuck
state.

Definition 3 (Safe Configurations and States). For an expression config-
uration, Safe(Conf) if and only if Conf ⇓ V .

For an execution-space state, Safe(XState) if and only if XState �−→∗ XState ′

implies Final(XState ′) or XState ′ �−→ XState ′′.

For a host state, Safe(GState) if and only if GState −→∗ GState ′ implies

Final(GState ′) or GState ′ −→ GState ′′.

Though this looks like an overly simple notion of safety, it implies that we are

always accessing an accessible view from the current execution space, that the

global state is only manipulated directly by host execution space, and that vari-
ables are initialized before they are mutated. Moreover, it even captures safety in

the n otion of concurrency employed by the global transitions; because for every
way that we take a step—there are multiple—we must step to a good final state
or keep stepping.

Theorem 1 (Type Safety). If ⊢ S @ Host, then Safe(Init(S)) .

5 Portable Programs

Kokkos programs, and templated C++ programs more generally, require

abstracted template variables to be instantiated with concrete types and func-
tions before a complete binary can be run. The programming language that
we just presented can be seen as a program where all of the decisions about
a node’s architecture have been decided. However, this is not how the Kokkos
C++ library is intended to be used. We would like H-IMP instead to specify
one program that works for many different architectures. To accomplish this,
Kokkos programs do not need to specify explicitly the memory spaces wherein

A Formal Model for Portable, Heterogeneous Accelerator Programming 31

views are located, or the execution spaces whereat kernels are executed. Thus,
we may see a source program (in H-IMP) like the following:

decl x in defaultMem;
kernel(defaultEx , λx. x(0) := 2; ret);
. . .

Before running this program with our machine machine, we must decide

how these default spaces are instantiated. If a program is portable, then it should
be the case that any instantiation of the default spaces produces a safe program.

Definition 4 (Portable Program). A program S is portable if and only if

Safe(Init(S[σ])) for a given set of execution and memory spaces, their accessibil-

ity relation, and any instantiation σ of its free execution and memory variables.

To describe this “templated” H-IMP, we must add memory and execution

space variables to programs, denoted with underlines:

χ ∈ Ex . Space ::= x | χ

χ ∈ Inst . Ex . Space ::= Host | Threads | OpenMP | Cuda | . . .

µ ∈ Mem. Space ::= x | µ

µ ∈ Inst . Mem. Spac e ::= Host | CudaUVM | Cuda | . . .

∆ ∈ Space Env . ::= ε | ∆, ex x | ∆, mem x

In real Kokkos programs, the default memory and execution space variables
exist implicitly, but only as special space variables. Here, we have the option of
multiple default spaces; consider for instance, a program with defaultEx1 and
defaultEx2 , which could be instantiated on several kinds of two GPU systems.

To statically reason about space variables, we extend our typing judgments
with ∆ containing the free memory and execution space variables. For example,
our expression judgments would have the form Γ ⊢∆ E : τ @ χ. The accessibility

relation now only refers to fully instantiated memory s paces µ � χ, and we have
a new generalized relation with the judgement ∆ ⊢ µ ⊲ χ that we use in the
updated rules from Fig. 7. 2

∆ ⊢ µ :: MS ∆ ⊢ χ :: ES ∀σ ∈ Inst(∆), µ[σ] � χ[σ]

∆ ⊢ µ ⊲ χ

The judgements ∆ ⊢ µ :: MS and ∆ ⊢ χ :: ES are added to check that a space

is either a variable in ∆ or an instance. This extended type system is strong
enough to give us portability.

Theorem 2 (Typing Ensures Portability). If Γ ⊢∆ S @ Host, then S is

portable.

2 The full type system with the new and rewritten r ules is found in the appendix.

32 Z. J. Sullivan and S. D. Pollard

Note well that constructing portable programs is very limited. We can-
not prove the generalized accessibility rule unless we show that for any com-
bination memory and execution space that they are accessible. For example, we

cannot prove mem default ⊢ default ⊲ Cuda , because there exists a memory space
inaccessible to Cuda execution spaces: Host. Indeed, given the set of execution
and memory spaces of Fig. 1 and the relation specified in Sect. 4 there exist
no portable programs that make use of views with default memory and execu-
tion spaces. Thus, specifying a portable program necessarily includes g iving a
restricted set of execution and memory spaces for which it is portable.

6 Conclusion

We have developed a language H-IMP as a distillation of the features for portable

heterogeneity present in Kokkos wherein we can launch kernels for different accel-
erators. An important notion is that of the permissions for each execution space,
which controls the different types of memory it can access and the operations
that it may perform. Over this language, we defined a type system that allows
us to guarantee that w ell-typed programs do not misuse heterogeneous memory.
Finally, we defined a notion of portable programs for this language and noted
that there are no meaningful portable programs without specifying the restricted
set of architectures to which a program is portable.

As future work, we plan to enhance the language with the typeclass mecha-
nism [14] found in Haskell. This will allow us to describe portable programs as
those that can be run on any architecture that satisfy some constraint, thereby

avoiding the proviso that we specify a specific set of spaces. For instance, kernel
code could have the type Γ ⊢∆ S @ ∀χ. Host ⊲ χ ⇒ χ meaning that it can run

in any execution space that can access host memory. In addition, we imagine an

extension of the types to include more detailed information about the architec-
ture including types representing the parallelism hierarchy of certain execution

spaces and the interaction of kernels with different memory models. Currently,
we are developing a tool for real Kokkos programs that uses this reasoning to

identify the sets of architectures for which a program is portable.

Acknowledgment. Sandia N ational Laboratories is a multimission laboratory man-
aged and operated by National Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Additionally, we thank Jackson Mayo, Keita Teranishi, Christian Trott, Vivek Kale,
Shyamali Mukherjee, Richard Rutledge, John Bender, and our anonymous reviewer for
comments on draft versions of this paper.

References

1. Ahmed, A., Jia, L., Walker, D.: Reasoning about hierarchical storage. In: 18th

Annual IEEE Symposium o f Logic in Computer Science, 2003. Proceedings, pp.
33–44 (2003). https://doi.org/10.1109/LICS.2003.1210043

https://doi.org/10.1109/LICS.2003.1210043
https://doi.org/10.1109/LICS.2003.1210043
https://doi.org/10.1109/LICS.2003.1210043
https://doi.org/10.1109/LICS.2003.1210043
https://doi.org/10.1109/LICS.2003.1210043
https://doi.org/10.1109/LICS.2003.1210043
https://doi.org/10.1109/LICS.2003.1210043
https://doi.org/10.1109/LICS.2003.1210043

A Formal Model for Portable, Heterogeneous Accelerator Programming 33

2. Beckingsale, D.A., et al.: RAJA: Portable performance for large-scale scientific

applications. In: 2019 IEEE/ACM International Workshop on P erformance, Porta-
bility and Productivity in HPC (P3HPC), pp. 71–81 (2019). https://doi.org/10.
1109/P3HPC49587.2019.00012

3. Callahan, D., Chamberlain, B.L., Zima, H.P.: The cascade high productivity lan-
guage. In: 9th International Workshop on High-Level Programming Models and

Supportive Environments (HIPS 2004), 26 April 2004, Santa Fe, NM, USA, pp. 52–
60. IEEE Computer Society (2004). https://doi.org/10.1109/HIPS.2004.1299190

4. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster comput-
ing. In: Johnson, R.E., Gabriel, R.P. (eds.) Proceedings of the 20th Annual ACM

SIGPLAN Conference on Object-Oriented P rogramming, Systems, Languages, and
Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pp. 519–
538. ACM (2005). https://doi.org/10.1145/1103845.1094852

5. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory

programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998). https://doi.org/10.
1109/99.660313

6. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic m emory access patterns. J. Parall. Distrib.
Comput. 74(12), 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.003

7. Jin, F., Jacobson, J., Pollard, S.D., Sarkar, V.: Minikokkos: aD calculus of portable

parallelism. In: Laguna, I., Rubio-González, C. (eds.) Sixth IEEE/ACM Interna-
tional Workshop on Softwa re Correctness for HPC Applications, Correctness@SC
2022, Dallas, TX, USA, November 13-18, 2022, pp. 37–44. IEEE (2022). https://

doi.org/10.1109/Correctness56720.2022.00010

8. Khronos SYCL Working Group: Sycl 2020 sp ecification (revision 8) (2020).
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

9. Lee, J.K., Palsberg, J.: Featherweight x10: a core calculus for async-finish paral-
lelism. SIGPLAN Not. 45(5), 25-36 (Jan 2010). https://doi.org/10.1145/1837853.
1693459

10. Rossbach, C.J., Yu, Y., Currey, J., Martin, J., Fetterly, D.: Dandelion: a compiler
and runtime for heterogeneous systems. In: Kaminsky, M., Dahlin, M. (eds.) ACM

SIGOPS 24th Symposium on Operating Systems P rinciples, SOSP ’13, Farming-
ton, PA, USA, November 3-6, 2013, pp. 49–68. ACM (2013). https://doi.org/10.
1145/2517349.252271

11. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J.
Selected Areas Commun. 21(1), 5–19 (2003). https://doi.org/10.1109/JSAC.2002.
806121

12. Tofte, M., Talpin, J.: Region-based memory managemen t. Inf. Comput. 132(2),
109–176 (1997). https://doi.org/10.1006/inco.1996.2613

13. Trott, C.R., et al.: Kokkos 3: programming model extensions for the exascale

era. IEEE Trans. Parallel Distrib. Syst. 33(4), 805–817 (2022). https://doi.org/

10.1109/TPDS.2021.3097283

14. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of the 16th A CM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 60–76. POPL ’89 (1989). https://doi.org/10.1145/75277.7528

15. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC — first experiences
with real-world applications. In: Kaklamanis, C., Papatheo dorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32820-6_85

16. Winskel, G.: The Formal Semantics of Programming Languages - An Introduction.
MIT Press, Foundation of computing series (1993)

https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/HIPS.2004.1299190
https://doi.org/10.1109/HIPS.2004.1299190
https://doi.org/10.1109/HIPS.2004.1299190
https://doi.org/10.1109/HIPS.2004.1299190
https://doi.org/10.1109/HIPS.2004.1299190
https://doi.org/10.1109/HIPS.2004.1299190
https://doi.org/10.1109/HIPS.2004.1299190
https://doi.org/10.1109/HIPS.2004.1299190
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1109/Correctness56720.2022.00010
https://doi.org/10.1109/Correctness56720.2022.00010
https://doi.org/10.1109/Correctness56720.2022.00010
https://doi.org/10.1109/Correctness56720.2022.00010
https://doi.org/10.1109/Correctness56720.2022.00010
https://doi.org/10.1109/Correctness56720.2022.00010
https://doi.org/10.1109/Correctness56720.2022.00010
https://doi.org/10.1109/Correctness56720.2022.00010
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://doi.org/10.1145/1837853.1693459
https://doi.org/10.1145/1837853.1693459
https://doi.org/10.1145/1837853.1693459
https://doi.org/10.1145/1837853.1693459
https://doi.org/10.1145/1837853.1693459
https://doi.org/10.1145/1837853.1693459
https://doi.org/10.1145/1837853.1693459
https://doi.org/10.1145/2517349.252271
https://doi.org/10.1145/2517349.252271
https://doi.org/10.1145/2517349.252271
https://doi.org/10.1145/2517349.252271
https://doi.org/10.1145/2517349.252271
https://doi.org/10.1145/2517349.252271
https://doi.org/10.1145/2517349.252271
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1145/75277.7528
https://doi.org/10.1145/75277.7528
https://doi.org/10.1145/75277.7528
https://doi.org/10.1145/75277.7528
https://doi.org/10.1145/75277.7528
https://doi.org/10.1145/75277.7528
https://doi.org/10.1145/75277.7528
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85

Evaluation of Speedup and Energy

with Multigrain Parallelizing Compiler

John Pickar(B) , Tohma Kawasumi , Hiroki Mikami, Keiji Kim ura ,
and Hironori Kasahara

Department of Computer Science and Engineering, Waseda University, Green

Computing Center, 27 Waseda-machi, Shinjuku-ku, Tokyo 162-0042, Japan
{pickar,tohma,hiroki}@kasahara.cs.waseda.ac.jp,

{keiji,kasahara}@waseda.jp

Abstract. As global computational demand continues to rise, mod-
ern multicore architectures play a pivotal role in achieving and pro-
viding optimal runtime and energy efficient computing solutions. How-
ever, optimizing for both performance and energy efficiency remains a

challenge. In addition, developing parallel code and optimizing for dif-
ferent architecture is often time consuming. The OSCAR (Optimally

Scheduled Advanced Multiprocessor) compiler, an automatic paralleliz-
ing source-to-source compiler, is able to leverage multigrain parallelism

to enhance multicore efficiency on a variety of architectures. This allows
it to reduce runtime and energy consumption by exploiting parallelism.
Furthermore, using data and control dependency analysis in addition

to scheduling features, it can apply cache optimization and data local-
ization techniques to further reduce energy consumption by improving

runtime. This paper evaluates the OSCAR compiler versus OpenMP in

the ability to reduce energy usage by reducing runtime of scientific bench-
marks from SPEC2000 and NAS Parallel Benchmarks suites. It will be

done on Intel Icelake-SP and AMD Zen-4 16-core processors. Results
showed OSCAR providing runtime and total energy improvements com-
pared to OpenMP. Benchmarks such as NAS’s CG demonstrated a 10.6x

performance increase and 80% energy savings compared to the sequen-
tial benc hmark on both systems. In comparison to OpenMP at varying
equivalent core count, OSCAR provided a 7% to 9% runtime improve-
ment with a 4% to 9% reduction in energy on both systems across bench-
marks. The cache optimization and data localization was shown to have
provided a 4% runtime improvement and 4% to 7% energy improvement
with OSCAR. This was driven by a reduction in L3 cache misses, trans-
lating to a runtime and energy improvement. This was achievable at
varying core configurations up to the max amount of cores available on
the systems.

Keywords: multicore · parallelizing compiler · OSCAR · multigrain ·

green computing · sustainable computing · energy consumption

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 34–49, 2025.
https://doi.org/10.1007/978-3-031-97492-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_4&domain=pdf
http://orcid.org/0009-0002-3691-3904
http://orcid.org/0009-0006-8112-4639
http://orcid.org/0000-0003-2325-4866
http://orcid.org/0000-0001-7984-756X
https://doi.org/10.1007/978-3-031-97492-2_4

Evaluation of Speedup and Energy with Multigrain Parallelizing Compiler 35

1 Introduction

There is a consistent need for computational power due to the global inter-
est in artificial intelligence, data processing, and general computing. Complex

computational tasks often require extended periods of time to execute, coupled

with significant associated energy costs. With the focus of Sustainable Comput-
ing, there is a significant emphasis on reducing total energy consumption while

improving execution times. Current hardware architectures makes use of multi-
core designs which in tegrate multiple processing elements (PE), or cores, within
a single package. Parallel computing allows for concurrent execution of these
PE, significantly increasing processing throughput and efficiency. It is known
that reducing runtime results in a reduction of total energy [12, 22]. Further-
more, Dynamic Voltage and Frequency Scaling (DVFS) can also be utilized to

reduce power. This paper will focus on reducing total energy through reducing
runtime with the OSCAR compiler.

Enabling parallelism and increasing performance in sequential and parallel
programs can be achieved with the OSCAR (Optimally Scheduled Advanced

Multiprocessor) compiler. It is an automatic parallelizing compiler capable of
parallelizing both C, C++, and Fortran programs. This is accomplished by gen-
erating sequential code for a specific number of threads, allowing the compiler
and the operating system to bind the threads to cores at runtime [8]. With

OSCAR’s toolset used to analyze and automatically parallelize programs, it also

allows for further optimizations such as cache optimization through data local-
ization. This allows for reducing cache misses [6, 10] which is important due to the

increasing gap between processor speed and memory latency [17]. The speedup

by reducing memory accesses allows for greater speedup resulting in improved
energy performance.

This paper will explain and evaluate the OSCAR compiler’s automatic multi-
grain parallelism and cache optimization techniques. We will observe how par-
allelizing and cache optimizations can improve runtime and reduce energy con-
sumption. It will also focus on the performance compared to O penMP at equiv-
alent core count. Previous papers using automatic parallelizing compilers have
demonstrated speedup on older architectures [10, 12]. However these previous
evaluations have only looked into performance and energy reduction from paral-
lelization compared to sequential or single threaded results; it did not at equiv-
alent c ore count. Furthermore, previous usage of the OSCAR compiler has been
in conjunction with DVFS [15] and was shown reduce power consumption using

idle power states [5]. In this case, the evaluation boards were modified to measure

the power of the processor chips directly. This paper will instead evaluate how

the OSCAR compiler affects runtime and energy without using DVFS, observing
energy used by the package, including last level cache and DRAM.

The systems to be evaluated were chosen due to their different cache in ter-
connect design with different memory access latencies [20]; they are an Intel
Icelake-SP processor as well as an AMD EPYC Z en-4 processor. Intel uses a
mesh network [13] while the AMD has an architecture that is split between core

complexes (CCXs) and communicates with an I/O die [18]. The evaluation will

36 J. Pickar et al.

be done by running scientific benchmarks from the NAS parallel benchmark suite

in addition to the SPEC benchmark suite.

2 The OSCAR Compiler

The OSCAR compiler is an automatic source-to-source parallelizing compiler. It
translates provided source code to an intermediary state, performs an analysis
and optimizations, then provides optimized source code in the original language
provided. Currently Fortran, C, and C++ are supported by the OSCAR Com-
piler [7]. It can perform fine-grain and coarse-grain parallelization by exploiting

loop level parallelism, instruction level parallelism, task based parallelism, and
more; this allows it to achieve multigrain parallelism [19]. In order to achieve

this automatic multigrain parallelism, the source-to-source compilation is split
into multiple steps: frontend, middle pass, and backend (Fig. 1).

Fig. 1. OSCAR’s compilation pip eline.

OSCAR’s frontend takes the provided source code and converts it into an

intermediate representation. This intermediate representation is the source code

broken into various blocks or macro-tasks. Each block or macro-task is a sequence

of code that is closely related and executed sequentially. An example of such
could be function calls, loops, or assignments [8]. From this state, the middle

pass will occur, analyzing the blocks for areas of parallelism and optimization. At
this time, the OSCAR compiler will attach a cost to the macro-tasks allowing
scheduling to take place [8]. Once the process is complete, the backend will
convert the macro-tasks with scheduling information back into the original source

language. The resulting source file will contain parallelized code for the number
of threads requested, ready to be compiled by any standard compiler (e.g. GNU
Compiler Collection, Intel Compiler, LLVM, etc.) [7]. The data localization and

cache optimizations performed by OSCAR will occur in the middle pass.

2.1 Macro-task Graph

OSCAR’s middle pass is where the majority of the analysis and processing

occurs. Once the OSCAR compiler splits the sequential code into macro-tasks,
control and data dependency analysis c an occur. Using earliest execution analy-
sis, OSCAR can represent and visualize the macro-tasks in a macro-task graph
[7]. This macro-task graph is constructed under the conditions that macro-tasks
must wait for data it is dependent on to become available in addition to waiting

until all prior control-dependencies have been evaluated. As a result, large blocks

Evaluation of Speedup and Energy with Multigrain Parallelizing Compiler 37

of codes such as functions or loops can be represented as a macro-task graph.
During this time, a cost is assigned to each macro-task. With t his information, a
further pass occurs to determine areas where parallelism and optimizations can
be applied.

In the macro-task graph seen in Fig. 2a, macro-task 6 cannot be executed

until data dependency 3 has completed. Similarly, 14 cannot execute until data

and control dependencies have been met. In this example, we can s ee that par-
allelism can be exploited starting at 1 and 3 as they have separate data depen-
dencies.

Fig. 2. Example macro-task graphs b y OSCAR.

Once the source code has been broken into macro-tasks and the correspond-
ing macro-task graphs, scheduling and parallelization can occur. OSCAR will
create a thread for each processor element (PE). The macro-tasks are then dis-
tributed among the processor elements evenly based on scheduling and cost.
OSCAR makes use of static and dynamic scheduling techniques for task-based

parallelization. In the case of no control dependencies, static scheduling is used.
The macro-task graph is not modified and data dependencies will be managed
by barrier spin locks between macro-tasks. As for dynamic scheduling, control

38 J. Pickar et al.

dependencies must be managed. In this case, the macro-task with a control
dependency and prior data dependencies may be copied to all processor elements
if cost permits s o they can be evaluated locally to prevent synchronization over-
head [19]. Loop based parallelization can also be applied if a loop has a static

number of iterations in addition to the individual loop iterations being indepen-
dent from other iterations. These cases allow for the loop to be segmented and
evenly distributed to the various available processor elements [6].

2.2 Cache Optimization and Data Localization

The OSCAR compiler can also apply cache optimization through data localiza-
tion after the macro-task graphs are generated. It does this using lo op-aligned
decomposition, loop level parallelism, and the ensuing data localization groups
[21]. These data localization groups are defined within specified cache limit sizes
to ensure data elements are close to the PE being utilized. Furthermore, i t keeps
the data localization groups consistent across a series of macro-tasks such as in
Fig. 3, reducing cache miss and improving cache coherency [6].

Fig. 3. OSCAR applying Loop Aligned Decomposition (LAD) on macro-tasks and

dividing them into Data Localization Groups (DLG) [7].

This optimization occurs when macro-tasks are directly connected to doall-
loops, reduction-loops, and sequential-loop type macro-tasks with data dep en-
dencies only from the proceeding macro-task. For Fig. 2b, this would be applied

to the portion of NAS Parallel Benchmark CG’s main loop. The groups are con-
structed to fit within the given cache size of a processing element, then they

Evaluation of Speedup and Energy with Multigrain Parallelizing Compiler 39

are then assigned to processor elements to be executed concurrently while main-
taining minimum synchronization from data sharing [6]. If the number of groups
exceeds the number of PE, multiple groups may be assigned to a specific PE.

2.3 Cache Data Distribution Using First Touch and Thread Binding

On modern computing systems and operating systems, there is a First Touch

Placement Policy that allocates the data page to the closest thread accessing

the page for the first time. This causes the first single thread or node to allocate
all the data, greatly increasing memory latency for threads and congestion for
the memory controller [9]. The OSCAR compiler allows for a First Touch policy

to manage initial data locality among the processor elements (PE). As memory

affinity is defined at initialization, OSCAR uses the threads it generates per PE

at runtime to access the data on the PE it is to be localized on before beginning

the main program. The threads are bound to the PE and do not migrate during
runtime. This allows OSCAR to place data on the correct PE before it begins
execution, minimizing memory accesses and memory controller congestion.

3 System Architecture

Two different x86-64 processors with different memory hierarchies are being

investigated in this paper. One is the Intel Xeon Gold 6326 (Icelak e) 16-core pro-
cessor and the other the AMD EPYC 9124 (Zen-4) 16-core processor (Table 1).

Table 1. System Information

System Cores (PE) Clock Boost L1D L2 L3 (Shared) Line Size

Intel 16 3.3 GHz 3.5 GHz 48 KiB 1.25 MiB 24 MiB 64 B

AMD 16 3.0 GHz 3.7 GHz 32 KiB 1.00 MiB 64 MiB 64 B

The Intel processor has an all-core frequency of 3.3 GHz with a turboboost
of 3.50 GHz. Each core has 1.5 MiB of L3 cache, which is shared among the 16

cores for a total of 24 MiB of shared L3. T he shared distributed L3 topology
is Intel’s mesh network which is a 2-dimension array of bi-directional half rings
forming a system-wide interconnected grid as seen in Fig 4a [11].

The AMD processor has an all-core frequency of 3.0 GHz with a boost of
3.7 GHz. There are 2 Core Complexes (CCX) on this processor which contain 8

cores each. In addition, each CCX contains 32 MiB shared distributed L3 Cache
which is connected to the other CCX through data and control fabrics on the
I/O die [18].

Due to AMD using multiple CCXs, there is no common shared L3 cache

that will always provide the same memory latency. As a result, workloads that

40 J. Pickar et al.

Fig. 4. Intel and AMD SoC [3, 13].

require heavy data sharing among cores would benefit from using Intel’s mesh

design due to having similar shared L3 latencies between cores [20].
For both processors hyperthreading is disabled meaning there were a total of

16 processing elements (PE) available. Furthermore, the all-core frequencies were

used for evaluation. The host systems were running Linux 5.15-generic Kernel
or later and using Ubuntu 22.04 LTS. The Intel machine and AMD machine had

236 GiB of DDR4-3200 and 378 GiB of DDR5-4800 RAM respectively. RAPL
(Running Average Power Limit) configured by Linux was used to make software
energy measurements [2]. The power domain of the entire package was used. The

perf profile was used t o monitor registers related to cache performance.

4 Benchmarks

For evaluation of the systems and OSCAR, scientific benchmarks were used. Two

different benchmark s uites were used for evaluation in this paper.
The first group was SPEC2000 floating-point suite where SWIM and ART

were evaluated. SWIM is a weather prediction program computing a shallow-
water model written in Fortran. AR T (Adaptive Resonance Theory 2) measures
neural network training performance and is written in C.

The second group is from the NAS parallel benchmark suite. The C program-
ming language version was used which was developed by the Real World Com-
puting Project and distributed by the HPCS lab of the University of Tsukuba [1].
Within the test suite BT, CG, and SP benchmarks were evaluated. The BT and

SP benchmarks were compiled with problem size B and solve s ynthetic systems
of nonlinear PDEs using either Block Tridiagonal (BT) or Scalar Pentadiagonal
(SP) [4]. CG was compiled with problem size C and solves the Cojugate Gra-
dient (CG) which estimates the smallest eigenvalue of a large sparse symmetric
positive-definite matrix [4].

Evaluation of Speedup and Energy with Multigrain Parallelizing Compiler 41

The source code of the programs were modified to take a RAPL energy

measurement immediately before and after the benc hmark’s timer start and
stop function calls in order to track energy consumption.

Three version of the benchmarks were created:

1. Sequential/OpenMP: The default provided benchmark. The SPEC suite

only provided sequential benchmarks while the NAS parallel benchmarks uti-
lized OpenMP. In the case for OpenMP, to get sequential performance the
number of threads was set to 1.

2. OSCAR: The Fortran or C source code for the program was passed to the

OSCAR compiler a nd the resulting source file was compiled with gfortran

or gcc.
3. OSCAR+CacheOpt: The same as OSCAR with the addition of cache opti-

mization and data localization strategies discussed in Sects. 2.2 and 2.3. For

the Cache Optimization strategy, the localized data-dependent groups where

configured to the L2 cache size on Intel and the L3 c ache size on AMD (using
parameters for size, associativity, line size, and shared cores).

When compiling the benchmarks, the gcc or gfortran flags used were -O3

and -march=native. The benchmarks were compiled as previously described

with no difference between binaries except for OSCAR and OSCAR+CacheOpt
having different cache parameters. Thread binding was configured to use spread,
distributing cores evenly on the system, as it provided the best results. This was
applied through OMP_PROC_BIND for OpenMP, or manually defined during thread
generation for OSCAR. The benchmarks were run 25 times and the median value
was for data analysis when summarized.

5 Performance Evaluation

Runtime is first looked at on both Intel and AMD systems. In Fig. 5 the speedup

of the best automatic parallelization performed by OSCAR is shown. It can be

observed that OSCAR is able to achieve superlinear speedup on SWIM for up

to 8PE. In addition, BT and CG also achieve scalable results from automatic

parallelization. These results can be attributed to OSCAR’s scheduling of the

macro-tasks, cache optimization, and data localization. However, ART and SP
shown saturation with the increase of additional PE. This is due to certain parts
of a program that require sequential execution and cannot be easily parallelized
with performance improvements due to additional required overhead [14].

5.1 Energy

The results can be further segmented looking at the normalized energy values.
In Fig. 6, we can see the corresponding energy results. For the benchmarks that
scale with additional PE (SWIM, BT, CG), the energy results show a minimum

reduction of 77% in energy at 16PE from parallelization. This is inline with the
analysis and calculation that optimizing for performance will result in reducing

42 J. Pickar et al.

Fig. 5. Relative speedup (higher is better) of OSCAR with cache optimizations to base

sequential execution (1PE). Data is normalized from values in Table 2.

energy usage [22]. For all three versions of the benchmark, we can see these

values present. Furthermore, we can see OSCAR outperforming OpenMP i n
both runtime and energy with the associated data in Table 2.

