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Preface

Object-oriented languages

A side effect of the application of information hiding

is the creation of new objects that store data.
..FORTRAN ...Pascal ...Simula ..Smalltalk ...

More recent languages have added new types of features
(known as inheritance)

designed to make it possible

to share representations between objects.

Often, these features are misused

and result in a violation of information hiding

and programs that are hard to change.

The most negative effect of the development of O-0 languages has been
to distract programmers from design principles.

Many seem to believe that

if they write their program in an 0-0 language,

they will write O-0 programs.

Nothing could be further from the truth.

Component-Oriented Design



The old problems and dreams are still with us.

Only the words are new.

Abstract Data types

..Being able to use variables of these new,

user-defined, abstract data types

in exactly the way as we use variables of built-in data types

is obviously a good idea.

Unfortunately, I have never seen a language that achieved this.

David L. Parnas

In: The Secret History of Information Hiding, Software Pioneers,
Springer 2002

This book consists of two parts:

e The implementation of object-based programming with Go,

— a presentation of the basics of object-based development,
— an introduction to essential aspects of Go and
— the introduction of the microuniverse pU with the presentation of

various classic algorithms,

e the documentations of teaching projects from computer science
teacher training courses at the Institute for Computer Science of the
Free University of Berlin and some of my program systems based on
them:

— the robots,

— the appointment calendar,

— the game of life,

- the Go register machine,

— the electronic stylus,

— the single-address machine Mini,

— the management of a book inventory,



- the Inferno, a management of almost any data sets,
- the Lindenmayer systems,

— the operation of train stations,

— the representation of figures in space, and

— the Berlin’s U- and S-Bahn networks.

[ would like to express my sincere thanks to Mr. Leonardo Milla and
Mrs. Juliane Wagner from Springer-Verlag. They very kindly supported
the idea to translate the second edition of my book “Objektbasierte
Programmierung with Go”".

All source codes are available on the book’s page on the World Wide
Web:

https://maurer-berlin.eu/obpbook.

Christian Maurer
Berlin
August 2024



Contents

Part I The Realization of Object-Based Programming with Go

1 Basics of Object-Oriented Development

1.1 The Program Life Cycle
1.1.1 System Analysis
1.1.2 System Architecture
1.1.3 User Manual
1.1.4 Construction
1.2 Advantages of an Object-Based System Architecture
1.2.1 On Specification
1.2.2 On Implementation
1.2.3 On Implementation
References
2 Aspects of Go
2.1 About the Installation of Go
2.2 Packages in Go
2.2.1 Program Packages
2.2.2 Packages as Interfaces Only
2.2.3 Nesting of Packages
2.2.4 Initialization of Packages
2.2.5 Variables of Concrete Data Types
2.2.6 References and Parameters
2.3 Variables of Abstract Data Types = Objects
2.4 Value Versus Reference Semantics

2.4.1 Assignments, Creation of Copies

2.4.2 Equality Check and Size Comparison



2.4.3 Serialization
References
3 The Microuniverse
3.1 Installation of the Microuniverse
3.1.1 Prerequisites
3.1.2 License Terms
3.1.3 Naming in the Microuniverse
3.2 The Constructor New
3.3 The Object Package
3.3.1 Equaler
3.3.2 Comparer
3.3.3 Clearer
3.3.4 Coder
3.3.5 The Interface of the Package Obij
3.3.6 Stringer
3.3.7 Formatter
3.3.8 Valuator

3.4 Input and Output
3.4.1 Packages for the Screen
3.4.2 Screen
3.4.3 Keyboard
3.4.4 Editor
3.4.5 Input/QOutput Fields
3.4.6 Error Messages and Hints
3.4.7 Printer
3.4.8 Selections




3.4.9 Menues
3.5 Collections of Objects
3.5.1 Collector
3.5.2 Seeker
3.5.3 Predicator
3.5.4 Sequences
3.5.5 Stacks
3.5.6 Buffers (Queues)
3.5.7 Priority Queues
3.5.8 Sets
3.5.9 Persistent Sequences (Sequential Files)

3.5.10 Persistent Index Sets
3.5.11 Graphs
3.6 Additional Data Types from the Microuniverse

References

Part II The Projects
4 General
4.1 Teaching Projects
4.1.1 System Analysis
4.1.2 System Architecture
4.1.3 User Manual
5 Robi
5.1 System Analysis
5.2 The Robi Language
5.3 System Architecture
5.4 User Manual



5.4.1 The Robi Editor
5.4.2 The Robi Protocol
5.4.3 Robi-Sokoban
5.4.4 Robot Race

5.4.5 General Procedure
5.5 Construction
5.6 Exercises
5.6.1 Sample Solutions
References
6 The Appointment Calendar
6.1 System Analysis
6.1.1 Calendar Pages
6.1.2 Day Attributes
6.1.4 Annual Calendar
6.1.5 Monthly and Weekly Calendars
6.1.6 Appointment Calendar
6.1.7 Search for Appointments
6.2 System Architecture
6.2.1 The Objects of the System

6.2.2 Component Hierarchy
6.3 User Manual

6.3.1 Formats
6.4 Calendar Pages
6.5 Weekly Calendar

6.5.1 Monthly Calendar



6.6 Annual Calendar
6.6.1 Search and Search Results
6.6.2 System Operation

6.7 Construction
6.7.1 Term Attributes
6.7.2 Keywords
6.7.3 Appointments
6.7.4 Appointment Sequences
6.7.5 Persistent Sets of Calendar Data
6.7.6 Day Attributes

6.8 Calendar Pages
6.8.1 Appointment Calendars

7 Life

7.1 System Analysis
7.1.1 The Game of Life
7.1.2 The Ecosystem of Foxes, Rabbits, and Plants
7.1.3 The Objects of the System
7.1.4 Component Hierarchy

7.2 User Manual
7.2.1 Program Operation

7.3 Construction
7.3.1 Specifications
7.3.2 Implementations

References

8 The Go Register Machine
8.1 System Analysis



8.1.1 Components of a Register Machine

8.1.2 Basics of the Register Machine Programming Language
8.1.3 System Architecture

8.1.4 Registers

8.1.5 Register Machine Programs

8.1.6 Instructions

8.1.7 Test Programs

8.1.8 Functions

8.2 User Manual
8.2.1 Examples
8.2.2 Recursion

8.3 Construction

8.4 Exercises

References

9 The Electronic Stylus

9.1 System Analysis
9.1.1 The Figures of the Electronic Stylus
9.1.2 The Operations on the eBoards
9.1.3 Program Start
9.1.4 Program Start

9.1.5 Creation of New Figures

9.1.6 Modification of Figures
9.1.7 Deleting of Figures
9.1.8 Marking Figures

9.1.9 Loading and Saving
9.1.10 Printing



9.1.11 Brief Help
9.1.12 System Architecture

9.2 Construction

10 Mini

10.1 System Analysis
10.1.1 Processor
10.1.2 Data Storage
10.1.3 Program Lines
10.1.4 Execution of a Mini Program
10.1.5 Instructions
10.1.6 Example
10.1.7 The Objects of the System
10.1.8 Component Hierarchy

10.2 User Manual
10.2.1 Instructions for Working with Mini

10.3 Construction
10.4 Exercises
11 Books
11.1 System Analysis
11.2 System Architecture
11.3 The Objects of the System
11.4 Component Hierarchy
11.5 User Manual
11.6 Construction
11.6.1 Areas
11.6.2 Natural Numbers




11.6.3 Strings

11.6.4 Book

11.6.5 Books

11.6.6 The Program for Managing the Book Inventory

12 Inferno

12.1 System Analysis
12.1.1 Masks
12.1.2 Molecules
12.1.3 Structure of the Molecules
12.1.4 Atoms

12.2 System Architecture
12.2.1 The Objects of the System
12.2.2 Component Hierarchy
12.2.3 The Objects of the System

12.3 User Manual

12.3.1 Construction of an Inferno Program

12.3.2 System Operation

12.3.3 Construction
12.3.4 Molecules
12.3.5 Structure
12.3.6 Atoms

13 Lindenmayer Systems
13.1 System Analysis
13.1.1 Alphabets, Languages, and Grammars
13.1.2 Relationship Between Grammars and Languages

13.2 The Grammars of Lindenmayer Systems



13.3 Graphical Interpretation of L-Systems
13.3.1 The Koch Islands
13.3.2 The Islands and Lakes
13.3.3 The Pavement
13.3.4 Space-Filling Curves
13.3.5 Extensions of the Alphabet of L-Systems

13.3.6 Three-Dimensional L-Systems
13.4 System Architecture
13.4.1 The Objects of the System

13.4.2 Component Hierarchy
13.5 User Manual
13.5.1 Creation of an L-System

13.5.2 System Operation
13.6 Construction
13.6.1 Specification of the Library Packages
13.6.2 Implementation of the Packages
References
14 Rail
14.1 System Analysis
14.1.1 Basic Concepts of Railway Technology
14.1.2 Sources
14.1.3 Track Diagram Display
14.1.4 Driving Orders
14.1.5 Representation of Train Journeys
14.2 System Architecture
14.2.1 The Objects of the System




14.2.2 Component Hierarchy
14.3 User Manual
14.3.1 Screen Design
14.3.2 The Track Diagram Control Panel on the Screen
14.3.3 The Net of the Stations
14.3.4 The Network of Stations
14.3.5 System Operation
14.4 Construction
14.4.1 Main Program
14.4.2 Network
14.4.3 Stations
14.4.4 Routes
14.4.5 Blocks
14.4.6 Cells
14.4.7 Signals
14.4.8 Aid Packages
14.4.9 Other Packages
References
15 Figures in Space
15.1 System Analysis
15.1.1 System Architecture
15.1.2 The Objects of the System
15.2 Component Hierarchy
15.3 User Manual

15.4 Construction

15.4.1 Specifications



15.4.2 Implementations
15.4.3 Examples
15.4.4 Examples of Conic Sections
16 Berlin’s U- and S-Bahn
16.1 System Analysis
16.2 System Architecture
16.3 The Objects of the System
16.4 Component Hierarchy
16.5 User Manual

16.6 Construction
16.6.1 Specifications

16.6.2 Implementation

Index




List of Figures
Fig. 1.1 The order

Fig. 1.2 How the system analysts understood the order

Fig. 1.3 Reduction of the system analysis, because the clients are stingy

Fig. 1.4 System Architecture

Fig. 1.5 Construction

Fig. 1.6 What actually was meant...

Fig. 3.1 1214 N is to be inserted before 1214 A

Fig.3.2 1214 N is inserted before vor 1214 A

Fig. 3.3 1214 A is to be removed

Fig. 3.4 1214 A is deleted

Fig. 3.5 Heap with 12 numbers

Fig. 3.6 Heap with 13 numbers


https://doi.org/10.1007/978-3-658-44704-5_Fig1
https://doi.org/10.1007/978-3-658-44704-5_Fig2
https://doi.org/10.1007/978-3-658-44704-5_Fig3
https://doi.org/10.1007/978-3-658-44704-5_Fig4
https://doi.org/10.1007/978-3-658-44704-5_Fig5
https://doi.org/10.1007/978-3-658-44704-5_Fig6
https://doi.org/10.1007/978-3-658-44704-5_Fig6
https://doi.org/10.1007/978-3-658-44704-5_Fig6
https://doi.org/10.1007/978-3-658-44704-5_Fig1
https://doi.org/10.1007/978-3-658-44704-5_Fig2
https://doi.org/10.1007/978-3-658-44704-5_Fig3
https://doi.org/10.1007/978-3-658-44704-5_Fig4
https://doi.org/10.1007/978-3-658-44704-5_Fig5
https://doi.org/10.1007/978-3-658-44704-5_Fig6

Fig. 3.7 AVL.-Baum mit zwei Zahlen

Fig. 3.8 Tree with three numbers

Fig. 3.9 AVL tree with mit three numbers

Fig. 3.10 AVL tree with 11 numbers

Fig. 3.11 AVL tree with 12 numbers

Fig. 3.12 Baum mit 12 Zahlen

Fig. 3.13 AVL tree with 12 numbers

Fig. 3.14 AVL tree with 12 numbers

Fig. 3.15 Baum mit 11 Zahlen

Fig.3.16 AVL-Baum mit 11 Zahlen

Fig. 3.17 Example of a graph

Fig. 5.1 The city from the first exercise



https://doi.org/10.1007/978-3-658-44704-5_Fig7
https://doi.org/10.1007/978-3-658-44704-5_Fig8
https://doi.org/10.1007/978-3-658-44704-5_Fig9
https://doi.org/10.1007/978-3-658-44704-5_Fig10
https://doi.org/10.1007/978-3-658-44704-5_Fig11
https://doi.org/10.1007/978-3-658-44704-5_Fig12
https://doi.org/10.1007/978-3-658-44704-5_Fig13
https://doi.org/10.1007/978-3-658-44704-5_Fig14
https://doi.org/10.1007/978-3-658-44704-5_Fig15
https://doi.org/10.1007/978-3-658-44704-5_Fig16
https://doi.org/10.1007/978-3-658-44704-5_Fig17
https://doi.org/10.1007/978-3-658-44704-5_Fig1

Fig. 5.2 The maze from the second exercise with 13 blocks

Fig. 6.1 The annual calendar with entered vacation times

Fig. 7.1 Component hierarchy of the Game of Life

Fig. 7.2 The Game of Life: the gun

Fig. 7.3 An ecosystem

Fig. 10.1 System architecture of Mini

Fig. 11.2 The screen mask

Fig. 12.1 System architecture of Inferno

Fig. 12.2 Window of the example

Fig. 13.1 Koch Island: start


https://doi.org/10.1007/978-3-658-44704-5_Fig2
https://doi.org/10.1007/978-3-658-44704-5_Fig1
https://doi.org/10.1007/978-3-658-44704-5_Fig2
https://doi.org/10.1007/978-3-658-44704-5_Fig1
https://doi.org/10.1007/978-3-658-44704-5_Fig2
https://doi.org/10.1007/978-3-658-44704-5_Fig3
https://doi.org/10.1007/978-3-658-44704-5_Fig1
https://doi.org/10.1007/978-3-658-44704-5_Fig1
https://doi.org/10.1007/978-3-658-44704-5_Fig2
https://doi.org/10.1007/978-3-658-44704-5_Fig1
https://doi.org/10.1007/978-3-658-44704-5_Fig2
https://doi.org/10.1007/978-3-658-44704-5_Fig1

Fig. 13.2 Koch Island after 1 application step

Fig. 13.3 Koch Island after 2 application steps

Fig. 13.4 Koch Island after 3 application steps

Fig. 13.5 Koch Island after 4 application steps

Fig. 13.6 Islands and lakes

Fig. 13.7 Pavement after two application steps

Fig. 13.8 Pavement after five application steps

Fig. 13.9 Hilbert curve after two application steps

Fig. 13.10 Hilbert curve after four application steps

Fig. 13.11 Hilbert curve after seven application steps

Fig. 13.12 Peano-curv after two application steps

Fig. 13.13 Peano-curv after four application steps



https://doi.org/10.1007/978-3-658-44704-5_Fig2
https://doi.org/10.1007/978-3-658-44704-5_Fig3
https://doi.org/10.1007/978-3-658-44704-5_Fig4
https://doi.org/10.1007/978-3-658-44704-5_Fig5
https://doi.org/10.1007/978-3-658-44704-5_Fig6
https://doi.org/10.1007/978-3-658-44704-5_Fig7
https://doi.org/10.1007/978-3-658-44704-5_Fig8
https://doi.org/10.1007/978-3-658-44704-5_Fig9
https://doi.org/10.1007/978-3-658-44704-5_Fig10
https://doi.org/10.1007/978-3-658-44704-5_Fig11
https://doi.org/10.1007/978-3-658-44704-5_Fig12
https://doi.org/10.1007/978-3-658-44704-5_Fig13

Fig. 13.14 Barrel curve after two application steps

Fig. 13.15 Barrel curve after four application steps

Fig. 13.16 Sierpinski curve after two application steps

Fig. 13.17 Sierpinski curve after six application steps

Fig. 13.18 Two herbs

Fig.13.19 Abush

Fig. 13.20 Two herbs

Fig. 13.21 Another herb

Fig. 13.22 Three-dimensional Hilbert curve

Fig. 13.23 Another view of the three-dimensional Hilbert curve

Fig. 13.24 A three-dimensional bush

Fig. 13.25 Another view of the three-dimensional bush



https://doi.org/10.1007/978-3-658-44704-5_Fig14
https://doi.org/10.1007/978-3-658-44704-5_Fig15
https://doi.org/10.1007/978-3-658-44704-5_Fig16
https://doi.org/10.1007/978-3-658-44704-5_Fig17
https://doi.org/10.1007/978-3-658-44704-5_Fig18
https://doi.org/10.1007/978-3-658-44704-5_Fig19
https://doi.org/10.1007/978-3-658-44704-5_Fig20
https://doi.org/10.1007/978-3-658-44704-5_Fig21
https://doi.org/10.1007/978-3-658-44704-5_Fig22
https://doi.org/10.1007/978-3-658-44704-5_Fig23
https://doi.org/10.1007/978-3-658-44704-5_Fig24
https://doi.org/10.1007/978-3-658-44704-5_Fig25

Fig. 13.26 Simple three-dimensional tree

Fig. 13.27 Three-dimensional tree

Fig. 13.28 Other view of the three-dimensional tree

Fig. 13.29 Simple three-dimensional flower

Fig. 13.30 Three-dimensional grass plant

Fig. 13.31 Three-dimensional grass plant from above

Fig. 13.32 Three-dimensional fantasy plant

Fig. 13.33 System architecture of the L-System

Fig. 14.1 Architecture of Rail

Fig. 14.2 Track cells

Fig. 14.3 Track bends

Fig. 14.4 Switches branched in the direction of the kilometerage



https://doi.org/10.1007/978-3-658-44704-5_Fig26
https://doi.org/10.1007/978-3-658-44704-5_Fig27
https://doi.org/10.1007/978-3-658-44704-5_Fig28
https://doi.org/10.1007/978-3-658-44704-5_Fig29
https://doi.org/10.1007/978-3-658-44704-5_Fig30
https://doi.org/10.1007/978-3-658-44704-5_Fig31
https://doi.org/10.1007/978-3-658-44704-5_Fig32
https://doi.org/10.1007/978-3-658-44704-5_Fig33
https://doi.org/10.1007/978-3-658-44704-5_Fig1
https://doi.org/10.1007/978-3-658-44704-5_Fig2
https://doi.org/10.1007/978-3-658-44704-5_Fig3
https://doi.org/10.1007/978-3-658-44704-5_Fig4

Fig. 14.5 Switches branched against the direction of the kilometerage

Fig. 14.6 Double crossing switches

Fig. 14.7 Buffer stops

Fig. 14.8 The net of the six stations

Fig. 14.9 Track diagram of Bahnheim

Fig. 14.10 Track diagram of Bahnhausen

Fig. 14.11 Track diagram of Bahnstadt

Fig. 14.12 Track diagram of Eisenstadt

Fig. 14.13 Track diagram of Eisenhausen

Fig. 15.1 Component hierarchy of the spatial figures

Fig. 15.2 Several figures

Fig. 15.3 Another view of the several figures



https://doi.org/10.1007/978-3-658-44704-5_Fig5
https://doi.org/10.1007/978-3-658-44704-5_Fig6
https://doi.org/10.1007/978-3-658-44704-5_Fig7
https://doi.org/10.1007/978-3-658-44704-5_Fig8
https://doi.org/10.1007/978-3-658-44704-5_Fig9
https://doi.org/10.1007/978-3-658-44704-5_Fig10
https://doi.org/10.1007/978-3-658-44704-5_Fig11
https://doi.org/10.1007/978-3-658-44704-5_Fig12
https://doi.org/10.1007/978-3-658-44704-5_Fig13
https://doi.org/10.1007/978-3-658-44704-5_Fig1
https://doi.org/10.1007/978-3-658-44704-5_Fig2
https://doi.org/10.1007/978-3-658-44704-5_Fig3

Fig. 15.5 Section of a cone with a plane

Fig. 15.6 Another view of this section

Fig. 15.7 Section of a double cone with a plane parallel to the cone axis

Fig. 15.8 The hyperbola

Fig. 16.1 Architecture of BUS

Fig. 16.2 Extract from the U- and S-Bahn-Net in Berlin



https://doi.org/10.1007/978-3-658-44704-5_Fig4
https://doi.org/10.1007/978-3-658-44704-5_Fig5
https://doi.org/10.1007/978-3-658-44704-5_Fig6
https://doi.org/10.1007/978-3-658-44704-5_Fig7
https://doi.org/10.1007/978-3-658-44704-5_Fig8
https://doi.org/10.1007/978-3-658-44704-5_Fig1
https://doi.org/10.1007/978-3-658-44704-5_Fig2

Part 1
The Realization of Object-Based
Programming with Go



© The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of
Springer Nature 2025

C. Maurer, Object-based Programming with Go
https://doi.org/10.1007/978-3-658-44704-5 1

1. Basics of Object-Oriented
Development

Christian Maurer*
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Christian Maurer
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Entia non sunt multiplicanda praeter necessitatem;
frustra fit per plura, quod fieri potest per pauceriora.
Johannes Clauberg (1622-1665)

attributed to William of Ockham (1287-1347)

Entities should not be multiplied beyond necessity;

it is futile to do with more what can be done with fewer.
Occam’s razor

Abstract

This chapter presents a brief characterization of a program life cycle
reduced to its essential core. The task of system analysis is to isolate the
objects that occur in a system. These objects provide the components of
the system architecture and thus a stringent concept for construction.

The central guiding idea that we are pursuing here is that all
constructions in the context of the development of program(system)s
are based primarily on the systematic development of abstract data
types. The principles presented are based on what Parnas taught us in
[5] in the early 70s (see also, e.g., [1] and [2]).
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They are universally valid insofar as they are largely independent of
specific programming paradigms. (The restriction “largely” is justified
by the fact that the state concept of imperative programming clearly
shines through at many points, which makes no sense in the declarative
paradigm).

1.1 The Program Life Cycle

The core of all models of a software life cycle is the following phases:

e System analysis.

e System architecture.
e User manual.

e (Construction.

The maintainability of systems is determined by the following basic
principles of analysis, planning, design, and implementation:

e the detailed examination of all factual backgrounds of the task at
hand,

e a decomposition into components and the description of their mutual
dependencies as well as

e the complete and consistent definition of the external behaviour of
the system,

* the elegant and comprehensible description and construction of the
identified components.

Lack of consideration for these principles results in error-prone,
uncontrollable, and risky systems, whose

e intended behaviour;

e adaptability to other machines, operating systems, development
environments, or programming languages;

e developability and maintainability in case of changes or updates to
the requirements

cannot be fundamentally guaranteed due to their inherent instability
against small changes and whose parts are also not usable for solving
other problems.



Conversely, this characterizes some minimal requirements for the
development of programs that were articulated in the “software crisis”
around 1970, which led to the software engineering becoming an
independent field of computer science.

Every phase model ultimately assumes a rigid concept and does not
sufficiently take into account the dialectical interplay of the phases with
each other.

1.1.1 System Analysis

For every project to construct an IT system, investigations into the
functional processes and data flows in the system are necessary to
specify the order, especially about which parts of the system to be
automated can be handled by computers. They form the necessary
prerequisites for determining the performance of the IT system (see
Fig. 1.1) and thus for formulating the order.

((( —— O)))

Fig. 1.1 The order

In addition, there is the dialogue between clients and system
analysts about details of the system’s purpose, which ultimately forms
the basis for the system analysis (see Fig. 1.2).

Fig. 1.2 How the system analysts understood the order



In the course of a deeper engagement with the subject matter, the
repercussions of computer use must also be included: The structure of
the system under consideration may change due to the switch to
automatic data processing.

In connection with such considerations, sensitivity to the risks of
blind trust in IT systems, which are based on human-written (sic!) texts
—the source texts of programs—which are neither “tangible” nor
objectively “measurable” , but pure mental constructions, also grows.

Working on the system analysis can lead to the realization that not
necessarily every aspect of the system can be automated, because the
realization of some interesting idea within the planned cost-benefit
ratio proves to be too expensive (see Fig. 1.3).

The detailed considerations in the system analysis provide a natural
entry into the design work, because the objects recognized in the
system and their structure can be derived from the factual analysis.

Fig. 1.3 Reduction of the system analysis, because the clients are stingy

What will be shown in the following chapter is already assured
here:

Along these objects, the answer to the question of how to break
down the system into manageable parts arises entirely on its own.

1.1.2 System Architecture

Following the system analysis is the work on the design of the system
architecture (see Fig. 1.4) with the aim of breaking down the overall



system into components and their mutual dependency.
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Fig. 1.4 System Architecture
The guiding principle here is the question of what the individual
parts of the system are and how they are connected. The main concern
in this phase is the reduction of the system’s complexity to a manageable
level, which ideally results from the findings of the system analysis.
The following postulates serve to obtain meaningful criteria for a
breakdown into components:

e astrong internal connection of each individual component and
* an understandability, constructability, testability and maintainability
that is largely independent of the other components.

To fulfill these requirements, each component must be split into two
parts:

 the specification, which is a list of all its services and the exact
description of the prerequisites and effects for each individual
service and

e the implementation of these services according to the specification, in
which a design decision is made taking into account the requirement
profile for the system behaviour (such as optimizing runtime
behaviour or memory usage).

A consequence of distinguishing these two parts is the demand for a
strict separation of specification and implementation in different text
files with a number of advantages:



e The specifications can be protected against subsequent changes by
implementers (a measure that represents a protection mechanism
against typical difficulties in the construction of larger systems).

e People who use the components to develop their own components
are not overwhelmed by the fact that their work requires knowledge
of the implementations of the components used; they only need to
know their specification.

e The implementation of different alternatives by different people is
possible.

As a conclusion from these considerations, it follows that
programming languages must be used for the development of a system
that can realize this concept.

The strict separation of the two parts ensures that clients of a
component do not make implicit assumptions about its behaviour that
they have from the knowledge of implementation details. Only in this
way are the internal data of the component safe from uncontrolled
access at the “interface” (= the specification) that can change its
behaviour and thereby generate side effects that can have completely
unpredictable effects on the system.

(How could a motor vehicle be developed, for example, if the
construction of the body depended on technical details of the cylinder
head cover or the anti-lock braking system, or even tried to influence
these details?)

1.1.2.1 Characterization of the Component Concept

The following specifies the general requirements for the components of
a decomposition of the previous section:
Necessary conditions for a clean component concept are

the simplicity of the specification of the components and
 the context independence of their implementations. .

The simplicity of the specification of a component includes

e precise colloquial formulations, possibly functional specifications (i.e.,
in a functional programming language), algebraic specifications, or in
formal specification languages;

» minimality of its scope by providing a coherent, non-decomposable
problem circle;



simultaneously maximality of its scope with the aim of usability for
other purposes than originally planned, but still openness for
extensions of its scope;
independence from the specifications of other components except
those on which they build by “extension of the specification”;
the reduction of data transports to the minimum possible extent,
both within the component and between it and the components it
uses;
the rigid avoidance of revealing any implementation details.

The following points can be assigned to the context independence of

the implementation of a component:

limitation to the completion of the task given by the specification,
which is characterized by a strong internal (logical and factual)
binding, thus renouncing the construction of system parts that do not
directly arise from the given specification;

limiting the number of used components to the minimum necessary
for the fulfillment of the specification task, possibly by outsourcing
separable parts to separate components;

keeping open alternative implementations, e.g., from the efficiency
point of view of the intended purpose;

the independent selection of such data structures and algorithms
that are adapted to the requirement profile;

coupling to the used components only via their specification, thus
without any knowledge of their internal data or processes;
testability, i.e., verifiability of their proper function according to
specification;

maintainability, i.e., localizability and correctability of errors and
adaptability to other conditions of use.

1.1.2.2 Object-Based Decompositions

As early as 1972, Parnas formulated a—at the time still unconventional
—decomposition criterion in [6]:

instead of decomposing a system according to its process steps,

each component should implement a design decision (for which there
are usually alternatives).

This claim is fulfilled by a system architecture that is oriented

towards the objects of the system under consideration oriented:



The components of a system are defined by its objects and the
properties and operations that characterize or process them.

Such an object-based decomposition can not only be derived in a
very natural way from system analysis, but also provides, as will be
shown below, a stringent approach to the system architecture of a
system: From it result sufficient conditions for a definable
component concept in the sense of the previous section, i.e,, it fully
meets all the demands mentioned.

A process-oriented decomposition, on the other hand, does not at all
correspond to the path outlined by Parnas through the program life
cycle.

The approach to an object-based design methodology is the task of
modelling the real objects that are manipulated in the system at an
appropriate level of detail from the system analysis and working out
the accesses to their models from their performance spectrum. Such a
structural analysis leads retrospectively to a deeper understanding of
the underlying real system and therefore also to the demand for
accuracy of the formulations in the requirement definition. This leads
to the determination

e of both the specifications of individual components
e and the interrelationships of various components in the system
architecture.

The hierarchy of the thus found—initially unordered—set of the
system’s components results from the uncovering of the dependencies
between the considered objects: A component that defines new objects
by structuring given objects uses exactly those components that in turn
define the objects to be combined.

1.1.2.3 Abstract Datatypes

The demands of the previous section for strong internal coherence and
a high degree of independence from other components are immediately
met when a component

 either handles a class of objects of the same type or
¢ —in exceptional cases—manages access to a single object.



In programming languages that allow a separation of specification
and implementation, the associated specification

e defines an abstract data type, i.e., a class of objects with their access
operations, which is abstract in the sense that its representation in
the specification may be described in a comment-like manner, but is
not syntactically visible or

e the access operations to an abstract data object (which is only
managed in the implementation, so it is not explicitly provided).

The second case can be considered a special case of the first, as it
concerns one instance of an abstract data type and the access functions
to it.

An exception is those components of the lowest layer that connect
the system to the services of the operating system; individual
peripheral components of the computer (such as screen, keyboard,
mouse, or printer) are usually only needed in one form and are
therefore usually modelled as single data objects.

Further component types are superfluous, because even
algorithmically emphasized system parts gain significantly in clarity
structurally and fit cleanly into the hierarchy of the objects used in the
system when they are recognized as access operations on certain data
types to be worked out. Thus, a decomposition can largely rely on the
first-mentioned case.

The implementation of a data type and the accesses to it are again
composed of data types and the accesses to them, which are specified in
other such components.

The decomposition of a system into components has reached an end
exactly when an end is reached, when only atomic data types, i.e.,
components of the used programming language, are used in the
implementation, from which all data types are ultimately composed.

Under the (obviously sensible) assumption that no object—not even
across multiple layers—can contain an object of its own type as a part,
this recursive definition is well founded, i.e., it terminates.

This results in a stringent system architecture in the form of a
hierarchically layered structure of abstract data types ordered
according to increasing complexity of the objects.



The naming of the components depends on the programming
language used; in Haskell or Modula-2, for example, they are called
module, in C#, D and Java classes and in Go packages.

1.1.3 User Manual

Once the system architecture is complete, work begins on an exact
description of the system’s (external) behaviour and its operation, i.e.,
the design of the user interface and possibly the interfaces to peripheral
devices.

The user interface is given by the interactions between users
(possibly also used peripheral devices) and the automated system
running on computers. Its design includes the description of the user
inputs into the computers (possibly also through the devices used for
data collection) and the outputs of the computers (possibly also the
devices intended for data output).

The considerations for this can be divided into two categories:

e the representation forms of the objects on the screen and possibly
other devices and
e the inputs and commands for operating the system.

The points mentioned are largely independent of each other: For
example, the representation of data on the screen is not dependent on
the type of system operation (by keyboard and/or mouse or inputs
from data from other devices) and the operation of the program has
nothing to do with the display of data on the screen or the outputs on
peripheral devices.

As a guide to designing user interfaces, some questions from
Nievergelt and Ventura are quoted in [4] that “well characterize most
difficulties of users of interactive programs”:

e Where am I?

e What can I do here?

e How did I get here?

e Where can I go and how do I get there?

This list of questions must be expanded, e.g., by

e Wie komme ich hier wieder heraus?
e Wie erfahre ich nach einer Unterbrechung der Arbeit, wo ich bin?



Was soll ich hier tun?
Mit welchen Tasten, Mausklicks, Befehlen o. a. erreiche ich, was ich
will?
Kann ich etwas ungeschehen machen? Wenn ja, wie?
Welchen Fehler habe ich gerade gemacht?

The end product of the work in this phase is the user manual (often
also called “operating instructions”).

1.1.4 Construction

The construction of a program (see Fig. 1.5) in the sense of the program
life cycle consists according to the predicted of two parts:

o for each component from

— its specification and
— its implementation

e and the system integration—the structuring of the components.

Fig. 1.5 Construction

1.1.4.1 Specification of the Components

When a component provides an abstract data type, its name (which
naturally does not apply to abstract data objects) is specified in the
“header” of its specification. The name of the data type is either the
name of the component, if the syntax of the programming language
used allows it, or at least it can be considered a synonym for it. This may
include a description of the semantics of the data type.

The “body” of a component’s specification consists of a list of all
access operations on the objects (the “variables” of the data type) with



their syntax and their semantics, i.e., the specification of their usage
prerequisites and effect descriptions. It should not be forgotten to
provide operations that allow clients to check the prerequisites.

In the event that there are multiple implementations, which differ,
for example, in their efficiency for different usage requirements, of
course, correspondingly many different type names must be used and
constructors specified. In this case, clients should also be appropriately
informed by commenting on the types.

If necessary, constants are specified, for example, as limits for
certain ranges, or for naming the components of enumeration types
such as in a data type calendar date weekday (monday, tuesday, ...) and
period (daily, weekly, monthly, ...).

Variables, on the other hand, due to the dangers associated with
uncontrollable changes from the outside, should under no
circumstances be included in the specification.

Operations are provided for the manipulation of component
variables (i.e., global variables in the implementations of the
components that are not accessible from the outside), which deliver or
change their values.

1.1.4.2 Implementation of the Components

In the implementation of a component, the first step is to determine the
concrete data type that models the specified data type, or the concrete
representation of the data object that is the carrier for the operations
on the abstract data object. This usually involves one of the following
cases:

At the lowest level by

 the choice of an elementary data type (character, string, truth value,
natural or integer number, floating point number, self-defined
enumeration type);

and at higher levels by

e the construction of new objects, whose attributes are given objects of
different types, by “binding” them together by means of a type
constructor “tuple”; or

» the grouping of given objects into sets of objects (which are
themselves objects), for example, in static or dynamic fields, scatter



storage tables, in dynamic meshes (lists, trees, graphs, or in
persistent type constructions for permanent storage (sequential or
indexed sequential files, B-trees or similar).

The implementation of the operations then often involves well-
known algorithms for processing the respective data structures.

If design errors become apparent during the implementation—
usually in the form of incompleteness or lack of clarity, possibly due to
previously undiscovered contradictions in previous phases—the
specification must be corrected in close cooperation with all involved
clients and their implementations adapted to the changes.

In our simple model of the program life cycle, no separate phase is
provided for testing the components no separate phase because we
consider tests of the implementations against their specification as part
of the implementation.

1.1.4.3 Component Hierarchy

In simple cases, a program is controlled with an input loop (event
loop), in more complex cases with a selection menu, through which
user inputs branch into individual program parts, which in turn can
consist of input loops or selection menus. The system integration thus
consists of the construction of the input loop(s) and selection menus,
incorporating the developed components.

The first step in a revision is to check whether the constructed
system (see Fig. 1.6) matches the ideas of the clients or users.

A system does not do what the clients originally imagined, but what
the developers constructed.

The goal of a system revision is then, if necessary, appropriate
corrections and usually an extension of the system’s functionality or an
adaptation to changed conditions for its use. It therefore consists of a
re-entry into the first phase of the program life cycle, from where it is
cycled through again.



Fig. 1.6 What actually was meant ...

1.2 Advantages of an Object-Based System

Architecture

It is easy to see that the demands on the components of a system'’s
decomposition according to its objects out from Sect. 1.1.2.1 and that
all postulates from Sect. 1.1.2.2 for a proper component concept are
naturally fulfilled.

1.2.1 On Specification

Unfortunately, a decisive weakness of many common programming
languages becomes apparent here: Lack of syntactic support for
safeguards against non-compliance with prerequisites or for
assurances of effects. An optimal language level is of course an
algebraic specification of the operations by equations (relationships
between the operations).

1.2.2 On Implementation

The understandability and clarity of the specification and the minimality
of its service offering are guaranteed a priori by the treatment of
exactly one data type (possibly data object).

The minimality of the service offering is ensured because it only
concerns access to objects of one data type; the same applies to the
independence from the specification of other components, as far as the
specification does not extend that of other data types. The reduction of



data transports is trivially achieved because only operations on the
abstract data type with their parameters are provided.

When using abstract data types, the invisibility of the structure of an
object from components in the specification automatically ensures the
preservation of the principle of secrecy and a maximum independence
from other components.

Degree of generality and completeness result in connection with a
desired maximality of the service offering within the set limits: in any
case, a sufficiently large variety of accesses to the objects of the
considered data type should be provided in order to make the
component as universally usable as possible. This does not contradict
the principle of openness: A component can always be extended by
specifying and implementing initially unconsidered, but later
recognized as necessary accesses (which of course requires the
recompilation of its clients).

1.2.3 On Implementation

The postulates considered necessary for the implementation are, in a
sense, fulfilled by the implementation:

The manageability of the emerging complexity is ensured by the
construction of data types from components that have been previously
defined. Since their construction details are hidden in other
implementations, the implementation of the composite data types does
not have to worry about details, but can assume their existence and the
accesses to them only on the basis of the knowledge of their definition,
i.e.,, on a rather abstract level.

If it turns out during the implementation that further, initially
unforeseen parts are necessary, this gives rise to the construction of
separate components, which are then used—again only based on their
abstract description, i.e., their specification.

The principle of secrecy can be excellently exploited: can be
excellently exploited:

The replacement of implementations by alternatives is optimally
supported by the described principle. Typical examples—mind you,
with the same specifications—can be found in the following scenarios:

Different implementations may be required depending on whether
data stocks are only recorded once and then preferably searched, or



whether they are continuously updated and research is comparatively
rare; the implementation of access to data in one computer
fundamentally differs from access to distributed data located on
different computers (see [1]).

Often it is necessary to examine alternatives that balance between
contradictory requirements for favourable runtime behaviour of a
component and the demand for minimal memory requirements.
Accesses to the base machine are isolated in suitable components,
whose implementations can differ significantly from each other for
different target systems.

The interference freedom is ensured by the independence of the
specification and implementation parts of the components.

To avoid the use of system-wide state information, which is visible
throughout the system, thus also manipulable—and therefore almost
inevitably a source of highly fatal, but hard to find errors in larger
systems—global variables—which can only be referred to as devil’s stuff
(1) for this very reason—must be encapsulated in components (possibly
in local subcomponents). This keeps their content—unlike local
variables in operations—preserved throughout the entire program
runtime, but they are safe from uncontrollable external access. Of
course, this assumes that the programming language used supports
such a concept.

Other useful aspects of the described method are that it

e allows for a stringent further development of a prototype by refining
the structures that have occurred so far or by combining them with
other structures into larger units;

* basically provides some assurance that reusable parts of program
systems are constructed (which is very valuable given the costly
development work in the software sector); and

* does not stand in the way of largely decentralized program
development.
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Abstract

This chapter does not provide a complete introduction to Go, in
particular, it is not intended to replace the language description2E
Rather, it deals with aspects of Go that are not directly apparent from
the documentation of the Go developers, namely, how fundamental
software engineering principles can be implemented in Go. The
package concept is explained and it is shown how abstract data types
can be realized as packages. This is followed by considerations on the
concept of variables or objects and the distinction between value and
reference semantics—a central point in OOP.

Work on the design of the Go programming language began at Google in
the fall of 2007; Go was released in November 2009; the first stable
version Go 1 was released at the end of March 2012.

Go allows programming at various levels of abstraction:
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e from the lowest possible

- by integrating parts of programs written in Assembler or C, and
system libraries;

e to the simplest
— for the development of small programs; and
e up to the highest

- by grouping entire groups of components into components,
through which abstract design patterns are realized.

2.1 About the Installation of Go

Compilers, source codes, license terms, etc. can be found on the World
Wide Web (see [1]). Instructions for installation are stored on the
World Wide Web (see [2]). Go requires some environment variables,
which are conveniently set in a file in the directory /etc/profile.d.

To do this, switch to it as root:

cd /etc/profile.d

and create the file go . sh there with the following content:

export GO111MODULE=auto
export GOOS=linux
export GOARCH=amd64
export GOROOT=/usr/local/go
export PATH=$PATH:S$GOROCQT/bin
if [ $SUID = 0 ]; then

export GOSRC=$GOROOT/src
else

export GO=$HOME/go

export GOPATH=35GO

export GOSRC=$G0/src

export GOBIN=$G0O/bin

mkdir -p $GOSRC 5GO/pkg $GOBIN

export PATH=$PATH:$GOBIN
fi

These definitions are then valid after every restart of the computer.
The file go . sh is stored on the World Wide Web at



https://maurer-berlin.eu/go and can be downloaded from there,
Go is installed in the directory /usr/local/go by importing the

Go repository as root, after deleting any existing older version:

cd /usr/local
rm -rf go
tar xfzv go...tgz

The third line needs to be specified, e.g., like this:
tar xfzv gol.20.2.1linuxamd64.tar.gz.

The Go library packages are then located in the directory
/usr/local/go/src.

2.2 Packagesin Go

The concept of components in Go is that of the package .
There are two types of packages:

e Program packages, which implement an executable program, and
e Library packages, which provide services for other packages.

The source code of a package consists of one or more files, the name
of which ends with the suffix “. go”. All source code files belonging to a

package must be in the same directory and start with the same line

package ...

where for . . .the name of the package is inserted. In the sources of
program packages, the identifier main must be used, i.e., they must
always start with the line

package main

2.2.1 Program Packages

The source codes of a program package can in principle be located in
any directory; however, it makes sense to place them in a subdirectory
of $GOSRC with the name of the program; source codes of library
packages must on the other hand be located in a directory (below the
node $GOSRC) whose name matches the name of the package.


https://maurer-berlin.eu/go

2.2.1.1 Library Packages
Library packages

can be distributed across multiple files,
have a simple export mechanism,

can have an initialization part, and

can be nested.

The ability to split a package into multiple files allows in particular
the decomposition of an abstract data type, which is provided by a
library package, into

e its specification and
e its implementation(s).

Such a separation makes no sense in program packages because
they do not export anything.

Thus, Go meets the conditions mentioned in Sect. 1.1.2.3

The relationships between packages are regulated by the terms
“import” and “export”. The syntactic rules for this are very simple:

All identifiers from a package abc that start with a capital letter are
imported with the instruction:

import "abc"

imported. Multiple packages are enclosed in brackets and separated
pairwise by a semicolon or a line feed. On the other hand, identifiers
with a lowercase initial letter cannot be accessed from outside the
package; their visibility is limited to the source texts within the package
(seehttps://godev.org/ref/spec — Exported
Identifiers)).

The import instruction must be at the beginning of a package—
immediately after the first line package .. ..Eachimported
identifier is then used with the name of the package that exports it as a
prefix—separated from the identifier by a dot.

2.2.1.2 Specification of Library Packages



The specification of an abstract data type has the syntactic form of an
Interface that begins with the type declaration. After that, both

e the names of used interfaces and

 alist of the signatures of the exported methods that operate on it,
and

e possibly additional functions

can follow.

The first of these two cases shows that it can essentially be a
recursive definition, which represents a very powerful aspect of Go:
Specifications can be “nested” in such a way that interfaces—simply by
means of the import-clause—can be “inherited”. This mechanism of
“inheritance” at the level of specifications is, in my opinion, much more
significant than those at the level of implementations, because it—
when used cleverly—saves mountains of source code lines.

This assessment inevitably sounds quite abstract and can only be
understood in the context of suitable examples. However, we will
provide many detailed examples for this thesis and explain it in the
chapter about the microuniverse using some abstract data types.

At this point, it becomes clear that the design of Go goes far beyond
the concept of object-based and realizes a central aspect of object
orientation.

A simple example for this:

If the package xyz exports the data type named Xyz and the
methods X (),Y () uint,and Z (b bool) and inherits from the
interface Abc in the package abc its methods A () and B () which are
defined in the package abc, it looks like this:

package xyz
import "abc"

type Xyz interface {
Abc
XQ
Y() uint
Z{(b bool)
}



Clients of this package can then use both the methods of Xyz and—
without importing the package abc—its methods A () and B () as such
on objects of type Xy z.

For a specification of an abstract data type in a package, there can
certainly also be alternative implementations, which is very helpful for
certain purposes. They realize different design decisions, offering
alternatives for clients, e.g., in terms of runtime considerations or
memory efficiency. We will also present some examples for this.

The consequence of the facts and postulates presented so far is that
Go is excellently suited for object-based software development and
allows a rigid implementation of the principle of “information hiding”,
as explained in any textbook on software engineering.

The only restriction, that in Go specifications of abstract dataobjects
are not syntactically formulable, can be compensated by constructing a
datatype instead of a dataobject, of which only a single instance is
created and used.

Only for data objects that encapsulate access to a peripheral device,
of which only one instance exists (mouse, keyboard, printer, etc.), this is
not sensible, but here one can help oneself with a simple “trick”, which
will also be presented at a suitable place. However, it must be expressly
emphasized here: The advantages of Go’s package concept more than
compensate for this disadvantage.

2.2.1.3 Constructors

Constructors syntactically have no place in a specification because that
—in contradiction to the object-oriented approach—would limit the
possible variety of implementations.

But with a simple “trick” this can be circumvented:

A constructor function is included in the specification, which in turn
calls a—externally inaccessible, because lowercase—function from the
implementation and thus hides the details of its construction. This
ensures that clients are informed about the syntax and semantics of the
constructors, without having to look into the source code of the
implementation. (The compulsion to do something like this represents
a frequently observed, but highly questionable violation of the principle
of “information hiding”.) If a package contains several implementations,
the constructor functions should contain hints—in the form of



comments—about the semantic differences between the corresponding
implementations, so that a client can select those constructors that suit
his application purposes.

2.2.1.4 Abstract Data Objects

A package can also implement an abstract data object, which is useful,
for example, when accessing hardware—a computer only has one
keyboard, one mouse, or one tty console.

However, it is generally possible to construct abstract data objects
using abstract data types. To do this, a data type is defined—only in the
implementation—and a single instance of it is created.

In this case, the specification no longer specifies an interface type,
but consists only of the access functions to the object “behind the
scenes”, which constitutes the term abstract data object; preferably in
the way it was done above with the constructors: The access function in
the specification calls a function from the implementation (e.g., with the
same name, but a leading lowercase letter).

2.2.2 Packages as Interfaces Only

Packages can also play a different role:

The recursive aspect of interfaces mentioned in Sect. 2.2.1.2
naturally suggests that the package concept also makes sense without
specifying an abstract data type or an abstract data object—simply as a
pattern (“pattern”) for use in other interfaces.

A package can also only define an interface without specifying a data
type.

An example of this will be given in the following Chap. 4, that of the
“objects”.

2.2.3 Nesting of Packages

The ability to nest packages proves to be extremely advantageous for
the system architecture of larger software systems. A standard small-
scale example of this is to “package” separable parts of a package’s



implementation into a “subpackage”, i.e., one that is located in the
directory tree below the node of the package.

From a software engineering perspective, this is a significant
advantage, as it allows special services of lower layers to be made
available for the implementation of packages, which are not readily
visible—especially not accessible—from the outside and are thus
protected from changes to the specification. We will also provide
examples of this at appropriate points.

2.2.4 Initialization of Packages

The initialization part of a program package is the body of the “main
function” func main (), which contains the actual main program; the
initialization of a library package consists of the body of the function
init ().

Both functions have—as the “empty” brackets show—not passed
any parameters.

The function init is neither exported nor explicitly called, but is
executed at runtime of a using program before any function from its
package is called. Its task is usually to populate internal (non-exported)
data with certain initial values (see
https://godev.org/ref/spec/#Program execution).

If a package contains multiple init functions, they run in an
unspecified order; the order of execution of the initialization parts in a
program that directly or indirectly imports multiple packages is defined
by the import dependencies.

2.2.5 Variables of Concrete Data Types

To illustrate basic aspects of object-based programming, let’s first
summarize the principles of the imperative paradigm that relate to the
variable and type concept. By concrete data types we mean those data
types that are recursively composed of atomic data types using field,
compound, reference, channel, function, and mapping constructors.

By a concrete variable we always mean a variable of a concrete data

type.
In Go, the following concrete data types exist:

e the atomic data types



bool for truth values,

int8,intl16,int32,int and int64 for integers with the
synonym rune for int32,uint8,uintl16,uint32,uint,uint64
for natural numbers with the synonym byte for uint8 and
uintptr for those that represent the value of a pointer (i.e., an

address),
float32 and float64 for real numbers,

complex64 and complex128 for complex numbers, and
string for character strings;
o for every concrete data type X and every expression n with the value
of a natural number, the array [n]X;
» for every concrete data type X the (slice) [1X;

e for each sequence X, Y, ... ofconcretedatatypes,the compound
struct {x X; y Y; ...} withcomponents x of type X, vy of
typey, .. .;

» for every concrete data type X the reference type (= pointer type) *X
with the dereferencing operator * which assigns to a pointer p of type
*X the variable *p of type X that “p points to” (the choice of the
symbol “*” for this operator could be considered somewhat
unfortunate, as it already has the meaning of the type also bows to
the C world at this point);

o for any two (also empty) sequences X, Y, .., E, F, ...of concrete data
types, the function type func ([*]1X, [*]Y,..)(E, F,..(where the
brackets around one result type may be omitted);

e for any (also empty) sequence of interface types or method
specifications A, B, ... the interface type interface A; B; ...;

e for every concrete data type X, for which equality == (and inequality
!'=) are defined, and every concrete data type Y the mapping type
map [X]Y as well as

o for every concrete data type X the channel type chan X.

For precise syntactic details, please refer to the Go specification

(see https://golang.org/ref/spec#Types).

In the following sections, we will provide detailed explanations with
comprehensive examples for all non-atomic data types.
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With the declaration of a specific variable x of a data type X var x
X the following is associated, among other things:

e Atthe time of the program'’s translation—i.e., by the compiler—
memory space for the value of the variable x is provided, whose size
(i.e., “type size” of its type X) is determined by type declaration.

e This memory space is “addressed” under the name x of the variable
within its scope, i.e., one can imagine the name of the variable as a
reference (pointer) to the start address of the memory space.

» [tis exclusively reserved for its value and is therefore no long
available for Q other purposes.

e [ts start address is reached under &x.

The need for memory space for a specific variable is given by the
type size of its data type given. The atomic data types have the following
type sizes:

e bool,int8and uint8 = byte: 1 byte,

e intl6anduintl6: 2 bytes,

e int32,uint32, float32: 4 bytes,

e int and uint: 4 or 8 bytes,

e int64,uint64, float64, complex64: 8 bytes and
e complex128: 16 bytes.

e string:a character string s occupies len (s) bytes.

The type sizes of some composite data types can be calculated from
this; with
 fields as a product of the value of the constant and the type size of the

base type,
e compounds as the sum of the type sizes of their components.

In Go, the memory space requirement of a variable x of a specific
data type X is provided by the polymorphic function Sizeof from the
package unsafe.

For concrete variables or expressions of specific data types, the

usual standard operations are provided in Go (while the relevant rules
of type compatibility must be observed):

“u_n

¢ the value assignment “=



— to copy the value of an expression into a variable (more precisely:
the bit pattern representing the value into the memory space
reserved for the variable);

* the equality predicate “==" and its negation “!="

— to check for matching values of two expressions (more precisely:
for bitwise matching of the contents of the memory spaces
reserved for them); and

o _»n « __ 0N « "

e the predicates of order “<”, “<=" “>” and “>="

— for comparing the sizes of the values of expressions.
Also operations of the package fmt:

e Print,Println, Printf
for output on the screen,
e and Read, ReadString, ReadCard, ReadInt, and ReadReal
for input via keyboard;
e as well as certain routines from special libraries for querying the
mouse for event control with it,
e & and the function Sizeof from the package unsafe
for accessing the representation of the values of variables as byte
sequences in memory via the start address and size of the memory
space reserved for them;
e Read and Write from the package file
for accessing byte sequences in the file system.

2.2.6 References and Parameters

In this section, the pointer concept is examined more closely
illuminated, the understanding of which is an indispensable
prerequisite for everything else, especially for the realization of the
basic concept “object” in object-oriented programming.

Go has—just like, e.g., C or Java—only value parameters, , not
however variable-(reference-)parameters, as they are known from
Pascal or Modula-2.

We show here with a simple example how the effect for which
variable parameters are used in these languages is achieved just as well
with value parameters.



The operator +=, with which a variable n of type int is
incremented by a value a, could be implemented like this:

func inc (p *int, k int) {
*p = *p + k
}

(It should be reminded of the previous section: *int denotes the type
of references on int.)

This function is used with a call in which the start address &n is
passed instead of the variable n:

inc (&n, a)

This works because the dereferencing operator * is the inverse operator
of the address operator &:
For variable p of type *X and x of type X follows from

p == &*p

i.e., the value of the pointer p is the starting address of the for x
reserved memory space (“p points to x”), that

X == *p

applies, i.e., x is just the dereferencing of the pointer p.
In particular, it applies (substitute *p for x)

p ——] &*p

i.e., the value of p is just the starting address of the memory space
reserved for *p; in short: *p is exactly the variable that p points to. Of
course, the reverse also applies

*EX == X

i.e., the variable x is just the dereferencing of its starting address.



For this reason, the instruction *p = *p + kin inc has the effect
that the pointer p accesses the passed address, from which
Sizeof (int) bytes are interpreted as the value of a variable of type
int and changed in such a way that this value is incremented by that of
the passed expression after the function call. But this now provides
exactly then the desired effect, when the starting address &n of the
memory space reserved for var n int is passed, which is type-safe
due to the signature of the first parameter of inc.

The example also teaches us that the naive approach, that value
parameters protect against a change of the passed variable, by no means
applies. But this is not a contradiction, because during the call not the
concrete variable, but rather a reference to it is passed (which is of
course not changed after the call).

2.3 Variables of Abstract Data Types = Objects

By abstract data types we understand those data types, whose existence
is secured by the specification of their identifier (and of course their
access operations) in a specification, but whose implementation does
not need to be known to the clients—the users of the services defined
in the specification.

In Go, they are defined in the definition part of a package in the
form:

type X interface { ... }

—thus only by specifying their name—and are therefore also referred
to as opaque data types, because their representation remains
“opaque” at this point.

Within the curly brackets, a sequence consisting of

* names of interface types or
e names of methods with their corresponding signatures

are to be specified (we will address the special case of this sequence
being empty;, i.e., the type interface, later on).

In the implementation part of the package, they are realized in very
simple cases as a reference to a concrete data type, otherwise usually as



a reference to a compound, whose components in turn can be abstract
data types.

Analogous to the concrete case, we will henceforth understand an
abstract variable to always be a variable of an abstract data type.

Abstract variables are essentially declared like concrete ones—but
there are two very significant differences:

The value of such a variable is a reference, i.e., the address in the
working memory from which the value of the variable of the referred
type is stored.

Its type size is therefore the address width of the processor of the
used computer.

This value is thus to be distinguished from its “actual value” —i.e.,
the variable, to which it refers—and its type size has nothing to do with
the type size of the actual value.

For this reason, the declaration of such a variable—unlike the
procedure carried out by the compiler and runtime system during the
initialization of concrete variables—must explicitly follow the provision
of memory space for the actual value.

