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Preface

Object-oriented languages

A side effect of the application of information hiding

is the creation of new objects that store data.

...FORTRAN ...Pascal ...Simula ...Smalltalk ...

More recent languages have added new types of features

(known as inheritance)

designed to make it possible

to share representations between objects.

Often, these features are misused

and result in a violation of information hiding

and programs that are hard to change.

The most negative effect of the development of O-O languages has been

to distract programmers from design principles.

Many seem to believe that

if they write their program in an O-O language,

they will write O-O programs.

Nothing could be further from the truth.

Component-Oriented Design



The old problems and dreams are still with us.

Only the words are new.

Abstract Data types

...Being able to use variables of these new,

user-de�ined, abstract data types

in exactly the way as we use variables of built-in data types

is obviously a good idea.

Unfortunately, I have never seen a language that achieved this.

David L. Parnas
In: The Secret History of Information Hiding, Software Pioneers,

Springer 2002
This book consists of two parts:

The implementation of object-based programming with Go,

– a presentation of the basics of object-based development,
– an introduction to essential aspects of Go and
– the introduction of the microuniverse μU with the presentation of

various classic algorithms,

the documentations of teaching projects from computer science
teacher training courses at the Institute for Computer Science of the
Free University of Berlin and some of my program systems based on
them:

– the robots,
– the appointment calendar,
– the game of life,
– the Go register machine,
– the electronic stylus,
– the single-address machine Mini,
– the management of a book inventory,



– the Inferno, a management of almost any data sets,
– the Lindenmayer systems,
– the operation of train stations,
– the representation of �igures in space, and
– the Berlin’s U- and S-Bahn networks.
I would like to express my sincere thanks to Mr. Leonardo Milla and

Mrs. Juliane Wagner from Springer-Verlag. They very kindly supported
the idea to translate the second edition of my book “Objektbasierte
Programmierung with Go”.

All source codes are available on the book’s page on the World Wide
Web:

https://maurer-berlin.eu/obpbook.
Christian Maurer

Berlin
August 2024
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1. Basics of Object-Oriented
Development

Christian Maurer1  

Berlin, Germany

 
Christian Maurer
Email: christian@maurer-berlin.eu

Entia non sunt multiplicanda praeter necessitatem;
frustra �it per plura, quod �ieri potest per pauceriora.

Johannes Clauberg (1622–1665)
attributed to William of Ockham (1287–1347)

Entities should not be multiplied beyond necessity;
it is futile to do with more what can be done with fewer.

Occam’s razor

Abstract
This chapter presents a brief characterization of a program life cycle
reduced to its essential core. The task of system analysis is to isolate the
objects that occur in a system. These objects provide the components of
the system architecture and thus a stringent concept for construction.

The central guiding idea that we are pursuing here is that all
constructions in the context of the development of program(system)s
are based primarily on the systematic development of abstract data
types. The principles presented are based on what Parnas taught us in
[5] in the early 70s (see also, e.g., [1] and [2]).

https://doi.org/10.1007/978-3-658-44704-5_1
mailto:christian@maurer-berlin.eu


They are universally valid insofar as they are largely independent of
speci�ic programming paradigms. (The restriction “largely” is justi�ied
by the fact that the state concept of imperative programming clearly
shines through at many points, which makes no sense in the declarative
paradigm).

1.1 The Program Life Cycle
The core of all models of a software life cycle is the following phases:

System analysis.
System architecture.
User manual.
Construction.

The maintainability of systems is determined by the following basic
principles of analysis, planning, design, and implementation:

the detailed examination of all factual backgrounds of the task at
hand,
a decomposition into components and the description of their mutual
dependencies as well as
the complete and consistent de�inition of the external behaviour of
the system,
the elegant and comprehensible description and construction of the
identi�ied components.

Lack of consideration for these principles results in error-prone,
uncontrollable, and risky systems, whose

intended behaviour;
adaptability to other machines, operating systems, development
environments, or programming languages;
developability and maintainability in case of changes or updates to
the requirements

cannot be fundamentally guaranteed due to their inherent instability
against small changes and whose parts are also not usable for solving
other problems.



Conversely, this characterizes some minimal requirements for the
development of programs that were articulated in the “software crisis”
around 1970, which led to the software engineering becoming an
independent �ield of computer science.

Every phase model ultimately assumes a rigid concept and does not
suf�iciently take into account the dialectical interplay of the phases with
each other.

1.1.1 System Analysis
For every project to construct an IT system, investigations into the
functional processes and data �lows in the system are necessary to
specify the order, especially about which parts of the system to be
automated can be handled by computers. They form the necessary
prerequisites for determining the performance of the IT system (see
Fig. 1.1) and thus for formulating the order.

Fig. 1.1 The order

In addition, there is the dialogue between clients and system
analysts about details of the system’s purpose, which ultimately forms
the basis for the system analysis (see Fig. 1.2).

Fig. 1.2 How the system analysts understood the order



In the course of a deeper engagement with the subject matter, the
repercussions of computer use must also be included: The structure of
the system under consideration may change due to the switch to
automatic data processing.

In connection with such considerations, sensitivity to the risks of
blind trust in IT systems, which are based on human-written (sic!) texts
—the source texts of programs—which are neither “tangible” nor
objectively “measurable” , but pure mental constructions, also grows.

Working on the system analysis can lead to the realization that not
necessarily every aspect of the system can be automated, because the
realization of some interesting idea within the planned cost-bene�it
ratio proves to be too expensive (see Fig. 1.3).

The detailed considerations in the system analysis provide a natural
entry into the design work, because the objects recognized in the
system and their structure can be derived from the factual analysis.

Fig. 1.3 Reduction of the system analysis, because the clients are stingy

What will be shown in the following chapter is already assured
here:

Along these objects, the answer to the question of how to break
down the system into manageable parts arises entirely on its own.

1.1.2 System Architecture
Following the system analysis is the work on the design of the system
architecture (see Fig. 1.4) with the aim of breaking down the overall



system into components and their mutual dependency.

Fig. 1.4 System Architecture
The guiding principle here is the question of what the individual

parts of the system are and how they are connected. The main concern
in this phase is the reduction of the system’s complexity to a manageable
level, which ideally results from the �indings of the system analysis.

The following postulates serve to obtain meaningful criteria for a
breakdown into components:

a strong internal connection of each individual component and
an understandability, constructability, testability and maintainability
that is largely independent of the other components.

To ful�ill these requirements, each component must be split into two
parts:

the speci�ication, which is a list of all its services and the exact
description of the prerequisites and effects for each individual
service and
the implementation of these services according to the speci�ication, in
which a design decision is made taking into account the requirement
pro�ile for the system behaviour (such as optimizing runtime
behaviour or memory usage).

A consequence of distinguishing these two parts is the demand for a
strict separation of speci�ication and implementation in different text
�iles with a number of advantages:



The speci�ications can be protected against subsequent changes by
implementers (a measure that represents a protection mechanism
against typical dif�iculties in the construction of larger systems).
People who use the components to develop their own components
are not overwhelmed by the fact that their work requires knowledge
of the implementations of the components used; they only need to
know their speci�ication.
The implementation of different alternatives by different people is
possible.

As a conclusion from these considerations, it follows that
programming languages must be used for the development of a system
that can realize this concept.

The strict separation of the two parts ensures that clients of a
component do not make implicit assumptions about its behaviour that
they have from the knowledge of implementation details. Only in this
way are the internal data of the component safe from uncontrolled
access at the “interface” (= the speci�ication) that can change its
behaviour and thereby generate side effects that can have completely
unpredictable effects on the system.

(How could a motor vehicle be developed, for example, if the
construction of the body depended on technical details of the cylinder
head cover or the anti-lock braking system, or even tried to in�luence
these details?)

1.1.2.1 Characterization of the Component Concept
The following speci�ies the general requirements for the components of
a decomposition of the previous section:

Necessary conditions for a clean component concept are

the simplicity of the speci�ication of the components and 
the context independence of their implementations. .

The simplicity of the speci�ication of a component includes

precise colloquial formulations, possibly functional speci�ications (i.e.,
in a functional programming language), algebraic speci�ications, or in
formal speci�ication languages;
minimality of its scope by providing a coherent, non-decomposable
problem circle;



simultaneously maximality of its scope with the aim of usability for
other purposes than originally planned, but still openness for
extensions of its scope;
independence from the speci�ications of other components except
those on which they build by “extension of the speci�ication”;
the reduction of data transports to the minimum possible extent,
both within the component and between it and the components it
uses;
the rigid avoidance of revealing any implementation details.

The following points can be assigned to the context independence of
the implementation of a component:

limitation to the completion of the task given by the speci�ication,
which is characterized by a strong internal (logical and factual)
binding, thus renouncing the construction of system parts that do not
directly arise from the given speci�ication;
limiting the number of used components to the minimum necessary
for the ful�illment of the speci�ication task, possibly by outsourcing
separable parts to separate components;
keeping open alternative implementations, e.g., from the ef�iciency
point of view of the intended purpose;
the independent selection of such data structures and algorithms
that are adapted to the requirement pro�ile;
coupling to the used components only via their speci�ication, thus
without any knowledge of their internal data or processes;
testability, i.e., veri�iability of their proper function according to
speci�ication;
maintainability, i.e., localizability and correctability of errors and
adaptability to other conditions of use.

1.1.2.2 Object-Based Decompositions
As early as 1972, Parnas formulated a—at the time still unconventional
—decomposition criterion in [6]:

instead of decomposing a system according to its process steps,
each component should implement a design decision (for which there
are usually alternatives).

This claim is ful�illed by a system architecture that is oriented
towards the objects of the system under consideration oriented: 



The components of a system are de�ined by its objects and the
properties and operations that characterize or process them.

Such an object-based decomposition can not only be derived in a
very natural way from system analysis, but also provides, as will be
shown below, a stringent approach to the system architecture  of a
system: From it result suf�icient conditions for a de�inable
component concept in the sense of the previous section, i.e., it fully
meets all the demands mentioned.

A process-oriented decomposition, on the other hand, does not at all
correspond to the path outlined by Parnas through the program life
cycle.

The approach to an object-based design methodology is the task of
modelling the real objects that are manipulated in the system at an
appropriate level of detail from the system analysis and working out
the accesses to their models from their performance spectrum. Such a
structural analysis leads retrospectively to a deeper understanding of
the underlying real system and therefore also to the demand for
accuracy of the formulations in the requirement de�inition. This leads
to the determination

of both the speci�ications of individual components
and the interrelationships of various components in the system
architecture.

The hierarchy of the thus found—initially unordered—set of the
system’s components results from the uncovering of the dependencies
between the considered objects: A component that de�ines new objects
by structuring given objects uses exactly those components that in turn
de�ine the objects to be combined.

1.1.2.3 Abstract Datatypes
The demands of the previous section for strong internal coherence and
a high degree of independence from other components are immediately
met when a component

either handles a class of objects of the same type or
—in exceptional cases—manages access to a single object.



In programming languages that allow a separation of speci�ication
and implementation, the associated speci�ication

de�ines an abstract data type,  i.e., a class of objects with their access
operations, which is abstract in the sense that its representation in
the speci�ication may be described in a comment-like manner, but is
not syntactically visible or
the access operations to an abstract data object  (which is only
managed in the implementation, so it is not explicitly provided).

The second case can be considered a special case of the �irst, as it
concerns one instance of an abstract data type and the access functions
to it.

An exception is those components of the lowest layer that connect
the system to the services of the operating system; individual
peripheral components of the computer (such as screen, keyboard,
mouse, or printer) are usually only needed in one form and are
therefore usually modelled as single data objects.

Further component types are super�luous, because even
algorithmically emphasized system parts gain signi�icantly in clarity
structurally and �it cleanly into the hierarchy of the objects used in the
system when they are recognized as access operations on certain data
types to be worked out. Thus, a decomposition can largely rely on the
�irst-mentioned case.

The implementation of a data type and the accesses to it are again
composed of data types and the accesses to them, which are speci�ied in
other such components.

The decomposition of a system into components has reached an end
exactly when an end is reached, when only atomic data types, i.e.,
components of the used programming language, are used in the
implementation, from which all data types are ultimately composed.

Under the (obviously sensible) assumption that no object—not even
across multiple layers—can contain an object of its own type as a part,
this recursive de�inition is well founded, i.e., it terminates.

This results in a stringent system architecture  in the form of a
hierarchically layered structure of abstract data types ordered
according to increasing complexity of the objects. 



The naming of the components depends on the programming
language used; in Haskell or Modula-2, for example, they are called
module, in C#, D and Java classes and in Go packages.

1.1.3 User Manual
Once the system architecture is complete, work begins on an exact
description of the system’s (external) behaviour and its operation, i.e.,
the design of the user interface and possibly the interfaces to peripheral
devices.

The user interface is given by the interactions between users
(possibly also used peripheral devices) and the automated system
running on computers. Its design includes the description of the user
inputs into the computers (possibly also through the devices used for
data collection) and the outputs of the computers (possibly also the
devices intended for data output).

The considerations for this can be divided into two categories:

the representation forms of the objects on the screen and possibly
other devices and
the inputs and commands for operating the system.

The points mentioned are largely independent of each other: For
example, the representation of data on the screen is not dependent on
the type of system operation (by keyboard and/or mouse or inputs
from data from other devices) and the operation of the program has
nothing to do with the display of data on the screen or the outputs on
peripheral devices.

As a guide to designing user interfaces, some questions from
Nievergelt and Ventura are quoted in [4] that “well characterize most
dif�iculties of users of interactive programs”:

Where am I?
What can I do here?
How did I get here?
Where can I go and how do I get there?

This list of questions must be expanded, e.g., by

Wie komme ich hier wieder heraus?
Wie erfahre ich nach einer Unterbrechung der Arbeit, wo ich bin?



Was soll ich hier tun?
Mit welchen Tasten, Mausklicks, Befehlen o. ä. erreiche ich, was ich
will?
Kann ich etwas ungeschehen machen? Wenn ja, wie?
Welchen Fehler habe ich gerade gemacht?

The end product of the work in this phase is the user manual (often
also called “operating instructions”).

1.1.4 Construction
The construction of a program (see Fig. 1.5) in the sense of the program
life cycle consists according to the predicted of two parts:

for each component from 

– its speci�ication and
– its implementation

and the system integration—the structuring of the components.

Fig. 1.5 Construction

1.1.4.1 Speci�ication of the Components
When a component provides an abstract data type, its name (which
naturally does not apply to abstract data objects) is speci�ied in the
“header” of its speci�ication. The name of the data type is either the
name of the component, if the syntax of the programming language
used allows it, or at least it can be considered a synonym for it. This may
include a description of the semantics of the data type.

The “body” of a component’s speci�ication consists of a list of all
access operations on the objects (the “variables” of the data type) with



their syntax and their semantics, i.e., the speci�ication of their usage
prerequisites and effect descriptions.   It should not be forgotten to
provide operations that allow clients to check the prerequisites.

In the event that there are multiple implementations, which differ,
for example, in their ef�iciency for different usage requirements, of
course, correspondingly many different type names must be used and
constructors speci�ied. In this case, clients should also be appropriately
informed by commenting on the types.

If necessary, constants are speci�ied, for example,  as limits for
certain ranges, or for naming the components of enumeration types
such as in a data type calendar date weekday (monday, tuesday, ...) and
period (daily, weekly, monthly, ...).

Variables, on the other hand, due to the dangers associated with
uncontrollable changes from the outside, should under no
circumstances be included in the speci�ication.

Operations are provided for the manipulation of component
variables (i.e., global variables in the implementations of the
components that are not accessible from the outside), which deliver or
change their values.

1.1.4.2 Implementation of the Components
In the implementation of a component, the �irst step is to determine the
concrete data type that models the speci�ied data type, or the concrete
representation of the data object that is the carrier for the operations
on the abstract data object. This usually involves one of the following
cases:

At the lowest level by

the choice of an elementary data type (character, string, truth value,
natural or integer number, �loating point number, self-de�ined
enumeration type);

and at higher levels by

the construction of new objects, whose attributes are given objects of
different types, by “binding” them together by means of a type
constructor “tuple”; or
the grouping of given objects into sets of objects (which are
themselves objects), for example, in static or dynamic �ields, scatter



storage tables, in dynamic meshes (lists, trees, graphs, or in
persistent type constructions for permanent storage (sequential or
indexed sequential �iles, B-trees or similar).

The implementation of the operations then often involves well-
known algorithms for processing the respective data structures.

If design errors become apparent during the implementation—
usually in the form of incompleteness or lack of clarity, possibly due to
previously undiscovered contradictions in previous phases—the
speci�ication must be corrected in close cooperation with all involved
clients and their implementations adapted to the changes.

In our simple model of the program life cycle, no separate phase is
provided for testing the components no separate phase because we
consider tests of the implementations against their speci�ication as part
of the implementation.

1.1.4.3 Component Hierarchy
In simple cases, a program is controlled with an input loop (event
loop), in more complex cases with a selection menu,  through which
user inputs branch into individual program parts, which in turn can
consist of input loops or selection menus. The system integration thus
consists of the construction of the input loop(s) and selection menus,
incorporating the developed components.

The �irst step in a revision is to check whether the constructed
system (see Fig. 1.6) matches the ideas of the clients or users.

A system does not do what the clients originally imagined, but what
the developers constructed.

The goal of a system revision is then, if necessary, appropriate
corrections and usually an extension of the system’s functionality or an
adaptation to changed conditions for its use. It therefore consists of a
re-entry into the �irst phase of the program life cycle, from where it is
cycled through again.



Fig. 1.6 What actually was meant ...

1.2 Advantages of an Object-Based System
Architecture
It is easy to see that the demands on the components of a system’s
decomposition according to its objects out from Sect. 1.1.2.1 and that
all postulates from Sect. 1.1.2.2 for a proper component concept are
naturally ful�illed.

1.2.1 On Speci�ication
Unfortunately, a decisive weakness of many common programming
languages becomes apparent here: Lack of syntactic support for
safeguards against non-compliance with prerequisites or for
assurances of effects. An optimal language level is of course an
algebraic speci�ication of the operations by equations (relationships
between the operations).

1.2.2 On Implementation
The understandability and clarity of the speci�ication and the minimality
of its service offering are guaranteed a priori by the treatment of
exactly one data type (possibly data object).

The minimality of the service offering is ensured because it only
concerns access to objects of one data type; the same applies to the
independence from the speci�ication of other components, as far as the
speci�ication does not extend that of other data types. The reduction of



data transports is trivially achieved because only operations on the
abstract data type with their parameters are provided.

When using abstract data types, the invisibility of the structure of an
object from components in the speci�ication automatically ensures the
preservation of the principle of secrecy and a maximum independence
from other components.

Degree of generality and completeness result in connection with a
desired maximality of the service offering within the set limits: in any
case, a suf�iciently large variety of accesses to the objects of the
considered data type should be provided in order to make the
component as universally usable as possible. This does not contradict
the principle of openness: A component can always be extended by
specifying and implementing initially unconsidered, but later
recognized as necessary accesses (which of course requires the
recompilation of its clients).

1.2.3 On Implementation
The postulates considered necessary for the implementation are, in a
sense, ful�illed by the implementation: 

The manageability of the emerging complexity is ensured by the
construction of data types from components that have been previously
de�ined. Since their construction details are hidden in other
implementations, the implementation of the composite data types does
not have to worry about details, but can assume their existence and the
accesses to them only on the basis of the knowledge of their de�inition,
i.e., on a rather abstract level.

If it turns out during the implementation that further, initially
unforeseen parts are necessary, this gives rise to the construction of
separate components, which are then used—again only based on their
abstract description, i.e., their speci�ication.

The principle of secrecy can be excellently exploited: can be
excellently exploited:

The replacement of implementations by alternatives is optimally
supported by the described principle. Typical examples—mind you,
with the same speci�ications—can be found in the following scenarios:

Different implementations may be required depending on whether
data stocks are only recorded once and then preferably searched, or



whether they are continuously updated and research is comparatively
rare; the implementation of access to data in one computer
fundamentally differs from access to distributed data located on
different computers (see [1]).

Often it is necessary to examine alternatives that balance between
contradictory requirements for favourable runtime behaviour of a
component and the demand for minimal memory requirements.
Accesses to the base machine are isolated in suitable components,
whose implementations can differ signi�icantly from each other for
different target systems.

The interference freedom is ensured by the independence of the
speci�ication and implementation parts of the components.

To avoid the use of system-wide state information, which is visible
throughout the system, thus also manipulable—and therefore almost
inevitably a source of highly fatal, but hard to �ind errors in larger
systems—global variables—which can only be referred to as devil’s stuff
(!) for this very reason—must be encapsulated in components (possibly
in local subcomponents). This keeps their content—unlike local
variables in operations—preserved throughout the entire program
runtime, but they are safe from uncontrollable external access. Of
course, this assumes that the programming language used supports
such a concept.

Other useful aspects of the described method are that it

allows for a stringent further development of a prototype by re�ining
the structures that have occurred so far or by combining them with
other structures into larger units;
basically provides some assurance that reusable parts of program
systems are constructed (which is very valuable given the costly
development work in the software sector); and
does not stand in the way of largely decentralized program
development.
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from the lowest possible

– by integrating parts of programs written in Assembler or C, and
system libraries;

to the simplest

– for the development of small programs; and

up to the highest

– by grouping entire groups of components into components,
through which abstract design patterns are realized.

2.1 About the Installation of Go
Compilers, source codes, license terms, etc. can be found on the World
Wide Web (see [1]). Instructions for installation are stored on the
World Wide Web (see [2]). Go requires some environment variables, 
which are conveniently set in a �ile in the directory /etc/profile.d.
To do this, switch to it as root:

and create the �ile go.sh there with the following content:

These de�initions are then valid after every restart of the computer.
The �ile go.sh is stored on the World Wide Web at



https:// maurer-berlin. eu/ go and can be downloaded from there.
Go is installed in the directory /usr/local/go by importing the

Go repository as root, after deleting any existing older version:

The third line needs to be speci�ied, e.g., like this:
tar xfzv go1.20.2.linuxamd64.tar.gz.
The Go library packages are then located in the directory
/usr/local/go/src.

2.2 Packages in Go
The concept of components in Go is that of the package .

There are two types of packages:

Program packages, which implement an executable program, and
Library packages, which provide services for other packages.

The source code of a package consists of one or more �iles, the name
of which ends with the suf�ix “.go”. All source code �iles belonging to a
package must be in the same directory and start with the same line

where for ...the name of the package is inserted. In the sources of
program packages, the identi�ier main must be used, i.e., they must
always start with the line

2.2.1 Program Packages
The source codes of a program package can in principle be located in
any directory; however, it makes sense to place them in a subdirectory
of $GOSRC with the name of the program; source codes of library
packages must on the other hand be located in a directory (below the
node $GOSRC) whose name matches the name of the package.

https://maurer-berlin.eu/go


2.2.1.1 Library Packages
Library packages

can be distributed across multiple �iles,
have a simple export mechanism,
can have an initialization part, and
can be nested.

The ability to split a package into multiple �iles allows in particular
the decomposition of an abstract data type, which is provided by a
library package, into

its speci�ication and
its implementation(s).

Such a separation makes no sense in program packages because
they do not export anything.

Thus, Go meets the conditions mentioned in Sect. 1. 1. 2. 3

The relationships between packages are regulated by the terms
“import” and “export”. The syntactic rules for this are very simple:

All identi�iers from a package abc that start with a capital letter are
imported with the instruction:

imported. Multiple packages are enclosed in brackets and separated
pairwise by a semicolon or a line feed. On the other hand, identi�iers
with a lowercase initial letter cannot be accessed from outside the
package; their visibility is limited to the source texts within the package
(see https://godev.org/ref/spec → Exported
Identifiers)).

The import instruction must be at the beginning of a package—
immediately after the �irst line package .... Each imported
identi�ier is then used with the name of the package that exports it as a
pre�ix—separated from the identi�ier by a dot.

2.2.1.2 Speci�ication of Library Packages



The speci�ication of an abstract data type has the syntactic form of an
Interface that begins with the type declaration. After that, both

the names of used interfaces and
a list of the signatures of the exported methods that operate on it,
and
possibly additional functions

can follow.
The �irst of these two cases shows that it can essentially be a

recursive de�inition, which represents a very powerful aspect of Go:
Speci�ications can be “nested” in such a way that interfaces—simply by
means of the import-clause—can  be “inherited”. This mechanism of
“inheritance” at the level of speci�ications is, in my opinion, much more
signi�icant than those at the level of implementations, because it—
when used cleverly—saves mountains of source code lines.

This assessment inevitably sounds quite abstract and can only be
understood in the context of suitable examples. However, we will
provide many detailed examples for this thesis and explain it in the
chapter about the microuniverse using some abstract data types.

At this point, it becomes clear that the design of Go goes far beyond
the concept of object-based and realizes a central aspect of object
orientation.

A simple example for this:
If the package xyz exports the data type named Xyz and the

methods X(), Y() uint, and Z (b bool) and inherits from the
interface Abc in the package abc its methods A() and B() which are
de�ined in the package abc, it looks like this:



Clients of this package can then use both the methods of Xyz and—
without importing the package abc—its methods A() and B() as such
on objects of type Xyz.

For a speci�ication of an abstract data type in a package, there can
certainly also be alternative implementations, which is very helpful for
certain purposes. They realize different design decisions, offering
alternatives for clients, e.g., in terms of runtime considerations or
memory ef�iciency. We will also present some examples for this.

The consequence of the facts and postulates presented so far is that
Go is excellently suited for object-based software development and
allows a rigid implementation of the principle of “information hiding”,
as explained in any textbook on software engineering.

The only restriction, that in Go speci�ications of abstract dataobjects
are not syntactically formulable, can be compensated by constructing a
datatype instead of a dataobject, of which only a single instance is
created and used.

Only for data objects that encapsulate access to a peripheral device,
of which only one instance exists (mouse, keyboard, printer, etc.), this is
not sensible, but here one can help oneself with a simple “trick”, which
will also be presented at a suitable place. However, it must be expressly
emphasized here: The advantages of Go’s package concept more than
compensate for this disadvantage.

2.2.1.3 Constructors
Constructors syntactically have no place in a speci�ication because that
—in contradiction to the object-oriented approach—would limit the
possible variety of implementations.

But with a simple “trick” this can be circumvented:
A constructor function is included in the speci�ication, which in turn

calls a—externally inaccessible, because lowercase—function from the
implementation and thus hides the details of its construction. This
ensures that clients are informed about the syntax and semantics of the
constructors, without having to look into the source code of the
implementation. (The compulsion to do something like this represents
a frequently observed, but highly questionable violation of the principle
of “information hiding”.) If a package contains several implementations,
the constructor functions should contain hints—in the form of



comments—about the semantic differences between the corresponding
implementations, so that a client can select those constructors that suit
his application purposes.

2.2.1.4 Abstract Data Objects
A package can also implement an abstract data object, which is useful,
for example, when accessing hardware—a computer only has one
keyboard, one mouse, or one tty console.

However, it is generally possible to construct abstract data objects
using abstract data types. To do this, a data type is de�ined—only in the
implementation—and a single instance of it is created.

In this case, the speci�ication no longer speci�ies an interface type,
but consists only of the access functions to the object “behind the
scenes”, which constitutes the term abstract data object; preferably in
the way it was done above with the constructors: The access function in
the speci�ication calls a function from the implementation (e.g., with the
same name, but a leading lowercase letter).

2.2.2 Packages as Interfaces Only
Packages can also play a different role:

The recursive aspect of interfaces mentioned in Sect. 2.2.1.2
naturally suggests that the package concept also makes sense without
specifying an abstract data type or an abstract data object—simply as a
pattern (“pattern”) for use in other interfaces.

A package can also only de�ine an interface without specifying a data
type.

An example of this will be given in the following Chap. 4, that of the
“objects”.

2.2.3 Nesting of Packages
The ability to nest packages proves to be extremely advantageous for
the system architecture of larger software systems. A standard small-
scale example of this is to “package” separable parts of a package’s



implementation into a “subpackage”, i.e., one that is located in the
directory tree below the node of the package.

From a software engineering perspective, this is a signi�icant
advantage, as it allows special services of lower layers to be made
available for the implementation of packages, which are not readily
visible—especially not accessible—from the outside and are thus
protected from changes to the speci�ication. We will also provide
examples of this at appropriate points.

2.2.4 Initialization of Packages
The initialization part of a program package is the body of the “main
function” func main(), which contains the actual main program; the
initialization of a library package consists of the body of the function
init().

Both functions have—as the “empty” brackets show—not passed
any parameters.

The function init is neither exported nor explicitly called, but is
executed at runtime of a using program before any function from its
package is called. Its task is usually to populate internal (non-exported)
data with certain initial values (see
https://godev.org/ref/spec/#Program_execution).

If a package contains multiple init functions, they run in an
unspeci�ied order; the order of execution of the initialization parts in a
program that directly or indirectly imports multiple packages is de�ined
by the import dependencies.

2.2.5 Variables of Concrete Data Types
To illustrate basic aspects of object-based programming, let’s �irst
summarize the principles of the imperative paradigm that relate to the
variable and type concept. By concrete data types we mean those data
types that are recursively composed of atomic data types using �ield,
compound, reference, channel, function, and mapping constructors.

By a concrete variable we always mean a variable of a concrete data
type.