As previously mentioned, there is a point where the overhead of paralleliza-
tion makes it increasingly difficult to improve runtime by simply adding addi-
tional PE. With benchmarks ART and SP, the total energy begins to increase

after a certain number of PE are used and active. This crossover point is reflected

in the decay of runtime improvement. The benchmark can only be optimally par-
allelized to reduce energy to a certain PE amoun t, to which adding additional PE
results in CPU cycles being consumed for barrier spin locks. Although the CPU
cycles are wasted, Dynamic Frequency and Voltage Scaling (DVFS) or power
gating may help correct this trend without increasing runtime [16].

With automatic parallelization through means of OpenMP or OSCAR,
energy reduction is observed from the improvement of runtime. A minimum

energy reduction of 77% and runtime improvement of 8.41x was observed with
OSCAR at 16PE for scalable benchmarks SWIM, BT, and CG. Furthermore,

Evaluation of Speedup and Energy with Multigrain Parallelizing Compiler 43

Fig. 6. Energy comparison (lower is better) compared to base sequen tial execution
(1PE). Data is normalized.

Table 2. Benchmark execution time and total energy of O SCAR+CacheOpt (Median
of 25 runs).

Time (s) Energy (J)

Benchmark Sequential 1PE 4PE 8PE 12PE 16PE Sequential 1PE 4PE 8PE 12PE16PE

Intel SWIM 34.85 17.71 5.51 3.89 3.41 3.22 2803 1526 654 557 554 570

ART 25.44 23.96 10.8910.85 10.34 10.30 1884 1825 10161174 1293 1406

BT 235.57 227.93 63.4138.42 30.31 26.31 19424 1872969315139 4667 4442

CG 118.38 110.71 29.5017.21 13.27 11.09 9623 9018 31542296 2045 1894

SP 90.67 87.46 38.8530.57 28.91 27.59 7643 7342 30943739 3970 4251

AMD SWIM 18.43 9.84 3.93 2.26 1.83 1.41 1146 643 296 203 197 176

ART 18.00 16.17 7.30 6.97 6.70 6.27 1044 939 485 700 834 854

BT 185.64 177.34 56.8237.77 27.07 22.07 11313 1078341553057 2541 2327

CG 66.96 62.18 18.319.78 6.89 5.80 4164 3955 1495992 834 688

SP 73.69 71.02 34.2132.74 30.56 30.27 4578 4420 24862452 2555 2858

44 J. Pickar et al.

we can see OSCAR with cache optimization providing less energy compared to

both Op enMP and OSCAR for equivalent PE used.

5.2 Energy Reduction by OSCAR with Cache Optimizations
Compared with OpenMP

When observing energy reduction compared to OpenMP for an equivalent PE or
core count, we can see that OSCAR with Cache Optimizations is a ble to further
reduce the total energy consumed through improved runtime. In Fig. 7, we can

see a reduction of 5% or more on BT and CG and an increasing reduction on

SP for up to 30% on Intel and 15% on AMD. On BT and CG, the 5% or g reater
reduction is mainly due to cache optimizations from the data-localization-groups
being applied to the doall and dosum loops described in Sect. 2.2. As for SP, it

reaches a crossover where using over 4PE increases total energy consumption as
seen in Table 2. In these cases with saturation, OSCAR is able to provide less
overhead with impro ved runtime and energy compared to OpenMP.

Fig. 7. Energy reduction of OSCAR with Cache Optimization versus OpenMP for
equivalent PE.

Evaluation of Speedup and Energy with Multigrain Parallelizing Compiler 45

On both Intel and AMD architectures, runtime performance was observed to

match or exceed previous OSCAR ev aluations on older architectures from Intel
and AMD [10]. In addition, direct comparisons to OpenMP and the effects of
cache optimizations were not taken prior. Note that for SWIM and ART, only

sequential versions of the benchmark were available so they were not included
in the analysis and in Fig. 7.

Fig. 8. Scatter plots of energy, runtime, and L3 cache p erformance for NAS CG using
16PE.

5.3 Cache Performance and Energy in Parallelized Benchmarks

The benchmarks can be further evaluated to see the trends between cache per-
formance, runtime, and energy. As previously shown, using cache optimization

46 J. Pickar et al.

and data localization techniques provided improved runtime and energy. Look-
ing at CG with 16PE in Fig. 8, we can see distinct distributions between the

three different benchmark versions. These scatter plots show the relation of L3

cache performance and the corresponding runtime and energy data points. On

both Intel and AMD, OSCAR with cache optimization is providing better results
than OpenMP and OSCAR without cache optimizations. For Intel, there is a

4% runtime improvement in addition to a 4% reduction in energy used when

OSCAR+CacheOpt is compared with OSCAR. In additional to parallelization

providing a 80% energy improvement, cache optimization is driving an addi-
tional improvement in runtime, which is driving a proportional improvement in

energy. The difference of 0.3% L3 miss rate improvement is driving the reduction
in runtime and energy. On AMD we see a similar trend is observed. Notably it
achieves a 5% improvement in runtime with a 7% reduction in energy with a
0.5% L3 miss rate improvement. With these values we can see a portion of the
energy reduction in Figs. 6 and 7 is coming from cache optimization and data

localization. Similar trends were observ ed for other linear-scaling benchmarks at
16PE.

The difference in Intel and AMD’s network topologies is also noticeable in

the data, with AMD realizing greater energy reduction for cache optimization

in these conditions at maximum PE. This can be attributed to AMD’s SoC
due to the additional latency cost compared to Intel [20], especially for cross
CCX communication. On both Intel and AMD with different cache topologies,
OSCAR was cache optimizations shown to provide improve d L3 performance,
providing additional improvements to runtime and energy.

6 Conclusion

The OSCAR automatic parallelizing compiler is able to use multigrain paral-
lelism along with cache optimization and data allocation techniques to provide

both speedup and energy reduction on x86-64 architectures. Given an input
source code file, the OSCAR compile will analyze the control and data depen-
dencies, apply coarse grain task parallelism and optimizations, and generate

output code. This generated parallel code by the OSCAR compiler is a set of C
or Fortran sequential code for each processor core with data transfers and syn-
chronization management. This code can be taken by standard compilers (e.g.
GCC) and compiled for respective systems.

In this paper it was found that the generated code by OSCAR was able

to provide automatic parallelization, speedup, and power reduction of scientific

applications on Intel Xeon Icelake-SP and AMD EPYC Zen-4 architectures. It
showed that by reducing runtime, energy was able to reduced on for benchmarks
that scaled with additional PE. Benchmarks showed on average 4% to 9% energy

reduction compared to OpenMP for the same amount of PE. On NAS Paral-
lel Benchmark CG for 16PE, OSCAR achieved an increased relative speedup of
10.6x against 1PE on both Intel and AMD in comparison to 9.73x with OpenMP.
Furthermore, using cache optimization and data localization techniques yielded

Evaluation of Speedup and Energy with Multigrain Parallelizing Compiler 47

a L3 cache miss rate improvement of 0.2% to 0.5% which resulted in an addi-
tional energy reduction of 4% to 7% (42 J to 50 J) from improved runtime. When

observing different PE performance for OpenMP versus OSCAR for the NAS
Parallel Benchmarks, cache improvements yielded a range of 4% to 9% of energy
reduction achievable.

With optimal cache optimization techniques and data localization, cache per-
formance can have a notable impact on energy reduction in addition to runtime

improvements. Depending on the architecture’s network topology, systems with

higher memory latency are able to achieve greater energy reduction. It is shown

that using cache optimization and data localization on Intel and AMD multicore
systems yielded cache improvements resulting in energy reduction and improving
runtime on scientific benchmarks.

References

1. Real world computing project: Omni openmp compiler project. WebPage. http://

www.hpcs.cs.tsukuba.ac.jp/omni-compiler/. Accessed 07 M ar 2024
2. Running average power limit energy reporting. Tech. rep., In tel (November

2020). https://www.intel.com/content/www/us/en/developer/articles/technical/

software-security-guidance/advisory-guidance/running-average-power-limit-
energy-reporting.html

3. 4th gen amd epyc processor architecture white paper. T ech. rep. (May
2024). https://www.amd.com/system/files/documents/4th-gen-epyc-processor-
architecture-white-paper.pdf

4. Bailey, D., et al.: The NAS parallel benchmarks. Int. J . Supercomput. Appl. 5(3),
63–73 (1991). https://doi.org/10.1177/109434209100500306

5. Hirano, T., et al.: Evaluation of automatic power reduction with OSCAR compiler
on intel Haswell and arm cortex-a9 multicores. In: Brodman, J., Tu, P . (eds.) Lan-
guages and Compilers for Parallel Computing, pp. 239–252. Springer International
Publishing, Cham (2015)

6. Dietz, H.G. (ed.): LCPC 2001. LNCS, v ol. 2624. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-35767-X

7. Kasahara, H., et al.: Oscar parallelizing and power reducing compiler and API
for heterogeneous multicores : (invited paper). In: 2021 IEEE/ACM Programming
Environments for Heterogeneous Computing (PEHC), pp. 10–19 (2021). https://

doi.org/10.1109/PEHC54839.2021.00007

8. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J., Kasahara, H.:
OSCAR API for real-time low-power multicores and its performance on multi-
cores and SMP servers. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds.)
LCPC 2009. LNCS, vol. 5898, pp. 188–202. Springer, Heidelberg (2010). https://

doi.org/10.1007/978-3-642-13374-9_13

9. Li, Y., Abousamra, A., Melhem, R., Jones, A.K.: Compiler-assisted data distribu-
tion for chip multiprocessors. In: Proceedings of the 19th International Conference

on Parallel Architectures and Compilation Tec hniques. p. 501-512. PACT ’10, Asso-
ciation for Computing Machinery, New York, NY, USA (2010).https://doi.org/10.
1145/1854273.1854335

http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1007/3-540-35767-X
https://doi.org/10.1007/3-540-35767-X
https://doi.org/10.1007/3-540-35767-X
https://doi.org/10.1007/3-540-35767-X
https://doi.org/10.1007/3-540-35767-X
https://doi.org/10.1007/3-540-35767-X
https://doi.org/10.1007/3-540-35767-X
https://doi.org/10.1007/3-540-35767-X
https://doi.org/10.1007/3-540-35767-X
https://doi.org/10.1109/PEHC54839.2021.00007
https://doi.org/10.1109/PEHC54839.2021.00007
https://doi.org/10.1109/PEHC54839.2021.00007
https://doi.org/10.1109/PEHC54839.2021.00007
https://doi.org/10.1109/PEHC54839.2021.00007
https://doi.org/10.1109/PEHC54839.2021.00007
https://doi.org/10.1109/PEHC54839.2021.00007
https://doi.org/10.1109/PEHC54839.2021.00007
https://doi.org/10.1007/978-3-642-13374-9_13
https://doi.org/10.1007/978-3-642-13374-9_13
https://doi.org/10.1007/978-3-642-13374-9_13
https://doi.org/10.1007/978-3-642-13374-9_13
https://doi.org/10.1007/978-3-642-13374-9_13
https://doi.org/10.1007/978-3-642-13374-9_13
https://doi.org/10.1007/978-3-642-13374-9_13
https://doi.org/10.1007/978-3-642-13374-9_13
https://doi.org/10.1007/978-3-642-13374-9_13
https://doi.org/10.1007/978-3-642-13374-9_13
https://doi.org/10.1145/1854273.1854335
https://doi.org/10.1145/1854273.1854335
https://doi.org/10.1145/1854273.1854335
https://doi.org/10.1145/1854273.1854335
https://doi.org/10.1145/1854273.1854335
https://doi.org/10.1145/1854273.1854335
https://doi.org/10.1145/1854273.1854335

48 J. Pickar et al.

10. Magnussen, B.M., Kawasumi, T., Mikami, H., Kimura, K., Kasahara, H.: Perfor-
mance evaluation of OSCAR multi-target automatic parallelizing compiler on Intel,
AMD, Arm and RISC-V Multicores. In: Li, X., Chandrasekaran, S. (eds.) LCPC
2021. LNCS, vol. 13181, pp. 50–64. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99372-6_4

11. Mulnix, D., Kumar, A., Ould-ahmed-vall, E.: Intel Xeon processor scalable family

technical overview. Tech. rep., Intel (December 2022). https://www.intel.com/

content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-
technical-overview.html

12. Palkowski, M., Gruzewski, M.: Time and energy benefits of using automatic opti-
mization compilers for NPDP tasks. Electronics 12(17) (2023). https://doi.org/10.
3390/electronics12173579, https://www.mdpi.com/2079-9292/12/17/3579

13. Papazian, I.E.: New 3rd gen intel R© xeon R© scalable processor (codename: Ice lake-
sp). In: 2020 IEEE Hot Chips 32 Symposium (HCS), pp. 1–22 (2020). https://doi.
org/10.1109/HCS49909.2020.9220434, https://hc32.hotchips.org/assets/program/

conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-
final3.pdf

14. Poolla, C., Saxena, R.: On extending Amdahl’s law to learn computer performance.
Microprocess. Microsyst. 96, 104745 (2023)

15. Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K., Kasahara, H.:
Compiler control power saving scheme for multi core processors. In: Ayguadé, E.,
Baumgartner, G., Ramanujam, J ., Sadayappan, P. (eds.) Languages and Com-
pilers for Parallel Computing, pp. 362–376. Springer, Berlin Heidelberg, Berlin,
Heidelberg (2006)

16. Shrivastava, R., Nandivada, V.K.: Energy-efficient compilation of irregular task-
parallel loops. ACM Trans. Archit. Code Optim. 14(4) (nov 2017). https://doi.
org/10.1145/3136063

17. Talati, N., et al.: Prodigy: Improving the memory latency of data-indirect irregular
workloads using hardware-software co-design. In: 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), pp. 654–667 (2021).
https://doi.org/10.1109/HPCA51647.2021.00061

18. Troester, K., Bhargava, R.: AMD next generation “zen 4” core and 4th gen amd

epycTM 9004 serv er CPU. In: 2023 IEEE Hot Chips 35 Symposium (HCS), pp.
1–25 (2023). https://doi.org/10.1109/HCS59251.2023.10254726, https://hc2023.
hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_

20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
19. Umeda, D., Suzuki, T., Mikami, H., Kimura, K., Kasahara, H.: Multigrain par-

allelization for model-based design applications using the OSCAR compiler. In:
Shen, X., Mueller, F., Tuck, J. (eds.) LCPC 2015. LNCS, vol. 9519, pp. 125–139.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29778-1_8

20. Velten, M., Schöne, R., Ilsche, T., Hackenberg, D.: Memory performance of
amd epyc rome and intel cascade lake sp server processors. In: Proceedings
of the 2022 ACM/SPEC on International C onference on Performance Engi-
neering, pp. 165–175. ICPE ’22, Association for Computing Machinery, New
York, NY, USA (2022).https://doi.org/10.1145/3489525.3511689, https://doi.org/

10.1145/3489525.3511689

https://doi.org/10.1007/978-3-030-99372-6_4
https://doi.org/10.1007/978-3-030-99372-6_4
https://doi.org/10.1007/978-3-030-99372-6_4
https://doi.org/10.1007/978-3-030-99372-6_4
https://doi.org/10.1007/978-3-030-99372-6_4
https://doi.org/10.1007/978-3-030-99372-6_4
https://doi.org/10.1007/978-3-030-99372-6_4
https://doi.org/10.1007/978-3-030-99372-6_4
https://doi.org/10.1007/978-3-030-99372-6_4
https://doi.org/10.1007/978-3-030-99372-6_4
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://doi.org/10.3390/electronics12173579
https://doi.org/10.3390/electronics12173579
https://doi.org/10.3390/electronics12173579
https://doi.org/10.3390/electronics12173579
https://doi.org/10.3390/electronics12173579
https://doi.org/10.3390/electronics12173579
https://www.mdpi.com/2079-9292/12/17/3579
https://www.mdpi.com/2079-9292/12/17/3579
https://www.mdpi.com/2079-9292/12/17/3579
https://www.mdpi.com/2079-9292/12/17/3579
https://www.mdpi.com/2079-9292/12/17/3579
https://www.mdpi.com/2079-9292/12/17/3579
https://www.mdpi.com/2079-9292/12/17/3579
https://www.mdpi.com/2079-9292/12/17/3579
https://www.mdpi.com/2079-9292/12/17/3579
https://doi.org/10.1109/HCS49909.2020.9220434
https://doi.org/10.1109/HCS49909.2020.9220434
https://doi.org/10.1109/HCS49909.2020.9220434
https://doi.org/10.1109/HCS49909.2020.9220434
https://doi.org/10.1109/HCS49909.2020.9220434
https://doi.org/10.1109/HCS49909.2020.9220434
https://doi.org/10.1109/HCS49909.2020.9220434
https://doi.org/10.1109/HCS49909.2020.9220434
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://doi.org/10.1145/3136063
https://doi.org/10.1145/3136063
https://doi.org/10.1145/3136063
https://doi.org/10.1145/3136063
https://doi.org/10.1145/3136063
https://doi.org/10.1145/3136063
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/HCS59251.2023.10254726
https://doi.org/10.1109/HCS59251.2023.10254726
https://doi.org/10.1109/HCS59251.2023.10254726
https://doi.org/10.1109/HCS59251.2023.10254726
https://doi.org/10.1109/HCS59251.2023.10254726
https://doi.org/10.1109/HCS59251.2023.10254726
https://doi.org/10.1109/HCS59251.2023.10254726
https://doi.org/10.1109/HCS59251.2023.10254726
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://hc2023.hotchips.org/assets/program/conference/day1/CPU1/HC_Zen4_Epyc_Final_20230825%20-%20Embargoed%20until%20Aug%2029%202023.pdf
https://doi.org/10.1007/978-3-319-29778-1_8
https://doi.org/10.1007/978-3-319-29778-1_8
https://doi.org/10.1007/978-3-319-29778-1_8
https://doi.org/10.1007/978-3-319-29778-1_8
https://doi.org/10.1007/978-3-319-29778-1_8
https://doi.org/10.1007/978-3-319-29778-1_8
https://doi.org/10.1007/978-3-319-29778-1_8
https://doi.org/10.1007/978-3-319-29778-1_8
https://doi.org/10.1007/978-3-319-29778-1_8
https://doi.org/10.1007/978-3-319-29778-1_8
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689

Evaluation of Speedup and Energy with Multigrain Parallelizing Compiler 49

21. Yoshida, A., Koshizuka, K., Kasahara, H.: Data-localization for Fortran macro-
dataflow computation using partial static task assignment. In: Proceedings of the

10th International Conference on Sup ercomputing, pp. 61–68. ICS ’96, Association
for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/

237578.237586

22. Yuki, T., Rajopadhye, S.: Folklore confirmed: Compiling for speed $$=$$compiling

for energy. In: Cacaval, C., Montesinos, P. (eds.) Languages and Compilers for
Parallel Computing, pp. 169–184. Springer International Publishing, Cham (2014)

https://doi.org/10.1145/237578.237586
https://doi.org/10.1145/237578.237586
https://doi.org/10.1145/237578.237586
https://doi.org/10.1145/237578.237586
https://doi.org/10.1145/237578.237586
https://doi.org/10.1145/237578.237586
https://doi.org/10.1145/237578.237586

Concurrent Collections: An Overview

Kathleen Knobe1, Zoran Budimlić2, Robert J. Harrison3,
Mohammad Mahdi Javanmard3, a nd Louis-Noël Pouchet4(B)

1 Rice University, Houston, USA

2 Texas A&M University, Bryan, USA

3 IACS, Stony Brook University, Stony Brook, USA
4 Colorado State University, Fort Collins, USA

pouchet@colostate.edu

Keywords: Concurrent Collections · Dataflow · Distributed
Computing

Introduction

Parallel programming is essential to achieve high-performance, and numerous
works combined programming languages, runtime and compilers to help the

deployment of effective high-performance applications at scale. Many recent pro-
gramming models allow a specification of a task graph representing the appli-
cation to be created by the programmer. For example, the depends clause in
OpenMP 4.0 allows the programmers to create arbitrary dependences between
OpenMP tasks. Habanero Data Driven Tasks [21] and OCR Event Driven Tasks
and Events [1] provide similar capabilities as well. While these systems enable the

creation of task graphs, they exhibit varying degrees of sep aration of concerns,
or decoupling of program correctness from performance.

Concurrent Collections (CnC) is a parallel programming model, with an exe-
cution semantics that is influenced b y dynamic data flow, stream processing,
and tuple spaces [5]. CnC was developed in part to address the need for mak-
ing parallel programming accessible to non-expert developers. It relies on users
to specify explicitly the d ata and control dependences between tasks, in turn
allowing automating the generation [18] of high-performance parallel programs
for a variety of targets [7], from distributed computers to GPUs [10] to FP GAs
[9]. A CnC program has deterministic semantics: Any implementation of it that
follows the dependences specified in the CnC program will produce the same

outputs. This deterministic semantics, and the separation of concerns between

the domain experts in charge of describing the core application dependences,
and the tuning experts mapping this program to a particular hardware are the
primary characteristics that differentiate CnC from other parallel programming
models.

In this paper, we will discuss the fundamental concepts of CnC, its history,
and its achievements in terms of programmability and performance. We will
describ e several iterations of CnC implementations, including CnC execution
models on top of Java [3] and C++ [21, 23], as well as seve ral domain-specific

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 50–54, 2025.
https://doi.org/10.1007/978-3-031-97492-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-97492-2_5

Concurrent Collections: An Overview 51

uses of CnC, from general-purpose programming [2], GPGPU-centric [10, 18],
exascale-focused [14], to centered on large heterogeneous applications [15].

Concurrent Collections Programming Model

Concurrent Collections (CnC) is a programming model that ev olved out of
TStreams [12], a dataflow programming model designed for expressing paral-
lel computations as a network of typed, timestamped data streams.

CnC uses three core constructs: step collections (representing computations),
item collections (representing data and holding typed, immutable data items),
and control collections (governing execution flow). At runtime, the corresponding

dynamic instances—step instances, data items, and control tags—are generated,
each belonging to a static collection. Step and item instances are uniquely identi-
fied by a collection name and a tag, which is typically an integer tuple encoding

some useful information about the computation or data, such as position in
the iteration space. Data elements are inserted and retrieved using the put

(item, tag) and blocking get (tag) operations, ensuring determinism and
freedom from data races due to the single assignment semantics [2]. Step col-
lections may consume from or produce to item collections, or do both. Control
collections manage step instantiation via control relationships, where adding a
tag to a control collection enables (“prescribes”) step instances in associated step
collections.

Chandramowlishwaran et al. [7] showed that scientific CnC programs could

exhibit performance that is on par or exceeding the state of the art parallel
programming systems, which sparked a significant interest in the model.

The deterministic nature of CnC and its explicit handling of data and control
dependencies have inspired several extensions and i mprovements to the original
programming model. Grossman et al. [10] proposed extensions to allow creation

of GPU tasks, Imam [11] proposed a Python-driven CnC implementation that
allowed multi-language step implementations using Babel.

Chatterjee et al. [8] introduced TunedCnC, a declarative tuning framework

that extends the Concurrent Collections (CnC) model with two additional con-
structs: affinity groupings and distribution functions. Affinity groupings allow

computations to be organized into groups based on tags, p romoting data local-
ity, while distribution functions specify how computations and data are mapped
across available compute resources.

A. Sbirlea et al. [18] explored mapping CnC graphs onto heterogeneous
platforms to enhance performance and energy efficiency. To support this, they

extended the CnC model with tag functions and ranges. Tag functions enable

users to define relationships between step tags and the dynamic instances they
create or access, while ranges facilitate efficient bulk operations—such as reading
or writing groups of items and prescribing groups of steps.

D. Sbirlea et al. [19] examined the use of the CnC model in streaming appli-
cations by introducing Streaming Concurrent Collections (SCnC)—a restricted

version of the CnC programming model tailored for streaming execution. SCnC

52 K. Knobe et al.

includes a code generator and a runtime library designed to optimize pe rfor-
mance specifically for streaming workloads.

Milaković [15] introduced two novel extensions to the CnC model: Unified

CnC and Hierarchical CnC. The Unified CnC extension streamlines CnC graph

specification, enabling users to prescribe steps by simply adding data to a collec-
tion. The Hierarchical CnC extension allows users to organize data and computa-
tion hierarchically. With this hierarchy, the CnC runtime (or compiler) can group

multiple fine-grained steps into a single coarse-grained step, reducing the number
of tasks and accesses to concurrent data structures. Additionally, the hierarchy
helps with garbage collection by enabling collection at a coarse-grained level,
reducing the overhead of tracking references for fine-grained data.

Runtime Implementations

The original CnC implementation was developed at Intel [20], using C++ as
the step language and Intel TBB [16] as the underlying task execution model.
Due to the declarative and deterministic nature of CnC, this led to a relatively

straight forward runtime extension to allow CnC execution on distributed mem-
ory systems [20]. Vasilache et al. [22] discuss trade-offs for event-driven runtimes,
on top of which CnC can be implemented.

Budimlić et al. [4] Used Java as the step programming language, a nd the
Habanero Java [6] runtime as the underlying task execution mo del. Sbirlea et
al. [18] extended this implementation with a runtime that supports execution of
CPU, GPU, and FPGA steps.

Milaković [15] developed an efficient Hierarchical CnC runtime based on

Intel’s CnC C++ implementation, introducing the concept of micro-runtimes. A

micro-runtime groups multiple fine-grained steps into a higher-level step, com-
municating with the macro-runtime through high-level puts and gets. From the

macro-runtime’s perspective, each micro-runtime is simply a Hierarchical CnC

step. Like the macro-runtime, micro-runtimes have step and item collections,
where each item collection corresponds to a coarse-grained item. Micro-runtimes
translate fine-grained item accesses into coarse-grained ones. In his implementa-
tion, micro-runtimes sequentially execute their fine-grained steps, which, while
not a fundamental requirement, reduces parallelism and concurrency overhead
and promotes data reuse. Since fine-grained steps within the same micro-runtime
typically operate on shared data, sequential execution improves cache efficiency
by keeping common data in memory.

Compiler Support for CnC

The explicit nature of dependencies in CnC, and the explicit description in CnC

programs of the data items being read or written by task instances provide

a parallel program representation that is amenable to compiler optimization.
In particular, the use of tag functions to express the relation between dynamic

Concurrent Collections: An Overview 53

instances of tasks and the data they manipulate enables to d evelop new compiler
analyses targeting CnC programs.

Of the numerous works on compiler support for CnC programs, for exam-
ple Sbirlea et al. [17] introduce a new optimization framework for the Data-Flow

Graph Language (DFGL), a programming model based on CnC. This framework

uses a “dependence-first” approach to capture program semantics in polyhedral
representations, performs legality checks on DFGL programs and enables polyhe-
dral transformations, including automatic loop optimizations and parallel co de
generation. Performance experiments show that DFGL programs optimized by
this framework achieve up to 6.9x speedup over standard OpenMP implementa-
tions on multicore processors.

Kong et al. [13] introduce PIPES, an end-to-end programming framework

for CnC, which automatically generates Intel CnC C++ runtime code from

high-level textual description of a CnC graph. In particular, it performs poly-
hedral analysis of the input graph, enabling to restructure it automatically

for example by implementing polyhedral tiling to coarsen fine-grain tasks into

larger-grain ones automatically, reducing runtime overhead and improving per-
formance. PIPES automatically generates tuners for CnC, from the analysis of
the input graph, to improve further performance. It demonstrated the ability
to outperform reference high-performance implementations such as ScalaPack
using tuned CnC implementations [13].

Conclusions

The declarative and deterministic nature of CnC, coupled with its explicit data

and computation dependencies, has driven significant research in parallel and

distributed computing, leading to numerous extensions of the model and its
execution. The ability to express maximum implicit parallelism offers substan-
tial potential for further exploration, while the explicit dependencies provide

opportunities for advanced compiler optimizations. As a result, CnC continues
to b e a compelling platform for research in compiler design, runtime systems,
high-performance computing, and programming languages. Its ongoing relevance
underscores its value as a versatile and powerful model for addressing complex
computational challenges.

