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Preface 

It is our great pleasure to dedicate this Festschrift volume to the scholarship, leadership, 

and teaching of Professor Vivek Sarkar, the John P. Imlay, Jr. Dean of the College of 

Computing at Georgia Tech and a distinguished professor in the School of Computer 

Science. 

The title of this Festschrift, Principles and Practices of Building Parallel Software, 

highlights Vivek’s transformative contributions to advancing parallel computing. His 

work spans programming languages, compilers, runtime systems, debugging tools, and 

verification of programs, all designed to address the challenges of high-performance and 

exascale computing. Through pioneering innovations, technical expertise, and dedicated 

mentorship, Vivek’s career has profoundly shaped both industry practices and academic 

research, establishing him as a role model for generations of computer scientists. 

Vivek’s journey began with his foundational Ph.D. work at Stanford University under 

the mentorship of Prof. John Hennessy, a luminary in computer science. In the 1980s, 

when parallel programming was still in its infancy, Vivek made significant advances in the 

scheduling of parallel programs, addressing key challenges in optimizing dependencies 

and laying the foundation for modern compiler optimizations that unlock parallelism at 

scale. 

After completing his Ph.D., Vivek joined IBM Research, where, under the mentor-

ship of Fran Allen, he contributed to the PTRAN Project by developing the PART par-

titioner for automatic parallelization, analyzing cost-benefit tradeoffs while accounting 

for overhead and synchronization costs. At IBM Santa Teresa Labs, he led the design and 

implementation of the ASTI optimizer for IBM’s XL compiler, pioneering advanced pro-

gram transformations such as loop distribution, tiling, and scalar replacement, seamlessly 

integrating cutting-edge compiler techniques into product. 

Among Vivek’s most influential contributions is the design of the X10 programming 

language, an object-oriented approach to improve the productivity of high-performance 

computing. His seminal paper, X10: an Object-Oriented Approach to Non-Uniform Clus-

ter Computing [2], which introduced innovative programming abstractions for parallel 

and distributed systems, won the Most Influential Paper Award for OOPSLA 2005 and 

continues to shape research in scalable parallel programming. 

Vivek also led the development of the Jikes Research Virtual Machine 

(RVM) [1, 3], an open-source JVM that enabled experimentation with advanced vir-

tual machine technologies and influenced the evolution of managed runtime systems. It 

has been used by over 100 universities worldwide, serving as the foundation for more 

than 200 research publications, 40 doctoral dissertations, and 20 universitylevel courses. 

The project was honored with the prestigious SIGPLAN System Software Award in 2012.
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In academia, Vivek has been a transformative leader, serving as Department Chair 

at Rice University and Georgia Tech, and now as Dean of the College of Computing at 

Georgia Tech. At Rice, he led the Habanero Extreme Scale Software Research group, 

which introduced novel runtime systems and programming models, such as task-parallel 

abstractions and data-driven synchronization primitives, that significantly advanced the 

productivity and scalability of extreme-scale parallel applications. 

Fig. 1. IBM ASTI team photo with Prof. Vivek Sarkar. 

Beyond his research, Vivek has played pivotal roles on advisory committees such as 

the US Department of Energy’s Advanced Scientific Computing Advisory Committee 

(ASCAC) and as co-chair of the CRA-Industry Committee. A recipient of the presti-

gious ACM-IEEE CS Ken Kennedy Award, his influence spans the global computing 

community, fostering collaboration between academia and industry. 

It was heartwarming to witness the overwhelming response to VIVEKFEST, held 

on October 21, 2024, in Pasadena, California, as part of SPLASH’24. This symposium 

brought together many of Vivek’s collaborators, colleagues, current and former stu-

dents, industrial fellows, and friends to celebrate his remarkable career. The day-long 

event featured an exceptional lineup of technical talks highlighting Vivek’s contribu-

tions to programming languages, compiler technologies, and runtime systems. These 

presentations were punctuated with personal anecdotes and references to Vivek’s work. 

Attendees traveled from far and wide to honor Vivek’s legacy on October 21, 2024, 

underscoring the far-reaching impact of his work. The symposium also provided an 

opportunity to relax and socialize during the evening reception, where colleagues and 

friends shared their appreciation for Vivek’s mentorship and his tireless efforts to advance 

the field. The event was a fitting tribute to a career that has profoundly shaped computing 

research and education.
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Fig. 2. Vivek with the Jikes Research Virtual Machine (RVM) team in 2001 

Fig. 3. Research team led by Prof. Vivek Sarkar, pictured at Rice University 

We, as organizers, are deeply thankful to the authors who contributed their research 

contributions to this volume and to the reviewers who provided invaluable feedback. 

Special thanks to Springer for publishing this Festschrift as part of their Lecture Notes 

in Computer Science series. 

Beyond his scholarly contributions, Vivek’s leadership and mentorship have inspired 

generations of computer scientists, fostering a culture of excellence and collaboration. 

A remarkable scholar and visionary, Vivek is also a great human being whose humility 

and warmth have touched countless lives. His dedication to his family reflects his values 

as a devoted husband and father, embodying the balance of professional achievement 

and personal fulfillment. As we celebrate his 64th birthday, we recognize that Vivek’s 

journey is far from over and look forward to his continued contributions in addressing 

the challenges of exascale computing. 

This Festschrift serves as a tribute to his extraordinary achievements and a source of 

inspiration for those who follow in his footsteps.
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Fig. 4. Research team led by Prof. Vivek Sarkar, pictured at Georgia Tech 

Fig. 5. Vivek Sarkar with his beloved wife, Ranta Sarkar
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Happy 64th birthday, Vivek! Thank you for your lasting contributions, your men-

torship, and your unwavering commitment to advancing the frontiers of computer 

science.

November 2024 Rajkishore Barik 

Rajiv Gupta 

Jens Palsberg 
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Photos from the Symposium 

Fig. 6. Attendees of the VIVEKFEST Festschrift Symposium (Photo by Madhurima 

Chakraborty)



xiv Photos from the Symposium

Fig. 7. A memorable dinner with colleagues on the eve of the VIVEKFEST celebration
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Fig. 8. VIVEKFEST kicks off with an opening address by Vivek’s former doctoral student, 

Rajkishore Barik 

Fig. 9. Prof. Vivek Sarkar delivering his inspiring speech



xvi Photos from the Symposium

Fig. 10. Prof. V. Krishna Nandivada sharing his stories about Vivek 

Fig. 11. Prof. Tiago Cogumbreiro sharing his stories about Vivek



Photos from the Symposium xvii

Fig. 12. Prof. Ganesh Gopalakrishnan sharing his stories via pre-recorded video 

Fig. 13. Prof. Zoran Budimlić sharing heartfelt stories through a pre-recorded video



Personal Notes for Vivek 

From Evelyn Duesterwald Vivek is such an inspiring role model, equal parts technical 

brilliance and genuine care for the people around him. I am still a little sad he left IBM 

so early, it’s not the same without him. 

From John Richards Vivek has made profound contributions to high productivity 

systems and X10. 

From Michael Hind Vivek was like that great parent, you remember the things he did, 

but also later realize the things he didn’t do. He allowed you to be independent, be 

innovative, and grow. 

From John Field Heartfelt congratulations to Vivek on his 64th year of contributions 

to the world! 

I had the great pleasure of working under Vivek at IBM Watson. There, he practiced 

the fine art of maintaining a protective shield over research projects in his domain while 

nudging new work in directions most likely to yield funding and recognition. The lessons 

I learned from Vivek played a major role in shaping my own approach to management 

at Google. 

Vivek, I wish you many more years of influence and renown! 

From Mark Wegman Vivek did have an important career at IBM. I think he learned 

some stuff here as well as contributing. 

From Jinfan Shaw Thank you for your kind invitation to VivekFest in celebration of 

Vivek Sarkar’s 64th birthday. It is with great pleasure that I learned of this event honoring 

a former colleague whose contributions to the ASTI project at IBM I hold in high esteem. 

While I am unable to attend the event in person due to prior commitments, I would 

have been honored to participate and share my recollections of our collaboration on the 

ASTI project. 

I first met Vivek in 1988 during a presentation on Parallel Fortran at Watson Research. 

A subsequent conversation during a leisurely post-lunch walk around the Hawthorn 

research center proved to be both stimulating and enjoyable. 

In early 1990, Vivek joined the VS Fortran team at the Silicon Valley Lab to take 

the lead in designing and implementing the transformer component of the ASTI opti-

mizer. Under his direction, the transformer was developed to perform a range of pro-

gram transformations including loop distribution, interchange, reversal, skewing, tiling, 

fusion, unrolling, and scalar replacement of array references. The ASTI transformer was 

designed to select these optimizations automatically. 

Leveraging his research background and connections at IBM Research, Vivek was 

instrumental in incorporating static single assignment (SSA) and Interprocedural Anal-

ysis into the ASTI optimizer. Subsequently, he collaborated with the Toronto compiler
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group to integrate the ASTI optimizer into the IBM XLF compiler for RS/6000 and 

PowerPC systems. 

I extend my warmest congratulations to Vivek on his birthday and look forward to 

hearing more about VivekFest.
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Retrieving Unknown SMT Formulas 

via Structural Mutations 

Shuo Ding and Qirun Zhang( B)

Georgia Institute of Technology, Atlanta, GA 30332, USA

sding@gatech.edu, qrzhang@gatech.edu 

Abstract. Satisfiability Modulo Theories (SMT) solvers are fundamen-
tal tools for program analysis and verification. The satisfiability problem 

for first-order logic is undecidable. In practice, SMT solvers typically 

employ various heuristics and are inherently incomplete. Solvers return 

unknown if they cannot solve a particular formula. The unknown results 
drastically hinder the usability of SMT solvers and directly affect client 
applications. The standard way to reduce unknown cases  is  to  develop  

more powerful solvers, which requires significant algorithmic and engi-
neering efforts. 

This work-in-progress paper discusses a new perspective on improv-
ing SMT solving: instead of developing more powerful solvers for all 
formulas, we focus on mutating “hard” formulas (unknown formulas) to 

make them “easier” to solve. That gives us enormous flexibility to pro-
cess unknown formulas without affecting normal formulas. Specifically, 
given an unknown formula and a solver, we propose t o repeatedly modify
the formula via structural mutations. Our key insights are (1) structural
mutations make formulas smaller so that they are presumably easier to
reason about, and (2) structural mutations approximate formulas so that
we can reason about the original formulas indirectly. Then, we utilize the
same solver to solve the mutated formulas to retrieve the sat/unsat results
of the original unknown formulas.

1 Introduction 

Satisfiability Modulo Theories (SMT) is a powerful formulation that can express 
many problems arising in symbolic execution [12,30], formal verification [7,23], 
program synthesis [19], etc. An SMT problem instance describes a first-order 
logic formula with respect to certain background theories. SMT solvers are soft-
ware tools for deciding the satisfiability of SMT formulas. Z3 [25] and CVC4 [5] 
(now succeeded by CVC5 [3]) are two widely used SMT solvers. However, it 
is well-known that the satisfiability problem for first-order logic is undecidable. 
In addition to theoretical restrictions, modern SMT solvers also face practi-
cal issues, including incomplete implementations and resource limits. T herefore,
practical SMT solvers return unknown results for formulas that they cannot solve.
In the popular Satisfiability Modulo Theories Competition (SMT-COMP), in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 1–10, 2025. 
https://doi.org/10.1007/978-3-031-97492-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_1&domain=pdf
http://orcid.org/0000-0003-0843-0729
http://orcid.org/0000-0001-5367-9377
https://doi.org/10.1007/978-3-031-97492-2_1
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many tracks, a solver receives a zero “correctly solved score” if the check-sat

command returns unknown [4]. In practice, SMT solvers strive to offer best-effort 
answers by solving a s many formulas as possible.

The standard way to reduce unknown cases is by improving solvers, including 

developing new algorithms and engineering better solvers. That is challenging 

and time-consuming due to both the theoretical hardness of SMT solving and the 

implementation issues of such complex systems. For example, CVC4’s bitvector
rewriting rules contain more than 3.5K source lines of code [32]. From users’ 
perspective, it is possible to try solvers’ available options or tactics, or even 

different solvers to handle unknown cases, but there are usually a limited number
of choices at a given time.

We consider a source-level approach for improving SMT solving. Rather than 

developing more powerful solvers for all formulas, we focus on “hard” formulas 
for which solvers return unknown. Working directly on unknown formulas enables 
unique opportunities for employing solver-agnostic source-to-source transforma-
tions to make “hard” formulas easier to solve. Specifically, given an unknown 

formula φ for a specific solver, we propose a technique called structural muta-
tions to pe rform lightweight rewriting on φ and obtain a mutated formula φ′.
Then we apply the same solver on φ′ to reason about φ indirectly. There are two
key observations that underlie structural mutations:

– Small formulas are easier to solve. In general, smaller cases have simpler 
structures and are presumably easier to reason about. A similar observation 

exists in compiler testing, where developers s trongly encourage submitting
small, reproducible test programs because it is easier to manually inspect
small test cases [36]. Indeed, well-known production compilers such as GCC 

and LLVM always advocate test reduction [31] in bug reporting processes [17, 
24]. Following the same observation, our structural mutations produce smaller 
form ulas that are generally “simpler” to solve.

– Approximations enable indirect reasoning of formulas. Approximations, which 

are used in many SMT solving techniques [8,11,20], enables indirect reasoning 

of formulas. By mutating the original formula, our technique can either over-
or under-approximate the original unknown formula. For example, we can 

perform a structural mutation by deleting a top-level conjunct, which relaxes 
the original unknown formula and pro vides an over-approximation. If the over-
approximated formula is unsat, the origin formula must be unsat. Figure 1 

describes the rationale for retrieving unknown formulas via ov er- and under-
approximations.

2 Motivating Examples 

This section gives two motivating examples of reasoning about unkno wn formulas
via structural mutations.

Figure 2 gives a formula [2] in the LIA (Linear Integer Arithmetic) category 

of the SMT-LIB benchmarks. Z31 reports unknown on the original formula in Fig. 2

1 We use commit 11477f1 (December 16, 2020) for Z3.
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Fig. 1. Satisfiability relations between the original formula φ, the under-approximated 

version φunder, and the over-approximated version φ over. Arrows in the figure represent
implication relations.

due to incomplete quantifiers. We mutate the original formula by deleting the 

third assertion (lines 15–20, inclusive). With fewer assertions, we clearly have 

obtained a “relaxed” version of the original formula. Z3 can successfully report 
unsat on our over-approximated formula. Therefore, w e can conclude that the
original formula is unsatisfiable because even the over-approximated formula is
unsatisfiable (the “←” direction in Fig. 1). 

Figure 3 gives a formula [1] in the AUFLIA (Arrays, Uninterpreted Func-
tions, and Linear Integer Arithmetic) category of t he popular SMT-LIB bench-
marks. CVC42 reports unknown on the original formula in Fig. 3a because the 

solver is incomplete in this case. We mutate the original formula by instan-
tiating the free variable n (line 3) to the constant 0. Clearly, this is an under-
approximation because it restricts the value of n. CVC4 can successfully solve the 

under-approx imated formula and return sat. Because the under-approximated
version is satisfiable, it implies that the original formula is satisfiable (the “→”
direction in Fig. 1). Moreover, CVC4 can generate a model in Fig. 3b for the 

under-approximated formula. The model assigns false and 0 to the uninterpreted 

functions f and v, respectively. It is straightforward that appending n  =  0  to the 

model gives us a model of the original formula, because if we evaluate the for-
mula on this model, the assertion becomes “there does not exist an x such that
1 ≤ x ≤ 0 and . . . ”, which is clearly true.

3 Structural Mutations 

SMT formulas are first-order logic formulas with respect to different background 

theories. A theory over a signature Σ could be defined as a set I of interpretations 
for Σ,  and  I is also called the models of T . Under a background theory T ,  we  

use φ(�x) to represent a SMT formula with free variables �x as a vector. φ(�x)  is  

satisfiable if and only if there exists a model of T in which φ(�x) evaluates to 

true. Otherwise, the formula is unsatisfiable. In practice, a model M of φ(�x) 
usually refers to a function that maps each free variable in �x to a value of the
corresponding sort, such that φ(�x) evaluates to true under this assignment and
the corresponding theory. We adopt this function-mapping view of models in
later sections. Moreover, we assume a fixed background theory T over a signature
Σ. Let FΣ be the set of formulas over Σ.

2 We use commit 80e0246 (December 16, 2020) for CVC4.
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Fig. 2. An over-approximation example for Z3, where the over-approximation is real-
ized by removing the third assertion (line 15–20, inclusive).

Fig. 3. An under-approximation example for CVC4, where the under-approximation 

is realized by instantiating the free variable n (line 3) to 0.

Definition 1 (Structural Mutations). A structural mutation M is a func-
tion from FΣ to FΣ such that for each φ ∈ FΣ, M(φ) could be obtained by replac-
ing n (n  >  0 and n may depend on φ) non-overlapping subterms f1,  f2, ..., fn in 

φ with n new terms g1, g2, ..., gn simultaneously, where for each i ∈ {1, 2, ..., n},
fi and gi are of the same sort.

The essence of structural mutations is approximating unknown formulas. The 

usefulness of retrieved satisfiability results is strongly correlated to the approx-
imation directions. Based on Fig. 1, if solvers return sat for over-approximated 

formulas φover, the result is uninformative. Similarly, the unsat result from 

under-approximated formulas φunder is uninformative as well. Straightforward 

and unguided approximations can easily lead to uninformative results. In the
ideal case, approximations achieved by structural mutations need to be effec-
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tive (i.e., they could make unknown formulas solvable) and admissible (i.e., they 

should not lead to uninformative results).
Unfortunately, there is a tension between effectiveness and admissibleness, 

and finding a sweet spot of approximations is challenging. To tackle the chal-
lenge, we devise fine-grained mutations to strike a balance between these two 

competing needs. Specifically, by repeatedly applying small structural mutations 
to the original formula, we get a directed acyclic graph (DAG) of mutated for-
mulas whose nodes are formulas and edges are approximation steps. The graph 

is acyclic because our mutations strictly reduce formulas. Then, based on the 

satisfiability results of running solvers o n mutated formulas, we can perform a
backtracking search on this DAG to refine the approximated formulas φ′. Con-
sequently, the feedback-based iteration guides structural mutations toward the

useful directions (depicted as “
implies

−−−−−→” and “
implies

←−−−−−”) in Fig. 1. Our fine-
grained mutation process resembles abstraction refinements. However, common 

abstraction refinement techniques for SMT solvers (e.g. the mixed abstraction
technique [8]) are not directly applicable because they (1) do not explicitly handle 

the unknown cases and (2) finally, always resort to the most p recise abstraction
(the original formula) but in our case, the original formula is unknown.

We propose four concrete structural mutations. The mutations are both 

reducers and approximations (i.e., they can both reduce and approximate the 

original formulas). Moreover, they are all theory-independent, meaning that they 

could be applied to all background theories. In our mutations, a top-level disjunc-
t/conjunct denotes a disjunct/conjunct whose corresponding disjunction/con-
junction is at the root of the formula’s abstract syntax tree (AST). For example,
in P ∨ Q, P is a top-level disjunct. A non-trivial disjunct/conjunct is a disjunc-
t/conjunct that is not the literal false/true. A non-trivial subterm is a subterm
that is not a single free variable.

– Removing Top-Level Disjuncts (U∨): Replacing the first top-level non-trivial 
disjunct (if it exists) with false is a structural mutation. It is a reducer with 

respect to the number of top-level non-trivial disjuncts. It is also a domain-
preserving under-approximation. Note that changing P ∨ Q to false∨Q could
still be regarded as domain-preserving, because false ∨ Q could be regarded
as a formula with free variables {P,Q} while P is not used.

– Instantiating Free Variables (Uin): Replacing all occurrences of the first 
occurred free variable (if it exists) with one value in its sort is a structural 
mutation. It i s a reducer with respect to the number of free variables. It is
also a domain-adjusting under-approximation.

– Removing Top-Level Conjuncts (O∧): Replacing the first top-level non-trivial 
conjunct (if it exists) with true is a structural mutation. It is a reducer with 

respect to the number of top-level non-trivial conjuncts. It is also a domain-
preserving over-approximation.

– Abstracting Subterms (Oterm): Replacing the first non-trivial subterm that 
does not contain variables bound by quantifiers (if it exists) with a new free 

variable of the same sort is a structural mutation. It is a reducer with respect



6 S. Ding and Q. Zhang

to the number of non-trivial subterms. It is also a domain-adjusting over-
approximation.

Note that some mutation steps could be interpreted as several different 
approximations. For example, replacing P in P ∧ Q with true could be regarded 

as a domain-adjusting under-approximation Uin or a domain-preserving over-
approximation O∧. The actual effect is preserving the satisfiability because both
the original formula P ∧ Q and the modified formula true ∧ Q are satisfiable.

The definitions in Sect. 3 impose constraints such as “replacing the first top-
level disjunct” when there are multiple top-level disjuncts, so each application of 
mutation produces only one transformed formula. It is possible to remove those 

constraints and get multiple mutated formulas in each step. Therefore, we can 

get more mutated formulas to use in practice. If we regard the mutated formulas 
as nodes and approximation steps as directed edges, we form a directed acyclic
graph (DAG). It is a DAG because there is no cycle due to the reducer property.
We call the graph “under-approximation DAG” or “over-approximation DAG”.

Our unknown formula retrieval algorithms repeatedly apply and revert muta-
tions on the original formula. Thus, it forms a process of adjusting the approxi-
mations (making more or fewer approximations) along the corresponding under-
or over-approximation DAG. Recall that approximations can be uninformative 

(e.g. over-approximating a formula φ to a sat formula φ′ is uninformative since 

it provides no information about φ). To avoid encountering too many uninfor-
mative cases, our structural mutation framework prunes the adjusting process 
based on over- or under-approximation DAG: if we over-approximate the for-
mula φ to a satisfiable formula, we don’t need to continue the current branch of
over-approximation since further over-approximations can only produce uninfor-
mative approximations. Similarly, if we under-approximate the formula φ to an
unsatisfiable formula, we can stop the current branch of under-approximation.

4 Related Work 

Formula simplification techniques have been developed to simplify form ulas
for SMT solvers [14,33,34]. These techniques, however, produce equivalent or 
equisatisfiable formulas, and thus often need to do sophisticated reasoning 

about Boolean logic and underlying theories. Our structural mutations relax 

the requiremen t from equivalence or equisatisfiability to approximations, and
thus produce transformations that are easier to reason about.

Approximations have also been widely used to solve SMT form ulas. The
DPLL(T) framework [15,28,29], which forms the basis of many modern SMT 

solvers, leverages the Boolean abstraction of the original formula and then refines 
the abstraction using information provided by theory-specific solvers. De Moura
and Rueß [27] have proposed lemmas on demand, which is also an abstraction 

refinement process. Approximations can also be done in the theory/first-order
layer [10,26]. Bauer et al. have proposed a technique that can ignore parts of 
the Boolean abstraction that do not affect the overall truth value [6]. Explicit
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approximations have been introduced to SMT solvers to m odel bit-vector oper-
ations [20,37] and bit-vector values [9]. SMT solvers can also alternate between 

over-approximations and under-approximations [11,21,22], as well as mixing 

them altogether [8]. Approximations also help to simplify formulas [33], to change 

the decidability of certain formulas [16], etc. In the refinement aspect, techniques 
similar to counter-example guided abstraction refinement [13] are well-developed 

in SMT solvers. Approximating formulas can also happen o utside solvers. For
example, concolic testing [18,35] simplifies formulas by instantiating variables 
before using solvers to solve them. Compared with those existing techniques, our 
structural mutations are solver/theory-independent, are not part of any solver 
or automated reasoning tools, and can be applied to almost all types of formulas.

5 Conclusion 

This paper has discussed a source-level approach to improve SMT solving: 
instead of improving solvers for all possible input formulas, we focus on mutating 

(approximating) formulas that are already unknown to solvers. As the next step, 
we plan to conduct an extensive study to validate the idea on real-world SMT 

constraints. 
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Abstract. This study investigates the performance of asynchronous 
actor programming and synchronous Partitioned Global Address Space 

(PGAS) versions of graph kernels on a Cloud platform and a High-
Performance Computing (HPC) platform. Using the Bale suite of 
graph microkernels, we compare the execution times of kernels imple-
mented with OpenSHMEM (synchronous PGAS) and HClib-actor (asyn-
chronous) on both Azure Cloud with Ethernet and an HPC cluster 
with InfiniBand. Our results reveal significant performance differences 
between these platforms. While the asynchronous version outperforms 
the synchronous version in both settings, the performance gap is dra-
matically wider on the Cloud platform, with the asynchronous version 

showing up to 1,000x improvement over the synchronous version in some 

cases. Moreover, we observe highly v ariable execution times in the Cloud,
likely due to shared resource interference and unpredictable data center
traffic. These findings highlight the importance of choosing appropriate
programming models for different computational platforms, especially as
Cloud platforms are becoming more affordable and easier to access com-
pared to traditional HPC clusters. Our work provides valuable insights
for both researchers and practitioners in optimizing parallel program-
ming strategies across diverse computational settings.

