

Build 10 Flutter 3.0 Apps in 100
Days
A Step by Step Guide to build Apps and
Master Flutter

Sanjib Sinha

This book is for sale at http://leanpub.com/flutter-artisan

This version was published on 2022-07-06

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2021 - 2022 Sanjib Sinha

http://leanpub.com/flutter-artisan
https://leanpub.com/
https://leanpub.com/manifesto

Contents

1. Getting Started with Flutter 3.0 1
Download or Upgrade to the latest Flutter 3.0 1
What is new in Flutter 3.0 2
1 HowWidget tree follows the design and layout principles 4
Does Flutter require coding? 5
What is Widget in Flutter 6
How to use Widget . 10
Difference between Non-Material and Material Widgets 13
What are constraints in flutter 26
What is the problem here? 28
How do you use constraints in flutter? 29
What are BoxConstraints in Flutter 35
What is Align in Flutter 44
How to use aspect ratio widget 50
What is Baseline in Flutter 54

2. How to implement a design by building layouts 62
How to paint in Flutter? 62
What is layout in Flutter 68
How we build Flutter Layout 77
What is an AppBar? How do you use AppBar in Flutter? 88
AppBar Flutter: How to use AppBar right way? 92
What is SliverAppBar in flutter? 100
How to use AppBar Toolbars in flutter 104
How to make tab bar view in flutter 115

CONTENTS

How to use TabBar in Flutter 122
How to make the AppBar transparent 130

3. What are responsive and adaptive Flutter Applications 137
How to use Stack in Flutter 137
What is Stack-positioned 144
Stack-Positioned-bottom 147
Stack-Alignment . 148

4. How to build a Quiz App 150
How do you Map a list in flutter? 151
How do I get a List of Maps in Dart? 161
How to change theme of an App? 165
What is hex color code . 172
How to use Theme property in the Flutter Quiz App . . 173
How we use List in the Quiz App? 184
List and Map in Quiz App 194
Why we need Object Oriented Style? 195
Encapsulation and Private property 198
How Flutter List Quiz App works 203

5. Let’s Build a Happiness Calculator 205
What is Slider Widget . 205
Why we need and how to use Slider 207
Customizing the theme 212
How to use the custom theme 215
How SliderTheme works 225
Router API in Flutter . 227
What is Navigator.push? 231
What is Navigtor.pop? . 245
Business Logic behind an Flutter App 248
What is the difference between Business Logic and UI

Logic? . 248
How to create Flutter Business Logic? 250
How to pass values through Navigation? 252
How we can display data got from Business Logic? . . . 256

CONTENTS

6. How we can build a Food Recipe App with List and Map 260
What is GridView Flutter and How it works 262
Model folder is the source of data 266
How to use Naviagtion to send data 268
How to add a custom Font 270
Flutter navigation and sending data 273
How a Widget receives data 277
Named Route and sending data 279
Simple Flutter navigation 281
How to use Flutter named route 283
Object relationship in Flutter 287
Why we need relation in Flutter 290
How to establish relation in Flutter 293
Model View Controller 296
Role of controller in MVC 303
The Next Challenge . 315
Relation between tables, list and map 315
Why Flutter List Iterate is important? 319
What is clean navigation 328
Routes property and its functions 332
Route Flutter tips and tricks 348

7. Let’s learn how aWeather App uses API and serializes
JSON data . 350
Future then, aync, await, API, JSON: Let’s build a Cur-

rent Weather Tracker App 350
Future Flutter: WithHer App – Step 1 350
Geolocator plugin makes our life easier 353
What is asynchronous programming? 356
What is Future in Flutter? 357
What are async and await? 359
Flutter State: WithHer App – Step 2 361
API Flutter: WithHer App – Step 3 366
What is an API? . 366
How can we use API in Flutter? 367

CONTENTS

JSON Flutter: WithHer App – Step 4 374
What is JSON in Flutter? 374
Future Then: WithHer App – Step 5 383
What is Future.then() method? 384
The difference between Future then and async, await . . 388
Future in Flutter: WithHer App – Step 6 391
What is Future in Flutter? 391
Display data with Future in Flutter 396
Pass data to State Flutter: Final Weather App 401
Passing data from a Stateful Widget 403
Pass data to a State object in Flutter 406

8. Howwe can build a BlogApp and learn Flutter backend
programming using SQLite 412
Flutter 2.8, Future, await, async and Database 412
What is new in Flutter 2.8 412
Future, await and async 417
Which database we use in Flutter 420
SQLite Database and Flutter 430
Create, Retrieve, Update and Delete with SQLite Database 446
SQLite Blog in Flutter: First Part 447
SQLite Blog, Flutter: Second Part 457
SQLite Blog, Flutter: Final Part 472
Scoped Model, Provider, SQLite Database and Future-

Builder . 503
SQLite with Provider in Flutter 503
What is Scoped Model in flutter 520
Scoped Model and SQLite in Flutter 537
What is future builder in Flutter 551

9. NoWar App Challenge . 568
What is Dart list asMap method? 571
How to design Flutter UI 580
How to use model class to design Flutter UI? 588

10. How to build a Exchange Rate App 596

CONTENTS

For loop Flutter: PriceTracker App – Step 1 596
Why do we use for loop? 596
How for loop in Flutter works? 602
HTTP Request in Flutter: PriceTracker App Final step . . 606
How do I get HTTP request flutter? 611

11. A Chat App with Firebase Authentication and Fire-
store Database . 617
Why we use the Firebase? 617
Is Flutter and Firebase full stack? 623
Is Firebase easy to learn? 623
Flutter and Firebase: How to Initialise App and Avoid

Errors . 625
What is Firebase in Flutter? 626
Initialise App and avoid errors 627
Firebase and Flutter: Chat App authentication 628
How Firebase authentication works 629
Is Firebase a backend or database? 638
Flutter Firestore: Chat App Final Step 645

12. A Blog App with Firebase Authentication and Fire-
store Database . 656
Flutter sign in business logic 659
Multi Provider with Firebase 666
Flutter web 3.0 and Firestore database 680
Sending data through the class constructor 684
Text Form Field Flutter size, how to increase in web app 692
Does the text form field flutter size vary? 695
Theme color Flutter, how to use in web app 701
Theme color across the flutter app 706
Material design 3 Flutter : A Light Theme 710
Material 3 Flutter : A Dark Theme in Web App 716
Material 3 Flutter : Parent and Child 725
Material 3 : Flutter Firebase, Provider Blog App Final . . 729
Material 3 and Flutter 3.0 742

CONTENTS

13. A Complete News App - Using WordPress as the
backend . 758
How Flutter and WordPress work together? 758
How do I link my WordPress to Flutter? 761
Can we convert the WordPress app into the Flutter app? 763
Create, retrieve, update, and delete 766
How to create a NewsApp in WordPress? 768
How Can I use Flutter with WordPress? 775
How to show Categories in the NewsApp 782
How to use Tab in Flutter? 785
How Tab Controller works in Flutter 790

14. Flutter app and Artificial Intelligence 793
What is TensorFlow? . 793
How Artificial Intelligence helps us to move forward . . 794
Are there any examples of Artificial Intelligence? 795

15. What Next . 796

1. Getting Started with
Flutter 3.0

Before getting started, let me tell you one thing. Always use
the latest Provider package - https://pub.dev/packages/provider¹
for state management. And always maintain the Null Safety -
https://flutter.dev/docs/null-safety².

I also strongly recommend to read the latest and updated articles
on Flutter - https://sanjibsinha.com/category/flutter/ ³.

Download or Upgrade to the latest
Flutter 3.0

To start with, we need to download the Flutter framework.

That is our first task. We need to go to The installation page
of Flutter - https://flutter.dev/docs/get-started/install⁴ page from
where we will download and install Flutter according to your
operating system.

If you have been working with Flutter 2.*, then just issue the
following command:

1 flutter upgrade

¹https://pub.dev/packages/provider
²https://flutter.dev/docs/null-safety
³https://sanjibsinha.com/category/flutter/
⁴https://flutter.dev/docs/get-started/install

https://pub.dev/packages/provider
https://flutter.dev/docs/null-safety
https://flutter.dev/docs/null-safety
https://sanjibsinha.com/category/flutter/
https://sanjibsinha.com/category/flutter/
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://pub.dev/packages/provider
https://flutter.dev/docs/null-safety
https://sanjibsinha.com/category/flutter/
https://flutter.dev/docs/get-started/install

1. Getting Started with Flutter 3.0 2

However, Flutter gets updated and it wants to be upgraded often.
For example, Text Buttons to take inputs from users are no longer
the same now.

We will start with Windows, first.

Want to read more old and archived Flutter related Articles and
resources?

For more old and archived Flutter related Articles and Resources⁵

Before that we want to make one thing clear.

What is new in Flutter 3.0

A few days ago Google announced the official release of Flutter 3.0.
Let’s see what is new in Flutter 3.

Firstly, with reference to mobile application development, there has
not been a great change. Structurally what we have been doing, will
continue to do.

Certainly a change in here and there had taken place. In the next
section we’ll discuss that and will take a deep dive.

Secondly, flutter web sections have got the makeover. Certainly it
has become better.

Finally, a lot of changes have taken place in the desktop part.

Three months ago Google Flutter and Dart team announced Flutter
support for Windows.

Flutter 3.0 is stable for macOS and Linux.

With reference to macOS and Linux, a lot of changes have taken
place.

⁵https://sanjibsinha.com

https://sanjibsinha.com/
https://sanjibsinha.com/

1. Getting Started with Flutter 3.0 3

Now it’s ready for production on all desktop platforms. As a result,
we can now create platform-rendered menu bars on macOS. To
do that we can use the “PlatformMenubar” widget that inserts
platform-only menus.

It also supports accessibility services such as screen-readers, acces-
sible navigation, and inverted colours.

Full support for international text input on all desktop platforms is
also there.

Web updates in flutter 3.0

Let’s talk about the Web updates in flutter 3.0.The “ImageDecoder”
API plays an important role in web applications.

Therefore flutter web now uses the “ImageDecoder” API in
browsers that support it.

And there are more.

We can also use other widgets in flutter web.

For example we can think of the splash screen, loading indicator
etc.

Most importantly, Flutter 3.0 has improved the performance.

It is faster than before.

As an outcome it builds frames 20 percent faster which is a
significant progress.

Last but not least, we should mention two interesting things that
have caught our attention.

Firstly, Flutter 3.0 supports foldable mobile devices. Secondly, Flut-
ter 3.0 supports Material Design 3.

In addition, nowwe can test any Flutter app using Chrome Borwser
by issuing the following command.

1. Getting Started with Flutter 3.0 4

1 flutter run

From Flutter 3.0 we don’t have to issue this command any more.

1 flutter run -d chrome --web-renderer html

Before Flutter 3.0, with only “flutter run” command we couldn’t
load an image from another domain.

1 How Widget tree follows the
design and layout principles

After installing Dart and Flutter in our system, we are ready to
go. We’ll see how a beginner can use Flutter to design beautiful
Application that will run in web, mobile and desktop at the same
time, from a single codebase.

Not only that, we can build the same mobile application that will
run in iOS and Android at the same time.

Moreover, Flutter is extremely beginner friendly software develop-
ment kit, or framework. All you need to have a basic idea about
object oriented programming and Dart language which acts as a
tool for Flutter.

The full code repository for this section⁶

Moreover, for updated flutter tutorials don’t forget to visit:

Updated Flutter Tutorials⁷

Firstly, let’s check that we have the latest flutter and dart in our
system.

Secondly, use your terminal and issue the following commands one
after another.

⁶https://github.com/sanjibsinha/flutter_artisan/tree/layout-basic
⁷https://flutter.sanjibsinha.com

https://github.com/sanjibsinha/flutter_artisan/tree/layout-basic
https://flutter.sanjibsinha.com/
https://github.com/sanjibsinha/flutter_artisan/tree/layout-basic
https://flutter.sanjibsinha.com/

1. Getting Started with Flutter 3.0 5

1 dart --version

2 ...

3 flutter --version

Finally, it comes up with the following output for the Dart program-
ming language that we need for Flutter.

1 dart --version

2 Dart SDK version: 2.15.0 (stable) (Fri Dec 3 14:23:23 202\

3 1 +0100) on "linux_x64"

Next, we get informed about our latest Flutter version.

1 flutter --version

2 Flutter 2.8.0 • channel stable • https://github.com/flutt\

3 er/flutter.git

4 Framework • revision cf44000065 (3 days ago) • 2021-12-08\

5 14:06:50 -0800

6 Engine • revision 40a99c5951

7 Tools • Dart 2.15.0

If you’re a beginner, and having little, or no knowledge of Dart
programming, one question will definitely come to your mind.

Does Flutter require coding?

The answer is yes.

To start with you don’t have to code a lot. But as you progress,
you’ll see that good Dart programming knowledge will help you
to adopt Flutter fast. Moreover, you can build complex Flutter apps
quite easily.

However, all said and done, let’s learn to design Flutter Application
step by step. Slowly, but definitely.

1. Getting Started with Flutter 3.0 6

At the very beginning you don’t have to code. Wemust have a good
idea about what Widgets are and how do they play important role
in building any Flutter Application.

Therefore, in this section we’ll only learn two things to use Flutter
as a beginner.

What is Widget in Flutter

How we can use Widget to build our first Flutter Application.

Let’s answer the first question first.

Widget is a class that describes how the Flutter application should
look like.

Consider the Center Widget. We can use Center Widget to keep its
child Widget in the middle of the screen.

As we progress, we’ll learn that every Widget either has a child
Widget, or has multiple Widgets as its children.

That means, the parent Widget that initially comes up with a child
Widget may have multiple Widgets as its children. Then each child
belonging to the children Widgets may have more Widgets as its
child or children. And the Widget tree gets bigger as we go down.

This Widget tree starts with a ROOT widget. As a result, the
“main.dart” file is our entry point where we declare: run the
application.

1. Getting Started with Flutter 3.0 7

1 import 'package:flutter/material.dart';

2

3 void main() {

4 runApp(

5 const OurFirstApp(),

6);

7 }

OurFirstApp is the custom Widget that we’ll build with other
Flutter Widgets, such as Center, Container and Text.

As a result the code looks like the following.

1 class OurFirstApp extends StatelessWidget {

2 const OurFirstApp({Key? key}) : super(key: key);

3

4 @override

5 Widget build(BuildContext context) {

6 return Center(

7 child: Container(

8 margin: const EdgeInsets.all(5),

9 child: const Text(

10 'Wlcome to our first flutter application',

11 textDirection: TextDirection.ltr,

12),

13),

14);

15 }

16 }

Now we go through the above code line by line to understand how
it works.

Firstly, the custom Widget OurFirstApp that we’ve declared and
passed through runApp() method, is a class which extends State-
lessWidget.

1. Getting Started with Flutter 3.0 8

As we progress, we’ll see what is StatelessWidget, and what is State-
fulWidget. But at present, let’s concentrate on the term “extends”.

It means, our customWidget OurFirstApp can use many properties
and methods of a StatelessWidget that Flutter gives us to use to
build our Application.