In Go, the following concrete data types exist:

the atomic data types



bool for truth values,
int8, int16, int32, int and int64 for integers with the

synonym rune for int32, uint8, uint16, uint32, uint, uint64
for natural numbers with the synonym byte for uint8 and
uintptr for those that represent the value of a pointer (i.e., an
address),

float32 and float64 for real numbers,
complex64 and complex128 for complex numbers, and
string for character strings;

for every concrete data type X and every expression n with the value
of a natural number, the array [n]X;
for every concrete data type X the (slice) []X;
for each sequence X, Y, ... of concrete data types, the compound

struct {x X; y Y; ...} with components x of type X, y of
type Y, ...;
for every concrete data type X the reference type (= pointer type) *X
with the dereferencing operator * which assigns to a pointer p of type
*X the variable *p of type X that “p points to” (the choice of the
symbol “*” for this operator could be considered somewhat
unfortunate, as it already has the meaning of the type also bows to
the C world at this point);
for any two (also empty) sequences X, Y, ..., E, F, ...of concrete data
types, the function type func ([*]X, [*]Y, ...) (E, F, ...(where the
brackets around one result type may be omitted);
for any (also empty) sequence of interface types or method
speci�ications A, B, ... the interface type interface A; B; ...;
for every concrete data type X, for which equality == (and inequality
!=) are de�ined, and every concrete data type Y the mapping type
map[X]Y as well as
for every concrete data type X the channel type chan X.

For precise syntactic details, please refer to the Go speci�ication
(see https:// golang. org/ ref/ spec#Types).
In the following sections, we will provide detailed explanations with

comprehensive examples for all non-atomic data types.

https://golang.org/ref/spec#Types


With the declaration of a speci�ic variable x of a data type X var x
X the following is associated, among other things:

At the time of the program’s translation—i.e., by the compiler—
memory space for the value of the variable x is provided, whose size
(i.e., “type size” of its type X) is determined by type declaration.
This memory space is “addressed” under the name x of the variable
within its scope, i.e., one can imagine the name of the variable as a
reference (pointer) to the start address of the memory space.
It is exclusively reserved for its value and is therefore no long
available for Q other purposes.
Its start address is reached under &x.

The need for memory space for a speci�ic variable is given by the
type size of its data type given. The atomic data types have the following
type sizes:

bool, int8 and uint8 = byte: 1 byte,
int16 and uint16: 2 bytes,
int32, uint32, float32: 4 bytes,
int and uint: 4 or 8 bytes,
int64, uint64, float64, complex64: 8 bytes and
complex128: 16 bytes.
string: a character string s occupies len(s) bytes.

The type sizes of some composite data types can be calculated from
this; with

�ields as a product of the value of the constant and the type size of the
base type,
compounds as the sum of the type sizes of their components.

In Go, the memory space requirement of a variable x of a speci�ic
data type X is provided by the polymorphic function Sizeof from the
package unsafe.

For concrete variables or expressions of speci�ic data types, the
usual standard operations are provided in Go (while the relevant rules
of type compatibility must be observed):

the value assignment “=”



– to copy the value of an expression into a variable (more precisely:
the bit pattern representing the value into the memory space
reserved for the variable);

the equality predicate “==” and its negation “!=”

– to check for matching values of two expressions (more precisely:
for bitwise matching of the contents of the memory spaces
reserved for them); and

the predicates of order “<”, “<=”, “>”, and “>=”

– for comparing the sizes of the values of expressions.
Also operations of the package fmt:

Print, Println, Printf
for output on the screen,

and Read, ReadString, ReadCard, ReadInt, and ReadReal
for input via keyboard;

as well as certain routines from special libraries for querying the
mouse for event control with it,
& and the function Sizeof from the package unsafe

for accessing the representation of the values of variables as byte
sequences in memory via the start address and size of the memory
space reserved for them;
Read and Write from the package �ile

for accessing byte sequences in the �ile system.

2.2.6 References and Parameters
In this section, the pointer concept is examined more closely
illuminated, the understanding of which is an indispensable
prerequisite for everything else, especially for the realization of the
basic concept “object” in object-oriented programming.

Go has—just like, e.g., C or Java—only value parameters, , not
however variable-(reference-)parameters, as they are known from
Pascal or Modula-2.

We show here with a simple example how the effect for which
variable parameters are used in these languages is achieved just as well
with value parameters.



The operator +=, with which a variable n of type int is
incremented by a value a, could be implemented like this:

(It should be reminded of the previous section: *int denotes the type
of references on int.) 

This function is used with a call in which the start address &n is
passed instead of the variable n:

This works because the dereferencing operator * is the inverse operator
of the address operator &: 

For variable p of type *X and x of type X follows from 

i.e., the value of the pointer p is the starting address of the for x
reserved memory space (“p points to x”), that

applies, i.e., x is just the dereferencing of the pointer p.
In particular, it applies (substitute *p for x)

i.e., the value of p is just the starting address of the memory space
reserved for *p; in short: *p is exactly the variable that p points to. Of
course, the reverse also applies

i.e., the variable x is just the dereferencing of its starting address.



For this reason, the instruction *p = *p + k in inc has the effect
that the pointer p accesses the passed address, from which
Sizeof(int) bytes are interpreted as the value of a variable of type
int and changed in such a way that this value is incremented by that of
the passed expression after the function call. But this now provides
exactly then the desired effect, when the starting address &n of the
memory space reserved for var n int is passed, which is type-safe
due to the signature of the �irst parameter of inc.

The example also teaches us that the naive approach, that value
parameters protect against a change of the passed variable, by no means
applies. But this is not a contradiction, because during the call not the
concrete variable, but rather a reference to it is passed (which is of
course not changed after the call).

2.3 Variables of Abstract Data Types = Objects
By abstract data types we understand those data types, whose existence
is secured by the speci�ication of their identi�ier (and of course their
access operations) in a speci�ication, but whose implementation does
not need to be known to the clients—the users of the services de�ined
in the speci�ication.

In Go, they are de�ined in the de�inition part of a package in the
form:

—thus only by specifying their name—and are therefore also referred
to as opaque data types, because their representation remains
“opaque” at this point.

Within the curly brackets, a sequence consisting of

names of interface types or
names of methods with their corresponding signatures

are to be speci�ied (we will address the special case of this sequence
being empty, i.e., the type interface, later on).

In the implementation part of the package, they are realized in very
simple cases as a reference to a concrete data type, otherwise usually as



a reference to a compound, whose components in turn can be abstract
data types.

Analogous to the concrete case, we will henceforth understand an
abstract variable to always be a variable of an abstract data type.

Abstract variables are essentially declared like concrete ones—but
there are two very signi�icant differences:

The value of such a variable is a reference, i.e., the address in the
working memory from which the value of the variable of the referred
type is stored.

Its type size is therefore the address width of the processor of the
used computer.

This value is thus to be distinguished from its “actual value” —i.e.,
the variable, to which it refers—and its type size has nothing to do with
the type size of the actual value. 

For this reason, the declaration of such a variable—unlike the
procedure carried out by the compiler and runtime system during the
initialization of concrete variables—must explicitly follow the provision
of memory space for the actual value.

This is, however, a task that is fundamentally unsolvable for the
compiler:

The concept of separate translatability of speci�ication and
implementation results in the “view” of the actual data type behind the
scenes being impossible, hence the actual type size is not known—
simply because the existence of the implementation cannot be assumed
at this point (which is precisely a major purpose of this independent
translatability).

Since the compiler therefore cannot initiate the reservation of the
actually required memory space, this task must be taken over by a
superordinate instance:

A client of an abstract data type—the person who uses it in a source
text—must supplement the declaration of each variable of this type by
inserting a statement in which the memory space for the actual value is
created.

This is conveniently done with functions that return a newly created
variable of the relevant abstract data type as a value. They can be
equipped with parameters for certain purposes.



The functions that accomplish this are called constructors in object-
oriented programming. 

This is a characteristic feature of object-oriented programming.
From now on, we will refer to abstract variables as objects.

Conclusion:

Objects must be explicitly created before they can be processed.

A second important point is that in Go the type name in the
implementation must not be the same as in the speci�ication (this has,
among other things, system-immanent reasons, which we will discuss
later).

Thus, the declaration of a variable x of an abstract data type ABC,
provided by a package abc, reads

and the object x is created with the assignment

These two lines can also be combined into one declaration:

or—even shorter—by taking advantage of Go’s dynamic type
adaptation:

2.4 Value Versus Reference Semantics
After the considerations from the previous section, the question now
arises as to what consequences arise when objects “behind the scenes”,
i.e., in the implementation, are nothing more than references.

2.4.1 Assignments, Creation of Copies



A value assignment

results in concrete variables that the value of the variable x is
overwritten with that of y. The consequence is that after the
assignment there are two different concrete variables with identical
value, because different memory locations are reserved for the values
of the two variables. Consequently, if the value of the variable y is
changed afterwards, the variable x is not affected; its value is not
changed.

For objects x and y, i.e., for variables of an abstract data type, this is
not the case:

With this assignment, the reference y to an object, i.e., merely the
address from which the “value” of y can be found, is copied into the
reference x. This has a completely different consequence:

The pointer x now refers to the same object as the pointer y, i.e., the
variable x now refers to the same object as y. If the object y is changed
afterwards, the value of the object x is consequently also changed (in
the same way). The �irst case is an example of value semantics, the
second for reference semantics. 

2.4.2 Equality Check and Size Comparison
This distinction should also be made in other cases.

The Boolean expression

provides for concrete variables x and y a statement about whether the
values of the two variables are equal (value semantics), for objects,
however, only, whether the pointers x and y refer to the same object
(reference semantics).

Since the latter does not say anything about the equality of the
objects to which x and y refer, we do not get any further with objects.

The situation is even more drastic when it comes to size
comparison.



For concrete variables, for whose type the relation < is de�ined, the
Boolean expression

provides a statement about whether the value of x is smaller than that
of y or not.

For objects x and y, on the other hand, it could at best provide the
(completely uninteresting) statement, whether the value of the
reference x is smaller than that of y, i.e., whether the memory space for
the object to which x refers is in the working memory before that to
which y refers.

But this is not possible in Go:
The operator < is not de�ined for references; thus, the approach of

comparing objects in terms of size with it is completely unsuitable.

2.4.3 Serialization
For a concrete data type X, with &x you have the start address of a
variable x of type X, for a reference p of type *X with *p the speci�ic
variable of type X, to which p points, under control; the memory space
it occupies is a contiguous area in the working memory, the size of
which is known.

For a variable x of an abstract data type X, &x is merely the start
address of the value of the reference x—the actual value cannot be
found there.

Manipulating the “actual” variable *x would mean accessing the
representation details of type X in an implementation bypassing the
speci�ication of X. This is not allowed according to the postulated
principles of information hiding—and in a proper implementation
simply impossible, which is achieved by starting the identi�iers of the
components of the representation of X with lowercase letters, thus not
being exported.

The type size of a pointer has nothing to do with the size of the
memory space of the variable it refers to. This has nothing to do with
the actual need for memory space. In particular, it is impossible to



access the—in complex cases non-contiguous—areas of the working
memory where an object is stored.

The consequence is that objects can neither be stored as a sequence
of bytes in a �ile nor sent as such over the network. 

Access to concrete variables is via their names and the memory
space for their value is provided by the translator by declaration,
because their size is determined by the type speci�ication. They are
processed by value semantics.

With abstract variables, i.e., objects, things are quite different:
They are accessed via references.
For the reasons explained in detail, reference semantics (with few

exceptions under carefully considered conditions) is an unsuitable
means for their processing.

To get to objects with value semantics, i.e., to achieve the effects that
are given with concrete variables by value semantics, the following
operations are needed, among others, which cannot be managed with
reference semantics are

for the creation of new objects by constructors (operations for the
elimination of no longer used objects are obsolete, because Go has
memory cleanup);
for checking for agreement between objects as well as for making
copies of objects;
for comparing objects with respect to an ordering relation;
for “emptying” objects, i.e., for deleting their values, as well as for
checking whether they are empty;
for displaying objects on the screen;
for their interactive changeability (by keyboard, mouse, or similar);
and
for encoding objects as serial byte sequences and vice versa (possibly
with the insertion of redundancy for error detection or correction),
in order to be able to store them persistently on data storage devices
or send them to processes on other computers.
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Object-oriented design is, in its simplest form, based on a seemingly elementary idea.
Computing systems perform certain actions on certain objects;

to obtain �lexible and reusable systems, it is better
to base the structure of software on the objects than on the actions.
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Abstract
The microuniverse rigidly implements all principles of object-oriented programming. It
consists of many packages with abstract data types and objects for all possible purposes.
This chapter introduces some of them that are used in the second part of the book.

Many of these packages originate from my teaching activity in computer science; they
were originally written in Modula-2, later converted to Java, and now ported and further
developed to Go. First, the central package obj is introduced.

This is followed by some principles for constructing simple user interface. A
signi�icant part of this chapter consists of the presentation of “collections”, sets of objects
(e.g., sequences, buffers, sets, �iles, graphs).

3.1 Installation of the Microuniverse
The source codes of the microuniverse can be found on the net at https:// maurer-berlin. 
eu/ mU. It makes sense to check there occasionally to see if there is a new version that
has �ixed errors or is more powerful than previous versions.

The microuniverse is installed either by root in the directory $GOSRC or by “users” in
the subdirectory go/src of their home directory, by unpacking the �ile μ U .tgz using
the tar command with the options xfz (for “unpack”, “�ile”, “decompress”). This creates
—if not already present—the subdirectory μ U, where all source texts are stored.

If the prerequisites mentioned in the following section are met, the μ U library is
created with the command go install μ U

https://doi.org/10.1007/978-3-658-44704-5_3
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(If μ U was previously installed, the directory $GOSRC/ μ U should be deleted
beforehand to remove obsolete �iles.)

For compiling and binding, the script gi contained in the directory $GOSRC/ μ U is
also very useful, which must be copied into a directory that is included in the path (e.g.,
$HOME/bin).

3.1.1 Prerequisites
A computer with Linux as the operating system, on which Go is installed, is required (see
notes on the installation of Go in Sect. 2. 1).

All the following information refers to ßopenSUSE indexopenSUSE with the bash as
the login shell. Other distributions or shells may require adjustments such as “X=...;
export X” instead of “export X=...”.

Since essential parts of the microuniverse rely on the following:

the C library,
X-Window,
a font with characters of constant width,
OpenGL,
the conversion of graphics between the ppm format (“portable pixmap”) and other
formats (e.g., gif or jpg),
prints from within programs.

The following must be installed under ßopenSUSE:

the basic development environment (tools for compiling and binding applications),
especially the GNU C compiler;
the library for extensions of the X11 protocol libXext-devel;
the terminus-bitmap-fonts (http://terminus-
font.sourceforge.net);
the graphics library Mesa-devel, which implements the OpenGL speci�ication,
(https://www.mesa3d.org);
the OpenGL Utility Toolkit, both in freeglut-devel
(http://freeglut.sourceforge.net);
the tool for manipulating graphic formats netpbm
(http://netpbm.sourceforge.net); and
the text typesetting system TeX of the genius Donald E. Knuth.

In other distributions, the corresponding packages may have different names—but
this can easily be found out by “googling” these terms. Under ßUbuntu the installation

of the terminus bitmap fonts and
the packages necessary for OpenGL

is more complicated; details can be found on my page about the installation of the
microuniverse (https://maurer-berlin.eu/mU/instmU.shtml).

If these packages are not installed, corresponding error messages will occur when
compiling μ U .go. After error-free translation, the �lawless functioning of all libraries of



the microuniverse can be checked with the start of the program μ U.
Since the microuniverse makes features available that go far beyond the usual

standards of tty-console operation, namely,

high-resolution graphic outputs in any colour and
the use of a mouse

the execution of even demanding event-driven graphic programs in consoles is possible.
For this, the �ile /dev/input/mice must be readable for the “world”, i.e., have the
rights rw-r–r–.

In other distributions, “/input/mice” may need to be replaced by the name of
another �ile—also in the �ile μ U /mouse/def.go.

Access to the “framebuffer”, which is necessary for console operation, requires that
the �ile /dev/fb0 has the rights rw-rw-rw-, i.e., read and write rights for all.

If this is too risky for security reasons, you can also ensure that root adds the users to
the video group. Both can be secured, for example, by corresponding entries in
/etc./init.d/boot.local.

Programs with graphic outputs or use of the mouse cannot naturally be executed in
consoles via login on remote computers, but only on the local computer, where the mouse
and screen are connected, as this accesses these local resources.

Under X-Window, i.e., on graphical interfaces, such as KDE, Xfce, Gnome, or IceWM, all
programs can be executed also on a remote computer if its outputs are redirected to the
local computer. The easiest (and safest) way to do this is with the secure shell in a
window by logging in with the command ssh -X host (host = name of the remote
computer) to then start the program there. The prerequisite for this is that the ssh
services are installed on the involved computers, the daemon sshd is activated, and one
is allowed to log in via ssh on it.

3.1.1.1 Other Operating Systems
Go can also be installed under Windows® But in my attempts to install the microuniverse
in this operating system using the Windows Subsystem for Linux (see
https://docs.microsoft.com/de-de/windows/wsl/about), I encountered a
lot of “traps”. For this reason, I recommend the use of a virtual machine, e.g., VirtualBox
(see https://www.virtualbox.org), to actually be able to use a Linux distribution.

If I ever manage to adapt to the operating system MacOS®—a Unix-system—this will
be published on my page on the World Wide Web.

3.1.2 License Terms
The microuniverse is designed solely for use in teaching and therefore has a purely
academic character. It provides, among other things, numerous examples and animations
for my textbook “Nonsequential and Distributed Programming with Go” (Springer
Nature 2021). The sources of the microuniverse can be used without restriction for
teaching purposes at universities and schools; however, any form of further use is strictly
prohibited.



This software is provided by the authors “as is” and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability and
�itness for a particular purpose are disclaimed. In no event shall the authors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages (including,
but not limited to, procurement of substitute goods of services; loss of use, data, or
pro�its; or business interruption) however caused, and any theory of liability, whether in
contract, strict liability, or tort (including negligence or otherwise) arising in any way out
of the use of this software, even if advised of the possibility of such damage.

The source codes of the microuniverse are developed with great care and are
continuously revised. But there is no error-free software—this naturally also applies to
these sources. Their use in programs could lead to damage, e.g., to the burning of
computers, the derailment of trains, the meltdown in nuclear power plants, or the crash
of the moon. Therefore, the use of any sources from μ U in programs for serious purposes
is explicitly warned! (Excluded are demo programs for use in teaching.)

Reports of discovered errors and hints on ambiguities are gratefully accepted.

3.1.3 Naming in the Microuniverse
The Microcosm generally uses the following uniform naming:

The naming of the data type or object and the speci�ication of the operations on it,
which the corresponding library package exports, is in a �ile named def.go.

The representation of the data and the implementation of the operations bear names
that are largely self-explanatory. If there is only one implementation (or among several
“the” standard implementation), the corresponding �ile is named after the name of the
abstract data type that the package exports.

For example, the package lockp, which implements lock synchronization with lock
algorithms, contains implementations with the (suggestive) names dekker.go and
peterson.go (Dekker and Peterson are the authors of the two algorithms).

As a consequence of the naming in the microuniverse, we generally use the identi�ier
of the data type in lowercase as the name for the implementation of an abstract data type
and—following the conventions of other object-oriented languages—for the
constructors usually the identi�ier New. If there are several implementations, further
characters are added to these identi�iers.

The microuniverse offers a variety of abstract data objects and types in the form of
packages. They are fundamentally separated in speci�ication and implementation; the
abstract data objects are largely equipped with the above-mentioned operations.

Some of these packages are introduced and explained in detail in the following
sections.

But �irst, an important note:
To drastically shorten the text in speci�ications, the following language regulation

applies throughout the book:

In all speci�ications in this book, the calling object is always referred to as x.



3.2 The Constructor New
As justi�ied in Sect. 2. 3 about objects, every object must be generated before its use.
Exactly that is the purpose of the constructors. Their syntax for an abstract data type
Abc, which is implemented in a package abc with the �ilename abc.go, in the
microuniverse always basically looks like this

In the associated implementation part, the construction of this function—based on type
declarations of the kind

always starts with the instruction

which results in memory being allocated for a variable of type abc and its address being
entered into the value of *x. The constructor function ends with return x. Between
these lines, components are possibly set to speci�ic initial values, which are interpreted
as empty, as long as they are not to be initialized with the zero values for their type (see
Sect. 3.3.3).

The call of functions that manipulate objects or contain them as parameters always
presupposes that these objects were created by the previous call of the constructor New
(or similar). This prerequisite is indispensable

The memory space reserved for an object by declaration var x Abc initially has—
just like in the concrete case—no de�ined value, thus contains a random address.

Accessing the variable—e.g., with an assignment x = ...—would usually mean
accessing an address range in memory that was not “assigned” to the calling process by
the operating system. For this reason, the Go runtime system acknowledges every access
to an object that was not generated with a panic, i.e., with a program abort and the
corresponding error message.

3.3 The Object Package
For many abstract data types in the microuniverse, a number of basic interface types are
needed, which will prove to be extremely useful or even necessary.

We gather such things in the central package obj, which we introduce here. 
We now proceed step by step and �irst show its most important “parts”, the interfaces



Motivation and basis for their construction is the importance that the following
interfaces in Java for many classes have–especially partly also for the class Object: 

We need a basic data type that can hide all data types, the empty interface. I had
previously de�ined it in the μ U /obj package as type: .

The Go developers apparently understood the purpose of this de�inition at some
point: They included it under the name any as an alias for the empty interface
interface in the Go speci�ication.

3.3.1 Equaler
Most objects in computer science can be compared with others to see if they are equal,
and they can be copied. As explained in Sect. 2. 4 about value versus reference semantics, a
naive attempt to check two objects x and y for equality with the Boolean expression x
== y is as nonsensical as the assignment x = y to copy the object y into the object x,
because only references are compared or copied, not the actual objects.

It should be reiterated that for operations on instances of an abstract data type in the
microuniverse, the syntax of method calls is consistently used, as is common in object-
oriented programming.

The implementation of the equality check of an object x of type Abc in a package
where a data type is constructed is thus encapsulated in a method:

Similarly, the copying of an object in methods

or

The microuniverse provides both.
This gives us the following interface in the �ile equaler.go with two additional

functions:



For non-mathematicians, it should be noted that the word iff means if and only if.
The function Atomic is de�ined in the �ile obj.go (see Sect. 3.3).
We do not show the implementation of the functions Eq and Clone here, but refer to

the μ U-source code for this book.
Even with this �irst example, clear advantages of the package object become

apparent:

Its speci�ications are valid for all abstract data types that contain the interface
Object, i.e., those that implement this interface (see remark on the nesting of
packages in Sect. 2. 2. 4 and of speci�ications in Sect. 2. 2. 1. 3).
The comprehensibility of larger systems is facilitated by the fact that services with the
same semantics in all packages bear the same names—distinguished only by the pre�ix
of the imported package when importing.

3.3.2 Comparer
In computer science, many objects are modelled that are naturally endowed with an
ordering relation, such as characters and strings, times, calendar dates, amounts of
money, postal codes, sequences, and sets. For types of objects where a predicate for size
comparison would make no sense, such as for colours, �iles, geometric �igures, and
vectors, this ordering relation is simply the discrete relation, i.e., the equality.

This makes it possible, for example, to sort sequences of them.
A size comparison of objects for which an order is de�ined, with the operator x < y,

is, as we have justi�ied, meaningless. Consequently, the check is encapsulated in a method
less



The corresponding interface in the �ile comparer.go is

3.3.3 Clearer
It is generally useful to enrich the “value set” of objects with an “empty” value, i.e., to
allow empty objects. They can—of course depending on the context of the semantics of
the respective type—be interpreted as “unde�ined”, “unknown”, etc. What “empty” means
depends on the semantics of the type of the calling objects. If it is a set or sequence, the
meaning is clear; otherwise, it is, for example, an object with an unde�ined value,
represented by a text consisting only of spaces.

This also subsumes the input of new objects under the concept of “editing”
(changing) of values, by, for example, overwriting the empty strings. A newly created
object should de�initely be empty.

To check whether an object has an empty value is served by a method

and overwriting an object with empty values is served by the method

The corresponding operations are speci�ied in the second interface type of Object in
the �ile clearer.go:



3.3.4 Coder
Objects can be transformed into (in memory contiguous) unstructured byte
sequences, the interpretation of which at the machine level as values of objects is not
possible, in order to store them persistently on an external storage, for example, or to
transport them as “data packets” over the network to processes on other computers.

For this purpose, an object must be “encodable” (also called “serializable”) and
“decodable”, i.e., it must be able to be uniquely restored from a byte sequence into which
it was encoded.

The appropriate type for such byte sequences is slices of bytes   ([]byte), to which
we give our own name (“Stream”):

Such “type aliases” have been included in the speci�ication of Go with Go 1.9.
For this purpose, two methods are provided: one for encoding

and one for decoding



Two prerequisites must be observed:
In the implementation of Encode, the slice must be provided to accommodate the

value to avoid memory access errors with a call to the make function. For this purpose, a
method for announcing the required number of bytes for encoding

is needed.
The prerequisite for calling Decode is, of course, that the byte sequence b with

len(b) == x.Codelen() represents an encoded object of the same type as the
caller. The interface can be found in the �ile coder.go



We will not go into the implementation of the functions Codelen, Encode, and Decode
here, but refer to the tools from the packages asn1, json, and gob from the Go package
encoding or our simple constructions in the packages of the microuniverse.

3.3.5 The Interface of the Package Obj



Topics such as genericity or parametric polymorphism are not covered in this book,
because as will be shown, this is much simpler in Go. A crucial contribution to this is the
speci�ication of the data type, which will now be introduced at the end of this section.

Strongly in�luenced by the ideas that revolve around the root of the class hierarchy in
Java, the class “Object”, it makes sense to de�ine an interface in Go that “de�ines”
objects.

Every “reasonable” object should—for the reasons stated in the respective interface
—implement all four of the above-mentioned interfaces. Excluded from this requirement
are of course “atomic objects”, i.e., variables of simple data types (see func Atomic).



Since it makes sense to package non-atomic variables into abstract data types, this
“classi�ication” into



atomic variables and
objects

is quite consistent.
All these so far developed interfaces, methods, and functions are used in many other

data types that we introduce in this chapter. For reasons of simpli�ication, there are a
number of other interfaces in obj. We will introduce some of them in the following,
without explaining much about each—the speci�ications provide enough information
about their meaning. Further interfaces from this package will be introduced in the
context of the packages for which they are needed.

3.3.6 Stringer
Various objects in computer science can be uniquely identi�ied by strings. For this
purpose and to check whether a string represents an object, the following interface is
used in the �ile stringer.go:

3.3.7 Formatter
This interface in the �ile formatter.go is needed for data that can be represented
differently, like, for example,

Calendar dates—with or without weekday—25.7.2024, 25.07.24 or Thursday, 25 July
2024—or
Time speci�ications—with or without seconds—17.30, 17.30:20.

3.3.8 Valuator
This interface in the �ile valuator.go is used, for example, for rated graphs whose
vertices or edges have values.



3.4 Input and Output
This section deals with the “human–computer interface”. It consists of two parts:

the screen for outputting data and 
the keyboard (including the mouse) for input and modi�ication of data.

Input and output are conceptually always separated, which is extensively justi�ied in
Chap. 1.

The principle of Unix, to bundle all outputs and inputs into the common concept of
�iles, has nothing to do with this. Therefore, we present these two parts separately.

3.4.1 Packages for the Screen
Before the screen package scr is introduced, we present six packages that are needed
for it: those for emphcolours, fonts and screen- or window sizes, and the three small ones
with constants for cursor shapes, line thicknesses, and appearances of the mouse pointer.

3.4.1.1 Colours
The de�initions of colours and a number of methods for their manipulation are
encapsulated in the data type Colour in the package col.





The colours (e.g., Red(), Orange(), Yellow(), Green(), Cyan(), Blue(), Magenta()) are
de�ined as methods to protect them from external access.

3.4.1.2 Fonts
There are only a few fonts needed for the screen and for the printing of texts. The default
is 8 × 16, which corresponds to the standard resolution in console operation. For the
fonts, the terminus-fonts (see Sect. 3.1.1) are used, which are not proportional, which is
necessary for the rasterization explained in the section about the screen (see Sect. 3.4.2).



3.4.1.3 Screen/Window Sizes
With regard to common technical standards, screen modes for operation are
distinguished, de�ined in the type Mode with constants of the type byte.



Default setting in the console Konsolenbetrieb is the one under which Linux is started.

3.4.1.4 Cursor Shapes
For this, the following type is available (in a subpackage of scr):



3.4.2 Screen
The simplest operation for outputting strings is the built-in function print[ln; more
powerful is the function Print[ln] from the Go package fmt. They only allow the
output of simple programs without screen masks: With them, texts can only be “rolled”
line by line across the screen.

Everything that goes beyond this primitive form of output, such as

the construction of screen masks and
the targeted output of texts at de�ined points of a console or a window

is not easily possible with it and the output of graphical objects is not possible. At the
Linux level, there are very complicated, but also very powerful library systems that
support such things, e.g., ncurses for console operation and Qt, gtk or the libraries
from X11 and from OpenGL for graphical interfaces (see
http://www.gnu.org/software/ncurses, https://www.qt.io,
https://www.gtk.org, https://www.x.org/wiki and
https://www.opengl.org). The documentation of these libraries is very extensive
and requires a long familiarization, which is immediately apparent from a look at the
header �iles in the subdirectories of /usr/include/qt5, in the directory
/usr/include/X11 (with its subdirectories), and in /usr/include/GLI.

For the construction of more sophisticated programs, a simple concept for the output
is necessary, which “hides” this complicated matter behind an easily understandable and
easy-to-use interface with powerful implementations.

The microuniverse provides in its screen package scr the abstract data object
Screen  with a wealth of methods and functions for its management and for the output
of texts and graphics. It is essential that these functions work in exactly the same way
both in console operation and on graphical interfaces based on X11.