Keywords: The Actor Model · PGAS · Cloud Computing · HPC ·

High-Performance Graph Analytics

1 Introduction 

1.1 Background 

Large-scale clusters have grown rapidly in recent times - a phenomenon under-
stood to be the consequence of the end of Moore’s law and Dennard scaling, 
which has led to limits on the potential performance gain from a single chip. 
This has led to the rise of scalable programming models that can utilize the
capabilities of such clusters effectively. In particular, there has been a growing
interest in employing the Partitioned Global Address Space (PGAS) model [13], 
which gives the programmer an illusion of shared memory programming for such
large-scale platforms.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 11–21, 2025. 
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Coordination between nodes in PGAS is typically done with Bulk-
Synchronous-Parallel (BSP) communication, but recent work [11, 12]  shows  the  

promise of enabling actor-based fine-grained asynchronous messaging with mes-
sage aggregation in large-scale graph applications. Specifically, [11, 12] show that 
the abstraction of asynchronous actor/selector programming allows graph algo-
rithms to be expressed very e fficiently while allowing for intuitive programming.
HClib-actor [11] is a PGAS runtime that leverages the concept of selectors -
independent computational entities, or actors, that communicate via message 

passing - to achieve high levels of concurrency without the pitfalls of traditional
locking mechanisms. Selectors are derived from [8] and are a modification of the 

more conventional actor model (originally proposed in the 1970s [7]), where each 

actor possesses multiple mailboxes.
Cloud computing and high-performance computing (HPC) clusters represent 

two prevalent environments where these programming strategies are deployed. 
Cloud computing offers scalable, on-demand resources via platforms such as 
Azure, AWS, GCP, and numerous others, coupling flexible resource allocation 

and cost efficiency. Historically, Cloud infrastructures were predominantly uti-
lized for internet services, which relied on inexpensive off-the-shelf hardware, 
with their computing capabilities not matching those of dedicated HPC clusters. 
This disparity was not only due to the differences in processing power but also 

due to the faster communication networks used in clusters, like Infiniband, com-
pared to the slower Ethernet-based connections in Cloud setups. However, recent 
advancements have significantly bridged this gap. Improvements in Cloud tech-
nologies, such as the availability of specialized interconnects like Mellanox Infini-
band in the public Cloud, have enhanced communication efficiencies, allowing
Cloud infrastructures to become more comparable to traditional clusters. Despite
these advancements, the Cloud environment still poses unique challenges, such
as issues related to virtualization and the non-deterministic nature of locality,
which can significantly affect performance. Conversely to the heterogeneity of
the Cloud, HPC clusters are characterized by dedicated, largely homogeneous
hardware and optimized network topologies designed for maximum performance
and efficiency in executing large-scale computations.

1.2 Motivation 

The HPC community has identified that network noise in the Cloud can be a 

performance bottleneck in previous studies [6]. In this study, we build upon 

past works by seeking to understand how composing HPC programs, either 

using asynchronous actor programming or synchronous SHMEM models, affects 

their performance on the Cloud versus HPC clusters. Industry practitioners and 

researchers often assume that the performance characteristics observed in one 

environment will translate to another, yet this is not always the case. The unique
architectural and operational differences between Cloud platforms and HPC clus-
ters can significantly impact the performance of parallel programming models.

Our preliminary experiments have shown that the performance difference 

between asynchronous message passing and blocking strategies is more pro-
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nounced in the Cloud compared to traditional HPC clusters. This observation 

prompts a deeper investigation into the factors contributing to this discrep-
ancy. Understanding these factors is crucial for making informed d ecisions about
deploying concurrent systems in various environments and optimizing perfor-
mance and resource utilization.

1.3 Objectives 

This work studies the performance of asynchronous actor programming and syn-
chronous PGAS (SHMEM) strategies in Cloud environmen ts versus HPC clus-
ters. More specifically, we:

– measure and compare the performance of graph kernels written in HClib-
actor (an asynchronous actor programming runtime) and an equivalent n on-
asynchronous version on both Azure Cloud and HPC clusters.

– identify and analyze the factors contributing to the observed performance dif-
ferences in these environments and provide insights and recommendations f or
industry practitioners on deploying these programming strategies effectively
in different computational settings.

By addressing these objectives, this paper seeks to bridge the knowledge gap 

between theory and practice in the realm of HPC-on-the-Cloud, offering valuable 

guidance to academia and industry. The findings of this study are expected to 

inform future researc h and development in optimizing the deployment of asyn-
chronous and blocking strategies in diverse computational environments.

2 Related Work 

2.1 Partitioned Global Address Space (PGAS) 

PGAS [ 1, 13] is a parallel programming model that provides a global memory 

address space partitioned among the pro cessors. Languages such as Unified Par-
allel C (UPC) [3], Chapel [2], and X10 [5] have implemented PGAS concepts to 

simplify the memory access semantics, thereby enhancing the productivity and
performance of parallel application development.

The OpenSHMEM programming model [4], one implementation of PGAS, 
provides efficient one-sided communication primitives that allow a process to 

directly access the memory of another process without the involvement of the 

target process’s C PU. This feature is particularly beneficial for achieving low-
latency communication in HPC environments.

2.2 Asynchronous Actor Programming 

The asynchronous Actor programming model has been the subject of active 

research and development for several decades. Initially introduced in the late
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1970s, it is designed to provide a natural abstraction for concurrent compu-
tation. In this model, “actors” are the fundamental units of computation that 
encapsulate state and behavior, communicate via asynchronous message pass-
ing, and make decisions based on the messages they receive. This decoupling of
computation and communication helps achieve high concurrency and scalability
levels.

Recent advancements in Actor-based programming frameworks, such as 
Akka, Erlang, and Orleans, have demonstrated the effectiveness of this model in 

building robust, scalable, and fault-tolerant distributed systems. These frame-
works leverage the actor model to manage complex concurrency issues, making 

them popular choices for developing distributed applications in industry and
research settings. The actor model’s adaptability to various domains, including
real-time data processing, telecommunications, and Cloud computing, under-
scores its relevance and potential.

2.3 Cloud Environments 

With the growing adoption of Cloud computing for large-scale computational 
tasks, there has been increasing interest in evaluating the performance of parallel 
programming models in Cloud environments. Cloud platforms such as Microsoft 
Azure, Amazon Web Services (AWS), and Google Cloud offer scalable and cost-
effectiv e solutions for running parallel applications. Though, they still introduce
new challenges, such as network virtualization, variable latency, and resource
contention.

Little prior research explores how these Cloud-specific factors impact the 

performance of asynchronous actors and PGAS models. The authors believe 

that Cloud environments’ inherent elasticity and resource abstraction can lead 

to performance differences from those observed in traditional HPC settings. For 
example, the virtualization layer in Cloud platforms can introduce additional
latency, which may affect the efficiency of synchronous communication patterns
more than asynchronous ones.

2.4 Gaps and Opportunites 

While there is extensive literature on the performance of asynchronous actor and 

PGAS programming models in HPC environments, relativ ely few studies focus
on their performance in Cloud computing contexts.

This study aims to fill this gap by providing a detailed comparative analysis of 
asynchronous actor-based programming (HClib-actor) and PGAS programming 

(OpenSHMEM) on the Azure Cloud platform. By focusing on graph microker-
nels, which are representative of a wide range of real-world applications, this 
research offers actionable insights for industry practitioners looking to optimize
Cloud-based applications and academics interested in advancing the state of
parallel computing research.
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3 Methodology 

3.1 Experimental Setup 

Our experiments involve running the same set of kernels on a Cloud platform 

and an HPC cluster. We use the PACE [10] cluster for the HPC platform and 

Azure D-series virtual machines for the Cloud platform. Since we are focused on 

the latency overheads introduced by the network, we utilize only one core per 
machine on both platforms. PACE nodes use Intel Xeon Gold 6226 CPUs, while 

Cloud nodes utilize Intel Xeon Platinum 8473C CPUs. PACE is equipped with 

InfiniBand networking; all nodes are in the same data center. The networking 

between Cloud nodes is far more heterogeneous and more liable to changing 

data center traffic. There exists only a region-level locality guarantee. Finally, 
to keep findings general to most Cloud networks, we chose not to enable Azure-
only networking features like single-root input/output virtualization (SR-IOV) 
or proximity placement. The latter does not offer locality guarantees beyond 

best effort and, in practice, the performance benefit observed was small enough
that we chose to turn it off to make our results more generalizable. In the same
spirit of targeting a “generic cloud” machine and network, we decided not to
use Azure’s “HPC-optimized” offering, which includes a setup very similar to an
HPC Cluster, such as having Infiniband networking between nodes. The D-series
VMs we picked for experiments use Ethernet.

3.2 Benchmark and Metric 

In this study, we employ the Bale suite of graph microkernels to evaluate the per-
formance of asynchronous actor-based programming and blocking PGAS models. 
The Bale suite includes seven k ernels designed to capture a wide range of irreg-
ular access patterns common in many applications:

1. Histogram: Builds histogram from a set of randomly generated data, some
remote and some local.

2. Index Gather: Gathers elements from a (remote) array b ased on a list of
indices.

3. Permute: Permutes the elements of a n array.
4. Randperm: Generates and stores a random permutation of array elements.
5. Transpose: Transposes a large, s parse matrix.
6. Triangle: Count the number of triangles (three-degree c ycles) in a sparse

graph.
7. Toposort: Topological sort on a sparse DAG.

These benchmarks collectively cover a variety of computational tasks over 
sparse matrices. For each kernel, we study three PGAS versions - one that is 
implemented in OpenSHMEM (and uses synchronous communication) and two
asynchronous versions - one implemented using the Conveyors message aggre-
gation library [9], while the other uses the HClib-actor runtime [11, 12]  which  is  

built on top of the Conveyors library. The measured metric is execution time in
seconds.
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Fig. 1. Comparing relative Speedup of Selector over OpenSHMEM variant for two 

graph kernels on an HPC Cluster and the Cloud. Note that the vertical axis is loga-
rithmic.

4 Experimental Observations 

This section details our observations from running the Bale suite on both plat-
forms. To restate our goal, we are empirically studying the question: How many 
times faster is the selector version compared to the synchronous Open-
SHMEM version? The speedup comparisons across these two platforms are
depicted in charts for two kernels in Fig. 1. Aggregates of execution time for 
each kernel across three programming models and both platforms are provided
in Table 2. Charts depicting this data are provided in Fig. 2 - since the difference 

in execution times between kernel versions is extreme on the Cloud, we have 

used a logarithmic axis (base-10) for the columns on the right, e xcept for the
very first figure where we use a linear scale to show the standard error better.

Table 1. Speedup gained from asynchronous actors over Bale graph kernels. Speedup 

on the HPC cluster is displayed in the shaded (blue) columns and Speedup on the 

Cloud is displayed in unshaded (white) columns. Speedup is computed as the quotient
resulting from the selector version running time divided by the OpenSHMEM version
running time from Table 2. 

Number of PEs 

Kernel 2 2 4 4 8 8 16 16 

histogram 11.9 56.5 11.6 124.2 13.1 171.7 12.6 146.2 

index-gather 14 196.7 20.2 387.3 23.1 442.1 23.9 379.1 

permute 13.8 249.8 20.1 582.5 22.9 704.6 23 690.9 

randperm 9.8 155.8 11.3 335.7 11.7 397.9 11.5 387.6 

topological sort 39 555.6 46.8 905.9 50.5 921.6 48.2 380.9 

matrix transpose 22.7 451.2 25 792.7 26.1 1206.9 25.5 833.9

triangle counting 15.7 356 22.6 725.3 26 914.5 27.1 876.5
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Table 1 provides speedup data across the Cloud and Cluster platforms for all 
kernels .

From the observations, the easy-to-predict insight is that the HPC cluster 
is faster than the Cloud due to the cluster having a dedicated interconnect. 
However, this study also revealed several interesting performance facts, including 

the variation in execution times on the Cloud and the incredible improvements 
wrested by switching to asynchronous communication on such slower networks.

Table 2. Bale suite running times on an HPC cluster and a Cloud environment. All 
running times are in seconds. Cluster running times are in shaded (blue) columns and 

Cloud running times are in unshaded (white) columns. All values are computed as
averages of five executions.

Average running time per kernel Number of PEs 

Kernel Version 2 2 4 4 8 8 16 16 

conveyor 0.2832 2.8876 0.2926 1.7036 0.2934 2.023 0.3032 6.3998 

selector 0.3608 2.7106 0.3644 1.9702 0.3548 1.7934 0.3798 5.0764histogram 

shmem 4.2676 153.053 4.202 244.629 4.6294 262.0524 4.7478 608.085 

conveyor 0.6378 9.0226 0.6548 6.9162 0.662 6.0698 0.6724 6.7602 

selector 0.8116 8.633 0.815 6.7688 0.82 6.2924 0.85 7.5202index-gather 

shmem 11.3134 1697.404 16.3852 2620.942 18.9024 2781.248 20.2506 2850.5 

conveyor 0.285 2.4858 0.2922 2.5552 0.2892 1.9004 0.3132 2.3514 

selector 0.3304 2.6586 0.3312 1.8768 0.3376 1.695 0.3606 2.029permute 

shmem 4.5272 664.108 6.6486 1093.146 7.6992 1194.291 8.2578 1401.715 

conveyor 0.2338 1.3418 0.2396 1.0888 0.2416 1.1378 0.2558 1.4236 

selector 0.265 1.6654 0.2682 1.2648 0.273 1.3332 0.2872 1.51randperm 

shmem 2.594 259.461 3.007 424.518 3.1876 530.468 3.2786 585.274 

conveyor 0.1088 1.2472 0.1112 1.189 0.1128 1.344 0.1162 2.3386 

selector 0.1464 1.2074 0.1492 1.1246 0.1518 1.2526 0.1676 3.172topological sort 

shmem 5.7026 670.719 6.979 1018.718 7.6578 1154.388 8.0726 1207.932 

conveyor 0.2568 1.4614 0.2584 1.0742 0.2606 1.1566 0.2758 1.6644 

selector 0.2824 1.422 0.2874 1.2322 0.2918 0.934 0.3072 1.578matrix transpose 

shmem 6.3982 641.528 7.1758 976.745 7.588 1127.212 7.8224 1315.747 

conveyor 0.5196 3.8704 0.5206 3.3188 0.5176 2.8854 0.5398 2.9268 

selector 0.6004 4.1872 0.604 3.2088 0.6088 2.59075 0.6266 3.0792triangle counting 

shmem 9.3682 1490.288 13.6376 2327.121 15.7818 2369.132 16.955 2698.743

Broad Advantages of Networking in Sparse Graph Operations. As can 

be seen in Table 2, in our experiments, all kernels perform much better on the 

HPC cluster, which is to be expected b y virtue of the latter having a n Infiniband 

100HDR interconnect.

Highly Variable Cloud Execution Times. We observe that the workloads 
on the Cloud have extreme variation, especially when executing the slower ker-
nels. For instance, the OpenSHMEM histogram kernel had a 68-second differ-
ence b etween the slowest and fastest observation on the C loud. However, on
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Fig. 2. Bale performance on the two test environments - HPC cluster (left column) 
and Cloud (right column). Note the vertical axes (i.e., execution times) use a linear 
scale in the figures in the left c olumn and a logarithmic scale in the figures (excl. the 

first row) in the right column. Continued to next page.
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Fig. 2. (continued) 

the Cluster, we observe that the variation between the slowest and fastest his-
togram kernel was in the order of milliseconds. We theorize that this is due to the 

non-deterministic nature of data-center traffic since we use shared resources. We 

control f or this variation by repeating each experiment 5 times with significant 
delay between runs. Each value in Table 2 represents the average execution time 

of 5 runs while the error bars in the left columns of Fig. 2 (and  in  the  first  row  

of the right column) represent the v ariation in times.

Orders-of-Magnitude Performance Boost with Asynchronous Actors. 
The results reveal a stark benefit of using asynchronous approaches like conveyors 
and selectors on the Cloud; on the HPC cluster, the selector version is at most
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one order of magnitude (10×−−  30×) faster, but this difference becomes two to 

three orders of magnitude (1000×) when we move to the Cloud. We attribute this 
performance gain to non-bloc king point-to-point communication with automatic 

message aggregation. We highlight the speedups in Fig. 1 and Table 1. 

5 Conclusion 

Our study reveals significant performance disparities between asynchronous 
actor programming and synchronous PGAS strategies in Cloud versus HPC clus-
ter environments. Asynchronous approaches show dramatically amplified bene-
fits in Cloud settings, with performance gaps widening from one order of magni-
tude in HPC clusters to two or three orders in the Cloud. We also observe high 

execution time variability in Cloud environments, underscoring the challenges 
of shared resources and fluctuating data center traffic. These findings emphasize 

the critical role of network infrastructure in sparse graph operations and suggest 
that asynchronous programming mo dels should be preferred for Cloud-based 

HPC applications, especially for workloads with irregular access patterns.

5.1 Opportunities and Future Work 

This work could be extended to perform cost modeling or estimation as an 

additional dimension to the performance executions we have presented. Future 

work could augment this study with the dollar values of running these kernels 
on each test environment. This study also limits itself to the most generally 

available type of virtual machine on the Cloud, where future work could study 

how specific configurations (usually restricted to a particular vendor) could offer 
performance improvements. Lastly, future work can focus on developing adaptive 

runtime systems to handle the unpredictable nature and elasticity of shared 

Cloud resources and further optimize asynchronous programming models for 
Cloud environments. 
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Abstract. Programming on modern computer architectures requires 
logic to utilize both multi-threaded CPUs and accelerators such as GPUs. 
This can be fraught with errors relating to transmitting and accessing 

memory not available to all compute resources. Moreover, once the pro-
grammer writes correct code for one system, it is often slow or incorrect 
when run on a different architecture. A bottom-up approach to solv-
ing this problem is reified in the C++ library Kokkos. We approach the 

problem top-down, distilling and generalizing concepts found therein. We 

design a small language, called H-IMP—which builds on an earlier model 
of Kokkos called MiniKokkos—with a type system that includes notions 
of device memory, accelerators, and safe memory access. We show that 
a well-typ ed program is safe, which in this context means that there are
no heterogeneous memory errors. Our type system enables us to define a
precise notion of a portable program as a program with free variables rep-
resenting where data is stored and kernels are executed. Finally, we prove
a portability theorem for heterogeneous programs: that the program can
run safely when instantiated on a specific set of architectures.

Keywords: programming languages · high-performance computing · 
heterogeneous c omputing · portability

1 Introduction 

Modern compute nodes are structured with a host CPU together with other 
kinds of accelerators, typically GPUs. While writing any programs that 
exploit this hardware is already a difficult task, writing programs that are also 

meant to be portable is compounded by the wide variety of GPU and on-CPU 

accelerator systems. To ease programming with such mac hines and to abstract
over the different hardware architectures, there exist many libraries and lan-
guages which offer a programming model to handle multiple parallel architec-
tures abstractly [2– 6, 8– 10, 13, 15]. In Kokkos [6, 13]—a library designed specifi-
cally for portability—accelerators are abstracted into a notion of execution spaces 
that we can run kernels on; an obvious example would be a GPU, but another 
example is an OpenMP kernel running on the CPU. To abstract different kinds
of memory accessible to different execution spaces, Kokkos has memory spaces;

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 22–33, 2025. 
https://doi.org/10.1007/978-3-031-97492-2_3
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for example, a GPU will have its on-chip memory. Importantly, these have dif-
ferent performance and accessibility properties depending on which execution 

space is being used. The host code, and only the host c ode, can allocate objects
which exist in these memory spaces; Kokkos calls these objects views.

While Kokkos provides an abstraction that enables portability, using the 

C++ library alone does not give us the extra reasoning to know whether our
code is indeed portable. Consider the following program:

Kokkos::View<int *, Kokkos::HostSpace> view ("V", 32); 

Kokkos::parallel_for(N, KOKKOS_LAMBDA(const size_t index) { 

view(index) = index; 

}); 

Implicit in this code is where the parallel for-loop is executed. Behind the 

scenes, this location is chosen by a configured default; this is how Kokkos code 

can be instantiated for different systems. If this execution space is configured 

to be some on-CPU space like OpenMP, then this code will run without issue. 
However, there exist instantiations of this default that will produce problems; 
for instance, using a CUDA execution space will result in a memory error when 

the code attempts to write to view. Thus, the code is only portable to a spe-
cific subset of systems. Kokkos allows us to avoid declaring the memory space 

explicitly and it will choose the memory space so that it matches the execution 

space, but then a portable program must include copying between host and this
memory space.

To describe a portable, heterogeneous program as a formal property, we
develop a small, formal language including these features alone. Our language
includes a type system that takes from two lines of work: region-based memory
management and security type systems. First, our system can be seen as a mod-
ification of the region calculus [1, 12] wherein locations are added to variables 
to automatically handle allocation and deallocation of objects. Our type sys-
tem also adds locations, i.e. memory spaces, to where Kokk os views are stored.
Second, we take inspiration from languages with features for information-flow
security [11] wherein code is tagged with either low or high security to restrict 
permissions. In Kokkos, we think of code being tagged with an execution space 

that restricts its permission to access certain memory spaces and operations. 
P ortability can then be defined by polymorphism over spaces in a manner which
respects these permissions.

Previous work [7] on modeling Kokkos as a small programming language, 
called MiniKokkos addressed the problem of deadlocks. Our language H-IMP, 
simplifies their execution model to focus on heterogeneous memory and device
permissions. Our contributions include the following:

– A core language (H-IMP) for heterogeneous hardware (Sect. 2). 
– An operational semantics that captures notions of different kernel-executing 

machines within a global execution of a program (Sect. 3).
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Fig. 1. H-IMP Syn tax.

– A type system that provides static checks on the spaces for both computa-
tions and memory (Sect. 4). Our appendix contains the detailed proof that 
well-typed programs are free of heterogeneous memory errors by means of a 

realizability m odel of the type system over its operational semantics.1

– An extension to H-IMP to include variables, like default , for execution and 

memory spaces. Thereby, we can give a concise, formal definition of what it
means for a program to be portable to other architectures (Sect. 5). More-
over, our space variables allow us to write programs for portable, multiple-
accelerator nodes that are curren tly not expressible in the Kokkos library.

2 A Syntax for Computing with Accelerators 

Figure 1 presents the syntax of H-IMP. The language is a heterogeneous mod-
ification of the language IMP, a common model for imperative languages [16]; 
similarly, we construct programs from statements which consist of commands 
and expressions. Whereas commands are used to modify program state imper-
atively, expressions compute pure values from the program state. To model the 

heterogeneity in a similar manner to Kokkos, H-IMP has execution and mem-
ory spaces. Execution spaces, denoted χ, are more general than mere devices; 
e.g. OpenMP is an execution space but may run on CPUs or accelerators. Simi-
larly, several different kinds of memory spaces, denoted µ, can exist on the same
device; each with different characteristics. For instance, some memory spaces,
like CudaUVM, are accessible from multiple execution spaces.

Though we specify a number of execution and memory spaces in Fig. 1,  these  

are not intended to be fixed sets, which is why they are written with ellipses. In 

later sections, we will see how one can expand and contract these sets as w ell
as describe their accessibility properties to influence the strength our portability
theorem for a specific program.

The imperative features of H-IMP are for mutating variables and views as 
well as launching kernels. There are two kinds of commands for declaring local 
variables: the first declares a local variable for an expression and the second 

declares a view in memory space µ while binding a pointer to it locally. Here,
we require that a view declaration include an explicit memory space where its
data is allocated; this is a necessary intermediate step to describing portable

1 The paper with appendix is available at https://proof.sandia.gov/#himp24. 

https://proof.sandia.gov/#himp24
https://proof.sandia.gov/#himp24
https://proof.sandia.gov/#himp24
https://proof.sandia.gov/#himp24
https://proof.sandia.gov/#himp24
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Fig. 2. Operational Semantics S yntax.

programs with default spaces in Sect. 5. Similar to the two kinds of variable 

access, we have two different notions of mutating variables: those for views and 

non-views. Other commands available are those for synchronizing the host with 

a particular execution space, copying between memory spaces, and launching 

new kernels on a particular execution space. The notion of a kernel in H-IMP is 
the more general than those found in Kokkos; that is, our kernels consist only
of a particular execution space in which they execute and a set of variables they
copy from the host into the runtime environment (which may itself be the host).

Excluded from this study are loops and conditionals because we focus on the 

features related to portability of heterogeneous systems, i.e. those which launch 

and control kernels of different accelerators while communicating through shared 

variables. We include two key features that enable communication and synchro-
nization: deep copy and fence, respectively. Deep copy enables the movement of 
data between views, while a fence blocks until completion of all asynchronous 
operations. We do include constants c from a set of base types Bi and operations
over them E0 opi E1 for use in our examples. Indexing into views is done with
natural numbers, which are an example of these constants for the base type N.