References

1. Open Community Runtime. https://xstackwiki.modelado.org/OCR

2. Budimlić, Z., Burke, M., et al.: Concurren t Collections. Scientific Programming
(2010)

3. Budimlić, Z., Chandramowlishwaran, A., Knobe, K., Lowney, G., Sarkar, V., Treg-
giari, L.: Declarative aspects of memory management in the concurrent collections
parallel programming model. In: Workshop on Declarative Aspects of Multicore
Programming (DAMP) (2009)

https://xstackwiki.modelado.org/OCR
https://xstackwiki.modelado.org/OCR
https://xstackwiki.modelado.org/OCR
https://xstackwiki.modelado.org/OCR
https://xstackwiki.modelado.org/OCR

54 K. Knobe et al.

4. Budimlić, Z., Chandramowlishwaran, A., Knobe, K., Lowney, G., Sarkar, V., Treg-
giari, L.: Multi-core Implementations of the Concurrent Collections Programming

Model. In: I nternational Conference on Principles and Practice of Programming in
Java (CPC) (2009)

5. Burke, M.G., Knobe, K., Newton, R., Sarkar, V.: Concurrent Collections Program-
ming Model. Encyclopedia of Parallel Computing (2011)

6. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-Java: the New Adventures of
Old X10. In: International Conference on the Principles and Practice of Program-
ming in Java (PPPJ) (2011)

7. Chandramowlishwaran, A., Knobe, K., Vuduc, R.: Performance evaluation of con-
current collections on high-performance multicore computing systems. In: IEEE

In ternational Symposium on Parallel and Distributed Processing (IPDPS) (2010)
8. Chatterjee, S., Vrvilo, N., Budimlić, Z., Knobe, K., Sarkar, V.: Declarative tuning

for locality in parallel programs. In: International Conference on Parallel Processing
(ICPP) (2016)

9. Cong, J., Gururaj, K., Zhang, P., Zou, Y.: Task-level data model for hardware

synthesis b ased on concurrent collections. J. Electr. Comput. Eng. (2012)
10. Grossman, M., Sbîrlea, A., Budimlić, Z., Sarkar, V.: CnC-CUDA: declarative pro-

gramming for GPUs. In: International Workshop on Languages and Compilers for
Parallel Computing (LCPC) (2010)

11. Imam, S., Sarkar, V.: CnC-Python: multicore programming with high productivity.
In: USENIX Workshop on Hot Topics in Parallelism (HotPar) (2012)

12. Knobe, K., Offner, C.: Tstreams: how to write a parallel program. Hewlett P ackard
Technical Report (2004)

13. Kong, M., Pouchet, L.N., Sadayappan, P., Sarkar, V.: Pipes: a language and com-
piler for task-based programming on distributed-memory clusters. In: SC’16: Pro-
ceedings of the I nternational Conference for High Performance Computing, Net-
working, Storage and Analysis, pp. 456–467. IEEE (2016)

14. Madsen, T.G., et al.: The open community runtime: a runtime system for extreme

scale computing. In: IEEE High Performance Extreme Computing Conference
(HPEC) (2016)

15. Milaković, S.: Compiler and Runtime Optimization of Computational Kernels for
Irregular Applications. Ph.D. thesis, Rice University (2023)

16. Reinders, J.: Intel Threading Building Bloc ks. O’Reilly Media (2007)
17. Sbîrlea, A., Shirako, J., Pouchet, L.N., Sarkar, V.: Polyhedral optimizations for a

data-flow graph language. In: Languages and Compilers for Parallel Computing
(2016)

18. Sbîrlea, A., Zou, Y., Budimlić, Z., Cong, J., Sarkar, V.: Mapping a Data-Flow Pro-
gramming Mo del onto Heterogeneous Platforms. ACM SIGPLAN Notices (2012)

19. Sbirlea, D., Shirako, J., Newton, R., Sarkar, V.: SCnC: efficient unification of
streaming with dynamic task parallelism. In: Workshop on Data-Flow Execution
Models for Extreme Scale Computing (DFM) (2011)

20. Schlimbach, F., Brodman, J.C., Knobe, K.: Concurrent collections on distributed

memory theory put into practice. In: Euromicro International C onference on Par-
allel, Distributed, and Network-Based Processing (PDP) (2013)

21. Taşırlar, S., Sarkar, V.: Data-driven tasks and their implementation. In: Interna-
tional Conference on Parallel Processing (ICPP) (2011)

22. Vasilache, N., et al.: A tale of three run times. arXiv preprint arXiv:1409.1914 (2014)
23. Vrvilo, N.: Enhanced Data and Task Abstractions for Extreme-scale Runtime Sys-

tems. Ph.D. thesis, Rice University (2017). https://habanero.rice.edu/vrvilo-phd

http://arxiv.org/abs/1409.1914
https://habanero.rice.edu/vrvilo-phd
https://habanero.rice.edu/vrvilo-phd
https://habanero.rice.edu/vrvilo-phd
https://habanero.rice.edu/vrvilo-phd
https://habanero.rice.edu/vrvilo-phd
https://habanero.rice.edu/vrvilo-phd

Hidden Assumptions in Static Verification

of Data-race Free GPU Programs

Tiago Cogumbreiro1(B) and Julien Lange
2

1 University of Massachusetts Boston, Boston, USA

tiago.cogumbreiro@umb.edu
2 Royal Holloway, Univ ersity of London, London, UK

julien.lange@rhul.ac.uk

Abstract. GPUs are massively parallel devices that promise a great
return of investment at a cost: GPUs are notably difficult to get right.
We discuss a static analysis tool for GPU programs, called Faial, that can

detect data-races and data-race freedom. We studied a dataset of 191

data-race free programs and found that 98% needs spe cific thread con-
figuration to be analyzable, and that 27% needs user-provided assertions
to be analyzable. We also report that Faial was able to find data-races
in at least 92% of the kernels with missing assumptions.

1 Introduction

For the last 20 years, Vivek Sarkar has been studying the problem of a na-
lyzing a data-races in parallel programs both statically [6, 29– 32] and dynam-
ically [8, 12, 17, 27, 28, 33]. A data-race is a bug characterized by two unsynchro-
nized memory accesses targeting the same location by different threads, where

at least one access is a store. This paper focuses on data-races that arise in the

context of GPU programs (also called kernels). GPUs have been widely success-
ful in prope lling the scientific advancement of a series of research fields, such as
Artificial Intelligence, Machine Learning, molecular modeling, systems biology,
and medical imaging.

Data-race detection is a program verification technique that proves the exis-
tence of a data-race in a possible run of a program. The most common approach

to detect data-races is with dynamic analysis, by monitoring the execution of the
program to find data-races. Many dynamic analysis techniques have been pro-
posed [13, 16, 18, 23, 25, 35, 36]. However, since the runtime overhead of dynamic

analysis is of 10× up to 1,000× and require the program’s input, dynamic anal-
ysis is more applicable to testing. Symbolic execution and model checking can

be used to detect data-races without needing the program’s input, however the
overheads can be even higher due to the state explosion problem [21, 22, 26].

Data-races can also be detected statically, thus sidestepping the runtime over-
heads. Data-race freedom (DRF) detectors for GPU programs [4, 5, 9, 10, 19, 20]
can guarantee that a program is free from data-races, in the analysis of GPU

programs. When a DRF detector is unable to prove that a program is DRF,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 55–63, 2025.
https://doi.org/10.1007/978-3-031-97492-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_6&domain=pdf
http://orcid.org/0000-0002-3209-9258
http://orcid.org/0000-0001-9697-1378
https://doi.org/10.1007/978-3-031-97492-2_6

56 T. Cogumbreiro and J. Lange

Fig. 1. A simple G PU program.

it generates an alarm that represents a potential data-race, i.e., alarms may be

spurious. Such techniques can be used to find data-races, by manually validating

the alarms. Yet, since these tools are unable to guarantee that the alarms are

true, we do not consider this family of tools to be data-race detectors. T o the
best of our knowledge, and excluding symbolic execution and model checking
approaches, Yuki et al. were among the first to introduce a static race detec-
tor [34], for X10 programs. Chatarasi et al. proposed the first static race detec-
tor for OpenMP and openACC [7], Gorogiannis et al. introduce the first static

race detector for multithreaded programs [14], and Liew et al. introduce the first
static race detector for GPU programs [24].

In this paper we evaluate Faial [24], a data-race and DRF detector for GPU

programs. We investigate how different features of the analysis affect DRF detec-
tion in a dataset that only contains data-race free kernels. We also investigate
whether the tool can report data-races when it lacks information to prove DRF.

The outline of this paper is as follows. Section 2 gives some background by

introducing GPU programming as well as discussing implicit assumptions t hat
are needed to prove DRF. Section 3 introduces and tests our research q uestions.
Finally, Sect. 4 summarizes our findings.

2 Background

In this section, we give a quick background on GPU programming. We then show

that even trivial GPU programs include multiple implicit assumptions.

2.1 GPU Programming

SAXPY (Single-Precision A · X Plus Y) is a classic example that showcases the

kind of numeric applications that run on GPU devices. Given two vectors of
floating points X and Y and a scalar A the program updates vector Y such

that Y [i] stores the result of A ·X[i] + Y [i] for each element i. A SAXPY oper-
ation can be implemented as a GPU program in Fig. 1. In this paper we use the

CUDA Application Programming Interface (API); the same concepts apply to

other GPU programming models. A GPU executes function saxpy for a certain

number of threads arranged in groups. Each group of threads is called a block.
The threads of a block are logically arranged in a 3-D space, each thread is
uniquely identified by a 3D point accessible with variable threadIdx. The set of
all blocks is also logically arranged in a 3-D space, each block is uniquely identi-
fied with a 3-D point accessible with variable blockIdx. The number of threads

Hidden Assumptions in Static Verification of Data-race Free GPU Programs 57

per block, i.e., the block layout, is accessible in variable blockDim. The number

of blocks in the system are given by variable gridDim. A GPU program runs a

copy of function saxpy per thread in parallel, instantiating variables threadIdx
and blockIdx for each thread. Variable i represents a unique thread across all
groups, since it projects the x -component of variables blockIdx with threadIdx

onto a linear space. A thread configuration is defined as the number of blocks
and the number of threads per block.

When a kernel is data-race free only under certain assumptions we call that
kernel partially data-race free. For instance, the example in Fig. 1, taken from a

tutorial on CUDA programming [15], is partially data-race free. Next, we show

two assumptions that render Fig. 1 partially data-race free: thread configura-
tions, and grid-level synchronization.

Ranging Over All Thread Configurations. The statement that variable i

is unique thread across all groups only holds when there is only one dimension

in the y and z axis. Hence, a data-race exists between thread threadIdx =
{x = 0, y = 1, z = 1} and threadIdx = {x = 0, y = 0, z = 0} both from

block blockIdx = {x = 0, y = 0, z = 0} for a block blockDim = {x = 1, y =
2, z = 2}, i.e., 2 × 2 threads in the y-z axis. The data-race occurs because the

projection in variable i assumes t hat all threads are arranged in dimension x,
yet a data-race can occur if there are threads in dimensions y and z. We can add
an assertion to make this fact explicit:

__assume(blockDim.y == 1 && blockDim.z == 1);

Grid-Level Synchronization. The distinction between block-level and grid-
level analysis is important to the analysis, because different kinds of mem-
ory can be shared at different levels, and also synchronization mechanisms are

available at different levels. If we consider data-races across different blocks,
then another data-race is possible. For instance, between thread threadIdx =
{x = 0, y = 0, z = 0} of block blockIdx = {x = 0, y = 0, z = 0} and

thread threadIdx = { x = 0, y = 0, z = 0} of block blockIdx = {x = 0, y =
1, z = 1}. We can add an assertion to make the data-race freedom assumption
explicit: __assume(gridDim.y == 1 && gridDim.z == 1);

We list the kernel with both user-provided assertions that are n eeded to prove
data-race freedom in Fig. 2.

3 Evaluation

Faial is the only tool capable of data-race and data-race-freedom detection. Given

a data-set of kernels identified as data-race free, we pose two research questions:

RQ1: Which analysis features affect partial data-race freedom? We select differ-
ent features and measure how many kernels cannot be analyzed to understand
the impact each feature has in this dataset.

58 T. Cogumbreiro and J. Lange

Fig. 2. A simple example with user-pro vided assumptions.

RQ2: Can static data-race detection help with missing assumptions? In the con-
text of this experiment, racy kernel indicate missing assumptions. Since Faial

is not guaranteed to find every possible data-race, w e want to test if we can
use Faial to detect data-races in kernels with missing assumptions.

Both research questions consider 5 experiments. Each experiment runs Faial on

the same 191 kernels with different analysis settings. The tool c an report that
the kernel is data-race free, racy, or timeout.

Data Selection. The dataset we use is taken from a benchmark suite o f GPU
kernels [2]. The dataset is well studied as it has been used in multiple published

papers on static analysis of data-races in GPU kernels [2, 9, 10, 24]. The dataset
consists of CUDA kernels from 4 benchmark suites: NVIDIA GPU Comput-
ing SDK v2.0 (8 kernels), NVIDIA GPU Computing SDK v5.0 (165 kernels),
Microsoft C++ AMP Sample Projects (20 kernels), gpgpu-sim benchmarks [1]
(33 kernels). Every kernel is annotated with verification-specific conditions: a

thread configuration and optionally user-provided assumptions.
We pick 191 kernels that are deemed data-race free by Faial. Some ker-

nels include user-provided assertions created by the authors of the dataset [2].
Most commonly, the user-provided assertions are stating that a certain variable

has fixed value, for instance that the height of a matrix is of some arbitrary

size, say 512. Importantly, the user-provided assertions are not constraining the
thread configurations, e.g., like we did in Fig. 2.

3.1 RQ1: Which Analysis Features Affect P artial Data-Race

Freedom?

Table 1 lists the 5 experiments that were performed according to the output of
the analysis, data-race free, racy, or timeout.

Discussion. Experiment 1 is our baseline, since all kernels can be checked as
data-race free, yet note that grid-level analysis is not performed. In experiment 2,
we enable grid-level analysis and note that Fa ial is unable to analyze 5 kernels.
Faial delegates a step of data-race freedom analysis (index equality) to the Z3 [11]
Satisfiability Modulo Theories (SMT) solver. We are able to verify all kernels
by setting the SMT solver’s theory to AUFLIA, which assumes closed formulas of

Hidden Assumptions in Static Verification of Data-race Free GPU Programs 59

Table 1. Column Id holds an identifier of the experiment. Column Block states whether
block-level synchronization is checked. Column Grid states whether grid-level synchro-
nization is checked. Column Assert states whether user-provided assertions are used.
Column FixThr states whether a fixed thread configuration is used. Column DRF counts
the kernels identified as data-race free. Column Racy counts the kernels identified as
racy. Column Unk counts the kernels where the analysis is unable to detect data-race
freedom nor data-races. Column T/O counts the kernels where the analysis timed out.
We include the percentage of kernels over the total number of kernels under analysis.

Id Block Grid Assert FixThr DRF (%) Racy (%) Unk (%) T/O (%)

1 Y N Y Y 191 100% 0 0% 0 0% 0 0%

2 Y Y Y Y 186 97% 0 0% 0 0% 5 3%

3 Y N N Y 139 73% 49 26% 3 2% 0 0%

4 Y N Y N 3 2% 173 91% 15 8% 0 0%

5 Y Y N N 2 1% 173 91% 13 7% 3 2%

linear integer arithmetic extended with free sort and function symbols. In exper-
iment 3, we disable user-provided assertions. Only 26% of the kernels require
user-provided annotations to prove data-race freedom.

In experiment 4, we range over all possible thread configurations, rather than

using a specific thread configuration. Almost every kernel under analysis (98%)
expects a specific thread configuration. Faial would be able to analyze many more

kernels fully automatically if it could extract the thread c onfiguration present
in the kernel launching codes. Bardsley et al. have explored a dynamic analysis
technique that extracts the runtime parameters of kernel launches [3].

In experiment 5, we enable grid-level analysis, disable user-provided asser-
tions, and range over all possible thread configurations. We find that there are

only 2 kernels that are fully data-race free, regardless of the thread configura-
tion and without requiring any user assertions. In one kernel, the only memory

accesses are atomics that do not introduce data-races. Atomics are supported by

Faial. In the other kernel, the only write access is a benign data-race ignored by
Faial. Benign data-races occur when both threads write the same value. Benign
data-races are not considered errors. Faial can flag benign data-races as errors if
the user chooses.

3.2 RQ2: Can Data-Race Detection Help w ith Missing

Assumptions?

In this research question we examine kernels that are not considered data-race

free by Faial, so either racy, unknown, or have a timeout. We assess whether
our tool can detect data-races when there are missing assumptions, e.g., absent
thread configuration.

Discussion. The results in Table 2 show that the vast majority of kernels (91%)
with missing assumptions can be detected by Faial. In our experience, having

60 T. Cogumbreiro and J. Lange

Table 2. Column Id holds an identifier of the experiment. Column Block states whether
block-level synchronization is checked. Column Grid states whether grid-level synchro-
nization is checked. Column Assert states whether user-provided assertions are used.
Column FixThr states whether a fixed thread configuration is used. Column Racy/Non-
DRF gives the proportion of nu mber of kernels with data-races detected versus the
total number of kernels that are not data-race free. Column % gives the percentage
of Racy/Non-DRF.

Id Block Grid Assert FixThr Racy/Non-DRF %

3 Y N N Y 49/52 94%

4 Y N Y N 173/188 92%

5 Y Y N N 173/189 92%

a static data-race detector has been quite effective to figuring out the correct
analysis settings. In contrast, when relying on the alarms of a data-race-freedom

detector, there is always uncertainty whether there is an actual data-race or a
spurious one.

3.3 Bugs F ound

In the course of writing this paper, we discovered bugs in the dataset and in Faial.
We added assumptions and changed the thread configurations of 4 kernels, since

these triggered data-races when grid-level analysis was enabled. In 3 kernels we

had to reduce the level of parallelism, by decreasing the number of thread blocks.
In 1 kernels, we added a user-provided assumption, a constraint of a template

parameter that was mentioned as a source comment, yet absent. We excluded
6 kernels from our evaluation that were being considered fully data-race free
by Faial, although they are not. Two C++ features are currently unsupported
by Faial: array addresses being incremented in a loop1 (affected 3 kernels), and

references as function parameters2 (affected 3 kernels). Since it is quite rare for
a kernel to be fully data-race free, experiment 5 proved as an effectiv e sanity
check to exercise the correctness of Faial.

4 Conclusion

In this paper we measured the effect of multiple analysis features when detect-
ing data-race freedom statically, in a dataset of 191 data-race free kernels. We

found that 98% of the kernels needed a specific thread configuration to be ana-
lyzable and that only 27% of the kernels needed user-provided assertions. These
results suggest that to enable a fully automatic static analysis, these tools need
to be able to infer valid thread configurations. We also showed that the static

1 https://gitlab.com/umb-svl/faial/-/issues/117.
2 https://gitlab.com/umb-svl/faial/-/issues/113.

https://gitlab.com/umb-svl/faial/-/issues/117
https://gitlab.com/umb-svl/faial/-/issues/117
https://gitlab.com/umb-svl/faial/-/issues/117
https://gitlab.com/umb-svl/faial/-/issues/117
https://gitlab.com/umb-svl/faial/-/issues/117
https://gitlab.com/umb-svl/faial/-/issues/117
https://gitlab.com/umb-svl/faial/-/issues/117
https://gitlab.com/umb-svl/faial/-/issues/117
https://gitlab.com/umb-svl/faial/-/issues/113
https://gitlab.com/umb-svl/faial/-/issues/113
https://gitlab.com/umb-svl/faial/-/issues/113
https://gitlab.com/umb-svl/faial/-/issues/113
https://gitlab.com/umb-svl/faial/-/issues/113
https://gitlab.com/umb-svl/faial/-/issues/113
https://gitlab.com/umb-svl/faial/-/issues/113
https://gitlab.com/umb-svl/faial/-/issues/113

Hidden Assumptions in Static Verification of Data-race Free GPU Programs 61

race detection of Faial was able to find data-races in at least 92% of the kernels
studied. The static race detector also helped us identify incorrect thread configu-
rations and missing user-provided assumptions in 4 kernels. Finally, we identified

two areas of improvement for Faial: 6 kernels were excluded from the evaluation

due to limitations of the tool (arrays being updated in loops and references as
function parameters), and setting Faial’s default SMT theory to AUFLIA fixed 5

timeouts.

Acknowledgments. This material is based up on work supported by the National
Science Foundation under Grant No. 2204986. We thank Francis Alcos, Gregory Blike,
Ayden Diel, Samyak Gangwal, Austin Guiney, Ramsey Harrison, Paul Maynard, Udaya
Sathiyamoorth, and Hannah Zicarelli for their contributions to Faial.

References

1. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing

CUDA workloads using a detailed GPU sim ulator. In: Proceedings of ISPASS, pp.
163–174. IEEE, Piscataway (2009). https://doi.org/10.1109/ISPASS.2009.4919648

2. Bardsley, E., et al.: Engineering a static verification tool for GPU kernels. In: Biere,
A., Bloem, R . (eds.) CAV 2014. LNCS, vol. 8559, pp. 226–242. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9_15

3. Bardsley, E., Donaldson, A.F., Wickerson, J.: KernelInterceptor: automating GPU

kernel verification by intercepting kernels and their parameters. I n: Proceedings
of IWOCL, pp. 1–5. ACM, New York (2014). https://doi.org/10.1145/2664666.
2664673

4. Betts, A., et al.: The design and implementation of a verification technique for
GPU kernels. Trans. Program. Lang. Syst. 37(3), 1–49 (2015). https://doi.org/10.
1145/2743017

5. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a

verifier for GPU kernels. I n: Proceedings of OOPSLA, pp. 113–132. ACM, New
York (2012). https://doi.org/10.1145/2384616.2384625

6. Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral model
for SPMD programs and its use in static data race detection. In: Proceedings of
LCPC. LNCS, vol. 10136, pp. 106–120. Springer, Cham (2016). https://doi.org/

10.1007/978-3-319-52709-3_10

7. Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral model
for SPMD programs and its u se in static data race detection. In: Proceedings of
LCPC’16, pp. 106–120. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-319-52709-3_10

8. Choi, J., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.: Efficient
and precise datarace detection for multithreaded o bject-oriented programs. In:
Proceedings of PLDI, pp. 258–269. ACM (2002). https://doi.org/10.1145/512529.
512560

9. Cogumbreiro, T., Lange, J., Liew Zhen Rong, D., Zicarelli, H.: Memory access
protocols: Certified data-race freedom for GPU kernels. FMSD (2023). https://

doi.org/10.1007/s10703-023-00415-0

https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1145/512529.512560
https://doi.org/10.1145/512529.512560
https://doi.org/10.1145/512529.512560
https://doi.org/10.1145/512529.512560
https://doi.org/10.1145/512529.512560
https://doi.org/10.1145/512529.512560
https://doi.org/10.1145/512529.512560
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1007/s10703-023-00415-0
https://doi.org/10.1007/s10703-023-00415-0

62 T. Cogumbreiro and J. Lange

10. Cogumbreiro, T., Lange, J., Rong, D.L.Z., Zicarelli, H.: Checking data-race freedom

of GPU kernels, compositionally. In: Proceedings of CAV. LNCS, vol. 12759, pp.
403–426. ACM, New York (2021). https://doi.org/10.1007/978-3-030-81685-8_19

11. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: P roceedings of TACAS,
pp. 337–340. Springer, Heidelberg (2008)

12. Dimitrov, D.K., Vechev, M.T., Sarkar, V.: Race detection in two dimensions. A CM
Trans. Parallel Comput. 4(4), 1–22 (2018). https://doi.org/10.1145/3264618

13. Eizenberg, A., Peng, Y., Pigli, T., Mansky, W., Devietti, J.: BARRACUDA:
binary-level analysis of runtime RAces in CUDA programs. In: Proceedings of
PLDI, pp. 126–140. ACM, New York (2017). https://doi.org/10.1145/3062341.
3062342

14. Gorogiannis, N., O’Hearn, P.W., Sergey, I.: A true positives theorem for a static

race detector. Proc. ACM Program. Lang. 3(POPL), 1–29 (2019). https://doi.org/

10.1145/3290370

15. Harris, M.: An easy introduction to CUDA C and C++ (2012). https://developer.
nvidia.com/blog/easy-introduction-cuda-c-and-c/. Accessed 9 July 2024

16. Holey, A., Mekkat, V., Zhai, A.: HAccRG: hardware-accelerated data race detection

in GPUs. In: Proceedings of ICPP, pp. 60–69. IEEE, Piscataway (2013). https://

doi.org/10.1109/ICPP.2013.15

17. Jin, F., Yu, L., Cogumbreiro, T., Shirako, J., Sarkar, V.: Dynamic determinacy race

detection for task-parallel programs with p romises. In: Proceedings of ECOOP.
LIPIcs, vol. 263, pp. 1–30. Schloss Dagstuhl, Dagstuhl (2023). https://doi.org/10.
4230/LIPIcs.ECOOP.2023.13

18. Kamath, A.K., George, A.A., Basu, A.: ScoRD: a scoped race detector for GPUs.
In: Proceedings of ISCA, pp. 1036–1049. IEEE, Piscataway (2020). https://doi.
org/10.1109/ISCA45697.2020.00088

19. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: Proceedings of FSE, pp. 187–196. ACM, New York (2010). https://doi.
org/10.1145/1882291.1882320

20. Li, G., Gopalakrishnan, G.: Parameterized verification of GPU kernel programs.
In: Proceedings of IPDPSW, pp. 2450–2459. IEEE, Piscataway (2012). https://

doi.org/10.1109/IPDPSW.2012.302

21. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: Proceedings of PPoPP,
vol. 47, pp. 215–224. ACM, New York (2012). https://doi.org/10.1145/2370036.
2145844

22. Li, P., Li, G., Gopalakrishnan, G.: Practical symbolic race checking of GPU pro-
grams. In: Proceedings of SC, pp. 179–190. IEEE, Piscataway (2014). https://doi.
org/10.1109/SC.2014.20

23. Li, P., et al.: LD: low-overhead GPU race detection without access monitoring.
Trans. Arch. Code Optim. 14(1), 1–25 (2017). https://doi.org/10.1145/3046678

24. Liew, D., Cogumbreiro, T., Lange, J.: Sound and partially-complete static analysis
of data-races in GPU programs. Proc. ACM Program. Lang. 8(OOPSLA2) (2024).
https://doi.org/10.1145/3689797

25. Peng, Y., Grover, V., Devietti, J.: CURD: a dynamic CUDA race detector. In:
Proceedings of PLDI, pp. 390–403. ACM, New York (2018). https://doi.org/10.
1145/3192366.3192368

26. Pereira, P., et al.: Verifying CUDA programs using SMT-based context-bounded

model checking. In: Pro ceedings of SAC, pp. 1648–1653. ACM, New York (2016).
https://doi.org/10.1145/2851613.2851830

https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1145/3264618
https://doi.org/10.1145/3264618
https://doi.org/10.1145/3264618
https://doi.org/10.1145/3264618
https://doi.org/10.1145/3264618
https://doi.org/10.1145/3264618
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/3290370
https://doi.org/10.1145/3290370
https://doi.org/10.1145/3290370
https://doi.org/10.1145/3290370
https://doi.org/10.1145/3290370
https://doi.org/10.1145/3290370
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1145/3046678
https://doi.org/10.1145/3046678
https://doi.org/10.1145/3046678
https://doi.org/10.1145/3046678
https://doi.org/10.1145/3046678
https://doi.org/10.1145/3046678
https://doi.org/10.1145/3689797
https://doi.org/10.1145/3689797
https://doi.org/10.1145/3689797
https://doi.org/10.1145/3689797
https://doi.org/10.1145/3689797
https://doi.org/10.1145/3689797
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1145/2851613.2851830

Hidden Assumptions in Static Verification of Data-race Free GPU Programs 63

27. Raman, R., Zhao, J., Sarkar, V., Vechev, M.T., Yahav, E.: Efficient data race

detection for async-finish parallelism. Formal Methods Syst. Des. 41(3), 321–347
(2012). https://doi.org/10.1007/S10703-012-0143-7

28. Raman, R., Zhao, J., Sarkar, V., Vechev, M.T., Yahav, E.: Scalable and precise

dynamic datarace detection for structured parallelism. In: Proceedings of PLDI,
pp. 531–542. ACM (2012). https://doi.org/10.1145/2254064.2254127

29. Surendran, R., Raman, R., Chaudhuri, S., Mellor-Crummey, J.M., Sarkar, V.: Test-
driven repair of data races in structured parallel programs. In: Proceedings of PLDI,
pp. 15–25. ACM (2014). https://doi.org/10.1145/2594291.2594335

30. Westbrook, E.M., Zhao, J., Budimlic, Z., Sarkar, V.: Practical permissions for
race-free parallelism. In: Pro ceedings of ECOOP. LNCS, vol. 7313, pp. 614–639.
Springer, Cham (2012). https://doi.org/10.1007/978-3-642-31057-7_27

31. Ye, F., Schordan, M., Liao, C., Lin, P., Karlin, I., Sarkar, V.: Using polyhedral
analysis to verify OpenMP applications are data race free. In: Laguna, I., Rubio-
González, C. (eds.) Proceedings of CORRECTNESS@SC, pp. 42–50. IEEE (2018).
https://doi.org/10.1109/CORRECTNESS.2018.00010

32. Yu, L., Jin, F., Protze, J., Sarkar, V.: Leveraging the dynamic program structure

tree to detect data races in OpenMP programs. In: Proceedings of Correctness@SC,
pp. 54–62. IEEE (2022). https://doi.org/10.1109/CORRECTNESS56720.2022.
00012

33. Yu, L., Sarkar, V.: GT-Race: Graph traversal based data race detection for asyn-
chronous many-task parallelism. In: Aldinucci, M., Padovani, L., To rquati, M.
(eds.) Proceedings of Euro-Par. LNCS, vol. 11014, pp. 59–73. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96983-1_5

34. Yuki, T., Feautrier, P., Rajopadhye, S., Saraswat, V.: Array dataflow analysis for
polyhedral X10 programs. In: Proceedings of PPoPP, pp. 23–34. ACM, New York
(2013). https://doi.org/10.1145/2442516.2442520

35. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GRace: a low-overhead mechanism

for detecting data races in GPU programs. In: Proceedings of PPoPP, pp. 135–146.
ACM, New York (2011). https://doi.org/10.1145/1941553.1941574

36. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GMRace: detecting data races in

GPU programs via a low-ov erhead scheme. Trans. Parallel Distrib. Syst. 25(1),
104–115 (2014). https://doi.org/10.1109/TPDS.2013.44

https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1007/S10703-012-0143-7
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1109/CORRECTNESS.2018.00010
https://doi.org/10.1109/CORRECTNESS.2018.00010
https://doi.org/10.1109/CORRECTNESS.2018.00010
https://doi.org/10.1109/CORRECTNESS.2018.00010
https://doi.org/10.1109/CORRECTNESS.2018.00010
https://doi.org/10.1109/CORRECTNESS.2018.00010
https://doi.org/10.1109/CORRECTNESS.2018.00010
https://doi.org/10.1109/CORRECTNESS.2018.00010
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1109/CORRECTNESS56720.2022.00012
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1007/978-3-319-96983-1_5
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/2442516.2442520
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44

Intrepydd: Toward Performance,
Productivity, and Portability for Massive

Heterogeneous Parallelism

Jun Shirako(B), Tong Zhou, and Akihiro Hayashi

Georgia Institute of Technology, Atlanta, GA 30332, USA
{shirako,tz,ahayashi}@gatech.edu

Abstract. This paper introduces our ongoing work on the automatic

ahead-of-time (AOT) parallelization of Python programs on recent and

future hardware systems with massive parallelism and heterogeneity.
Our approach is driven by the combination of ML-based type predic-
tion and multi-versioned code generation that guarantees the correct-
ness of our type-specific code optimizations in all cases. While Python is
a dynamically-typed language, recent research demonstrated it is highly

possible to predict what data types are likely to occur at runtime, by ML-
based static prediction and/or runtime type profiling in numerical com-
putation kernels. Given code fragments with predicted data type infor-
mation, our optimization engine performs automatic parallelization and

sophisticated high-level code optimizations for the target system, such

as shared/distributed heterogeneous hardware platforms. Our approach
introduces novel extensions to the polyhedral compilation to integrate
loop and data layout transformations as well as automated selection of
CPU vs. GPU code variants. Our preliminary empirical evaluation shows
significant performance improvements relative to sequential Python in
both single-node and multi-node experiments.

