
EVERYDAY

GO
BY ALEX ELLIS

Learn tools, techniques and
patterns from real tools used in
production.

YOUR FAST TRACK FOR GOLANG

Everyday Golang - The Fast Track

Alex Ellis

2021

Contents

1 Introduction 3
How to use the book . 3

Help the book to evolve . 4
Changelog . 4

Why Go? . 4
Getting started with Go . 5

A note for Windows users . 6
Direct installation on Linux . 6
Packages and paths . 6
Vendoring and Go modules . 7

2 Create your first Go program 10
Add an external dependency . 11
Make use of flags . 13
Define a separate package or library . 15

3 Cross-compile for different operating systems 19
Go build arguments . 19
CGO and portability . 20

4 Fetch JSON from a HTTP endpoint 21
Get started . 21
Learn to parse JSON . 22
Retrieve the JSON via HTTP . 23
Extracting additional data from the JSON . 26

5 Five ways to write an awesome CLI 28
Pick Go . 28
Parse flags & arguments . 29
Automate everything . 30
Integrate with package managers . 31
Accept contributions and gather feedback . 32
Now, Go and write your CLI . 32

6 Writing unit-tests in Golang 33
Testing opinions . 33
Testing the Sum method . 35
Adding a test table . 37
Party tricks for “go test” . 38

Statement coverage . 38
Generating an HTML coverage report . 38
Benchmarking your code . 39
Go doesn’t ship your tests . 40
Stress testing your tests . 40
Running tests in parallel . 40

1

Compile the tests to a binary . 44
Isolating dependencies . 45

Example of isolating dependencies . 47
Unit-testing a HTTP server . 49

7 Work concurrently work with Goroutines 53
A simple example with Goroutines . 53
Avoid a common mistake with Goroutines . 55
Error groups . 57
Sharing data between Goroutines . 58
Using channels for synchronisation . 61
Using a context to handle timeouts . 63
Limiting concurrent work . 65

8 Store data with a database 70

9 Write your own config files in YAML 75
A practical example of YAML in action . 75
Read and write your own YAML schema . 75
Merging objects . 77

10 Inject version information into your binaries 80
Capture useful variable(s) . 80
Prepare your code . 81
Do it with Docker . 83
Examples in production . 83

11 Embed data in your application 85

12 Create dynamic content with templates 87
Advanced templates: ranges and custom functions . 88
Real-world templates - arkade . 90

13 Write a HTTP server 93
Reading the request . 94
Advanced route handling . 95
Writing HTTP middleware . 97

14 Add Prometheus metrics to your microservices 99
Tracking HTTP metrics for our microservice . 104
Adding custom metrics to your Prometheus data . 107

15 Building and releasing Go binaries 109
The release-it example . 109
Releasing your binaries with a GitHub Action . 110

16 Releasing a Docker container image 112
Going multi-arch . 113
Shipping a Docker container from GitHub Actions . 114

17 Your onward journey 116
Giving feedback . 116
Contributing to Open Source . 116
My other content . 116

2

Chapter 1

Introduction

“Everyday Go” is the fast way to learn tools, techniques and patterns from real tools used in production.

About the author: Alex is a software engineer and an avid technical writer. There’s nothing he likes more than learning
a new technology, and then writing it up in a clear, practical way. He’s well known for his blog posts on containers,
Kubernetes, cloud computing and Go. He founded the OpenFaaS project in 2016, and since then has gone on to publish
training courses, eBooks and dozens of other tools for developers.

How to use the book

This book is a compilation of practical examples, lessons and techniques for Go developers. They are the kind of things
that you may need to learn and apply in your everyday journey. The topics cover the software lifecycle from learning
the fundamentals, to software testing, to distribution and monitoring.

If you feel like you may have seen some of these techniques before, you would be right. I’ve been writing about Go
since 2015 and wanted to take everything that I’ve needed on a regular basis, and to lay it out for you to benefit from.
It’s not a reference book or a complete guide to the language, but if you like learning by example and aren’t afraid to
get your feet wet, then this style is probably for you.

The chapter “Writing unit-tests in Go” was originally part of my top ranking and performing blog post. It was even
featured in the Kubernetes documentation to help new Go developers get up to speed. In Everyday Go, I’ve rewritten,
updated and extended the tutorial with more content and techniques that you can use in your work.

You could say that this is the fast track to get the results you’ll need in your everyday writing of applications in Go.

• How to use the book
• Why Go?
• Getting started with Go
• Managing packages and paths
• Understand Go modules and vendoring
• Creating your first program in Go
• Adding external dependencies to your program
• Cross-compile your code for different Operating Systems
• Inject version information into your binaries
• Merge Go objects together into one
• Deal with HTTP and JSON parsing
• Learn how to use concurrency with Goroutines, channels, Mutexes, error groups and WaitGroups
• Avoid a common mistake with Goroutines
• Write unit tests and understand everything that’s available to you
• Learn party tricks of the testing in Go
• Isolate dependencies and unit test a HTTP server
• Embed data and files into your application
• Create dynamic content with templates

3

https://github.com/kubernetes/kubeadm/blob/master/CONTRIBUTING.md#running-unit-tests

• Build a CLI that you’ll enjoy using
• Load and write to config files in YAML
• Write your own HTTP microservices
• Integrate with Prometheus for metrics
• Learn to build and release Go binaries
• Build Docker container images
• Release your code on GitHub
• Get set for your onward journey

Help the book to evolve

Just as my knowledge of Go has evolved over time, this book will also evolve with updates and new examples. This book
should be a place that you can come to for a pattern or sample that you can use as a basis of a new program or feature.

Check the final chapter for how to submit comments, suggestions or corrections.

Changelog

• 5 August 2021 - Clarify usage of RWMutex and locking behaviour
• 19 July 2021 - Fix typo on X509 certificates.
• 14 July 2021 - Correct git clone URL, explain Marshal and Unmarshal, remove an import.
• 28 June 2021 - Update wording on concurrency vs parallelism, introduce new locking example and Mu-
tex/RWMutex.

• 27 June 2021 - Update to Go modules section and clarification of paths in package cache directory
• 24 June 2021 - MIT license added for example apps
• 24 June 2021 - Add section on multiple packages and new example app “multiple-packages”
• 23 June 2021 - Add new section on Go modules usage and vendoring
• 22 June 2021 - Update Go release date in intro, add “merge-objects” example app

Why Go?

Figure 1.1: Go’s new logo

According to Wikipedia, Go (or Golang) is a programming language that was developed by a team at Google and first
appeared in 2009. It’s synonymous with server-side development and tooling for infrastructure projects.

“Go is an open source programming language that enables the production of simple, efficient and reliable
software at scale”

4

https://en.wikipedia.org/wiki/Go_(programming_language)

• Go branding guidelines

Here are some projects that come to mind, which are entirely written in Go:

• Docker - a container engine written by Docker Inc
• Kubernetes - a clustering system for containers built by Google and open source contributors
• Traefik - a load-balancer built by Traefik Labs
• Consul, Terraform - tools for managing infrastructure built by Hashicorp
• Caddy - a high performance HTTP server written by Matt Holt
• OpenFaaS - serverless framework for hosting your own functions, built by OpenFaaS Ltd and open source con-
tributors

These are just a few of hundreds of thousands of projects which have appeared on GitHub’s trending page for Go.

As you can see from the above, Go is very popular for server-side projects, but it is also very popular forwriting Command
Line Interfaces (CLIs) because the binaries can be statically linked. Statically-linked Go binaries are both fast and small,
and do not require an additional runtime making them a very popular choice.

My personal highlights for Go are:

• portability - static compilation for easy distribution
• cross-compilation - being able to build binaries for Linux, Windows, MacOS Operating Systems (OS) and Arm
computers with a single command (go build)

• concurrency model - Go has built-in mechanisms for concurrency that make it well suited to tasks both small and
large

• ecosystem - knowing Go means being able to contribute to almost any other open source Go project or product
• tooling - Go includes its own unit-testing runner and profiler, both of which are simple and easy to use
• opinions - Go has strong opinions on formatting, style and typing that make it easy to move between codebases

Above everything else, Go has an impressive set of packages available within its standard libraries or “stdlib”. There are
many useful packages and utilities that would need to be installed separately in a programming language like JavaScript,
Ruby or Java.

• crypto - libraries for X.509 certificates and cryptography
• compress - work with zip files and archives
• http - a very powerful and simple HTTP client and server package including things like reverse proxies
• net - work directly with sockets, URLS and DNS
• encoding/json - work directly with JSON files
• text/template - a powerful templating engine for replacing tokens in files, and generating text and HTML
• os - work with low level OS primitives

You can find a complete package list here.

Through the next few chapters we will explore some of the above highlights and also solve various practical problems.
Even if you’re a seasoned Go developer, I’d recommend going through each of the exercises, because even after 5 years
I still learn something new each week.

Getting started with Go

There are three ways to install Go.

• Install Go using a system package - such as an msi (Windows) or pkg (MacOS)
• Install Go using a package manager - such as apt-get (Debian), pacman (Arch Linux), brew (MacOS)
• Download a tar archive and unpack it to a set location (Linux only)

If you’re a new user and running on Windows or MacOS, then go ahead with the first option and download Go from the
homepage. The version changes frequently, so download the latest stable version.

If you like to use package managers, you should be aware that the version they offer often lags behind. You may be
installing a very old version of Go, and some features may not be available.

5

https://github.com/trending/go
https://golang.org/pkg/crypto/
https://en.wikipedia.org/wiki/X.509
https://golang.org/pkg/compress/
https://golang.org/pkg/http/
https://golang.org/pkg/net/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/text/template/
https://golang.org/pkg/text/os/
https://golang.org/pkg/
https://golang.org/dl/
https://golang.org/dl/

A note for Windows users

Whilst the Go commands can be run cmd.exe and PowerShell, some of the example commands expect a UNIX-style
shell which is present on MacOS and Linux hosts.

For ease of use, it’s recommended that you try the content using Windows Subsystem for Linux (WSL), if it is available
for your system. Or if not, make use of Git Bash.

Git bash provides a terminal where you can run bash, have access to the git command and various other UNIX-style
commands such as export, ls, mkdir and curl.

Direct installation on Linux

As a Linux user, I often need to install Go on a server, within a Docker image, or on my Raspberry Pi. I use the third
approach of downloading and unpacking a tar for this.

For a PC:

curl -fLS https://golang.org/dl/go1.16.linux-amd64.tar.gz \
-o /tmp/go.tgz

For a Raspberry Pi:

curl -fLS https://golang.org/dl/go1.16.linux-armv6l.tar.gz \
-o /tmp/go.tgz

Then on either platform, unpack the archive:

sudo mkdir -p /usr/local/go/
sudo tar -xvf /tmp/go.tgz --strip-components=1 -C /usr/local/go/

After the installation, you will need to set your PATH and GOPATH variables in your bash file, so that they load every
time you log in.

echo "export PATH=\$PATH:/usr/local/go/bin/" | tee -a ~/.bash_profile
echo "export GOPATH=\$HOME/go" | tee -a ~/.bash_profile

Now disconnect from your server or Raspberry Pi, or close the terminal and connect again.

pi@raspberrypi:~$ go version
go version go1.16 linux/arm

Packages and paths

Go is usually installed to /usr/local/go/, with the bin folder containing the main binary and any other built-in com-
mands like gofmt.

You should also make yourself familiar with the GOPATH variable. Whenever packages are fetched, they will usually be
downloaded there. In the section on Go modules, we will clarify its use further.

Whenever you run go install path/to/project, you’ll find the binaries there also.

Imagine your GOPATH is $HOME/go/

• GOPATH/pkg/ - Go modules downloaded as dependencies
• GOPATH/bin/ - any CLIs that you build or install via go get
• GOPATH/src/ - the default location for source code

Here is an example of how to download a HTTP server called hash-browns that I wrote to generate hashes based upon
a HTTP POST body.

6

https://git-scm.com/downloads
https://github.com/alexellis/hash-browns

$ export GO111MODULE=on
$ go get github.com/alexellis/hash-browns

go: downloading github.com/alexellis/hash-browns v0.0.0-20200122201415-86d5dd6d7faa
go: github.com/alexellis/hash-browns upgrade => v0.0.0-20200122201415-86d5dd6d7faa
go: downloading github.com/prometheus/procfs v0.0.0-20180920065004-418d78d0b9a7

Note: For the rest of the book, you should assume that GO111MODULE is set to on and that Go modules
are being used everywhere.

The source for the specific package will be downloaded to:

$GOPATH/pkg/mod/github.com/alexellis/hash-browns@v0.0.0-20200122201415-86d5dd6d7faa

Note that the specific suffix after the @ could change, depending on the latest version of the package. WhenGoprograms
are released with a v prefix, the import path will look more like v0.1.0 instead of v0.0.0- followed by a SHA.

For example, the release for openfaas/faas-provider is prefixed with a v, therefore a “prettier” path is provided:

$ go get github.com/openfaas/faas-provider

And the path is set as:

$GOPATH/pkg/mod/github.com/openfaas/faas-provider@v0.18.5

The other time that the more verbose path might be used, is if you are trying to reference a commit that isn’t attached
to a release or a tag on GitHub.

The dependencies for it will be downloaded as follows:

$GOPATH/pkg/mod/github.com/prometheus/procfs@v0.0.0-20180920065004-418d78d0b9a7

Then it will be compiled and the binary will be created at:

$GOPATH/bin/hash-browns

You’ll see a similar technique used in project READMEs for tools written in Go, so you may want to add $GOPATH/bin/
to your PATH environment variable.

Note: Whenever GO111MODULE is set to off, then the code is downloaded to $GOPATH/src/ instead of
$GOPATH/pkg. Building without Go modules may be disabled in a future release of Go.

Vendoring and Go modules

In the early days of the Go ecosystem, the source code of any dependencies being used by your program was placed a
vendor folder. The vendor folder would be committed alongside your application code, giving you a copy and back-up
of anything required to build your application.

In the previous example, hash-browns, the github.com/prometheus/procfs module was required, which would be
cloned into the source tree as follows:

$GOPATH/src/github.com/alexellis/hash-browns
$GOPATH/src/github.com/alexellis/hash-browns/vendor/github.com/prometheus/procfs

Various vendoring tools such as the now deprecated dep, were used to download and manage these dependencies.
One file would specify which packages were required, and another “a lock file” would specify the versions. So at any
time you could rm -rf the vendor folder and run something like dep ensure to get a fresh copy of all the various files.

In Go 1.13 the concept of Go modules was introduced which largely mirrors vendoring, with one big change. The
source for dependencies no longer needed to be cloned and committed to source control with your application. The
transition for OpenFaaS’ 40+ projects was relatively smooth, with just a few projects causing headaches and needing to
be deferred.

7

https://github.com/tools/godep

Another change with Go modules, was the ability to compile source code outside of the $GOPATH/src convention. For
instance, you could have your source code at $HOME/dev/ instead of $HOME/go/src/ or wherever you’d set it.

Whenever you create a new Go project, it’s best to run go mod init first. If your code falls within the conventional
GOPATH structure, then it will have its name determined automatically, but if not, you can pass it as an argument.

Compare the following:

export GH_USERNAME=alexellis

$ mkdir -p $GOPATH/src/github.com/$GH_USERNAME/hash-gen
$ cd $GOPATH/src/github.com/$GH_USERNAME/hash-gen
$ go mod init
go: creating new go.mod: module github.com/alexellis/hash-gen

$ cat go.mod
module github.com/alexellis/hash-gen

go 1.15

And when run outside of GOPATH:

$ mkdir /tmp/hash-gen
$ cd /tmp/hash-gen
$ go mod init

go: cannot determine module path for source directory /tmp/hash-gen (outside GOPATH, module
path must be specified)↪

Example usage:
'go mod init example.com/m' to initialize a v0 or v1 module
'go mod init example.com/m/v2' to initialize a v2 module

Run 'go help mod init' for more information.

Try one of the following instead:

$ go mod init hash-gen
$ go mod init github.com/alexellis/hash-gen

It’s also possible to use Go modules and vendoring at the same time:

$ cd /tmp/
$ git clone https://github.com/alexellis/hash-browns
$ cd hash-brown
$ rm -rf vendor
$ go mod vendor
$ ls vendor/

Now see that the vendor folder has been created.

You can ask Go to build using the vendor folder instead of its local packages cache at $GOPATH/pkg by adding -mod
vendor to the go build command.

$ go build -mod vendor

So which approach should you use?

Vendoring has the advantage of keeping all your source and dependencies in one place, it also doesn’t require anything

8

to be downloaded to execute a build. With some projects such as Kubernetes controllers this means saving time and
bandwidth. If youhave any private dependencies, vendoring canwork out as the easiest option, especiallywhenbuilding
inside a container or CI pipeline.

Using modules without vendoring seems to be trendy, with many projects removing their vendor folder. It has the
advantage ofmaking code reviews easier since there are far fewer files that change in a pull request or commit. Working
with private Go modules can be a source of contention, so you have been warned.

See also: Go modules reference docs

9

https://golang.org/ref/mod

Chapter 2

Create your first Go program

You can create a Go program from memory, but I find it more useful to use an IDE like Visual Studio Code. Visual
Studio Code has a number of plugins that it can install to format your code, tidy it up and add any paths for modules or
packages that you import. The automation is not as comprehensive as a paid IDE like Jetbrains’ GoLand, but is fast and
free.

Create a folder first-go then, save the following as main.go:

package main

func main() {

}

Now you have two ways to run the program.

1) Run go run main.go
2) Run go build and then run the resulting binary ./first-go

Now print a console statement using fmt.Printf. This will import the fmt package at the top of the file, and VSCode
will automatically run a number of Go plugins to update the main.go file for you.

package main

import (
"fmt"
"os"

)

func main() {
name := os.Getenv("USER")
fmt.Printf("Well done %s for having your first Go\n", name)

}

One of the programs run by VScode is gofmt and it’s an example of how Go’s opinionated design makes it easy to move
between code-bases without learning new conventions. You can run it against a text file using gofmt -w -s main.go.

Note the use of the os.Getenv call to look-up your username from the USER environment variable.

Note for Windows users: try replacing “USER” with “USERNAME”

Now, run the program again and you should see output as per above.

10

https://code.visualstudio.com/
https://www.jetbrains.com/go/

Figure 2.1: A screenshot of Visual Studio Code and our first-go app

Add an external dependency

Whilst the standard library is extensive, it’s likely that you will need to use an external dependency. Dependencies in Go
are made available as source code that can be linked to your program, which differs from C# or Java where compiled
assets (DLLs or JARs) are downloaded. For this reason, you’ll usually see that a Go package has a path to where it can
be downloaded with git.

You can use webhooks to receive events from third-party APIs such as GitHub.com or Stripe. Most of the time the
webhooks are sent with a digest in the header, that you can use to verify that the message hasn’t been tampered with.

HMAC uses a symmetric key that both sender/receiver share ahead of time. The sender will generate a
hash when wanting to transmit amessage - this data is sent along with the payload. The recipient will then
sign the payload with the shared key again. And if the hash matches then the payload is assumed to be
from the sender.

Quote from alexellis/hmac

Let’s use my library to create a digest of our own message, and then show how to verify it after.

To begin with, we should initialise a Go module for our application. The Go modules file go.mod lists external depen-
dencies that we want our program to depend upon.

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/validate-hmac/

go mod init
go: creating new go.mod: module github.com/alexellis/validate-hmac

Review the contents of go.mod:

module github.com/alexellis/validate-hmac

go 1.15

11

https://github.com/alexellis/hmac

It shows the path or name of this module, along with the minimum Go version required. In the past all code needed to
be placed with the $GOPATH i.e. $HOME/go/src/github.com/alexellis/validate-hmac, but with go modules, the
go.mod file can make this explicit, instead of implicit (read from the path).

Create main.go:

package main

import (
"fmt"

"github.com/alexellis/hmac"
)

func main() {
input := []byte(`input message from API`)
secret := []byte(`so secret`)

digest := hmac.Sign(input, secret)
fmt.Printf("Digest: %x\n", digest)

}

According to the Go docs, %x used in fmt.Printf() uses a base 16, with lower-case letters for a-f, and is a way that we
can share the raw computed bytes in a human readable format.

Now run the program:

$ go run main.go
go: finding module for package github.com/alexellis/hmac
go: found github.com/alexellis/hmac in github.com/alexellis/hmac

v0.0.0-20180624211220-5c52ab81c0de↪

Digest: 17074131772d763bc4a360a6e4cb1a5ad1a98764

The digest 17074131772d763bc4a360a6e4cb1a5ad1a98764 was printed which is a hash that can be sent with the
original input. Any user with the secret can compute another hash and if they match, that user will know the message
was from us.

You’ll see that the Go module is resolved, then downloaded from GitHub, and updated in go.sum and go.mod:

$ cat go.mod

module github.com/alexellis/validate-hmac

go 1.15

require github.com/alexellis/hmac v0.0.0-20180624211220-5c52ab81c0de // indirect

$ cat go.sum
github.com/alexellis/hmac v0.0.0-20180624211220-5c52ab81c0de

h1:jiPEvtW8VT0KwJxRyjW2VAAvlssjj9SfecsQ3Vgv5tk=↪

github.com/alexellis/hmac v0.0.0-20180624211220-5c52ab81c0de/go.mod
h1:uAbpy8G7sjNB4qYdY6ymf5OIQ+TLDPApBYiR0Vc3lhk=↪

The go.sum pins the specific version of the module for later use.

Now let’s verify the digest we received using the library:

12

package main

import (
"fmt"

"github.com/alexellis/hmac"
)

func main() {

input := []byte(`input message from API`)
secret := []byte(`so secret`)

digest := hmac.Sign(input, secret)
fmt.Printf("Digest: %x\n", digest)

err := hmac.Validate(input, fmt.Sprintf("sha1=%x", digest), string(secret))
if err != nil {

panic(err)
}

fmt.Printf("Digest validated.\n")
}

Run the program with go run main.go and you’ll see it pass as expected.