As a result, the next thing that attracts our attention is build()
method that passes an object “context”. Moreover, it returns a
Center Widget.

From here we see that a small Widget tree has grown.

Secondly, the Center Widget has a child Widget Container which
again has a child Widget Text that passes a String value through its
constructor. Not only that, it has a named parameter “textDirection”
that declares that the direction of Text should from left to right.

Now we can run our first Flutter Application, and see the screen-
shot.

1. Getting Started with Flutter 3.0 9

Figure 1.1 – A Basic Non-Material Flutter App

By the way, if we’re absolute beginners without having any prior
programming knowledge, we’ve already encountered a few un-
knownwords, such as class, constructor, method, named parameter,
etc.

Therefore, it is advisable, that we should learn the basic Dart
programming language and after that we start learning Flutter. As
a result, we’ll pick up Flutter quite easily.

In the next section, we’ll learn what are basic Widgets that we

1. Getting Started with Flutter 3.0 10

always need in building a Flutter Application. Then we’ll dive
deep to learn and understand more complex layout and design
techniques.

How to use Widget

Firstly, widget in flutter is a class that describes how our flutter app
should look like by creating its instances.

Secondly, the central idea behind using widgets is to build our user
interface using widgets. To clarify, widgets are like boxes on the
mobile, tab or desktop screen. Consequently, since each box has a
size, every widget has constraints that deal with width and height.

Therefore, finally, we can define a widget as a class that builds or
rebuilds its description; and, our flutter app works on that principle.

For a beginner, we need to add something more with this definition.

In Flutter everything is widget. As a result, we must think widget
as a central hierarchy in a Flutter framework.

Let us see a minimalist Flutter App to understand this concept first.

1 import 'package:flutter/material.dart';

2 import 'widgets/first_flutter_app.dart';

3

4 void main() {

5 runApp(

6 const FirstFlutterApp(),

7);

8 }

The above code shows us that the runApp() function takes the given
Widget FirstFlutterApp() and makes it the root of the widget tree.

1. Getting Started with Flutter 3.0 11

And this is our first custom widget that will sit on the top of the
tree.

With reference to themain() function wemust also add that to work
it properly we need to import Material App library. However, we
don’t want to dig deep now. Just to make it simple, let’s know that
we need to have a material design so we can show our widget boxes.
Right?

Further, we have created a sub-directory called “widgets” in our
“lib” directory and keep the code of FirstFlutterApp(). Remember
that also represents a class of hierarchy. Therefore we need to
import that local library too.

That is why we need to import that also.

1 import 'widgets/first_flutter_app.dart';

Now, we can take a look at the custom widget that we’ve built.

1 import 'package:flutter/material.dart';

2

3 class FirstFlutterApp extends StatelessWidget {

4 const FirstFlutterApp({

5 Key? key,

6 }) : super(key: key);

7

8 @override

9 Widget build(BuildContext context) {

10 return const MaterialApp(

11 home: Center(

12 child: Text(

13 'Hello, Flutter!',

14),

15),

16);

1. Getting Started with Flutter 3.0 12

17 }

18 }

The FirstFlutterApp() extends Stateless widget. Widgets have state.
But, don’t worry, we’ll discuss it later.

The widget tree consists of three more widgets. The MaterialApp,
Center widget and its child, the Text widget.

As a consequence, the framework forces the root widget to cover
the screen. It places the text “Hello, Flutter” at the Center of the
screen.

Since we have used MaterialApp, we don’t have to worry about the
text direction. The MaterialApp will take care of that.

Since eachwidget is a Dart class, we need to instantiate eachwidget
and want them to show up at the particular location. This is done
through the Element class. This is nothing but an instantiation of a
Widget at a particular location in the tree.

What do we see?

A text “Hello, Flutter”.

However, it is displayed on the particular position in the widget
tree. Now, this widget tree can be a complex one.

As a result, widgets can be inflated into more elements as the tree
grows in size.

Before we close down, one thing to remember. A widget is an
immutable description of part of a user interface.

We’ll discuss that later when we will discuss Element class in detail.

1. Getting Started with Flutter 3.0 13

Difference between Non-Material
and Material Widgets

Non material widgets cannot adopt the material design and layout
principles.

Certainly there are non material widgets in Flutter, and we, know-
ingly or unknowingly use them. However, we cannot imagine
Flutter without Material design.

Whether we want to navigate to another screen, or we want to
use a particular theme, or we want to add localization support,
we cannot do it without the assistance of Material App widget. It
includes many material design specific features that we’ll learn as
we progress.

Firstly, MaterialApp is a widget that introduces many captivating
tools and fascinating features. As we’ve just reminded, there are
Navigator or Theme to help you develop our Flutter Application.

There seems to be some confusions aboutMaterialApp andMaterial
class in Flutter. However, they are not same. Although they are
linked.

Let us build a simple Flutter Application where we use some simple
basic widgets and we’ll follow theMaterial design. As a result, we’ll
place MaterialApp near root widget.

After watching the code, we’ll discuss Material principles in great
detail.

import ‘package:flutter/material.dart’;

void main() { runApp(const OurSecondApp(),); }

class OurSecondApp extends StatelessWidget { const OurSecon-
dApp({Key? key}) : super(key: key);

1. Getting Started with Flutter 3.0 14

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'First Material App',

5 debugShowCheckedModeBanner: false,

6 home: OurSecondAppHome(),

7);

8 }

}

class OurSecondAppHome extends StatelessWidget { const OurSec-
ondAppHome({Key? key}) : super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return Scaffold(

4 appBar: AppBar(

5 title: const Text('First Material App'),

6),

7 body: const OurSecondAppBody(),

8);

9 }

}

class OurSecondAppBody extends StatelessWidget { const OurSec-
ondAppBody({Key? key}) : super(key: key);

1. Getting Started with Flutter 3.0 15

1 @override

2 Widget build(BuildContext context) {

3 /// Here we're going to use basic widgets

4 /// such as, Text, Container, Row, Column, etc.

5 ///

6 return Column(

7 children: [

8 Center(

9 child: Row(

10 children: [

11 Container(

12 padding: const EdgeInsets.all(10),

13 child: const Text(

14 'ID',

15 textAlign: TextAlign.left,

16),

17),

18 Container(

19 padding: const EdgeInsets.all(10),

20 child: const Text(

21 'Name',

22 textAlign: TextAlign.left,

23),

24),

25 const Expanded(

26 child: Text(

27 'Phone Number',

28 textAlign: TextAlign.center,

29),

30),

31 Container(

32 padding: const EdgeInsets.all(10),

33 child: const Text(

34 'Gender',

35 textAlign: TextAlign.left,

1. Getting Started with Flutter 3.0 16

36),

37),

38 Container(

39 padding: const EdgeInsets.all(10),

40 child: const Text(

41 'Country',

42 textAlign: TextAlign.left,

43),

44),

45],

46),

47),

48 Center(

49 child: Row(

50 children: [

51 Container(

52 padding: const EdgeInsets.all(10),

53 child: const Text(

54 '1',

55 textAlign: TextAlign.left,

56),

57),

58 Container(

59 padding: const EdgeInsets.all(10),

60 child: const Text(

61 'John',

62 textAlign: TextAlign.left,

63),

64),

65 const Expanded(

66 child: Text(

67 '123645',

68 textAlign: TextAlign.center,

69),

70),

1. Getting Started with Flutter 3.0 17

71 Container(

72 padding: const EdgeInsets.all(10),

73 child: const Text(

74 'Male',

75 textAlign: TextAlign.left,

76),

77),

78 Container(

79 padding: const EdgeInsets.all(10),

80 child: const Text(

81 'Germany',

82 textAlign: TextAlign.left,

83),

84),

85],

86),

87),

88 Center(

89 child: Row(

90 children: [

91 Container(

92 padding: const EdgeInsets.all(10),

93 child: const Text(

94 '2',

95 textAlign: TextAlign.left,

96),

97),

98 Container(

99 padding: const EdgeInsets.all(10),

100 child: const Text(

101 'Jenifer',

102 textAlign: TextAlign.left,

103),

104),

105 const Expanded(

1. Getting Started with Flutter 3.0 18

106 child: Text(

107 '652341',

108 textAlign: TextAlign.center,

109),

110),

111 Container(

112 padding: const EdgeInsets.all(10),

113 child: const Text(

114 'Female',

115 textAlign: TextAlign.left,

116),

117),

118 Container(

119 padding: const EdgeInsets.all(10),

120 child: const Text(

121 'France',

122 textAlign: TextAlign.left,

123),

124),

125],

126),

127),

128],

129);

130 }

}

Quite a long code where we have used some basic widgets like
Scaffold, Column, Row, Container, Expanded, Text, etc.

Moreover, we’ve placed the MaterialApp Widget near root widget.

return const MaterialApp(title: ‘First Material App’,
debugShowCheckedModeBanner: false, home: OurSecondAp-
pHome(),);

Therefore, we get this screenshot.

1. Getting Started with Flutter 3.0 19

Figure 1.2 – Basic widgets in Flutter

Why do we use MaterialApp in Flutter?

There are many reasons to use MaterialApp. But one of the most
important reasons is MaterialApp gives constraints to the child
widget to fit into the screen.

Now we can refactor the above code as there are many use cases,
such as we’ve used Container widget many times.

As a consequence, we can refactor a model Container class.

import ‘package:flutter/material.dart’;

void main() { runApp(const OurThirdApp(),); }

class OurThirdApp extends StatelessWidget { const
OurThirdApp({Key? key}) : super(key: key);

1. Getting Started with Flutter 3.0 20

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'First Material App',

5 debugShowCheckedModeBanner: false,

6 home: OurThirdAppHome(),

7);

8 }

}

class OurThirdAppHome extends StatelessWidget { const OurThir-
dAppHome({Key? key}) : super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return Scaffold(

4 appBar: AppBar(

5 title: const Text('First Material App'),

6),

7 body: const OurThirdAppBody(),

8);

9 }

}

class OurThirdAppBody extends StatelessWidget { const OurThir-
dAppBody({Key? key}) : super(key: key);

1. Getting Started with Flutter 3.0 21

1 @override

2 Widget build(BuildContext context) {

3 /// Here we're going to use basic widgets

4 /// such as, Text, Container, Row, Column, etc.

5 ///

6 return Column(

7 children: const [

8 ColumnOne(),

9 ColumnThree(),

10 ColumnTwo(),

11],

12);

13 }

}

class ModelContainer extends StatelessWidget { const ModelCon-
tainer({ Key? key, required this.modelText, }) : super(key: key);

1 final Text modelText;

2

3 @override

4 Widget build(BuildContext context) {

5 return Container(

6 padding: const EdgeInsets.all(10),

7 color: Colors.amber,

8 child: modelText,

9);

10 }

}

class ColumnOne extends StatelessWidget { const ColumnOne({
Key? key, }) : super(key: key);

1. Getting Started with Flutter 3.0 22

1 @override

2 Widget build(BuildContext context) {

3 return Center(

4 child: Row(

5 children: const [

6 ModelContainer(

7 modelText: Text('ID'),

8),

9 ModelContainer(

10 modelText: Text('Name'),

11),

12 ModelContainer(

13 modelText: Text('Phone'),

14),

15 ModelContainer(

16 modelText: Text('Gender'),

17),

18 ModelContainer(

19 modelText: Text('Country'),

20),

21],

22),

23);

24 }

}

class ColumnTwo extends StatelessWidget { const ColumnTwo({
Key? key, }) : super(key: key);

1. Getting Started with Flutter 3.0 23

1 @override

2 Widget build(BuildContext context) {

3 return Center(

4 child: Row(

5 children: const [

6 ModelContainer(

7 modelText: Text('2'),

8),

9 ModelContainer(

10 modelText: Text('Juliet'),

11),

12 ModelContainer(

13 modelText: Text('100023'),

14),

15 ModelContainer(

16 modelText: Text('Female'),

17),

18 ModelContainer(

19 modelText: Text('Britain'),

20),

21],

22),

23);

24 }

}

class ColumnThree extends StatelessWidget { const ColumnThree({
Key? key, }) : super(key: key);

1. Getting Started with Flutter 3.0 24

1 @override

2 Widget build(BuildContext context) {

3 return Center(

4 child: Row(

5 children: const [

6 ModelContainer(

7 modelText: Text('1'),

8),

9 ModelContainer(

10 modelText: Text('Romeo'),

11),

12 ModelContainer(

13 modelText: Text('489023'),

14),

15 ModelContainer(

16 modelText: Text('Male'),

17),

18 ModelContainer(

19 modelText: Text('France'),

20),

21],

22),

23);

24 }

}

Now, as a result, we can design the model Container widget and
that will change the look of the whole app.

1. Getting Started with Flutter 3.0 25

Figure 1.3 – Material App second sample

To put it simply, each widget now knows how to behave and the
instruction comes from the MaterialApp.

As a result, we don’t have to bother about the text direction
property of any Text Widget anymore. MaterialApp handles that
through material design principles.

What is the difference between material
and MaterialApp in flutter?

Actually, there is more friendship than difference between these
two Widgets. One needs another. And we should use them both.

Many widgets, such as Scaffold, AppBar, Card, Dialog, Floating-
Button, and many more, which are Material instances. Through
Material guidelines they define User Interface elements that respect
Material rules.

If we don’t define Material guidelines near any Text widget, the
screen will be black and the text will have a yellow underline. It
takes as a fallback theme.

That is the reason, why we use MaterialApp near the root of our
Flutter Application.

To sum up, we need to use Material and MaterialApp widgets
both. As far as Flutter design and layout are concerned, we need

1. Getting Started with Flutter 3.0 26

to use them both. If we want that a Text widget should adopt
a certain theme, we need to introduce a Material instance like
Scaffold widget first.

As we progress, we’ll learn more about these features, in great
detail.

What are constraints in flutter

When you plan to learn Flutter, it starts with Layout. Right? Now,
you cannot learn or understand flutter layout without understand-
ing constraints. Therefore, our flutter learning starts by answering
this question first – what are constraints in flutter?

Firstly, let me warn you at the very beginning. Flutter layout is not
like HTML layout.

Secondly, if you come from HTML or web development back-
ground, don’t try to apply those CSS rules here. Why so? Because,
HTML targets a large screen. Whereas, we’re dealing with a Mobile
screen. So, layout should not be same. And, there are other reasons
too.

Finally, flutter is all about widgets. As a result, we need to under-
stand Flutter layout keeping widgets in our mind.

Let’s start with a Material App, and, start building a simple Con-
tainer widget with a Text widget as its child.

1. Getting Started with Flutter 3.0 27

1 import 'package:flutter/material.dart';

2

3 class ConstraintSample extends StatelessWidget {

4 const ConstraintSample({Key? key}) : super(key: key);

5

6 @override

7 Widget build(BuildContext context) {

8 return const MaterialApp(

9 title: 'Constraint Sample',

10 debugShowCheckedModeBanner: false,

11 home: ConstraintSampleHomme(),

12);

13 }

14 }

15 @override

16 Widget build(BuildContext context) {

17 return Container(

18 width: 150,

19 height: 200,

20 child: const Text('Constraint Sample'),

21);

22 }

Let’s run this simple flutter app, and see what happens.