3 Operational Semantics 

The goal of operational semantics is to model the concurrent execution of ker-
nels from different accelerators alongside a collection of memory s paces within
an abstract machine. The syntax for it is found in Fig. 2. It contains three 

different kinds of program state for which we define three different notions of 
evaluation. All states contain a local environment L that contain local variables. 
The largest state, i.e. global state, has access to all of the memory spaces avail-
able, written M, as well as the queues of work for the execution spaces available, 
written S. Local states are for kernel execution and consist of local memory, one 

statement for execution, and a restricted set of available memory spaces. Local 
states cannot access any work queues for execution spaces. Expression evaluation 

configurations contain the same information. 
The available memory spaces (M) are a partial map from memory spaces to

pointers to indices to values of base types (such as integers). To access a specific
index n of a view π in a memory space µ, we write M(µ)(π)(n); if we just wanted
the particular view, then we would write M(µ)(π); and so on. For simplicity, we
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Fig. 3. Expression Ev aluations

assume that if a view is defined then any index into it is defined. This syntax 

follows similarly for local memory, but there fewer levels of indirection; that is, we 

need only write L(x). Additionally, whereas views can only contain values of base 

types c, local memory can contain both values of base types and pointers to views 
in memory (µ, π). We use the syntax L[x �→ V ] to denote either replacing the 

current mapping of x in L or to insert a new mapping for x when it does not yet 
exist in L. Likewise, we can update our available memory spaces; M[µ, π, n �→ c] 
updates (or inserts) c at the nth index of the view at location π in memory space 

µ.  We  use  Dom (short for domain) to ensure variables exist in their respective 

environments (local or memory spaces). Finally, we use M|P (µ) to denote the 

restriction of the memory spaces to those in the set of memory spaces µ that 
satisfy the proposition P . 

The execution space queues, denoted S, contained within the global state 

is an execution-space-indexed first-in-first-out queue. All of the operations on this
object include a specific memory space. S.empty(χ) is a proposition that is true
if the work queue for execution space χ is empty. S.pusht(χ, (L, S)) publishes a
new task to the end of χ’s work queue. S.head(χ) merely looks at the front of
the queue; whereas S.poph(χ) removes the front of the queue. Finally, we have
S.replaceh(χ, (L, S)) which updates the head of the queue to a new work state.

We first present big-step reduction of expression configurations to machine
values in Fig. 3. For variables, we merely look it up in the local memory. For 
accessing views, we first evaluate the index with the current state to get a pointer 
to a particular view in a memory space, and then we index into M with it. If 
the view that we are trying to dereference is not in the local M then we would 

not be able to construct an evaluation derivation. In a real program, t his would
occur if the current execution space does not have access to that memory space,
since it would not be included in local instance of M. Such a restriction is upheld
when instantiating a kernel by the GXStep rule in Fig. 5. 

Taking steps locally, which includes execution spaces transitioning, is defined
by the deterministic relation in Fig. 4. Declaring and mutating variables both 

happen by evaluating the expression and using the result to manipulate the 

local environment L. Of course, failing to declare a local variable before setting
it will result in a local memory error, so no transition is possible. We may
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Fig. 4. Local T ransitions.

also mutate views from execution spaces, which has a similar restriction that 
the location must be already defined before changing it. Like with the big-step 

rule for expressions, M may or may not contain the particular memory spaces 
and views to complete a transition depending on the instantiation of the kernel. 
Finally, local transitions operate over statements, but do not have the permission
to allocate new views, deep copy, or fence; thus, such statements would be stuck.

Global transitions are described in Fig. 5. Intuitively, these transitions rep-
resent the host program, which orchestrates all of the memory and execution 

spaces. The first rule GHStep is for when the host takes a step locally in the same 

manner as an execution space. Unlike other execution spaces, the host can also 

declare a view, with GDeclView , given an unused view location π. We take 

M[µ, π �→ init] to mean that for any n that M(µ)(π)(n) is defined. In GKernel , 
the host program publishes a new unit of work to an execution space’s work 

stack; note that it also copies the local variables captured by the λ-expression in 

the kernel definition, which can get stuck if the variables are undefined. In 

GFence, we see that the program is stuck until the execution space, for which 

we are waiting, completes its stack of work. Finishing a unit of work in the 

stack is achieved by the two concurrent steps of GXPop and GXStep. The first 
removes the work when ret is the waiting statement. The latter selects one of 
the execution space q ueues and takes a single step on it. It is in this rule that we
restrict the valid memory spaces for each execution space when it takes a step;
we use µ ⊲ χ for the restricted set of memory spaces µ that are accessible from
χ. Note that because global transitions are non-deterministic, these steps model
the concurrency implicit in the Kokkos machine model.

The following definitions describe how to run programs in our abstract
machine; we will later define safe executions of the machine and our static anal-
ysis will show well-typed H-IMP programs imply safe execution (Theorem 1). 

Definition 1 (Initial State). Initial(〈〈M ‖ S ||= L ‖ S〉〉) where M contains a 

set of empty memory spaces and S contains all empty work stacks. 

Definition 2 (Final States). For local states, Final(〈〈M ||= L ‖ ret〉〉).
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Fig. 5. Global Tr ansitions.

Fig. 6. H-IMP Type S yntax.

For global states, Final(〈〈M ‖ S ||= L ‖ ret〉〉) where S contains all empty work 

stacks. 

4 Type System 

We present the syntax of the H-IMP type system in Fig. 6. Memory spaces are 

referenced by view(µ, Bi) types, which are pointers to data structures over the 

base type Bi and housed within a memory space µ. As a simplification from
Kokkos, we consider views to be arrays of type Bi.

To reason statically about memory spaces and execution spaces of H-
IMP programs, the judgements of our type system require information about 
where their computations occur and the information about the memory spaces 
accessible from each execution space must be supplied. The type system’s rules
are presented in Fig. 7. There are three main judgements that all end in @ χ 

signifying the execution space wherein the expression, statement, or command 

is to take place. For instance, Γ ⊢ E : τ @ χ states that with the local type
environment Γ the expression E computes a value of type τ in the execution
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Fig. 7. H-IMP Typing R ules.

space χ. Certain commands are only available to the host execution space, the 

orchestrater of H-IMP programs. Specifically, the host is the only execution space 

that may declare views, fence execution spaces, deep copy views, and launch ker-
nels. However, we cannot launch kernels for the host; one would instead need to
use the Serial execution space.

Note that the typing environment Γ will only contain variables local to that 
execution space. During computation this is thread-local memory; see that the 

TKernel rule specifies explicitly the variables that will be copied to its local
memory.

Indexed by some sets of memory and execution spaces, our typing system 

depends on a relation µ ⊲ χ on Mem. Space × Ex . Space,  which  occurred  in  th  e
operational semantics. For the set of execution and memory spaces we gave in
Fig. 1, this relation is defined as the following:
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(⊲)  =  {(Host, Host), (Host, Serial), (Host, Threads), (Host, OpenMP), (Cuda, Cuda)} 

∪  {  (CudaUVM, χ) | χ ∈ Ex. Space}

In this relation, CudaUVM can safely be accessed by any execution space χ;  of  

course, this may not be true if we wanted to consider GPUs from another ven-
dor. The rules TViewDeref and TSetView check that every view referenced is
accessible to the current execution space.

4.1 Safety 

We must define a notion safety for each class of computable syntax. Expression 

configurations are the simplest: they are safe if they evaluate to a machine value. 
Both global and local machine states are safe if they take a ny number of steps
to either a final state or they can continue to step; i.e. they cannot reach a stuck
state.

Definition 3 (Safe Configurations and States). For an expression config-
uration, Safe(Conf ) if and only if Conf ⇓ V . 

For an execution-space state, Safe(XState) if and only if XState �−→∗ XState ′

implies Final(XState ′) or XState ′ �−→ XState ′′. 

For a host state, Safe(GState) if and only if GState −→∗ GState ′ implies 

Final(GState ′) or GState ′ −→ GState ′′.

Though this looks like an overly simple notion of safety, it implies that we are 

always accessing an accessible view from the current execution space, that the 

global state is only manipulated directly by host execution space, and that vari-
ables are initialized before they are mutated. Moreover, it even captures safety in 

the n otion of concurrency employed by the global transitions; because for every
way that we take a step—there are multiple—we must step to a good final state
or keep stepping.

Theorem 1 (Type Safety). If ⊢ S @ Host, then Safe(Init(S)) .

5 Portable Programs 

Kokkos programs, and templated C++ programs more generally, require 

abstracted template variables to be instantiated with concrete types and func-
tions before a complete binary can be run. The programming language that 
we just presented can be seen as a program where all of the decisions about 
a node’s architecture have been decided. However, this is not how the Kokkos 
C++ library is intended to be used. We would like H-IMP instead to specify
one program that works for many different architectures. To accomplish this,
Kokkos programs do not need to specify explicitly the memory spaces wherein
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views are located, or the execution spaces whereat kernels are executed. Thus, 
we may see a source program (in H-IMP) like the following: 

decl x in defaultMem; 
kernel(defaultEx , λx. x(0) := 2; ret); 
.  .  .  

Before running this program with our machine machine, we must decide 

how these default spaces are instantiated. If a program is portable, then it should
be the case that any instantiation of the default spaces produces a safe program.

Definition 4 (Portable Program). A program S is portable if and only if 

Safe(Init(S[σ])) for a given set of execution and memory spaces, their accessibil-

ity relation, and any instantiation σ of its free execution and memory variables.

To describe this “templated” H-IMP, we must add memory and execution 

space variables to programs, denoted with underlines:

χ ∈ Ex . Space ::= x | χ 

χ ∈ Inst . Ex . Space ::= Host | Threads | OpenMP | Cuda | .  .  .  

µ ∈ Mem. Space ::= x | µ 

µ ∈ Inst . Mem. Spac e ::= Host | CudaUVM | Cuda | . . .

∆ ∈ Space Env . ::= ε | ∆, ex x | ∆, mem x

In real Kokkos programs, the default memory and execution space variables 
exist implicitly, but only as special space variables. Here, we have the option of 
multiple default spaces; consider for instance, a program with defaultEx1 and
defaultEx2 , which could be instantiated on several kinds of two GPU systems.

To statically reason about space variables, we extend our typing judgments 
with ∆ containing the free memory and execution space variables. For example, 
our expression judgments would have the form Γ ⊢∆ E : τ @ χ. The accessibility 

relation now only refers to fully instantiated memory s paces µ � χ, and we have
a new generalized relation with the judgement ∆ ⊢ µ ⊲ χ that we use in the
updated rules from Fig. 7. 2

∆ ⊢ µ :: MS ∆ ⊢ χ :: ES ∀σ ∈ Inst(∆),  µ[σ] � χ[σ] 

∆ ⊢ µ ⊲ χ

The judgements ∆ ⊢ µ :: MS and ∆ ⊢ χ :: ES are added to check that a space 

is either a variable in ∆ or an instance. This extended type system is strong
enough to give us portability.

Theorem 2 (Typing Ensures Portability). If Γ ⊢∆ S @ Host, then S is

portable.

2 The full type system with the new and rewritten r ules is found in the appendix.
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Note well that constructing portable programs is very limited. We can-
not prove the generalized accessibility rule unless we show that for any com-
bination memory and execution space that they are accessible. For example, we 

cannot prove mem default ⊢ default ⊲ Cuda , because there exists a memory space
inaccessible to Cuda execution spaces: Host. Indeed, given the set of execution
and memory spaces of Fig. 1 and the relation specified in Sect. 4 there exist 
no portable programs that make use of views with default memory and execu-
tion spaces. Thus, specifying a portable program necessarily includes g iving a
restricted set of execution and memory spaces for which it is portable.

6 Conclusion 

We have developed a language H-IMP as a distillation of the features for portable 

heterogeneity present in Kokkos wherein we can launch kernels for different accel-
erators. An important notion is that of the permissions for each execution space, 
which controls the different types of memory it can access and the operations 
that it may perform. Over this language, we defined a type system that allows 
us to guarantee that w ell-typed programs do not misuse heterogeneous memory.
Finally, we defined a notion of portable programs for this language and noted
that there are no meaningful portable programs without specifying the restricted
set of architectures to which a program is portable.

As future work, we plan to enhance the language with the typeclass mecha-
nism [14] found in Haskell. This will allow us to describe portable programs as 
those that can be run on any architecture that satisfy some constraint, thereby 

avoiding the proviso that we specify a specific set of spaces. For instance, kernel 
code could have the type Γ ⊢∆ S @ ∀χ. Host ⊲ χ ⇒ χ meaning  that  it  can  run  

in any execution space that can access host memory. In addition, we imagine an 

extension of the types to include more detailed information about the architec-
ture including types representing the parallelism hierarchy of certain execution 

spaces and the interaction of kernels with different memory models. Currently, 
we are developing a tool for real Kokkos programs that uses this reasoning to 

identify the sets of architectures for which a program is portable. 
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Abstract. As global computational demand continues to rise, mod-
ern multicore architectures play a pivotal role in achieving and pro-
viding optimal runtime and energy efficient computing solutions. How-
ever, optimizing for both performance and energy efficiency remains a 

challenge. In addition, developing parallel code and optimizing for dif-
ferent architecture is often time consuming. The OSCAR (Optimally 

Scheduled Advanced Multiprocessor) compiler, an automatic paralleliz-
ing source-to-source compiler, is able to leverage multigrain parallelism 

to enhance multicore efficiency on a variety of architectures. This allows 
it to reduce runtime and energy consumption by exploiting parallelism. 
Furthermore, using data and control dependency analysis in addition 

to scheduling features, it can apply cache optimization and data local-
ization techniques to further reduce energy consumption by improving 

runtime. This paper evaluates the OSCAR compiler versus OpenMP in 

the ability to reduce energy usage by reducing runtime of scientific bench-
marks from SPEC2000 and NAS Parallel Benchmarks suites. It will be 

done on Intel Icelake-SP and AMD Zen-4 16-core processors. Results 
showed OSCAR providing runtime and total energy improvements com-
pared to OpenMP. Benchmarks such as NAS’s CG demonstrated a 10.6x 

performance increase and 80% energy savings compared to the sequen-
tial benc hmark on both systems. In comparison to OpenMP at varying
equivalent core count, OSCAR provided a 7% to 9% runtime improve-
ment with a 4% to 9% reduction in energy on both systems across bench-
marks. The cache optimization and data localization was shown to have
provided a 4% runtime improvement and 4% to 7% energy improvement
with OSCAR. This was driven by a reduction in L3 cache misses, trans-
lating to a runtime and energy improvement. This was achievable at
varying core configurations up to the max amount of cores available on
the systems.
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1 Introduction 

There is a consistent need for computational power due to the global inter-
est in artificial intelligence, data processing, and general computing. Complex 

computational tasks often require extended periods of time to execute, coupled 

with significant associated energy costs. With the focus of Sustainable Comput-
ing, there is a significant emphasis on reducing total energy consumption while 

improving execution times. Current hardware architectures makes use of multi-
core designs which in tegrate multiple processing elements (PE), or cores, within
a single package. Parallel computing allows for concurrent execution of these
PE, significantly increasing processing throughput and efficiency. It is known
that reducing runtime results in a reduction of total energy [12, 22]. Further-
more, Dynamic Voltage and Frequency Scaling (DVFS) can also be utilized to 

reduce power. This paper will focus on reducing total energy through reducing
runtime with the OSCAR compiler.

Enabling parallelism and increasing performance in sequential and parallel 
programs can be achieved with the OSCAR (Optimally Scheduled Advanced 

Multiprocessor) compiler. It is an automatic parallelizing compiler capable of 
parallelizing both C, C++, and Fortran programs. This is accomplished by gen-
erating sequential code for a specific number of threads, allowing the compiler
and the operating system to bind the threads to cores at runtime [8]. With 

OSCAR’s toolset used to analyze and automatically parallelize programs, it also 

allows for further optimizations such as cache optimization through data local-
ization. This allows for reducing cache misses [6, 10] which is important due to the 

increasing gap between processor speed and memory latency [17]. The speedup 

by reducing memory accesses allows for greater speedup resulting in improved
energy performance.

This paper will explain and evaluate the OSCAR compiler’s automatic multi-
grain parallelism and cache optimization techniques. We will observe how par-
allelizing and cache optimizations can improve runtime and reduce energy con-
sumption. It will also focus on the performance compared to O penMP at equiv-
alent core count. Previous papers using automatic parallelizing compilers have
demonstrated speedup on older architectures [10, 12]. However these previous 
evaluations have only looked into performance and energy reduction from paral-
lelization compared to sequential or single threaded results; it did not at equiv-
alent c ore count. Furthermore, previous usage of the OSCAR compiler has been
in conjunction with DVFS [15] and was shown reduce power consumption using 

idle power states [5]. In this case, the evaluation boards were modified to measure 

the power of the processor chips directly. This paper will instead evaluate how 

the OSCAR compiler affects runtime and energy without using DVFS, observing
energy used by the package, including last level cache and DRAM.

The systems to be evaluated were chosen due to their different cache in ter-
connect design with different memory access latencies [20]; they are an Intel 
Icelake-SP processor as well as an AMD EPYC Z en-4 processor. Intel uses a
mesh network [13] while the AMD has an architecture that is split between core 

complexes (CCXs) and communicates with an I/O die [18]. The evaluation will
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be done by running scientific benchmarks from the NAS parallel benchmark suite 

in addition to the SPEC benchmark suite.

2 The OSCAR Compiler 

The OSCAR compiler is an automatic source-to-source parallelizing compiler. It 
translates provided source code to an intermediary state, performs an analysis 
and optimizations, then provides optimized source code in the original language
provided. Currently Fortran, C, and C++ are supported by the OSCAR Com-
piler [7]. It can perform fine-grain and coarse-grain parallelization by exploiting 

loop level parallelism, instruction level parallelism, task based parallelism, and
more; this allows it to achieve multigrain parallelism [19]. In order to achieve 

this automatic multigrain parallelism, the source-to-source compilation is split 
into multiple steps: frontend, middle pass, and backend (Fig. 1). 

Fig. 1. OSCAR’s compilation pip eline.

OSCAR’s frontend takes the provided source code and converts it into an 

intermediate representation. This intermediate representation is the source code 

broken into various blocks or macro-tasks. Each block or macro-task is a sequence 

of code that is closely related and executed sequentially. An example of such
could be function calls, loops, or assignments [8]. From this state, the middle 

pass will occur, analyzing the blocks for areas of parallelism and optimization. At 
this time, the OSCAR compiler will attach a cost to the macro-tasks allowing
scheduling to take place [8]. Once the process is complete, the backend will 
convert the macro-tasks with scheduling information back into the original source 

language. The resulting source file will contain parallelized code for the number 
of threads requested, ready to be compiled by any standard compiler (e.g. GNU
Compiler Collection, Intel Compiler, LLVM, etc.) [7]. The data localization and 

cache optimizations performed by OSCAR will occur in the middle pass.

2.1 Macro-task Graph 

OSCAR’s middle pass is where the majority of the analysis and processing 

occurs. Once the OSCAR compiler splits the sequential code into macro-tasks, 
control and data dependency analysis c an occur. Using earliest execution analy-
sis, OSCAR can represent and visualize the macro-tasks in a macro-task graph
[7]. This macro-task graph is constructed under the conditions that macro-tasks 
must wait for data it is dependent on to become available in addition to waiting 

until all prior control-dependencies have been evaluated. As a result, large blocks
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of codes such as functions or loops can be represented as a macro-task graph. 
During this time, a cost is assigned to each macro-task. With t his information, a
further pass occurs to determine areas where parallelism and optimizations can
be applied.

In the macro-task graph seen in Fig. 2a, macro-task 6 cannot be executed 

until data dependency 3 has completed. Similarly, 14 cannot execute until data 

and control dependencies have been met. In this example, we can s ee that par-
allelism can be exploited starting at 1 and 3 as they have separate data depen-
dencies.

Fig. 2. Example macro-task graphs b y OSCAR.

Once the source code has been broken into macro-tasks and the correspond-
ing macro-task graphs, scheduling and parallelization can occur. OSCAR will 
create a thread for each processor element (PE). The macro-tasks are then dis-
tributed among the processor elements evenly based on scheduling and cost. 
OSCAR makes use of static and dynamic scheduling techniques for task-based 

parallelization. In the case of no control dependencies, static scheduling is used.
The macro-task graph is not modified and data dependencies will be managed
by barrier spin locks between macro-tasks. As for dynamic scheduling, control
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dependencies must be managed. In this case, the macro-task with a control 
dependency and prior data dependencies may be copied to all processor elements 
if cost permits s o they can be evaluated locally to prevent synchronization over-
head [19]. Loop based parallelization can also be applied if a loop has a static 

number of iterations in addition to the individual loop iterations being indepen-
dent from other iterations. These cases allow for the loop to be segmented and
evenly distributed to the various available processor elements [6]. 

2.2 Cache Optimization and Data Localization 

The OSCAR compiler can also apply cache optimization through data localiza-
tion after the macro-task graphs are generated. It does this using lo op-aligned
decomposition, loop level parallelism, and the ensuing data localization groups
[21]. These data localization groups are defined within specified cache limit sizes 
to ensure data elements are close to the PE being utilized. Furthermore, i t keeps
the data localization groups consistent across a series of macro-tasks such as in
Fig. 3, reducing cache miss and improving cache coherency [6]. 

Fig. 3. OSCAR applying Loop Aligned Decomposition (LAD) on macro-tasks and 

dividing them into Data Localization Groups (DLG) [7]. 

This optimization occurs when macro-tasks are directly connected to doall-
loops, reduction-loops, and sequential-loop type macro-tasks with data dep en-
dencies only from the proceeding macro-task. For Fig. 2b, this would be applied 

to the portion of NAS Parallel Benchmark CG’s main loop. The groups are con-
structed to fit within the given cache size of a processing element, then they
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are then assigned to processor elements to be executed concurrently while main-
taining minimum synchronization from data sharing [6]. If the number of groups 
exceeds the number of PE, multiple groups may be assigned to a specific PE.

2.3 Cache Data Distribution Using First Touch and Thread Binding 

On modern computing systems and operating systems, there is a First Touch 

Placement Policy that allocates the data page to the closest thread accessing 

the page for the first time. This causes the first single thread or node to allocate
all the data, greatly increasing memory latency for threads and congestion for
the memory controller [9]. The OSCAR compiler allows for a First Touch policy 

to manage initial data locality among the processor elements (PE). As memory 

affinity is defined at initialization, OSCAR uses the threads it generates per PE 

at runtime to access the data on the PE it is to be localized on before beginning 

the main program. The threads are bound to the PE and do not migrate during
runtime. This allows OSCAR to place data on the correct PE before it begins
execution, minimizing memory accesses and memory controller congestion.

3 System Architecture 

Two different x86-64 processors with different memory hierarchies are being 

investigated in this paper. One is the Intel Xeon Gold 6326 (Icelak e) 16-core pro-
cessor and the other the AMD EPYC 9124 (Zen-4) 16-core processor (Table 1). 

Table 1. System Information 

System Cores (PE) Clock Boost L1D L2 L3 (Shared) Line Size 

Intel 16 3.3 GHz 3.5 GHz 48 KiB 1.25 MiB 24 MiB 64 B 

AMD 16 3.0 GHz 3.7 GHz 32 KiB 1.00 MiB 64 MiB 64 B 

The Intel processor has an all-core frequency of 3.3 GHz with a turboboost 
of 3.50 GHz. Each core has 1.5 MiB of L3 cache, which is shared among the 16 

cores for a total of 24 MiB of shared L3. T he shared distributed L3 topology
is Intel’s mesh network which is a 2-dimension array of bi-directional half rings
forming a system-wide interconnected grid as seen in Fig 4a  [  11]. 

The AMD processor has an all-core frequency of 3.0 GHz with a boost of 
3.7 GHz. There are 2 Core Complexes (CCX) on this processor which contain 8 

cores each. In addition, each CCX contains 32 MiB shared distributed L3 Cache
which is connected to the other CCX through data and control fabrics on the
I/O die [18]. 

Due to AMD using multiple CCXs, there is no common shared L3 cache 

that will always provide the same memory latency. As a result, workloads that
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Fig. 4. Intel and AMD SoC [3, 13]. 

require heavy data sharing among cores would benefit from using Intel’s mesh 

design due to having similar shared L3 latencies between cores [20]. 
For both processors hyperthreading is disabled meaning there were a total of 

16 processing elements (PE) available. Furthermore, the all-core frequencies were 

used for evaluation. The host systems were running Linux 5.15-generic Kernel 
or later and using Ubuntu 22.04 LTS. The Intel machine and AMD machine had 

236 GiB of DDR4-3200 and 378 GiB of DDR5-4800 RAM respectively. RAPL
(Running Average Power Limit) configured by Linux was used to make software
energy measurements [2]. The power domain of the entire package was used. The 

perf profile was used t o monitor registers related to cache performance.

4 Benchmarks 

For evaluation of the systems and OSCAR, scientific benchmarks were used. Two 

different benchmark s uites were used for evaluation in this paper.
The first group was SPEC2000 floating-point suite where SWIM and ART 

were evaluated. SWIM is a weather prediction program computing a shallow-
water model written in Fortran. AR T (Adaptive Resonance Theory 2) measures
neural network training performance and is written in C.

The second group is from the NAS parallel benchmark suite. The C program-
ming language version was used which was developed by the Real World Com-
puting Project and distributed by the HPCS lab of the University of Tsukuba [1]. 
Within the test suite BT, CG, and SP benchmarks were evaluated. The BT and 

SP benchmarks were compiled with problem size B and solve s ynthetic systems
of nonlinear PDEs using either Block Tridiagonal (BT) or Scalar Pentadiagonal
(SP) [4]. CG was compiled with problem size C and solves the Cojugate Gra-
dient (CG) which estimates the smallest eigenvalue of a large sparse symmetric
positive-definite matrix [4].
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The source code of the programs were modified to take a RAPL energy 

measurement immediately before and after the benc hmark’s timer start and
stop function calls in order to track energy consumption.

Three version of the benchmarks were created:

1. Sequential/OpenMP: The default provided benchmark. The SPEC suite 

only provided sequential benchmarks while the NAS parallel benchmarks uti-
lized OpenMP. In the case for OpenMP, to get sequential performance the
number of threads was set to 1.