Make use of flags

Go has a built-in flag parsing library. We will explore an alternative library, Cobra, in a later chapter. I’ve used Cobra in
several projects but even now, I always start with the simplest thing that will work. Then later, if it is warranted, I’ll move
to a more complex, but powerful library than the standard library’s flags package.

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/validate-hmac-flags/

go mod init
go: creating new go.mod: module github.com/alexellis/validate-hmac-flags

In our previous example we created hashes by hard-coding the input and secret, but that isn’t going to be useful for our
users. Let’s use flags instead, so that we can run:

go run main.go
-message="my message" \
-secret="terces os"

Adapt the solution to use flag.StringVar to define each flag, followed by flag.Parse:

package main

import (
"flag"
"fmt"

)

func main() {

13

var inputVar string
var secretVar string

flag.StringVar(&inputVar, "message", "", "message to create a digest from")
flag.StringVar(&secretVar, "secret", "", "secret for the digest")
flag.Parse()

fmt.Printf("Computing hash for: %q\nSecret: %q\n", inputVar, secretVar)
}

This is a good time to let you know about the %q variable, which adds quotes around any string we print. I use it to make
sure there are no extra lines or whitespace within a value.

$ go run main.go -message="my message" -secret="terces os"

Computing hash for: "my message"
Secret: "terces os"

Now let’s take the value from the flag, and pass it into the hash generation code.

digest := hmac.Sign([]byte(inputVar), []byte(secretVar))
fmt.Printf("Digest: %x\n", digest)

Run the whole program and see the digest generated:

$ go run main.go -message="my message" -secret="terces os"
Computing hash for: "my message"
Secret: "terces os"
Digest: 2aefe2f570c0e61bc346b9fd3b6fbb3107ebfdd9

Try the same message with a different secret:

$ go run main.go -message="my message" -secret="so secret"
Computing hash for: "my message"
Secret: "terces os"
Digest: d82655d25497765dc774e8e9cde8795858cb9f8e

Now, what if no secret is given as a flag value? How are you going to validate that?

if len(secretVar) == 0 {
panic("--secret is required")

}

Try adding the above, which looks at the length of the string:

$ go run main.go -message="my message"
panic: --secret is required

goroutine 1 [running]:
main.main()

/home/alex/go/src/github.com/alexellis/validate-hmac-flags/main.go:20 +0x3ed
exit status 2

But we can get around this by setting the secret to ” ” whitespace, so how do you handle that?

14

if len(strings.TrimSpace(secretVar)) == 0 {
panic("--secret is required")

}

We can simply wrap the value with strings.TrimSpace which will remove any whitespace and handle that case for
us.

Here’s the complete example:

package main

import (
"flag"
"fmt"
"strings"

"github.com/alexellis/hmac"
)

func main() {

var inputVar string
var secretVar string

flag.StringVar(&inputVar, "message", "", "message to create a digest from")
flag.StringVar(&secretVar, "secret", "", "secret for the digest")
flag.Parse()

if len(strings.TrimSpace(secretVar)) == 0 {
panic("--secret is required")

}

fmt.Printf("Computing hash for: %q\nSecret: %q\n", inputVar, secretVar)

digest := hmac.Sign([]byte(inputVar), []byte(secretVar))
fmt.Printf("Digest: %x\n", digest)

}

As an extra-work task, why don’t you add a mode, so that your CLI can be used for both generating and validating
hashes?

You could either add a flag with flag.BoolVar such as -generate=true/false, or a string mode like -
mode=generate/validate.

Define a separate package or library

Until now, we have written code within a single package called main. The main package is required to make a program
runnable on its own, however sometimes you’ll want to write a library so that code can be shared between programs.

You may also have a project with a main package and an additional named package for code organisation. Packages
can be tested separately.

Generally, starting a variable, function or struct with a capital letter means that it will be available outside the
package to other consumers.

We’ll create a package that can perform a similar task to the dir or ls shell commands.

15

Create a new project:

$ export GH_USERNAME="alexellis"
$ mkdir -p $GOPATH/src/github.com/$GH_USERNAME/multiple-packages/
$ cd $GOPATH/src/github.com/$GH_USERNAME/multiple-packages/

$ go mod init
go: creating new go.mod: module github.com/alexellis/multiple-packages

Now create a folder for the package called cmd:

$ mkdir -p $GOPATH/src/github.com/$GH_USERNAME/multiple-packages/cmd

Then create ls.go inside it:

package cmd

Now you have defined a package called cmd, but it doesn’t have any functions or structs exported.

package cmd

func ExecuteLs(path string) (string, error) {

return "", nil
}

The command can then be imported by a new main package using the path github.com/alexellis/multiple-
packages/cmd. In some cases, like the HMAC library we used earlier, there is no need for the project to have its own
main entrypoint because it will only be consumed by third-parties as a function.

Create main.go in the root folder:

package main

import (
"fmt"
"os"

"github.com/alexellis/multiple-packages/cmd"
)

func main() {
wd, err := os.Getwd()
if err != nil {

fmt.Fprintf(os.Stderr, "unable to get working directory: %s",
err.Error())

}

res, err := cmd.ExecuteLs(wd)
if err != nil {

fmt.Fprintf(os.Stderr, "unable list files in %s, error: %s",
wd, err.Error())

}

fmt.Printf("%s\n", res)
}

Now populate the ls.go program with the rest of its code:

16

https://github.com/alexellis/hmac

package cmd

import (
"fmt"
"os"

)

func ExecuteLs(path string) (string, error) {

entries, err := os.ReadDir(path)
if err != nil {

return "", err
}
output := fmt.Sprintf("Files in %s\n", path)
output += "Name\tDirectory\t\n"

for _, e := range entries {
output += fmt.Sprintf("%s\t%v\n", e.Name(), e.IsDir())

}

return output, nil
}

Did you know? Unit tests are written in the same package as the source code, so if you have tests for main,
you’d place them in the root folder, and any tests for the cmd package would be placed within the cmd/
folder. In a later chapter, you’ll learn about unit testing in Go.

And then try it out:

$ go run .
Files in /Users/alex/src/github.com/alexellis/multiple-packages
Name Directory
cmd true
go.mod false
main.go false
multiple-packages false

If you’d like to make use of this program on your system, you can copy it to your $PATH variable or run go install, to
have it placed in $GOPATH/bin/

$ export GH_USERNAME="alexellis"
$ cd $GOPATH/src/github.com/$GH_USERNAME/multiple-packages
$ go install
$ cd /tmp/
$ multiple-packages
Files in /tmp
Name Directory
...

If you receive a “not found” error here, then you need to add the $GOPATH/bin/ to your $PATH variable on your system.

Taking it further:

• If you’d like to align the text into a table, why not try the TabWriter?
• How would you use flags and packages to add other commands and execute them according to the user’s input?

Derek is a GitHub bot that I wrote to make it easier to automate open source maintenance and to delegate permissions

17

https://golang.org/pkg/text/tabwriter/
https://github.com/alexellis/derek/

to other contributors through comments. Derek is a good example of multiple packages, why not read the source code
and see how his packages are exported and consumed in the main.go file.

18

Chapter 3

Cross-compile for different operating systems

In the previous chapter we built a simple Go program that used an environment variable to print output, but the binary
we produced could only be run on the same operating system and CPU architecture.

If you have another computer with the same operating system, you can copy the binary to that computer and run it
without any changes. If you are using a Mac, but want to run the program on a Raspberry Pi or Windows desktop, you
will need to use Go’s built-in cross-compilation options to produce different binaries.

You need to be aware of the target Operating System and the target CPU architecture.

Go supports a number of Operating Systems, however these are the most used:

• Windows
• MacOS
• Linux

Go programs also need to be built for a specific CPU architecture and version. Most of the time this is a detail you can
avoid, but if you expect your programs to be run on an Arm processor like a Raspberry Pi or an AWS Graviton server,
you will need to bear this in mind too.

• Regular PCs and cloud, covering both Intel and AMD CPUs - x86_64
• 32-bit Arm devices like the Raspberry Pi are called armhf, armv7 or armv6l
• 64-bit Arm servers and devices are called arm64 or aarch64

If you don’t specify any options, your binary will be built for the computer you are using, otherwise you can customise
the options and output filename.

Go build arguments

Here’s how to build our first-go program for Windows, Linux and MacOS:

GOOS=linux go build -o first-go
GOOS=darwin go build -o first-go-darwin
GOOS=windows go build -o first-go.exe

To build for an Arm CPU, just add the following:

GOARCH=arm GOOS=linux go build -o first-go-arm
GOARCH=arm64 GOOS=linux go build -o first-go-arm64

If you want to debug an issue with your binary, you can use the bash command file to see how it was built:

file first-go
first-go: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically
linked, not stripped

19

file first-go-arm
first-go-arm: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
statically linked, not stripped

file first-go-arm64
first-go-arm64: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV),
statically linked, not stripped

If you use the bash command du you can see the size of the binary, which includes debugging symbols.

du -h ./first-go

2.0M ./first-go

This file can sometimes be made smaller by stripping the debug symbols out.

GOOS=linux go build -a -ldflags "-s -w"

du -h first-go
1.4M first-go

first-go: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,
stripped

Note the smaller size, and the “stripped” output from the “file” command.

CGO and portability

CGO enables the creation of Go packages that call C code.

“CGO” is Go’s ability to link to C/C++ libraries and is sometimes required to work with certain libraries like SQLite and
certain Linux cryptographic packages which are not available in Go’s standard library.

CGO makes portability more of a challenge and is beyond the scope of this book. My personal recommendation is to
avoid it, all costs, if you plan to cross-compile your applications.

A good way to ensure that you are not using any CGO is through the CGO_ENABLED=0 environment variable that you
can prefix to your builds.

See also: Go docs on CGO and cgo is not Go by Dave Cheney

20

https://golang.org/cmd/cgo/
https://dave.cheney.net/2016/01/18/cgo-is-not-go

Chapter 4

Fetch JSON from a HTTP endpoint

This has to be one of the most common tasks for a new Go programmer. You have installed Go, and have started to
develop a CLI, now you need to interface with an external API and make a HTTP “GET” call. It’s very likely that the API
will be using JSON.

We will be querying an endpoint provided for free that tells us how many astronauts are currently in space and what
their names are.

We’ll be using HTTP and JSON from Go’s standard library, and unlike with other languages, we will not need to install
any external packages.

Get started

Make yourself a folder for a new project (you can use your Github username here):

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/get-json/

Now save a new file named main.go:

package main

func main() {

}

This program is effectively hello-world without any print statements.

Go ahead and run the program, you have two ways to do this:

go run main.go

Or build a binary, then run it.

go build
./get-json

Now add a print statement:

package main

import "fmt"

func main() {

21

fmt.Println("Hello world")
}

Now you can build and run the code again, note that you can also change the output of the binary when compiled:

go build -o get-json
./get-json

Go offers a convention-based formatting of files, you can format a file and its indentation with:

gofmt -s -w main.go

The -w command writes the change to the file.

As we explored in an earlier chapter, Go applications can also be cross-compiled for other operating systems without
any further changes, here’s how you can build the above code for Windows:

GOOS=windows go build -o get-json.exe

Learn to parse JSON

Let’s go on to parse some JSON, in Go we can turn a JSON document into a struct which is useful for accessing the data
in a structured way. If a document doesn’t fit into the structure it will throw an error.

Let’s take an API from the Open Notify group - it shows the number of people in space along with their names.

People in Space JSON

It looks a bit like this:

{"people": [{"craft": "ISS", "name": "Sergey Rizhikov"}, {"craft": "ISS", "name": "Andrey
Borisenko"}, {"craft": "ISS", "name": "Shane Kimbrough"}, {"craft": "ISS", "name": "Oleg
Novitskiy"}, {"craft": "ISS", "name": "Thomas Pesquet"}, {"craft": "ISS", "name": "Peggy
Whitson"}], "message": "success", "number": 6}

↪

↪

↪

According to Wikipedia:

In computer science, marshalling or marshaling (US spelling) is the process of transforming the memory
representation of an object into a data format suitable for storage or transmission. It is typically usedwhen
data must be moved between different parts of a computer program or from one program to another.

If you’re coming from Python, Ruby or Node, then the “Unmarshal” behaviour in Go is usually used whenever you would
have parsed text to JSON.

Go takes a reference to a struct, and then tries to marshal the input into the datastructure. The opposite operation is
“Marshal” which serializes and object into a text or binary representation.

We will be importing the fmt package for the Println function and the encoding/json package so that we can Un-
marshal the JSON text into a struct.

Create main.go:

package main

import (
"encoding/json"
"fmt"

)

type people struct {
Number int `json:"number"`

22

http://api.open-notify.org/astros.json

}

func main() {
text := `{"people": [{"craft": "ISS", "name": "Sergey Rizhikov"}, {"craft": "ISS",
"name": "Andrey Borisenko"}, {"craft": "ISS", "name": "Shane Kimbrough"}, {"craft":
"ISS", "name": "Oleg Novitskiy"}, {"craft": "ISS", "name": "Thomas Pesquet"}, {"craft":
"ISS", "name": "Peggy Whitson"}], "message": "success", "number": 6}`

↪

↪

↪

textBytes := []byte(text)

p := people{}
err := json.Unmarshal(textBytes, &p)
if err != nil {

fmt.Println(err)
return

}
fmt.Println(p.Number)

}

We have hard-coded the JSON response from Open Notify so that we can work on one chunk of behaviour at a time.

The json.Unmarshal function works with a []byte type instead of a string so we use []byte(stringHere) to create
the format we need.

In order to make use of a struct to unmarshal the JSON text we normally need to decorate it with some tags that help
the std library understand how to map the properties:

type people struct {
Number int `json:"number"`

}

The property names need to begin with a capital letter which marks them as exportable or public. If your
struct’s property is the same in the JSON you should be able to skip the annotation.

Another thing to notice is that we pass the address of the new / empty people struct into the method. You can try
removing the & symbol, but the value will be set in a different copy of the empty struct. This may seem odd if you are
coming from languages that pass parameters by reference.

Retrieve the JSON via HTTP

Now we can parse a JSON document matching that of our API, let’s go on and write a HTTP client to fetch the text from
the Internet.

Go has a built-in HTTP client in the net/http package, but it has a problem with long timeouts and there are some
well-known articles recommending that you set a timeout on your request explicitly.

There are more concise ways of creating a HTTP request in Go, but by adding a custom timeout we will harden our
application.

Now create main.go:

package main

import (
"encoding/json"
"fmt"
"io/ioutil"
"log"
"net/http"

23

https://medium.com/@nate510/don-t-use-go-s-default-http-client-4804cb19f779#.m1ailtazu
https://medium.com/@nate510/don-t-use-go-s-default-http-client-4804cb19f779#.m1ailtazu

"time"
)

type people struct {
Number int `json:"number"`

}

func main() {

url := "http://api.open-notify.org/astros.json"

spaceClient := http.Client{
Timeout: time.Second * 2, // Timeout after 2 seconds

}

req, err := http.NewRequest(http.MethodGet, url, nil)
if err != nil {

log.Fatal(err)
}

req.Header.Set("User-Agent", "spacecount-tutorial")

res, err := spaceClient.Do(req)
if err != nil {

log.Fatal(err)
}

if res.Body != nil {
defer res.Body.Close()

}

body, err := ioutil.ReadAll(res.Body)
if err != nil {

log.Fatal(err)
}

p := people{}
err = json.Unmarshal(body, &p)
if err != nil {

log.Fatal(err)
}

fmt.Println(p.Number)
}

If you’re used to writing Node.js, then you will be used to most I/O operations returning a nullable error. The same is
the case in Go and checking for errors here has made the code quite verbose. You may want to refactor elements of
the code into separate methods - one to download and one unmarshal the JSON data.

It may not alwaysmake sense to attempt to parse the HTTP response, one case is if the HTTP code returned is a non-200
number. Here’s how you can access the HTTP code from the response:

fmt.Printf("HTTP status: %s\n", res.Status)

If you are unsure whether the JSON schema is stable and expect it, at times, to return invalid JSON, then you could

24

extend the parsing code so that it prints out the value received in the error. That way, you can understand not only that
parsing failed, but the reason why.

err := json.Unmarshal(body, &p)
if err != nil {

log.Fatalf("unable to parse value: %q, error: %s",
string(body), err.Error())

}

There are many bots and automated applications that scrape websites and access APIs. In order to be a good citizen
on the Internet, you should be aware of the accepted rules and standards.

There’s one more important line I wanted to highlight. I’ve set a User-Agent in the HTTP request’s header. This lets
remote servers understand what kind of traffic it is receiving. Some sites will even reject empty or generic User-Agent
strings.

req.Header.Set("User-Agent", "spacecount-tutorial")

With some APIs, you may need to use a specific User-Agent, or to simulate the value a browser would pass.

Learn more about the User-Agent header: Mozilla on User-Agents

If you decide to access HTML pages using your Go program, you should read up on other mechanisms like robots.txt:

A robots.txt file tells search engine crawlers which pages or files the crawler can or can’t request from your
site. This is used mainly to avoid overloading your site with requests; it is not a mechanism for keeping a
web page out of Google.

Here is what the code may look like when extracted to its own function and then called from the main() function.

package main

import (
"encoding/json"
"fmt"
"io/ioutil"
"log"
"net/http"

)

type people struct {
Number int `json:"number"`

}

func main() {

apiURL := "http://api.open-notify.org/astros.json"

people, err := getAstros(apiURL)
if err != nil {

log.Fatal(err)
}
fmt.Printf("%d people found in space.\n", people.Number)

}

Then our function would change as follows:

func getAstros(apiURL string) (people, error) {
p := people{}

25

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developers.google.com/search/docs/advanced/robots/intro

req, err := http.NewRequest(http.MethodGet, apiURL, nil)
if err != nil {

return p, err
}

req.Header.Set("User-Agent", "spacecount-tutorial")

res, err := http.DefaultClient.Do(req)
if err != nil {

return p, err
}

if res.Body != nil {
defer res.Body.Close()

}

body, err := ioutil.ReadAll(res.Body)
if err != nil {

return p, err
}

err = json.Unmarshal(body, &p)
if err != nil {

return p, err
}

return p, nil
}

Note that we have the same amount of return statements, but there is only one log statement. Our code has become
more useful to others, since not every caller may want to call log.Fatal when there is an error, for instance if the
server returned an error, the caller may have wanted to retry the request instead.

One other thing you can do to reduce the line-count, is to “in-line” the if statement:

p := people{}
if err := json.Unmarshal(body, &p); err != nil {

return err
}

This makes for more succinct code, but also means that the scope of the err variable is limited to only the if statement
and won’t leak into the function’s scope.

Extracting additional data from the JSON

The JSON also has an element or object for each person aboard a craft.

Define a struct for the person element:

type person struct {
Name string `json:"name"`

}

Then add it to your people struct

26

type people struct {
Number int `json:"number"`
Person []person `json:"people"`

}

Update your main.go to print the new fields:

func main() {
apiURL := "http://api.open-notify.org/astros.json"

people, err := getAstros(apiURL)
if err != nil {

log.Fatal(err)
}
fmt.Printf("%d people found in space.\n", people.Number)

for _, p := range people.Person {
fmt.Printf("Let's wave to: %s\n", p.Name)

}
}

Here’s the result on 5th March 2021:

7 people found in space.
Let's wave to: Sergey Ryzhikov
Let's wave to: Kate Rubins
Let's wave to: Sergey Kud-Sverchkov
Let's wave to: Mike Hopkins
Let's wave to: Victor Glover
Let's wave to: Shannon Walker
Let's wave to: Soichi Noguchi

We have now written some code to fetch a resource over HTTP, parse it as JSON, handle errors and to make it reusable.
We then went on to harden and make the code more useful by extracting a function.

27

Chapter 5

Five ways to write an awesome CLI

We’re having a renaissance of (Command Line Interfaces) CLIs - every programming language fromNode.js to Go to less
fashionable ones like .NET all have CLIs and developers love them.

A command-line interface should be something that feels awesome to use, and not something that is jarring or in any
way surprising. You should pay attention to the style, user-experience and approach used by the most popular CLIs,
and learn lessons.

CLIs (command-line interfaces) are text-based interfaces for your applications which are easily automated,
fast to work with and can be combined with other CLIs to create workflows.

Concepts carry across: almost every productivity application has a picture of a floppy disk. What does that do? There’s
no need to guess or read the docs. It’s a save button. In the same way, -vmeans print verbose output for this command.

When done well, a CLI: * Is easy to get started with * Has just enough to get the job done * Interoperates with other
CLIs (through pipes or files) * Doesn’t surprise the user

So here are five ways that you can make sure that your next CLI is one that developers love to use, and tell their friends
about.

Pick Go

It’s probably no surprise that when reading a book about Go, that I’m advocating for writing CLIs using Go, but here’s
why.

I prefer the OpenFaaS CLI which was written in Go over the Serverless Framework Inc CLI which was written in JavaScript
with Node.js:

• Compiles to a single static binary

With Go you can provide a single static binary that contains your whole application or CLI for your chosen platform. To
target a different CPU or OS you just pass in an environmental override when building. With JavaScript, you have to
install Node.js, then install hundreds or thousands of tiny packages from npm.

Here’s a binary for Linux, Mac, Windows and for a Raspberry Pi:

GOOS=linux go build -o cli
GOOS=darwin go build -o cli-darwin
GOOS=windows go build -o cli.exe
GOARCH=armv7 GOOS=linux go build -o cli-rpi

That’s it - and there are more platforms available too - like FreeBSD. You won’t need to install any dependencies and
the final output binary can be tiny.

See the initial few chapters of the eBook for a deeper-dive into static binaries and how to support multiple architectures.