Keywords: Parallelizing compilers · Python language · Type
prediction · Parallel computing · Heterogeneous computing ·
Distributed computing

1 Introduction

Major simultaneous disruptions are currently underway in both hardware and

software. In hardware, massive parallelism and extreme heterogeneity have

become critical to sustaining cost and performance improvements after Moore’s
Law, but pose productivity and portability challenges for developers. In soft-
ware, the rise of large-scale data science and AI applications is being driven

by domain scientists from diverse backgrounds who demand the programmabil-
ity that they have come to expect from high-level languages like Python. We
propose to enable automatic parallelization of sequential Python programs for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 64–69, 2025.
https://doi.org/10.1007/978-3-031-97492-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_7&domain=pdf
https://doi.org/10.1007/978-3-031-97492-2_7

Intrepydd 65

recent and future hardware systems with massive parallelism and extreme het-
erogeneity. We believe that a smart compilation framework that can transform

sequential code written in a high-productivity language into an efficient imple-
mentation on multicore architectures is highly desirable. The availability of s uch
a framework will help bridge a major productivity gap for domain experts, and
reduce the barrier to application enablement on multicore platforms.

Fig. 1. Overall Design of Intrep ydd system

In this paper, we make a case for new advances to enable productivity and

programmability of future multicore platforms for domain scientists. The goal of
our framework, Intrepydd, is fully automatic parallelization of standard Python

programs, aiming to deliver the benefits of heterogeneous combinations of multi-
core CPUs, GPU/FPGA accelerators, and future hardware platforms to domain

scientists without requiring them to undergo any new training. While Python is a
dynamically-typed language, we believe that it is highly possible to predict what
data types are likely to occur at runtime, by static prediction based on machine
learning [4, 7,14] and/or runtime type profiling [2]. Our approach includes: 1)
multiple candidate type prediction for function parameters and return values;
and 2) program multi-versioning for specialized code generation to different can-
didate data types. After type specialization, we propose to explore a novel app-
roach to automatic ahead-of-time (AOT) parallelization and optimization, which

includes: 3) polyhedral-based abstraction and optimizations to fully utilize CPU

and GPU parallelism; 4) hybrid Python/C++ code generation that com bines
high-performance Python library implementations and C-based native code gen-
eration; and 5) runtime cost-based automatic selection from various optimization
variants including: library-based vs. codegen-based, CPU-based vs. GPU-based,
and the combination of those implementation variants.

Figure 1 summarizes the overall design of our proposed Intrepydd system.
A user-developed code is a combination of main program code and kernel code,
where the former is unchanged while the latter is optimized by Intrepydd via type

prediction, multi-versioning, and automatic AOT source-to-source transforma-
tions, which benefit from the use of the Intrepydd Knowledge Base to provide

66 J. Shirako et al.

dataflow and type information for many commonly used library functions. Both

execute on a standard Python runtime along with standard libraries used by the
application.

Fig. 2. ML-based type prediction for JavaScript by JSNice [4]

2 ML-Based Type Prediction and Runtime Type
Profiling

In this work, we integrate two kinds of type prediction approaches, statisti-
cal prediction based on machine learning and type sampling based on profiling
tools. Figure 2 shows the representative of first approach, JSNice [4], to annotate

function parameters and returns with data types. Although JSNice is developed

for JavaScript, the same approach is applicable to Python programs by learning
with training data from Python applications [14]. There can be many candidates
data types for each variable (i.e., function parameter or return value) of interest,
especially when integrating both ML-based and profile-based predictions. A big

challenge would be to select proper subset of candidate types considering the

trade-off between accuracy of type prediction and complexity of multi-versioned
code generation. We will address this challenge by the interaction between type
predictor and multi-versioner, as discussed in earlier paragraph.

3 Polyhedral Optimizations

The polyhedral compilation has provided significant advances in the unifica-
tion of affine loop transformations c ombined with powerful code generation
techniques [3,13,16]. However, despite these strengths in program transforma-
tion, the polyhedral frameworks lack support for: 1) dynamic control flow and

Intrepydd 67

Fig. 3. Polyhedral O ptimization

Fig. 4. Hybrid Python/C++ code generation with multi-versioning for Polybenc h-
python correlation example

non-affine access patterns; and 2) library function calls in general. To address the

first limitation, we have extended the polyhedral representation of Static Control
Parts (SCoPs) to represent unanalyzable expressions as a compound “black-box”

statement with approximated input/output relations. To address the second lim-
itation, we took advantage of our library knowledge base to obtain elemen t-wise
dataflow relations among function arguments and return values. These unique
features enable the co-optimization of both explicit loops and implicit loops from
array operators and library calls in a unified optimization framework.

After SCoP extraction and dependence analysis, we can apply any standard

polyhedral optimizations to determine the affine scheduling, which composes all
the loop and layout transformations in t he SCoP representation and is used to
generate the transformed Python AST at the code generation step (Fig. 3). In

this work, we integrate PolyAST [10] algorithm that implements cache-aware

loop transformations and a data layout transformation approach [11,12] that
minimizes the total allocated array sizes while improving spatial data locality.
For custom GPU code generation, we develop the Python-to-C++ code gen-
eration with OpenMP accelerator model, built on a past work for C-to-CUDA
polyhedral optimizer [9].

68 J. Shirako et al.

4 Hybrid Python/C++ Code Generation

There are two strategies for polyhedral optimizations in our approach: 1) library

mapping that transforms the SCoP representation for select code regions into

calls to efficient library functions such as those in NumPy and CuPy; and 2)
C++ conversion that enables general loop and layout t ransformations to maxi-
mize parallelism and locality and generates the final output as parallel OpenMP
C++ code. While the efficiency of the first strategy was demonstrated [8], we

extend the Python-to-C code generation [15] to automatic CPU/GPU p aral-
lelization [9,10] for the second strategy. In our approach, an input code region

can be optimized with both strategies whenev er possible, thereby generating
multiple output code versions. Figure 4 illustrates how the input code fragment
is optimized with different strategies, version 1: library-based CPU implementa-
tion, version 2: C++ codegen-based CPU implementation, and version 3: library-
based GPU implemen tation. The generated C++ code shown on the right side
is equipped with the pybind11 [1] APIs with the native O penMP C++ compiler.

5 Preliminary Experimental Results

Figure 5 show the throughput performance of a real-world signal processing
application (STAP [5]) OLCF Summit clusters. Given a Python NumPy ver-
sion as input, prototype Intrepydd compiler automatically parallelized the major
computation kernel and mapped it to GPUs via NumPy-to-CuPy conversions.
This significantly improves the throughput performance, resulting in c ompara-
ble single-GPU performance with the manually ported CuPy implementation.
The Intrepydd automatically generates API calls to the Ray [6] runtime, which

enables scheduling tasks across multiple heterogeneous nodes in a cluster.

Fig. 5. STAP radar application performance on OLCF Summit supercomputer.

6 Conclusions

This paper describes Intrepydd – a programming system designed to deliver
the benefits of shared/distributed heterogeneous hardware platforms to domain

Intrepydd 69

scientists who naturally use high-productivity languages like Python. In our app-
roach, the parameters and return values of kernel Python functions are anno-
tated with type hints automatically by the type predictor and their correctness is
dynamically checked by the multi-versioned code generation. Based on these type

hints, the Intrepydd compiler performs automatic AOT parallelization, includ-
ing polyhedral-based transformations and CPU/GPU code generation, hybrid

Python/OpenMP C++ code generation, runtime cost-based a utomatic selec-
tion. Our empirical evaluations using the STAP radar application for heteroge-
neous distributed performance show significant performance improvements up
to 20,000× improvement for the STAP radar application, relative to baseline
NumPy-based implementations.

References

1. pybind. https://pybind11.readthedocs.io/en/stable/ (2015)
2. MonkeyType: Collect run-time types. https://monkeytype.readthedocs.io/en/

latest (2020). Accessed 25 A ug 2020
3. Bondhugula, U., Acharya, A., Cohen, A.: The pluto+ algorithm: a practical app-

roach for parallelization and locality optimization of affine l oop nests. ACM Trans.
Program. Lang. Syst. 38(3) (Apr 2016)

4. JS NICE: Statistical Renaming, Type Inference and Deobfuscation. http://jsnice.
org

5. Melvin, W.L.: Chapter 12: Space-time adaptive processing for radar. Academic

Press Library in Signal Pro cessing: Volume 2 Comm. and Radar Signal Proc. (2014)
6. Moritz, P., et al.: Ray: A distributed framework for emerging AI applications. In:

Proceedings of OSDI’18 (2018)
7. Raychev, V., Vechev, M., Krause, A.: Predicting program properties from “big

code”. SIGPLAN Not. 50(1), 111–124 (Jan 2015). https://doi.org/10.1145/

2775051.2677009

8. Shirako, J., Hayashi, A., Paul, S.R., Tumanov, A., Sarkar, V.: Automatic par-
allelization of python programs for distributed heterogeneous computing. In:
28th International European Conference on Parallel and Distributed Computing
(EuroPar) (2022)

9. Shirako, J., Hayashi, A., Sarkar, V.: Optimized two-level parallelization for GPU

accelerators using the p olyhedral model. In: Proceedings of CC 2017 (2017)
10. Shirako, J., Pouchet, L.N., Sarkar, V.: Oil and water can mix: an integration of

p olyhedral and ast-based transformations. In: Proceedings of SC’14 (2014)
11. Shirako, J., Sarkar, V.: Integrating data layout transformations with the polyhedral

mo del. In: Proceedings of IMPACT 2019 (2019)
12. Shirako, J., Sarkar, V.: An affine scheduling framework for integrating data layout

and l oop transformations. In: Proceedings of LCPC 2020 (2020)
13. Verdoolaege, S., et al.: Polyhedral parallel code generation for CUDA. ACM Trans.

Archit. Code Optim. 9(4), 54:1–54:23 (Jan 2013). http://doi.acm.org/10.1145/

2400682.2400713

14. Ye, F., Zhao, J., Shirako, J., Sarkar, V.: Concrete type inference for code optimiza-
tion using machine learning with SMT solving (October 2023)

15. Zhou, T., et al.: Intrepydd: performance, productivity and portability for data

science application k ernels. In: Proceedings of Onward! ’20 (2020)
16. Zinenko, O., et al.: Modeling the conflicting demands of parallelism and tempo-

ral/spatial locality in affine scheduling. In: Proceedings of CC 2018 (2018)

https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/
https://monkeytype.readthedocs.io/en/latest
https://monkeytype.readthedocs.io/en/latest
https://monkeytype.readthedocs.io/en/latest
https://monkeytype.readthedocs.io/en/latest
https://monkeytype.readthedocs.io/en/latest
https://monkeytype.readthedocs.io/en/latest
http://jsnice.org
http://jsnice.org
http://jsnice.org
https://doi.org/10.1145/2775051.2677009
https://doi.org/10.1145/2775051.2677009
https://doi.org/10.1145/2775051.2677009
https://doi.org/10.1145/2775051.2677009
https://doi.org/10.1145/2775051.2677009
https://doi.org/10.1145/2775051.2677009
https://doi.org/10.1145/2775051.2677009
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713

Enabling User-Level Asynchronous
Tasking in the FA-BSP Model Case Study:

Distributed Triangle Counting

Akihiro Hayashi(B), Shubhendra Pal Singhal, Youssef Elmougy,
and Jiawei Yang

Georgia Institute of Technology, Atlan ta, GA, USA
{ahayashi,ssinghal74,yelmougy3,jyang810}@gatech.edu

Abstract. While the FA-BSP model provides significant performance

improvements in large-scale graph applications, its single-threaded exe-
cution model may limit the performance of certain graph applications.
This paper explores the potential benefits of enabling user-level asyn-
chronous tasking with async and finish in FA-BSP programs using dis-
tributed triangle counting. The initial results from a generic HPC cluster
show that a version using asynchronous tasking leads to a performance
increase of 3% to 32%.

Keywords: The FA-BSP Model · Asynchronous Tasking · The Actor
Model

1 Introduction

The Fine-grained Asynchronous Bulk Synchronous Parallel (FA-BSP) model [11]
is an extended version of the BSP model [13] that facilitates fine-grained asyn-
chronous point-to-point messages even during the lo cal computation. As illus-
trated in Fig. 1, each processing elemen t (PE1), performs 1) a local computation

(the blue part), 2) asynchronous messaging (the arrows), and 3) message han-
dlers (the red part) in an interleaved fashion. It is important to highlight that
the use of the actor model [1] as a user-facing programming model effectively

abstracts the execution model as it inherently supports asynchronous messag-
ing and message handling. Such a programming and execution model is perfect
for the vertex-centric graph programming model because vertices can efficiently

propagate information to their neighbors over the edge via asynchronous mes-
saging. The FA-BSP model typically provides excellent scalability and perfor-
mance and outperforms state-of-the-art BSP implementations in various large-
scale graph applications [4– 6, 12].

However, the current FA-BSP model only exploits one-level parallelism,
where each PE is single-threaded a nd performs the interleaved execution. One

1 In this paper, a PE means an OpenSHMEM PE [2], which is similar to an MPI rank

and a n OS process.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 70–77, 2025.
https://doi.org/10.1007/978-3-031-97492-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-97492-2_8

Enabling User-Level Asynchronous Tasking in the FA-BSP Model 71

Fig. 1. The Fine-grained Asynchronous Bulk Synchronous Parallel mo del (FA-BSP).

research question is whether adding an additional level o f parallelism is benefi-
cial.

In this paper, we explore the possibility of integrating asynchronous task par-
allelism with the FA-BSP model with a primary focus on the message-handling

part. The key concept is to enable users to create asynchronous tasks within a

message handler. These asynchronous tasks can b e either 1) synchronized before
the message handler ends or 2) allowed to escape from it by relaxing the message
processing rule [8].

This paper makes the follo wing contributions:

– Preliminary design and implementation of asynchronous tasking support for
an F A-BSP runtime (HClib-Actor).

– Preliminary demonstration showing that using asynchronous tasking in a mes-
sage handler outperforms the existing single-threaded execution.

2 Background

2.1 Habanero C/C++ Library (HClib)

The Habanero C/C++ library (HClib) [7] was originally developed to enable an

asynchronous many-task (AMT) programming model and its runtime system.
It inherits different parallel constructs from the X10 [3] language, such as 1)
finish, used for bulk task synchronization. It waits on all tasks (including nested

tasks) spawned within the scope of the finish, 2) async, which is used to create

asynchronous tasks, and 3) async_at: a variant of async, which is used to spa wn
asynchronous tasks at a specific location. Note that, unlike X10, HClib itself only
enables intra-PE parallelism and requires an additional module for inter-PE
communication.

2.2 HClib-Actor

HClib-Actor [11] is an external module for HClib that enables the FA-BSP exe-
cution. It offers an SPMD-style programming, maintaining interoperability with

72 A. Hayashi et al.

existing MPI and OpenSHMEM applications. Specifically, in any superstep that
could benefit from FA-BSP execution, the user can leverage the HClib-Actor

API to enable fine-grained point-to-point asynchronous messaging with actor/s-
elector2. Because this execution model inherently produces many fine-grained

messages, the runtime automatically performs message aggregation for better
network utilization, which is backed by the Conveyors library [10].

Listing 1.1 and Listing 1.2 demonstrate an FA-BSP program. In this pro-
gram, each processing element (PE) sends N messages to arbitrary destinations,
incrementing a target element of a remote array by one. In Listing 1.1, each PE

first allocates a local array larray (Line 2). Second, each PE instantiates a n
actor instance (Line 3). Third, each PE starts the actor (Line 6) and sends N
asynchronous messages to random destinations (Line 10). The done API (Line
12) is used to inform the runtime that the current PE will not send any more

messages so as to aid the runtime with overall application termination. The code
in Listing 1.2 defines an actor class that includes the message handler (Line 5).
It is important to note that no atomics are required on Line 6 when updating

larray because the runtime processes incoming m essages one at a time.
Each PE is single-threaded, and the runtime executes the portions in an

interleaved fashion. It is important to note that the finish construct acts as a

bulk synchronization construct, even with asynchronous messaging. This means
it waits for all outgoing messages to be sent, all incoming messages to be pro-
cessed, and all tasks spawned within the finish scope to be completed.

Listing 1.1. The Main Part (compu-
tation and asynchronous m essaging in

Figure 1).

1 // SPMD
2 int* larray = (int*)calloc(N, sizeof(int));
3 MyActor* actor_ptr = new MyActor(larray);
4 // one superstep
5 hclib::finish([=]() {
6 actor_ptr->start();
7 for (int i = 0; i < N; i++) {
8 int dst = ...;
9 // Asynchronous SEND

10 actor_ptr->send(i, dst);
11 }
12 actor_ptr->done(0);
13 });
14 // barrier synchronization/collective

Listing 1.2. The Handler Part (Message

handling in Figure 1).

1 // Actor Class
2 class MyActor: public hclib::Selector

<1, int> {
3 int *larray;
4 // Message Handler
5 void process(int idx, int

sender_rank) {
6 larray[idx] += 1; // no

atomics
7 }
8 public:
9 MyActor(int *larray) : larray(

larray) {
10 mb[0].process = [this](int idx

, int sender_rank) {
11 this->process(idx,

sender_rank);
12 };
13 }
14 };

3 Preliminary Design

The primary goal of this paper is to enable asynchronous tasking in message

handlers. Since HClib-Actor already inherits tasking API from HClib, we look to

2 Selector [9] is an actor with mu ltiple mailboxes.

Enabling User-Level Asynchronous Tasking in the FA-BSP Model 73

enable asynchronous tasking in a way that is natural to b oth HClib and HClib-

Actor programmers.
As with the original HClib, async is used to create an asynchronous task

within a message handler, and also finish is used to block until all children
tasks created within it are completed.

Currently, we support the following type s of messages:

– Blocking Messages (Listing 1.3): The original actor model mandates that
each actor processes incoming messages one at a time. To comply with it, the

user must use finish appropriately so any tasks initiated within a message
handler must be completed before it is completed.

– Non-blocking Messages (Listing 1.4): This type of message is intended to

relax the message processing rule in order to achieve performance enhance-
ments. Such a message can create an escaping task that cannot be guaran teed
to be completed until finish in the main process has been unblocked (Line 5

in Listing 1.1). Since multiple tasks can be executed simultaneously, the user
needs to eliminate data race across all i nvocations of any message handlers,
and the main part.

Listing 1.3. Blocking message with

finish.

1 // Message Handler
2 void process(int idx, int sender_rank) {
3 hclib:\,\!:finish([=] {
4 hclib:\,\!:async([=] { ... }); // T1
5 });
6 }

Listing 1.4. Non-blocking message.

1 // Message Handler
2 void process(int idx, int sender_rank) {
3 hclib::async([=] { ... }); // T2
4 // no synchronization (non-blocking)
5 // until "finish" in the main part
6 }

To summarize, using blocking messages prevents data races as long as finish
and async are used properly and data races within a message handler are elim-
inated, whereas using non-bloc king messages requires careful data race elimina-
tion because multiple messages can be processed simultaneously.

4 Prototype Runtime Implementation

A key challenge in enabling user-level asynchronous tasking in the runtime is
that the Conveyors API routines are not thread-safe. As opposed to the original
single-threaded execution model (see Sect. 2.2), the runtime must ensure that
only one worker thread can communicate with Conveyors. async_at is suitable

for achieving this because i t can constrain which worker can execute a specific
task [7, 14]. As shown in Fig. 2, a communication task is created via async_at

and can only be executed by the communication worker, while a general task
can be executed by any worker.

While the use of async_at is sufficient in most parts of the runtime, there

is a non-trivial problem in the implementation of finish. In the original HClib
implementation, the runtime creates an asynchronous task with the continuation

of finish and tries to schedule another pending task so that a specific worker will
not be blocked. Since the original implementation allowed a non-communication

worker to execute the continuation, which can invoke Conveyors routines, we
modified the finish implementation so that the continuation task is always
executed by the communication worker.

74 A. Hayashi et al.

Fig. 2. The execution model of the FA-BSP runtime w ith asynchronous tasking
enabled.

5 Case Study with Distributed Triangle Counting

This section discusses triangle counting implementations with user-level asyn-
chronous tasking and results of an empirical evaluation on a multi-node platform.

5.1 Distributed Triangle Counting with the FA-BSP Model

Triangle Counting counts all possible numbers of triangles in a graph. Our base-
line implementation is the one in the FA-BSP paper [11], where each processing

element (PE or actor) iterates over the neighbors of each local vertex (vi) that

resides on the actor and finds two different neighbors (vertices vj and vk) and

sends a message to a (possibly) remote actor that owns vj . The receiver receives
a pair (vj , vk) and checks if there is an edge vj → vk. The edge check can be
performed using binary search on a neighbor list of vj .

While a binary search can be parallelized, we aim to increase the granularity

of the message handler to amortize the cost of task creation. Specifically, we

group multiple pairs into a single b ig packet and process them in parallel in the
message handler. We call it a chunked version.

5.2 Experimental Setup

We perform our experiments on the CPU nodes of the P ACE cluster at Georgia
Tech3. Each CPU node has Dual Intel Xeon Gold 6226 CPUs with 24 total
physical cores and 192 GB of DDR4 memory connected b y an Infiniband 100HDR
interconnect. For the software stack, we use gcc/10.3.0 and openmpi/4.1.4.

We are compare the performance of the following three variants while keeping

the n umber of cores constant (c):

1. Baseline: The original version discussed in Sect. 5.1. We ran it with c PEs,
where c is the total number of cores.

2. The chunked version with a single worker: The chunked version dis-
cussed in Sect. 5.1 with a chunk size of 624 pairs (16 bytes/pair). As with the

baseline version, we ran it with c PEs, where c is the total number of cores.
There is no asynchronous tasking in the user application.

3 https://www.pace.gatech.edu/.

https://www.pace.gatech.edu/
https://www.pace.gatech.edu/
https://www.pace.gatech.edu/
https://www.pace.gatech.edu/
https://www.pace.gatech.edu/

Enabling User-Level Asynchronous Tasking in the FA-BSP Model 75

3. The chunked with multiple workers: The chunked version d iscussed in
Sect. 5.1 with the same chunk size. We ran the application with c/w PEs,
where w is the number of worker threads per PE. This variant also has two
sub-variants: blocking and non-blocking message versions (Sect. 3). To mini-
mize task creation overhead, the 624 pairs are divided into w chunks.

These variants were run with scale 16 and 20 graphs, the R-MAT parameters
of A = 57.0, B = C = 19.0, and D = 5.0, a nd an edge factor of 16. We report
the best of five measurements.

Fig. 3. Strong scaling results of Triangle Counting on the PACE cluster with up to 32

nodes a nd 768 cores (absolute timings, lower is better).

5.3 Preliminary Results

Figure 3 (a)(b) show strong scaling results of Triangle Counting. The results show

that the chunked version significantly outperforms the baseline version even in

the single-worker setting because this enables better network utilization even

with the Conveyors aggregation library. Moreover, the single-worker variant is 1)
faster than the blocking version of the two-worker variant but 2) slower than the

non-blocking version of the two-worker variant in both data sizes. In summary,
the non-blocking version achieves 3–32% performance improvements compared
to the chunked single-worker version.

Although, we do observe that using more than 2 workers results in a notice-
able drop in performance due to the increase in task creation overhead as the

number of workers increases since it creates w − 1 tasks. In general, tweaking

the chunk size and the number of workers can further improve/degrade the per-
formance. However, our goal in this paper is to find a case where asynchronous
tasking is beneficial, and tuning these parameters for the best performance is
beyond the scope of the paper and left as future work.

76 A. Hayashi et al.

6 Conclusion and Future Work

This paper explores the exploitation of asynchronous tasking in the FA-BSP

model. We enhance HClib-Actor to support task parallel constructs like async

and finish within a message handler and discussed a case where user-level
asynchronous tasking is beneficial. Results show that asynchronous tasking leads
to 3% to 32% performance improvements. In future work, we plan to explore

more opportunities for parallelization in different graph applications as well as
the introduction of parallelizing constructs within the FA-BSP runtime.