A crucial contribution to the demand for a simple interface for the output of objects is
the merging of the output of text and graphics. The screen is rastered into text lines and
columns or pixel columns and lines. The grid serves to position the output of strings and
graphical objects, with the position of methods whose names end with Gr referring to
pixels.

A technically very complex subpackage of scr is the mouse package scr/mouse; it
is only used for the two implementations scr/console.go for the console and
scr/xwindow.go for graphical interfaces under X-Window of the screen package and



for the keyboard package kbd (see next Sect. 3.4.3) and should not be used further
outside; therefore, it is not presented here.

The package imports, in addition to obj, the packages mentioned in Sect. 3.4.1. It
provides methods

for resetting to normal input in console operation;
for querying screen parameters;
for querying and setting screen colours for outputs;
for clearing and buffering rectangular parts of the screen;
for manipulating the cursor;
for outputting characters, strings, and natural numbers;
for manipulating the font size;
for outputting simple geometric �igures (e.g., points, lines, rectangles, polygons, circles,
ellipses, Bezier curves), all also inverted and some also �illed;
for querying the mouse and setting mouse parameters;
for serializing rectangular parts of the screen;
for displaying graphic �iles in ppm format;
for managing a “clipboard”; and
for moving in three-dimensional structures that were created using OpenGL

and functions

for querying the screen size;
for indicating whether a process is running under X-Window (alternatively on a
console); and
for screen lock synchronization in concurrent programs.

Of course, it also provides constructors for creating screens.
In order not to have to constantly put the identi�ier s of a screen created by, for

example, s := NewMax() in front of the method calls from scr, scr also provides an
abstract data object in the �ile ado.go.

At the beginning of a program run in console operation, the keyboard is set to “raw”
input K_MEDIUMRAW. When the program ends, it must be reset to “normal” input
K_XLATE (see /usr/include/linux/kd.h) so that the computer remains operable.
This is done by the following procedure:

The function init() in kbd/keyboard.go calls the function initConsole in
kbd/console.go, in which the function for resetting is added to the set of those
functions that are called at the end of a program (see �ile halt.go in the package ker).
This mechanism is called by the method Fin() in the screen package.

At the beginning of a program run, the cursor’s blinking is also turned off so that it
doesn’t annoy; with the call of the method Fin(), it is made to blink again.

Thus, the �irst line of a program that uses the microuniverse typically looks like this:

The call of the instruction scr.Fin() is absolutely necessary, because otherwise after
the end of a program



in operation under X-Window the cursor is gone and
in console operation the keyboard is “dead” and therefore the computer is no longer
operable.

Here follows the speci�ication, which for obvious reasons is very long, but ful�ills the
above-mentioned requirement for easy understanding and simple usability:





































The implementations of console.go and xwindow.go are very technical, but
algorithmically largely uninteresting. The only exception are the algorithms of
Bresenham (see [1]), which are used in console.go for the output of lines, circles, and
ellipses.

3.4.3 Keyboard
The microuniverse encapsulates access to the keyboard and mouse in an  abstract data
object, the package kbd, whose implementation uses the package mouse.

In addition to the names for the keys, it provides functions

for reading the keyboard buffer,
to query whether a mouse exists, and
to wait for a key press.

For the character keys, the alphanumeric keyboard of the computer is available;
characters for which no single key is provided, the commands mentioned in the
speci�ication are provided.

To operate and control a system with a keyboard and mouse, three groups of keys
must be distinguished:

the alphanumeric keys for entering strings and numbers;
the command keys for triggering certain system reactions (enter key, backspace key,
arrow keys, etc.); and
the mouse buttons and mouse movements for navigating on the screen and “clicking” on
objects.

Commands triggered with the command keys can be enhanced in their “depth of
effect” by combining them with suitable pre�ix keys (the shift, control, and meta keys);
each command has a natural number as depth (0 as the base version, increasing
numbers for greater depths). This makes it possible in principle to have commands of
different depths with the same effect in systems, such as moving in a text to the next
character, word, sentence, section, or chapter or in a calendar to the next day, the next
week, the next month, year, or decade.

The keyboard and mouse send their characters and commands using the channel
concept in Go as messages to the screen, which receives and processes them (see variable
eventpipe in the speci�ication of scr).

Here is the speci�ication of our keyboard package:









3.4.4 Editor
The data type Editor, whose speci�ication is housed in the package obj, is used for the
output and input of objects at de�ined screen positions:



3.4.5 Input/Output Fields
The output of strings with the function print[ln] (or the more powerful function
Print[ln] from the Go package fmt) and their input with the functions Read...



from the Go package bufio only allow interaction in programs where screen design
does not matter, because they only allow strings to be output and input line by line.

For output and input of strings, �ields of de�ined width within a screen line are
provided, from which screen masks can be composed. The microuniverse contains the
abstract data type Box for this purpose.

The methods for output and editing are given parameters to determine their starting
position on the screen: l, c of type uint for line and column or x, y of type int.

A distinction is made between overwrite and insert mode, which can be switched
back and forth. Which mode is switched on can be recognized by the shape of the
cursor recognizable: a small cursor (underscore) for the insert mode, a large “block”
cursor for the overwrite mode.

The strings in the �ields can be provided with certain font and background colours.
Before entering a string in a �ield, it is pre-set with a de�ined content (which can also

consist only of spaces); this means that there is no need to distinguish between the new
entry of strings and their modi�ication.

Each input begins with an output of the �ield content. When editing, the string output
in the �ield can be changed in a way that is based on common principles—using some of
the commands mentioned in the keyboard package. After the input is completed by the
provided commands, the �ield content is handed over to the system, which takes over
further control.

The completion of an input is done by commands that do not serve to correct the
�ield content: Enter, Esc, Up, Down, PgUp, PgDown, or other commands in connection with
meta keys. With the variety of these commands, it is possible to jump speci�ically through
the �ields in a screen mask.

Here is the speci�ication of the data type box:





3.4.6 Error Messages and Hints
The abstract data object errh is used for the output of

Error messages and
User hints.

After an incorrect input, a hint to the error appears in the last screen line. The
content of the input �ield remains standing so that the error can be traced.

The cursor is now not visible. If the acknowledgement of the error message is
con�irmed with the Esc key, the error text disappears and the cursor reappears at the
beginning of the relevant �ield, with the �ield editor in overwrite mode, so that the
entered string can be corrected.

Here is its speci�ication:

3.4.7 Printer
The package for printing strings is also an abstract data object. A prerequisite for its use
is the installation of TeX. It provides functions

for de�ining the font,
for the line and column number based on it on a DIN-A4 page, and
for printing strings, where their start position (line, column) is given as a parameter.

Here is its speci�ication:



3.4.8 Selections
The package sel provides an abstract data object with functions

for interactive selection from lists in the form of “pulldown menus” and
for selecting colours or fonts.

Here is its speci�ication:



3.4.9 Menues
The abstract data type Menue allows the construction of a menue control for programs,
which can be nested arbitrarily.

Here is the speci�ication of the package menu:



The type Stmt func() stands for parameterless functions, i.e., for instructions
(statement).

3.5 Collections of Objects
By collections we understand entities of objects of variables of a concrete atomic type
(e.g., [u]int.., float.., or string) or of objects of the type Object, whose objects
can be imagined as “lined up” and through which one can “move” forward and backward.

These two directions are described in parameters with the type bool—true for
forward and false for backward.

Each collection either has exactly one actual object or its actual object is unde�ined.
A newly created collection is empty, so its actual object is unde�ined.

Collections include methods

for removing all objects from a collection, for checking whether objects are contained
in the collection, and for indicating the number of objects in it;
for moving the pointer to the current object;
for inserting and removing objects;
for reading the current object;
for checking whether a certain object is contained in the collection;
for traversing the collection with an operation (if this operation destroys the order on
an ordered collection, it must of course be reordered);



for merging two collections with type-identical objects (if necessary, maintaining the
order by “interlocking”); and
for ordering a collection and checking whether it is ordered.

These methods are provided by the abstract data type introduced in the following
section.

3.5.1 Collector
This interface is also part of the package obj:









3.5.2 Seeker
The abstract data type Seeker is designed to speci�ically access an object at a certain
position in its order access within collections. The following interface can be found in the
�ile seeker.go in the package obj:

The type type Op func (any) in the method Trav stands for functions with one
parameter, i.e., for operations on objects.

The constructor New of a collection is given an object—either by an expression with
the value of an atomic data type or by an object of type Object. This determines the
type of objects that can be included in the created collection. The microuniverse contains
the following abstract data types that implement the interface Collector:

sequences,
stacks,
queues,
priority queues,
ordered sets (AVL trees with positioning) and
persistent sequences, i.e., sequential �iles,
persistent index sets (ISAM �iles).

These collections will be introduced in the following sections. But �irst, we will show
two data types that extend Collector.



3.5.3 Predicator
This interface in the �ile predicator.go in the package obj provides methods

to specify the number of objects,
to check whether a certain predicate applies to all objects,
to search for objects,
to process only those objects when traversing,
to offset the pointer to the current object only to those objects,
to transfer the objects to another collection, and
to remove all objects,

to which a certain predicate applies. The type type Pred func (any) stands for
predicates, i.e., Boolean functions with one parameter.

Here is the speci�ication:



3.5.4 Sequences
The microuniverse contains in the package seq the abstract data type
Sequence, sequences of objects of atomic data types or of type Object.

The number of objects in the sequence can be arbitrarily large—within the limits of
available memory resources.

Sequences can be ordered, i.e., they contain their objects in the order given by an
ordering.

As an idea for the pointer to the actual object in the sequence, imagine the cursor
when editing a line of text.

Here is the speci�ication of the sequences:



The implementation of the sequences relies on a representation as doubly linked list of
cells.

The cells are compounds of

an object of the type of those object that are aufgehoben in the sequences
and the forward and backward Verzeigerung in the form of two references to such
cells:

As this example shows, it is also possible in Go not to specify names for the components
in a compound, but only their type, whereby it is advisable to specify comments on their
semantics enclosed in quotation marks.

For a sequence the following information are held in a compound:

the number of its objects, the number of the position of the actual cell;
the references to the anchor cell and the actual cell; and
the information, whether the sequence is ordered with respect to the ordering on the
objects.



The actual sequence consists of the objects that are stored in memory in the order of the
next-references from the �irst cell following the anchor.

The anchor carries the object passed to it in the constructor as a “pattern object” to
check that only objects of its type are inserted into the sequence. It also serves as a
marker “(sentinel)” for identifying the beginning and end of the list, and from it, the �irst
cell of the sequence is referenced with next and the last cell with prev.

The inclusion of such a marker node leads to a signi�icant simpli�ication of many
algorithms, because case distinctions are easy to make.

The whole construction is brie�ly referred to as a doubly linked ring list with anchor.
The inclusion of such a marker node leads to a signi�icant simpli�ication of many

algorithms, because case distinctions are easy to make.
The whole construction is brie�ly referred to as a doubly linked ring list with anchor.
With the redundant components num and pos in the representation, two invariants

are associated:

The value of num must match the number of cells (excluding the anchor) in the
representation of the sequence
and that of pos with the ordinal number of the actual cell in the list (following the
next references), from 0 for the �irst cell following the anchor to num for the anchor.

Their purpose is to make certain operations more ef�icient; for example, to determine
the number of objects in a sequence, the list does not have to be traversed to count the
cells, but the value of num is simply provided in direct access.

Of course, this is associated with the problem of ensuring the maintenance of the
invariants when developing the algorithms. This is easy in this example: With each
insertion or removal of an object into or from the sequence, num is incremented or
decremented.

In this implementation, in the constructor

after providing storage space for the compound sequence and the anchor cell anchor
(using new), the anchor is created as the only element of the ring list with a copy of the
passed object as content, which points to itself by reference. The anchor is marked as the
actual cell (no object is actual) and the invariants num and pos are implicitly set to their
zero values, i.e., to 0. Exactly this is the representation of an empty sequence.

We now demonstrate with two simple examples how typical pointer manipulations
are implemented.

An object is inserted into an unordered sequence by setting up a cell with a copy of it
as content, placing this cell before the actual cell, and incrementing num and pos by 1i.



The situation before is the one from Fig. 3.1, where the actual line is marked with A and
the following one with B.

An object is inserted into an unordered sequence by setting up a cell with a copy of it
as content, placing this cell before the actual cell, and incrementing num and pos by 1i.
The situation before is the one from Fig. 3.1, where the actual line is marked with A and
the following one with B.

Fig. 3.1 N is to be inserted before A

The following method is used for this, which causes the newly created cell N to be
inserted before the cell that x.actual previously pointed to:

It serves the construction of various other methods, including the method Ins:

Afterwards, we have the situation from Fig. 3.2.



Fig. 3.2 N is inserted before vor A
The removal of an object from a sequence presupposes that the sequence is not

empty and that the object to be removed is the actual one. We again denote the actual
cell with A and the following one with B and start from the situation in Fig. 3.3.

Fig. 3.3 A is to be removed

The actual cell is removed with the following method, which causes the cell that
x.actual previously pointed to, is no longer be contained in the sequence and
x.actual now points to the cell B, which x.actual.next previously pointed to

With this, we have the situation from Fig. 3.4, where B is now the actual cell and cell A
will eventually fall victim to Go’s garbage collection.

Fig. 3.4 A is deleted

The implementation of various methods has a linear complexity in relation to the
number of objects in the processed sequence, because the list of cells must be traversed.
Also, in the sorting method, which is based on the basic idea of Quicksort, the sequence
must be traversed in each recursive step to produce the two parts with smaller or larger
objects than the comparison object (the �irst from the sequence).

At this point, let’s leave it at these introductory remarks about the implementation of
sequences; the implementation of the other methods will not be discussed here because
they are basically trivial.

3.5.5 Stacks



One of the most important structures in computer science is that of a stack: a sequence in
which objects are stored and from which they are retrieved according to the “LIFO
principle” (last in, �irst out).

The microuniverse contains in the package stk the abstract data type Stack,
unlimited stacks of objects of atomic data types or of type Object. Here is its interface:

They are represented by sequences:

and the implementation of the constructor

and the methods are trivial: objects are only inserted and removed at the front (= “top”).

3.5.6 Buffers (Queues)
Equally signi�icant are buffers (also known as queues): sequences  into which objects are
inserted at the “FIFO principle” (�irst in, �irst out) only at the back and from which they
are only removed at the front.

The microuniverse contains in the packages buf and bbuf the two corresponding
abstract data types:

Buffer, unlimited queues, and
BoundedBuffer, limited buffers of predetermined (maximum) capacity

of objects of atomic data types or of the type Object.
The speci�ication of the buffers is the interface



There are two implementations of buffers, one with sequences and one with slices. Both
are trivial: When calling Ins(a), a is inserted after the last object of the collection, when
calling Get(), the �irst object is delivered and removed. The method Num does not
appear in the implementation with sequences, it is taken over by the used package seq
because the data type Sequence implements the type collector—a beautiful
example of my thesis of “inheritance at the level of speci�ications” (see Sect. 2. 2. 1. 2).

Exactly this is also shown in the speci�ication of the limited buffers, which “inherits”
all methods from Buffer:

For them too, there are two implementations: one in the “classic” form of a ring buffer in
the form of a circular �ield, and another one that relies on the buffers. Here is the
representation of the �irst:



Of the second, we show the complete implementation with reference to the above
remark:

3.5.7 Priority Queues
Under priority queues, are  understood, into which objects of different priority are lined
up and from which they are removed in descending order of priority.

The priority of the objects is de�ined by an order on them: smaller objects have higher
priority. Of course, this assumes that these objects implement Comparer.

The microuniverse contains in the packages pqu and bpqu again two abstract data
types:

PrioQueue, unlimited priority queues, and
BoundedPrioQueue, limited priority queues of predetermined (maximum) capacity.

and the limited priority queues through



The priority queues are represented as a heaps,  almost perfectly balanced binary trees,
whose lowest leaf layer is always �illed from the left and which ful�ill the heap invariant:

Every node has the property that the object in it is greater than or equal to the
objects in the root nodes of its two subtrees. The root of such a tree contains a largest,
i.e., highest priority, object.

The binary trees are implemented in a slice, where the positions of the child or parent
nodes are found by a simple index calculation:

The root has the index 1, the left or right child node of a parent node with the index i
has the index 2i or 2i+ 1; the parent node of a node with the index i has the index i/2.

The representation of the priority queues and the implementation of the constructor
look like this:

Insertion is done by appending to the last leaf of the lowest layer or—if it is full—
insertion as the �irst object of the layer below with subsequent “rising” by continuous
exchange with the node above, as long as the heap invariant is restored.

As an example, we show the insertion of 10 into the heap from Fig. 3.5.



Fig. 3.5 Heap with 12 numbers
The 10 is placed under the 5 on the right and then 5 and 10 are �irst swapped and

then 10 and 7. This restores the heap invariant and results in the heap in Fig. 3.6.

Fig. 3.6 Heap with 13 numbers

Here is the implementation of the insertion method:

When delivering the largest object from the root of the tree, it is removed by replacing
the root node with the last node in the lowest leaf layer and this node is deleted from the
slice. Then the new root node descends as long as it continues to exchange with the
larger of the two nodes below until the heap invariant is restored.

In our example in Fig. 3.6, this results in the heap in Fig. 3.7.
Here is the corresponding implementation:



The “descending” of the object from the root to the appropriate place is accomplished
with the following recursive method:

Both algorithms have the complexity O(log
2

n) for n = number of objects in the queue
due to the guaranteed near-perfect balance of the binary trees.

3.5.8 Sets
By sets we mean here fundamentally ordered sets.

Of course, unlike sequences, it is part of the concept that the objects in a set are
pairwise different from each other (for elements x and sets M, either x ∈M  or x ∉M

applies, i.e., in particular, for example, {x,x} = {x}). The microuniverse contains for
ordered sets the package set, which provides the abstract data type Set of atomic
variables or objects of the type Object:



Thus, all methods of the type Collector (see Sect. 3.5.1) are available for accessing
objects of the type Sequence.

For their implementation, it makes sense to construct algorithms with the most
optimal complexity possible when accessing the sets. Of course, search trees are suitable
for this, i.e., binary trees.

However, such trees can also—in the worst case, for example, when many elements
are inserted into an empty set in an ordered sequence—lead to completely linear
sequences, which counteracts their purpose.

Therefore, it must be ensured that all their nodes always have as equal as possible left
and right subtrees. A good criterion for “as equal as possible” is the concept of balance:

A node in a tree is called

balanced, if it either has no subtrees or the height difference between its left and right
subtrees is at most 1;
left-heavy, if its left subtree is higher than its right; and
right-heavy, if its right subtree is higher than its left.

To this end, we de�ine the type Balance:

This concept—the AVL trees—was introduced by Adelson and Velskij in their work [2].
They are de�ined as follows:

The empty tree is an AVL tree.
If L and R are AVL trees that differ by at most 1 in height, a tree with a root and with L
as the left and R as the right subtree is an AVL tree.

Adelson and Velskij developed algorithms that maintain the AVL property when
inserting objects into the trees and when removing objects. Because these algorithms are
now the standard for such constructions, they are also used in the implementation of the
set package.

The type of nodes in AVL trees is thus clear:



binary trees:

Thus, the representation of the data type looks like this:

The algorithms that maintain the AVL invariant when accessing an AVL tree are

when inserting an object into the tree, rotations and
when removing an object from the tree, functions for balancing.

We �irst deal with the insertion and present the necessary rotation algorithms using
simple examples.

If a 0 is inserted into the AVL tree from Fig. 3.7,

Fig. 3.7 AVL-Baum mit zwei Zahlen

the tree from Fig. 3.8 is created, which violates the AVL invariant.

Fig. 3.8 Tree with three numbers

But with a simple right rotation “around node 2” it can be restored again (see
Fig. 3.9):

Fig. 3.9 AVL tree with mit three numbers



A more complex example:

Fig. 3.10 AVL tree with 11 numbers

Inserting 0 into the AVL tree from Fig. 3.10 initially also results in a tree that is not an
AVL tree, because the height difference between nodes 4 and 11 is greater than 1. In this
case too, a right rotation helps, namely, around node 4, because its left subnode 2 is now
left-heavy. However, the node 6 must be “re-hung” because node 9 is now the right
subnode of 4—for this, the pointer to the left subnode of 9 becomes free. So the AVL tree
from Fig. 3.11 is created.

Fig. 3.11 AVL tree with 12 numbers

The implementation of the right rotation provides a pointer to the left child node y of
n which now moves to the position of n and gives its right child node as the left child
node to n:



In our example, the insertion of 0, case i) applies.
The left rotation rotL() is dual to rotR() in the sense that it arises from rotR()

by swapping left and right.
It becomes more dif�icult when an 8 is inserted into the tree from Fig. 3.10. This

initially results in the tree from Fig. 3.12—also not an AVL tree, because as in the
previous case the height difference between the nodes 4 and 11 is greater than 1.

Fig. 3.12 Baum mit 12 Zahlen

A simple right rotation around 4 as in the previous case does not help here, because
no AVL tree would result, because then node 4 would have a left subtree of height 2 and a
right one of height 4. In this case, the “repair” consists instead of two rotations: a left
rotation around 4 followed by a right rotation around 6. The result of this (double) left-
right rotation around 4 and 6 is the AVL tree from Fig. 3.13.



Fig. 3.13 AVL tree with 12 numbers
The implementation of this left-right rotation provides a pointer to the right child

node z of the left child node y of n, which has now moved to the position of n, whereby z
gives its left child node to y as a right child node, takes over y and gives its right child
node to n as a left child node:

We use the type pointer for pointers to nodes

only to avoid something like *(*node).
The right-left rotation rotRL() is again dual to rotLRL() in the above sense.
We now come to the implementation of the method Ins. If the set is empty, the result

is a set of only one element; otherwise



The recursive function ins called in the process

returns the pointer to the inserted node.
The variable increased—initially false—serves the purpose of passing on the

information whether the height of a node has increased, each time “one level” further up,
so that there—depending on the balance—it can be decided whether a rotation is
necessary, and if so, which one.

It is left as an exercise to convince oneself that

the cases marked with impossible cannot occur and
in the course of calling an Ins method at most one rotation is necessary.

To remove an object from a set, we consider the tree from Fig. 3.14, from which the
10 is to be removed.

Fig. 3.14 AVL tree with 12 numbers

The removal of 10 using the method common with binary trees, replacing it with the
largest object from the left subtree or the smallest from the right, giving preference to
the one of the two possibilities where the subtree has the greater height, leads to the tree
in Fig. 3.15.



But in this case, the AVL invariant is violated because the left subtree under 8 has a
height that is 2 greater than the right.

Fig. 3.15 Baum mit 11 Zahlen

In this simple case, we only need a left-right rotation around 3 and 5, which leads to
the AVL tree in Fig. 3.16.

Fig. 3.16 AVL-Baum mit 11 Zahlen

This example was simple insofar as only one rotation was needed. With larger trees,
restoring the AVL invariant can become considerably more complex, as several rotations
may be necessary and additional measures may need to be taken to balance any resulting
imbalances.

We now explain the implementation of the Del method. First, it must be checked
whether the object to be removed was the largest in the set. If that was the case, the
actual object is now the next smaller one, otherwise the next larger one. After that, the
object to be removed is removed using the method common with binary trees.



If this destroys the AVL invariant, it must be restored. This is done with the recursive
function del:



This function uses four other functions: rebalR for balancing, if the height difference
between two nodes has become greater than 1 and liftR for “lifting” a node, if one of
its parent nodes was lifted and therefore this place above it has become free, as well as
the dual functions rebalL and liftL.

Here are their implementations:

and



The following animation program shows (using the undocumented function Write) the
internal representation of sets in the form of AVL trees: It shows the effects of rotation
operations when inserting and removing elements in binary search trees to restore the
AVL invariant. It is used (for space reasons) for two-digit numbers.

The implementations of the so far unmentioned methods Empty, Clr, Offc, Num, Jump,
Eoc, Get, Put, Trav, Join, Ordered, and Sort are trivial. Surely you can implement
these methods without looking into the source codes of the microuniverse.



Also, the recursive methods Ex and ExGeq are—with a view to the recursive
structure of the search trees—easy to implement.

It is recommended to implement these methods as an exercise without looking into
the microuniverse. The somewhat more complicated method Step remains, but it is not
explained here because it is algorithmically uninteresting and rather belongs to the
category of “�iddling around”.

Why AVL trees are particularly well suited as search trees is clari�ied by the
examination of a special type of AVL trees—the Fibonacci trees—and by some
theoretical considerations in the following sections.

3.5.8.1 Fibonacci Trees
Fibonacci trees are recursively de�ined as follows:

F(n) =

The recurrence equation for the number of nodes of these trees in relation to the height
n is therefore

(1)

These numbers are called Leonardo numbers; they strongly resemble the Fibonacci
numbers in their structure.
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therefore due to l(0) = 1 for the node number l(n) depending on the height n
asymptotically

(4)

For the inversion, i.e., the calculation of the height n for a given node number k, we obtain
by logarithmizing
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By induction, it is easy to prove that Fibonacci trees

are AVL trees (because F(n) has the height n) and that they
have a minimum number of nodes for a given height (if a node is removed in the left or
right subtree, the height of the tree decreases by 1—in the �irst case after a simple left
rotation).

They are therefore in this sense the “worst possible” AVL trees, in that every AVL tree
of a given height has at least as many nodes as the Fibonacci tree of the same height—in
other words, an AVL tree cannot be taller than a Fibonacci tree with the same number of
nodes.

According to the considerations from the previous section, the height of an AVL tree in
the worst case is only about 44% greater than that of a best possible balanced tree with the
same number of nodes, i.e., in particular, logarithmic search time is guaranteed with them.

3.5.8.2 Explicit Representation of the Leonardo Numbers
The Leonardo numbers (number of nodes in Fibonacci trees) are recursively de�ined by

(1)

For n ≤ 0 the sequence

0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376,⋯

results.
By using two accumulators, this can also be formulated end-recursively:
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n

.
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1 + l(n− 2) + l(n− 1) for n > 0



With the formal power series (see Sect. 3.5.8.3)
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yields the equation

A(1 − bX)(1 −X) +B(1 − aX)(1 −X) + C(1 − aX)(1 − bX) = 1,

and from this with (4) by comparing coef�icients the linear system of equation (7)

(7)

with the solutions
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Substituting (6) into (3) in conjunction with the general geometric power series
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By substituting (5) and (8), we obtain the explicit representation of the Leonardo

numbers
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for all natural numbers n.

3.5.8.3 Formal Power Series
The manipulations of the power series in the previous section are justi�ied by the
following considerations.

For sets A and B, let AB denote the set of mappings from B to A. Let X be an
indeterminate (a symbol).

We consider the set M = N

2
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a commutative ring (proof by calculation).

A[[X]] is called the ring of formal power series over A.
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By induction, it can be shown that A[[x]] is free of zero divisors if A is; for a �ield A, the
quotient ring of formal power series (the ring of fractions of formal power series) is
therefore also a �ield, i.e., one can calculate with these fractions, e.g., over Q or R—just
like with numbers.

Finally, it should be noted that this construction includes that of a polynomial ring
A[X] in an indeterminate X over a ring A:

Replace H = N

{X} with N({X})where A(B) denotes for a ring A the set of mappings
from B to A that are almost everywhere 0, i.e., for which f(b) ≠ 0 only holds for �initely
many b ∈ B.

The fractionally rational functions over R thus form a sub�ield of the quotient �ield of
the formal power series R[[X]].

3.5.9 Persistent Sequences (Sequential Files)
Under persistent objects, we understand such objects to be that are permanently stored
on a data carrier, i.e., when a program that uses them is called, they have those values
that they had at the end of the last program run.

Their speci�ication differs from that of the collections only in that they have a
“handle” with which they can be found again: a uniquely identi�iable name in the
�ile system.

For this, we need the following interface, which is also located in the �ile
persistor.go in the package obj:

Persistent sequences are thus sequential �iles.
The microuniverse contains for persistent sequences of atomic variables or objects of

type Object the package pseq, which provides the corresponding abstract data type:



Their implementation consists of sequential �iles of byte sequences of the codelength of
the objects. The length of such a �ile is the product of the codelength of an object and the
number of objects.

The representation of a persistent sequence

requires the internal abstract data type

which encapsulates the accesses into the �ile system.
Behind the implementation of this data type, the classic concept of accessing

sequential �iles shines through, as realized by Niklaus Wirth in Pascal (with a view to the



historical situation: tapes as peripheral data carriers) with the operations Reset,
Rewrite, Read, Write, Eof, and Seek.

The implementations of the methods are not explained here because there are no
interesting algorithms behind them. For the same reasons as with the sequences (see
end of Sect. 3.5.4, many algorithms here also have linear complexity.

3.5.10 Persistent Index Sets
Consistently, this section should deal with persistent sets. For this, there is a good data
type: that of the B-trees of Bayer and McCreight (see [4]).

Instead, we present a concept here that carries much further: the persistent index sets.
These are persistent sets, on whose elements can be accessed directly via a key.

We require that the objects in the persistent sets implement the type Object and
that the keys either have an atomic type with an order relation or implement the types
Equaler and Comparer.

The function that assigns a key to an object must be injective, i.e., different objects
must have different keys, so that the search for an object via a key provides a unique
result. We call this “key function” Index (hence the name for the data type).

Objects that have such keys, we call Indexer. They implement the interface

in the �ile indexer.go in the package obj.
Here are some examples: The index

of a person in an address directory with various information is the pair consisting of
the person’s name and date of birth (where, if necessary, identical names must be
differentiated by nicknames);
of a book in a book directory is the tuple of title and author[s]; and
of a page in a diary is the calendar date of the page.

The microuniverse contains for the persistent ordered sets of objects of type Object
with index the package piset, de�ined by the interface:



These sequential �iles (of constant size byte sequences) are equipped with index trees
and a position management system.