• Consistent style

28

Go is an opinionated language and while there may be some differences between which editors a project prefers - you
will encounter a consistent standard for styling, formatting and build tools. Something like Node.js could involve any
number of “task runners” or “transpilers” - or a more esoteric flavour of the language like TypeScript or CoffeeScript.

Go has a consistent style and was deliberately designed to be unambiguous. Why is that important? It makes it easy
for developers to contribute, without having to invest much time in learning the code-base, toolchain or style chosen.
At time of writing, the CLI for OpenFaaS has 810 commits, and the whole project has over 8000 commits from 340
individual developers.

• Fast on every platform

Go is rapid on all platforms, without an initial lag. If you’ve ever used a CLI written in Python or Node.js, then you are
probably used to seeing an initial lag every time you use the CLI. This is made worse on platforms like the Raspberry Pi,
where just running node hello-world.js can take 1.5-3.0 seconds to start running the first instruction.

• Easy to work with REST APIs

Go includes a no-nonsense http client and has built-in support for working with xml, json and binary formats. There’s
also a very good library for working with YAML which is used in OpenFaaS here: stack.go

There may be reasons why Node.js or another language is more suitable for your use-case. If you’ve already decided
to build a CLI in Go - then you can reap the benefits of a fast binary that’s small and easy to distribute.

Did you know that you can distribute an npm package that installs a Go CLI? I first saw this being done by Cloudflare,
and we adapted the same approach for the openfaas CLI npm install -g @openfaas/faas-cli.

The code downloads the latest version of the faas-cli binary from the GitHub releases page and then places it in the
correct location in the filesystem.

Parse flags & arguments

The standard Go library includes a flags package that can be used to parse flags or arguments in a couple of lines of
code.

package main

import (
"flag"
"fmt"
"os"

)

func main() {
var image string
flag.StringVar(&image, "image", "", "Docker image")
flag.Parse()

if len(image) == 0 {
fmt.Fprintf(os.Stderr, "You must specify a Docker image name")

}

fmt.Printf("Your Docker image was: %s", image)
}

From my experiences in the world of enterprise development - the average C# developer would have written his own
string parser and then created a ConsoleApp as an entry-point then a DLL Library for the parsing and one more for the
application code.

29

https://github.com/openfaas/faas-cli/blob/master/stack/stack.go

When you contrast that to the snippet above, Go is unpretentious. You can have a single file that compiles
to a tiny binary and only uses the standard library. And be done with that.

I suggest you start with the flagspackagewith each newCLI, andwhen you reach its limits, only then considermigrating
to something more modular like Cobra.

Cobra is used by Docker, Kubernetes and the OpenFaaS projects and means that handlers/commands can live in sep-
arate files or modules. It also makes documenting each command really simple. Checkout the code here for our ‘list
functions’ command.

Another advantage of using “cobra” is that it has a verb noun syntax. This helped uswhen designing our user experience.
We went from a somewhat jarring experience to something more fluid:

faas-cli -deploy \
-image=functions/alpine \
-name=cat \
-fprocess=/bin/cat

To:

faas-cli deploy \
--image=functions/alpine \
--name=cat \
--fprocess=/bin/cat

The -deploy flag, became a sub-command called deploy and allowed us tomove the code into its own package. Cobra
handles the parsing and help messages for all the sub-commands you want to add.

We also took feedback about managing multiple functions and created a YAML format which meant the CLI command
could be as simple as:

faas deploy -f stack.yml

Or

faas deploy -f \
https://raw.githubusercontent.com/openfaas/faas-cli/master/stack.yml

Tip: pick verbs / commands carefully and ask other people if they make sense. If something jars with you
then it’s probably wrong. It can take several iterations but what you’re aiming for is an intuitive experience.

Automate everything

Create an automated build using a free and public CI platform like GitHub Actions so that contributors or collaborators
know whether their changes can be integrated.

Use GitHub releases to track changes in the project and milestones. You can set up a post-build action in GitHub to
publish binary artifacts automatically for every platform you target.

If you have a Docker image - publish that on the Docker store at the same time as pushing a new release artifact. Tools
like GitHub can obfuscate credentials and keys so that they do not show up in logs.

Go projects are very easy to build in Docker. Here’s an example from the inlets-operator, a Kubernetes controller which
creates tunnel servers for Kubernetes services you want to expose in a private cluster:

• Dockerfile inlets-operator

Make sure you use multi-stage builds so you ship a lean image.

For the various projects I maintain, we tend to split the build into a “CI” or “test” action:

• ci-only.yaml for the inlets-operator

30

https://github.com/spf13/cobra
https://github.com/openfaas/faas-cli/blob/master/commands/list.go
https://github.com/openfaas/faas-cli/blob/master/commands/list.go
https://github.com/features/actions
https://github.com/inlets/inlets-operator/
https://github.com/inlets/inlets-operator/blob/master/Dockerfile
https://docs.docker.com/engine/userguide/eng-image/multistage-build/
https://github.com/inlets/inlets-operator/blob/master/.github/workflows/ci-only.yaml

And a publish action:

• publish.yaml for the inlets-operator

While it’s easy to start with - you do not want to be building 3-5 binary files on your own machine for every release then
uploading them to a web-form every time you need an update.

Integrate with package managers

If you want to make it easy for your target audience to be able to get hold of your CLI then you need to make that as
easy as possible. This means integrating with package managers.

• brew - if your target audience is the developer - then a large percentage of them may have a Mac. brew is a
package manage which means most CLIs are only one command away brew install faas for instance

• Linux - for Linux there are many package managers so I’ve chosen to build a download utility which can be run
as root or as a regular user. To get the OpenFaaS CLI: curl -sL https://cli.openfaas.com | sh - or to get
hold of Docker: curl -sL https://get.docker.com | sh.

• Windows - Windows users have good options available for shells including Git Bash (my preferred option) and
the Windows Subsystem for Linux. WSL can use the Linux curl utility, but if you are targeting “point and click”
developers you may want to create a “double-click” installer.

Whatever you do - make sure it’s automated and evaluate each package manager you support. Will you have time to
maintain the integration? Is it provided by the project or by the community? What if it breaks? For instance - wemaintain
a guide on how to upgrade our brew formula.

Tip: Make sure the update/release cycle of chosen packages canmatch the cadence of your project. Whilst
package managers are seen as a best practice, the versions of applications you’ll find there can get out of
date very quickly. Direct downloads over HTTPS using your GitHub project’s release page is probably the
easiest and most convenient approach.

You can also offer an auto-update or a help message to show users how to keep up to date. Here’s an example from
inletsctl, an open source tool for creating ad-hoc tunnel servers.

inletsctl update
You can update inletsctl with the following:

For Linux/MacOS:
curl -SLfs https://inletsctl.inlets.dev | sudo sh

For Windows (using Git Bash)
curl -SLfs https://inletsctl.inlets.dev | sh

Or download from GitHub: https://github.com/inlets/inletsctl/releases

Thanks for using inletsctl!

The faas-cli has code that can inform you whether your version is out of date, feel free to browse the repository to see
how it works.

faas-cli version
___ _____ ____
/ _ \ _ __ ___ _ __ | ___|_ _ __ _/ ___|
| | | | '_ \ / _ \ '_ \| |_ / _` |/ _` ___ \
| |_| | |_) | __/ | | | _| (_| | (_| |___) |
___/| .__/ ___|_| |_|_| __,_|__,_|____/

|_|

CLI:

31

https://github.com/inlets/inlets-operator/blob/master/.github/workflows/publish.yaml
https://github.com/openfaas/faas-cli/blob/master/CONTRIBUTING.md#how-to-update-the-brew-formula
https://github.com/inlets/inletsctl

commit: 6b5e7a14a598527063c7c05fb4187739b6eb6d38
version: 0.13.6
Your faas-cli version (0.13.6) may be out of date. Version: 0.13.9 is now
available on GitHub.

Accept contributions and gather feedback

Provide an easy way for people to provide feedback and contributions. A CLI should be designed for its operators - so
make it easy for them to submit code changes or suggestions.

User feedback is essential, but when running an Open Source Software project I often hear people struggle to under-
stand how or if their software is being used.

Basic feedback can be gathered from the download statistics on GitHub or brew. Several key projects have started
gathering usage data automatically using an analytics platform - examples include: brew, Visual Studio Code, Atom
and Docker for Mac/Windows. If you go down this route make sure you provide a privacy policy and comply with any
potential data-protection regulations.

We once considered using Google Analytics to collect information about OpenFaaS CLI usage, but never committed to
it. You can read more in: issue #108. It was going to show us:

• which commands were used
• what programming languages functions were used
• operating system / CLI version / location in the world

Even if you don’t decide to add analytics to your CLI, you can still gather feedback whether your tool is for internal and
private work use, or open-source and freely available.

Now, Go and write your CLI

There are many reasons to make your next CLI awesome with Go. From the speed of compilation and execution, to the
availability of built-in or high-quality packages, to the ease of automation.

If you already have a CLI, and want to take it to the next level, check out a couple of CLIs that I maintain which have been
built up with experience and lessons learned over the past 5-6 years:

• faas-cli - OpenFaaS CLI for creating, deploying and managing serverless functions
• arkade - open source marketplace for Kubernetes, and tool downloader

Even if your CLI is only going to be used at work for internal use, it’s worth thinking about how you’re going to accept
feedback or code contributions from colleagues and teammates.

32

https://github.com/openfaas/faas-cli/issues/108
https://github.com/openfaas/faas-cli
https://github.com/alexellis/arkade

Chapter 6

Writing unit-tests in Golang

In a previous chapter we explored how to interact with a HTTP endpoint. We downloaded a response over the Internet,
and then parsed the JSON response into a struct.

But how would we go about testing code that we write in Go? What can Go’s own test runner offer us? And what kind
of opinions does it prescribe?

Testing opinions

Just like Go has strong opinions and conventions for formatting, naming and package layout, it has the same for unit-
testing.

Go actually has its own built-in testing command called go test and a package testing which combine to give a
minimal but complete testing experience. The standard tool-chain also includes benchmarking go test -bench and
statement-based code coverage go test -cover similar to NCover (.NET) or Istanbul (Node.js).

If you are coming to Go from a language like Ruby, Java or .NET, then you may be surprised to find that there is no
assertions library, and certain books go as far as to discourage any use of them.

To a JavaScript developer, writing in a BDD style, testing a Sum method would look something like this:

var expect = require('expect');

describe('Calculator', function() {
describe('#multiply()', function() {

it('should return -10 when 10 is multiplied by -1', function() {
const calc = new Calculator()
expect(calc.multiply(10, -1)).to.eql(-10)

});
});

});

An alternative to the above may be to use an assert.AreEqual() type of method from the Java / C# world. The Go
developers do not take this approach, and if you want to see some examples of unit testing in Go, check out this test
from the OpenFaaS CLI which parses a YAML file: stack_test.go.

In Go, the same test would look more like this:

func TestMultiply_ForANegativeNumber(t *testing.T) {
c:= Calculator{}
want := -10
got := c.Multiply(10, -1)

if want != got {

33

https://www.ncover.com/
https://istanbul.js.org/
https://amzn.to/3biQrWJ
https://github.com/openfaas/faas-cli/blob/master/stack/stack_test.go

t.Fatalf("want %d, but got %d", want, got)
}

}

In some languages, additional libraries add support for annotations that allow a test to run for various values.

See this example from NUnit:

[Test]
[TestCase("hello@example.com")]
[TestCase("hello+plus@example.com")]
[TestCase("hello.with.dots@example.com")]
public void ValidateEmail_supports_real_emails(string emailAddress)
{

// ARRANGE
var sut = new EmailValidator();

// ACT
var result = sut.ValidateEmail(emailAddress);

// ASSERT
Assert.That(result.IsValid, Is.True);

}

In Go, this would be achieved through a test-table:

func TestMultiply_VariousNumbers(t *testing.T) {
c:= Calculator{}

cases := []struct {
a int
b int
want int
name string

}{
{-10, 1, -10, "negative case"},
{10, 1, 10, "positive case"},
{10, 0, 0, "zero case"},

}

for _, tc := range cases {
t.Run(tc.name, func(t *testing.T) {

want := tc.want
got := c.Multiply(tc.a, tc.b)

if want != got {
t.Fatalf("want %d, but got %d", want, got)

}
})

}
}

If you’d like to see a more complex example, the OpenFaaS CLI where it determines the correct choice of a number of
variables: priority_test.go

When using assertions instead of pure Go:

34

https://github.com/openfaas/faas-cli/blob/master/commands/priority_test.go

• tests can feel like they’re written in a different language (RSpec/Mocha for instance)
• errors can be cryptic “assert: 0 == 1”
• pages of stack traces can be generated
• tests stop executing after the first assert fails - masking patterns of failure

There are third-party libraries that replicate the feel of RSpec or Assert. See also stretchr/testify.

Disclaimer: I want you to feel comfortable with Go’s approach, even if you are not used to it. Do us both a favour, and
don’t reach for your nearest BDD library for Go. Why? Because one of the strongest properties of Go is consistency, the
fact that any Go developer should be able to pick up another Go codebase without learning new libraries and styles.

Testing the Summethod

Create a folder for the exercise:

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/sum-testing

Here is an example of a method we want to test in the main package. We have defined an exported function called Sum
which takes in two integers and adds them together.

Save main.go:

package main

import "fmt"

func sum(x int, y int) int {
// This code has a bug that adds 1
return x + y + 1

}

func main() {
x := 5
y := 5
fmt.Printf("%d + %d = %d\n", x, y, sum(x, y))

}

Try the application::

go run main.go
5 + 5 = 11

Notice there is a bug, we will need to unit test this code.

We need to write our unit test in a separate file, this is usually in the same package and folder as the code being tested,
but it doesn’t have to be. The reason why keeping the tests with the code is useful is because:

1) They can be imported as a single package
2) It means you can unit-test private methods, without making them public

Save main_test.go:

package main

import "testing"

func Test_sum(t *testing.T) {
x := 5

35

https://github.com/stretchr/testify

y := 5

want := 10
got := sum(x, y)
if want != got {

t.Logf("Testing a sum of: %d %d", x, y)
t.Errorf("Sum was incorrect want: %d, but got: %d", want, got)

}
}

Then run go test ./ to run all the tests in the current package:

go test ./

--- FAIL: Test_sum (0.00s)
/home/alex/go/src/github.com/alexellis/sum-testing/main_test.go:12: Testing a sum of: 5 5
/home/alex/go/src/github.com/alexellis/sum-testing/main_test.go:13: Sum was incorrect

want: 10, but got: 11↪

Notice the following about the unit test:

• The only parameter to the test method is: t *testing.T
• It begins with the word Test followed by a word or phrase, either with an underscore, or the function under test.
• The t variable is used to signal a failure.
• t.Log can be used to provide debug information for any test
• The file must be saved in a file named something_test.go such as: addition_test.go

Let’s fix the test, edit the code in sum so that it doesn’t add a rogue 1 to any number and run the tests again:

go test ./
ok github.com/alexellis/sum-testing 0.001s

There are two ways to launch tests for a package. These methods work for unit tests and integration tests alike.

1) Within the same directory as the test:

go test

Or with a given path:

go test ./pkg/parser

This picks up any files matching packagename_test.go

or

2) By fully-qualified package name

go test github.com/alexellis/golangbasics1

You can run this from whatever folder you like.

You can add an additional test by using a unique name.

package main

import "testing"

func Test_sum_odd_numbers(t *testing.T) {
x := 5

36

y := 5

want := 10
got := sum(x, y)
t.Logf("Testing a sum of: %d %d", x, y)
if want != got {

t.Errorf("Sum was incorrect want: %d, but got: %d", want, got)
}

}

func Test_sum_negative_numbers(t *testing.T) {
x := -5
y := -5

want := -10
got := sum(x, y)
t.Logf("Testing a sum of: %d %d", x, y)
if want != got {

t.Errorf("Sum was incorrect want: %d, but got: %d", want, got)
}

}

Do you notice that there’s some repetition between both tests? We will tackle that in the next section.

You have now run a unit test in Go, for a more verbose output type in go test -v and you will see the PASS/FAIL result
of each test including any extra logging produced by t.Log.

go test -v
=== RUN Test_sum_odd_numbers

main_test.go:11: Testing a sum of: 5 5
--- PASS: Test_sum_odd_numbers (0.00s)
=== RUN Test_sum_negative_numbers

main_test.go:23: Testing a sum of: -5 -5
--- PASS: Test_sum_negative_numbers (0.00s)
PASS
ok github.com/alexellis/sum-testing 0.001s

I would advise you to remove as much logging from unit tests as possible, since when you have many, it will become
noisy and distracting.

Adding a test table

The concept of “test tables” is a set (slice array) of test input and output values. Here is an example for the Sum function:

package main

import "testing"

func Test_sum(t *testing.T) {
tables := []struct {

x int
y int
want int

}{
{1, 1, 2},

37

{1, 2, 3},
{2, 2, 4},
{5, 2, 7},

}

for _, table := range tables {
got := sum(table.x, table.y)
if got != table.want {

t.Errorf("Sum of (%d+%d) was incorrect, got: %d, want: %d.",
table.x, table.y, got, table.want)

}
}

}

If you want to trigger the errors to break the test then alter the Sum function to return x * y.

$ go test -v
=== RUN Test_sum
--- FAIL: Test_sum (0.00s)

table_test.go:19: sum of (1+1) was incorrect, got: 1, want: 2.
table_test.go:19: sum of (1+2) was incorrect, got: 2, want: 3.
table_test.go:19: sum of (5+2) was incorrect, got: 10, want: 7.

FAIL
exit status 1
FAIL github.com/alexellis/t6 0.013s

When should you use a test table? My opinion is after you have enough duplication of single unit tests that it’s becoming
difficult to maintain. Perhaps after 2-3 very similar tests, you may want to invest 10 minutes in converting them all to a
test table. When tests have duplication, they can be easier to maintain in a table. There are pros and cons, so weigh it
up case by case.

Party tricks for “go test”

In this section we’ll explore a couple of party tricks that go test brings along. Then we’ll put everything together that
we’ve learned so far in a larger example, where we isolate a dependency.

Statement coverage

The go test tool has built-in code-coverage for statements. To try it with out example above type in:

$ go test -cover
PASS
coverage: 50.0% of statements
ok github.com/alexellis/golangbasics1 0.009s

High statement coverage is better than lower or no coverage, but metrics can be misleading. We want to make sure
that we’re not only executing statements, but that we’re verifying behaviour and output values and raising errors for dis-
crepancies. If you delete the “if” statement from our previous test it will retain 50% test coverage but lose its usefulness
in verifying the behaviour of the “Sum” method.

Generating an HTML coverage report

If you use the following two commands you can visualise which parts of your program have been covered by the tests
and which statements are lacking:

38

go test -cover -coverprofile=c.out
go tool cover -html=c.out -o coverage.html

You can now open coverage.html in a web-browser.

Benchmarking your code

Benchmarking is another part of the go test workflow that can be useful for advanced use-cases.

In the following code copied from the stdlib, a hash is generated with bcrypt.

package main

import (
"bytes"
"crypto/aes"
"crypto/cipher"
"encoding/hex"
"fmt"
"io"

)

func Hash(keyValue, secret string) string {
key, _ := hex.DecodeString(keyValue)

bReader := bytes.NewReader([]byte(secret))

block, err := aes.NewCipher(key)
if err != nil {

panic(err)
}

var iv [aes.BlockSize]byte
stream := cipher.NewOFB(block, iv[:])

var out bytes.Buffer

writer := &cipher.StreamWriter{S: stream, W: &out}
if _, err := io.Copy(writer, bReader); err != nil {

panic(err)
}

return fmt.Sprintf("%x\n", out.Bytes())
}

A benchmark can be written for it as follows:

package main

import (
"testing"

)

func BenchmarkHash10(b *testing.B) {
for n := 0; n < b.N; n++ {

key := "1234567890"

39

https://golang.org/src/crypto/cipher/example_test.go

Hash("6368616e676520746869732070617373", key)
}

}

func BenchmarkHash20(b *testing.B) {
for n := 0; n < b.N; n++ {

key := "12345678901234567890"
Hash("6368616e676520746869732070617373", key)

}
}

This defines two tests for keys of differing lengths (10) and (20) characters. You can then run the benchmarks as follows:

$ go test -bench=.
goos: linux
goarch: amd64
pkg: github.com/alexellis/bench-comp
BenchmarkHash10-8 816800 1314 ns/op
BenchmarkHash20-8 876960 1347 ns/op
PASS
ok github.com/alexellis/bench-comp 2.288s

Benchmarking can also be useful for comparing the performance go code on a certain CPU. Arm CPUs have traditionally
lacked optimizations for cryptography, so this benchmark should run much slower on a Raspberry Pi.

Go doesn’t ship your tests

In addition, it may feel unnatural to leave files named addition_test.go in the middle of your package. Rest assured
that the Go compiler and linker will not ship your test files in any binaries it produces.

Here is an example of finding the production vs test code in the net/http package we used in the previous Golang basics
tutorial.

$ go list -f={{.GoFiles}} net/http
[client.go cookie.go doc.go filetransport.go fs.go h2_bundle.go header.go http.go jar.go

method.go request.go response.go server.go sniff.go status.go transfer.go transport.go]↪

$ go list -f={{.TestGoFiles}} net/http
[cookie_test.go export_test.go filetransport_test.go header_test.go http_test.go

proxy_test.go range_test.go readrequest_test.go requestwrite_test.go response_test.go
responsewrite_test.go transfer_test.go transport_internal_test.go]

↪

↪

Stress testing your tests

Your tests can also be runmore than once, I’ve found this to show up issues with race conditions or shared state in code
that I’ve written.

Simply add -test.count=100 to run your tests 100 times.

At times, you’ll also see the tests refuse to run because the results are (cached). In this instance, adding -
test.count=1 can get around that problem.

Running tests in parallel

It may appear that your unit tests run well and in a deterministic order, but often when they are run in parallel problems
can be found before they hit production. This is because when we test our code locally, it’s usually with a lower load, or
serially. On a production system, we may have many users doing things in parallel.