1. Getting Started with Flutter 3.0 28

Figure 1.4 – Constraint in flutter example one

What is the problem here?

We’ve returned a Container widget mentioning its width and
height.

1 return Container(

2 width: 150,

3 height: 200,

4 child: const Text('Constraint Sample'),

5);

However, that didn’t work at all.

Now we know that the constraint in Flutter is all about the size of
the box, which is nothing but a widget.

1. Getting Started with Flutter 3.0 29

A size always deals with width and height.

In the above case, the material app takes the width and height of
the whole screen and directs its immediate child Container to take
that size.

That is why, although we’ve mentioned the size of the Container
widget, it doesn’t work.

Therefore, we can conclude that any Widget gets its constraint or
size from its immediate parent. After that, it passes that constraint
to its immediate child.

And this practice goes on as the number of Widgets increases in the
widget tree.

In Flutter, a parent widget always controls the immediate child’s
size. However, when the parent becomes grand-parent, it cannot
affect the constraint or size of the grand-child.

Why?

Because, the grand child has its parent that inherits the size from
its parent and decides what should be the size of its child.

We can compare this mechanism with wealth. If a person inherits
some wealth from her parent, she is in a position to decide how
much of that wealth she will give to her child or children.

And this process goes on.

One after another widget tells its children what their constraints or
sizes are.

How do you use constraints in
flutter?

Since we have got the idea, now we can apply and see how we can
use constraints in flutter.

1. Getting Started with Flutter 3.0 30

Our next code snippet is like the following.

1 @override

2 Widget build(BuildContext context) {

3 return Center(

4 child: Container(

5 width: 300,

6 height: 100,

7 color: Colors.amber,

8 alignment: Alignment.bottomCenter,

9 child: const Text(

10 'Constraint Sample',

11 style: TextStyle(

12 fontSize: 25,

13 fontWeight: FontWeight.bold,

14 color: Colors.black,

15),

16),

17

18),

19);

20 }

Now, we’ve wrapped the Container widget with a Center widget.
As a result, the Center widget gets the full size now. And, after that,
it asks immediate child Container widget how big it wants to be.

The Container said, “I want to be 300 inwidth and 100 in height. Not
only that, I want to place my child at the bottom Center position.
And, I also want my child should be of color amber.”

The Center widget says, “Okay. No problem. Get what you want
because I have inherited the whole screen-size from my parent.
Take what you need.”

As a result, we see this on the screen.

1. Getting Started with Flutter 3.0 31

Figure 1.5 – Constraint in flutter example two

1. Getting Started with Flutter 3.0 32

Next, we change our code to this:

1 @override

2 Widget build(BuildContext context) {

3 return Center(

4 child: Container(

5 width: 300,

6 height: 100,

7 color: Colors.amber,

8 alignment: Alignment.bottomCenter,

9 child: Container(

10 width: 200,

11 height: 50,

12 color: Colors.blue,

13 alignment: Alignment.center,

14 child: const Text(

15 'Constraint Sample',

16 style: TextStyle(

17 fontSize: 20,

18 fontWeight: FontWeight.bold,

19 color: Colors.white,

20),

21),

22),

23),

24);

25 }

Let’s see the effect on the screen first. Then we’ll discuss the code.

1. Getting Started with Flutter 3.0 33

Figure 1.6 – Constraint in flutter example three

1. Getting Started with Flutter 3.0 34

The above image is displayed because the code says that the child
Container with width 300, height 100 and color amber has a child,
which is another Container and that has color blue, width 200 and
height 50. However, the parent Container decides that it will show
its child in the bottom Center position.

Align the child at the bottom Center means, we would pass this
child Container a tight constraint that is bigger than the child’s
natural size, with an alignment of Alignment.bottomCenter.

As a result, the child Container gets the width 200 and height 50
and is placed at the bottom Center alignment. It happens smoothly
because the parent Container’s width and height is bigger than the
child Container. Therefore, it allocates the exact size that it’s asked
for.

But it didn’t happen, if the parent Container didn’t set the align-
ment and said that, “Okay, child container, you can place yourself
anywhere you like. Even you may decide your alignment.”

So the code is like the following:

1 @override

2 Widget build(BuildContext context) {

3 return Center(

4 child: Container(

5 width: 300,

6 height: 100,

7 color: Colors.amber,

8 child: Container(

9 width: 200,

10 height: 50,

11 color: Colors.blue,

12 alignment: Alignment.center,

13 child: const Text(

14 'Constraint Sample',

15 style: TextStyle(

16 fontSize: 20,

1. Getting Started with Flutter 3.0 35

17 fontWeight: FontWeight.bold,

18 color: Colors.white,

19),

20),

21),

22),

23);

24 }

As a result, the child Container decides to looks upward and tries
to find if its grand-parent has any alignment already allocated for
it.

While looking upward, it finds that the grand-parent is a Center
widget itself. Therefore, it decides to take the Center position, as it
has the Center alignment itself; and not only that, while doing so, it
ignores its own width and height, and it takes the width and height
of the immediate parent, which eventually is another Container.

As a result it overlaps completely the parent Container.

To sum up, constraints are basically sizes of width and height that
any Widget gets from its parent. However, in case, padding is
added, the constraint may change. Although we have not added
that feature, still you may test that on your own and see how it
affects the sizes of the child.

What are BoxConstraints in Flutter

Imagine each Widget as a box. So it has a size or constraints that
defines width and height.

In the previous section we have discussed what constraints are. In
Flutter, every widget is rendered by their underlying RenderBox
objects. As a result, for each boxes constraints are BoxConstraints.

1. Getting Started with Flutter 3.0 36

For a Flutter beginner we need to say one thing at the very
beginning. The constraints actually represent sizes of the rendered
boxes, which are nothing but widgets.

In that light of the previous discussion, we must try to understand
what BoxConstraints are.

We’ve already seen that widgets pass their constraints, which
consist of minimum and maximum width and height, to their
children. Moreover, each child may vary in size.

As a result we can say that render tree actually passes a concrete
geometry, which is size.

Subsequently the widget tree grows in sizes and for each boxes the
constraints are BoxConstraints. And, it consists of four numbers
– a minimum width minWidth, a maximum width maxWidth, a
minimum height minHeight, and a maximum height maxHeight.
Therefore we can set a range of width and height.

As we’ve said before, the geometry of boxes consists of a Size.
Consequently, the Size satisfies the constraints.

Each child in the rendered widget tree, gets BoxConstraints from
its parent. After that, the child picks us the size that satisfies the
BoxConstraints adjusting with the parent’s size.

Certainly, with the size, position changes. A child does not know
its position.

Why?

Because, if the parent adds some padding the child’s position
changes with it.

We’ll see that in a minute.

Consider a Flutter app where Scaffold widget acts as the immediate
child of Material App widget.

As a result, the Scaffold takes the entire screen from its immediate
parent Material App.

1. Getting Started with Flutter 3.0 37

Next, the Scaffold passes its constraints to its immediate child
Center widget. And then the Center takes the constraints or size
from Scaffold. However, as the Scaffold widget allocates some space
for the App Bar widget, therefore, Center doesn’t get the whole
screen.

Let us see the code.

import ‘package:flutter/material.dart’;

class BoxConstraintsSample extends StatelessWidget { const Box-
ConstraintsSample({Key? key}) : super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'BoxConstraints Sample',

5 debugShowCheckedModeBanner: false,

6 home: BoxConstraintsSampleHomme(),

7);

8 }

}

class BoxConstraintsSampleHomme extends StatelessWidget {
const BoxConstraintsSampleHomme({Key? key}) : super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return Scaffold(

4 appBar: AppBar(

5 title: const Text('BoxConstraints Sample'),

6),

7 body: Center(

8 child: Container(

9 color: Colors.redAccent,

10 padding: const EdgeInsets.all(

1. Getting Started with Flutter 3.0 38

11 20,

12),

13 child: const Text(

14 'Box',

15 style: TextStyle(

16 fontFamily: 'Allison',

17 color: Colors.black38,

18 fontSize: 60,

19 fontWeight: FontWeight.bold,

20),

21),

22 constraints: const BoxConstraints(

23 minHeight: 70,

24 minWidth: 70,

25 maxHeight: 200,

26 maxWidth: 200,

27),

28),

29),//Center

30);

31 }

}

If we run the code, we see the following screenshot.

1. Getting Started with Flutter 3.0 39

Figure 1.7 – BoxConstraints flutter example one

The above code tells us about the Container’s constraints that point
to BoxConstraints, this way.

constraints: const BoxConstraints(minHeight: 70, minWidth: 70,
maxHeight: 200, maxWidth: 200,),

The Container widget has a constraints parameter that points to
the BoxConstraints widget, which simply defines theminimum and
maximum width, height. And the range is between 70px to 200px.

As a result, if we try to make the Text widget bigger, that will not
display the whole text, in that case.

Why?

Because, Container passes its constraints to its child Text widget
and it gets that exact value. That means, the size of Text widget
must remain in between 70px to 200px.

1. Getting Started with Flutter 3.0 40

What happens if we try to pass the same constraints to another
Container, which will act as the immediate child.

Let’s change our code.

How do you use box constraints in Flutter?

To use box constraints in Flutter, we must understand how BoxCon-
straints widget acts, maintaining the range of width and height.

Let’s change our above code and it will look like the following, now.

import ‘package:flutter/material.dart’;

class BoxConstraintsSample extends StatelessWidget { const Box-
ConstraintsSample({Key? key}) : super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'BoxConstraints Sample',

5 debugShowCheckedModeBanner: false,

6 home: BoxConstraintsSampleHomme(),

7);

8 }

}

class BoxConstraintsSampleHomme extends StatelessWidget {
const BoxConstraintsSampleHomme({Key? key}) : super(key: key);

1. Getting Started with Flutter 3.0 41

1 @override

2 Widget build(BuildContext context) {

3 return Scaffold(

4 appBar: AppBar(

5 title: const Text('BoxConstraints Sample'),

6),

7 body: Center(

8 child: Container(

9 color: Colors.redAccent,

10 padding: const EdgeInsets.all(

11 20,

12),

13 constraints: const BoxConstraints(

14 minHeight: 170,

15 minWidth: 170,

16 maxHeight: 400,

17 maxWidth: 400,

18),

19 child: Container(

20 color: Colors.blueAccent[200],

21 padding: const EdgeInsets.all(

22 20,

23),

24 child: const Text(

25 'Box',

26 style: TextStyle(

27 fontFamily: 'Allison',

28 color: Colors.white,

29 fontSize: 60,

30 fontWeight: FontWeight.bold,

31),

32),

33 constraints: const BoxConstraints.expand(

34 height: 100,

35 width: 100,

1. Getting Started with Flutter 3.0 42

36),

37),

38), //container

39), //Center

40);

41 }

}

In the above code, we find two Container widgets. Both have
constraints defined. The first Container have constraints like the
following:

constraints: const BoxConstraints(minHeight: 170, minWidth: 170,
maxHeight: 400, maxWidth: 400,),

And its child, the second Container has constraints like the follow-
ing:

constraints: const BoxConstraints.expand(height: 100, width: 100,
),

The first Container’s constraints define a range of width and
height. However,the second Container’s constraints point to Box-
Constraints constructor BoxConstraints.expand.

What does this mean, as long as the size of the child Container is
concerned?

We can explain it this way.

Since the child Container receives its constraints from its parent
Container. Within that range it can expand its width and height up
to 100px. Not more than that.

Moreover, this expansion process starts from the Center.

1. Getting Started with Flutter 3.0 43

Figure 1.8 – BoxConstraints flutter example two

Understanding how these widgets or boxes handle the constraints
in flutter is very important for the beginners.

In general, there are three kind of boxes that we’ll encounter while
we learn Flutter.

Firstly, the widgets like Center and ListView; they always try to be
as big as possible.

Secondly, the widgets like Transform and Opacity always try to
take the same size as their children.

And, finally, there are widgets like Image and Text that try to fit to
a particular size.

As we’ll progress, we’ll find, how these constraints vary from

1. Getting Started with Flutter 3.0 44

widget to widget.

As example, we can remember the role of Center widget. It always
maintains the maximum size. The minimum constraint does not
work here.

What is Align in Flutter

Align widget allows us to place a child widget anywhere we want
inside another widget.

Align is a widget that aligns its child within itself. Moreover, based
on the child’s size, it optionally sizes itself.

For instance, let us think about a minimal Flutter app that aligns a
Flutter logo at top right.

Center(child: Column(children: [Container(height: 120.0, width:
120.0, color: Colors.blue[50], child: const Align(alignment: Align-
ment.topRight, child: FlutterLogo(size: 60,),),),

If we run the app, it looks like the following screenshot.

1. Getting Started with Flutter 3.0 45

Figure 1.9 – Align widget at top right

The code is quite simple. It gives the Container a light blue color. Be-
sides, it has definite width and height, which are tight constraints.

Now, as a child the Align widget places its child, a Flutter logo at
the top right corner inside the Container.

However, we could have placed it with an alignment of Align-
ment.bottomRight.

To do that we should have given the Container a tight constraint,
just like before, and that constraint should be bigger than the Flutter
logo.

1. Getting Started with Flutter 3.0 46

Next, we consider another piece of code that might place three
Flutter logo at three different positions inside the same Container.

Figure 1.10 – Align widget aligns child at different positions

As we find in the above screenshot, three Flutter logos show up at
three different positions.

Let’s see the full code snippet first. After that, we’ll discuss the code.

import ‘package:flutter/material.dart’;

class AlignSample extends StatelessWidget { const
AlignSample({Key? key}) : super(key: key);

1. Getting Started with Flutter 3.0 47

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'Align Sample',

5 debugShowCheckedModeBanner: false,

6 home: AlignSampleHomme(),

7);

8 }

}

class AlignSampleHomme extends StatelessWidget { const Align-
SampleHomme({Key? key}) : super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return Scaffold(

4 appBar: AppBar(

5 title: const Text('Align Sample'),

6),

7 body: Center(

8 child: Column(

9 children: [

10 Container(

11 height: 120.0,

12 width: 120.0,

13 color: Colors.blue[50],

14 child: const Align(

15 alignment: Alignment.topRight,

16 child: FlutterLogo(

17 size: 60,

18),

19),

20),

21 const SizedBox(

22 height: 10,

1. Getting Started with Flutter 3.0 48

23),

24 Container(

25 height: 120.0,

26 width: 120.0,

27 color: Colors.yellow[50],

28 child: const Align(

29 alignment: Alignment(0.2, 0.6),

30 child: FlutterLogo(

31 size: 60,

32),

33),

34),

35 const SizedBox(

36 height: 10,

37),

38 Container(

39 height: 120.0,

40 width: 120.0,

41 color: Colors.red[50],

42 child: const Align(

43 alignment: FractionalOffset(0.2, 0.6),

44 child: FlutterLogo(

45 size: 60,

46),

47),

48),

49],

50),

51),

52 floatingActionButton: FloatingActionButton(

53 onPressed: () {},

54 child: const Icon(Icons.add_a_photo),

55),

56);

57 }

1. Getting Started with Flutter 3.0 49

}

The alignment property describes a point in the child’s coordinate
system and a different point in the coordinate system of this widget.