2. OSCAR: The Fortran or C source code for the program was passed to the 

OSCAR compiler a nd the resulting source file was compiled with gfortran

or gcc.
3. OSCAR+CacheOpt: The same as OSCAR with the addition of cache opti-

mization and data localization strategies discussed in Sects. 2.2 and 2.3.  For  

the Cache Optimization strategy, the localized data-dependent groups where 

configured to the L2 cache size on Intel and the L3 c ache size on AMD (using
parameters for size, associativity, line size, and shared cores).

When compiling the benchmarks, the gcc or gfortran flags used were -O3 

and -march=native. The benchmarks were compiled as previously described 

with no difference between binaries except for OSCAR and OSCAR+CacheOpt 
having different cache parameters. Thread binding was configured to use spread, 
distributing cores evenly on the system, as it provided the best results. This was 
applied through OMP_PROC_BIND for OpenMP, or manually defined during thread
generation for OSCAR. The benchmarks were run 25 times and the median value
was for data analysis when summarized.

5 Performance Evaluation 

Runtime is first looked at on both Intel and AMD systems. In Fig. 5 the speedup 

of the best automatic parallelization performed by OSCAR is shown. It can be 

observed that OSCAR is able to achieve superlinear speedup on SWIM for up 

to 8PE. In addition, BT and CG also achieve scalable results from automatic 

parallelization. These results can be attributed to OSCAR’s scheduling of the 

macro-tasks, cache optimization, and data localization. However, ART and SP
shown saturation with the increase of additional PE. This is due to certain parts
of a program that require sequential execution and cannot be easily parallelized
with performance improvements due to additional required overhead [14]. 

5.1 Energy 

The results can be further segmented looking at the normalized energy values.
In Fig. 6, we can see the corresponding energy results. For the benchmarks that 
scale with additional PE (SWIM, BT, CG), the energy results show a minimum 

reduction of 77% in energy at 16PE from parallelization. This is inline with the
analysis and calculation that optimizing for performance will result in reducing
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Fig. 5. Relative speedup (higher is better) of OSCAR with cache optimizations to base 

sequential execution (1PE). Data is normalized from values in Table 2. 

energy usage [22]. For all three versions of the benchmark, we can see these 

values present. Furthermore, we can see OSCAR outperforming OpenMP i n
both runtime and energy with the associated data in Table 2. 

As previously mentioned, there is a point where the overhead of paralleliza-
tion makes it increasingly difficult to improve runtime by simply adding addi-
tional PE. With benchmarks ART and SP, the total energy begins to increase 

after a certain number of PE are used and active. This crossover point is reflected 

in the decay of runtime improvement. The benchmark can only be optimally par-
allelized to reduce energy to a certain PE amoun t, to which adding additional PE
results in CPU cycles being consumed for barrier spin locks. Although the CPU
cycles are wasted, Dynamic Frequency and Voltage Scaling (DVFS) or power
gating may help correct this trend without increasing runtime [16]. 

With automatic parallelization through means of OpenMP or OSCAR, 
energy reduction is observed from the improvement of runtime. A minimum 

energy reduction of 77% and runtime improvement of 8.41x was observed with
OSCAR at 16PE for scalable benchmarks SWIM, BT, and CG. Furthermore,
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Fig. 6. Energy comparison (lower is better) compared to base sequen tial execution
(1PE). Data is normalized.

Table 2. Benchmark execution time and total energy of O SCAR+CacheOpt (Median
of 25 runs).

Time (s) Energy (J) 

Benchmark Sequential 1PE 4PE 8PE 12PE 16PE Sequential 1PE 4PE 8PE 12PE16PE 

Intel SWIM 34.85 17.71 5.51 3.89 3.41 3.22 2803 1526 654 557 554 570 

ART 25.44 23.96 10.8910.85 10.34 10.30 1884 1825 10161174 1293 1406 

BT 235.57 227.93 63.4138.42 30.31 26.31 19424 1872969315139 4667 4442 

CG 118.38 110.71 29.5017.21 13.27 11.09 9623 9018 31542296 2045 1894 

SP 90.67 87.46 38.8530.57 28.91 27.59 7643 7342 30943739 3970 4251 

AMD SWIM 18.43 9.84 3.93 2.26 1.83 1.41 1146 643 296 203 197 176 

ART 18.00 16.17 7.30 6.97 6.70 6.27 1044 939 485 700 834 854 

BT 185.64 177.34 56.8237.77 27.07 22.07 11313 1078341553057 2541 2327 

CG 66.96 62.18 18.319.78 6.89 5.80 4164 3955 1495992 834 688 

SP 73.69 71.02 34.2132.74 30.56 30.27 4578 4420 24862452 2555 2858
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we can see OSCAR with cache optimization providing less energy compared to 

both Op enMP and OSCAR for equivalent PE used.

5.2 Energy Reduction by OSCAR with Cache Optimizations 
Compared with OpenMP 

When observing energy reduction compared to OpenMP for an equivalent PE or 
core count, we can see that OSCAR with Cache Optimizations is a ble to further
reduce the total energy consumed through improved runtime. In Fig. 7,  we  can  

see a reduction of 5% or more on BT and CG and an increasing reduction on 

SP for up to 30% on Intel and 15% on AMD. On BT and CG, the 5% or g reater
reduction is mainly due to cache optimizations from the data-localization-groups
being applied to the doall and dosum loops described in Sect. 2.2.  As  for  SP,  it  

reaches a crossover where using over 4PE increases total energy consumption as
seen in Table 2. In these cases with saturation, OSCAR is able to provide less 
overhead with impro ved runtime and energy compared to OpenMP.

Fig. 7. Energy reduction of OSCAR with Cache Optimization versus OpenMP for
equivalent PE.
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On both Intel and AMD architectures, runtime performance was observed to 

match or exceed previous OSCAR ev aluations on older architectures from Intel
and AMD [10]. In addition, direct comparisons to OpenMP and the effects of 
cache optimizations were not taken prior. Note that for SWIM and ART, only 

sequential versions of the benchmark were available so they were not included
in the analysis and in Fig. 7. 

Fig. 8. Scatter plots of energy, runtime, and L3 cache p erformance for NAS CG using
16PE.

5.3 Cache Performance and Energy in Parallelized Benchmarks 

The benchmarks can be further evaluated to see the trends between cache per-
formance, runtime, and energy. As previously shown, using cache optimization
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and data localization techniques provided improved runtime and energy. Look-
ing at CG with 16PE in Fig. 8, we can see distinct distributions between the 

three different benchmark versions. These scatter plots show the relation of L3 

cache performance and the corresponding runtime and energy data points. On 

both Intel and AMD, OSCAR with cache optimization is providing better results 
than OpenMP and OSCAR without cache optimizations. For Intel, there is a 

4% runtime improvement in addition to a 4% reduction in energy used when 

OSCAR+CacheOpt is compared with OSCAR. In additional to parallelization 

providing a 80% energy improvement, cache optimization is driving an addi-
tional improvement in runtime, which is driving a proportional improvement in 

energy. The difference of 0.3% L3 miss rate improvement is driving the reduction
in runtime and energy. On AMD we see a similar trend is observed. Notably it
achieves a 5% improvement in runtime with a 7% reduction in energy with a
0.5% L3 miss rate improvement. With these values we can see a portion of the
energy reduction in Figs. 6 and 7 is coming from cache optimization and data 

localization. Similar trends were observ ed for other linear-scaling benchmarks at
16PE.

The difference in Intel and AMD’s network topologies is also noticeable in 

the data, with AMD realizing greater energy reduction for cache optimization 

in these conditions at maximum PE. This can be attributed to AMD’s SoC
due to the additional latency cost compared to Intel [20], especially for cross 
CCX communication. On both Intel and AMD with different cache topologies, 
OSCAR was cache optimizations shown to provide improve d L3 performance,
providing additional improvements to runtime and energy.

6 Conclusion 

The OSCAR automatic parallelizing compiler is able to use multigrain paral-
lelism along with cache optimization and data allocation techniques to provide 

both speedup and energy reduction on x86-64 architectures. Given an input 
source code file, the OSCAR compile will analyze the control and data depen-
dencies, apply coarse grain task parallelism and optimizations, and generate 

output code. This generated parallel code by the OSCAR compiler is a set of C
or Fortran sequential code for each processor core with data transfers and syn-
chronization management. This code can be taken by standard compilers (e.g.
GCC) and compiled for respective systems.

In this paper it was found that the generated code by OSCAR was able 

to provide automatic parallelization, speedup, and power reduction of scientific 

applications on Intel Xeon Icelake-SP and AMD EPYC Zen-4 architectures. It 
showed that by reducing runtime, energy was able to reduced on for benchmarks 
that scaled with additional PE. Benchmarks showed on average 4% to 9% energy 

reduction compared to OpenMP for the same amount of PE. On NAS Paral-
lel Benchmark CG for 16PE, OSCAR achieved an increased relative speedup of
10.6x against 1PE on both Intel and AMD in comparison to 9.73x with OpenMP.
Furthermore, using cache optimization and data localization techniques yielded
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a L3 cache miss rate improvement of 0.2% to 0.5% which resulted in an addi-
tional energy reduction of 4% to 7% (42 J to 50 J) from improved runtime. When 

observing different PE performance for OpenMP versus OSCAR for the NAS
Parallel Benchmarks, cache improvements yielded a range of 4% to 9% of energy
reduction achievable.

With optimal cache optimization techniques and data localization, cache per-
formance can have a notable impact on energy reduction in addition to runtime 

improvements. Depending on the architecture’s network topology, systems with 

higher memory latency are able to achieve greater energy reduction. It is shown 

that using cache optimization and data localization on Intel and AMD multicore
systems yielded cache improvements resulting in energy reduction and improving
runtime on scientific benchmarks.
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Introduction 

Parallel programming is essential to achieve high-performance, and numerous 
works combined programming languages, runtime and compilers to help the 

deployment of effective high-performance applications at scale. Many recent pro-
gramming models allow a specification of a task graph representing the appli-
cation to be created by the programmer. For example, the depends clause in
OpenMP 4.0 allows the programmers to create arbitrary dependences between
OpenMP tasks. Habanero Data Driven Tasks [21] and OCR Event Driven Tasks 
and Events [1] provide similar capabilities as well. While these systems enable the 

creation of task graphs, they exhibit varying degrees of sep aration of concerns,
or decoupling of program correctness from performance.

Concurrent Collections (CnC) is a parallel programming model, with an exe-
cution semantics that is influenced b y dynamic data flow, stream processing,
and tuple spaces [5]. CnC was developed in part to address the need for mak-
ing parallel programming accessible to non-expert developers. It relies on users 
to specify explicitly the d ata and control dependences between tasks, in turn
allowing automating the generation [18] of high-performance parallel programs 
for a variety of targets [7], from distributed computers to GPUs [10]  to  FP  GAs
[9]. A CnC program has deterministic semantics: Any implementation of it that 
follows the dependences specified in the CnC program will produce the same 

outputs. This deterministic semantics, and the separation of concerns between 

the domain experts in charge of describing the core application dependences,
and the tuning experts mapping this program to a particular hardware are the
primary characteristics that differentiate CnC from other parallel programming
models.

In this paper, we will discuss the fundamental concepts of CnC, its history, 
and its achievements in terms of programmability and performance. We will 
describ e several iterations of CnC implementations, including CnC execution
models on top of Java [3]  and  C++ [21, 23], as well as seve ral domain-specific

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 50–54, 2025. 
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uses of CnC, from general-purpose programming [2], GPGPU-centric [10, 18], 
exascale-focused [14], to centered on large heterogeneous applications [15]. 

Concurrent Collections Programming Model 

Concurrent Collections (CnC) is a programming model that ev olved out of
TStreams [12], a dataflow programming model designed for expressing paral-
lel computations as a network of typed, timestamped data streams.

CnC uses three core constructs: step collections (representing computations), 
item collections (representing data and holding typed, immutable data items), 
and control collections (governing execution flow). At runtime, the corresponding 

dynamic instances—step instances, data items, and control tags—are generated, 
each belonging to a static collection. Step and item instances are uniquely identi-
fied by a collection name and a tag, which is typically an integer tuple encoding 

some useful information about the computation or data, such as position in
the iteration space. Data elements are inserted and retrieved using the put

(item, tag) and blocking get (tag) operations, ensuring determinism and
freedom from data races due to the single assignment semantics [2]. Step col-
lections may consume from or produce to item collections, or do both. Control 
collections manage step instantiation via control relationships, where adding a
tag to a control collection enables (“prescribes”) step instances in associated step
collections.

Chandramowlishwaran et al. [7] showed that scientific CnC programs could 

exhibit performance that is on par or exceeding the state of the art parallel 
programming systems, which sparked a significant interest in the model.

The deterministic nature of CnC and its explicit handling of data and control 
dependencies have inspired several extensions and i mprovements to the original
programming model. Grossman et al. [10] proposed extensions to allow creation 

of GPU tasks, Imam [11] proposed a Python-driven CnC implementation that 
allowed multi-language step implementations using Babel.

Chatterjee et al. [8] introduced TunedCnC, a declarative tuning framework 

that extends the Concurrent Collections (CnC) model with two additional con-
structs: affinity groupings and distribution functions. Affinity groupings allow 

computations to be organized into groups based on tags, p romoting data local-
ity, while distribution functions specify how computations and data are mapped
across available compute resources.

A. Sbirlea et al. [18] explored mapping CnC graphs onto heterogeneous 
platforms to enhance performance and energy efficiency. To support this, they 

extended the CnC model with tag functions and ranges. Tag functions enable 

users to define relationships between step tags and the dynamic instances they
create or access, while ranges facilitate efficient bulk operations—such as reading
or writing groups of items and prescribing groups of steps.

D. Sbirlea et al. [19] examined the use of the CnC model in streaming appli-
cations by introducing Streaming Concurrent Collections (SCnC)—a restricted 

version of the CnC programming model tailored for streaming execution. SCnC
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includes a code generator and a runtime library designed to optimize pe rfor-
mance specifically for streaming workloads.

Milaković [ 15] introduced two novel extensions to the CnC model: Unified 

CnC and Hierarchical CnC. The Unified CnC extension streamlines CnC graph 

specification, enabling users to prescribe steps by simply adding data to a collec-
tion. The Hierarchical CnC extension allows users to organize data and computa-
tion hierarchically. With this hierarchy, the CnC runtime (or compiler) can group 

multiple fine-grained steps into a single coarse-grained step, reducing the number
of tasks and accesses to concurrent data structures. Additionally, the hierarchy
helps with garbage collection by enabling collection at a coarse-grained level,
reducing the overhead of tracking references for fine-grained data.

Runtime Implementations 

The original CnC implementation was developed at Intel [20], using C++ as 
the step language and Intel TBB [16] as the underlying task execution model. 
Due to the declarative and deterministic nature of CnC, this led to a relatively 

straight forward runtime extension to allow CnC execution on distributed mem-
ory systems [20]. Vasilache et al. [22] discuss trade-offs for event-driven runtimes, 
on top of which CnC can be implemented.

Budimlić et al. [4] Used Java as the step programming language, a nd the
Habanero Java [6] runtime as the underlying task execution mo del. Sbirlea et
al. [18] extended this implementation with a runtime that supports execution of
CPU, GPU, and FPGA steps.

Milaković [ 15] developed an efficient Hierarchical CnC runtime based on 

Intel’s CnC C++ implementation, introducing the concept of micro-runtimes.  A  

micro-runtime groups multiple fine-grained steps into a higher-level step, com-
municating with the macro-runtime through high-level puts and gets.  From  the  

macro-runtime’s perspective, each micro-runtime is simply a Hierarchical CnC 

step. Like the macro-runtime, micro-runtimes have step and item collections, 
where each item collection corresponds to a coarse-grained item. Micro-runtimes 
translate fine-grained item accesses into coarse-grained ones. In his implementa-
tion, micro-runtimes sequentially execute their fine-grained steps, which, while
not a fundamental requirement, reduces parallelism and concurrency overhead
and promotes data reuse. Since fine-grained steps within the same micro-runtime
typically operate on shared data, sequential execution improves cache efficiency
by keeping common data in memory.

Compiler Support for CnC 

The explicit nature of dependencies in CnC, and the explicit description in CnC 

programs of the data items being read or written by task instances provide 

a parallel program representation that is amenable to compiler optimization.
In particular, the use of tag functions to express the relation between dynamic
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instances of tasks and the data they manipulate enables to d evelop new compiler
analyses targeting CnC programs.

Of the numerous works on compiler support for CnC programs, for exam-
ple Sbirlea et al. [17] introduce a new optimization framework for the Data-Flow 

Graph Language (DFGL), a programming model based on CnC. This framework 

uses a “dependence-first” approach to capture program semantics in polyhedral 
representations, performs legality checks on DFGL programs and enables polyhe-
dral transformations, including automatic loop optimizations and parallel co de
generation. Performance experiments show that DFGL programs optimized by
this framework achieve up to 6.9x speedup over standard OpenMP implementa-
tions on multicore processors.

Kong et al. [13] introduce PIPES, an end-to-end programming framework 

for CnC, which automatically generates Intel CnC C++ runtime code from 

high-level textual description of a CnC graph. In particular, it performs poly-
hedral analysis of the input graph, enabling to restructure it automatically 

for example by implementing polyhedral tiling to coarsen fine-grain tasks into 

larger-grain ones automatically, reducing runtime overhead and improving per-
formance. PIPES automatically generates tuners for CnC, from the analysis of
the input graph, to improve further performance. It demonstrated the ability
to outperform reference high-performance implementations such as ScalaPack
using tuned CnC implementations [13]. 

Conclusions 

The declarative and deterministic nature of CnC, coupled with its explicit data 

and computation dependencies, has driven significant research in parallel and 

distributed computing, leading to numerous extensions of the model and its 
execution. The ability to express maximum implicit parallelism offers substan-
tial potential for further exploration, while the explicit dependencies provide 

opportunities for advanced compiler optimizations. As a result, CnC continues 
to b e a compelling platform for research in compiler design, runtime systems,
high-performance computing, and programming languages. Its ongoing relevance
underscores its value as a versatile and powerful model for addressing complex
computational challenges.
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Abstract. GPUs are massively parallel devices that promise a great 
return of investment at a cost: GPUs are notably difficult to get right. 
We discuss a static analysis tool for GPU programs, called Faial,  that  can  

detect data-races and data-race freedom. We studied a dataset of 191 

data-race free programs and found that 98% needs spe cific thread con-
figuration to be analyzable, and that 27% needs user-provided assertions
to be analyzable. We also report that Faial was able to find data-races
in at least 92% of the kernels with missing assumptions.

1 Introduction 

For the last 20 years, Vivek Sarkar has been studying the problem of a na-
lyzing a data-races in parallel programs both statically [6, 29– 32] and dynam-
ically [8, 12, 17, 27, 28, 33]. A data-race is a bug characterized by two unsynchro-
nized memory accesses targeting the same location by different threads, where 

at least one access is a store. This paper focuses on data-races that arise in the 

context of GPU programs (also called kernels). GPUs have been widely success-
ful in prope lling the scientific advancement of a series of research fields, such as
Artificial Intelligence, Machine Learning, molecular modeling, systems biology,
and medical imaging.

Data-race detection is a program verification technique that proves the exis-
tence of a data-race in a possible run of a program. The most common approach 

to detect data-races is with dynamic analysis, by monitoring the execution of the
program to find data-races. Many dynamic analysis techniques have been pro-
posed [13, 16, 18, 23, 25, 35, 36]. However, since the runtime overhead of dynamic 

analysis is of 10× up to 1,000× and require the program’s input, dynamic anal-
ysis is more applicable to testing. Symbolic execution and model checking can 

be used to detect data-races without needing the program’s input, however the
overheads can be even higher due to the state explosion problem [21, 22, 26]. 

Data-races can also be detected statically, thus sidestepping the runtime over-
heads. Data-race freedom (DRF) detectors for GPU programs [4, 5, 9, 10, 19, 20] 
can guarantee that a program is free from data-races, in the analysis of GPU 

programs. When a DRF detector is unable to prove that a program is DRF,
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R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 55–63, 2025. 
https://doi.org/10.1007/978-3-031-97492-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-97492-2_6&domain=pdf
http://orcid.org/0000-0002-3209-9258
http://orcid.org/0000-0001-9697-1378
https://doi.org/10.1007/978-3-031-97492-2_6


56 T. Cogumbreiro and J. Lange

Fig. 1. A simple G PU program.

it generates an alarm that represents a potential data-race, i.e., alarms may be 

spurious. Such techniques can be used to find data-races, by manually validating 

the alarms. Yet, since these tools are unable to guarantee that the alarms are 

true, we do not consider this family of tools to be data-race detectors. T o the
best of our knowledge, and excluding symbolic execution and model checking
approaches, Yuki et al. were among the first to introduce a static race detec-
tor [34], for X10 programs. Chatarasi et al. proposed the first static race detec-
tor for OpenMP and openACC [7], Gorogiannis et al. introduce the first static 

race detector for multithreaded programs [14], and Liew et al. introduce the first 
static race detector for GPU programs [24]. 

In this paper we evaluate Faial [24], a data-race and DRF detector for GPU 

programs. We investigate how different features of the analysis affect DRF detec-
tion in a dataset that only contains data-race free kernels. We also investigate
whether the tool can report data-races when it lacks information to prove DRF.

The outline of this paper is as follows. Section 2 gives some background by 

introducing GPU programming as well as discussing implicit assumptions t hat
are needed to prove DRF. Section 3 introduces and tests our research q uestions.
Finally, Sect. 4 summarizes our findings.

2 Background 

In this section, we give a quick background on GPU programming. We then show 

that even trivial GPU programs include multiple implicit assumptions.

2.1 GPU Programming 

SAXPY (Single-Precision A · X Plus Y ) is a classic example that showcases the 

kind of numeric applications that run on GPU devices. Given two vectors of 
floating points X and Y and a scalar A the program updates vector Y such 

that Y [i] stores the result of A ·X[i] + Y [i] for each element i. A SAXPY oper-
ation can be implemented as a GPU program in Fig. 1. In this paper we use the 

CUDA Application Programming Interface (API); the same concepts apply to 

other GPU programming models. A GPU executes function saxpy for a certain 

number of threads arranged in groups. Each group of threads is called a block. 
The threads of a block are logically arranged in a 3-D space, each thread is 
uniquely identified by a 3D point accessible with variable threadIdx. The set of
all blocks is also logically arranged in a 3-D space, each block is uniquely identi-
fied with a 3-D point accessible with variable blockIdx. The number of threads
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per block, i.e., the block layout, is accessible in variable blockDim.  The  number  

of blocks in the system are given by variable gridDim. A GPU program runs a 

copy of function saxpy per thread in parallel, instantiating variables threadIdx 
and blockIdx for each thread. Variable i represents a unique thread across all 
groups, since it projects the x -component of variables blockIdx with threadIdx

onto a linear space. A thread configuration is defined as the number of blocks
and the number of threads per block.

When a kernel is data-race free only under certain assumptions we call that 
kernel partially data-race free. For instance, the example in Fig. 1, taken from a 

tutorial on CUDA programming [15], is partially data-race free. Next, we show 

two assumptions that render Fig. 1 partially data-race free: thread configura-
tions, and grid-level synchronization.

Ranging Over All Thread Configurations. The statement that variable i 

is unique thread across all groups only holds when there is only one dimension 

in the y and z axis. Hence, a data-race exists between thread threadIdx = 
{x = 0, y = 1, z = 1} and threadIdx = {x = 0, y = 0, z = 0} both from 

block blockIdx = {x = 0, y = 0, z = 0} for a block blockDim = {x = 1, y = 
2, z = 2}, i.e., 2 × 2 threads in the y-z axis. The data-race occurs because the 

projection in variable i assumes t hat all threads are arranged in dimension x,
yet a data-race can occur if there are threads in dimensions y and z. We can add
an assertion to make this fact explicit:

__assume(blockDim.y == 1 && blockDim.z == 1); 

Grid-Level Synchronization. The distinction between block-level and grid-
level analysis is important to the analysis, because different kinds of mem-
ory can be shared at different levels, and also synchronization mechanisms are 

available at different levels. If we consider data-races across different blocks, 
then another data-race is possible. For instance, between thread threadIdx = 
{x = 0, y = 0, z = 0} of block blockIdx = {x = 0, y = 0, z = 0} and 

thread threadIdx = { x = 0, y = 0, z = 0} of block blockIdx = {x = 0, y =
1, z = 1}. We can add an assertion to make the data-race freedom assumption
explicit: __assume(gridDim.y == 1 && gridDim.z == 1); 

We list the kernel with both user-provided assertions that are n eeded to prove
data-race freedom in Fig. 2. 

3 Evaluation 

Faial is the only tool capable of data-race and data-race-freedom detection. Given 

a data-set of kernels identified as data-race free, we pose two research questions:

RQ1: Which analysis features affect partial data-race freedom? We select differ-
ent features and measure how many kernels cannot be analyzed to understand
the impact each feature has in this dataset.
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Fig. 2. A simple example with user-pro vided assumptions.

RQ2: Can static data-race detection help with missing assumptions? In the con-
text of this experiment, racy kernel indicate missing assumptions. Since Faial 

is not guaranteed to find every possible data-race, w e want to test if we can
use Faial to detect data-races in kernels with missing assumptions.