This is, however, a task that is fundamentally unsolvable for the
compiler:

The concept of separate translatability of specification and
implementation results in the “view” of the actual data type behind the
scenes being impossible, hence the actual type size is not known—
simply because the existence of the implementation cannot be assumed
at this point (which is precisely a major purpose of this independent
translatability).

Since the compiler therefore cannot initiate the reservation of the
actually required memory space, this task must be taken over by a
superordinate instance:

A client of an abstract data type—the person who uses it in a source
text—must supplement the declaration of each variable of this type by
inserting a statement in which the memory space for the actual value is
created.

This is conveniently done with functions that return a newly created
variable of the relevant abstract data type as a value. They can be
equipped with parameters for certain purposes.



The functions that accomplish this are called constructors in object-
oriented programming,.

This is a characteristic feature of object-oriented programming.

From now on, we will refer to abstract variables as objects.
Conclusion:

Objects must be explicitly created before they can be processed.

A second important point is that in Go the type name in the
implementation must not be the same as in the specification (this has,
among other things, system-immanent reasons, which we will discuss
later).

Thus, the declaration of a variable x of an abstract data type ABC,
provided by a package abc, reads

var x abc.ABC
and the object x is created with the assignment
x = abc.New()
These two lines can also be combined into one declaration:

var x abc.ABC = abc.New ()

or—even shorter—by taking advantage of Go’s dynamic type
adaptation:

X := abc.New (}

2.4 Value Versus Reference Semantics

After the considerations from the previous section, the question now
arises as to what consequences arise when objects “behind the scenes”,
i.e., in the implementation, are nothing more than references.

2.4.1 Assignments, Creation of Copies



A value assignment
X =y

results in concrete variables that the value of the variable x is
overwritten with that of y. The consequence is that after the
assignment there are two different concrete variables with identical
value, because different memory locations are reserved for the values
of the two variables. Consequently, if the value of the variable y is
changed afterwards, the variable x is not affected; its value is not
changed.

For objects x and v, i.e., for variables of an abstract data type, this is
not the case:

With this assignment, the reference y to an object, i.e., merely the
address from which the “value” of y can be found, is copied into the
reference x. This has a completely different consequence:

The pointer x now refers to the same object as the pointer v, i.e., the
variable x now refers to the same object as y. If the object y is changed
afterwards, the value of the object x is consequently also changed (in

the same way). The first case is an example of value semantics, the
second for reference semantics.

2.4.2 Equality Check and Size Comparison

This distinction should also be made in other cases.
The Boolean expression

W=y

provides for concrete variables x and y a statement about whether the
values of the two variables are equal (value semantics), for objects,
however, only, whether the pointers x and y refer to the same object
(reference semantics).

Since the latter does not say anything about the equality of the
objects to which x and y refer, we do not get any further with objects.

The situation is even more drastic when it comes to size
comparison.



For concrete variables, for whose type the relation < is defined, the
Boolean expression

X <y

provides a statement about whether the value of x is smaller than that
of y or not.

For objects x and vy, on the other hand, it could at best provide the
(completely uninteresting) statement, whether the value of the
reference x is smaller than that of y, i.e.,, whether the memory space for
the object to which x refers is in the working memory before that to
which y refers.

But this is not possible in Go:

The operator < is not defined for references; thus, the approach of
comparing objects in terms of size with it is completely unsuitable.

2.4.3 Serialization

For a concrete data type X, with &x you have the start address of a
variable x of type X, for a reference p of type *X with *p the specific
variable of type X, to which p points, under control; the memory space
it occupies is a contiguous area in the working memory, the size of
which is known.

For a variable x of an abstract data type X, &x is merely the start
address of the value of the reference x—the actual value cannot be
found there.

Manipulating the “actual” variable *x would mean accessing the
representation details of type X in an implementation bypassing the
specification of X. This is not allowed according to the postulated
principles of information hiding—and in a proper implementation
simply impossible, which is achieved by starting the identifiers of the
components of the representation of X with lowercase letters, thus not
being exported.

The type size of a pointer has nothing to do with the size of the
memory space of the variable it refers to. This has nothing to do with
the actual need for memory space. In particular, it is impossible to



access the—in complex cases non-contiguous—areas of the working
memory where an object is stored.

The consequence is that objects can neither be stored as a sequence
of bytes in a file nor sent as such over the network.

Access to concrete variables is via their names and the memory
space for their value is provided by the translator by declaration,
because their size is determined by the type specification. They are
processed by value semantics.

With abstract variables, i.e., objects, things are quite different:

They are accessed via references.

For the reasons explained in detail, reference semantics (with few
exceptions under carefully considered conditions) is an unsuitable
means for their processing.

To get to objects with value semantics, i.e., to achieve the effects that
are given with concrete variables by value semantics, the following
operations are needed, among others, which cannot be managed with
reference semantics are

 for the creation of new objects by constructors (operations for the
elimination of no longer used objects are obsolete, because Go has
memory cleanup);

» for checking for agreement between objects as well as for making
copies of objects;

e for comparing objects with respect to an ordering relation;

e for “emptying” objects, i.e., for deleting their values, as well as for
checking whether they are empty;

e for displaying objects on the screen;

e for their interactive changeability (by keyboard, mouse, or similar);
and

» for encoding objects as serial byte sequences and vice versa (possibly
with the insertion of redundancy for error detection or correction),
in order to be able to store them persistently on data storage devices
or send them to processes on other computers.
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Object-oriented design is, in its simplest form, based on a seemingly elementary idea.
Computing systems perform certain actions on certain objects;

to obtain flexible and reusable systems, it is better

to base the structure of software on the objects than on the actions.

Bertrand Meyer

Object-oriented Software Construction, Prentice-Hall (1988), xiv

Abstract

The microuniverse rigidly implements all principles of object-oriented programming. It
consists of many packages with abstract data types and objects for all possible purposes.
This chapter introduces some of them that are used in the second part of the book.

Many of these packages originate from my teaching activity in computer science; they
were originally written in Modula-2, later converted to Java, and now ported and further
developed to Go. First, the central package ob7j is introduced.

This is followed by some principles for constructing simple user interface. A
significant part of this chapter consists of the presentation of “collections”, sets of objects
(e.g., sequences, buffers, sets, files, graphs).

3.1 Installation of the Microuniverse

The source codes of the microuniverse can be found on the net at https://maurer-berlin.
eu/mU. It makes sense to check there occasionally to see if there is a new version that
has fixed errors or is more powerful than previous versions.

The microuniverse is installed either by root in the directory $GOSRC or by “users” in
the subdirectory go/src of their home directory, by unpacking the file 4 U . tgz using
the tar command with the options xfz (for “unpack”, “file”, “decompress”). This creates
—if not already present—the subdirectory p U, where all source texts are stored.

If the prerequisites mentioned in the following section are met, the p U library is
created with the command go install pU
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(If u U was previously installed, the directory SGOSRC/ p U should be deleted
beforehand to remove obsolete files.)

For compiling and binding, the script gi contained in the directory $SGOSRC/ p U is
also very useful, which must be copied into a directory that is included in the path (e.g,,
$HOME /bin).

3.1.1 Prerequisites
A computer with Linux as the operating system, on which Go is installed, is required (see
notes on the installation of Go in Sect. 2.1).

All the following information refers to openSUSE indexopenSUSE with the bash as
the login shell. Other distributions or shells may require adjustments such as “X=. . . ;
export X”instead of “export X=..."

Since essential parts of the microuniverse rely on the following:

e the Clibrary,

e X-Window,

¢ afont with characters of constant width,

e OpenGL,

 the conversion of graphics between the ppm format (“portable pixmap”) and other
formats (e.g., gif or jpg),

e prints from within programs.

The following must be installed under 3openSUSE:

e the basic development environment (tools for compiling and binding applications),
especially the GNU C compiler;

e the library for extensions of the X11 protocol 1ibXext-devel;

e the terminus-bitmap-fonts (http://terminus-
font.sourceforge.net);

e the graphics library Mesa-devel, which implements the OpenGL specification,
(https://www.mesa3d.org);

e the OpenGL Utility Toolkit, both in freeglut-devel
(http://freeglut.sourceforge.net);

e the tool for manipulating graphic formats netpbm
(http://netpbm.sourceforge.net); and

¢ the text typesetting system TeX of the genius Donald E. Knuth.

In other distributions, the corresponding packages may have different names—but
this can easily be found out by “googling” these terms. Under 3Ubuntu the installation

e of the terminus bitmap fonts and
¢ the packages necessary for OpenGL

is more complicated; details can be found on my page about the installation of the
microuniverse (https://maurer-berlin.eu/mU/instmU.shtml).

If these packages are not installed, corresponding error messages will occur when
compiling p U . go. After error-free translation, the flawless functioning of all libraries of



the microuniverse can be checked with the start of the program u U.

Since the microuniverse makes features available that go far beyond the usual
standards of tty-console operation, namely,

e high-resolution graphic outputs in any colour and
e the use of a mouse

the execution of even demanding event-driven graphic programs in consoles is possible.
For this, the file /dev/input/mice must be readable for the “world”, i.e., have the
rights rw-r-r-.

In other distributions, “/ input/mice” may need to be replaced by the name of
another file—also in the file 4 U /mouse/def . go.

Access to the “framebuffer”, which is necessary for console operation, requires that
the file /dev/£b0 has the rights rw-rw-rw-, i.e., read and write rights for all.

If this is too risky for security reasons, you can also ensure that root adds the users to
the video group. Both can be secured, for example, by corresponding entries in
/etc./init.d/boot.local.

Programs with graphic outputs or use of the mouse cannot naturally be executed in
consoles via login on remote computers, but only on the local computer, where the mouse
and screen are connected, as this accesses these local resources.

Under X-Window, i.e., on graphical interfaces, such as KDE, Xfce, Gnome, or IceWM, all
programs can be executed also on a remote computer if its outputs are redirected to the
local computer. The easiest (and safest) way to do this is with the secure shellina
window by logging in with the command ssh -X host (host = name of the remote
computer) to then start the program there. The prerequisite for this is that the ssh
services are installed on the involved computers, the daemon sshd is activated, and one
is allowed to log in via ssh on it.

3.1.1.1 Other Operating Systems

Go can also be installed under Windows® But in my attempts to install the microuniverse
in this operating system using the Windows Subsystem for Linux (see
https://docs.microsoft.com/de-de/windows/wsl/about), | encountered a
lot of “traps”. For this reason, I recommend the use of a virtual machine, e.g., VirtualBox
(see https://www.virtualbox.org), toactually be able to use a Linux distribution.

If I ever manage to adapt to the operating system MacOS®—a Unix-system—this will
be published on my page on the World Wide Web.

3.1.2 License Terms

The microuniverse is designed solely for use in teaching and therefore has a purely
academic character. It provides, among other things, numerous examples and animations
for my textbook “Nonsequential and Distributed Programming with Go” (Springer
Nature 2021). The sources of the microuniverse can be used without restriction for
teaching purposes at universities and schools; however, any form of further use is strictly
prohibited.



This software is provided by the authors “as is” and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose are disclaimed. In no event shall the authors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages (including,
but not limited to, procurement of substitute goods of services; loss of use, data, or
profits; or business interruption) however caused, and any theory of liability, whether in
contract, strict liability, or tort (including negligence or otherwise) arising in any way out
of the use of this software, even if advised of the possibility of such damage.

The source codes of the microuniverse are developed with great care and are
continuously revised. But there is no error-free software—this naturally also applies to
these sources. Their use in programs could lead to damage, e.g., to the burning of
computers, the derailment of trains, the meltdown in nuclear power plants, or the crash
of the moon. Therefore, the use of any sources from p U in programs for serious purposes
is explicitly warned! (Excluded are demo programs for use in teaching.)

Reports of discovered errors and hints on ambiguities are gratefully accepted.

3.1.3 Naming in the Microuniverse

The Microcosm generally uses the following uniform naming:

The naming of the data type or object and the specification of the operations on it,
which the corresponding library package exports, is in a file named def . go.

The representation of the data and the implementation of the operations bear names
that are largely self-explanatory. If there is only one implementation (or among several
“the” standard implementation), the corresponding file is named after the name of the
abstract data type that the package exports.

For example, the package 1 ockp, which implements lock synchronization with lock
algorithms, contains implementations with the (suggestive) names dekker.go and
peterson.go (Dekker and Peterson are the authors of the two algorithms).

As a consequence of the naming in the microuniverse, we generally use the identifier
of the data type in lowercase as the name for the implementation of an abstract data type
and—following the conventions of other object-oriented languages—for the
constructors usually the identifier New. If there are several implementations, further
characters are added to these identifiers.

The microuniverse offers a variety of abstract data objects and types in the form of
packages. They are fundamentally separated in specification and implementation; the
abstract data objects are largely equipped with the above-mentioned operations.

Some of these packages are introduced and explained in detail in the following
sections.

But first, an important note:

To drastically shorten the text in specifications, the following language regulation
applies throughout the book:

In all specifications in this book, the calling object is always referred to as x.




3.2 The Constructor New

As justified in Sect. 2.3 about objects, every object must be generated before its use.
Exactly that is the purpose of the constructors. Their syntax for an abstract data type
Abc, which is implemented in a package abc with the filename abc . go, in the
microuniverse always basically looks like this

func New ()} Abc

In the associated implementation part, the construction of this function—based on type
declarations of the kind

type abc struct {

always starts with the instruction
x := new{abc)

which results in memory being allocated for a variable of type abc and its address being
entered into the value of *x. The constructor function ends with return x. Between
these lines, components are possibly set to specific initial values, which are interpreted
as empty, as long as they are not to be initialized with the zero values for their type (see
Sect. 3.3.3).

The call of functions that manipulate objects or contain them as parameters always
presupposes that these objects were created by the previous call of the constructor New
(or similar). This prerequisite is indispensable

The memory space reserved for an object by declaration var x Abc initially has—
just like in the concrete case—no defined value, thus contains a random address.

Accessing the variable—e.g., with an assignment x = .. .—would usually mean
accessing an address range in memory that was not “assigned” to the calling process by
the operating system. For this reason, the Go runtime system acknowledges every access
to an object that was not generated with a panic, i.e., with a program abort and the
corresponding error message.

3.3 The Object Package

For many abstract data types in the microuniverse, a number of basic interface types are
needed, which will prove to be extremely useful or even necessary.

We gather such things in the central package obj, which we introduce here.

We now proceed step by step and first show its most important “parts”, the interfaces

Egualerx
Comparer
Clearer
Coder



Motivation and basis for their construction is the importance that the following
interfaces in Java for many classes have-especially partly also for the class Object:

java/lang/Cloneable. java

java/lang/Comparable. java
java/util/Collecticon. java
java/io/Serializable.java

We need a basic data type that can hide all data types, the empty interface. | had
previously defined it in the u U /obj package as type: type any = interface{}.
The Go developers apparently understood the purpose of this definition at some
point: They included it under the name any as an alias for the empty interface

interface in the Go specification.

3.3.1 Equaler

Most objects in computer science can be compared with others to see if they are equal,
and they can be copied. As explained in Sect. 2.4 about value versus reference semantics, a
naive attempt to check two objects x and y for equality with the Boolean expression x
== vy is as nonsensical as the assignment x = vy to copy the object y into the object x,
because only references are compared or copied, not the actual objects.

It should be reiterated that for operations on instances of an abstract data type in the
microuniverse, the syntax of method calls is consistently used, as is common in object-
oriented programming.

The implementation of the equality check of an object x of type Abc in a package
where a data type is constructed is thus encapsulated in a method:

fune (x *abcec) Eg (y any) boel
Similarly, the copying of an object in methods
fune (x *abc}) Copy (Y any}
or
fune (x *abcec) Clone ()} any

The microuniverse provides both.
This gives us the following interface in the file equaler. go with two additional
functions:



package obj

type Egualer interface |

// Returns true, 1ff the x has the same type as y
// and coincides with it in all its value([s].

Eqg (y any) bool

// Pre: y has the same type as x.
// x.Eg ({y) (y is unchanged).
Copy (y any}

// Returns a clone of x, i.e. x.Eg (x.Clone()).
Clone () any

// Returns true, iff a implements Egqualer.
func IsEgqualer (a any) beool { return isEqualer {(a) 1}

// Pre: a and b are of the same type;

s both are atomic or implement Egqualer.
// Returns true, 1if a and b are equal.
fune Eg (a, b any) boeol { return eg({a,b) }

/ Pre: a is atomic or implements Egqualer.
// Returns a clone of a.
fune Cleone (a any)} any { return clone({a} }

// Returns true, i1ff a is atomic or implements Equaler.
func AtomicOrEgualer (a any)} bool { return Atomic{a} || isEgualer {(a) 1}

For non-mathematicians, it should be noted that the word iff means if and only if.

The function Atomic is defined in the file ob7j . go (see Sect. 3.3).
We do not show the implementation of the functions Eq and C1one here, but refer to

the p U-source code for this book.

Even with this first example, clear advantages of the package object become

apparent:

Its specifications are valid for all abstract data types that contain the interface
Object, i.e. those that implement this interface (see remark on the nesting of
packages in Sect. 2.2.4 and of specifications in Sect. 2.2.1.3).

The comprehensibility of larger systems is facilitated by the fact that services with the
same semantics in all packages bear the same names—distinguished only by the prefix
of the imported package when importing.

3.3.2 Comparer

In computer science, many objects are modelled that are naturally endowed with an
ordering relation, such as characters and strings, times, calendar dates, amounts of
money, postal codes, sequences, and sets. For types of objects where a predicate for size
comparison would make no sense, such as for colours, files, geometric figures, and
vectors, this ordering relation is simply the discrete relation, i.e., the equality.

This makes it possible, for example, to sort sequences of them.
A size comparison of objects for which an order is defined, with the operator x < y,

is, as we have justified, meaningless. Consequently, the check is encapsulated in a method
less



fune (x *abc) less (Y any} beool

The corresponding interface in the file comparer.gois

package cobj
type Comparer interface |

// Pre: x is of the same type as the calling object.
// Returns true, iff the calling object is smaller than x.
Less (x any)} bhool

// Pre: x is of the same type as the calling object.

// Returns true, iff the calling object is smaller than x
// or egquals x.

Leg (x any) boel

}

// Returns true, iff a implements Comparer.
fune IsComparer (a any) beoeol { return isComparer (a) 1}

// Pre: a and b have the same type;

s both are atomic or implement Comparer.
// Returns true, iff a is smaller than b.

fune Less (a, b any) bool { return less(a,b} 1}

// Pre: a and b have the same type; both

s both are atomic or implement Comparer and Egualer.
// Returns true, if a is smaller than b or a eqguals b,
fune Leg (a, b any) beool { return leg(a,b) 1}

3.3.3 Clearer

It is generally useful to enrich the “value set” of objects with an “empty” value, i.e., to
allow empty objects. They can—of course depending on the context of the semantics of
the respective type—be interpreted as “undefined”, “unknown”, etc. What “empty” means
depends on the semantics of the type of the calling objects. If it is a set or sequence, the
meaning is clear; otherwise, it is, for example, an object with an undefined value,
represented by a text consisting only of spaces.

This also subsumes the input of new objects under the concept of “editing”
(changing) of values, by, for example, overwriting the empty strings. A newly created
object should definitely be empty.

To check whether an object has an empty value is served by a method

fune (x *abcec) Empty(} bool
and overwriting an object with empty values is served by the method
fune (x *abc) Clear ()

The corresponding operations are specified in the second interface type of Object in
the file clearer.go:



package cobj
type Clearer interface {

// Returns true, 1iff the calling object is empty. What "empty"
// actually means, depends on the very semantics of the type

// of the objects considered. If that type is, e.g., a collector,
// empty means "containing no objects"; otherwise it is normally
// an object with undefined value, represented by strings

// consisting only of spaces.

Empty () bool

// The calling object is empty.
Clr (}
}

// Returns true, iff a Implements Clearer.
func IsClearer (a any} bool { return isClearer (a) }

// a is empty.
fune Clear (a any) any { return clear(a) }

3.3.4 Coder

Objects can be transformed into (in memory contiguous) unstructured byte
sequences, the interpretation of which at the machine level as values of objects is not
possible, in order to store them persistently on an external storage, for example, or to
transport them as “data packets” over the network to processes on other computers.
For this purpose, an object must be “encodable” (also called “serializable”) and
“decodable” i.e., it must be able to be uniquely restored from a byte sequence into which
it was encoded.
The appropriate type for such byte sequences is slices of bytes ([]byte), to which
we give our own name (“Stream”):

package obj

type (

Stream = []bhyte
anyStream = []any
UintStream = [Juint

)

Such “type aliases” have been included in the specification of Go with Go 1.9.
For this purpose, two methods are provided: one for encoding

package cobj

type (

Stream = []byte
anyStream = []any
UintStream = []Jluint

)
and one for decoding

fune (x *abc) Decode (b []lbyte)



Two prerequisites must be observed:

In the implementation of Encode, the s1ice must be provided to accommodate the
value to avoid memory access errors with a call to the make function. For this purpose, a
method for announcing the required number of bytes for encoding

funec (x *abc) Codelen ( } uint
is needed.
The prerequisite for calling Decode is, of course, that the byte sequence b with
len(b) == x.Codelen () represents an encoded object of the same type as the

caller. The interface can be found in the file coder. go



package cobj

const

CO0 = uint (8) // == Codelen (int (0)); == Codelen {uint {0))
type

Coder interface |

// Returns the number of bytes, that are needed
// to serialise x uniguely revertibly.
Codelen (} uint

// x.Eq (x.Decode (x.Encode())
Encode () Stream

// Pre: b is a result of y.Encode() for some y

s of the same type as x.

// x.Egq(y); x.Encode() == b, i.e. theocse slices coincide.
Decode (Stream)

}

// Returns true, iff a implements Coder.
func IsCoder (a any) bool { return isCoder (a) }

// Pre: a is atomic or implements Object.
// Returns the codelength of a.
fune Codelen (a any) uint { return codelen (a) }

// Pre: a is atomic or implements Object.
// Returns a as encoded byte sequence,.
func Encode (a any) Stream { return encode(a) }

// Pre: a is atomic or streamic or implements Object.

s b is & encoded byte seguence.

// Returns the object, that was encoded in b,

func Decode (a any, b Stream) any { return decode{a,b}) }

// Returns a stream of length 16, that encodes a, b.
fune Encode2 (a, b int) Stream { return encodel (a,b) }

// Pre: len(s) == 16; s encodes 2 numbers of type int.
// Returns these 2 numbers.
fune Decode2 (8 Stream) (int, int}) { return decodel2 (s8) 1}

// Returns true, iff a is atomic or implements Coder.
func AtomicOrCoder (a any) bool { return Atomic (a) |

isCoder (a) }

// Pre: For each 1 < lenf{a): cfi] == Codelenf(afi]).
// Returns a encoded as Stream.
fune Encodes (a anyStream, ¢ [Juint) Stream { return encodes (a,c} }

// Pre: For each i < lenf(a): c¢[i] == Codelenf(afi]).

o4 8 is an encoded anyStream.

// a is the anystream, that was encoded in s.

fune lDecodes (s Stream, a anyStream, ¢ [Juint}) { decodes (s,a,c) }

We will not go into the implementation of the functions Codelen, Encode, and Decode
here, but refer to the tools from the packages asnl, json, and gob from the Go package
encoding or our simple constructions in the packages of the microuniverse.

3.3.5 The Interface of the Package Obj



Topics such as genericity or parametric polymorphism are not covered in this book,
because as will be shown, this is much simpler in Go. A crucial contribution to this is the
specification of the data type, which will now be introduced at the end of this section.

Strongly influenced by the ideas that revolve around the root of the class hierarchy in
Java, the class “Object”, it makes sense to define an interface in Go that “defines”
objects.

Every “reasonable” object should—for the reasons stated in the respective interface
—implement all four of the above-mentioned interfaces. Excluded from this requirement
are of course “atomic objects”, i.e., variables of simple data types (see func Atomic).



package obj
type Object interface |

// Most objects in computer science can be compared with others,
// whether they are egual, and can be copied, so0 they have the type
Equaler // see equaler.go

// Furthermore, usually we can order objects; so they have the type
Comparer // see comparer.go

// Moreover they can be empty and may be cleared with the effect
// of being empty, hence they have the type
Clearer // see clearer.go

// and can be serialised intoc connected byte seguences,
// e.g. to be written to a storage device or transmitted
// over cemmunication channels, so they have the type
Coder // see coder.go

}

// Returns true, iff the type of a is bool,
// [u]int(8|16|32}, float[32|64), complex[64|128] or string.
fune Atomic (a any) bool {

if a == nil |

return false

}

switeh a. (type) {

case bool,

int8, intlé, int32, int, inté6d,

uint8, uintlé, wuwint32, uint, uinté64,
float32, float6d4d, complexé6d4d, complexl28,
string:

raturn true

}

return false

}

// Returns true, iff the type of a implements Object.
fune IsObject (a any} bool |

if a == nil |

return false

i

_r, o = a.{0bject)

/S _, e := a.({Editor) // Editor implements Object
return o // || e

}

// Returns true, 1iff a is atomic or implements Object
// (the types that are particularly supported by uU).
func AtomicOrObiject (a any} bool {

return Atomic (a) || IsObject (a)

}

// Returns true, iff a is atomic, streamic or implements Object
// (the types that are particularly supported by pU).

func AtomicOrStreamicOrObject (a any} bool |

return Atomic (a) || Streamic(a) || IsObject (a)

}

Since it makes sense to package non-atomic variables into abstract data types, this
“classification” into



e atomic variables and
e objects

is quite consistent.

All these so far developed interfaces, methods, and functions are used in many other
data types that we introduce in this chapter. For reasons of simplification, there are a
number of other interfaces in obj. We will introduce some of them in the following,
without explaining much about each—the specifications provide enough information
about their meaning. Further interfaces from this package will be introduced in the
context of the packages for which they are needed.

3.3.6 Stringer

Various objects in computer science can be uniquely identified by strings. For this
purpose and to check whether a string represents an object, the following interface is
used in the file stringer.go:

type Stringer interface |

3.3.7 Formatter

This interface in the file formatter.go is needed for data that can be represented
differently, like, for example,

e (Calendar dates—with or without weekday—25.7.2024, 25.07.24 or Thursday, 25 July
2024—or

e Time specifications—with or without seconds—17.30, 17.30:20.

package obj

type Format byte
type Formatter interface {

// Pre: f < Nformats of the cobjects of the type of x,.
// x has the format f.
SetFormat (f Format)

// Returns the format of x.
GetFormat () Format

}

fune IsFormatter (a any) bool {
if a == npil { return false }

_r 0k := a.(Formatter}

raturn ok

}

3.3.8 Valuator

This interface in the file valuator.go is used, for example, for rated graphs whose
vertices or edges have values.



package cobj
type Valuator interface |

// Returns the value of x, if IsValuator (x).
// Returns otherwise 1.
Val (} wuint

// Pre: IsValuator (x).

// x.Val() == n (1 << a, 1f x has the type uint<a>).
Setval (n uint)

}

// Returns true, 1iff a implements Valuator or has an uint-type.
func IsValuator (a any) bool { return isValuator{a}) 1}

// Pre: IsValuator (a).
// Returns the value of a.
fune Val (a any)} wuint { return val (a} }

// Pre: IsValuator (a).
/7 x.Val() == n (1 << a, if a has the type uint<a>).
fune SetvVal (a *any, n uint} { setVal(a,n} 1}

3.4 Input and Output
This section deals with the “human-computer interface”. It consists of two parts:

e the screen for outputting data and
¢ the keyboard (including the mouse) for input and modification of data.

Input and output are conceptually always separated, which is extensively justified in
Chap. 1.

The principle of Unix, to bundle all outputs and inputs into the common concept of
files, has nothing to do with this. Therefore, we present these two parts separately.

3.4.1 Packages for the Screen

Before the screen package scr is introduced, we present six packages that are needed
for it: those for emphcolours, fonts and screen- or window sizes, and the three small ones
with constants for cursor shapes, line thicknesses, and appearances of the mouse pointer.

3.4.1.1 Colours

The definitions of colours and a number of methods for their manipulation are
encapsulated in the data type Colour in the package col.



package col
import . "uU/obj"
type Colour interface |

Object // empty colour is black

/7 Encodes the colour with red and blue reversed.
EncodelInv () Stream

// String returns the name of x, defined by the name given with New3.
Stringer

// Stringl returns (rrggbb", where "rr", "gg" and "bb" are the rgb-
values

// in sedecimal basis (with uppercase letters).

Stringl () string

// Defined returns true, iff s is a string of 3 values in sedecimal
basis

// (with uppercase letters). In that case, ¢ is the colour with

// the corresponding rgb-values; otherwise, nothing has happened.

Definedl (s string) bool

// Return the values of red/green/blue intensity of x.
R() byte; G() byte; B() byte

// x is the colour defined by the wvalues of r, g and b.
Set (r, g, b byte)
SetR (b byte); SetG (b byte); SetB (b byte)

// Liefert x,R() + 256 * x.G() + x.B().
Code ()} wuint

// Returns true, if ¢ is, what the name of the func says.
IsBlack (} bool

IsWhite (} beoeol

IsFlashWhite () bool

// Returns the rgb-values of x scaled to the range from 0 to 1.
Float32 () (float32, float32, float32)
Floaté6d4 () (float64, float64d, flcatbd)

// ¢ is changed in a manner suggested by the name of the method.
Invert ()

Contrast ()

}

// Returns the colour Black.
func New () Colour { return new_ ()} }

// Returns the colour defined by (r, g, b).
fune New3 (r, g, b byte) Colour { return new3(r,g,b) }

// Returns the colour defined by (r, g, b) with name n.
funec New3n (n string, r, g, b byte) Colour { return new3n(n,r,g,b) }

return flashWhite () 1}
return blue () }

fungc HeadF () Colour
fune HeadB () Colour
fune HintF () Colour return flashWhite () 1}
func HintB () Colour return magenta () 1}

fune ErrorF ()} Colour { return flashYellow ()} }
func ErrorB () Colour { return red() }

fune MenuF () Colour { return flashWhite () }
func MenuB (} Colour { return red () }

ey oy,

// Returns a random colour.
fune Rand () Colour { return random () 1}



// Returns the fore- and backgroundcolours at the start of the system
// for unmarked and marked objects.

fune StartCols () (Colour, Colour}) { return startCols () 1}

fune StartColF () Colour { return startColF ()} }

fune StartColB () Colour { returmn startColB ()} }

// Returns (FlashWhite, Black).
fune StartColsaA () (Colour, Ceolcur} { return startColsA (} }

// Returns the slice of all colours defined in this package.
fune AllColours () []Cclour { return allColours () 1}

fune Black (} Colour { return black () }
many further colours

The colours (e.g., Red(), Orange(), Yellow(), Green(), Cyan(), Blue(), Magenta()) are
defined as methods to protect them from external access.

3.4.1.2 Fonts

There are only a few fonts needed for the screen and for the printing of texts. The default
is 8 X 16, which corresponds to the standard resolution in console operation. For the
fonts, the terminus-fonts (see Sect. 3.1.1) are used, which are not proportional, which is
necessary for the rasterization explained in the section about the screen (see Sect. 3.4.2).

package fontsize

type Size byte; const ( // for prt for screen

Tiny = Size{iota) // cmtté 7 * 5 px
Small // cmtt8 10 * 6 px
Normal S/ emttld 16 * 8 px
Big // omttl2 24 * 12 px
Large /7 cmttld 28 * 14 px
Huge // emttl7 32 * 16 px

NSizes
}



package font
import "uU/fontsize"

type Font byte; const ( // only for prt
Roman = Font (iota)

Bold

Italie

NFonts

}

const

M =6 // len names

var

Name []string

// Returns a string of len 2, that uniquely defines f and s.
funec Code (f Font, s fontsize.Size) string { return code(f,s) 1}

// Returns the width resp. the height of a font in size s;
// for prt in pt and for scr in px.

funec Wd (s fontsize.Size) wuint { return wd{s) }

fune Ht (s fontsize.Size)}) uint { return ht (s) }

3.4.1.3 Screen/Window Sizes

With regard to common technical standards, screen modes for operation are
distinguished, defined in the type Mode with constants of the type byte.



package mode

type Mode byte; const (

None = Mode{iota) // lines x colums for 8xlé6-font
Mini S/ 182 x 1640 10 x 24
HQVGA // 240 x 160 10 x 30
QVGA S/ 320 x 240 15 x 40
HVGA // 480 x 320 20 x 60
TXT /7 640 x 400 25 x 80
VGA s/ 640 x 480 30 x 80
PAL S/ 768 x 576 36 x 96
WVGA // 800 x 480 30 x 100
SVGA // 800 x 600 37 x 100
XGA // 1024 x 768 48 x 128
HD // 1280 x 720 45 x 160
WXGA // 1280 x 800 50 x 160
SXVGA // 1280 x 960 60 x 160
SXGA // 1280 x 1024 64 x 160
WXGAl // 1366 x 768 48 x 171
SXGAp // 1400 x 1050 65 x 175
WXGAp // 1440 x 900 56 x 180
WXGApp // 1600 x 900 56 x 200
WSXGA // 1600 x 1024 64 x 200
UXGA // 1600 x 1200 75 x 200
WSXGAp // 1680 x 1050 65 x 210
FHD // 1820 x 1080 67 x 240
WUXGA // 1920 x 1200 75 x 240
SUXGA // 1820 x 1440 90 x 240
QWXGA // 2048 x 1152 72 x 256
OXGA // 2048 x 1536 %96 x 256
WSUXGR // 2560 x 1440 90 x 320
WQXGA // 2560 x 1600 100 x 320
QSXGAp // 2800 x 2100 131 x 350
QUXGA // 3200 x 2400 150 x 400
UHD // 3840 x 2160 135 x 440
HXGA // 4096 x 3072 192 x 512
WHXGA // 5120 x 3200 200 x 640
HSXGA // 5120 x 4096 256 x 640
HUXGA // 6400 x 4800 300 x 800
FUHD S/ 7680 x 4320 270 x 960
NEW

NModes

)

// Returns the pixelwidth of m.
funec Wd {(m Mode) uint { return x[m] }

// Returns the pixelheight of mn.
fune Ht (m Mode} wuint { return y[m] }

// Returns the pixelwidth and -height of m.
func Res (m Mode) (uint, uint) { return x[m], y[m] 1}

// Returns the mode with (w, h) pixels for (width, height),

// if such exists; panics otherwise.
func ModeOf (w, h uint) Mode { return modeOf(w,h} }

Default setting in the console Konsolenbetrieb is the one under which Linux is started.

3.4.1.4 Cursor Shapes
For this, the following type is available (in a subpackage of scr):



package shape

type Shape byte; const (
Qff = Shape(iota)
Understroke

Block

NShapes

)

// Returns the coordinates of the upper left corner and the height

// of the rectangle for all combinations (¢, s) with ¢ != s.

fune Cursor (x, y, h uint, ¢, s Shape} (uint, uint)} { return cursor(x,y
rhpc,s}) 1}

3.4.2 Screen

The simplest operation for outputting strings is the built-in function print [ 1n; more
powerful is the function Print [1n] from the Go package fmt. They only allow the
output of simple programs without screen masks: With them, texts can only be “rolled”
line by line across the screen.

Everything that goes beyond this primitive form of output, such as

e the construction of screen masks and
 the targeted output of texts at defined points of a console or a window

is not easily possible with it and the output of graphical objects is not possible. At the
Linux level, there are very complicated, but also very powerful library systems that
support such things, e.g., ncurses for console operation and Qt, gtk or the libraries
from X11 and from OpenGL for graphical interfaces (see
http://www.gnu.org/software/ncurses, https://www.qgt.io,
https://www.gtk.org, https://www.x.org/wiki and
https://www.opengl.org). The documentation of these libraries is very extensive
and requires a long familiarization, which is immediately apparent from a look at the
header files in the subdirectories of /usr/include/qt5, in the directory
/usr/include/X11 (with its subdirectories), and in /usr/include/GLI.

For the construction of more sophisticated programs, a simple concept for the output
is necessary, which “hides” this complicated matter behind an easily understandable and
easy-to-use interface with powerful implementations.

The microuniverse provides in its screen package scr the abstract data object
Screen with a wealth of methods and functions for its management and for the output
of texts and graphics. It is essential that these functions work in exactly the same way
both in console operation and on graphical interfaces based on X11.

A crucial contribution to the demand for a simple interface for the output of objects is
the merging of the output of text and graphics. The screen is rastered into text lines and
columns or pixel columns and lines. The grid serves to position the output of strings and
graphical objects, with the position of methods whose names end with Gr referring to
pixels.

A technically very complex subpackage of scr is the mouse package scr/mouse; it
is only used for the two implementations scr/console.go for the console and
scr/xwindow.go for graphical interfaces under X-Window of the screen package and



for the keyboard package kbd (see next Sect. 3.4.3) and should not be used further
outside; therefore, it is not presented here.

The package imports, in addition to obj, the packages mentioned in Sect. 3.4.1. It
provides methods

 for resetting to normal input in console operation;

e for querying screen parameters;

e for querying and setting screen colours for outputs;

e for clearing and buffering rectangular parts of the screen;

e for manipulating the cursor;

¢ for outputting characters, strings, and natural numbers;

e for manipulating the font size;

» for outputting simple geometric figures (e.g., points, lines, rectangles, polygons, circles,
ellipses, Bezier curves), all also inverted and some also filled;

 for querying the mouse and setting mouse parameters;

e for serializing rectangular parts of the screen;

 for displaying graphic files in ppm format;

e for managing a “clipboard”; and

e for moving in three-dimensional structures that were created using OpenGL

and functions

e for querying the screen size;

¢ for indicating whether a process is running under X-Window (alternatively on a
console); and

e for screen lock synchronization in concurrent programs.

Of course, it also provides constructors for creating screens.

In order not to have to constantly put the identifier s of a screen created by, for
example, s := NewMax () in front of the method calls from scr, scr also provides an
abstract data object in the file ado . go.

At the beginning of a program run in console operation, the keyboard is set to “raw”
input K MEDIUMRAW. When the program ends, it must be reset to “normal” input
K XLATE (see /usr/include/linux/kd.h) so that the computer remains operable.
This is done by the following procedure:

The function init () in kbd/keyboard.go calls the function initConsole in
kbd/console.go, in which the function for resetting is added to the set of those
functions that are called at the end of a program (see file halt.go in the package ker).
This mechanism is called by the method Fin () in the screen package.

At the beginning of a program run, the cursor’s blinking is also turned off so that it
doesn’t annoy; with the call of the method Fin (), it is made to blink again.

Thus, the first line of a program that uses the microuniverse typically looks like this:

scr.NewMax (}; defer scr.Fin{)

The call of the instruction scr.Fin () is absolutely necessary, because otherwise after
the end of a program



* in operation under X-Window the cursor is gone and
¢ in console operation the keyboard is “dead” and therefore the computer is no longer
operable.
Here follows the specification, which for obvious reasons is very long, but fulfills the
above-mentioned requirement for easy understanding and simple usability:



package scr

/* Pre: For use in a (tty)-console:
The framebuffer is usable, i.e. one of the options "vga=..."
is contained in the line "kernel ..." of /boot/grub/menu.lst
(posible values can be found at the end of imp.go).
Users are in the group video (or world has the rights "r" and "w"
in /dev/fb0) and world has the right "r" in /dev/input/mice.
For use in a screen on a graphical user interface:
X is installed.
Programs for execution on far hosts are only called under X.
Fore—-/background colour of the screen and actual fore—-/backgroundcolour
are FlashWhite and Black. The screen is cleared and the cursor is off.
In a console SIGUSR1 and SIGUSR2 are used internally and not any more
available.
No process is in the exclusive possession of the screen., */

// #cgo LDFLAGS: -1X11
// #include <X11/X1ib.h>
import

“C“’

import (

"uU/env"

"uU/obi"

"uU/col"™

"uU/mode"

. "uU/fontsize"

"uU/ font "
"uU/scr/shape"
"uU/linewd"

)

type

Event struect {
T, // type
c, // xkey.keycode, xbutton.button, xmotion.is_hint
S wint // state

}

var

Eventpipe chan Event = make (chan Event) // only for XWindow

const ( // mousepointer representations (see /usr/include/X11/
cursorfont .h)

Crosshair = 34

Gumby = 56

Standard = 132 // top_left_arrow
)

type

Screen interface

// The keyboard is switched back to normal mode.
Fin ()

// Under X, the screen is newly written.
Flush ()

// Under X, in the title bar of the window framing the screen

// the string n appears, unless the screen was initialized by a call of
NewMax.

Name (n string)

// Returns the actual mode.
ActMode () mode.Mode

// Returns the coordinates of the top left corner of the screen.
X() wuint
Y () wuint

// Returns - depending on the actual fontsize -






// the number of textlines and -columns of the actual mode.
NLines () wuint
NColumns () uint

// Returns the pixelwidth/-height of the screen in the actual mode.
Wd() wuint
Ht () wuint

// Returns the pixel distance between two textlines

// = charheight /-width of the actual fontsize (s. below).
Wdl () wuint

Htl () wuint

// Return the guotient Pixelwidth / Pixelheight of the actual mode.
Proportion (} floaté64

// colours
VPPN IOV

// The colours of the screen are set to f and b (fore-/background);

// to get the effect of these calls, you have to call "Cls ()"
afterwards.

ScrColours (£, b col.Colour)

ScrColourF (f col.Colour)

ScrColeourB (b col.Colour)

// Returns the fore-/backgroundcolour of the screen.
ScrCols (} (col.Colour, col.Colour)

ScrColF (} col.Colour

ScrColB () col.Colour

// The actual foregroundcolour is f, the actual backgroundcolour is b
// resp. that of the screen.

// The colours of the screen are not changed.

Colours (f, b col.Colour)

ColourF (f col.Colour)

ColourB (b col.Colour)

// Returns the actual fore-/backgroundcolour.
Cols () (col.Colour, col.Colour)

ColF () col.Colour

CoclB () col.Colour

// Returns the colour of the pixel at (x, y).
Colour (x, y wuint) col.Coclour

// ranges
LSS LSS

// Pre: ¢ + w <= NColumns, 1 + h <= NLines resp.
¥ i d x <= x1 < Wd, y <= yl1 < Ht.

// The screen is cleared between line 1 and 1+h and column ¢ and c+w
// (both including) in its backgroundcolour.
Clr (1, ¢, w, h uint)

// The pixels in the rectangle defined by (x, y, w, h)
// including) have the backgroundcolour of the screen.
ClrGr (%, y int, w, h uint)

// The screen is cleared in its backgroundcolour.
// The cursor has the position (0, 0) and is off.
// The mouse has the position (?, ?) and is off.
Cls ()}

// If on, then the screen buffer is cleared and
// all further output is only going to the screen buffer,






// otherwise, the screen contains the content of the screen buffer
// and all further output is going to the screen.
Buf (on bool)

// Returns true, 1iff the output goes only to the screen buffer.
Buffered () bool

// The content of the rectangle defined by (1/x, c¢/y, w, h)

// is copied into the archive (the former content of the archive is
lost).

Save (1, c, w, h uint)

// SaveGr (x, y, x1, yl int)

SaveGr (x, y int, w, h uint)

Savel () // full screen

// The content of the rectangle defined by (1/x%x, ¢/y, w, h)
// is restored from the archive.

Restore (1, ¢, w, h wuint)

// RestoreGr (x, y, x1, yl int)

RestoreGr (x, y int, w, h wuint)

Restorel () // full screen

// cursor
VPPN

// Pre: 1 < NLines, ¢ < NColumns.

// The cursor has the position (line, coloumn) == (1, c)
// and the shape s. (0, 0) is the top left top corner.
Warp (1, ¢ wuint, s shape.Shape}

// Pre: x <= NColumsGr - Columnwidth, y <= Ht - Lineheight.

// The cursor has the graphics position (column, line) = (x, y)
// and the shape s. (0, 0) is the top left top corner.

WarpGr (x, y wuint, s shape.Shape)

// text
LAAIL L LLTLTLA LT LLL LS LA LA TS L EL LT A TAL A LT LA LT LLL T LTS LS LTS

// The position (0, 0) is the top left corner of the screen.

// The pixels of the characters have the actual foregroundcolour,

// the pixels in the rectangles around them have the actual
backgroundcolour

// (if transparency is switched on, those pixels are not changed).

// Pre: 32 <= b < 127, 1 < NLines, ¢ + 1 < NColumns.
// b is written to the screen at position (line, colum) = (1, c).
Writel (b byte, 1, c¢ uint)

// Pre: 1 < NLines, ¢ + len({s) < NColumns.

// s is written to the screen starting at position (line, column) ==
,r <)

Write (s string, 1, c uint)

// Pre: x + Columnwidth < Wd resp.

/7 x + Columnwidth * Ldnge (s) < Wd,

Vo4 y + Lineheight < Ht.

// b and s resp., is written to the screen within the rectangle
// with the top left corner (x, y) in the actual colours.
WritelGr (b byte, x, y int)

WriteGr (s string, x, y int)

// Pre: ¢ + number of digits of n < NColumns, 1 < NLines.

// n is written to the screen starting at position (line, column)
s )

WriteNat (n, 1, ¢ uint)

WriteNatGr (n uint, x, y int)

WriteInt (n int. 1. ¢ uint)

(1

(1






WriteIntGr (n, x, y 4int)

// Pre: see above.

// As above, but with fore- and backgroundcolour reversed.
WritelInvGr (b byte, x, y int)

WriteInvGr (s string, x, y int)

// Returns true, iff transparency 1is set.
Transparent ()} bool

// Transparence is switched on, iff t == true.
// If it is on, the backgroundcolour is that of the screen.
Transparence (t bool)

// font
VPRI ISP IS4

// Returns the actual font; at the beginning Roman.
ActFont (} font.Font

// £ 1s the actual font.
SetFont (f font.Font)

// Returns the actual fontsize; at the beginning Normal.
ActFontsize (} Size

// s 1s the actual fontsize. NColumns and NLines are changed
accordingly.
SetFontsize (s Size)

// graphics
PPNV

// Position (0, 0) is the top left corner of the screen.

// All output is done in the actual foregroundcolour;

// For operations with name ...Inv all pixels have the complementary
// colour of the fgcolour; for operations with name ...Full

// also all pixels in the interior have these colours.

// The actual linewidth at the beginning is Thin.

// Returns the actual linewidth.
ActlLinewidth () linewd.Linewidth

// The actual linewidth is w.
SetLinewidth (w linewd.Linewidth)

// Pre: See above.

// A pixel in the actual foregroundcolour is set at position (x, y)
// on the screen resp. the colour of that pixel is inverted.

Point (x, y 4int)

PointInv (x, y int)

// Returns true, 1ff the point at (x, y) has a distance
// ©of at most d pixels from the point (a, b).
OnPoint (x, y, a, b int, d uint) bool

// Pre: See above.

// At (xs[i], ys[i]) (i < len(xs) =
actual

// foregroundcolour resp. that pixel is inverted in its colour.

Points (xs, ys []int)

PointsInv (xs, ys []int)

len(ys)) a pixel is set in the

// Returns true, iff one of the points at (xs[i], ys[i]) has a distance
/7 of at most d pixels from the point (a, b).
OnPoints (xs8. vs [l1inkt. a. b int. d uint}! bool






// Pre: See above.

// The part of the line segment between (x, y) and (x1, yl1)

// visible on the screen is drawn in the actual foregroundcolour resp.
// the pixels on that part are inverted in their colour.

Line (x, y, x1, yl1 int)

LineInv (x, y, x1, yl int)

// Pre: See above.

// Returns true, iff the point at (x, y) has a distance of

// at most d pixels from the line segment between (x, y) to (x1, yi).
OnLine (x, y, x1, yl, a, b int, d wuint) bool

// Pre: See above.

&7 ] If the calling process runs under X:

S/ -1<<15 <= x[i], x1(i], y[i], y1[i] < 1<<15
V4 for all i < n:= len(x) == len(y).

i Otherwise:

Vo4 0 <= x[i], =x1[i] < Wd and

7/ 0 <= yfi], yi1[i] < Ht for all i < N.

// For all i < n the parts of the line segments between (x[i], y[i])
and (x1[i], y1[i]),

// that are vigsible on the screen, are drawn in the actual
foregroundcolour

// resp. all points on them are inverted.

Lines (x, y, x1, yl [lint)

LinesInv (x, y, x1, yl []lint)

// Pre: See above.

// Returns true, iff the point at (x, y) has a distance of at most d
pixels

// from each of the line segments between (x[i], y[i]) and (xi[i], yi1[i
1).

OnlLines (x, y, x1, yl1 [lint, a, b int, d uint) bool

// Pre: See above.

/7 x[i] < wWwd, y[i] < Ht fiir alle i1 < n:= len(x) == len(y).

// From (x[0], y[0]) over (x[1], yI[1]), ... until (x[n-1], y[n-1])

// a seguence of line segments is drawn resp. all points on it are
inverted.

Segments (x, y []lint)

SegmentsInv (x, y []lint)

// Returns true, iff the point at (a, b) has a distance of at most d
pixels

// from one of the sequence of line gsegments defined by x and y.

OnSegments (x, y []lint, a, b int, d uint) bool

// Pre: See above.

// A line through (x, y) and (x1, yl1) is drawn resp. all points on it
are inverted.

InflLine (x, y, x1, yl int)

InflLineInv (x, y, x1, yl int)

// Returns true, iff the point at (a, b) has a distance of
// at most d pixels from the line through (x, y) and (x1, yl1).
OnInfline (x, y, x1, yl1l, a, b int, d uint) bool

// Pre: See above.

// Between (x, y), (x1, yl) and (x2, y2) a triangle is drawn

// in the actual foregroundcolour resp. all points on it are inverted

// resp. all its interior points (including its borders) are drawn /
inverted.

Triangle (x, y, x1, yl, x2, y2 int)

TriangleInv (x, vy, x1, yl, x2, y2 int)

TriangleFull (x, y, x1, yl, x2, y2 int)

TriangleFullInv (x. v, x1. vl. x2, v2 int)






// Pre: See above.

// Between (x, y) and (xl1, yl) a rectangle (with horizontal and
vertical borders)

// is drawn in the actual foregroundcolour resp. all points on it are
inverted

// resp. all its interior points (including its borders) are drawn /
inverted.

Rectangle (x, y, x1, yl int)

RectangleInv (x, y, x1, yl int)

RectangleFull (x, y, x1, yl int)

RectangleFullInv (x, y, x1, yl int)

// Pre: See above.

// Returns true, iff the point at (a, b) has a distance of at most d
pixels

// from the border of the rectangle between (x, y) and (x1, yl1).

OnRectangle (x, y, x1, yl1l, a, b int, d uint) bool

// Returns true, iff the point (a, b) is up to distrance t
// inside the rectangle given by (x, y) and (x1, yl1).
InRectangle (x, y, x1, yl1, a, b int, t wuint) bool

// The content of the rectangle defined by (x0, y0, x1, y1)
// is copied to the rectangle with the upper left corner (x, y).
CopyRectangle (x0, y0, x1, yl, x, y int)

// Pre: len(x) == len(y).

// PolygonFull: The polygon defined by x and y is convex (see
function Convex).

// A polygon is drawn between (x[0], yi[0]), (x[1], y[1]), ... (x[n-1],
yin-1), (x[0], y[0])

// resp. all pixels on it are inverted resp. the polygon is filled.

Polygon (x, y []int)

PolygonInv (x, y []lint)

PolygonFull (x, y []int)

PolygonFulllInv (x, y []lint)

// Pre: len(x) == len(y).

V&4 The polygon defined by x and y is not convex (see function
Convex),

// but its lines dec not intersect.

/S In a conscle: (a, b) is a point inside the polygon;

// under X: The values of a and b do not matter.

PolygonFulll (x, y [lint, a, b int)
PolygonFullInvl (x, y [lint, a, b int)

// Pre: len(x) == len(y).
// Returns true, iff the point at (a, b) has a distance of at most d
pixels

// from the polyon defined by x and y.
OnPolygon (x, y []int, a, b int, d uint) bool

// Pre: See above. r <= x, x + r < Wd, r <= y, y + r < Ht.
// Around (x, y) a circle with radius r is drawn / inverted
// resp. all points in its interior are set / inverted.
Circle (x, y int, r wuint)

CircleInv (x, y 4int, r wuint)

CircleFull (x, y int, r uint)

CircleFullInv (x, y int, r uint)

// Returns true, iff the point at (x, y) has a distance of at most d
pixels

// from the border of the circle around (a, b) with radius r.

OnCircle (x, y int, r uint, a, b int, d uint) bool

// Returns true, iff the point at (x, y) has a distance of at most d
pixels






// from the interior of the circle arocund (a, b) with radius r.
InCircle (x, y int, r wuint, a, b int, d uint) beool

// Pre: See above. r <= %, X + r < Wd, r <= y, ¥y + r < Ht,

/r a and b given in degrees.

// Around (x, y) an arc with radius r is drawn / inverted

// resp. all points in its interior are set / inverted

// freom angle a to angle a+b, starting at vertical upright position

// with a and b signed in mathematical orientation (counterclockwise).
Arc (x, v int, r uint, a, b floaté6d)

ArcInv (x, Yy int, r uint, a, b floatéd)

ArcFull (x, y int, r uint, a, b float6d)

ArcFulllInv (x, y int, r uint, a, b float64)

// Pre: See above. a <= x, x + a < Wd, b <=y, y + b < Ht.

// Around (x, y) an ellipse with horizontal / vertical semiaxis a / b

// 1is drawn / inverted resp. all points in its interior are set /
inverted.

Ellipse (x, y int, a, b uint)

EllipseInv (x, y 4int, a, b uint)

FEllipseFull (x, y int, a, b uint)

EllipseFullInv (x, y int, a, b uint)

// Returns true, iff the point at (A, B) has a distance of at most d
pixels

// from the border of the ellipse around (x, y) with semiaxis a and b.

OnEllipse (x, y int, a, b uint, A, B int, d uint) bool

InEllipse (x, y int, a, b uint, A, B int, d uint) bool
// Pre: See above. n:= len(xs) == len(ys).

// From (xs[0], ys[0]) to (xs[n], ys[n]) a Beziercurve of order n
// with (xs[1], ysf1]) .. (xs[n-1], ys[n-1]) as nodes is drawn to the

screen
// resp. all points on that curve are inverted.
// (For n == (0 the curve is the point (xs[0], ys[0]),
// for n == 1 the line between (xs[0], ys[0]) and (xs([1], ys[1]).

Curve (xs, ys []lint)
Curvelnv (xs, ys []lint)

// Returns true, iff the point at (x, y) has a distance of at most d
pixels

// from the curve defined by xs and ys.

OnCurve (xs, ys []lint, a, b int, d uint) boeol

// mouse

LILELLLLS SIS IS LSS LSS LSS0

// The mousepointer is represented by p.
SetPointer (p uint)

// Returns the position of the mouse cursor.
// For the result (1, ¢) holds 0 <= 1 < NLines and 0 <= ¢ < NColumns.
MousePos () (uint, wuint)

// Returns the position of the mouse cursor.
// For the result (x, y) holds 0 <= x < Wd and 0 <= y < Ht.
MousePosGr (} (inmt, int)

// The mouse position is written to the screen at position (l,c)/(x,¥y).
WriteMousePos (1, ¢ uint)
WriteMousePosGr (x, y int)

// Pre: The calling process does not run under X.
// The mouse cursor is switched on, iff b (otherwise off).
MousePointer (b boel)






// Pre: The calling process does not run under X.
// Returns true, iff the mouse cursor is switched on.
MousePointerOn() bool

V4
// WriteMousePointer()

// Pre: 1 < NLines, ¢ < NColumns.
// The mouse cursor has the position (line, column) = (1, c).
WarpMouse (1, c uint)

// Pre: 0 <= x < Wd, 0 <= y < Ht.
// The mouse cursor has the position (row, line) = (x, y).
WarpMouseGr (x, y int)

// Pre: ¢ + w <= NColumns, 1 + h <= NLines.