Acknowledgments. This research is based upon work supported by the Office of
the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), through the Advanced Graphical Intelligence Logical Computing

Environment (AGILE) research program, under Army Research Office (ARO) con-
tract numb er W911NF22C0083. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the
U.S. Government. The authors would also like to thank Professor Vivek Sarkar of the
College of Computing, Georgia Institute of Technology, for his support of this work.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA (1986)

2. Chapman, B., et al.: Introducing OpenSHMEM: SHMEM for the PGAS com-
munity. In: Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model. PGAS ’10, Association for Computing Machinery,
New York, NY, USA (2010). https://doi.org/10.1145/2020373.2020375, https://

doi.org/10.1145/2020373.2020375

3. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 519–538. OOP-
SLA ’05, Association for Computing Machinery, New York, NY, USA (2005https://

doi.org/10.1145/1094811.1094852

4. Elmougy, Y., Hayashi, A., Sarkar, V.: Highly scalable large-scale asynchronous
graph processing using actors. In: 2023 IEEE/ACM 23rd Int ernational Symposium
on Cluster, Cloud and Internet Computing Workshops (CCGridW), pp. 242–248
(2023). https://doi.org/10.1109/CCGridW59191.2023.00049

5. Elmougy, Y., Hayashi, A., Sarkar, V.: A distributed, asynchronous algorithm

for large-scale internet network topology analysis. In: 2024 IEEE/ACM 24th
International Symposium on Cluster, Cloud and Internet Computing Workshops
(CCGridW) (2024)

6. Elmougy, Y., Hayashi, A., Sarkar, V.: Asynchronous distributed actor-based app-
roach to jaccard similarity for genome comparisons. In: ISC High Performance

2024 Research Paper Proceedings (39th International Conference), pp. 1–11 (2024).
https://doi.org/10.23919/ISC.2024.10528922

https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1109/CCGridW59191.2023.00049
https://doi.org/10.1109/CCGridW59191.2023.00049
https://doi.org/10.1109/CCGridW59191.2023.00049
https://doi.org/10.1109/CCGridW59191.2023.00049
https://doi.org/10.1109/CCGridW59191.2023.00049
https://doi.org/10.1109/CCGridW59191.2023.00049
https://doi.org/10.1109/CCGridW59191.2023.00049
https://doi.org/10.1109/CCGridW59191.2023.00049
https://doi.org/10.23919/ISC.2024.10528922
https://doi.org/10.23919/ISC.2024.10528922
https://doi.org/10.23919/ISC.2024.10528922
https://doi.org/10.23919/ISC.2024.10528922
https://doi.org/10.23919/ISC.2024.10528922
https://doi.org/10.23919/ISC.2024.10528922
https://doi.org/10.23919/ISC.2024.10528922
https://doi.org/10.23919/ISC.2024.10528922

Enabling User-Level Asynchronous Tasking in the FA-BSP Model 77

7. Grossman, M., Kumar, V., Vrvilo, N., Budimlic, Z., Sarkar, V.: A pluggable frame-
work for composable hpc scheduling libraries. In: 2017 IEEE International Paral-
lel and Distributed Processing Symposium Workshops, IPDPS Workshops 2017,
Orlando / Buena Vista, FL, USA,May 29 - June 2, 2017, pp. 723–732. IEEE Com-
puter Society (2017). https://doi.org/10.1109/IPDPSW.2017.13

8. Imam, S.M., Sarkar, V.: Integrating task parallelism with a ctors. SIGPLAN Not.
47(10), 753–772 (Oct 2012). https://doi.org/10.1145/2398857.2384671

9. Imam, S.M., Sarkar, V.: Selectors: actors with multiple guarded mailboxes. In:
Proceedings of the 4th International Workshop on Programming Based on Actors
Agents & Decentralized Con trol, pp. 1–14. AGERE! ’14, Association for Computing
Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2687357.2687360

10. Maley, F.M., DeVinney, J.G.: Conveyors for streaming many-to-many communica-
tion. In: 2019 IEEE/ACM 9th Workshop on Irregular Applications: Architectures
and Algorithms (IA3), pp. 1–8 (2019https://doi.org/10.1109/IA349570.2019.00007

11. Paul, S.R., Hayashi, A., Chen, K., Elmougy, Y., Sarkar, V.: A fine-grained asyn-
chronous bulk synchronous parallelism m odel for PGAS applications. J. Comput.
Sci. 69, 102014 (2023). https://doi.org/10.1016/j.jocs.2023.102014

12. Singhal, S.P., Hati, S., Young, J., Sarkar, V., Hayashi, A., Vuduc, R.: Asynchronous
distributed-memory parallel algorithms for influence maximization. In: 37th I nter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC) (2024)

13. Valiant, L.G.: A bridging model for parallel computation. Comm un. ACM 33(8),
103–111 (Aug 1990). https://doi.org/10.1145/79173.79181

14. Yan, Y., Zhao, J., Guo, Y., Sarkar, V.: Hierarchical place trees: a portable abstrac-
tion for task parallelism and data movement. In: Gao, G.R., Pollock , L.L., Cavazos,
J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 172–187. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13374-9_12

https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1145/2398857.2384671
https://doi.org/10.1145/2398857.2384671
https://doi.org/10.1145/2398857.2384671
https://doi.org/10.1145/2398857.2384671
https://doi.org/10.1145/2398857.2384671
https://doi.org/10.1145/2398857.2384671
https://doi.org/10.1145/2398857.2384671
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1016/j.jocs.2023.102014
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12

Learning to Harness In-Vitro Biological

Neural Networks

Frithjof Gressmann(B) and Lawrence Rauchw erger

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

{fg14,rwerger}@illinois.edu

Abstract. Advancements in bio-engineering have enabled the creation

of in-vitro biological neural networks, offering an exciting avenue for a

new kind of computational platform. A computing stack powered by liv-
ing neurons could unlock self-organizing and dynamically rewiring sys-
tems with extreme connectivity and parallel processing power, all while

running on sugar with unprecedented energy efficiency. Despite their
potential, computing applications of these biological systems remain a

nascent and limited technology that presents a challenging and radical
departure from the precise, digital von Neumann architectures that dom-
inate today’s computing landscape. Here, we outline a framework that
leverages in-silico simulation to establish an engineering testbed with

the ultimate goal of learning to harness neural in-vitr o systems for com-
putational purposes. We describe an optimization approach to uncover
reproducible neural activity present in a system that can be leveraged
to carry out basic information processing tasks. We demonstrate the
feasibility of this approach by optimizing a simulated neural system to
perform digit classification, offering a proof-of-concept for a potential
pathway to leveraging neural computation in vitro.

Keywords: Machine Learning · Neuromorphic computing · Biological
neural networks

1 Introduction

The stunning success of deep neural networks in machine learning combined with

the slowing of Moore’s law is spurring interest in novel, brain-inspired computing

approac hes that could bring about next-generation high-performance, low-power
architectures [16– 18]. However, today’s digital, CMOS architectures are still lim-
ited in their ability to process complex, unstructured, and noisy data with the

extreme energy efficiency of their biological counterparts. Recently, advances in

bio-engineering have opened up new possibilities through the construction of
biological neural networks in-vitro, o ffering not only a novel “wetware” substrate
for computing but also a vehicle for gaining a deeper understanding of neural
processing systems akin to the brain [3, 5, 21, 25]. These engineered living bio-
logical networks may ultimately emerge as an alternative hardware for artificial

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 78–89, 2025.
https://doi.org/10.1007/978-3-031-97492-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_9&domain=pdf
http://orcid.org/0009-0002-4155-7393
http://orcid.org/0000-0002-1545-4991
https://doi.org/10.1007/978-3-031-97492-2_9

Learning to Harness In-Vitro Biological Neural Networks 79

intelligence applications, a development that would make the quest for intelli-
gent compute come full circle. Despite these promising prospects, engineering

cell cultures for computing applications remains in its infancy. Current plat-
forms offer only crude input control, limited temporal and spatial resolution of
measured resulting activity, and under-characterized and i nsufficiently under-
stood computing properties. In particular, how to effectively design, program,
and leverage the systems for computation is an open question and active area of
research [21].

Notably, interacting with living neural networks for computing purposes
poses two fundamental challenges. First, while the basic physiological mecha-
nisms that drive neurons have been uncovered, we do not know how these pro-
cesses give rise to the remarkable computing capabilities of neural systems. To

make an analogy to conventional processors, having understo od the basic physics
behind a transistor, we still do not know how a complex composition of tran-
sistors could implement higher-level logic and algorithms [11]. Secondly, current
experimental methods do not offer enough precision to measure and manipulate

all potentially relevant neuronal processes, especially in larger cell cultures. In

practice, input-output interfaces remain limited to crude interventions that are

hard to calibrate and target precisely. Despite these challenges, a growing body

of work suggests that living neuronal systems may be leveraged without a com-
plete understanding or command of their neural dynamics. The field has seen
remarkable practical achievements in interacting with neural systems, enabling,
for instance, decoding of thought through brain-computer interfaces [8], induced

motor control in simple organisms [13], or video game play using neural feed-
back [12]. A key ingredient to these successes has been data-driven learning and

analysis methods that can build implicit representations of the neural dynam-
ics and enable systematic optimization towards desirable states and dynamics.
For example, algorithmic data analysis of neural data can help fill knowledge
gaps and automatically uncover functional and structural properties of neural
systems [20].

In this work, we present a simulation-driven approach that is designed to

discover neural stimulation patterns that induce reproducible neural activity in

vitro. We develop an in-silico simulation that recapitulates key features of the
open in-vitro experimentation platform by [24] (see Fig. 1). Using a contrastive

training approach, we demonstrate as a proof of concept that it is possible to

exploit the neuronal dynamics of such a system for a basic classification task.
This presents a first step towards a general approach t o induce and control neural
activity for downstream tasks, that may ultimately enable a harnessing of neural
computation in the corresponding real-world in-vitro system.

2 Background

Unlike their artificial counterparts, biological neurons exchange information

using action potentials – short-lived changes in the membrane potential also

known as spikes that travel along axonal connections to communicate with the

80 F. Gressmann and L. Rauchwerger

Fig. 1. (a) Illustration of spiking dynamics and interaction with recording and stimu-
lation electrodes. Stimuli raise the action potential of a neuron causing it to depolarize

if the firing threshold is crossed. The electrodes pick up changes in t he extra-cellular
potential, allowing the detection of spiking activity of nearby neurons. (b) Recording
system by Zhang et al. [24] with fluorescence microscopic image of seeded cells on MEA
[Photos by [24]/CC BY-NC-ND 4.0]

connected cells (see Fig. 1a). When neuron A transmits a spike to neuron B, its
cell potential increases and moves closer to a spiking threshold, before decay-
ing back away to the resting potential. If multiple spikes arrive in a sufficiently

short time window, however, the threshold is crossed causing the neuron to pro-
duce another spike. Experimentally, it is p ossible to interact with this process
by measuring and manipulating the cellular potentials, for example, by inducing
currents that raise cell potentials beyond the firing threshold.

Historically, the progress in understanding neurophysiology has been driven

by experiments in vivo [7]. More recently, however, advancements in biological
technology have opened up the creation and study of neural systems in vitro, out-
side of their natural biological context. Notably, the groundbreaking development
of induced plurip otent stem cell technology (iPSC) has enabled the reprogram-
ming of human cells to stem cells and revolutionized the field [22]. Importantly,
it has brought about the techniques that are required to grow brain-like cell cul-
tures of increasing sophistication in lab environments ([25] provides an overview

of this “organoid” technology). At the same time, neural recording and stimula-
tion technology has been steadily improving and is enabling increasingly high-
resolution electrophysiological measurements with minimal disruption to the cell
tissues [2]. One of the most common stimulation and recording devices is multi-
electrode arrays (MEAs) that consist of multiple microelectrodes from which

neural signals can be picked up or delivered. While electrodes have a limited mea-
surement radius and pick up the combined signal of all electrical activity in the

https://www.biorxiv.org/content/10.1101/2023.08.21.554033v1
https://creativecommons.org/licenses/by-nc-nd/4.0

Learning to Harness In-Vitro Biological Neural Networks 81

neighborhood, post-processing methods can “sort” the activity and uncover the

underlying neuronal sources with a high degree of accuracy [19]. Taken together,
this creates an experimental platform to explore neural responses to a wide range
of input stimuli and ultimately their computational capabilities [21].

3 Approach

Fig. 2. Framework overview. To learn control function f parameterized by θ that out-
puts a control sequence k for a given data sample x, an input is processed multiple

times and corresponding neural activity for the trials is recorded. For a given input
pair, embedding vectors h1 and h2 are computed by analyzing the self-information

content of the activity. F inally, θ is optimized in a contrastive fashion by minimization
of the embedding vector distance of positive samples x1 = x2 while maximizing the
distance of negative samples x1 �= x2.

At a high level, the problem of leveraging a given in-vitro system can b e broken
down into three sub-problems.

i How to encode data such that it can be f ed into the experimental platform,
ii how to decode resulting neural a ctivity, and
iii how to establish some level of control ove r the resulting input-output system.

In this work, we propose an approach that addresses (i)-(iii) in a way that
allows us to optimize the system end-to-end (see Fig. 2).

3.1 (i) Learned Control Sequence Model

Experimental systems that interface with in-vitro cell cultures can vary dramati-
cally in terms of used technology and capability (see Sect. 2). However, typically,
experimental interactions come down to specifying stimulation of the available

input channels at certain times. For example, this may be a list of times when to

activate a laser light that shines on the culture, or a list of times when to induce

a current at an electrode placed somewhere in the culture. In this setting, system

control can be described as a mapping f : RN×T → R
j(x)×T ′

that transforms
given N -dimensional data into a sequence of stimulation times. The goal is to
find some parameters θ such that fθ(x) = k controls the neural system in some
desirable way.

82 F. Gressmann and L. Rauchwerger

3.2 (ii) Self-information Decoding

While it is clear that neurons leverage the timing of action potentials as main

carrier of information, it is not kno wn how exactly information is encoded in the
spike times [6]. Many candidate coding schemes exist [1] and there is increasing

empirical evidence that individual spike times rather than averaged firing rates
over extended time windows play a crucial role in the neural code [23]. However,
without averaging, the enormous variability with which neurons elicit spikes
poses a practical challenge [14]. How can information be reliably decoded from

inherently noisy and stochastic neural processes? This question is particularly

relevant in the context of MEA-based in-vitro architectures where the electrode

measurements are subject to additional noise and imperfections. Addressing this
problem, Li and T sien have proposed a self-information decoding scheme in which
the neural variability itself is used for coding rather than regarded as mere
noise [14]. Specifically, the idea is to look at the probability distribution of the

time between observed spikes (inter-spike intervals, ISI) and ask how likely the

currently observed silence duration is given the past ‘ground state’ of variability.
In other words, how surprising is the observed silence duration between two

spikes, either by being extremely short or unexpectedly prolonged compared to

the past distribution. The overly short or long states then carry information

in contrast to the likely inter-spike intervals that are close to the mean of the
variability distribution. In an experimental in-vivo study involving mice, Li et al.
have demonstrated that self-information decoding could uncover cell assemblies
active in response to induced cognitive states like fear, suggesting that the self-
information principle can be a practically effective decoding strategy [15]. While

the neural self-information theory warrants further experimental scrutiny, one

immediate and general utility of the idea is that the method can uncover a

broad scope of unexpected states in an unbiased manner. In practice, we can

leverage this to identify meaningful neural activity without having to predefine

a reference point set by an outside observer. As a result, the decoding scheme
may provide enough flexibility for the control sequence model to uncover above-
the-noise states without pre-imposing the exact character of such states.

Practically, to compute self-information from the measured neural activity

of the in-vitro system, we record the intervals between the points in time when

spiking activity is detected. We then estimate the probability density function

(PDF) of the intervals using Gaussian kernel density estimation, denoted as p(x).
The self-information is defined as IX(x) := − log[pX(x)] where X represents the

random variable of intervals. This approach provides a non-parametric estimate
of the information content in the spiking activity based on its temporal structure.
We can obtain this estimate for all recording positions j in the cell culture,
yielding a vector h with elements IX(j)(x).

Taken together, it is important to note that this self-information embedding

h captures valuable information about the spatial-tempora l activity in the cul-
ture in response to stimulation patterns. Figure 3 illustrates this in a toy system

consisting of three spatially distributed recording channels and five neurons that
respond to varying stimulation patterns. Consider that channel C picks up the

Learning to Harness In-Vitro Biological Neural Networks 83

activity of neurons #4 and #5 in its neighborhood. Since #4 is connected to

neurons in the neighborhood of channel B and #5 is connected to a neuron in

the neighborhood of channel A, stimulating A and B in isolation brings about
average activity in C. However, when A and B are stimulated in quick succession,
C will observe an unexpectedly short inter-spike interval. Moreover, the delay

between stimulation of A and B matters and has to account for the longer signal
traveling time from A to C versus B to C. While this is a highly idealized exam-
ple, it illustrates h ow stimulation response activity retains information about the
spatio-temporal structure of culture. Note that this is true even though neither
the neuron positioning nor their connectivity are directly observable by the elec-
trodes. Given enough sample data, it would be possible to infer how to stimulate
the system to induce events with a high information content.

Fig. 3. Toy example system with three electrodes A, B, and C that can stimulate and

record the resulting spiking activity and local field potential (LFP) of neurons in their
neighborhood. Under the right stimulation pattern of A and B, electrode C observes
an unexp ectedly short inter-spiking interval and high LFP contribution at 130 ms, an
event containing high spatiotemporal information content.

3.3 (iii) Contrastive Optimization

The self-information decoding translates multi-channel activity in a given time

window into an embedding vector h that quantifies the spatiotemporal unex-
pectedness of the observed activity. This gives us a way to compare and order
states using an embedding vector norm ||h1 − h2||. In this setup, a minimal
norm implies a similar level of information content or unexpectedness of the two

84 F. Gressmann and L. Rauchwerger

compared states. We can exploit this property to learn to distinguish stimulus-
response patterns by recording a nd comparing neural activity shortly after stim-
ulation. Figure 2 illustrates this process. Given two data samples x1 and x2 we
can compute the corresponding control sequences k1|2 = f (x1|2) that describe

the stimulation pattern to apply to the system. The resulting embedding norm

should be minimal if x1 = x2 and maximal otherwise. In other words, the same

stimulus applied multiple times should give responses of similar self-information
content. This is reminiscent of the contrastive loss function used for deep metric
learning [4]. Note that optimizing fθ to conform to this condition does not spec-
ify whether the response self-information of x1|2 should be high or low, just that
they should be different. Another way to think of this optimization strategy is
as a search for a set of points in the s timulation space that have predictable,
low-information responses, as opposed to another set of points that lead to sur-
prising, high-information responses of the neurons.

3.4 Learning to Harness Neural Computation

Crucially, uncovering the relationship between input stimulation and neural
response provides a pathway to leveraging the neural system for computing

tasks. To illustrate this, suppose that we have figured out that two stimula-
tion patterns α and β lead to clearly distinguishable neural responses A and B.
We could leverage this separation by mapping pictures of cats to patterns like α

and pictures of dogs to patterns like β. We could then map an unknown image

in the same way and interpret the response A as a recognition of a cat and B as
a recognition of a dog. This “computation” can be more powerful than using the

simple mapping function directly since the neural system already implements a

powerful separation function that is robust to noise and processes the relevant
features of the input signal. We can directly incorporate this mapping strat-
egy into the training pro cess by adjusting the equality condition x1 = x2 with
y1 = y2 where y1|2 are the class labels for x1|2 (e.g. “dog” and “cat” for a dog
and cat image). This adjustment means that fθ encodes images into stimulation
patterns such that the neural response is different for images with a different
class. More generally, the framework thus allows us to find suitable stimula-
tion patterns that encode a given dataset such that distinct data samples elicit
distinguished neural responses.

4 Experiments

Testing an approach like the one outlined above in an in-vitro system poses many

practical challenges. First and foremost, designing and conducting experiments
in vitro is costly and time-intensive. Neural cultures take weeks to grow and

effort to keep alive. Moreover, no culture is ever the same and evolves with age,
making it harder to control for spurious changes and verify results in repeated
trials. To accelerate the experimental design, it is thus a good idea to experiment
with algorithmic approaches in simulation first. This allows for faster iteration

Learning to Harness In-Vitro Biological Neural Networks 85

but also provides a way to inspect and “debug” neural dynamics without mea-
surement limitations. Here, we implement a neural simulation that recapitulates
key properties of a contemporary in-vitro experimental platform as a testbed

for algorithmic approaches to leveraging neural computation. We demonstrate
in-silico that it is possible to find an fθ to perform digit classification via multi-
electrode array stimulation and recording.

4.1 Neural Simulation

Fig. 4. Visualization of the simulated in-vitro system. The neuron positions of the

different cell types in color are not drawn to size. The black crosses mark the p osition
of the electrodes to stimulate and record from nearby neurons. (Color figure online)

The simulated system is depicted in Fig. 4 and aims to recapitulate the real-
world in-vitro experimentation platform by Zhang et al. [24] (see Fig. 1b). It
consists of a 4 × 4 multi-electrode array with a pitch of 200µm placed on top

of a neural culture with excitatory and inhibitory n eurons. We adopt the elec-
trode model provided by Johnsen et al. [10] and assume that each electrode can

perfectly detect spikes in a 50µm radius, dropping to 50% detection within a

100µm radius. For stimulation, we employ a simplified approach to estimate the

induced voltage Vinduced in neurons that are within 150µm of the electrode:

Vinduced =
Vstim

r
· dneuron · cos(γ)

where Vstim is the stimulation voltage of 750 mV, r is the distance from the
electrode, dneuron is the neuron diameter assumed to be 10µm, and γ is the angle

86 F. Gressmann and L. Rauchwerger

between the electric field and the neuron dipole orientation assumed to be 0◦.
The neurons are distributed randomly and connected with a probability that is
proportional to their spatial distance. The neuron dynamics are modeled using
an Izhikevich 2003 model [9] that implements biologically plausible dynamics
with high computational efficiency. Synaptic connections are tuned such that
the culture dynamics produce the empirical firing rates reported in [24].

4.2 Optimization

The system is stimulated using the four bottom electrodes in the MEA within

a 50 ms window (Fig. 4). The time scale of this recording window is somewhat
arbitrary but chosen to be in the order of magnitude of time that multiple actions
potentials take to travel through the culture. Activity is recorded from the four
top electrodes only. This ensures that the input stimulation area does not over-
lap with the output area, i.e. measured activity has been transmitted through

the neural dynamics. The control sequence model fθ is implemented by a feed-
forward artificial neural network that outputs the stim ulation times for the four
input channels. We use the well-known MNIST digit dataset as a benchmark and
downsample the 28 × 28 image to 3× 3 pixels to reduce the number of learnable
parameters |θ| to 450. We minimize using black-box optimization with the loss
function

L(xi, xj , θ) = 1[yi = yj]‖kθ(xi) − kθ(xj)‖
2

2
+ 1[yi �= yj] max(0, 1 − ‖kθ(xi) − kθ(xj)‖2)

2

where xi|j are the data samples with class labels yi|j and k are the self-
information embedding vectors of the neural activity (see Sect. 3).

Fig. 5. Contrastive MNIST digit optimization: loss and accuracy for 2000 random θ-
samples sorted by loss. Accuracy is determined on 64-digit pairs from the training

set, where guessing would yield a 50% accuracy. Best θ achieves an accuracy of 72%,
suggesting that it is possible to find control parameters that classify the digits with an
accuracy above chance.

Learning to Harness In-Vitro Biological Neural Networks 87

Figure 5 shows the optimization objective L computed for 2000 simulations
with θ-values that are sampled via Latin hypercube sampling. Each θ is evaluated

on 64 MNIST digit pairs by computing the control sequence and evaluating

the prediction accuracy of whether the given digits belong to the same class.
The best-performing parameter configuration achieves an accuracy of over 70%,
outperforming the random guessing baseline of 50%. This result suggests that is
it possible to find a θ that encodes the images of digits into stimulation patterns
that induce distinct neural responses for different digits with an above-chance
accuracy. Importantly, this works despite the noisy dynamics that are never quite
the same at the time of the electrode stimulation.

5 Conclusion

We have presented a simulation-driven approach to learn stimulation patterns
that steer in-vitro neural activity towards desired responses. We demonstrated

in simulation that the strategy can be used to exploit the system dynamics to

perform a basic classification task. While this presents a first step, crucial work

remains to demonstrate the effectiveness of the approach in a real-world sys-
tem. For one, we have resorted to a naive black-box optimization approach of
trying random parameter changes and selecting for lower loss values. This is
not efficient nor scalable and could be improved in multiple ways. Gradient-free

optimization methods such as various evolutionary optimization strategies could

be employed for more effective optimization. It may also be possible to lever-
age domain knowledge to construct differentiable approximations of the system

to leverage more effective gradient-based search methods. Secondly, it will be

important to validate simulation results against real-world data to test the even-
tual applicability in lab experiments. Notably, lab data can provide important
information on what properties are the most important to get right when sim-
ulating plausible neural dynamics. Finally, in the scope of this work, we have
deliberately ignored the remarkable malleability of neural systems that could be
used to “program” rather than merely exploit already existing behaviors. This
could become another optimization target in future work. It is plausible that a
further improvement of simulation and optimization capabilities, guided by feed-
back from real-world experiments, will pave the way to increasingly sophisticated
computing applications in vitro.