Both research questions consider 5 experiments. Each experiment runs Faial on 

the same 191 kernels with different analysis settings. The tool c an report that
the kernel is data-race free, racy, or timeout.

Data Selection. The dataset we use is taken from a benchmark suite o f GPU
kernels [2]. The dataset is well studied as it has been used in multiple published 

papers on static analysis of data-races in GPU kernels [2, 9, 10, 24]. The dataset 
consists of CUDA kernels from 4 benchmark suites: NVIDIA GPU Comput-
ing SDK v2.0 (8 kernels), NVIDIA GPU Computing SDK v5.0 (165 kernels),
Microsoft C++ AMP Sample Projects (20 kernels), gpgpu-sim benchmarks [1] 
(33 kernels). Every kernel is annotated with verification-specific conditions: a 

thread configuration and optionally user-provided assumptions.
We pick 191 kernels that are deemed data-race free by Faial.  Some  ker-

nels include user-provided assertions created by the authors of the dataset [2]. 
Most commonly, the user-provided assertions are stating that a certain variable 

has fixed value, for instance that the height of a matrix is of some arbitrary 

size, say 512. Importantly, the user-provided assertions are not constraining the
thread configurations, e.g., like we did in Fig. 2. 

3.1 RQ1: Which Analysis Features Affect P artial Data-Race

Freedom?

Table 1 lists the 5 experiments that were performed according to the output of 
the analysis, data-race free, racy, or timeout.

Discussion. Experiment 1 is our baseline, since all kernels can be checked as 
data-race free, yet note that grid-level analysis is not performed. In experiment 2, 
we enable grid-level analysis and note that Fa ial is unable to analyze 5 kernels.
Faial delegates a step of data-race freedom analysis (index equality) to the Z3 [11] 
Satisfiability Modulo Theories (SMT) solver. We are able to verify all kernels 
by setting the SMT solver’s theory to AUFLIA, which assumes closed formulas of
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Table 1. Column Id holds an identifier of the experiment. Column Block states whether 
block-level synchronization is checked. Column Grid states whether grid-level synchro-
nization is checked. Column Assert states whether user-provided assertions are used. 
Column FixThr states whether a fixed thread configuration is used. Column DRF counts 
the kernels identified as data-race free. Column Racy counts the kernels identified as 
racy. Column Unk counts the kernels where the analysis is unable to detect data-race
freedom nor data-races. Column T/O counts the kernels where the analysis timed out.
We include the percentage of kernels over the total number of kernels under analysis.

Id Block Grid Assert FixThr DRF (%) Racy (%) Unk (%) T/O (%) 

1 Y N Y Y 191 100% 0 0% 0 0% 0 0% 

2 Y Y Y Y 186 97% 0 0% 0 0% 5 3% 

3 Y N N Y 139 73% 49 26% 3 2% 0 0% 

4 Y N Y N 3 2% 173 91% 15 8% 0 0% 

5 Y Y N N 2 1% 173 91% 13 7% 3 2% 

linear integer arithmetic extended with free sort and function symbols. In exper-
iment 3, we disable user-provided assertions. Only 26% of the kernels require
user-provided annotations to prove data-race freedom.

In experiment 4, we range over all possible thread configurations, rather than 

using a specific thread configuration. Almost every kernel under analysis (98%) 
expects a specific thread configuration. Faial would be able to analyze many more 

kernels fully automatically if it could extract the thread c onfiguration present
in the kernel launching codes. Bardsley et al. have explored a dynamic analysis
technique that extracts the runtime parameters of kernel launches [3]. 

In experiment 5, we enable grid-level analysis, disable user-provided asser-
tions, and range over all possible thread configurations. We find that there are 

only 2 kernels that are fully data-race free, regardless of the thread configura-
tion and without requiring any user assertions. In one kernel, the only memory 

accesses are atomics that do not introduce data-races. Atomics are supported by 

Faial. In the other kernel, the only write access is a benign data-race ignored by
Faial. Benign data-races occur when both threads write the same value. Benign
data-races are not considered errors. Faial can flag benign data-races as errors if
the user chooses.

3.2 RQ2: Can Data-Race Detection Help w ith Missing

Assumptions?

In this research question we examine kernels that are not considered data-race 

free by Faial, so either racy, unknown, or have a timeout. We assess whether 
our tool can detect data-races when there are missing assumptions, e.g., absent
thread configuration.

Discussion. The results in Table 2 show that the vast majority of kernels (91%) 
with missing assumptions can be detected by Faial. In our experience, having
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Table 2. Column Id holds an identifier of the experiment. Column Block states whether 
block-level synchronization is checked. Column Grid states whether grid-level synchro-
nization is checked. Column Assert states whether user-provided assertions are used. 
Column FixThr states whether a fixed thread configuration is used. Column Racy/Non-
DRF gives the proportion of nu mber of kernels with data-races detected versus the
total number of kernels that are not data-race free. Column % gives the percentage
of Racy/Non-DRF.

Id Block Grid Assert FixThr Racy/Non-DRF % 

3 Y N N Y 49/52 94% 

4 Y N Y N 173/188 92% 

5 Y Y N N 173/189 92% 

a static data-race detector has been quite effective to figuring out the correct 
analysis settings. In contrast, when relying on the alarms of a data-race-freedom 

detector, there is always uncertainty whether there is an actual data-race or a
spurious one.

3.3 Bugs F ound

In the course of writing this paper, we discovered bugs in the dataset and in Faial. 
We added assumptions and changed the thread configurations of 4 kernels, since 

these triggered data-races when grid-level analysis was enabled. In 3 kernels we 

had to reduce the level of parallelism, by decreasing the number of thread blocks. 
In 1 kernels, we added a user-provided assumption, a constraint of a template 

parameter that was mentioned as a source comment, yet absent. We excluded
6 kernels from our evaluation that were being considered fully data-race free
by Faial, although they are not. Two C++ features are currently unsupported
by Faial: array addresses being incremented in a loop1 (affected 3 kernels), and 

references as function parameters2 (affected 3 kernels). Since it is quite rare for 
a kernel to be fully data-race free, experiment 5 proved as an effectiv e sanity
check to exercise the correctness of Faial.

4 Conclusion 

In this paper we measured the effect of multiple analysis features when detect-
ing data-race freedom statically, in a dataset of 191 data-race free kernels. We 

found that 98% of the kernels needed a specific thread configuration to be ana-
lyzable and that only 27% of the kernels needed user-provided assertions. These
results suggest that to enable a fully automatic static analysis, these tools need
to be able to infer valid thread configurations. We also showed that the static

1 https://gitlab.com/umb-svl/faial/-/issues/117. 
2 https://gitlab.com/umb-svl/faial/-/issues/113. 
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race detection of Faial was able to find data-races in at least 92% of the kernels 
studied. The static race detector also helped us identify incorrect thread configu-
rations and missing user-provided assumptions in 4 kernels. Finally, we identified 

two areas of improvement for Faial: 6 kernels were excluded from the evaluation 

due to limitations of the tool (arrays being updated in loops and references as 
function parameters), and setting Faial’s default SMT theory to AUFLIA fixed 5 

timeouts. 
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Abstract. This paper introduces our ongoing work on the automatic 

ahead-of-time (AOT) parallelization of Python programs on recent and 

future hardware systems with massive parallelism and heterogeneity. 
Our approach is driven by the combination of ML-based type predic-
tion and multi-versioned code generation that guarantees the correct-
ness of our type-specific code optimizations in all cases. While Python is 
a dynamically-typed language, recent research demonstrated it is highly 

possible to predict what data types are likely to occur at runtime, by ML-
based static prediction and/or runtime type profiling in numerical com-
putation kernels. Given code fragments with predicted data type infor-
mation, our optimization engine performs automatic parallelization and 

sophisticated high-level code optimizations for the target system, such 

as shared/distributed heterogeneous hardware platforms. Our approach
introduces novel extensions to the polyhedral compilation to integrate
loop and data layout transformations as well as automated selection of
CPU vs. GPU code variants. Our preliminary empirical evaluation shows
significant performance improvements relative to sequential Python in
both single-node and multi-node experiments.

Keywords: Parallelizing compilers · Python language · Type 
prediction · Parallel computing · Heterogeneous computing ·
Distributed computing

1 Introduction 

Major simultaneous disruptions are currently underway in both hardware and 

software. In hardware, massive parallelism and extreme heterogeneity have 

become critical to sustaining cost and performance improvements after Moore’s 
Law, but pose productivity and portability challenges for developers. In soft-
ware, the rise of large-scale data science and AI applications is being driven 

by domain scientists from diverse backgrounds who demand the programmabil-
ity that they have come to expect from high-level languages like Python. We
propose to enable automatic parallelization of sequential Python programs for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
R. Barik et al. (Eds.): Sarkar Festschrift, LNCS 14564, pp. 64–69, 2025. 
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recent and future hardware systems with massive parallelism and extreme het-
erogeneity. We believe that a smart compilation framework that can transform 

sequential code written in a high-productivity language into an efficient imple-
mentation on multicore architectures is highly desirable. The availability of s uch
a framework will help bridge a major productivity gap for domain experts, and
reduce the barrier to application enablement on multicore platforms.

Fig. 1. Overall Design of Intrep ydd system

In this paper, we make a case for new advances to enable productivity and 

programmability of future multicore platforms for domain scientists. The goal of 
our framework, Intrepydd, is fully automatic parallelization of standard Python 

programs, aiming to deliver the benefits of heterogeneous combinations of multi-
core CPUs, GPU/FPGA accelerators, and future hardware platforms to domain 

scientists without requiring them to undergo any new training. While Python is a
dynamically-typed language, we believe that it is highly possible to predict what
data types are likely to occur at runtime, by static prediction based on machine
learning [4, 7,14] and/or runtime type profiling [2]. Our approach includes: 1) 
multiple candidate type prediction for function parameters and return values; 
and 2) program multi-versioning for specialized code generation to different can-
didate data types. After type specialization, we propose to explore a novel app-
roach to automatic ahead-of-time (AOT) parallelization and optimization, which 

includes: 3) polyhedral-based abstraction and optimizations to fully utilize CPU 

and GPU parallelism; 4) hybrid Python/C++ code generation that com bines
high-performance Python library implementations and C-based native code gen-
eration; and 5) runtime cost-based automatic selection from various optimization
variants including: library-based vs. codegen-based, CPU-based vs. GPU-based,
and the combination of those implementation variants.

Figure 1 summarizes the overall design of our proposed Intrepydd system. 
A user-developed code is a combination of main program code and kernel code, 
where the former is unchanged while the latter is optimized by Intrepydd via type 

prediction, multi-versioning, and automatic AOT source-to-source transforma-
tions, which benefit from the use of the Intrepydd Knowledge Base to provide
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dataflow and type information for many commonly used library functions. Both 

execute on a standard Python runtime along with standard libraries used by the
application.

Fig. 2. ML-based type prediction for JavaScript by JSNice [4] 

2 ML-Based Type Prediction and Runtime Type 
Profiling 

In this work, we integrate two kinds of type prediction approaches, statisti-
cal prediction based on machine learning and type sampling based on profiling
tools. Figure 2 shows the representative of first approach, JSNice [4], to annotate 

function parameters and returns with data types. Although JSNice is developed 

for JavaScript, the same approach is applicable to Python programs by learning
with training data from Python applications [14]. There can be many candidates 
data types for each variable (i.e., function parameter or return value) of interest, 
especially when integrating both ML-based and profile-based predictions. A big 

challenge would be to select proper subset of candidate types considering the 

trade-off between accuracy of type prediction and complexity of multi-versioned
code generation. We will address this challenge by the interaction between type
predictor and multi-versioner, as discussed in earlier paragraph.

3 Polyhedral Optimizations 

The polyhedral compilation has provided significant advances in the unifica-
tion of affine loop transformations c ombined with powerful code generation
techniques [3,13,16]. However, despite these strengths in program transforma-
tion, the polyhedral frameworks lack support for: 1) dynamic control flow and
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Fig. 3. Polyhedral O ptimization

Fig. 4. Hybrid Python/C++ code generation with multi-versioning for Polybenc h-
python correlation example

non-affine access patterns; and 2) library function calls in general. To address the 

first limitation, we have extended the polyhedral representation of Static Control 
Parts (SCoPs) to represent unanalyzable expressions as a compound “black-box” 

statement with approximated input/output relations. To address the second lim-
itation, we took advantage of our library knowledge base to obtain elemen t-wise
dataflow relations among function arguments and return values. These unique
features enable the co-optimization of both explicit loops and implicit loops from
array operators and library calls in a unified optimization framework.

After SCoP extraction and dependence analysis, we can apply any standard 

polyhedral optimizations to determine the affine scheduling, which composes all 
the loop and layout transformations in t he SCoP representation and is used to
generate the transformed Python AST at the code generation step (Fig. 3). In 

this work, we integrate PolyAST [10] algorithm that implements cache-aware 

loop transformations and a data layout transformation approach [11,12] that 
minimizes the total allocated array sizes while improving spatial data locality. 
For custom GPU code generation, we develop the Python-to-C++ code gen-
eration with OpenMP accelerator model, built on a past work for C-to-CUDA
polyhedral optimizer [9].
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4 Hybrid Python/C++ Code Generation 

There are two strategies for polyhedral optimizations in our approach: 1) library 

mapping that transforms the SCoP representation for select code regions into 

calls to efficient library functions such as those in NumPy and CuPy; and 2) 
C++ conversion that enables general loop and layout t ransformations to maxi-
mize parallelism and locality and generates the final output as parallel OpenMP
C++ code. While the efficiency of the first strategy was demonstrated [8], we 

extend the Python-to-C code generation [15] to automatic CPU/GPU p aral-
lelization [9,10] for the second strategy. In our approach, an input code region 

can be optimized with both strategies whenev er possible, thereby generating
multiple output code versions. Figure 4 illustrates how the input code fragment 
is optimized with different strategies, version 1: library-based CPU implementa-
tion, version 2: C++ codegen-based CPU implementation, and version 3: library-
based GPU implemen tation. The generated C++ code shown on the right side
is equipped with the pybind11 [1] APIs with the native O penMP C++ compiler.

5 Preliminary Experimental Results 

Figure 5 show the throughput performance of a real-world signal processing
application (STAP [5]) OLCF Summit clusters. Given a Python NumPy ver-
sion as input, prototype Intrepydd compiler automatically parallelized the major 
computation kernel and mapped it to GPUs via NumPy-to-CuPy conversions. 
This significantly improves the throughput performance, resulting in c ompara-
ble single-GPU performance with the manually ported CuPy implementation.
The Intrepydd automatically generates API calls to the Ray [6] runtime, which 

enables scheduling tasks across multiple heterogeneous nodes in a cluster.

Fig. 5. STAP radar application performance on OLCF Summit supercomputer.

6 Conclusions 

This paper describes Intrepydd – a programming system designed to deliver 
the benefits of shared/distributed heterogeneous hardware platforms to domain
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scientists who naturally use high-productivity languages like Python. In our app-
roach, the parameters and return values of kernel Python functions are anno-
tated with type hints automatically by the type predictor and their correctness is 
dynamically checked by the multi-versioned code generation. Based on these type 

hints, the Intrepydd compiler performs automatic AOT parallelization, includ-
ing polyhedral-based transformations and CPU/GPU code generation, hybrid 

Python/OpenMP C++ code generation, runtime cost-based a utomatic selec-
tion. Our empirical evaluations using the STAP radar application for heteroge-
neous distributed performance show significant performance improvements up
to 20,000× improvement for the STAP radar application, relative to baseline
NumPy-based implementations.
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Abstract. While the FA-BSP model provides significant performance 

improvements in large-scale graph applications, its single-threaded exe-
cution model may limit the performance of certain graph applications. 
This paper explores the potential benefits of enabling user-level asyn-
chronous tasking with async and finish in FA-BSP programs using dis-
tributed triangle counting. The initial results from a generic HPC cluster
show that a version using asynchronous tasking leads to a performance
increase of 3% to 32%.

Keywords: The FA-BSP Model · Asynchronous Tasking · The Actor
Model

1 Introduction 

The Fine-grained Asynchronous Bulk Synchronous Parallel (FA-BSP) model [11] 
is an extended version of the BSP model [13] that facilitates fine-grained asyn-
chronous point-to-point messages even during the lo cal computation. As illus-
trated in Fig. 1, each processing elemen t (PE1), performs 1) a local computation 

(the blue part), 2) asynchronous messaging (the arrows), and 3) message han-
dlers (the red part) in an interleaved fashion. It is important to highlight that
the use of the actor model [1] as a user-facing programming model effectively 

abstracts the execution model as it inherently supports asynchronous messag-
ing and message handling. Such a programming and execution model is perfect 
for the vertex-centric graph programming model because vertices can efficiently 

propagate information to their neighbors over the edge via asynchronous mes-
saging. The FA-BSP model typically provides excellent scalability and perfor-
mance and outperforms state-of-the-art BSP implementations in various large-
scale graph applications [4– 6, 12]. 

However, the current FA-BSP model only exploits one-level parallelism, 
where each PE is single-threaded a nd performs the interleaved execution. One

1 In this paper, a PE means an OpenSHMEM PE [2], which is similar to an MPI rank 

and  a  n OS process.
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Fig. 1. The Fine-grained Asynchronous Bulk Synchronous Parallel mo del (FA-BSP).

research question is whether adding an additional level o f parallelism is benefi-
cial.

In this paper, we explore the possibility of integrating asynchronous task par-
allelism with the FA-BSP model with a primary focus on the message-handling 

part. The key concept is to enable users to create asynchronous tasks within a 

message handler. These asynchronous tasks can b e either 1) synchronized before
the message handler ends or 2) allowed to escape from it by relaxing the message
processing rule [8]. 

This paper makes the follo wing contributions:

– Preliminary design and implementation of asynchronous tasking support for 
an F A-BSP runtime (HClib-Actor).

– Preliminary demonstration showing that using asynchronous tasking in a mes-
sage handler outperforms the existing single-threaded execution.

2 Background 

2.1 Habanero C/C++ Library (HClib) 

The Habanero C/C++ library (HClib) [7] was originally developed to enable an 

asynchronous many-task (AMT) programming model and its runtime system. 
It inherits different parallel constructs from the X10 [3] language, such as 1) 
finish, used for bulk task synchronization. It waits on all tasks (including nested 

tasks) spawned within the scope of the finish, 2) async, which is used to create 

asynchronous tasks, and 3) async_at: a variant of async, which is used to spa wn
asynchronous tasks at a specific location. Note that, unlike X10, HClib itself only
enables intra-PE parallelism and requires an additional module for inter-PE
communication.

2.2 HClib-Actor 

HClib-Actor [ 11] is an external module for HClib that enables the FA-BSP exe-
cution. It offers an SPMD-style programming, maintaining interoperability with
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existing MPI and OpenSHMEM applications. Specifically, in any superstep that 
could benefit from FA-BSP execution, the user can leverage the HClib-Actor 

API to enable fine-grained point-to-point asynchronous messaging with actor/s-
elector2. Because this execution model inherently produces many fine-grained 

messages, the runtime automatically performs message aggregation for better 
network utilization, which is backed by the Conveyors library [10]. 

Listing 1.1 and Listing 1.2 demonstrate an FA-BSP program. In this pro-
gram, each processing element (PE) sends N messages to arbitrary destinations, 
incrementing a target element of a remote array by one. In Listing 1.1,  each  PE  

first allocates a local array larray (Line 2). Second, each PE instantiates a n
actor instance (Line 3). Third, each PE starts the actor (Line 6) and sends N 
asynchronous messages to random destinations (Line 10). The done API (Line
12) is used to inform the runtime that the current PE will not send any more 

messages so as to aid the runtime with overall application termination. The code
in Listing 1.2 defines an actor class that includes the message handler (Line 5). 
It is important to note that no atomics are required on Line 6 when updating 

larray because the runtime processes incoming m essages one at a time.
Each PE is single-threaded, and the runtime executes the portions in an 

interleaved fashion. It is important to note that the finish construct acts as a 

bulk synchronization construct, even with asynchronous messaging. This means 
it waits for all outgoing messages to be sent, all incoming messages to be pro-
cessed, and all tasks spawned within the finish scope to be completed.

Listing 1.1. The Main Part (compu-
tation and asynchronous m essaging in 

Figure 1). 

1 // SPMD 
2 int* larray = (int*)calloc(N, sizeof(int)); 
3 MyActor* actor_ptr = new MyActor(larray); 
4 // one superstep 
5 hclib::finish([=]() { 
6 actor_ptr->start(); 
7 for (int i  =  0;  i  <  N;  i++)  {  
8 int dst = ...; 
9 // Asynchronous SEND 

10 actor_ptr->send(i, dst); 
11 } 
12 actor_ptr->done(0); 
13 });
14 // barrier synchronization/collective

Listing 1.2. The Handler Part (Message 

handling in Figure 1). 

1 // Actor Class 
2 class MyActor: public hclib::Selector 

<1, int>  {  
3 int *larray; 
4 // Message Handler 
5 void process(int idx, int 

sender_rank) { 
6 larray[idx] += 1; // no 

atomics 
7 } 
8 public: 
9 MyActor(int *larray) : larray( 

larray) { 
10 mb[0].process = [this](int idx 

, int sender_rank) { 
11 this->process(idx, 

sender_rank); 
12 }; 
13 } 
14 };

3 Preliminary Design 

The primary goal of this paper is to enable asynchronous tasking in message 

handlers. Since HClib-Actor already inherits tasking API from HClib, we look to

2 Selector [ 9] is an actor with mu ltiple mailboxes.
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enable asynchronous tasking in a way that is natural to b oth HClib and HClib-

Actor programmers.
As with the original HClib, async is used to create an asynchronous task 

within a message handler, and also finish is used to block until all children
tasks created within it are completed.

Currently, we support the following type s of messages:

– Blocking Messages (Listing 1.3): The original actor model mandates that 
each actor processes incoming messages one at a time. To comply with it, the 

user must use finish appropriately so any tasks initiated within a message
handler must be completed before it is completed.

– Non-blocking Messages (Listing 1.4): This type of message is intended to 

relax the message processing rule in order to achieve performance enhance-
ments. Such a message can create an escaping task that cannot be guaran teed
to be completed until finish in the main process has been unblocked (Line 5 

in Listing 1.1). Since multiple tasks can be executed simultaneously, the user 
needs to eliminate data race across all i nvocations of any message handlers,
and the main part.

Listing 1.3. Blocking message with 

finish. 

1 // Message Handler 
2 void process(int idx, int sender_rank) { 
3 hclib:\,\!:finish([=] { 
4 hclib:\,\!:async([=] { ... }); // T1 
5 }); 
6 } 

Listing 1.4. Non-blocking message. 

1 // Message Handler 
2 void process(int idx, int sender_rank) { 
3 hclib::async([=] { ... }); // T2 
4 // no synchronization (non-blocking) 
5 // until "finish" in the main part 
6 } 

To summarize, using blocking messages prevents data races as long as finish 
and async are used properly and data races within a message handler are elim-
inated, whereas using non-bloc king messages requires careful data race elimina-
tion because multiple messages can be processed simultaneously.

4 Prototype Runtime Implementation 

A key challenge in enabling user-level asynchronous tasking in the runtime is 
that the Conveyors API routines are not thread-safe. As opposed to the original
single-threaded execution model (see Sect. 2.2), the runtime must ensure that 
only one worker thread can communicate with Conveyors. async_at is suitable 

for achieving this because i t can constrain which worker can execute a specific
task [7, 14]. As shown in Fig. 2, a communication task is created via async_at 

and can only be executed by the communication worker, while a general task
can be executed by any worker.

While the use of async_at is sufficient in most parts of the runtime, there 

is a non-trivial problem in the implementation of finish. In the original HClib 
implementation, the runtime creates an asynchronous task with the continuation 

of finish and tries to schedule another pending task so that a specific worker will 
not be blocked. Since the original implementation allowed a non-communication 

worker to execute the continuation, which can invoke Conveyors routines, we
modified the finish implementation so that the continuation task is always
executed by the communication worker.
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Fig. 2. The execution model of the FA-BSP runtime w ith asynchronous tasking
enabled.

5 Case Study with Distributed Triangle Counting 

This section discusses triangle counting implementations with user-level asyn-
chronous tasking and results of an empirical evaluation on a multi-node platform.

5.1 Distributed Triangle Counting with the FA-BSP Model 

Triangle Counting counts all possible numbers of triangles in a graph. Our base-
line implementation is the one in the FA-BSP paper [11], where each processing 

element (PE or actor) iterates over the neighbors of each local vertex (vi)  that  

resides on the actor and finds two different neighbors (vertices vj and vk)  and  

sends a message to a (possibly) remote actor that owns vj . The receiver receives 
a  pair  (vj ,  vk ) and checks if there is an edge vj → vk. The edge check can be
performed using binary search on a neighbor list of vj .

While a binary search can be parallelized, we aim to increase the granularity 

of the message handler to amortize the cost of task creation. Specifically, we 

group multiple pairs into a single b ig packet and process them in parallel in the
message handler. We call it a chunked version.

5.2 Experimental Setup 

We perform our experiments on the CPU nodes of the P ACE cluster at Georgia
Tech3. Each CPU node has Dual Intel Xeon Gold 6226 CPUs with 24 total 
physical cores and 192 GB of DDR4 memory connected b y an Infiniband 100HDR
interconnect. For the software stack, we use gcc/10.3.0 and openmpi/4.1.4.