The basic idea in the implementation is the management of the keys to the objects
together with their positions in the �ile in a (non-persistent) set set.Set. This has a
major advantage:

The position of an object can be quickly found via its key (see last sentence in
Sect. 3.5.8.1), where the search takes place in memory,
and thus direct access to the object in the �ile is possible.

The pairs of key and associated �ile positions form a data type that is housed in a
subpackage of piset:

The representation of such a pair and the implementation of the constructor is simple:

With this, we have the representation of the data type:



The type Func stands for

value-delivering functions with one argument.
The constructor is implemented as follows:

During the course of a program in which piset is imported, the underlying �ile
pseq.PersistentSequence, if it is not empty, is traversed at the beginning, with the
following happening:

If the object at the relevant position in the �ile is empty, the actual position is inserted
into the buffer of free positions;
otherwise, by applying the key function Func passed in the constructor, the key is
calculated and inserted into the key set set.Set together with the current
position.

This happens when identifying the �ile by its name:



The disadvantage that this delay brings with it is more than offset by the aforementioned
advantage.

An object is inserted into the �ile by inserting its key and its position in the �ile into
set.Set. If the buffer buf.Buffer of free positions is not empty, the object encoded
as a byte sequence is written into the �ile from the position read from the buffer,
otherwise it is appended to the end of the �ile.

Here is the implementation of the method Ins:

An object is removed by fetching (and thereby removing) the pair of its key and its
position in the �ile from set.Set, then a byte sequence representing an empty object is
placed from its �ile position, and �inally this position is inserted into the buffer.

Here is the implementation of the Del method:



and here is the implementation of the Get method for reading the actual object:

The implementation of the other methods is trivial; they ultimately always rely on the
same principle of directly accessing the objects in the �ile via the key set set.Set.

3.5.11 Graphs
Graphs play an important role for many applications; typical examples are

subway or bus networks with stations or stops as nodes and
the connections between them as edges.

or

maps with cities as nodes and
the roads between them as edges.

Figure 3.17 shows an example.



Fig. 3.17 Example of a graph
The microuniverse contains in the package gra the abstract data type Graph, graphs

of objects of atomic data types or of type Object
The number of nodes in graphs can be arbitrarily large—within the available

memory resources—the number of edges is also not limited.
The topic “graph algorithms” is so comprehensive that it �ills books.
Some of them are implemented in the graph package, e.g.:

for searching for the shortest connection between two nodes (main purpose of
navigation devices);
for searching for circles (chains of connections with the same starting and ending
node), thus also for investigating whether there are any circles in a graph at all;
for searching for Euler paths (chains of connections that reach each node exactly
once);
for searching for minimal spanning trees indexspanning tree (subgraphs from all
corners in the form of a tree).

The package is used in the projects:

Robi, the robot (Chap. 5).
Railway (Chap. 14).



Berlin U- and S-Bahn (Chap. 16).
The speci�ication is quite long for obvious reasons:































The representation of the abstract data type Graph and the constructor is quite
complicated:









The suggested algorithms are also very complex; their representation would go far
beyond the purpose of this book.

3.6 Additional Data Types from the Microuniverse
Many packages from the microcosm are not presented in this book; these include those

that implement number types (natural, whole, rational, and real numbers), numbers of
any precision, mathematical terms as well as vectors and matrices;
that provide “common types” such as short strings, calendar dates, times, amounts of
money, and nations;
that deal with two- and three-dimensional �igures needed for graphics programs—also
with the use of OpenGL;
that deal with graphs and their vertices and edges; and
that are necessary for the synchronization of concurrent processes, which access shared
resources.

The last two points are extensively covered in my textbook [1].

References
1. Maurer, C.: Nonsequential and Distributed Programming with Go. Springer Vieweg (2019). https:// doi. org/ 10. 

1007/ 978-3-658-26290-7
2.

Adelson-Velski, G.M., Landis, J.M.: An algorithm for the organization of information. Sov. Math. 3, 1259–1263 (1962).
English Translation of the Russian Originalarbeit of Ricci, M.J.: http:// monet. skku. ac. kr/ course_ materials/ 
undergraduate/ al/ lecture/ 2006/ avl. pdf

3.
Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4, 25–30 (1965)

4.
Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered indices. In: Proceedings of the 1970 ACM
SIGFIDET (Now SIGMOD) Workshop on Data Description, Access and Control, pp. 107–141 (1970). https:// doi. org/ 
10. 1145/ 1734663. 1734671

https://doi.org/10.1007/978-3-658-26290-7
https://doi.org/10.1007/978-3-658-26290-7
http://monet.skku.ac.kr/course_materials/undergraduate/al/lecture/2006/avl.pdf
http://monet.skku.ac.kr/course_materials/undergraduate/al/lecture/2006/avl.pdf
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/1734663.1734671


Part II
The Projects



(1)

 

© The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of
Springer Nature 2025
C. Maurer, Object-based Programming with Go
https://doi.org/10.1007/978-3-658-44704-5_4

4. General

Christian Maurer1  

Berlin, Germany

 
Christian Maurer
Email: christian@maurer-berlin.eu

Programming is always extending a given system.
Niklaus Wirth

From Modula to Oberon,
Software–Practice and Experience 18 (1988), 661–670

Abstract
This chapter explains what we understand by a teaching project and
what to pay attention to in them when working in the phases of the
software life cycle.

All projects are structured in principle according to the scheme given in
the �irst chapter:

System analysis.
System architecture.
User manual.
Construction.

The prerequisite for the installation of the teaching projects is the
installation of Go and the microuniverse.

You can �ind instructions for installing Go on the web at
https://maurer-berlin.eu/go.

https://doi.org/10.1007/978-3-658-44704-5_4
mailto:christian@maurer-berlin.eu


You can obtain the microuniverse by downloading the �ile μ U from
the page https://maurer-berlin.eu/mU, move it with

mv μU. tgz go/src

into the subdirectory go/src of your home directory, go there with

cd go/src,

unpack the microuniverse with

tar xfzv μU. tgz,

and install it with

go install μ.

With the call μ Uou can check if everything worked.
The source texts of the projects are in the net under

https://maurer-berlin.eu/obpbook in the �ile o2.tgz
abgelegt. If you have downloaded this �ile von Ihrem Heimatverzeichnis
aus move it with

mv o2. tgz go/src

into the subdirectory go/src, go there with the command

cd go/src,

and install them with

tar xfzv o2. tgz.

This will create the subdirectories rob, robi, robtest, todo, life,
regtest, epen, mini, books, inferno, lsys, bahn, rfig, and
bus, in which the source texts of the jeweiligen projects are
untergebracht.



4.1 Teaching Projects
We understand a teaching project to be a small project that is developed
for educational purposes in a school or university.

There are fundamental differences between the commercial
development of an IT system and a teaching project. They essentially
consist in the fact that

there is no real “market situation”, but rather the character of a
teaching and learning situation;
the participants therefore have more room for design;
only preliminary experiences in small-scale programming are
available;
the participants work in problematic—fundamentally incompatible
—multiple roles, whose tasks in the commercial situation are
performed by different people, namely, as

– learners (with limited and usually not yet stabilized knowledge),
– system analysts,
– system architects,
– designers, and
– end users or users;

there is a contradictory tension between

– necessary complexity for studying typical problems of large-scale
programming and

– suf�icient didactic reduction;

the size of a teaching project is orders of magnitude below that of a
commercial project due to limited time resources; and
an expansion of development capacities (e.g., through overtime or
the use of additional employees) is excluded.

The following theses result from this for the management of a
teaching project:

The topic must not be more comprehensive than the detailed
examination of a subtask in system analysis.
The user manual must not degenerate into de�ining the many
interesting ideas that cannot be achieved.



The speci�ications must not be less rigid than the participants have
learned in small-scale programming.
The implementations must be possible based on the participants’
prior knowledge.
The project management must limit the task to such an extent that it
can guarantee the feasibility of the project, i.e., that

– they have the “project” running at least as a prototype that
includes the essential aspects beforehand,

– the work can largely rely on existing things, and
– it is ensured that the participants master these parts to the extent

necessary for the work.
It is essential that the participants always have a thorough

knowledge of all available partial results: It is repeatedly shown in
teaching projects that suddenly individual paths are pursued that do
not correspond to the speci�ications of earlier phases.

4.1.1 System Analysis
The effort for system analysis should usually be kept within narrow
limits: The time for deeper elaboration of specialized knowledge is not
available and the focus of work in a teaching project should be on
informatics issues, even if interdisciplinary or cross-curricular aspects
play a role. System analysis in a teaching project can therefore only be
understood as a factual analysis of a didactically reduced topic.

To avoid lengthy and unproductive discussions about potential
project topics, the topic should be given—if necessary from a well-
prepared selection—so that the participants’ scope for design is
concentrated on the analysis of some object classes and the elaboration
of suitable aspects of the task.

In any case, not only the treatment of a new topic, but always also
the further development of an existing, well-documented system
should be considered, because many of the problems mentioned are
solved in a quite natural way.

In this �irst phase, beginners often underestimate the complexity of
the problems to be solved due to their lack of experience, which leads
to their expectations of the magnitude of what can be achieved being
rarely realistic.



The project management is therefore responsible for estimating the
volume of work to be done and thus for calculating the time and
personnel resources and their compliance. The planning of unavoidable
restrictions is also part of their tasks, as beginners cannot be expected
to foresee possible subsequent problems. They must make appropriate
considerations in advance of the investigation of suitable topics and
ensure that they are taken into account in the task.

Therefore, they must necessarily

thoroughly investigate topics that are fundamentally suitable for a
teaching project for their usability in advance;
adjust the complexity of the topic to the knowledge to be assumed of
the participants;
ultimately determine the selection of the topic;
strongly guide the details of the task;
provide selected parts—fully implemented and documented—to an
appropriate extent, so as not to let the participants “reinvent the
wheel” every time;
systematically train the use of these parts; and
continuously clarify the effects of participants’ suggestions during
system analysis—if necessary by prototypical work on design and
realization.

In addition to the demand for a reasonable manageability of the
topic (small topic, even smaller topic, even smaller, much smaller, even
smaller), a certain minimum complexity is indispensable to
demonstrate typical principles and methods of software engineering
and to convey insight into their necessity:

inclusion of a structure of the involved objects nested over at least
three levels, which is branched at at least one point, to achieve a non-
trivial depth and branching in the system architecture,
exemplary creation of reusable components that can also be used for
other purposes, as well as
consideration of the possibility of alternative implementations of
certain components.

4.1.2 System Architecture



There are no speci�ic peculiarities of teaching projects in this phase that
go beyond what is postulated in Sect. 1. 1. 2.

The question of how to start the actual programming activity, which
is very dif�icult for beginners according to experience, is solved in this
phase, because it shows in the work how astonishingly simple the
system architecture of the system results from a system analysis, the
strictly oriented towards the objects of a system.

4.1.3 User Manual
The considerations of how the planned system should present itself to
the users, especially questions of ergonomic operation, are tedious and
time-consuming; they are often controversially discussed and their
necessity is not always recognized at the beginning of the work.

It is mandatory for each component used to specify the semantics of
the data objects and the complete and contradiction-free
speci�ication of all access operations they are often controversially
discussed, stating all prerequisites and effects. As a rule, clean
colloquial formulations are suf�icient for this.

The implementations of the representation of the data types and the
access operations in the components are based on the knowledge
acquired in small-scale programming, which may need to be
supplemented or expanded by studying the relevant literature. This
also serves to secure and exemplify the deepening of the corresponding
skills and abilities.

If design errors become apparent during the implementation of a
component (usually in the form of incompleteness or lack of clarity in
its speci�ication), the speci�ication is corrected in agreement with all
involved clients—in any case only after consultation with the project
management—and its implementation is adapted to the changes. A
prerequisite for system integration is of course the systematic test of
the developed components as part of the construction.
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keep going:
If not yet at the edge of the world, then

move one place further and
keep going

Abstract
The program presented here was used in the teacher training course in
computer science at the Free University of Berlin at the beginning of the
lecture on imperative and object-oriented programming to make the
transition from the functional to the imperative paradigm as smooth as
possible—through the basic idea of variable-free programming.

Robilanguage is a very simple language that is suitable for developing
the basic concepts of imperative programming.

The signi�icance of this concept lies in the

variable-free introduction to structured programming:

– without any baroque feature of any imperative language (i.e., in
principle without a de�initive commitment to a speci�ic language
paradigm);

– therefore easy to learn, but still immediately at the heart of
computer science, i.e., dealing with typical computer science

https://doi.org/10.1007/978-3-658-44704-5_5
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problems;
– with a wealth of possible exercises that can also be solved with

“pencil and paper”;
– the use of computers is limited to the “experiment” to con�irm or

refute theses;
therefore, working on the computer consists only of short periods of
time.
speci�ication of methods/functions:

– precise speci�ication (in the form of static state descriptions) of the
preconditions for their call and the effects after their execution.

recursion:

– as a central language tool of every programming language (besides
sequence and case distinction);

– before the introduction of iteration, i.e., dealing with the different
types of loops  (pre-testing, post-testing, counting).

Introduction of parameters in methods/functions:
Concept of components:

– for using services only through their speci�ication according to the
principle of secrecy, i.e., without disclosing their implementation;

– here using the example of the programming language Go, which is
excellently suited for this due to the possibility of strict textual
separation of speci�ication and implementation.

depth-�irst search:

– in connection with algorithms for backtracking.
The problem is to have Robi move around in this block world

according to certain rules, and to have him lay down, pick up, move, or
count blocks according to certain principles, or to block squares by
walling them up.

Since there are no limits to the imagination for inventing exercises
that Robi should solve, and for rules that he must apply, there is an
inexhaustible �ield of exercises, which is excellently suited both as
motivation for getting started in various aspects of computer science
and for introducing demanding concepts.



5.1 System Analysis
Robi is a “robot” that “lives” in a rectangular world made of
checkerboard-arranged squares. He always stands on one of the
squares and looks in one of the four cardinal directions. Robi can turn
90 degrees to the left or right and take a step (i.e., move one square) in
the direction he is looking (unless he is already at the edge of his
world). Therefore, in principle, every square in the world is accessible
to him.

On each square, one or more blocks can be placed. Robi carries a bag
of blocks with him. He can place a block from his bag onto the square
where he stands, put (as long as he still has blocks) or take a block from
any square where he stands, remove it, and put it in his bag (as long as
there is still one there). He is therefore able to occupy any squares in
the world (within the scope of his available blocks) with blocks.

Robi can mark squares and also remove the markings, so he is able
to remember where he has already been. This allows him to search
speci�ically (depth search!). Robi can also wall up squares so that they
are no longer accessible, and remove the walls again.

In addition, Robi can also push blocks (if the square behind is
empty). Therefore, you can also let Robi play sokoban, provided, you
have thought up appropriate worlds and created them with the robi
editor (see below).

The problem is to have Robi move around in this block world
according to certain rules, and to have him lay down, pick up, move, or
count blocks according to certain principles, or to block squares by
walling them up.

Since there are no limits to the imagination for inventing exercises
that Robi should solve, and for rules that he must apply, there is an
inexhaustible �ield of exercises, which is excellently suited both as
motivation for getting started in various aspects of computer science
and for introducing demanding concepts.

5.2 The Robi Language
The robi language consists of 



statements

– TurnLeft
– TurnRight
– Run
– RunBack
– PickUp
– PutDown
– Push
– Mark
– Unmark
– WallUp
– WallDown

predicates

– InUpperLeftCorner
– AtEdge
– Empty
– NeighbourEmpty
– HasBlocks
– Marked
– NeighbourMarked
– InFrontOfWall

and a counting function

– NumberOfBlocks
as well as composite instructions

Sequences ... ; ...
case distinctions if ... {...} else {...}

5.3 System Architecture
It is very �lat, there is only one abstract data type, the robot, and the
abstract data object in the package robi.



5.4 User Manual
There are the three programs mentioned above, which will be
introduced in the following.

5.4.1 The Robi Editor
With the program robiedit, a new robot world can be created and an
existing one can be modi�ied. The name of the world can be given as a
parameter to the program call; without a parameter, it is named
“World” (the world �iles have the suf�ix .rob). Robi’s place and his
direction are evident from the direction of the �igure. Robi performs the
following actions when a command key is pressed:

Arrow key ▲, ▼, ◀ or ▶: If this is the key in the direction of his view,
he runs one space further, otherwise he changes the direction of his
view in the direction of the arrow. Beforehand, it must be checked
whether he is standing at the edge of the world and whether the
space in front of him is walled up.
Insert key Ins: If Robi still has a block in his bag, he places a block in
his space.
Del: If there is a block in Robi’s space, he picks it up and puts it in his
bag.
Enter key : If there is a block in the space in front of Robi and the
space behind it is free, he pushes the block into that space and stands
there.
Backspace key : The last action is undone.
Pos1: If the space in front of Robi is free, he walls up his space and
stands on it.
End: If there is a wall in the space in front of Robi, he tears it down
and stands on that space.
F5: Robi marks his space.
⇆: If the space where the mouse pointer is pointing is free, a robot is
placed there; if there is a robot there, it is removed from the world.
F6: If Robi’s space is marked, the mark is removed.
F1: The key assignment for control is displayed.
Esc: The program is terminated. (Robi’s world is available in its
current state at the next program run under the same name.)



5.4.2 The Robi Protocol
The program robiprog:

Operation like robiedit, furthermore
a protocol is generated in the form of a program �ile, i.e., all editing
steps are logged in the form of a source code for a Go program. It is
important to ensure that the generated program is started with the
same state of the world with which Robiprog was started (because
the world was changed with Robiprog).

5.4.3 Robi-Sokoban
The program robisoko:

Operation: greatly simpli�ied version of Robiedit, suitable for
playing Sokoban (= pushing all blocks onto the (same number of)
marked places in a world like, for example, Sokoban1).

5.4.4 Robot Race
In the program robrace, as many robots race two “rounds” as were
given as parameters to the program call (at least 2, at most 24). The

key must be held down until the race is over.

5.4.5 General Procedure

A Robi program, i.e., a program using the package robi, is written.
It is translated and linked with the call “go install”.
Step by step executed with .
Terminated with Esc.
In case of problems, aborted with the combination Ctrl C.

5.5 Construction
Here is the speci�ication of the robot package rob:













The “Robi” is the abstract data object robi; it consists of an instance of
an object of type Robot; and its speci�ication is thus quasi-identical with
a part of the speci�ication of the package rob:



5.6 Exercises
Sought are variable-free and recursive implementations

of the following problem of the “pliant guard” by Nievergelt (see [1]):
The world houses a medieval city. This is protected by an

arbitrarily complex city wall. Robi starts within the city wall and is to
patrol along the wall forever as a reliable guard, in such a way that he
could always touch the wall with his right hand, if he had one. The
city is available as Robiworld under the name city.
of the following more challenging set of problems: Robi is to be in a
given world (also with walls)

– �ind a block in a maze (the maze is available under the name
maze),

– �ind all blocks in a maze and count them.



Note: This is the algorithm of depth-�irst search by
backtracking; for this, it is necessary to mark all already visited
places.

After introducing the concept of variables and iteration through
loops, for all exercises

the iterative versions of all recursive function calls

are sought. You can compare your solutions with the sample solutions
given in the next section.

Figures 5.1 and 5.2 show the city from the �irst exercise and the
maze from the second exercise.



Fig. 5.1 The city from the �irst exercise



Fig. 5.2 The maze from the second exercise with 13 blocks

5.6.1 Sample Solutions
5.6.1.1 First exercise





5.6.1.2 Second Exercise

Reference
1. Nievergelt, J.: Roboter programmieren - ein Kinderspiel. Informatik-Spektrum, Heft 22, 364–

375 (1999)
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Yes, just make a plan,
be just a great light!

And then make a second plan,
both of them won’t work.

Berthold Brecht
From The Threepenny Opera

Abstract
This educational project focused on creating a personal scheduler with
the aim of being able to enter, modify, delete, reschedule, and copy
appointments. With the help of a suitable keyword system, it should
also be possible to speci�ically search for all appointments in which
these keywords appear.

Two consecutive courses of teacher training in computer science at the
Free University of Berlin dealt with this topic. The task was to construct
an “electronic” appointment calendar for managing the appointments
of a single person and to be able to �ind appointments with certain
keywords in it. Particular emphasis was placed on ergonomic design—a
clear presentation and easy operability.
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6.1 System Analysis
In this section, we present the results of the investigations on which
objects appear in the appointment calendar.

6.1.1 Calendar Pages
For reasons of clarity, all appointments of a day should be ordered
chronologically and be comprehensible at a glance, i.e., they must be
accommodated on one screen page. This—day-oriented—summary of
appointments is referred to as a calendar page; the appointment
calendar is then a sequence of these calendar pages. The actual calendar
page is always the one that is currently visible on the screen.

A calendar page consists of

a calendar date,
a day attribute, and
the sequence of appointments of the respective day.

A calendar page is accessed via its date. In addition to the date, the
respective day of the week and possibly the day attribute are output.

The entry, modi�ication, and deletion of appointments take place
within the calendar pages. New appointments are always entered in the
�irst free line of a calendar page. To avoid a rather confusing unrest on
the screen, newly entered appointments are only sorted chronologically
when the same calendar page is called up again.

6.1.2 Day Attributes
The day attributes serve the purpose of being able to quickly overlook
certain days or periods in the appointment calendar. They should be
indicated by a short text or the visual highlighting of the corresponding
calendar dates.

You can con�igure any day attributes by creating the text �ile
dayattributes.cfg in the subdirectory .todo of your home
directory, in which you line by line deposit the words for the day
attributes that you need. The �irst line must be “keyword”. Example:



The name dayattributes.cfg is mandatory, unless you change the
source code of the program.

6.1.3 Sequences of Appointments and Appointments
The appointments of a calendar page should be listed in chronological
order, including simultaneous appointments. Appointments without a
time indication should be at the beginning of this order, as they are non-
time-bound references to special events such as birthdays. The other
appointments are sorted by time; if there are multiple appointments at
the same time, they are sorted by appointment attributes, possibly by
keywords or texts.

An appointment consists of

a date,
a time,
an appointment attribute,
a keyword, and
a text.

The date of an appointment is given by the day of the calendar page
in which it appears.

Appointments can be classi�ied by appointment attributes to enable
users to set priorities in planning and attending their appointments
and to facilitate the management of appointments of a certain category
and the search for them.

The appointment attributes in the appointments of a calendar page
are represented by [abbreviations of three characters, preferably with
different initial letters. You can con�igure any appointment attributes by
creating the text �ile appointmentattributes.cfg in the
subdirectory .todo of your home directory, in which you list the
abbreviations for the appointment attributes you need, line by line.
Example:

for work, for birthday, and for private. The name
appointmentattributes.cfg is mandatory.



The length of the text of an appointment is designed to
accommodate as many characters as will �it on one line of the screen
with all components of the appointment.

Since in a unstructured text, keywords cannot be easily identi�ied as
such, the text is divided into a short keyword as a search term and the
other—not further structured—information to facilitate the search for
speci�ic appointments. The search is also conducted for parts of the
keyword and regardless of case, to �ind, for example, “Conf” as well as
“Soc.-Conf.” or “Subject conference”.

For the “transport” of appointments between different calendar
pages, a storage—an invisible buffer area—is provided.

Appointments of a calendar page can be copied into the storage (and
also deleted from the calendar page) or inserted from the storage into
the current calendar page, as long as there is still space (while the
content of the storage remains).

This allows appointments to be moved to any day or copied to
multiple calendar pages, e.g., for easy entry of recurring appointments
at the same times.

6.1.4 Annual Calendar
For a quick overview, an annual calendar can be displayed for each date,
grouped by months, with the day numbers in columns side by side each
week in each month. Such an annual calendar can be displayed in a
rectangle of 25 lines and 80 columns, which determines the size of the
screen.

In it, the Sundays and holidays are easily recognizable. Figure 6.1
shows it.



Fig. 6.1 The annual calendar with entered vacation times
The annual calendar is also used to call up the calendar pages:

exactly one day in it must be marked in a clear way as the actual day.
This marking, i.e., the current day, can be moved at will.

A control system is provided for selecting a date, which is
determined by the temporal structure of the year: It is possible to jump
between calendar dates by day, week, month, quarter, and year.

6.1.5 Monthly and Weekly Calendars
For a rough overview of the appointments of a month, a monthly
calendar should be able to be output, in which the days on which
appointments are entered are displayed with references to all
appointment attributes occurring on them.

the Sundays and holidays,
the days with set attributes, and
the days on which sought appointments were found.

For a somewhat more precise overview of the appointments of a
week, a weekly calendar is also provided. With a division of the screen
into seven columns—which is obvious in view of the appearance of the



calendar pages—there is room in it for each appointment’s time and a
(suf�iciently short) representation of its appointment attribute.

The actual day can be set in these calendars as in the annual
calendar.

In the business world, appointments tied to weeks are de�ined by
the week number, which is also output in these overviews (according to
DIN 8601, the 1st week is the one in which the �irst Thursday of the
year falls).

In them,

the Sundays and holidays,
the days with set attributes, and
the days an denen gesuchte appointments

should be easily recognizable through optical highlights, which clearly
differ from each other for each of these groups. This makes the
particularly important days or periods for the users immediately
readable at a glance.

However—apart from the holiday attribute—only one day attribute
is displayed at a time, so as not to confuse by overlaying too many
pieces of information. It should be possible to switch cyclically between
the con�igured day attributes in order to overlook the various
attributed periods one after the other.

The actual day attribute can be set and deleted for each day, because
this is considerably more practical for periods than doing it day by day
in the individual calendar pages.

6.1.6 Appointment Calendar
For obvious ergonomic reasons, the representations of the different
calendars on the screen (e.g., days in columns by week, appointments
one below the other) are largely adapted to each other, i.e., the optical
highlighting of Sundays and holidays and the day attributes should be
the same in all cases and the basic operation of the system when
switching between annual, monthly, and weekly calendars and when
manipulating the day attributes should be uniform.

After calling up the program, the annual calendar should be shown;
the actual day is the system date of the used computer. From there the



monthly calendar, then the weekly calendar, and �inally a calendar page
are switched to and vice versa.

The actual day remains actual until it is not changed, i.e., for
example, it is possible to �lip forward and backward through the
appointment calendar at the level of the calendar pages. This also
facilitates the transfer of appointment entries, for which the direct
switching option between different days is needed.

6.1.7 Search for Appointments
From the monthly or weekly calendar, a search term can be entered. If
this search term is part of a search word in an appointment, the search
word is conspicuously marked on all calendar pages with these
appointments and in the weekly and monthly calendars, conspicuous
marks are set on the days on which such an appointment exists.

6.2 System Architecture
6.2.1 The Objects of the System
Each of these objects forms a data type, which is “packaged” in a
package. Thus, we have the packages

day for calendar data,
clk for times,
todo/attr for the appointment attributes,
todo/word for the keywords,
text for the texts,
todo/appt for the appointments,
todo/appts for the appointment sequences,
todo/dayattr for the day attributes,
todo/pdays for persistent sets of calendar data,
todo/page for the calendar pages, and
todo/cal for the sequence of calendar pages.

6.2.2 Component Hierarchy
These packages depend on each other as shown in Fig. 6.2, where the
lower package is used (imported) by the one above. The packages day,



clk, and text are components of the microuniverse.

Fig. 6.2 System architecture of the appointment calendar
The packages day, clk, and text are components of their

microuniverse. At lower levels, many other packages are needed, which
due to their universal usability are also components of the
microuniverse and which we introduced in Chap. 3:

box for input/output �ields,
seq for sequences,
pseq for persistent sequences,
set for sets, and
piset for persistent sets.

6.3 User Manual



After the categorization in the third paragraph of Sect. 1. 1. 3 about the
user manual, it consists of two parts:

the speci�ication of the formats of the objects that appear on the
screen and
the system operation.

6.3.1 Formats
In this �irst part, the formats of all objects are de�ined. The
corresponding speci�ications are completely independent of the control
of the system, which is described in Sect. 6.6.2.

For calendar dates, the formats Dd, Dd_mm_, Dd_mm_yy, Yyyy, Wd,
WD, M, and WN are used (see speci�ication in μ U/day/def.go).

Times consist of hours and minutes, separated by a dot; the
“timeless” time is represented only by spaces.

6.3.1.1 Appointment Attributes
Appointment attributes have two formats:

the long format consisting of three characters or
the short format, only the initial letter of the long format.

The reason for this decision lies in the formatting of the weekly
calendar (see Sect. 6.5).

The use of the short format requires that the appointment
attributes all must have different initial letters.

If you have con�igured the appointment attributes as in Sect. 6.1.3,
their initial letter is suf�icient for input (see above). Spaces mean
renunciation of the speci�ication of an appointment attribute.

6.3.1.2 Keywords
A keyword is provided with 12 characters.

6.3.1.3 Texts
The text of an appointment can be 56 characters long, because out of
the 80 characters of a screen line, 5 are used for the time, 3 for the
appointment attribute, 12 for the keyword, and 4 spaces for separation
and ending.



6.3.1.4 Appointments
From the previous considerations, it follows that all attributes of an
appointment, separated from each other by a space, �it into a screen
line with 80 characters. This allows a good 20 appointments to be
accommodated one below the other on a screen with 25 lines, which
optimally guarantees the demand for clarity.

For the representation of an appointment in the weekly calendar, 9
characters remain (on a screen with 80 columns): (7 days per week
side by side, 2 spaces for horizontal separation).

Therefore, two formats are provided for appointments:

the long format with all attributes, each separated by a character,
with a width of 79 characters and
the short format only with time and appointment attribute directly
next to each other (distinguished by colour) in a width of 9
characters.