References

1. Auge, D., Hille, J., Mueller, E., Knoll, A.: A survey of encoding techniques for
signal processing in spiking neural networks. Neural Process. Lett. 53(6), 4693–
4710 (2021). https://doi.org/10.1007/s11063-021-10562-2

2. Chen, R., Canales, A., Anikeeva, P.: Neural recording and modulation technologies.
Nat. Rev. Mater. 2(2), 1–16 (2017). https://doi.org/10.1038/natrevmats.2016.93

3. Chen, Z., Liang, Q., Wei, Z., Chen, X., Shi, Q., Yu, Z., Sun, T.: An overview of in

vitro biological neural net works for robot intelligence. Cyborg Bionic Syst. 4, 0001
(2023). https://doi.org/10.34133/cbsystems.0001

https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1038/natrevmats.2016.93
https://doi.org/10.1038/natrevmats.2016.93
https://doi.org/10.1038/natrevmats.2016.93
https://doi.org/10.1038/natrevmats.2016.93
https://doi.org/10.1038/natrevmats.2016.93
https://doi.org/10.1038/natrevmats.2016.93
https://doi.org/10.1038/natrevmats.2016.93
https://doi.org/10.1038/natrevmats.2016.93
https://doi.org/10.34133/cbsystems.0001
https://doi.org/10.34133/cbsystems.0001
https://doi.org/10.34133/cbsystems.0001
https://doi.org/10.34133/cbsystems.0001
https://doi.org/10.34133/cbsystems.0001
https://doi.org/10.34133/cbsystems.0001
https://doi.org/10.34133/cbsystems.0001

88 F. Gressmann and L. Rauchwerger

4. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: 2005 IEEE Computer So ciety Conference
on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 539–546
(2005). https://doi.org/10.1109/CVPR.2005.202

5. Chow, S., Hu, H., Osaki, T., Levi, T., Ikeuchi, Y.: Advances in construction and

modeling o f functional neural circuits in vitro. Neurochem. Res. 47(9), 2529–2544
(2022). https://doi.org/10.1007/s11064-022-03682-1

6. Eggermont, J.J.: Is there a neural code? Neurosci. B iobehav. Rev. 22(2), 355–370
(1998). https://doi.org/10.1016/S0149-7634(97)00021-3

7. Finger, S.: Origins of Neuroscience: A History of Explorations into Brain F unction.
Oxford University Press, New York (1994)

8. Gao, X., Wang, Y., Chen, X., Gao, S.: Interface, interaction, and intelligence in

generalized brain-computer interfaces. Trends Cogn. Sci. 25(8), 671–684 (2021).
https://doi.org/10.1016/j.tics.2021.04.003

9. Izhikevich, E.: Simple model of spiking neurons. IEEE Tr ans. Neural Networks
14(6), 1569–1572 (2003). https://doi.org/10.1109/TNN.2003.820440

10. Johnsen, K.A., Cruzado, N.A., Willats, A.A., Rozell, C.J.: Cleo: A testbed for
bridging model and experiment b y simulating closed-loop stimulation, electrode
recording, and optogenetics (2023). https://doi.org/10.1101/2023.01.27.525963

11. Jonas, E., Kording, K.P.: Could a neuroscientist understand a micropro cessor?
PLoS Comput. Biol. 13(1), e1005268 (2017). https://doi.org/10.1371/journal.pcbi.
1005268

12. Kagan, B.J., et al.: In vitro neurons learn and exhibit sentience when embodied

in a simulated game-world. Neuron 110(23), 3952-3969.e8 (2022). https://doi.org/

10.1016/j.neuron.2022.09.001

13. Li, C., Kreiman, G., Ramanathan, S.: Discovering neural policies to drive behaviour
by integrating deep reinforcement learning agents with b iological neural net-
works. Nat. Mach. Intell. 6(6), 726–738 (2024). https://doi.org/10.1038/s42256-
024-00854-2

14. Li, M., Tsien, J.Z.: Neural code—neural self-information theory on how cell-
assembly code rises from spike time and neuronal variability. Front. Cell. Neurosci.
11 (2017). https://doi.org/10.3389/fncel.2017.00236

15. Li, M., et al.: Neural coding of cell assemblies via spik e-timing self-information.
Cereb. Cortex 28(7), 2563–2576 (2018). https://doi.org/10.1093/cercor/bhy081

16. Mead, C.: Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990).
https://doi.org/10.1109/5.58356

17. Mead, C.: How we created neuromorphic e ngineering. Nat. Electron. 3(7), 434–435
(2020). https://doi.org/10.1038/s41928-020-0448-2

18. Monroe, D.: Neuromorphic computing gets ready for the (really) big time. Com-
mun. ACM 57(6), 13–15 (2014). https://doi.org/10.1145/2601069

19. Rey, H.G., Pedreira, C., Quian Quiroga, R.: Past, present and future of spik e
sorting techniques. Brain Res. Bull. 119, 106–117 (2015). https://doi.org/10.1016/

j.brainresbull.2015.04.007

20. Richards, B.A., et al.: A deep learning framework for n euroscience. Nat. Neurosci.
22(11), 1761–1770 (2019). https://doi.org/10.1038/s41593-019-0520-2

21. Smirnova, L., et al.: Organoid intelligence (OI): the new frontier in biocomputing

and intelligence-in-a-dish. Front. Sci. 0 (2023). https://doi.org/10.3389/fsci.2023.
1017235

22. Takahashi, K., et al.: Induction of pluripotent stem cells from adult human fibrob-
lasts by defined factors. Cell 131(5), 861–872 (2007). https://doi.org/10.1016/j.
cell.2007.11.019

https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1007/s11064-022-03682-1
https://doi.org/10.1007/s11064-022-03682-1
https://doi.org/10.1007/s11064-022-03682-1
https://doi.org/10.1007/s11064-022-03682-1
https://doi.org/10.1007/s11064-022-03682-1
https://doi.org/10.1007/s11064-022-03682-1
https://doi.org/10.1007/s11064-022-03682-1
https://doi.org/10.1007/s11064-022-03682-1
https://doi.org/10.1007/s11064-022-03682-1
https://doi.org/10.1016/S0149-7634(97)00021-3
https://doi.org/10.1016/S0149-7634(97)00021-3
https://doi.org/10.1016/S0149-7634(97)00021-3
https://doi.org/10.1016/S0149-7634(97)00021-3
https://doi.org/10.1016/S0149-7634(97)00021-3
https://doi.org/10.1016/S0149-7634(97)00021-3
https://doi.org/10.1016/S0149-7634(97)00021-3
https://doi.org/10.1016/S0149-7634(97)00021-3
https://doi.org/10.1016/j.tics.2021.04.003
https://doi.org/10.1016/j.tics.2021.04.003
https://doi.org/10.1016/j.tics.2021.04.003
https://doi.org/10.1016/j.tics.2021.04.003
https://doi.org/10.1016/j.tics.2021.04.003
https://doi.org/10.1016/j.tics.2021.04.003
https://doi.org/10.1016/j.tics.2021.04.003
https://doi.org/10.1016/j.tics.2021.04.003
https://doi.org/10.1016/j.tics.2021.04.003
https://doi.org/10.1016/j.tics.2021.04.003
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1101/2023.01.27.525963
https://doi.org/10.1101/2023.01.27.525963
https://doi.org/10.1101/2023.01.27.525963
https://doi.org/10.1101/2023.01.27.525963
https://doi.org/10.1101/2023.01.27.525963
https://doi.org/10.1101/2023.01.27.525963
https://doi.org/10.1101/2023.01.27.525963
https://doi.org/10.1101/2023.01.27.525963
https://doi.org/10.1101/2023.01.27.525963
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1038/s42256-024-00854-2
https://doi.org/10.1038/s42256-024-00854-2
https://doi.org/10.1038/s42256-024-00854-2
https://doi.org/10.1038/s42256-024-00854-2
https://doi.org/10.1038/s42256-024-00854-2
https://doi.org/10.1038/s42256-024-00854-2
https://doi.org/10.1038/s42256-024-00854-2
https://doi.org/10.1038/s42256-024-00854-2
https://doi.org/10.1038/s42256-024-00854-2
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.1093/cercor/bhy081
https://doi.org/10.1093/cercor/bhy081
https://doi.org/10.1093/cercor/bhy081
https://doi.org/10.1093/cercor/bhy081
https://doi.org/10.1093/cercor/bhy081
https://doi.org/10.1093/cercor/bhy081
https://doi.org/10.1093/cercor/bhy081
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/5.58356
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1145/2601069
https://doi.org/10.1145/2601069
https://doi.org/10.1145/2601069
https://doi.org/10.1145/2601069
https://doi.org/10.1145/2601069
https://doi.org/10.1145/2601069
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.3389/fsci.2023.1017235
https://doi.org/10.3389/fsci.2023.1017235
https://doi.org/10.3389/fsci.2023.1017235
https://doi.org/10.3389/fsci.2023.1017235
https://doi.org/10.3389/fsci.2023.1017235
https://doi.org/10.3389/fsci.2023.1017235
https://doi.org/10.3389/fsci.2023.1017235
https://doi.org/10.3389/fsci.2023.1017235
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/j.cell.2007.11.019

Learning to Harness In-Vitro Biological Neural Networks 89

23. VanRullen, R., Guyonneau, R., Thorpe, S.J.: Spike times make s ense. Trends Neu-
rosci. 28(1), 1–4 (2005). https://doi.org/10.1016/j.tins.2004.10.010

24. Zhang, X., et al.: ‘Mind in vitro’ platforms: versatile, scalable, robust and open

solutions to interfacing with living neurons (2023). https://doi.org/10.1101/2023.
08.21.554033

25. Zhao, Z., et al.: Organoids. Nat. Rev. Methods Primers 2(1), 1–21 (2022). https://

doi.org/10.1038/s43586-022-00174-y

https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1101/2023.08.21.554033
https://doi.org/10.1101/2023.08.21.554033
https://doi.org/10.1101/2023.08.21.554033
https://doi.org/10.1101/2023.08.21.554033
https://doi.org/10.1101/2023.08.21.554033
https://doi.org/10.1101/2023.08.21.554033
https://doi.org/10.1101/2023.08.21.554033
https://doi.org/10.1101/2023.08.21.554033
https://doi.org/10.1101/2023.08.21.554033
https://doi.org/10.1038/s43586-022-00174-y
https://doi.org/10.1038/s43586-022-00174-y
https://doi.org/10.1038/s43586-022-00174-y
https://doi.org/10.1038/s43586-022-00174-y
https://doi.org/10.1038/s43586-022-00174-y
https://doi.org/10.1038/s43586-022-00174-y
https://doi.org/10.1038/s43586-022-00174-y
https://doi.org/10.1038/s43586-022-00174-y
https://doi.org/10.1038/s43586-022-00174-y

Verification of Concurrent Programs Using

Hybrid Concrete-Symbolic Interpretation

Emily Tucker and Louis-Noël Pouch et(B)

Colorado State University, Fort Collins, CO, USA
{Emily.Tucker,Louis-Noel.Pouchet}@colostate.edu

Abstract. Source-level transformations of programs are fundamental
to achieve high-performance: complex loop transformations, including

loop tiling and parallelization, must typically be applied by a user or
an automated tool. However this process is error-prone, especially when

combined with transformations of the data layout, code structure and

statements themselves.
In this work, we present an approach to prove the equivalence between

a function and its candidate optimized version which is mostly agnostic
to the schedule and storage implemented. It can prove the equivalence
between a sequential function and its parallelized version, under practical
restrictions.

Keywords: Verification · Program Equivalence · Concurrent Programs

1 Introduction

Optimizing compilers must provide a semantically equivalent implementation

to the input program being compiled, while optimizing the program descrip-
tion to efficiently map it onto a target hardware. Typically, parallelism should

be exposed, be it at the instruction level, using SIMD vectorization, or using

coarser-grain multi-thread parallelization. This parallelism may be automati-
cally exposed by the compiler, or be assisted by the programmer’s rewriting and

annotations of the program to specify how parallelism may be implemented. An

upside is the potential performance of parallel programs versus their sequential
implementation. A downside is the risk for the compilers and humans alike to
be buggy: such parallelizing transformations may break the original program
dependences, be incorrect due to possible race conditions or deadlocks, or sim-
ply not following the sequential program semantics due to mismatches between
the operations computed in the original and transformed programs.

In this work, we present a verification approach to prove the correctness of
a set of parallelizing transformations. It is based on a hybrid concrete-symbolic

interpreter, to verify the correctness of a pair of programs at the source level [26].
These programs, expressed in C semantics, may contain OpenMP directives for
parallelization. Our tool can p rove the absence of race conditions and deadlocks

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 90–102, 2025.
https://doi.org/10.1007/978-3-031-97492-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_10&domain=pdf
https://doi.org/10.1007/978-3-031-97492-2_10

Verification Using Hybrid Concrete-Symbolic Interpretation 91

in each of them, as well as prove the semantic equivalence between them: that
is, for any i nput, they both produce the exact same output, necessarily.

The problem of determining the absence of races or deadlocks in parallel
programs has been studied from multiple angles ranging from static analyses
e.g. [5, 7, 34, 38], dynamic analyses [3, 8] including intercepting the OpenMP run-
time [15], symbolic analyses [26, 30, 32], as well as using Coq -formalized proofs
[11]. Program equivalence itself has been studied from these a ngles, including
for affine programs [4, 36], and by symbolic execution [17, 28, 32] and concrete-
symbolic interpretation [26]. We develop an approach which relies on concrete

interpretation of the control-flow instructions, therefore limited to a class of
programs: those with statically interpretable control-flow (SICF) [26]. In turn,
this enables a program equivalence approach that has linear time and space

complexity with respect to the number of operations executed by the program,
in a m anner fully independent from the syntax used, schedule of operations,
and storage implemented [26]. Extending to support parallel programs incurs
a low-overhead additional complexity, and can prove for sequentially consistent
programs the absence of parallelization errors, and full equivalence b etween a
parallel and a sequential program. We make the following contributions:

– We outline how our hybrid concrete-symbolic interpreter proceeds to verify

the c orrectness of some forms of concurrent programs.
– We introduce a translation of several OpenMP constructs into this framework,

enabling the detection o f race conditions for a class of OpenMP programs.
– We present experimental results demonstrating the ability of our system to

catch concurrency bugs in programs generated by a n auto-parallelizing com-
piler, and prove correct the parallelization implemented otherwise.

2 Background and Overview

We first summarizes key aspects of the CDAG-based verification approach [26],
before developing the ideas for the verification of a class of concurrent programs.

2.1 Hybrid Concrete-Symbolic Verification for SICF Programs

Our approach is based on concrete interpretation of selected instructions in the

input program, while treating any other operation as symbolic and building a

symbolic representation for these based on Computation Directed Acyclic Graph
(CDAG) [13, 18, 24]. Specifically, any conditional branch instruction, and the

operations transitively involved in computing the value of these condition(s),
as well as operations involved in address calculations, need to be concretely

interpretable from the input program. Any other operation can be symbolic:
the concrete value of their operands need not be known at interpretation time.
This leads to a class of statically interpretable control-flow programs we support:
those where all branches to be taken by the program (i.e., the control-flow) when

92 E. Tucker and L.-N. Pouchet

executing on the target machine can be discovered by concrete interpretation of
the r elevant operations from the input program.

We remark a relation with Static Control-Flow Programs (SCoP) [14], known

as affine programs [22, 27]: for these programs all branches to be taken can be

exactly characterized by static analysis and modeled using affine relations. SICF

programs do not require any affine structure, do not depend on how loops and

control-flow are implemented, but does require to know the actual problem size

(e.g., loop bound) of SCoPs. Parametric loop b ounds are not supported as we
require the concrete values for each conditional branch to be taken by the inter-
preter. All SCoPs with known values for the parameters are SICF.

Another important restriction of our approach is the requirement to map each

memory cell that is live-in/live-out to a unique name, to be used to reason on the

memory values of both programs. We therefore typically target the verification of
a pair of functions forig, fopt (themselves possibly calling other functions which

are also interpreted) such that fopt is an optimized version of forig, meant to
replace it in a larger program. They would therefore inherit the same execution
context necessarily, making the verification possible [12].

Illustrative Example. We present below a simple example of our CDAG-based

concrete-symbolic interpretation. The interpreter is equipped with a concrete
evaluator which implements exactly the same concrete semantics as the target
machine, making simplification of expressions by concrete interpretation valid.
Every operation that can be concretely interpreted is; otherwise, the operation is
promoted to a symbolic CDAG representation. CDAGs are schedule-independent
and storage-independent, and represent the ordered set of operations that pro-
duce a value as a function of only live-in symbolic values and constants [18, 26].

Equivalence is achieved by showing that for the same live-out memory cells of
both programs, the CDAGs constructed for them for forig and fopt are semanti-
cally equivalent. In its simplest form, they can be strictly identical (making this
check linear time), or p ossibly some semantics-preserving rewrites of the CDAGs
may be needed first, e.g. to support associativity and commutativity [26].

CDAGs are used to reason on I/O lower bounds, given they are agnostic

to scheduling and storage implemented. They represent the fundamental nature
of the computation, not how it is implemented [18]. However as seen below

they can grow exponentially: the values used for the second matrix-multiply are

themselves a CDAG. To control complexity and build a representation during

interpretation that is linear in space wrt. the operations executed, we deploy

memory pooling of distinct (sub-)CDAGs, and use pointers to them. For multiple
references to the same memory cell, only a pointer to its CDAG is duplicated.

Verification Using Hybrid Concrete-Symbolic Interpretation 93

2.2 Extending to Support Concurrent Programs

Prior work generalized this sequential verification approach to handle limited

forms of concurrency: specifically program regions executing concurrent ly, syn-
chronized using blocking FIFOs [26]. This support enables the verification of
source-to-source transformations for high-performance accelerator designs tar-
geting High-Level Synthesis toolchains, enabling for instance the verification of
correctness of a s ystolic array implemented over 140k LoCs, using a 64× 64 array
of concurrent units [37] (8k Processing Elements in total, interconnected using

16k FIFOs) in about 15 min, using a single CPU core [26].
We build on this approach to enable a preliminary support of some Op enMP

parallelization of C programs, as described in Sect. 3. In a nutshell, the verifi-
cation of concurrent programs works as follows. (1) The interpreter is extended

with support for concurrent regions, which can be scheduled for interpretation

akin to a multiprogramming approach in operating systems, switching between

concurrent regions ready to execute. It implements interrupts (e.g., when a block-
ing FIFO is not ready) and regions can be ready to execute, executing, waiting

(on FIFO readiness) or terminated. (2) It maintains virtual timestamps for the

operations interpreted, capturing the earliest (virtual) time at which blocks of
operations can execute, and associate each shared memory accesses with suc h
timestamps. (3) It maintains histories of the (shared) memory accesses, enabling
a check for non-determinism in case of accesses to the same memory location at
the same virtual timestamp: if two possible valid concurrent schedules lead to a
different memory state, the interpreter aborts. We use these features to develop
a verification approach for a set of C+OpenMP parallel programs.

3 Verifying a Set of Concurrent Programs

We now detail our approach to verifying the subset of concurrent programs sup-
ported in this work. Specifically, we target the verification of a pair of functions
forig, fopt such that one is a substitute for the other in a larger program, both
expressed as source-level C programs, possibly containing a subset of OpenMP
pragmas as described in Sect. 4. If successful, the verification approach proves

94 E. Tucker and L.-N. Pouchet

that both programs have the same semantics in that they both compute the same

result, if given the same inputs; and that for any synchronization-preserving con-
current schedule following the Op enMP pragmas specification, no race condition
nor deadlock can occur. As shown in Sect. 5, this enables the verification of the

correctness of source-to-source parallelizing compilers such as Pluto and PoCC

which rely on inserting #pragma omp parallel for around parallel affine loops,
including whether variables are p roperly privatized, whether complex tiled wave-
front parallelization was properly implemented, etc.

3.1 Detecting Non-determinism

A key aspect of our approach is to significantly limit the form of memory con-
sistency we support. During interpretation, if two operations (from two different
logical threads) can occur at the same timestamp, and they both access the same

shared memory location, then neither of these two operations can be a write.
Otherwise the result may be non-deterministic: d epending on which of the two
operations in practice would execute first, the state of memory may be different.
We perform such detection for both concrete and symbolic memory locations.

If two accesses (one being a write) to the same shared memory location

need to be performed, we require a synchronization (such as, but not limited

to, a barrier) between them, forcing sequentially consistent behavior for these

two accesses. In practice, the virtual timestamp we maintain to determine which

operations m ay execute at the same time typically changes only when a synchro-
nization is interpreted, as it ensures every operation depending on it is executed
after operations leading to it.

3.2 Verified Properties for Concurrent Programs

To verify a class of OpenMP programs, we assign every block of code that may

execute in parallel (as per t he OpenMP pragmas) to a distinct logical thread,
as discussed in Sect. 4. For example, an omp for loop with 1000 iterations can

be represented with 1000 logical threads. Therefore all possible serializations of
these logical threads (e.g., different OpenMP schedules and t heir mapping to
physical threads) will only reduce the amount of parallelism considered, making
the analysis conservative but safe.

To model synchronizations, we rely on our own API to handle interrupt-
s/wait/resume for logical threads. Note we assume every operation within a

thread executes serially, in the source program order. This facilitates debugging

at the source level, however it does not model the effect of compiler optimizations
in the binary eventually executed, which may include reordering of operations.

Definition 1 (Virtual timestamp and synchronization). Given two oper-
ations o1, o2 executed by two logical threads l1, l2. A virtual timestamp t(o) is
assigned to every operation, so that t(o1) < t(o2) iff there exists a point-to-point
synchronization operation os : l1 → l2, and o1 executes before os in l1’s sequential
order, and o2 executes after os in l2’s.

Verification Using Hybrid Concrete-Symbolic Interpretation 95

This relation amounts to the happens-before relation [15], that is, the neces-
sity for all operations that execute serially before a point-to-point synchroniza-
tion to all be terminated before the start of operations executing after this syn-
chronization. Consequently, operations may have the same virtual timestamp,
if they are not (transitively) ordered via synchronizations. Such operations may

therefore execute at the same time, and we check whether they can produce a

race by tracking the timestamp of operations a ccessing all non-thread-local data.
We operate with a zero-latency model, that is we assume all operations execute
in zero cycles, and only synchronizations can force a (partial) order between
operations in different logical threads.

We detect the existence of a possible race condition conservatively, in this
zero-latency model, by determining if there is any memory lo cation accessible
by two or more logical threads at the same time.

Definition 2 (Read-write conflict). Given two operations o1, o2 executed by
two logical threads l1, l2 such that t(o1) = t(o2), which both access the same

shared (non-local) memory location, and one o f these accesses is a write. Then
the operations expose a read-write conflict.

It is also possible in general to create a deadlock situation, where point-to-
point synchronizations are incorrectly implemented leading to a b locking state,
that is, one or more logical thread cannot terminate.

Definition 3 (Deadlock). Given a logical thread l in a blocking/interrupted

state. If there is no other logical thread that can become active by interpretation,
and which ca n modify the semaphore(s) on which l is blocked, then l is deadlocked.

For our system to output a conclusive analysis of a program, it must reach

termination without error. Without loss of generality, we assume every p rogram
is encapsulated in a function, and a single exit point exists for this function.

Property 1 (Termination). If the concrete interpretation of the control-flow and

dataflow addressing reaches the main function’s exit point, no read-write c onflict
was detected, and no deadlock is detected, then the interpretation terminated.

Note we implement an inelegant yet practical approach to handle non-
termina-ting programs (e.g. infinite loops): a counter of the number of operations
interpreted. If a maximum limit threshold is reached, the interpretation aborts.

We conclude with the equivalence between a pair of programs forig, fopt.

Property 2 (Equivalence between programs). Given forig, fopt two functions such

that one is a substitute for the other in a main program, and all their argu-
ments are non-aliasing and referencing all destinations of side-effects. If their
interpretation terminates, and for every live-out memory location referenced in

their a rguments, the concrete values or CDAGs produced for the same location
are semantically equivalent, then the two functions are equivalent.

A proof of an equivalent version of this property is outlined in [26].

96 E. Tucker and L.-N. Pouchet

3.3 High-Level Verification Procedure

We summarize the verification process as follows. forig, fopt are each indepen-
dently interpreted, computing for each a final memory state Mf . For each func-
tion f , the interpreter proceeds as described in prior work [26], interpreting the

code for a thread until termination, or interruption due to a blocking synchro-
nization primitive. A scheduler context-switches to the next thread in the queue

in case of interrupt, until there is no more interrupted nor active thread in the

queue (otherwise a deadlock is occurring). During interpretation, we associate

a thread-specific timestamp to every non-local memory element read/written

by each thread, itself only increased when synchronizations are interpreted. If a

location has been written by a thread, no other thread can read-write it at the

same timestamp, otherwise a read-write conflict is produced. We conservatively

assume pointers to data initialized prior to the start of a concurrent region are

shared between threads in this region. Pointer arithmetic besides thread-local
declarations must lead to addressing these shared pointed locations, otherwise
the interpreter aborts. As we operate at the source-level, scalar and array vari-
ables locally declared within a thread, and their scope of liveness, is trivially
detected. Consequently, every variable that is not accessible at the end of the
function is deleted from Mf . We do not support external functions (e.g., libc).

If interpretation terminated, we obtained Mforig and Mfopt two memory

states made only of variables accessible w hen the function terminates: live-in and
live-out data [26]. As we restrict to programs where a unique name can be built
for every memory cell, (e.g., A[42][51], f oobar, etc.), requiring a lack of aliasing

on the main function parameters, we simply proceed by checking for every such

name that the memory values computed (be they concrete, or symbolic CDAGs)
are semantically equivalent, e.g. Mforig (A[42][51]) ≡ Mfopt(A[42][51]). Note we
support a variety of rewrite rules on CDAGs prior to checking equivalence, e.g.
to normalize associative/commutative reductions [26].

4 OpenMP

4.1 API For Concurrent Programs

We now briefly present our API for interpreting concurrent programs, and the
translation of some OpenMP constructs with it.

At its core, only three API functions are needed. First we declare blocks
of code to execute concurrently within a parallel region regionid, using the

register_concurrent(regionid,block) for each such block. When interpreta-
tion of the code block assigned to a thread reaches the end of its control-flow, the

thread is terminated. Note there is an infinite number of logical threads available.
Second, we declare a point-to-point synchronization with a semaphore, using
set_semaphore_value(regionid,semid,value) and the associated blocking
function wait_until_semaphore_value(regionid,semid,value). These calls
are inserted in the program as regular C function calls, and different threads

Verification Using Hybrid Concrete-Symbolic Interpretation 97

may read/write the same semaphores. They form a sufficient flexible set of con-
structs (fork/join, and point-to-point synchronization) to e mulate the OpenMP
constructs we target in this work.

4.2 OpenMP Constructs

#pragma omp parallel A parallel OpenMP region, outside of any for loop,
requires knowledge of the concrete number of threads to be verified. The code

block dominated by the pragma is recorded for parallel execution, with one

call to register_concurrent(regionid,block) per thread. Then, the block in

the main program is replaced by a pair of calls to be executed by the main/-
master thread: concurrent_region_start(regionid) and the associated join

concurrent_region_end(regionid), which emulates the fork/join OpenMP

model. When interpreting the start call, the interpreter creates the requested

threads, and executes them in order, context-switching to the next thread only

if the current thread has terminated, or is interrupted due to a blocking call
(e.g., waiting on a semaphore to reach a particular value). The end call acts as
a global barrier for the region, except the threads are deleted, this only once all
have reached the end of their control-flow. Otherwise a deadlock is detected.

#pragma omp for By design the interpreter requires loop bounds to be con-
cretely interpretable, from the statically-interpretable control-flow requirement.
Consequently, the loop bound expressions are known and the code blocks for
the concurrent region can be seamlessly updated with the set of iterations to

be run by each thread, the code block becoming the loop body. We support
the static schedule, as well as a conservative mode where the number of logical
threads is dynamically increased to assign one loop iteration per thread. private
and related clauses are translated to equivalent local variable declarations and
initializations explicitly by pre-processing. A barrier is automatically inserted
at the loop exit, unless the nowait clause is specified.

#pragma omp section OpenMP sections are translated similarly to parallel
regions, with the proper code b locks registered for concurrent execution.

#pragma omp barrier Finally, a barrier is implemented via semaphores, similar
to the point-to-point synchronization described above. Technically, we use a sin-
gle collective synchronization API wait_on_semaphores(regionid,sem_array)
interpreted by all threads, with each thread writing its own semaphore when it
reached the API call, and in terpretation the next instruction after the barrier (if
any) being implemented only when all threads wrote their semaphore, to avoid
ordering issues.

4.3 Extensions and Ongoing Work

In this work we limit our presentation to the simplest form of doall and doacross
parallelism using OpenMP, for illustration purposes. Our ongoing work includes
support for a large subset of the OpenMP 4 constructs, including tasks and their

98 E. Tucker and L.-N. Pouchet

dependencies. Clearly, our flexible model for declaring concurrent regions and

their synchronizations leads to easily “software-emulate” the various OpenMP

constructs, by translating them to C code (e.g. to properly declare private vari-
ables, but also scheduling strategies) beforehand. As downside, this translation of
pragmas we perform as pre-processing must itself be correct, and matching what
the OpenMP-capable compiler implements when translating these pragmas.

Ongoing work also includes support for a subset of other parallel languages
such as Habanero [6] and its C variant, essentially implementing a hybrid

concrete-symbolic interpretation of program to compute the happens-before and

may-happen-in-parallel relations in a manner agnostic to the syntax used to

implement the program. Approaches using automated theorem proving have
been developed [10], we aim for increased generality to how the code is imple-
mented. We will discuss this generalized support during our presentation, and

its trade-offs versus other verification approaches. We also mention the issue of
properly verifying runtime systems in charge of orchestrating such parallel com-
putations. While they can be simply made part of the programs to interpret, it is
often desirable to instead perform a slightly more complex interpretation of the
program (e.g., using infinitely many logical threads to decompose maximally the
concurrency available) to make the verification robust to a variety of concurrent
schedules that can be implemented by these runtimes, including work-stealing.

5 Experimental Results

5.1 Experimental Setup

For brevity we limit to illustrating the 2 mm benchmark from PolyBench/C [27],
and will present extensive results over all PolyBenches during our talk [26]. 2mm

computes beta ∗ D + alpha ∗ A ∗ B ∗ C for rectangular matrices A, B, C, D: the

product of three matrices. The matrix data type is symbolic (and hence the

verification holds for “any” data type to b e used), and we vary the problem sizes
and program transformations (including OpenMP parallelization) computed by
the PoCC compiler [2]. All experiments are conducted on a single core of an

AMD Ryzen 5900HX, using 64 GB of DDR4 RAM, all optimizations w ithin the
interpreter are disabled except storing duplicate sub-CDAGs by pointers.

6 Results on 2mm benchmark

Table 1 displays the time to Interpret two programs: a sequential, base version

and a transformed version optimized by PoCC using fusion, tiling and OpenMP

parallelization. We display the number of statement instances in the source code

interpreted, and the time to compute equivalence (note the time to detect read-
write conflicts, if any, is integrated in the interpretation time), the number of
CDAG nodes created, and the maximal memory usage during the full process. All
experiments model 8 logical threads. Time is barely sensitive to higher threads
count, but it is influenced by the number of non-barrier synchronizations.