We are compare the performance of the following three variants while keeping 

the n umber of cores constant (c):

1. Baseline: The original version discussed in Sect. 5.1. We ran it with c PEs, 
where c is the total number of cores.

2. The chunked version with a single worker: The chunked version dis-
cussed in Sect. 5.1 with a chunk size of 624 pairs (16 bytes/pair). As with the 

baseline version, we ran it with c PEs, where c is the total number of cores.
There is no asynchronous tasking in the user application.

3 https://www.pace.gatech.edu/. 

https://www.pace.gatech.edu/
https://www.pace.gatech.edu/
https://www.pace.gatech.edu/
https://www.pace.gatech.edu/
https://www.pace.gatech.edu/
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3. The chunked with multiple workers: The chunked version d iscussed in
Sect. 5.1 with the same chunk size. We ran the application with c/w PEs, 
where w is the number of worker threads per PE. This variant also has two
sub-variants: blocking and non-blocking message versions (Sect. 3). To mini-
mize task creation overhead, the 624 pairs are divided into w chunks.

These variants were run with scale 16 and 20 graphs, the R-MAT parameters 
of A =  57.0, B = C =  19.0,  and  D =  5.0, a nd an edge factor of 16. We report
the best of five measurements.

Fig. 3. Strong scaling results of Triangle Counting on the PACE cluster with up to 32 

nodes a nd 768 cores (absolute timings, lower is better).

5.3 Preliminary Results 

Figure 3 (a)(b) show strong scaling results of Triangle Counting. The results show 

that the chunked version significantly outperforms the baseline version even in 

the single-worker setting because this enables better network utilization even 

with the Conveyors aggregation library. Moreover, the single-worker variant is 1) 
faster than the blocking version of the two-worker variant but 2) slower than the 

non-blocking version of the two-worker variant in both data sizes. In summary,
the non-blocking version achieves 3–32% performance improvements compared
to the chunked single-worker version.

Although, we do observe that using more than 2 workers results in a notice-
able drop in performance due to the increase in task creation overhead as the 

number of workers increases since it creates w − 1 tasks. In general, tweaking 

the chunk size and the number of workers can further improve/degrade the per-
formance. However, our goal in this paper is to find a case where asynchronous
tasking is beneficial, and tuning these parameters for the best performance is
beyond the scope of the paper and left as future work.
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6 Conclusion and Future Work 

This paper explores the exploitation of asynchronous tasking in the FA-BSP 

model. We enhance HClib-Actor to support task parallel constructs like async 

and finish within a message handler and discussed a case where user-level 
asynchronous tasking is beneficial. Results show that asynchronous tasking leads 
to 3% to 32% performance improvements. In future work, we plan to explore 

more opportunities for parallelization in different graph applications as well as 
the introduction of parallelizing constructs within the FA-BSP runtime. 
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Abstract. Advancements in bio-engineering have enabled the creation 

of in-vitro biological neural networks, offering an exciting avenue for a 

new kind of computational platform. A computing stack powered by liv-
ing neurons could unlock self-organizing and dynamically rewiring sys-
tems with extreme connectivity and parallel processing power, all while 

running on sugar with unprecedented energy efficiency. Despite their 
potential, computing applications of these biological systems remain a 

nascent and limited technology that presents a challenging and radical 
departure from the precise, digital von Neumann architectures that dom-
inate today’s computing landscape. Here, we outline a framework that 
leverages in-silico simulation to establish an engineering testbed with 

the ultimate goal of learning to harness neural in-vitr o systems for com-
putational purposes. We describe an optimization approach to uncover
reproducible neural activity present in a system that can be leveraged
to carry out basic information processing tasks. We demonstrate the
feasibility of this approach by optimizing a simulated neural system to
perform digit classification, offering a proof-of-concept for a potential
pathway to leveraging neural computation in vitro.

Keywords: Machine Learning · Neuromorphic computing · Biological
neural networks

1 Introduction 

The stunning success of deep neural networks in machine learning combined with 

the slowing of Moore’s law is spurring interest in novel, brain-inspired computing 

approac hes that could bring about next-generation high-performance, low-power
architectures [16– 18]. However, today’s digital, CMOS architectures are still lim-
ited in their ability to process complex, unstructured, and noisy data with the 

extreme energy efficiency of their biological counterparts. Recently, advances in 

bio-engineering have opened up new possibilities through the construction of 
biological neural networks in-vitro, o ffering not only a novel “wetware” substrate
for computing but also a vehicle for gaining a deeper understanding of neural
processing systems akin to the brain [3, 5, 21, 25]. These engineered living bio-
logical networks may ultimately emerge as an alternative hardware for artificial
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intelligence applications, a development that would make the quest for intelli-
gent compute come full circle. Despite these promising prospects, engineering 

cell cultures for computing applications remains in its infancy. Current plat-
forms offer only crude input control, limited temporal and spatial resolution of 
measured resulting activity, and under-characterized and i nsufficiently under-
stood computing properties. In particular, how to effectively design, program,
and leverage the systems for computation is an open question and active area of
research [21]. 

Notably, interacting with living neural networks for computing purposes 
poses two fundamental challenges. First, while the basic physiological mecha-
nisms that drive neurons have been uncovered, we do not know how these pro-
cesses give rise to the remarkable computing capabilities of neural systems. To 

make an analogy to conventional processors, having understo od the basic physics
behind a transistor, we still do not know how a complex composition of tran-
sistors could implement higher-level logic and algorithms [11]. Secondly, current 
experimental methods do not offer enough precision to measure and manipulate 

all potentially relevant neuronal processes, especially in larger cell cultures. In 

practice, input-output interfaces remain limited to crude interventions that are 

hard to calibrate and target precisely. Despite these challenges, a growing body 

of work suggests that living neuronal systems may be leveraged without a com-
plete understanding or command of their neural dynamics. The field has seen
remarkable practical achievements in interacting with neural systems, enabling,
for instance, decoding of thought through brain-computer interfaces [8], induced 

motor control in simple organisms [13], or video game play using neural feed-
back [12]. A key ingredient to these successes has been data-driven learning and 

analysis methods that can build implicit representations of the neural dynam-
ics and enable systematic optimization towards desirable states and dynamics. 
For example, algorithmic data analysis of neural data can help fill knowledge
gaps and automatically uncover functional and structural properties of neural
systems [20]. 

In this work, we present a simulation-driven approach that is designed to 

discover neural stimulation patterns that induce reproducible neural activity in 

vitro. We develop an in-silico simulation that recapitulates key features of the
open in-vitro experimentation platform by [24] (see Fig. 1). Using a contrastive 

training approach, we demonstrate as a proof of concept that it is possible to 

exploit the neuronal dynamics of such a system for a basic classification task. 
This presents a first step towards a general approach t o induce and control neural
activity for downstream tasks, that may ultimately enable a harnessing of neural
computation in the corresponding real-world in-vitro system.

2 Background 

Unlike their artificial counterparts, biological neurons exchange information 

using action potentials – short-lived changes in the membrane potential also 

known as spikes that travel along axonal connections to communicate with the
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Fig. 1. (a) Illustration of spiking dynamics and interaction with recording and stimu-
lation electrodes. Stimuli raise the action potential of a neuron causing it to depolarize 

if the firing threshold is crossed. The electrodes pick up changes in t he extra-cellular
potential, allowing the detection of spiking activity of nearby neurons. (b) Recording
system by Zhang et al. [24] with fluorescence microscopic image of seeded cells on MEA
[Photos by [24]/CC BY-NC-ND 4.0 ]

connected cells (see Fig. 1a). When neuron A transmits a spike to neuron B, its 
cell potential increases and moves closer to a spiking threshold, before decay-
ing back away to the resting potential. If multiple spikes arrive in a sufficiently 

short time window, however, the threshold is crossed causing the neuron to pro-
duce another spike. Experimentally, it is p ossible to interact with this process
by measuring and manipulating the cellular potentials, for example, by inducing
currents that raise cell potentials beyond the firing threshold.

Historically, the progress in understanding neurophysiology has been driven 

by experiments in vivo [7]. More recently, however, advancements in biological 
technology have opened up the creation and study of neural systems in vitro, out-
side of their natural biological context. Notably, the groundbreaking development 
of induced plurip otent stem cell technology (iPSC) has enabled the reprogram-
ming of human cells to stem cells and revolutionized the field [22]. Importantly, 
it has brought about the techniques that are required to grow brain-like cell cul-
tures of increasing sophistication in lab environments ([25] provides an overview 

of this “organoid” technology). At the same time, neural recording and stimula-
tion technology has been steadily improving and is enabling increasingly high-
resolution electrophysiological measurements with minimal disruption to the cell
tissues [2]. One of the most common stimulation and recording devices is multi-
electrode arrays (MEAs) that consist of multiple microelectrodes from which 

neural signals can be picked up or delivered. While electrodes have a limited mea-
surement radius and pick up the combined signal of all electrical activity in the

https://www.biorxiv.org/content/10.1101/2023.08.21.554033v1
https://creativecommons.org/licenses/by-nc-nd/4.0
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neighborhood, post-processing methods can “sort” the activity and uncover the 

underlying neuronal sources with a high degree of accuracy [19]. Taken together, 
this creates an experimental platform to explore neural responses to a wide range
of input stimuli and ultimately their computational capabilities [21]. 

3 Approach 

Fig. 2. Framework overview. To learn control function f parameterized by θ that out-
puts a control sequence k for a given data sample x, an input is processed multiple 

times and corresponding neural activity for the trials is recorded. For a given input 
pair, embedding vectors h1 and h2 are computed by analyzing the self-information 

content of the activity. F inally, θ is optimized in a contrastive fashion by minimization
of the embedding vector distance of positive samples x1 = x2 while maximizing the
distance of negative samples x1 �= x2.

At a high level, the problem of leveraging a given in-vitro system can b e broken
down into three sub-problems.

i How to encode data such that it can be f ed into the experimental platform,
ii how to decode resulting neural a ctivity, and
iii how to establish some level of control ove r the resulting input-output system.

In this work, we propose an approach that addresses (i)-(iii) in a way that 
allows us to optimize the system end-to-end (see Fig. 2). 

3.1 (i) Learned Control Sequence Model 

Experimental systems that interface with in-vitro cell cultures can vary dramati-
cally in terms of used technology and capability (see Sect. 2). However, typically, 
experimental interactions come down to specifying stimulation of the available 

input channels at certain times. For example, this may be a list of times when to 

activate a laser light that shines on the culture, or a list of times when to induce 

a current at an electrode placed somewhere in the culture. In this setting, system 

control can be described as a mapping f : RN×T → R
j(x)×T ′

that transforms
given N -dimensional data into a sequence of stimulation times. The goal is to
find some parameters θ such that fθ(x) = k controls the neural system in some
desirable way.
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3.2 (ii) Self-information Decoding 

While it is clear that neurons leverage the timing of action potentials as main 

carrier of information, it is not kno wn how exactly information is encoded in the
spike times [6]. Many candidate coding schemes exist [1] and there is increasing 

empirical evidence that individual spike times rather than averaged firing rates 
over extended time windows play a crucial role in the neural code [23]. However, 
without averaging, the enormous variability with which neurons elicit spikes
poses a practical challenge [14]. How can information be reliably decoded from 

inherently noisy and stochastic neural processes? This question is particularly 

relevant in the context of MEA-based in-vitro architectures where the electrode 

measurements are subject to additional noise and imperfections. Addressing this 
problem, Li and T sien have proposed a self-information decoding scheme in which
the neural variability itself is used for coding rather than regarded as mere
noise [14]. Specifically, the idea is to look at the probability distribution of the 

time between observed spikes (inter-spike intervals, ISI) and ask how likely the 

currently observed silence duration is given the past ‘ground state’ of variability. 
In other words, how surprising is the observed silence duration between two 

spikes, either by being extremely short or unexpectedly prolonged compared to 

the past distribution. The overly short or long states then carry information 

in contrast to the likely inter-spike intervals that are close to the mean of the
variability distribution. In an experimental in-vivo study involving mice, Li et al.
have demonstrated that self-information decoding could uncover cell assemblies
active in response to induced cognitive states like fear, suggesting that the self-
information principle can be a practically effective decoding strategy [15]. While 

the neural self-information theory warrants further experimental scrutiny, one 

immediate and general utility of the idea is that the method can uncover a 

broad scope of unexpected states in an unbiased manner. In practice, we can 

leverage this to identify meaningful neural activity without having to predefine 

a reference point set by an outside observer. As a result, the decoding scheme
may provide enough flexibility for the control sequence model to uncover above-
the-noise states without pre-imposing the exact character of such states.

Practically, to compute self-information from the measured neural activity 

of the in-vitro system, we record the intervals between the points in time when 

spiking activity is detected. We then estimate the probability density function 

(PDF) of the intervals using Gaussian kernel density estimation, denoted as p(x). 
The self-information is defined as IX(x)  :=  − log[pX(x)] where X represents the 

random variable of intervals. This approach provides a non-parametric estimate
of the information content in the spiking activity based on its temporal structure.
We can obtain this estimate for all recording positions j in the cell culture,
yielding a vector h with elements IX(j)(x).

Taken together, it is important to note that this self-information embedding 

h captures valuable information about the spatial-tempora l activity in the cul-
ture in response to stimulation patterns. Figure 3 illustrates this in a toy system 

consisting of three spatially distributed recording channels and five neurons that 
respond to varying stimulation patterns. Consider that channel C picks up the
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activity of neurons #4 and #5 in its neighborhood. Since #4 is connected to 

neurons in the neighborhood of channel B and #5 is connected to a neuron in 

the neighborhood of channel A, stimulating A and B in isolation brings about 
average activity in C. However, when A and B are stimulated in quick succession, 
C will observe an unexpectedly short inter-spike interval. Moreover, the delay 

between stimulation of A and B matters and has to account for the longer signal 
traveling time from A to C versus B to C. While this is a highly idealized exam-
ple, it illustrates h ow stimulation response activity retains information about the
spatio-temporal structure of culture. Note that this is true even though neither
the neuron positioning nor their connectivity are directly observable by the elec-
trodes. Given enough sample data, it would be possible to infer how to stimulate
the system to induce events with a high information content.

Fig. 3. Toy example system with three electrodes A, B, and C that can stimulate and 

record the resulting spiking activity and local field potential (LFP) of neurons in their 
neighborhood. Under the right stimulation pattern of A and B, electrode C observes 
an unexp ectedly short inter-spiking interval and high LFP contribution at 130 ms, an
event containing high spatiotemporal information content.

3.3 (iii) Contrastive Optimization 

The self-information decoding translates multi-channel activity in a given time 

window into an embedding vector h that quantifies the spatiotemporal unex-
pectedness of the observed activity. This gives us a way to compare and order 
states using an embedding vector norm ||h1 − h2||. In this setup, a minimal
norm implies a similar level of information content or unexpectedness of the two
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compared states. We can exploit this property to learn to distinguish stimulus-
response patterns by recording a nd comparing neural activity shortly after stim-
ulation. Figure 2 illustrates this process. Given two data samples x1 and x2 we 
can compute the corresponding control sequences k1|2 = f (x1|2) that describe 

the stimulation pattern to apply to the system. The resulting embedding norm 

should be minimal if x1 = x2 and maximal otherwise. In other words, the same 

stimulus applied multiple times should give responses of similar self-information
content. This is reminiscent of the contrastive loss function used for deep metric
learning [4]. Note that optimizing fθ to conform to this condition does not spec-
ify whether the response self-information of x1|2 should be high or low, just that 
they should be different. Another way to think of this optimization strategy is 
as a search for a set of points in the s timulation space that have predictable,
low-information responses, as opposed to another set of points that lead to sur-
prising, high-information responses of the neurons.

3.4 Learning to Harness Neural Computation 

Crucially, uncovering the relationship between input stimulation and neural 
response provides a pathway to leveraging the neural system for computing 

tasks. To illustrate this, suppose that we have figured out that two stimula-
tion patterns α and β lead to clearly distinguishable neural responses A and B. 
We could leverage this separation by mapping pictures of cats to patterns like α 

and pictures of dogs to patterns like β. We could then map an unknown image 

in the same way and interpret the response A as a recognition of a cat and B as 
a recognition of a dog. This “computation” can be more powerful than using the 

simple mapping function directly since the neural system already implements a 

powerful separation function that is robust to noise and processes the relevant 
features of the input signal. We can directly incorporate this mapping strat-
egy into the training pro cess by adjusting the equality condition x1 = x2 with
y1 = y2 where y1|2 are the class labels for x1|2 (e.g. “dog” and “cat” for a dog
and cat image). This adjustment means that fθ encodes images into stimulation
patterns such that the neural response is different for images with a different
class. More generally, the framework thus allows us to find suitable stimula-
tion patterns that encode a given dataset such that distinct data samples elicit
distinguished neural responses.

4 Experiments 

Testing an approach like the one outlined above in an in-vitro system poses many 

practical challenges. First and foremost, designing and conducting experiments 
in vitro is costly and time-intensive. Neural cultures take weeks to grow and 

effort to keep alive. Moreover, no culture is ever the same and evolves with age, 
making it harder to control for spurious changes and verify results in repeated
trials. To accelerate the experimental design, it is thus a good idea to experiment
with algorithmic approaches in simulation first. This allows for faster iteration
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but also provides a way to inspect and “debug” neural dynamics without mea-
surement limitations. Here, we implement a neural simulation that recapitulates 
key properties of a contemporary in-vitro experimental platform as a testbed 

for algorithmic approaches to leveraging neural computation. We demonstrate
in-silico that it is possible to find an fθ to perform digit classification via multi-
electrode array stimulation and recording.

4.1 Neural Simulation 

Fig. 4. Visualization of the simulated in-vitro system. The neuron positions of the 

different cell types in color are not drawn to size. The black crosses mark the p osition
of the electrodes to stimulate and record from nearby neurons. (Color figure online)

The simulated system is depicted in Fig. 4 and aims to recapitulate the real-
world in-vitro experimentation platform by Zhang et al. [24] (see Fig. 1b). It 
consists of a 4 × 4 multi-electrode array with a pitch of 200µm placed on top 

of a neural culture with excitatory and inhibitory n eurons. We adopt the elec-
trode model provided by Johnsen et al. [10] and assume that each electrode can 

perfectly detect spikes in a 50µm radius, dropping to 50% detection within a 

100µm radius. For stimulation, we employ a simplified approach to estimate the 

induced voltage Vinduced in neurons that are within 150µm of the electrode: 

Vinduced = 
Vstim 

r
· dneuron · cos(γ) 

where Vstim is the stimulation voltage of 750 mV, r is the distance from the
electrode, dneuron is the neuron diameter assumed to be 10µm, and γ is the angle
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between the electric field and the neuron dipole orientation assumed to be 0◦. 
The neurons are distributed randomly and connected with a probability that is 
proportional to their spatial distance. The neuron dynamics are modeled using
an Izhikevich 2003 model [9] that implements biologically plausible dynamics 
with high computational efficiency. Synaptic connections are tuned such that 
the culture dynamics produce the empirical firing rates reported in [24]. 

4.2 Optimization 

The system is stimulated using the four bottom electrodes in the MEA within 

a 50 ms window (Fig. 4). The time scale of this recording window is somewhat 
arbitrary but chosen to be in the order of magnitude of time that multiple actions 
potentials take to travel through the culture. Activity is recorded from the four 
top electrodes only. This ensures that the input stimulation area does not over-
lap with the output area, i.e. measured activity has been transmitted through 

the neural dynamics. The control sequence model fθ is implemented by a feed-
forward artificial neural network that outputs the stim ulation times for the four
input channels. We use the well-known MNIST digit dataset as a benchmark and
downsample the 28 × 28 image to 3× 3 pixels to reduce the number of learnable
parameters |θ| to 450. We minimize using black-box optimization with the loss
function

L(xi, xj ,  θ)  =  1[yi = yj ]‖kθ(xi) − kθ(xj )‖
2 

2 
+ 1[yi �= yj ]  max(0, 1 − ‖kθ(xi) − kθ(xj )‖2)

2 

where xi|j are the data samples with class labels yi|j and k are the self-
information embedding vectors of the neural activity (see Sect. 3). 

Fig. 5. Contrastive MNIST digit optimization: loss and accuracy for 2000 random θ-
samples sorted by loss. Accuracy is determined on 64-digit pairs from the training 

set, where guessing would yield a 50% accuracy. Best θ achieves an accuracy of 72%,
suggesting that it is possible to find control parameters that classify the digits with an
accuracy above chance.
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Figure 5 shows the optimization objective L computed for 2000 simulations 
with θ-values that are sampled via Latin hypercube sampling. Each θ is evaluated 

on 64 MNIST digit pairs by computing the control sequence and evaluating 

the prediction accuracy of whether the given digits belong to the same class. 
The best-performing parameter configuration achieves an accuracy of over 70%, 
outperforming the random guessing baseline of 50%. This result suggests that is 
it possible to find a θ that encodes the images of digits into stimulation patterns
that induce distinct neural responses for different digits with an above-chance
accuracy. Importantly, this works despite the noisy dynamics that are never quite
the same at the time of the electrode stimulation.

5 Conclusion 

We have presented a simulation-driven approach to learn stimulation patterns 
that steer in-vitro neural activity towards desired responses. We demonstrated 

in simulation that the strategy can be used to exploit the system dynamics to 

perform a basic classification task. While this presents a first step, crucial work 

remains to demonstrate the effectiveness of the approach in a real-world sys-
tem. For one, we have resorted to a naive black-box optimization approach of 
trying random parameter changes and selecting for lower loss values. This is 
not efficient nor scalable and could be improved in multiple ways. Gradient-free 

optimization methods such as various evolutionary optimization strategies could 

be employed for more effective optimization. It may also be possible to lever-
age domain knowledge to construct differentiable approximations of the system 

to leverage more effective gradient-based search methods. Secondly, it will be 

important to validate simulation results against real-world data to test the even-
tual applicability in lab experiments. Notably, lab data can provide important
information on what properties are the most important to get right when sim-
ulating plausible neural dynamics. Finally, in the scope of this work, we have
deliberately ignored the remarkable malleability of neural systems that could be
used to “program” rather than merely exploit already existing behaviors. This
could become another optimization target in future work. It is plausible that a
further improvement of simulation and optimization capabilities, guided by feed-
back from real-world experiments, will pave the way to increasingly sophisticated
computing applications in vitro.
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Abstract. Source-level transformations of programs are fundamental 
to achieve high-performance: complex loop transformations, including 

loop tiling and parallelization, must typically be applied by a user or 
an automated tool. However this process is error-prone, especially when 

combined with transformations of the data layout, code structure and 

statements themselves. 
In this work, we present an approach to prove the equivalence between 

a function and its candidate optimized version which is mostly agnostic
to the schedule and storage implemented. It can prove the equivalence
between a sequential function and its parallelized version, under practical
restrictions.

Keywords: Verification · Program Equivalence · Concurrent Programs

1 Introduction 

Optimizing compilers must provide a semantically equivalent implementation 

to the input program being compiled, while optimizing the program descrip-
tion to efficiently map it onto a target hardware. Typically, parallelism should 

be exposed, be it at the instruction level, using SIMD vectorization, or using 

coarser-grain multi-thread parallelization. This parallelism may be automati-
cally exposed by the compiler, or be assisted by the programmer’s rewriting and 

annotations of the program to specify how parallelism may be implemented. An 

upside is the potential performance of parallel programs versus their sequential 
implementation. A downside is the risk for the compilers and humans alike to
be buggy: such parallelizing transformations may break the original program
dependences, be incorrect due to possible race conditions or deadlocks, or sim-
ply not following the sequential program semantics due to mismatches between
the operations computed in the original and transformed programs.

In this work, we present a verification approach to prove the correctness of 
a set of parallelizing transformations. It is based on a hybrid concrete-symbolic 

interpreter, to verify the correctness of a pair of programs at the source level [26]. 
These programs, expressed in C semantics, may contain OpenMP directives for 
parallelization. Our tool can p rove the absence of race conditions and deadlocks

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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in each of them, as well as prove the semantic equivalence between them: that 
is, for any i nput, they both produce the exact same output, necessarily.

The problem of determining the absence of races or deadlocks in parallel 
programs has been studied from multiple angles ranging from static analyses
e.g. [5, 7, 34, 38], dynamic analyses [3, 8] including intercepting the OpenMP run-
time [15], symbolic analyses [26, 30, 32], as well as using Coq -formalized proofs
[11]. Program equivalence itself has been studied from these a ngles, including
for affine programs [4, 36], and by symbolic execution [17, 28, 32] and concrete-
symbolic interpretation [26]. We develop an approach which relies on concrete 

interpretation of the control-flow instructions, therefore limited to a class of 
programs: those with statically interpretable control-flow (SICF) [26]. In turn, 
this enables a program equivalence approach that has linear time and space 

complexity with respect to the number of operations executed by the program, 
in a m anner fully independent from the syntax used, schedule of operations,
and storage implemented [26]. Extending to support parallel programs incurs 
a low-overhead additional complexity, and can prove for sequentially consistent 
programs the absence of parallelization errors, and full equivalence b etween a
parallel and a sequential program. We make the following contributions:

– We outline how our hybrid concrete-symbolic interpreter proceeds to verify 

the c orrectness of some forms of concurrent programs.
– We introduce a translation of several OpenMP constructs into this framework, 

enabling the detection o f race conditions for a class of OpenMP programs.
– We present experimental results demonstrating the ability of our system to 

catch concurrency bugs in programs generated by a n auto-parallelizing com-
piler, and prove correct the parallelization implemented otherwise.