After that, the Align widget positions the child, here a Flutter logo,
in a way so that both points are lined up on top of each other.

In the first case, the Align widget uses one of the defined constants
from Alignment, which is Alignment.topRight.

Container(height: 120.0, width: 120.0, color: Colors.blue[50], child:
const Align(alignment: Alignment.topRight, child: FlutterLogo(
size: 60,),),),

As a result, this constant value places the FlutterLogo at the top
right corner of the parent blue Container.

However, the second case is different, where the Alignment defines
a single point.

Container(height: 120.0, width: 120.0, color: Colors.yellow[50],
child: const Align(alignment: Alignment(0.2, 0.6), child: FlutterL-
ogo(size: 60,),),),

It calculates the position of the Flutter logo in a different way.

The formula is, the result of (0.2 * width of FlutterLogo/2 + width
of FlutterLogo/2) comes to a whole number, that is 36.0.

And this is a point in the coordinate system of Flutter logo.

The next point is defined by this formula – (0.6 * height of FlutterL-
ogo/2 + height of FlutterLogo/2), which is equal to 48.0. Moreover,
it’s point in the coordinate system of the Align widget.

As a result Align will place the FlutterLogo at (36.0, 48.0) according
to this coordinate system.

Although in the third example, the calculation goes in the same
direction; yet the result differs with the previous one.

alignment: FractionalOffset(0.2, 0.6)

Consequently, the position of Flutter logo changes.

1. Getting Started with Flutter 3.0 50

How to use aspect ratio widget

TheAspectRatioWidget tries to find the best size tomaintain aspect
ratio of a child widget.

The AspectRatio widget attempts to size the child to a specific
aspect ratio.

Suppose we have a Container widget with width 100, and height
100. In that case the aspect ratio would be 100/100; that is, 1.0.

Now, each Widget has its own constraints. As a result, the Aspec-
tRatio Widget tries to find the best size to maintain aspect ratio.
However, while doing so it respects it’s layout constraints.

Let’s see a screenshot where we have used three different types of
aspect ratio.

1. Getting Started with Flutter 3.0 51

Figure 1.11 – AspectRatio widget in Flutter

A Container widget has an AspectRatio widget, which has a child
Container in a different color.

As a result, we see different types of color combination.

Let’s see the full code now.

import ‘package:flutter/material.dart’;

class AspectRatioSample extends StatelessWidget { const AspectRa-
tioSample({Key? key}) : super(key: key);

1. Getting Started with Flutter 3.0 52

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'AspectRatio Sample',

5 debugShowCheckedModeBanner: false,

6 home: AspectRatioSampleHomme(),

7);

8 }

}

class AspectRatioSampleHomme extends StatelessWidget { const
AspectRatioSampleHomme({Key? key}) : super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return Scaffold(

4 appBar: AppBar(

5 title: const Text('AspectRatio Sample'),

6),

7 body: Center(

8 child: Column(

9 children: [

10 Container(

11 color: Colors.red,

12 alignment: Alignment.center,

13 padding: const EdgeInsets.all(10),

14 width: 100.0,

15 height: 100.0,

16 child: AspectRatio(

17 aspectRatio: 2.0,

18 child: Container(

19 width: 50.0,

20 height: 50.0,

21 color: Colors.yellow,

22),

1. Getting Started with Flutter 3.0 53

23),

24),

25 const SizedBox(

26 height: 10,

27),

28 Container(

29 color: Colors.blue,

30 alignment: Alignment.center,

31 width: 100.0,

32 height: 100.0,

33 child: AspectRatio(

34 aspectRatio: 2.0,

35 child: Container(

36 width: 80.0,

37 height: 70.0,

38 color: Colors.white,

39),

40),

41),

42 const SizedBox(

43 height: 10,

44),

45 Container(

46 color: Colors.green,

47 alignment: Alignment.center,

48 width: 100.0,

49 height: 100.0,

50 child: AspectRatio(

51 aspectRatio: 0.5,

52 child: Container(

53 width: 100.0,

54 height: 50.0,

55 color: Colors.black26,

56),

57),

1. Getting Started with Flutter 3.0 54

58),

59],

60),

61),

62 floatingActionButton: FloatingActionButton(

63 onPressed: () {},

64 child: const Icon(Icons.add_a_photo),

65),

66);

67 }

}

Remember, in each case, the AspectRatio widget tries to find the
best possible size and adjusts the child accordingly.

It comes to our help, when we try to change the size of an image
on the fly.

What is Baseline in Flutter

When we try to position a child widget inside or outside of parent
widget, Baseline helps us.

Baseline is a widget that positions its child according to the child
widget’s baseline.

Does it not make any sense?

Well, truly it didn’t make any sense to me also, when I first
encountered this widget.

In fact, the above statement doesn’t really make any sense if we
don’t turn this abstraction into a concrete example.

Therefore, firstly, let’s see one screenshot of a simple Flutter app
where we’ve used Baseline widget.

1. Getting Started with Flutter 3.0 55

Secondly, we’ll look into the code and try to understand how this
widget works.

Figure 1.12 – Baseline widget first example

In the above image we see three Baseline examples. The first one
consists of two Container widgets.

Let’s see the code.

Container(width: 100, height: 100, color: Colors.green, child: Base-
line(baseline: 0, baselineType: TextBaseline.alphabetic, child: Con-
tainer(width: 50, height: 50, color: Colors.purple,),),),

The Baseline widget has two required parameters. The baseline,

1. Getting Started with Flutter 3.0 56

and the baselineType. The second parameter means the type of the
baseline.

As a result, we need to supply value to those parameters.

The baseline parameter plays the most important role, of course. It
requires a double value.

In the above case, the baseline is zero.

So it sits on top of the parent Container.

How does it happen?

It happens because the Baseline widget tries to shift the Child
Container’s bottom or baseline by calculating the distance from the
top of the parent Container. Since it’s zero, it cannot shift it. So it
sits on its top.

As a result, it cannot enter the parent Container.

In the second case, the Child Container’s baseline is 50.

Container(width: 100, height: 100, color: Colors.green, child: Base-
line(baseline: 50, baselineType: TextBaseline.alphabetic, child: Con-
tainer(width: 50, height: 50, color: Colors.purple,),),),

Therefore, the baseline logical pixels below the top of the parent
Container is 50px. As a result, the bottom of the child Container
shifts 50px inside the parent Container.

And the parent Container contains the child in the middle.

Take a look at the screenshot above, you’ll understand how it works.

How do you use baseline in flutter?

Most importantly, we use Baseline widget when we want to posi-
tion the child widget’s bottom according to the distance from the
top of the parent widget.

1. Getting Started with Flutter 3.0 57

When the child Container’s baseline is 100px, it moves its bottom
100px exactly, from the top of the parent Container.

As a consequence, the child’s bottom merges with the parent’s
bottom. The above screenshot displays the same thing.

Container(width: 100, height: 100, color: Colors.green, child: Base-
line(baseline: 100, baselineType: TextBaseline.alphabetic, child:
Container(width: 50, height: 50, color: Colors.purple,),),), If we
start increasing the value of the baseline, and make it 110px, what
happens?

The next screenshot shows that.

1. Getting Started with Flutter 3.0 58

Figure 1.13 – Baseline widget second example

The child Container moves outside the parent Container.

Moreover, from the top of the parent Container’s to the bottom of
the child Container, the distance is 110px exact.

Let’s take a look at the full code finally.

import ‘package:flutter/material.dart’;

class BaselineSample extends StatelessWidget { const BaselineSam-
ple({Key? key}) : super(key: key);

1. Getting Started with Flutter 3.0 59

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'Baseline Sample',

5 debugShowCheckedModeBanner: false,

6 home: BaselineSampleHomme(),

7);

8 }

}

class BaselineSampleHomme extends StatelessWidget { const Base-
lineSampleHomme({Key? key}) : super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return Scaffold(

4 appBar: AppBar(

5 title: const Text('Baseline Sample'),

6),

7 body: Center(

8 child: Column(

9 children: [

10 const SizedBox(

11 height: 100,

12),

13 Container(

14 width: 100,

15 height: 100,

16 color: Colors.green,

17 child: Baseline(

18 baseline: 0,

19 baselineType: TextBaseline.alphabetic,

20 child: Container(

21 width: 50,

22 height: 50,

1. Getting Started with Flutter 3.0 60

23 color: Colors.purple,

24),

25),

26),

27 const SizedBox(

28 height: 20,

29),

30 Container(

31 width: 100,

32 height: 100,

33 color: Colors.green,

34 child: Baseline(

35 baseline: 50,

36 baselineType: TextBaseline.alphabetic,

37 child: Container(

38 width: 50,

39 height: 50,

40 color: Colors.purple,

41),

42),

43),

44 const SizedBox(

45 height: 20,

46),

47 Container(

48 width: 100,

49 height: 100,

50 color: Colors.green,

51 child: Baseline(

52 baseline: 110,

53 baselineType: TextBaseline.alphabetic,

54 child: Container(

55 width: 50,

56 height: 50,

57 color: Colors.purple,

1. Getting Started with Flutter 3.0 61

58),

59),

60),

61],

62),

63),

64);

65 }

}

We can provide a negative value to the baseline of the child
Container. Try to make it -50.

At that instance, the bottom of the child Container moves away
upward and goes out of the parent Container in the upward
direction.

Try it. Happy fluttering.

2. How to implement a
design by building

layouts
To implement a design we need to start with custom paint object.

The full code repository for this section, please check the respective
branches⁸

How to paint in Flutter?

CustomPaint painter parameter implements CustomPainter inter-
face to paint in flutter.

The Custom Paint widget gives us opportunities to paint in Flutter.

You may wonder, what does paint mean in Flutter? Does it mean
painting literally with colors and brushes?

Almost that is true.

The CustomPaint widget takes help from CustomPainter abstract
class. Why?

Because CustomPainter again extends Listenable so that it not only
gives us a canvas where we can paint on, but it creates a custom
painter that repaints whenever repaint notifies listeners.

How does it take place?

Through Listenable object the Custom Painter object maintains a
list of listeners.

⁸https://github.com/sanjibsinha/flutter_artisan/

https://github.com/sanjibsinha/flutter_artisan/
https://github.com/sanjibsinha/flutter_artisan/
https://github.com/sanjibsinha/flutter_artisan/

2. How to implement a design by building layouts 63

The listeners are typically used to notify clients that the object has
been updated.

Let’s take a look at the screenshot first.

Figure 2.1 – The Back ground by custom paint object

How we have done that?

Take a look at the code where a subclass extends CustomPainter.
Later we’ll use the Shaping Painter custom paint object as a
parameter of Custom Paint widget.

2. How to implement a design by building layouts 64

1 class ShapingPainter extends CustomPainter {

2 @override

3 void paint(Canvas canvas, Size size) {

4 final paint = Paint();

5

6 /// setting the paint color grayish

7 /// so it could cover the lower half of the screen

8 ///

9 paint.color = Colors.black12;

10

11 /// Creating a rectangle with size and width same as \

12 the canvas

13 /// It'll be going to cover the whole screen

14 ///

15 var rect = Rect.fromLTWH(0, 0, size.width, size.heigh\

16 t);

17

18 /// Drawing the rectangle using the paint

19 ///

20 canvas.drawRect(rect, paint);

21

22 /// Covering the upper half of the rectangle

23 ///

24 paint.color = Colors.purpleAccent;

25 // Firstly, creating a path to form the shape

26 var path = Path();

27 path.lineTo(0, size.height);

28 path.lineTo(size.width, 0);

29 // Secondly, closing the path to form a bounded shape

30 path.close();

31 canvas.drawPath(path, paint);

32 // Setting the color property of the paint

33 paint.color = Colors.white;

34 // Center of the canvas is (x,y) => (width/2, height/\

35 2)

2. How to implement a design by building layouts 65

36 var center = Offset(size.width / 2, size.height / 2);

37 // Finally, drawing the circle with center having rad\

38 ius 95.0

39 canvas.drawCircle(center, 95.0, paint);

40 }

41

42 @override

43 bool shouldRepaint(CustomPainter oldDelegate) => false;

44 }

Please read the comments above. Hopefully that will clarify how
we gradually paint the home page screen according our plan.

Now, we can set this paint as our background.

Moreover, we can change it as we wish.

Here, the CustomPaint and RenderCustomPaint has used the Cus-
tomPainter interface.

The paint method is called whenever the custom object needs to be
repainted.

Now we can use the subclass in the following way.

1 import 'package:flutter/material.dart';

2

3 void main() => runApp(const MyApp());

4

5 class MyApp extends StatelessWidget {

6 const MyApp({Key? key}) : super(key: key);

7

8 @override

9 Widget build(BuildContext context) {

10 //var size = MediaQuery.of(context).size;

11 return const MaterialApp(

12 title: 'A Custom Home Page',

13 home: DashBoard(

2. How to implement a design by building layouts 66

14 // size: size,

15),

16);

17 }

18 }

19

20 class DashBoard extends StatelessWidget {

21 //final Size size;

22 const DashBoard({

23 Key? key,

24 //required this.size,

25 }) : super(key: key);

26

27 @override

28 Widget build(BuildContext context) {

29 var size = MediaQuery.of(context).size;

30 return MaterialApp(

31 title: 'A Custom Home Page',

32

33 /// ignore: todo

34 ///TODO: we'll make a custom global theme later

35 ///

36 theme: ThemeData(

37 primarySwatch: Colors.blue,

38),

39 home: Scaffold(

40 appBar: AppBar(

41 backgroundColor: Colors.black12,

42 leading: const Icon(Icons.menu),

43 title: const Text(

44 "A Custom Home Page",

45 textAlign: TextAlign.center,

46),

47),

48 body: Stack(

2. How to implement a design by building layouts 67

49 children: <Widget>[

50 Container(

51 padding: const EdgeInsets.all(5),

52 child: CustomPaint(

53 painter: ShapingPainter(),

54 child: Container(

55 height: size.height / 1,

56),

57),

58),

59 Container(

60 margin: const EdgeInsets.only(top: 40),

61 child: Padding(

62 padding: const EdgeInsets.only(left: 20, \

63 right: 20),

64 child: GridView.count(

65 crossAxisCount: 2,

66 children: const <Widget>[

67 Text(

68 'We\'ll make a list of GridItems late\

69 r.',

70 style: TextStyle(

71 color: Colors.white,

72 fontSize: 30,

73 fontWeight: FontWeight.bold,

74),

75),

76],

77),

78),

79)

80],

81),

82),

83);

2. How to implement a design by building layouts 68

84 }

85 }

In the above code, we’ve used the Stack and as a Background
we used the CustomPaint painter parameter. That implements
CustomPainter interface.

CustomPaint is a widget that provides a canvas on which to draw
during the paint phase.

Firstly, CustomPaint asks its painter to paint on the current canvas,
then it paints its child, and then, after painting its child, it asks its
foregroundPainter to paint.

Secondly, the coordinate system of the canvas matches the coordi-
nate system of the CustomPaint object.