6.3.1.5 Day Attributes
Day attributes are displayed in two formats:

as a word with up to eight letters or
by colour highlighting the relevant calendar dates with a different
background colour.

In the annual, monthly calendar, and weekly calendar, the word of
the actual day attribute is output in the last screen line and the
calendar dates of the relevant days are colour-marked. When searching
for appointments (see Sect. 6.6.1), the day attribute “keyword” is actual.

6.4 Calendar Pages
The structuring of the calendar page on the screen results from the
previous considerations:

In the �irst line on the left edge is the weekday of the actual date,
behind it the actual date in the format Dd_mm_yyyy, in the middle the
day attribute of the relevant day and below it, separated by a blank line,
in the 3rd to 23rd line, the sequence of appointments, consisting of 21
appointments in long format.



The last screen line remains free for instructions for use or error
messages.

6.5 Weekly Calendar
The weekly overview consists of the appointments of a week in short
format (see Sect. 6.3.1.4), column-wise for all days of the week side by
side.

The appointments of each day are listed one below the other; each
column is headed with the date of the respective day in the format Wd
Dd_mm_.

In the �irst row, the year is displayed on the left and right outer
sides, and the week number (date in the format WN) is in the middle.

In the middle of the last screen line, the word of the actual day
attribute is displayed; the calendar data of the respective days are
highlighted in colour.

6.5.1 Monthly Calendar
The monthly overview consists of the calendar data of the month in the
format Dd_mm_, column-wise from Monday to Sunday; on the right and
left at both screen edges—matching in the respective row—the
weekdays are in the format Wd.

In the row below, there is a string that consists of the sequence of
the appointment attributes occurring on this day in the short format
(see Sect. 6.7.2).

In the �irst row, the year is displayed on the left and right outer
sides, and the month name (date in the format M) is in the middle; the
actual day attribute is displayed as in the weekly calendar.

6.6 Annual Calendar
The annual calendar �its on a screen with 25 lines and 80 columns:

When displaying the weeks column-wise in the format Dd, 8 lines
(month name and 7  d per week) are needed for a month block with a
maximum of 6 weeks (e.g., �irst of the month on Saturday, last on
Monday) 6 times 3 columns are needed (2 digits for the day and a



space). This results in a display in the form of 3 times 4 month blocks
side by side, for which 24 lines and 72 columns are needed.

In the upper left corner of the screen, the year is displayed; on the
left and right screen edges, the abbreviations of the weekdays are
displayed in the format Wd. The current day attribute is displayed as in
the weekly calendar.

6.6.1 Search and Search Results
The search term, which the appointment calendar is searched for, has
the same format as the keywords. The corresponding �ield is located in
the weekly, monthly, and annual calendar next to the word of the
current day attribute in the last screen line.

After entering a search term in the weekly, monthly, or annual
calendars, the search results appear, i.e., those days on which
appointments are entered, in whose keyword the search term is
contained, are highlighted in the calendars in the same colour as the
days of certain day attributes; in addition, the search words in the
corresponding appointments are highlighted in colour (this
highlighting remains when switching to the daily calendar).

Consequently, during the search, the current day attribute is reset to
“search word” so that the highlights are clear.

6.6.2 System Operation
This second part describes how the appointment calendar is controlled
by users.

At the start of the program, the annual calendar is shown. The
screens can be cycled through in the order

1) Year,  
2) Annual calendar,  
3) Monthly calendar,  
4) Weekly calendar, and 



5) Calendar page  
you can move one step forward with and one step back with Esc—
with the exceptions that at 1) the program is exited with Esc and that at
5) it does not continue with . In cases 1) to 4) the cursor blinks in
the �ield for the actual date; it can be changed, after which the screen is
updated to the year, month, week, or day that was entered.

At the beginning, no day attribute is current.

6.6.2.1 Year
The screen is empty except for the year of the actual year.

6.6.2.2 Annual Calendar
The screen displays the overview calendar of the current year. With the
following commands, the system remains on the annual calendar:

▼: The actual day is increased by one day, in combination with ⇑ or
Ctrl by 1 week and with Alt by 1 year.
Page↓: The actual day is increased by 1 month, in combination with ⇑
, Ctrl or Alt by 1 year.
▶: The actual day is increased by 1 week and in combination with ⇑
and with Alt by 1 month.
▲, ◀, Page↑: Analogous to ▼, Page↓ or ▶, but in reverse time.
Pos1: In combination with ⇑ or Ctrl, the actual day is the Monday of
the current week, in combination with Alt it’s the �irst of the actual
month.
End: Analogous to Pos1, with Sunday or end of the month.
⇆: The current day attribute cycles forward, in combination with ⇑
backwards.
F2: continue with Search.
F5: If a day attribute is actual, the actual day has this attribute.
F6: If a day attribute is actual, the actual day has lost this attribute, if
it applies to it. Afterwards, the actual day is increased by 1 day.
Print: The annual calendar is printed.

In this case, the actual week, the actual month, or the actual year is
always adjusted, possibly with a new issue. If an unde�ined date would



arise (such as February 29 in a non-leap year or September 31), the last
day of the actual month becomes the new actual day; if the range of
de�ined calendar dates were left, nothing is changed.

6.6.2.3 Monthly and Weekly Calendars
The screen displays the overview calendar of the actual month or the
actual week. The operation is completely analogous to the annual
calendar.

6.6.2.4 Calendar Page
The screen displays the calendar page of the actual day.

If the calendar page contains no appointments, continue with Time,
otherwise no cursor is visible, but the system is waiting for an input.

After entering the cursor blinks in the �ield for the time of the
�irst empty appointment on this day (if there is no more empty
appointment, of the last appointment). The input of Esc leads to the
screen changing to the weekly calendar of the current week; the cursor
blinks in the �ield for the current day.

With ↑ or ↓ the current day is the next or previous one from the
appointment calendar (i.e., on which the calendar page contains
appointments). If the last r �irst day with appointments was already
reached, the actual day remains unchanged.

With Print, the calendar page is printed.

6.6.2.5 Time, Appointment Attribute, Keyword, Text
The cursor blinks in the �ield of the time, the appointment attribute, the
keyword, or text of the actual appointment; the corresponding object
can be edited.

From the �irst of these components of an appointment to the third,
you can get to the next one with and from the text to the time of the
next appointment in the sequence (with ⇑you land there immediately).

With ⇑ + ▼ or ⇑ + ▲ the next or previous appointment becomes the
actual appointment (if that was already the last or �irst one, nothing is
changed); with ⇑Pos1 or ⇑End you land at the �irst or last appointment
of the sequence.

The clipboard is used for moving and copying: With F7 the actual
appointment is copied into it and removed from the appointment



sequence, with F8 the same happens, but without deletion of the
appointment, and with F9, the appointments from the clipboard are
copied behind the current appointment, if there is still enough space on
the calendar page.

The deletion of the current appointment is achieved with ⇑Del.
Esc leads back to the same day in the weekly calendar.

6.6.2.6 Search
The cursor blinks in the �ield of the search word, it can be edited. The
completion of the input with results in the calendar data of the
days on which the entered search word appears in the keywords of any
appointments being colour-marked in the calendar. The markings
remain when the calendar is changed. An input completion with Esc
cancels the search.

In both cases, you are then back at the place from which the search
was called.

6.7 Construction
We only show the speci�ications of the packages.

6.7.1 Term Attributes



6.7.2 Keywords

6.7.3 Appointments



6.7.4 Appointment Sequences

If the calendar page contains no appointments, continue with Time,
otherwise no cursor is visible, but the system is waiting for an input.

After entering the cursor blinks in the �ield for the time of the �irst
empty appointment on this day (if there is no more empty
appointment, of the last appointment). The input of Esc leads to the
screen changing to the weekly calendar of the current week; the cursor
blinks in the �ield for the current day.



With ▲ or ▼ the current day is the next or previous one from the
appointment calendar (i.e., on which the calendar page contains
appointments). If the last r �irst day with appointments was already
reached, the actual day remains unchanged.

With Print, the calendar page is printed.

6.7.5 Persistent Sets of Calendar Data

6.7.6 Day Attributes



6.8 Calendar Pages



6.8.1 Appointment Calendars
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Abstract
This project presents two games: the Game of Life by John Conway and a
predator-prey system with foxes, hares and plants.

This teaching project was originally only designed for the simulation of
a simple predator-prey system.

During the system analysis, something astonishing was discovered,
which led to the project having “two faces”.

7.1 System Analysis
The basic ideas of simulating a predator-prey system  are highly related
to those from the Game of Life  by John Conway (in essence, both are a
simple cellular automaton).

Consequently, the task consists of two parts:

the Game of Life by John Conway and
the simulation of a simple predator-prey system.
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The consequence of this is the extensive bundling of the different
manifestations in the representation of the data and the construction of
the algorithms—not least with a view to easy expandability;
furthermore, the possibility of choosing between the two simulations at
the start of the program.

7.1.1 The Game of Life
In the Game of Life, there is only one type of creature: cells.

They survive according to the following rules:

If they have more than three cells in the neighbourhood, they die of
stress.
If they do not have at least two cells in the neighbourhood, they die of
loneliness.
In a free space, where there are three cells in the neighbourhood, a
new cell is created.

The up to eight adjacent spaces, not only horizontally and vertically,
but also diagonally, are considered as neighbourhood.

There is a lot of literature on this topic (s. [1, 2, 4, 6]) and two
websites that deal intensively with this topic and provide many
references to literature (see [3, 5]).

7.1.2 The Ecosystem of Foxes, Rabbits, and Plants
foxes eat hares, hares eat plants. Both groups of creatures can only
survive if their environment is not overpopulated with their own kind
and they therefore can’t �ind anything to eat.

The ecosystem is modelled as a rectangular world of checkerboard-
arranged spaces. Each space is either occupied by a plant, a hare, or a
fox. The survival rules are very simple:

The space of a plant is taken over by a hare if there is a hare on one,
two, or three neighbouring spaces (“hares eat plants”).
A hare loses its space to a plant if there are already four hares in the
neighbourhood (“hare �inds nothing to eat”).
The space of a hare is taken over by a fox if there is at least one fox on
a neighbouring space (“foxes eat hares”).
A fox has to give up its space to a plant if there is no hare on any
neighbouring space (“fox �inds nothing to eat”).



In the course of the simulation of the “generational” development of
the ecosystem, the following is possible:

A world initially only occupied with plants is “created” by the user
(i.e., some of its spaces are occupied with hares and foxes).
The development of a world according to the above rules is followed
step by step (where the rules are applied once in each step).
The simulation can be stopped at any time, the interim status
archived, and can be restored and continued at any time.
Each world can be given a name.

The actual state of the world is clearly displayed on the screen.

7.1.3 The Objects of the System
The following objects can be derived from the system analysis:

the different life forms in their places within the considered system
and
the worlds, in which they live.

Both are realized as abstract data types; the corresponding
packages are life with the subpackages life/species and
life/world.

7.1.4 Component Hierarchy
The dependencies of the packages are shown in Fig. 7.1, where the
lower package is used (imported) by the one above it:

Fig. 7.1 Component hierarchy of the Game of Life

Furthermore, some project independent packages from the
microuniverse are used, as, e.g., kbd, col, scr, and pseq.



7.2 User Manual
The life forms are represented pixel by pixel by small “icons” in the 16×
16 grid.

For the screen size, PAL (768×578) is chosen; thus, the world is 48
spaces wide and 34 spaces high at an icon size of 16×16 pixels, with
each space able to accommodate one creature of a species. The �irst line
is reserved for the system’s heading, and the last line is reserved for the
system’s operating instructions and error messages.

7.2.1 Program Operation
Since there are two different systems, it is initially determined which of
the two should be called:

7.2.1.1 System Selection
After calling the program, a menu appears in which you can choose
between

the Game of Life or
the Ecosystem of Foxes, Rabbits, and Plants.

When the input is completed with the enter key , the
corresponding system is selected, and the program is terminated with
the escape key Esc.

7.2.1.2 World De�inition
The cursor is in the �ield for the world’s name; the �ield is empty, the
name must be entered. If the name is empty or the input is completed
with Esc, the program is terminated.

7.2.1.3 World Editor
If a world with the entered name already exists, it is loaded; a new
world in the ecosystem is only full of plants, in the Game of Life it is
empty.

The only keyboard inputs possible are and Esc; with a step
of the simulation is performed according to the rules, and with Esc you
return to the world de�inition.



The occupation of each space by a life form can be changed. In the
Game of Life, a cell is inserted with a click of the left mouse button and
removed with the right mouse button; in the Ecosystem, a hare is
inserted with a click of the left mouse button and a fox in combination
with the shift key, and a plant with the right mouse button.

Figure 7.2 shows the screen when the Game of Life was selected,
with the “gun” —a �igure that constantly “shoots” the same cell
combinations. This world is named gun. Figure 7.2 shows an
ecosystem.

Fig. 7.2 The Game of Life: the gun

Figure 7.3 shows an ecosystem.



Fig. 7.3 An ecosystem

7.3 Construction
7.3.1 Speci�ications
Here is the speci�ication of the lifestyle package:



and here is that of the world package:



7.3.2 Implementations
Here are the representations of the abstract data types world and
species

We also show the main program:
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Make things as simple as possible,
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Abstract
The register machine is a machine model that is suitable for introducing the
concept of computability. Its concept is equivalent to the Turing Machine.

At a teacher training conference at the Institute for Computer Science of the
Free University of Berlin many years ago, Prof. Dr. S. Koppelberg gave a
lecture on the question What can algorithms do? (see [2]). The central
message was the mathematical equivalence of the concepts of the Turing
machine and the register machine with respect to the computability of
functions, which exactly characterizes the recursive functions. In this context,
the article [1] is also pointed out.

The particular appeal of the topic lies in the contrast between the
simplicity of the “programming language” of the register machine and the
intellectual challenge of many tasks that can be solved with it—arbitrarily
demanding tasks. Practical work with register machines is very simple using
the Go programming language. Everything worth knowing about this is
shown in this chapter.

The Go register machine is not a project from teacher training, but a
program I constructed for use in teacher training. Therefore, this chapter
does not include references to the phases of the program life cycle;
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nevertheless, its inclusion in this book is justi�ied due to the importance of
the concept for the fundamentals of computer science.

8.1 System Analysis
With register machine programs, basic concepts of both imperative
(especially machine-oriented) and functional programming can be developed
in a very natural way, because they model the structure of von Neumann
computers quite well and also allow a “programming style” according to the
functional paradigm.

The importance of this concept lies

Theoretically in its equivalence to the concept of computability (by
recursive functions or Turing machines): Everything that can be
programmed at all can in principle be done with register machines.
Practically in its clarity and comprehensibility: The necessary syntactic
effort to construct RM programs is very low, therefore they are easier to
handle than Turing machine programs that achieve the same.

Register machines thus represent an advantageous alternative to the
introduction of Turing machines—especially in introductory considerations
of computer science, because their treatment is possible without prior
knowledge.

8.1.1 Components of a Register Machine
A register machine conceptually has

a data storage in the form of a countable set of registers and
a program storage for storing a program in the form of individual program
steps.

The data storage consists of registers. They are memory cells that can be
accessed directly. No distinction is made between the memory cells in the
working memory and those in the processor.

Registers can hold a natural number as content. The content of a register
is also referred to as its value. Since these values change during the execution
of a program (which is precisely the purpose of RM programs), the registers
can also be considered as variables.

Direct access to the registers is made possible by giving them names by
which they can be addressed to access their values, e.g., a, b, c, ..., x1, ....

Initially, all registers have the value 0.



Of course, the concept is an idealization insofar as on a real computer, due
to the �initeness of its memory, neither can there be in�initely many registers
nor can their values become arbitrarily large.

8.1.2 Basics of the Register Machine Programming Language
Register machines only have a very limited programming language with only
�ive types of instructions:

for the assignment of a value to a register, especially for creating a new
register with the content 0;
for the modi�ication of a register content by +1 or −1;
for the jump to another location in an RM program, also under the
condition, that the value of a register is greater than 0;
for the return of a value of a register or a function; and
for the output of the value of a register or a function.

A register machine offers the possibilities

for inputting a program, i.e., for populating the program memory with
program steps and
for outputting the intermediate and �inal results of calculations.

An RM program is executed by a register machine in such a way that its
program lines are processed sequentially (line by line), starting with the �irst
line and then either moving to the next program line or jumping to a line
other than the next one.

Looking at it a bit more closely, this is realized as follows:
The next program line to be executed is always that one whose number is

in a special register, the program counter. (However, the above-mentioned
instructions cannot be applied to this register.)

Initially, the program counter contains a 0; so it starts with the �irst
program line. Which number after the execution of a program line is in the
program counter, i.e., which line is executed next, depends on the content of
this program line.

If the value of the program counter is greater than or equal to the number
of program lines, the execution of the program is �inished.

Empty program lines only have the effect that the program counter is
increased by 1.

8.1.3 System Architecture
We present here the implementation of the concept “register machine” as it is
possible using the programming language Go.



8.1.4 Registers
The Go register machine uses the data type Register, which—along with
the accesses to it—is encapsulated in the Go package μ U from the
microuniverse, which provides these things via an interface. This prevents
access to the Go register machine that is “unauthorized” in the sense that it
bypasses the syntax of the Go version of the RM language presented here.

Before the �irst use of a register, the Go register machine must be
informed about its use, which in Go is done by creating an “object” of type
Register with the value 0.

The size of the numbers that a register can contain as a value is limited by
the range of the data type uint in Go (on a 64-bit computer up to 264 − 1).

8.1.5 Register Machine Programs
A Go register machine program—hereinafter brie�ly referred to as RM
program—is implemented in Go as a program package. Its package header is
Go-speci�ic:

In the second line, the RM program is made aware of the type Register and
its methods from the Go package reg for use.

We �irst consider the main function of a package body. It is enclosed in its
signature func main() { and a closing curly bracket }.

The individual steps of the main function are placed one after the other in
the program memory after their translation “line by line” and can therefore
also be referred to as program lines. Each program line contains exactly one
instruction; the main function is therefore a sequence of instructions.

The structure of an RM program in EBNF notation thus looks like this:

The literal “;” should be replaced by a line feed for better clarity of a program
text. Therefore, it is also legitimate to refer to the individual program steps as



“program lines”.
The additional possibilities for constructing and using functions with

“Func” are explained in the section on functions, those with “Stmt” in the
following section.

8.1.6 Instructions
An instruction is

a value assignment,
a change instruction,
a jump instruction,
a return instruction, or
an output instruction.

At the beginning of an instruction, a mark may additionally stand as a
“jump target”. There may also be “empty” instructions that consist only of a
mark, or simply—for the sake of clarity—blank lines.

Here is the formal de�inition of an instruction in EBNF:

Each of the individual instructions is dedicated to its own section below.

8.1.6.1 Value Assignment
The identi�ier for an atomic register—always a in the following descriptions
—can be replaced by any string of letters and numbers that starts with a
lowercase letter (in this sense, the a serves as a kind of “template”). The
formal de�inition is given below in EBNF notation.

The second form of value assignment

for an arbitrary register-valued function f, we will go into more detail in the
section on functions, because “RegValue” and “Register” in the following



EBNF de�inition of value assignment also refer to the result values of
functions.

Because we will also allow functions with results of type bool, the
mentioned context-dependent condition that the function with the name
“FuncName” delivers a value of type Register is of course essential.

There is a good reason why in the Go-RM language on the right side of a
value assignment no atomic register, but only a function value may stand
(Null() is one!).

Let’s assume that the value assignment a := b would be allowed for an
atomic register b (unfortunately, the Go translator would accept such a
statement). Then the program

does not output 1, but 0! This is because the instruction b.Dec() also
changes the value of the register a, i.e., with a := b not what was
“intended” has been achieved, namely, to create a new register with the value
of b, because its value is also changed by modi�ication instructions to the
register b, thus not representing its own register.

The “intention” is achieved with the instruction a := Copy(b).



The deeper reason is that in the implementation of the Go register
machine, the variables of type Register are only “references” to objects
“behind the scenes” (i.e., pointers to addresses in memory where the objects
are stored), not the objects “themselves”. Consequently, with the instruction a
:= b only the start address of the register b would be copied into the start
address of the register a, which means that the reference a points to the
same object in memory as the reference b. This explains the “penetration” of
the change from b to a.

8.1.6.2 Change Instruction
There are two instructions that can increase or decrease the value of a
register; in EBNF notation:

IncOrDec = AtomicRegister [”.Inc()” |”.Dec()” ].
Here are the details from the speci�ication of the package reg:

In an RM program, it is therefore necessary to ensure the precondition, i.e., to
ensure that the value of a is greater than 0 when the instruction a.Dec() is
called. If this condition is not met, a program run will be aborted with a
corresponding error message!

The test for this is provided by the method Gt0 (“greater than 0”) from
the package reg, which returns a value of type bool (i.e., true or false):

The details on jump instructions follow in the next section.
The relationship between precondition and effect represents a kind of

“contract” about the mutual rights and obligations of the programming
person and the register machine:

The register machine has the right, to rely on the precondition that the
value of x is greater than 0 when it is to execute the instruction x.Dec(),
and for this the obligation, to effect the effect, i.e., to decrease the value of x
by 1; the programming person has the obligation, to ensure that the



precondition is met when the instruction is called, and thus the right, that the
register machine effects the effect.

Why the change instructions are not allowed for registers in general, i.e.,
also for register function values, but only for atomic registers, becomes
apparent from the following “program”, which is (unfortunately) accepted
(i.e., translated) by the Go translator, but does not deliver the “expected”
result:

With the use of Plus1(), something adequate can be achieved:

8.1.6.3 Jump Instruction
Here we �irst only deal with the �irst alternative of the condition
Condition; we will return to the second in the section on functions.

If there is no program line with the label A, or if this label appears more than
once, the program cannot be translated and the translation is aborted with a
corresponding error message.

The same applies to the name of the label A as to that of a register.
Since the Boolean constant true can also be used for the condition, we

also have the unconditional jump

or just brie�ly

The condition is used in the syntax for the conditional jump:



Here too, a context-dependent condition must be met: The function named
“FuncName” returns a value of type bool.

8.1.6.4 Return Instruction
This instruction consists of the keyword return and a register or a Boolean
value ...:

More details will follow in the next section.

8.1.6.5 Output Instruction
In addition to the instructions presented so far, our Go register machine
contains the method Write from the package reg

for the output of the value of a register or a function:

8.1.7 Test Programs
a is either a register or the value of a register-valued function. Formally in
EBNF: Write = Register.”Write”.

The results are checked in a Go program. The name of the �ile containing
its source code must have the suf�ix .go; it is recommended to use main.go.
The program is then translated with the command

bound to an executable program, and then called.
Of course, it cannot be ruled out that errors may occur during the

translation. Possible causes include, for example, typing errors or non-
compliance with the syntax described here.



If something like this happens, carefully check your source code—the
error messages from the Go translator will certainly give you important clues
as to what could be wrong.

Here is a concrete example:

It is very useful—if not necessary—to insert additional comments in the
program text, which do not belong to the actual program text, but only serve
to explain the program construction.

If this is done consistently in such a way that properties of the register
values are described as a comment after each instruction, the correctness of
an RM program can be proven. A “short form” is acceptable in which, for
example, “the register a has the value 1” is abbreviated to “a = 1”. We
demonstrate this in the examples.

From a “software technical” point of view, it is also essential to provide a
speci�ication for each function in the form of a comment before its signature
line, i.e., if its call depends on prerequisites, which ones, and what the
function returns!

In Go—and thus in the Go-RM language—it is agreed:
All texts in program lines that follow two consecutive slashes // are not

considered program text, but are ignored during translation.

8.1.8 Functions
Functions represent, in a way, RM (“sub-”) programs that open up the
possibility to signi�icantly expand the scope of the RM (“programming”)
language. They return a register (and thus its value) or a Boolean truth value
as a result.

Values of functions—such as the “number” Two()—can be considered as
new “objects” of the RM language, which may be treated like a register in an
RM program. In particular, they can also be assigned to an atomic register—
such as Null() as a new register with the value 0—(which shows that
Null() is basically also such a function).

8.1.8.1 Speci�ication of Functions



Functions represent, in a way, RM (“sub-”) programs that open up the
possibility to signi�icantly expand the scope of the RM (“programming”)
language. They deliver as a result either a register (and thus its value) or a
Boolean truth value.

A function consists of the speci�ication of its signature, its body—a
sequence of program lines—and the closing line.

The �irst line of the program text of a function consists of its signature. It
is introduced by the keyword func, followed by the name of the function (a
string of letters and numbers that begins with a capital letter). This is
followed by a pair of round brackets () and the keyword Register or
bool. Within the brackets, one or—separated by commas—several register
names may stand as parameters, followed by the keyword Register. An
opening curly bracket { completes the signature.

The body of a function consists of a sequence of program lines, with which
the value of the function is calculated, each line containing exactly one
instruction.

Each “auxiliary register” a, i.e., one that does not appear as a parameter in
the signature, must of course be created with a value assignment a := ...
before its use (preferably at the beginning of the body).

The last instruction must be a return statement of the form return y,
where y is the register or the Boolean expression whose value the function
should deliver as a result.

Return statements may also be used in the middle of the function body,
when the register or the Boolean expression is calculated; then the
calculation is aborted and its value is delivered as a result.

The closing line consists only of a closing curly bracket {.
The whole thing a bit shorter in EBN notation:



8.1.8.2 Are Function Values “Registers”?
Values of functions can be considered as new “objects” of the RM language,
which can be treated almost like registers in an RM program; they are also
stored in registers.

If y is such a function value, then

Assignments to a register (a := y),
Jump instructions (if y.Gt0() { goto A }),
Return instructions (return y), and
Output instructions (y.Write()).

Patterns for permissible instructions. The creation of a new register with
the value 0 is a special case of value assignment: the function Null from the
package reg is simply a (internally de�ined) function that delivers a register
with the value 0.

The modi�ication instructions, however, form an exception: program lines
of the form

y.Inc() or y.Dec()
are meaningless if y is a function value; the Go translator would, for example,
respond to the program line

with an error message.
Here is a minimal example in which everything mentioned occurs:

8.2 User Manual
Go-RM programs are ultimately Go programs and thus subject to their
syntactic requirements.



A program named main.go is then translated with the command “go
run main.go”, bound to an executable program and called. If errors appear
during the translation, carefully check your source code—the error messages
from the Go translator give you hints on what could be wrong.

It is very useful—if not necessary—to insert additional comments in the
program text, which do not belong to the actual program text, but only have
the meaning of explaining the program construction.

If this is done consistently in such a way that properties of the register
values are described as comments after each instruction, the correctness of an
RM program can be proven. A “short form” is acceptable in which, for
example, “the register tt a has the value 1” can/should be abbreviated with “a
== 1”. We demonstrate this in the examples.

From a software technical point of view, it is also indispensable to provide
the speci�ication of each function in the form of a comment before its
signature, i.e., the prerequisites for its use, if there are any, as well as the
indication of the result value it delivers. In Go—and thus in the Go-RM
language—it is agreed that all texts in program lines that follow two
consecutive slashes // are not considered as program text, but are ignored
during translation.

8.2.1 Examples
Here is a simple example of a function that returns a register with the value
2:

We now present a more challenging example, the calculation of the sum of
two registers, with which we introduce typical patterns in the construction of
RM programs and point out a possible “standard” error.

The following attempt is a naive approach:



However, this approach is not a solution to the problem!
The function does return the correct result, which can be immediately

con�irmed by thinking about its source code and, for example, by calling

in a short RM program. However, as a side effect, it has set the value of the
register passed as the �irst parameter to the sum of the original values of both
registers and counted down the value of the register passed as the second
parameter to 0. This fact is also immediately apparent and can be
demonstrated with the lines

in an RM program: This gives the value 6 for a and the value 0 for b, not
the values 2 and 4. This (completely unacceptable!) phenomenon occurs in
all such constructions.

To prevent the values of the registers passed as parameters from being
changed, it must be ensured that their values match the original values at the
end of the function call. This can be most easily achieved as follows: At the
beginning of a function body, “helper registers” are created as copies of the
passed registers, which are then used for the calculations instead of the
passed registers.

To this end, we construct a function that returns a copy of a register. In it,
the decrementing of the value of the register a is “logged” by “counting along”,
which is used after the calculation of intermediate results to restore the
original value by corresponding “counting up”.



With the use of this function, we obtain a correct solution for calculating
the sum of two registers:

Here is another example of a Boolean function, the examination of
whether two registers have the same value. Initially, the values of the passed
registers are copied into helper registers for the reason mentioned above.



A somewhat more complicated example with nested loops is the
calculation of the sum of the �irst n natural numbers:

The source code of this—albeit correct—example is de�initely bad: It
contains no comments on the values of the respective registers and no
information on loop invariants; therefore, it is dif�icult to understand the
algorithm, and the proof of its correctness is missing.

8.2.2 Recursion
However, the following fact is essential to the concept of “nesting”:



In the instructions of an RM program—including in the body of functions
—already existing functions can be used. In particular, it is possible to “nest”
function calls (even multiple times).

A simple example of this is the following:
An example of possible multiple nesting is

An example for the possible multiple nesting is

with

This leads us to the idea of formulating algorithms recursively.
The elegance of this approach can be easily demonstrated. We show a

signi�icantly simpler solution to the Gaussian problem, the correctness of
which is immediately clear because the algorithm is precisely the de�inition
of the result:

Thus, algorithms in the Go-RM language can be formulated as elegantly as in
functional programming languages. For example, all operations of arithmetic
can be developed by recursion, as is common in mathematics.

These recursive versions are signi�icantly easier to understand than those
in section subsec:gormexamples.