2 Background and Overview 

We first summarizes key aspects of the CDAG-based verification approach [26], 
before developing the ideas for the verification of a class of concurrent programs.

2.1 Hybrid Concrete-Symbolic Verification for SICF Programs 

Our approach is based on concrete interpretation of selected instructions in the 

input program, while treating any other operation as symbolic and building a 

symbolic representation for these based on Computation Directed Acyclic Graph
(CDAG) [13, 18, 24]. Specifically, any conditional branch instruction, and the 

operations transitively involved in computing the value of these condition(s), 
as well as operations involved in address calculations, need to be concretely 

interpretable from the input program. Any other operation can be symbolic: 
the concrete value of their operands need not be known at interpretation time.
This leads to a class of statically interpretable control-flow programs we support:
those where all branches to be taken by the program (i.e., the control-flow) when
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executing on the target machine can be discovered by concrete interpretation of 
the r elevant operations from the input program.

We remark a relation with Static Control-Flow Programs (SCoP) [14], known 

as affine programs [22, 27]: for these programs all branches to be taken can be 

exactly characterized by static analysis and modeled using affine relations. SICF 

programs do not require any affine structure, do not depend on how loops and 

control-flow are implemented, but does require to know the actual problem size 

(e.g., loop bound) of SCoPs. Parametric loop b ounds are not supported as we
require the concrete values for each conditional branch to be taken by the inter-
preter. All SCoPs with known values for the parameters are SICF.

Another important restriction of our approach is the requirement to map each 

memory cell that is live-in/live-out to a unique name, to be used to reason on the 

memory values of both programs. We therefore typically target the verification of 
a pair of functions forig,  fopt (themselves possibly calling other functions which 

are also interpreted) such that fopt is an optimized version of forig, meant to
replace it in a larger program. They would therefore inherit the same execution
context necessarily, making the verification possible [12]. 

Illustrative Example. We present below a simple example of our CDAG-based 

concrete-symbolic interpretation. The interpreter is equipped with a concrete 
evaluator which implements exactly the same concrete semantics as the target 
machine, making simplification of expressions by concrete interpretation valid. 
Every operation that can be concretely interpreted is; otherwise, the operation is 
promoted to a symbolic CDAG representation. CDAGs are schedule-independent
and storage-independent, and represent the ordered set of operations that pro-
duce a value as a function of only live-in symbolic values and constants [18, 26]. 

Equivalence is achieved by showing that for the same live-out memory cells of 
both programs, the CDAGs constructed for them for forig and fopt are semanti-
cally equivalent. In its simplest form, they can be strictly identical (making this 
check linear time), or p ossibly some semantics-preserving rewrites of the CDAGs
may be needed first, e.g. to support associativity and commutativity [26]. 

CDAGs are used to reason on I/O lower bounds, given they are agnostic 

to scheduling and storage implemented. They represent the fundamental nature
of the computation, not how it is implemented [18]. However as seen below 

they can grow exponentially: the values used for the second matrix-multiply are 

themselves a CDAG. To control complexity and build a representation during 

interpretation that is linear in space wrt. the operations executed, we deploy 

memory pooling of distinct (sub-)CDAGs, and use pointers to them. For multiple
references to the same memory cell, only a pointer to its CDAG is duplicated.
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2.2 Extending to Support Concurrent Programs 

Prior work generalized this sequential verification approach to handle limited 

forms of concurrency: specifically program regions executing concurrent ly, syn-
chronized using blocking FIFOs [26]. This support enables the verification of 
source-to-source transformations for high-performance accelerator designs tar-
geting High-Level Synthesis toolchains, enabling for instance the verification of 
correctness of a s ystolic array implemented over 140k LoCs, using a 64× 64 array
of concurrent units [37] (8k Processing Elements in total, interconnected using 

16k FIFOs) in about 15 min, using a single CPU core [26]. 
We build on this approach to enable a preliminary support of some Op enMP

parallelization of C programs, as described in Sect. 3. In a nutshell, the verifi-
cation of concurrent programs works as follows. (1) The interpreter is extended 

with support for concurrent regions, which can be scheduled for interpretation 

akin to a multiprogramming approach in operating systems, switching between 

concurrent regions ready to execute. It implements interrupts (e.g., when a block-
ing FIFO is not ready) and regions can be ready to execute, executing, waiting 

(on FIFO readiness) or terminated. (2) It maintains virtual timestamps for the 

operations interpreted, capturing the earliest (virtual) time at which blocks of 
operations can execute, and associate each shared memory accesses with suc h
timestamps. (3) It maintains histories of the (shared) memory accesses, enabling
a check for non-determinism in case of accesses to the same memory location at
the same virtual timestamp: if two possible valid concurrent schedules lead to a
different memory state, the interpreter aborts. We use these features to develop
a verification approach for a set of C+OpenMP parallel programs.

3 Verifying a Set of Concurrent Programs 

We now detail our approach to verifying the subset of concurrent programs sup-
ported in this work. Specifically, we target the verification of a pair of functions 
forig,  fopt such that one is a substitute for the other in a larger program, both
expressed as source-level C programs, possibly containing a subset of OpenMP
pragmas as described in Sect. 4. If successful, the verification approach proves
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that both programs have the same semantics in that they both compute the same 

result, if given the same inputs; and that for any synchronization-preserving con-
current schedule following the Op enMP pragmas specification, no race condition
nor deadlock can occur. As shown in Sect. 5, this enables the verification of the 

correctness of source-to-source parallelizing compilers such as Pluto and PoCC 

which rely on inserting #pragma omp parallel for around parallel affine loops, 
including whether variables are p roperly privatized, whether complex tiled wave-
front parallelization was properly implemented, etc.

3.1 Detecting Non-determinism 

A key aspect of our approach is to significantly limit the form of memory con-
sistency we support. During interpretation, if two operations (from two different 
logical threads) can occur at the same timestamp, and they both access the same 

shared memory location, then neither of these two operations can be a write. 
Otherwise the result may be non-deterministic: d epending on which of the two
operations in practice would execute first, the state of memory may be different.
We perform such detection for both concrete and symbolic memory locations.

If two accesses (one being a write) to the same shared memory location 

need to be performed, we require a synchronization (such as, but not limited 

to, a barrier) between them, forcing sequentially consistent behavior for these 

two accesses. In practice, the virtual timestamp we maintain to determine which 

operations m ay execute at the same time typically changes only when a synchro-
nization is interpreted, as it ensures every operation depending on it is executed
after operations leading to it.

3.2 Verified Properties for Concurrent Programs 

To verify a class of OpenMP programs, we assign every block of code that may 

execute in parallel (as per t he OpenMP pragmas) to a distinct logical thread,
as discussed in Sect. 4. For example, an omp for loop with 1000 iterations can 

be represented with 1000 logical threads. Therefore all possible serializations of 
these logical threads (e.g., different OpenMP schedules and t heir mapping to
physical threads) will only reduce the amount of parallelism considered, making
the analysis conservative but safe.

To model synchronizations, we rely on our own API to handle interrupt-
s/wait/resume for logical threads. Note we assume every operation within a 

thread executes serially, in the source program order. This facilitates debugging 

at the source level, however it does not model the effect of compiler optimizations
in the binary eventually executed, which may include reordering of operations.

Definition 1 (Virtual timestamp and synchronization). Given two oper-
ations o1,  o2 executed by two logical threads l1,  l2. A virtual timestamp t(o) is 
assigned to every operation, so that t(o1) <  t(o2) iff there exists a point-to-point 
synchronization operation os : l1 → l2,  and o1 executes before os in l1’s sequential
order, and o2 executes after os in l2’s.
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This relation amounts to the happens-before relation [15], that is, the neces-
sity for all operations that execute serially before a point-to-point synchroniza-
tion to all be terminated before the start of operations executing after this syn-
chronization. Consequently, operations may have the same virtual timestamp, 
if they are not (transitively) ordered via synchronizations. Such operations may 

therefore execute at the same time, and we check whether they can produce a 

race by tracking the timestamp of operations a ccessing all non-thread-local data.
We operate with a zero-latency model, that is we assume all operations execute
in zero cycles, and only synchronizations can force a (partial) order between
operations in different logical threads.

We detect the existence of a possible race condition conservatively, in this 
zero-latency model, by determining if there is any memory lo cation accessible
by two or more logical threads at the same time.

Definition 2 (Read-write conflict). Given two operations o1,  o2 executed by 
two logical threads l1,  l2 such that t(o1)  =  t(o2), which both access the same 

shared (non-local) memory location, and one o f these accesses is a write. Then
the operations expose a read-write conflict.

It is also possible in general to create a deadlock situation, where point-to-
point synchronizations are incorrectly implemented leading to a b locking state,
that is, one or more logical thread cannot terminate.

Definition 3 (Deadlock). Given a logical thread l in a blocking/interrupted 

state. If there is no other logical thread that can become active by interpretation, 
and which ca n modify the semaphore(s) on which l is blocked, then l is deadlocked.

For our system to output a conclusive analysis of a program, it must reach 

termination without error. Without loss of generality, we assume every p rogram
is encapsulated in a function, and a single exit point exists for this function.

Property 1 (Termination). If the concrete interpretation of the control-flow and 

dataflow addressing reaches the main function’s exit point, no read-write c onflict
was detected, and no deadlock is detected, then the interpretation terminated.

Note we implement an inelegant yet practical approach to handle non-
termina-ting programs (e.g. infinite loops): a counter of the number of operations 
interpreted. If a maximum limit threshold is reached, the interpretation aborts.

We conclude with the equivalence between a pair of programs forig, fopt.

Property 2 (Equivalence between programs). Given forig,  fopt two functions such 

that one is a substitute for the other in a main program, and all their argu-
ments are non-aliasing and referencing all destinations of side-effects. If their 
interpretation terminates, and for every live-out memory location referenced in 

their a rguments, the concrete values or CDAGs produced for the same location
are semantically equivalent, then the two functions are equivalent.

A proof of an equivalent version of this property is outlined in [26].
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3.3 High-Level Verification Procedure 

We summarize the verification process as follows. forig,  fopt are each indepen-
dently interpreted, computing for each a final memory state Mf . For each func-
tion f , the interpreter proceeds as described in prior work [26], interpreting the 

code for a thread until termination, or interruption due to a blocking synchro-
nization primitive. A scheduler context-switches to the next thread in the queue 

in case of interrupt, until there is no more interrupted nor active thread in the 

queue (otherwise a deadlock is occurring). During interpretation, we associate 

a thread-specific timestamp to every non-local memory element read/written 

by each thread, itself only increased when synchronizations are interpreted. If a 

location has been written by a thread, no other thread can read-write it at the 

same timestamp, otherwise a read-write conflict is produced. We conservatively 

assume pointers to data initialized prior to the start of a concurrent region are 

shared between threads in this region. Pointer arithmetic besides thread-local
declarations must lead to addressing these shared pointed locations, otherwise
the interpreter aborts. As we operate at the source-level, scalar and array vari-
ables locally declared within a thread, and their scope of liveness, is trivially
detected. Consequently, every variable that is not accessible at the end of the
function is deleted from Mf . We do not support external functions (e.g., libc).

If interpretation terminated, we obtained Mforig and Mfopt two memory 

states made only of variables accessible w hen the function terminates: live-in and
live-out data [26]. As we restrict to programs where a unique name can be built 
for every memory cell, (e.g., A[42][51], f oobar, etc.), requiring a lack of aliasing 

on the main function parameters, we simply proceed by checking for every such 

name that the memory values computed (be they concrete, or symbolic CDAGs) 
are semantically equivalent, e.g. Mforig (A[42][51]) ≡ Mfopt(A[42][51]). Note we
support a variety of rewrite rules on CDAGs prior to checking equivalence, e.g.
to normalize associative/commutative reductions [26]. 

4 OpenMP 

4.1 API For Concurrent Programs 

We now briefly present our API for interpreting concurrent programs, and the
translation of some OpenMP constructs with it.

At its core, only three API functions are needed. First we declare blocks 
of code to execute concurrently within a parallel region regionid,  using  the  

register_concurrent(regionid,block) for each such block. When interpreta-
tion of the code block assigned to a thread reaches the end of its control-flow, the 

thread is terminated. Note there is an infinite number of logical threads available.
Second, we declare a point-to-point synchronization with a semaphore, using
set_semaphore_value(regionid,semid,value) and the associated blocking
function wait_until_semaphore_value(regionid,semid,value). These calls
are inserted in the program as regular C function calls, and different threads
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may read/write the same semaphores. They form a sufficient flexible set of con-
structs (fork/join, and point-to-point synchronization) to e mulate the OpenMP
constructs we target in this work.

4.2 OpenMP Constructs 

#pragma omp parallel A parallel OpenMP region, outside of any for loop, 
requires knowledge of the concrete number of threads to be verified. The code 

block dominated by the pragma is recorded for parallel execution, with one 

call to register_concurrent(regionid,block) per thread. Then, the block in 

the main program is replaced by a pair of calls to be executed by the main/-
master thread: concurrent_region_start(regionid) and the associated join 

concurrent_region_end(regionid), which emulates the fork/join OpenMP 

model. When interpreting the start call, the interpreter creates the requested 

threads, and executes them in order, context-switching to the next thread only 

if the current thread has terminated, or is interrupted due to a blocking call
(e.g., waiting on a semaphore to reach a particular value). The end call acts as
a global barrier for the region, except the threads are deleted, this only once all
have reached the end of their control-flow. Otherwise a deadlock is detected.

#pragma omp for By design the interpreter requires loop bounds to be con-
cretely interpretable, from the statically-interpretable control-flow requirement. 
Consequently, the loop bound expressions are known and the code blocks for 
the concurrent region can be seamlessly updated with the set of iterations to 

be run by each thread, the code block becoming the loop body. We support 
the static schedule, as well as a conservative mode where the number of logical 
threads is dynamically increased to assign one loop iteration per thread. private
and related clauses are translated to equivalent local variable declarations and
initializations explicitly by pre-processing. A barrier is automatically inserted
at the loop exit, unless the nowait clause is specified.

#pragma omp section OpenMP sections are translated similarly to parallel 
regions, with the proper code b locks registered for concurrent execution.

#pragma omp barrier Finally, a barrier is implemented via semaphores, similar 
to the point-to-point synchronization described above. Technically, we use a sin-
gle collective synchronization API wait_on_semaphores(regionid,sem_array) 
interpreted by all threads, with each thread writing its own semaphore when it 
reached the API call, and in terpretation the next instruction after the barrier (if
any) being implemented only when all threads wrote their semaphore, to avoid
ordering issues.

4.3 Extensions and Ongoing Work 

In this work we limit our presentation to the simplest form of doall and doacross 
parallelism using OpenMP, for illustration purposes. Our ongoing work includes
support for a large subset of the OpenMP 4 constructs, including tasks and their
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dependencies. Clearly, our flexible model for declaring concurrent regions and 

their synchronizations leads to easily “software-emulate” the various OpenMP 

constructs, by translating them to C code (e.g. to properly declare private vari-
ables, but also scheduling strategies) beforehand. As downside, this translation of 
pragmas we perform as pre-processing must itself be correct, and matching what
the OpenMP-capable compiler implements when translating these pragmas.

Ongoing work also includes support for a subset of other parallel languages
such as Habanero [6] and its C variant, essentially implementing a hybrid 

concrete-symbolic interpretation of program to compute the happens-before and 

may-happen-in-parallel relations in a manner agnostic to the syntax used to 

implement the program. Approaches using automated theorem proving have
been developed [10], we aim for increased generality to how the code is imple-
mented. We will discuss this generalized support during our presentation, and 

its trade-offs versus other verification approaches. We also mention the issue of 
properly verifying runtime systems in charge of orchestrating such parallel com-
putations. While they can be simply made part of the programs to interpret, it is 
often desirable to instead perform a slightly more complex interpretation of the
program (e.g., using infinitely many logical threads to decompose maximally the
concurrency available) to make the verification robust to a variety of concurrent
schedules that can be implemented by these runtimes, including work-stealing.

5 Experimental Results 

5.1 Experimental Setup 

For brevity we limit to illustrating the 2  mm  benchmark from PolyBench/C [27], 
and will present extensive results over all PolyBenches during our talk [26]. 2mm 

computes beta ∗ D + alpha ∗ A ∗ B ∗ C for rectangular matrices A, B, C, D:  the  

product of three matrices. The matrix data type is symbolic (and hence the 

verification holds for “any” data type to b e used), and we vary the problem sizes
and program transformations (including OpenMP parallelization) computed by
the PoCC compiler [2]. All experiments are conducted on a single core of an 

AMD Ryzen 5900HX, using 64 GB of DDR4 RAM, all optimizations w ithin the
interpreter are disabled except storing duplicate sub-CDAGs by pointers.

6 Results on 2mm benchmark 

Table 1 displays the time to Interpret two programs: a sequential, base version 

and a transformed version optimized by PoCC using fusion, tiling and OpenMP 

parallelization. We display the number of statement instances in the source code 

interpreted, and the time to compute equivalence (note the time to detect read-
write conflicts, if any, is integrated in the interpretation time), the number of 
CDAG nodes created, and the maximal memory usage during the full process. All
experiments model 8 logical threads. Time is barely sensitive to higher threads
count, but it is influenced by the number of non-barrier synchronizations.
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Table 1. Summary of experiments on PolyBench/2mm benchmark

Benchmark Int. seq. #stmts Int. PoCC#stmts Equiv. #nodes Max M em

2 mm-128 30.4 s 12 M 32.8 s 12.7 M 2.6 s 4.2 M 3  G  B

2 mm-200 106 s 43 M 116 s 45 M 10.3 s 14 M 10 GB 

2 mm-32 0.50 s 207k 0.54 s 207k 0.04 s 67k 53 MB 

2 mm-32-ns 0.80 s 207k 0.84 s 207k 0.47 s 67k 938 MB 

2 mm-200-np 106 s 43 M 116 s 45 M N/A 14 M 10 GB 

2 mm-200-bt 106 s 43 M 113 s 44 M 10.0 s 14 M 10 GB 

Table 1 reports two cases of equivalence for square problem size 128, and 

the rectangular MEDIUM polybench size (−200). Throughput is around 0.4 M 

statements per second. For 2 mm, memory use can exceed 50 GB for problem size
of 512 [26], showing a scalability limit with this approach. Solutions to overcome 

this limit includes on-the-fly CDAG compression by affine folding [29], allowing 

interpretation to scale gracefully to “arbitrary” problem sizes. We also display 

the benefits of avoiding duplication of CDAG subtrees, with the -ns variant for 
N = 32 disabling this optimization. For this small problem size, memory usage 

is already 20x larger without this optimization, and would prevent scaling to 

more realistic problem sizes. We also report two bugs we manually introduced: 
a m issing inner loop iterator in the private clause (-np) and a loop bound error
in the tiling, leading to skip iterations (-bt). For both, the interpreter ran to
completion to maximize the number of errors found.

7 Related Work 

The detection of concurrency bugs and equivalence between two implementations 
are often split in two different problems. Detecting bugs in OpenMP programs
has been effectively implemented [15], and various static analyses have also b een
proposed, e.g. [7, 38]. However none verifies at the same time the compliance of 
the parallelized program with the semantics of the original unoptimized pro-
gram.

Our framework can prove the equivalence of C-style programs under a wide 

set of code transformations, albeit limited to the class of Statically Interpretable
Control-Flow. An approach complementary to ours is KLEE [1, 28, 30]. KLEE 

implements a different symbolic interpretation approach; ours is specialized for 
equivalence of programs with a single concretely interpretable CFG path and 

concretely interpretable array subscripts, trading off generality for speed. We 

limit coverage to fixed problem sizes but can operate on a variety of symbolic
data types, at order(s) of magnitude faster speed than KLEE(-float [20]). 

Other approaches to verifying or guaranteeing the correctness of (parallel) 
programs include model checking e.g. [17, 21, 33, 35], translation validation e.g.
[9, 23, 25] and of course using a certified compiler e.g. [16, 19, 31].
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8 Conclusion 

Although numerous approaches exist to assess the correctness of a program opti-
mization, they are often associated with fundamental limitations to how the pro-
gram is implemented. By using a hybrid concrete-symbolic interpretation app-
roach, and imposing sensible restrictions to support only programs with stat-
ically interpretable control-flow, it is possible to achieve significantly stronger 
guarantees than testing, while offering full fl exibility for how the program is
implemented: arbitrary statement transformations, schedule (including parallel
ones), arbitrary storage and bufferization schemes, etc. In this work we outlined
a verification approach for (concurrent) programs based on prior work [26], and 

simple extensions to handle OpenMP programs and verify their equivalence. 
Future work includes generalizing to a large subset of OpenMP 4, and improv-
ing scalability further using a nearly constant-space approach to encode CDAGs.
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Abstract. The partitioned global address space (PGAS) model is pop-
ular for applying a classic shared memory approach to large systems, but 
some classes of problems rely on large numbers of small remote mem-
ory accesses targeting random locations across the network. On mod-
ern interconnects this can overwhelm the network, leading to message 

rate inefficiencies. This small message problem can be solved through 

aggregation strategies, however these typically require undesirable code 

restructuring that is cumbersome to incorporate and maintain in user 
applications. A strategy called “aggregation contexts” aimed at allevi-
ating this burden has previously been proposed for the OpenSHMEM 

PGAS API. Despite its potential, it has not yet been validated for scala-
bility on large systems consisting of thousands of nodes, nor proven to be
performance-portable, which are critical for its adoption. In this paper,
we demonstrate the scalability and performance portability of aggrega-
tion contexts using up to 8192 nodes on ORNL’s Frontier system. Our
study reveals good scaling patterns while also identifying further oppor-
tunities for performance improvements to make it even more effective.

Keywords: OpenSHMEM · message aggregation · aggregation 

contexts · conveyors · man y-to-many communication patterns

1 Introduction 

Applications with many-to-many and irregular access patterns are prone to gen-
erating large amounts of small messages that tend to congest modern high-speed 

networks, limiting their performance. This small message problem can be solved 

through message aggregation, however most approaches tend to involve signifi-
cant and undesirable code restructuring to use them. Previous work introduced
an extension called “aggregation contexts” [9] to the OpenSHMEM [7]  PGAS  

programming model that worked by implicitly deferring completion of opera-
tions performed on them, organised into work queues it would later send in bulk 

for local processing. In addition, since it was applied as an abstract header lay-
ered over the OpenSHMEM API, the strategy it implemented could easily be
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adapted to other communication interfaces like MPI-3. The bulk of its reference 

implementation was achieved through the use of conveyors [4], an aggregation 

library from the bale effort, and thus its performance is also tied to this library.
While use of aggregation contexts results in changes to the synchronisation 

semantics of OpenSHMEM, they allow for significant performance improvements 
over independent atomic, get, and put (AGP) network operations by up to 65x, 
while largely preserving the application’s algorithmic intent. However, it has 
never been evaluated on any large-scale HPC systems with thousands of nodes. 
Such validation is crucial to ensure it is a scalable and performance portable solu-
tion that can be put to wider use and effectively map to multiple interconnect 
technologies, a nd is the primary goal of this paper. To this end, we tested aggre-
gation contexts on ORNL’s Frontier (a TOP500 system), to determine whether
their performance benefits persist with increasingly larger process/node counts
and compare its performance to that of ORNL’s Andes and the previously tested
HPC Advisory Council’s Iris, presented in Sect. 4. 

The Frontier system is of particular interest due to its use of the Slinghost 11
network interconnect [1], which is relatively new and untested for such aggrega-
tion strategies. Testing how these capabilities affect message rates and the perfor-
mance of small message aggregation is imperative. Since performance portability 

is also important to us, we compare equivalent executions across several different
systems in Sect. 4.1 and discuss key observations of interest.

Section 3 provides a brief background on the design of conveyors and aggre-
gation contexts so as to be able to reason about how these design choices can 

affect the observed patterns. After our initial scalability study on Frontier, we 

will further discuss the behaviours observed and speculate on potential opportu-
nities to improve upon them in Sect. 5. Finally, we will provide o ur conclusions
in Sect. 6 along with our expectations for what our findings may mean for how 

our aggregation strategy may translate to other and future systems.

2 Related Work 

Slingshot is a novel interconnect designed to optimise network operations 
through its Rosetta switch, which implements adaptive routing, congestion con-
trol, and quality of service (QoS). The capabilities of this Slingshot in tercon-
nect system have been evaluated in the context of Slingshot 10 and 11. De
Sensi [1] focused on evaluating how Slingshot 10 mitigated the impact of conges-
tion on network latency and bandwidth in b enchmarks and mini-apps compared
to the Aries interconnect. Khorassani [3] evaluated the scalability of MPI imple-
mentations on Slingshot 10, using Cray MPICH, Open MPI/UCX/RCCL, and 

MVAPICH2 on both CPU and GPU, as well as a preliminary study of CPU-
only on Slingshot 11. Namashivayam [5] focused on the early implementation 

of OpenSHMEM-X on Slingshot 11 NICs and proposed extensions to enhance 

performance. The study provides an overview of the supported features of the 

Slingshot 11 NIC, along with high-level implementation details and a detailed
performance analysis using microbenchmarks and application kernels. However,
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none of these studies evaluated the small message rate problem on Slingshot 11
at the scale of this paper.