40

You may also have a suite of tests that are slow to run, in that case running in parallel may save time. 10x tests that
take 1s to complete could run in 10 seconds serially, or in 1 second if run with a parallelism of 10.

Consider this example:

package main

import (
"testing"
"time"

)

func Test_Slow1(t *testing.T) {
time.Sleep(1 * time.Second)

}

func Test_Slow2(t *testing.T) {
time.Sleep(1 * time.Second)

}

func Test_Slow3(t *testing.T) {
time.Sleep(1 * time.Second)

}

func Test_Slow4(t *testing.T) {
time.Sleep(1 * time.Second)

}

func Test_Slow5(t *testing.T) {
time.Sleep(1 * time.Second)

}

$ go test ./ -v
=== RUN Test_Slow1
--- PASS: Test_Slow1 (1.00s)
=== RUN Test_Slow2
--- PASS: Test_Slow2 (1.01s)
=== RUN Test_Slow3
--- PASS: Test_Slow3 (1.00s)
=== RUN Test_Slow4
--- PASS: Test_Slow4 (1.01s)
=== RUN Test_Slow5
--- PASS: Test_Slow5 (1.00s)
PASS
ok github.com/alexellis/go-slow 5.343s

To run the tests in parallel, t.Parallel() has to be added to the test function, then the -test.parallel=N parameter
has to be passed in along with it.

package main

import (
"testing"
"time"

)

41

func Test_Slow1(t *testing.T) {
t.Parallel()
time.Sleep(1 * time.Second)

}

func Test_Slow2(t *testing.T) {
t.Parallel()
time.Sleep(1 * time.Second)

}

func Test_Slow3(t *testing.T) {
t.Parallel()
time.Sleep(1 * time.Second)

}

func Test_Slow4(t *testing.T) {
t.Parallel()
time.Sleep(1 * time.Second)

}

func Test_Slow5(t *testing.T) {
t.Parallel()
time.Sleep(1 * time.Second)

}

Then run:

$ go test -v . -test.count=1 \
-test.parallel 5

=== RUN Test_Slow1
=== PAUSE Test_Slow1
=== RUN Test_Slow2
=== PAUSE Test_Slow2
=== RUN Test_Slow3
=== PAUSE Test_Slow3
=== RUN Test_Slow4
=== PAUSE Test_Slow4
=== RUN Test_Slow5
=== PAUSE Test_Slow5
=== CONT Test_Slow1
=== CONT Test_Slow5
=== CONT Test_Slow4
=== CONT Test_Slow2
=== CONT Test_Slow3
--- PASS: Test_Slow3 (1.00s)
--- PASS: Test_Slow1 (1.00s)
--- PASS: Test_Slow5 (1.00s)
--- PASS: Test_Slow4 (1.00s)
--- PASS: Test_Slow2 (1.00s)
PASS
ok github.com/alexellis/go-slow 1.342s

This test could also have been written as a test table.

42

package main

import (
"testing"
"time"

)

func Test_Slow1(t *testing.T) {
t.Parallel()
cases := []struct {

Name string
Duration time.Duration

}{
{Name: "Case 1", Duration: time.Second * 1},
{Name: "Case 2", Duration: time.Second * 1},
{Name: "Case 3", Duration: time.Second * 1},
{Name: "Case 4", Duration: time.Second * 1},
{Name: "Case 5", Duration: time.Second * 1},

}

for _, c := range cases {
tc := c
t.Run(tc.Name, func(t *testing.T) {

t.Parallel()
t.Logf("%s sleeping..", tc.Name)
sleepFn(tc.Duration)
t.Logf("%s slept", tc.Name)

})
}

}

func sleepFn(duration time.Duration) {
time.Sleep(duration)

}

Note the use of the tc variable which captures the value of the test case in into the t.Run closure.

As a bonus, it’s more readable and it took marginally less time.

$ go test -v . -parallel 5
=== RUN Test_Slow1
=== PAUSE Test_Slow1
=== CONT Test_Slow1
=== RUN Test_Slow1/Case_1
=== PAUSE Test_Slow1/Case_1
=== RUN Test_Slow1/Case_2
=== PAUSE Test_Slow1/Case_2
=== RUN Test_Slow1/Case_3
=== PAUSE Test_Slow1/Case_3
=== RUN Test_Slow1/Case_4
=== PAUSE Test_Slow1/Case_4
=== RUN Test_Slow1/Case_5
=== PAUSE Test_Slow1/Case_5
=== CONT Test_Slow1/Case_1
=== CONT Test_Slow1/Case_4

43

main_test.go:25: Case 4 sleeping..
=== CONT Test_Slow1/Case_5

main_test.go:25: Case 5 sleeping..
=== CONT Test_Slow1/Case_3

main_test.go:25: Case 3 sleeping..
=== CONT Test_Slow1/Case_2

main_test.go:25: Case 2 sleeping..
=== CONT Test_Slow1/Case_1

main_test.go:25: Case 1 sleeping..
main_test.go:27: Case 1 slept

=== CONT Test_Slow1/Case_2
main_test.go:27: Case 2 slept

=== CONT Test_Slow1/Case_5
main_test.go:27: Case 5 slept

=== CONT Test_Slow1/Case_4
main_test.go:27: Case 4 slept

=== CONT Test_Slow1/Case_3
main_test.go:27: Case 3 slept

--- PASS: Test_Slow1 (0.00s)
--- PASS: Test_Slow1/Case_2 (1.01s)
--- PASS: Test_Slow1/Case_1 (1.01s)
--- PASS: Test_Slow1/Case_5 (1.01s)
--- PASS: Test_Slow1/Case_4 (1.01s)
--- PASS: Test_Slow1/Case_3 (1.01s)

PASS
ok github.com/alexellis/go-slow 1.260s

So we went from just over 5 seconds to just under 1.5 seconds. This may seemmarginal, but if you have lots of tests or
run them often, it can be more efficient.

Compile the tests to a binary

Something that I learned only after using Go for several years, was that the tests can be compiled to a binary, just like
your CLI or HTTP server can be.

Why would this be useful?

One scenario is if you have tests that run against external resources, such as a validator or certifier tool. You can version,
release, and distribute that without losing the capabilities of go test.

Let’s try an example?

$ git clone https://github.com/alexellis/go-execute
$ cd go-execute

Then test it the “normal” way:

$ go test -v ./...
=== RUN TestExec_WithShell
--- PASS: TestExec_WithShell (0.00s)
=== RUN TestExec_CatTransformString
--- PASS: TestExec_CatTransformString (0.00s)
=== RUN TestExec_CatWC
--- PASS: TestExec_CatWC (0.00s)
=== RUN TestExec_WithEnvVars
--- PASS: TestExec_WithEnvVars (0.00s)
=== RUN TestExec_WithEnvVarsInheritedFromParent

44

--- PASS: TestExec_WithEnvVarsInheritedFromParent (0.00s)
=== RUN TestExec_WithEnvVarsAndShell
--- PASS: TestExec_WithEnvVarsAndShell (0.00s)
PASS
ok github.com/alexellis/go-execute/pkg/v1 0.798s

Now let’s create a binary that can be distributed and run on another machine. We’ll just add the -c (compile) flag.

$ go test ./... -c
$ v1.test

Then you can run the test binary and pass in similar flags to what we saw earlier.

$./v1.test
PASS

$./v1.test -test.v
Produces the same output as "go test -v"

See ./v1.test --help for more.

For more on the basics read the Golang testing docs.

Isolating dependencies

What’s the difference between a unit test and an integration test?

The difference between unit and integration tests is that unit tests usually isolate dependencies that com-
municate with network, disk etc. Unit tests normally test only one thing such as a function.

Isolation in Go can be achieved through interfaces, but if you’re coming from a C# or Java background, they look a little
different in Go. Interfaces are implied rather than enforced which means that concrete classes don’t need to know
about the interface ahead of time.

Thatmeanswe can have very small interfaces such as io.ReadCloser which has only twomethodsmade up of the Reader
and Closer interfaces:

Read(p []byte) (n int, err error)

Reader interface

Close() error

Closer interface

If you are designing a package to be consumed by a third-party then it makes sense to design interfaces so that others
can write unit tests to isolate your package when needed. When these do not exist, it can create a lot of work and
maintenance for a consumer.

An interface can be substituted in a function call. So if we wanted to test this method, we’d just have to supply a fake /
test-double class that implemented the Reader interface.

Create a folder to work in:

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/fake-1/

Save main.go:

45

https://golang.org/pkg/testing/
https://golang.org/src/io/io.go?s=4977:5022#L116

package main

import (
"fmt"
"io"
"io/ioutil"
"log"

)

type FakeReader struct {
payload []byte
position int

}

func (f *FakeReader) Read(p []byte) (n int, err error) {
p = f.payload
f.position += len(f.payload)
if f.position > len(f.payload) {

return 0, io.EOF
}

return len(f.payload), nil
}

func (f *FakeReader) SetFakeBytes(p []byte) {
f.position = 0
f.payload = p

}

func ReadAllTheBytes(reader io.Reader) []byte {
data, err := ioutil.ReadAll(reader)
if err != nil {

log.Fatal(err)
}
return data

}

func main() {
fakeReader := &FakeReader{}
want := []byte("when called, return this data")
fakeReader.SetFakeBytes(want)
got := ReadAllTheBytes(fakeReader)
fmt.Printf("%d/%d bytes read.\n", len(got), len(want))

}

Before implementing your own abstractions (as above) it is a good idea to search the Golang docs to see if there is
already something you can use. In the case above we could also use the standard library in the bytes package:

func NewReader(b []byte) *Reader

The testing/iotest package provides some Reader implementations which are slow or which cause errors to be thrown
half way through reading. These are ideal for testing the resilience of your system. You should be prepared to ask
questions like: “What would happen if there was a timeout?”

46

https://golang.org/pkg/bytes/
https://golang.org/pkg/testing/iotest/

Example of isolating dependencies

Let’s refactor the code that we used to fetch JSON data from a HTTP endpoint. If you haven’t done this exercise yet, you
can go back and try it now.

First wewill create a new folder, with a sub-package called astros which will contain the refactored code and its interface.

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/isolate-astros/astros

We need to create an interface so that we can substitute the HTTP call with our own data.

The GetWebRequest interface below specifies the following function to return data, for a given URL.

type GetWebRequest interface {
FetchBytes(url string) ([]byte, error)

}

Note: interfaces are inferred rather than explicitly decorated onto a struct. This is different from languages
like C# or Java.

Why did we create an interface? Because we want to be able to “fake” or swap the HTTP call with test data.

Save isolate-astros/astros/types.go

package astros

type People struct {
Number int `json:"number"`

}

type GetWebRequest interface {
FetchBytes(url string) ([]byte, error)

}

Now save the implementation as isolate-astros/astros/http_astros.go:

package astros

import (
"io/ioutil"
"net/http"

)

type LiveGetWebRequest struct {
}

func (LiveGetWebRequest) FetchBytes(url string) ([]byte, error) {
req, err := http.NewRequest(http.MethodGet, url, nil)
if err != nil {

return []byte{}, err
}

req.Header.Set("User-Agent", "spacecount-tutorial")

res, err := http.DefaultClient.Do(req)
if err != nil {

return []byte{}, err
}

47

defer res.Body.Close()

body, err := ioutil.ReadAll(res.Body)
if err != nil {

return []byte{}, err
}

return body, nil
}

Next, let’s write the new main.go file that uses the interface and the real LiveGetWebRequest implementation:

package main

import (
"encoding/json"
"fmt"

"github.com/alexellis/isolate-astros/astros"
)

func getAstronauts(getWebRequest astros.GetWebRequest) (int, error) {
url := "http://api.open-notify.org/astros.json"
body, err := getWebRequest.FetchBytes(url)
if err != nil {

return 0, err
}
peopleResult := astros.People{}

if err := json.Unmarshal(body, &peopleResult); err != nil {
return 0, err

}
return peopleResult.Number, err

}

func main() {
liveClient := astros.LiveGetWebRequest{}
number, err := getAstronauts(liveClient)
if err != nil {

panic(err)
}
fmt.Println(number)

}

Test it out to make sure it all works:

go run .
7

Next create the unit test main_test.go:

package main

import "testing"

48

type testWebRequest struct {
}

func (testWebRequest) FetchBytes(url string) ([]byte, error) {
return []byte(`{"number": 2}`), nil

}

func TestGetAstronauts(t *testing.T) {
want := 3
got, err := getAstronauts(testWebRequest{})
if err != nil {

t.Fatal(err)
}
if want != got {

t.Errorf("People in space, want: %d, got: %d.", want, got)
}

}

Note the struct is defined in the same package as the tests. This is making it private, because it does not need to be
accessed anywhere else.

The test then goes on to verify the count of people using a new instance of the struct as its parameter. We see hard-
coded JSON will be returned with “2” people being in space.

Run the unit tests:

go test ./
--- FAIL: TestGetAstronauts (0.00s)

main_test.go:19: People in space, want: 3, got: 2.
FAIL
FAIL github.com/alexellis/isolate-astros 0.002s
FAIL

Now go ahead and fix the test data so that it returns three instead of 2 people, and run the test again. Remember, to
always start with a test that fails, so that you know that your test is doing something.

Choosing what to abstract

The above unit test is effectively only testing the json.Unmarshal function and our assumptions about what a valid
HTTP response body would look like. This abstracting may be OK for our example, but our code coverage score will be
low.

It is also possible to do lower level testing to make sure that the HTTP request being made is correct, or that we created
a GET request instead of a POST.

Fortunately Go has a set of helper functions for creating fake HTTP servers and clients.

Going further:

• explore the http/httptest package
• and refactor the test above to use a fake HTTP client.
• what is the test coverage percentage like before and after?

Unit-testing a HTTP server

Unit-testing a HTTP handler is slightly more involved than using an interface, and took me a while to get to grips with.

Let’s explore the HTTP handler we want to test:

49

https://golang.org/pkg/net/http/httptest/#pkg-examples

// Copyright (c) OpenFaaS Author(s). All rights reserved.
// Licensed under the MIT license.

package auth

import (
"crypto/subtle"
"net/http"

)

type BasicAuthCredentials struct {
User string
Password string

}

// DecorateWithBasicAuth enforces basic auth as a middleware with given credentials
func DecorateWithBasicAuth(next http.HandlerFunc, credentials *BasicAuthCredentials)

http.HandlerFunc {↪

return func(w http.ResponseWriter, r *http.Request) {

user, password, ok := r.BasicAuth()

const noMatch = 0
if !ok ||

user != credentials.User ||
subtle.ConstantTimeCompare([]byte(credentials.Password), []byte(password)) ==

noMatch {↪

w.Header().Set("WWW-Authenticate", `Basic realm="Restricted"`)
w.WriteHeader(http.StatusUnauthorized)
w.Write([]byte("invalid credentials"))
return

}

next.ServeHTTP(w, r)
}

}

This code applies a HTTP basic-auth header to a server, so that you cannot log in, unless you have the credential.

We need to somehow create a fake http.ResponseWriter and receive what is written to it, and also create a fake
http.Request so that we can pass in different values to test whether the authentication check works.

The httptest.NewRecorder() can be used to record the response being sent back by our handler.

We can then use the httptest.NewRequest function to create a fake request that won’t go to a real HTTP server.

func Test_AuthWithValidPassword_Gives200(t *testing.T) {

handler := func(w http.ResponseWriter, r *http.Request) {
io.WriteString(w, "<html><body>Hello World!</body></html>")

}
w := httptest.NewRecorder()

wantUser := "admin"

50

wantPassword := "password"
r := httptest.NewRequest(http.MethodGet, "http://localhost:8080", nil)

r.SetBasicAuth(wantUser, wantPassword)
wantCredentials := &BasicAuthCredentials{

User: wantUser,
Password: wantPassword,

}

decorated := DecorateWithBasicAuth(handler, wantCredentials)
decorated.ServeHTTP(w, r)

wantCode := http.StatusOK

if w.Code != wantCode {
t.Fatalf("status code, want: %d, got: %d", wantCode, w.Code)

}

gotAuth := w.Header().Get("WWW-Authenticate")
wantAuth := ``
if gotAuth != wantAuth {

t.Fatalf("WWW-Authenticate, want: %s, got: %s", wantAuth, gotAuth)
}

}

To test for the forbidden HTTP code (403), we can then do the following:

func Test_AuthWithInvalidPassword_Gives403(t *testing.T) {

handler := func(w http.ResponseWriter, r *http.Request) {
io.WriteString(w, "<html><body>Hello World!</body></html>")

}

w := httptest.NewRecorder()

wantUser := "admin"
wantPassword := "test"
r := httptest.NewRequest(http.MethodGet, "http://localhost:8080", nil)
r.SetBasicAuth(wantUser, wantPassword)

wantCredentials := &BasicAuthCredentials{
User: wantUser,
Password: "",

}

decorated := DecorateWithBasicAuth(handler, wantCredentials)
decorated.ServeHTTP(w, r)

wantCode := http.StatusUnauthorized
if w.Code != wantCode {

t.Fatalf("status code, want: %d, got: %d", wantCode, w.Code)
}

gotAuth := w.Header().Get("WWW-Authenticate")

51

wantAuth := `Basic realm="Restricted"`
if gotAuth != wantAuth {

t.Fatalf("WWW-Authenticate, want: %s, got: %s", wantAuth, gotAuth)
}

}

You can clone the Git repository and run the tests like this:

mkdir -p $GOPATH/src/github.com/openfaas/
cd $GOPATH/src/github.com/openfaas/
git clone --depth=1 https://github.com/openfaas/faas-provider
cd faas-provider

go test -v ./auth/
=== RUN Test_AuthWithValidPassword_Gives200
--- PASS: Test_AuthWithValidPassword_Gives200 (0.00s)
=== RUN Test_AuthWithInvalidPassword_Gives403
--- PASS: Test_AuthWithInvalidPassword_Gives403 (0.00s)
=== RUN Test_ReadFromCustomLocation_AndNames
--- PASS: Test_ReadFromCustomLocation_AndNames (0.00s)
=== RUN Test_ReadFromCustomLocation_DefaultNames
--- PASS: Test_ReadFromCustomLocation_DefaultNames (0.00s)
PASS
ok github.com/openfaas/faas-provider/auth 0.002s

52

Chapter 7

Work concurrently work with Goroutines

In computing, concurrency means being able to handle multiple tasks at once, but not necessarily working on them at
the exact same time. This concept is often confused with parallel computing, the act of making progress on multiple
tasks at the same time.

Go’s answer to concurrency is Goroutines. The documentation defines a “goroutine” as: “a lightweight
thread managed by the Go runtime.”

Why is that important? Operating System (OS) threads are typically expensive to create and coordinate. Go’s approach
is described as a “lightweight” thread, meaning that there’s not necessarily a 1:1 relationship between Operating System
(OS) threads and Goroutines, making them faster and more scalable.

For a deep dive into Goroutines and synchronisation techniques, you may also like The Go Programming Language
(Addison-Wesley).

In this chapter, I want to cover some practical examples to show you how to get started today. I’ll also mention a
common pitfall that can catch even the most experienced Golang programmers.

We’ll be covering: writing your first Goroutine, creating Goroutines within a loop, synchronisation through WaitGroups,
error handling with Error groups, using channels and limiting the amount of work in progress.

A simple example with Goroutines

In this example, we have a printLater function which simulates a slow running call, slow enough that we may want to
run several calls concurrently and collect the results at the end, rather than running each in serial and waiting longer.

package main

import (
"fmt"
"os"
"time"

)

func main() {
printLater("Hello\n", time.Millisecond*100)
printLater("World\n", time.Millisecond*100)
printLater(os.Getenv("USER")+"\n", time.Millisecond*100)

}

func printLater(msg string, duration time.Duration) {
time.Sleep(duration)

53

https://www.amazon.com/gp/product/0134190440/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0134190440&linkCode=as2&tag=alexellisuk-20&linkId=37d8db88ac663a3c01d2c5b8940601d7
https://www.amazon.com/gp/product/0134190440/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0134190440&linkCode=as2&tag=alexellisuk-20&linkId=37d8db88ac663a3c01d2c5b8940601d7

fmt.Printf(msg)
}

When run, this program gives the following, and takes roughly 300ms to execute:

$ go run main.go
Hello
World
alex

Now imagine that the printLater method was actually the previous example of fetching and extracting JSON from a
remote HTTP server. We can optimise the total running time, from 300ms to around 100ms by executing the HTTP calls
concurrently using Goroutines.

package main

import (
"fmt"
"os"
"time"

)

func main() {
go func() {

printLater("Hello\n", time.Millisecond*100)
}()
go func() {

printLater("World\n", time.Millisecond*100)
}()
go func() {

printLater(os.Getenv("USER")+"\n", time.Millisecond*100)
}()

}

func printLater(msg string, duration time.Duration) {
time.Sleep(duration)
fmt.Printf(msg)

}

Nowwhen you run this program, it will exit without any output. That is because the Goroutines execute asynchronously,
and therefore need to be synchronised with the main program’s execution flow.

You can synchronise Goroutines through the use of channels, or a number of other primitives in the sync package of
the standard library. The WaitGroup is one of my preferred examples.

The WaitGroup primary purpose is to block and wait for a number of tasks to complete.

To use a WaitGroup, first, call the Add function with a number of tasks, then set up your Goroutines. Within each
Goroutine, you will need to have it call Done when it has completed. Finally, within the function synchronising the work,
call wg.Wait() and it will block execution there until all the routines have called Done and the outstanding tasks are
set to 0.

package main

import (
"fmt"
"os"

54

https://gobyexample.com/channels
https://gobyexample.com/waitgroups

"sync"
"time"

)

func main() {
wg := sync.WaitGroup{}
wg.Add(3)

go func() {
defer wg.Done()
printLater("Hello\n", time.Millisecond*100)

}()
go func() {

defer wg.Done()
printLater("World\n", time.Millisecond*100)

}()
go func() {

defer wg.Done()
printLater(os.Getenv("USER")+"\n", time.Millisecond*100)

}()

wg.Wait()
}

func printLater(msg string, duration time.Duration) {
time.Sleep(duration)
fmt.Printf(msg)

}

Now we see the code complete, and print all the messages. We can tell that the work is being executed concurrently
because the messages are seemingly out of order.