// Returns false, if there is no mouse; returns otherwise true,
// iff the the mouse cursor is in the interior of the rectangle
// defined by 1, ¢, w, h.

UnderMouse (1, ¢, w, h uint) bool

// Pre: 0 <= x <= x1 < Wd, 0 <= y <= yl < Ht.

// Returns false, if there is no mouse; returns otherwise true,

// 1ff the mouse cursor is inside the rectangle between (x, y) and (x1,
y1)

// or has a distance of at most d pixels from its boundary.

UnderMouseGr (x, y, X1, yl int, d wuint) bool

// Pre: 0 <= x < Wd, 0 <= y < Ht.

// Returns false, if there is no mouse; returns otherwise true,

// 1ff the mouse cursor has a distance of at most d pixels from (x, y).
UnderMousel (x, y int, d uint) bool

// serialisation

LI7 7777787777777 7777

// Pre: 0 < w <= Wd, 0 < h <= Ht.

// Returns the number of bytes, that are needed to serialise the pixels
// of the rectangle between (0, 0) and (w, h) uniguely invertibly.
Codelen (w, h wuint) uint

// Pre: 0 < w, x + w < Wd, 0 < h, y + h < Ht.

// Returns the byte sequence, that serialises the pixels
// in the rectangle between (x, y) and (x + w, y + h).
Encode (x, y int, w, h uint) obj.Stream

// Pre: s is the result of a call of Encode for some rectangle.

// The pixels of that rectangle are drawn to the screen with the upper
left corner (x, ¥yJ);

// the rest of the screen is not changed.

Decode (s obj.Stream, x, y int)

// image —-operations

LA LALT LTSS TP L LA T AT LTS LT L LT TAS LS TS T LS AT AT T A LL ALY
WriteImage (c [][]lcol.Colour, x, y int)
Screenshot (x, y int, w, h uint) obj.Stream

// openGL
VORIV

Go (draw func (), ex, ey, ez, fx, fy, fz, nx, ny, nz float64d)

}

fune UnderC () bool {
raturn env.UnderC ()}






}

funec UnderX () bool {
raturn env.UnderX ()

}

// Returns a new screen with the size of the physical screen.
// The keyboard is switched to raw mode.

func New (x, y uint, m mode.Mode) Screen {

if env.UnderX ()} {

return NewW (x, vy, m)

}

return New(C (x, y, m)

}

// Returns a new screen of the size given by the mode m.
// The keyboard is switched to raw mode.

func NewMax (} Screen {

if env.UnderX () {

return NewMaxW ()

}

return NewMaxC ()

}

// Pre: The size of the screen given by x, y, w, h

V4 fits into the available physical screen.

// Returns a new screen with upper left corner (x, y),

// width w and height h. The keyboard is switched to raw mode.
funec NewWH (x, y, w, h uint) Screen {

if env.UnderX ()} {

return NewWHW (x, y, w, h)

}

return NewWHC (x, y, w, h)

}

// Returns the (X, Y)-resolution of the screen 1in pixels.
funec MaxRes () (uint, uint) {

if env.UnderX () {

raturn MaxResW ()

}

return MaxResC ()

}

// Returns true, iff mode.Res(m) <= MaxRes ().
fune Ok {(m mode.Mode) beoeol {

if env.UnderX () {

return OkW (m)

}

return 0OkC (m)

}

// Lock / Unlock guarantee the mutual exclusion when writing on the
screen

// (e.g. to avoid, that a process after having set its colours

// is interrupted in a subsequent draw and later resumes its drawing

// in another colour, that was meanwhile changed by another process).

fune Lock () { lock () }

funec Unlock () { unlock () 1}
func Lockl ()} { lockl () }
fune Unlockl () { unlockl (} 1}
fune Act () Screen {

if env.UnderX () {
return actualW

}

raturn actualC



}

// Returns true, iff len(x) == len(y) and x, y define a convex polygon.
func Convex (x, y []lint) bool {
return convex (x,y)

}

The implementations of console.go and xwindow.go are very technical, but
algorithmically largely uninteresting. The only exception are the algorithms of
Bresenham (see [1]), which are used in console. go for the output of lines, circles, and
ellipses.

3.4.3 Keyboard

The microuniverse encapsulates access to the keyboard and mouse in an abstract data
object, the package kbd, whose implementation uses the package mouse.
In addition to the names for the keys, it provides functions

e for reading the keyboard buffer,
¢ to query whether a mouse exists, and
 to wait for a key press.

For the character keys, the alphanumeric keyboard of the computer is available;
characters for which no single key is provided, the commands mentioned in the
specification are provided.

To operate and control a system with a keyboard and mouse, three groups of keys
must be distinguished:

e the alphanumeric keys for entering strings and numbers;

e the command keys for triggering certain system reactions (enter key, backspace key,
arrow Kkeys, etc.); and

¢ the mouse buttons and mouse movements for navigating on the screen and “clicking” on
objects.

Commands triggered with the command keys can be enhanced in their “depth of
effect” by combining them with suitable prefix keys (the shift, control, and meta keys);
each command has a natural number as depth (0 as the base version, increasing
numbers for greater depths). This makes it possible in principle to have commands of
different depths with the same effect in systems, such as moving in a text to the next
character, word, sentence, section, or chapter or in a calendar to the next day, the next
week, the next month, year, or decade.

The keyboard and mouse send their characters and commands using the channel
concept in Go as messages to the screen, which receives and processes them (see variable
eventpipe in the specification of scr).

Here is the specification of our keyboard package:



package kbd
// >>> Pre: The preconditions of mouse are met.

/* We distinguish between three groups of keys to operate and control a
system

with keybocard and mouse:

— character-keys (with echo in form of an alphanumerical character

on the screen) to enter texts and numbers,

— command-keys

to induce particular reactions of the system and

— mouse-—-buttons and —-movements

to navigate on the screen.

In order to abstract from concrete keyboards or mouses,

the following commands are provided for the last two groups: */

type
Comm byte; const (
None = Comm(iota) // to distinguish between character- and

command —keys,
// see specification of "Read”

Esc // to leave the system (or a part of it) or to
reject

Enter // to confirm or to leave an input

Back // to move backwards in the system

Left; Right; Up; Down // to move the cursor on the screen and

PgLeft; PgRight; PgUp; PgDown // to move in the system, e.g. in a
screen mask,

Posl; End // in the corresponding direction

Tab // for special purposes

Del; Ins // to remove or insert objects

Help; Search // to induce context dependent reactions of the
system

Act; Cfg; // and for special purposes

Mark; Unmark // to mark and unmark objects

Cut; Copy; Paste // cut buffer operations

Red; Green; Blue // to handle colours

Print; Roll; Pause // for special purposes

OnOff; Lower; Louder // loudspeaker

Go // to move the mouse

Here; This; That // to c¢lick on objects and

Drag; Drop; Move // to move them around with a mouse

To; There; Thither // and to drag and drop them

ScrollUp; ScrollDown // for the mouse wheel

NComms // number of commands

)

/* Commands may be enforced in the "depth" of their "impact":

Every command is assocociated with a natural number as its depth

(0 as basic version, bigger numbers for greater depths).

So we allow for commands with conceptionally equal effects

but variable ranges of "move depth", as e.g. the movement

in a text to the next character, word, sentence, paragraph or page,
or in a calendar to the next day, week, month, year, decade.

Commands of depth 0 are implemented by keys (without metakeys)
or mouse—actions with system independent semantics:

— Enter: input-key "Enter"/"Return"
- Esc: stop-/break-key "Esc"

— Back: backspace—key "<-"

- Left, Right, Up, Down: corresponding arrow-—-keys

- PgUp, Pgbown, Posl, End: corresponding keys

- Tab: Tabkey "|<—- —->|"

— Del, Ins: corresponding keys

— Help, Search: Fl1-, F2-key

- Act, Cfg: F3-, F4-key

- Mark, Unmark: F5—-, Fé6-—-key






- Cut, Copy, Paste: Fr7-, F8—, F9-key

- Red, Green, Blue: FigQg-, Fil-, FiZ2-key

- Print, Roll, Pause: corresponding keys

- OnOff, Lower, Louder: corresponding keys on laptops

- Go: mouse moved with no button pressed

— Here, This, That: left, right, middle button pressed

- Drag, Drop, Move: mouse moved with corresponding button
pressed

- To, There, Thither: corresponding button released

commands of depth > 0 by combination with metakeys:

- depth 1: Shift—-key,
- depth 2: Strg-—-key,
- depth 3: Alt (Gr) —key */

// The calling process was blocked, until the keyboard buffer was not

empty.
// Returns a tripel (b, ¢, d) with the following properties:
// Either ¢ == None and the first object from the keyboard buffer
// is the byte b or b == 0 and the first object of the keyboard buffer

// is the command ¢ of depth d.

// This object is now removed from the keyboard buffer.
// If there is no mouse, then ¢ < Go.

func Read () (byte, Comm, wuint) { return read() }

// The calling process was blocked, until there is a byte in the
keyboard buffer.

// Returns the first byte from the keyboard buffer.

// This byte is deleted from the keyboard buffer.

funec Byte () byte { return byte_ () 1}

// The calling process is blocked, until there is a command in the
keyboard buffer.

// Returns the first command and its depth from the keyboard buffer.

// This command is deleted from the keyboard buffer.

func Command ()} (Comm, wuint) { return command () }

// Returns a string, describing the calling Command.
func (c Comm}) String() string { return text[c] }

// Precondition: A byte or command was read.
// Returns the last read byte, if there is one, otherwise 0.
func LastByte () byte { return lastByte () }

// Precondition: A byte or command was read.

// Returns the last read command, if one was read, otherwise None.

// In the first case, d is the depth of the command, otherwise d = 0.
func LastCommand () (Comm, wuint) { return lastCommand ()} }

// ¢ is stored as last read command.
func DepositCommand (c Comm) { depositCommand(c) 1}

// b is stored as last read byte.
fune DepositByte (b byte) { depositByte (b) 1}

// The calling process was blocked, until until the keyboard buffer
contained

// one of the commands Enter (for b = true) resp. Esc or Back (for b =
false) .

// This command is now removed from the keyboard buffer.

// Returns true, iff the depth of the command was == 0.

fune Wait (b bool) bool { return wait(b) }

// The calling process was blocked,

// until until the keyboard buffer contained command c¢ with depth d.
// This command is now removed from the keyboard buffer.

fune WaitFor (c Comm. d uint) { waitFor(e.d) 1



// The calling process was blocked, until until the keyboard buffer
// contained one of the commands Enter, Esc or Back.

// This command is now removed from the keyboard buffer.

fune Quit () { quit () }

// Returns true, if the keyboard buffer contained cne of the commands

// Enter or Here, and false, 1if it contained one of the commands

// Back or There, for b = false of any depth and for b = true of a
depth > 0.

// The calling process was blocked, until the keyboard buffer contained

// one of these commands; this command is now deleted from it.

fune Confirmed (b bool) beool { return confirmed (b} }

3.4.4 Editor
The data type Editor, whose specification is housed in the package ob7j, is used for the
output and input of objects at defined screen positions:



package obj

type Fditor interface { // Objects, that can be written to a particular
// position of a screen and that can be
changed
// by interaction with a user (e.g. by
pressing
// keys on a keyboard or a mouse).
//
// A positicon on a screen 1is given by
line—- or
// pixeloriented coordinates, i.e., by
pairs of
// unsigned integers (1, c¢) or integers

(x, ¥},

// where 1 = line and ¢ = column on the
screen,

// x = pixel in horizontal and y =

pixel in
// wvertical direction. In both cases

(0, 0)
// denotes the top left corner of the
screen.
Chbject
// Pre: 1, ¢ have to be "small enough®, i.e.
/. 1l + height of % < scr.NLines, ¢ + width of x < scr.NColums.
// % 1is written to the screen with
// its left top corner at line/column = 1/c.

Write (1, ¢ wint)

// Pre: see Write.

// x has the value, that was edited at Iine/column 1/c.

// Hint: A "new" object is "read" by editing an empty one.
Edit (1, ¢ wuint)

}

func IsEditor (a any)} bool {
if a == nil { return false }
_s ok := a.{(Editor)

raturn ok

}

type
FditorGr interface {

Editor

// Pre: see above. x, y are pixel coordinates.
WriteGr (x, y int)

EditGr (x, y int)

}

func IsEditorGr (a any) bool |
if a == npil { return false }
_r ok := a.{(EditorGr}

raeturn ok

}

3.4.5 Input/Output Fields

The output of strings with the function print[In] (or the more powerful function
Print[1n] from the Go package fmt) and their input with the functions Read. . .



from the Go package bufio only allow interaction in programs where screen design
does not matter, because they only allow strings to be output and input line by line.

For output and input of strings, fields of defined width within a screen line are
provided, from which screen masks can be composed. The microuniverse contains the
abstract data type Box for this purpose.

The methods for output and editing are given parameters to determine their starting
position on the screen: 1, c of type uint for line and column or x, vy of type int.

A distinction is made between overwrite and insert mode, which can be switched
back and forth. Which mode is switched on can be recognized by the shape of the
cursor recognizable: a small cursor (underscore) for the insert mode, a large “block”
cursor for the overwrite mode.

The strings in the fields can be provided with certain font and background colours.

Before entering a string in a field, it is pre-set with a defined content (which can also
consist only of spaces); this means that there is no need to distinguish between the new
entry of strings and their modification.

Each input begins with an output of the field content. When editing, the string output
in the field can be changed in a way that is based on common principles—using some of
the commands mentioned in the keyboard package. After the input is completed by the
provided commands, the field content is handed over to the system, which takes over
further control.

The completion of an input is done by commands that do not serve to correct the
field content: Enter, Esc, Up, Down, PgUp, PgDown, or other commands in connection with
meta keys. With the variety of these commandes, it is possible to jump specifically through
the fields in a screen mask.

Here is the specification of the data type box:



package box
import (. "uU/obj"; "uU/col"™)

type Box interface { // Boxes within one line of the screen
// to write and edit strings.
Stringer col.Colourer

// Pre: n > 0.
// x has the width n.
Wd (n wuint)

// The editor mode is changed to that of a pocket calculator.
SetNumerical ()

// See scr.Transparence.
Transparence (t bool)

// Pre: 0 < ¢ < width of the calling box.
// At the beginning, the curscr is in position c.
Start (c uint)

// x has the fore—- and backgroundcolour of the screen.
ScrColours ()

// x has the fore-/backgroundcolour f/b.
Colcocurs (f, b col.Colour)

ColourF (f col.Colour)

ColourB (b col.Colour)

// x is filled with an empty string.
Clr (1, c wuint)

// Pre: 1 < scr.NLines,

/7 ¢ + width of x <= scr.NColumns,

/7 ¢ + len(s) <= scr.NColumns.

V4 width of X == 0 or len (s) <= width of x.

// If width of X was 0, now width of x == len(s).

// s is written to the screen,

// starting at position (line, column) == (1, c¢) in the colours of x.

Write (s string, 1, c¢ uint)

// Pre: y <= scr.Ht - scr.Htl.

P4 x + scr.Wdl * width of x < scr.NColumns,

Fé'4 x + scr.Wdl * length of s < scr.NColumns.

// Like Write, starting at pixelpos (column, line) == (x, y).

WriteGr (s string, x, y int)

// Pre: 1 < secr.NLines, ¢ + width of the calling box < scr.NColumns,
Fid ¢ + len (s) < scr.NColumns

/S width of x == 0 or length of x <= width of x.

// If width of x was 0, now width of x == len(s).

// 8 is now the string, that was edited starting at position (1, ¢).
// To correct while typing, the usual keys can be used:

// — Backspace and Del to remove characters,

s in combination with Shift or Strg to delete all,

// — arrow keys Left/Right and Posl/End to move inside x,
// — Ins to toggle between insert mode (underline cursor)
// and overwrite mode (block cursor).

// The cursor starts at the beginning of x.

// If s was empty, the mode starts with insert, otherwise with
overwrite.

// The calling process was blocked, until the input was terminated with

// another command (see kbd) or one of the above commands with depth >
a.

Edit (s *string, 1, c¢ wuint)

// Pre: y <= scr.Ht() - scr.Hti(),



Y4 x + scr.Wdi{) * width (of the calling box) < scr.NCoclumnsf(),
Y4 x + scr.Wdi{) #* len({s) < scr.NColumnsf().

// Like Edit, starting at pixelpos (column, line) == (x, y).

EditGr (s *string, %, vy int}

}

// Returns an new box of width 0,
// the colours of the screen and the default editor mode.
fune New () Box { return new_ () }

3.4.6 Error Messages and Hints
The abstract data object errh is used for the output of

e Error messages and
e User hints.

After an incorrect input, a hint to the error appears in the last screen line. The
content of the input field remains standing so that the error can be traced.

The cursor is now not visible. If the acknowledgement of the error message is
confirmed with the Esc key, the error text disappears and the cursor reappears at the
beginning of the relevant field, with the field editor in overwrite mode, so that the
entered string can be corrected.

Here is its specification:

errh.def.go

3.4.7 Printer

The package for printing strings is also an abstract data object. A prerequisite for its use
is the installation of TeX. It provides functions

¢ for defining the font,
e for the line and column number based on it on a DIN-A4 page, and
e for printing strings, where their start position (line, column) is given as a parameter.

Here is its specification:



package prt

// »>»> Pre: TeX is installed.

import ("uU/fontsize"; "wU/font™)

var PrintCommand = "1p"™

func Possible (} bool { return possible (} }

// The actual font is f.
funec SetFont (f font.Font}) { setFont (f) }

// Returns the actual font.
func ActualFont () font.Font { return actualFont }

// The actual fontsize is f.
fune SetFontsize (5 fontsize.Size} { setFontsize (s) }

// Returns the actual fontsize.
fune ActualsSize () fontsize.Size { return actualsSize 1}

// Returns the number of lines per page.
fune NLines (} wuint { return nlL[actualSize] }

// Returns the number of columns per line.
func NColumns (} uint { return nC[actualSize] 1}

// Spec: See TeX.
fune Voffset (mm wuint}) { voffset (mm) }

// Spec: See TeX.
funec Footline (s string) { footline (s} 1}

// Pre: 1 < maxL; ¢ + 1 < maxC.

// b is n 1line 1, column ¢ in the actual font and fontsizei
// in the printer buffer.

func Printl (b byte, 1, ¢ uint) { printl(b, 1, c)} }

// Pre: 1 < maxL, ¢ + len({s) < maxC.

// 8 is in line 1 from column ¢ in the actual font and fontsize
// in the printer buffer.

funec Print (s string, 1, ¢ uint) { printi(s, 1, c) }

// All lines of the printer buffer are printed;

// the printer buffer is not empty.

fune GoPrint () { goPrint () 1}

// Pre: n is the name of an postscript file in the actual directory.

// Thig file is printed.
func PrintImage (n string) { printImage (n) 1}

3.4.8 Selections
The package sel provides an abstract data object with functions

¢ for interactive selection from lists in the form of “pulldown menus” and
 for selecting colours or fonts.

Here is its specification:



package sel
import ("gU/col"; "uU/fontsize")

type WritingCol £func (uint, wint, wint, col.Colour, col.Colour}

// Pre: 1 < n =>m > 0;} Z < gser.NLines - 2; w >= 1, ¢ + w <= scr.
NColumns; i < n.

// The calling process was blocked, until user has selected a value 1
<= n with keyboard or mouse.

// Until then a bar menue of height min(n, scr.NY1 - 1 - 1) and width w

// was written teo the screen, sterting at line 1, column e,

// consisting of at most h texts »>>> TODO <<< with fore/background
colour b/f,

// one of which has inverted colours (at the beginning this is t[i]).

// Either user has chosen one of the texts with arrow keys or mouse

// (then 1 < n iIs now the number, that corresponds to the selected text
J

// or she has cancelled the selection (then now i == n).

// The bar menue now has disappeared from the screen and its place on
the screen is restored.

fune Select (we WritingCoel, n, h, w uint, i *uint, 1, ¢ uint, £, b col.
Colour} {

select_(wce, n, h, w, i, 1, ¢, £, b}

}

// Pre: 1 < n <= len ({(T) + 1;} 1 < secr.NLines - 2; w >= 1, ¢ + w <= sgcr.
NColumns; 1 < n.

// The calling process was blocked, until user has selected a value 1
<= n with keyboard or mouse.

// Until then a bar menue of height min (N, scr.NY1 - 1 - 1) and width w

// was written to the screen, starting at line 1, column c,

// consisting of h of the texts t{i] with fore-/background colour b/f,

// one of which has inverted colours (at the beginning this is tfi]).

// Either user has chosen one of the texts with arrow keys or mouse

// (then i < n is now the number, that corresponds to the selected text
}

// or she has cancelled the selection (then now i == n).

// The bar menue now has disappeared from the screen and its place on
the gcreen is restored.

func Selectl (t [lstring, n, w uint, i *uint, 1, ¢ uint, £, b col.
Colour) {

selectl (t, n, w, i, 1, ¢, £, b)

}

// Returns an interactively selected Colour, true;

// returns Black, false), if the selecticn was cancelled.

//func Colour (x, y int) (col.Colour, bool) { return colour(x,v) } //
28 colours

funec Colour (1, ¢, w wuwint} {(cel.Colour, beool) { return colour{l,c,w) }
func Colours (1, ¢, w wuint, cols ...col.Colour} {(col.Colour, bool} {
return colours(l,c,w,cols...} 1}

// Returns an interactively selected font size.
func Fontsize (f, b col.Colour) fontsize.Size { return =size(f,b) }

3.4.9 Menues

The abstract data type Menue allows the construction of a menue control for programs,

which can be nested arbitrarily.
Here is the specification of the package menu:



package menue
import . "ugU/obij"

type Menue interface { // Multiway trees of menues and statements.
// Each leaf contains a statement, that can
be executed;
// the other nodes are menues, from which a
node or leaf
// of the level below them can be selected,
// Nodes and leaves are identified by strings

// If there is a level below x, nothing has happened.
// Otherwise, x is a leaf with statement s.

// While executing s, the name of x appears

// in the top line of the screen, 1iff t == true.

Leaf (s Stmt, t hoeol)

// If x is a leaf, nothing has happened.
// Otherwise, y 1is inserted into the level below x.
Ins (y Menue)

// If » is a leaf, the statement of x was executed and now
// the menue, from which x was selected, is again presented.
// Otherwise, a menue is presented, which allows to select
// a node or leaf from the level below x.

Exec ()

}

// Returns an node with name s without a level below.
func New (s string) Menue { return new_(s) 1}

The type Stmt func () stands for parameterless functions, i.e., for instructions
(statement).

3.5 Collections of Objects

By collections we understand entities of objects of variables of a concrete atomic type
(e.g, [ulint..,float..,or string) or of objects of the type Object, whose objects
can be imagined as “lined up” and through which one can “move” forward and backward.

These two directions are described in parameters with the type bool—true for
forward and false for backward.

Each collection either has exactly one actual object or its actual object is undefined.
A newly created collection is empty, so its actual object is undefined.

Collections include methods

e for removing all objects from a collection, for checking whether objects are contained
in the collection, and for indicating the number of objects in it;

e for moving the pointer to the current object;

e for inserting and removing objects;

e for reading the current object;

e for checking whether a certain object is contained in the collection;

 for traversing the collection with an operation (if this operation destroys the order on
an ordered collection, it must of course be reordered);



e for merging two collections with type-identical objects (if necessary, maintaining the
order by “interlocking”); and
 for ordering a collection and checking whether it is ordered.
These methods are provided by the abstract data type introduced in the following
section.

3.5.1 Collector
This interface is also part of the package ob7j:



package obj

%
//
//
1/
/7
/7
%
/7
%
/7
/7
/7
/7
/7
//

Collections of elements of type object or of variables of
an atomic type (bool, [u]int.., float.., string, ...)

in a sequential order.

Every collection has either exactly one actual element

or its actual element is undefined.

An order relation is a reflexive, transitive and antisymmetric
relations r, i.e., for all a, b, ¢ in a collection r(a,a),

r(a,b) and r(b,c) imply r(a,c), r(a,b) and r(b,a) imply Eg(a,b).

Furthermore, we consider only linear relations,
i.e., for all a, b in a collection either r(a,b) or r(b,a).

In all specifications x denotes the calling collection.

Constructors return a new empty collection with undefined actual

object.

type Collector interface {

17
/’/

Empty: Returns true, iff x does not contain any element.
clr: x 1s empty; its actual element is undefined.

Clearer

7/

Returns true, iff the actual element of x is undefined.

Offc() bool

red

Returns the nunber of elements in x.

Num ()} wuint

//
//
7
//
//
s
7/
/’r
/7
/S
£
//
Ins

Ves
//
/7
//
/7
/Y
7/
7

Pre: a has the type of the elements in x.
If x is not ordered:
If the actual element of x was undefined, a copy of a
is appended in x (i.e. it is now the last element in x),
otherwise x 1is inserted directly before the actual element.
Otherwise, i.e., if x is ordered,
If an element b with Eg(b,a) was already contained in x,
nothing has changed.
Otherwise a copy of a is inserted behind the last element b
in x with r(b,a); so x is now gtill ordered w.r.t. r.
In both cases all other elements and their order in x
and the actual element in x are not influenced.
(a any)

If £ and if the actual element of x was defined, then

the actual element is now the element behind the former actual
element, 1if that was defined; otherwise it is undefined.

If !'f and if the actual element of x was defined and was not
the first element in x, then the actual element of x is now
the element before the former one; if it was undefined,

then it is now the last element of x.

In all other cases, nothing has happened.

Step (f bool)}

P
//

If £ is empty, the actual element is undefined; otherwise for
f/!f the actual element of x now is the last/first element of

Jump (f bool)

/7
Ecc

s

Get

Returns true, iff for f/!f the last/first element of x is 1its
element.
(f boel} beool

Returns a copy of the actual element of x, 1f that is defined;
otherwise.
(Y anv

actual

nil






Vo4
Va4
Va4

7’/
7/
e
a4
4

4

Put

Pre: a has the type cof the elements in x.
If x is not ordered:
If x was empty or 1f the actual element of x was undefined, a copy
of a
is appended behind the end of x and is now the actual element of x
Otherwise the actual element of x is replaced by a.
Otherwise, i.e. 1f x 1is ordered:
If x was empty, a copy of a is now the only element in x.
Otherwise, the actual element in x is deleted and a is inserted
into x
where the order of x is preserved.
(a any)

Returns nil, 1if the actual element of x is undefined.
Otherwise, the actual element was removed from x,

and now the actual element is the element after it,

if the former actual element was not the last element of x.
In that case the actual element of x now is undefined.

Del () any

/’
s
//
es

Returns true, iff a is contained in x. In that case
the first such element is the actual element of x;
otherwise, the actual element is the same as before.
(a any) bool

Pre: x is ordered.

Returns true, iff x contains objects b with Leg (a, b).

In this case, the actual element is the smallest such object,
otherwise the actual element 1is the same as before.

ExGegq (a any) bool

s

op was applied to all elements in x (in their order in x).
The actual element of x is the same as before.

If x was ordered, it is up to the client to check

if x is still ordered and - if not - to sort x.

Trav (op Op)

Va4
a4
77
7/
Va4
7/
Vo4
7/
7/
Vo4
Va4
Va4
7/
7/
Va4
Va4
a4
Va4
7/
7/
Va4
7/
7/

Pre: y is a collector of elements of the same type as x
(especially contains elements of the same type as a).
If x == y or if x and y do not have the same type,
nothing has changed. Otherwise:
If x is not ordered:
x consists of exactly all elements in x before (in their
order in x) and behind them all exactly all elements of y
before (in their order in y).
If the actual element of x was undefined, now the former
first element in y is the actual element of x, otherwise
the actual element of x is the same as before.
y 1s empty; so its actual element is undefined.
Otherwise, i.e. 1f x is ordered w.r.t. to an order relation,
Pre: r is either an order (see collector.go) or
r is a strict order and x and y are strictly ordered
w.r.t. r (i.e. do not contain any two elements a and b
with a == b or a.Eqg(b) resp.).
X consists exactly of all elements in x and y before.
If r is strict, then the elements, which are contained
in x as well as in y, are contained in x only once,
otherwise, i.e. if r is an order, in their multiplicity.
x 1s ordered w.r.t. r and y is empty.
The actual elements of x and y are undefined.

Join (y Collector)

Va4

Returns true, 1iff x is ordered.

Ordered () bool

// x is ordered.



Sort ()
}

fune IsCollector (a any) boel {
if a == nil { return false }

—_r 0ok = a.(Collector}

raturn ok

}

3.5.2 Seeker

The abstract data type Seeker is designed to specifically access an object at a certain

position in its order access within collections. The following interface can be found in the
file seeker.go in the package ob:

package obj
type Seeker interface
Collector

// Returns Num(), iff Offc(); returns otherwise
// the positicon of the actual cbject of x (starting at 0).
Pos (} uint

// The actual object of x is its p-th object, iff p < Num();
// otherwise 0Offc () == true.

Seek (p uint)

}

fune IsSeeker (a any)} bool {
if a == nil { return false }
_» ok 1= a.(Seeker)

raturn ok

}

The type type Op func (any) inthe method Trav stands for functions with one
parameter, i.e., for operations on objects.

The constructor New of a collection is given an object—either by an expression with
the value of an atomic data type or by an object of type Object. This determines the
type of objects that can be included in the created collection. The microuniverse contains
the following abstract data types that implement the interface Collector:

e sequences,

e stacks,

e queues,

e priority queues,

e ordered sets (AVL trees with positioning) and
e persistent sequences, i.e., sequential files,

e persistent index sets (ISAM files).

These collections will be introduced in the following sections. But first, we will show
two data types that extend Collector.



3.5.3 Predicator

This interface in the file predicator. go in the package ob7j provides methods

¢ to specify the number of objects,

e to check whether a certain predicate applies to all objects,

¢ to search for objects,

¢ to process only those objects when traversing,

 to offset the pointer to the current object only to those objects,
¢ to transfer the objects to another collection, and

e to remove all objects,

to which a certain predicate applies. The type type Pred func
predicates, i.e., Boolean functions with one parameter.
Here is the specification:

(any) stands for



package obj
type Predicator interface
Collector

// Returns the number of theose elements in x, for which p returns true.
NumPred (p Pred} wuint

// Returns NumPred({p) == Num({), 1i.e. returns true, 1ff p returns true
// on all elements in x (particularly if x has no elements).
All (p Pred} hoeol

// Returns true, iff there is an element in x, for which p returns true
// In that case the actual element of x is for b/!b the last/first such
// element, otherwise the actual element of x is the same as before.
FExPred (p Pred, b beool) bool

// Returns true, iff there is an element in x in direction f

// from the actual element of x, for which p returns true.

// In that case the actual element of x is for f/!f the

// next/previous such element, otherwise the actual element of x
// is the same as before.

StepPred (p Pred, f bool} boel

// Pre: y is a collector of elements of the same type as theose in =x.
// y congists exactly of those elements in x before

// (in their corder in x), for which p returns true.

// The actual element of x is undefined; x is unchanged.

Filter (y Collector, p Pred}

// Pre: See Filter.

// y contains exactly those elements in x (in their order in x),
// for which p returns true, and exactly those elements are

// removed from x. The actual elements of x and y are undefined.
Cut (y Collector, p Pred)}

// In x all elements, for which p returns true, are removed.

// If the actual element of x was one of them, now it is undefined.
ClrPred (p Pred)

}

func IsPredicator (a any} bool {
if a == nil { return false }

_s ok := a.(Predicator)

raturn ok

}

3.5.4 Sequences

The microuniverse contains in the package seq the abstract data type
Sequence, sequences of objects of atomic data types or of type Object.

The number of objects in the sequence can be arbitrarily large—within the limits of
available memory resources.

Sequences can be ordered, i.e., they contain their objects in the order given by an
ordering.

As an idea for the pointer to the actual object in the sequence, imagine the cursor
when editing a line of text.

Here is the specification of the sequences:



package seg
import . "uxU/obj"

type Segquence interface {

Egualer

Coder

Seeker // hence Collector, hence Clearer
Predicator

// Pre: x is not ordered.
// The order of the elements in x is reversed.
Reverse (}

// Pre: x is not ordered.
// If % centains at most cne element, nothing has happened.

// Otherwise, for b == true, the former last element of x is now the
first,
// for b == false, the former firgst element is now the Iast.

// The order of the other elements has not changed.
Rotate (b bool)
}

// Pre: a is atomic or of a type implementing Object.

// IFf x contains at most one element, nothing has happened.

// Returns otherwise a new empty seguence with pattern object a,
// i.e., for objects of the type of a.

fune New (a any)} Segquence { return new_(a) 1}

The implementation of the sequences relies on a representation as doubly linked list of
cells.
The cells are compounds of

e an object of the type of those object that are aufgehoben in the sequences
¢ and the forward and backward Verzeigerung in the form of two references to such
cells:

type cell struct |
any "content of the cell"
next, prev *cell

}

As this example shows, it is also possible in Go not to specify names for the components
in a compound, but only their type, whereby it is advisable to specify comments on their
semantics enclosed in quotation marks.

For a sequence the following information are held in a compound:

e the number of its objects, the number of the position of the actual cell;

¢ the references to the anchor cell and the actual cell; and

¢ the information, whether the sequence is ordered with respect to the ordering on the
objects.

type sequence struct |
num, pos wuint

anchor, actual *cell
ordered bool

}



The actual sequence consists of the objects that are stored in memory in the order of the
next-references from the first cell following the anchor.

The anchor carries the object passed to it in the constructor as a “pattern object” to
check that only objects of its type are inserted into the sequence. It also serves as a
marker “(sentinel)” for identifying the beginning and end of the list, and from it, the first
cell of the sequence is referenced with next and the last cell with prev.

The inclusion of such a marker node leads to a significant simplification of many
algorithms, because case distinctions are easy to make.

The whole construction is briefly referred to as a doubly linked ring list with anchor.

The inclusion of such a marker node leads to a significant simplification of many
algorithms, because case distinctions are easy to make.

The whole construction is briefly referred to as a doubly linked ring list with anchor.

With the redundant components num and pos in the representation, two invariants
are associated:

¢ The value of num must match the number of cells (excluding the anchor) in the
representation of the sequence

¢ and that of pos with the ordinal number of the actual cell in the list (following the
next references), from 0 for the first cell following the anchor to num for the anchor.

Their purpose is to make certain operations more efficient; for example, to determine
the number of objects in a sequence, the list does not have to be traversed to count the
cells, but the value of num is simply provided in direct access.

Of course, this is associated with the problem of ensuring the maintenance of the
invariants when developing the algorithms. This is easy in this example: With each
insertion or removal of an object into or from the sequence, num is incremented or
decremented.

In this implementation, in the constructor

funec new_(a any) *segquence {

x := new (seguence)

x.anchor = new(cell)

x.anchor.head = Clone (a}

x,anchor.next, x.anchor.prev = x,anchor, =x.anchor
x.actual = x.anchor

return x

}

after providing storage space for the compound sequence and the anchor cell anchor
(using new), the anchor is created as the only element of the ring list with a copy of the
passed object as content, which points to itself by reference. The anchor is marked as the
actual cell (no object is actual) and the invariants num and pos are implicitly set to their
zero values, i.e., to 0. Exactly this is the representation of an empty sequence.

We now demonstrate with two simple examples how typical pointer manipulations
are implemented.

An object is inserted into an unordered sequence by setting up a cell with a copy of it
as content, placing this cell before the actual cell, and incrementing num and pos by 11.



The situation before is the one from Fig. 3.1, where the actual line is marked with A and
the following one with B.

An object is inserted into an unordered sequence by setting up a cell with a copy of it
as content, placing this cell before the actual cell, and incrementing num and pos by 11.
The situation before is the one from Fig. 3.1, where the actual line is marked with A and

the following one with B.
next
prev >@>
™

The following method is used for this, which causes the newly created cell N to be
inserted before the cell that x. actual previously pointed to:

Fig. 3.1 Nis to be inserted before A

fune (x *sequence) insert (a any) {

n := new (cell)

n.any = Clone (a)

n.next, n.prev = x.actual, =x.actual.prev
x.actual.prev.next = n

x.actual.prev = n

It serves the construction of various other methods, including the method Ins:

fune (x *sequence) Ins (a any) {
x.check (a)
if x.ordered ({
x,actual = x.anchor.next
x.pos = 0
for x.actual !'= x.anchor /{
if Less (x.actual.any, a) {
x.actual = x.actual.next
Xx.pos++
} else {
if Less (a, x.actual.any) {
break
} else { // Eqg (a, x.actual.any), so a is already there
return

}
}
}
x.insert (a)
X, num++
x

.pos++
}

Afterwards, we have the situation from Fig. 3.2.



next next
prev prev
Fig. 3.2 N is inserted before vor A
The removal of an object from a sequence presupposes that the sequence is not

empty and that the object to be removed is the actual one. We again denote the actual
cell with A and the following one with B and start from the situation in Fig. 3.3.

next next

The actual cell is removed with the following method, which causes the cell that
x.actual previously pointed to, is no longer be contained in the sequence and

x.actual now points to the cell B, which x.actual.next previously pointed to

Fig. 3.3 Aisto be removed

fune (x *sequence) Del () any {
if x.,actual == x.ancheor |
return nil

}

¢ := xX,actual.next
x.actual.prev.next = c
c¢.prev = x.actual.prev
x.actual = ¢

X.,.num--—

return Clone (x.actual.any}
1

With this, we have the situation from Fig. 3.4, where B is now the actual cell and cell A
will eventually fall victim to Go’s garbage collection.

OF

next
©/.- next 9
——— prev

The implementation of various methods has a linear complexity in relation to the
number of objects in the processed sequence, because the list of cells must be traversed.
Also, in the sorting method, which is based on the basic idea of Quicksort, the sequence
must be traversed in each recursive step to produce the two parts with smaller or larger
objects than the comparison object (the first from the sequence).

At this point, let’s leave it at these introductory remarks about the implementation of
sequences; the implementation of the other methods will not be discussed here because
they are basically trivial.

Fig. 3.4 Ais deleted

3.5.5 Stacks



One of the most important structures in computer science is that of a stack: a sequence in
which objects are stored and from which they are retrieved according to the “LIFO
principle” (last in, first out).

The microuniverse contains in the package stk the abstract data type Stack,
unlimited stacks of objects of atomic data types or of type Object. Here is its interface:

package stk
import . "ugU/obij"™

type Stack interface { // Not to be used by concurrent processes !

// Returns true, iff there is no element on x.
Empty () beol

// Pre: a is atomic type or of a type implementing object.
// a is the element on top of x, the stack below a is x before,
Push (a any)

// Returns nil, if x is empty, otherwise a copy of
// the element on top of x. That element is removed,
// i.e. x now eguals the stack below x before.

Pop (} any

}

// Returns a new empty stack for objects of type a.
func New (a any) Stack { return new_{a) 1}

They are represented by sequences:

type stack struct { seqg.Seguence }
and the implementation of the constructor
fune new_(a any) *stack { return &stack { seg.New(a) } 1

and the methods are trivial: objects are only inserted and removed at the front (= “top”).

3.5.6 Buffers (Queues)

Equally significant are buffers (also known as queues): sequences into which objects are
inserted at the “FIFO principle” (first in, first out) only at the back and from which they
are only removed at the front.

The microuniverse contains in the packages buf and bbuf the two corresponding
abstract data types:

e Buffer, unlimited queues, and
e BoundedBuffer, limited buffers of predetermined (maximum) capacity

of objects of atomic data types or of the type Object.
The specification of the buffers is the interface



package buf
import . "uxU/obj"

type Buffer interface { // FIF0O-Queues

// Returns true, if there are no objects in x.
Empty () bool

// Returns the number of objects in x.
Num(} wuint

// a is inserted as last cbject into x.
Ins (a any)

// Returns the pattern object of x, if x.Empty().
// Returns otherwise the first object of x

// and that object is removed from x.

Get (} any

}

// Pre: a is atomic or of a type implementing Object.

// Returns a new empty gueue for objects of the type of a.
// a is the pattern object of thig buffer.

func New (a any)} Buffer { return new_(a) }

fune NewS (a any) Buffer { return newS(a} }

There are two implementations of buffers, one with sequences and one with slices. Both
are trivial: When calling Ins(a), a is inserted after the last object of the collection, when
calling Get (), the first object is delivered and removed. The method Num does not
appear in the implementation with sequences, it is taken over by the used package seq
because the data type Sequence implements the type collector—a beautiful
example of my thesis of “inheritance at the level of specifications” (see Sect. 2.2.1.2).

Exactly this is also shown in the specification of the limited buffers, which “inherits”
all methods from Buf fer:

package bbuf
import (. "pU/cbi"™; "aU/buf"}

type BoundedBuffer interface {

buf.Buffer

// Returns true, 1iff x isg filled up to its capacity.

// ! x.Full() is a precondition for a call of x.Ins(a).
Full{(} boecl

}

// Pre: a is atomic or of a type implementing Object.
// Returns an empty buffer of capacity n for objects of the type of a.
func New (a any, n wuint) BoundedBuffer { return new_{(a,n}) }

For them too, there are two implementations: one in the “classic” form of a ring buffer in
the form of a circular field, and another one that relies on the buffers. Here is the
representation of the first:



type boundedBuffer struct {
any "pattern object"
cap, num, in, out wuint
content anyStream

Of the second, we show the complete implementation with reference to the above
remark:

type boundedBufferl struct {
any "pattern object"”
cap wuint
buf.Buffer
}

fune newl (a any, n uint} BoundedBuffer {

% := new(boundedBufferl)
x.any = Clone (a)

X.cap = n

x.Buffer = buf.New (a)

return x

}

fune (x *boundedBufferl) Full () beool /{
return x.Num(} == =xz.cap - 1
1

3.5.7 Priority Queues

Under priority queues, are understood, into which objects of different priority are lined
up and from which they are removed in descending order of priority.

The priority of the objects is defined by an order on them: smaller objects have higher
priority. Of course, this assumes that these objects implement Comparer.

The microuniverse contains in the packages pqu and bpqu again two abstract data
types:
e PrioQueue, unlimited priority queues, and
e BoundedPrioQueue, limited priority queues of predetermined (maximum) capacity.
package pgu
import (. "upU/cbi"™; "pU/buf"}

type PrioQueue interface {

buf.Buffer
// Objects are inserted due to their priority, given
// by their order: larger objects have higher priority.
}

// Pre: a is atomic or of a type implementing Object.
func New (a any)} PrioQueue { return new_(a) }

and the limited priority queues through



package bpgu
impert (. "pU/cbi™; "mU/pgu™)

type BoundedPrioQueue interface {
pgqu.PriocQueue // priority gqueue with bounded capacity

// Returns true, 1iff x isg filled up to its capacity.
Full{) bool
}

// Pre: a is atomic or of a type implementing Object; m > 0.
// Returns a new empty priority queue for objects of type a
// with maximal capacity m.
func New (a any, m uint) BoundedPricQueue { return new_{a,m) }

The priority queues are represented as a heaps, almost perfectly balanced binary trees,
whose lowest leaf layer is always filled from the left and which fulfill the heap invariant:

Every node has the property that the object in it is greater than or equal to the
objects in the root nodes of its two subtrees. The root of such a tree contains a largest,
i.e., highest priority, object.

The binary trees are implemented in a slice, where the positions of the child or parent
nodes are found by a simple index calculation:

The root has the index 1, the left or right child node of a parent node with the index i
has the index 2i or 27 + 1; the parent node of a node with the index i has the index i/2.

The representation of the priority queues and the implementation of the constructor
look like this:

package pgu
import . "uU/obj"

type prioQueue struct {
heap []lany // heap[0] = pattern object
}

func new_(a any)} PrioQueue {
if a == nil { return nil }
CheckAtomicQOrObject (a})
X := new(priocQueue}
x.heap = make([]any, 1}
x.heap[0] = Clone({a}
return x

Insertion is done by appending to the last leaf of the lowest layer or—if it is full—
insertion as the first object of the layer below with subsequent “rising” by continuous
exchange with the node above, as long as the heap invariant is restored.

As an example, we show the insertion of 10 into the heap from Fig. 3.5.



Fig. 3.5 Heap with 12 numbers
The 10 is placed under the 5 on the right and then 5 and 10 are first swapped and
then 10 and 7. This restores the heap invariant and results in the heap in Fig. 3.6.

Fig. 3.6 Heap with 13 numbers

Here is the implementation of the insertion method:

fune (x *prioQueue) Ins {(a any) {
CheckTypeEqg (a, x.heap[0])}

x,.heap = append (x.heap, Clone{a))

n := uint{len (x.heap))

i = n = 1

for i > 1 && Less (x.heapl[i/2], a) {
x.heap[i] = x.heap[i/2]
i /= 2

}

x.heap[i] = Clone{a}

}

When delivering the largest object from the root of the tree, it is removed by replacing
the root node with the last node in the lowest leaf layer and this node is deleted from the
slice. Then the new root node descends as long as it continues to exchange with the
larger of the two nodes below until the heap invariant is restored.

In our example in Fig. 3.6, this results in the heap in Fig. 3.7.

Here is the corresponding implementation:



func
if x.Empty () {

a

if x.,Num (}

KoK D K-

{x *pricQueue) Get () any {

return x.heap [0]
:= x.heap[l]
== 1 {
x.heap = x.heap[:1]

return a

.heap[l] = x.heap[x.Num(}]

:= uint (len (x.heap})
.heap = x.heap[:n-1]
.descend (1)

return a

}

The “descending” of the object from the root to the appropriate place is accomplished
with the following recursive method:

func
if x.Empty () {

}

a

if x.Num()

}
x
n
x
X

(x *prioQueue} Get () any {
return x.heap [0]
:= x.heap[l]

== 1 -

x,heap = x.heap[:1]

return a

.heap[l] = x.heap[x.Num/(} ]

:= uint {len{x,heap))
.heap = x.heap[:n-1]
.descend (1)

raturn a

}

Both algorithms have the complexity O(logsn) for n = number of objects in the queue
due to the guaranteed near-perfect balance of the binary trees.

3.5.8 Sets

By sets we mean here fundamentally ordered sets.
Of course, unlike sequences, it is part of the concept that the objects in a set are
pairwise different from each other (for elements x and sets M, eitherz € M orxz ¢ M
applies, i.e., in particular, for example, {z, x} = {x}). The microuniverse contains for

ordered sets the package set, which provides the abstract data type Set of atomic
variables or objects of the type Object:



package set
import . "uxU/obj"

type Set interface {

Equaler
Ceollector

// My work is so secret, that even I don’t know what I'm doing.
Write (x0, =x1, y, dy wuint, f func ({(any} string)
Writel (f fune (any} string)

}

// Pre: a is atomic or of a type implementing Object.
// Returns a new empty set for objects of the type of a.
fune New (a any) Set { return new_(a) }

Thus, all methods of the type Collector (see Sect. 3.5.1) are available for accessing
objects of the type Sequence.

For their implementation, it makes sense to construct algorithms with the most
optimal complexity possible when accessing the sets. Of course, search trees are suitable
for this, i.e., binary trees.

However, such trees can also—in the worst case, for example, when many elements
are inserted into an empty set in an ordered sequence—lead to completely linear
sequences, which counteracts their purpose.

Therefore, it must be ensured that all their nodes always have as equal as possible left
and right subtrees. A good criterion for “as equal as possible” is the concept of balance:

A node in a tree is called

e balanced, if it either has no subtrees or the height difference between its left and right
subtrees is at most 1;

e left-heavy, if its left subtree is higher than its right; and

e right-heavy, if its right subtree is higher than its left.

To this end, we define the type Balance:

type balance byte; const (
leftweighty = balance (iota)
balanced
rightweighty

)

This concept—the AVL trees—was introduced by Adelson and Velskij in their work [2].
They are defined as follows:

e The empty tree is an AVL tree.
e [fL and R are AVL trees that differ by at most 1 in height, a tree with a root and with L
as the left and R as the right subtree is an AVL tree.

Adelson and Velskij developed algorithms that maintain the AVL property when
inserting objects into the trees and when removing objects. Because these algorithms are
now the standard for such constructions, they are also used in the implementation of the
set package.

The type of nodes in AVL trees is thus clear:



binary trees:
type node struct ({
any "content of the ncde"
left, right *ncde

balance
1

Thus, the representation of the data type looks like this:

type set struct {
any "pattern object"

anchor, actual *node
uint "number of objects in the set"

}

The algorithms that maintain the AVL invariant when accessing an AVL tree are

e when inserting an object into the tree, rotations and
e when removing an object from the tree, functions for balancing.

We first deal with the insertion and present the necessary rotation algorithms using
simple examples.
If a 0 is inserted into the AVL tree from Fig. 3.7,

2

Fig. 3.7 AVL-Baum mit zwei Zahlen

the tree from Fig. 3.8 is created, which violates the AVL invariant.

Fig. 3.8 Tree with three numbers

But with a simple right rotation “around node 2” it can be restored again (see

Fig. 3.9):
(1)
© 2

Fig. 3.9 AVL tree with mit three numbers



A more complex example:

Fig. 3.10 AVL tree with 11 numbers

Inserting 0 into the AVL tree from Fig. 3.10 initially also results in a tree that is not an
AVL tree, because the height difference between nodes 4 and 11 is greater than 1. In this
case too, a right rotation helps, namely, around node 4, because its left subnode 2 is now
left-heavy. However, the node 6 must be “re-hung” because node 9 is now the right
subnode of 4—for this, the pointer to the left subnode of 9 becomes free. So the AVL tree
from Fig. 3.11 is created.

Fig. 3.11 AVL tree with 12 numbers

The implementation of the right rotation provides a pointer to the left child node y of

n which now moves to the position of n and gives its right child node as the left child
node to n:



// Pre: *x and (*x).left are not empty, *x is leftweighty,
S/ (*x).left is i) leftweighty or 1ii) balanced.

s

// i) *x and (*x).right are balanced,

S/ 1ii) #*x is rightweighty, (*x).right is leftweighty.

funec rotR (x *pointer) {

y = (*x).left
(*x).left = (*y).right
{(*y).right = *=x
*x =y
if (*x).balance == leftweighty { // case i)
(*x} .balance = balanced
(*x) .right.balance = balanced
} else { // case ii)
(*x) .balance = rightweighty
(*x) .right .balance = leftweighty

}
}

In our example, the insertion of 0, case i) applies.

The left rotation rotL () isdual to rotR () in the sense that it arises from rotR ()
by swapping left and right.

It becomes more difficult when an 8 is inserted into the tree from Fig. 3.10. This
initially results in the tree from Fig. 3.12—also not an AVL tree, because as in the
previous case the height difference between the nodes 4 and 11 is greater than 1.

Fig. 3.12 Baum mit 12 Zahlen

A simple right rotation around 4 as in the previous case does not help here, because
no AVL tree would result, because then node 4 would have a left subtree of height 2 and a
right one of height 4. In this case, the “repair” consists instead of two rotations: a left
rotation around 4 followed by a right rotation around 6. The result of this (double) left-
right rotation around 4 and 6 is the AVL tree from Fig. 3.13.



Fig. 3.13 AVL tree with 12 numbers

The implementation of this left-right rotation provides a pointer to the right child
node z of the left child node y of n, which has now moved to the position of n, whereby z
gives its left child node to y as a right child node, takes over y and gives its right child

node to n as a left child node:

// Pre: *x, (*x).left and (*x).left.right are not empty,
// (*x) 1is not balanced,
// (*x) is leftweighty, (*x).left is rightweighty.
// *x is balanced.
func rotLR (x *pointer) {

y 1= (*x).left

z := y.right

y.right = z.left

z.left = y

{(*x).left = z.right

z.right = *x

*y = z

switeh (*x).balance {

case leftweighty:

(*x) .left.balance = balanced

(*x) .right .balance = rightweighty
case balanced:

(*x).left.balance = balanced

(*x) .right .balance = balanced

case rightweighty:
{(*x).left.balance = leftweighty
(*x) .right .balance = balanced

}

(*x} .balance = balanced

We use the type pointer for pointers to nodes
type pointer = *node

only to avoid something like * (*node).

The right-left rotation rotRL () is again dual to rotLRL () in the above sense.
We now come to the implementation of the method Ins. If the set is empty, the result

is a set of only one element; otherwise



funec (x *set) Ins (a any}) {
CheckTypeEqg (x.any, a)
if x.ancheor == nil {
x.anchor = newNode (a)
x.,actual = x.anchor
Xx.uint = 1

} ealse |
increased := false
n := ins (& (x.anchor}, a, &increased}
if n != nil {
X.actual = n

x.uint++

}

The recursive function ins called in the process

fune ins (x *pointer, a any, increased *bool) pointer {

returns the pointer to the inserted node.
The variable increased—initially false—serves the purpose of passing on the
information whether the height of a node has increased, each time “one level” further up,

so that there—depending on the balance—it can be decided whether a rotation is
necessary, and if so, which one.

It is left as an exercise to convince oneself that

¢ the cases marked with impossible cannot occur and
¢ in the course of calling an Ins method at most one rotation is necessary.

To remove an object from a set, we consider the tree from Fig. 3.14, from which the
10 is to be removed.

Fig. 3.14 AVL tree with 12 numbers

The removal of 10 using the method common with binary trees, replacing it with the
largest object from the left subtree or the smallest from the right, giving preference to

the one of the two possibilities where the subtree has the greater height, leads to the tree
in Fig. 3.15.



But in this case, the AVL invariant is violated because the left subtree under 8 has a
height that is 2 greater than the right.

Fig. 3.15 Baum mit 11 Zahlen

In this simple case, we only need a left-right rotation around 3 and 5, which leads to
the AVL tree in Fig. 3.16.

Fig. 3.16 AVL-Baum mit 11 Zahlen

This example was simple insofar as only one rotation was needed. With larger trees,
restoring the AVL invariant can become considerably more complex, as several rotations
may be necessary and additional measures may need to be taken to balance any resulting
imbalances.

We now explain the implementation of the Del method. First, it must be checked
whether the object to be removed was the largest in the set. If that was the case, the
actual object is now the next smaller one, otherwise the next larger one. After that, the
object to be removed is removed using the method common with binary trees.



Del ()}
nil

func (x *zet)
if x.anchor
return nil

}

any {
{

act := x.,actual
toDelete := x.actual.any
x.Step (true) // to set

/7

var a any

if act == x.actual { //
a = nil s
P
s
} else {
a = Clone (toDelete)

1
decreased false
if del (& (x.anchor),

if x.uint
x.actual
else {
%x.Jump

|
nil
}
{true)
1

else { // the
if x.Ex (a) {

node

// th
/7 Ta
b2
iy It

}

}
}
x,.uint -
1
return Clone

{act.any)

If this destroys the AVL invariant, it
function del:

the next largest object,

toDelete,

while deleting,

"actual"™ to the node containing

iff such exists

the node to be deleted is the node with
the largest object in x, so Yactual"™
musgt be set to the node containing

the next smallest object, see below

&decreased) { // the object

to be deleted was found and deleted
and the AVL-invariant was secured
the node to be deleted

was the last right node of x

see above

x 1s now empty

s
s
/7
/7
/7
s
// "actual™ is the last right node
with the next largest object exists
us the abeove copy-action to "a:
ctual”™ might have been rotated off
with this trick

is found again.

must be restored. This is done with the recursive



funec del (x *pointer, a any, decreased *bool) bool {

oneless := false

if *x == nil {
return oneless

}

if Less (a, (*x).any) {
onelLess = del (&((*x).left), a, decreased)}
reball (x, decreased}

} else if Less ((*x).any, a) {
oneless = del (&((*x}.right), a, decreased)
rebalR (%, decreased)

} alse { // found node to remove

if (*x).right == nil {
*decreased, coneless = true, true
*x = (*x).,left
}] alse if (*x).left == nil /{
*decgreased, oneless = true, true
*yx = (*x).right
} else if (*x).balance == leftweighty {

1iftL (&{{(*x).left}), *x, decreased, &onelLess)
reball (x, decreased)
} alse {
1iftR (&((*x).right}, *x, decreased, &oneless)
rebalR (x, decreased)
}
1

raturn onelLess

This function uses four other functions: rebalR for balancing, if the height difference
between two nodes has become greater than 1 and 11 ftR for “lifting” a node, if one of

its parent nodes was lifted and therefore this place above it has become free, as well as
the dual functions reball and 1iftL.