Venkatesan [ 8] implemented an OpenSHMEM extension for aggregation 

called queues that takes advantage of QoS on Infiniband interconnects. The 

extension exposes queue operations with semantics similar to conveyors, but 
it requires significan t restructuring of applications similarly to conveyors and
was not evaluated at scale. Paul [6]  proposed  an  actor  model  within  PGAS  

for message aggregation that resulted in significant performance improvements.
Similarly, CAL [2] offers more comprehensive high-level abstractions for aggre-
gation in the Chapel programming language, including support for maps, scans, 
and reductions. These approaches would require porting the OpenSHMEM AGP 

style of code t o the actor model or aggregator objects in Chapel applications,
thereby increasing the effort for the user.

3 Background 

Before we can examine our initial results, we must first describe the internal 
workings of both conveyors and aggregation contexts. More details on each can
be found in [4]  and [9], respectively .

3.1 Conveyors 

Conveyors are an abstraction around message queues, allowing a process to push 

items that will eventually be pulled from a given target process. The primary 

communication unit for conveyors is user-specified fixed-size items packed into 

similarly fixed size incoming/outgoing buffers that can be transmitted more 

coarsely . Much of its management is kept hidden, though the actual process-
ing of received message items is provided by its user.

During their primary operation, users are allowed to do one of four actions— 

push/pull encoded items, unpull the last pulled item, or advance the conveyor in 

order to help ensure progress. This produces a clear pattern for the general use 

of conveyors—push messages to target processes until doing so fails due to lack 

of space to enqueue, then pulling all incoming messages to process them until 
there are no more that can be acted upon, and finally wrapping the previous 
tw o phases within a loop that advances it. There are no guarantees provided
for precisely when individual messages are sent, which will typically happen as
outgoing buffers fill up, even without a direct call to advance, provided there is
currently space on the receiving end.

3.2 Aggregation Cont exts

Aggregation contexts were implemented on top of conveyors in order to abstract 
their execution and associated requirements away from the user of an OpenSH-
MEM application. Crucially, they were designed so as to require minimal change
to applications and retain the original semantic meaning of their communication
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operations, trading potential further performance gains with ease of develop-
ment/maintenance. What this entailed was creating an abstract context object 
specifying that aggregation is desired, which then implicitly alters the completion 

semantics of all future operations performed on that context, loosening them as 
much as possible so that no local or remote completion is guaranteed until the
user requires it by flushing all pending communication via a quiet. After such
quiet operations, contexts remain continuously available for future operations
with no explicit state management.

Contexts are able to exploit the fact that OpenSHMEM has a limited set of 
communication operations it can perform, and thus it just needs to provide a 

generic progress loop that is able to recognise and act upon any of the possible 

network operations. Thus, contexts need to specify a fixed-size packet structure 

capable of encoding any of these operations so that the same conveyors/buffers 
can be used across all of them, which at a minimum required the specification 

of an operation type, local and remote addresses, and value. Since not all oper-
ations would require each field, this results in efficiency concerns that direct use 

of conveyors would not h ave, particularly with the likes of atomic increments
such as those employed by bale’s histogram, which only require one field (the
remote address) beyond the type. This was addressed by adding a second level
of deferment to pack up to three operations for each such increment or similar,
and sending them through conveyors as a single unit.

4 Empirical Study 

For our scalability studies, we used t he histogram application from bale classic1. 
Histogram exhibits a communication pattern in which each processing elements 
PEs asynchronously send many independent updates to a distributed table in a 

random many-to-many communication pattern. In effect, this is an attempt to 

perform data binning on a distributed shared data set. The application simulates 
this by generating a uniform list of random table indices during an initialisation 

phase and then timing how long it takes to atomically increment the value at 
each random index. This is the s implest bale application, but it represents a
common communication pattern and is often used to build more complex pat-
terns, including in other bale applications (e.g., sparse matrix transpose). It also
provides the most direct method of testing the performance features of conveyors
and aggregation contexts.

We used three versions of histogram—the first uses OpenSHMEM AGP oper-
ations directly, while the other two use conveyors or aggregation contexts. We 

are interested in two metrics: the raw message rate of the conveyor and context 
implementations in terms of remote messages/updates per second per core/PE,

and the relative speedup they provide over the AGP version (e.g.,
perfconveyors

perfAGP
).

The following testing was performed on 32–512 nodes of ORNL’s Frontier 
supercomputer, using 1–64 processes per node (PPN) with a block distribution.

1 https://github.com/jdevinney/bale/tree/master/src/bale_classic. 
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We used Cray clang 15.0.0 and Cray OpenSHMEM-X 11.7.2.3 with XPMEM for 
building and running histogram over the Slingshot 11 interconnect. Additionally, 
we used the SLURM hint “–hint=nomultithread” to map one PE per c ore. We
also extended this same testing to as many as 8192 nodes using an older version
of OpenSHMEM-X in Sect. 5. 

Fig. 1. Speedup Scaling for Conveyors. Fig. 2. Speedup Scaling f or Contexts.

Figures 1 and 2 show the relative speedup over AGP for the conveyor and con-
text implementations, respectively. It can be seen that these aggregation strate-
gies compare well against AGP, even through to high node and PE counts, with 

stable, flat lines, demonstrating good scaling. Additionally, despite aggregation 

contexts being implemented on top of conveyors, it can actually be seen edging
out over them in relative performance, easily achieving gains of about 40%. This
is the result of the packet buffer optimisation described in Sect. 3.2, reducing the 

number of required calls into the conveyor API by 33% while sending the same
number of messages.

Fig. 3. Message Rate Scaling for Convey-
ors. 

Fig. 4. Message Rate Scaling for Con-
texts.

Although we are focused on comparing our performance to AGP, we are also 

interested in understanding the message rate that these strategies can achieve
independently. Figures 3 and 4 show the absolute message rate per PE for the 

conveyor and context implementations. Since these tests demonstrate weak scal-
ing, the continued persistence of flat scaling lines proves that not only does 
conveyor’s aggregation perform well with respect to classic AGP operations, but
that the resulting raw performance also improves nicely as a factor of the pro-
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cess count, with double the processes equating to roughly double the aggregate
message rate.

A key observation is that 1 PPN outperforms 2–64 PPN by a significant 
factor. This is not unexpected, as with a high PPN, conveyors must contend with 

shared resources to send local and remote buffers. Another important question is 
just how efficient is the performance we are scaling of conveyors and aggregation
contexts and if it is performance-portable across platforms. We discuss the first
question in Sect. 5 and the latter in Sect. 4.1. 

4.1 Performance Portabilit y

To evaluate the performance portability of conveyors and aggregation contexts 
across different systems and network architectures, we tested them using his-
togram on 32 nodes with 1–32 PPN, on each of the HPC Advisory Council’s 
Iris and ORNL’s Andes and Frontier systems. The goal was to evaluate their
performance using common runtime configurations.

We also include results for a modified version of the aggregation context 
implementation to add an additional point of comparison in an attempt to 

project the maximum possible performance that we could potentially achieve 

with our current aggregation strategy. This modification simulated the strat-
egy used in aggregation contexts, but without conveyors or any other overhead 

incurred by waiting for anything to complete while still performing all the work 

that contexts would ordinarily require (i.e., memory updates). That is, if an 

update is destined for a PE on the same node, it updates the equivalent index of
its own memory (so as to avoid the simulation introducing cache competition),
whereas if it is for another node it packs it the same way it usually would, but
upon sending processes the messages itself.

This provides a good approximation for the amount of work “pulling” data 

that a PE would need to perform due to the uniform distribution of updates in 

histogram. It continues in this manner until all updates are complete. While this 
strategy invalidates the correctness of the results, it allows us to simulate the
performance of an unrealistically ideal scenario with perfect progress, which we
simply termed “Max” and ran alongside conveyors and contexts on Frontier for
comparison.

Frontier’s environment was set up the same as in Sect. 4, although Iris and 

Andes used OpenMPI 5.0.3 for its implementation of OpenSHMEM 1.4, built 
with Unified Communication X (UCX) 1.16.0 also using XPMEM. Iris is a 

Dell C6400 32-node cluster with dual socket Intel Xeon 8280 CPUs, 192 GB of 
2666 MHz DDR4 memory, and NVIDIA ConnectX-6 HDR100 100Gbit/s Infini-
Band/VPI NICs connected via an NVIDIA HDR Quantum QM7800 switch.
Andes is a 704-node cluster whose nodes contain two 16-core 3.0GHz AMD
EPYC 7302 processors, 256GB of main memory and an NVIDIA ConnectX-6
HDR200 InfiniBand NIC.
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Fig. 5. Speedup Comparison, 32 Nodes. 
Fig. 6. Message Rate C omparison, 32
Nodes.

Figure 5 might initially suggest declining performance from Iris to Fr ontier,
but looking at Fig. 6 tells a different story. While there are some performance 

differences between systems regarding updates per second per PE for conveyors 
and aggregation contexts, the most notable change is the narrowing gap between 

them and AGP performance, particularly on Frontier’s Slingshot 11 interconnect. 
This is good news, as the AGP version is the preferred programming model 
approach because of its simplicity and will remain widely in use within existing 

code bases. In all cases, there are still substantial improvements to be gained
by using aggregation, though the cost for not doing so may not be as drastic on
newer network interconnects as they improve their message rate performance.

On the other hand, the benefits of using aggregation continue to be signif-
icant. The use of these aggregation strategies not only saves resources but also 

effectively mitigates platform differences, demonstrating consistent performance 

portability across different systems. Furthermore, the comparison to our simu-
lated maximum performance on Frontier shows that our results are remarkably 

close to the best possible per-process performance we could achieve with our cur-
rent hardware and aggregation strategies on Frontier. However, w ith the message
rate scaling remaining flat across architectures and through up to 64 PPN, this
suggests that aggregate message rate may continue to predictably rise with more
cores up to some unknown value, potentially even if those cores are weaker.

5 Future Optimisation Opportunities 

In this section, we describe some remaining areas of investigation with potential 
performance impacts which may contain opportunities to further i mprove the
efficiency of message aggregation in conveyors and aggregation contexts.

5.1 System Scheduling I mpact

The following observations come from the fact that we ran many of our tests at 
two different points in time with regard to Front ier’s overall workloads. While
the latest of the results was presented in Sect. 4 in order to make use of a newer 
OpenSHMEM-X version, we had prior runs using version 11.5.7 that are also
noteworthy, seen in Figs. 7 and 8.
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Fig. 7. Message Rate Scaling for Convey-
ors (Exclusive Access). 

Fig. 8. Message Rate Scaling for Con-
texts (Exclusive Access).

First we note was that during our initial access to Frontier, we were also 

able to run all histogram implementations all the way up to 8192 nodes and 

still maintain our same scaling behaviour, proving the scalability of aggrega-
tion beyond any doubt. The latest testing did not show any appreciable perfor-
mance differences between the two OpenSHMEM implementation versions, how-
ever the results we saw for equivalent runs was dramatically different than our 
prior findings by roughly 2x. Crucially, the AGP performance was largely unaf-
fected, meaning the performance gap between it and the aggregated approaches 
narrowed further still. The only difference was that our prior runs were with 

exclusive access to Frontier, whereas the latest ones were under normal operat-
ing workloads, sharing system resources such as the network interconnect with
other users. This implies that conveyors may be more sensitive to shared net-
work resources and that capabilities such as Slingshot 11 congestion control are
important performance considerations, though this can be hard to control for
and thus we are unable to get conclusive data at this time.

5.2 Aggregation Efficiency 

Next, we would like to determine how efficiently these aggregation strategies 
utilise the available network bandwidth by comparing them to the OSU non-
blocking put message rate microbenchmark. In this test, we configured the bench-
mark to use the same 10kB buffer size that conveyors were using internally, and 

then calculated how many updates per second it would translate to for histogram 

if we were able to achieve that level of throughput. This is effectively intended to 

give us an idea for a theoretical upper bound on aggregation performance poten-
tial and how wide the remaining gap may be a t scale. We performed this test on
two Frontier nodes in the same cabinet and connected via the same switch from
1–64 PPN in order to get an idea of the highest rates that could be achievable
between two nodes, the results of which can be seen compared to that of contexts
in Fig. 9. 

At 64 PPN, we got a little under 200 million updates per second compared 

to the roughly 10–30 million we were seeing for conveyors and contexts. Con-
sidering the substantially greater overhead that aggregated processing incurs
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compared to simply sending a lot of large messages, this is actually quite good 

performance. While the simulated message rate increases at lower PPN counts, 
this does not translate to similar increases for aggregation since it is b ound by
the cost of local processing of the much smaller packets, as was also previously
made clear in Fig. 6. On the other hand, maximising the PPN count is typical, 
and the flat scaling behaviour we saw with aggregation suggests that the higher 
the PPN value, the closer we may be able to get to achieving the maximum per-
formance potential of the NICs. This m ay be of benefit for systems with dense
core configurations as are commonly used for data analytics workloads, though
further investigation as such is left for future work.

Fig. 9. Simulated Message Rate via OSU.

5.3 Progress Model Optimisations

The final matter was discovered as an unintended consequence of a small optimi-
sation we had made within aggregation contexts. Since in our case all aggregated 

messages are processed locally instead of remotely through remote direct mem-
ory access (RDMA) hardware, when PEs are instructed to perform operations 
on themselves, there is no need to pac k and send messages through conveyors
instead of processing it immediately and returning. However, we found that this
effectively serialised conveyors’ progress management and resulting performance.

As described in Sect. 3.1, the progress model for conveyors is based upon 

filling of outgoing buffers rather than incoming ones. The problem is thus: if an 

application is never unable to push more data to other PEs, then it will never 
be forced to stop and process data that those other PEs are waiting on it for. It
is effectively unable to voluntarily stop early either, since it has no insight from
push as to the internal state of progress.

The reason we weren’t seeing this before when self-sending is because eventu-
ally with enough puts to oneself, a PE would fill its own outgoing buffers and be 

forced to stop pushing the next time it tries to self-send, triggering the pulling 

part of the progress loop. Without this, we can end up with all PEs endlessly
pulling incoming data while waiting on the same source, which will then never be
unable to send. This could conceivably create issues for applications employing
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dynamic computation with heavy communication imbalances. Since this does 
not have a significant effect on the bottom line for our testing here and would 

require a bigger change within conv eyors themselves, we are noting the issue
here but a resolution for it is left for future work.

6 Conclusion 

In this paper, we have demonstrated the effectiveness and scalability of convey-
ors and the aggregation context extension to OpenSHMEM on large-scale HPC 

systems. Through our experiments, we have shown that aggregation contexts 
can significantly improve the performance of independent AGP operations by 

reducing the overhead associated with small network message rates. Our results
indicate that these aggregation strategies not only scale well with increasing
node counts but also maintain consistent performance across both Slingshot 11
and InfiniBand interconnects.

Our analysis revealed that aggregation contexts, when built on top of con-
veyors, can achieve up to 65x performance improvements over traditional AGP 

operations on InfiniBand and up to 15x on Slingshot 11, where it can even out-
perform conveyors themselves by up to an additional 40%. The performance 

portability observed across different systems also suggests that this aggrega-
tion strategy is adaptable to different hardware configurations and interconnect 
technologies. This demonstrates the robustness and efficiency of this approach, 
making it a viable candidate for inclusion in the OpenSHMEM specification. 
Moreover, due to the high-level abstractions of aggregation, which allow appli-
cations to maintain their original structure, this strategy can be easily adapted
to other interfaces with limited sets of communication operations, such as in
MPI-3. Our findings also highlight areas for further optimisation, particularly in
further reducing the overhead of aggregation and improving its progress man-
agement. Addressing these issues could lead to even greater performance gains
and broader applicability of aggregation contexts in diverse HPC applications.

The aggregation context extension provides a scalable, performance-portable 

solution for enhancing small message rate performance in OpenSHMEM appli-
cations. By simplifying the incorporation of message aggregation with minimal 
burden on application code, this work holds promise for widespread adoption 

in the HPC community, enabling more efficient and effective use of modern 

high-speed interconnects. Future work will focus on refining these strategies and 

exploring their application to other emerging HPC systems and workloads. 
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Abstract. As Moore’s law has slowed down, we need to explore oppor-
tunities to save energy and power in parallel applications, especially dur-
ing data movement. This is particularly true within the partitioned global 
address space (PGAS) model, where there is great potential for energy 

savings across distributed data accesses on large exascale computing sys-
tems. This paper explores the potential of message aggregation strategies 
within PGAS models, specifically focusing on OpenSHMEM, to improve 

energy efficiency on the CPU and memory of a node. Using the conveyor 
library, which aggregates small messages for network-efficient commu-
nication, we compare its performance gains in execution times against 
the energy reductions a chieved. We compare applications from the bale
effort as implemented through either atomic, get, and put or conveyor
approaches on the Frontier supercomputer. Our preliminary results show
significant improvements in both performance and energy consumption.
These findings suggest that message aggregation can play an important
role in addressing the challenges of PGAS energy consumption in modern
HPC systems.

Keywords: PGAS programming models · OpenSHMEM · message 

aggregation · energy efficiency

1 Introduction 

Due to the diminishing returns of Moore’s Law and Dennard scaling, HPC leader-
ship computing systems are hitting a power wall that must be addressed through 

new architectures and the co-design of multiple layers in system software and 

hardware. Traditional modeling and simulations still require significant compute 

resources and power to scale, to implement new first-principles models and/or 
increase their resolution for scien tific discoveries. This need is exacerbated by
emerging AI workloads and the new scaling properties of neural networks, which
optimize loss functions to train safe and trustworthy AI models. As a result,
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new architectures are starting to emerge that are more specialized and energy-
efficient, with novel memory interconnects aimed at providing access to local, 
neighboring, and global memories required for model parallelism and to dis-
tribute data loading stages.

PGAS models, which traditionally have focused on addressing HPC data-
centric computing requirements for applications, have the potential to optimize 

various aspects of AI pipelines by efficiently distributing data in local and remote 

memories a nd accessing them with atomic, get, and put (AGP) operations, mit-
igating the energy cost of data movement [4]. The PGAS model can also benefit 
from scheduling work where the data is located by exploiting data locality to 

improve application performance. However, with remotely accessible memory, 
bursts of small data accesses can lead to congestion due to message rate lim-
itations in the network interconnect, resulting in inefficient use of computing 

resources as processes wait for communication to complete. This can lead to
energy waste due to longer wait times, excessive communication progress checks,
and the use of resources that could otherwise be utilized for computation.

An area that has been explored to address this small message rate problem 

is message aggregation. Message aggregation involves grouping operations and 

their values and sending them in bulk to their destinations for completion on 

the remote end, similar to the active message communication model. This app-
roach leverages faster local memories on both local and remote nodes to process 
and aggregate messages, using the network bandwidth more efficiently to over-
come the message rate issues in today’s interconnect technologies. Aggregation
has shown significant speedups in many-to-many communication patterns rel-
evant to data analytics, graph processing, irregular data accesses, and sparse
data computation patterns. The conveyor library’s aggregation approach [5]  has  

shown promising results that can be leveraged by high-level P GAS programming
models such as Chapel [3], UPC [1], and OpenSHMEM [7]. 

Our paper aims to address the following key questions regarding PGAS and
small message aggregation strategies:

– How much energy can be saved when using a message aggregation strategy 

compared to the t raditional AGP model of a PGAS application?
– How much of the message aggregation performance improvements translate 

into energy savings, and do t hey scale at the same rate as performance?
– How do message aggregation optimizations translate to power u tilization on

the CPU and memory?

Our work-in-progress aims to answer these questions by understanding how 

the performance gains provided by a message aggregation strategy translate to 

energy and power consumption, and how these gains can help free computing
resources to address current power and energy challenges in HPC applications.

2 Preliminary Studies 

We used the Oak Ridge National Laboratory’s current supercomputing flag-
ship, Frontier, to start answering our questions. Frontier has a theoretical peak
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double-precision performance of approximately 1.7 exaflops and an overall power 
consumption of approximately 22.7 megawatts. The system has 74 HPE Cray EX 

Olympus racks, each housing 128 AMD compute nodes, totaling 9,472 compute 

nodes. Each Frontier compute node includes a 64-core AMD Optimized 3rd Gen 

EPYC CPU with 512 GB of DDR4 memory. Additionally, each node contains 
four AMD MI250X acspGPU, each with two Graphics Compute Dies (GCDs)
and 64 GB of high-bandwidth memory (HBM2E). Frontier has a state-of-the-art
Slingshot 11 interconnect with network congestion management, dynamic rout-
ing, and quality of service (QoS) protocols in their Rosetta switches [2]. Our 
study focused on the energy and power consumption of the CPU and memory 

for PGAS comm unication operations using the Cray implementation of Open-
SHMEM [6]. We leveraged the counter information provided by HPE at the 

node level, capturing accumulated energy (in joules) and point-in-time power 
(in watts) for the entire node, the CPU socket, and memory, accessible via
/sys/cray/pm_counters.

Our preliminary evaluation focused on the bale 3.0 applications, which imple-
ment several many-to-many communication patterns written using both the 

AGP and conveyor aggregation models. We r an these applications using their
default input parameters on two nodes of Frontier.

Fig. 1. Time improvements of message aggregation over the A GP model.

Figure 1 shows the time improvements of the bale applications using con-
veyors over the AGP model from 1–64 processes per node (PPN). All the bale 

applications benefit from conveyors, especially sparse matrix transpose, triangle 

counting, and topological sort, which can achieve improvements of 45x, 28x, and 

40x for 1 PPN, respectively. As we weak scale the program sizes and increase
the number of processing elements (PEs), there are still significant aggregation
performance gains of 15x, 12x and 12x when using 64 PPN for these applications.

Figure 2 shows the combined CPU and memory energy improvements when 

using conveyors over the AGP versions. Here, we see energy consumption 

improvements of 41x for sparse matrix transpose, 32x for triangle counting, and
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Fig. 2. Energy improvement of aggregation over the A GP model.

39x for topological sort for 1 PPN. As we weakly scale the problem sizes, we 

again see significant energy improvements for t hese applications, with 13x, 11x,
and 10x improvements for 64 PPN, respectively.

Fig. 3. Ratio of time and energy improvement of message aggregation over AGP.

Figure 3 shows the ratio of performance and energy improvement as we scale 

the bale applications up to 64 PPN. Anything above 1 indicates that the appli-
cation improves faster in performance than energy; anything below 1 means the 

application improves better in energy compared to performance. We noticed that 
several applications, such as histogram and triangle counting, have better energy 

improvements over time at 1 PPN. At different PPN values, we see different
ratios of improvements. At lower PPN counts, the majority of the energy con-
sumption for conveyors comes from the memory—around 58%. As we increase
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the PPN count, the cores in the socket start to consume more energy—using 

66% of the total energy at 64 PPN for the histogram application. For trian-
gle counting this is 60% and 66% respectively. A similar trend is seen in both 

the AGP and conveyor versions. It is noteworthy that conveyors use a higher 
percentage of energy from memory compared to the AGP version, due to per-
forming more memory operations for aggregation. The other observation is that 
the energy source is more balanced at 8–16 PPN, w here the memory and CPU
socket contribute a similar amount (around 50%) of the total energy. An interest-
ing observation is that for histogram and triangle counting, energy consumption
increases at a faster rate than performance at 1 PPN, with most of the energy
being consumed by the memory.

Fig. 4. Power consumption for AGP and m essage aggregation histogram.

Figure 4 shows a trace of the power consumption for the AGP and conveyor 
versions of histogram on a single run when running at 16 PPN. The red lines 
represent the time spent on initialization using shmem_init. The green lines 
represent the AGP version, while the purple areas indicate the conveyor version. 
The purple lines represent time spent in shmem_barrier_all. The empty white 

region at the end is the verification step of the application. From the trace, 
we notice that the power consumption for AGP remains constant throughout 
the execution at 77 W. When it starts executing the conveyor version, the p ower
consumption increases to a constant 103 W for the CPU. The power consumption
for the memory also remains relatively constant at 89 W for AGP and 91 W
for conveyors. As the conveyor version executes much faster, its overall energy
consumption decreases despite the increase in power.

Figure 5 shows the average power ratio of the conveyor versions over AGP for 
the bale applications. Anything greater than one indicates that the average power
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Fig. 5. Combined CPU and memory average power ratio of message aggregation over
AGP.

consumption of the conveyor version is higher than that of AGP. The majority 

of the conveyor versions consume more power than their AGP counterparts, 
with exceptions for histogram and triangle counting at 1 PPN, histogram and 

topological sort at 8 PPN, and histogram at 16 PPN. The trend is that the 

con veyor versions use more CPU power compared to the AGP versions as we
increase the number of cores used per node.

3 Conclusions 

This study provides a preliminary analysis of the impact of message aggregation 

strategies on power and energy consumption for PGAS programming models. 
The use of the conveyor library for message aggregation demonstrates significant 
performance improvements that are also coupled with significant energy savings, 
achieving savings of up to 41 times. In certain cases, such as histogram and trian-
gle counting, energy savings improvements surpass performance improvements
at 1 PPN.

Aggregation strategies also alter the balance of energy consumption between 

the CPU and memory. Initially, memory operations consume more energy for 
lower PPN counts, but overall energy utilization becomes more balanced around 

8–16 PPN. Beyond this point, energy consumption is dominated by the CPU 

cores. In general, the preliminary results indicate that message aggregation can 

significantly improve both performance and energy consumption at the cost of
increasing power for both the CPU and memory. This makes it a valuable app-
roach to optimize PGAS models for energy consumption by better utilizing hard-
ware resources in high-performance computing systems.
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