What is layout in Flutter

Design and layout in Flutter consists a mixture of visible and
invisible widgets.

Layout in Flutter is controlled byWidgets. Some of them are visible
such as Text, Image or Icon. However, some of them are also
invisible, like Row, Column, or Stack.

Although invisible, yet Row, Column or Stack play very important
role in building layout in Flutter.

As we know, almost everything in Flutter is Widget; therefore,
layout model is no exception. According to the layout model, the
invisible widgets use constraint, align, aspect ratio, baseline and
other Widgets to arrange visible widgets.

We always create a layout by composing Widgets to build more
complex Widget structures, or tree.

Consider the following screenshot. That will explain how we’ve
built this layout by mixing visible and invisible widgets.

2. How to implement a design by building layouts 69

Figure 2.2 – Basic Layout widgets example in Flutter

In the previous section we’ve discussed how we can paint our
canvas or screen in Flutter. As an extension, we’ve used the same
background; and, after that we design our layout on top of that
background.

How do I create a layout in Flutter?

Now, the time has come to take a look at the full code snippet.

2. How to implement a design by building layouts 70

1 import 'package:flutter/material.dart';

2

3 void main() => runApp(const MyApp());

4

5 class MyApp extends StatelessWidget {

6 const MyApp({Key? key}) : super(key: key);

7

8 @override

9 Widget build(BuildContext context) {

10 return const MaterialApp(

11 title: 'A Custom Home Page',

12 home: DashBoard(

13 // size: size,

14),

15);

16 }

17 }

18

19 class DashBoard extends StatelessWidget {

20 //final Size size;

21 const DashBoard({

22 Key? key,

23 //required this.size,

24 }) : super(key: key);

25

26 @override

27 Widget build(BuildContext context) {

28 var size = MediaQuery.of(context).size;

29 return MaterialApp(

30 title: 'A Custom Home Page',

31

32 /// ignore: todo

33 ///TODO: we'll make a custom global theme later

34 ///

35

2. How to implement a design by building layouts 71

36 theme: ThemeData(

37 primarySwatch: Colors.blue,

38),

39 home: Scaffold(

40 appBar: AppBar(

41 backgroundColor: Colors.black12,

42 leading: const Icon(Icons.menu),

43 title: const Text(

44 "A Custom Home Page",

45 textAlign: TextAlign.center,

46),

47),

48 body: Stack(

49 children: <Widget>[

50 Container(

51 padding: const EdgeInsets.all(5),

52 child: CustomPaint(

53 painter: ShapingPainter(),

54 child: Container(

55 height: size.height / 1,

56),

57),

58),

59 Container(

60 margin: const EdgeInsets.all(10),

61 child: Padding(

62 padding: const EdgeInsets.all(10),

63 child: Row(

64 children: [

65 Column(

66 mainAxisAlignment: MainAxisAlignment.\

67 center,

68 children: [

69 Image.network(

70 'https://cdn.pixabay.com/photo/20\

2. How to implement a design by building layouts 72

71 21/12/05/10/28/nature-6847175_960_720.jpg',

72 width: 150,

73 height: 100,

74),

75 Container(

76 padding: const EdgeInsets.all(7),

77 child: const Text(

78 'Let\'s go',

79 style: TextStyle(

80 fontSize: 25,

81 fontWeight: FontWeight.bold,

82 color: Colors.white,

83),

84),

85),

86],

87),

88 Column(

89 mainAxisAlignment: MainAxisAlignment.\

90 center,

91 children: [

92 Image.network(

93 'https://cdn.pixabay.com/photo/20\

94 21/11/13/23/06/tree-6792528_960_720.jpg',

95 width: 150,

96 height: 100,

97),

98 Container(

99 padding: const EdgeInsets.all(7),

100 child: const Text(

101 'Let\'s go',

102 style: TextStyle(

103 fontSize: 25,

104 fontWeight: FontWeight.bold,

105),

2. How to implement a design by building layouts 73

106),

107),

108],

109),

110 Column(

111 mainAxisAlignment: MainAxisAlignment.\

112 center,

113 children: [

114 Image.network(

115 'https://cdn.pixabay.com/photo/20\

116 21/12/12/20/26/flow-6866055_960_720.jpg',

117 width: 150,

118 height: 100,

119),

120 Container(

121 padding: const EdgeInsets.all(7),

122 child: const Text(

123 'Let\'s go',

124 style: TextStyle(

125 fontSize: 25,

126 fontWeight: FontWeight.bold,

127 color: Colors.blue,

128),

129),

130),

131],

132),

133],

134),

135),

136)

137],

138),

139),

140);

2. How to implement a design by building layouts 74

141 }

142 }

143

144 class ShapingPainter extends CustomPainter {

145 @override

146 void paint(Canvas canvas, Size size) {

147 final paint = Paint();

148

149 /// setting the paint color greyish

150 /// so it could cover the lower half of the screen

151 ///

152 paint.color = Colors.black12;

153

154 /// Creating a rectangle with size and width same as \

155 the canvas

156 /// It'll be going to cover the whole screen

157 ///

158 var rect = Rect.fromLTWH(0, 0, size.width, size.heigh\

159 t);

160

161 /// Drawing the rectangle using the paint

162 ///

163 canvas.drawRect(rect, paint);

164

165 /// Covering the upper half of the rectangle

166 ///

167 paint.color = Colors.purpleAccent;

168 // Firstly, creating a path to form the shape

169 var path = Path();

170 path.lineTo(0, size.height);

171 path.lineTo(size.width, 0);

172 // Secondly, closing the path to form a bounded shape

173 path.close();

174 canvas.drawPath(path, paint);

175 // Setting the color property of the paint

2. How to implement a design by building layouts 75

176 paint.color = Colors.white;

177 // Center of the canvas is (x,y) => (width/2, height/\

178 2)

179 var center = Offset(size.width / 2, size.height / 2);

180 // Finally, drawing the circle with center having rad\

181 ius 95.0

182 canvas.drawCircle(center, 95.0, paint);

183 }

184

185 @override

186 bool shouldRepaint(CustomPainter oldDelegate) => false;

187 }

If we read the code carefully, what we’ll find?

We find that we’ve designed a layout that starts with the Stack
widget.

We’ll discuss Stack in great detail later, so don’t worry. You can
always use the search button in the website to find out what you
need.

Stackwidget basically keeps otherwidgets on top of the basewidget.
One after another. Therefore, here we’ve painted our background
as the base widget.

1 body: Stack(

2 children: <Widget>[

3 Container(

4 padding: const EdgeInsets.all(5),

5 child: CustomPaint(

6 painter: ShapingPainter(),

7 child: Container(

8 height: size.height / 1,

9),

10),

11),

2. How to implement a design by building layouts 76

12 ...

13 /// the following widgets will be placed on top of this C\

14 ontainer

As a result, first we’ve designed a background layout first. To do
that, we’ve first created a Custom Painter Widget “ShapingPainter”
and passed it as the named parameter of CustomPaint widget.

1 child: CustomPaint(

2 painter: ShapingPainter(),

3 child: Container(

4 height: size.height / 1,

5),

6),

7 ...

As a result, the base widget of our Stack works as a background. For
the respective code snippet please visit the GitHub repository.

Next, on top of this base background, we’ve created theWidget tree
using visible and invisible widgets.

Now, as we might expect, it looks like that. Each Column inside
the Row widget, has Image, Container, Text, and TextStyle widgets.
We’ve used a Container to add padding, margin, alignment etc.

For instance, each Text widget is placed inside a Container to add
padding or margin.

The rest of the design and layout follow the rules that we’ve set by
controlling different properties.

Let’s think about Row, or Column. Although they are invisible, still
they can specify how their children will be aligned, vertically, or
horizontally. Moreover, they can set how much space the children
widgets should occupy.

2. How to implement a design by building layouts 77

How we build Flutter Layout

Building a Flutter Layout is easy. However, we need to improvise
and place widgets wisely.

In our previous section we’ve learned some key components of a
layout model in Flutter. Now, in this section, we would like to build
a layout on top of that.

According to the layout model, the invisible widgets use constraint,
align, aspect ratio, baseline and other Widgets to arrange visible
widgets such as Text, Image or Icon. However, some of them, again
are also invisible.

We have seen how invisible widgets like Row, Column, or Stack
have been used in our previous section –What is Layout in Flutter?

If you’re a beginner and have interest in learning Flutter layout
from scratch, you might take a look at the respective GitHub
repository.

Now, we want to move forward. Therefore, we want to make it
sure that, we can add more rows like the above screenshot and,
moreover, we can scroll down to the lower part, as well.

To make it happen, we need a scrolling widget like ListView.
Although the Column widget places its children widgets in its main
axis vertically, but after a certain limit it exhausts. And the overflow
error is thrown.

Just to avoid such accidental hiccups, let us break our code in
several custom widgets, first.

We keep the custom Custom Paint object in the model folder. This
pain object extends abstract class Custom Painter, and builds our
background.

2. How to implement a design by building layouts 78

1 import 'package:flutter/material.dart';

2

3 class ShapingPainter extends CustomPainter {

4 @override

5 void paint(Canvas canvas, Size size) {

6 final paint = Paint();

7

8 /// setting the paint color greyish

9 /// so it could cover the lower half of the screen

10 ///

11 paint.color = Colors.black12;

12

13 /// Creating a rectangle with size and width same as \

14 the canvas

15 /// It'll be going to cover the whole screen

16 ///

17 var rect = Rect.fromLTWH(0, 0, size.width, size.heigh\

18 t);

19

20 /// Drawing the rectangle using the paint

21 ///

22 canvas.drawRect(rect, paint);

23

24 /// Covering the upper half of the rectangle

25 ///

26 paint.color = Colors.purpleAccent;

27 // Firstly, creating a path to form the shape

28 var path = Path();

29 path.lineTo(0, size.height);

30 path.lineTo(size.width, 0);

31 // Secondly, closing the path to form a bounded shape

32 path.close();

33 canvas.drawPath(path, paint);

34 // Setting the color property of the paint

35 paint.color = Colors.white;

2. How to implement a design by building layouts 79

36 // Center of the canvas is (x,y) => (width/2, height/\

37 2)

38 var center = Offset(size.width / 2, size.height / 2);

39 // Finally, drawing the circle with center having rad\

40 ius 95.0

41 canvas.drawCircle(center, 95.0, paint);

42 }

43

44 @override

45 bool shouldRepaint(CustomPainter oldDelegate) => false;

46 }

Now, let’s start building the layout with the root app.

1 import 'package:flutter/material.dart';

2

3 import 'view/my_app.dart';

4

5 void main() => runApp(const MyApp());

6 The My App follows the Material Design guidelines and ext\

7 ends those properties to a custom widget Dashboard Home.

8

9 import 'package:flutter/material.dart';

10

11 import 'dash_board.dart';

12

13 class MyApp extends StatelessWidget {

14 const MyApp({Key? key}) : super(key: key);

15

16 @override

17 Widget build(BuildContext context) {

18 //var size = MediaQuery.of(context).size;

19 return const MaterialApp(

20 title: 'A Custom Home Page',

21 home: DashBoardHome(

2. How to implement a design by building layouts 80

22 // size: size,

23),

24);

25 }

26 }

The Dashboard Home scaffolds the body where we keep three
Container widgets inside a ListView.

1 import 'package:flutter/material.dart';

2 import '/model/shaping_painter.dart';

3

4 import 'all_containers.dart';

5

6 class DashBoardHome extends StatelessWidget {

7 const DashBoardHome({

8 Key? key,

9 }) : super(key: key);

10

11 @override

12 Widget build(BuildContext context) {

13 var size = MediaQuery.of(context).size;

14 return Scaffold(

15 appBar: AppBar(

16 backgroundColor: Colors.black12,

17 leading: const Icon(Icons.menu),

18 title: const Text(

19 'Let\'s Go!',

20 textAlign: TextAlign.center,

21),

22),

23 body: Stack(

24 children: <Widget>[

25 Container(

26 padding: const EdgeInsets.all(5),

2. How to implement a design by building layouts 81

27 child: CustomPaint(

28 painter: ShapingPainter(),

29 child: Container(

30 height: size.height / 1,

31),

32),

33),

34 ListView(

35 children: const [

36 FirstContainer(),

37 SecondContainer(),

38 ThirdContainer()

39],

40),

41],

42),

43);

44 }

45 }

Therefore, we need to take a look at the file where we’ve kept all
containers. Each Containers will have three rows that again will
have three Column widgets each.

1 import 'package:flutter/material.dart';

2

3 import 'all_columns.dart';

4

5 class FirstContainer extends StatelessWidget {

6 const FirstContainer({

7 Key? key,

8 }) : super(key: key);

9

10 @override

11 Widget build(BuildContext context) {

2. How to implement a design by building layouts 82

12 return Container(

13 margin: const EdgeInsets.all(10),

14 child: Padding(

15 padding: const EdgeInsets.all(10),

16 child: Row(

17 children: const [

18 FirstColumn(),

19 SecondColumn(),

20 ThirdColumn(),

21],

22),

23),

24);

25 }

26 }

27

28 class SecondContainer extends StatelessWidget {

29 const SecondContainer({

30 Key? key,

31 }) : super(key: key);

32

33 @override

34 Widget build(BuildContext context) {

35 return Container(

36 margin: const EdgeInsets.all(10),

37 child: Padding(

38 padding: const EdgeInsets.all(10),

39 child: Row(

40 children: const [

41 FirstColumn(),

42 SecondColumn(),

43 ThirdColumn(),

44],

45),

46),

2. How to implement a design by building layouts 83

47);

48 }

49 }

50

51 class ThirdContainer extends StatelessWidget {

52 const ThirdContainer({

53 Key? key,

54 }) : super(key: key);

55

56 @override

57 Widget build(BuildContext context) {

58 return Container(

59 margin: const EdgeInsets.all(10),

60 child: Padding(

61 padding: const EdgeInsets.all(10),

62 child: Row(

63 children: const [

64 FirstColumn(),

65 SecondColumn(),

66 ThirdColumn(),

67],

68),

69),

70);

71 }

72 }

We can place each Column widget in a single file. So that it looks
like the following screenshot.

2. How to implement a design by building layouts 84

Figure 2.3 – Building layout in Flutter with ListView, the upper part

However, that’s the upper portion of the screen. Before we take a
look at the lower part, let’s take a look at the code where we’ve kept
the Column widgets.