$ go run main.go
World
Hello
alex

This example cannot handle errors, and it’s important to note that if one Goroutine calls panic() then the whole
application will fail. We will explore two approaches for error handling in a few moments.

Avoid a common mistake with Goroutines

Now let’s explore a common mistake that is made with Goroutines, one which I also make from time to time.

Now that you have understood an approach to defining and synchronising Goroutines, it is tempting and sometimes
more efficient to introduce a loop.

package main

import (
"fmt"
"sync"
"time"

)

55

func main() {
wg := sync.WaitGroup{}
workItems := 5
wg.Add(workItems)

for i := 1; i <= workItems; i++ {
go func() {

defer wg.Done()
printLater(

fmt.Sprintf("Hello from %d\n", i),
time.Millisecond*100)

}()
}

wg.Wait()
}

func printLater(msg string, duration time.Duration) {
time.Sleep(duration)
fmt.Printf(msg)

}

Now run the example:

$ go run ./
Hello from 6
Hello from 6
Hello from 6
Hello from 6
Hello from 6

Note that the message reads Hello from 6 for each of the 5 responses? The loop captured the final value of the i
variable and used it for each Goroutine.

To solve the problem, we can either pass the i variable into the Goroutine as a parameter, or capture it within a closure
using a new local variable.

Here’s the first approach:

for i := 1; i <= workItems; i++ {
go func(j int) {

defer wg.Done()
printLater(

fmt.Sprintf("Hello from %d\n", j),
time.Millisecond*100)

}(i)
}

Notice the signature for our Goroutine changed as follows:

i := 1
go func(j int) {
fmt.Printf("Value is: %d", j)

}(i)

In the second approach, we define a new local variable j to capture the value of i:

56

for i := 1; i <= workItems; i++ {
j := i
go func() {

defer wg.Done()
printLater(

fmt.Sprintf("Hello from %d\n", j),
time.Millisecond*100)

}()
}

In both cases, we get the output as expected:

Hello from 4
Hello from 3
Hello from 5
Hello from 1
Hello from 2

Error groups

Another way to synchronise work in parallel is through the unofficial “errgroup” package from the Golang team.

This becomes even more useful in the example above because any of our Goroutines can return an error and be cap-
tured without having to write code to synchronise messages over channels.

Not only can the errgroup run a number of Goroutines concurrently, but it can also run them serially in a pipeline,
checking the error of each task before moving onto the next.

To use an error group, Import the "golang.org/x/sync/errgroup" package, then define a new errgroup with g :=
errgroup.Group{}, then call g.Go(func() error { }) for each of the work items. You’ll notice that the g.Go()
function takes a function which can return an error. If there is no error, then return nil, otherwise return the error and
the whole execution will exit and bubble up the error to the synchronising function.

package main

import (
"fmt"
"os"
"time"

"golang.org/x/sync/errgroup"
)

func main() {
g := errgroup.Group{}
g.Go(func() error {

printLater("Hello\n", time.Millisecond*100)
return nil

})
g.Go(func() error {

// printLater("World\n", time.Millisecond*100)
return fmt.Errorf("world failed")

})
g.Go(func() error {

printLater(os.Getenv("USER")+"\n", time.Millisecond*100)
return nil

57

https://pkg.go.dev/golang.org/x/sync/errgroup

})

err := g.Wait()
if err != nil {

fmt.Fprintf(os.Stderr, "error found: %s", err.Error())
os.Exit(1)

}
fmt.Print("All work completed as expected")

}

func printLater(msg string, duration time.Duration) {
time.Sleep(duration)
fmt.Printf(msg)

}

When running the code, you’ll see the following output:

$ go run ./
Hello
alex
error found: world failed

You can find out more about error groups in the package’s docs

Sharing data between Goroutines

There are two approaches to sharing data between Goroutines in Go, whilst staying within the bounds of memory. The
first would be to create a type with a locking mechanism, so that a reader or writer could obtain a lock to prevent two
Goroutines trying to update the same data and the resulting race condition.

In the first example, our code may look similar to:

package main

import (
"sync"

)

type ScrapeRun struct {
Result []ScrapeResult
Lock *sync.Mutex

}

type ScrapeResult struct {
HTTPCode int
HTTPLength int
Error error

}

Within the main program flow, you would write something similar to:

package main

import (
"fmt"
"io/ioutil"

58

https://pkg.go.dev/golang.org/x/sync/errgroup

"net/http"
"sync"

)

type ScrapeRun struct {
Results map[string]ScrapeResult
Lock *sync.Mutex

}

type ScrapeResult struct {
HTTPCode int
HTTPLength int64
Error error

}

func scrape(url string, sr *ScrapeRun) {
res, err := http.Get(url)
if err != nil {

sr.Lock.Lock()
defer sr.Lock.Unlock()

sr.Results[url] = ScrapeResult{
Error: err,
HTTPCode: http.StatusBadGateway,

}
return

}

defer res.Body.Close()

sr.Lock.Lock()
defer sr.Lock.Unlock()

length := res.ContentLength
// Read whole body to find length, if not returned in
// response
if length == -1 {

body, _ := ioutil.ReadAll(res.Body)
length = int64(len(body))

}
sr.Results[url] = ScrapeResult{

HTTPCode: res.StatusCode,
HTTPLength: length,

}
}

func main() {
url1 := "https://inlets.dev/"
url2 := "https://openfaas.com/"
url3 := "https://openfas.com/"

sr := ScrapeRun{
Lock: &sync.Mutex{},
Results: make(map[string]ScrapeResult),

59

}

wg := sync.WaitGroup{}
wg.Add(3)

go func(u string) {
defer wg.Done()
scrape(url1, &sr)

}(url1)

go func(u string) {
defer wg.Done()
scrape(url2, &sr)

}(url2)

go func(u string) {
defer wg.Done()
scrape(url3, &sr)

}(url3)

wg.Wait()

for k, v := range sr.Results {
if v.Error != nil {

fmt.Printf("- %s = error: %s\n", k, v.Error.Error())
} else {

fmt.Printf("- %s = [%d] %d bytes\n", k, v.HTTPCode, v.HTTPLength)
}

}
}

This is the output from running the program:

$ go run .
- https://openfas.com/ = error: Get "https://openfas.com/": dial tcp: lookup openfas.com: no

such host↪

- https://openfaas.com/ = [200] 32696 bytes
- https://inlets.dev/ = [200] 69805 bytes

Did you know? The sync.Mutex makes an exclusive lock on the object, meaning that no other reads or writes are
possible until the lock is released. This can cause a bottleneck if there are both readers and writers of an object.

The sync.RWMutex type can be used as a drop-in replacement for sync.Mutex, where an arbitary number of readers
can obtain a lock or a single writer.

package main

import (
"sync"

)

func main() {
lock := sync.RWMutex{}
go readOperation(data, "key", &lock)
go writeOperation(data, "key", "value", &lock)

60

// Add synchronisation for the two routines here.
}

func readOperation(data map[string]string, key string, lock *sync.RWMutex) {
lock.RLock()
defer lock.RUnlock()
fmt.Println(data["key"])

}

func writeOperation(data map[string]string, key, value string, lock *sync.RWMutex) {
lock.Lock()
defer lock.Unlock()
data[key] = value

}

In this case, the read and write operations can happen at the same time, because the write lock will not block the
function which reads the value.

What’s a real-world use-case for this pattern? Perhaps you have an in-memory cache holding a list of active customers.
The list needs to be downloaded over the network, which can be an expensive operation. The list is then shared with
a number of Goroutines or handlers in your HTTP server. The read lock would be obtained for accessing the data, and
the write lock would be used by something like a timer or a long-running loop that updates items within the cache.

The second approach would be for the Goroutines to simply output data, without sharing a type. The calling code can
then aggregate the results, without needing to create a separate type with a lock. You’ll see an example of this in the
following section Using channels for synchronisation.

Using channels for synchronisation

If you have existing experience with Go, then you may have been surprised that I showed you the WaitGroup first,
followed by an Error group without covering channels. An incomplete understanding of channels can lead to leaking
Goroutines or deadlocks within your application, and in some cases a memory leak.

That said, I want to show you an example of how to run an asynchronous task, where it can either return a successful
message or an error using a channel.

The titleOf function will download the HTML from a URI passed to it, and then look for the <title> line and return
that to you.

Go has two types of channels:

By default channels are unbuffered, meaning that they will only accept sends (chan <-) if there is a corre-
sponding receive (<- chan) ready to receive the sent value. Buffered channels accept a limited number of
values without a corresponding receiver for those values.

From the docs

You can define a channel by using make(chan type), so we create a channel for string and one for error in the
sample.

Both channels are passed into the titleOf function, followed by a select statement, which will block until either of
the channels has a message to be read.

We can pass the channels as follows: go titleOf(uri, titleCh, errorCh)

Then block with the following select statement:

61

https://gobyexample.com/channel-buffering

select {
case title := <-titleCh:

fmt.Printf("Title: %s\n", title)
case err := <-errorCh:

fmt.Printf("Error: %s\n", err.Error())
os.Exit(1)

}

If you only had a single channel, then you could bypass the select statement, and use the <- receiver syntax.

err := <-errorCh
fmt.Printf("Error: %s\n", err.Error())
os.Exit(1)

Here is the complete example:

package main

import (
"flag"
"fmt"
"io/ioutil"
"net/http"
"os"
"strings"

)

func main() {

var uri string
flag.StringVar(&uri, "uri", "", "uri to fetch")
flag.Parse()

titleCh := make(chan string)
errorCh := make(chan error)

go titleOf(uri, titleCh, errorCh)

select {
case title := <-titleCh:

fmt.Printf("Title: %s\n", title)
case err := <-errorCh:

fmt.Printf("Error: %s\n", err.Error())
os.Exit(1)

}
}

func titleOf(uri string, titleCh chan string, errCh chan error) {
req, err := http.NewRequest(http.MethodGet, uri, nil)
if err != nil {

errCh <- err
return

}

res, err := http.DefaultClient.Do(req)

62

if err != nil {
errCh <- err
return

}
if res.Body != nil {

defer res.Body.Close()

res, _ := ioutil.ReadAll(res.Body)
for _, l := range strings.Split(string(res), "\n") {

if strings.Contains(l, "<title>") {
titleCh <- l
return

}
}

}

errCh <- fmt.Errorf("no title found")
}

Here’s an example of running the workload, with three different websites and then a couple of error scenarios.

$ go run . -uri https://inlets.dev
Title: <title>Inlets – The Cloud Native Tunnel</title>

$ go run . -uri https://github.com/alexellis/
Title: <title>alexellis (Alex Ellis) · GitHub</title>

$ go run .
Error: Get "": unsupported protocol scheme ""
exit status 1

$ go run . -uri https://gitzub.com
Error: Get "https://gitzub.com": dial tcp: lookup gitzub.com: no such host
exit status 1

Using a context to handle timeouts

Now, there’s also another potential problem here. Some websites may hang or keep a connection open indefinitely. Go
provides a concept called “context” that can be passed into calls that make use of external resources like with our HTTP
request from above.

A Context carries a deadline, a cancellation signal, and other values across API boundaries.

You can view the docs for the context package here: context.

Some library functions allow a Context to be passed via a parameter, but if one is not present, you can get the back-
ground context with:

ctx := context.Background()

You may also see context.TODO() used which can be used when no context is available, or it’s unclear which context
to use.

Its API also has several utility methods for defining a cancellation policy:

func WithCancel(parent Context) (ctx Context, cancel CancelFunc)

63

https://golang.org/pkg/context/

A parent context needs to be passed in, when the cancel function is called, any in-progress operationsmust be stopped
and resources should be released.

func WithDeadline(parent Context, d time.Time) (Context, CancelFunc)

This function is similar to WithCancel, except there is a deadline time/date for some future date at which time the
operation should be cancelled. This is useful with HTTP requests or when accessing an external system.

func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc)

The WithTimeout function is also similar, but provides a helper so that a timeout value can be passed in rather than
an actual date in the future.

In the example below, you’ll see how WithTimeout works.

package main

import (
"context"
"flag"
"fmt"
"io/ioutil"
"net/http"
"os"
"strings"
"time"

)

func main() {

var uri string
var timeout time.Duration

flag.StringVar(&uri, "uri", "", "uri to fetch")
flag.DurationVar(&timeout, "timeout", time.Second*5, "timeout for HTTP client")

flag.Parse()

titleCh := make(chan string)
errorCh := make(chan error)

go titleOf(uri, timeout, titleCh, errorCh)

select {
case title := <-titleCh:

fmt.Printf("Title: %s\n", title)
case err := <-errorCh:

fmt.Printf("Error: %s\n", err.Error())
os.Exit(1)

}
}

func titleOf(uri string, timeout time.Duration, titleCh chan string, errCh chan error) {
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()

64

req, err := http.NewRequestWithContext(ctx, http.MethodGet, uri, nil)
if err != nil {

errCh <- err
return

}

res, err := http.DefaultClient.Do(req)
if err != nil {

errCh <- err
return

}

if res.Body != nil {
defer res.Body.Close()
res, _ := ioutil.ReadAll(res.Body)
for _, l := range strings.Split(string(res), "\n") {

if strings.Contains(l, "<title>") {
titleCh <- l
return

}
}

}

errCh <- fmt.Errorf("no title found")
}

Now let’s set the timeout to be a little more aggressive, like 10ms and introduce a flag so that we can easily configure
the value.

$ go run . -uri https://github.com/alexellis --timeout 10ms
Error: Get "https://github.com/alexellis": context deadline exceeded
exit status 1

$ go run . -uri https://github.com/alexellis --timeout 1000ms
Error: Get "https://github.com/alexellis": context deadline exceeded
exit status 1

$ go run . -uri https://github.com/alexellis --timeout 3000ms
Title: <title>alexellis (Alex Ellis) · GitHub</title>

So it looks like we need a rather generous timeout to fetch my GitHub profile from a client in the UK.

Limiting concurrent work

So far, all the techniques that we’ve seen do not allow us to limit resources. At some point, you may exceed a limit like
the number of files or HTTP connections that are allowed on your machine, or the number of database connections
that your Database as a Service allows.

In those cases, it’s useful to think of limiting work. A similar technique is implemented in the OpenFaaS CLI for building,
pushing and deploying functions.

By default, the level of concurrency is 1, but it can be overridden, so that if you need to build 8 functions, you could have
four of them being processed at the same time. You can think of this approach as a “window”, 4 Goroutines will start,
and receive 4/8 pieces of the work. When the work in progress drops to 3, another item from the remaining queue of
4 items will be processed until all the work is done and nothing is remaining.

65

The following pattern updates our titleOf method to run without a channel, and to return its results as (string,
error).

func titleOf(uri string, timeout time.Duration) (string, error) {
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()

req, err := http.NewRequestWithContext(ctx, http.MethodGet, uri, nil)
if err != nil {

return "", err
}

res, err := http.DefaultClient.Do(req)
if err != nil {

return "", err
}

if res.Body != nil {
defer res.Body.Close()
res, _ := ioutil.ReadAll(res.Body)
for _, l := range strings.Split(string(res), "\n") {

if strings.Contains(l, "<title>") {
return uri, nil

}
}

}

return "", fmt.Errorf("no title found")
}

We then add a workQueue concept and a number of workers (Goroutines) which read from the queue. A WaitGroup
then allows each worker to signal when it has completed processing.

package main

import (
"context"
"flag"
"fmt"
"io/ioutil"
"log"
"net/http"
"os"
"strings"
"sync"
"time"

)

func main() {

uris := []string{"https://github.com/alexellis",
"https://github.com/openfaas",
"https://github.com/inlets",
"https://github.com/docker",
"https://github.com/kubernetes",

66

"https://github.com/moby",
"https://github.com/hashicorp",
"https://github.com/civo",

}

var w int
flag.IntVar(&w, "w", 1, "amount of workers")
flag.Parse()

titleMap, errs := fetch(uris, w)
if len(errs) > 0 {

for _, err := range errs {
fmt.Fprintf(os.Stderr, "error %s", err.Error())

}
os.Exit(1)

}

for k, v := range titleMap {
fmt.Printf("%s has %s\n", k, v)

}
}

func fetch(uris []string, workers int) (map[string]string, []error) {
titles := make(map[string]string)

var errs []error

workQueue := make(chan string)

wg := sync.WaitGroup{}
wg.Add(workers)
for i := 0; i < workers; i++ {

worker := i
go func(worker int, workQueue chan string) {

log.Printf("[Worker: %d] Started work.", worker)

for uri := range workQueue {
log.Printf("[Worker: %d] Getting: %s", worker, uri)

start := time.Now()
title, err := titleOf(uri, time.Second*5)
if err != nil {

errs = append(errs, err)
}
log.Printf("[Worker: %d] Got: %s (%.2fs)",

worker,
uri,
time.Since(start).Seconds())

titles[uri] = title
}
log.Printf("[Worker: %d] Finished work.", worker)
wg.Done()

}(worker, workQueue)

67

}

go func() {
for _, u := range uris {

workQueue <- u
}
close(workQueue)

}()

wg.Wait()
return titles, errs

}

The -w flag controls concurrency.

Observe the difference in output and time taken with a single worker and with 4.

$ time go run main.go -w 1
2021/06/18 18:42:30 [Worker: 0] Started work.
2021/06/18 18:42:30 [Worker: 0] Getting: https://github.com/alexellis
2021/06/18 18:42:32 [Worker: 0] Got: https://github.com/alexellis (1.82s)
2021/06/18 18:42:32 [Worker: 0] Getting: https://github.com/openfaas
2021/06/18 18:42:33 [Worker: 0] Got: https://github.com/openfaas (0.60s)
2021/06/18 18:42:33 [Worker: 0] Getting: https://github.com/inlets
2021/06/18 18:42:33 [Worker: 0] Got: https://github.com/inlets (0.44s)
2021/06/18 18:42:33 [Worker: 0] Getting: https://github.com/docker
2021/06/18 18:42:34 [Worker: 0] Got: https://github.com/docker (0.70s)
2021/06/18 18:42:34 [Worker: 0] Getting: https://github.com/kubernetes
2021/06/18 18:42:34 [Worker: 0] Got: https://github.com/kubernetes (0.55s)
2021/06/18 18:42:34 [Worker: 0] Getting: https://github.com/moby
2021/06/18 18:42:35 [Worker: 0] Got: https://github.com/moby (0.47s)
2021/06/18 18:42:35 [Worker: 0] Getting: https://github.com/hashicorp
2021/06/18 18:42:35 [Worker: 0] Got: https://github.com/hashicorp (0.45s)
2021/06/18 18:42:35 [Worker: 0] Getting: https://github.com/civo
2021/06/18 18:42:36 [Worker: 0] Got: https://github.com/civo (0.86s)
2021/06/18 18:42:36 [Worker: 0] Finished work.
https://github.com/openfaas has <title>OpenFaaS · GitHub</title>
https://github.com/inlets has <title>inlets · GitHub</title>
https://github.com/docker has <title>Docker · GitHub</title>
https://github.com/kubernetes has <title>Kubernetes · GitHub</title>
https://github.com/moby has <title>Moby · GitHub</title>
https://github.com/hashicorp has <title>HashiCorp · GitHub</title>
https://github.com/civo has <title>Civo · GitHub</title>
https://github.com/alexellis has <title>alexellis (Alex Ellis) · GitHub</title>

real 0m6.206s
user 0m0.556s
sys 0m0.188s

$ time go run main.go -w 4
2021/06/18 18:41:56 [Worker: 0] Started work.
2021/06/18 18:41:56 [Worker: 0] Getting: https://github.com/alexellis
2021/06/18 18:41:56 [Worker: 3] Started work.
2021/06/18 18:41:56 [Worker: 3] Getting: https://github.com/openfaas

68

2021/06/18 18:41:56 [Worker: 2] Started work.
2021/06/18 18:41:56 [Worker: 1] Started work.
2021/06/18 18:41:56 [Worker: 1] Getting: https://github.com/docker
2021/06/18 18:41:56 [Worker: 2] Getting: https://github.com/inlets
2021/06/18 18:41:57 [Worker: 2] Got: https://github.com/inlets (0.55s)
2021/06/18 18:41:57 [Worker: 2] Getting: https://github.com/kubernetes
2021/06/18 18:41:57 [Worker: 3] Got: https://github.com/openfaas (0.65s)
2021/06/18 18:41:57 [Worker: 3] Getting: https://github.com/moby
2021/06/18 18:41:57 [Worker: 1] Got: https://github.com/docker (0.89s)
2021/06/18 18:41:57 [Worker: 1] Getting: https://github.com/hashicorp
2021/06/18 18:41:57 [Worker: 2] Got: https://github.com/kubernetes (0.46s)
2021/06/18 18:41:57 [Worker: 2] Getting: https://github.com/civo
2021/06/18 18:41:58 [Worker: 3] Got: https://github.com/moby (0.70s)
2021/06/18 18:41:58 [Worker: 3] Finished work.
2021/06/18 18:41:58 [Worker: 0] Got: https://github.com/alexellis (1.45s)
2021/06/18 18:41:58 [Worker: 0] Finished work.
2021/06/18 18:41:58 [Worker: 2] Got: https://github.com/civo (0.53s)
2021/06/18 18:41:58 [Worker: 2] Finished work.
2021/06/18 18:41:58 [Worker: 1] Got: https://github.com/hashicorp (1.15s)
2021/06/18 18:41:58 [Worker: 1] Finished work.
https://github.com/docker has <title>Docker · GitHub</title>
https://github.com/kubernetes has <title>Kubernetes · GitHub</title>
https://github.com/moby has <title>Moby · GitHub</title>
https://github.com/alexellis has <title>alexellis (Alex Ellis) · GitHub</title>
https://github.com/civo has <title>Civo · GitHub</title>
https://github.com/hashicorp has <title>HashiCorp · GitHub</title>
https://github.com/inlets has <title>inlets · GitHub</title>
https://github.com/openfaas has <title>OpenFaaS · GitHub</title>

real 0m2.319s
user 0m0.545s
sys 0m0.101s

That’s a difference of around 4 seconds. We gained that speed simply by implementing concurrency. The work queue
then limits the amount of open requests.