Using the function



we show this using the example of the sum:
func Summe (a, b Register) Register if a.Gt0() goto A return Kopie (b) // a

== 0, folglich a + b == b A: c := Kopie (a) c.Dec() return Succ (Summe(c, b))
This algorithm is correct because it precisely represents the de�inition of

the sum from the theory of natural numbers. Also, the creation of a copy of a
register and the checking for matching two register values can be
implemented recursively: func Kopie (a Register) Register if a.Gt0() goto A
return Null() A: a.Dec() b := Kopie (a) a.Inc() b.Inc() return b

func Equal (a, b Register) bool if a.Gt0() goto A if b.Gt0() goto F // a == 0 <
b return true // a == b == 0 A: // a > 0 if b.Gt0() goto B return false // b == 0
B: a1 := Copy (a) a1.Dec() b1 := Copy (b) b1.Dec() return Equal (a1, b1) F:
return false

8.2.2.1 Primitive Recursion
Basically, these examples are patterns for primitive recursion,  which is very
simple with the Go register machine:

For functions

we immediately get

As a simple example, based on the sum function—itself an example of
primitive recursion—here is the product formation:

If we substitute for tt g and tt h the functions

and



f(a, b) have the value of the product of the values of a and b.

8.2.2.2 μ-Recursion
For f : Nk+1

→ N, the partial function μf : Nk

→ N is de�ined as follows:

This can be replicated—with the function types from the package μ U using
the register sequences:

The execution of this function does not terminate precisely when f(a,
as).Gt0() for all registers Null(), One(), Two(), Three(), ... applies.

This makes it clear that the class of functions that can be calculated with
Go-RM programs includes the recursive functions.

That the “initial functions” of the class of recursive functions—the
constant functions, (especially Null), the successor function plus1, and the
projections—can also be expressed by Go-RM functions, is suf�iciently proven
by the examples in the previous section, and the substitution of functions is a
syntactic part of the Go-RM language—so everything is said about that.

Of course, the proof that every Go-RM function is recursive could also be
led, closely following [2], Sects. 4. and 5, or [3], Sect. 2.4, by means of
Gödelization of the Go-RM functions. However, a modi�ication of the technical
details of these proofs to the Go-RM functions can be omitted here with good
conscience, as these are not new �indings and it should be intuitively clear
that the Go-RM functions are by no means more powerful than the recursive
functions.

But it’s simpler:
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The reversal is also—referring to the equivalence of the classes of WHILE
—computable programs and the μ-recursive functions—easy to show,
because every Go-RM function can be easily transformed into the form of a
WHILE program according to the procedure in Sect. 2.3 of [3].

We assume that the program contains neither lines that consist only of a
mark (if necessary, such lines are combined with the one immediately
following) nor those that contain several instructions separated by
semicolons (if necessary, each semicolon is replaced by a line feed). The
transformation is made as follows:

The program lines are numbered (starting with 0 for the function
signature). From lines with a mark at the beginning, the mark and the colon
following it are removed.

Jump instructions of the form

are transformed into the form

where z is the number of the line that began with the mark A; those of the
form goto A into the same form with a = One().

Other instructions s are converted to

transformed (z as above the line number). The following auxiliary
function is used:

The sequence of lines resulting in the body of the function is enclosed
with



enclosed.
In addition to the Go-RM operations that make up the instructions, this

method only uses syntactic components of Go that are allowed in WHILE
programs: elementary handling of natural numbers—here of type int—and
for loops (with the semantics of WHILE loops).

We demonstrate this with a simple example—the “translation” of the
function

from Sect. 8.2.1 on program examples:

If, as in this case, only return instructions with the same register b as the
result value occur, these lines can also be replaced by n = 0 if return b is
added as the last program line.

This makes it clear that every Go-RM function is recursive.

8.2.2.3 Encoding Functions
For the proof network of the equivalence between Turing, GOTO and WHILE
computability, bijective functions N → N

k play an important role. They can
also be developed in the Go-RM language.

We �irst consider the encoding function c0 :: N× N→ N, de�ined by



c

0

(n,m) = ( )+ n =

1

2

(n+m+ 1)(n+m).

In Table 8.1, the �irst function values of this encoding function are shown.

Table 8.1 The �irst function values of c
0

m

↓ n → 0 1 2 3 4 5 6 ...

0  0 2 5 9 14 20 27 ...

1  1 4 8 13 19 26 34 ...

2  3 7 12 18 25 33 42 ...

3  6 11 17 24 32 41 51 ...

4  10 16 23 31 40 50 61 ...

5  15 22 30 39 49 60 72 ...

6  21 29 38 48 59 71 84 ...

⋮

 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

 

Because of c0(n,m) = c0(0,n+m) + n the inverse function
d0 : N→ N

2 of c0 can be easily found for decoding: It is de�ined by
d0(n) = (d(n), e(n)) for

This “encoding/decoding” principle can be generalized to any k ∈ N (k ≥ 2):
The k-digit encoding function c : Nk

→ N, given by
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The proof that d is inverse to c follows immediately by induction from the

recursive de�initions, based on the fact that d0 and c0 are inverses of each
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other.
All these functions can be implemented in the GO-RM language:

The functions Leq and Difference are left as an exercise.



For this reason, the results from Chap. 2 of [3] can be fully transferred.

8.3 Construction
The register package is included in the microuniverse. Here is its
speci�ication:



and here, exceptionally—because of its brevity—its implementation:
package reg





8.4 Exercises
For the speci�ications of the tasks, let’s agree on a somewhat “sloppy” way of
speaking: We use the terms “register” and “value of the register”
synonymously.

Implement the following functions and test them:



The book on the Mathematical Aspects of Applied Computer Science can be
found on the worldwide web in the Monographs and Lecture Notes of the
European Mathematical Information Service (EMIS):

http:// www. emis. de/ monographs/ schulz/ algo. pdf. 
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Who is on the table today?
Typical question from teachers at the beginning of a lesson

Abstract
The electronic stylus is not a “project”. It was originally just a test
program for sequences of objects from the microuniverse, where later
for the objects—out of annoyance over a completely nonsensical
example from a book on object-oriented programming with Java—an
abstract data type “two-dimensional �igures” was chosen. The system is
suitable for supplementing blackboard writing with computer and
projector use.

One advantage of this—compared to the powerful system E-Chalk by
Prof. Dr. R. Rojas from the Free University of Berlin—tiny system is the
drastic reduction of the concept due to its “slimness”: Its object-based
construction and the event control in the main program are easily
manageable.

9.1 System Analysis

https://doi.org/10.1007/978-3-658-44704-5_9
mailto:christian@maurer-berlin.eu


The use of an electronic system can—under certain conditions—
supplement or even replace writing and drawing on a board. The
system essentially does the same as the “classic” board writing, but
much more: The simulated board writing

can be designed very cleanly,
is reproducible,
modi�iable and expandable as well as
printable.

The advantages and disadvantages compared to writing and
drawing on a board must, of course, be carefully weighed against each
other in each individual case—depending on the purpose of use; any
mixed forms are conceivable.

Disadvantages

Everyone can handle chalk; the operation of a program, on the other
hand, must be learned.
The students also need to learn how to operate it if they want or need
to use the program.
Freehand drawings or texts usually suffer more from a “shaky hand”
when created by a mouse on an “electronic board” than when written
on a board.
The use is dependent on devices (computer, projector) that must be
set up before use.
There may be additional costs for the equipment, or a suitably
equipped teaching room must be sought.
The follow-up costs are also not negligible (replacement lamps for
projectors, for example, are considerably more expensive than—even
coloured—chalk).
The program requires a computer (or network access to a server)
under Linux (whether this is really a disadvantage ...).

Advantages

The program is very easy to use. Its control is easy to change and its
ergonomic weaknesses or errors are easily correctable.
The entire source code is freely usable for teaching situations; this
ensures adaptability to individual needs.



With a few “mouse clicks” it is possible to

– draw clean �igures, e.g., triangles, quadrilaterals, rectangles, circles,
ellipses, and elegant curves;

– write text cleanly; and
– integrate images.

Board wiping is also (in doubt: “dirty”) work.
The additional cost can be cushioned if a generally available “mobile
station” is used.
The program also runs on other “window-oriented” operating
systems if the local computer has network access to a server under
Linux.
The user is facing the audience when using it (and does not, for
example, catch paper balls from behind).
An electronic board—let’s call it “eBoard” for short—can be
optimally prepared and post-processed and “styled” at any computer
in peace.
The eBoards are reusable at will (“... this is what our board looked like
the day before yesterday”).
The long-term maintenance (i.e., the modi�ication based on
experiences, the adaptation to other teaching situations, and the
further development) of the eBoards is possible at any time.
The eBoards can be passed on as �iles, printed out and thus duplicated.

9.1.1 The Figures of the Electronic Stylus
The electronic stylus must be able to manage the following types of
�igures:

Point sequences,
Line segments,
Polygons,
Curves,
Straight lines,
Rectangles,
Circles,
Ellipses,
Texts, and
Images.



The following will explain these �igures individually. But �irst, a few
words about the colour concept: All �igures can be displayed in
different colours.

The background colour of the screen is black by default, but can be
switched to white “at the push of a button”.

Point sequences
These are sequences of individual points (“pixels” on the screen), of
which every two consecutive ones, if they are not adjacent as pixels, are
connected by a line segment.

The points are generated independently (i.e., by the program during
movement) by the movement of a pointing instrument (currently only
the mouse; perhaps a graphics tablet in the future) until the user input
is terminated (the order of the points is given by the temporal sequence
during generation).

Point sequences thus realize “freehand drawings” (which can of
course also represent texts).

Line segments
Line segments are sequences of lines, where the endpoint of each line
coincides with the starting point of the next line, provided there is a
following one (the order of the lines is given by the temporal sequence
of setting their endpoints).

In principle, line segments are the same as point sequences; the
difference is that the boundary points of the lines are set individually by
the user instead of being generated by mouse movement.

Polygons
Polygons are “closed” line segments: The starting point of their �irst line
coincides with the endpoint of their last one.

Thus, triangles, quadrilaterals, pentagons, etc. belong to the �igures.

Curves
Curves are de�ined by Bezier polynomials, which are de�ined by—
individually set by the user—point sequences, limited by a certain
maximum number.

A curve has the �irst and last point of the sequence as boundary
points; the points in between are the “support points” of the



polynomial, whose degree n is 1 less than the number of points:
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Straight lines
Due to the “�initeness” of the size of the screen, straight lines are lines
given by two points, whose endpoints lie at the edge of the screen.

Rectangles
Parallel to the screen edges are rectangles,  given by two points, the
upper left and the lower right corner.

Circles
Circles are de�ined by their centre and their radius.

Ellipses
Only ellipses with axis-parallel semi-axes, which are de�ined by their
centre and the lengths of their semi-axes.

Texts
Alphanumeric texts, i.e., also numbers (e.g., in the simplest case
sequences of digits).

Image
Images are graphic �iles in the ppm-format. In order for them to be used
by the electronic stylus, they naturally have to be small enough.

Their processing is possible with the routines from the netpbm
package, e.g., their scaling with pamscale and the conversion between
this format and the jpeg-format with pnmtojpeg or jpegtopnm.

Filled Figures
Rectangles, circles, ellipses, and crossing-free convex (under X also
arbitrary polygons) can be �illed in the sense that all pixels inside the
�igure are set to the colour (of the edge) of the �igure.

9.1.2 The Operations on the eBoards



With the electronic stylus, the following operations can be performed
on an eBoard—the “board images” simulated on the screen with the
electronic stylus:

Individual �igures

– create,
– modify and colour,
– move,
– delete as well as
– mark and unmark;

all marked �igures

– delete and unmark,
– store in another eBoard;

all �igures of an eBoard

– delete,
– mark;

an eBoard

– move,
– load and save;

another eBoard

– load additionally;

as well as all creations and deletions on an eBoard

– undo.

New �igures are created in the current type and the current colour,
which initially have standard values and can be changed at any time
with certain commands.

9.1.3 Program Start
The electronic stylus is designed according to ergonomic principles.

The program uses the screen primarily in “Fullscreen mode”.
It is designed to be operated with one hand freely above the

keyboard and the other hand on the mouse—apart from text input.



Under these conditions, the electronic stylus essentially uses a few
keys

Tab key ⇆,
control key Ctrl  and
space bar,

which are close together and therefore can be used “blindly” after a
short period of acclimatization, so that the focus on the eBoard is not
interrupted by constant switching between screen, keyboard, and
mouse.

In console operation, the control key Ctrl generally acts like the Shift
key ⇑, as Ctrl is easier to reach “blindly” than ⇑.

However, the window managers of common graphical interfaces
intercept certain key combinations with the Ctrlkey and the Altkey and
use them to manipulate windows; a two-button mouse does not have a
middle button.

Therefore, in these cases, alternative keys

delete key Del,
function keys F5 to F9,

which are close together and therefore can be used “blindly” after a
short period of acclimatization, must be used, which somewhat
contradicts the above considerations.

The operation of the electronic stylus will be explained in detail
below.

9.1.4 Program Start
The electronic stylus is started with the command epen, to which the
name of the eBoard can be given as a parameter. If this is the case, this
name—otherwise the provisional name temp—appears in the �ield of
the eBoard name in the top left corner of the screen; it can be edited.
The corresponding �iles have these names with the suf�ix .epn.

When the input is completed with the Enter key , the eBoard
with this name is loaded, if there is one; otherwise, the eBoard is now
empty. If no name is entered, the eBoard is named “temp”.

9.1.5 Creation of New Figures



Pressing the space bar, the key A, the Enter key Henkin-Konstruktio
, or the insert key Ins causes a menu to appear at the location of the
mouse pointer, from which the actual type of �igures can be selected
with the mouse.

It is selected with the arrow keys ▲ and ▼ and the Home and End
keys Pos1 and End and con�irmed with the Enter key .

The selection is cancelled with the Esckey; then the old current type
remains.

New �igures are drawn in this type—until another current type is
selected.

Point Sequences
By pressing the left mouse button, the creation of a new �igure begins at
the location of the mouse pointer.

If the actual type is a point sequence, it will “draw”—following the
mouse movement—until the mouse button is released. If the maximum
possible number of points in the sequence has already been reached,
the drawing will automatically end.

The faster the mouse is moved, the more noticeable the effect
becomes that the individual points—recognized by the mouse—are
connected by lines: The �igure becomes somewhat “angular”.

Lines and Line Sequences
If the current type is line(s) (Lines or Line sequences), the �igure begins
with the �irst mouse click.

Further clicks with the left mouse button at other locations set the
next line; movements between the mouse clicks continue the last line
until the next mouse click.

A line sequence is ended by a click with the right mouse button.
A simple line is thus created with the following sequence of

commands: Move the mouse to the starting point—click with the left
mouse button—move the mouse to the end point—click with the right
mouse button.

Polygons
Polygons are created in a very similar way; the only difference is that
from the second mouse click, the actual mouse position is automatically



connected to the starting position.
If a polygon is convex (this restriction only applies to the operation

of the electronic stylus in a console), it is �illed in the same colour as its
edge if the �inal click with the right mouse button is made together with
the shift key ⇑.

Curves
Curves are essentially created like line sequences: Click with the left
mouse button; continuation by mouse movement and further clicks
with the left mouse button; the �ixation is done with a click of the right
mouse button.

If the maximum possible number of support points is reached
during continuation the creation is automatically ended.

Unlike line sequences, the entire curve constantly adapts to the set
support points during creation; it requires some practice and
experience until the user “gets the hang of it”.

Straight Lines
A point of a straight line is set with a press of the left mouse button,
with the line appearing as a horizontal; the movement of the mouse
leads the second point and thus the line until they are �ixed by releasing
the mouse button.

Rectangles
When creating rectangles, the procedure is similar to straight lines: A
press with the left mouse button sets a corner of the rectangle; as long
as the mouse is moved, the diagonally opposite corner and thus the
rectangle is carried along until the rectangle is �ixed by releasing the
mouse button.

If the control key Ctrl is pressed while releasing the mouse button, it
is �illed in the same colour as its edge.

Circles
Circles are created according to the same principle: A press with the left
mouse button sets the centre point; the movement of the mouse leads
to the dragging of a circle through the mouse position; as soon as the
mouse button is released, the circle is �ixed.

Circles can be �illed like rectangles.



Ellipses
Ellipses are created like circles; the only difference is that with the
mouse movement a corner of the circumscribing rectangle is set.

Ellipses can be �illed like rectangles.

Texts
If the actual type is a text, a blinking cursor appears at the position of
the mouse pointer after a click with the left mouse button. The text is
entered using the keyboard, and it can be comfortably modi�ied—like
with a usual editor (as described in Section 3. 4. 5 about the �ield editor
of the microuniverse).

If the input is empty or is ended with a key other than the enter key
, the creation is aborted.

Images
If the actual type is an image, a blinking cursor appears—like with a
text—after a click with the left mouse button, which is associated with
the request to enter the name of the image.

After completing the input with the enter key , the image
contained in the corresponding �ile, whose �ilename is the name of the
image with the appended suf�ix .ppm, appears with the mouse position
as the top left corner, provided such a �ile exists and the image �its
completely on the eBoard.

If the input is empty or ended with the escape key Esc, the process
is aborted.

9.1.6 Modi�ication of Figures
If the mouse pointer is on a �igure, a click with the left mouse button
along with the shift key ⇑ makes the points that characterize the �igure
visible. They can be individually “grabbed” with the right mouse button
and moved; the �igure adjusts accordingly. The modi�ication is
completed with a click of the left mouse button. For rectangles and
circles, this is simpler; their points do not appear—they can be
“grabbed” at any point on their edge.

When pressing the function key F3, a coloured strip appears, from
which a colour can be selected by clicking with the left mouse button,
which colours the �igure under the mouse. If the mouse is moved



during this, all �igures that the mouse “runs over” are coloured. The
selection is cancelled with a click of the left mouse button outside the
strip or the escape key Esc.

If the F3key is pressed together with the shift key ⇑, the actual
colour can be selected, in which new �igures will be coloured until it is
changed with this procedure.

By pressing the function key F4, the background colour of the
eBoard can be selected.

With the right mouse button, individual �igures can be “grabbed”
and moved while holding down the mouse button.

9.1.7 Deleting of Figures
If the mouse pointer is on a �igure, it is deleted by pressing the delete
key Del. If the mouse is moved during this, all �igures that are swept
over by the mouse are deleted. If the shift key ⇑ is also pressed, all
marked �igures are deleted—regardless of the mouse position.

With the backspace key , the last deleted �igure is restored; if it
was marked before, it is no longer now. Together with the shift key ⇑,
all deleted �igures are restored.

9.1.8 Marking Figures
A �igure under the mouse pointer is marked with the function key F5.
Regardless of the position of the mouse, all �igures are marked when
the shift key ⇑ is additionally pressed.

The marked �igures �lash brie�ly.
Correspondingly, �igures are unmarked with the function key F6.

When pressing the tab key ⇆, all marked �igures �lash brie�ly.

9.1.9 Loading and Saving
With a press of the Rollkey, all �igures from another eBoard are copied
into the actual eBoard. The �ield for the eBoard name opens, into which
the name of the eBoard to be loaded is entered. The entry is completed
with the Enter key ; when �inished with the escape key Esc.

If the Rollkey is pressed together with the shift key ⇑, all marked
�igures are stored in another eBoard; its name is entered in the �ield for
the eBoard name (an eBoard existing under this name will be
overwritten).



9.1.10 Printing
Upon pressing the key Print, the content of the eBoard (with white
background) is printed (provided CUPS is installed and a postscript-
capable printer is available).

9.1.11 Brief Help
The help screen appears at the press of the function key F1, shows brief
hints for operation, and disappears when pressing the escape key Esc.

9.1.12 System Architecture
The only component of the electronic pen is the “main program”
epen.go with an event control in the form of an event loop, in which
various data types from the microuniverse are used.

9.2 Construction
The most important package used from the microuniverse is that of
two-dimensional �igures, the speci�ication of which we show here:
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When you let a computer calculate,
it is to be expected,

that it does not calculate correctly.

Abstract
Mini is a simple model of a single-address machine that introduces the
basic concepts of imperative—especially machine-close—programming.
It has 26 registers, 2 status �lags, and 30 machine instructions for
accessing the registers and status �lags, for computing, and for jumping
within a program.

With Mini, the concept of state (the values of the registers and the status
�lags) and the basic algorithmic structures (sequences, case distinctions,
loops, and recursion) are introduced.  The signi�icance of this concept
lies

theoretically in the Turing completeness of Mini, as it is just as
powerful as a register machine: Everything that can be programmed
at all can, in principle, be done with Mini.
practically in its clarity and comprehensibility.

Although the existing instruction set is very extensive, Mini machine
programs are uncomplicated and easy to handle.
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For these reasons, it was used many years ago in computer science
classes at the Goethe Gymnasium in Berlin-Wilmersdorf (then still
programmed in Modula-2).

10.1 System Analysis
Components of a single-address machine are

a processor for executing programs,
a data storage in the form of a set of registers,
a stack storage for temporary storage of register contents, and
a program storage for holding a program in the form of a sequence of
program lines.

   
In addition, Mini needs a way

to input a program, i.e., to populate the program storage with
program steps and
to populate the registers with data and output this data.

10.1.1 Processor
Mini’s processor has the task

using a computing unit to execute individual program steps and
using a control unit to execute the program, i.e., the instructions in
the sequence of program lines (details see Sect. 10.1.3).

For this purpose, it has its own registers: 

two accumulator registers ax and bx (shortly referred to as
emphaccus);
a program counter for controlling program execution; and
a status register, in which some instructions set or clear certain �lags,
i.e., they assign the values 1 or 0 to them:

– the zero �lag zf and
– the carry �lag, which is also “misused” as an over�low �lag.

At the beginning of the execution of a program, all registers have the
value 0.



10.1.2 Data Storage
The data storage of Mini consists of 26 registers and the stack memory.

Registers are storage locations that can each hold a (maximum 9
digits) natural number. The contents of the registers are also referred to
as their value.

Since the values of the registers change during the execution of a
program (which is precisely the purpose of programs), the registers can
also be considered as variables. The 26 registers have the names “a” to
“z”, which are used to access their values.

The stack memory consists—�iguratively speaking—of “stacked”
registers (according to the “last in-�irst out” principle); register values
can be placed on top of the stack or taken from the top, with care being
taken that a value can only be taken when the stack is not empty.

At the beginning of the execution of a program, the stack memory is
empty.

10.1.3 Program Lines
The individual steps of a Mini machine program (hereinafter referred to
as a mini program) are “line by line” in the program memory and are
therefore referred to as program lines. They are numbered
consecutively, starting at 0.

Each program line contains exactly one instruction, namely:

a storage instruction,
an instruction for a computational operation,
a comparison instruction,
a �lag instruction,
a jump instruction,
a stack instruction,
a call instruction, or
a return instruction.

They are listed and explained in detail in Sect. 10.1.5. At the
beginning of a program line, there may also be a label.

10.1.4 Execution of a Mini Program
A program is executed by a single-address computer by executing the
instructions in its program lines sequentially (i.e., line by line), starting



with the �irst line and then either moving to the next program line or
jumping to a line other than the next.

Looking a bit more closely, this is realized as follows:
The next instruction to be executed is always the one in the

particular program line whose number is in the program counter of the
processor.

Initially, the program counter contains a 0; so it starts with the �irst
program line. Which number after the execution of a program line is in
the program counter, i.e., which line is processed next, depends on
whether the program line contains a jump or call instruction.

A mini program is terminated, when it encounters a line with the
return instruction; consequently, when creating a mini program, care
must be taken to include a return instruction.

If the value of the program counter is greater than or equal to the
number of program lines, the program is aborted, since the numbering
starts at 0, e.g., after the last program line, if that is not a jump
instruction.

A program termination can also have other causes, namely,
“programming errors” in the form of unconsidered prerequisites when
calling instructions, for whose execution a prerequisite is speci�ied.

A subprogram consists of a sequence of program lines, the �irst of
which is introduced with a label and the last of which consists of the
return instruction. It is executed by the designated call instruction, with
the number of the next program line being inserted into the program
counter at the end of the subprogram (following the line in which the
subprogram was called).

10.1.5 Instructions
Mini has a “programming language” with a few instructions: 

six memory instructions for copying register contents into/from the
accumulators ax and bx:

lda, sta, exa, ldb, stb, and exb;
four instructions for increasing and decreasing the values of the
accumulator and registers:

ina, dea, inc, and dec;



two shift instructions for multiplication or division of register values
by or through 2:

shl and shr;
�ive instructions for executing arithmetic operations on the values,
temporarily of the accumulators and of the registers:

add, adc, sub, mul, and div;
one instruction for comparing accumulator and register values:

cmp;
three �lag instructions for manipulating the status register:

clc, stc, and cmc;
�ive jump instructions for “jumping” in the program, also depending
on the values of the �lags in the status register:

jmp, je, jne, jc, and jnc;
two stack instructions for temporary storage of register values:

push and pop;
one call instruction for executing a subroutine:

call; and
one return instruction for terminating a program:

ret.
The memory instructions expect a register, the jump instructions and

the call instruction expect a label as an argument. Instructions for
increasing or decreasing, for executing arithmetic operations as well as
shift and comparison instructions expect at most one and the stack
instructions exactly one argument:

Since all instructions expect at most one argument, Mini is an
example of a single-address machine.

We now provide the speci�ications of all instructions, where the
�lags are not set or cleared unless explicitly stated. After the execution
of an instruction—unless otherwise stated—the value of the program
counter is increased by 1, so that the next program line is processed
afterwards. It is different with the return instruction, which terminates
the program, and the jump instructions: The next instruction to be
executed is the one in the program line that starts with that label, which
is given as an argument to the jump instruction.









For the name r of the register used in these speci�ications, the number
of any register can be inserted in the instructions; the same applies to
the used label M. In this sense, these lines are to be understood as
templates for instructions.

10.1.6 Example
The following program calculates the factorial of the value of b and
writes it into the register a, if a initially contains the value 1:

However, this example is only correct if the value of b is less than or
equal to 12, because otherwise the result is ≥ 10i

9.
A bit further, the following mini-program works:



The result mod 109 (i.e., the 9 low places) is in the register a after the
execution of the program, the result div 109 (i.e., the up to 9 high places)
in the register d.

The readers should convince themselves by recalculating this mini-
program is correct up to the start value 19 of b.

10.1.7 The Objects of the System
The following objects can be derived from the system analysis:

program as a sequence of program lines,
program lines, and
register.

The implementation of the single-address machine Mini therefore
consists of the package mini with the subpackages:

mini/prog,
mini/line, and
mini/reg.

10.1.8 Component Hierarchy
The dependencies of the packages are shown in Fig. 10.1, where the
lower package is used (imported) by the one above:



Fig. 10.1 System architecture of Mini
At lower levels, many other packages from the microuniverse are

needed, e.g., input/output �ields (μ U/box), stack memory (μ U/stk), and
persistent sequences (μ U/pseq).

10.2 User Manual
Mini is a simulation program for executing mini programs. For the
identi�iers in mini programs, whose execution is to be simulated by
Mini, the following conventions must be observed:

variables, i.e., names of registers, are designated with a lowercase
letter (from a to z) and
labels with a capital letter (from A to Z).

The operation of the program is extremely simple.
In addition to the letter, number, and character keys for entering

text, some special keys are needed for correcting entries and
controlling the program sequence.

The following keys are used for input correction:

the backspace key and the delete key Del for deleting individual
characters, in combination with the shift key ⇑ to delete the input
�ield;
the arrow keys ◀ and ▶ to the left and right;
the home key Pos1 and the end key End for moving in the text; and
with the insert key Ins  you can switch between insert and overwrite
modes, with the current mode being recognizable by the different



cursor shape: an underscore in insert mode and a rectangular block
in overwrite mode.

The program �low is controlled with

the enter key , the escape key Esc, the backspace key ;
the arrow ▲ and ▼ and the page keys, Page↑ and Page↓ up and down,
as well as
the tab key ⇆,

occasionally in combination with the shift key ⇑. Error messages are
acknowledged with the backspace key .

10.2.1 Instructions for Working with Mini

Call Mini by entering mini, where the name of the mini program to
be executed (without the extension .mini) is given as a parameter,
e.g., mini test;
if necessary, edit the mini program;
exit the edit mode with the Esc key Esc;
enter the initial values of the used registers;
step through the mini program with the enter key  (the register
contents are continuously displayed) and—if desired—exit the step
mode with Esc and let the mini program run to the end;
if desired, abort the program execution of Mini with the combination
Ctrl + C; and
after execution of the program (which is acknowledged with the
message program executed, exit Mini with Esc.

A parameter given with the program call mini is the name of the
mini program, otherwise it gets the name prog. The associated �iles
have the extension .mini and are stored in the subdirectory .mini of
the home directory $HOME.

10.3 Construction
Here are the speci�ications of the three packages used by mini:





10.4 Exercises

and here is the event loop of the main program:



Develop mini programs for calculating

the power of two numbers (e.g., 220),
the sum and product of two or more numbers,
the quotient of two numbers,
the minimum/maximum of two or more numbers,
the GCD and LCM of two numbers,
the sum and product of two fractions, and
of binomial coef�icients and Fibonacci numbers.
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That which you seek,
you always �ind in the place,

where you look last.
One of the laws of

Edward A. Murphy jr.

Abstract
This program is a system for managing a book inventory, constructed as
a simple application of persistent index sets. Edward A. Murphy jr.

The program presented here is a somewhat simpli�ied version of a
teaching project from the teacher training in computer science at the
Free University of Berlin. It was about creating a system for managing
any collection (see Chapter Inferno).

Here we limit ourselves to the special case of a collection of books.

11.1 System Analysis
The following data should be recorded for each book:

area (prose, classic, Novel, ...),
author,

https://doi.org/10.1007/978-3-658-44704-5_11
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co-author,
number (for series),
title, and
location.