2. How to implement a design by building layouts 85

1 import 'package:flutter/material.dart';

2

3 class ThirdColumn extends StatelessWidget {

4 const ThirdColumn({

5 Key? key,

6 }) : super(key: key);

7

8 @override

9 Widget build(BuildContext context) {

10 return Column(

11 mainAxisAlignment: MainAxisAlignment.center,

12 children: [

13 Image.network(

14 'https://cdn.pixabay.com/photo/2021/12/12/20/26/f\

15 low-6866055_960_720.jpg',

16 width: 150,

17 height: 100,

18),

19 Container(

20 padding: const EdgeInsets.all(7),

21 child: const Text(

22 'Let\'s go',

23 style: TextStyle(

24 fontSize: 25,

25 fontWeight: FontWeight.bold,

26 color: Colors.blue,

27),

28),

29),

30],

31);

32 }

33 }

34

35 class SecondColumn extends StatelessWidget {

2. How to implement a design by building layouts 86

36 const SecondColumn({

37 Key? key,

38 }) : super(key: key);

39

40 @override

41 Widget build(BuildContext context) {

42 return Column(

43 mainAxisAlignment: MainAxisAlignment.center,

44 children: [

45 Image.network(

46 'https://cdn.pixabay.com/photo/2021/11/13/23/06/t\

47 ree-6792528_960_720.jpg',

48 width: 150,

49 height: 100,

50),

51 Container(

52 padding: const EdgeInsets.all(7),

53 child: const Text(

54 'Let\'s go',

55 style: TextStyle(

56 fontSize: 25,

57 fontWeight: FontWeight.bold,

58),

59),

60),

61],

62);

63 }

64 }

65

66 class FirstColumn extends StatelessWidget {

67 const FirstColumn({

68 Key? key,

69 }) : super(key: key);

70

2. How to implement a design by building layouts 87

71 @override

72 Widget build(BuildContext context) {

73 return Column(

74 mainAxisAlignment: MainAxisAlignment.center,

75 children: [

76 Image.network(

77 'https://cdn.pixabay.com/photo/2021/12/05/10/28/n\

78 ature-6847175_960_720.jpg',

79 width: 150,

80 height: 100,

81),

82 Container(

83 padding: const EdgeInsets.all(7),

84 child: const Text(

85 'Let\'s go',

86 style: TextStyle(

87 fontSize: 25,

88 fontWeight: FontWeight.bold,

89 color: Colors.white,

90),

91),

92),

93],

94);

95 }

96 }

As we can see, each Column widget places two child widgets in its
main axis. One is Image and the other is the Text widget.

Finally, we’ve successfully built the layout model based on the
principle that we can break the main widget tree in several small
widget trees that will again house several different type of Widgets.
Of these widgets, some are visible and some of them invisible.

Now, we can scroll down and take a look at the lower portion of
the screen.

2. How to implement a design by building layouts 88

Our next challenge will be to make a more complex tree of widgets
and layout based on the same principle. For this code snippet, please
visit the respective GitHub repository.

Till then, stay tuned and keep reading on. Happy reading and
coding Flutter.

What is an AppBar? How do you use
AppBar in Flutter?

Do you have web development experience? In that case, you must
have heard about the header section.

In a mobile app, built in Flutter, AppBar plays almost the same role.
Although not similar in every sense, yet they have similarities.

We use AppBar in Scaffold.appbar property. At the top of the screen,
app bar places itself as a fixed bar widget. However, we can control
its size and other functionalities.

Moreover, you may think app bar as a continuation of material
design component.

How do you use AppBar in Flutter?

An app bar consists of a toolbar and other widgets that we’re going
to see in a minute. In addition, an app bar exposes many kind of
actions with icon buttons.

To get an idea, we can think of an app where the front page app
bar takes us to the second page. For second page, flutter by default
makes a system to go back to the previous page.

At the top of the screen, we can see the app bar. On the left side,
there is leading property. In between the it places the title. On the
right side, there are icon buttons.

2. How to implement a design by building layouts 89

Flutter manages the app bar’s padding, so it can handle the system
UI’s intrusion. For that reason the body part never intrudes into the
app bar’s section.

In this app, we’ve followed the same custom theme. In addition,
we’ve not changed the material design components.

1 import 'package:flutter/material.dart';

2 import '../controllers/custom_theme.dart';

3

4 class HowAppbarWorks extends StatelessWidget {

5 const HowAppbarWorks({Key? key}) : super(key: key);

6

7 static const String _title = 'How Appbar Works';

8

9 @override

10 Widget build(BuildContext context) {

11 return MaterialApp(

12 title: _title,

13 home: AppbarFirstHome(),

14 theme: customTheme(),

15 debugShowCheckedModeBanner: false,

16);

17 }

18 }

Navigate to second page through AppBar As the home property
indicates the home page, we’ve defined it too as the following. And
in that page, we’ve defined the app bar properties.

2. How to implement a design by building layouts 90

1 class AppbarFirstHome extends StatelessWidget {

2 const AppbarFirstHome({Key? key}) : super(key: key);

3

4 @override

5 Widget build(BuildContext context) {

6 return Scaffold(

7 appBar: AppBar(

8 leading: Builder(

9 builder: (BuildContext context) {

10 return IconButton(

11 icon: const Icon(Icons.menu),

12 onPressed: () {

13 Scaffold.of(context).openDrawer();

14 },

15 tooltip: MaterialLocalizations.of(context).openAppDrawerT\

16 ooltip,

17);

18 },

19),

20 title: const Text('AppBar Home Page'),

21 actions: <Widget>[

22 IconButton(

23 icon: const Icon(Icons.add_alert),

24 tooltip: 'Show Snackbar',

25 onPressed: () {

26 ScaffoldMessenger.of(context).showSnackBar(

27 const SnackBar(

28 content: Text('This is a snackbar'),

29),

30);

31 },

32),

33 IconButton(

34 icon: const Icon(Icons.navigate_next),

35 tooltip: 'Go to the second page',

2. How to implement a design by building layouts 91

36 onPressed: () {

37 Navigator.push(context, MaterialPageRoute<void>(

38 builder: (BuildContext context) {

39 return AppbarSecondHome();

40 },

41));

42 },

43),

44],

45),

46 body: AppbarHomePage(),

47);

48 }

49 }

Because of the defined app bar’s property, we can click the bell icon
and it opens the snack bar widget at the bottom.

Not only showing the home page, but also we can move to the
second page through the app bar.

However, to do that, we need to use the following lines of code
inside app bar:

1 IconButton(

2 icon: const Icon(Icons.navigate_next),

3 tooltip: 'Go to the second page',

4 onPressed: () {

5 Navigator.push(context, MaterialPageRoute<void>(

6 builder: (BuildContext context) {

7 return AppbarSecondHome();

8 },

9));

10 },

11),

The second page shows the back button at its app bar. Consequently,

2. How to implement a design by building layouts 92

by clicking the back button, we can easily go back to the first page.
Moreover, we can again go to other pages, as per the design allows.

For full snippet of code regarding the material design components,
and other essential widgets, you may visit the GitHub repository.

AppBar Flutter: How to use AppBar
right way?

AppBar in Flutter plays a key role to give users a rich experience.
Here is a complete guide.

On Android toolbars represent AppBar. Certainly, it’s another
Material design widget that we’ve discussed earlier.

To use AppBar we firstly need another widget – Scaffold.

As we’ve just learned, AppBar consists of many toolbars.

Therefore, we can use our AppBar in many ways. We can navigate
to another page, we can use search icon to search our app, andmany
more.

We’ll see that in a minute.

Before that, to see more Material design widgets in one place, let’s
organize our code. Let’s create a folder “controllers” and “views”.

In “controllers” we create our AppBar widget. In addition, we can
visit the full code snippet in this GitHub repository.

2. How to implement a design by building layouts 93

1 import 'package:flutter/material.dart';

2 import 'package:flutter_artisan/views/app_bar_home.dart';

3

4 class AppBarWidget extends StatelessWidget {

5 const AppBarWidget({Key? key}) : super(key: key);

6

7 @override

8 Widget build(BuildContext context) {

9 return const AppBarHome();

10 }

11 }

And inside we have an AppBar home page, which will display all
the AppBar tools.

1 import 'package:flutter/material.dart';

2 import 'package:flutter_artisan/views/app_bar_next.dart';

3

4 class AppBarHome extends StatelessWidget {

5 const AppBarHome({Key? key}) : super(key: key);

6

7 @override

8 Widget build(BuildContext context) {

9 return Scaffold(

10 appBar: AppBar(

11 title: const Text('AppBar Example'),

12 actions: <Widget>[

13 IconButton(

14 icon: const Icon(Icons.add_alert),

15 tooltip: 'Show Snackbar',

16 onPressed: () {

17 ScaffoldMessenger.of(context).showSnackBar(

18 const SnackBar(

19 content: Text('A SnackBar'),

20),

2. How to implement a design by building layouts 94

21);

22 },

23),

24 IconButton(

25 icon: const Icon(Icons.search_outlined),

26 tooltip: 'Search',

27 onPressed: () {

28 // our code

29 },

30),

31 IconButton(

32 icon: const Icon(Icons.navigate_next),

33 tooltip: 'Next page',

34 onPressed: () {

35 Navigator.push(

36 context,

37 MaterialPageRoute<void>(

38 builder: (BuildContext context) {

39 return const AppBarNext();

40 },

41),

42);

43 },

44),

45],

46),

47 body: const Center(

48 child: Text(

49 'This is the AppBar Example home page',

50 style: TextStyle(fontSize: 30),

51 textAlign: TextAlign.center,

52),

53),

54);

55 }

2. How to implement a design by building layouts 95

56 }

Before explaining the code, let’s take a look at how our AppBar
home page looks like.

As we’ve learned earlier, an app bar, resting on the top of our flutter
app, consists of a toolbar and potentially other widgets.

That may include TabBar and a FlexibleSpaceBar, which we’ll
discuss later.

The most important role of AppBar is it expose one or more
common actions with IconButtons.

In our case, we can see one bell icon, search icon and navigate icon.

They all have one common named parameter – onTap method.
With the help of that method, we can even change the state of the
flutter app.

That’s why, the nearest ancestor of AppBar widget is StatefulWid-
get.

Flutter places AppBar as a fixed height widget at the top of the
screen. It happens because App bars are typically used in the
Scaffold.appBar property.

We can even add scrollable AppBar. However, that’s a different
topic. For a scrollable app bar, we use SliverAppBar, which embeds
an AppBar in a sliver for use in a CustomScrollView.

Usually, any AppBar displays the toolbar widgets, such as leading,
title, and actions.

In the above code, we’ve used actions to display our icons.

2. How to implement a design by building layouts 96

1 appBar: AppBar(

2 title: const Text('AppBar Example'),

3 actions: <Widget>[

4 IconButton(

5 icon: const Icon(Icons.add_alert),

6 tooltip: 'Show Snackbar',

7 onPressed: () {

8 ScaffoldMessenger.of(context).showSnackBar(

9 const SnackBar(

10 content: Text('A SnackBar'),

11),

12);

13 },

14),

15 ...

Where do I put AppBar in flutter?

The advantagewe enjoy in Flutter is that it allows us to createmenu,
search,or leading button in app bar.

With a single AppBar property, we can create several functionalities
in our Flutter app.

If we click the bell icon button, it opens up the snack bar.

1 IconButton(

2 icon: const Icon(Icons.add_alert),

3 tooltip: 'Show Snackbar',

4 onPressed: () {

5 ScaffoldMessenger.of(context).showSnackBar(

6 const SnackBar(

7 content: Text('A SnackBar'),

8),

9);

2. How to implement a design by building layouts 97

10 },

11),

12 ...

In a separate article we’ll discuss the role of SnackBar widget.

As a result we can see that snack bar pops up at the bottom of our
app.

Inside our SnackBar, we can place many more widgets.

Subsequently, we can navigate to another page from AppBar.

1 IconButton(

2 icon: const Icon(Icons.navigate_next),

3 tooltip: 'Next page',

4 onPressed: () {

5 Navigator.push(

6 context,

7 MaterialPageRoute<void>(

8 builder: (BuildContext context) {

9 return const AppBarNext();

10 },

11),

12);

13 },

14),

15 ...

We have placed the custom stateless AppBarNext widget inside our
views folder. Let’s take a look at the code first.

2. How to implement a design by building layouts 98

1 import 'package:flutter/material.dart';

2 import 'package:flutter/widgets.dart';

3

4 class AppBarNext extends StatelessWidget {

5 const AppBarNext({Key? key}) : super(key: key);

6

7 @override

8 Widget build(BuildContext context) {

9 return Scaffold(

10 appBar: AppBar(

11 title: const Text('App Bar Next Page'),

12),

13 body: const AppBarNextPage(),

14);

15 }

16 }

17

18 class AppBarNextPage extends StatelessWidget {

19 const AppBarNextPage({Key? key}) : super(key: key);

20

21 @override

22 Widget build(BuildContext context) {

23 return Center(

24 child: Container(

25 margin: const EdgeInsets.all(

26 10,

27),

28 padding: const EdgeInsets.all(

29 10,

30),

31 child: const Text(

32 'AppBar Next Page',

33 style: TextStyle(

34 fontWeight: FontWeight.bold,

35 fontSize: 30,

2. How to implement a design by building layouts 99

36),

37),

38),

39);

40 }

41 }

Most importantly, we can use another AppBar, because it’s another
page. And, of course, we can add other functionalities in this
AppBar.

As a result, for this page we’ve used another AppBar.

How do I style AppBar flutter?

Remember, every pagemay have different AppBar in Flutter. There-
fore, to style AppBar we can use different approaches.

In the above code snippets we’ve restricted ourselves to certain
features only.

But any AppBar comes with many functionalities that include
background color, text font, leading, and many more.

We can change the alignment or position of the title in our AppBar.

In the above code snippet, we’ve kept it on the left side. However,
if we feel, we change its position and move it either to the center
or right.

In actions widget, we can add more icons with different function-
alities.

That includes a pop up menu.

It depends on what type of Flutter app we’re going to build.

In this Material design series we’ll discuss more useful widgets, so
please stay tuned.

2. How to implement a design by building layouts 100

What is SliverAppBar in flutter?

SliverAppBar is a special type of AppBar in flutter that can change
its appearance and collapses as we scroll up or down.

SliverAppBar is a material design component widget, which must
have a MaterialApp as its ancestors.

However, the name suggests that it is a kind of AppBar.

Then what it is exactly? And how do we use a SliverAppBar?

Here, the word sliver is important, because it defines a scrollable
area in the AppBar, which has the ability to collapse.

As a result, we can conclude that SliverAppBar is a kind of AppBar
that can change with body of our flutter app.

To make it more clear, we can add that this particular AppBar can
change its appearance, if we scroll up it can shrink and gets smaller
in size, even it can disappear. And, on the contrary, it can also gets
to its normal size by blending with the body, as we scroll down
again.

As a result, we can use an image as its background. Since it occupies
the upper part, when we scroll up or down, it plays the role of a
navigation bar in iOS and acts as a toolbar in Android app.

Let’s see two images one after the other, so that we can have a more
clear picture of what is SliverAppBar and how it works.

2. How to implement a design by building layouts 101

Figure 2.4.1 – SliverAppBar in Flutter

2. How to implement a design by building layouts 102

Now, if we scroll up to see the bottom part, the image disappears
and the text only remains. The SliverAppBar collapses.

To make it simple, we will take a look at the full code where we’ll
show how SliverAppBar integrates with a CustomScrollView.