To see this pattern in action, within the faas-cli, checkout the build.go command.

69

https://github.com/openfaas/faas-cli/blob/master/commands/build.go#L223

Chapter 8

Store data with a database

Almost all line of business applications will require a form of storage, so in this chapter I’ll show you how to connect to
a Postgresql database. For other databases, you’ll need to find a different library, but the approach will be similar.

Not all Go libraries are equal. Some use pure Go code, and others link to a rich ecosystem of existing C/C++
codebases. The ones which reference Go require CGO, which can introduce a number of other issues and
portability problems.

One of the most helpful tools I’ve found for writing this eBook has been a todo list, so let’s start with that example. You
can then customise the schema, the fields and operations however you like to suit your own needs.

Create a directory for the exercise:

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/todo-database/

Create schema.sql:

CREATE TABLE todo (
id INT GENERATED ALWAYS AS IDENTITY,
description text NOT NULL,
created_date timestamp NOT NULL,
completed_date timestamp NULL

);

We’re using a flat schema, with a single table. The id field is generated, and then we have a longer field for the todo
text and a created/completed date field. Only the completed_date field can accept a null entry.

Once you have defined a schema, it’s time to provision a database or to install Postgresql so that you can obtain cre-
dentials or a connection string and create the schema.

I decided to create a database using Postgresql 11 on DigitalOcean. This is a managed service, and you’ll find similar
services are available from other cloud providers such as AWS and GCP.

You can use the psql tool to connect and create a database. Alternatively, you could input a CREATE statement at
the start of your application. Some authors write code to automate maintenance like database creation and schema
migration upon application startup.

My connection string from the dashboard was: postgresql://doadmin:ildkg2my7g7lqqxh@todo-pg11-do-user-
2197152-0.b.db.ondigitalocean.com:25060/defaultdb?sslmode=require

When you deploy your application, be careful that you do not hard-code any confidential data. You may want to use a
configuration file with strict permissions, or environment variables to read the password and address.

package main

70

Figure 8.1: A managed Postgresql database created on DigitalOcean

import (
"database/sql"
"flag"
"fmt"
"time"

_ "github.com/lib/pq"
)

type Todo struct {
ID int
Description string
CreatedDate time.Time
CompletedDate *time.Time

}

Here, we define a Todo struct to be used to load entries from the database into memory. We also introduce the
database/sql package which can be used with different libraries, but provides a single interface for operations.

In our case, we’ll be using the lib/pq library, which is “pure Go” meaning that we do not need to enable CGO to make
use of it.

Next, define all the flags that are required to connect to the database, and those which are required for the applica-
tion. If you’re writing server-side software, you may read these values from an environment variable, or if you’re using
OpenFaaS on Kubernetes, from a file mounted at /var/openfaas/secrets/NAME.

func main() {
var (

user, password, host, dbName, sslMode, todo, action string
)
var port int

flag.StringVar(&user, "user", "", "Postgresql username")

71

https://golang.org/pkg/database/sql/
https://github.com/lib/pq

flag.StringVar(&password, "password", "", "Postgresql password")
flag.StringVar(&host, "host", "", "Postgresql host")
flag.IntVar(&port, "port", 0, "Postgresql port")
flag.StringVar(&dbName, "dbname", "", "Postgresql host")
flag.StringVar(&sslMode, "sslmode", "require", "Postgresql host")

flag.StringVar(&todo, "todo", "", "Todo item")
flag.StringVar(&action, "action", "create", "Action for todo item")

flag.Parse()

Next, we’ll define the flowwhich attempts tomake a database connection, followed by the create and list operations.
Perhaps you could write the update and done actions yourself as an extension to the exercise?

db, err := connect(user, password, host, dbName, sslMode, port)
if err != nil {

panic(err)
}

switch action {
case "create":

err := create(db, todo)
if err != nil {

panic(err)
}

case "list":
todos, err := list(db)
if err != nil {

panic(err)
}
for _, t := range todos {

fmt.Printf("- %q\t%s\n", t.Description, t.CreatedDate.String())
}

default:
panic("Supported actions are: list, create")

}
}

Now on to the connect method. Here we construct a connection-string, which is often provided by a managed SQL
service. If not, you can construct it from the individual parts. The Postgresql service on DigitalOcean also needs a “strict”
sslmode flag.

func connect(user, password, host, dbName, sslMode string, port int) (*sql.DB, error) {
connStr := "postgres://" + user + ":" + password + "@" + host + ":" + fmt.Sprintf("%d",
port) + "/" + dbName + "?sslmode=" + sslMode↪

db, err := sql.Open("postgres", connStr)
if err != nil {

return nil, err
}

err = db.Ping()
if err != nil {

return nil, err
}

72

return db, nil
}

Here’s how you can perform an insert. Note that the $1 is substituted for todo string. By using this syntax instead of
fmt.Sprintf or string concatenation, we get some level of protection against SQL injection attacks where a user may
insert additional SQL statements in a value.

func create(db *sql.DB, todo string) error {
res, err := db.Query(`INSERT INTO

todo
(id, description, created_date)
VALUES
(DEFAULT, $1, now());`,
todo)

if err != nil {
return err

}
defer res.Close()
return nil

}

The list function returns a slice of the Todo structs. You can use the same $1 technique to specify keys or sort orders
for the SELECT statement.

Finally the Scan function is used to populate the values from the row into the type using the proper typing. See how we
didn’t have to parse a date string into a time.Time for instance?

func list(db *sql.DB) ([]Todo, error) {
rows, err := db.Query(`SELECT

id,
description,
created_date,
completed_date
FROM todo;`)

if err != nil {
return []Todo{},

fmt.Errorf("unable to get from todo table: %w", err)
}

todos := []Todo{}
defer rows.Close()
for rows.Next() {

result := Todo{}
err := rows.Scan(&result.ID,

&result.Description,
&result.CreatedDate,
&result.CompletedDate)

if err != nil {
return []Todo{}, fmt.Errorf("row scan error: %w", err)

}
todos = append(todos, result)

}

73

return todos, nil
}

Then it’s over to you, to try it out:

$ go build && ./todo \
-user doadmin \
-password ildkg2my7g7lqqxh \
-host todo-pg11-do-user-2197152-0.b.db.ondigitalocean.com \
-port 25060 \
-dbname defaultdb \
-todo "Publish this book" \
-action create

Now list your todo items:

$ go build && ./todo \
-user doadmin \
-password ildkg2my7g7lqqxh \
-host todo-pg11-do-user-2197152-0.b.db.ondigitalocean.com \
-port 25060 \
-dbname defaultdb \
-action list

- "Publish this book" 2021-06-21 10:57:04.374785 +0000 +0000

Next, you could explore adding the missing functionality, and consider using a table and adding some colour. You may
also want to filter out all items which have a completed date. Check out the tabwriter package for formatting your CLI
output.

A CLI framework like Cobra, could improve usability by making the actions into verbs such as:

$./todo list
$./todo create "Publish the next version of this eBook"
$./todo close "Weekly shopping"

Find out more about the two libraries we used below:

• lib/pq
• database/sql

For a more complete example of data-access including a schema with a foreign key relationship and custom database
functions, see my example on the OpenFaaS blog: How to build a Serverless Single Page App

74

https://golang.org/pkg/text/tabwriter/
https://github.com/lib/pq
https://golang.org/pkg/database/sql/
https://www.openfaas.com/blog/serverless-single-page-app/

Chapter 9

Write your own config files in YAML

The trend with 12 Factor Apps is to make all configuration available through environment variables instead of through
files. Thismakes themeasy to deploywith containers because files tend to require additional permissions or filesystems
to be created and mounted.

However environment variables can have drawbacks like length, and complexity when there aremany of them. Nesting
is also difficult since they are all inputted at the same level. You may find that a configuration file is the answer.

A practical example of YAML in action

In the OpenFaaS CLI we added a configuration file to store the credentials for different installations that you log into.
The CLI also has a configuration file for functions that you deploy called stack.yml.

version: 1.0
provider:
name: openfaas
gateway: http://127.0.0.1:8080

functions:
gumroad-upgrade:

lang: node12
handler: ./gumroad-upgrade
image: alexellis2/gumroad-upgrade:0.2.1
environment:
subject: "Your bonus upgrade to my video workshop"
sender: sales@openfaas.com
region: "eu-west-1"

secrets:
- ses-access-key-id
- ses-access-token
- seller-id
- secret-url

Example of an OpenFaaS YAML file to configure building and deploying functions

The library that I’ve used most is gopkg.in/yaml.v2. It suited the use-case that it’s my go-to library for parsing or saving
YAML.

Read and write your own YAML schema

Create a new folder and initialise it for the sample:

75

https://12factor.net/
https://github.com/go-yaml/yaml

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/yaml-config/

To load a configuration file, you define a number of structs and annotate them, just like we did with the JSON examples.

type Spec struct {
// Name name of the function
Name string `yaml:"name"`

// Image docker image name of the function
Image string `yaml:"image"`

Environment map[string]string `yaml:"environment,omitempty"`

// Limits for the function
Limits *FunctionResources `yaml:"limits,omitempty"`

}

// FunctionResources Memory and CPU
type FunctionResources struct {

Memory string `yaml:"memory"`
CPU string `yaml:"cpu"`

}

As you can see from above, where we would have put json:"field", we just write yaml instead and then go on to use
a very similar interface to unmarshal the text into an object.

Create main.go:

package main

import (
"fmt"
"io/ioutil"

yaml "gopkg.in/yaml.v2"
)

// Add above structs here

func main() {
bytesOut, err := ioutil.ReadFile("config.yaml")
if err != nil {

panic(err)
}

spec := Spec{}
if err := yaml.Unmarshal(bytesOut, &spec); err != nil {

panic(err)
}

fmt.Printf("Function name: %s\tImage: %s\tEnvs: %d\n", spec.Name, spec.Image,
len(spec.Environment))↪

}

Test it out:

76

go run main.go
Function name: gumroad-bot Image: ghcr.io/alexellis/gumroad-bot Envs: 1

You can write a configuration file or YAML file to disk using the Marshal function. Adapt the example:

func main() {
spec := Spec{

Image: "docker.io/functions/figlet:latest",
Name: "figlet",

}

bytesOut, err := yaml.Marshal(spec)
if err != nil {

panic(err)
}

err = ioutil.WriteFile("figlet.yaml", bytesOut, os.ModePerm)
if err != nil {

panic(err)
}
fmt.Printf("Wrote: figlet.yaml.. OK.\n")

}

Test it out:

$ go run main.go

Wrote: figlet.yaml.. OK.

$ cat figlet.yaml

name: figlet
image: docker.io/functions/figlet:latest

In a previous role, I found that I could create huge amounts of CI jobs very quickly by reading an input file and generating
YAML using this library. It saved me a lot of time overall.

Merging objects

If you create a large schema with many different fields, it may be desirable to maintain a single example file and then
allow users to provide overrides for any values that need customisation.

We’ve used the mergo library in the OpenFaaS project and had good experiences, however you may find other libraries
that fulfil a similar role.

This approach works with any structs that you have in memory, and isn’t specific to YAML.

Create a new folder for the example:

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/merge-objects

This is how the API works:

merged := Spec{}

overrides := Spec{}

77

https://github.com/openfaas/ofc-bootstrap/blob/master/pkg/types/merge_test.go

err := mergo.Merge(merged, override, mergo.WithOverride)
if err != nil {

return merged, err
}

Here’s an example of what it would look like:

package main

import (
"fmt"

"github.com/imdario/mergo"
yaml "gopkg.in/yaml.v2"

)

// Paste the struct definitions in here.

func main() {
base := Spec{

Image: "docker.io/functions/figlet:latest",
Name: "figlet",

}

production := Spec{
Environment: map[string]string{"stage": "production"},
Limits: &FunctionResources{Memory: "1Gi", CPU: "100Mi"},

}

overrides := []Spec{
base,
production,

}

merged := Spec{}
for _, override := range overrides {

err := mergo.Merge(&merged, override, mergo.WithOverride)
if err != nil {

panic(err)
}

}

bytesOut, err := yaml.Marshal(merged)
if err != nil {

panic(err)
}

fmt.Printf("Merged content:\n\n%s\n", string(bytesOut))
}

Output:

$ go run main.go

Merged content:

78

name: figlet
image: docker.io/functions/figlet:latest
environment:
stage: production

limits:
memory: 1Gi
cpu: 100Mi

See how the production configuration for the “stage” field and limits were overlaid on top of the base configuration?

Where could you use object merging in your code?

79

Chapter 10

Inject version information into your binaries

In this chapter, I’ll show you how to inject variables into your Golang executable at build-time.

The two ways we have used this in the OpenFaaS community are:

• To inject version information such as a Git commit ID (77b4dce) and Git tag (0.1.0)
• To add platform information such as whether the binary is for Raspberry Pi or a desktop PC
• To add a public key for validating licenses for open-core features

This information becomes part of the compiled application, but is determined once at build-time, instead of at run-time.

Here’s an example where the Docker project’s CLI contains a commit ID of 77b4dce along with the Go version it was
built with.

$ docker version
Client: Docker Engine - Community
Version: 19.03.13
API version: 1.40
Go version: go1.13.15
Git commit: 4484c46d9d
Built: Wed Sep 16 17:02:52 2020
OS/Arch: linux/amd64
Experimental: false

Why add versioning information?

I can’t state how useful and valuable it is to have a version number in your application when it comes to bug reports
from users. It can also help you spot outdated versions, and show users verify what version they are using by running
the program’s version command.

Capture useful variable(s)

Before you get started, think about what makes sense to be injected at build-time? It could be anything from the
hostname of the CI machine to the result of a web-service call or more commonly the last commit ID from your Git log.

Let’s use the last Git commit id.

Create a test Git project with a README

$ mkdir /tmp/git-tester && \
cd /tmp/git-tester && \
git init && \
echo "Let's work with Git" > README && \
git add . && \
git commit -m "Initial" && \

80

https://blog.alexellis.io/tag/golang/

echo "Let's keep working" >> README && \
git add . && \
git commit -m "First update"

You’ll now see two commits in your Git log:

$ git log
commit 67b05a31758848e1e5237ad5ae1dc11c22d4e71e
Author: Alex Ellis <alexellis2@gmail.com>
Date: Tue Aug 8 08:37:20 2017 +0100

First update

commit 9b906b6d02d803111250a974ed8042c4760cde7f
Author: Alex Ellis <alexellis2@gmail.com>
Date: Tue Aug 8 08:37:20 2017 +0100

Initial

Here’s how you find the ID of your last commit:

$ git rev-list -1 HEAD
67b05a31758848e1e5237ad5ae1dc11c22d4e71e

Next we can capture that into an environmental variable:

$ export GIT_COMMIT=$(git rev-list -1 HEAD) && \
echo $GIT_COMMIT

67b05a31758848e1e5237ad5ae1dc11c22d4e71e

Prepare your code

Let’s build a sample that prints a version that we injected at build-time.

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/inject-commit/

Edit main.go:

package main

import (
"fmt"

)

func main() {
fmt.Println("Hello world")

}

In order to pass a build-time variable we need to create a variable within our main package. We’ll call it var GitCommit
string.

package main

import (

81

"fmt"
)

// GitCommit is set at build-time
var GitCommit string

func main() {
fmt.Printf("Hello world, version: %s\n", GitCommit)

}

Test it out with go build:

go build
./inject-commit

Hello world, version:

The version is empty, but we’re now ready to start injecting a variable.

Make sure you have at least one commit in place:

git init

echo "/inject-commit" > ".gitignore"

echo "# Sample Commits versions in Go" >> README.md
git add .
git commit -m "Initial"

Override the go build parameters using ldflags

Now we need an additional override to our go build command to pass information to the linker via the -ldflags flag.

export GIT_COMMIT=$(git rev-list -1 HEAD)
go build -ldflags "-X main.GitCommit=$GIT_COMMIT"

Now we see our application has a hard-coded version which we injected at build-time.

$./inject-commit
Hello world, version: a38eef50779c6e659b405a14e80b51148e6d4cb1

You can have your version printed out every time you start the application, or add code so that it is only printed when
the -version flag or version command is used.

package main

import (
"flag"
"fmt"

)

// GitCommit is set at build-time
var GitCommit string

func main() {
var version bool
flag.BoolVar(&version, "version", false, "Print the version")

82

flag.Parse()

if version {
fmt.Printf("Version: %s\n", GitCommit)

}
fmt.Printf("Hello world\n")

}

$ go build -ldflags "-X main.GitCommit=$GIT_COMMIT" && ./inject-commit -version
Version: a38eef50779c6e659b405a14e80b51148e6d4cb1

Hello world

$ go build -ldflags "-X main.GitCommit=$GIT_COMMIT" && ./inject-commit
Hello world

Do it with Docker

Once you have worked out your build-time variables it’s likely you will want to update your Dockerfile.

Write a Dockerfile:

FROM golang:1.15.0

WORKDIR /go/src/github.com/alexellis/inject-commit
COPY .git .
COPY app.go .

RUN GIT_COMMIT=$(git rev-list -1 HEAD) && \
go build -ldflags "-X main.GitCommit=$GIT_COMMIT"

CMD ["./git-tester", "-version"]

Dockerfile

Run a build and then test it out:

$ docker build -t inject-commit .
$ docker run -ti inject-commit
Hello world, version: 67b05a31758848e1e5237ad5ae1dc11c22d4e71e

When it comes to shipping Docker images with Go, you need to use a multi-stage build, to ship just your binary instead
of the golang:1.15.0 image which is an SDK and comparatively large in comparison to your program. You also need
to switch to a non-root user, so that the container is able to run without unnecessary privileges.

Now this is just a minimal example to show you how to get started with Docker and Go build-time variables. You can
take it further and optimize the size of the Docker image by using Multi-stage builds.

Examples in production

Check out alexellis/k3sup to find a static binary that is shippedwith version information. For a binary that is also shipped
with a Docker image, check out openfaas/of-watchdog or openfaas/faas-cli.

$ k3sup version
_ _____
| | _|___ / ___ _ _ _ __

83

https://blog.alexellis.io/mutli-stage-docker-builds/
https://github.com/alexellis/k3sup
https://github.com/openfaas/of-watchdog
https://github.com/openfaas/faas-cli

| |/ / |_ \/ __| | | | '_ \
| < ___) __ \ |_| | |_) |
|_|_____/|___/__,_| .__/

|_|
Version: 0.9.13
Git Commit: 95fc8b074a6e0ea48ea03a695491e955e32452ea

You can see that I went a little further here and added an ASCII logo, and if you run the example yourself, you’ll see that
the logo is coloured red also. View the code to see how.

84

Chapter 11

Embed data in your application

It can be useful to ship additional resources other than code with your applications. A common method for doing this
is embedding files or data.

In the “Store data with a database” chapter we created a todo app, which needed a schema to be created manually to
define a table. But what if our application could create the table at start-up, if it didn’t exist already?

Fortunately in Go 1.16 the embed package has made this simple, and before that many third-party libraries existed to
do very similar things.

The Go docs show three ways we could achieve this:

import _ "embed"

//go:embed schema.sql
var tableCreate string
print(tableCreate)

At build time, the contents of schema.sqlwill be built into the application, andmade available through the tableCre-
ate string. This is very similar to the technique we saw for injecting a version into an application.

If you had an image, then you would want to encode the bytes as a binary []byte slice.

import _ "embed"

//go:embed logo.png
var logo []byte
fmt.Printf("Total bytes: %d\n", len(logo))

Once in memory, the logo can then be served to a client via a HTTP connection, modified, or written to disk for instance.

Using the embed.FS interface means that unlike in the previous example, the data is not kept in memory in a variable,
and can be loaded on demand. This approach would be useful for large files.

import "embed"

//go:embed ubuntu-20-cloudinit.iso
var f embed.FS
data, _ := f.ReadFile("ubuntu-20-cloudinit.iso")
fmt.Printf("Total bytes: %d\n", len(data))

Go is a perfectly good systems programming language, and you’ll find many packages for managing filesystems and
networks. You could potentially ship something like an ISO image inside your application that can be written out to a
disk at any time.

85

https://golang.org/pkg/embed/

The fourth option we’ll look at is what I would use if I wanted to ship something like a React.js front-end along with a
HTTP server or API written in Go.

import "embed"

// frontend holds our static web server content.
//go:embed image/* template/*
//go:embed public/index.html
//go:embed css/*
var frontend embed.FS

Now you can simply link the embed.FS to a custom HTTP middleware or handler and serve the files to users from a
specific route or path. You’ll learn more about HTTP servers later in the book, however this is the example given in the
Go documentation:

http.Handle("/public/",
http.StripPrefix("/public/",

http.FileServer(http.FS(frontend))))

Your API could be bound to the path /api/v1/ and then any static content you have embedded would be served from
/public/.

86

Chapter 12

Create dynamic content with templates

Templates are used to replace tokens or expressions in a file or block of text (template) with inputs provided at runtime.

They look similar to expressions found in front-end templating technology like Embedded Ruby (ERb), for this reason
they may seem inituitive to you already.

A template can be as simple as a single line of text, or a multi-line block. The template could be read from disk, over the
Internet, or kept within a const in memory.