Verification Using Hybrid Concrete-Symbolic Interpretation 99

Table 1. Summary of experiments on PolyBench/2mm benchmark

Benchmark Int. seq. #stmts Int. PoCC#stmts Equiv. #nodes Max M em

2 mm-128 30.4 s 12 M 32.8 s 12.7 M 2.6 s 4.2 M 3 G B

2 mm-200 106 s 43 M 116 s 45 M 10.3 s 14 M 10 GB

2 mm-32 0.50 s 207k 0.54 s 207k 0.04 s 67k 53 MB

2 mm-32-ns 0.80 s 207k 0.84 s 207k 0.47 s 67k 938 MB

2 mm-200-np 106 s 43 M 116 s 45 M N/A 14 M 10 GB

2 mm-200-bt 106 s 43 M 113 s 44 M 10.0 s 14 M 10 GB

Table 1 reports two cases of equivalence for square problem size 128, and

the rectangular MEDIUM polybench size (−200). Throughput is around 0.4 M

statements per second. For 2 mm, memory use can exceed 50 GB for problem size
of 512 [26], showing a scalability limit with this approach. Solutions to overcome

this limit includes on-the-fly CDAG compression by affine folding [29], allowing

interpretation to scale gracefully to “arbitrary” problem sizes. We also display

the benefits of avoiding duplication of CDAG subtrees, with the -ns variant for
N = 32 disabling this optimization. For this small problem size, memory usage

is already 20x larger without this optimization, and would prevent scaling to

more realistic problem sizes. We also report two bugs we manually introduced:
a m issing inner loop iterator in the private clause (-np) and a loop bound error
in the tiling, leading to skip iterations (-bt). For both, the interpreter ran to
completion to maximize the number of errors found.

7 Related Work

The detection of concurrency bugs and equivalence between two implementations
are often split in two different problems. Detecting bugs in OpenMP programs
has been effectively implemented [15], and various static analyses have also b een
proposed, e.g. [7, 38]. However none verifies at the same time the compliance of
the parallelized program with the semantics of the original unoptimized pro-
gram.

Our framework can prove the equivalence of C-style programs under a wide

set of code transformations, albeit limited to the class of Statically Interpretable
Control-Flow. An approach complementary to ours is KLEE [1, 28, 30]. KLEE

implements a different symbolic interpretation approach; ours is specialized for
equivalence of programs with a single concretely interpretable CFG path and

concretely interpretable array subscripts, trading off generality for speed. We

limit coverage to fixed problem sizes but can operate on a variety of symbolic
data types, at order(s) of magnitude faster speed than KLEE(-float [20]).

Other approaches to verifying or guaranteeing the correctness of (parallel)
programs include model checking e.g. [17, 21, 33, 35], translation validation e.g.
[9, 23, 25] and of course using a certified compiler e.g. [16, 19, 31].

100 E. Tucker and L.-N. Pouchet

8 Conclusion

Although numerous approaches exist to assess the correctness of a program opti-
mization, they are often associated with fundamental limitations to how the pro-
gram is implemented. By using a hybrid concrete-symbolic interpretation app-
roach, and imposing sensible restrictions to support only programs with stat-
ically interpretable control-flow, it is possible to achieve significantly stronger
guarantees than testing, while offering full fl exibility for how the program is
implemented: arbitrary statement transformations, schedule (including parallel
ones), arbitrary storage and bufferization schemes, etc. In this work we outlined
a verification approach for (concurrent) programs based on prior work [26], and

simple extensions to handle OpenMP programs and verify their equivalence.
Future work includes generalizing to a large subset of OpenMP 4, and improv-
ing scalability further using a nearly constant-space approach to encode CDAGs.

References

1. The KLEE symbolic execution engine (2023). https://klee.github.io

2. PoCC, the Polyhedral Compiler Collection 1.6 (2023). https://pocc.sourceforge.
net

3. Atzeni, S., et al.: ARCHER: effectively spotting data races in large OpenMP appli-
cations. In: 2016 IEEE In ternational Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 53–62 (2016)

4. Bao, W., Krishnamoorthy, S., Pouchet, L.N., Rastello, F., Sadayappan, P.: Poly-
check: dynamic verification of iteration space transformations on affine programs.
In: Pro ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (2016)

5. Bora, U., Das, S., Kukreja, P., Joshi, S., Upadrasta, R., Rajopadhye, S.: LLOV:
a fast static data-race checker f or OpenMP programs. ACM Trans. Archit. Code
Optim. 17(4), 1–26 (2020)

6. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-java: the new adventures
of old x10. In: Proceedings of the 9 th International Conference on Principles and
Practice of Programming in Java. pp. 51–61 (2011)

7. Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral model
for SPMD programs and its use in static data race detection. In: Languages and

Compilers for Parallel Computing: 29th International Workshop, LCPC 2016,
Rochester, NY, USA, September 28–30, 2016, Revised Papers 29, pp. 106–120.
Springer (2017)

8. Cheng, G.I., Feng, M., Leiserson, C.E., Randall, K.H., Stark, A.F.: Detecting data

races in CILK programs that use locks. In: Proceedings of the T enth Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 298–309 (1998)

9. Clément, B., Cohen, A.: End-to-end translation validation for the halide language.
Pro c. ACM Program. Lang. 6(OOPSLA1), 1–30 (2022)

10. Cogumbreiro, T., Shirako, J., Sarkar, V.: Formalization of habanero phasers using

coq. J. Logic. Algebraic Methods Program. 90, 50–60 (2017)
11. Cogumbreiro, T., Surendran, R., Martins, F., Sarkar, V., Vasconcelos, V.T., Gross-

man, M.: Deadlock avoidance in parallel programs with futures: why parallel tasks
should not wait for strangers. Proc. ACM Program. Lang. 1(OOPSLA), 1–26
(2017)

https://klee.github.io
https://klee.github.io
https://klee.github.io
https://klee.github.io
https://pocc.sourceforge.net
https://pocc.sourceforge.net
https://pocc.sourceforge.net
https://pocc.sourceforge.net

Verification Using Hybrid Concrete-Symbolic Interpretation 101

12. Cousot, P.: Abstract interpretation based formal methods and future challenges.
In: Informatics: 10 Y ears Back, 10 Years Ahead, pp. 138–156. Springer (2001)

13. Elango, V., Rastello, F., Pouchet, L.N., Ramanujam, J., Sadayappan, P.: On char-
acterizing the data access complexity of programs. In: Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (2015)

14. Feautrier, P.: Some efficient solutions to the affine scheduling problem. part ii.
multidimensional time. Int. J. Parallel Program. 21, 389–420 (1992)

15. Gu, Y., Mellor-Crummey, J.: Dynamic data race detection for openMP programs.
In: SC18: International Conference for H igh Performance Computing, Networking,
Storage and Analysis, pp. 767–778. IEEE (2018)

16. Herklotz, Y., Pollard, J.D., Ramanathan, N., Wickerson, J.: Formal verification of
high-level synthesis. PProc. ACM Program. Lang. 5(OOPSLA), 1–30 (2021)

17. Jakobs, M.C.: PEQCHECK: localized and context-aware checking of functional
equivalence. In: 2021 IEEE/ACM 9th International Conference on F ormal Methods
in Software Engineering (FormaliSE), pp. 130–140 (2021)

18. Jia-Wei, H., Kung, H.T.: I/o complexity: the red-blue pebble game. In: Proceedings
of the Thirteenth Ann ual ACM Symposium on Theory of Computing, pp. 326–333
(1981)

19. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.:
Compcert-a formally verified optimizing compiler. In: ERTS 2016: Em bedded Real
Time Software and Systems, 8th European Congress (2016)

20. Liew, D., Schemmel, D., Cadar, C., Donaldson, A.F., Zahl, R., Wehrle, K.:
Floating-point symbolic execution: a case study in n-version programming. In:
2017 32nd I EEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 601–612. IEEE (2017)

21. Mercer, E.G., Anderson, P., Vrvilo, N., Sarkar, V.: Model checking task parallel
programs using gradual permissions (n). In: 2015 30th IEEE/A CM International
Conference on Automated Software Engineering (ASE), pp. 535–540. IEEE (2015)

22. Moses, W.S., Chelini, L., Zhao, R., Zinenko, O.: Polygeist: raising c to polyhe-
dral MLIR. In: 2021 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 45–59. IEEE (2021)

23. Necula, G.C.: Translation validation for an optimizing compiler. In: Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, pp. 83–94 (2000)

24. Olivry, A., Langou, J., Pouchet, L.N., Sadayappan, P., Rastello, F.: Automated

derivation of parametric data movement lower bounds for affine programs. In:
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (2020)

25. Parthasarathy, G., Dardinier, T., Bonneau, B., Müller, P., Summers, A.J.: Towards
trustworthy automated program verifiers: formally validating translations into an

intermediate verification language. Proc. ACM Program. Lang. 8(PLDI), 1510–
1534 (2024)

26. Pouchet, L.N., et al.: Formal verification of source-to-source transformations for
HLS. In: Proceedings of the 2024 ACM/SIGDA I nternational Symposium on Field
Programmable Gate Arrays, pp. 97–107 (2024)

27. Pouchet, L.N., Yuki, T.: Polybench/c 4.2.1 (2023). https://polybench.sourceforge.
net

28. Ramos, D.A., Engler, D.: {Under-Constrained} symbolic execution: correctness
checking for real code. In: 24th USENIX Security Symposium (USENIX Security
15), pp. 49–64 (2015)

https://polybench.sourceforge.net
https://polybench.sourceforge.net
https://polybench.sourceforge.net
https://polybench.sourceforge.net

102 E. Tucker and L.-N. Pouchet

29. Rodríguez, G., Pouchet, L.N., Touriño, J.: Representing integer sequences using
piecewise-affine loops. Mathematics 9(19), 2368 (2021)

30. Schemmel, D., Büning, J., Rodríguez, C., Laprell, D., Wehrle, K.: Symbolic partial-
order execution for testing multi-threaded programs. In: International Conference
on Computer Aided Verification, pp. 376–400. Springer (2020)

31. Ševčík, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Com-
pcerttso: a verified compiler for relaxed-memory concurrency. J. ACM (JACM)
60(3), 1–50 (2013)

32. Siegel, S.F., et al.: CIVL: the concurrency intermediate verification language. In:
Proceedings of the International Conference for High Performance C omputing,
Networking, Storage and Analysis, pp. 1–12. ACM, Austin Texas (2015)

33. Siegel, S.F., et al.: CIVL: the concurrency intermediate verification language. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–12 (2015)

34. Swain, B., Li, Y., Liu, P., Laguna, I., Georgakoudis, G., Huang, J.: OMPRacer: a

scalable and precise static race detector for OpenMP programs. In: S C20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14 (Nov 2020)

35. Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic verification of deter-
minism for structured parallel programs. In: C ousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 455–471. Springer, Heidelberg (2010). https://doi.org/

10.1007/978-3-642-15769-1_28

36. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine

programs u sing widening to handle recurrences. In: Computer Aided Verification
(2009)

37. Wang, J., Guo, L., Cong, J.: AutoSA: a polyhedral compiler for high-performance

systolic arrays on FPGA. In: The 2021 AC M/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 93–104 (2021)

38. Ye, F., Schordan, M., Liao, C., Lin, P.H., Karlin, I., Sarkar, V.: Using polyhedral
analysis to verify openMP applications are data race free. In: 2018 IEEE/ACM
2nd International Workshop on Software Correctness for HPC Applications (Cor-
rectness), pp. 42–50. IEEE (2018)

https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28

Scalable Small Message Aggregation

on Modern Interconnects

Aaron Welch1(B) , Oscar Hernandez1 , Stephen Poole2 ,
and W endy Poole2

1 Oak Ridge National Laboratory, Oak Ridge, TN, USA
{welchda,oscar}@ornl.gov

2 Los Alamos National Laboratory, Los A lamos, NM, USA
{swpoole,wkpoole}@lanl.gov

Abstract. The partitioned global address space (PGAS) model is pop-
ular for applying a classic shared memory approach to large systems, but
some classes of problems rely on large numbers of small remote mem-
ory accesses targeting random locations across the network. On mod-
ern interconnects this can overwhelm the network, leading to message

rate inefficiencies. This small message problem can be solved through

aggregation strategies, however these typically require undesirable code

restructuring that is cumbersome to incorporate and maintain in user
applications. A strategy called “aggregation contexts” aimed at allevi-
ating this burden has previously been proposed for the OpenSHMEM

PGAS API. Despite its potential, it has not yet been validated for scala-
bility on large systems consisting of thousands of nodes, nor proven to be
performance-portable, which are critical for its adoption. In this paper,
we demonstrate the scalability and performance portability of aggrega-
tion contexts using up to 8192 nodes on ORNL’s Frontier system. Our
study reveals good scaling patterns while also identifying further oppor-
tunities for performance improvements to make it even more effective.

Keywords: OpenSHMEM · message aggregation · aggregation

contexts · conveyors · man y-to-many communication patterns

1 Introduction

Applications with many-to-many and irregular access patterns are prone to gen-
erating large amounts of small messages that tend to congest modern high-speed

networks, limiting their performance. This small message problem can be solved

through message aggregation, however most approaches tend to involve signifi-
cant and undesirable code restructuring to use them. Previous work introduced
an extension called “aggregation contexts” [9] to the OpenSHMEM [7] PGAS

programming model that worked by implicitly deferring completion of opera-
tions performed on them, organised into work queues it would later send in bulk

for local processing. In addition, since it was applied as an abstract header lay-
ered over the OpenSHMEM API, the strategy it implemented could easily be

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 103–113, 2025.
https://doi.org/10.1007/978-3-031-97492-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_11&domain=pdf
http://orcid.org/0000-0002-8988-3027
http://orcid.org/0000-0002-5380-6951
http://orcid.org/0000-0002-4531-7453
https://doi.org/10.1007/978-3-031-97492-2_11

104 A. Welch et al.

adapted to other communication interfaces like MPI-3. The bulk of its reference

implementation was achieved through the use of conveyors [4], an aggregation

library from the bale effort, and thus its performance is also tied to this library.
While use of aggregation contexts results in changes to the synchronisation

semantics of OpenSHMEM, they allow for significant performance improvements
over independent atomic, get, and put (AGP) network operations by up to 65x,
while largely preserving the application’s algorithmic intent. However, it has
never been evaluated on any large-scale HPC systems with thousands of nodes.
Such validation is crucial to ensure it is a scalable and performance portable solu-
tion that can be put to wider use and effectively map to multiple interconnect
technologies, a nd is the primary goal of this paper. To this end, we tested aggre-
gation contexts on ORNL’s Frontier (a TOP500 system), to determine whether
their performance benefits persist with increasingly larger process/node counts
and compare its performance to that of ORNL’s Andes and the previously tested
HPC Advisory Council’s Iris, presented in Sect. 4.

The Frontier system is of particular interest due to its use of the Slinghost 11
network interconnect [1], which is relatively new and untested for such aggrega-
tion strategies. Testing how these capabilities affect message rates and the perfor-
mance of small message aggregation is imperative. Since performance portability

is also important to us, we compare equivalent executions across several different
systems in Sect. 4.1 and discuss key observations of interest.

Section 3 provides a brief background on the design of conveyors and aggre-
gation contexts so as to be able to reason about how these design choices can

affect the observed patterns. After our initial scalability study on Frontier, we

will further discuss the behaviours observed and speculate on potential opportu-
nities to improve upon them in Sect. 5. Finally, we will provide o ur conclusions
in Sect. 6 along with our expectations for what our findings may mean for how

our aggregation strategy may translate to other and future systems.

2 Related Work

Slingshot is a novel interconnect designed to optimise network operations
through its Rosetta switch, which implements adaptive routing, congestion con-
trol, and quality of service (QoS). The capabilities of this Slingshot in tercon-
nect system have been evaluated in the context of Slingshot 10 and 11. De
Sensi [1] focused on evaluating how Slingshot 10 mitigated the impact of conges-
tion on network latency and bandwidth in b enchmarks and mini-apps compared
to the Aries interconnect. Khorassani [3] evaluated the scalability of MPI imple-
mentations on Slingshot 10, using Cray MPICH, Open MPI/UCX/RCCL, and

MVAPICH2 on both CPU and GPU, as well as a preliminary study of CPU-
only on Slingshot 11. Namashivayam [5] focused on the early implementation

of OpenSHMEM-X on Slingshot 11 NICs and proposed extensions to enhance

performance. The study provides an overview of the supported features of the

Slingshot 11 NIC, along with high-level implementation details and a detailed
performance analysis using microbenchmarks and application kernels. However,

Scalable Small Message Aggregation on Modern Interconnects 105

none of these studies evaluated the small message rate problem on Slingshot 11
at the scale of this paper.

Venkatesan [8] implemented an OpenSHMEM extension for aggregation

called queues that takes advantage of QoS on Infiniband interconnects. The

extension exposes queue operations with semantics similar to conveyors, but
it requires significan t restructuring of applications similarly to conveyors and
was not evaluated at scale. Paul [6] proposed an actor model within PGAS

for message aggregation that resulted in significant performance improvements.
Similarly, CAL [2] offers more comprehensive high-level abstractions for aggre-
gation in the Chapel programming language, including support for maps, scans,
and reductions. These approaches would require porting the OpenSHMEM AGP

style of code t o the actor model or aggregator objects in Chapel applications,
thereby increasing the effort for the user.

3 Background

Before we can examine our initial results, we must first describe the internal
workings of both conveyors and aggregation contexts. More details on each can
be found in [4] and [9], respectively .

3.1 Conveyors

Conveyors are an abstraction around message queues, allowing a process to push

items that will eventually be pulled from a given target process. The primary

communication unit for conveyors is user-specified fixed-size items packed into

similarly fixed size incoming/outgoing buffers that can be transmitted more

coarsely . Much of its management is kept hidden, though the actual process-
ing of received message items is provided by its user.

During their primary operation, users are allowed to do one of four actions—

push/pull encoded items, unpull the last pulled item, or advance the conveyor in

order to help ensure progress. This produces a clear pattern for the general use

of conveyors—push messages to target processes until doing so fails due to lack

of space to enqueue, then pulling all incoming messages to process them until
there are no more that can be acted upon, and finally wrapping the previous
tw o phases within a loop that advances it. There are no guarantees provided
for precisely when individual messages are sent, which will typically happen as
outgoing buffers fill up, even without a direct call to advance, provided there is
currently space on the receiving end.

3.2 Aggregation Cont exts

Aggregation contexts were implemented on top of conveyors in order to abstract
their execution and associated requirements away from the user of an OpenSH-
MEM application. Crucially, they were designed so as to require minimal change
to applications and retain the original semantic meaning of their communication

106 A. Welch et al.

operations, trading potential further performance gains with ease of develop-
ment/maintenance. What this entailed was creating an abstract context object
specifying that aggregation is desired, which then implicitly alters the completion

semantics of all future operations performed on that context, loosening them as
much as possible so that no local or remote completion is guaranteed until the
user requires it by flushing all pending communication via a quiet. After such
quiet operations, contexts remain continuously available for future operations
with no explicit state management.

Contexts are able to exploit the fact that OpenSHMEM has a limited set of
communication operations it can perform, and thus it just needs to provide a

generic progress loop that is able to recognise and act upon any of the possible

network operations. Thus, contexts need to specify a fixed-size packet structure

capable of encoding any of these operations so that the same conveyors/buffers
can be used across all of them, which at a minimum required the specification

of an operation type, local and remote addresses, and value. Since not all oper-
ations would require each field, this results in efficiency concerns that direct use

of conveyors would not h ave, particularly with the likes of atomic increments
such as those employed by bale’s histogram, which only require one field (the
remote address) beyond the type. This was addressed by adding a second level
of deferment to pack up to three operations for each such increment or similar,
and sending them through conveyors as a single unit.

4 Empirical Study

For our scalability studies, we used t he histogram application from bale classic1.
Histogram exhibits a communication pattern in which each processing elements
PEs asynchronously send many independent updates to a distributed table in a

random many-to-many communication pattern. In effect, this is an attempt to

perform data binning on a distributed shared data set. The application simulates
this by generating a uniform list of random table indices during an initialisation

phase and then timing how long it takes to atomically increment the value at
each random index. This is the s implest bale application, but it represents a
common communication pattern and is often used to build more complex pat-
terns, including in other bale applications (e.g., sparse matrix transpose). It also
provides the most direct method of testing the performance features of conveyors
and aggregation contexts.

We used three versions of histogram—the first uses OpenSHMEM AGP oper-
ations directly, while the other two use conveyors or aggregation contexts. We

are interested in two metrics: the raw message rate of the conveyor and context
implementations in terms of remote messages/updates per second per core/PE,

and the relative speedup they provide over the AGP version (e.g.,
perfconveyors

perfAGP
).

The following testing was performed on 32–512 nodes of ORNL’s Frontier
supercomputer, using 1–64 processes per node (PPN) with a block distribution.

1 https://github.com/jdevinney/bale/tree/master/src/bale_classic.

https://github.com/jdevinney/bale/tree/master/src/bale_classic
https://github.com/jdevinney/bale/tree/master/src/bale_classic
https://github.com/jdevinney/bale/tree/master/src/bale_classic
https://github.com/jdevinney/bale/tree/master/src/bale_classic
https://github.com/jdevinney/bale/tree/master/src/bale_classic
https://github.com/jdevinney/bale/tree/master/src/bale_classic
https://github.com/jdevinney/bale/tree/master/src/bale_classic
https://github.com/jdevinney/bale/tree/master/src/bale_classic
https://github.com/jdevinney/bale/tree/master/src/bale_classic

Scalable Small Message Aggregation on Modern Interconnects 107

We used Cray clang 15.0.0 and Cray OpenSHMEM-X 11.7.2.3 with XPMEM for
building and running histogram over the Slingshot 11 interconnect. Additionally,
we used the SLURM hint “–hint=nomultithread” to map one PE per c ore. We
also extended this same testing to as many as 8192 nodes using an older version
of OpenSHMEM-X in Sect. 5.

Fig. 1. Speedup Scaling for Conveyors. Fig. 2. Speedup Scaling f or Contexts.

Figures 1 and 2 show the relative speedup over AGP for the conveyor and con-
text implementations, respectively. It can be seen that these aggregation strate-
gies compare well against AGP, even through to high node and PE counts, with

stable, flat lines, demonstrating good scaling. Additionally, despite aggregation

contexts being implemented on top of conveyors, it can actually be seen edging
out over them in relative performance, easily achieving gains of about 40%. This
is the result of the packet buffer optimisation described in Sect. 3.2, reducing the

number of required calls into the conveyor API by 33% while sending the same
number of messages.

Fig. 3. Message Rate Scaling for Convey-
ors.

Fig. 4. Message Rate Scaling for Con-
texts.

Although we are focused on comparing our performance to AGP, we are also

interested in understanding the message rate that these strategies can achieve
independently. Figures 3 and 4 show the absolute message rate per PE for the

conveyor and context implementations. Since these tests demonstrate weak scal-
ing, the continued persistence of flat scaling lines proves that not only does
conveyor’s aggregation perform well with respect to classic AGP operations, but
that the resulting raw performance also improves nicely as a factor of the pro-

108 A. Welch et al.

cess count, with double the processes equating to roughly double the aggregate
message rate.

A key observation is that 1 PPN outperforms 2–64 PPN by a significant
factor. This is not unexpected, as with a high PPN, conveyors must contend with

shared resources to send local and remote buffers. Another important question is
just how efficient is the performance we are scaling of conveyors and aggregation
contexts and if it is performance-portable across platforms. We discuss the first
question in Sect. 5 and the latter in Sect. 4.1.

4.1 Performance Portabilit y

To evaluate the performance portability of conveyors and aggregation contexts
across different systems and network architectures, we tested them using his-
togram on 32 nodes with 1–32 PPN, on each of the HPC Advisory Council’s
Iris and ORNL’s Andes and Frontier systems. The goal was to evaluate their
performance using common runtime configurations.

We also include results for a modified version of the aggregation context
implementation to add an additional point of comparison in an attempt to

project the maximum possible performance that we could potentially achieve

with our current aggregation strategy. This modification simulated the strat-
egy used in aggregation contexts, but without conveyors or any other overhead

incurred by waiting for anything to complete while still performing all the work

that contexts would ordinarily require (i.e., memory updates). That is, if an

update is destined for a PE on the same node, it updates the equivalent index of
its own memory (so as to avoid the simulation introducing cache competition),
whereas if it is for another node it packs it the same way it usually would, but
upon sending processes the messages itself.

This provides a good approximation for the amount of work “pulling” data

that a PE would need to perform due to the uniform distribution of updates in

histogram. It continues in this manner until all updates are complete. While this
strategy invalidates the correctness of the results, it allows us to simulate the
performance of an unrealistically ideal scenario with perfect progress, which we
simply termed “Max” and ran alongside conveyors and contexts on Frontier for
comparison.

Frontier’s environment was set up the same as in Sect. 4, although Iris and

Andes used OpenMPI 5.0.3 for its implementation of OpenSHMEM 1.4, built
with Unified Communication X (UCX) 1.16.0 also using XPMEM. Iris is a

Dell C6400 32-node cluster with dual socket Intel Xeon 8280 CPUs, 192 GB of
2666 MHz DDR4 memory, and NVIDIA ConnectX-6 HDR100 100Gbit/s Infini-
Band/VPI NICs connected via an NVIDIA HDR Quantum QM7800 switch.
Andes is a 704-node cluster whose nodes contain two 16-core 3.0GHz AMD
EPYC 7302 processors, 256GB of main memory and an NVIDIA ConnectX-6
HDR200 InfiniBand NIC.

Scalable Small Message Aggregation on Modern Interconnects 109

Fig. 5. Speedup Comparison, 32 Nodes.
Fig. 6. Message Rate C omparison, 32
Nodes.

Figure 5 might initially suggest declining performance from Iris to Fr ontier,
but looking at Fig. 6 tells a different story. While there are some performance

differences between systems regarding updates per second per PE for conveyors
and aggregation contexts, the most notable change is the narrowing gap between

them and AGP performance, particularly on Frontier’s Slingshot 11 interconnect.
This is good news, as the AGP version is the preferred programming model
approach because of its simplicity and will remain widely in use within existing

code bases. In all cases, there are still substantial improvements to be gained
by using aggregation, though the cost for not doing so may not be as drastic on
newer network interconnects as they improve their message rate performance.

On the other hand, the benefits of using aggregation continue to be signif-
icant. The use of these aggregation strategies not only saves resources but also

effectively mitigates platform differences, demonstrating consistent performance

portability across different systems. Furthermore, the comparison to our simu-
lated maximum performance on Frontier shows that our results are remarkably

close to the best possible per-process performance we could achieve with our cur-
rent hardware and aggregation strategies on Frontier. However, w ith the message
rate scaling remaining flat across architectures and through up to 64 PPN, this
suggests that aggregate message rate may continue to predictably rise with more
cores up to some unknown value, potentially even if those cores are weaker.

5 Future Optimisation Opportunities

In this section, we describe some remaining areas of investigation with potential
performance impacts which may contain opportunities to further i mprove the
efficiency of message aggregation in conveyors and aggregation contexts.

5.1 System Scheduling I mpact

The following observations come from the fact that we ran many of our tests at
two different points in time with regard to Front ier’s overall workloads. While
the latest of the results was presented in Sect. 4 in order to make use of a newer
OpenSHMEM-X version, we had prior runs using version 11.5.7 that are also
noteworthy, seen in Figs. 7 and 8.

110 A. Welch et al.

Fig. 7. Message Rate Scaling for Convey-
ors (Exclusive Access).

Fig. 8. Message Rate Scaling for Con-
texts (Exclusive Access).

First we note was that during our initial access to Frontier, we were also

able to run all histogram implementations all the way up to 8192 nodes and

still maintain our same scaling behaviour, proving the scalability of aggrega-
tion beyond any doubt. The latest testing did not show any appreciable perfor-
mance differences between the two OpenSHMEM implementation versions, how-
ever the results we saw for equivalent runs was dramatically different than our
prior findings by roughly 2x. Crucially, the AGP performance was largely unaf-
fected, meaning the performance gap between it and the aggregated approaches
narrowed further still. The only difference was that our prior runs were with

exclusive access to Frontier, whereas the latest ones were under normal operat-
ing workloads, sharing system resources such as the network interconnect with
other users. This implies that conveyors may be more sensitive to shared net-
work resources and that capabilities such as Slingshot 11 congestion control are
important performance considerations, though this can be hard to control for
and thus we are unable to get conclusive data at this time.