1 import 'package:flutter/material.dart';

2

3 class SliverAppBarExample extends StatelessWidget {

4 const SliverAppBarExample({Key? key}) : super(key: key);

5

6 @override

7 Widget build(BuildContext context) {

8 return MaterialApp(

9 title: 'Sliver AppBar Example',

10 home: SliverAppBarHome(),

11);

12 }

13 }

14

15 class SliverAppBarHome extends StatelessWidget {

16 const SliverAppBarHome({Key? key}) : super(key: key);

17

18 @override

19 Widget build(BuildContext context) {

20 return Scaffold(

21 body: CustomScrollView(

22 slivers: [

23 SliverAppBar(

24 expandedHeight: 200.0,

25 floating: false,

26 pinned: true,

27 flexibleSpace: FlexibleSpaceBar(

28 centerTitle: true,

29 title: Text(

30 'It will collapse',

2. How to implement a design by building layouts 103

31 style: TextStyle(

32 color: Colors.white,

33 fontSize: 16.0,

34),

35),

36 background: Image.network(

37 'https://cdn.pixabay.com/photo/2016/09/10\

38 /17/18/book-1659717_960_720.jpg',

39 fit: BoxFit.cover,

40),

41),

42),

43 SliverFixedExtentList(

44 itemExtent: 50,

45 delegate: SliverChildListDelegate([

46 Container(color: Colors.red),

47 Container(color: Colors.green),

48 Container(color: Colors.blue),

49 Container(color: Colors.red),

50 Container(color: Colors.green),

51 Container(color: Colors.blue),

52 Container(color: Colors.red),

53 Container(color: Colors.green),

54 Container(color: Colors.blue),

55 Container(color: Colors.red),

56 Container(color: Colors.green),

57 Container(color: Colors.blue),

58]),

59),

60],

61),

62);

63 }

64 }

The Custom scroll view has the slivers parameter that returns a list

2. How to implement a design by building layouts 104

of widgets.

1 CustomScrollView(

2 slivers: [

3 SliverAppBar(

4 expandedHeight: 200.0,

5 floating: false,

6 pinned: true,

7 flexibleSpace: FlexibleSpaceBar(

8 ...

As a result we have added a sliver fixed extent list widget and used
a combination of colors.

In our next tutorial we’ll show how we this special collapsible
AppBar can act as a toolbar or any other widgets, such as a TabBar
and a FlexibleSpaceBar.

How to use AppBar Toolbars in
flutter

An AppBar is the integral part of Material Design principles in
Flutter with many features.

We’ve been discussing layout and designs in Flutter, and we’ve
learned a couple of design principles so far. AppBar is an integral
part of Material Design, and Flutter layout. Although we had a
gentle introduction to this topic, still we feel something more we
should learn regarding AppBar.

On Android, as an integral part of material design principles,
toolbars represent AppBar.

To use AppBar we firstly need another widget – Scaffold.

2. How to implement a design by building layouts 105

Now once included, the AppBar widget consists of many toolbars.
As a result, we can use our AppBar in many ways. We can navigate
to another page, we can use search icon to search our app, andmany
more.

We’ll see those features in a minute.

Consisting of a toolbar and otherwidgets aswell, anAppBar always
rests on the top of the Flutter application. Since, it rests on the top,
we must make it look great. Moreover, we need to add as many
functionalities as possible.

That may include TabBar and a FlexibleSpaceBar, which we’re
going to discuss in a moment.

The most important role of AppBar is it exposes one or more
common actions with IconButtons.

How does it look like? Let’s take a look at the screenshot below.

2. How to implement a design by building layouts 106

Figure 2.4 – Flutter AppBar using toolbars and other features

The AppBar, displayed above, shows us many things.

Firstly, we’ve used a color gradient as its background, that matches
with our Application’s background color combination.

Secondly, with the help of toolbars, and actions, and IconButtons
we’ve been able to add more functionalities.

2. How to implement a design by building layouts 107

What is the use of AppBar?

Let’s take a look at the code first. And after that, we can discuss the
code and try to understand how an AppBar may affect our whole
Flutter application’s design and layout.

In our model folder we have defined a CustomPaint object that
decides how our flutter application will exactly look like.

1 import 'package:flutter/material.dart';

2

3 class ShapingPainter extends CustomPainter {

4 @override

5 void paint(Canvas canvas, Size size) {

6 final paint = Paint();

7

8 /// setting the paint color greyish

9 /// so it could cover the lower half of the screen

10 ///

11 paint.color = Colors.black12;

12

13 /// Creating a rectangle with size and width same as \

14 the canvas

15 /// It'll be going to cover the whole screen

16 ///

17 var rect = Rect.fromLTWH(0, 0, size.width, size.heigh\

18 t);

19

20 /// Drawing the rectangle using the paint

21 ///

22 canvas.drawRect(rect, paint);

23

24 /// Covering the upper half of the rectangle

25 ///

26 paint.color = Colors.purpleAccent;

27 // Firstly, creating a path to form the shape

2. How to implement a design by building layouts 108

28 var path = Path();

29 path.lineTo(0, size.height);

30 path.lineTo(size.width, 0);

31 // Secondly, closing the path to form a bounded shape

32 path.close();

33 canvas.drawPath(path, paint);

34 // Setting the color property of the paint

35 paint.color = Colors.white;

36 // Center of the canvas is (x,y) => (width/2, height/\

37 2)

38 var center = Offset(size.width / 2, size.height / 2);

39 // Finally, drawing the circle with center having rad\

40 ius 95.0

41 canvas.drawCircle(center, 95.0, paint);

42 }

43

44 @override

45 bool shouldRepaint(CustomPainter oldDelegate) => false;

46 }

Next, comes the root app.

1 import 'package:flutter/material.dart';

2

3 import 'view/my_app.dart';

4

5 void main() => runApp(const MyApp());

6 The My App widget calls a Dash Board Home page.

7

8 import 'package:flutter/material.dart';

9 import 'dash_board_home.dart';

10

11 class MyApp extends StatelessWidget {

12 const MyApp({Key? key}) : super(key: key);

13

2. How to implement a design by building layouts 109

14 @override

15 Widget build(BuildContext context) {

16 return MaterialApp(

17 debugShowCheckedModeBanner: false,

18 title: 'A Custom Home Page',

19

20 /// ignore: todo

21 ///TODO: we'll make a custom global theme later

22 ///

23 theme: ThemeData(

24 primarySwatch: Colors.blue,

25),

26 home: DashBoardHome(),

27);

28 }

29 }

In the Dash Board Home screen we’ve defined our AppBar with all
functionalities.

1 import 'package:flutter/material.dart';

2 import '/model/shaping_painter.dart';

3

4 import 'all_containers.dart';

5

6 class DashBoardHome extends StatelessWidget {

7 const DashBoardHome({

8 Key? key,

9 }) : super(key: key);

10

11 @override

12 Widget build(BuildContext context) {

13 var size = MediaQuery.of(context).size;

14 return DefaultTabController(

15 length: 4,

2. How to implement a design by building layouts 110

16 child: Scaffold(

17 appBar: AppBar(

18 //backgroundColor: Colors.grey[400],

19 flexibleSpace: Container(

20 decoration: const BoxDecoration(

21 gradient: LinearGradient(

22 colors: [

23 Colors.pink,

24 Colors.grey,

25],

26 begin: Alignment.topRight,

27 end: Alignment.bottomRight,

28),

29),

30),

31 elevation: 20,

32 leading: const Icon(Icons.menu),

33 title: const Text(

34 'Let\'s Go!',

35 textAlign: TextAlign.center,

36),

37 actions: [

38 IconButton(

39 onPressed: () {},

40 icon: const Icon(Icons.ac_unit),

41),

42 IconButton(

43 onPressed: () {},

44 icon: const Icon(

45 Icons.notification_add,

46),

47),

48 IconButton(

49 onPressed: () {},

50 icon: const Icon(

2. How to implement a design by building layouts 111

51 Icons.search,

52),

53),

54],

55 bottom: TabBar(

56 tabs: [

57 Tab(

58 icon: IconButton(

59 onPressed: () {},

60 icon: const Icon(

61 Icons.home,

62),

63),

64 text: 'Home',

65),

66 Tab(

67 icon: IconButton(

68 onPressed: () {},

69 icon: const Icon(

70 Icons.account_box,

71),

72),

73 text: 'Log in',

74),

75 Tab(

76 icon: IconButton(

77 onPressed: () {},

78 icon: const Icon(

79 Icons.security,

80),

81),

82 text: 'Account',

83),

84 Tab(

85 icon: IconButton(

2. How to implement a design by building layouts 112

86 onPressed: () {},

87 icon: const Icon(

88 Icons.settings,

89),

90),

91 text: 'Settings',

92),

93],

94),

95),

96 body: Stack(

97 children: <Widget>[

98 Container(

99 padding: const EdgeInsets.all(5),

100 child: CustomPaint(

101 painter: ShapingPainter(),

102 child: Container(

103 height: size.height / 1,

104),

105),

106),

107 ListView(

108 children: const [

109 FirstContainer(),

110 SecondContainer(),

111 ThirdContainer()

112],

113),

114],

115),

116),

117);

118 }

119 }

Before we’ve implied these functionalities in our AppBar, let us

2. How to implement a design by building layouts 113

see the old AppBar first. So that we can understand how did these
changes affect our AppBar as a whole.

Before the change, it looked like the above screenshot.

Now, how did we apply the change?

How do I add icons to AppBar?

It all started with Default Tab Controller widget that we’ve used to
wrap our Scaffold whose child is AppBar.

1 return DefaultTabController(

2 length: 4,

3 child: Scaffold(

4 appBar: AppBar(

5 ...

Next we’ve defined the length of the list of the tabs that we’re going
to use.

It is 4, so we can use four tabs at the bottom.

1 bottom: TabBar(

2 tabs: [

3 Tab(

4 icon: IconButton(

5 onPressed: () {},

6 icon: const Icon(

7 Icons.home,

8),

9),

10 text: 'Home',

11),

12 Tab(

13 icon: IconButton(

2. How to implement a design by building layouts 114

14 onPressed: () {},

15 icon: const Icon(

16 Icons.account_box,

17),

18),

19 text: 'Log in',

20),

21 Tab(

22 icon: IconButton(

23 onPressed: () {},

24 icon: const Icon(

25 Icons.security,

26),

27),

28 text: 'Account',

29),

30 Tab(

31 icon: IconButton(

32 onPressed: () {},

33 icon: const Icon(

34 Icons.settings,

35),

36),

37 text: 'Settings',

38),

39],

40),

41),

42 ...

However, any AppBar displays the toolbar widgets, such as leading,
title, and actions. Therefore, we’ve used them as well.

2. How to implement a design by building layouts 115

1 elevation: 20,

2 leading: const Icon(Icons.menu),

3 actions: [

4 IconButton(

5 onPressed: () {},

6 icon: const Icon(Icons.ac_unit),

7),

8 ...

Elevation parameter refers to the shadow at the bottom of our
AppBar. We could have made it thinner or thicker.

The leading property decides which Widget will be placed at the
very beginning of the AppBar. We’ve used a menu Icon Widget.
We usually keep this place to use for a Drawer widget. For full code
please visit the related GitHub repository.

We can even add scrollable AppBar. However, that’s a different
topic.

In the coming section we’ll discuss that. We’ll also discuss a special
AppBar for scrolling widgets.

For a scrollable app bar, we use SliverAppBar, which embeds an
AppBar in a sliver for use in a CustomScrollView.

How to make tab bar view in flutter

The Tab Bar View widget works in conjunction with default tab
controller making great designs.

We use TabBarView widget to display the Widget which corre-
sponds to the currently selected tab. It basically follows the prin-
ciple of PageView and this widget is typically used in conjunction
with a TabBar.

In our previous section we’ve learned how to use various toolbars
in an AppBar, so that we can navigate to other pages.

2. How to implement a design by building layouts 116

However, we’ve not taken any concrete steps to make it happen. In
this section, we’ll learn how we can do that.

In the last section, we’ve build an AppBar like the following
screenshot.

Figure 2.5 – Flutter tab bar view first page

Although we’ve successfully designed the above AppBar, we
couldn’t move to any other pages, except the home page. By
default, it opens up.

Now, we want to navigate to other pages shown in the tabs, such
as Log in, Accounts, or Settings.

Firstly, we’ve wrapped our main Dash Board Home page with a
DefaultTabController.

It is customary that if a TabController is not provided, then there
must be a DefaultTabController ancestor.

Why so?

Because the tab controller’s TabController.length must equal the
length of the children list of the Widgets. Moreover, it should also
match the length of the TabBar.tabs list that houses the pages.

2. How to implement a design by building layouts 117

Let us see the code, so that we can understand this feature in a
better way.

1 import 'package:flutter/material.dart';

2 import '/model/all_tab_bars.dart';

3 import '/model/shaping_painter.dart';

4

5 import 'all_containers.dart';

6 import 'all_pages.dart';

7

8 class DashBoardHome extends StatelessWidget {

9 const DashBoardHome({

10 Key? key,

11 }) : super(key: key);

12

13 @override

14 Widget build(BuildContext context) {

15 var size = MediaQuery.of(context).size;

16 return DefaultTabController(

17 length: 4,

18 child: Scaffold(

19 appBar: AppBar(

20 //backgroundColor: Colors.grey[400],

21 flexibleSpace: Container(

22 decoration: const BoxDecoration(

23 gradient: LinearGradient(

24 colors: [

25 Colors.pink,

26 Colors.grey,

27],

28 begin: Alignment.topRight,

29 end: Alignment.bottomRight,

30),

31),

32),

33 elevation: 20,

2. How to implement a design by building layouts 118

34 titleSpacing: 80,

35 leading: const Icon(Icons.menu),

36 title: const Text(

37 'Let\'s Go!',

38 textAlign: TextAlign.center,

39),

40 actions: [

41 buildIcons(

42 const Icon(Icons.ac_unit),

43),

44 buildIcons(

45 const Icon(

46 Icons.notification_add,

47),

48),

49 buildIcons(

50 const Icon(Icons.ac_unit),

51),

52 buildIcons(

53 const Icon(Icons.search),

54),

55],

56 bottom: allTabBars(),

57),

58 body: TabBarView(

59 children: [

60 FirstPage(size: size),

61 SecondPage(size: size),

62 ThirdPage(size: size),

63 FourthPage(size: size),

64],

65),

66),

67);

68 }

2. How to implement a design by building layouts 119

69

70 IconButton buildIcons(Icon icon) {

71 return IconButton(

72 onPressed: () {},

73 icon: const Icon(Icons.ac_unit),

74);

75 }

76 }

As we can see, we’ve provided the DefaultTabController‘s length
property first.

Next, according to the number of length, we return the equal
number of list of Widgets in actions property.

1 actions: [

2 buildIcons(

3 const Icon(Icons.ac_unit),

4),

5 buildIcons(

6 const Icon(

7 Icons.notification_add,

8),

9),

10 buildIcons(

11 const Icon(Icons.ac_unit),

12),

13 buildIcons(

14 const Icon(Icons.search),

15),

16],

17 ...

After that, we’ve followed the same rule in case of Tab Bar View
pages.

2. How to implement a design by building layouts 120

1 body: TabBarView(

2 children: [

3 FirstPage(size: size),

4 SecondPage(size: size),

5 ThirdPage(size: size),

6 FourthPage(size: size),

7],

8),

9 ...

We’ve provided just four pages.