Here’s an example based upon the Golang docs:

Dear {{.Name}},

{{if .Attended}}
It was a pleasure to see you at the wedding.
{{- else}}
It is a shame you couldn't make it to the wedding.
{{- end}}

Best wishes,
Alex

First, we need to load the template into memory, then construct a typed struct or an inline struct to pass in the values
to be placed within the file, then we execute it to get the result. .Name will be replaced directly, but .Attended is going
to cause one of the two following sentences to be added into the letter.

package main

import (
"bytes"
"fmt"
"text/template"

)

const letter = `Dear {{.Name}},
{{if .Attended}}
It was a pleasure to see you at the wedding.
{{- else}}
It is a shame you couldn't make it to the wedding.
{{- end}}
Best wishes,
Alex`

func main() {

87

https://docs.ruby-lang.org/en/2.3.0/ERB.html
https://golang.org/pkg/text/template/#example_Template

people := []struct {
Name string
Attended bool

}{
{

Name: "Alex",
Attended: true,

},
{

Name: "Mick",
Attended: false,

},
}

t := template.Must(template.New("letter").Parse(letter))

for _, person := range people {
buffer := bytes.Buffer{}
err := t.Execute(&buffer, person)
if err != nil {

panic(err)
}
fmt.Printf("Letter for %s:\n\n%s\n\n", person.Name, buffer.String())

}
}

Running the example we see the following output:

$ go run main.go
Letter for Alex:

Dear Alex,

It was a pleasure to see you at the wedding.
Best wishes,
Alex

Letter for Mick:

Dear Mick,

It is a shame you couldn't make it to the wedding.
Best wishes,
Alex

Whenever I want to add a HTML front-end to an application, I’ll turn to Go templates and embed the HTML template
files along with the code.

Advanced templates: ranges and custom functions

I use templates with my Sponsors’ Portal in order to list and print out all the previous editions of my newsletter.

Here is a snippet of the code that prints out the list:

88

https://faasd.exit.openfaas.pro/function/trove

Figure 12.1: A list of previous newsletter emails

<div class="card">
<h5 class="card-header">Insiders Updates</h5>
<div class="card-body">

<h5 class="card-title">Click on an update below, or use your browser to search
for topics.</h5>↪

<!-- Be a good person, and do not scrape this HTML -->
{{ range $in, $el:= .Updates }}
{{ if ($.Updates.YearBreak $in) }}

<p>{{$el.Date.Year}}</p>

{{ end }}
<li id="{{$el.ID}}"><a href="{{$.Path

"/update"}}/?id={{$el.ID}}">{{$el.Description}}↪

{{ end }}

</div>
</div>

</div>

In the example I used the range keyword to iterate around the Updates slice, which contains a number of Update
structs.

Things then get slightly more involved because I wanted to break the list according to the year of the post, so that they
would be broken up into blocks or groups.

89

On the line {{ if ($.Updates.YearBreak $in) }} you can see that I call a function to determine when to break
the line. The simplest way to add custom functions to templates is to add functions to the type being accessed in the
template.

// Update represents an InsidersUpdate stored as a Gist
type Update struct {

ID string `json:"id,omitempty"`
Description string `json:"description,omitempty"`
Date time.Time `json:"date,omitempty"`
MarkdownURL string `json:"markdownUrl,omitempty"`
HTMLURL string `json:"htmlUrl,omitempty"`

}

type Updates []Update

// YearBreak returns whether the previous item was in
// another year
func (u Updates) YearBreak(i int) bool {

if i == 0 {
return true

}

return u[i-1].Date.Year() != u[i].Date.Year()
}

By checking the index of the current item, and the previous one, we can determine whether we are at a breakpoint in
the list of years and emails.

Real-world templates - arkade

A final example I’ll share is the arkade project, where templates were useful for determining which version of a CLI to
download.

If there was a convention that all maintainers and vendors used for CLI naming then we would only need one template
for all downloads, however that’s anything but the case.

You may be wondering why these templates are compiled into the Go binary? The Tool struct could be
Marshaled into a JSON file for dynamic updates, but having everything in one place, and being able to unit
test quickly seems to be working for us.

tools = append(tools,
Tool{
Owner: "inlets",
Repo: "inlets-pro",
Name: "inlets-pro",
Description: "Cloud Native Tunnel for HTTP and TCP traffic.",
BinaryTemplate: `{{ if HasPrefix .OS "ming" -}}
{{.Name}}.exe
{{- else if eq .OS "darwin" -}}
{{.Name}}-darwin
{{- else if eq .Arch "armv6l" -}}
{{.Name}}-armhf
{{- else if eq .Arch "armv7l" -}}
{{.Name}}-armhf
{{- else if eq .Arch "aarch64" -}}

90

{{.Name}}-arm64
{{- else -}}
{{.Name}}
{{- end -}}`,

When evaluated, this template takes the information from running uname -a and then determines the correct filename
for your Operating System and hardware type.

One of the downsides of using Go templates is that they cannot be validated statically. They are only validated when
executed, and so for arkade we introduced a policy of writing unit tests to cover each code path.

As we learned in a previous chapter go run -cover can help us validate whether all code paths are being executed.

func Test_DownloandInletsProCli(t *testing.T) {
tools := MakeTools()
name := "inlets-pro"

tool := getTool(name, tools)

tests := []test{
{

os: "ming",
arch: arch64bit,
version: "0.8.3",
url:

`https://github.com/inlets/inlets-pro/releases/download/0.8.3/inlets-pro.exe`,↪

},
{

os: "linux",
arch: arch64bit,
version: "0.8.3",

url: `https://github.com/inlets/inlets-pro/releases/download/0.8.3/inlets-pro`,
},
{

os: "linux",
arch: archARM64,
version: "0.8.3",
url:

`https://github.com/inlets/inlets-pro/releases/download/0.8.3/inlets-pro-arm64`,↪

},
{

os: "darwin",
arch: arch64bit,
version: "0.8.3",
url:

`https://github.com/inlets/inlets-pro/releases/download/0.8.3/inlets-pro-darwin`,↪

},
}

for _, tc := range tests {
got, err := tool.GetURL(tc.os, tc.arch, tc.version)
if err != nil {

t.Fatal(err)
}
if got != tc.url {

91

t.Errorf("want: %s, got: %s", tc.url, got)
}

}

}

The above code means we can run arkade get inlets-pro and then the latest version of the correct binary will be
downloaded to our system.

Checkout the code for arkade, and run the tests for yourself: * alexellis/arkade

92

https://github.com/alexellis/arkade

Chapter 13

Write a HTTP server

One of the most useful projects you can write with Go is a HTTP server. It’s also one of easiest to start with using files
only from the standard library.

package main

import (
"fmt"
"log"
"net/http"
"time"

)

func main() {
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {

log.Printf("Request received")
w.Write([]byte("Hello world"))

})

port := 8080
s := &http.Server{

Addr: fmt.Sprintf(":%d", port),
ReadTimeout: 10 * time.Second,
WriteTimeout: 10 * time.Second,
MaxHeaderBytes: 1 << 20,

}
log.Printf("Listening on port: %d\n", port)
log.Fatal(s.ListenAndServe())

}

Test it out:

In terminal 1
go run main.go

In terminal 2
$ curl http://localhost:8080 ; echo

Hello world

The http.Request has the context and content of the HTTP request, you can explore the source code here or with intelli-
sense in your IDE.

93

https://golang.org/pkg/net/http/

Reading the request

A HTTP request has several ways to send data which you can use in your function to decide what to do: * Body * HTTP
headers * Query string * Path * Host header

Create a new project and test it out:

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/yaml-config/
cd $GOPATH/src/github.com/$GH_USERNAME/yaml-config/
go mod init http-server

touch main.go

This is an example of how to read each of them:

package main

import (
"fmt"
"io/ioutil"
"log"
"net/http"
"time"

)

func main() {
http.HandleFunc("/info", func(w http.ResponseWriter, r *http.Request) {

log.Printf("==")
log.Printf("Query-string: %s", r.URL.RawQuery)
log.Printf("Path: %s", r.URL.Path)
log.Printf("Method: %s", r.Method)
log.Printf("Path: %s", r.Host)
for k, v := range r.Header {

log.Printf("Header %s=%s", k, v)
}

if r.Body != nil {
body, _ := ioutil.ReadAll(r.Body)
log.Printf("Body: %s", string(body))

}
log.Printf("==")

w.WriteHeader(http.StatusAccepted)
})

port := 8080
s := &http.Server{

Addr: fmt.Sprintf(":%d", port),
ReadTimeout: 10 * time.Second,
WriteTimeout: 10 * time.Second,
MaxHeaderBytes: 1 << 20,

}
log.Printf("Listening on port: %d\n", port)
log.Fatal(s.ListenAndServe())

}

94

Let’s try it out with a HTTP get and a HTTP post using curl:

Terminal 1
$ go run main.go
2021/06/08 11:11:30 Listening on port: 8080

Terminal 2
$ curl -i http://127.0.0.1:8080/info

2021/06/08 11:11:37 ==
2021/06/08 11:11:37 Query-string:
2021/06/08 11:11:37 Path: /info
2021/06/08 11:11:37 Method: GET
2021/06/08 11:11:37 Path: localhost:8080
2021/06/08 11:11:37 Header User-Agent=[curl/7.68.0]
2021/06/08 11:11:37 Header Accept=[*/*]
2021/06/08 11:11:37 Body:
2021/06/08 11:11:37 ==

Note the User-Agent sent by curl, and the lack of a HTTP body. We also get the path, which was used by the internal
route handling to run the function we defined.

Terminal 2
$ curl -i -H "Content-type: application/json" \
-d '{"mode": "green"}' http://localhost:8080/info?insert=true

2021/06/08 11:13:28 ==
2021/06/08 11:13:28 Query-string: insert=true
2021/06/08 11:13:28 Path: /info
2021/06/08 11:13:28 Method: POST
2021/06/08 11:13:28 Path: localhost:8080
2021/06/08 11:13:28 Header Content-Length=[17]
2021/06/08 11:13:28 Header User-Agent=[curl/7.68.0]
2021/06/08 11:13:28 Header Accept=[*/*]
2021/06/08 11:13:28 Header Content-Type=[application/json]
2021/06/08 11:13:28 Body: {"mode": "green"}
2021/06/08 11:13:28 ==

Here we have passed JSON, so can see a content-type and body defined along with the POST method.

Advanced route handling

You can add logic to a HTTP handler to only respond to certain HTTP methods, or to take different actions according to
the path, however there are also a number of libraries available that can reduce code duplication.

Gorilla’s mux is one of the most popular and is used in OpenFaaS and the inlets project.

In this example, the function path can take a name as an argument which will be parsed and made available without
any user action. The Regular Expression allows alpha-numerics plus dashes and requires at least one character.

r.HandleFunc("/function/{name:[-a-zA-Z_0-9.]+}", functionProxy)

Within the handler, the mux.Vars() helper function is used to query the name:

return func(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
name := vars["name"]

95

https://github.com/gorilla/mux

log.Printf("Invoking function: %s", name)
}

The library also supports a fluid-style for defining behaviour, where methods can be chained to define logic.

In this example, varying HTTP verbs are bound to different handlers to manage a REST endpoint to manage functions.

r.HandleFunc("/system/functions", listFunctions).Methods(http.MethodGet)
r.HandleFunc("/system/functions", deployFunction).Methods(http.MethodPost)
r.HandleFunc("/system/functions", deleteFunction).Methods(http.MethodDelete)
r.HandleFunc("/system/functions", updateFunction).Methods(http.MethodPut)

Let’s try a full example:

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/mux/
cd $GOPATH/src/github.com/$GH_USERNAME/mux/
go mod init mux

touch main.go

Then add this code to main.go:

package main

import (
"fmt"
"log"
"net/http"
"time"

"github.com/gorilla/mux"
)

func main() {

router := mux.NewRouter()
router.HandleFunc("/customer/{id:[-a-zA-Z_0-9.]+}", func(w http.ResponseWriter, r
*http.Request) {↪

v := mux.Vars(r)
id := v["id"]
if id == "alex" {

w.Write([]byte(fmt.Sprintf("Found customer: %s", id)))
} else {

http.Error(w, fmt.Sprintf("Customer %s not found", id), http.StatusNotFound)
}

})

tcpPort := 8080
s := &http.Server{

Addr: fmt.Sprintf(":%d", tcpPort),
ReadTimeout: time.Second * 10,
WriteTimeout: time.Second * 10,
MaxHeaderBytes: http.DefaultMaxHeaderBytes, // 1MB - can be overridden by setting

Server.MaxHeaderBytes.↪

Handler: router,

96

}
log.Printf("Listening on: %d", tcpPort)
log.Fatal(s.ListenAndServe())

}

Then try it out:

Terminal 1
$ go run main.go

Terminal 2
$ curl -i http://127.0.0.1:8080/customer/alex

HTTP/1.1 200 OK
Date: Tue, 08 Jun 2021 10:32:16 GMT
Content-Length: 20
Content-Type: text/plain; charset=utf-8

Found customer: alex

$ curl -i http://127.0.0.1:8080/customer/john

HTTP/1.1 404 Not Found
Content-Type: text/plain; charset=utf-8
X-Content-Type-Options: nosniff
Date: Tue, 08 Jun 2021 10:32:55 GMT
Content-Length: 24

Customer john not found

Writing HTTP middleware

A HTTP middleware is a function that runs before or after the main HTTP handler for an endpoint has executed. Exam-
ples of why you may need to do this include: logging & tracing, authentication & authorization and applying other rules
or parsing.

Let’s try a full example which rejects any HTTP requests which do not have a Bearer header (often used for authentica-
tion):

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/http-bearer
cd $GOPATH/src/github.com/$GH_USERNAME/http-bearer
go mod init http-bearer

touch main.go

Here’s the code:

package main

import (
"fmt"
"log"
"net/http"
"os"

97

"time"
)

func makeAuth(token string, next http.HandlerFunc) http.HandlerFunc {
return func(w http.ResponseWriter, r *http.Request) {

if b := r.Header.Get("Authorization"); len(b) == 0 || b != "Bearer: "+token {
http.Error(w, "Not authorized", http.StatusUnauthorized)

} else {
next(w, r)

}
}

}

func main() {
token := os.Getenv("TOKEN")
next := func(w http.ResponseWriter, r *http.Request) {

w.Write([]byte("Authorized"))
}

http.HandleFunc("/customer/", makeAuth(token, next))

tcpPort := 8080
s := &http.Server{

Addr: fmt.Sprintf(":%d", tcpPort),
ReadTimeout: time.Second * 10,
WriteTimeout: time.Second * 10,
MaxHeaderBytes: http.DefaultMaxHeaderBytes,

}
log.Printf("Listening on: %d", tcpPort)
log.Fatal(s.ListenAndServe())

}

Note that the makeAuth function adds an if guard around the HTTP authorization header, and if not found or not having
the matching token, then the “next” HTTP call won’t be made. In this way, you can chain as many HTTP middleware as
you like, for authorization then logging, and whatever else you need.

Try it out:

Terminal 1
go run main.go

Terminal 2

curl http://127.0.0.1:8080/customer/alex -H "Authorization: Bearer: test"
Authorized

curl http://127.0.0.1:8080/customer/alex
Not authorized

98

Chapter 14

Add Prometheus metrics to your microservices

The Prometheus project was originally developed at Soundcloud, before being donated to the Cloud Native Comput-
ing Foundation (CNCF), where it is now considered to be a “graduated” project. For this reason, it’s common to find
Prometheus used for collecting HTTP metrics in many different microservices within open source and enterprise.

Prometheus is deployed as a HTTP server alongside your applications. It then connects to each known endpoint to
gather metrics from a HTTP endpoint. It could be deployed on the same HTTP port as your application or on a separate
port usually under /metrics. The interval is known as a scrape_interval and each application is a scrape_target.

To add metrics to your application, you can use the prom-http package, which exposes a /metrics endpoint.

The simplest thing you can do is to add promhttp’s Handler which will then expose information onmemory usage. Later,
we’ll see how to define custom metrics.

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/metrics/
cd $GOPATH/src/github.com/$GH_USERNAME/metrics/
go mod init metrics

touch main.go

Create main.go:

package main

import (
"fmt"
"net/http"
"time"

"github.com/prometheus/client_golang/prometheus/promhttp"
)

func main() {

port := 8080
readTimeout := time.Millisecond * 500
writeTimeout := time.Millisecond * 500

metricsMux := http.NewServeMux()
metricsMux.Handle("/metrics", promhttp.Handler())
metricsMux.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {

fmt.Fprintf(w, "No tracking for this request")

99

https://prometheus.io/
https://cncf.io/
https://cncf.io/
https://pkg.go.dev/github.com/prometheus/client_golang/prometheus/promhttp

})

s := &http.Server{
Addr: fmt.Sprintf(":%d", port),
ReadTimeout: readTimeout,
WriteTimeout: writeTimeout,
MaxHeaderBytes: 1 << 20, // Max header of 1MB
Handler: metricsMux,

}

s.ListenAndServe()
}

Now:

Terminal 1
go run main.go

Terminal 2
curl http://127.0.0.1:8080/metrics

You’ll see HTTP metrics about the /metrics endpoint itself:

HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.
TYPE promhttp_metric_handler_requests_in_flight gauge
promhttp_metric_handler_requests_in_flight 1
HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP status code.
TYPE promhttp_metric_handler_requests_total counter
promhttp_metric_handler_requests_total{code="200"} 1
promhttp_metric_handler_requests_total{code="500"} 0
promhttp_metric_handler_requests_total{code="503"} 0

Then you’ll also see memory information, the Go version, the number of Goroutines active, and many other details.

HELP go_goroutines Number of goroutines that currently exist.
TYPE go_goroutines gauge
go_goroutines 8

HELP go_info Information about the Go environment.
TYPE go_info gauge
go_info{version="go1.15.6"} 1

HELP go_memstats_alloc_bytes Number of bytes allocated and still in use.
TYPE go_memstats_alloc_bytes gauge
go_memstats_alloc_bytes 1.152704e+06
HELP go_memstats_alloc_bytes_total Total number of bytes allocated, even if freed.
TYPE go_memstats_alloc_bytes_total counter
go_memstats_alloc_bytes_total 1.152704e+06

Once you have Prometheus deployed, you can configure it to scrape the Go application. Prometheus can be run as a
normal executable, if you download it from its GitHub releases page.

You’ll see the prometheus and prometheus.yml files in the archive. Extract the files and edit prometheus.yaml.

my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1

minute.↪

100

https://prometheus.io/download/

evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
scrape_timeout is set to the global default (10s).

Alertmanager configuration
alerting:
alertmanagers:
- static_configs:

- targets:
- alertmanager:9093

Load rules once and periodically evaluate them according to the global
'evaluation_interval'.↪

rule_files:
- "first_rules.yml"
- "second_rules.yml"

A scrape configuration containing exactly one endpoint to scrape:
Here it's Prometheus itself.
scrape_configs:
The job name is added as a label `job=<job_name>` to any timeseries scraped from this

config.↪

- job_name: 'prometheus'

metrics_path defaults to '/metrics'
scheme defaults to 'http'.
static_configs:
- targets: ['localhost:9090']

Under scrape_configs add a job name and scrape target for your microservice.

The job name is added as a label `job=<job_name>` to any timeseries scraped from this
config.↪

- job_name: 'service'

metrics_path defaults to '/metrics'
scheme defaults to 'http'.
static_configs:
- targets: ['localhost:8080']

If deployed in a cluster or on a network, the target would change from localhost to the IP address or DNS name that
the service can be reached on, for instance: gateway:8080.

In Terminal 1
$./prometheus --config.file=./prometheus.yml

In Terminal 2
$ go run main.go

You can navigate to the Prometheus UI at:

http://127.0.0.1:9090

Under “Status” and “Targets” you’ll be able to view the two targets and when they were last scraped. If there are any
issues with accessing the endpoints, you’ll be able to see them here too.

The scrape configuration

101

Figure 14.1: The scrape configuration

The metrics explorer (globe) button shows all metrics available for browsing.

Figure 14.2: The metrics explorer

The table view can also be useful to view numbers

One of the most useful queries you can write is to check the rate of certain HTTP requests against your service. This
query looks for 200 / OK responses, but you may want to pick out specific error codes to detect issues.

A graph showing the rate from the query

rate(
promhttp_metric_handler_requests_total{

code="200",
job="service"

}[1m]
)

102

Figure 14.3: Prometheus table view

Figure 14.4: The rate graph

103

The rate of invocations on the promhttp_metric_handler_requests_total metric are being tracked for HTTP 200
status codes for the service job over a 1-minute window.

Remember that this is just the status code for the Prometheus endpoint itself, so it does not yet instrument any API
calls that our service may have. There is value in this though, since it can also track leaking Goroutines which haven’t
been cleared up with a similar query:

rate(
go_goroutines{

job="service"
}[1m]

)

Note the “job” is looking at the scrape endpoint for our HTTP server. If you want, you can also review the amount of
Goroutines Prometheus itself is running, since it instruments itself under the “prometheus” job.

Tracking HTTP metrics for our microservice

We will now build a microservice that can generate a SHA256 hash of any input body, and will return a 200 status code
for valid inputs. When a body isn’t present and the HTTP method isn’t POST, then the service will return a 400 error.