Examples:

theatre,
Dürrenmatt, Friedrich,
_,
_,
The Physicists,
1st shelf in the library (in this case there is no co-author and no
series number).

or

Italian crime novel,
Fruttero, Carlo,
Lucentini, Franco,
4,
The Secret of the Pineta,
small bookcase.

Three orders are provided:

area,
authors, and
titles.

11.2 System Architecture

11.3 The Objects of the System
Thus, the system has the following objects:

an enumeration type Areas for the �irst component mentioned in the
system analysis;
strings for the 2nd, 3rd, 5th, and 6th component;
natural numbers for the 4th component;



the compound, which combines these components; and
the program books.

The corresponding packages are field, text, bn, book, and
books.

11.4 Component Hierarchy
The dependencies of these packages on each other are shown in Fig.
11.1.

Fig. 11.1 System architecture of the management of the book inventory

11.5 User Manual
With ▲ and ▼ you can scroll backward or forward through the
inventory, and with Pos1 and End you can go to the �irst or last entry.
The actual entry can be changed after entering .

Pressing Ins causes an empty entry to appear on the screen, whose
input �ields can be �illed out; this entry is then inserted into the
inventory.

With Del, the actual entry is removed after a security query, with F3
the order is changed and with Esc the program is terminated and the
data inventory is secured.

Figure 11.2 shows the screen mask.



Fig. 11.2 The screen mask

11.6 Construction
Here is the speci�ication of the data types used:

11.6.1 Areas
Unfortunately, Go does not have an enumeration type; therefore, we
make do with a sequence of constants that are de�ined only in the
implementation, but are not visible in the following speci�ication:

Here is the representation and the constructor:



Anyone who wants to use the program books should adapt the
implementation to their personal needs.

11.6.2 Natural Numbers
We consider natural numbers with a �ixed maximum number of digits:



Here is the representation and the constructor:

11.6.3 Strings
Texts are short strings that �it on one line of a screen. Here is the
speci�ication of the corresponding package:



and here is their representation and the constructor:



11.6.4 Book
Here is the speci�ication of the type book:

11.6.5 Books



Its representation is the composite of the presented components:

The identity used as the index function

11.6.6 The Program for Managing the Book Inventory
For the control of the program, the function Operate from the package
μ U is used, whose implementation is algorithmically uninteresting
which is why we do not go into it here. This makes it very short:
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All that is abstract,
is brought closer to human understanding through

application,
and thus human understanding

reaches abstraction through action and observation.
Johann Wolfgang von Goethe

From Wilhelm Meisters Wanderjahre

Abstract
The Inferno is, in a sense, an abstraction of the book project. It serves to
manage arbitrarily con�igurable data sets. Data sets can be found based
on those attributes that were determined as an index during the
construction of the Inferno program, i.e., intended for this purpose. The
operation of the system is very simple. It can be used for many
purposes, e.g., for an address directory or for managing a collection of
sound carriers.

As part of teacher training and further education, I used to ask people
from the industry to give a lecture on their work on certain topics.
Once, the lecture of an IBM employee was combined with a visit to his
workplace in the IBM building at Ernst-Reuter-Platz in Berlin. He
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introduced us to a program that IBM developers had been working on
for several months.

In this chapter, I present the work of the colleagues from this
further education course, in which we “reconstructed” this program.

12.1 System Analysis
The “Books” project from the previous chapter is to be generalized in
such a way that data sets with almost arbitrary components can be
recorded, browsed, searched, and found, as well as deleted.

The basic components of the system are

its masks,
its data sets,
their structure, and
components.

In this chapter, we call the data sets “molecules”  and the
components they are made up of, “atoms”. 

In the following, we explain the four basic components.

12.1.1 Masks
By “masks” we understand the invariant parts of the screen that, so to
speak, name the atoms.

In the Books project, these are the following components of the
screen window:

area,
author,
co-author,
number,
title, and
location.

12.1.2 Molecules
Molecules are the contents of the system’s data sets. 



A molecule must consist of at least two atoms.

Exactly one molecule is always displayed in the screen window. 

12.1.3 Structure of the Molecules
The structure of the molecules consists of the sequence of the
structures of its atoms. For each atom, this includes the following
information:

its type,
the position on the screen window (row and column),
its (column) width,
its foreground and background colour, and
the indication whether it is an index or not.

12.1.4 Atoms
The atoms can have the following types:

strings (of a maximum of 64 characters),
natural numbers (with a maximum of 10 digits),
real numbers (with a maximum of 20 digits),
calendar dates (in the form “dd.mm.yyyy”),
times (in the form “hh.mm”),
amounts of money (up to 10 million),
telephone numbers (with a maximum of 16 digits incl. spaces),
names of countries, and
enumeration types: sequences of strings of a maximum length of 20,
from which one is always selected.

In the Books project, only the �irst two types are used.

12.2 System Architecture
12.2.1 The Objects of the System
The system architecture initially provides as objects the

the molecules and
the atoms.



In addition, there are the objects that can be types of atoms.
For the construction of the program inferno, in addition to the

packages pseq for persistent sequences and set for ordered sets,
abstract data types for the molecules, their structure, and their atoms
are needed. Together with the packages used by the package atom, we
therefore have the packages

mol for molecules,
stru for their structure,
atom for atoms,
text for texts,
bn for natural numbers,
br for real numbers,
day for calendar dates,
clk for times,
euro for amounts of money,
phone for phone numbers,
cntry for countries, and
enum for enumeration types.

Of course, many more subpackages of the microuniverse μ Uare
needed, which we will not go into here.

12.2.2 Component Hierarchy
The dependencies of the packages are shown in Fig. 12.1, where the
lower package is used by the one above it.



Fig. 12.1 System architecture of Inferno

12.2.3 The Objects of the System
They result directly from the previous considerations:

masks,
molecules,
molecule structure, and
atoms.

12.3 User Manual
The user manual consists of two parts:

the construction of an Inferno program and
the operation of the system (after its construction).

12.3.1 Construction of an Inferno Program
The construction of an inferno program consists of three steps: 

the determination of the window size,
the creation of its masks, and
the construction of the structure of its molecules.

12.3.1.1 Setting the Window Size
To create a new Inferno program, the appearance of the window must
�irst be designed.



The design speci�ies the masks with their positions and all atoms of
the molecules with their type, their positions in the window, and their
length.

As an example, we choose an address directory.  Its molecules
consist in Germany of the following atoms (for other countries the
format of Address should probably be changed):

�irst and last name,
date of birth,
address (street/no., zip code, city), and
phone number.

Figure 12.2 shows the window of our example.

Fig. 12.2 Window of the example

In this example, the window has the following masks:

name at position (0, 0),
�irst name at position (0, 33),
born at position (0, 57),
street/No. at position (1, 0),
zip code at position (1, 37),
city at position (1, 51), and
phone at position (2, 1).

The molecules have seven atoms, which can take the following
values:

1. strings of up to 27 characters,  
2. strings (up to 15 characters),  
3. calendar dates (8 characters),  



4. strings (up to 27 characters).  
5. natural numbers (5 digits),  
6. strings (up to 19 characters), and  
7. phone numbers (up to 16 digits/spaces). 

Since a line must be provided at the bottom of the window for hints
and error messages, the number of lines must be chosen one larger
than necessary for the masks and molecules. In our example, the
window must therefore have 4 lines and 71 columns.

Every Inferno program must have a name. The name must not
contain any spaces.

The window size is created by the call “inferno name h w”,
where name is the name of the program, h is the number of lines, and w
is the number of columns of the window for the inferno program.

Let’s assume our example program is to be named “addresses”. Then
the construction of the masks is called with the command “inferno
addresses 4 71”, which creates a window with 4 lines and
71 columns.

12.3.1.2 Generation of Masks
The second step of the construction consists of generating the
masks, for which the design is needed.

After the aforementioned call, a window of the chosen size becomes
visible, in which the mouse pointer can be seen. The hint “Edit
masks” appears. The actual position is continuously displayed at the
bottom left. We move the mouse to the desired starting position of the
�irst mask (in our example (0, 0)) and then click with the left mouse
button. Now the �irst mask “Name” can be entered (from this position),
which is completed with the enter key .

We generate the other masks accordingly by clicking on their
starting positions.

In our example, we generate the second mask by clicking on the
position (1, 0) and then the input “�irst name”.



When all masks have been created, we �inish the construction of the
masks with the escape key. This generates two �iles:

one named “addresses.h.dat” for storing the window size and
one named “addresses.msk”, in which these masks are stored for
use in our Inferno program.

12.3.1.3 Construction of the Structure of the Molecules
The second step in constructing an Inferno program is to de�ine the
structure of its molecules.  They consist for each of its atoms of 

its type (see previous section),
its position,
its length, and
the indication whether it is an index or not.

After creating the masks—or if they were aborted with the escape
key, after calling inferno name—the masks appear with the hint
“Molecule construction”.

We proceed as with the mask generation: We move the mouse to the
desired starting position of the �irst atom (in our example the name). A
click with the left mouse button then leads us to a pop-up menu, in
which we can move between the possible types for the atom using the
arrow keys ▼ and ▲ and the keys Pos1 and End and select the desired
type with the enter key .

If the type “string” was selected, the maximum number of its
characters must be entered. If the type “natural number” or “real
number” was selected, the maximum number of digits or the digits
before the decimal point must be entered.

Then the hint “(Shift-)Enter: (no) index” appears, i.e., if
the enter key is pressed afterwards, this atom becomes an index. If this
is not desired, the enter key must be combined with the shift key.

At least one atom must be an index!

The role of the indices will be explained in the next section. 



If the enumeration type Enum was selected, the hint “Enter
strings” appears. Then the strings from which the enumeration type
consists must be entered (end with the escape key).

Then the note “Select background colour” appears; we
select it as in a pop-up menu.

We repeat these steps until the structures of all atoms are de�ined
and �inish the construction with the escape key.

The result of this step is—in our example—a �ile named
“addresses.s.dat”, in which the data constructed in this step are stored.

If desired, molecules can now be entered, otherwise the
construction is aborted with the escape key.

The molecules are in the �ile name.seq (name = name of the
inferno program).

12.3.2 System Operation
When the fully constructed inferno program is called up by entering
“inferno name” (where name is its name), the �irst molecule
appears in the window, if there is one; otherwise, only its masks and
empty input �ields in the constructed background colours are visible.

The pressing of one of the following command keys is expected,
each of which is indicated what it does:

Enter key : change molecule,
Esc: exit program,
▲/▼: scroll to previous/next molecule,
Pos1/End: scroll to �irst/next molecule,
Ins: insert new molecule,
Del: remove displayed molecule (with safety query),
F2: search for molecule,
F3: advance current index, and
Print: print displayed molecule.

When entering an atom of the type “enumeration type”, a pop-
up menu appears from the strings de�ined in the construction. We
select the desired one (the one with the previously de�ined background
colour) using the Enter key. The selection and thus an input can be
cancelled with the escape key.



A record can be searched for by entering the value to be searched
for in the �ield of an atom that is an index after entering F2. If there are
molecules in which this value occurs, the �irst one is displayed. If there
are several, you can scroll up/down between them using the arrow
keys. For enumeration types, only one of the de�ined strings can be
searched for.

If there are several atoms that are an index, F3 will make the next
one in the circle of indices the actual index. The order of output of the
molecules when scrolling through them is determined by the actual
index.

In our example, the atoms “Name” and “Location” are indices.
Initially, the name is the actual index, so the order when scrolling
through the molecules is determined by the alphabetical order of the
names and after entering F3 by that of the locations.

If “ei” is entered for the name after entering F2, “Meier” and
“Einstein” are found, for example, if they exist.

After entering F3, the addresses are scrolled through in alphabetical
order of the locations.

12.3.3 Construction
The packages mentioned in the section on system architecture are
components of the microuniverse μ U We will introduce them in the
following.

12.3.4 Molecules
The speci�ication of the data type Molecule in the molecule package
mol is as follows:



The data type Molecule for the molecules de�ined in the package mol
is the following:

We now show the representation of the molecules and some essential
functions for the implementation of the main program inferno.go.









12.3.5 Structure
Here is the speci�ication of the type Structure:



Its representation is de�ined in the implementation as follows:

12.3.6 Atoms
The data type for the atoms of the molecules is the type Atom, which is
speci�ied in the package atom as follows:



We show here its representation and as an example for the
implementations of the functions the one of Copy.





And �inally, an excerpt from the source code of inferno.go:







(1)
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Abstract
In 1968, the theoretical biologist Aristid Lindenmayer created L-systems as an algorithmic formalism for
describing developmental processes in biology. In conjunction with computer graphics, they were initially
used for modelling simple multicellular organisms, and later for the realistic representation of plants. A key
aspect is the recursive self-similarity of the structures (take a look at a Romanesco broccoli). In this chapter,
we show a series of simple examples.

13.1 System Analysis
The prerequisite for this chapter is the de�inition of the terms “alphabet”, “language”, and “grammar”; in
particular, those of the L-systems, the grammars of the Lindenmayer systems.

These basics should enable graphical interpretations of L-systems, which, for example, lead to the
pictorial representation of space-�illing curves or—in the sense of Lindenmayer—more interestingly of
plants.

Particularly impressive, of course, are three-dimensional constructions of plants. However, the algorithm
for this should only be limited to very simple examples: for example, plant stems and tree trunks are only
represented as lines and leaves only as simple un�illed polygons.

13.1.1 Alphabets, Languages, and Grammars
We understand an alphabet to be a �inite set A with at least two elements. We refer to the elements of A as
lettersand sequences of letters written one after the other as words.

With A∗ we denote the set of all words over A, recursively de�ined by

A

0

= {ε} and A

n+1

= {wa ∣ w ∈ A

n

and a ∈ A} for n ∈ N

de�ined, where ε is the empty word with wε = w = εw for all words w ∈ A

∗.

Example 13.1 For A = {0, 1} a word is a sequence of zeros and ones, thus A∗ is the set N of all natural
numbers in binary notation and for A = {0, 1, 2,⋯ , 9} in the usual notation.

A language over the alphabet A is a set of words with letters from A.
We understand a grammar to be a quadruple (A, V, s, P), where

A is an alphabet;
V is a non-empty �inite set of variables, disjoint from A, s ∈ V  is the start symbol; and
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P ⊂ (Σ

∗

\A

∗

) × (Σ

∗

\{s} is a �inite set of production rules.
We refer to the elements of the set Σ = A ∪ V  as symbols.
For a production rule (l, r) ∈ P  one usually writes l→ r and says “r is derived from l”; for production

rules (l, r1), (l, r2),⋯ , (l, rn) one also writes brie�ly l→ r1 ∣ r2 ∣ ⋯ ∣ rn.
Here, l contains at least one variable, because l ∉ A

∗.

13.1.2 Relationship Between Grammars and Languages
Each grammar (A, V, s, P) generates a language over A. It consists of those words that can be derived from
the start symbol s by a sequence of applications of the production rules (v,w) ∈ P . A step in this sequence
consists for a production rule (v,w) ∈ P  in that in a sequence of symbols from Σ∗, in which v occurs, this v
is replaced by w.

Example 13.2 The grammar (A,V , ε,P) with A = {a, b}, V = {v} and P = {(v, avb), (v, ε)} generates
the language {anbn ∣ n ∈ N}.

The same language is generated by the grammar with A = {a, b}, V = {A,B,X}, s = X and
P = {X → ABX,BA→ AB,BX → b,Bb→ bb,Ab→ ab,AX → aa}.

Conversely, for every language there is a grammar that generates this language. However, we do not go into
this very extensive topic about Turing machines and automata here, as it does not further our purposes for
this chapter. Those interested are referred to the specialist literature (e.g., [1]).

13.2 The Grammars of Lindenmayer Systems
These grammars have the form (A,V ,ω,P), where

A is an alphabet,
V is a set of letters disjoint from A,
ω is the (non-empty) start word from A∗, called Axiom, and
P ⊂ A×A

∗ is a �inite set of production rules.

They are called L-systems. 
In them, a→ v is written for a production rule (a, v) ∈ P .
In a derivation step for a production rule (v,w) ∈ P  in a word from A∗, in which v occurs, all

occurrences of v are simultaneously replaced by w. It is assumed that for each letter a ∈ A there is exactly
one word v ∈ A

∗ with a→ v.

Example 13.3 The grammar (a, b, ∅, b, (a→ ab), (b→ a)) generates the language
b, a, ab, aba, abaab, abaababa, abaababaabaab, abaababaabaababaababa,⋯.

13.3 Graphical Interpretation of L-Systems
In the following, we adhere closely to [2]. Most of the many examples of graphical interpretations also come
from this book.

We �irst consider L-systems with the alphabet (F , f, +,−). Crucial for the following is that it is possible
to interpret each such L-system as a graphic.

A state of this graphic is a triple (x, y,α), where

(x, y) ∈ R

2 is a position in the plane and
α is an angle.

This includes a starting angle α ∈ R, a rotation angle δ ∈ R (both given in degrees), and the number
n ∈ N of application steps of production rules.

We change the state of the L-system for the given symbols as follows:

F: We move forward by one step (of length 1), which transforms the position (x, y) into the position
(x+ cos α, y+ sin α), and draw a line between the old and new positions.
f: We do the same as with F, but without drawing a line.



+: We turn to the left by the angle δ, which transforms the state (x, y,α) into the state (x, y,α+ δ).
−: We turn to the right by the angle δ, which transforms the state (x, y,α) into the state (x, y,α− δ).

13.3.1 The Koch Islands
As a �irst example of a graphical interpretation of an L-system, we consider the system with

the axiom ω = F+F+F+F∈ A

∗,
the only production rule F→F-F+F+FF-F-F+F.
the starting angle α = 0

∘, and
the rotation angle δ = 90

∘.

In one application step, the symbol sequence

F− F+ F+ FF− F− F+ F− F− F+ F+ FF− F− F+ F− F− F+ F+ FF− F− F+ F− F− F+ F+ F

is obtained. We refrain from specifying symbol sequences that result from more steps—that would only be
boring.

Much prettier are the graphical interpretations: In Figures 13.1, 13.2, 13.3, 13.4 to 13.5, the Koch
Island for 0 to 4 application steps can be seen.

Fig. 13.1 Koch Island: start

Fig. 13.2 Koch Island after 1 application step

Fig. 13.3 Koch Island after 2 application steps



Fig. 13.4 Koch Island after 3 application steps

Fig. 13.5 Koch Island after 4 application steps

13.3.2 The Islands and Lakes
As a second example, we consider the system with

the axiom ω = rrF+oF+gF+bF,
the production rules F→F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF,
f→ffffff, and
the rotation angle 90∘.

Figure 13.6 shows the system after two application steps.



Fig. 13.6 Islands and lakes

Fig. 13.7 Pavement after two application steps

13.3.3 The Pavement
This example is almost like something in the next section.

the axiom ω = F-F-F-F,
the production rule F→F -> rFF-oF+gF-cF-bFF, and
the rotation angle 90∘.

Figure 13.7 shows it after two application steps and Fig. 13.8 after �ive application steps.



Fig. 13.8 Pavement after �ive application steps

13.3.4 Space-Filling Curves
Our next examples provide space-�illing curves.

We are expanding our alphabet to include lowercase letters as symbols for colours:

n for brown,
r for red and l for light red,
o for orange,
g for green and d for dark green,
c for cyan,
e for light blue and b for blue,
m for magenta, and
y for grey.

13.3.4.1 The Hilbert Curves
First, we consider the system with

the variables X and Y,
the axiom ω = X,
the production rules X→X→ +rYrF-XgFX-rFY+, and
the production rules X→X→+YrF-XgFX-rFY+ and X→Y→-XrF+YgFY+rFX-.

Figures 13.9, 13.10, and 13.11 show the Hilbert curve for two, four, and seven application steps.

Fig. 13.9 Hilbert curve after two application steps



Fig. 13.10 Hilbert curve after four application steps

Fig. 13.11 Hilbert curve after seven application steps

13.3.4.2 The Peano Curves
The next example with

the variables L and R,
the axiom ω =-L∈ A∗, and
the production rules L→F→LF+RFR+FL-F-LFLFL-FRFR+ and R→-LFLF+RFRFR+F+RF-LFL-FR

provides for n = 2 and n = 4 Figures 13.12 and 13.13.

Fig. 13.12 Peano-curv after two application steps



Fig. 13.13 Peano-curv after four application steps

13.3.4.3 The Barrel Curves
The last example of real space-�illing curves with

the variables L and R,
the axiom ω =-L∈ A∗, and
the production rules L→F→LF+RFR+FL-F-LFLFL-FRFR+ and R→-LFLF+RFRFR+F+RF-LFL-FR

provides for n = 2 and n = 4 the barrel curves in Figures 13.14 and 13.15.

Fig. 13.14 Barrel curve after two application steps



Fig. 13.15 Barrel curve after four application steps

13.3.4.4 The Sierpinski Curves
The �ile

the axiom ω = F+F+F+F and
the production rule F→F→X -> XF-F+F-XF+F+XF-F+F-X.

provides for n = 2 and n = 6 Figure 13.16, resp. 13.17.

Fig. 13.16 Sierpinski curve after two application steps



Fig. 13.17 Sierpinski curve after six application steps

13.3.5 Extensions of the Alphabet of L-Systems
For forward steps (with or without drawing a line between the start and end position of the step), we have
introduced the letters “F” and “f” in Sect. 13.3, and for left and right turns by the given angle of rotation, the
rotation letters “+” and “-”.

In addition, there is the reversal letter “|”, with which the direction of the step (by 180∘) is reversed.
The ls �iles can be annotated line by line for documentation purposes. To do this, the corresponding

lines must begin with the symbol “%”; the content of these lines does not contribute to the construction of an
L-system.

13.3.5.1 Branches
The two following symbols are particularly important as they allow branches, because they enable the
creation of plant illustrations—the intended goal of Lindenmayer:

[ for the start of a branch and
] for the end of a branch.

We will show six nice examples of this.
The �irst two of these with the de�initions

and



in  Fig. 13.18.

Fig. 13.18 Two herbs

The third example

provides a bush (s. Fig. 13.19).



Fig. 13.19 A bush
The two next examples with the de�initions

and

are shown in Fig. 13.20.



Fig. 13.20 Two herbs
With

another herb is de�ined (s. Fig. 13.21).



Fig. 13.21 Another herb

13.3.6 Three-Dimensional L-Systems
We can also construct three-dimensional L-systems. To do this, the alphabet of the L-systems is extended by
the following symbols:

{    start of a polygon ,
}    end of a polygon,
_    incline forward,
̂    incline backward,
/    tilt to the left, and
\    tilt to the right.

Of course, no three-dimensional models can be depicted on the “two-dimensional” paper of this book. For
this reason, we show a second view for each example.

A real impression of the models is provided by the program lsys. It relies on the function Go from the
package μ U for the representation of 3D scenes. With it, you can

move left, right, up, down, closer to the centre of the model or further away from it;
turn and tilt left and right;
incline forward and backward; and
rotate and tilt the model around the focus.

13.3.6.1 Three-Dimensional Hilbert Curve
The examples of the space-�illing Hilbert curves from Sect. 13.3.4.1 can be generalized to three dimensions.
The �ile

delivers the three-dimensional Hilbert curve in Fig. 13.22 after three application steps.



Fig. 13.22 Three-dimensional Hilbert curve
Figure 13.23 shows another view of the same example.

Fig. 13.23 Another view of the three-dimensional Hilbert curve

13.3.6.2 Three-Dimensional Plants
The �ile

provides a three-dimensional bush.  We show it in Figures 13.24 and 13.25.



Fig. 13.24 A three-dimensional bush

Fig. 13.25 Another view of the three-dimensional bush
Also, tree-like structures can be created.
The �ile

provides a simple model of a three-dimensional tree (see Fig. 13.26).



Fig. 13.26 Simple three-dimensional tree
With the de�inition

results in a somewhat less abstract tree (see Figures 13.27 and 13.28).

Fig. 13.27 Three-dimensional tree



Fig. 13.28 Other view of the three-dimensional tree
Figure 13.29 shows two views of a three-dimensional model of a simple �lower, based on the �ile

Fig. 13.29 Simple three-dimensional �lower

Here is the penultimate example: The �ile



provides a three-dimensional grass-like plant (see Figures 13.30 and 13.31).

Fig. 13.30 Three-dimensional grass plant

Fig. 13.31 Three-dimensional grass plant from above

As a �inal example, we show with the �ile



Fig. 13.32 Three-dimensional fantasy plant

in Fig. 13.32 another fantasy plant.

in Fig. 13.32 another fantasy plant.
F -> gF[/+rF][//+lF][///+rF]yF[oF][//+oF][

-lF] 30 3

Fig. 13.32 three-dimensional fantasy plant

13.4 System Architecture
The essential parts of the system are

the grammar and
the ongoing state during the construction of an L-system.

13.4.1 The Objects of the System
This results in the following objects:

the grammar as an abstract data object,
an abstract data type for managing the ongoing state during the construction of an L-system—i.e., the
coordinates and directions.

They can be found in the packages

lsys/grammar,
μ U, which manages an “eye point”, a “focus”, and a normalized orthogonal triad “(right, front, top)” in the
R

3.

For managing the ongoing state, a stack for pairs of symbols and the respective position of the symbol in
a production rule is also needed as an abstract data object. It forms the package

lsys/symstk with the subpackage and
lsys/symstk/pair.

13.4.2 Component Hierarchy
The dependencies of the packages are shown in Fig. 13.33, where the top layer consists only of the main
program lsys.go, which uses the three underlying packages.



Fig. 13.33 System architecture of the L-System

13.5 User Manual
First, a �ile with the suf�ix “.ls” must be created using any text editor, which de�ines an L-system. The lines
of this �ile must meet a series of requirements, which we will explain in detail in the following section.

13.5.1 Creation of an L-System
The lines of the L-system �iles must meet the following conditions:

The �irst line can contain a natural number < 360 that speci�ies the starting angle of the geometric
interpretation. If there is no �irst line with a number, the starting angle is 90∘.
The axiom must be in the next (or possibly the �irst) line. This line may only contain symbols.
The subsequent lines contain the production rules (at least one must be speci�ied). Only symbols may
appear in this line as well.
The penultimate line must consist of a natural number < 360. It speci�ies the angle by which the direction
of the step changes when a rotation symbol appears on the right side of a production rule.
The last line must contain the number of application steps, a natural number < 26.

13.5.2 System Operation
It is incredibly simple:

If the edited �ile meets these requirements, the geometric interpretation appears on the screen after
calling the program lsysi with the name of the �ile as an argument (even without the suf�ix .ls)—
however, for three-dimensional systems, this only happens on a graphical interface.

If this is not the case, an appropriate error message will appear.
If the name of an ls-�ile that does not exist is passed as a parameter to the program call, the call has no

effect.

13.6 Construction
13.6.1 Speci�ication of the Library Packages
Below, we show the speci�ications of the three packages used.

13.6.1.1 Grammar
The speci�ication of the abstract data type in the package lsys/grammar is as follows:



13.6.1.2 Symbol Stack
The speci�ication of the symbol stack is directly derived from the speci�ication of the general stack μ U in the
microuniverse:

13.6.1.3 Management of the Current Position and Directions
This is done during the construction of the geometric interpretation of an L-system in the package μ U. Here
is its speci�ication:



13.6.2 Implementation of the Packages
The main program distinguishes between the construction of two- and three-dimensional L-systems, which
is determined by whether Tilt or Roll symbols appear in the ls-�ile.

13.6.2.1 Main Program
We only show the implementation of one of the most important functions in the main program, the function
step, which changes the state of the L-system depending on the actual symbol:



13.6.2.2 Grammar
The implementation of this package mainly consists of examining the passed ls-�ile with the veri�ication of
the symbols and the construction of the production rules, so that they can be processed by the main
program.

13.6.2.3 Symbol Stack
Its implementation essentially only consists of accessing the stack package μ U in the microuniverse. It is
only used during the execution of the function execute for measuring and creating the two-dimensional
graphics and for creating the three-dimensional graphics as openGL-Constructs needed.

13.6.2.4 Space
The implementation makes intensive use of the vector package μ Uf the microuniverse.
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The operation of a train station essentially consists of the construction
of routes for train journeys. Routes are sequences of blocks; blocks are
track sections, on which only one train may be present at a time; and
track sections are, for example, tracks, switches, and double crossover
switches and buffer stops. This hierarchy thus provides a nice example
of object-based programming. The project consists of simulating a
pushbutton control panel for a train station and has a distributed
aspect: the simulation of train traf�ic between several stations.
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Essential parts of the concept and approaches of the Bahn project
are based on the work results in a basic computer science course at the
Rückert-Gymnasium in Berlin-Schöneberg many decades ago. It was
about the simulation of an “electronic interlocking” in a station; the
occasion was the introduction of the �irst microcomputer-controlled
interlocking by Siemens in the Berlin U-Bahn Station Uhlandstraße.

Since Pascal was the only programming language available to us at
the time, I was able—knowing the works of Parnas—to achieve only
initially a separation between speci�ication and implementation using
the forward declarations. Due to the lack of graphics on our ASCII
terminals, we represented the cells (see Sect. 14.3.1.1) with

the minus sign “-”,
the underscore “_”,
the slash “/”,
the backslash “\”, and
the separator “|”.



I set this task to the participants of some teacher training courses in
computer science at the Free University of Berlin a few years later;
object-based programming was possible with Modula-2 at that time.

Various extensions planned at the time as options were developed
by me using the microuniverse and the various parts of the
documentation were completely revised.

In particular, the system has been expanded to a small network of
six stations.