Here are their implementations:

func rebalR (x *pointer, decreased *bool) {
if *decreased {
switch (*x)}.balance {
case rightweighty:
(*x) .balance = balanced
case balanced:
(*x) .balance = leftweighty
*decreased = false
case leftweighty:
if (*x).left.balance == rightweighty {
rotLR (x)
} elsa {
rotR (x)}
if (*x)}.balance == rightweighty {
*decreased = false

}

and



fune liftR {(x *pointer, y pointer, decreased, oneless *bool) {

if (*x}.left == nil |
y.any = Clcone {((*x).any)}
*decreased, *oneless = true, true
*x = (*x).right

1} else |
1iftR (&((*x).left), y, decreased, oneless)
reball (x, decreased}

The following animation program shows (using the undocumented function Write) the

internal representation of sets in the form of AVL trees: It shows the effects of rotation
operations when inserting and removing elements in binary search trees to restore the
AVL invariant. It is used (for space reasons) for two-digit numbers.

package main
import ("gU/kbd"; "uU/str"; "uU/col™; "uU/mode"
"wU/scr"; "uU/errh"™; "pU/N"; "uU/set")

func main () {

scr.New (0, 0, mode.XGA); defer scr.Fin ()

¢F, ¢B := ¢gol.Black({), col.White()

scr.ScrCeolours (cF, cB)

scr.Cls ()

scr.Colours ({(cF, cB}

N.Ceolours (cF, cB)

errh.Hint ("help: F17)

h := []stringe{"™ Input natural number n
"and to insert: complete input with Enter"
" remove: complete input with Tab "

W W

"terminate program: Esc "
help := make ([]string, len (h)}
for i, ¢ := range (h)}) { help[i] = str.Latl (c) 1}
N.SetWd (2)
% := set.New (uint (0))
loop: for |
ser.Clr (0, 0, scr.NColumns (), scr.NLines(} - 1)

%x.Write (0, scr.wd(), scr.Htl1() / 2, scr.Ht() / 8,
fune (a any} string {
return N, StringFmt (a.(uint), 2, true}
1
N.Colours (cF, cB}
k := uint (0); N.Edit (&k, 0, 1}
switch ¢, _ := kbd.LastCommand(); < {
case kbd.Esc:
break loop
case kbd.Help:
errh.Help (help}
case kbd.Enter:
x.Ins (k)
case kbd.Tab:
if x.Ex (k) { x.Del{() }
}

The implementations of the so far unmentioned methods Empty, Clr, Of fc, Num, Jump,
Eoc, Get, Put, Trav, Join, Ordered, and Sort are trivial. Surely you can implement
these methods without looking into the source codes of the microuniverse.



Also, the recursive methods Ex and ExGeqg are—with a view to the recursive
structure of the search trees—easy to implement.

It is recommended to implement these methods as an exercise without looking into
the microuniverse. The somewhat more complicated method Step remains, but it is not
explained here because it is algorithmically uninteresting and rather belongs to the
category of “fiddling around”.

Why AVL trees are particularly well suited as search trees is clarified by the
examination of a special type of AVL trees—the Fibonacci trees—and by some
theoretical considerations in the following sections.

3.5.8.1 Fibonacci Trees
Fibonacci trees are recursively defined as follows:

empty tree fiirn < 0
F(n) = { treewithroot, F(n — 2) asleft
and F(n — 1) asright subtree forn > 0

The recurrence equation for the number of nodes of these trees in relation to the height
n is therefore

1 fiirn = 0
I(n) =142 firn =1 (1)
1+Il(n—2)+Il(n—1) firn>2.
These numbers are called Leonardo numbers; they strongly resemble the Fibonacci

numbers in their structure.
If we divide the third equation of (1) by [(n — 1) and set

a, = lé’j) fiirn > 1 (2)

we get

1
+¢e, withe, =

=1 _.
L (o — 1)

With a0 = 0 limit formation yields
lim, ;00 anp = a, (3)

V5

where a = 3 + Y ~ 1,618034 is the positive solution of the quadratic equation

z? = 1 + z of the golden section.
(2) and (3) provide asymptotically, i.e., for larger n,

In+1)=~a-l(n),



therefore due to [(0) = 1 for the node number I(n) depending on the height n
asymptotically

I(n) = a™. (4)

For the inversion, i.e., the calculation of the height n for a given node number k, we obtain
by logarithmizing

log, k ~log, (a") = n- log, a,
consequently

| k
n o~ 0g»o

~ = 1,44 log, k
log, a
1

log, 1,618034
By induction, it is easy to prove that Fibonacci trees

with 1,44 ~

e are AVL trees (because F(n) has the height n) and that they

e have a minimum number of nodes for a given height (if a node is removed in the left or
right subtree, the height of the tree decreases by 1—in the first case after a simple left
rotation).

They are therefore in this sense the “worst possible” AVL trees, in that every AVL tree
of a given height has at least as many nodes as the Fibonacci tree of the same height—in
other words, an AVL tree cannot be taller than a Fibonacci tree with the same number of
nodes.

According to the considerations from the previous section, the height of an AVL tree in
the worst case is only about 44% greater than that of a best possible balanced tree with the
same number of nodes, i.e., in particular, logarithmic search time is guaranteed with them.

3.5.8.2 Explicit Representation of the Leonardo Numbers
The Leonardo numbers (number of nodes in Fibonacci trees) are recursively defined by

I(n) 0 forn <0

n) = .
1+l(n—2)+Il(n—1) forn>0 (1)

For n < 0 the sequence

0,1,2,4,7,12,20,33, 54, 88, 143, 232, 376, - - -

results.
By using two accumulators, this can also be formulated end-recursively:



1(0) =0
In) =U'(n—-1,1,0) fiirn >0
a forn=10

ithl’ b) =
with1'(n, a, b) {l'(n—1,1+a+baa) forn > 0.

With the formal power series (see Sect. 3.5.8.3)

F(X)=S In)X" =X +2X2 +4X3+7X* +12X° + ...
n=0
and
1 o0
X) = =) X"=14X+X2+X34+X*+--.
q(X) 1- X HZ; + X+ + + +

we obtain by substituting (1)

XFX) + XEF(X) +a(X) = 3 UmX"H 4 2 U(m)X" 4 3 X7
= io: (l(n— +1l(n—2)+ 1)X”
n=0
14 3 )X =1+ f(X)

n=0

resolved for f(X):

f(X) = (1—X—5?2)(1—X) :

(2)

(3)

The factorization of 1 — X — X2 = (1 — aX)(1 — bX) yields the system of equations

at+b=1
ab= -1
with the solutions
1 1
a = — + ﬁ’ b —_ — ﬁ'
2 2 2 2

The approach to the partial fraction decomposition of (3)

1 — A B ¢
1-X-X*)(1-X) = 1 _gX + 1-bX * 1-X

(3.1)

(4)

(5)

(6)



yields the equation
AQ-bX)1-X)+B(1—-aX)(1-X)+C(1 —aX)(1-0bX) =1,

and from this with (4) by comparing coefficients the linear system of equation (7)

A+ B+C=1
(1+b)A+(14+a) B+C=0 ;
bA+a B—C=0 )
A+ B+C=1
with the solutions
2 ~ 2
A=1+g\/5, le—g\/g, C=-1. (8)

Substituting (6) into (3) in conjunction with the general geometric power series

1 > n n
l—cX:nz_%CX

gives

f(X) = ﬁX*' 1—B;JXX+ 1—CXX

= A Z a X ntl _,_32 pr x il +CZ xntl
n=0 n=0 n=0

I
8

(Aa™ + Bb" + C) X"

3
Il
o

I
8

(Aa™ ' + Bt + C)X".

S
Il
_

After (2) we obtain by comparing coefficients for the Leonardo numbers

I(n) = Aa™ '+ Bb" ! —1 fiirn > 0.

A
The third equation of the system (7) yields — + 5 1 = 0, therefore this result is also
a

correct forn = 0.
By substituting (5) and (8), we obtain the explicit representation of the Leonardo
numbers



I(n) = (1 + %/5) (; - ?)nl + (1 — §¢E> (; - ég)nl ~1

for all natural numbers n.

3.5.8.3 Formal Power Series

The manipulations of the power series in the previous section are justified by the
following considerations.
For sets A and B, let A® denote the set of mappings from B to A. Let X be an

indeterminate (a symbol).
We consider the set M = N2{X} = N{X}. It holds H ~ N, because the mapping

f:N— H, definedby f(n)(X)=n,
is bijective; with the notation X" = f(n) € H is
H={X"|neN}
H forms with respect to the multiplication defined by
xn. xk — xntk

with 1 = XY as the neutral element a commutative semigroup, which can be easily
verified by calculation; fis furthermore an isomorphism due to f(0) = X%=1and
fln+k) = X0 = X" X* = f(n)- f(k).

For a commutative ring 4, let
A[[X]] = A",
Every p € A[[X]] can then be uniquely written in the form

p= ZanX” =ag+a; X +a,X?+--- mit a, =pX®?)
neN
because p can be uniquely recovered from the term > a,, X" by the definition
neN

p(X") = an. By

Yoapn X"+ > by X" = > e X"® mit cp=ay+by

neN neN neN
und ) apX": D bpX" = > ¢, X" mit ¢, =) imitsi,k € N,i+k = na;bx
neN neN neN

an addition and a multiplication on A[[X]] are defined, with respect to which A[[X]] forms
a commutative ring (proof by calculation).
A[[X]] is called the ring of formal power series over A.



By induction, it can be shown that A[[x]] is free of zero divisors if A is; for a field 4, the
quotient ring of formal power series (the ring of fractions of formal power series) is
therefore also a field, i.e., one can calculate with these fractions, e.g., over Q or R—just
like with numbers.

Finally, it should be noted that this construction includes that of a polynomial ring
A[X] in an indeterminate X over a ring A:

Replace H = N with N¥Dwhere A®) denotes for a ring A the set of mappings
from B to A that are almost everywhere 0, i.e., for which f(b) # 0 only holds for finitely
many b € B.

The fractionally rational functions over R thus form a subfield of the quotient field of
the formal power series R[[X]].

3.5.9 Persistent Sequences (Sequential Files)

Under persistent objects, we understand such objects to be that are permanently stored
on a data carrier, i.e., when a program that uses them is called, they have those values
that they had at the end of the last program run.

Their specification differs from that of the collections only in that they have a
“handle” with which they can be found again: a uniquely identifiable name in the
file system.

For this, we need the following interface, which is also located in the file
persistor.go in the package ob7:

package cobj

type Persistor interface |
// An object "is defined with a name" means, that it is stored
// 1in a persistent file with that name as "handle" in the filesystem.

// Pre: n is a valid name in the filesystem and there exists no object
// of a type different from the type of x, but defined with name n.
// x is now defined with name n, i.e. it is the object, that is stored
/7 in a file with that name, if there exists such; otherwise it is
empty.
Name (n string)

// x is defined with that name.
// Another file with that name is now destroyed.
Rename (n string)

// Pre: x is defined with a name.

// x is secured in the file system.
Fin ()

}

func IsPersistor (a any)}) bool {
if a == nil { return false }
_+» 0k = a.(Persistor)
raturn ok

}

Persistent sequences are thus sequential files.
The microuniverse contains for persistent sequences of atomic variables or objects of
type Object the package pseq, which provides the corresponding abstract data type:



package pseq
import . "ugU/obij"

type PersistentSequence interface |

Seeker // hence Collector
Persistor

}

// Pre: a is atomic or of a type implementing Egualer and Coder.
// Returns a new empty persistent seguence for objects of the type of a

func New (a any) PersistentSequence { return new_(a) 1}

func Length (s string) wuwint { return length({s) }

Their implementation consists of sequential files of byte sequences of the codelength of
the objects. The length of such a file is the product of the codelength of an object and the
number of objects.

The representation of a persistent sequence

type persistentSequence struct {
name, tmpName string
ordered bool
any "pattern object™
object any
file internal.File
owner, group uint
size, pos, num uinté6d
buf, bufl Stream

requires the internal abstract data type

package internal
import . "uU/obj"

type File interface {

Fin ()

Name (n string)

Rename (n string)

Empty (} bool

Clr ()

Length () uinté6d

Seek (p uinté6d)

Position (} wuint6d

Read (s Stream) (int, error)
Write (s Stream) (int, error}

funec DirectLength (n string} uint6d4 { return directLength (n} 1}
fune Erase (n string} { erase (n) }

func New () File { return new_(} }
which encapsulates the accesses into the file system.

Behind the implementation of this data type, the classic concept of accessing
sequential files shines through, as realized by Niklaus Wirth in Pascal (with a view to the



historical situation: tapes as peripheral data carriers) with the operations Reset,
Rewrite, Read, Write, Eof, and Seek.

The implementations of the methods are not explained here because there are no
interesting algorithms behind them. For the same reasons as with the sequences (see
end of Sect. 3.5.4, many algorithms here also have linear complexity.

3.5.10 Persistent Index Sets

Consistently, this section should deal with persistent sets. For this, there is a good data
type: that of the B-trees of Bayer and McCreight (see [4]).

Instead, we present a concept here that carries much further: the persistent index sets.
These are persistent sets, on whose elements can be accessed directly via a key.

We require that the objects in the persistent sets implement the type Object and
that the keys either have an atomic type with an order relation or implement the types
Equaler and Comparer.

The function that assigns a key to an object must be injective, i.e., different objects
must have different keys, so that the search for an object via a key provides a unique
result. We call this “key function” ITndex (hence the name for the data type).

Objects that have such keys, we call Indexer. They implement the interface

package obj
type Indexer interface

Object
Editor

Index (} Func

func IsIndexer {(a any) bool |{
if a2 == nil { return false }
_r 0k := a.(Indexer}
return ok

}

in the file indexer.go in the package obj.
Here are some examples: The index

e of a person in an address directory with various information is the pair consisting of
the person’s name and date of birth (where, if necessary, identical names must be
differentiated by nicknames);

e of abook in a book directory is the tuple of title and author[s]; and

e of a page in a diary is the calendar date of the page.

The microuniverse contains for the persistent ordered sets of objects of type Object
with index the package piset, defined by the interface:



package piset
import . "ugU/obij"

type PersistentIndexedSet interface { // persistent ordered sets
// of objects, that have an index
// by which they are ordered.
Collector
Persistor
Operate ()
}

// Returns a new empty persistent indexed set
// Ffor objects of the type of o.
func New (¢ Indexer) PersistentIndexedSet { return new_ (p) }

These sequential files (of constant size byte sequences) are equipped with index trees
and a position management system.

The basic idea in the implementation is the management of the keys to the objects
together with their positions in the file in a (non-persistent) set set . Set. This has a
major advantage:

e The position of an object can be quickly found via its key (see last sentence in
Sect. 3.5.8.1), where the search takes place in memory,
¢ and thus direct access to the object in the file is possible.

The pairs of key and associated file positions form a data type that is housed in a
subpackage of piset:

package pair
import . "uU/obj"

type Pair interface {
Equaler
Comparer
Pos ()} wint

Index ()} any

func New (a any, n uint}) Pair { return new_(a,n) }

The representation of such a pair and the implementation of the constructor is simple:

package pair
import . "uU/obj"

type pair struct {
any "index"
uint "position™

}

func new_(a any, n uint) Pair {

x := naw{pair)
X.any = Clone(a)
Xx.uint = n

return x

With this, we have the representation of the data type:



type persistentIndexedSet struct

The type Func stands for

type Func func

{

Object "pattern object"

any "index of Object"

pseg.PersistentSequence

Func "index function"

set.Set "pairs of index and position
in the file"

buf.Buffer "free positions in the file

"file"

(any} any

value-delivering functions with one argument.
The constructor is implemented as follows:

fune new_ (o Obiject,
X = new

f Func)
{persistentIndexedSet)

PersistentIndexedSet {

x.0bject = o.Clone(}.(Object)

x.any = f (o)

x.PersistentSequence = pseqg.New (x.0Object}
x.Func = f

x.5et = set.New (pair (x.any, 0}}

x.Buffer = buf.New (uint (0))

return x

During the course of a program in which piset is imported, the underlying file
pseq.PersistentSequence, if it is not empty, is traversed at the beginning, with the

following happening:

¢ [f the object at the relevant position in the file is empty, the actual position is inserted

into the buffer of free positions;

e otherwise, by applying the key function Func passed in the constructor, the key is
calculated and inserted into the key set set.Set together with the current

position.

This happens when identifying the file by its name:



funec (x *persistentIndexedSet) Name (s string) {
if str.Empty (s) { return }
x.PersistentSequence.Name (s + ".seq")
x.8%et.Clr ()
x.Buffer = buf.New (uint {(0})}
if x.PersistentSequence.Empty () { returmn |}
for i := uint(0); 1 < x.PersistentSequence.Num(}; i++ |
%x.PersistentSequence. Seek (i)
%x.0bject = x.PersistentSequence.Get (} . (Object}
if x.0bject.Empty (} {
x.Buffer.Ins (i)
} else {
Xx.S8et.Ins (internal .New (x.Func (x.0Object), i)}
}
1
x.Jump (false)
}

The disadvantage that this delay brings with it is more than offset by the aforementioned
advantage.

An object is inserted into the file by inserting its key and its position in the file into
set.Set. If the buffer buf . Buffer of free positions is not empty, the object encoded

as a byte sequence is written into the file from the position read from the buffer,
otherwise it is appended to the end of the file.
Here is the implementation of the method Ins:

funec (x *persistentIndexedSet) Ins (a any} {
x.check (a)
if x.Ex (a) || a.(0Object).Empty() { return )}
var n uint
if x.Buffer.,.Empty (} {
n = x.PersistentSegquence.Num ()
} ealse |
n = x.Buffer.Get (} . (uint)

.PersistentSequence. Seek (n)
.PersistentSequence.Put (a)
.Set.Ins (pair (xz.Func (a}, n)}
.PersistentSequence.Seek (n)

L e

An object is removed by fetching (and thereby removing) the pair of its key and its
position in the file from set . Set, then a byte sequence representing an empty object is
placed from its file position, and finally this position is inserted into the buffer.

Here is the implementation of the Del method:



fune (x *persistentIndexedSet) Del () any {
if x.Set.Empty (} {
x.0bject.Clr (}
return x.0bject
}
n := x.8et.Get(}.(internal.Pair).Pos ()}
x.PersistentSequence. Seek (n)
x.0bject = x.PersistentSegquence.Get (). (0Object}
object := x.0Object.Clone(}. {0Object)
object.Clr ()
x.PersistentSequence.Put (object}
x.Buffer.Ins (n)
if ! x.Set.Empty () {
n := x.8%et.Get{).{internal .Pair) .Pos ()
x.PersistentSegquence. Seek (n)
1

return x.0bject.Clone (}

and here is the implementation of the Get method for reading the actual object:

func (x *persistentIndexedSet) Get () any {
if x.Set.Empty (} {
x.0bject.Clr (}
return x.0Object

% Xx.8et.Get (). (internal .Pair}

:= p.Pos ()

x.PersistentSequence. Seek (n)

raturn x.PersistentSeguence.Get (}.{(Object}

}

o B o I
I

The implementation of the other methods is trivial; they ultimately always rely on the
same principle of directly accessing the objects in the file via the key set set.Set.

3.5.11 Graphs
Graphs play an important role for many applications; typical examples are

e subway or bus networks with stations or stops as nodes and
¢ the connections between them as edges.

or

e maps with cities as nodes and
¢ the roads between them as edges.

Figure 3.17 shows an example.
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Fig. 3.17 Example of a graph

The microuniverse contains in the package gra the abstract data type Graph, graphs
of objects of atomic data types or of type Object

The number of nodes in graphs can be arbitrarily large—within the available
memory resources—the number of edges is also not limited.

The topic “graph algorithms” is so comprehensive that it fills books.

Some of them are implemented in the graph package, e.g.:

e
@

?

¢ for searching for the shortest connection between two nodes (main purpose of
navigation devices);

e for searching for circles (chains of connections with the same starting and ending
node), thus also for investigating whether there are any circles in a graph at all;

e for searching for Euler paths (chains of connections that reach each node exactly
once);

e for searching for minimal spanning trees indexspanning tree (subgraphs from all
corners in the form of a tree).

The package is used in the projects:

¢ Robi, the robot (Chap. 5).
e Railway (Chap. 14).



e Berlin U- and S-Bahn (Chap. 16).
The specification is quite long for obvious reasons:



package gra
import ( . "aU/obj"™ "mU/adj"™ "uU/pseg")

type Demo byte // for demonstration purposes

const (Depth = Demo(iota}); Cycle; Euler; TopSort;
ConnComp; Breadth; SpanTree; nDemos)

type Demoset [nDemos]bool

// Sets of vertices with an irreflexive relation:

// Two vertices are related, i1ff they are connected by an edge, where
there

// are no loops (i.e. no vertex is connected with itself by an edge).

// If the relation 1s symmetric, the graph 1is called "undirected",

// if it is strict, "directed” (i.e. all edges have a direction).

/’/

// The edges have a number of type uint as value ("weight");

// either all edges have the value 1 or their value is given by

// the function Val (they have to be of an uint-type or of type
Valuator).

// The outgoing edges of a vertex are enumerated (starting with 0);

// the vertex, with which a vertex is connected by its n—-th outgoing
edge,

// is denoted as its n-th neighbourvertex.

s

// In any graph some vertices and edges might be marked.

s

// A path in a graph is a sequence of vertices and from each of those

// — excluding from the last one - an outgoing edge to the next vertex.

// A simple path is a path of pairwise disjoint vertices.

// An Euler path is a path that traverses each edge exactly once

// (it may pass any vertex more than once).

// A eycle is a path with an additional edge

// from the last vertex of the path to its first.

Vo4

// A graph G is (strongly) connected, if for any two vertices

// v, vl of G there is a path from v to vl or (and) vice versa;

// so for undirected graphs this is the same.

s

// In any nonempty graph exactly one vertex is distinguished as colocal

// and exactly one as local vertex.

// Each graph has an actual path.

type Graph interface {
Object
Persgsistor

// Returns true, 1iff x is directed.
Directed (} bool

SetDir (b boeol)

// Returns a copy of the graph that is not directed.
Indir (} Graph

// Returns the number of vertices of x.
Num () wuint

// Returns the number of edges of x.
Numl () wuint

// Returns the number of marked vertices of x.
NumMarked (} uint






// Returns the number of marked edges of x.
NumMarkedl (} wuint

// Pre: p is defined on vertices.
// Returns the number of vertices of x, for which p returns true.
NumPred (p Pred) wuint

// If v is not of the vertextype of x or if v is already contained
// as vertex in x, nothing has happend. Otherwise:
// v is inserted as vertex in x.
// If x was empty, then v is now the colocal and local vertex of x,
// otherwise, v 1is now the local vertex and the former local vertex
// is now the colocal vertex of x.

Ins (v any)

// If x was empty or if the colocal vertex of x coincides
// with the local vertex of x or if e is not of the edgetype of x,
// nothing has happened. QOtherwise:
// e is inserted into x as edge from the colocal to the local vertex
3
// (if these two vertices were already connected by an edge,
// that edge is replaced by e).
// For e == nil e isg replaced by uint (1).
Edge (e any)

// If x is empty or has an edgetype or

// 1if v or vl is not of the vertextype of x or

// 1if v or vl is not contained in x or

// 1if v and v1 coincide or

// i1f a is not of the type of the pattern edge of x or

// 1f there is already an edge from v to vi,
// nothing has happened. Otherwise:
// v is now the colocal and vl the local vertex of x
// and e is inserted is an edge from v to vi.
Edge2 (v, vl, e any)

// Returns the representation of x as adjacency matrix.
Matrix () adj.AdjacencyMatrix

// Pre: m is symmetric iff x is directed.

// x is the graph with the vertices a.Vertex (i) and edges from

// a.Vertex (i) to a.Vertex(k), iff a.Val(i,k) > 0 (i, k < a.Num()).
SetMatrix (a adj.AdjacencyMatrix)

// Returns true, iff the colocal vertex of x does not

// coincide with the local vertex of x and there is

// an edge in x from the colocal to the local vertex.
Edged () boel

// Returns true, iff

// the colocal vertex does not coincide with the local vertex of x

// and there is an edge from the local to the colocal vertex in x.
CoEdged () boeol

// Returns true, iff v is contained as vertex in x.

// In this case, v 1s now the local vertex of x.

// The colocal vertex of x is the same as before.
Ex (v any) bool

// Returns true, if v and vl are contained as vertices in x
// and do not coincide. In this case now
// v is the colocal and v the local vertex of x.

Ex2 (v, vl any) bool

// Pre: p is defined on vertices.

of

// Returns true, i1ff there is a vertex in x, for which p returns true.

// In this case some now such vertex is the local vertex of x.






// The colocal vertex of x is the same as before.
ExPred (p Pred) bool

/// Returns true, iff e is contained as edge in x.

// In this case the neighbour vertices of some such edge are now

// the colocal and the local vertex of x (if x is directed,

// the vertex, from which the edge goes out, is the colocal vertex.
Exl (e any) bool

// Pre: p is defined on edges.

// Returns true, iff there is an edge in x, for which p returns true.

// In this case the neighbour vertices of some such edge are now

// the colocal and the local vertex of x (if x is directed,

// the vertex, from which the edge goes out, is the colocal vertex.
ExPredl (p Pred) bool

// Pre: p and pl are defined on vertices.
// Returns true,
// 1iff there are two different vertices v and vl with p(v) and p(vl).
// In this case now some vertex v with p(v) is the colocal vertex
// and some vertex vi with pl(vl) is the local vertex of x.
ExPred2 (p, pl Pred) boeol

// Returns the value of the local vertex of x,
// if it has the type Valuator; return otherwise 1I.
// Val () uint)

// Returns true, iff x contains a vertex with the value n.
// In this case, such a vertex is the local vertex of x.
// The ceoclocal vertex of x is the same as before.

ExVal (n uint) bool

// Returns true, iff x contains a vertex v with the value n

// and a vertex vl with the value nl. In this case,

// v is the colocal vertex of x and vl is the local vertex of x.
ExVal2 (n, nl wuint) bool

// Returns the pattern vertex of x, 1f x is empty;
// returns otherwise a clone of the local vertex of x.
Get () any

// Returns a clone of the pattern edge of x, if x is empty
// or if there is no edge from the colocal vertex to the
// local vertex of x or if these two vertices coincide.
// Returns otherwise a clone of the edge from the
// colocal vertex of x to the local vertex of x.

Getl () any

// Returns (nil, nil), if x is empty.

// Returns otherwise a pair, consisting of clones

// of the colocal and of the local vertex of x.
Get2 () (any, any)

// If x is empty or if v is not of the vertex type of x, nothing has
happened. Otherwise:
// The local vertex of x 1is replaced by v.
Put (v any)

// If x is empty or if e has no edge type or

// if e is not of the edgetype of x or

// if there is no edge from the colocal to the local vertex of x,

// nothing has happened. Otherwise:

// The edge from the colocal to the local vertex of x is replaced by e.
Putl (e any}

// If % is empty or if v or vl is not of the vertextype of x or
// if the colocal vertex of x coincides with the local vertex.






// nothing had happened. Otherwise:

// The colocal vertex of x is replaced by v

// and the local vertex of x is replaced by vi.
Put2 (v, vl any)

// No vertex and no edge in x is marked.
ClrMarked ()

// If x is empty or if v is not of the vertex type of x
// or if v is not contained in x, nothing has happened.
// Otherwise, v 1is now the local vertex of x and is marked.
// The colocal vertex of x is the same as before.
Mark (v any)}

// If % is empty or if v or vl is not of the vertex type of x

// or if v or vl is not contained in x

// or if v and vl conincide, nothing had happened.

// Otherwise, v is now the colocal and vl the local vertex

// of % and these two vertices and the edge between them are now marked

Mark2 (v, vl any)

// Returns true, i1f all vertices and all edges of x are marked.
AllMarked (} bool

// If x is empty, nothing has happened. Otherwise:
// The former local vertex of x and
// all its outgoing and incoming edges are deleted.
// If x is now not empty, some other vertex is now the local vertex
// and coincides with the colocal vertex of x.
// The actual path is empty.
Del (}

// If there was an edge between the colocal and the local vertex of x,
// it is now deleted from x.
Dell ()

// Returns true, iff x is empty or

// 1f the colocal vertex coincides with the local vertex of x or

// 1f there is a path from the colocal to the local vertex in x.
Conn () bool

// Pre: p is defined on vertices.
// Returns true, iff x is empty or
// the colocal vertex coincides with the local vertex of x or
// 1if p returns true for the local vertex and there is a path
// from the colocal vertex of x to the local vertex, that contains
// — apart from the colocal vertex - only vertices, for which p returns
true.
ConnCond (p Pred) bool

// If x is empty, nothing had happened. Otherwisge:

// If there is a path from the colocal to the local vertex of x,

// the actual path of x is a shortest such path

// (shortest w.r.t. the sum of the values of its edges,

// hence, if x has no edgetype, w.r.t. their number).

// If there is no path from the colocal to the local vertex of x,

// the actual path consists only of the colocal vertex.

// The marked vertices and edges of x are

// the vertices and edges in the actual path of x.
FindShortestPath ()

// Pre: p is defined on vertices.

// If x is empty, nothing had happened. Otherwise:

// If p returns true for the local vertex and there is a path
// from the colocal to the local vertex of x, that contains






// - apart from the colocal vertex - only vertices, for which p returns
true,
// the actual path of x is a shortest such path
// w.r.t. the sum of the values of its edges
// (hence, if x has no edgetype, w.r.t. their number).
// Otherwise the actual path consists only of the colocal vertex.
// The marked vertices and edges of x are
// the vertices and edges in the actual path of x.
FindShortestPathPred (p Pred}

// Pre: Act or ActPred was called before.
// Returns the slice of the vertices of the actual path.
ShortestPath () []any

// Returns the sum of the values of all edges of x
// (hence, if x has no edgetype, the number of the edges of x).
Len (} wuint

// Returns the sum of the values of all marked edges in x
// (hence, if x has no edgetype, the number of the marked edges).
LenMarked (}) uint

// Returns 0, if x is empty.
// Returns otherwise the number of the outgoing edges of the local
vertex of x.
NumNeighboursOut () uint

// Pre: x igs directed.
// Returns 0, if x 1s empty.
// Returns otherwise the number of the incoming edges to the local
vertex of x.
NumNeighboursIn () wuint

// Returns 0, if x is empty.
// Returns otherwise the number of all edges of the local vertex of x.
NumNeighbours () wuint

// If x is not directed, nothing had happened. Otherwise:
// The directions of all edges of x are reversed.
Inv (}

// If x is not directed, nothing had happened. Otherwise:
// The directions of all outgoing and incoming edges
// of the local vertex of x are reversed.

InvLoc ()

// If x is empty, nothing had happened. Otherwise:

// The local and the colocal vertex of x are exchanged.

// The actual path of x consists only of the colocal vertex of x.

// The only marked is the colocal vertex; no edges are marked.
Relocate ()

// If x is empty, nothing had happened. Otherwise:

// The colocal vertex of x coincides with the local vertex of x,

// where for f == true that 1is the vertex, that was the former local

vertex of x,

// and for !f the vertex, that was the former colocal vertex of =x.

// The actual path of x consists only of this vertex.

// The only marked vertex is this vertex; no edges are marked.
Locate (f bool)

// Returns true, iff x is empty or the local vertex of x
// coincides with the colocal vertex of x.
Located () bool

// If x is empty, nothing had happened. Otherwise:
// The local and the colocal vertex of x are exchanged;






// the actual path is not changed and
// the marked vertices and edges are unaffected.
Colocate ()

// If x is empty or directed, nothing has happened.

// Otherwise the actual path of x is inverted, particularly

// the local and the colocal vertex of x are exchanged.

// The marked vertices and edges are unaffected.
InvertPath ()

// If x is empty or if i >= number of vertices outgoing from the local
vertex

// nothing had happened. Otherwise:

// For f: The i-th neighbour vertex of the last vertex of the actual

path
o4 of x is appended to it as new last vertex.
// For !f: The last vertex of the actual path of x is deleted from it,
Vo4 if it had not only one vertex (i does not play any role in

this case).
// The last vertex of the actual path of x is the local vertex of x and
// Vertices and edges in x are marked, if the belong to its actual path

Step (i uint, f bool)

// Returns false, if x 1is empty or 1f i >= NumNeighbours ();
// returns otherwise true, iff the edge to the i—-th neighbour
// of the local vertex 1is an outgoing edge.

Outgeoing (i wuint) bool

// Returns nil, if x is empty or if i >= NumNeighboursOut();
// returns otherwise a clone of the i-th outgoing neighbour of the
local vertex.
NeighbourQut (i wuint) any

// Returns false, if x is empty or 1if i >= NumNeighbours ();
// returns otherwise true, iff the edge to the i—-th neighbour
// of the local vertex is an incoming one.

Incoming (i wuint) bool

// Returns nil, if x is empty or if i >= NumNeighboursIn();
// returns otherwise a copy of the its i-th incoming neighbour of the
local vertex.
NeighbourIn (i wuint) any

// Returns nil, if x is empty or if i >= NumNeighbours ();
// returns otherwise a clone of its i-th neighbour vertex
// of the local vertex of x,.

Neighbour (i uint) any

// Pre: p is defined on vertices.

// Returns true, if x is empty or

// if p returns true for all vertices of x.
True (p Pred) bool

// Pre: p is defined on vertices.

// Returns true, 1iff x is empty or

// 1f p returns true for all marked vertices in x.
TrueMarked (p Pred) bool

// Pre: o is defined on vertices.
// o is applied to all vertices of x.
// The colocal and the local vertex of x are the same as before;
// the marked vertices and edges are unaffected.
Trav (o Op)

// Pre: o is defined on vertices.
// o is applied to all vertices of x, where






// o is called with 2nd parameter "true", iff
// the corresponding vertex is marked.
// Colocal and local vertex of x are the same as before;
// The marked edgges are unaffected.
TravCond (o CondOp)

// Pre: o is defined on edges.
// If ® has no edgetype, nothing had happened. Otherwise:
// o is applied to all edges of x.
// Colocal and local vertex of x are the same as before;
// the marked vertices and edges are unaffected.

Travl (o Op)

// Pre: o 1s defined on edges.
// If x has no edgetype, nothing had happened. Otherwise:
// o is applied to all edges of x with 2nd parameter "true",
// 1ff the correspoding edge is marked.
// Colocal and local vertex of x are the same as before;
// the marked vertices and edges are unaffected.
TravlCond (o CondOp)

// Pre: o is defined on edges.

// If x has no edgetype, nothing had happened. Otherwise:

// o is applied to all edges of the local vertex of x.
TravliLoc (o Op)

// Pre: o is defined on edges.

// If = has no edgetype, nothing had happened. QOtherwise:

// o is applied to all edges of the colocal vertex of x.
TravlColoc (o Op)

// Returns nil, if x 1s empty.
// Returns otherwise the graph consisting of the local
// vertex of x, all its neighbour vertices and of all edges
// outgoing from it and incoming to it.
// The local vertex of x is the local vertex of the star.
// It is the only marked vertex in the star;
// all edges in the star are marked.
Star () Graph

// Returns true, iff there are no cycles in x.
Acyeclic () bool

// If x 1is empty, nothing has happened. Otherwise:

// The following eguivalence relation is defined on x:

// Two vertices v and vl of x are equivalent, iff there is

// a path in x from v to vl and vice versa (hence the set of

// equivalence classes is a directed graph without cycles).
Isclate () // TODQO name

// Exactly those vertices in x are marked, that are eguivalent
// to the local vertex and of exactly all edges between them.
// No edges in x are marked.

IsclateMarked () // TODO name

// Returns true, 1iff x is not empty and

// 1f the local and the colocal vertex of x are equivalent,

// i.e. for both of them there is a path in x to the other one.
Equiv () bool

// Returns false, if x is not totally connected.
// Returns otherwise true, iff there is an Euler path or cycle in
Euler (} bool

// If » is directed, nothing has happened. Otherwise:
// Exactly those vertices and edges in x are marked,
// that build a minimal spanning tree in the connected component



// containing the colocal vertex
// (minimal w.r.t. the values of the sum of its edges;
// hence, if x has no edgetype, w.r.t. the number of its vertices)
// The actual path is not changed.
MST ()

// If x is empty or undirected or
// if x is directed and has cycles, nothing has happened. Otherwise:
// The vertices of x are ordered s.t. at each subsequent traversal of x
// each vertex with outgoing edges is always handled before the
vertices,
// at which those edges come in,
Sort ()

// Pre: x is directed, iff all graphs y are directed.

// % consists of all vertices and edges of x before

// and of all graphs y. Thereby all marks of y are overtaken.
Add (y ...Graph)

// The demofunction for d is switched on, 1iff sf{d] == true.
SetDemo (d Demo)

// Pre: wv is defined on vertices and we on edges.
// wv and we are the actual write functions for the vertices and edges
of x.
SetWrite (wv, we CondOp}

// Returns the write functions for the vertices and edges of x,.
Writes () (CondOp, CondOp)

// x 1is written on the screen by means of the actual write functions.
Write ()

// Pre: x.Name was called.
// Returns the corresponding file.
File() pseg.PersistentSeguence

// Pre: x,Name was called.
// x 1is loaded from the corresponding file.
Load ()

// Pre: x,Name was called.
// % 1is stored in the corresponding file.
Store ()

// Pre: x is connected.
// Returns true, iff x is a ring.
// If x is not connected, true is returned, iff every connected
component 1is a ring.
IsRing {} boeol

// Pre: v is atomic or imlements Object.

Y4 e == nil or e is of type uint or implements Valuator;

// Returns an empty graph,

// % 1s directed, 1ff d (i.e. otherwise undirected).

// v is the pattern vertex of x defining the vertex type of x.

// For e == nil, e is replaced by uint({l) and all edges of x have the
value 1.

// Otherwise e is the pattern edge of x defining the edgetype of x.

funce New (d bool, v, e any) Graph { return new_(d,v,e)} 1}



The representation of the abstract data type Graph and the constructor is quite
complicated:



package gra

import ("uU/ker™; . "uU/obj"; "uU/kbd"; "uU/pseq")

/* vertex vertex
/) neighbour neighbour £ &
any e e o e B S e i > any
| | o e e o \ e e

/ I
nbPtr———|-—————-— \ f——————— ———nbPtr
- / -
bool v edge v bool
/ \ / \ / \
dist time edgePtr—| ——> any <——| —edgePtr dist time
predecessor |<—-—| ——from <——|-nbPtro from——| —-—->| predecessor
repr \_|___to nbPtril—-|--> to___|_/ repr

nextV—-——|(-> |outgoing bool outgoing nextv-——-
—-——prevV nextNb—-——|—-> |nextE—-—-|-> |nextNb——|-><—-|—-——prevV
R S s s s a s e P
<—| —-—prevNb <—|—-—previ <—|—-—prevNb
| D / \_____/ { N 4
The vertices of a graph are represented by structs, whose field
"any" represents the "real" vertex. All vertices are connected

in a doubly linked list with anchor cell,

that can be traversed

to execute some operation on all vertices of the graph.

The edges are also
is a variable of a
are connected in a

For a vertex v one

represented by structs,
type that implements Valuator.
doubly linked list with anchor cell.

whose field

"any"

Also all edges

finds all outgoing and incoming edges with

the help of a further doubly linked ringlist of neighbours

nbl = v.nbPtr, nb2 = v.nbPtr.nextNb,
nb3 = v.nbPtr.nextNb.nextNb etc.

by the links outgoing from the nbi (i = 1, 2, 3, ...)
nbl.edgePtr, nb2.edgePtr, nb3.edgePtr etc.

In directed graphs the edges outgoing from a vertex are exactly

those ones in the neighbourlist, for which outgoing == true.

For an edge e one
e.nbPtr0. from

links
e.nbPtrl. from.

finds its two vertices by the
e.nbPtrl.to und e.nbPtr0.to

Semantics of some
vAnchor.time0:

variables, that are hidden in
in that the "time"™
is incremented for each search
vAnchor.acyclic: (after call of searchl)

fields of vAnchor:

step
true

iff graph has no cycles. */
const (
suffix = "gra"
inf = uint32 (1<<32 - 1)

type (

vertex struct {
any "content of the vertex"
nbPtr *neighbour






bool "marked"

acyclic bool // for the development of design patterns by clients
dist, // for breadth first search/Dijkstra and use in En/Decode
timeC, timel wuint32 // for applications of depth first search
predecessor, //for back pointers in depth first search and in ways
repr, // for the computation of connected components

nextV, prevV *vertex

}

vCell struct |
vPtr *vertex
next *vCell
1

edge struct {
any "attribute of the edge"
nbPtr0, nbPtrl *neighbour
bool "marked"™
nextE, prevE *edge

}

neighbour struct {

edgePtr *edge

from, to *vertex

outgoing bool

nextNb, prevNb *neighbour
}

graph struect {
name,
filename string
file pseg.PersistentSequence
bool "directed"
nVertices, nEdges wuint32
vAnchor, colocal, local *vertex
eAnchor *edge
path []l*vertex
eulerPath []*neighbour
demo Demoset
writeV, writeE CondOp
}
)
type
nSeq []*neighbour

func newVertex (a any) *vertex {

v := new(vertex)

v.any = Clone (a)

v.timel = inf // for applications of depth first search
v.dist = inf

v.repr = v

v.nextv, v.prevv = v, Vv

return v

}

func newEdge (a any) *edge {

e := new (edge)
e.any = Clone (a)
e.nextE, e.prevE = e, e

raturn e

}

fune new_(d boel, v, e any) Graph {
CheckAtomicOrObject(v)
x := new(graph)
X.bool = d
. vAnchor = newVertex (v)



if e == nil {
e = uint (1)
1
CheckUintOrvaluator (e}

x.eAnchor = newBEdge (e}
x.colocal, x.local = x.vAnchor, x.vaAnchor
x.writeV, x.writeE = CondIgnore, CondIgnore

raturn x

The suggested algorithms are also very complex; their representation would go far
beyond the purpose of this book.

3.6 Additional Data Types from the Microuniverse
Many packages from the microcosm are not presented in this book; these include those

e that implement number types (natural, whole, rational, and real numbers), numbers of
any precision, mathematical terms as well as vectors and matrices;

¢ that provide “common types” such as short strings, calendar dates, times, amounts of
money, and nations;

¢ that deal with two- and three-dimensional figures needed for graphics programs—also
with the use of OpenGL;

¢ that deal with graphs and their vertices and edges; and

 that are necessary for the synchronization of concurrent processes, which access shared
resources.

The last two points are extensively covered in my textbook [1].
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Programming is always extending a given system.
Niklaus Wirth

From Modula to Oberon,

Software-Practice and Experience 18 (1988), 661-670

Abstract

This chapter explains what we understand by a teaching project and
what to pay attention to in them when working in the phases of the
software life cycle.

All projects are structured in principle according to the scheme given in
the first chapter:

e System analysis.
System architecture.
User manual.
Construction.

The prerequisite for the installation of the teaching projects is the
installation of Go and the microuniverse.

You can find instructions for installing Go on the web at
https://maurer-berlin.eu/go.


https://doi.org/10.1007/978-3-658-44704-5_4
mailto:christian@maurer-berlin.eu

You can obtain the microuniverse by downloading the file y U from
the page https://maurer-berlin.eu/mU, move it with

mv pU.tgz go/src
into the subdirectory go/src of your home directory, go there with
cd go/src,
unpack the microuniverse with
tar xfzv uU. tgz,

and install it with

go install pu.

With the call i Uou can check if everything worked.

The source texts of the projects are in the net under
https://maurer-berlin.eu/obpbookinthefile c2.tgz

abgelegt. If you have downloaded this file von Ihrem Heimatverzeichnis
aus move it with

mv 02.tgz go/src
into the subdirectory go/src, go there with the command
cd go/src,
and install them with
tar xfzv o2.tgz.

This will create the subdirectories rob, robi, robtest, todo, 1ife,
regtest, epen,mini, books, inferno, 1sys,bahn, rfig, and
bus, in which the source texts of the jeweiligen projects are
untergebracht.



4.1 Teaching Projects

We understand a teaching project to be a small project that is developed
for educational purposes in a school or university.

There are fundamental differences between the commercial

development of an IT system and a teaching project. They essentially
consist in the fact that

there is no real “market situation”, but rather the character of a
teaching and learning situation;

the participants therefore have more room for design;

only preliminary experiences in small-scale programming are
available;

the participants work in problematic—fundamentally incompatible
—multiple roles, whose tasks in the commercial situation are
performed by different people, namely, as

— learners (with limited and usually not yet stabilized knowledge),
— system analysts,

— system architects,

— designers, and

— end users or users;

there is a contradictory tension between

- necessary complexity for studying typical problems of large-scale
programming and
— sufficient didactic reduction;

the size of a teaching project is orders of magnitude below that of a
commercial project due to limited time resources; and

an expansion of development capacities (e.g., through overtime or
the use of additional employees) is excluded.

The following theses result from this for the management of a

teaching project:

The topic must not be more comprehensive than the detailed
examination of a subtask in system analysis.

The user manual must not degenerate into defining the many
interesting ideas that cannot be achieved.



e The specifications must not be less rigid than the participants have
learned in small-scale programming.

e The implementations must be possible based on the participants’
prior knowledge.

e The project management must limit the task to such an extent that it
can guarantee the feasibility of the project, i.e., that

— they have the “project” running at least as a prototype that

includes the essential aspects beforehand,

— the work can largely rely on existing things, and

— it is ensured that the participants master these parts to the extent

necessary for the work.

It is essential that the participants always have a thorough
knowledge of all available partial results: It is repeatedly shown in
teaching projects that suddenly individual paths are pursued that do
not correspond to the specifications of earlier phases.

4.1.1 System Analysis

The effort for system analysis should usually be kept within narrow
limits: The time for deeper elaboration of specialized knowledge is not
available and the focus of work in a teaching project should be on
informatics issues, even if interdisciplinary or cross-curricular aspects
play a role. System analysis in a teaching project can therefore only be
understood as a factual analysis of a didactically reduced topic.

To avoid lengthy and unproductive discussions about potential
project topics, the topic should be given—if necessary from a well-
prepared selection—so that the participants’ scope for design is
concentrated on the analysis of some object classes and the elaboration
of suitable aspects of the task.

In any case, not only the treatment of a new topic, but always also
the further development of an existing, well-documented system
should be considered, because many of the problems mentioned are
solved in a quite natural way.

In this first phase, beginners often underestimate the complexity of
the problems to be solved due to their lack of experience, which leads
to their expectations of the magnitude of what can be achieved being
rarely realistic.



The project management is therefore responsible for estimating the
volume of work to be done and thus for calculating the time and
personnel resources and their compliance. The planning of unavoidable
restrictions is also part of their tasks, as beginners cannot be expected
to foresee possible subsequent problems. They must make appropriate
considerations in advance of the investigation of suitable topics and
ensure that they are taken into account in the task.

Therefore, they must necessarily

e thoroughly investigate topics that are fundamentally suitable for a
teaching project for their usability in advance;

e adjust the complexity of the topic to the knowledge to be assumed of
the participants;

e ultimately determine the selection of the topic;

» strongly guide the details of the task;

e provide selected parts—fully implemented and documented—to an
appropriate extent, so as not to let the participants “reinvent the
wheel” every time;

e systematically train the use of these parts; and

e continuously clarify the effects of participants’ suggestions during
system analysis—if necessary by prototypical work on design and
realization.

In addition to the demand for a reasonable manageability of the
topic (small topic, even smaller topic, even smaller, much smaller, even
smaller), a certain minimum complexity is indispensable to
demonstrate typical principles and methods of software engineering
and to convey insight into their necessity:

e inclusion of a structure of the involved objects nested over at least
three levels, which is branched at at least one point, to achieve a non-
trivial depth and branching in the system architecture,

e exemplary creation of reusable components that can also be used for
other purposes, as well as

e consideration of the possibility of alternative implementations of
certain components.

4.1.2 System Architecture



There are no specific peculiarities of teaching projects in this phase that
go beyond what is postulated in Sect. 1.1.2.

The question of how to start the actual programming activity, which
is very difficult for beginners according to experience, is solved in this
phase, because it shows in the work how astonishingly simple the
system architecture of the system results from a system analysis, the
strictly oriented towards the objects of a system.

4.1.3 User Manual

The considerations of how the planned system should present itself to
the users, especially questions of ergonomic operation, are tedious and
time-consuming; they are often controversially discussed and their
necessity is not always recognized at the beginning of the work.

It is mandatory for each component used to specify the semantics of
the data objects and the complete and contradiction-free
specification of all access operations they are often controversially
discussed, stating all prerequisites and effects. As a rule, clean
colloquial formulations are sufficient for this.

The implementations of the representation of the data types and the
access operations in the components are based on the knowledge
acquired in small-scale programming, which may need to be
supplemented or expanded by studying the relevant literature. This
also serves to secure and exemplify the deepening of the corresponding
skills and abilities.

If design errors become apparent during the implementation of a
component (usually in the form of incompleteness or lack of clarity in
its specification), the specification is corrected in agreement with all
involved clients—in any case only after consultation with the project
management—and its implementation is adapted to the changes. A
prerequisite for system integration is of course the systematic test of
the developed components as part of the construction.
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keep going:

If not yet at the edge of the world, then
move one place further and

keep going

Abstract

The program presented here was used in the teacher training course in
computer science at the Free University of Berlin at the beginning of the
lecture on imperative and object-oriented programming to make the
transition from the functional to the imperative paradigm as smooth as
possible—through the basic idea of variable-free programming.

Robilanguage is a very simple language that is suitable for developing
the basic concepts of imperative programming.
The significance of this concept lies in the

» variable-free introduction to structured programming:

- without any baroque feature of any imperative language (i.e., in
principle without a definitive commitment to a specific language
paradigm);

— therefore easy to learn, but still immediately at the heart of
computer science, i.e., dealing with typical computer science


https://doi.org/10.1007/978-3-658-44704-5_5
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problems;
— with a wealth of possible exercises that can also be solved with
“pencil and paper”;
— the use of computers is limited to the “experiment” to confirm or
refute theses;
e therefore, working on the computer consists only of short periods of
time.
* specification of methods/functions:

— precise specification (in the form of static state descriptions) of the
preconditions for their call and the effects after their execution.

e recursion:

— as a central language tool of every programming language (besides
sequence and case distinction);

- before the introduction of iteration, i.e., dealing with the different
types of loops (pre-testing, post-testing, counting).

e Introduction of parameters in methods/functions:
» Concept of components:

— for using services only through their specification according to the
principle of secrecy, i.e., without disclosing their implementation;

— here using the example of the programming language Go, which is
excellently suited for this due to the possibility of strict textual
separation of specification and implementation.

» depth-first search:

— in connection with algorithms for backtracking.

The problem is to have Robi move around in this block world
according to certain rules, and to have him lay down, pick up, move, or
count blocks according to certain principles, or to block squares by
walling them up.

Since there are no limits to the imagination for inventing exercises
that Robi should solve, and for rules that he must apply, there is an
inexhaustible field of exercises, which is excellently suited both as
motivation for getting started in various aspects of computer science
and for introducing demanding concepts.



5.1 System Analysis

Robi is a “robot” that “lives” in a rectangular world made of
checkerboard-arranged squares. He always stands on one of the
squares and looks in one of the four cardinal directions. Robi can turn
90 degrees to the left or right and take a step (i.e.,, move one square) in
the direction he is looking (unless he is already at the edge of his
world). Therefore, in principle, every square in the world is accessible
to him.

On each square, one or more blocks can be placed. Robi carries a bag
of blocks with him. He can place a block from his bag onto the square
where he stands, put (as long as he still has blocks) or take a block from
any square where he stands, remove it, and put it in his bag (as long as
there is still one there). He is therefore able to occupy any squares in
the world (within the scope of his available blocks) with blocks.

Robi can mark squares and also remove the markings, so he is able
to remember where he has already been. This allows him to search
specifically (depth search!). Robi can also wall up squares so that they
are no longer accessible, and remove the walls again.

In addition, Robi can also push blocks (if the square behind is
empty). Therefore, you can also let Robi play sokoban, provided, you
have thought up appropriate worlds and created them with the robi
editor (see below).

The problem is to have Robi move around in this block world
according to certain rules, and to have him lay down, pick up, move, or
count blocks according to certain principles, or to block squares by
walling them up.

Since there are no limits to the imagination for inventing exercises
that Robi should solve, and for rules that he must apply, there is an
inexhaustible field of exercises, which is excellently suited both as
motivation for getting started in various aspects of computer science
and for introducing demanding concepts.

5.2 The Robi Language

The robi language consists of



e statements

- TurnLeft
- TurnRight
- Run

- RunBack
- PickUp

- PutDown
- Push
-Mark

- Unmark
-WallUp
-WallDown

e predicates

- InUpperLeftCorner
- AtEdge

- Empty

- NeighbourEmpty

- HasBlocks

- Marked

- NeighbourMarked

- InFrontOfWall

e and a counting function
- NumberOfBlocks
as well as composite instructions

e Sequences ... ; .
e case distinctionsif ... {...} else {...}

5.3 System Architecture

[t is very flat, there is only one abstract data type, the robot, and the
abstract data object in the package robi.



5.4 User Manual

There are the three programs mentioned above, which will be
introduced in the following.

5.4.1 The Robi Editor

With the program robiedit, a new robot world can be created and an
existing one can be modified. The name of the world can be given as a
parameter to the program call; without a parameter, it is named
“World” (the world files have the suffix . rob). Robi’s place and his
direction are evident from the direction of the figure. Robi performs the
following actions when a command key is pressed:

Arrow key A, ¥, « or p: If this is the key in the direction of his view,
he runs one space further, otherwise he changes the direction of his
view in the direction of the arrow. Beforehand, it must be checked
whether he is standing at the edge of the world and whether the
space in front of him is walled up.

Insert key Ins: If Robi still has a block in his bag, he places a block in
his space.

Del: If there is a block in Robi’s space, he picks it up and puts it in his
bag.

Enter key ##- : If there is a block in the space in front of Robi and the
space behind it is free, he pushes the block into that space and stands
there.

Backspace key #— : The last action is undone.

Pos1: If the space in front of Robi is free, he walls up his space and
stands on it.

End: If there is a wall in the space in front of Robi, he tears it down
and stands on that space.

F5: Robi marks his space.

. If the space where the mouse pointer is pointing is free, a robot is
placed there; if there is a robot there, it is removed from the world.
F6: If Robi’s space is marked, the mark is removed.

F1: The key assignment for control is displayed.

Esc: The program is terminated. (Robi’s world is available in its
current state at the next program run under the same name.)



5.4.2 The Robi Protocol
The program robiprog:

e Operation like robiedit, furthermore

e aprotocol is generated in the form of a program file, i.e., all editing
steps are logged in the form of a source code for a Go program. It is
important to ensure that the generated program is started with the
same state of the world with which Robiprog was started (because

the world was changed with Robiprog).

5.4.3 Robi-Sokoban
The program robisoko:

e Operation: greatly simplified version of Robiedit, suitable for

playing Sokoban (= pushing all blocks onto the (same number of)
marked places in a world like, for example, Sokoban1).