5.2 Aggregation Efficiency

Next, we would like to determine how efficiently these aggregation strategies
utilise the available network bandwidth by comparing them to the OSU non-
blocking put message rate microbenchmark. In this test, we configured the bench-
mark to use the same 10kB buffer size that conveyors were using internally, and

then calculated how many updates per second it would translate to for histogram

if we were able to achieve that level of throughput. This is effectively intended to

give us an idea for a theoretical upper bound on aggregation performance poten-
tial and how wide the remaining gap may be a t scale. We performed this test on
two Frontier nodes in the same cabinet and connected via the same switch from
1–64 PPN in order to get an idea of the highest rates that could be achievable
between two nodes, the results of which can be seen compared to that of contexts
in Fig. 9.

At 64 PPN, we got a little under 200 million updates per second compared

to the roughly 10–30 million we were seeing for conveyors and contexts. Con-
sidering the substantially greater overhead that aggregated processing incurs

Scalable Small Message Aggregation on Modern Interconnects 111

compared to simply sending a lot of large messages, this is actually quite good

performance. While the simulated message rate increases at lower PPN counts,
this does not translate to similar increases for aggregation since it is b ound by
the cost of local processing of the much smaller packets, as was also previously
made clear in Fig. 6. On the other hand, maximising the PPN count is typical,
and the flat scaling behaviour we saw with aggregation suggests that the higher
the PPN value, the closer we may be able to get to achieving the maximum per-
formance potential of the NICs. This m ay be of benefit for systems with dense
core configurations as are commonly used for data analytics workloads, though
further investigation as such is left for future work.

Fig. 9. Simulated Message Rate via OSU.

5.3 Progress Model Optimisations

The final matter was discovered as an unintended consequence of a small optimi-
sation we had made within aggregation contexts. Since in our case all aggregated

messages are processed locally instead of remotely through remote direct mem-
ory access (RDMA) hardware, when PEs are instructed to perform operations
on themselves, there is no need to pac k and send messages through conveyors
instead of processing it immediately and returning. However, we found that this
effectively serialised conveyors’ progress management and resulting performance.

As described in Sect. 3.1, the progress model for conveyors is based upon

filling of outgoing buffers rather than incoming ones. The problem is thus: if an

application is never unable to push more data to other PEs, then it will never
be forced to stop and process data that those other PEs are waiting on it for. It
is effectively unable to voluntarily stop early either, since it has no insight from
push as to the internal state of progress.

The reason we weren’t seeing this before when self-sending is because eventu-
ally with enough puts to oneself, a PE would fill its own outgoing buffers and be

forced to stop pushing the next time it tries to self-send, triggering the pulling

part of the progress loop. Without this, we can end up with all PEs endlessly
pulling incoming data while waiting on the same source, which will then never be
unable to send. This could conceivably create issues for applications employing

112 A. Welch et al.

dynamic computation with heavy communication imbalances. Since this does
not have a significant effect on the bottom line for our testing here and would

require a bigger change within conv eyors themselves, we are noting the issue
here but a resolution for it is left for future work.

6 Conclusion

In this paper, we have demonstrated the effectiveness and scalability of convey-
ors and the aggregation context extension to OpenSHMEM on large-scale HPC

systems. Through our experiments, we have shown that aggregation contexts
can significantly improve the performance of independent AGP operations by

reducing the overhead associated with small network message rates. Our results
indicate that these aggregation strategies not only scale well with increasing
node counts but also maintain consistent performance across both Slingshot 11
and InfiniBand interconnects.

Our analysis revealed that aggregation contexts, when built on top of con-
veyors, can achieve up to 65x performance improvements over traditional AGP

operations on InfiniBand and up to 15x on Slingshot 11, where it can even out-
perform conveyors themselves by up to an additional 40%. The performance

portability observed across different systems also suggests that this aggrega-
tion strategy is adaptable to different hardware configurations and interconnect
technologies. This demonstrates the robustness and efficiency of this approach,
making it a viable candidate for inclusion in the OpenSHMEM specification.
Moreover, due to the high-level abstractions of aggregation, which allow appli-
cations to maintain their original structure, this strategy can be easily adapted
to other interfaces with limited sets of communication operations, such as in
MPI-3. Our findings also highlight areas for further optimisation, particularly in
further reducing the overhead of aggregation and improving its progress man-
agement. Addressing these issues could lead to even greater performance gains
and broader applicability of aggregation contexts in diverse HPC applications.

The aggregation context extension provides a scalable, performance-portable

solution for enhancing small message rate performance in OpenSHMEM appli-
cations. By simplifying the incorporation of message aggregation with minimal
burden on application code, this work holds promise for widespread adoption

in the HPC community, enabling more efficient and effective use of modern

high-speed interconnects. Future work will focus on refining these strategies and

exploring their application to other emerging HPC systems and workloads.

Acknowledgement. This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United

States Government retains and the publisher, by accepting the article for publica-
tion, acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of federally

Scalable Small Message Aggregation on Modern Interconnects 113

sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan). This research used the Frontier and Andes
resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office

of Science User Facility supported under Contract DE-AC05-00OR22725. This work

was f unded through the Strategic Partnership Projects Funding Office via Los Alamos
National Laboratory with IAN 61921590 for the project.

References

1. De Sensi, D., Di Girolamo, S., McMahon, K.H., Roweth, D., Hoefler, T.: An in-
depth analysis of the slingshot interconnect. In: SC20: I nternational Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–14 (2020).
https://doi.org/10.1109/SC41405.2020.00039

2. Jenkins, L., Zalewski, M., Ferguson, M.: Chapel aggregation library (CAL). In: 2018

IEEE/ACM Parallel Applications Wo rkshop, Alternatives To MPI (PAW-ATM),
pp. 34–43 (2018). https://doi.org/10.1109/PAW-ATM.2018.00009

3. Khorassani, K.S., Chen, C.C., Ramesh, B., Shafi, A., Subramoni, H., Panda, D.K.:
High performance MPI over the s lingshot interconnect. J. Comput. Sci. Technol.
38(1), 128–145 (2023). https://doi.org/10.1007/s11390-023-2907-5

4. Maley, F.M., DeVinney, J.G.: Conveyors for streaming many-to-many communi-
cation. In: 2019 IEEE/ACM 9th Workshop on Irregular Applications: Architec-
tures and Algorithms (IA3), pp. 1–8 (2019). https://doi.org/10.1109/IA349570.
2019.00007

5. Namashivayam, N., Cernohous, B., Pagel, M., Wichmann, N.: Early experience in

supp orting openSHMEM on HPE slingshot NIC (slingshot 11)
6. Paul, S.R., Hayashi, A., Chen, K., Sarkar, V.: A productive and scalable actor-

based programming system forÂ pgas applications. In: Groen, D., de Mulatier, C.,
Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P. (eds.) Computa-
tional Science - ICCS 2022, pp. 233–247. Springer International Publishing, Cham
(2022)

7. Poole, S.W., Curtis, A.R., Hernandez, O.R., Feind, K., Kuehn, J.A., Shipman, G.M.:
OpenSHMEM: Towards a Unified RMA Model. Springer, New York, NY, USA,
United States (2011). https://www.osti.gov/biblio/1050391

8. Venkatesan, V., Gorentla Venkata, M.: OpenSHMEM queues: an abstraction for
enhancing message rate, bandwidth utilization, and reducing tail latency in open-
SHMEM applications. In: SC-W ’23, Proceedings of the SC ’23 Workshops of The

International Conference on High Performance Computing, Network, Storage, and
Analysis, pp. 448–457. Association for Computing Machinery, New York, NY, USA
(2023). https://doi.org/10.1145/3624062.3624113

9. Welch, A., Hernandez, O., Poole, S.: Extending openSHMEM with aggregation

support for improved message rate performance. In: Cano, J., Dikaiakos, M.D.,
Papadopoulos, G.A., Pericàs, M., Sakellariou, R. (eds.) Euro-Par 2023: Parallel Pro-
cessing, pp. 32–46. Springer Nature Switzerland, Cham (2023)

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://www.osti.gov/biblio/1050391
https://www.osti.gov/biblio/1050391
https://www.osti.gov/biblio/1050391
https://www.osti.gov/biblio/1050391
https://www.osti.gov/biblio/1050391
https://www.osti.gov/biblio/1050391
https://doi.org/10.1145/3624062.3624113
https://doi.org/10.1145/3624062.3624113
https://doi.org/10.1145/3624062.3624113
https://doi.org/10.1145/3624062.3624113
https://doi.org/10.1145/3624062.3624113
https://doi.org/10.1145/3624062.3624113
https://doi.org/10.1145/3624062.3624113

Preliminary Study on Message

Aggregation Optimizations for Energy

Savings in PGAS Models

Oscar Hernandez1 , Aaron Welch1(B) , Wendy Poole2, and Stephen Poole2

1 Oak Ridge National Laboratory, Oak Ridge, TN, USA
{oscar,welchda}@ornl.gov

2 Los Alamos National Laboratory, Los A lamos, NM, USA
{wkpoole,swpoole}@lanl.gov

Abstract. As Moore’s law has slowed down, we need to explore oppor-
tunities to save energy and power in parallel applications, especially dur-
ing data movement. This is particularly true within the partitioned global
address space (PGAS) model, where there is great potential for energy

savings across distributed data accesses on large exascale computing sys-
tems. This paper explores the potential of message aggregation strategies
within PGAS models, specifically focusing on OpenSHMEM, to improve

energy efficiency on the CPU and memory of a node. Using the conveyor
library, which aggregates small messages for network-efficient commu-
nication, we compare its performance gains in execution times against
the energy reductions a chieved. We compare applications from the bale
effort as implemented through either atomic, get, and put or conveyor
approaches on the Frontier supercomputer. Our preliminary results show
significant improvements in both performance and energy consumption.
These findings suggest that message aggregation can play an important
role in addressing the challenges of PGAS energy consumption in modern
HPC systems.

Keywords: PGAS programming models · OpenSHMEM · message

aggregation · energy efficiency

1 Introduction

Due to the diminishing returns of Moore’s Law and Dennard scaling, HPC leader-
ship computing systems are hitting a power wall that must be addressed through

new architectures and the co-design of multiple layers in system software and

hardware. Traditional modeling and simulations still require significant compute

resources and power to scale, to implement new first-principles models and/or
increase their resolution for scien tific discoveries. This need is exacerbated by
emerging AI workloads and the new scaling properties of neural networks, which
optimize loss functions to train safe and trustworthy AI models. As a result,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 114–120, 2025.
https://doi.org/10.1007/978-3-031-97492-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_12&domain=pdf
http://orcid.org/0000-0002-5380-6951
http://orcid.org/0000-0002-8988-3027
http://orcid.org/0000-0002-4531-7453
https://doi.org/10.1007/978-3-031-97492-2_12

Preliminary Study on Aggregation Energy Savings in PGAS 115

new architectures are starting to emerge that are more specialized and energy-
efficient, with novel memory interconnects aimed at providing access to local,
neighboring, and global memories required for model parallelism and to dis-
tribute data loading stages.

PGAS models, which traditionally have focused on addressing HPC data-
centric computing requirements for applications, have the potential to optimize

various aspects of AI pipelines by efficiently distributing data in local and remote

memories a nd accessing them with atomic, get, and put (AGP) operations, mit-
igating the energy cost of data movement [4]. The PGAS model can also benefit
from scheduling work where the data is located by exploiting data locality to

improve application performance. However, with remotely accessible memory,
bursts of small data accesses can lead to congestion due to message rate lim-
itations in the network interconnect, resulting in inefficient use of computing

resources as processes wait for communication to complete. This can lead to
energy waste due to longer wait times, excessive communication progress checks,
and the use of resources that could otherwise be utilized for computation.

An area that has been explored to address this small message rate problem

is message aggregation. Message aggregation involves grouping operations and

their values and sending them in bulk to their destinations for completion on

the remote end, similar to the active message communication model. This app-
roach leverages faster local memories on both local and remote nodes to process
and aggregate messages, using the network bandwidth more efficiently to over-
come the message rate issues in today’s interconnect technologies. Aggregation
has shown significant speedups in many-to-many communication patterns rel-
evant to data analytics, graph processing, irregular data accesses, and sparse
data computation patterns. The conveyor library’s aggregation approach [5] has

shown promising results that can be leveraged by high-level P GAS programming
models such as Chapel [3], UPC [1], and OpenSHMEM [7].

Our paper aims to address the following key questions regarding PGAS and
small message aggregation strategies:

– How much energy can be saved when using a message aggregation strategy

compared to the t raditional AGP model of a PGAS application?
– How much of the message aggregation performance improvements translate

into energy savings, and do t hey scale at the same rate as performance?
– How do message aggregation optimizations translate to power u tilization on

the CPU and memory?

Our work-in-progress aims to answer these questions by understanding how

the performance gains provided by a message aggregation strategy translate to

energy and power consumption, and how these gains can help free computing
resources to address current power and energy challenges in HPC applications.

2 Preliminary Studies

We used the Oak Ridge National Laboratory’s current supercomputing flag-
ship, Frontier, to start answering our questions. Frontier has a theoretical peak

116 O. Hernandez et al.

double-precision performance of approximately 1.7 exaflops and an overall power
consumption of approximately 22.7 megawatts. The system has 74 HPE Cray EX

Olympus racks, each housing 128 AMD compute nodes, totaling 9,472 compute

nodes. Each Frontier compute node includes a 64-core AMD Optimized 3rd Gen

EPYC CPU with 512 GB of DDR4 memory. Additionally, each node contains
four AMD MI250X acspGPU, each with two Graphics Compute Dies (GCDs)
and 64 GB of high-bandwidth memory (HBM2E). Frontier has a state-of-the-art
Slingshot 11 interconnect with network congestion management, dynamic rout-
ing, and quality of service (QoS) protocols in their Rosetta switches [2]. Our
study focused on the energy and power consumption of the CPU and memory

for PGAS comm unication operations using the Cray implementation of Open-
SHMEM [6]. We leveraged the counter information provided by HPE at the

node level, capturing accumulated energy (in joules) and point-in-time power
(in watts) for the entire node, the CPU socket, and memory, accessible via
/sys/cray/pm_counters.

Our preliminary evaluation focused on the bale 3.0 applications, which imple-
ment several many-to-many communication patterns written using both the

AGP and conveyor aggregation models. We r an these applications using their
default input parameters on two nodes of Frontier.

Fig. 1. Time improvements of message aggregation over the A GP model.

Figure 1 shows the time improvements of the bale applications using con-
veyors over the AGP model from 1–64 processes per node (PPN). All the bale

applications benefit from conveyors, especially sparse matrix transpose, triangle

counting, and topological sort, which can achieve improvements of 45x, 28x, and

40x for 1 PPN, respectively. As we weak scale the program sizes and increase
the number of processing elements (PEs), there are still significant aggregation
performance gains of 15x, 12x and 12x when using 64 PPN for these applications.

Figure 2 shows the combined CPU and memory energy improvements when

using conveyors over the AGP versions. Here, we see energy consumption

improvements of 41x for sparse matrix transpose, 32x for triangle counting, and

Preliminary Study on Aggregation Energy Savings in PGAS 117

Fig. 2. Energy improvement of aggregation over the A GP model.

39x for topological sort for 1 PPN. As we weakly scale the problem sizes, we

again see significant energy improvements for t hese applications, with 13x, 11x,
and 10x improvements for 64 PPN, respectively.

Fig. 3. Ratio of time and energy improvement of message aggregation over AGP.

Figure 3 shows the ratio of performance and energy improvement as we scale

the bale applications up to 64 PPN. Anything above 1 indicates that the appli-
cation improves faster in performance than energy; anything below 1 means the

application improves better in energy compared to performance. We noticed that
several applications, such as histogram and triangle counting, have better energy

improvements over time at 1 PPN. At different PPN values, we see different
ratios of improvements. At lower PPN counts, the majority of the energy con-
sumption for conveyors comes from the memory—around 58%. As we increase

118 O. Hernandez et al.

the PPN count, the cores in the socket start to consume more energy—using

66% of the total energy at 64 PPN for the histogram application. For trian-
gle counting this is 60% and 66% respectively. A similar trend is seen in both

the AGP and conveyor versions. It is noteworthy that conveyors use a higher
percentage of energy from memory compared to the AGP version, due to per-
forming more memory operations for aggregation. The other observation is that
the energy source is more balanced at 8–16 PPN, w here the memory and CPU
socket contribute a similar amount (around 50%) of the total energy. An interest-
ing observation is that for histogram and triangle counting, energy consumption
increases at a faster rate than performance at 1 PPN, with most of the energy
being consumed by the memory.

Fig. 4. Power consumption for AGP and m essage aggregation histogram.

Figure 4 shows a trace of the power consumption for the AGP and conveyor
versions of histogram on a single run when running at 16 PPN. The red lines
represent the time spent on initialization using shmem_init. The green lines
represent the AGP version, while the purple areas indicate the conveyor version.
The purple lines represent time spent in shmem_barrier_all. The empty white

region at the end is the verification step of the application. From the trace,
we notice that the power consumption for AGP remains constant throughout
the execution at 77 W. When it starts executing the conveyor version, the p ower
consumption increases to a constant 103 W for the CPU. The power consumption
for the memory also remains relatively constant at 89 W for AGP and 91 W
for conveyors. As the conveyor version executes much faster, its overall energy
consumption decreases despite the increase in power.

Figure 5 shows the average power ratio of the conveyor versions over AGP for
the bale applications. Anything greater than one indicates that the average power

Preliminary Study on Aggregation Energy Savings in PGAS 119

Fig. 5. Combined CPU and memory average power ratio of message aggregation over
AGP.

consumption of the conveyor version is higher than that of AGP. The majority

of the conveyor versions consume more power than their AGP counterparts,
with exceptions for histogram and triangle counting at 1 PPN, histogram and

topological sort at 8 PPN, and histogram at 16 PPN. The trend is that the

con veyor versions use more CPU power compared to the AGP versions as we
increase the number of cores used per node.

3 Conclusions

This study provides a preliminary analysis of the impact of message aggregation

strategies on power and energy consumption for PGAS programming models.
The use of the conveyor library for message aggregation demonstrates significant
performance improvements that are also coupled with significant energy savings,
achieving savings of up to 41 times. In certain cases, such as histogram and trian-
gle counting, energy savings improvements surpass performance improvements
at 1 PPN.

Aggregation strategies also alter the balance of energy consumption between

the CPU and memory. Initially, memory operations consume more energy for
lower PPN counts, but overall energy utilization becomes more balanced around

8–16 PPN. Beyond this point, energy consumption is dominated by the CPU

cores. In general, the preliminary results indicate that message aggregation can

significantly improve both performance and energy consumption at the cost of
increasing power for both the CPU and memory. This makes it a valuable app-
roach to optimize PGAS models for energy consumption by better utilizing hard-
ware resources in high-performance computing systems.

120 O. Hernandez et al.

Acknowledgments. This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United

States Government retains and the publisher, by accepting the article for publica-
tion, acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan). This research used the Frontier and Andes
resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC05-00OR22725. This work was
funded through Strategic Partnership Projects Funding Office via Los Alamos National
Laboratory with IAN 619215901 on the project “OpenSHMEM - Standardized API for
parallel programming in the Partitioned Global Address Space”.

References

1. Alvanos, M., Farreras, M., Tiotto, E., Amaral, J.N., Martorell, X.: Improving com-
munication in PGAS environments: static and dynamic coalescing in UPC. In: ICS

’13, Proceedings of the 27th International A CM Conference on International Con-
ference on Supercomputing, pp. 129–138. Association for Computing Machinery,
New York, NY, USA (2013). https://doi.org/10.1145/2464996.2465006

2. De Sensi, D., Di Girolamo, S., McMahon, K.H., Roweth, D., Hoefler, T.: An in-
depth analysis of the slingshot interconnect. In: SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–14 (2020).
https://doi.org/10.1109/SC41405.2020.00039

3. Jenkins, L., Zalewski, M., Ferguson, M.: Chapel aggregation library (CAL). In: 2018

IEEE/ACM Parallel Applications Wo rkshop, Alternatives To MPI (PAW-ATM),
pp. 34–43 (2018). https://doi.org/10.1109/PAW-ATM.2018.00009

4. Kestor, G., Gioiosa, R., Kerbyson, D.J., Hoisie, A.: Quantifying the energy cost of
data movement in scientific applications. In: 2013 IEEE International Symposium
on Workload Characterization (IISWC), pp. 56–65 (2013). https://doi.org/10.1109/

IISWC.2013.6704670

5. Maley, F.M., DeVinney, J.G.: Conveyors for streaming many-to-many communi-
cation. In: 2019 IEEE/ACM 9th Workshop on Irregular Applications: Architec-
tures and Algorithms (IA3), pp. 1–8 (2019). https://doi.org/10.1109/IA349570.
2019.00007

6. Namashivayam, N., Cernohous, B., Pagel, M., Wichmann, N.: Early experience in

supp orting openSHMEM on HPE slingshot NIC (slingshot 11)
7. Welch, A., Hernandez, O., Poole, S.: Extending openSHMEM with aggregation

support for improved message rate performance. In: Cano, J., Dikaiakos, M.D.,
Papadopoulos, G.A., Pericàs, M., Sakellariou, R. (eds.) Euro-Par 2023: Parallel Pro-
cessing, pp. 32–46. Springer Nature Switzerland, Cham (2023)

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1145/2464996.2465006
https://doi.org/10.1145/2464996.2465006
https://doi.org/10.1145/2464996.2465006
https://doi.org/10.1145/2464996.2465006
https://doi.org/10.1145/2464996.2465006
https://doi.org/10.1145/2464996.2465006
https://doi.org/10.1145/2464996.2465006
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/PAW-ATM.2018.00009
https://doi.org/10.1109/IISWC.2013.6704670
https://doi.org/10.1109/IISWC.2013.6704670
https://doi.org/10.1109/IISWC.2013.6704670
https://doi.org/10.1109/IISWC.2013.6704670
https://doi.org/10.1109/IISWC.2013.6704670
https://doi.org/10.1109/IISWC.2013.6704670
https://doi.org/10.1109/IISWC.2013.6704670
https://doi.org/10.1109/IISWC.2013.6704670
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007

Author Index

B

Budimlić, Zoran 50

C

Cogumbreiro, Tiago 55

D

Ding, Shuo 1

E

Elmougy, Youssef 11, 70

G

Gressmann, Frithjof 78

H

Harrison, Robert J. 50

Hayashi, Akihiro 11, 64, 70

Hernandez, Oscar 103, 114

J

Javanmard, Mohammad Mahdi 50

K

Kasahara, Hironori 34

Kawasumi, Tohma 34

Kimura, Keiji 34

Knobe, Kathleen 50

L

Lange, Julien 55

M

Mikami, Hiroki 34

Mysore, Aniruddha 11

P

Pickar, John 34

Pollard, Samuel D. 22

Poole, Stephen 103, 114

Poole, Wendy 103, 114

Pouchet, Louis-Noël 50, 90

R

Rauchwerger, Lawrence 78

S

Shirako, Jun 64

Singhal, Shubhendra Pal 70

Sullivan, Zachary J. 22

T

Tucker, Emily 90

W

Welch, Aaron 103, 114

Y

Yang, Jiawei 70

Z

Zhang, Qirun 1

Zhou, Tong 64

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2025

R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, p. 121, 2025.

https://doi.org/10.1007/978-3-031-97492-2

https://doi.org/10.1007/978-3-031-97492-2

	 Preface
	 Photos from the Symposium
	 Personal Notes for Vivek
	 Organization
	 Contents
	Retrieving Unknown SMT Formulas via Structural Mutations
	1 Introduction
	2 Motivating Examples
	3 Structural Mutations
	4 Related Work
	5 Conclusion
	References

	On the Cloud We Can't Wait: Asynchronous Actors Perform Even Better on the Cloud
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Objectives

	2 Related Work
	2.1 Partitioned Global Address Space (PGAS)
	2.2 Asynchronous Actor Programming
	2.3 Cloud Environments
	2.4 Gaps and Opportunites

	3 Methodology
	3.1 Experimental Setup
	3.2 Benchmark and Metric

	4 Experimental Observations
	5 Conclusion
	5.1 Opportunities and Future Work

	References

	A Formal Model for Portable, Heterogeneous Accelerator Programming
	1 Introduction
	2 A Syntax for Computing with Accelerators
	3 Operational Semantics
	4 Type System
	4.1 Safety

	5 Portable Programs
	6 Conclusion
	References

	Evaluation of Speedup and Energy with Multigrain Parallelizing Compiler
	1 Introduction
	2 The OSCAR Compiler
	2.1 Macro-task Graph
	2.2 Cache Optimization and Data Localization
	2.3 Cache Data Distribution Using First Touch and Thread Binding

	3 System Architecture
	4 Benchmarks
	5 Performance Evaluation
	5.1 Energy
	5.2 Energy Reduction by OSCAR with Cache Optimizations Compared with OpenMP
	5.3 Cache Performance and Energy in Parallelized Benchmarks

	6 Conclusion
	References

	Concurrent Collections: An Overview
	References

	Hidden Assumptions in Static Verification of Data-race Free GPU Programs
	1 Introduction
	2 Background
	2.1 GPU Programming

	3 Evaluation
	3.1 RQ1: Which Analysis Features Affect Partial Data-Race Freedom?
	3.2 RQ2: Can Data-Race Detection Help with Missing Assumptions?
	3.3 Bugs Found

	4 Conclusion
	References

	Intrepydd: Toward Performance, Productivity, and Portability for Massive Heterogeneous Parallelism
	1 Introduction
	2 ML-Based Type Prediction and Runtime Type Profiling
	3 Polyhedral Optimizations
	4 Hybrid Python/C++ Code Generation
	5 Preliminary Experimental Results
	6 Conclusions
	References

	Enabling User-Level Asynchronous Tasking in the FA-BSP Model Case Study: Distributed Triangle Counting
	1 Introduction
	2 Background
	2.1 Habanero C/C++ Library (HClib)
	2.2 HClib-Actor

	3 Preliminary Design
	4 Prototype Runtime Implementation
	5 Case Study with Distributed Triangle Counting
	5.1 Distributed Triangle Counting with the FA-BSP Model
	5.2 Experimental Setup
	5.3 Preliminary Results

	6 Conclusion and Future Work
	References

	Learning to Harness In-Vitro Biological Neural Networks
	1 Introduction
	2 Background
	3 Approach
	3.1 (i) Learned Control Sequence Model
	3.2 (ii) Self-information Decoding
	3.3 (iii) Contrastive Optimization
	3.4 Learning to Harness Neural Computation

	4 Experiments
	4.1 Neural Simulation
	4.2 Optimization

	5 Conclusion
	References

	Verification of Concurrent Programs Using Hybrid Concrete-Symbolic Interpretation
	1 Introduction
	2 Background and Overview
	2.1 Hybrid Concrete-Symbolic Verification for SICF Programs
	2.2 Extending to Support Concurrent Programs

	3 Verifying a Set of Concurrent Programs
	3.1 Detecting Non-determinism
	3.2 Verified Properties for Concurrent Programs
	3.3 High-Level Verification Procedure

	4 OpenMP
	4.1 API For Concurrent Programs
	4.2 OpenMP Constructs
	4.3 Extensions and Ongoing Work

	5 Experimental Results
	5.1 Experimental Setup

	6 Results on 2mm benchmark
	7 Related Work
	8 Conclusion
	References

	Scalable Small Message Aggregation on Modern Interconnects
	1 Introduction
	2 Related Work
	3 Background
	3.1 Conveyors
	3.2 Aggregation Contexts

	4 Empirical Study
	4.1 Performance Portability

	5 Future Optimisation Opportunities
	5.1 System Scheduling Impact
	5.2 Aggregation Efficiency
	5.3 Progress Model Optimisations

	6 Conclusion
	References

	Preliminary Study on Message Aggregation Optimizations for Energy Savings in PGAS Models
	1 Introduction
	2 Preliminary Studies
	3 Conclusions
	References

	Author Index