When complete, we’ll be able to measure Rate Error Duration (RED) metrics for any HTTP middleware or handler you
wish to instrument.

export GH_USERNAME="alexellis"
mkdir -p $GOPATH/src/github.com/$GH_USERNAME/custom-metrics/
cd $GOPATH/src/github.com/$GH_USERNAME/custom-metrics/
go mod init metrics

touch main.go
touch metrics.go

Create metrics.go:

package main

import (
"net/http"

"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promauto"
"github.com/prometheus/client_golang/prometheus/promhttp"

)

type HttpMetrics struct {
RequestsTotal *prometheus.CounterVec
RequestDurationHistogram *prometheus.HistogramVec

}

func NewHttpMetrics() HttpMetrics {
return HttpMetrics{

RequestsTotal: promauto.NewCounterVec(prometheus.CounterOpts{
Subsystem: "http",
Name: "requests_total",
Help: "total HTTP requests processed",

}, []string{"code", "method"}),
RequestDurationHistogram: promauto.NewHistogramVec(prometheus.HistogramOpts{

104

Subsystem: "http",
Name: "request_duration_seconds",
Help: "Seconds spent serving HTTP requests.",
Buckets: prometheus.DefBuckets,

}, []string{"code", "method"}),
}

}

// InstrumentHandler instruments any HTTP handler for the request
// total and request duration metric
func InstrumentHandler(next http.HandlerFunc, _http HttpMetrics) http.HandlerFunc {

return promhttp.InstrumentHandlerCounter(_http.RequestsTotal,
promhttp.InstrumentHandlerDuration(_http.RequestDurationHistogram, next))

}

Now create main.go:

package main

import (
"crypto/sha256"
"encoding/hex"
"fmt"
"io/ioutil"
"log"
"net/http"
"time"

"github.com/prometheus/client_golang/prometheus/promhttp"
)

// computeSum generates a SHA256 hash of the body
func computeSum(body []byte) []byte {

h := sha256.New()
h.Write(body)
hashed := hex.EncodeToString(h.Sum(nil))
return []byte(hashed)

}

func main() {
port := 8080
readTimeout := time.Millisecond * 500
writeTimeout := time.Millisecond * 500

mux := http.NewServeMux()

httpMetrics := NewHttpMetrics()
instrumentedHash := InstrumentHandler(func(w http.ResponseWriter, r *http.Request) {

if r.Method != http.MethodPost {
w.WriteHeader(http.StatusBadRequest)
return

}
if r.Body != nil {

body, _ := ioutil.ReadAll(r.Body)

105

fmt.Fprintf(w, "%s", computeSum(body))
}

}, httpMetrics)

mux.HandleFunc("/hash", instrumentedHash)

mux.Handle("/metrics", promhttp.Handler())

s := &http.Server{
Addr: fmt.Sprintf(":%d", port),
ReadTimeout: readTimeout,
WriteTimeout: writeTimeout,
MaxHeaderBytes: 1 << 20, // Max header of 1MB
Handler: mux,

}
log.Printf("Listening on: %d", port)
s.ListenAndServe()

}

Run the example and make sure Prometheus is running also.

Terminal 1
$ go run .

Terminal 2

$ curl -i http://127.0.0.1:8080/hash
HTTP/1.1 400 Bad Request
Date: Tue, 08 Jun 2021 14:30:29 GMT
Content-Length: 0

$ curl -i http://127.0.0.1:8080/hash -d "Golang"

HTTP/1.1 200 OK
Date: Tue, 08 Jun 2021 14:30:51 GMT
Content-Length: 64
Content-Type: text/plain; charset=utf-8

50e56e797c4ac89f7994a37480fce29a8a0f0f123a695e2dc32d5632197e2318

Now view the metrics endpoint, or visit the Prometheus dashboard.

$ curl http://localhost:8080/metrics

HELP http_request_duration_seconds Seconds spent serving HTTP requests.
TYPE http_request_duration_seconds histogram
http_request_duration_seconds_bucket{code="200",method="post",le="1"} 1
http_request_duration_seconds_sum{code="200",method="post"} 0.000130832
http_request_duration_seconds_count{code="200",method="post"} 1

http_request_duration_seconds_bucket{code="400",method="get",le="1"} 1
http_request_duration_seconds_sum{code="400",method="get"} 5.4304e-05
http_request_duration_seconds_count{code="400",method="get"} 1
HELP http_requests_total total HTTP requests processed
TYPE http_requests_total counter

106

http_requests_total{code="200",method="post"} 1
http_requests_total{code="400",method="get"} 1

You’ll see the histogram values in http_request_duration_seconds_bucket/sum/count and counts for each status
in http_requests_total.

Adding custommetrics to your Prometheus data

At this point, adding your own additional custom metrics is relatively simple.

1) Define the metric and name it, make sure that it stays within the scope of your handler
2) Call prometheus.MustRegister on the metric
3) Call the metric’s method within your handler to increment/decrement or record the custom data

Edit the previous example (custom-metrics). I’ve removed the RED metrics for brevity, but you can combine the two.

package main

import (
"crypto/sha256"
"encoding/hex"
"fmt"
"io/ioutil"
"log"
"net/http"
"time"

"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promhttp"

)

// computeSum generates a SHA256 hash of the body
func computeSum(body []byte) []byte {

h := sha256.New()
h.Write(body)
hashed := hex.EncodeToString(h.Sum(nil))
time.Sleep(time.Second * 5)
return []byte(hashed)

}

Note the 5 second sleep added to show the concurrent requests. It may be hard to see the gauge going up unless we
add some latency.

func main() {
port := 8080
readTimeout := time.Second * 10
writeTimeout := time.Second * 10

mux := http.NewServeMux()

hashesInflight := prometheus.NewGauge(prometheus.GaugeOpts{
Subsystem: "http",
Name: "hashes_inflight",
Help: "total hashes inflight",

})
prometheus.MustRegister(hashesInflight)

107

The metric such as a Gauge needs to be defined within scope of the HTTP handler where it’s going to be used. And
prometheus.MustRegister is also required.

Then simply call metric.Inc() when starting and metric.Dec() when done.

customHash := func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {

w.WriteHeader(http.StatusBadRequest)
return

}
if r.Body != nil {

defer r.Body.Close()

hashesInflight.Inc()
defer hashesInflight.Dec()

body, _ := ioutil.ReadAll(r.Body)
fmt.Fprintf(w, "%s", computeSum(body))

}
}

The rest of the code is as before:

mux.HandleFunc("/hash", customHash)
mux.Handle("/metrics", promhttp.Handler())

s := &http.Server{
Addr: fmt.Sprintf(":%d", port),
ReadTimeout: readTimeout,
WriteTimeout: writeTimeout,
MaxHeaderBytes: 1 << 20, // Max header of 1MB
Handler: mux,

}
log.Printf("Listening on: %d", port)
s.ListenAndServe()

}

Run the example:

Terminal 1:
$ go run main.go

Terminal 2:

Run this 3-5 times quickly hitting up in between each
$ curl localhost:8080/hash -d test &

Then quickly run:

$ curl -s localhost:8080/metrics | grep inflight
HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.
TYPE promhttp_metric_handler_requests_in_flight gauge
promhttp_metric_handler_requests_in_flight 5

Now you have learned how to add custom metrics and standard HTTP RED metrics for tracking your functions.

108

Chapter 15

Building and releasing Go binaries

Whether you’ve written a CLI or a HTTP server, most of the time Go code can be compiled down to a static binary which
is self-contained and can run on the target system you specify.

In an earlier chapter we covered cross-compilation, at this point you should consider whether you need to target one
environment such as Windows, Linux or MacOS, or multiple.

The release-it example

Release-it repo is an example of a static Go binary that can be built and released through GitHub Actions. It uses a
Makefile, so it can also be run in other CI pipelines or manually as and when you create a new release.

The Makefile has the following properties, all of which were covered in previous chapters already:

• It builds binaries for multiple platforms and Operating Systems
• It injects the Commit and Version from git into the final binary

Version := $(shell git describe --tags --dirty)
Version := "dev"
GitCommit := $(shell git rev-parse HEAD)
LDFLAGS := "-s -w -X main.Version=$(Version) -X main.GitCommit=$(GitCommit)"

.PHONY: all
all: gofmt dist

.PHONY: gofmt
gofmt:

@test -z $(shell gofmt -l ./ | tee /dev/stderr) || (echo "[WARN] Fix formatting issues
with 'make fmt'" && exit 1)↪

.PHONY: dist
dist:

mkdir -p bin/
CGO_ENABLED=0 GOOS=linux go build -mod=vendor -a -ldflags $(LDFLAGS) -installsuffix cgo
-o bin/release-it-amd64↪

CGO_ENABLED=0 GOOS=darwin go build -mod=vendor -a -ldflags $(LDFLAGS) -installsuffix cgo
-o bin/release-it-darwin↪

GOARM=7 GOARCH=arm CGO_ENABLED=0 GOOS=linux go build -mod=vendor -a -ldflags $(LDFLAGS)
-installsuffix cgo -o bin/release-it-arm↪

GOARCH=arm64 CGO_ENABLED=0 GOOS=linux go build -mod=vendor -a -ldflags $(LDFLAGS)
-installsuffix cgo -o bin/release-it-arm64↪

GOOS=windows CGO_ENABLED=0 go build -mod=vendor -a -ldflags $(LDFLAGS) -installsuffix cgo
-o bin/release-it.exe↪

109

https://github.com/alexellis/release-it
https://en.wikipedia.org/wiki/Make_(software)

In addition, it runs gofmt for good measure.

If there were any unit tests in the project, then we could add an additional target for them, such as:

.PHONY: gotest
gotest:

go test ./...

Then update the all line to gofmt gotest dist which would run each of the tasks for us.

Clone the example and build it:

$ mkdir $GOPATH/src/github.com/alexellis/
$ cd $GOPATH/src/github.com/alexellis/
$ git clone https://github.com/alexellis/release-it
$ cd release-it
$ make

By default make will try to run the all target, but you can also run make gofmt if you want to test formatting before
committing to a build.

You’ll find each binary in the bin/ folder and can run them on your system if it matches the OS/architecture pair, or
copy it to another system to run it there.

Figure 15.1: GitHub’s release page

When you release binaries to users, GitHub’s release functionality can come in handy because it allows you to upload
the binaries manually or via automation.

Releasing your binaries with a GitHub Action

GitHub Actions is free to use for open source repositories (i.e public ones) and comes with a number of free minutes
for private ones also. This example should be adaptable to other platforms like Jenkins or GitLab CI, since the concepts
are largely the same.

110

https://github.com/features/actions

In our example, we’ll first checkout the code from GitHub for the release tag, then run make all, followed by uploading
the release artifacts to the GitHub release.

name: publish

on:
push:

tags:
- '*'

jobs:
publish:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@master

with:
fetch-depth: 1

- name: Make all
run: make all

- name: Upload release binaries
uses: alexellis/upload-assets@0.2.2
env:

GITHUB_TOKEN: ${{ github.token }}
with:

asset_paths: '["./bin/release-it*"]'

Each step in the workflow file can use a specific GitHub Action like alexellis/upload-assets@0.2.2 or ac-
tions/checkout@master, but when you leave that field blank, it uses the base system such as ubuntu-latest. On
the base Ubuntu runner you can execute standard shell and build commands like make all.

The alexellis/upload-assets action is one that I built to use on all the various OSS projects I maintain and allows a number
of files to be uploaded.

Users can then go ahead and download your binary and run it on their system.

For instance:

$ cd /tmp/
$ curl -sLSf \
-o ./release-it \
https://github.com/alexellis/release-it/releases/download/0.2.11/release-it-darwin \

&& chmod +x ./release-it \
&& ./release-it

release-it: 0.2.11, commit: 4379cbf694c55bd98f5080d76ac5972fd89dcc65

111

https://github.com/alexellis/upload-assets

Chapter 16

Releasing a Docker container image

I’ll use the termDocker image and container image interchangeably, sincemany people only know containers by Docker.

First of all, you’ll need a Dockerfile which has a similar purpose to the Makefile from earlier: to build a binary that can
be shipped to users.

This Dockerfile is going to be multi-stage, and also multi-architecture.

• multi-stage - the SDKs used to build the code are not shipped in the final image
• multi-archi(tecture) - the output can run on more than one target platform

Multi-arch builds are important when your target platform is an Arm server and your development machine is Intel or
AMD, and visa-versa if you’re an Apple M1 user.

We’ll continue to use the release-it repo from the previous section.

FROM --platform=${BUILDPLATFORM:-linux/amd64} golang:1.15 as builder

ARG TARGETPLATFORM
ARG BUILDPLATFORM
ARG TARGETOS
ARG TARGETARCH

ARG Version
ARG GitCommit

ENV CGO_ENABLED=0
ENV GO111MODULE=on

WORKDIR /go/src/github.com/alexellis/release-it

COPY . .

RUN CGO_ENABLED=${CGO_ENABLED} GOOS=${TARGETOS} GOARCH=${TARGETARCH} \
go test -v ./...

RUN CGO_ENABLED=${CGO_ENABLED} GOOS=${TARGETOS} GOARCH=${TARGETARCH} \
go build -ldflags \
"-s -w -X 'main.Version=${Version}' -X 'main.GitCommit=${GitCommit}'" \
-a -installsuffix cgo -o /usr/bin/release-it .

FROM --platform=${BUILDPLATFORM:-linux/amd64} gcr.io/distroless/static:nonroot
WORKDIR /
COPY --from=builder /usr/bin/release-it /

112

https://docker.com/
https://github.com/alexellis/release-it

USER nonroot:nonroot

CMD ["/release-it"]

To build the container for your current platform, run:

export DOCKER_BUILDKIT=1

docker build -t release-it:0.1.0 .

In the output, you’ll see that I’m using an Apple M1 today, which means Docker Deskop is running as an ARM64 Linux
VM, so this output can only be run on an ARM64 server or another M1 with Docker Desktop.

=> [builder 4/5] RUN CGO_ENABLED=0 GOOS=linux GOARCH=arm64 go test
=> [builder 5/5] RUN CGO_ENABLED=0 GOOS=linux GOARCH=arm64 go build

Then try the container out:

docker run --rm --name release-it \
-ti release-it:0.1.0

release-it: , commit:

Notice how the version information is lacking?

We need to inject it into the build via what Docker calls build arguments.

$ docker build \
--build-arg Version=0.1.0 \
--build-arg GitCommit=b9bfc0508 \
-t release-it:0.1.0 .

$ docker run docker.io/library/release-it:0.1.0
release-it: 0.1.0, commit: b9bfc0508

Going multi-arch

Now that we have a multi-stage image, which is efficient and only ships what is necessary to users, it’s time to build
for multiple platforms. This technique relies on the buildx addition which is preinstalled for Docker Desktop, for Linux
users, see the Docker documentation on how to add it to your system.

$ docker buildx build \
--build-arg Version=0.1.0 \
--build-arg GitCommit=b9bfc0508 \
--platform linux/arm64 \
--platform linux/amd64 \
--push \
-t alexellis2/release-it:0.1.0 .

Note the new --platform flag which specifies a target of a Linux OS for both ARM64 servers and AMD64 (Intel/AMD)
servers. You can also specify other architectures like a 32-bit Raspberry Pi.

The --push flag is required for multi-arch images, since they cannot be kept in your library at this time, they must be
pushed directly to a registry.

You can however, now log into both an ARM64 server or an Intel/AMD server and run the container:

$ docker run -ti alexellis2/release-it:0.1.0
release-it: 0.1.0, commit: b9bfc0508

113

https://docs.docker.com/

Congratulations, you’ve now built a static Golang binary, and shipped it to a GitHub releases page and shipped your
first multi-arch Docker that can run on two different target platforms.

Shipping a Docker container from GitHub Actions

Now, the final step if you want to release a container image for your GitHub repository is to define a GitHub action for
it.

Create the following file as .github/workflows/publish.yaml and commit it. It will run a release build upon every
tag you create, so every GitHub Release created in the UI or API for your repo.

name: publish

on:
push:

tags:
- '*'

jobs:
publish:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@master

with:
fetch-depth: 1

- name: Get TAG
id: get_tag
run: echo ::set-output name=TAG::${GITHUB_REF#refs/tags/}

- name: Set up QEMU
uses: docker/setup-qemu-action@v1

- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1

- name: Login to Docker Registry
uses: docker/login-action@v1
with:

username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
registry: ghcr.io

- name: Release build
id: release_build
uses: docker/build-push-action@v2
with:

outputs: "type=registry,push=true"
platforms: linux/amd64,linux/arm/v6,linux/arm64
build-args: |
Version=${{ steps.get_tag.outputs.TAG }}
GitCommit=${{ github.sha }}

tags: |
ghcr.io/alexellis/release-it:${{ github.sha }}
ghcr.io/alexellis/release-it:${{ steps.get_tag.outputs.TAG }}
ghcr.io/alexellis/release-it:latest

You can see that the build-args are populated just as when we ran docker build or buildx locally, and then we
have some additional actions for setting up qemu. Qemu is used by buildx to cross compile your code to work on other

114

machines.

The list of platforms (linux/amd64,linux/arm/v6,linux/arm64) means this container will work on Raspberry Pi OS,
64-bit Arm servers and regular Intel/AMD servers too.

Before triggering your first build, you’ll need to create the DOCKER_USERNAME and DOCKER_PASSWORD secrets. Enter
these on the Repository’s Settings page under the Secrets tab. If you’re using GitHub’s container registry (GHCR), then
the username is your GitHub login.

In a recent change to GitHub Actions, you can replace password: ${{ secrets.DOCKER_PASSWORD }} with pass-
word: ${{ GITHUB_TOKEN }}. The example is provided to be generic however, so that you can use it with the Docker
Hub, Quay, or another registry.

Note that with GHCR, your container image will be set to private by default. You’ll also need to make it
public to share it, or authenticate your Docker engine or Kubernetes cluster otherwise.

115

https://hub.docker.com
https://hub.docker.com
https://quay.io

Chapter 17

Your onward journey

I hope you’ve enjoyed reading my recipes and examples which have been developed over the past 5-6 years of my own
journey with Go and the Open Source community. Of course I am still learning all the time and some of the examples
in the book used to be blog posts, but are now out of date in comparison.

Giving feedback

If you have feedback, or have spotted errors, then feel free to reach out to me so that we can improve the eBook for
everyone else. Email contact@openfaas.com.

Likewise, if your team or company is using Go at work andwould like advice, or to speak to someonewho is experienced
with Go and distributed systems, feel free to reach out.

Contributing to Open Source

We’re also looking for open source contributors to various Open Source projects that the community maintains. This
can be a good way to cut your teeth and see some of what you’ve been learning into action.

• OpenFaaS - portable, open source serverless functions
• arkade - marketplace to install CLIs directly from GitHub releases and Kubernetes apps
• k3sup - bootstrap Kubernetes clusters on PCs and cloud using K3s
• derek - a GitHub bot that automates maintainer tasks on open source projects, and delegates permissions to
contributors through issue/PR comments

• inlets-operator - a Kubernetes Operator that gives you public IPs for any of your LoadBalancer services on private
Kubernetes clusters

My other content

OpenFaaS itself is written in Go, it’s a serverless platform that can run on Kubernetes, or on a single VM or Raspberry Pi.
The eBook and video workshop Serverless For Everyone Else has sold 450 copies already, and is a great place to start
learning about functions.

I also have a workshop on building Raspberry Pi Clusters with Kubernetes (k3s) which covers how to boot a Raspberry
Pi from network storage. Network storage is faster and more efficient than SD cards. The eBook and video workshop
are available separately or as a bundle on Gumroad: Netbooting workshop for Raspberry Pi with K3s

If you [follow me on Twitter @alexellisuk](https://twitter.com/alexellisuk), you’ll be able to see when I have new videos,
events and blog posts, which may be published in a number of places.

Finally, thank you for purchasing this eBook and I hope you enjoy your journey with Golang, wherever you are on that
path.

116

mailto:contact@openfaas.com
https://github.com/openfaas
https://github.com/alexellis/arkade
https://github.com/alexellis/k3sup
https://github.com/alexellis/derek
https://github.com/inlets/inlets-operator
https://gumroad.com/l/serverless-for-everyone-else
https://gumroad.com/l/netbooting-raspberrypi

	Introduction
	How to use the book
	Help the book to evolve
	Changelog

	Why Go?
	Getting started with Go
	A note for Windows users
	Direct installation on Linux
	Packages and paths
	Vendoring and Go modules

	Create your first Go program
	Add an external dependency
	Make use of flags
	Define a separate package or library

	Cross-compile for different operating systems
	Go build arguments
	CGO and portability

	Fetch JSON from a HTTP endpoint
	Get started
	Learn to parse JSON
	Retrieve the JSON via HTTP
	Extracting additional data from the JSON

	Five ways to write an awesome CLI
	Pick Go
	Parse flags & arguments
	Automate everything
	Integrate with package managers
	Accept contributions and gather feedback
	Now, Go and write your CLI

	Writing unit-tests in Golang
	Testing opinions
	Testing the Sum method
	Adding a test table
	Party tricks for ``go test''
	Statement coverage
	Generating an HTML coverage report
	Benchmarking your code
	Go doesn't ship your tests
	Stress testing your tests
	Running tests in parallel
	Compile the tests to a binary

	Isolating dependencies
	Example of isolating dependencies

	Unit-testing a HTTP server

	Work concurrently work with Goroutines
	A simple example with Goroutines
	Avoid a common mistake with Goroutines
	Error groups
	Sharing data between Goroutines
	Using channels for synchronisation
	Using a context to handle timeouts
	Limiting concurrent work

	Store data with a database
	Write your own config files in YAML
	A practical example of YAML in action
	Read and write your own YAML schema
	Merging objects

	Inject version information into your binaries
	Capture useful variable(s)
	Prepare your code
	Do it with Docker
	Examples in production

	Embed data in your application
	Create dynamic content with templates
	Advanced templates: ranges and custom functions
	Real-world templates - arkade

	Write a HTTP server
	Reading the request
	Advanced route handling
	Writing HTTP middleware

	Add Prometheus metrics to your microservices
	Tracking HTTP metrics for our microservice
	Adding custom metrics to your Prometheus data

	Building and releasing Go binaries
	The release-it example
	Releasing your binaries with a GitHub Action

	Releasing a Docker container image
	Going multi-arch
	Shipping a Docker container from GitHub Actions

	Your onward journey
	Giving feedback
	Contributing to Open Source
	My other content