5.4.4 Robot Race

In the program robrace, as many robots race two “rounds” as were

given as parameters to the program call (at least 2, at most 24). The
+- key must be held down until the race is over.

5.4.5 General Procedure

A Robi program, i.e., a program using the package rob1i, is written.
It is translated and linked with the call “go install”.

Step by step executed with .

Terminated with Esc.

In case of problems, aborted with the combination Ctrl C.

5.5 Construction
Here is the specification of the robot package rob:



package rob

/* Manages robots that live in a rectangular world of places arranged
in a checkerboard pattern. The world is 24 places wide and high.
Blocks can 1ie on the places or the places can be walled up.

Every robot stands always on one of these places that is designated
as "R’s place". It always stands in one of the four celestial directions
that are designated as R’s direction.

Every robot has a pocket with initially Max blocks and
always has access to bricks.

The places of the robots, their directions and the number of blocks

in their pockets are the same as the last time the wordl was called.
If the world is new, it is empty and a robot stands in direction south
in the northwest corner and has Max blocks in his pocket,

minus those that he already has placed in the world.

Initially, the protocol is not switched on.
The calling robot is always designated as "R". */
import . "waU/ocbij"

const (M = 24 // number of places per row and column of the world
Max = 999) // maximal number of blocks in R’s pocket

type Robot interface {
Coder

// Returns the number of R.
Number () wuint

// R has turned left 905~\circ$ to the left.
TurnLeft ()

/7 R has turned left 90§"\circ$ to the right.
TurnRight (}

// Returns true, iff R stands in the northwest corner.
InUpperLeftCorner(} bool

// Returns true, 1iff R’s place has no neighbourplace in R’s direction.
AtFdge () boeol

// Pre: R does not stand at the edge and

Ved the neighbourplace in R’s direction is not walled up.

// R stands in the same direction as before on this neighbourplace.
Run ()

// Pre: R’s place has entgegen R’s direction a neighbourplace,

// that is not walled up.

// R stands in the same direction as before on this neighbourplace.
RunBack (}

// Returns true, 1f there are no blocks on R’s place.
Empty () bool

// Returns true, if R’s place in R’s direction has a neighbourplace
// and on this place does not lie a block.
NeighbourEmpty () bool

// Returns true, 1f R’s pocket is not empty.
HasBlocks(} beoel

// Returns the number of blocks in R’s pocket.






NunmberOfBlocks () uint

// Pre: R’s Tasche is not empty.
// On R'g place lies on block more than before,
// in his pocket is one less.

PutDown (}

// Pre: On R’s place lies at least one block.
// On R's place lies one block less than before,
// in his pocket is one more.

PickUp ()

// Returns true, iff R’s place in R’s direction has a neighbourplace,

// on which lies exactly one block and this neighbourplatz in turn has

// a neighbourplace in R’s direction that is empty and not walled up.

// In this case R stands in the sacme direction as before on the

// previous neighbourplace in its direction and the block that was

// not on it before is not on the neighbourplace in R’s direction.
Pushed ()} bool

// Pre: R’s place has in R’s direction a neighbourplace,

Vo4 on which exactly one block lies.

// This block is as far as possible (i.e., without collision

// with robots, blocks or walls) in R’s direction weitergeschoben.
Push ()

// R’s place is marked.
Mark ()

// R’s place is not marked.
Unmark ()}

// Returns true, iff R’'s place is marked.
Marked () boeol

// Returns true, iff R’s place in R’s direction
// has a neighbourplace that is marked.
NeighbourMarked() bool

// Returns true, if R’s place in R’s direction
// has a neighbourplace that is walled up.
InFrontOfWall(} boel

// Pre: R’s place has in R’s direction a neighbourplace,

Vo4 that is not walled up.

// R stands in the same direction as before on this neighbourplace

// If on the place on which R stood before were blocks, now they

// do not lie there any more, but are in his pocket; but this place

// is now walled up. A mark previocusly present there mark is now removed.
WallUp ()

// Pre: R’s place has in R’s direction a neighbourplace,
Vod that is walled up.
// R stands in the same direction as before on this neighbourplace
// and this place now is not walled up.
WallDown ()}

/7 The robot world is written to the screen.
Write ()

// Returns the position of R.
Pos () (uint, uint)

// R’s position is (x, ¥).
Set (x, ¥y uint)
1






// The robot world is that one whose name was given
// at the call of the programm as parameter.
func Load (s ...string}) { locad(s...) }

func NumberRobots () uint { return uint (nRobots} 1}

s/ The blocks and bricks in the robot worlid now 1ie

// on the places specified by the user.

// If R is standing on a place where there are blocks,

// their number is shown. R’'s place and direction,

// the number of blocks in its pocket and of the blocks

/7 on all places are at the next program run with this worlid
// the same as for the call of this method.

// If the protocol is switched on, the editing process

// is protocolled in a Go—source text (under the name

s/ of the robot world with the suffix ".go").

// The program generated from this source text by translation
// simulates step by step the editing process

func Edit () { edit(} }

// Pre: x < M, y < M.

// Returns a new robot on the position (x, y)

// with Max blocks in its pocket.

func NewRobot (x, ¥ uint) Robot { return newRcbot (x,vy) 1}

// Pre: n > 0. There is at least one robot in the world.
// Returns the robot with the number n.
func Nr (n uwint) Robot { return all[n] }

S/ The robot world is written to the scren.
func WriteWorld(} { writeWorld() }

// After editing the program is generated
// that reproduces the editing process.
funec GenerateProgram() { generateProgram(} }

// The protocol is switched on, iff b == true (see edit).
funec SwitchProtocol (b boel) { switchProtcoccol(b) }

// For b == true the behaviour of the editor is simplified
// according to the requirements of the game Sockoban.
func SwitchSokoban (b bool}) { switchSokoban(b) }

// n is written to the screen in the bottom line of the screen
// The calling process was then stopped until the user

// has acknowledged the output with Esc.

func Cutput (n uint} { ocutput{n) 1}

// Returns the number entered by the user
// in the bottom line of the screen.
funce Input () uint { return input () }

// 8 and n are written in a Iine at the bottom of the screen.
// The calling process was then stopped

// until the output was acknowlegded with Esc.

// Now the error report is removed from the screen.

func ReportError (s string, n uint) { reportError({s,n} }

// 8 and n are written in a line at the bottom of the screen.

func Hint (s string, n uint) { hint(s,n) }

// The program has ended with the error report ("program has ended")
func Ready () { ready () }



package robi

// Specifications$% see uU/rob/def.go

func M()} uint { return m() }

fune TurnlLeft () { turnlLeft () }

fune TurnRight (} { turnRight(} }

func InUpperlLeftCorner(} boel { return inUpperlLeftCorner() }
func AtFdge () boeol { return atkEdge() }

func Run(} { run() }

funec RunBack(} { runBack() }

func Empty() bool { return () }

func NeighbourEmpty() bool { return neighbourEmpty () }
func NumberQOfBlocks() uint { return number0OfBlocks () }
func HasBlocks() bool { return ()} }

func PutDown({) { putDown() }

fune PickUp(} { pickUp(} 1}

fune Pushed(} boel { return pushed() }

func Push() { push() }

fune Mark() { mark() }

fune Unmark(} { unmark(} }

func Marked() boocl { return marked() }

func NeighbourMarked(} bool { return neighbourMarked(} }
fune InFrontOfWall () bool { return inFrontOfWall ()} }
func WallUp() { wallUp() 1}

func WallDown () { wallDown(} 1}

func Load (s ...string) { load(s...} }

funec Edit () { edit () 1}

funec SwitchProtocol (b bool} { switchProtocol(b) }
funec SwitchSokoban (b bool) { switchSokoban (b} }

funec Write (n wint) { write(n) 1}

fune Input(} uint { return input() }

func ReportError (s string, n uint} { (s,n} }

fune Hint (s string, n uint} { hint(s,n} }

func Ready () { ready () }

fune Pos{) (uint, wuint) { return pos(} }

fune Set (x, y uint) { set(x,y) 1}

The “Robi” is the abstract data object robi; it consists of an instance of
an object of type Robot; and its specification is thus quasi-identical with
a part of the specification of the package rob:



package main
import . "robi"

func toTheWall () {
if ! InFrontQfWall(} {
Run (}
toTheWall ()

}
}

func guard() {
if InFrontOfWall() {
TurnlLeft ()}
}] else {
Run (}
TurnRight ()
if ! InFrontOfwall () {
Run (}
}
}
guard()
}

func main ()} {
Load ("city")
toTheWall (}
guard()

}

5.6 Exercises
Sought are variable-free and recursive implementations

» of the following problem of the “pliant guard” by Nievergelt (see [1]):
The world houses a medieval city. This is protected by an

arbitrarily complex city wall. Robi starts within the city wall and is to
patrol along the wall forever as a reliable guard, in such a way that he
could always touch the wall with his right hand, if he had one. The
city is available as Robiworld under the name city.

e of the following more challenging set of problems: Robi is to be in a
given world (also with walls)

- find a block in a maze (the maze is available under the name
maze),
— find all blocks in a maze and count them.



Note: This is the algorithm of depth-first search by
backtracking; for this, it is necessary to mark all already visited
places.

After introducing the concept of variables and iteration through
loops, for all exercises

e the iterative versions of all recursive function calls

are sought. You can compare your solutions with the sample solutions
given in the next section.

Figures 5.1 and 5.2 show the city from the first exercise and the
maze from the second exercise.



ig. 5.1 The city from the first exercise
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Fig. 5.2 The maze from the second exercise with 13 blocks

5.6.1 Sample Solutions
5.6.1.1 First exercise



package main // depth search
import . "robi"

var number0OfBlocks uint

func ok () bool {
raeturn ! AtEdge() && ! InFrontOfWall()
1

func search() {
var leftOk, straightOk, rightOk bool
if Marked(} {

return

}

Mark ()

if ! Empty () {
numberQOfBlocks++

Hint ("number of blocks =", numberOfBlocks}
}
// find out, in which directions Robi can continue run:
TurnLeft ()
leftOk = ok()
TurnRight (}
straightOk = ok (}
TurnRight ()
rightOk = ok (}
TurnLeft ()
// start of the depth search
X, ¥ = Pos{()
if leftOk {
TurnlLeft (}
Run ()
search (}
TurnRight ()
}
Set (x, vy}
if straightOk {
Run (}
search (}
}
Set (%, y)
if rightOk({
TurnRight ()
Run (}
search (}
TurnLeft ()

}

funec main ()} {
Load ("maze")
search ()

ReportError ("number of blocks =", numberOfBlocks)
Ready ()



5.6.1.2 Second Exercise

Reference

1. Nievergelt, J.: Roboter programmieren - ein Kinderspiel. Informatik-Spektrum, Heft 22, 364-
375 (1999)
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Yes, just make a plan,

be just a great light!

And then make a second plan,
both of them won’t work.
Berthold Brecht

From The Threepenny Opera

Abstract

This educational project focused on creating a personal scheduler with
the aim of being able to enter, modify, delete, reschedule, and copy
appointments. With the help of a suitable keyword system, it should
also be possible to specifically search for all appointments in which
these keywords appear.

Two consecutive courses of teacher training in computer science at the
Free University of Berlin dealt with this topic. The task was to construct
an “electronic” appointment calendar for managing the appointments
of a single person and to be able to find appointments with certain
keywords in it. Particular emphasis was placed on ergonomic design—a
clear presentation and easy operability.
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6.1 System Analysis

In this section, we present the results of the investigations on which
objects appear in the appointment calendar.

6.1.1 Calendar Pages

For reasons of clarity, all appointments of a day should be ordered
chronologically and be comprehensible at a glance, i.e., they must be
accommodated on one screen page. This—day-oriented—summary of
appointments is referred to as a calendar page; the appointment
calendar is then a sequence of these calendar pages. The actual calendar
page is always the one that is currently visible on the screen.

A calendar page consists of

e a calendar date,
e aday attribute, and
e the sequence of appointments of the respective day.

A calendar page is accessed via its date. In addition to the date, the
respective day of the week and possibly the day attribute are output.

The entry, modification, and deletion of appointments take place
within the calendar pages. New appointments are always entered in the
first free line of a calendar page. To avoid a rather confusing unrest on
the screen, newly entered appointments are only sorted chronologically
when the same calendar page is called up again.

6.1.2 Day Attributes

The day attributes serve the purpose of being able to quickly overlook
certain days or periods in the appointment calendar. They should be
indicated by a short text or the visual highlighting of the corresponding
calendar dates.

You can configure any day attributes by creating the text file
dayattributes.cfqgin the subdirectory . todo of your home
directory, in which you line by line deposit the words for the day
attributes that you need. The first line must be “keyword”. Example:

keyword
vacaticn



The name dayattributes.cfg is mandatory, unless you change the
source code of the program.

6.1.3 Sequences of Appointments and Appointments

The appointments of a calendar page should be listed in chronological
order, including simultaneous appointments. Appointments without a
time indication should be at the beginning of this order, as they are non-
time-bound references to special events such as birthdays. The other
appointments are sorted by time; if there are multiple appointments at
the same time, they are sorted by appointment attributes, possibly by
keywords or texts.

An appointment consists of

e adate,

e atime,

e an appointment attribute,
e a keyword, and

e a text.

The date of an appointment is given by the day of the calendar page
in which it appears.

Appointments can be classified by appointment attributes to enable
users to set priorities in planning and attending their appointments
and to facilitate the management of appointments of a certain category
and the search for them.

The appointment attributes in the appointments of a calendar page
are represented by [abbreviations of three characters, preferably with
different initial letters. You can configure any appointment attributes by
creating the text file appointmentattributes.cfgin the
subdirectory . todo of your home directory, in which you list the
abbreviations for the appointment attributes you need, line by line.
Example:

wrk
bid
pPrv

for work, for birthday, and for private. The name
appointmentattributes.cfg is mandatory.



The length of the text of an appointment is designed to
accommodate as many characters as will fit on one line of the screen
with all components of the appointment.

Since in a unstructured text, keywords cannot be easily identified as
such, the text is divided into a short keyword as a search term and the
other—not further structured—information to facilitate the search for
specific appointments. The search is also conducted for parts of the
keyword and regardless of case, to find, for example, “Conf” as well as
“Soc.-Conf.” or “Subject conference”.

For the “transport” of appointments between different calendar
pages, a storage—an invisible buffer area—is provided.

Appointments of a calendar page can be copied into the storage (and
also deleted from the calendar page) or inserted from the storage into
the current calendar page, as long as there is still space (while the
content of the storage remains).

This allows appointments to be moved to any day or copied to
multiple calendar pages, e.g., for easy entry of recurring appointments
at the same times.

6.1.4 Annual Calendar

For a quick overview, an annual calendar can be displayed for each date,
grouped by months, with the day numbers in columns side by side each
week in each month. Such an annual calendar can be displayed in a
rectangle of 25 lines and 80 columns, which determines the size of the
screen.

In it, the Sundays and holidays are easily recognizable. Figure 6.1
shows it.



H.4 anuar ebruary Marc Hpri

Mo 61 88 15 22 29 B5 12 19 26 B4 11 1B 25 A1 88 15 22 29 Mo
Di ©2 B89 16 23 38 A6 13 28 27 A5 12 19 26 B2 B89 16 23 38 Di
Mi 83 18 17 24 31 a7 14 21 28 P6 13 28 27 B3 18 17 24 Mi
Do B84 11 18 25 g1 88 15 22 29 g7 14 21 28 B4 11 18 25 Do
Fr 85 12 19 26 B2 89 16 23 g1 88 15 22 29 B5 12 19 26 Fr
Sa 86 13 28 27 B3 18 17 24 82 @9 fl6 23 30 B6 13 28 27 Sa
So 8T 14 :21. 28 A4 11 18 25 83 18 17 24 31 A7 14 21 28 So

Mai June July August
Mo B6 13 28 27 B3 18 17 24 g1 88 15 22 29 g5 12 19 26 Mo
Di B7 14 21 28 B4 11 18 25 B2 89 16 23 30 B6 13 28 27 Di
Mi 81 BB 15 22 29 85 12 19 26 B3 18 17 24 31 g7 14 21 28 Mi
Do B2 B89 16 23 3@ B6 13 28 27 B4 11 18 25 A1 88 15 22 29 Do
Fr 83 18 17 24 31 A7 14 21 28 B5 12 19 26 B2 B89 16 23 38 Fr
Sa B4 11 18 25 g1 B8 15 22 29 B6 13 28 27 B3 18 17 24 31 Sa
S0 B85 12 19 2B B2 B9 16 23 308 B7 14 21 28 B4 11 18 25 So
September October November December

Mo B2 89 16 23 38 87 14 21 28 B4 11 1B 25 B2 B89 16 23 38 Mo
Di B3 18 17 24 A1 B8 15 22 29 B5 12 19 26 B3 18 17 24 31 Di
Mi B4 11 18 25 B2 B9 16 23 308 B6 13 28 27 B4 11 18 25 Mi
Do B5 12 19 26 B3 18 17 24 31 g7 14 21 28 B5 12 19 26 Do
Fr B6 13 28 27 B4 11 18 25 B1 88 15 22 29 B6 13 28 27 Fr
Sa B7 14 21 28 B5 12 19 26 B2 89 16 23 30 87 14 21 28 Sa
So 61 88 15 22 29 Bb: 13 28 27 A3 18 17 24 g1 @8 15 22 29 So

Fig. 6.1 The annual calendar with entered vacation times

The annual calendar is also used to call up the calendar pages:
exactly one day in it must be marked in a clear way as the actual day.
This marking, i.e., the current day, can be moved at will.

A control system is provided for selecting a date, which is
determined by the temporal structure of the year: It is possible to jump
between calendar dates by day, week, month, quarter, and year.

6.1.5 Monthly and Weekly Calendars

For a rough overview of the appointments of a month, a monthly
calendar should be able to be output, in which the days on which
appointments are entered are displayed with references to all
appointment attributes occurring on them.

e the Sundays and holidays,
e the days with set attributes, and
 the days on which sought appointments were found.

For a somewhat more precise overview of the appointments of a
week, a weekly calendar is also provided. With a division of the screen
into seven columns—which is obvious in view of the appearance of the



calendar pages—there is room in it for each appointment’s time and a
(sufficiently short) representation of its appointment attribute.

The actual day can be set in these calendars as in the annual
calendar.

In the business world, appointments tied to weeks are defined by
the week number, which is also output in these overviews (according to
DIN 8601, the 1st week is the one in which the first Thursday of the
year falls).

In them,

e the Sundays and holidays,
e the days with set attributes, and
e the days an denen gesuchte appointments

should be easily recognizable through optical highlights, which clearly
differ from each other for each of these groups. This makes the
particularly important days or periods for the users immediately
readable at a glance.

However—apart from the holiday attribute—only one day attribute
is displayed at a time, so as not to confuse by overlaying too many
pieces of information. It should be possible to switch cyclically between
the configured day attributes in order to overlook the various
attributed periods one after the other.

The actual day attribute can be set and deleted for each day, because
this is considerably more practical for periods than doing it day by day
in the individual calendar pages.

6.1.6 Appointment Calendar

For obvious ergonomic reasons, the representations of the different
calendars on the screen (e.g., days in columns by week, appointments
one below the other) are largely adapted to each other, i.e., the optical
highlighting of Sundays and holidays and the day attributes should be
the same in all cases and the basic operation of the system when
switching between annual, monthly, and weekly calendars and when
manipulating the day attributes should be uniform.

After calling up the program, the annual calendar should be shown;
the actual day is the system date of the used computer. From there the



monthly calendar, then the weekly calendar, and finally a calendar page
are switched to and vice versa.

The actual day remains actual until it is not changed, i.e., for
example, it is possible to flip forward and backward through the
appointment calendar at the level of the calendar pages. This also
facilitates the transfer of appointment entries, for which the direct
switching option between different days is needed.

6.1.7 Search for Appointments

From the monthly or weekly calendar, a search term can be entered. If
this search term is part of a search word in an appointment, the search
word is conspicuously marked on all calendar pages with these
appointments and in the weekly and monthly calendars, conspicuous
marks are set on the days on which such an appointment exists.

6.2 System Architecture
6.2.1 The Objects of the System

Each of these objects forms a data type, which is “packaged” in a
package. Thus, we have the packages

e day for calendar data,

e clk for times,

e todo/attr for the appointment attributes,

e todo/word for the keywords,

e text for the texts,

e todo/appt for the appointments,

e todo/appts for the appointment sequences,
e todo/dayattr for the day attributes,

e todo/pdays for persistent sets of calendar data,
e todo/page for the calendar pages, and

e todo/cal for the sequence of calendar pages.

6.2.2 Component Hierarchy

These packages depend on each other as shown in Fig. 6.2, where the
lower package is used (imported) by the one above. The packages day,



clk, and text are components of the microuniverse.

todo

todo/cal

todo/dayattr

todo/pdays

S

todo/page

todo/appts

todo/appt

todo/attr

todo/word

/

nu uu

uu

Fig. 6.2 System architecture of the appointment calendar
The packages day, c1k, and text are components of their

microuniverse. At lower levels, many other packages are needed, which

due to their universal usability are also components of the
microuniverse and which we introduced in Chap. 3:

* box for input/output fields,

e seq for sequences,

» pseq for persistent sequences,

e set for sets, and

e piset for persistent sets.

6.3 User Manual



After the categorization in the third paragraph of Sect. 1.1.3 about the
user manual, it consists of two parts:

 the specification of the formats of the objects that appear on the
screen and
 the system operation.

6.3.1 Formats

In this first part, the formats of all objects are defined. The
corresponding specifications are completely independent of the control
of the system, which is described in Sect. 6.6.2.

For calendar dates, the formats Dd, Dd mm ,Dd mm yy, Yyyy, Wd,
WD, M, and WN are used (see specification in u U/day/def.go).

Times consist of hours and minutes, separated by a dot; the
“timeless” time is represented only by spaces.

6.3.1.1 Appointment Attributes
Appointment attributes have two formats:

e the long format consisting of three characters or
e the short format, only the initial letter of the long format.

The reason for this decision lies in the formatting of the weekly
calendar (see Sect. 6.5).

The use of the short format requires that the appointment
attributes all must have different initial letters.

If you have configured the appointment attributes as in Sect. 6.1.3,
their initial letter is sufficient for input (see above). Spaces mean
renunciation of the specification of an appointment attribute.

6.3.1.2 Keywords
A keyword is provided with 12 characters.

6.3.1.3 Texts

The text of an appointment can be 56 characters long, because out of
the 80 characters of a screen line, 5 are used for the time, 3 for the
appointment attribute, 12 for the keyword, and 4 spaces for separation
and ending.



6.3.1.4 Appointments

From the previous considerations, it follows that all attributes of an
appointment, separated from each other by a space, fit into a screen
line with 80 characters. This allows a good 20 appointments to be
accommodated one below the other on a screen with 25 lines, which
optimally guarantees the demand for clarity.

For the representation of an appointment in the weekly calendar, 9
characters remain (on a screen with 80 columns): (7 days per week
side by side, 2 spaces for horizontal separation).

Therefore, two formats are provided for appointments:

 the long format with all attributes, each separated by a character,
with a width of 79 characters and

 the short format only with time and appointment attribute directly
next to each other (distinguished by colour) in a width of 9
characters.

6.3.1.5 Day Attributes

Day attributes are displayed in two formats:

e as a word with up to eight letters or
e by colour highlighting the relevant calendar dates with a different
background colour.

In the annual, monthly calendar, and weekly calendar, the word of
the actual day attribute is output in the last screen line and the
calendar dates of the relevant days are colour-marked. When searching
for appointments (see Sect. 6.6.1), the day attribute “keyword” is actual.

6.4 Calendar Pages

The structuring of the calendar page on the screen results from the
previous considerations:

In the first line on the left edge is the weekday of the actual date,
behind it the actual date in the format Dd mm_yyyy, in the middle the
day attribute of the relevant day and below it, separated by a blank line,
in the 3rd to 23rd line, the sequence of appointments, consisting of 21
appointments in long format.



The last screen line remains free for instructions for use or error
messages.

6.5 Weekly Calendar

The weekly overview consists of the appointments of a week in short
format (see Sect. 6.3.1.4), column-wise for all days of the week side by
side.

The appointments of each day are listed one below the other; each
column is headed with the date of the respective day in the format wd
Dd mm .

In the first row, the year is displayed on the left and right outer
sides, and the week number (date in the format WN) is in the middle.

In the middle of the last screen line, the word of the actual day
attribute is displayed; the calendar data of the respective days are
highlighted in colour.

6.5.1 Monthly Calendar

The monthly overview consists of the calendar data of the month in the
format Dd mm , column-wise from Monday to Sunday; on the right and
left at both screen edges—matching in the respective row—the
weekdays are in the format Wd.

In the row below, there is a string that consists of the sequence of
the appointment attributes occurring on this day in the short format
(see Sect. 6.7.2).

In the first row, the year is displayed on the left and right outer
sides, and the month name (date in the format M) is in the middle; the
actual day attribute is displayed as in the weekly calendar.

6.6 Annual Calendar

The annual calendar fits on a screen with 25 lines and 80 columns:
When displaying the weeks column-wise in the format Dd, 8 lines
(month name and 7 d per week) are needed for a month block with a
maximum of 6 weeks (e.g., first of the month on Saturday, last on
Monday) 6 times 3 columns are needed (2 digits for the day and a



space). This results in a display in the form of 3 times 4 month blocks
side by side, for which 24 lines and 72 columns are needed.

In the upper left corner of the screen, the year is displayed; on the
left and right screen edges, the abbreviations of the weekdays are
displayed in the format Wd. The current day attribute is displayed as in
the weekly calendar.

6.6.1 Search and Search Results

The search term, which the appointment calendar is searched for;, has
the same format as the keywords. The corresponding field is located in
the weekly, monthly, and annual calendar next to the word of the
current day attribute in the last screen line.

After entering a search term in the weekly, monthly, or annual
calendars, the search results appear, i.e., those days on which
appointments are entered, in whose keyword the search term is
contained, are highlighted in the calendars in the same colour as the
days of certain day attributes; in addition, the search words in the
corresponding appointments are highlighted in colour (this
highlighting remains when switching to the daily calendar).

Consequently, during the search, the current day attribute is reset to
“search word” so that the highlights are clear.

6.6.2 System Operation

This second part describes how the appointment calendar is controlled
by users.

At the start of the program, the annual calendar is shown. The
screens can be cycled through in the order

1) Year,
2) Annual calendar,
3) Monthly calendar;

4) Weekly calendar, and



5) Calendar page

you can move one step forward with - and one step back with Esc—
with the exceptions that at 1) the program is exited with Esc and that at
5) it does not continue with - . In cases 1) to 4) the cursor blinks in
the field for the actual date; it can be changed, after which the screen is
updated to the year, month, week, or day that was entered.

At the beginning, no day attribute is current.

6.6.2.1 Year
The screen is empty except for the year of the actual year.

6.6.2.2 Annual Calendar

The screen displays the overview calendar of the current year. With the
following commands, the system remains on the annual calendar:

e V:The actual day is increased by one day, in combination with 1} or
Ctrl by 1 week and with Alt by 1 year.

e Pagel: The actual day is increased by 1 month, in combination with {}
, Ctrl or Alt by 1 year.

o p: The actual day is increased by 1 week and in combination with 1)
and with Alt by 1 month.

* A, « Pagef: Analogous to V¥, Page| or », but in reverse time.

e Pos1: In combination with 1} or Ctrl, the actual day is the Monday of
the current week, in combination with Alt it’s the first of the actual
month.

e End: Analogous to Pos1, with Sunday or end of the month.

e 5: The current day attribute cycles forward, in combination with {}
backwards.

e F2: continue with Search.

e F5:If a day attribute is actual, the actual day has this attribute.

e F6:If a day attribute is actual, the actual day has lost this attribute, if
it applies to it. Afterwards, the actual day is increased by 1 day.

e Print: The annual calendar is printed.

In this case, the actual week, the actual month, or the actual year is
always adjusted, possibly with a new issue. If an undefined date would



arise (such as February 29 in a non-leap year or September 31), the last
day of the actual month becomes the new actual day; if the range of
defined calendar dates were left, nothing is changed.

6.6.2.3 Monthly and Weekly Calendars

The screen displays the overview calendar of the actual month or the
actual week. The operation is completely analogous to the annual
calendar.

6.6.2.4 Calendar Page

The screen displays the calendar page of the actual day.

If the calendar page contains no appointments, continue with Time,
otherwise no cursor is visible, but the system is waiting for an input.

After entering ' the cursor blinks in the field for the time of the
first empty appointment on this day (if there is no more empty
appointment, of the last appointment). The input of Esc leads to the
screen changing to the weekly calendar of the current week; the cursor
blinks in the field for the current day.

With 7 or | the current day is the next or previous one from the
appointment calendar (i.e., on which the calendar page contains
appointments). If the last r first day with appointments was already
reached, the actual day remains unchanged.

With Print, the calendar page is printed.

6.6.2.5 Time, Appointment Attribute, Keyword, Text

The cursor blinks in the field of the time, the appointment attribute, the
keyword, or text of the actual appointment; the corresponding object
can be edited.

From the first of these components of an appointment to the third,
you can get to the next one with and from the text to the time of the
next appointment in the sequence (with {}you land there immediately).

With {} + ¥ or ) + A the next or previous appointment becomes the
actual appointment (if that was already the last or first one, nothing is
changed); with fPos1 or End you land at the first or last appointment
of the sequence.

The clipboard is used for moving and copying: With F7 the actual
appointment is copied into it and removed from the appointment



sequence, with F8 the same happens, but without deletion of the
appointment, and with F9, the appointments from the clipboard are
copied behind the current appointment, if there is still enough space on
the calendar page.

The deletion of the current appointment is achieved with {}Del.

Esc leads back to the same day in the weekly calendar.

6.6.2.6 Search

The cursor blinks in the field of the search word, it can be edited. The
completion of the input with ! results in the calendar data of the
days on which the entered search word appears in the keywords of any
appointments being colour-marked in the calendar. The markings
remain when the calendar is changed. An input completion with Esc
cancels the search.

In both cases, you are then back at the place from which the search
was called.

6.7 Construction
We only show the specifications of the packages.

6.7.1 Term Attributes



package attr
import . "pU/cbij"

const Wd = 3
type Attr = uint

type Attribute interface ({
Object
Editor
Printer
Stringer
Marker
}
type
AttrSet interface { // a set of appointment attributs

Object

/7 a ig inserted into the set.
Ins {(a Attribute)

// The appointment attributes from the set are displayed on the
// screen in short format in a string starting from position (1, c).
// If b == true, at position (1, ¢-1) a red space is output
// from position (1, c-1).
Write (1, ¢ wuint, b bool)
}
func NewSet () AttrSet { return newSet() 1}

6.7.2 Keywords

package word
import . "uU/obij"

const Wd = 12
type Word interface {
Object
Editor
Stringer
Printer
// Returns true, iff tha actual search term is contained in x.

Ok () bool
}

func New ()} Word { return new ()} }

6.7.3 Appointments



package appt
import (. "uU/obi"; "todo/attr™)

const ( // format
Long = Format (ieta) // one complete screen line
Short // one line with 9 columns
}
type Appointment interface {
Object
Formatter
Stringer
Editor
Printer

// Returns true, 1ff the actual search term
// is contained in the search word of x.
HasWord() bool

// Returns the appointment attribute of Xx.
Attrib() attr.Attribute
}

6.7.4 Appointment Sequences

package appts
import (. "uU/cbi"; "uU/day")

type Appointments interface {
Object
Editor
Printer

SetFormat (p day.Period)

// Returns true, 1iff the actual search term is contained
// in one of the appointments in x.

HasWord() bool
}

If the calendar page contains no appointments, continue with Time,
otherwise no cursor is visible, but the system is waiting for an input.

After entering the cursor blinks in the field for the time of the first
empty appointment on this day (if there is no more empty
appointment, of the last appointment). The input of Esc leads to the
screen changing to the weekly calendar of the current week; the cursor
blinks in the field for the current day.



With A or V¥ the current day is the next or previous one from the
appointment calendar (i.e., on which the calendar page contains
appointments). If the last r first day with appointments was already
reached, the actual day remains unchanged.

With Print, the calendar page is printed.

6.7.5 Persistent Sets of Calendar Data

package pdays
import (. "uU/obij"; "uU/day")

type PersistentDays interface { // persistent sets of calendardays

Clearer
Persistor

// Returns true, iff d is contained in x.
Ex (d day.Calendarday) bool

// d is contained in x.
Ins (d day.Calendarday)

// d is not contained in x.
Del (d day.Calendarday)

// Returns the number of days in x.

Num()} wuint

}

6.7.6 Day Attributes



package dayattr
import "uU/day"

// Manages a set of appointment attributes, one of which is actual,
// and for each of the attributes the persistent set of those days
// that have this attribute. In the beginning the first attribute
// in the file "dayattribute.cfg" is the actual attribute and

// for each attribute the persistent set of the days that have it
// diejenige, die es beim vorigen Aufruf des Programms war.

// The actual attribute is the first in the file "dayattribute.cfg".
func Normalize () { normalize(} 1}

// For w == true the actual attribute is advanced by one in the cyclic
// sequence of the attributes and fiir w == false set back by cne.
func Change (w bool) { change(w) }

// The actual attribute is written to the screen
// at position (line, column) = (1, <).
func WriteActual (1, ¢ uint) { writeaActual(l,c) 1}

// For b == true the actual attribute applies to d, not for
// b == false; the set of days that have it is corespondingly changed.
func Actualize (d day.Calendarday, b bool) { actualize (d,b} }

// The set of days that have the first attribute
// from the file "dayattribute.cfg" is empty.
func Clr(} { clr() }

// Colour and font of d are set - depending on whether d is

// contained in the set of days that have the actual attribute
// or not and whether d is a holiday or not.

func Attrib (d day.Calendarday) { attrib(d) }

// For each attribute the set of days that have this one

// is secured in the file "dayattribute.cfg"®,
func Fin() { fin() }

6.8 Calendar Pages



package page
import (. "uU/cbi"; "uU/day")

type Page interface |

Object
Editor
Printer
Indexer

SetFormat (p day.Period)

// d is the date of x.
Set (d day.Calendarday)

// Returns the date of x.
Day() day.CalendardayG

// Returns true, iff the actual search term is contained
// in the keyword of an appointment of x.
HasWord({) bool

// 8. dayattr.

Fin ()
}

6.8.1 Appointment Calendars



package cal
import "uU/day"

func SetFormat (p day.Period) { setFormat (p) }

// The actual calendar page is that of the day d.
func Seek (d day.Calendarday) { seek(d) 1}

// The appeointments in the weekly calendar and all appointment
// attributes are written to the screen,
func WriteDay (1, ¢ wuint} { writeDay(l,c} }

// The sequence of calendar pages is changed by editing
// wobei bei d begonnen wird. d is danach

// the date of the last edited calendar page.

fune Edit (d day.Calendarday, 1, c¢ uint) { edit (d,1,c¢) }

// The actual search term is the one that was edited at peosition (1,
func EditWord (1, ¢ uint} { editWord(l,c} }

// The actual calendar page is printed,
// starting from (line, column) == (1, c).
func Print (1, c uint) { print(l,c) }

// The actual calendar page is persistently secured.
func Fin(} { fin() }

cl).
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Abstract
This project presents two games: the Game of Life by John Conway and a
predator-prey system with foxes, hares and plants.

This teaching project was originally only designed for the simulation of
a simple predator-prey system.

During the system analysis, something astonishing was discovered,
which led to the project having “two faces”.

7.1 System Analysis

The basic ideas of simulating a predator-prey system are highly related
to those from the Game of Life by John Conway (in essence, both are a
simple cellular automaton).

Consequently, the task consists of two parts:

e the Game of Life by John Conway and
e the simulation of a simple predator-prey system.
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The consequence of this is the extensive bundling of the different
manifestations in the representation of the data and the construction of
the algorithms—not least with a view to easy expandability;
furthermore, the possibility of choosing between the two simulations at
the start of the program.

7.1.1 The Game of Life

In the Game of Life, there is only one type of creature: cells.
They survive according to the following rules:

e [fthey have more than three cells in the neighbourhood, they die of
stress.

 [f they do not have at least two cells in the neighbourhood, they die of
loneliness.

* In a free space, where there are three cells in the neighbourhood, a
new cell is created.

The up to eight adjacent spaces, not only horizontally and vertically,
but also diagonally, are considered as neighbourhood.

There is a lot of literature on this topic (s. [1, 2, 4, 6]) and two
websites that deal intensively with this topic and provide many
references to literature (see [3, 5]).

7.1.2 The Ecosystem of Foxes, Rabbits, and Plants

foxes eat hares, hares eat plants. Both groups of creatures can only
survive if their environment is not overpopulated with their own kind
and they therefore can’t find anything to eat.

The ecosystem is modelled as a rectangular world of checkerboard-
arranged spaces. Each space is either occupied by a plant, a hare, or a
fox. The survival rules are very simple:

» The space of a plant is taken over by a hare if there is a hare on one,
two, or three neighbouring spaces (“hares eat plants”).

e A hare loses its space to a plant if there are already four hares in the
neighbourhood (“hare finds nothing to eat”).

e The space of a hare is taken over by a fox if there is at least one fox on
a neighbouring space (“foxes eat hares”).

» A fox has to give up its space to a plant if there is no hare on any
neighbouring space (“fox finds nothing to eat”).



In the course of the simulation of the “generational” development of
the ecosystem, the following is possible:

» A world initially only occupied with plants is “created” by the user
(i.e., some of its spaces are occupied with hares and foxes).

e The development of a world according to the above rules is followed
step by step (where the rules are applied once in each step).

e The simulation can be stopped at any time, the interim status
archived, and can be restored and continued at any time.

e Each world can be given a name.

The actual state of the world is clearly displayed on the screen.

7.1.3 The Objects of the System
The following objects can be derived from the system analysis:
 the different life forms in their places within the considered system

and
e the worlds, in which they live.

Both are realized as abstract data types; the corresponding
packages are 11 fe with the subpackages 1ife/species and
life/world.

7.1.4 Component Hierarchy

The dependencies of the packages are shown in Fig. 7.1, where the
lower package is used (imported) by the one above it:

life

life/species

life/world

Fig. 7.1 Component hierarchy of the Game of Life

Furthermore, some project independent packages from the
microuniverse are used, as, e.g., kbd, col, scr, and pseaq.



7.2 User Manual

The life forms are represented pixel by pixel by small “icons” in the 16 x
16 grid.

For the screen size, PAL (768x578) is chosen; thus, the world is 48
spaces wide and 34 spaces high at an icon size of 16 x 16 pixels, with
each space able to accommodate one creature of a species. The first line
is reserved for the system’s heading, and the last line is reserved for the
system'’s operating instructions and error messages.

7.2.1 Program Operation

Since there are two different systems, it is initially determined which of
the two should be called:

7.2.1.1 System Selection

After calling the program, a menu appears in which you can choose
between

e the Game of Life or
e the Ecosystem of Foxes, Rabbits, and Plants.

When the input is completed with the enter key -, the

corresponding system is selected, and the program is terminated with
the escape key Esc.

7.2.1.2 World Definition

The cursor is in the field for the world’s name; the field is empty, the
name must be entered. If the name is empty or the input is completed
with Esc, the program is terminated.

7.2.1.3 World Editor

If a world with the entered name already exists, it is loaded; a new
world in the ecosystem is only full of plants, in the Game of Life it is
empty.

The only keyboard inputs possible are - and Esc; with - a step
of the simulation is performed according to the rules, and with Esc you
return to the world definition.



The occupation of each space by a life form can be changed. In the
Game of Life, a cell is inserted with a click of the left mouse button and
removed with the right mouse button; in the Ecosystem, a hare is
inserted with a click of the left mouse button and a fox in combination
with the shift key, and a plant with the right mouse button.

Figure 7.2 shows the screen when the Game of Life was selected,
with the “gun” —a figure that constantly “shoots” the same cell
combinations. This world is named gun. Figure 7.2 shows an

ecosystem.

ame of Life (John Conuay)

next: Enter insert/delete cell: left/right mouse button

Fig. 7.2 The Game of Life: the gun

Figure 7.3 shows an ecosystem.
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Fig. 7.3 An ecosystem

7.3 Construction
7.3.1 Specifications

Here is the specification of the lifestyle package:



package species
import . "pU/obj"

type System byte

const (
Eco = System(iota) // Ecosystem with foxes, hares and plants
Life // Game of Life (John Conway)

)

var

Suffix string
NNeighbours uint
}

type
Species interface |

Equaler
Stringer

Write (1, ¢ uint)

// 1f k == 0 in Eco: x is a plant
Vs in Life: x is nothing
// 1f k == 2 in Eco: x is a hare
Vs in Life; x is a cell
// 1f k == 3 in Eco: x 1s a fox
Vo in Life: x is a cell

Set (k wuint)

// The actual species has changed according to func.
Modify (func (Species) uint)
}

// Returns a new species.
fune New () Species { return new (} }

// The actual system is s.
fune Sys (s System) { sys(s) }

and here is that of the world package:



package world
import (. "uU/obj"; "uU/mode"; "life/species™)

const Len = 8 // maximal length of the name of the world
type World interface {

Equaler

Write ()}

Edit (})

Stringer

Persistor

}

// Returns a new empty world.
func New(} World { return new_ ()} }

// Returns the mode for life.
func Mode () mode.Mode { return m(} }

// s is the actual systemn.
func Sys (s species.System} { sys(s) }

7.3.2 Implementations

Here are the representations of the abstract data types world and
species

type species struct { byte }

type world struct |
string "name of the world"
spec, old []species.Species
line, column uintlé

}

We also show the main program:



package main
import ("wU/str"™; "wU/col™; "uU/scr™; "uU/box"; "uU/errh™;
"uU/files™; . "uU/menue™ "life/species™; "life/world™)

var m = world.Mode ()
func defined() (string, beool) {

bx := box.New/()
w := scr.NColumns ()}

bx.Wd (w)

bx.Colours (col.Black (), col.FlashWhite()})

bx.Write ("world:"™ + str.New(w — 6}, scr.NLines(} — 1, 0}
const n = world.Len

bx.Wd (n)

name := str.New (n}
bx.Colours (col.FlashWhite(), col.Black())

for {
bx.Edit (&name, s¢r.NLines() — 1, 6)
if str.Alphanumeric (name) {
break

} else
errh.Error0 ("Only letters and digits may appear in names"™)
}
}
str.0OffSpc (&name)
errh.DelHint (}
return name, ! str.Empty (name)

}

func sim() {
w := world.New/()}
for {
if name, ok := defined(}; ok {
w.Name (name}
w.Write()
w.Edit ()}
} else {
break

}

func main() {
scr.New (G, 0O, m)
scr.ScrColourB (cocl.FlashWhite(})
scr.Cls ()
files.Cds (}
var x Menue
x = New ("Game of Life")
game := New ("Game of Life (John Conway}")
game.Leaf (func(} { world.Sys (species.Life); sim(} }, true}
x.Ins (game)
wvar ecosys Menue
ecosys = New ("Ecosystem of foxes, hares and plants™)
ecosys.Leaf (func() { world.Sys (species.Eco); sim(}) }, true)
x.Ins (ecosys)
x.Exec ()
scr.Fin (}
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Make things as simple as possible,
but not simpler.
Albert Einstein

Abstract
The register machine is a machine model that is suitable for introducing the
concept of computability. Its concept is equivalent to the Turing Machine.

At a teacher training conference at the Institute for Computer Science of the
Free University of Berlin many years ago, Prof. Dr. S. Koppelberg gave a
lecture on the question What can algorithms do? (see [2]). The central
message was the mathematical equivalence of the concepts of the Turing
machine and the register machine with respect to the computability of
functions, which exactly characterizes the recursive functions. In this context,
the article [1] is also pointed out.

The particular appeal of the topic lies in the contrast between the
simplicity of the “programming language” of the register machine and the
intellectual challenge of many tasks that can be solved with it—arbitrarily
demanding tasks. Practical work with register machines is very simple using
the Go programming language. Everything worth knowing about this is
shown in this chapter.

The Go register machine is not a project from teacher training, but a
program [ constructed for use in teacher training. Therefore, this chapter
does not include references to the phases of the program life cycle;


https://doi.org/10.1007/978-3-658-44704-5_8
mailto:christian@maurer-berlin.eu

nevertheless, its inclusion in this book is justified due to the importance of
the concept for the fundamentals of computer science.

8.1 System Analysis

With register machine programs, basic concepts of both imperative
(especially machine-oriented) and functional programming can be developed
in a very natural way, because they model the structure of von Neumann
computers quite well and also allow a “programming style” according to the
functional paradigm.

The importance of this concept lies

e Theoretically in its equivalence to the concept of computability (by
recursive functions or Turing machines): Everything that can be
programmed at all can in principle be done with register machines.

e Practically in its clarity and comprehensibility: The necessary syntactic
effort to construct RM programs is very low, therefore they are easier to
handle than Turing machine programs that achieve the same.

Register machines thus represent an advantageous alternative to the
introduction of Turing machines—especially in introductory considerations
of computer science, because their treatment is possible without prior
knowledge.

8.1.1 Components of a Register Machine
A register machine conceptually has

e adata storage in the form of a countable set of registers and
e aprogram storage for storing a program in the form of individual program
steps.

The data storage consists of registers. They are memory cells that can be
accessed directly. No distinction is made between the memory cells in the
working memory and those in the processor.

Registers can hold a natural number as content. The content of a register
is also referred to as its value. Since these values change during the execution
of a program (which is precisely the purpose of RM programs), the registers
can also be considered as variables.

Direct access to the registers is made possible by giving them names by
which they can be addressed to access their values, e.g., g, b, c, ..., x1, ....

Initially, all registers have the value O.



Of course, the concept is an idealization insofar as on a real computer, due
to the finiteness of its memory, neither can there be infinitely many registers
nor can their values become arbitrarily large.

8.1.2 Basics of the Register Machine Programming Language

Register machines only have a very limited programming language with only
five types of instructions:

 for the assignment of a value to a register, especially for creating a new
register with the content 0;

» for the modification of a register content by +1 or -1;

¢ for the jump to another location in an RM program, also under the
condition, that the value of a register is greater than 0;

o for the return of a value of a register or a function; and

 for the output of the value of a register or a function.

A register machine offers the possibilities

e for inputting a program, i.e., for populating the program memory with
program steps and
e for outputting the intermediate and final results of calculations.

An RM program is executed by a register machine in such a way that its
program lines are processed sequentially (line by line), starting with the first
line and then either moving to the next program line or jumping to a line
other than the next one.

Looking at it a bit more closely, this is realized as follows:

The next program line to be executed is always that one whose number is
in a special register, the program counter. (However, the above-mentioned
instructions cannot be applied to this register.)

Initially, the program counter contains a 0; so it starts with the first
program line. Which number after the execution of a program line is in the
program counter, i.e., which line is executed next, depends on the content of
this program line.

If the value of the program counter is greater than or equal to the number
of program lines, the execution of the program is finished.

Empty program lines only have the effect that the program counter is
increased by 1.

8.1.3 System Architecture

We present here the implementation of the concept “register machine” as it is
possible using the programming language Go.



8.1.4 Registers

The Go register machine uses the data type Register, which—along with
the accesses to it—is encapsulated in the Go package p U from the
microuniverse, which provides these things via an interface. This prevents
access to the Go register machine that is “unauthorized” in the sense that it
bypasses the syntax of the Go version of the RM language presented here.

Before the first use of a register, the Go register machine must be
informed about its use, which in Go is done by creating an “object” of type
Register with the value 0.

The size of the numbers that a register can contain as a value is limited by
the range of the data type uint in Go (on a 64-bit computer up to 264 — 1),

8.1.5 Register Machine Programs

A Go register machine program—hereinafter briefly referred to as RM
program—is implemented in Go as a program package. Its package header is
Go-specific:

package main
import . reg

In the second line, the RM program is made aware of the type Register and
its methods from the Go package reg for use.

We first consider the main function of a package body. It is enclosed in its
signature func main () { and a closing curly bracket }.

The individual steps of the main function are placed one after the other in
the program memory after their translation “line by line” and can therefore
also be referred to as program lines. Each program line contains exactly one
instruction; the main function is therefore a sequence of instructions.

The structure of an RM program in EBNF notation thus looks like this:

RMProgram = PackHead ”;” PackBody.

PackHead = “package main””;” ”import .reg”.
PackBody = [ Funcs ] FuncMain.

Funcs = Func”;” { Func ”;” }.

FuncMain = ”"func main” Stmts ”}”.

Stmts = Stmt ”;” { Stmt ”;” }.

The literal “;” should be replaced by a line feed for better clarity of a program
text. Therefore, it is also legitimate to refer to the individual program steps as



“program lines”.

The additional possibilities for constructing and using functions with
“Func” are explained in the section on functions, those with “Stmt” in the
following section.

8.1.6 Instructions
An instruction is

e avalue assignment,

e achange instruction,

e ajump instruction,

e areturn instruction, or
* an output instruction.

At the beginning of an instruction, a mark may additionally stand as a
“jump target”. There may also be “empty” instructions that consist only of a
mark, or simply—for the sake of clarity—blank lines.

Here is the formal definition of an instruction in EBNF:

Stmt = [ Label ”:”’] [ Assign | IncOrDec | Jump | Return | Write | .
Label = CapLetter .
CapLetteI' — ,,A” | ”Bs, | .”| ”Z” | ”_u | nﬂaa | ”653 | nt']” .

Each of the individual instructions is dedicated to its own section below.

8.1.6.1 Value Assignment

The identifier for an atomic register—always a in the following descriptions
—can be replaced by any string of letters and numbers that starts with a
lowercase letter (in this sense, the a serves as a kind of “template”). The
formal definition is given below in EBNF notation.

// a is a new register with the value 0.
a := Null ()

The second form of value assignment

// Pre: f is a registervalued function.
// a 1s a new register with this value.
a := £ ()

for an arbitrary register-valued function f, we will go into more detail in the
section on functions, because “RegValue” and “Register” in the following



EBNF definition of value assignment also refer to the result values of
functions.

Assign = AtomicRegister ”: =" RegValue .
AtomicRegister = Smallldentifier .

RegValue = ”"Null ()” | FuncName [Registers] .
Register = AtomicRegister | RegValue .
Registers = Register { ”, ” Register } .

FuncName = Identifier .

Identifier = Letter { Letter | Digit | ”_
Smallldentifier = SmalllLetter { Letter | Digit | ”_ } .
Letter = CapLetter | SmallLetter .

Digit = 70”717 ... 9.

CapLetter = A” | "B” | ...| 727 | "A” | 07| "0 .
Smalll etter = ?a” | b7 | ... 72" | a7 | U | R

Because we will also allow functions with results of type boo1l, the
mentioned context-dependent condition that the function with the name
“FuncName” delivers a value of type Register is of course essential.

There is a good reason why in the Go-RM language on the right side of a
value assignment no atomic register, but only a function value may stand
(Null () is one!).

Let’s assume that the value assignment a := b would be allowed for an
atomic register b (unfortunately, the Go translator would accept such a
statement). Then the program

fune main () {
b := Null ()

.Inc ()

:= b

.Dec ()

b
a
b
a.Write ()}

}

does not output 1, but 0! This is because the instruction b . Dec () also
changes the value of the register a, i.e., witha := b not what was
“intended” has been achieved, namely, to create a new register with the value
of b, because its value is also changed by modification instructions to the
register b, thus not representing its own register.

The “intention” is achieved with the instructiona := Copy (b).



The deeper reason is that in the implementation of the Go register
machine, the variables of type Register are only “references” to objects
“behind the scenes” (i.e., pointers to addresses in memory where the objects
are stored), not the objects “themselves”. Consequently, with the instruction a
:= b only the start address of the register b would be copied into the start
address of the register a, which means that the reference a points to the
same object in memory as the reference b. This explains the “penetration” of
the change from b to a.

8.1.6.2 Change Instruction

There are two instructions that can increase or decrease the value of a
register; in EBNF notation:

IncOrDec = AtomicRegister [".Inc()” |”.Dec()” ].

Here are the details from the specification of the package reg:

// Pre: a was generated by a value assignment
// The value of a is incremented by 1.
a.Inc ()

// Pre: a was generated by a value assignment

Vo4 and the value of a is bigger than 0.

// The value of a is decremented by 1.
a.Dec ()

In an RM program, it is therefore necessary to ensure the precondition, i.e., to
ensure that the value of a is greater than 0 when the instruction a.Dec () is
called. If this condition is not met, a program run will be aborted with a
corresponding error message!

The test for this is provided by the method Gt 0 (“greater than 0”) from
the package reg, which returns a value of type bool (i.e., true or false):

// Returns true, 1ff the value of a is bigger than 0.
a.Gt0 ()

The details on jump instructions follow in the next section.

The relationship between precondition and effect represents a kind of
“contract” about the mutual rights and obligations of the programming
person and the register machine:

The register machine has the right, to rely on the precondition that the
value of x is greater than 0 when it is to execute the instruction x . Dec (),
and for this the obligation, to effect the effect, i.e., to decrease the value of x
by 1; the programming person has the obligation, to ensure that the



precondition is met when the instruction is called, and thus the right, that the
register machine effects the effect.

Why the change instructions are not allowed for registers in general, i.e.,
also for register function values, but only for atomic registers, becomes
apparent from the following “program”, which is (unfortunately) accepted
(i.e., translated) by the Go translator, but does not deliver the “expected”
result:

Two () . Inc ()
Two () .Write () // Oops

With the use of P1us1 (), something adequate can be achieved:
Pluslr (Two ()} ) .Write ()

8.1.6.3 Jump Instruction

Here we first only deal with the first alternative of the condition
Condition; we will return to the second in the section on functions.

// If the value of a is bigger than 0, the program jumps to the program line
// with the mark A. Otherwise, the program 1is continued with the following,
// 1f there 1is one, otherwise, the program 1is terminated.

if a.Gt0() { gote A }

If there is no program line with the label 2, or if this label appears more than
once, the program cannot be translated and the translation is aborted with a
corresponding error message.

The same applies to the name of the label A as to that of a register.

Since the Boolean constant t rue can also be used for the condition, we
also have the unconditional jump

if true { goto A }
or just briefly
goto A

The condition is used in the syntax for the conditional jump:



Jump = ”i£” Condition ”{” "goto” Label ”}” .

Condition = Register ”.” ”Gt 0 () ” | BoolExpression .
BoolConst = true | false.

BoolExpression = BollConst | Bool Value .

BoolValue = FuncName [Registers] .

Here too, a context-dependent condition must be met: The function named
“FuncName” returns a value of type bool.

8.1.6.4 Return Instruction
This instruction consists of the keyword return and a register or a Boolean
value . . .:

return
More details will follow in the next section.

8.1.6.5 Output Instruction

In addition to the instructions presented so far, our Go register machine
contains the method Write from the package reg

 for the output of the value of a register or a function:

// The value of a is written to the screen (in a new line).
a.Write ()

8.1.7 Test Programs
a is either a register or the value of a register-valued function. Formally in
EBNF: Write = Register.”Write”.

The results are checked in a Go program. The name of the file containing
its source code must have the suffix . go; it is recommended to use main. go.
The program is then translated with the command

go run main.go

bound to an executable program, and then called.

Of course, it cannot be ruled out that errors may occur during the
translation. Possible causes include, for example, typing errors or non-
compliance with the syntax described here.



If something like this happens, carefully check your source code—the
error messages from the Go translator will certainly give you important clues
as to what could be wrong.

Here is a concrete example:

package main
import . "uU/reg"”
(source texts of the functions Two and Four)

fune main () {
x := Two (}
x.Print ()
Four (} .Print ()

}

It is very useful—if not necessary—to insert additional comments in the
program text, which do not belong to the actual program text, but only serve
to explain the program construction.