Thanks are due to

my former students, who �irst built a Brio railway in the computer
room to get clarity about what the essence of, for example, switches
or routes , then devised a clever method for implementing lock
variables, as our trains were started concurrently from several
terminals, later rediscovered depth-�irst search in graphs, and �inally
found shortest routes for trains by sorting through merging in sets of
lists of blocks (thus mastering very demanding content from the �ield
of algorithms and data structures);
the course participants of the teacher training, who had continuously
driven the development; and
Mr. Dipl.-Ing. Norbert Ritter (then project manager at the Berlin
Transport Company), who showed us the new digital interlocking in
the U-Bahn Station, and Mr. Prof. Rolf Schädlich from the TFH, who
showed us a dismantled mechanical interlocking of the railway at the
TFH.

14.1 System Analysis
It is about a program system that supports the train service
management (EBO § 47 (1) 4) in a given station (EBO § 4 (2) in their
task to ensure the safety of the train operation, (EBO § 47 (2) and (3)):
The system should provide all information necessary for the issuance of
driving orders required.

This includes the display of the track diagrams of the stations, i.e.:

of all tracks with their numbers;
of all switches, double crossover switches, and signals with their
positions; and



the occupancy reports by stationary and moving trains.
A driving order is triggered by entering the start and destination

tracks. The system then constructs all possible routes, selects the one
with the fewest switches as the route, secures it by switching the used
switches and signals, and marks it as occupied. The driving order is
issued by setting the driving signal.

For the assembly or division of trains, shunting movements into an
occupied destination track are possible; moreover, it cannot be
assumed that the starting track will become free after the departure of
a shunting section. A model with such shunting possibilities would have
to keep track of the composition of all trains from their components
(locomotive(s) and wagons including their relative positions to each
other), otherwise meaningless driving orders are possible. Due to the
signi�icant complexity of a solution that includes all these factors,
shunting movements are not modelled—we limit ourselves to train
journeys.

Only a phantom is considered: The train journeys are only simulated
on the screen.

Trains leaving the station go to the neighbouring station. New trains
can appear on the station’s entrance tracks and must be “picked up”
there.

This allows the task of the system to be formulated as follows:
It is about the simulation of pushbutton interlocking based on the

track diagram display  and the synchronization of train traf�ic between
stations.

14.1.1 Basic Concepts of Railway Technology
A block (EBO § 4 (3)) is a section of track at whose ends the
continuation of a train in the permitted directions of travel is controlled
(released or blocked) by signals. The directions of travel for which a
block is permitted depend on its function, e.g., on double-track main
lines, the blocks are usually only permitted for one direction of travel (in
Germany right-hand traf�ic) (EBO § 38).

The block protection is therefore a central safety concept in train
operation: Within a block, there can always be only one train.

Exiting the block and thus entering the next block is only possible if
there is no train in the next block.



In a station, each longer section of track between two switches is to
be treated like a block. There can always be at most one train on it; exit
signals are at its ends. Switches are also to be considered as blocks in
this sense, as they can only be used by one train for obvious reasons.

Roads are in this sense sequences of blocks; tracks are routes that are
signal-technically secured.

In order to identify the tracks for the registration of journeys and
switching of roads, the usual scheme for track numbering is used:
parallel main tracks are counted from the reception building, merging
tracks are counted in both directions in full decades, with the last digit
of their number matching the number of the main track they continue.

The main tracks for through traf�ic may only be used by trains in the
direction of regular operation.

The terms “with the kilometerage” (i.e., in ascending order of the
kilometre stones on the railway line on which the station is located)
and “against the kilometerage” are agreed upon as directions of travel;
in this sense, all tracks of a station are oriented—reversing loops are
not permitted.

Switches in this sense are either with the or against the
kilometerage branched. They can (seen in the direction of branching)
have the positions right or left, abstracting from the (railway—
technically important) information that switches have a straight and a
branching branch. Double crossover switches are branched in both
directions.

Switch numbers are assigned in the direction of the kilometerage,
with switches that directly connect parallel tracks having consecutive
numbers. At individual station sections (e.g., at the station heads), new
decades start each time.

In addition to the branching of the tracks, the switches have an
important function for the safety of train operation: occupied or
travelled track sections must be protected against a lateral entry by
rejecting switch positions in the direction of a parallel track (�lank
protection).

The representation of the signals is part of the simulation of station
operation. Both main and protection signals (ESO B I. and VII.) are taken
into account. The inclusion of advance signals (ESO B II. and III.) as well



as other signals (additional signals, slow driving signals, shunting
signals, etc.) is reserved for a later expansion stage.

14.1.2 Sources
The essential regulations of the Deutsche Bahn for train traf�ic are the

Railway Construction and Operating Regulations (EBO) [1],
Driving Service Regulations [2], and
Railway Signal Regulations (ESO) 1959 [3]

of the Deutsche Bahn.

14.1.2.1 Excerpts from the Railway Construction
and Operating Regulations
§ 4 De�initions

(1) Railway facilities are all properties, structures, and other
facilities of a railway, which are necessary for the handling or
securing of passenger or freight traf�ic on the rail, considering
the local conditions. This also includes auxiliary operating
facilities and other facilities of a railway that enable or promote
loading and unloading as well as access and exit. There are
railway facilities of the stations, the open line and other railway
facilities. Vehicles are not part of the railway facilities.

 

(2) Stations are railway facilities with at least one switch, where
trains may start, end, evade, or turn. The entry signals or
trapezoid boards generally serve as the boundary between the
stations and the open line, otherwise the entry switches.

 

(3) Block sections are track sections into which a train may only
enter if they are free of vehicles.  

(11) Main tracks are the tracks regularly used by trains. Continuous
main tracks are the main tracks of the open line and their
continuation in the stations. All other tracks are sidings.

 

§ 34 De�inition, type and length of trains



(1) Trains are the units moving onto the open line consisting of
standard vehicles, moved by mechanical power, and individually
moving locomotives.

 

§ 38 Driving order
On double-track railways, the right side is to be used for driving.

This can be deviated from
1. in stations and when introducing track lines into stations,
2. ...
§ 39 Train sequence

(4) The entry, exit, or passage of a train may only be permitted if its
route is clear. ...  

14.1.2.2 Excerpts from the Railway Signal Regulations
I. Main signals (Hp)

(6) Main signals are used as entry signals, exit signals, intermediate
signals, block signals, ...

(10) Main signals indicate whether the subsequent track section
may be used. The main signals Hp 0, Hp 1, and Hp 2 only apply to train
journeys, but not to shunting movements.

Hp 0: Train stop
Light signal: One red light.
Hp 1: Go
Light signal: One green light.
Hp 2: Slow movement
Light signal: One green and vertically below it a yellow light.
The screen displays the station in the form of a track diagram

display, i.e., the schematic representation of all tracks, switches, and
double crossover switches and the position of all signals. The dynamic
part of the display consists at any given time of the representation of
the current state of its variable components: the positions of all
switches and signals and the occupancy reports of all tracks—
differentiated according to whether they are occupied by stationary
trains or by issued driving orders or moving trains. When a train has
left a track, the occupancy report is withdrawn. (In reality, track



clearance detectors are used, devices on the tracks that register the
state, for example, by counting the passing axles.)

The train dispatcher requests a route for a train journey by pressing
buttons on the track display that indicate the start and the destination
track for the journey, thereby giving the track display the function of a
pushbutton interlocking. Start and destination can in principle only be
tracks that are marked by numbers. Switches can only be used for
transit; trains are not allowed to stop on them. A journey in this sense is
a movement from the start to the destination track in exactly one
direction. If a driving order cannot be executed because there is no or
no free route from the start to the destination track, or because the
destination track is occupied, corresponding messages are issued. The
system then checks whether a route is available for the journey. If a
driving order can be executed on more than one route, the system
selects the one with the fewest switches to be traversed. The system
then secures the route by switching the switches and signals for the
route, marks all tracks and switches on the route as occupied, and
updates the track display in the screen window. The driving order is
issued to the train control by setting the corresponding signal to drive
or slow drive position. When a train has arrived on an entry track from
the neighbouring station, it must be “picked up” by the train dispatcher,
i.e., a driving order (from the entry track as the start track) to a
destination track in the station must be issued. If an exit track is the
destination of a journey, the train disappears in the direction of the
following station.

14.1.3 Track Diagram Display
The screen displays the station in the form of a track diagram display,
i.e., the schematic representation of all tracks, switches and double
crossover switches, and the position of all signals.

The dynamic part of the display consists at any given time of the
representation of the current state of its variable  components: the
positions of all switches and signals and the occupancy reports of all
tracks—differentiated according to whether they are occupied by
stationary trains or by issued driving orders or moving trains. When a
train has left a track, the occupancy report is withdrawn. (In reality,



track clearance detectors are used, devices on the tracks that register
the state, for example, by counting the passing axles.)

14.1.4 Driving Orders
The train dispatcher requests a route for a train journey by pressing
buttons on the track display that indicate the start and the destination
track for the journey, thereby giving the track display the function of a
pushbutton interlocking.

Start and destination can, in principle, only be tracks that are
marked by numbers. Switches can only be used for transit; trains are
not allowed to stop on them.

A journey in this sense is a movement from the start to the
destination track in exactly one direction.

If a driving order cannot be executed because there is no or no free
route from the start to the destination track, or because the destination
track is occupied, corresponding messages are issued.

The system then checks whether a road is available for the journey.
If a driving order can be executed on more than one road, the

system selects the one with the fewest switches to be traversed.
The system then secures the road by switching the switches and

setting the signals for the road, marks all tracks and switches on the
route as occupied, and updates the track display in the screen window.

The driving order is issued to the train control by setting the
corresponding signal to drive or slow drive position.

When a train has arrived on an entry track from the neighbouring
station, it must be “picked up” by the train dispatcher, i.e., a driving
order (from the entry track as the start track) to a destination track in
the station must be issued.

If an exit track is the destination of a journey, the train disappears in
the direction of the following station.

In the past, all this was done with mechanical lever interlockings,
wire rope pulls, and electromechanical relay controls; nowadays, it is
probably done everywhere by computer-controlled sensors and
motors.

14.1.5 Representation of Train Journeys



The duration of trains on their journey over tracks of different lengths
is greatly simpli�ied: We assume that they travel at a constant speed,
i.e., that the duration of a journey over a block depends only linearly on
its length.

The journey of a train, its arrival at its destination track, or the fact
that it has left the station is visually displayed on the track display.
Tracks and switches that the train has left are immediately released on
the track display.

14.1.5.1 Inclusion of Multiple Stations
The system consists of several stations.

A distributed solution is planned for this: Each station is operated
on its own computer or in a heavyweight process on one of the
participating computers; the operation in between is synchronized by
the respective neighbouring stations. By “synchronization” we
understand that a train appears on the entry track of the destination
station after leaving the exit track on a journey to a neighbouring
station.

14.2 System Architecture
14.2.1 The Objects of the System
From the system analysis of the project, the following objects can be
derived in the planned system, each of which is packed into a package:

Stations as track diagrams of the entirety of all blocks.
The network of all involved stations with which the train traf�ic
between the stations is synchronized.
Roads as ordered sequences of pairwise connected blocks, which are
constructed, occupied, switched, driven, and then released.
Blocks with

– their connections to the neighbouring blocks;
– their type (track, switch, or double crossover switch);
– their location;
– their position on the screen;
– the cells, they consist of;



– if they are switches or double crossover switches:

their branching direction, (with or against the kilometre
marking),
their switch direction (left switch or right switch), and
position (left, straight, or right);

– their signals; and
– their state (free or occupied with a stationary or moving train);

for each block its signals;
cells in the form of a straight or bent track piece, a buffer stop, or a
switch and double crossover switch in their respective position, from
which the representations of the blocks on the screen are composed.

Fig. 14.1 Architecture of Rail
In addition, the system requires the following small packages:

kilo for the both directions (“with” and “against” kilometerage);
colour for the colours needed by the system;
direction for the position of the switches (left, straight, right); and
various constants for positioning on the screen windows.



In the following, we explain these basic components.

14.2.2 Component Hierarchy
In Fig. 14.1, you can �ind the dependencies of the individual packages
on each other: the package that is lower is imported (used) by the one
above it. The representation slightly exaggerates the import
relationships insofar as

between the de�inition and implementation parts of the packages no
distinction is made and
not every import becomes visible, because at some points there are
also imports over several layers (for example, the colours are
imported by all indirect above modules).

14.3 User Manual
14.3.1 Screen Design
The only alphanumeric formats in the system are the

Station names (strings of limited length) and
the track numbers (natural numbers < 100).

14.3.1.1 Representation of the Cells
The cells have a size of 36 pixels horizontally and 24 pixels vertically.

There are cells for the representation of

tracks,
bends,
switches,
double crossing switches, and
buffer stops.

Figure 14.2 shows track cells, Fig. 14.3 shows track bends, Fig. 14.4
shows switches branched in the direction of the kilometerage, Fig. 14.5
shows switches that are branched against the direction of the
kilometerage, Fig. 14.6 shows double crossover switches, and Fig. 14.7
shows buffer stops.



Fig. 14.2 Track cells

Fig. 14.3 Track bends

Fig. 14.4 Switches branched in the direction of the kilometerage

Fig. 14.5 Switches branched against the direction of the kilometerage

Fig. 14.6 Double crossing switches

Fig. 14.7 Buffer stops

14.3.1.2 Representation of Blocks
A block is represented as sequences of cells, with track numbers
approximately in the middle of the track block for tracks.

Switches and double crossover switches are blocks of length 1, so
they are represented as the corresponding cells. Switch numbers are
not written, as they do not need to be identi�ied on the track diagram
because they are not switched by the train control, but by the system.

14.3.1.3 Representation of Signals



Signals are represented as small (colour-�illed) circles; in the direction
of the kilometerage at the end of a track block below a track cell and in
the opposite direction above a track cell.

14.3.1.4 Occupancy Reports
The different states of tracks, switches, and routes are displayed as
follows:

Free tracks are shown in green, tracks occupied by a stationary train
are shown in yellow, and tracks occupied by a moving train are shown
in red.

The positions of switches and double crossover switches are
evident in that only the switched branches have the corresponding
colour, the others are grey.

14.3.2 The Track Diagram Control Panel on the Screen
Input and output are done on a static screen; techniques such as
“screen scrolling” are avoided; the train dispatcher must always have
the entire station in view (there are also no “scrolling pushbutton
control panels”).

The screen windows have a size of 42 cells vertically and 8 cells
horizontally and 4 lines for the distance to the top and bottom edge of
the windows and the last screen line for error messages and operating
instructions.

This speci�ication limits the number of tracks in the stations: A
maximum of eight parallel tracks can be displayed.

After successful execution of the driving order, the route is
designated as a road, i.e., marked as occupied by a moving train.

The representation of a train journey in its movement is achieved by
cleared track sections and switches immediately assuming the state of
being free, i.e., changing to the free colour.

14.3.3 The Net of the Stations
Figure 14.8 shows the network of the six stations.



Fig. 14.8 The net of the six stations
In the following, we present the individual stations.

14.3.4 The Network of Stations
Bahnheim
Bahnheim is a terminal station of a double-track line with two main
tracks (2 and 3), two secondary tracks (1 and 4), four storage tracks (11
to 14), and one �lank protection track (21) (see Fig. 14.9). A platform is
to be imagined between tracks 2 and 3.

Track 23 is the entrance track and track 24 is the exit track to and
from Bahnhausen.

Fig. 14.9 Track diagram of Bahnheim

Bahnhausen
Bahnhausen is a station on a double-track line with two main tracks (2
and 3), two secondary tracks (1 and 4), and two �lank protection tracks
(14 and 21) (see Fig. 14.10). A platform is to be imagined between
tracks 2 and 3.

Tracks 12 and 13 are the entrance and exit tracks to and from
Bahnheim, and tracks 23 and 22 are the entrance and exit tracks to and
from Bahnstadt.

Fig. 14.10 Track diagram of Bahnhausen

Bahnstadt
Bahnstadt is a station on a double-track main line with two main tracks
(3 and 4), with sidings (1, 2, and 6), and two �lank protection tracks (16
and 22). Track 5 is the starting point for the branching single-track



branch line to Eisenheim; tracks 6 to 8 with their sidings form a small
freight loading section with pull-out and storage tracks for shunting
purposes (see Fig. 14.11).

Platforms are to be imagined between tracks 2 and 3 and between
tracks 4 and 5.

Tracks 13 and 34 are the entry tracks from Bahnhausen or
Eisenstadt and tracks 14 and 33 are the corresponding exit tracks.
Track 36 is the entry and exit track from or to Eisenheim.

Eisenheim
Eisenheim is a terminus of a single-track branch line with one main
track (2), two sidings (1 and 3), a �lank protection track (13), and three
storage tracks (21 to 23) (see Fig. 14.12). A platform is to be imagined
between tracks 2 and 3.

Track 12 is the entry and exit track from or to Bahnstadt.

Fig. 14.11 Track diagram of Bahnstadt

Eisenstadt
Eisenstadt is a through station on a double-track main line with two
main tracks (2 and 3), two sidings (1 and 4), and two �lank protection
tracks (14 and 21) (see Fig. 14.13). A platform is to be imagined
between tracks 2 and 3.

Tracks 12 and 23 are the entry tracks from Bahnstadt or
Eisenhausen and tracks 13 and 22 are the corresponding exit tracks.

Fig. 14.12 Track diagram of Eisenstadt

Eisenhausen
Eisenhausen is a terminus on a double-track main line with two main
tracks (2 and 3), two sidings (1 and 4), a �lank protection track (14),



and four storage tracks (21 to 24) (see Fig. 14.13. As with the previous
stations, a platform is to be imagined between tracks 2 and 3.

Tracks 12 and 13 are the entry and exit tracks from or to Eisenstadt.

Fig. 14.13 Track diagram of Eisenhausen

14.3.5 System Operation
It is very simple. After starting the server, operations can be started at
the stations, which consist of driving orders.

14.3.5.1 Station Selection
Each station is controlled by its own computer or a heavyweight
process on a computer.

The system is responsible for synchronizing train traf�ic between
stations. For this, it is necessary to start the server—a component in
the network package—before calling up operations at one of the
stations. This is done by calling train (without arguments).

Afterwards, a station is selected by calling “train n”, where n is one
of the numbers from 0 to 5: It is then the n-th station from the network
(in the order speci�ied in Sect. 14.4.2).

The screen window shows its track image in the state de�ined in the
station package and the station’s operation can be started.

14.3.5.2 Issuing a Driving Order
The start and destination tracks for a route are selected as follows:

There is the hint “Click start track end operation: Esc”. By clicking
on the corresponding track with the left mouse button, the start track is
selected; the escape key ensures that operations at this station—but
only after all train journeys have been completed—are stopped.

Then there is the hint “Click destination track other start track:
Esc”; here too, the destination track is clicked with the left mouse
button.

If a different start track is to be selected, the escape key must be
pressed.

The following errors are possible with these clicks:



As a start track, a free track section or
an exit track of a double-track connection or
as a destination track, an occupied track section or
an entry track of a double-track connection or
as a start track or destination track, a switch is speci�ied.
there are no routes from the start to the destination track or
there are routes, but all of them have some tracks occupied by
standing trains or train journeys.

In the �irst �ive cases, the driving order is simply ignored by the
system; in the other two cases, an appropriate error message is issued.

After selecting the start and destination tracks, the system searches
for the route with the fewest switches among the possible routes.

After the successful issuance of the driving order, the switches and
signals are set, and then the train departs.

14.4 Construction
We only show the speci�ications of the library packages and the
representations of the respective abstract data objects.

14.4.1 Main Program
The main program is very short, it consists only of the activation of the
server or the start of operations at one of the stations.

14.4.2 Network



The tasks of the network package are

the management of the six stations with their connections to each
other and
the work of the server, which occupies and releases the entrances to
the stations.

Its network speci�ication reads

The implementation of the network package includes two �iles; in
network.go the names of the stations and their respective
neighbours are de�ined and in monitor.go the abstract data type mon
and the computer on which the server runs are de�ined:





14.4.3 Stations
The only task of the stations is their operation. Therefore, the
speci�ication of the station package is very short:

The representation of the abstract data type Station is very simple, it
consists only of the graph of the blocks, represented by their numbers,
and the indication of the kilometerage, which always indicates the
direction of the current route:

14.4.4 Routes
Routes and route sequences are ordered sequences of blocks. They
have a start block and a target block and blocks can be arranged in
them.



14.4.5 Blocks
The blocks are the basic components of a station, because every station
is a graph whose nodes are the blocks. Each block consists of an
ordered sequence of cells (see Sect. 14.4.6). There are

straight track blocks,
bends (bent track blocks),
switches, and
double crossing switches (blocks).

The last three ones consist only of one cell.



Blocks are numbered; in the case of track blocks, these are the track
numbers. There are different sorts of tracks:

Through tracks,
Entry and Exit tracks, and
Siding tracks.

Each block has one of the states

free, i.e., not occupied by a train,
occupied, i.e., occupied by a stationary train, and
travelling, i.e., occupied by a moving train.

Here is the speci�ication of the block package:











The representation of blocks is somewhat more complex:





14.4.6 Cells
Cells are the components of blocks. There are the following types of
cells:

tracks,
bends,
switches,
double crossing switches, and
buffer stops.

Cells have a location, a direction, possibly a position, and a position
in the screen window (see Sect. 14.3.1.1).

The speci�ication of the cell package is

The representation of the cells is also somewhat complex:



14.4.7 Signals
Signals are components of blocks: Each block can have one or two
signals, one in the direction of the kilometre marking and/or one in the
opposite direction.

We only include main signals in the system. They always have one of
the following positions:

Hp0 = Stop,
Hp1 = Go, or
Hp2 = Slow movement.

The speci�ication of the signal package is quite short:



14.4.8 Aid Packages
In addition to the packages presented so far, a few small packages are
still needed.

14.4.8.1 Colour
The different states of the blocks are distinguished by colours:

green for free,
yellow for occupied, and
red for travelling.

This results in the speci�ication of the colour package:

14.4.8.2 Kilometerage
The kilometerages are

∙ With = in the direction of the kilometre marking and ∙ Against =
against this direction. The speci�ication of the kilometre marking
package is trivial:



14.4.8.3 Directions
The directions

left,
straight, and
right

are used for the inclination of cells and the positions of switches. The
speci�ication of the direction package is also very simple:

The size and positioning of cells (thus of blocks) on the screen windows
serve various constants, which can be found in the corresponding
package:

14.4.9 Other Packages
At deeper levels, many other packages are needed, which are
components of the microuniverse due to their universal usability, such
as sequences (μ U), persistent sequences (μ U), graphs (μ U), and my
egg-laying wool milk pig for distributed problems, the remote monitor (
μ U).
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So you look, huh?

Abstract
This chapter is about the spatial representation of classical �igures.

In my lectures in teacher training for mathematics, I occasionally drew
sketches of structures from analytical geometry in three-dimensional
space on the board to illustrate various concepts and to connect with
prior knowledge in the context of “modules and vector spaces”.

As a byproduct of some graphic packages from the microuniverse,
the package rfig was created for visualizing simple scenarios from
analytical geometry, with which, for example, conic sections can be
vividly represented.

This project is simply about generating and being able to view
standard �igures in three-dimensional space.

The advantage over a (two-dimensional) sketch is obvious; for
example, being able to “walk around” the intersections of (double)
cones with planes in 3D space—even if only virtually—is considerably
more illustrative than lousy 2D sketches ...
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15.1 System Analysis
It is intended to represent three-dimensional �igures in space, both
angular ones, such as cubes, pyramids, or octahedrons, and round ones,
such as spheres, cones, cylinders, and tori.

15.1.1 System Architecture

15.1.2 The Objects of the System
These are the three-dimensional �igures from the package μ U:

points;
lines and sequences of lines;
triangles and sequences of triangles;
quadrilaterals and sequences of quadrilaterals;
horizontal and vertical rectangles;
parallelograms;
polygons;
curves given by functions;
planes, given by function terms of the form f (x, y) = ax + by + c;
cubes;
cuboids with horizontal base;
general prisms;
parallelepipeds;
pyramids and multipyramids;
octahedra;
horizontal and vertical circles and segments of circles;
spheres, given by the coordinates of the centre (x, y, z) and their
radius r;
cones and double cones (with vertical axis of symmetry), given by the
coordinates of their apex (x, y, z), their radius f and their height h;
cylinders, segments of cylinders, horizontal cylinders;
horizontal and vertical toruses;
paraboloids; and
surfaces given by functions.



15.2 Component Hierarchy
There is only the main program spacefig.go, which uses the
package fig3, therefore the hierarchy is very �lat (see Fig. 15.1).

Fig. 15.1 Component hierarchy of the spatial �igures

15.3 User Manual
The use of the system consists in writing similar short programs as
shown above, which requires the study of the speci�ications of the
OpenGL package μ U.

15.4 Construction
15.4.1 Speci�ications
For the speci�ication, that of the OpenGL package μ U is important; the
implementations are to be written as very short programs in the style
of those presented in Sect. 15.4.3.

The three-dimensional �igures
The speci�ication of μ U contains many �igures. However, we only show
the section that deals with three-dimensional �igures here, and also
leave out the functions in which �igures with multiple colours occur:



15.4.2 Implementations
The implementation of μ U consists only of direct accesses to the
OpenGL package μ U from the microuniverse. To this end, we show a
section from the speci�ication of this package:





The main program relies on the function Go from the package μ U for
the representation of 3D scenes. We brie�ly explained this in Chap. 13
about Lindenmayer systems (see Sect. 13. 3. 6).

15.4.3 Examples
The program

shows a multipyramid, an octahedron, a prism, and a parallelepiped
(see Figs. 15.2 and 15.3).



Fig. 15.2 Several �igures

Fig. 15.3 Another view of the several �igures
In the program



a sphere, two tori, and a cylinder are modelled (see Fig. 15.4).

Fig. 15.4 Sphere, tori, and cylinder

15.4.4 Examples of Conic Sections
These are the �igures that were the reason for me to construct this
project.

15.4.4.1 Circles and Ellipses



These are the �igures that were the reason for me to construct this
project.

If you cut a cone with a plane that is horizontal to the cone axis, a
circle results as the intersection. If the plane is not horizontal to the
cone axis and its angle of inclination is smaller than the angle of
inclination of the cone, the intersection is an ellipse. This second case is
modelled by the following example program:

Figures 15.5 and 15.6 illustrate this example.

Fig. 15.5 Section of a cone with a plane



Fig. 15.6 Another view of this section

15.4.4.2 Parabolas and Hyperbolas
If you replace the cone with a double cone and the angle of inclination
of the plane is greater than the angle of inclination of the cone, the
intersection is generally a parabola. The special case of this example,
that the plane is parallel to the cone axis, results in a hyperbola as the
intersection. This is modelled by the following example program:



Figures 15.7 and 15.8 show two views of this example.

Fig. 15.7 Section of a double cone with a plane parallel to the cone axis

Fig. 15.8 The hyperbola
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Abstract
This project shares with the railway project the focus on shortest
connections, but here between stations when travelling with Berlin’s U-
and S-Bahn trains. The network of these trains is displayed on the
screen; trips can be found with mouse clicks.

Graph theory also plays a central role in this project: It’s about
searching for the best connections between two stations in the
transport network of Berlin’s U- and S-Bahn, a classic example of a
graph.

16.1 System Analysis
A U- or S-Bahn line consists of stations and the connecting routes
between them. The network is the entirety of all U- and S-Bahn lines.

The attributes of the stations are

their names;

https://doi.org/10.1007/978-3-658-44704-5_16
mailto:christian@maurer-berlin.eu


their coordinates (latitude and longitude);
the lines, on which they are located;
an internal number, by which they are identi�ied; and
whether they are a transfer station or not.

A connection (between two stations) consists of

the line, on which the stations are located;
the coordinates of the two stations it connects; and
a natural number as the average travel time between these two
stations.

A line consists of

its designation (for U-Bahn a “U”, for S-Bahn an “S”, followed by the
line number and
the colour, with which they are marked on maps.

16.2 System Architecture

16.3 The Objects of the System
After the system analysis, we have the following objects:

the network,
the stations,
the connections, and
the lines.

The corresponding packages are the abstract data types

net,
station,
track, and
line.

net is an abstract data object, station and track are abstract data
types, and line only de�ines the names and texts of the lines.



16.4 Component Hierarchy
Figure 16.1 shows the dependency of the packages on each other.

Fig. 16.1 Architecture of BUS

16.5 User Manual

16.6 Construction
Using the program is incredibly simple:

After calling up the program, a graphic appears (see Fig. 16.2),
which represents the U- and S-Bahn networks. After clicking on the
start station and then clicking on the destination station, the shortest
connection is highlighted in colour.



Fig. 16.2 Extract from the U- and S-Bahn-Net in Berlin
The graphic can be reduced or enlarged with the enter key and

the backspace key , and moved with the arrow keys; the program is
terminated with the escape key Esc.

16.6.1 Speci�ications
Here we show the speci�ications of the involved packages.

The Network
The speci�ication of the network is very short:

The Stations



Stations have the type Object—the prerequisite for them to be
inserted as nodes in graphs (see Sect. 3. 5. 11).

The Connections
Also connections have the type Object—the prerequisite for them to
be inserted as edges in graphs (see Sect. 3. 5. 11).

The Lines



The speci�ication of the lines consists of the enumeration of the U- and
S-Bahn lines in Berlin and the colours assigned to them by the BVG.

16.6.2 Implementation
We only show the representations of the data types stat and track
and a section from the �ile construct.go from the package net.

The Stations
The representation of station is as follows:

The Connections
Here is the representation of track:



The Network
The network is represented as a graph. In its construction in the �ile
net/construct.go, each station is inserted into this graph in a line
of code and connected to the station from the line of code before. We
show a short exemplary section from this construction.
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