If this is done consistently in such a way that properties of the register
values are described as a comment after each instruction, the correctness of
an RM program can be proven. A “short form” is acceptable in which, for
example, “the register a has the value 1” is abbreviated to “a = 1”. We
demonstrate this in the examples.

From a “software technical” point of view, it is also essential to provide a
specification for each function in the form of a comment before its signature
line, i.e., if its call depends on prerequisites, which ones, and what the
function returns!

In Go—and thus in the Go-RM language—it is agreed:

All texts in program lines that follow two consecutive slashes // are not
considered program text, but are ignored during translation.

8.1.8 Functions

Functions represent, in a way, RM (“sub-") programs that open up the
possibility to significantly expand the scope of the RM (“programming”)
language. They return a register (and thus its value) or a Boolean truth value
as a result.

Values of functions—such as the “number” Two () —can be considered as
new “objects” of the RM language, which may be treated like a register in an
RM program. In particular, they can also be assigned to an atomic register—
such as Null() as a new register with the value 0—(which shows that
Null () is basically also such a function).

8.1.8.1 Specification of Functions



Functions represent, in a way, RM (“sub-") programs that open up the
possibility to significantly expand the scope of the RM (“programming”)
language. They deliver as a result either a register (and thus its value) or a
Boolean truth value.

A function consists of the specification of its signature, its body—a
sequence of program lines—and the closing line.

The first line of the program text of a function consists of its signature. It
is introduced by the keyword func, followed by the name of the function (a
string of letters and numbers that begins with a capital letter). This is
followed by a pair of round brackets () and the keyword Register or
bool. Within the brackets, one or—separated by commas—several register
names may stand as parameters, followed by the keyword Register. An
opening curly bracket { completes the signature.

The body of a function consists of a sequence of program lines, with which
the value of the function is calculated, each line containing exactly one
instruction.

Each “auxiliary register” a, i.e., one that does not appear as a parameter in
the signature, must of course be created with a value assignmenta :=
before its use (preferably at the beginning of the body).

The last instruction must be a return statement of the form return v,
where v is the register or the Boolean expression whose value the function
should deliver as a result.

Return statements may also be used in the middle of the function body,
when the register or the Boolean expression is calculated; then the
calculation is aborted and its value is delivered as a result.

The closing line consists only of a closing curly bracket {.

The whole thing a bit shorter in EBN notation:

Func = RegFunc | BoolFunc.
RegFunc = RegFuncSig RegBody RegReturn.
BoolFunc = BoolFuncSig BoolBody BoolReturn .

RegFuncSig = ”func” FuncName ” (” [ Param | ) ” "Register” ”{".
BoolFuncSig = ”func” FuncName [Param] "bool” ”{”.

Param = Identifier { ”, ” Identifier } "Register”.

RegBody = [ Stmts ] RegReturn.

BoolBody = [ Stmts ] BoolReturn.

End = ?}7.



8.1.8.2 Are Function Values “Registers”?

Values of functions can be considered as new “objects” of the RM language,
which can be treated almost like registers in an RM program; they are also
stored in registers.

If v is such a function value, then

Assignments to a register (a := ),

Jump instructions (if y.Gt0() { goto A }),
Return instructions (return y), and

Output instructions (y .Write () ).

Patterns for permissible instructions. The creation of a new register with
the value 0 is a special case of value assignment: the function Nul1 from the
package reg is simply a (internally defined) function that delivers a register

with the value 0.
The modification instructions, however, form an exception: program lines
of the form

e yv.Inc () ory.Dec()
are meaningless if y is a function value; the Go translator would, for example,

respond to the program line

Null().Inc().Write ()

with an error message.
Here is a minimal example in which everything mentioned occurs:

func null ()} Register {

return Null () // return value
}
fune main () {

null.Write () // output
if null().GtC() { gote A } // jump
n := null() // value assignment
n.Write ()

A
null.Write () // does not happen

}

8.2 User Manual

Go-RM programs are ultimately Go programs and thus subject to their
syntactic requirements.



A program named main. go is then translated with the command “go
run main.go”, bound to an executable program and called. If errors appear
during the translation, carefully check your source code—the error messages
from the Go translator give you hints on what could be wrong.

It is very useful—if not necessary—to insert additional comments in the
program text, which do not belong to the actual program text, but only have
the meaning of explaining the program construction.

If this is done consistently in such a way that properties of the register
values are described as comments after each instruction, the correctness of an
RM program can be proven. A “short form” is acceptable in which, for
example, “the register tt a has the value 1” can/should be abbreviated with “a
== 1". We demonstrate this in the examples.

From a software technical point of view, it is also indispensable to provide
the specification of each function in the form of a comment before its
signature, i.e., the prerequisites for its use, if there are any, as well as the
indication of the result value it delivers. In Go—and thus in the Go-RM
language—it is agreed that all texts in program lines that follow two
consecutive slashes // are not considered as program text, but are ignored

during translation.

8.2.1 Examples

Here is a simple example of a function that returns a register with the value
2:

func Twp (} Register {
Z := Null ()

z.Inc ()}

z.Inc ()

return =z

We now present a more challenging example, the calculation of the sum of
two registers, with which we introduce typical patterns in the construction of
RM programs and point out a possible “standard” error.

The following attempt is a naive approach:

func Sum (a, b Register) Register {
if b.Gt0() { goto A }
return a

A

a.JInc ()

b.Dec ()}

if b.Gt0() { goto A }

return a



However, this approach is not a solution to the problem!
The function does return the correct result, which can be immediately
confirmed by thinking about its source code and, for example, by calling

Sum (Two (), Four(})).Write ()}

in a short RM program. However, as a side effect, it has set the value of the
register passed as the first parameter to the sum of the original values of both
registers and counted down the value of the register passed as the second
parameter to 0. This fact is also immediately apparent and can be
demonstrated with the lines

a Two ()

b Four ()

Sum (a, b).Write ()
a.Write ()}
b.Write ()

in an RM program: This gives the value 6 for a and the value 0 for b, not
the values 2 and 4. This (completely unacceptable!) phenomenon occurs in
all such constructions.

To prevent the values of the registers passed as parameters from being
changed, it must be ensured that their values match the original values at the
end of the function call. This can be most easily achieved as follows: At the
beginning of a function body, “helper registers” are created as copies of the
passed registers, which are then used for the calculations instead of the
passed registers.

To this end, we construct a function that returns a copy of a register. In it,
the decrementing of the value of the register a is “logged” by “counting along”,
which is used after the calculation of intermediate results to restore the
original value by corresponding “counting up”.



funec Copy (a Register) Register {

b := Null() // register to record the copy

if 2.6t0() { goto a }

return b // a == b ==
A: // let x be the value of a when called

h := Null() // helpregister to record the number of a.Dec(})-statements
// h == == 0, a + h == a == x
B:

a.Deac ()

b.Inc ()

h.Inc() // a + h == x, h == b > 0

if a.G6t0() { gote B }
// a == 0, conseguently a + h == x == h, deshalb b == x,
// but because x == h > ( we have a < a + h == x
// however, a == x must apply to the return of b,
// therefore, increase a as often as 1is recorded in h:
C:

a.Inc ()

h.Dec() // a + h == x

if h.Gt0() { goto C }
// h == 0, consegquently a == x

return b // b == a

With the use of this function, we obtain a correct solution for calculating
the sum of two registers:

func Sum {(a, b Register} Register {
al := Kopie (a)

bl := Kopie (b} // al + bl == a + b
if b1.Gt0 () { goto A }
return al // al == a and still bl == (
7L G
al.Inc ()
bl.Dec() // al + 1 + bl — 1 == al + bl == a + b
if bl.GtC () { goto A }
return al // bl == 0, therefore al + bl == al == a + b

Here is another example of a Boolean function, the examination of
whether two registers have the same value. Initially, the values of the passed
registers are copied into helper registers for the reason mentioned above.



fune Equal (a, b Register) bool {

al := Copy (a) // al == a

bl := Copy (b) // bl == b, therefore, a + bl == b + al
A

if al.Gt0() { goto B }
/7 al == 0

if bl.GtC() { gote F } // al =

return true // bl == 0 == al, therefore, + bl == b + al == b
B: // al > @

if bl.Gt0() { gote C } // al > 0,

return false // al » 0 == bl, therefore, == g == b + al > b
c: // al > 0, bl > 0

al.Dec ()

bl.Dec ()} // a + bl == b + alil

goto A

F:

return false // al == 0 < bl, therefore a < a + bl == b + al == b

A somewhat more complicated example with nested loops is the

calculation of the sum of the first n natural numbers:

// Returns 0, if a has the value 0,

// where n is the wvalue of a.
func GauB, [(a Register) Register {

g := Null()
if a.Gt0 () |

return g // ¢ == a =

goto A |}
= 0

al := Kopie(a)

I := HWull ()
= Null ()}

b.Dec ()
if b.GtO () {

c.Dec ()
b.Inc ()

if c.GtO() |
if al.GtO () |
return g

goto C }

goto D }
goto B }

otherwise the sum of the first n natural numbers,

The source code of this—albeit correct—example is definitely bad: It
contains no comments on the values of the respective registers and no
information on loop invariants; therefore, it is difficult to understand the

algorithm, and the proof of its correctness is missing.

8.2.2 Recursion
However, the following fact is essential to the concept of “nesting”:



In the instructions of an RM program—including in the body of functions
—already existing functions can be used. In particular, it is possible to “nest”
function calls (even multiple times).

A simple example of this is the following:

An example of possible multiple nesting is

funec Six ()} Register ({
return Times3 (Two (})

}

An example for the possible multiple nesting is

fune Hundredninetytwo(} Register {

return Times3 (Sum(Four(), Sum(Six (), Times3(Times3 (Six (})})))}

}

with

func Times3 (a Register}) Register
return Sum (a, Sum (a, a)

}

This leads us to the idea of formulating algorithms recursively.

The elegance of this approach can be easily demonstrated. We show a
significantly simpler solution to the Gaussian problem, the correctness of
which is immediately clear because the algorithm is precisely the definition

of the result:

funec Gaufl, (a Register} Register {
if a.Gt0() { goto A }
return Null ()

b := Kopie (a)
b.Dec ()
return Sum (a, Gaufl, (b))}

Thus, algorithms in the Go-RM language can be formulated as elegantly as in
functional programming languages. For example, all operations of arithmetic
can be developed by recursion, as is common in mathematics.

These recursive versions are significantly easier to understand than those
in section subsec:gormexamples.

Using the function



// Returns a register, whose value isg 1 greater than the value of a.
fune Succ (a Register) Register {

b := Copy (a)

b.Inc ()

return b

}

we show this using the example of the sum:

func Summe (a, b Register) Register if a.Gt0() goto A return Kopie (b) // a
== (), folglich a + b ==b A: c := Kopie (a) c.Dec() return Succ (Summe(c, b))

This algorithm is correct because it precisely represents the definition of
the sum from the theory of natural numbers. Also, the creation of a copy of a
register and the checking for matching two register values can be
implemented recursively: func Kopie (a Register) Register if a.Gt0() goto A
return Null() A: a.Dec() b := Kopie (a) a.Inc() b.Inc() return b

func Equal (a, b Register) bool if a.Gt0() goto A if b.Gt0() gotoF //a==0<
b return true //a==b==0A://a>0if b.Gt0() goto B return false // b ==
B: al := Copy (a) al.Dec() b1 := Copy (b) b1l.Dec() return Equal (a1, b1) F:
return false

8.2.2.1 Primitive Recursion

Basically, these examples are patterns for primitive recursion, which is very
simple with the Go register machine:
For functions

func g (a Register) Register
funec h (a, b, ¢ Register) Register

we immediately get

fune f (a, b Register} Register {
if a.Gt0 () { goteo A }

return g (b) // a == 0
Az

¢ := Copy(a)

¢c.Dec () // ¢ == a - 1

return h (¢, b, £ (c, b))
}

As a simple example, based on the sum function—itself an example of
primitive recursion—here is the product formation:
If we substitute for tt g and tt h the functions

func g (a2 Register} Register { return Null (} }

and



fune h (a, b, ¢ Register { return Summe (a, c) }

f (a, b) have the value of the product of the values of a and b.

8.2.2.2 u-Recursion
For f : N¥1 4 N, the partial function pf : N¥ — Nis defined as follows:

pflar,az,---,ar) =n <  f(a,a1,a9,---,a;) =0 und
forallb < agiltf(b,a;,as,---,a;) >0
pf(ai,as,---,ar)undefiniert < forallb € Ngiltf(a,as,az,---,ax) >0

This can be replicated—with the function types from the package p U using
the register sequences:

fune g (f RegFuncl) RegFunc {
return func (as Registers) Register {
a := Null ()
goto B
Az
a.JInc ()}
B:
if f(a, as).GtO0() { gote A }
return a
}
}

The execution of this function does not terminate precisely when f (a,
as) .Gt0 () for all registers Null (),One (), Two (), Three (), .. applies.

This makes it clear that the class of functions that can be calculated with
Go-RM programs includes the recursive functions.

That the “initial functions” of the class of recursive functions—the
constant functions, (especially Nul1), the successor function plus1, and the
projections—can also be expressed by Go-RM functions, is sufficiently proven
by the examples in the previous section, and the substitution of functions is a
syntactic part of the Go-RM language—so everything is said about that.

Of course, the proof that every Go-RM function is recursive could also be
led, closely following [2], Sects. 4. and 5, or [3], Sect. 2.4, by means of
Gadelization of the Go-RM functions. However, a modification of the technical
details of these proofs to the Go-RM functions can be omitted here with good
conscience, as these are not new findings and it should be intuitively clear
that the Go-RM functions are by no means more powerful than the recursive
functions.

But it’s simpler:



The reversal is also—referring to the equivalence of the classes of WHILE
—computable programs and the u-recursive functions—easy to show,
because every Go-RM function can be easily transformed into the form of a
WHILE program according to the procedure in Sect. 2.3 of [3].

We assume that the program contains neither lines that consist only of a
mark (if necessary, such lines are combined with the one immediately
following) nor those that contain several instructions separated by
semicolons (if necessary, each semicolon is replaced by a line feed). The
transformation is made as follows:

The program lines are numbered (starting with 0 for the function
signature). From lines with a mark at the beginning, the mark and the colon
following it are removed.

Jump instructions of the form

if a.Gt0() { goto A }
for n == z { n = next (a, z, n) }

are transformed into the form

for n == z { s; n++ }

where z is the number of the line that began with the mark 2; those of the
form goto A into the same form witha = One ().
Other instructions s are converted to

for n == z { s; n++ 1}

transformed (z as above the line number). The following auxiliary
function is used:

fune next (a Register, z, n uint) uint {
if a.GtO0 () |
return =z

}

return n + 1

The sequence of lines resulting in the body of the function is enclosed
with



enclosed.

In addition to the Go-RM operations that make up the instructions, this
method only uses syntactic components of Go that are allowed in WHILE
programs: elementary handling of natural numbers—here of type int—and
for loops (with the semantics of WHILE loops).

We demonstrate this with a simple example—the “translation” of the
function

func Copy (a Register} Register

from Sect. 8.2.1 on program examples:

func Copy (a Register)}) Register ({

n (= 1

for n > 0 {
for n == 1 { b := Null({); n++ }
for n == 2 { n = next (a, 4, n} 1}
for n == 3 { return b }
for n == 4 { h := Null({); n++ }
for n == 5 { a.Dec(}; n++ }
for n == 6 { b.Inc(}); n++ }
for n == 7 { h.Inc(}; n++ ]}
for n == 8 { n = next (a, 5, n} 1}
for n == 9 { a.Inc(}); n++ }
for n == 10 { h.Dec (); n++ }
for n == 11 { n = next (h, 9, n} }
for n == 12 { return b }

}

return b

}

If, as in this case, only return instructions with the same register b as the
result value occur, these lines can also be replaced byn = 0 if return bis
added as the last program line.

This makes it clear that every Go-RM function is recursive.

8.2.2.3 Encoding Functions

For the proof network of the equivalence between Turing, GOTO and WHILE
computability, bijective functions N — N* play an important role. They can
also be developed in the Go-RM language.

We first consider the encoding function c0 :: N x N — N, defined by



n+m+41
2

co(n,m):( )—l—n:%(n—l—m—i-l)(n—l—m).

In Table 8.1, the first function values of this encoding function are shown.

Table 8.1 The first function values of ¢,

10 16 23 |31 40 50 |61
15 22 30 39 49 60 72
21 29 38 48 |59 71 84

m
l n> 0 1 2 3 4 5 6
0 0 2 5 9 14 20 27
1 1 4 8 13 19 26 34
2 3 7 12 18 25 33 42
3 6 11 17 24 32 41 51
4
5
6

Because of c0(n, m) = c0(0,n + m) + n the inverse function
d0 : N — N2 of c0 can be easily found for decoding: It is defined by
d0(n) = (d(n), e(n)) for

e(n) =n—co(0,y9) wund

f(n) =90 —(n—co(0,y0)) mit
yo =max{y € N|y<nAcy0,y) <n}.

This “encoding/decoding” principle can be generalized to any k € N (k > 2):
The k-digit encoding function ¢ : N¥ — N, given by

c(no,n1,---,nk) = co(no, c(ni,---,co(ng,0)),

provides a bijection N* — N,
Its inverse function d : N — N for decoding looks as follows:

d(n) = (do(n),d1(n), - - -, dy(n)) fiir nN*

with dyo(n) = e(n) and d;+1(n) = d;(f(n)) for 0 < i < k.
The proof that d is inverse to c follows immediately by induction from the
recursive definitions, based on the fact that d0 and c0 are inverses of each



other.
All these functions can be implemented in the GO-RM language:

fune C0 (a, b Register} Register {
if a.Gt0() { goto A }
return Null ()
A: // a > 0
c := Copy(a)
c.Dec () // ¢ == -1
return Sum (CO0 (c, b}, a)

}

funec D0 (n Register) (Register, Register)} {
return E(n), F(n)

}

func max (a Register)}) Register ({

b := Copy (a)
A
if Leq (CO (Null(}), b), a} { goto B }
b.Dec (}
goto A
B:

return b

}

fune E (n Register) Register {

y0 := max(n)

return Difference (n, CO (Null (), y0))
}

fune F (n Register} Register {
y0 := max(n)
X := Difference (n, CO0 (Null (), y0}}
return Difference (y0, x)

The functions Leg and Difference are left as an exercise.



fune C (n ...Register) Register ({
if Equal (Length{(a), Two}) { goto A }
return CO0(n[0], C(n[l:]...})

A
return CO(n[0], n\cite{ch8F}}

}

func d (i, n Register) Register ({
il := Copy (1)
if i1.6t0() { goto A }
return F (n)
Ry
il .Dec (}
return d (il, n}
}

fune D (i, n Register) Register ({
il := Copy (i)
if il1.Gt0 () { geote A }
return E (n)

il.Dec ()
if i1.Gt0() { gete B }
return E (F (n}})
B:
return d (il, F (n})
}

For this reason, the results from Chap. 2 of [3] can be fully transferred.

8.3 Construction

The register package is included in the microuniverse. Here is its
specification:



package reg

type Register interface { // Registers with integer values.
// For all methods, the preposition is that the calling
// register was generated by a value assignment of Null()
// or the value of a function with a register as value.
// The calling register is always denoted by "x".

// Pre: The value of x is incremented by I.
Inc ()}

// Pre: x has a value > 0.
// The value of x is decremented by 1.
Dec (}

// Returns true, 1iff x has a value > (.
GEQ () bool

// Returns a new register with the sum
// of the values of a and x as value.
Add (a Register) Register

// Returns a new register with the product
// of the values of a and x as value.
Mul (a Register) Register

// The value of x ig written in a line to the screen.
Write ()
}

// Returns a new register with the value 0.
fune Null () Register { return null () }

and here, exceptionally—because of its brevity—its implementation:
package reg



type register struct {
uint "value of the register"™

}

func null ()} Register {
return new(register)

}

func fail (s string) {
panic ("Pre of " 4+ s + "() not met")

}

fune (a *register) Inc () {
a.uint++

}

fune (a *register) Dec () {
if a.uint <= (0 { fail("Dec"™) }
a.uint -—-

}

funec (a *register) Gt0 () bool {

return a.uint > 0
}

fune (a *register) Add (b Register) Register |
¢ := null(}).(*register}
c.uint = a.uint + b.(*register).uint
return c

}

fune (a *register) Mul (b Register) Register {
¢ := null (). (*register}
c.uint = a.uint * b.(*register).uint
return c

}

func (a *register) Write () {

Z := a.uint
if z == 0 {
println ("0")
return
}
] * = mmw
if z < 0 {
S p— m_n
zZ = -2
}
n := z
var t string
for £t = ""; n > 0; n /= 10 {
t = string(n \% 10 + "0’") + t

println (s + t)



8.4 Exercises

For the specifications of the tasks, let’s agree on a somewhat “sloppy” way of
speaking: We use the terms “register” and “value of the register”
synonymously.

Implement the following functions and test them:

// Returns a — b, if a > b, otherwise 0.
funec Difference (a, b Register) Register

// Returns a * a.
func Sgquare (a Register) Register

// Returns a * b,
funec Product (a, b Register)}) Register

// Returns the greatest register b with b * b <= a,.
funec Root (a} Register

// Returns 2§"~as.
func Exp2 (a Register}) Register

// Returnsg a$"~bs.
func Exp (a, b Register}) Register

// Returns a / 2.
fune Div2 (a Register}) Register

// Pre: b > 0.
// Returns a / b.
funec Div (a, b Register) Register

// Returns a \% 2.
fune Mod2 (a Register}) Register

// Returns a \% b.
func Mod (a, b Register) Register

// Pre: a > 0, b > 0.
// Returns the greatest common divisor of a and b.
funec Gecd (a, b Register) Register

// Pre: a > 0, b > 0.
// Returns the smallest common nmultiple of a and b.
fune Scm (a, b Register) Register

// Returns al!.
fune Fakulty (a Register) Register



// Returns the maximum of a and b.
func Max (a, b Register) Register

// Returns the minimum of a and b.
funec Min (a, b Register)} Register

// Returns log$_25(a).
func Log2 (a Register}) Register

// Returns log$_bs(a).
func Log (a, b Register}) Register

// Returns the binomial coefficient $\binom
fune Binom (a, b Register) Register

// Returns die a—-th Fibonacci-number.
func Fibonacci (a Register) Register

// Returns true, iff a < b.
func Less (a, b Register} boeol

a bs.

The book on the Mathematical Aspects of Applied Computer Science can be
found on the worldwide web in the Monographs and Lecture Notes of the
European Mathematical Information Service (EMIS):

http://www.emis.de/monographs/schulz/algo.pdf.
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Who is on the table today?
Typical question from teachers at the beginning of a lesson

Abstract

The electronic stylus is not a “project”. It was originally just a test
program for sequences of objects from the microuniverse, where later
for the objects—out of annoyance over a completely nonsensical
example from a book on object-oriented programming with Java—an
abstract data type “two-dimensional figures” was chosen. The system is
suitable for supplementing blackboard writing with computer and
projector use.

One advantage of this—compared to the powerful system E-Chalk by
Prof. Dr. R. Rojas from the Free University of Berlin—tiny system is the
drastic reduction of the concept due to its “slimness”: Its object-based
construction and the event control in the main program are easily
manageable.

9.1 System Analysis
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The use of an electronic system can—under certain conditions—
supplement or even replace writing and drawing on a board. The
system essentially does the same as the “classic” board writing, but
much more: The simulated board writing

can be designed very cleanly,

is reproducible,

modifiable and expandable as well as
printable.

The advantages and disadvantages compared to writing and

drawing on a board must, of course, be carefully weighed against each
other in each individual case—depending on the purpose of use; any
mixed forms are conceivable.

Disadvantages

Everyone can handle chalk; the operation of a program, on the other
hand, must be learned.

The students also need to learn how to operate it if they want or need
to use the program.

Freehand drawings or texts usually suffer more from a “shaky hand”
when created by a mouse on an “electronic board” than when written
on a board.

The use is dependent on devices (computer, projector) that must be
set up before use.

There may be additional costs for the equipment, or a suitably
equipped teaching room must be sought.

The follow-up costs are also not negligible (replacement lamps for
projectors, for example, are considerably more expensive than—even
coloured—chalk).

The program requires a computer (or network access to a server)
under Linux (whether this is really a disadvantage ...).

Advantages

The program is very easy to use. Its control is easy to change and its
ergonomic weaknesses or errors are easily correctable.

The entire source code is freely usable for teaching situations; this
ensures adaptability to individual needs.



With a few “mouse clicks” it is possible to

- draw clean figures, e.g., triangles, quadrilaterals, rectangles, circles,
ellipses, and elegant curves;

— write text cleanly; and

- integrate images.

Board wiping is also (in doubt: “dirty”) work.

The additional cost can be cushioned if a generally available “mobile
station” is used.

The program also runs on other “window-oriented” operating
systems if the local computer has network access to a server under
Linux.

The user is facing the audience when using it (and does not, for
example, catch paper balls from behind).

An electronic board—Ilet’s call it “eBoard” for short—can be
optimally prepared and post-processed and “styled” at any computer
in peace.

The eBoards are reusable at will (“.. this is what our board looked like
the day before yesterday”).

The long-term maintenance (i.e., the modification based on
experiences, the adaptation to other teaching situations, and the
further development) of the eBoards is possible at any time.

The eBoards can be passed on as files, printed out and thus duplicated.

9.1.1 The Figures of the Electronic Stylus

The electronic stylus must be able to manage the following types of
figures:

Point sequences,
Line segments,
Polygons,
Curves,

Straight lines,
Rectangles,
Circles,

Ellipses,

Texts, and
Images.



The following will explain these figures individually. But first, a few
words about the colour concept: All figures can be displayed in
different colours.

The background colour of the screen is black by default, but can be
switched to white “at the push of a button”.

Point sequences

These are sequences of individual points (“pixels” on the screen), of
which every two consecutive ones, if they are not adjacent as pixels, are
connected by a line segment.

The points are generated independently (i.e., by the program during
movement) by the movement of a pointing instrument (currently only
the mouse; perhaps a graphics tablet in the future) until the user input
is terminated (the order of the points is given by the temporal sequence
during generation).

Point sequences thus realize “freehand drawings” (which can of
course also represent texts).

Line segments
Line segments are sequences of lines, where the endpoint of each line
coincides with the starting point of the next line, provided there is a
following one (the order of the lines is given by the temporal sequence
of setting their endpoints).

In principle, line segments are the same as point sequences; the
difference is that the boundary points of the lines are set individually by
the user instead of being generated by mouse movement.

Polygons
Polygons are “closed” line segments: The starting point of their first line
coincides with the endpoint of their last one.

Thus, triangles, quadrilaterals, pentagons, etc. belong to the figures.

Curves
Curves are defined by Bezier polynomials, which are defined by—
individually set by the user—point sequences, limited by a certain
maximum number.

A curve has the first and last point of the sequence as boundary
points; the points in between are the “support points” of the



polynomial, whose degree n is 1 less than the number of points:

n

Z(t) — Z(?)(l . t)n—itizi for 0 <t < 1undzo, Z1, *++, Zn € C
i=0
Straight lines

Due to the “finiteness” of the size of the screen, straight lines are lines
given by two points, whose endpoints lie at the edge of the screen.

Rectangles
Parallel to the screen edges are rectangles, given by two points, the
upper left and the lower right corner.

Circles
Circles are defined by their centre and their radius.

Ellipses
Only ellipses with axis-parallel semi-axes, which are defined by their
centre and the lengths of their semi-axes.

Texts
Alphanumeric texts, i.e., also numbers (e.g., in the simplest case
sequences of digits).

Image
Images are graphic files in the ppm-format. In order for them to be used
by the electronic stylus, they naturally have to be small enough.

Their processing is possible with the routines from the netpbm
package, e.g., their scaling with pamscale and the conversion between
this format and the jpeg-format with pnmtojpeg or jpegtopnm.

Filled Figures

Rectangles, circles, ellipses, and crossing-free convex (under X also
arbitrary polygons) can be filled in the sense that all pixels inside the
figure are set to the colour (of the edge) of the figure.

9.1.2 The Operations on the eBoards



With the electronic stylus, the following operations can be performed
on an eBoard—the “board images” simulated on the screen with the
electronic stylus:

Individual figures

- create,

— modify and colour,
- move,

- delete as well as

- mark and unmark;

 all marked figures

— delete and unmark,
— store in another eBoard;

* all figures of an eBoard

- delete,
- mark;

e an eBoard

- move,
- load and save;

e another eBoard
— load additionally;

e as well as all creations and deletions on an eBoard
— undo.

New figures are created in the current type and the current colour,
which initially have standard values and can be changed at any time
with certain commands.

9.1.3 Program Start

The electronic stylus is designed according to ergonomic principles.
The program uses the screen primarily in “Fullscreen mode”.
It is designed to be operated with one hand freely above the
keyboard and the other hand on the mouse—apart from text input.



Under these conditions, the electronic stylus essentially uses a few
keys

e Tab key =,
e control key Ctrl and
e space bar,

which are close together and therefore can be used “blindly” after a
short period of acclimatization, so that the focus on the eBoard is not
interrupted by constant switching between screen, keyboard, and
mouse.

In console operation, the control key Ctrl generally acts like the Shift
key 1}, as Ctrl is easier to reach “blindly” than 1}.

However, the window managers of common graphical interfaces
intercept certain key combinations with the Ctrlkey and the Altkey and
use them to manipulate windows; a two-button mouse does not have a
middle button.

Therefore, in these cases, alternative keys

e delete key Del,
e function keys F5 to F9,

which are close together and therefore can be used “blindly” after a
short period of acclimatization, must be used, which somewhat
contradicts the above considerations.

The operation of the electronic stylus will be explained in detail
below.

9.1.4 Program Start

The electronic stylus is started with the command epen, to which the

name of the eBoard can be given as a parameter. If this is the case, this
name—otherwise the provisional name temp—appears in the field of

the eBoard name in the top left corner of the screen; it can be edited.
The corresponding files have these names with the suffix . epn.

When the input is completed with the Enter key -, the eBoard

with this name is loaded, if there is one; otherwise, the eBoard is now
empty. If no name is entered, the eBoard is named “temp”.

9.1.5 Creation of New Figures



Pressing the space bar, the key A, the Enter key Henkin-Konstruktio -
, or the insert key Ins causes a menu to appear at the location of the
mouse pointer, from which the actual type of figures can be selected
with the mouse.

It is selected with the arrow keys A and ¥ and the Home and End
keys Pos1 and End and confirmed with the Enter key 4.

The selection is cancelled with the Esckey; then the old current type
remains.

New figures are drawn in this type—until another current type is
selected.

Point Sequences
By pressing the left mouse button, the creation of a new figure begins at
the location of the mouse pointer.

If the actual type is a point sequence, it will “draw”—following the
mouse movement—until the mouse button is released. If the maximum
possible number of points in the sequence has already been reached,
the drawing will automatically end.

The faster the mouse is moved, the more noticeable the effect
becomes that the individual points—recognized by the mouse—are
connected by lines: The figure becomes somewhat “angular”.

Lines and Line Sequences
If the current type is line(s) (Lines or Line sequences), the figure begins
with the first mouse click.

Further clicks with the left mouse button at other locations set the
next line; movements between the mouse clicks continue the last line
until the next mouse click.

A line sequence is ended by a click with the right mouse button.

A simple line is thus created with the following sequence of
commands: Move the mouse to the starting point—click with the left
mouse button—move the mouse to the end point—click with the right
mouse button.

Polygons
Polygons are created in a very similar way; the only difference is that
from the second mouse click, the actual mouse position is automatically



connected to the starting position.

If a polygon is convex (this restriction only applies to the operation
of the electronic stylus in a console), it is filled in the same colour as its
edge if the final click with the right mouse button is made together with
the shift key 1.

Curves
Curves are essentially created like line sequences: Click with the left
mouse button; continuation by mouse movement and further clicks
with the left mouse button; the fixation is done with a click of the right
mouse button.

If the maximum possible number of support points is reached
during continuation the creation is automatically ended.

Unlike line sequences, the entire curve constantly adapts to the set
support points during creation; it requires some practice and
experience until the user “gets the hang of it".

Straight Lines

A point of a straight line is set with a press of the left mouse button,
with the line appearing as a horizontal; the movement of the mouse
leads the second point and thus the line until they are fixed by releasing
the mouse button.

Rectangles
When creating rectangles, the procedure is similar to straight lines: A
press with the left mouse button sets a corner of the rectangle; as long
as the mouse is moved, the diagonally opposite corner and thus the
rectangle is carried along until the rectangle is fixed by releasing the
mouse button.

If the control key Ctrl is pressed while releasing the mouse button, it
is filled in the same colour as its edge.

Circles
Circles are created according to the same principle: A press with the left
mouse button sets the centre point; the movement of the mouse leads
to the dragging of a circle through the mouse position; as soon as the
mouse button is released, the circle is fixed.

Circles can be filled like rectangles.



Ellipses

Ellipses are created like circles; the only difference is that with the

mouse movement a corner of the circumscribing rectangle is set.
Ellipses can be filled like rectangles.

Texts

If the actual type is a text, a blinking cursor appears at the position of
the mouse pointer after a click with the left mouse button. The text is
entered using the keyboard, and it can be comfortably modified—Ilike
with a usual editor (as described in Section 3.4.5 about the field editor
of the microuniverse).

If the input is empty or is ended with a key other than the enter key
4  the creation is aborted.

Images

If the actual type is an image, a blinking cursor appears—Ilike with a
text—after a click with the left mouse button, which is associated with
the request to enter the name of the image.

After completing the input with the enter key -, the image
contained in the corresponding file, whose filename is the name of the
image with the appended suffix . ppm, appears with the mouse position
as the top left corner, provided such a file exists and the image fits
completely on the eBoard.

If the input is empty or ended with the escape key Esc, the process
is aborted.

9.1.6 Modification of Figures

If the mouse pointer is on a figure, a click with the left mouse button
along with the shift key 1) makes the points that characterize the figure
visible. They can be individually “grabbed” with the right mouse button
and moved; the figure adjusts accordingly. The modification is
completed with a click of the left mouse button. For rectangles and
circles, this is simpler; their points do not appear—they can be
“grabbed” at any point on their edge.

When pressing the function key F3, a coloured strip appears, from
which a colour can be selected by clicking with the left mouse button,
which colours the figure under the mouse. If the mouse is moved



during this, all figures that the mouse “runs over” are coloured. The
selection is cancelled with a click of the left mouse button outside the
strip or the escape key Esc.

If the F3key is pressed together with the shift key 1}, the actual
colour can be selected, in which new figures will be coloured until it is
changed with this procedure.

By pressing the function key F4, the background colour of the
eBoard can be selected.

With the right mouse button, individual figures can be “grabbed”
and moved while holding down the mouse button.

9.1.7 Deleting of Figures

If the mouse pointer is on a figure, it is deleted by pressing the delete
key Del. If the mouse is moved during this, all figures that are swept
over by the mouse are deleted. If the shift key 1} is also pressed, all
marked figures are deleted—regardless of the mouse position.

With the backspace key #—, the last deleted figure is restored; if it
was marked before, it is no longer now. Together with the shift key 1,
all deleted figures are restored.

9.1.8 Marking Figures

A figure under the mouse pointer is marked with the function key F5.
Regardless of the position of the mouse, all figures are marked when
the shift key 1 is additionally pressed.

The marked figures flash briefly.

Correspondingly, figures are unmarked with the function key Fé6.
When pressing the tab key <, all marked figures flash briefly.

9.1.9 Loading and Saving

With a press of the Rollkey, all figures from another eBoard are copied
into the actual eBoard. The field for the eBoard name opens, into which
the name of the eBoard to be loaded is entered. The entry is completed
with the Enter key ' ; when finished with the escape key Esc.

If the Rollkey is pressed together with the shift key 1}, all marked
figures are stored in another eBoard; its name is entered in the field for
the eBoard name (an eBoard existing under this name will be
overwritten).



9.1.10 Printing

Upon pressing the key Print, the content of the eBoard (with white
background) is printed (provided CUPS is installed and a postscript-

capable printer is available).

9.1.11 BriefHelp

The help screen appears at the press of the function key F1, shows brief
hints for operation, and disappears when pressing the escape key Esc.

9.1.12 System Architecture

The only component of the electronic pen is the “main program”
epen.go with an event control in the form of an event loop, in which

various data types from the microuniverse are used.

9.2 Construction

The most important package used from the microuniverse is that of
two-dimensional figures, the specification of which we show here:



package fig2

import (. "uU/cbi"; "uU/col™; "uU/psp™)
type typ byte; const (
Points = jota // segquence of points
Segments // line segment[s]
Polygon

Curve // Bezier curve
InflLine // given by two different points
Rectangle // borders parallel to the screen borders
Circle
Ellipse // main axes parallel to the screen borders
Text // of almost 40 characters
Image // in ppm—format
Ntypes
}
type Figure2 interface {

Object
Stringer
Marker

S/ x 1s of typ E.
SetTyp (t typ)

// Returns the typ of x.
Typ () typ

S/ x is of the Type, that was selected interactively by the user.
Select ()

// The defining points of x are shown, iff b.
ShowPoints (b bool)

// Returns the position of the

// — first point (of the first 1ine), if x has a typ <= Line,

S/ — top left corner of x, if x is of typ Rectangle or Image,

S/ — middie point of x, if x is of typ Circle or Ellipse,

s/ — bottom left corner of first characer, 1if is of typ Text.
Pos () (int, int)

// x has Position (x, ¥v)
SetPos (x, y int)

// Returns true, i1ff the point at (a, b) has a distance
/S of at most t pixels from x.
On (a, b int, t wuint) bool

S/ x is moved by (a, b).
Move (a, b int)

// Returns true, iff the the mouse cursor is in the interior of x
// or has a distance of not more than t pixels from its boundary.
UnderMocuse (t uint) bool

// x has the colour c.
SetColour (¢ col.Colour)

/7 Returns the colour of =x.
Colour () col.Colour

S/ x 1s drawn at its position in its colour to the screen.
Write ()

S/ x is drawn at its position in its inverted colour to the screen.
WriteInwv(}
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When you let a computer calculate,
it is to be expected,
that it does not calculate correctly.

Abstract

Mini is a simple model of a single-address machine that introduces the
basic concepts of imperative—especially machine-close—programming.
It has 26 registers, 2 status flags, and 30 machine instructions for
accessing the registers and status flags, for computing, and for jumping
within a program.

With Mini, the concept of state (the values of the registers and the status
flags) and the basic algorithmic structures (sequences, case distinctions,
loops, and recursion) are introduced. The significance of this concept
lies

e theoretically in the Turing completeness of Mini, as it is just as
powerful as a register machine: Everything that can be programmed
at all can, in principle, be done with Mini.

e practically in its clarity and comprehensibility.

Although the existing instruction set is very extensive, Mini machine
programs are uncomplicated and easy to handle.
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For these reasons, it was used many years ago in computer science

classes at the Goethe Gymnasium in Berlin-Wilmersdorf (then still
programmed in Modula-2).

10.1 System Analysis

Components of a single-address machine are

a processor for executing programs,

a data storage in the form of a set of registers,

a stack storage for temporary storage of register contents, and

a program storage for holding a program in the form of a sequence of
program lines.

In addition, Mini needs a way

to input a program, i.e., to populate the program storage with
program steps and
to populate the registers with data and output this data.

10.1.1 Processor
Mini’s processor has the task

using a computing unit to execute individual program steps and
using a control unit to execute the program, i.e., the instructions in
the sequence of program lines (details see Sect. 10.1.3).

For this purpose, it has its own registers:

two accumulator registers ax and bx (shortly referred to as

emphaccus);

a program counter for controlling program execution; and

a status register, in which some instructions set or clear certain flags,
i.e., they assign the values 1 or 0 to them:

— the zero flag z £ and
— the carry flag, which is also “misused” as an overflow flag.

At the beginning of the execution of a program, all registers have the

value 0.



10.1.2 Data Storage

The data storage of Mini consists of 26 registers and the stack memory.
Registers are storage locations that can each hold a (maximum 9
digits) natural number. The contents of the registers are also referred to

as their value.
Since the values of the registers change during the execution of a
program (which is precisely the purpose of programs), the registers can

“w_n

also be considered as variables. The 26 registers have the names “a” to
“z”, which are used to access their values.

The stack memory consists—figuratively speaking—of “stacked”
registers (according to the “last in-first out” principle); register values
can be placed on top of the stack or taken from the top, with care being
taken that a value can only be taken when the stack is not empty.

At the beginning of the execution of a program, the stack memory is

empty.

10.1.3 Program Lines

The individual steps of a Mini machine program (hereinafter referred to
as a mini program) are “line by line” in the program memory and are
therefore referred to as program lines. They are numbered
consecutively, starting at 0.

Each program line contains exactly one instruction, namely:

e astorage instruction,

e an instruction for a computational operation,
* a comparison instruction,

* aflag instruction,

e ajump instruction,

e astack instruction,

e acall instruction, or

e areturn instruction.

They are listed and explained in detail in Sect. 10.1.5. At the
beginning of a program line, there may also be a label.

10.1.4 Execution of a Mini Program

A program is executed by a single-address computer by executing the
instructions in its program lines sequentially (i.e., line by line), starting



with the first line and then either moving to the next program line or
jumping to a line other than the next.

Looking a bit more closely, this is realized as follows:

The next instruction to be executed is always the one in the
particular program line whose number is in the program counter of the
processor.

Initially, the program counter contains a 0; so it starts with the first
program line. Which number after the execution of a program line is in
the program counter, i.e., which line is processed next, depends on
whether the program line contains a jump or call instruction.

A mini program is terminated, when it encounters a line with the
return instruction; consequently, when creating a mini program, care
must be taken to include a return instruction.

If the value of the program counter is greater than or equal to the
number of program lines, the program is aborted, since the numbering
starts at 0, e.g., after the last program line, if that is not a jump
instruction.

A program termination can also have other causes, namely,
“programming errors” in the form of unconsidered prerequisites when
calling instructions, for whose execution a prerequisite is specified.

A subprogram consists of a sequence of program lines, the first of
which is introduced with a label and the last of which consists of the
return instruction. It is executed by the designated call instruction, with
the number of the next program line being inserted into the program
counter at the end of the subprogram (following the line in which the
subprogram was called).

10.1.5 Instructions
Mini has a “programming language” with a few instructions:

* six memory instructions for copying register contents into/from the
accumulators ax and bx:
1lda, sta, exa, 1db, stb, and exb;
 four instructions for increasing and decreasing the values of the
accumulator and registers:
ina,dea, inc, and dec;



e two shift instructions for multiplication or division of register values
by or through 2:
shl and shr;
« five instructions for executing arithmetic operations on the values,
temporarily of the accumulators and of the registers:
add, adc, sub, mul, and div;
e one instruction for comparing accumulator and register values:
cmp;
o three flag instructions for manipulating the status register:
clc, stc, and cmc;
o five jump instructions for “jumping” in the program, also depending
on the values of the flags in the status register:
jmp, je, Jne, jc,and jnc;
* two stack instructions for temporary storage of register values:
push and pop;
* one call instruction for executing a subroutine:
call;and
e one return instruction for terminating a program:
ret.

The memory instructions expect a register, the jump instructions and
the call instruction expect a label as an argument. Instructions for
increasing or decreasing, for executing arithmetic operations as well as
shift and comparison instructions expect at most one and the stack
instructions exactly one argument:

Since all instructions expect at most one argument, Mini is an
example of a single-address machine.

We now provide the specifications of all instructions, where the
flags are not set or cleared unless explicitly stated. After the execution
of an instruction—unless otherwise stated—the value of the program
counter is increased by 1, so that the next program line is processed
afterwards. It is different with the return instruction, which terminates
the program, and the jump instructions: The next instruction to be
executed is the one in the program line that starts with that label, which
is given as an argument to the jump instruction.



// ax has the value of r.
lda «r

// r has the value of ax.
sta r

// The values of ax und r are changed.
exa r

// bx has the value of r.
1ldb r

// r has the value of bx.
stbh r

// The values of bx and r are changed,
exb

// If the value of ax was smaller than 10*9 - 1,
// it is incremented by 1, otherwise set to 0.
// zf is correspondingly set resp. cleared.

ina

// If the value of ax was greater than 0,

// it is decremented by 1, otherwise set to 109 - 1.
// zf is correspondingly set resp. cleared.

dea

// If the value of r was smaller than 10%9 - 1,
// it is incremented by 1, otherwise set to 0.
// zf is correspondingly set resp. cleared.

frmwe T

// If the value of r was greater than 0,

// it is decremented by 1, cotherwise set to 109 - 1.
// zf is correspondingly set resp. cleared.

dec r

// The double z of the value of r is built
// and r has the value z mod 10"9.

// ¢of is set, iff z is greater than 10"9.
shl r

// The value of r is halved; c¢f is set,
// 1ff the value of r was previously an odd number.
shr r

// The value of ax 1is incremented by the value of r,

// if that is possible without overflow over 1079 - 1;

// in this case c¢f is cleared. Otherwise ax has the value

// of the sum of the values of ax und r mod 10"9 and c¢f is set.
add r

// The value of ax 1is incremented by the value of r and the value of cf,
// 1f this 1is possible without overflow over 10~9 - 1.

// In this case c¢f is now cleared.

// Otherwigse ax has now the value of the sum of the values

// of ax, r and cf mod 109 and cf is set.

ade r






S/ If the value of r is less or egual to the value of ax,
s/ the value of ax is decremented by this value

// and cf is cleared. Otherwise as has the value

S/ 10709 — (value of r — value of ax) and cf is set.

sub «r

// The product p of the values of ax and r is built:

/S ax has the value p mod 109 and bx the value p div 10~9,
/S 1i.e., p = value of bx * 109 + value of ax.

/S cf is set, i1iff p is greater or egqual to 10789.

mul r

/S Pre: r has a value > 0.
/S ax has the value g div r and bx the value g mod r.
div r

// The programcounter shows the number of

// the first program line with the label M.

/S If there is not program line with this label,
s/ the program is aborted.

jmp M

// Pre: There is a program line that starts with M,

// and this program line is not the last one.

/S If zf is set, the program counter shows the number
s/ of the first program line with the label M,

// otherwise the number of the following program line.
je M

// Pre: s. Jje.

S/ If =z¥f is cleared, the program counter shows the number
/7 of the first program line with the label M,

// otherwise that one of the following program JlIine.

dne M

s/ Pre: s. Je.

S/ If ef is set, the program counter shows the number
/7 of the first program line with the label M,

// otherwise that one of the following program JlIine.
jJe M

s/ Pre: s. Je.

/S/S If ef is cleared, the program counter shows the number
/7 of the first program line with the label M,

// otherwise that one of the following program line.

jne M

s/ If the value of r is egqual to the value of ax,

/7 1s zf is set. Otherwise it is cleared and cf is set,
/SS iff the wvalue of r is smaller than the value of ax.
cmp r

// cf is cleared, i.e., has the value 0.
clc M

/S ¢f is set, i.e., has the value 1I.
ste M

// cf is set, i.e., has the value 1.

s/ cof is complemented, i.e. 1is set,

/S/S 1f ef was previously cleared, and vice versa.
cma M



S/ ¢f is set, i.e., has the value 1.
// The value of r is pushed on the stack.
push r

S/ cf is set, i.e., has the value 1.

// If the stack did not contain a value, the program
// 1s aeborted with a corresponding error report.

// Otherwise, r now has the top value of the stack
// and this value is removed from the stack.

S/ cf is set, i.e., has the value 1.

// The program counter contains the number

// of the firgt program line with the label M.
// The next return-instruction implies that

// the program counter contains the number

// the follows the line the call-instruction.
call M

// ¢f is set, i.e., has the value 1.
// The program resp. the subprogram has ended.
ret

For the name r of the register used in these specifications, the number
of any register can be inserted in the instructions; the same applies to
the used label M. In this sense, these lines are to be understood as
templates for instructions.

10.1.6 Example

The following program calculates the factorial of the value of b and
writes it into the register a, if a initially contains the value 1:

lda
A mul
sta
dec
jne
ret

b= o 2T o S

However, this example is only correct if the value of b is less than or

equal to 12, because otherwise the result is > 103°.
A bit further, the following mini-program works:



lda
mul
sta
stb
lda
mul
add
sta
dec
jne
ret

FPoDoooboaoe oo

The result mod 10 (i.e., the 9 low places) is in the register a after the

execution of the program, the result div 10° (i.e., the up to 9 high places)
in the register d.

The readers should convince themselves by recalculating this mini-
program is correct up to the start value 19 of b.

10.1.7 The Objects of the System
The following objects can be derived from the system analysis:
e program as a sequence of program lines,

e program lines, and
e register.

The implementation of the single-address machine Mini therefore
consists of the package mini with the subpackages:

e mini/prog,

e mini/line, and
e mini/req.

10.1.8 Component Hierarchy

The dependencies of the packages are shown in Fig. 10.1, where the
lower package is used (imported) by the one above:



mini

mini/prog

mini/line

mini/reg

Fig. 10.1 System architecture of Mini

At lower levels, many other packages from the microuniverse are
needed, e.g., input/output fields (i U/box), stack memory (u U/stk), and
persistent sequences (u U/pseq).

10.2 User Manual

Mini is a simulation program for executing mini programs. For the
identifiers in mini programs, whose execution is to be simulated by
Mini, the following conventions must be observed:

 variables, i.e., names of registers, are designated with a lowercase
letter (from a to z) and

 labels with a capital letter (from A to 7).

The operation of the program is extremely simple.

In addition to the letter, number, and character keys for entering
text, some special keys are needed for correcting entries and
controlling the program sequence.

The following keys are used for input correction:

» the backspace key and the delete key Del for deleting individual
characters, in combination with the shift key 1} to delete the input
field;

* the arrow keys <« and » to the left and right;

e the home key Pos1 and the end key End for moving in the text; and

o with the insert key Ins you can switch between insert and overwrite
modes, with the current mode being recognizable by the different



cursor shape: an underscore in insert mode and a rectangular block
in overwrite mode.
The program flow is controlled with

» the enter key -, the escape key Esc, the backspace key #—;

» the arrow A and V¥ and the page keys, Page! and Page] up and down,
as well as

e the tab key <,

occasionally in combination with the shift key {]. Error messages are
acknowledged with the backspace key #—.

10.2.1 Instructions for Working with Mini

e (Call Mini by entering mini, where the name of the mini program to
be executed (without the extension .min1i) is given as a parameter,
e.g,mini test;

e if necessary, edit the mini program;

e exit the edit mode with the Esc key Esc;

e enter the initial values of the used registers;

¢ step through the mini program with the enter key - (the register
contents are continuously displayed) and—if desired—exit the step
mode with Esc and let the mini program run to the end;

e if desired, abort the program execution of Mini with the combination
Ctrl + C; and

e after execution of the program (which is acknowledged with the
message program executed, exit Mini with Esc.

A parameter given with the program call mini is the name of the
mini program, otherwise it gets the name prog. The associated files
have the extension .mini and are stored in the subdirectory .mini of
the home directory $SHOME.

10.3 Construction
Here are the specifications of the three packages used by mini:



package prog
type Program interface

Empty () bool
GetLines ()

Parse () (string, uint)
Write ()
Edit ()
Run ()
}
fune New () Program { return new_ () 1}

package line
import "uU/obij"

const EmptylLabel = byte(”’

)

type Instruction byte; const (

NOP = Instruction (iota)
LDA; STA; LDB; STB; EXA;
INA; DEA

// no argument

INC; DEC

// argument: register
SHL; SHR

// argument: register
ADD; ADC; SUB; MUL; DIV
// argument: register
CMP

// argument: register
JMP; JE; JNE; JC; JNC
// argument: label
PUSH; POP

// argument: register
CLC; STC; CMC

// no argument

CALL; RET

// no Argument
nInstructions

)

type Line interface { // lines of mini programs,
// an instruction, a register and a target label.

Clearer

Equaler

Stringer

Write (1, ¢ uint)
Edit (1, c wuint)

// Returns (M, true), 1ff x starts with label M;

EXB // Argument:

// returns otherwise (EmptyLabel, false).

Marked () (byte, bool)

Register

consisting of a label,

// Returns true, 1ff x contains the instruction CALL.

IsCall () bool

// Returns true, 1ff x contains the instuction RET.

IsRet () bool

// The instruction in x is executed.

Run () byte
}

funec New () Line { return new_ () 1}



// The state of the processor is written to the screen,
// starting at position (line 1, column c).
fune WriteStatus (1, ¢ wuint) { writeStatus (l,c} 1}

10.4 Exercises

package reg
import . "uU/obj"

const (N = 9; M = 1le%9; R = 26) // R = number of registers
func New (} Register { return new_ () 1}
type Register interface { // register with a small character
// "a", ..., "z" as mames and a natural number < N as value.
// All R registers are managed.

Clearer

Stringer

Valuator

Write (1, ¢ wuint)

Edit (1, ¢ wuint)
}
func WriteAll (1, ¢ wuint) { writeAll(l,c) 1}
funec EditAll (1, c uint) { editaAll(l,c} }

and here is the event loop of the main program:

package main
import ("aU/mode"; "uU/scr"; "uU/errh™; "mini/prog")

func main ()} {
scr.New (0, 0, mode.VGA); defer scr.Fin ()
program := prog.New ()
program.GetLines ()
fail, n := program.Parse ()
if fail == "" ({

program.Write ()
program.Edit ()
program. Run ()
} else {
errh.Error (fail + " <- faulty program line nr.", n + 1}

}



Develop mini programs for calculating

e the power of two numbers (e.g., 220),

e the sum and product of two or more numbers,

e the quotient of two numbers,

¢ the minimum/maximum of two or more numbers,
e the GCD and LCM of two numbers,

e the sum and product of two fractions, and

e of binomial coefficients and Fibonacci numbers.
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That which you seek,

you always find in the place,
where you look last.

One of the laws of

Edward A. Murphy jr.

Abstract
This program is a system for managing a book inventory, constructed as
a simple application of persistent index sets. Edward A. Murphy jr.

The program presented here is a somewhat simplified version of a
teaching project from the teacher training in computer science at the
Free University of Berlin. [t was about creating a system for managing
any collection (see Chapter Inferno).

Here we limit ourselves to the special case of a collection of books.

11.1 System Analysis

The following data should be recorded for each book:

e area (prose, classic, Novel, ...),
e quthor,
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co-author,
number (for series),
title, and
location.
Examples:

theatre,
Diirrenmatt, Friedrich,

-

The Physicists,
1st shelf in the library (in this case there is no co-author and no
series number).

[talian crime novel,
Fruttero, Carlo,
Lucentini, Franco,

4,

The Secret of the Pineta,
small bookcase.

Three orders are provided:

e area,
e authors, and
e titles.

11.2 System Architecture

11.3 The Objects of the System

Thus, the system has the following objects:

e an enumeration type Areas for the first component mentioned in the
system analysis;

e strings for the 2nd, 3rd, 5th, and 6th component;

e natural numbers for the 4th component;



e the compound, which combines these components; and
e the program books.

The corresponding packages are field, text, bn, book, and
books.

11.4 Component Hierarchy

The dependencies of these packages on each other are shown in Fig.
11.1.

books

book

/ AN
field text bn

Fig. 11.1 System architecture of the management of the book inventory

11.5 User Manual

With A and ¥ you can scroll backward or forward through the
inventory, and with Pos1 and End you can go to the first or last entry.
The actual entry can be changed after entering 4,

Pressing Ins causes an empty entry to appear on the screen, whose
input fields can be filled out; this entry is then inserted into the
inventory.

With Del, the actual entry is removed after a security query, with F3
the order is changed and with Esc the program is terminated and the
data inventory is secured.

Figure 11.2 shows the screen mask.



Field

Author Coauthor

Nr Title

Location

Fig. 11.2 The screen mask

11.6 Construction
Here is the specification of the data types used:

11.6.1 Areas

Unfortunately, Go does not have an enumeration type; therefore, we
make do with a sequence of constants that are defined only in the
implementation, but are not visible in the following specification:

package field
import . "uU/obi"

type Field interface |
Object
Editor
Stringer

}

fung New () Field { return new ()} }

Here is the representation and the constructor:



const (Undef = iota; Prosa; Klassik; Roman; ...}

var tx = [nFields]string {"prose"
"classics"
"roman"

}
type field struct
int "order number of the constant"
text.Text
}

fune new_ () Field {
x := new(field)
Xx.int = Undef
x.Text = text.New (18)
x.Text .Defined (tx[Undef])
return x

Anyone who wants to use the program books should adapt the
implementation to their personal needs.

11.6.2 Natural Numbers
We consider natural numbers with a fixed maximum number of digits:

package bn
import (. "pU/o0bj"™; "uU/col"}

const M = 20 // 1<<64 — 1 = 18446744073709551615 has 20 digits
type Natural interface { // natural numbers < 2764 - 1.

Object
col.Coclourer
EditorGr
Stringer
Valuator
Printer

// Returns the width of x given by New.
Width () uint

// Pre: s containg only the digits 0 and 1.
// x is the natural number with the binary represenation s.
Decimal (s string)

// Returns the binary representation of x.
Dual (} string
}

/F Pre: 0 < n <= M,
// Returns a new Natural with value (0 for numbers with at most n digits.
fune New (n wuint} Natural { return new_(n} 1}



Here is the representation and the constructor:
const invalid = wuint (1<<64 - 1)

type natural struct {
uint
wd uint
f, b col.Colour
font.Font

}

fune new_(n uint) Natural {

if n == 0 || n >»>M { ker.PrePanic(} }
X := new(natural)

Xx.uint = invalid

Xx.wd = n

x.f, x.b = col.StartCols ()

return x

11.6.3 Strings

Texts are short strings that fit on one line of a screen. Here is the
specification of the corresponding package:



package text
import (. "uU/ocbi"™; "uU/col"™)

type Text interface { // strings of fixed length

Editor
col.Colourer
Stringer
Texer
Printer

// Specs see str/def.go.
Equiv (Y Text)} boel

Transparence (t bool)
SetFontsize (s fontsize.Size)
SetFont (f font.Font) // only to print

Sub (Y Text) bool

Sub0 (Y Text)} bool

EgquivSub (¥ Text) (uint, bool)
Len () wuint

ProperLen () wuint

Byte (n wuint)} byte

Pos (b byte) (uint, bool)
Replacel (p uint, b byte)

// starting with position p in x, n bytes are removed;
// tail filled with spaces up to the original length
Rem (p, n wuint)

IsUpper0 () bool
ToUpper ()
ToLower (}
ToUpperO ()
ToLower( ()

Split () []Text
WriteGr (x, y int)

EditGr (x, y 4int)
}

// Returns a new empty text of length n.
funec New (n uint} Text { return new_ (n) 1}

// Returns a new text of length len(s) with the content s.
func Def (s string) Text { return def(s) }

and here is their representation and the constructor:



type text struct {
uint "length of string”™
string
cF, ¢B col.Colour
font.Font
font.Size

}

fune new_(n wuint) Text {
X := new (text)

X.uint = n

x.string = str.New (n}
x.f, 2x.b = col.StartCols ()
x.8ize = fontsize.Normal
x.Font = font.Roman

return x

11.6.4 Book
Here is the specification of the type book:

package Look
import . "ugU/ocbj"

type Book interface |

Indexer
Rotator

// Pre: y 1s of type Book.

// Returns true, 1iff x is a part of y.
Sub (y Any) bool

}

funec new_(n uint) Text {

if n == 0 { return nil }

X := new (text}

X.uint = n

x.string = str.New (n}

x.cF, x.cB = c¢ol.StartCols (}
x.Font = font.Roman

x.8ize = font.Normal

return x

fune New (} Book { return new_ () }

11.6.5 Books



Its representation is the composite of the presented components:

type book struct {
field.Field
author, cocauthor text.Text
bn.Natural
title, location text.Text

}

fune Id (a Any) Any {return a}

The identity used as the index function

funec new_ () Book ({

X := new (book}

x.Field = field.New (}
X.author = text.New (len()}
x.coauthor = text.New (len0)
X .Natural = bn.New (2}
X.title = text.New (lenl)
Xx.location = text.New (len()

raeturn x

11.6.6 The Program for Managing the Book Inventory

For the control of the program, the function Operate from the package

p U is used, whose implementation is algorithmically uninteresting
which is why we do not go into it here. This makes it very short:

package main
import (. "uU/collop™; "uU/env™; "uU/scr"; "uU/files"
"wU/piset™; "uU/collop™; "uU/book"™)

func sub (x, y Indexer) bool {
return x.{(book.Book).Sub (y.(book.Book})

}

fune main ()} {
scr.NewWH (0, 0, 80 * 8, 10 * 1l6); defer scr.Fin ()

files.Cds ()
b := book.New/(}
p := piset.New (b)

p.Name (env.Call(()}
collop.Operate (p, b, sub}
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All that is abstract,

is brought closer to human understanding through
application,

and thus human understanding

reaches abstraction through action and observation.
Johann Wolfgang von Goethe

From Wilhelm Meisters Wanderjahre

Abstract

The Inferno is, in a sense, an abstraction of the book project. It serves to
manage arbitrarily configurable data sets. Data sets can be found based
on those attributes that were determined as an index during the
construction of the Inferno program, i.e., intended for this purpose. The
operation of the system is very simple. It can be used for many

purposes, e.g., for an address directory or for managing a collection of
sound carriers.

As part of teacher training and further education, I used to ask people
from the industry to give a lecture on their work on certain topics.
Once, the lecture of an IBM employee was combined with a visit to his
workplace in the IBM building at Ernst-Reuter-Platz in Berlin. He
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introduced us to a program that IBM developers had been working on
for several months.

In this chapter, | present the work of the colleagues from this
further education course, in which we “reconstructed” this program.

12.1 System Analysis

The “Books” project from the previous chapter is to be generalized in
such a way that data sets with almost arbitrary components can be
recorded, browsed, searched, and found, as well as deleted.

The basic components of the system are

e jts masks,

e jts data sets,

¢ their structure, and
e components.

In this chapter, we call the data sets “molecules” and the
components they are made up of, “atoms”.

In the following, we explain the four basic components.

12.1.1 Masks

By “masks” we understand the invariant parts of the screen that, so to
speak, name the atoms.

In the Books project, these are the following components of the
screen window:

® area,

e author,

e co—-author,
e number,

e title,and
e Jlocation.

12.1.2 Molecules
Molecules are the contents of the system’s data sets.



A molecule must consist of at least two atoms.

Exactly one molecule is always displayed in the screen window.

12.1.3 Structure of the Molecules

The structure of the molecules consists of the sequence of the
structures of its atoms. For each atom, this includes the following
information:

its type,

the position on the screen window (row and column),
its (column) width,

its foreground and background colour, and

the indication whether it is an index or not.

12.1.4 Atoms

The atoms can have the following types:

strings (of a maximum of 64 characters),

natural numbers (with a maximum of 10 digits),

real numbers (with a maximum of 20 digits),

calendar dates (in the form “dd.mm.yyyy”),

times (in the form “hh.mm”),

amounts of money (up to 10 million),

telephone numbers (with a maximum of 16 digits incl. spaces),
names of countries, and

enumeration types: sequences of strings of a maximum length of 20,
from which one is always selected.

In the Books project, only the first two types are used.

12.2 System Architecture
12.2.1 The Objects of the System

The system architecture initially provides as objects the

e the molecules and
e the atoms.



In addition, there are the objects that can be types of atoms.
For the construction of the program inferno, in addition to the
packages pseq for persistent sequences and set for ordered sets,

abstract data types for the molecules, their structure, and their atoms
are needed. Together with the packages used by the package atom, we

therefore have the packages

e mol for molecules,

e stru for their structure,

e atom for atoms,

e text for texts,

e bn for natural numbers,

e br for real numbers,

e day for calendar dates,

e clk for times,

e curo for amounts of money,
e phone for phone numbers,
e cntry for countries, and

e enum for enumeration types.

Of course, many more subpackages of the microuniverse p Uare
needed, which we will not go into here.

12.2.2 Component Hierarchy

The dependencies of the packages are shown in Fig. 12.1, where the
lower package is used by the one above it.



inferno

masks set mol

mask stru atom

|text | |bn br| |day| |clk phone | | cntry | [enum

Fig. 12.1 System architecture of Inferno

12.2.3 The Objects of the System

They result directly from the previous considerations:

e masks,

e molecules,

e molecule structure, and
e atoms.

12.3 User Manual

The user manual consists of two parts:

e the construction of an Inferno program and
e the operation of the system (after its construction).

12.3.1 Construction of an Inferno Program
The construction of an inferno program consists of three steps:

e the determination of the window size,
e the creation of its masks, and
e the construction of the structure of its molecules.

12.3.1.1 Setting the Window Size

To create a new Inferno program, the appearance of the window must
first be designed.



The design specifies the masks with their positions and all atoms of
the molecules with their type, their positions in the window, and their
length.

As an example, we choose an address directory. Its molecules
consist in Germany of the following atoms (for other countries the
format of Address should probably be changed):

e firstand last name,

e date of birth,

e address (street/no., zip code, city), and
e phone number.

Figure 12.2 shows the window of our example.

first name:
zip: city:

help: F1 end: Esc

Fig. 12.2 Window of the example

In this example, the window has the following masks:

name at position (0, 0),

first name at position (0, 33),
e born at position (0, 57),

e street/No. at position (1, 0),
e zip code at position (1, 37),

e city at position (1,51), and

e phone at position (2, 1).

The molecules have seven atoms, which can take the following
values:

1. strings of up to 27 characters,
2. strings (up to 15 characters),

3. calendar dates (8 characters),



4. strings (up to 27 characters).

5. natural numbers (5 digits),

6. strings (up to 19 characters), and

7. phone numbers (up to 16 digits/spaces).

Since a line must be provided at the bottom of the window for hints
and error messages, the number of lines must be chosen one larger
than necessary for the masks and molecules. In our example, the
window must therefore have 4 lines and 71 columns.

Every Inferno program must have a name. The name must not
contain any spaces.

The window size is created by the call “inferno name h w’,
where name is the name of the program, h is the number of lines, and w
is the number of columns of the window for the inferno program.

Let's assume our example program is to be named “addresses”. Then
the construction of the masks is called with the command “inferno
addresses 4 71" which creates a window with 4 lines and
71 columns.

12.3.1.2 Generation of Masks

The second step of the construction consists of generating the
masks, for which the design is needed.

After the aforementioned call, a window of the chosen size becomes
visible, in which the mouse pointer can be seen. The hint “Edit
masks” appears. The actual position is continuously displayed at the
bottom left. We move the mouse to the desired starting position of the
first mask (in our example (0, 0)) and then click with the left mouse
button. Now the first mask “Name” can be entered (from this position),
which is completed with the enter key - .

We generate the other masks accordingly by clicking on their
starting positions.

In our example, we generate the second mask by clicking on the
position (1, 0) and then the input “first name”.



When all masks have been created, we finish the construction of the
masks with the escape key. This generates two files:

e one named “addresses.h.dat” for storing the window size and
e one named “addresses.msk” in which these masks are stored for
use in our Inferno program.

12.3.1.3 Construction of the Structure of the Molecules

The second step in constructing an Inferno program is to define the
structure of its molecules. They consist for each of its atoms of

e its type (see previous section),

e its position,

e itslength, and

¢ the indication whether it is an index or not.

After creating the masks—or if they were aborted with the escape
key, after calling inferno name—the masks appear with the hint
“Molecule construction”

We proceed as with the mask generation: We move the mouse to the
desired starting position of the first atom (in our example the name). A
click with the left mouse button then leads us to a pop-up menu, in
which we can move between the possible types for the atom using the
arrow keys ¥ and A and the keys Pos1 and End and select the desired
type with the enter key .

If the type “string” was selected, the maximum number of its
characters must be entered. If the type “natural number” or “real
number” was selected, the maximum number of digits or the digits
before the decimal point must be entered.

Then the hint “ (Shift-)Enter: (no) index” appears,i.e,, if
the enter key is pressed afterwards, this atom becomes an index. If this
is not desired, the enter key must be combined with the shift key.

At least one atom must be an index!

The role of the indices will be explained in the next section.



If the enumeration type Enum was selected, the hint “Enter
strings” appears. Then the strings from which the enumeration type
consists must be entered (end with the escape key).

Then the note “Select background colour”appears; we
select it as in a pop-up menu.

We repeat these steps until the structures of all atoms are defined
and finish the construction with the escape key.

The result of this step is—in our example—a file named
“addresses.s.dat”, in which the data constructed in this step are stored.

If desired, molecules can now be entered, otherwise the
construction is aborted with the escape key.

The molecules are in the file name . seq (name = name of the
inferno program).

12.3.2 System Operation

When the fully constructed inferno program is called up by entering
“inferno name” (where name is its name), the first molecule
appears in the window, if there is one; otherwise, only its masks and
empty input fields in the constructed background colours are visible.

The pressing of one of the following command keys is expected,
each of which is indicated what it does:

e Enter key 4 :change molecule,

e Esc: exit program,

* A/V:scroll to previous/next molecule,

e Pos1/End: scroll to first/next molecule,

* Ins: insert new molecule,

e Del: remove displayed molecule (with safety query),
e F2:search for molecule,

e F3:advance current index, and

e Print: print displayed molecule.

When entering an atom of the type “enumeration type”, apop-
up menu appears from the strings defined in the construction. We
select the desired one (the one with the previously defined background
colour) using the Enter key. The selection and thus an input can be
cancelled with the escape key.



A record can be searched for by entering the value to be searched
for in the field of an atom that is an index after entering F2. If there are
molecules in which this value occurs, the first one is displayed. If there
are several, you can scroll up/down between them using the arrow
keys. For enumeration types, only one of the defined strings can be
searched for.

[f there are several atoms that are an index, F3 will make the next
one in the circle of indices the actual index. The order of output of the
molecules when scrolling through them is determined by the actual
index.

In our example, the atoms “Name” and “Location” are indices.
Initially, the name is the actual index, so the order when scrolling
through the molecules is determined by the alphabetical order of the
names and after entering F3 by that of the locations.

If “ei” is entered for the name after entering F2, “Meier” and
“Einstein” are found, for example, if they exist.

After entering F3, the addresses are scrolled through in alphabetical
order of the locations.

12.3.3 Construction

The packages mentioned in the section on system architecture are
components of the microuniverse p U We will introduce them in the

following.

12.3.4 Molecules

The specification of the data type Molecule in the molecule package
mo1 is as follows:



package mol
import . "uU/obi"

const Suffix = "_sg.dat"
type Molecule interface { // structs with atoms as components.
// Any molecule has at least one order.
// One of the orders is always
// the actual one.
Object

DefineName (n string)
// Pre for Edit: DefineName has to be called immediately before.
Editor
Print ()
NumAtoms ()} wuint
Indexer
Rotator

Sub (Y any} bool
Construct (n string)

}

// Returns a new empty moledule.
fune New ()} Molecule { return new_ () 1}

// Returns the molecule that was built by the call of Construct.
func Constructed (n string) Molecule { return constructed(n} }

The data type Molecule for the molecules defined in the package mo1l
is the following:

type molecule struct {
uint // length of a
a [latom.Atom

1

We now show the representation of the molecules and some essential
functions for the implementation of the main program inferno. go.



package mol
import (. "uU/obj"; "uU/kbd"; "uU/col"; "uU/scr"
"wuU/errh"; "uU/pseq"; "uU/atom"; "uU/stru"™)

type molecule struct {
uint // length of a
a [latom.Atom
}

var (
index []Juint
nIndices wuint
actIndex uint
file pseg.PersistentSegquence

)

fune new_ () Molecule {
x := new(molecule)
x.a = make ([] atom.Atom, O0)
return x

}

fune (x *molecule) Less (¥ any) bool {
y = x.imp (Y)
if x.al[actIndex] != y.al[actIndex] {
return x.al[actIndex].Less (y.alactIndex])

}

for i := wuwint (0); i < nIndices; i++ {
if i != actIndex {
if x.al[i]l] '= yv.alil {

return x.a[i].Less (y.al[il)
1
}
}
return false

}

fune (x *molecule) definelIndices () {
/*/ example for len(x.a) = 6:
If x.afi].IsIndex () for the numbers marked by "*"

r

g 1 2 3 4 5
* * *
then nIndices = 3, index[0] = 1, index[1] = 2 and index [2] = 4.
Vs
nIndices = 0
for i := wint (0); i < x.uint; i++ {
if x.af[il.IsIndex () {
index = append (index, wuint (0})
index[nIndices] = i
nIndices++
}
}
actIndex = index[0]

}

funce (x *molecule) Construct (name string) {

errh.Hint ("construction of molecules™)
i := wuint (0)
loop:
for {
x.Write (0, O0)
cmd, _ := kbd.Command ()

scr .MousePointer (true)
l. ©¢ := scr.MousePos ()}






switch ocmd {
case kbd.Esc:
if nIndices == 0 {
errh.Error0 ("no index !'")
} else {
break loop
}
case kbd.Here:
x.uint ++

a := atom.New ()

x.a = append (x.a, a)

x.a[i] = a

x.al[i].Place (1, c}
x.al[i].Select ()

if x.al[i]l].Typ () = atom.Enum {

x.a[i].EnumSet (1, ¢, name, i}
1
x.al[i].EditIndex ()
x.a[i].Index (x.a[i].IsIndex ()}
if x.a[i]l].IsIndex ()} { nIndices++ 1}
errh.Hint ("select backgroundcolour™)
x.al[i].SelectColB ()
errh.Hint ("construction of molecules™)

i++
case kbd.Go:
10 := scr.NLines ()} — 1
scr .Colours (col.FlashWhite (), col.Black (})
scr . Write (" ", 10, 0}

sgcr . WriteNat (1, 10, 0)
scr . WriteNat (¢, 10, 4)
1
}
errh.DelHint ()
x.defineIndices ()
// store the structure of x

file = pseg.New (stru.New (})
file.Name (name + Suffix)
for i := wint(0); i < x.wuint; i++ {
g8 := stru.New/ ()
w := x.al[i].width ()
s.Define (x.al[i].Typ (), w)
1, ¢ := x.al[i].Pos ()

s.Place (1, c)

f, b :1= x.al[i]l.Cols (}
s.Colocurs (f, D)

s.Index (x.al[i].IsIndex (})
file.Seek (i)

file.Put (s}

}

// Returns the molecule constructed from the stored structure
func constructed (name string) Molecule {
file = pseg.New (stru.New (})
filename := name + Suffix
file.Name (filename)}
m := new_ (). {(*molecule}
num := file.Num/()
m.uint = num
m.a = make ([]atom.Atom, num}
for i := wint (0); i < num; i++ {
file.Seek (i)
g8 := file.Get (). (stru.Structure)
m.a[i] = atom.New ()
m.a[i] .Define (s.Typ (), s.Width ())
if m.a[i].Typ () == atom.Enum {
m.alil.EnumGet (name. i)



:= s.Pos (}

].Place (1, c)

:= s8.Cols ()

].Colours (£, b}
].Index (s.IsIndex (})

m.defineIndices ()}
return m

}

funec (x *molecule} NumAtoms () uint {
return uint(len(x.a})

}

funec (x *molecule) Index () Func {
return func (a any} any {
X, ok := a.(*molecule)
if ! ok { TypeNotEgPanic (x, a) 1}
return actIndex

}

func (x *molecule} Rotate ()} {
actIndex = (actIndex + 1) \% nIndices

}

12.3.5 Structure
Here is the specification of the type Structure:



package stru
import (. "pwU/obi™ "uU/col"™)

type Structure interface

// Sextuples of an atom-typ, a position on the screen,
// a fore— and a background colour and a boolean value
// indicating the structure is an index.

Object

Colours (f, b col.Colour)
Cols(} (col.Colour, col.Colour}
Define (t int, n uint)
Typ () int
Index (b bool)}
IsIndex () bool
Place (1, ¢ wuint)
Pos (} (uint, wuint)
Width(} (uint)
}

fune New () Structure { return new_() 1}

Its representation is defined in the implementation as follows:

package stru
import (. "aU/o0bij"; "uU/col"™; "uU/scr")

type structure struct {
int // typ — see pU/atom
l, ¢, w uint
f, b col.Colour
bool // isIndex
}

func new_ () Structure {

X := new(structure)
Xx.int = 0 // typ atom.String
x.f, x.b = col.FlashWhite ()}, col.Black ()

return x

12.3.6 Atoms

The data type for the atoms of the molecules is the type Atom, which is
specified in the package atom as follows:



package atom

import (. "pU/cbij™; "pU/col™)
const (
String = iota; Natural; Real; Calendarday; Clocktime;

Eurco; PhoneNumber; Country; Enum; Ntypes
)
type Atom interface {

Object

cel.Colourer

Write ()

Edit (n string, i wuint)
EditIndex ()

Print (1, ¢ wuint)
Place (1, c wuint)
Pos () (uint, wuint)
Width () wuint

PosLess (Y any) bool
String ()} string
Index (b bool)
IsIndex () bool

// Pre: If x has type Enum, x.EnumSet must have been called before.
// x 1s the atom interactively selected by the user.
Select ()

// Pre: t < NTypes
// x has the type t and width n.
Define (t imt, n uint)

// Returns the type of x.
Typ () int

// If x has the type String, true is returned, 1ff x 1is a substring of Y.
// Returns otherwise true, iff x.Eq (Y).
Sub (Y any) bool

SelectColF ()
SelectColB ()

EnumSet (1, ¢ wuint, n string, i wuint)

EnumGet (n string, i wuint)

// Returns a new atom of type Char.
fune New () Atom { return new_ () }

We show here its representation and as an example for the
implementations of the functions the one of Copy.



package atom

import ("uU/ker"™; . "uU/obi"™;
"wU/box"; "wuU/errh"; "uU/sel"™;
"wU/day"; "wuU/clk"; "uU/euro™;
"pU/atom/internal ™}

"uU/kbd";
“ﬂU/N“;
"uU/phone™;

"wU/col"™; "uU/scr";
"wU/bn"; "uU/br";
"wU/cntry"

const M 64 // maximal string length
type atom struct {

int // typ
text . Text
bn.Natural
br.Real

day .Calendarday
c¢lk.Clocktime
euro.Euro
phone.PhoneNumber
cntry.Country
enum.Enum

uint

col.Colour

bool // is index

var |

w = []lstring {"string ",
"natural number .
"real number L
"date "y
"time B
"money amount "y
"phone number "y
"country "
"enumeration type"™}

wlen = uint(len(w[0]))

bx = box.New ()

)

func new_ () Atom {
x := new (atom)
Xx.int = String
x.f, xXx.b = col.FlashWhite (), col.Blue ()
x.w = 1

return x

}

func (x *atom) Copy (Y any) A
y := x.imp (YY)
X.int = y.int
x.1, x.¢, x.Ww = y.1, y.c, y.w
x.f.Copy (y.f)
Xx.b.Copy (y.Db)
x.bool = y.bool

switch y.int ¢
case String:
x.Text text .New

(y.Text .Len (})

x.Text .Copy (y.Text)
case Natural:
x.Natural = bn.New (y.Natural.Width ())

x.Natural.Copy (y.Natural)

case Real:
x.Real br.New (y.Real.Width ()
x.Real.Copy (y.Natural)

case Calendarday:
x.Calendarday
x.Calendarday .Copy

case Clocktime:
x.Clocktime
x.Clocktime .Copy

4)

day . New ()
(y.Calendarday)

clk .New ()
(y.Clocktime)

"wU/str"™
"wU/text"™



case Euro:
x.Euro.Copy (y.Euro)
x.Euro.Copy (y.Euro)
case PhoneNumber:
x.PhoneNumber = phone.New ()
x.PhoneNumber .Copy (y.PhoneNumber)
casea Country:
x.Country = cntry.New ()}
x.Country.Copy (y.Country)
case Enum:
Xx.Enum = enum.New (xX.w)
X.Enum.Copy (y.Enum)

And finally, an excerpt from the source code of inferno.go:



package main
import ("pU/env™; "uU/ker; . "pU/obj™; "pU/kbd"™; "pU/scr™; "pU/str"
*pU/errh"; "pU/files"™; "pU/pseq"; "pU/set™; "pU/masks™; "pU/mol™)

func sub (x, y Rotator) bool {
return x. (mol .Mclecule).Sub (y.(mol.Molecule))

func main () {
files.Cds ()
ms := masks.New ()

name := env.Arg (1)
str.O0ffSpec (&name)
if name == "" { ker.Panic ("...") }

ms . Name (name)
if pseg.Length (name + mol.Suffix) > 0 && env.NArgs () > 1 { ker.Panic ("
h_file := pseqg.New (uint (0))
h_file.Name (name + ".h.dat™)
var w, h uint
if ms.Empty () {

if env.NArgs () < 3 {

ker.Panic ("..."™)

}

h, w = env.N(2), env.N(3)

if h <= 1 { ker.Paniec ("..."™) }
if w <= 24 { ker.Panic ("...") 1}

h_file.Seek (0); h_file.Put (h)
h_file.Seek (1); h_file.Put (w)
} else {
h_file.Seek (0)
h_file.Seek (1)

h
w

h_file.Get (). {(uint)
h_file.Get (). (uint)

~ e

1
h_file.Fin ()
scr.NewWH (2, 24, 8 * w, 16 * h); defer scr.Finmn ()
scr.Name ("inferno "™ + name)
if ms.Empty () {
ms.Edit ()
} else {
ms.Write ()

}

m := mol.New()

if pseq.Length (name + mol.Suffix) == 0 {
m.Construct (name)

} else {
m = mol.Constructed (name)

1

m.Write (0, 0)

file := pseq.New (m)

file.Name (name + ".seq")

all := set.New (m)

for i := uint (Q0); i < file.Num(); i++ {
file.Seek (i)
m = file.Get (). (mol.Molecule)
all.Ins (m)

1

if env.E() {

errh.Hint ("help: F1 end: Esc")
} else {
errh.Hint ("Hilfe: F1 Ende: Esc")

}
all.Jump (false)
if all.Empty () {
for {
m.Clzr ()
m.Edit (0, Q)
if m.Empty () {
// return ?



} else {
all.Ins {(m)
break

}
lcop:
for {
m = all.Get (). (mecl.Mclecule)
m.Write (0, 0)
switch c, _ := kbd.Command{); c
case kbd.Esc:
break loeop
case kbd.Help:
errh.Help (help)
case kbd.Enter:
ml := m.Clone{). {(Rotator)
m.Edit (0, 0)
if ! m.Egq {(ml) {
all .Del ()
all.Put (m)
}
case kbd.Up:
all.Step (false)
case kbd.Ins:
m,Clr ()
m.Edit (0, 0)

if m.Empty () { ker.Panic ("...")

all.Ins (m)
case kbd.Del:
if errh.Confirmed () {
all .Del ()
}
case kbd.Search:
case kbd.Act:
m.Rotate ()
all.Sort ()
case kbd.Print:
ms.Print ()
m.,Print ()

}

errh.DelHint ()

file.Clr ()

all.Trav {(func {(a any) { file.Ins
file,.Fin ()

}

(a.(mcl.Molecule))

}
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Abstract

In 1968, the theoretical biologist Aristid Lindenmayer created L-systems as an algorithmic formalism for
describing developmental processes in biology. In conjunction with computer graphics, they were initially
used for modelling simple multicellular organisms, and later for the realistic representation of plants. A key
aspect is the recursive self-similarity of the structures (take a look at a Romanesco broccoli). In this chapter,
we show a series of simple examples.

13.1 System Analysis

The prerequisite for this chapter is the definition of the terms “alphabet”, “language”, and “grammar”; in
particular, those of the L-systems, the grammars of the Lindenmayer systems.

These basics should enable graphical interpretations of L-systems, which, for example, lead to the
pictorial representation of space-filling curves or—in the sense of Lindenmayer—more interestingly of
plants.

Particularly impressive, of course, are three-dimensional constructions of plants. However, the algorithm
for this should only be limited to very simple examples: for example, plant stems and tree trunks are only
represented as lines and leaves only as simple unfilled polygons.

13.1.1 Alphabets, Languages, and Grammars

We understand an alphabet to be a finite set A with at least two elements. We refer to the elements of A as
lettersand sequences of letters written one after the other as words.
With A* we denote the set of all words over 4, recursively defined by

A={e} and A ' ={wa|wec A"andac A} forn € N
defined, where ¢ is the empty word with we = w = ew for all words w € A*.

Example 13.1 For A = {0, 1} a word is a sequence of zeros and ones, thus A* is the set N of all natural
numbers in binary notation and for A = {0,1,2,---,9} in the usual notation.

A language over the alphabet A is a set of words with letters from A.
We understand a grammar to be a quadruple (4, V, s, P), where

e Ais an alphabet;
e Vis anon-empty finite set of variables, disjoint from 4, s € V is the start symbol; and
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o PC (X*\ A%) x (¥£*\ {s} is afinite set of production rules.

We refer to the elements of the set ¥ = A U V as symbols.

For a production rule (/,r) € P one usually writes [ — r and says “r is derived from I”; for production
rules (I,71), (1,72),-- -, (I,rn) one also writes brieflyl — 71 | 72 | - - - | rn.

Here, I contains at least one variable, because [ ¢ A*.

13.1.2 Relationship Between Grammars and Languages

Each grammar (4, V, s, P) generates a language over A. It consists of those words that can be derived from
the start symbol s by a sequence of applications of the production rules (v, w) € P. A step in this sequence
consists for a production rule (v, w) € P in that in a sequence of symbols from ¥*, in which v occurs, this v
is replaced by w.

Example 13.2 The grammar (4, V, ¢, P) with A = {a,b}, V = {v} and P = {(v, avb), (v, €)} generates
the language {a"b" | n € N}.

The same language is generated by the grammar with A = {a,b},V = {4, B, X}, s = X and
P={X — ABX,BA — AB,BX — b, Bb — bb, Ab — ab, AX — aa}.

Conversely, for every language there is a grammar that generates this language. However, we do not go into
this very extensive topic about Turing machines and automata here, as it does not further our purposes for
this chapter. Those interested are referred to the specialist literature (e.g., [1]).

13.2 The Grammars of Lindenmayer Systems
These grammars have the form (4, V,w, P), where

e Ais an alphabet,
» Visa set of letters disjoint from 4,
» wis the (non-empty) start word from A*, called Axiom, and
e P C A x A*is afinite set of production rules.

They are called L-systems.

In them, @ — v is written for a production rule (a,v) € P.

In a derivation step for a production rule ('v, w) € Pinaword from A* in which v occurs, all
occurrences of v are simultaneously replaced by w. It is assumed that for each letter a € A there is exactly
one word v € A* witha — v.

Example 13.3 The grammar (a, b, (, b, (a — ab), (b — a)) generates the language
b, a, ab, aba, abaab, abaababa, abaababaabaab, abaababaabaababaababa, - - -.

13.3 Graphical Interpretation of L-Systems
In the following, we adhere closely to [2]. Most of the many examples of graphical interpretations also come
from this book.

We first consider L-systems with the alphabet (F', f, +, —). Crucial for the following is that it is possible
to interpret each such L-system as a graphic.

A state of this graphic is a triple (z, y, a), where

e (x,y) € R%is a position in the plane and
e «isan angle.

This includes a starting angle a € R, a rotation angle § € R (both given in degrees), and the number
n € N of application steps of production rules.
We change the state of the L-system for the given symbols as follows:

e F: We move forward by one step (of length 1), which transforms the position (x, y) into the position
(z+ cos a, y+ sin a), and draw a line between the old and new positions.
¢ f: We do the same as with F, but without drawing a line.



e +: We turn to the left by the angle §, which transforms the state (z, y, ) into the state (z,y, o + 9).
» —: We turn to the right by the angle §, which transforms the state (z, y, &) into the state (z, y, o — 9).

13.3.1 The Koch Islands

As a first example of a graphical interpretation of an L-system, we consider the system with

e the axiom w = F+F+F+F€E A%

e the only production rule F—F-F+F+FF-F-F+F.
* the starting angle o = 0°, and

» the rotation angle § = 90°.

In one application step, the symbol sequence
F-F+F+F-F-F+F-F-F+F+F—-F—-F+F-F-F+F+FF-F—-F+F-F—-F+F+F
is obtained. We refrain from specifying symbol sequences that result from more steps—that would only be

boring.
Much prettier are the graphical interpretations: In Figures 13.1, 13.2, 13.3, 13.4 to 13.5, the Koch

Island for 0 to 4 application steps can be seen.

:
&F

Fig. 13.1 Koch Island: start

Fig. 13.2 Koch Island after 1 application step

Fig. 13.3 Koch Island after 2 application steps



Fig. 13.4 Koch Island after 3 application steps

Fig. 13.5 Koch Island after 4 application steps

13.3.2 The Islands and Lakes

As a second example, we consider the system with

e the axiom w = rrF+oF+gF+DbF,

e the production rules F—F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF,
e fffffff,and

e the rotation angle 90°.

Figure 13.6 shows the system after two application steps.
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Fig. 13.6 Islands and lakes

Fig. 13.7 Pavement after two application steps

13.3.3 The Pavement

This example is almost like something in the next section.

e the axiomw=F-F-F-F,
e the production rule F—=F -> rFF-oF+gF-cF-bFF,and
« the rotation angle 90°.

Figure 13.7 shows it after two application steps and Fig. 13.8 after five application steps.
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Fig. 13.8 Pavement after five application steps

13.3.4 Space-Filling Curves

We are expanding our alphabet to include lowercase letters as symbols for colours:

Our next examples provide space-filling curves.

e n for brown,

e rforredand 1 for light red,

e o for orange,

e gfor green and d for dark green,

e c for cyan,

¢ ¢ for light blue and b for blue,
¢ m for magenta, and

e vy for grey.

13.3.4.1 The Hilbert Curves

First, we consider the system with

e the variables X and v,

e the axiom w

:X’

-XgFX-rFY+, and

¢ the production rules X—+X— +rYrF
e the production rules X—-X—+YrF

XgFX-rFY+ and X—Y—-XrF+YgFY+rFX-.

pplication steps.

, four, and seven a

13.11 show the Hilbert curve for two

Figures 13.9,13.10, and

Fig. 13.9 Hilbert curve after two application steps
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Fig. 13.10 Hilbert curve after four application steps
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Fig. 13.11 Hilbert curve after seven application steps
13.3.4.2 The Peano Curves
The next example with

e the variables I and R,
e the axiomw=-L€ A* and
e the production rules L—->F—LF+RFR+FL-F-LFLFL-FRFR+ and R—--LFLF+RFRFR+F+RF-LFL-FR

provides for n = 2 and n = 4 Figures 13.12 and 13.13.

2]

(I3

Fig. 13.12 Peano-curv after two application steps
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Fig. 13.13 Peano-curv after four application steps
13.3.4.3 The Barrel Curves
The last example of real space-filling curves with

e the variables L and R,
o the axiom w=-L€ A* and
e the production rules L—-F—LF+RFR+FL-F-LFLFL-FRFR+ and R—-LFLF+RFRFR+F+RF-LFL-FR

provides for n = 2 and n = 4 the barrel curves in Figures 13.14 and 13.15.

Fig. 13.14 Barrel curve after two application steps



Fig. 13.15 Barrel curve after four application steps

13.3.4.4 The Sierpinski Curves
The file

¢ the axiom w = F+F+F+F and
e the production rule F4F—X -> XF-F+F-XF+F+XF-F+F-X.

provides for n = 2 and n = 6 Figure 13.16, resp. 13.17.

Fig. 13.16 Sierpinski curve after two application steps
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Fig. 13.17 Sierpinski curve after six application steps

13.3.5 Extensions of the Alphabet of L-Systems
For forward steps (with or without drawing a line between the start and end position of the step), we have
introduced the letters “F” and “£” in Sect. 13.3, and for left and right turns by the given angle of rotation, the
rotation letters “+” and “-".
In addition, there is the reversal letter “ | ”, with which the direction of the step (by 180°) is reversed.
The 1s files can be annotated line by line for documentation purposes. To do this, the corresponding

lines must begin with the symbol “%”; the content of these lines does not contribute to the construction of an
L-system.

13.3.5.1 Branches

The two following symbols are particularly important as they allow branches, because they enable the
creation of plant illustrations—the intended goal of Lindenmayer:

e [ for the start of a branch and
e ] for the end of a branch.

We will show six nice examples of this.
The first two of these with the definitions

270

gF

F -> dF[+nF]gF[-nF]dF
25

5

and

270

F

F -> gF[+oF]dF[-xrF]1[gF]
25

5



in Fig.13.18.

Fig. 13.18 Two herbs

The third example

E -> nFF-g[-F+F+F]+g [+F-F-F]

provides a bush (s. Fig. 13.19).



Fig. 13.19 Abush
The two next examples with the definitions

270

X

X => gF [+gX]dF [=X]+X
F —> fdFgF

20

8

and

270

X

X =->» 1F[+X][-X]mFX
F -> nFgF

25

7

are shown in Fig. 13.20.



Fig. 13.20 Two herbs
With

2170

X

X -> gP-[[X]1+X]+0oF [+gFX]-X
F -> FdF

35

6

another herb is defined (s. Fig. 13.21).



Fig. 13.21 Another herb

13.3.6 Three-Dimensional L-Systems

We can also construct three-dimensional L-systems. To do this, the alphabet of the L-systems is extended by
the following symbols:

{ startofapolygon,
} end of a polygon,

e incline forward,

¢ " incline backward,

o / tiltto the left, and

o \ tiltto the right.

Of course, no three-dimensional models can be depicted on the “two-dimensional” paper of this book. For
this reason, we show a second view for each example.

A real impression of the models is provided by the program 1sys. It relies on the function Go from the
package p U for the representation of 3D scenes. With it, you can

e move left, right, up, down, closer to the centre of the model or further away from it;
e turn and tilt left and right;

¢ incline forward and backward; and

¢ rotate and tilt the model around the focus.

13.3.6.1 Three-Dimensional Hilbert Curve

The examples of the space-filling Hilbert curves from Sect. 13.3.4.1 can be generalized to three dimensions.
The file

bis
X ->» "“\XrF*\XoFX-gF"//XcFX_bF+//mXFkX-yF/X-/
3

delivers the three-dimensional Hilbert curve in Fig. 13.22 after three application steps.
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Fig. 13.22 Three-dimensional Hilbert curve
Figure 13.23 shows another view of the same example.

Fig. 13.23 Another view of the three-dimensional Hilbert curve

13.3.6.2 Three-Dimensional Plants

The file
0
F
F -> nFE-g[-F+F+F]+/g[+F-F-F]
22.5

4

provides a three-dimensional bush. We show it in Figures 13.24 and 13.25.



Fig. 13.24 A three-dimensional bush

Fig. 13.25 Another view of the three-dimensional bush
Also, tree-like structures can be created.

The file
30
a
A -> dF[_gFL Al /////R[_gFL AJ///////"[_gFL A]
¥ -»> 5 //// nF
s -»> F L
L —> [ {—f+E+f-|-F+£+F)
22.5
5

provides a simple model of a three-dimensional tree (see Fig. 13.26).



Fig. 13.26 Simple three-dimensional tree
With the definition

nnnT

T -> R[__+T]—-[-—**gLT] [**///gqT]R{*"++///oL]*"*R[—__T}]/R[+""//gL]
R => F[=-=/S/"gL][**"n// L] [+~///gL] [+//*""¥YL]F

L -> [g+FX-FX—FX+|+FX-FX-FX][*"///[g+FX-FX—-FX|+FX-FX-FX]]

FX -> FX
F -> FF
22.5

3

results in a somewhat less abstract tree (see Figures 13.27 and 13.28).

Fig. 13.27 Three-dimensional tree



Fig. 13.28 Other view of the three-dimensional tree
Figure 13.29 shows two views of a three-dimensional model of a simple flower, based on the file

F

F —> gP

P -» I+[P+L]--//[--B]JI[++B]-[PL]++PL & plant

I —> dFs[//__BJ][//""B]FS ¢ branch
5 -»> 3F3 % "growing" S5til
B -> g[+FX—FXFX—FX+I+FX—FKFX—FX] % leaf

L > [___XE/N//IW/SIWSS IR AW ¢ blossom
E -> FF % stalk
W —> [0*F]le____-FX+FX|-FX+FX) % blossom
FX -» FX

18

4

Fig. 13.29 Simple three-dimensional flower

Here is the penultimate example: The file



F

F —> nFF-u[-F+F+F]+/u[+F-F-F]
22.5

4

provides a three-dimensional grass-like plant (see Figures 13.30 and 13.31).

Fig. 13.30 Three-dimensional grass plant

Fig. 13.31 Three-dimensional grass plant from above

As a final example, we show with the file

270

F

F -> gF[/+xR]1[//+1F][///+xF]yF[\-oF][//+cF][\\\\-1F]
30

3



Fig. 13.32 Three-dimensional fantasy plant

in Fig. 13.32 another fantasy plant.

in Fig. 13.32 another fantasy plant.
F -> gF[/+rF][//+IF][///+rF]yF[oF][//+oF][

JIF] 30 3

Fig. 13.32 three-dimensional fantasy plant

13.4 System Architecture

The essential parts of the system are

e the grammar and
¢ the ongoing state during the construction of an L-system.

13.4.1 The Objects of the System
This results in the following objects:
e the grammar as an abstract data object,

e an abstract data type for managing the ongoing state during the construction of an L-system—i.e., the
coordinates and directions.

They can be found in the packages

e lsys/grammar,
e 1 U, which manages an “eye point”, a “focus”, and a normalized orthogonal triad “(right, front, top)” in the
R3.
For managing the ongoing state, a stack for pairs of symbols and the respective position of the symbol in
a production rule is also needed as an abstract data object. It forms the package

e lsys/symstk with the subpackage and
e lsys/symstk/pair.

13.4.2 Component Hierarchy
The dependencies of the packages are shown in Fig. 13.33, where the top layer consists only of the main
program 1sys.go, which uses the three underlying packages.



Fig. 13.33 System architecture of the L-System

13.5 User Manual

First, a file with the suffix “. 1s” must be created using any text editor, which defines an L-system. The lines
of this file must meet a series of requirements, which we will explain in detail in the following section.

13.5.1 Creation of an L-System
The lines of the L-system files must meet the following conditions:

e The first line can contain a natural number < 360 that specifies the starting angle of the geometric
interpretation. If there is no first line with a number, the starting angle is 90°.

e The axiom must be in the next (or possibly the first) line. This line may only contain symbols.

e The subsequent lines contain the production rules (at least one must be specified). Only symbols may
appear in this line as well.

¢ The penultimate line must consist of a natural number < 360. It specifies the angle by which the direction
of the step changes when a rotation symbol appears on the right side of a production rule.

¢ The last line must contain the number of application steps, a natural number < 26.

13.5.2 System Operation
It is incredibly simple:

If the edited file meets these requirements, the geometric interpretation appears on the screen after
calling the program 1sysi with the name of the file as an argument (even without the suffix . 1s)—
however, for three-dimensional systems, this only happens on a graphical interface.

If this is not the case, an appropriate error message will appear.

If the name of an 1 s-file that does not exist is passed as a parameter to the program call, the call has no
effect.

13.6 Construction

13.6.1 Specification of the Library Packages
Below, we show the specifications of the three packages used.

13.6.1.1 Grammar
The specification of the abstract data type in the package 1sys/grammar is as follows:



package grammar
import "uU/col™

const
Maxl, = 4
MaxR = B0
Comment = 7§’
Step - FEF
YetiStep = f£r
TurnLeft = r4+r // around z-axis
TurnRight - -
Invert = ’|’
TiltDown = 7 _r J/ around x-axis
TiltUp — rAr
RollLeft = byte(92) // "\’ // around y-axis
RollRight - Ty
BranchStart = r[*
BranchEnd m r]r
PolygonStart = 7 {f
PolygonEnd - rr
)
type
Symbol = byte
var |

StartColour col.Colour
Startword string

Startangle, Turnangle float6d
NumIterations uint

colours = []Jecol.Colour {col.Brown(), /7 n
col.Rad (), P

col . LightRed ()}, ¥ 37

)

funec Initialize (s string) { initialize(s) 1}

funec IsColour (s Symbol) (col.Colour, boeol) { return isColour(s) 1}

// Pre: s is not empty.

// Returns true, iff there i1s a rule with a left side starting with s.

funec ExRule (s string) bool { return exRule (s} |}

// Pre: There is at most one rule with s as left side.

// Returns the right side of the rule with left side s,

// 1f svech a rule exists; otherwise "",

func Derivation (s string) string { return derivation (s} 1}

13.6.1.2 Symbol Stack

The specification of the symbol stack is directly derived from the specification of the general stack x U in the
microuniverse:

package symstk S/ A stack of pairs (byte, uint); initially empty.

type Symbol = byte

/7S (s, 1) 1is pushed onto the stack.
fune Push (s Symbol, i uint} { push(s,i) }

/4 Returns true, 1ff x is empty.
func Empty ()} boel { return empty() }

// Pre: x is not empty.
// Returns the pair on top of x. That pair is now removed from x.
func Pop () (Symbol, wuint) { return pop () }

13.6.1.3 Management of the Current Position and Directions
This is done during the construction of the geometric interpretation of an L-system in the package p U. Here
is its specification:



package spc

// The package maintains the follewing 5 vectors:

/4 origin, focus and an orthogonal right-handed trihedron
// consisting of the 3 vectors ({right, front, top) with

/7 len({right) = len(front) = len(top) = 1,

// s.t. front = fecus — origin normed to len 1.

// Maintains furthermore a stack of the trihedron-vectors.
// origin = (ox, oy, oz), focus = (fx, fy, fz), top = (tx, ty, tz),
// front = focus - origin normed to len 1 and

/7 right = vector-product of front and top.

fune Set (ox, oy, oz, fx, fy, fz, tx, ty, tz float6d) {
set (ox,oy,oz,fx,fy,fz,tx,ty,tz) }

// Returns the coordinates of origin, focus and top.

func GetOrigin () (flocat64, £float6d, floatbd) { return getOrigin () 1}
fune GetFocus () (float64, float6d, float6d) { return getFocus ()} 1}
func GetRight () (float64, float64, float64) { return getRight ()} |}
func GetFront () (float64d, float64d, float6d) { return getFront (} 1}
fune GetTop(} (float6d, float6d, floatbBd) { return getTop(} |}

A4 origin is moved in direction Right/Front/Top by distance d,
fune MoveRight (d £loat64) { moveR(d) 1}

func MoveFront (d float64) { moveF (d) 1}

fune MoveTop (d float64) { moveT(d} |

F4 origin and focus are moved in direction Right/Front/Top by
distance d,

funec MovelRight (d float64) { mowvelR (d) }

fune MovelFront (d fleoat64) { movelF (d} }

fune MovelTop (d float6d) { movelT (d) 1}

// front is rotated around right by angle a, top is adjusted.
fune Tilt (a float6d4) { tilt(a) }

// top is rotated around front by angle a, right is adjusted.
fune Roll (a float64) { roll(a) }

// right is rotated around top by angle a, front is adjusted.
func Turn (a float64) { turn(a) }

// The trihedron i1s rotated around the vector right by angle a.
fune TurnAroundFocusR (a flocat64) { turnArocundFocusR(a) 1}

// The trihedron is rotated around the vector top by angle a.
fune TurnAroundFocusT (a float64) { turnArocundFocusT(a}) }

// Returns true, iff the stack is empty.
fune Empty () beel { return empty () 1}

// origin, focus and top are pushed onto the stack.
fune Push () { push()} 1}

A4 origin, focus and top are popped from the stack
// and front and right are computed te maintain the invariants.
fune Pop () { pop(} !

13.6.2 Implementation of the Packages

The main program distinguishes between the construction of two- and three-dimensional L-systems, which
is determined by whether Ti1t or Rol1 symbols appear in the 1s-file.

13.6.2.1 Main Program

We only show the implementation of one of the most important functions in the main program, the function
step, which changes the state of the L-system depending on the actual symbol:



func step (s Symbol) {
awitch s {
case g.Step:
x0, y0, z0 = spc.GetOrigin ()
apc.MovelFront (1)
X, ¥, z = spc.GetOrigin(}

case g.YetiStep:
x0, y0, z0 = spc.GetOrigin ()
spc.MovelFront (1)
Xy, ¥, 2 = s8pc.GetOrigin ()
case g.TurnlLeft:
spe.Turn (delta)
ox, oy, _ != spc.GetOrigin ()
alpha = arctan (ox, oy)
case g.TurnRight:

spc.Turn (-delta)
ox, OY, _ :i= s8pc.GetOrigin ()
alpha = arctan (ox, oy)

case g.Invert:
spe.Turn (180)
case g.TiltDown:
ape.Tilt (delta)
case g.TiltUp:
spc,.Tilt (-delta)
case g.Rollleft:
spc.Roll (delta}
case g.RollRight:
spc.Roll (—-delta)
case g.BranchS3tart:
apc.Push ()
case g.BranchEnd:
apc.Pop (}
default:

}

13.6.2.2 Grammar

The implementation of this package mainly consists of examining the passed 1s-file with the verification of
the symbols and the construction of the production rules, so that they can be processed by the main
program.

13.6.2.3 Symbol Stack

Its implementation essentially only consists of accessing the stack package p U in the microuniverse. It is
only used during the execution of the function execute for measuring and creating the two-dimensional
graphics and for creating the three-dimensional graphics as openGL-Constructs needed.

13.6.2.4 Space

The implementation makes intensive use of the vector package p Uf the microuniverse.
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Abstract

The operation of a train station essentially consists of the construction
of routes for train journeys. Routes are sequences of blocks; blocks are
track sections, on which only one train may be present at a time; and
track sections are, for example, tracks, switches, and double crossover
switches and buffer stops. This hierarchy thus provides a nice example
of object-based programming. The project consists of simulating a
pushbutton control panel for a train station and has a distributed
aspect: the simulation of train traffic between several stations.
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Spradlidy bedeutet Cifenbabn qang allgemein eine BDabn von Eifen gwedi Bewegqung von Gegenitdnden
auf derfelben. Verfniipft man diefen Wortlaut mit dem Gefesepwed, und erwidgt man, daf die eigenartige
RNiilidbeit und gleidzeitiq Gefabrlidfeit def metallifen Tranfportgrunbef, in der (ourd) vefen Konfifiens,
fomie durdy deflen, daf Hinbernif der Reibung vermindernde Formation und Gldtte gegebenen) Miglichfeit

beftet, groie Gewidtfmafen auf fenem Grunde forsubewegen und eine verbiltnifmiiiq bedeutende
Gefdyindigteit der Tranfportbemequng su erzeugen, fo gelangt man im Geifte def Gefesef su Leiner
engeren Beftimmung jener foradliden Bebeutung vef Wortef Eifenbabn, um ven Beqrif

einef Cifenbabnunternebmenf im Sinne def Gefesef su gewinnen, alf derjenigen:

€in Unternehmen, geridhtet auf wiederholte Fortbemequng von Perjonen oder Sadyen fiber nidht gan
unbeveutende Raumftreden auf metallener Grundlage, welde durdy ibre Konfiftens, Konfruftion und Gldtte
ven Tranfport grofjer Gewidtimafen, besiebungfiveife die Eraielung einer verhdltnifmdhiq bedeutenden
Sdnelligeit der Tranfportbemequng su ermdgliden betimme it, und durdy diefe Eigenart in BVerbindbung
mit ven auberdem sur Erzeugung ver Tranfportbewequng benugten Naturtrdften (Dampf, Elebtricitdt,
thierifder oder menfihlicher MufPelthitigteit, bei geneigter Ebene der BVabn aud) fdhon der etgenen

Sdere der Tranfportaefdiie und deren Ladung, u.f.w.) bei dem BVetriebe def Unternehmeny auf derfelben
eine verbaltnifmiiiq gewaltige (je nady den Umitdnden nur in begwedter Weife niiglidye, oder aud
Menfdyenleben vernidytende und die menfihlidhe Gefundbeit verlesende Wirfung 3u erzeugen fibiq ift.

Civil Senate of the Reich Court Leipzig from March 17, 1879
Meaning of the expressions

Operation of a railway and operating company

in the § 1 of the Reich Liability Act

Decisions of the Reich Court in Civil Matters I (1880), 247-252

Essential parts of the concept and approaches of the Bahn project
are based on the work results in a basic computer science course at the
Ruckert-Gymnasium in Berlin-Schoneberg many decades ago. It was
about the simulation of an “electronic interlocking” in a station; the
occasion was the introduction of the first microcomputer-controlled
interlocking by Siemens in the Berlin U-Bahn Station Uhlandstrafie.

Since Pascal was the only programming language available to us at
the time, [ was able—knowing the works of Parnas—to achieve only
initially a separation between specification and implementation using
the forward declarations. Due to the lack of graphics on our ASCII
terminals, we represented the cells (see Sect. 14.3.1.1) with

«“ »

e the minus sign “-”,

« n

e the underscore “ ",

e the slash “/”,

e the backslash “\”, and
e the separator “|”



| set this task to the participants of some teacher training courses in
computer science at the Free University of Berlin a few years later;
object-based programming was possible with Modula-2 at that time.

Various extensions planned at the time as options were developed
by me using the microuniverse and the various parts of the
documentation were completely revised.

In particular, the system has been expanded to a small network of
six stations.

Thanks are due to

e my former students, who first built a Brio railway in the computer
room to get clarity about what the essence of, for example, switches
or routes, then devised a clever method for implementing lock
variables, as our trains were started concurrently from several
terminals, later rediscovered depth-first search in graphs, and finally
found shortest routes for trains by sorting through merging in sets of
lists of blocks (thus mastering very demanding content from the field
of algorithms and data structures);

e the course participants of the teacher training, who had continuously
driven the development; and

e Mr. Dipl.-Ing. Norbert Ritter (then project manager at the Berlin
Transport Company), who showed us the new digital interlocking in
the U-Bahn Station, and Mr. Prof. Rolf Schadlich from the TFH, who
showed us a dismantled mechanical interlocking of the railway at the
TFH.

14.1 System Analysis

It is about a program system that supports the train service
management (EBO § 47 (1) 4) in a given station (EBO § 4 (2) in their
task to ensure the safety of the train operation, (EBO § 47 (2) and (3)):
The system should provide all information necessary for the issuance of
driving orders required.

This includes the display of the track diagrams of the stations, i.e.:

 of all tracks with their numbers;
 of all switches, double crossover switches, and signals with their
positions; and



e the occupancy reports by stationary and moving trains.

A driving order is triggered by entering the start and destination
tracks. The system then constructs all possible routes, selects the one
with the fewest switches as the route, secures it by switching the used
switches and signals, and marks it as occupied. The driving order is
issued by setting the driving signal.

For the assembly or division of trains, shunting movements into an
occupied destination track are possible; moreover, it cannot be
assumed that the starting track will become free after the departure of
a shunting section. A model with such shunting possibilities would have
to keep track of the composition of all trains from their components
(locomotive(s) and wagons including their relative positions to each
other), otherwise meaningless driving orders are possible. Due to the
significant complexity of a solution that includes all these factors,
shunting movements are not modelled—we limit ourselves to train
journeys.

Only a phantom is considered: The train journeys are only simulated
on the screen.

Trains leaving the station go to the neighbouring station. New trains
can appear on the station’s entrance tracks and must be “picked up”
there.

This allows the task of the system to be formulated as follows:

It is about the simulation of pushbutton interlocking based on the
track diagram display and the synchronization of train traffic between
stations.

14.1.1 Basic Concepts of Railway Technology

A block (EBO § 4 (3)) is a section of track at whose ends the
continuation of a train in the permitted directions of travel is controlled
(released or blocked) by signals. The directions of travel for which a
block is permitted depend on its function, e.g., on double-track main
lines, the blocks are usually only permitted for one direction of travel (in
Germany right-hand traffic) (EBO § 38).

The block protection is therefore a central safety concept in train
operation: Within a block, there can always be only one train.

Exiting the block and thus entering the next block is only possible if
there is no train in the next block.



In a station, each longer section of track between two switches is to
be treated like a block. There can always be at most one train on it; exit
signals are at its ends. Switches are also to be considered as blocks in
this sense, as they can only be used by one train for obvious reasons.

Roads are in this sense sequences of blocks; tracks are routes that are
signal-technically secured.

In order to identify the tracks for the registration of journeys and
switching of roads, the usual scheme for track numbering is used:
parallel main tracks are counted from the reception building, merging
tracks are counted in both directions in full decades, with the last digit
of their number matching the number of the main track they continue.

The main tracks for through traffic may only be used by trains in the
direction of regular operation.

The terms “with the kilometerage” (i.e., in ascending order of the
kilometre stones on the railway line on which the station is located)
and “against the kilometerage” are agreed upon as directions of travel;
in this sense, all tracks of a station are oriented—reversing loops are
not permitted.

Switches in this sense are either with the or against the
kilometerage branched. They can (seen in the direction of branching)
have the positions right or left, abstracting from the (railway—
technically important) information that switches have a straight and a
branching branch. Double crossover switches are branched in both
directions.

Switch numbers are assigned in the direction of the kilometerage,
with switches that directly connect parallel tracks having consecutive
numbers. At individual station sections (e.g., at the station heads), new
decades start each time.

In addition to the branching of the tracks, the switches have an
important function for the safety of train operation: occupied or
travelled track sections must be protected against a lateral entry by
rejecting switch positions in the direction of a parallel track (flank
protection).

The representation of the signals is part of the simulation of station
operation. Both main and protection signals (ESO B 1. and VII.) are taken
into account. The inclusion of advance signals (ESO B II. and I11.) as well



as other signals (additional signals, slow driving signals, shunting
signals, etc.) is reserved for a later expansion stage.

14.1.2 Sources
The essential regulations of the Deutsche Bahn for train traffic are the

e Railway Construction and Operating Regulations (EBO) [1],
* Driving Service Regulations [2], and
e Railway Signal Regulations (ESO) 1959 [3]

of the Deutsche Bahn.

14.1.2.1 Excerpts from the Railway Construction
and Operating Regulations
§ 4 Definitions

(1) Railway facilities are all properties, structures, and other
facilities of a railway, which are necessary for the handling or
securing of passenger or freight traffic on the rail, considering
the local conditions. This also includes auxiliary operating
facilities and other facilities of a railway that enable or promote
loading and unloading as well as access and exit. There are
railway facilities of the stations, the open line and other railway
facilities. Vehicles are not part of the railway facilities.

(2) Stations are railway facilities with at least one switch, where
trains may start, end, evade, or turn. The entry signals or
trapezoid boards generally serve as the boundary between the
stations and the open line, otherwise the entry switches.

(3) Block sections are track sections into which a train may only
enter if they are free of vehicles.

(11) Main tracks are the tracks regularly used by trains. Continuous
main tracks are the main tracks of the open line and their
continuation in the stations. All other tracks are sidings.

§ 34 Definition, type and length of trains



(1) Trains are the units moving onto the open line consisting of
standard vehicles, moved by mechanical power, and individually
moving locomotives.

§ 38 Driving order

On double-track railways, the right side is to be used for driving,.
This can be deviated from

1. in stations and when introducing track lines into stations,

2. ...

§ 39 Train sequence

(4) The entry, exit, or passage of a train may only be permitted if its
route is clear. ...

14.1.2.2 Excerpts from the Railway Signal Regulations

I. Main signals (Hp)

(6) Main signals are used as entry signals, exit signals, intermediate
signals, block signals, ...

(10) Main signals indicate whether the subsequent track section
may be used. The main signals Hp 0, Hp 1, and Hp 2 only apply to train
journeys, but not to shunting movements.

Hp 0: Train stop

Light signal: One red light.

Hp 1: Go

Light signal: One green light.

Hp 2: Slow movement

Light signal: One green and vertically below it a yellow light.

The screen displays the station in the form of a track diagram
display, i.e., the schematic representation of all tracks, switches, and
double crossover switches and the position of all signals. The dynamic
part of the display consists at any given time of the representation of
the current state of its variable components: the positions of all
switches and signals and the occupancy reports of all tracks—
differentiated according to whether they are occupied by stationary
trains or by issued driving orders or moving trains. When a train has
left a track, the occupancy report is withdrawn. (In reality, track



clearance detectors are used, devices on the tracks that register the
state, for example, by counting the passing axles.)

The train dispatcher requests a route for a train journey by pressing
buttons on the track display that indicate the start and the destination
track for the journey, thereby giving the track display the function of a
pushbutton interlocking. Start and destination can in principle only be
tracks that are marked by numbers. Switches can only be used for
transit; trains are not allowed to stop on them. A journey in this sense is
a movement from the start to the destination track in exactly one
direction. If a driving order cannot be executed because there is no or
no free route from the start to the destination track, or because the
destination track is occupied, corresponding messages are issued. The
system then checks whether a route is available for the journey. If a
driving order can be executed on more than one route, the system
selects the one with the fewest switches to be traversed. The system
then secures the route by switching the switches and signals for the
route, marks all tracks and switches on the route as occupied, and
updates the track display in the screen window. The driving order is
issued to the train control by setting the corresponding signal to drive
or slow drive position. When a train has arrived on an entry track from
the neighbouring station, it must be “picked up” by the train dispatcher,
i.e.,, a driving order (from the entry track as the start track) to a
destination track in the station must be issued. If an exit track is the
destination of a journey, the train disappears in the direction of the
following station.

14.1.3 Track Diagram Display

The screen displays the station in the form of a track diagram display,
i.e., the schematic representation of all tracks, switches and double
crossover switches, and the position of all signals.

The dynamic part of the display consists at any given time of the
representation of the current state of its variable components: the
positions of all switches and signals and the occupancy reports of all
tracks—differentiated according to whether they are occupied by
stationary trains or by issued driving orders or moving trains. When a
train has left a track, the occupancy report is withdrawn. (In reality,



track clearance detectors are used, devices on the tracks that register
the state, for example, by counting the passing axles.)

14.1.4 Driving Orders

The train dispatcher requests a route for a train journey by pressing
buttons on the track display that indicate the start and the destination
track for the journey, thereby giving the track display the function of a
pushbutton interlocking.

Start and destination can, in principle, only be tracks that are
marked by numbers. Switches can only be used for transit; trains are
not allowed to stop on them.

A journey in this sense is a movement from the start to the
destination track in exactly one direction.

If a driving order cannot be executed because there is no or no free
route from the start to the destination track, or because the destination
track is occupied, corresponding messages are issued.

The system then checks whether a road is available for the journey.

If a driving order can be executed on more than one road, the
system selects the one with the fewest switches to be traversed.

The system then secures the road by switching the switches and
setting the signals for the road, marks all tracks and switches on the
route as occupied, and updates the track display in the screen window.

The driving order is issued to the train control by setting the
corresponding signal to drive or slow drive position.

When a train has arrived on an entry track from the neighbouring
station, it must be “picked up” by the train dispatcher, i.e., a driving
order (from the entry track as the start track) to a destination track in
the station must be issued.

If an exit track is the destination of a journey, the train disappears in
the direction of the following station.

In the past, all this was done with mechanical lever interlockings,
wire rope pulls, and electromechanical relay controls; nowadays, it is
probably done everywhere by computer-controlled sensors and
motors.

14.1.5 Representation of Train Journeys



The duration of trains on their journey over tracks of different lengths
is greatly simplified: We assume that they travel at a constant speed,
i.e., that the duration of a journey over a block depends only linearly on
its length.

The journey of a train, its arrival at its destination track, or the fact
that it has left the station is visually displayed on the track display.
Tracks and switches that the train has left are immediately released on
the track display.

14.1.5.1 Inclusion of Multiple Stations

The system consists of several stations.

A distributed solution is planned for this: Each station is operated
on its own computer or in a heavyweight process on one of the
participating computers; the operation in between is synchronized by
the respective neighbouring stations. By “synchronization” we
understand that a train appears on the entry track of the destination
station after leaving the exit track on a journey to a neighbouring
station.

14.2 System Architecture
14.2.1 The Objects of the System

From the system analysis of the project, the following objects can be
derived in the planned system, each of which is packed into a package:

o Stations as track diagrams of the entirety of all blocks.

e The network of all involved stations with which the train traffic
between the stations is synchronized.

* Roads as ordered sequences of pairwise connected blocks, which are
constructed, occupied, switched, driven, and then released.

e Blocks with

— their connections to the neighbouring blocks;

— their type (track, switch, or double crossover switch);
— their location;

— their position on the screen;

— the cells, they consist ofj;



— if they are switches or double crossover switches:

their branching direction, (with or against the kilometre
marking),

their switch direction (left switch or right switch), and
position (left, straight, or right);

— their signals; and
— their state (free or occupied with a stationary or moving train);
» for each block its signals;
o cells in the form of a straight or bent track piece, a buffer stop, or a
switch and double crossover switch in their respective position, from
which the representations of the blocks on the screen are composed.

rail

station

route net

block

signal cell

>

kilo colour direction

constants

Fig. 14.1 Architecture of Rail
In addition, the system requires the following small packages:

kilo for the both directions (“with” and “against” kilometerage);
colour for the colours needed by the system;

direction for the position of the switches (left, straight, right); and
various constants for positioning on the screen windows.



In the following, we explain these basic components.

14.2.2 Component Hierarchy

In Fig. 14.1, you can find the dependencies of the individual packages
on each other: the package that is lower is imported (used) by the one
above it. The representation slightly exaggerates the import
relationships insofar as

* between the definition and implementation parts of the packages no
distinction is made and

e not every import becomes visible, because at some points there are
also imports over several layers (for example, the colours are
imported by all indirect above modules).

14.3 User Manual
14.3.1 Screen Design

The only alphanumeric formats in the system are the

o Station names (strings of limited length) and
e the track numbers (natural numbers < 100).

14.3.1.1 Representation of the Cells

The cells have a size of 36 pixels horizontally and 24 pixels vertically.
There are cells for the representation of

tracks,

bends,

switches,

double crossing switches, and
buffer stops.

Figure 14.2 shows track cells, Fig. 14.3 shows track bends, Fig. 14.4
shows switches branched in the direction of the kilometerage, Fig. 14.5
shows switches that are branched against the direction of the
kilometerage, Fig. 14.6 shows double crossover switches, and Fig. 14.7
shows buffer stops.
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Fig. 14.2 Track cells

Fig. 14.3 Track bends

Fig. 14.4 Switches branched in the direction of the kilometerage

Fig. 14.5 Switches branched against the direction of the kilometerage

Fig. 14.6 Double crossing switches

— —

Fig. 14.7 Buffer stops

14.3.1.2 Representation of Blocks

A block is represented as sequences of cells, with track numbers
approximately in the middle of the track block for tracks.

Switches and double crossover switches are blocks of length 1, so
they are represented as the corresponding cells. Switch numbers are
not written, as they do not need to be identified on the track diagram
because they are not switched by the train control, but by the system.

14.3.1.3 Representation of Signals



Signals are represented as small (colour-filled) circles; in the direction
of the kilometerage at the end of a track block below a track cell and in
the opposite direction above a track cell.

14.3.1.4 Occupancy Reports

The different states of tracks, switches, and routes are displayed as
follows:

Free tracks are shown in green, tracks occupied by a stationary train
are shown in yellow, and tracks occupied by a moving train are shown
in red.

The positions of switches and double crossover switches are
evident in that only the switched branches have the corresponding
colour, the others are grey.

14.3.2 The Track Diagram Control Panel on the Screen

Input and output are done on a static screen; techniques such as
“screen scrolling” are avoided; the train dispatcher must always have
the entire station in view (there are also no “scrolling pushbutton
control panels”).

The screen windows have a size of 42 cells vertically and 8 cells
horizontally and 4 lines for the distance to the top and bottom edge of
the windows and the last screen line for error messages and operating
instructions.

This specification limits the number of tracks in the stations: A
maximum of eight parallel tracks can be displayed.

After successful execution of the driving order, the route is
designated as a road, i.e.,, marked as occupied by a moving train.

The representation of a train journey in its movement is achieved by
cleared track sections and switches immediately assuming the state of
being free, i.e., changing to the free colour.

14.3.3 The Net of the Stations

Figure 14.8 shows the network of the six stations.
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Bahnheim Bahnhausen Bahnstadt Eisenstadt Eisenhausen

Fig. 14.8 The net of the six stations
In the following, we present the individual stations.

14.3.4 The Network of Stations

Bahnheim
Bahnheim is a terminal station of a double-track line with two main
tracks (2 and 3), two secondary tracks (1 and 4), four storage tracks (11
to 14), and one flank protection track (21) (see Fig. 14.9). A platform is
to be imagined between tracks 2 and 3.

Track 23 is the entrance track and track 24 is the exit track to and
from Bahnhausen.

Fig. 14.9 Track diagram of Bahnheim

Bahnhausen
Bahnhausen is a station on a double-track line with two main tracks (2
and 3), two secondary tracks (1 and 4), and two flank protection tracks
(14 and 21) (see Fig. 14.10). A platform is to be imagined between
tracks 2 and 3.

Tracks 12 and 13 are the entrance and exit tracks to and from
Bahnheim, and tracks 23 and 22 are the entrance and exit tracks to and
from Bahnstadt.

—

Fig. 14.10 Track diagram of Bahnhausen

Bahnstadt

Bahnstadt is a station on a double-track main line with two main tracks
(3 and 4), with sidings (1, 2, and 6), and two flank protection tracks (16
and 22). Track 5 is the starting point for the branching single-track



branch line to Eisenheim; tracks 6 to 8 with their sidings form a small
freight loading section with pull-out and storage tracks for shunting
purposes (see Fig. 14.11).

Platforms are to be imagined between tracks 2 and 3 and between
tracks 4 and 5.

Tracks 13 and 34 are the entry tracks from Bahnhausen or
Eisenstadt and tracks 14 and 33 are the corresponding exit tracks.
Track 36 is the entry and exit track from or to Eisenheim.

Eisenheim
Eisenheim is a terminus of a single-track branch line with one main
track (2), two sidings (1 and 3), a flank protection track (13), and three
storage tracks (21 to 23) (see Fig. 14.12). A platform is to be imagined
between tracks 2 and 3.

Track 12 is the entry and exit track from or to Bahnstadt.
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Fig. 14.11 Track diagram of Bahnstadt

Eisenstadt
Eisenstadt is a through station on a double-track main line with two
main tracks (2 and 3), two sidings (1 and 4), and two flank protection
tracks (14 and 21) (see Fig. 14.13). A platform is to be imagined
between tracks 2 and 3.

Tracks 12 and 23 are the entry tracks from Bahnstadt or
Eisenhausen and tracks 13 and 22 are the corresponding exit tracks.
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Fig. 14.12 Track diagram of Eisenstadt

Eisenhausen
Eisenhausen is a terminus on a double-track main line with two main
tracks (2 and 3), two sidings (1 and 4), a flank protection track (14),



and four storage tracks (21 to 24) (see Fig. 14.13. As with the previous
stations, a platform is to be imagined between tracks 2 and 3.
Tracks 12 and 13 are the entry and exit tracks from or to Eisenstadt.
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Fig. 14.13 Track diagram of Eisenhausen

14.3.5 System Operation

It is very simple. After starting the server, operations can be started at
the stations, which consist of driving orders.

14.3.5.1 Station Selection

Each station is controlled by its own computer or a heavyweight
process on a computer.

The system is responsible for synchronizing train traffic between
stations. For this, it is necessary to start the server—a component in
the network package—before calling up operations at one of the
stations. This is done by calling train (without arguments).

Afterwards, a station is selected by calling “train n”, where n is one
of the numbers from 0 to 5: It is then the n-th station from the network
(in the order specified in Sect. 14.4.2).

The screen window shows its track image in the state defined in the
station package and the station’s operation can be started.

14.3.5.2 Issuing a Driving Order

The start and destination tracks for a route are selected as follows:

There is the hint “Click start track end operation: Esc”. By clicking
on the corresponding track with the left mouse button, the start track is
selected; the escape key ensures that operations at this station—but
only after all train journeys have been completed—are stopped.

Then there is the hint “Click destination track other start track:
Esc”; here too, the destination track is clicked with the left mouse
button.

If a different start track is to be selected, the escape key must be
pressed.

The following errors are possible with these clicks:



e As astart track, a free track section or

e an exit track of a double-track connection or

 as adestination track, an occupied track section or

e an entry track of a double-track connection or

e as astart track or destination track, a switch is specified.

e there are no routes from the start to the destination track or

e there are routes, but all of them have some tracks occupied by

standing trains or train journeys.

In the first five cases, the driving order is simply ignored by the

system; in the other two cases, an appropriate error message is issued.
After selecting the start and destination tracks, the system searches

for the route with the fewest switches among the possible routes.
After the successful issuance of the driving order, the switches and

signals are set, and then the train departs.

14.4 Construction

We only show the specifications of the library packages and the
representations of the respective abstract data objects.

14.4.1 Main Program

The main program is very short, it consists only of the activation of the
server or the start of operations at one of the stations.

package main

import ("pU/ker"™; "pU/env™; "uU/kbd™; "rail/station™; "rail/net"™)
fung main () {
if env.NArgs () == 0 {
net .MyStation = net.Server

net .Activate ()

kbd.Wait (false)

return
}
n, m := env.N({(1), net.N - 1
if n >=m {

ker.Panic ("the argument of the call \"raill\"™ has to be smaller than ", m)
}
net .MyStation = n
station.New () .Operate ()

}

14.4.2 Network



The tasks of the network package are

e the management of the six stations with their connections to each
other and

e the work of the server, which occupies and releases the entrances to
the stations.

Its network specification reads

package net

conat M = 11 // maximal length of the names of stations
congt (Bahnheim = uint (iota); Bahnhausen; Bahnstadt; Eisenheim;
Eisenstadt; Eisenhausen; Server; N; A = N - 1)

var (MyStaticon wuint; MyName string)

fung Name (n wuint) { return name () 1}

func NumNeighbours () wuint { returm numNeighbours{) }

fune Neighbour (n, i wuint) wuint { returm neighbour (n,i) }

fung Activate (} { activate () }
fung ClearEntrance() { clearEntrance() 1}
funec OccupyEntrance() { occcupyEntrance(}) }

The implementation of the network package includes two files; in
network.go the names of the stations and their respective

neighbours are defined and in monitor. go the abstract data type mon
and the computer on which the server runs are defined:



package net
import (. "pU/cbj"™; "pU/host™; "uU/fmon™)

const ( clear = wuint {(iota); occcupy; occupied; noOps)

type Entrance interface {

ClearEntrance (n wuint)
OccupyvEntrance (n wuint)
EntranceOccupied (n wuint) bool
}
type mon struct {
fmen.FarMonitor

}

var (
server = host .Localhost (). String ()
monitor Entrance
aktiv = false

entryFree [A*A]lbool

H
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for n := uint (0); n < A; n++ {
for i := wint (0); 1 < NumNeighbours {n); i++
entryFree [A * n + Neighbour (n, i)] = true
}
}
}
fune activate () {
monitor = New (server, 2345, MyStation >= N -—
}
fune New (h string, p uintlé, s bool) Entrance {
fs := Ffumne (a Any, 1 wuint) Any {
n := a.{uint)

switch i {
case clear:

entryFree[n] = true
case cccupy:
entryFree[n] = false
case cccupied:
if ! entryFree[n] { return wuint (1) 13

H
return uint (0)

}
m := new (mcn)
m.FarMoniter = fmon.New {(uint (0), noOps, fs, AllTrueSp.,

return m

fune {(m *mon) ClearEntrance {(n uint) {
m.F {(n, clear)

}

fune (m *mon) OccupyEntrance (n wuint) {
m.F (n, occcupy)

H

fune (m *mon) EntranceOccupied (n wuint) bool {
return m.F (n, cccupied) . (uint) == 1

}

fune clearEntrance (n wuint) {

monitor.ClearEntrance {(n)

h,

P

s)



func occupyEntrance (n wuint) {
monitor.OccupyEntrance (n)

}

fune entranceOccupied (n uint) bool {
return meonitor .EntranceOccupied (n)

}

14.4.3 Stations

The only task of the stations is their operation. Therefore, the
specification of the station package is very short:

package statiocon
type Station interface {

Operate ()
}

func New({) Station { return new_({) 1}

The representation of the abstract data type Station is very simple, it
consists only of the graph of the blocks, represented by their numbers,
and the indication of the kilometerage, which always indicates the
direction of the current route:

14.4.4 Routes

Routes and route sequences are ordered sequences of blocks. They
have a start block and a target block and blocks can be arranged in
them.



package route
type Route interface |{

// Returns the number of the start block of x.
Start () wuint

// Returns the number of the destination block of x.
Destinaticn () wuint

// x does not contain any blocks.
Clr ()

// The block with the number n 1s inserted in order.
Insert {(n uint)

/7 Returns the number of the i-th block of x.
Nr (i wuint) uint

// Returns the number of blocks 1in =x.
Num () wuint

// Returns true, iff the i-th block in x
/7 1s smaller than the j—-th block.
Less (i, Jj int) bosol

// Returns true, if the i-th block in x
// 1s smaller than the j-th block or if it 1is the same.
Leqg (i, J int) bool

// Returns true, 1f x contains switches or double crossing switches
/7 with a deflecting position (left or right).

Deflecting ()} bool
3

// Returns a new empty route,
fune New () Route { return new_ () 1}

14.4.5 Blocks

The blocks are the basic components of a station, because every station
is a graph whose nodes are the blocks. Each block consists of an
ordered sequence of cells (see Sect. 14.4.6). There are

straight track blocks,

bends (bent track blocks),
switches, and

double crossing switches (blocks).

The last three ones consist only of one cell.



Blocks are numbered; in the case of track blocks, these are the track
numbers. There are different sorts of tracks:

Through tracks,
Entry and Exit tracks, and
Siding tracks.

Each block has one of the states

 free, i.e., not occupied by a train,
occupied, i.e., occupied by a stationary train, and
travelling, i.e., occupied by a moving train.

Here is the specification of the block package:



package block

import (. "uU/obj™; "pU/col™;
"rail/kilo™; "rail/direction™;
const H = 100

type Kind byte; const (

Dfg = Kind (iota) // ThroughTrack
aAsM // SidingWith

AsG // SidingAgainst

EfM // EntryTrackWith

EfG // EntryTrackAgainst

AfM // ExitTrackWith

AfG // ThroughTrackAgains

EAM // EntryExitTrackWith

EAG // EntryExitTrackAgainst
Bend

Switech

DCS // Double crossing switch
NKinds

)
type Block interface {

Obiject
Stringer

// Pre: x 1s not empty.

// Returns the number of x modulo M.
Numbershort () wuint

// Returns the number of x.
Number () wuint

// Returns the inclination of x.

Inclination () Direction

"rail/signal™)

ascending/

// Pre: z < NLines, s + 1 <= NColumns, s < sn < s + 1.

os The position (z, s) 1is not yet occupied by a block.
/7 X starts at (z, s) and runs straight to the right
Ved fa = straight/left/right: horizontally/diagonally
s diagonally descending) with the column length 1.

// x has the number n,

it is displayed in the column sn.

// of type gt
// of type mt
DefineTrack

// Returns true,
IsTrack ()

// Returns true,

// Returns true,

// Returns true,

IsExittrack ()

// Returns true,
IsEntryExittrack ()

// Returns true,
IsSidingtrack

IsThro

IsEntr

in direction g with the position gst at (gz
in direction m with the position mst at (mz

(n uwint, k Kind, d Direction, 1, =z, s,
gt signal.Typ, g Kilometerage, gst signal.
mt signal .Typ, m Kilometerage, mst signal.

iff x is a track.
bool

iff x is
bool

a through track.
ughtrack ()

iff x is an entry track.
vtrack() beool
iff x is an exit track.
bool
iff x is an entry exit track.

bool

iff x is
(k Kilometerage)

a siding track in direction k.
bool

// x is a bend with the number n in direction k

// with the bucklinag direction r at

fz. s).

x has the signal
r gsn) and that
, msn}).

sn uint,

Position,
Position,

gz,
mz,

gsn
msn

uint,
uint)






DefineBend (n wuint, k Kilometerage

// Returs true, 1iff x is a bend.

, r Direction, =z, s wuint)

r, r = Left or Right.

occupied by a block.

is branched.
branch of the switch.

switch

left resp. right switch

IsBend () bool
// Pre: z < NLines, § < NColumns, 1 I=
Yed The position (z, s) 1is not yet
// x is not empty. x has the mumber n.
// k is the kilometerage, in which the
// 1 is the position of the continuocus
/7 (1 = Straight/Left/Right:
// x is for r == Left resp. Right a
// with the position st at (z, s).

DefineSwitch {(n uint,

// Returns true, iff x 1is a switch.
IsSwitch () bool

/7S Pre: 1 Straight.
/7 % is a DCS with the number n,
DefineDCS (n uint, 1,

=

the

r Direction,

// Returns true, iff x is a DCS.
IsDCS {) bool

// Pre: x is a switch.

// Returns the direction of the bran
SwitchDirection({) Direction

/7 Pre: x is a switch.

// Returns the direction of the kilometerage,

BranchingDirection() Kilometerage
/7 Returns the position at the left

Pos () {aint, wuint)
// Returns the position at the left
Line () wuint
// Pre: x is a switch or a DCS.
// x has the position r.
Set (d Direction)

// Pre: x is a switch.

// Returns the position of x.
Position () Directiocon

// If x has a signal in direction k,

// The sigral is displayed.
SetSignal (k Kilometerage,

/7 x is displayed.

// If x 1s a track with a number > 0
Write (f cocl.Cclour)
// Pre: x is not empty. 1 < NLines,
// Returns true,

PecsitionOccupied (1, ¢ uint) bool
// x 1is not occupied.

Clr ()

// Returns true,
Free () bool

// Pre:
/7 % is occuwied bv a standina train

x is not empty.

k Kilcmeterage,

iff x occupies the position

l, r, st Directicon, =z, s wuint)

inciination 1 and the position (z,
z, S wuint)
ch =x.

in which x is branched.

edge of x.

edge of x.

it has the position

s signal.Pocsiticon)

, this number 1is alsoc displayed.

c < NColumns.

(1, cJ).

iff x is not occupied.

horizontelly/diagonally ascending/descending).

s} .



Occupy ()

// Pre: x is not empty.
// x is occupied by a moving train.
Travelling ()

// Pre: x is not empty.
// % is occupied by a standing train and blinks.
OccupyaArrival ()

// Returns true, 1ff x 1s occupied by a train.
Occupied () bool

// Returns the colour of x depending on the state free, occuplied or used.
Coleour (y cel.Colcocur

// Pre: x 1s not empty.
// Returns the type of the signal of x in direction k, 1f there 1is one;
// otherwise NT.

Signaltyp (k Kilcocmeterage) signal.Typ

// x blinks for a moment.
Blink {)

// Returns the column length of x.
Length () wuint

// Returns true, iff the mouse pointer points to x.
UnderMouse () bool

// Returns true, iff x is a switch or a DCS with the branching direction k.
Branched (k Kilometerage) bool

}
var

Nr []Juint
const

M = 300
var

B, W, D [M]Blocck

// Returns a new empty block.
fune New () Blcck { return new_{) 1}

// Returns the number o¢f the pairs.
funec NPairs{) uint { return nPairs{) }

// Pre: 1 < NPailrs().
// Returns the 1i-th pair.
func Pair (i wint) (uint, uint) { return pair (i) }

// Returns the number of the block, 1iff it 1s under the mouse;
// in this case 1t 1s > (0. Returns otherwise 0.
fune Found () wint { return found() 1}



package block
impert {("aU/ker™; . "pU/cbi"; "uU/time"; "uU/ccl™; "pUO/scr"; "pU/str"
"wU/NTY; "wU/seq"™; . "rail/colour™; . "rail/kilo"; . "rail/direction™
. "rail/constants™; s "rail/signal"M; *rail/cell™)

type state byte; const (free = state(ietama); cccupied; travelling)

type block struct { uint32 "number"
Kind
Kilometerage // branching direction, 1f switch
location,

direction,

pesition Directicon
uint // length = number of cells

1, ¢ wint // position at the left border

seq.Segquence // sequence of the cells
state

sig [NK]s.Signal

The representation of blocks is somewhat more complex:



package cell
import (. "HU/obj"™; "HU/col™; . "rail/kilo"™; . "rail/direction™)

type Cell interface {
Object

// x has the number n.
Renumber (n wuint)

// Returns the number of x.
Number () wuint

// Pre for all methods with the parameters (z, s5) at the end, that
Vi define a cell: The position (z, s) is not yet occupied by a cell.

// x is a track with the inclination a and the position (z, s} on the screen.
Track (n uint, a Direction, =z, s uint)

// Returns true, if x is a track.
IsTrack () bool

// x is a bend with nunber n in the direction of the kilometerage k
// at position (z, s) bended at direction d.
Bend (n wuint, k Kilometerage, d Direction, 2z, s wuint)

// x 1is a buffer stop in direction k at position (z, s).
BufferStop (k Kilometerage, z, s wuint)

// x 1s for r = right a right switch, otherwise a left switch
// with number n, branching direction k, inclination 1,
// position st and screen positioco (z, s).

Switch (n uint, k Kilometerage, 1, r, st Direction, 2z, s wuint)

// Returns (k, true), 1ff x 1is a switch with the branching direction k.
IsSwitch () (Kilometerage, bool)

// Pre: 1 != Straight.
// x 1s a double crossing switch with number n, inclinatin 1, position r
// and position (z, s) on the screen.

DCS (n wuimt, 1, r Direction, z, s wuint)

// Returns (k, true), iff x is a double crossing switch with
// with branching direction k.
IsDCS () (Kilometerage, bool)

String () string

// If x is a switch or a double crossing switch,
// it is set in direction r.
Set (r Direction)

// Returns the kilometerage of x.
Kilo () Kilometerage

// Returns the inclination of x in direction k (if x is branched
// in direction k the inclination of the continuous branch)
// and the position of x on the screen.

Inclinaticn (k Kilometerage) (Direction, wuint, uint)

// Returns the position of x, if x is a switch or a double crossing switch
// returns otherwise Straight.
Position () Direction

// Returns true, iff x has the position (z, s) on the screen.
HasPosition (z. s wuint) bool



14.4.6 Cells

Cells are the components of blocks. There are the following types of

cells:

e tracks,

e bends,

switches,

double crossing switches, and
buffer stops.

Cells have a location, a direction, possibly a position, and a position
in the screen window (see Sect. 14.3.1.1).
The specification of the cell package is

// Returns the position of x on the screen,

Pos () f{(uint, uint)

// x 1s written to the screen in colour c.

Write {(c col.Colocur)

// Returns true, iff the mouse polinter points to x.

UnderMouse () bool
}

func New () Cell { return new_ () 1}

package cell

import ("gU/ker™; . "pU/obj"™; "wU/col™;
"rail/direction™; . "rail/colour™;
const max = 15

type kind byte

"MU/SCI'"; "ﬂ.U/N";
"rail/constants™;)

const (track = kind{iota); bend; sw // switch

decs; buffersteop; nk)
type cell struct { kind
uint32 "number™
Kilometerage
location,
direction,
position Direction

z, s uint // position on the screen

lastColour c¢cl.Colour

The representation of the cells is also somewhat complex:

*rail/kilo™



package signal
import (. "pU/obij"; . "rail/kilo™)

type Typ byte; const |
T0 = Typi{icta);
Tl // HpO, Hpl
T2 // Hp@®, Hpl, Hp2
NT
)
type Position byte; const (
Hp0 = Position (iota) // stop
Hpl // Fahrt
Hp2 // Langsamfahrt
NS
)
type Signal interface {

Object

// x is defined, has the nunber n, the type t, the kilometerage k,
// the position st and the position (z, s) on the screen.
Define (n wint, t Typ, k Kilometerage, st Position, =z, s uint)

// Returns the Typ of =x.
Signaltyp () Typ

// Pre: x is defined.
// x has the Position s and 1s written to the screen at its screen position.
Set (s Position)

// If x is defined, it is written to the screen at 1its screen position.
Write ()
}

func New () Signal { return new_ () }

14.4.7 Signals

Signals are components of blocks: Each block can have one or two
signals, one in the direction of the kilometre marking and/or one in the
opposite direction.

We only include main signals in the system. They always have one of
the following positions:

e HpO = Stop,
e Hpl=Go,or
e Hp2 = Slow movement.

The specification of the signal package is quite short:



package cclour
import "pU/col™

var (Foregroundcelour, Backgroundcolour, Neoceolour, Freecolour,

Occupiedceclour, Railcolcour, Travelcolcur, Slowtravelcolour,
Stopcolour col.Colour)

14.4.8 Aid Packages

In addition to the packages presented so far, a few small packages are
still needed.

14.4.8.1 Colour
The different states of the blocks are distinguished by colours:

e green for free,
e yellow for occupied, and
e red for travelling.

This results in the specification of the colour package:

package kilo

type Kilometerage byte; const (With = Kilometerage(iota); Against; NK)
var Ktext = [NK + 1l]string ("With", "Against™, "NK")
// Returns Against for k == With, otherwise With.

fungc OppositeDirection (k Kilcocmeterage) Kilcometerage
{ return opposite(k) 1}

14.4.8.2 Kilometerage

The kilometerages are

e With = in the direction of the kilometre marking and e Against =
against this direction. The specification of the kilometre marking
package is trivial:

package direction

type Direction byte; const (
Left = Directicn (iota); Straight; Right; ND)

var Dtext = [ND+1l] string {"Left"™, "Straight"™, "Right™, "ND"}

func Opposite (d Direction) Direction { return opposite (d) }



14.4.8.3 Directions
The directions

o left,
¢ straight, and
* right

are used for the inclination of cells and the positions of switches. The
specification of the direction package is also very simple:

package cconstants

var Y0, H1l, H2, Wl, W2 int
const (NLines, NColumns = 16, 42)

fune Init () { init_ () }

The size and positioning of cells (thus of blocks) on the screen windows
serve various constants, which can be found in the corresponding
package:

14.4.9 Other Packages

At deeper levels, many other packages are needed, which are
components of the microuniverse due to their universal usability, such
as sequences (u U), persistent sequences (u U), graphs (¢ U), and my
egg-laying wool milk pig for distributed problems, the remote monitor (

@ U).
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So you look, huh?

Abstract
This chapter is about the spatial representation of classical figures.

In my lectures in teacher training for mathematics, I occasionally drew
sketches of structures from analytical geometry in three-dimensional
space on the board to illustrate various concepts and to connect with
prior knowledge in the context of “modules and vector spaces”.

As a byproduct of some graphic packages from the microuniverse,
the package rfig was created for visualizing simple scenarios from
analytical geometry, with which, for example, conic sections can be
vividly represented.

This project is simply about generating and being able to view
standard figures in three-dimensional space.

The advantage over a (two-dimensional) sketch is obvious; for
example, being able to “walk around” the intersections of (double)
cones with planes in 3D space—even if only virtually—is considerably
more illustrative than lousy 2D sketches ...
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15.1 System Analysis

It is intended to represent three-dimensional figures in space, both
angular ones, such as cubes, pyramids, or octahedrons, and round ones,
such as spheres, cones, cylinders, and tori.

15.1.1 System Architecture

15.1.2 The Objects of the System
These are the three-dimensional figures from the package u U:

points;

lines and sequences of lines;

triangles and sequences of triangles;

quadrilaterals and sequences of quadrilaterals;

horizontal and vertical rectangles;

parallelograms;

polygons;

curves given by functions;

planes, given by function terms of the form f (x, y) = ax + by + c;
cubes;

cuboids with horizontal base;

general prisms;

parallelepipeds;

pyramids and multipyramids;

octahedra;

horizontal and vertical circles and segments of circles;

spheres, given by the coordinates of the centre (x, y, z) and their
radius r;

cones and double cones (with vertical axis of symmetry), given by the
coordinates of their apex (X, y, z), their radius f and their height h;
cylinders, segments of cylinders, horizontal cylinders;

horizontal and vertical toruses;

paraboloids; and

surfaces given by functions.



15.2 Component Hierarchy

There is only the main program spacefig.go, which uses the
package £1ig3, therefore the hierarchy is very flat (see Fig. 15.1).

raumfig

LU

Fig. 15.1 Component hierarchy of the spatial figures

15.3 User Manual

The use of the system consists in writing similar short programs as
shown above, which requires the study of the specifications of the
OpenGL package p U.

15.4 Construction

15.4.1 Specifications

For the specification, that of the OpenGL package u U is important; the

implementations are to be written as very short programs in the style
of those presented in Sect. 15.4.3.

The three-dimensional figures

The specification of y U contains many figures. However, we only show
the section that deals with three-dimensional figures here, and also
leave out the functions in which figures with multiple colours occur:



package fig3
import (. "puU/ocbj"; "uU/col"}

// The gpecifications of all functions
// are found in the file pU/gl/def.go.

funec Cube (¢ col.Colour, x, vy, 2z, a float6d) { cube(c,x,y,z,a} }

fune Cuboid (¢ col.Colour, x, ¥y, z, x1, yl, =z1 €£loat6d) {
cuboid(c,x,y,z,x1,yl,zl) 1}

fune Prism (¢ col.Colour, x ...float64) { prism (c,x...) }

fune Parallelepiped (¢ col.Colour, x ...float64) |

parallelepiped(c,x...} 1}

fune Pyramid (¢ col.Colour, x, y, 2z, &, h floaté6d) |

pyramid(c,x,¥,Z,a,h) 1}

fune Multipyramid (f col.Colour, x, y, 2, h float6d, c ...float64)

multipyramid(f,x,y,z,h,c...}}
fune Octopus (¢ col.Colour, x ...float64) { octopus(c,x...} 1}
fune Octahedron (¢ cel.Colour, x, y, 2z, r floatéd) {
octahedron{c,x,y,2z,r) 1}
fune OctahedronC (¢ []Jeol.Colour, =%, y, z, r float64) {
octahedronC(ec,x,y,z,r} 1}

fun¢ Sphere (¢ col.Colour, x, v, 2z, r floatéd) { spherelc,x,y,z,r)

fune Cone (¢ col.Colour, x, y, 2, r, h £loaté6d) { conel(c,x,¥y,2,r,h)

fune DoubleCone (¢ col.Colour, %X, ¥, 2, r, h float64d) |
doubleCone (c,X,v¥,2,r,h} 1}
fune Cylinder (¢ col.Colour, %, ¥, Z, r, h float64) |
cylinder (c,x,v,2,r,h) }
func CylinderSegment (¢ c¢ol.Colour, x, ¥, Z, r, h, a, b floatéd)
cylinderSegment (c¢,x,y,2,r,h,a,b) 1}
fune HorCylinder (¢ col.Colour, x, y, 2, r, 1, a float64} {
horCylinder {c,x,vy,2z,xr,1l,a}) }
fun¢c Torus (¢ col.Colour, x, y, 2, R, r £loaté6d)
torus(c,x,y¥,2,R,r}) 1}
fune VerTorus (¢ col.Colour, x, v, z, R, r, a float6d) |
verTorus (c,x,v,z2,R,r,a) }
fune Paraboloid (¢ col.Colour, x, y, 2z, a, wx, wy floatéd) |
paraboloid{c,x,y,2,a,wx,wy) }
fune Surface (¢ col.Colour, f Fxy2z, wx, wy fleocat64) |
surface(c,f,wx,wy}) 1}

15.4.2 Implementations

The implementation of i U consists only of direct accesses to the
OpenGL package p U from the microuniverse. To this end, we show a
section from the specification of this package:

{

{

}

}



// Pre: wx > 0, wy > 0.

// The bounded plane within the area -wx <= x <= wx and -wy <= y <=
// defined by f(x,y) = a * x + b * y + ¢, 1is created.

func Plane (a, b, c, wx, wy float64) { plane(a,b,c,wx,wy) 1}

// Pre: a != 0.

// A cube with edges parallel to the coordinate axes is created
// with the center at (x, y, z) and the edge length a.

func Cube (x, y, z, a float64) { cube(x,y,z,a) }

// Pre: len(x) == 6, x[0] != x[3], x[1] != x{[4] and x[2] != x[5].
// A cuboid with edges parallel to the coordinate axes 1s created
// between the points at (x[0], x[1], x[2]) and (x[3], x[4], x[5]).
fune Cuboid (x ...float64) { cuboid (x...) 1}

// Pre: len(x)

// A prism without bottom and top 1s created.

// Its bottom corners are (x[3], x[4], x[5]), (x[6], x[7], x[8])
and so on,

// its top corners are the bottom corners plus (x[0], x[1], x[2]).

func Prism (x ...float6d) { prism (x...) 1}

// Pre: len(x) == 12.

// A parallelepiped is created.

// One of its corners is ¢ = (x[0], x[1], x[2]), the others are

// ¢ + (x[3], x[4], x[5]), ¢ + (x[6], x[7], x[8]) and ¢ + (x[9],
x[19], «x[11]).
func Parallelepiped (x ...float64) { parallelepiped (x...) }

// Pre: a > 0, h != 0.

// A pyramid of height h with the center (x, y, z) of its horizontal
bottom

// is created, its bottom edges have the length a.

fune Pyramid (x, y, 2z, a, h float64) { pyramid (x,y,z,a,h) }

// Pre: len(x)

// An octopus with top (x[0], x[1], x[2]) and corners (x[3], x[4],
x[5]1),

// (x[6], x[7], x[8]) and so on is created.

func Octopus (x ...float64) { octopus (x...) 1}

// Pre: r != 0.

// An octahedron with the center (x, y, z) and length e of its edges
created.

funec Octahedron (x, y, z, e float64) { octahedron (x,v,z,e) }

// Pre: r != 0.
// A sphere 1is created with the center (x, y, z) and the radius r.
func Sphere (x, y, z, r float64) { sphere (x,y,z,r} }

// Pre: r != 0, h != 0.

// A cone of height h is created with the horizontal circle
// around (x, y, z) with radius r as its bottom.

funec Cone (x, y, 2z, r, h floaté64) { cone (x,y,z,r,h) }

// Pre: r != 0, h != 0.

// Two cones of height h are created, one with the horizeontal circle
// around (x, y, z — h) as bottom and the other with the horizontal
circle

// around (x, y, z + h) as top.
fune DoubleCone (x, ¥y, 2z, r, h flecat64) { doubleCone (x,y,zZ,r,h) }

// Pre: r != 0, h != 0.

// A cylinder of radius r and height h is created with the

// horizontal circle arcund (x, y, z) with radius r as bottom and
// the horizontal circle around (x, y, z + h) as top.

fune Cylinder (x, y, z, r, h float64) { cylinder (x,y,z,r,h) 1}

WY,

is



// Pre: R > 0, r > 0.

// A horizontal torus with the center at (x, vy, 2z},

// the inner radius R-r and the outer radius R+r is created.
fune Torus (x, y, z, R, r floatbd} { torus (x,yv,z,R,r) 1}

// Pre: a != 0, wx > 0, wy > 0.

// A paraboloid within the area -wx <= x <= wx and -wy <= y <= wy
is created

// with base point (x0, y0, z0), defined by

// fi{x, y) = a§~2$ * ((x — x0)§"2% + (v — y0)s$~28).

fune Paraboloid (x0, y0, z0, a, wx, wy floaté64) { paraboloid (x0,y0,=z0,

a,wx,wy) }

// Pre: wx > 0, wy > 0.

// The bounded surface within the area -wx <= X <= wx and -wy <=
<= Wy,

// given by the function f is created.

func Surface (f obj.Fxy2z, wx, wy floatéd) { surface (f,wx,wy) }
}

The main program relies on the function Go from the package u U for
the representation of 3D scenes. We briefly explained this in Chap. 13

about Lindenmayer systems (see Sect. 13.3.6).

15.4.3 Examples
The program

package main
import ("pU/col™; "uU/gl"™; "wU/scr™; . "uU/fig3"™)

fune main () {
s := scr.NewWH (0, 0, 800, 600); defer s.Fin ()
gl.ClearColour (col.FlashWhite (})};
s.Go (draw, 3,-1, 10, 3,-1, 0, C, 1, 0}

}

¥

fune draw () {
r, o, ¥ g := col.Red(}), col.0Orange (), col.Yellow (), col.Green ()
¢, b, m, n := col.Cyan(}, col.Blue(), col.Magenta (), col.Brown ()

MultipyramidC ([]col.Colour {m, n, r, o, ¥, g, ¢, b},
o, 2, 0, 2, 3, 3, 1., 4, -1, 4, -2, 3, -2, 2, -1, 0, 2, 0)
OctahedronC ([]lcol.Cclour{r,o,y,9g,c¢c,b,m,n}, 6, 2, 0, 1.4)

PrismC ([]e¢eol.Colour {¢, b, m, r, ©, ¥, g}, 1, 6, 1.5, 1, -2,
-1, -1, 0; -2, -2, 0, 0 -3, 0, -1, -4; 0, 0, -5, 0, 2, -4,

ParallelepipedC ([]lcol.Colour{r,o,y,g9,b,m}, 5, -2, 0,
2, 0, 1, 1, -2, 0, -1.5, 0, 2)

shows a multipyramid, an octahedron, a prism, and a parallelepiped

(see Figs. 15.2 and 15.3).

.,
)



Fig. 15.2 Several figures

Fig. 15.3 Another view of the several figures
In the program



package main
import ("uU/col™; "uU/scr"; . "uU/fig3"™)

fune main () {
8 := scr.NewWH (0, 0, 800, 600}); defer s.Fin ()
gl.ClearColour (col.FlashWhite ()} ;
s.Go (draw, 0, -12, 0, G, ©0, G, 0, G, 1)

}

func draw () {
m, o := col.Magenta(}, col.Orange ()
Sphere (col.Red(}), -1.25, -0.5, 0, 2)
Torus (col.Green(), 0, 0, 0, 5, 1)
VerTorus (ceol.Blue(}, 5, -2, 0, 3, 0.5, 65}
CylinderC ([]lcol.Colour{m,o}, 2.0, 1.5, -4, 1, 8}
}

a sphere, two tori, and a cylinder are modelled (see Fig. 15.4).

Fig. 15.4 Sphere, tori, and cylinder

15.4.4 Examples of Conic Sections

These are the figures that were the reason for me to construct this
project.

15.4.4.1 Circles and Ellipses



These are the figures that were the reason for me to construct this
project.

If you cut a cone with a plane that is horizontal to the cone axis, a
circle results as the intersection. If the plane is not horizontal to the
cone axis and its angle of inclination is smaller than the angle of
inclination of the cone, the intersection is an ellipse. This second case is
modelled by the following example program:

package main

import ("wU/col"; "uU/gl"; "uU/scr"; . "uU/fig3"™)
fune main ()} {
s := scr.NewWH (0, 0, 800, 600); defer s.Fin ()

gl.ClearColour (col.FlashWhite (}); gl.Clear ()
s.Go (draw, 0, -6, 2, 0, 0, 2, 0, 0, 1)
}

func draw ()} {
Cone (col.Blue(}y, 0, 0, 0, 2, 5)
Plane (col.OQOrange{), 0.8, 0.8, 2.5, 2.5, 2.5)

Figures 15.5 and 15.6 illustrate this example.

Fig. 15.5 Section of a cone with a plane



Fig. 15.6 Another view of this section

15.4.4.2 Parabolas and Hyperbolas

If you replace the cone with a double cone and the angle of inclination
of the plane is greater than the angle of inclination of the cone, the
intersection is generally a parabola. The special case of this example,
that the plane is parallel to the cone axis, results in a hyperbola as the
intersection. This is modelled by the following example program:

package main
import ("uU/col™; "uU/gl"™; "uU/scr™; . "uU/fig3"™)

fune main () {
8 := scr.NewWH (0, 0, 800, 600}); defer s.Fin (}
s.8crColourB (col.FlashWhite (}}; scr.Cls ()
s.Go (draw, 5, -3, 2, 0, 0, 0, 0, 1, 0}

}

fune draw () {
gl.ClearColour (col.FlashWhite ()}; gl.Clear ()
DoubleCone (ccl.Red(}, G, 0, 0, 1, 3}
VertRectangle (col.Green(}), .3, -1, -3, .3, 1, 3}
}



Figures 15.7 and 15.8 show two views of this example.

Fig. 15.7 Section of a double cone with a plane parallel to the cone axis

Fig. 15.8 The hyperbola
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Abstract

This project shares with the railway project the focus on shortest
connections, but here between stations when travelling with Berlin’s U-
and S-Bahn trains. The network of these trains is displayed on the
screen; trips can be found with mouse clicks.

Graph theory also plays a central role in this project: It's about
searching for the best connections between two stations in the
transport network of Berlin’s U- and S-Bahn, a classic example of a
graph.

16.1 System Analysis

A U- or S-Bahn line consists of stations and the connecting routes
between them. The network is the entirety of all U- and S-Bahn lines.
The attributes of the stations are

e their names;
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e their coordinates (latitude and longitude);
e the lines, on which they are located;
 an internal number, by which they are identified; and
» whether they are a transfer station or not.
A connection (between two stations) consists of

e the line, on which the stations are located;

e the coordinates of the two stations it connects; and

e anatural number as the average travel time between these two
stations.

A line consists of

e its designation (for U-Bahn a “U”, for S-Bahn an “S”, followed by the
line number and
e the colour, with which they are marked on maps.

16.2 System Architecture

16.3 The Objects of the System

After the system analysis, we have the following objects:

e the network,

e the stations,

e the connections, and
e the lines.

The corresponding packages are the abstract data types

* net,

e station,
e track, and
e line.

net is an abstract data object, station and track are abstract data
types, and 1 ine only defines the names and texts of the lines.



16.4 Component Hierarchy

Figure 16.1 shows the dependency of the packages on each other.

bus

net

/

stat track

N\

line

Fig. 16.1 Architecture of BUS

16.5 User Manual

16.6 Construction
Using the program is incredibly simple:

After calling up the program, a graphic appears (see Fig. 16.2),
which represents the U- and S-Bahn networks. After clicking on the
start station and then clicking on the destination station, the shortest
connection is highlighted in colour.
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Fig. 16.2 Extract from the U- and S-Bahn-Net in Berlin

The graphic can be reduced or enlarged with the enter key 4 and
the backspace key +—, and moved with the arrow keys; the program is
terminated with the escape key Esc.

16.6.1 Specifications
Here we show the specifications of the involved packages.

The Network
The specification of the network is very short:

package net

// Returns true, iff start- and destination-station were clicked.
func StartAndDestinationSelected(} bool { return selected () 1}

// Shows the shortest connection between the clicked stations.
fune ShortestPath () { shortestPath (} 1}

The Stations



Stations have the type Object—the prerequisite for them to be
inserted as nodes in graphs (see Sect. 3.5.11).

package stat
import (. "uU/obj"; . "bus/line"™)

const (L = "1"; R = 7'r"; O = '0’; U = "u")
type Station interface {
Object

Set (1 Line, nr uint, n string, b byte, y, x float6d)
Line () Line

Number (} uint

Pos () (floatb6d4, floatb64)

Umstieqg ()

Renumber (1 Line, nr wuint}

Equiv (Y any)} boel

EditScale ()

UnderMouse () bool

Write (b bool}

The Connections
Also connections have the type Object—the prerequisite for them to
be inserted as edges in graphs (see Sect. 3.5.11).

package track
import (. "gU/obj"; "bus/line"™)

type Track interface { // connection with line and natural number

// as value (medium travel time in minutes)
Object
Valuator

// x belongs to the Iine 1 and haa the value f.
Def (1 line.Line, f wuint)

// (x, y) end (x1, y1) are the positions of the endpoints
// of the calling track
SetPos (x, y, x1, yl floaté64d)

// x 1is written to the screen, for b == true

// in the colour of its line, otherwise in black.
Write (b bool)

}

The Lines



The specification of the lines consists of the enumeration of the U- and
S-Bahn lines in Berlin and the colours assigned to them by the BVG.

package line
import "uU/col"

type Line byte; const (
Footpath = Line (iota)
Ul; U2; U3; U4; US; U6; U7; U8B; U9; 81; S2; S$25; S26; 53
S41; S45; S46; sS47; S85; s87; S875; S8; S85; S59; Zoo; BG; NLines)
var
Text = []string {"F", "U1", "y2", "y3", "U4", "US", "Us",
"gT", "ygm", "gow, vgiw, mga2mWw, mMgoGm,. "SI26";
"S3"y MS541™, PS4AEN, WS4aT; [SATM, NgHR,
rfgy®, "g75", "s8", "s85", "g9", "Zoo", "BG"}
Colour = []Jcol.Colour {col.White ()},
col .New3n ("U1l", 85, 184, 49},
col .New3n ("U2", 241, 71, 28},

col .New3n ("S1", 119, 95, 176},
col .New3n ("S2", 19, 133, 75},

16.6.2 Implementation

We only show the representations of the data types stat and track
and a section from the file construct. go from the package net.

The Stations
The representation of station is as follows:

package stat
import (. "uU/ocbij"; "gU/time"; "uU/linewd"™; "uU/str"”
"wU/col"™; "uU/scr"; "wuU/scale"; "bus/line")

const (
dB = 67.62 // km per latitude at 52,5 degrees latitude
dL = 111.13 // km per longitude

type station struct {
bg, 1lg floatb64 // position (latitude and longitude)
line line.Line
uint // internal number
umstieg bool
string "name"
beschriftung byte // positioning of the name on the graphic

The Connections
Here is the representation of track:



package track
import (. "uU/ocbj"; "uU/linewd"; "uU/col"
"wU/scr™; "uU/scale"™; "bus/line™)

const dB, dL = 67.62, 111.13 // km per latitude resp. longitude
// at 52.5 degrees latitude
type track struct {
line.Line
X, v, x1, y2 floaté6d // positionsg of the stations
uint "travel time"

The Network

The network is represented as a graph. In its construction in the file
net/construct.go, each station is inserted into this graph in a line
of code and connected to the station from the line of code before. We
show a short exemplary section from this construction.

package net
import ("uU/ker™; "pU/str"; "pU/errh™; . "bus/line"™; "bug/stat™)

// Actual corner is (1, nr), postactual corner is that one
// that was previously actual.
func ins (1 Line, nr wuint, k string, b byte, vy, x floatéd}
k = str.Latl (k)
station.Set (1, nr, k, b, y, x)
last¥X, last¥Y = x, ¥y
netgraph.Ins (station}
}

// Actual corner is (1, nr), postactual corner is that one
// that was previously actual. t is the medium travel tinme
// from the station in the program line before.
fune insl (1 Line, nr uint, n string, b byte, vy, x floaté6d, t uint) |
x0, y0 := lastX, lastY
ins (1, nr, n, b, y, x}
trk.Def (1, t)
trk.SetPos (x0, v¥0, x, v}
netgraph.Edge (trk)
}

fune constructNet () {
ins (U1, 10, "Uhlandstr___", U, 52.5030, 13.3276)
insl (Ul, 11, " Kurfiirstendamm", O, 52.5038, 13.3314, 1}
insl (Ul, 12, "Wittenbergplatz", R, 52.5018, 13.3430, 2)
insl (U1, 13, "Nollendorfplatz", L, 52.499%94, 13.3535, 2}
insl (U1, 14, "Kurfiirstenstr", 0, 52.5001, 13.3615, 1}
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