As a result, when we click the Log in, the Log in page opens up.

Figure 2.6 – Tab bar view shows second page

When we click the Account page, it opens up.

2. How to implement a design by building layouts 121

Figure 2.7 – Tab bar view shows third page

And finally, when we click the Settings page, it also opens up.
Moreover, when each tab is clicked, it is highlighted by a blue
shadow.

To get the full code, please visit the respective GitHub repository.

In this section, we’ve learned how the tab bar works in Flutter. We
use the tabs mainly for mobile navigation.

The styling of tabs may vary according to the operating systems.
For example, we can place the tabs at the top of the screen in
android devices. On the contrary, we can place them at the bottom
in iOS devices.

However, don’t assume that we cannot apply the same rule in
Android.We can use the tabs at the bottom in Android in a different
way.

To sum up, working with tabs is a common pattern in Android and
iOS apps.

And, in addition to that, we’ve already learned that they follow
the Material Design principles. Flutter is in advantage, because it
provides a convenient way to create a tab layout.

2. How to implement a design by building layouts 122

Moreover, you may think app bar as a continuation of material
design component.

An app bar consists of a toolbar and other widgets that we’ve just
seen. In addition, an app bar exposes many kind of actions with
icon buttons.

And the story of multipurpose AppBar is not finished yet. We’ll
learn how we can make AppBar transparent in our next section.

How to use TabBar in Flutter

TabBar is guided by default tab controller that keeps tabs and
contents in sync.

We use TabBar inside the AppBar in Flutter. In this section, we’ll
learn how to set a TabBar inside Flutter AppBar and we’ll also learn
how to use TabBar.

In general, when we select a tab, it displays some content or a page.
Just like the following screenshot.

2. How to implement a design by building layouts 123

Figure 2.8 – Home tab is selected and displays the Home page

We’ve created tabs using the TabBar widget. As we can see in the
above screenshot, we’ve created four tabs and each tab will display
different page.

Now this page might be not as simple as we’ve shown in this
example. Each page, or screen of any Flutter application should
have a unique identity that we’re also going to learn as we progress.

Let’s try to understand the inside mechanism. After that, we’ll see
the code.

Firstly, any TabBar needs a TabBarView widget to display different
pages.

Although before that, when a tab is selected, the TabBar widget
always looks up and tries to find the nearest DefaultTabController.

Basically, the TabController is created by the DefaultTabController.
Because of that reason, we wrap the Scaffold widget by DefaultTab-

2. How to implement a design by building layouts 124

Controller.

Sitting at the top, the DfaultTabController maintains the synchro-
nization between tab and content. That’s why, it asks how many
tabs we’re going to create. The length property sets the value.

As a result, when we select a tab, only related page is opened up in
the body section. We’ve clicked the Log in tab, therefore the Log in
page has popped up.

Figure 2.9 – Tab controller keeps tab and content in sync

Let’s take a look at the code snippet where we’ve defined these
properties.

2. How to implement a design by building layouts 125

1 import 'package:flutter/material.dart';

2

3 //import 'all_pages.dart';

4

5 /// adding transparent appbar

6 /// modifying build icons

7

8 class DashBoardHome extends StatelessWidget {

9 const DashBoardHome({

10 Key? key,

11 }) : super(key: key);

12

13 @override

14 Widget build(BuildContext context) {

15 //var size = MediaQuery.of(context).size;

16 return DefaultTabController(

17 length: 4,

18 child: Scaffold(

19 appBar: AppBar(

20 centerTitle: true,

21

22 //backgroundColor: Colors.grey[400],

23 flexibleSpace: Container(

24 decoration: const BoxDecoration(

25 gradient: LinearGradient(

26 colors: [

27 Colors.pink,

28 Colors.grey,

29],

30 begin: Alignment.topRight,

31 end: Alignment.bottomRight,

32),

33),

34),

35 elevation: 20,

2. How to implement a design by building layouts 126

36 titleSpacing: 80,

37 leading: const Icon(Icons.menu),

38 title: const Text(

39 'Let\'s Go!',

40 textAlign: TextAlign.center,

41),

42 actions: [

43 buildIcons(

44 const Icon(Icons.add_a_photo),

45),

46 buildIcons(

47 const Icon(

48 Icons.notification_add,

49),

50),

51 buildIcons(

52 const Icon(

53 Icons.settings,

54),

55),

56 buildIcons(

57 const Icon(Icons.search),

58),

59],

60 bottom: const TabBar(

61 isScrollable: true,

62 indicatorColor: Colors.red,

63 indicatorWeight: 10,

64 tabs: [

65 Tab(

66 icon: Icon(

67 Icons.home,

68),

69 text: 'Home',

70),

2. How to implement a design by building layouts 127

71 Tab(

72 icon: Icon(

73 Icons.panorama_fish_eye,

74),

75 text: 'Log in',

76),

77 Tab(

78 icon: Icon(

79 Icons.settings,

80),

81 text: 'Settings',

82),

83 Tab(

84 icon: Icon(

85 Icons.local_activity,

86),

87 text: 'Location',

88),

89],

90),

91),

92 body: TabBarView(

93 children: [

94 newPage('Home'),

95 newPage('Log in'),

96 newPage('Settings'),

97 newPage('Location'),

98],

99),

100),

101);

102 }

103

104 IconButton buildIcons(Icon icon) {

105 return IconButton(

2. How to implement a design by building layouts 128

106 onPressed: () {},

107 icon: icon,

108);

109 }

110

111 Widget newPage(String text) => Center(

112 child: Text(

113 text,

114 style: const TextStyle(

115 fontSize: 60,

116 fontWeight: FontWeight.bold,

117 color: Colors.red,

118),

119),

120);

121 }

For the full code, please visit the concerned GitHub repository.

The above code is quite simple. We’ve wrapped the Scaffold widget
with default tab controller and set the length to 4. It means, we
can keep four tabs inside TabBar and four pages inside TabBarView
widget.

Exactly that happens in the above code.

1 bottom: const TabBar(

2 isScrollable: true,

3 indicatorColor: Colors.red,

4 indicatorWeight: 10,

5 tabs: [

6 Tab(

7 icon: Icon(

8 Icons.home,

9),

10 text: 'Home',

2. How to implement a design by building layouts 129

11),

12 Tab(

13 icon: Icon(

14 Icons.panorama_fish_eye,

15),

16 text: 'Log in',

17),

18 Tab(

19 icon: Icon(

20 Icons.settings,

21),

22 text: 'Settings',

23),

24 Tab(

25 icon: Icon(

26 Icons.local_activity,

27),

28 text: 'Location',

29),

30],

31),

32),

33 body: TabBarView(

34 children: [

35 newPage('Home'),

36 newPage('Log in'),

37 newPage('Settings'),

38 newPage('Location'),

39],

40),

41),

42

Here DefaultTabController has created a Tab Controller and makes
it available to all descendant widgets.

2. How to implement a design by building layouts 130

As a result, we can set the other properties of TabBar as well.

1 bottom: const TabBar(

2 isScrollable: true,

3 indicatorColor: Colors.red,

4 indicatorWeight: 10,

5 ...

We can add more tabs and TabBarView pages. Because we have
set the “isScrollable” property true. Moreover, indicator color, and
indicator height to a certain value. Consequently, when we click
the tab, it’s highlighted.

The job of DefaultTabController is to share a TabController with a
TabBar or a TabBarView. No exception takes place here. It does its
job, and the tab and content are in complete sync.

Last but not least. One caveat before we close down this topic.

Since TabBar works at tandem with TabBarView widget, and pages
– to be shown – are maintained by TabBarView, we need not
use Icon Button widget inside the TabBar. That’ll throw a render
overflow error.

Why?

The reason is quite logical. The TabBar here just shows the icons. It
does not allow those icons to pass a callback.

How to make the AppBar
transparent

With a simple tweak in AppBar, we can make it completely or
partially transparent.

To make the AppBar transparent is quite easy. All we need to do is
tweak the back ground color property of the AppBar.

2. How to implement a design by building layouts 131

Now, question is what is the role of back ground color in an
AppBar?

It basically fills the fill color to use for an app bar’s Material.

If we don’t supply any value, it uses the App-
BarTheme.backgroundColor, which is blue by default.

That’s the reason, when we create a fresh Flutter Application, it
comes up with a blue AppBar.

To make it happen, the AppBar also uses the theme’s
ColorScheme.primary, if the overall theme’s brightness is
Brightness.light.

However, if the theme’s brightness is Brightness.dark, then it uses
the ColorScheme.surface.

When we want to make the AppBar scrollable, we need to overlaps
the AppBar.

And to do that, we need to use the transparent property, or the
withOpacity property of the color class.

Let’s try the transparent property and see the effect first.

2. How to implement a design by building layouts 132

Figure 2.10 – Background color transparent

As a result, the image’s color overlaps the AppBar completely.

However, in case of opacity, we can control how much opacity we
can use.

2. How to implement a design by building layouts 133

Figure 2.11 – Opacity makes AppBar partially transparent

Finally, the time has come to see the full code where we’ve defined
such properties.

2. How to implement a design by building layouts 134

1 import 'package:flutter/material.dart';

2 import '/model/all_tab_bars.dart';

3

4 //import 'all_pages.dart';

5

6 /// adding transparent appbar

7 /// modifying build icons

8

9 class DashBoardHome extends StatelessWidget {

10 const DashBoardHome({

11 Key? key,

12 }) : super(key: key);

13

14 @override

15 Widget build(BuildContext context) {

16 //var size = MediaQuery.of(context).size;

17 return DefaultTabController(

18 length: 4,

19 child: Scaffold(

20 extendBodyBehindAppBar: true,

21 appBar: AppBar(

22 title: const Text('Testing Transparency'),

23 centerTitle: true,

24 leading: const BackButton(

25 color: Colors.red,

26),

27 actions: [

28 IconButton(

29 onPressed: () {},

30 icon: const Icon(Icons.holiday_village),

31)

32],

33 shape: const RoundedRectangleBorder(

34 borderRadius: BorderRadius.vertical(

35 bottom: Radius.circular(20),

2. How to implement a design by building layouts 135

36),

37),

38 //backgroundColor: Colors.transparent,

39 backgroundColor: Colors.white.withOpacity(0.19),

40 elevation: 0,

41),

42 body: Image.network(

43 'https://cdn.pixabay.com/photo/2021/10/19/10/56/c\

44 at-6723256_960_720.jpg',

45 fit: BoxFit.cover,

46 width: double.infinity,

47 height: double.infinity,

48),

49),

50);

51 }

52

53 IconButton buildIcons(Icon icon) {

54 return IconButton(

55 onPressed: () {},

56 icon: icon,

57);

58 }

59 }

In the above code, only this line helps us to get the effect.

1 //backgroundColor: Colors.transparent,

2 backgroundColor: Colors.white.withOpacity(0.19),

Use any one of them, and make your AppBar transparent.

For the full code snippet please visit the respective GitHub reposi-
tory mentioned below.

2. How to implement a design by building layouts 136

• To check all related code snippets, please visit these GitHub
branches⁹

• To check all related code snippets, please visit these GitHub
branches¹⁰

• To check all related code snippets, please visit these GitHub
branches¹¹

• To check all related code snippets, please visit these GitHub
branches¹²

• To check all related code snippets, please visit these GitHub
branches¹³

⁹https://github.com/sanjibsinha/flutter_artisan/blob/basic-layout-part-one/lib/main.dart
¹⁰https://github.com/sanjibsinha/flutter_artisan/tree/layout-part-one
¹¹https://github.com/sanjibsinha/flutter_artisan/tree/layout-part-two
¹²https://github.com/sanjibsinha/flutter_artisan/tree/appbar-layout
¹³https://github.com/sanjibsinha/flutter_artisan/tree/appbar-layout-part-one

https://github.com/sanjibsinha/flutter_artisan/blob/basic-layout-part-one/lib/main.dart
https://github.com/sanjibsinha/flutter_artisan/blob/basic-layout-part-one/lib/main.dart
https://github.com/sanjibsinha/flutter_artisan/tree/layout-part-one
https://github.com/sanjibsinha/flutter_artisan/tree/layout-part-one
https://github.com/sanjibsinha/flutter_artisan/tree/layout-part-two
https://github.com/sanjibsinha/flutter_artisan/tree/layout-part-two
https://github.com/sanjibsinha/flutter_artisan/tree/appbar-layout
https://github.com/sanjibsinha/flutter_artisan/tree/appbar-layout
https://github.com/sanjibsinha/flutter_artisan/tree/appbar-layout-part-one
https://github.com/sanjibsinha/flutter_artisan/tree/appbar-layout-part-one
https://github.com/sanjibsinha/flutter_artisan/blob/basic-layout-part-one/lib/main.dart
https://github.com/sanjibsinha/flutter_artisan/tree/layout-part-one
https://github.com/sanjibsinha/flutter_artisan/tree/layout-part-two
https://github.com/sanjibsinha/flutter_artisan/tree/appbar-layout
https://github.com/sanjibsinha/flutter_artisan/tree/appbar-layout-part-one

3. What are responsive
and adaptive Flutter

Applications
Let us see which layout Widgets help us to build an adaptive and
responsive Flutter Application.

How to use Stack in Flutter

Stack contains a list of widgets and positions them on top of the
other children widgets.

To use Stackwidget in Flutter, firstly, we need to know how it works.
Secondly, we’ll learn how we can use Stack widget to build and
design an adaptive and responsive Flutter application that runs on
web and mobile platform at the same time.

Stack widget is one of the main layout widgets that we’ll need to
use very often to build any kind of Flutter application.

Stack contains a list of widgets and positions them on top of the
other. That means, the Stack allows us to overlap multiple widgets
on a single screen. In other words, the first child of Stack is the
bottom-most widget. And the last child is the top-most widget.

The first question that comes to our mind is, according to the Stack
mechanism, the top-most widget should only be visible, as it sits on
top of the other widgets and completely overlaps others.

Then, how we would use Stack, so every child widget will not only
be visible, but also be positioned to build a nice-looking layout.

3. What are responsive and adaptive Flutter Applications 138

Therefore, the Stack either wrap its children widgets in a Positioned
widget, or may place them in a Non-Positioned way.

We’ll see how we can use Stack to build the following design.

3. What are responsive and adaptive Flutter Applications 139

Figure 3.1 – Stack widget use positioned widgets

We’ve built the above design using Stack widget that again posi-
tions its children widget in a way, so that the image and text are
placed properly.

3. What are responsive and adaptive Flutter Applications 140

Not only that the same design remains adaptive and responsive
when we run the same flutter application in web platform.

Figure 3.2 – Stack widget maintains adaptive and responsive nature

Let’s see the first part of code.

1 import 'package:flutter/material.dart';

2

3 //import 'view/my_app.dart';

4

5 void main() {

6 runApp(const MyApp());

7 }

8

9 class MyApp extends StatelessWidget {

10 const MyApp({Key? key}) : super(key: key);

11

12 static const String title = 'Basic Layout';

13

14 @override

15 Widget build(BuildContext context) {

16 return const MaterialApp(

17 debugShowCheckedModeBanner: false,

3. What are responsive and adaptive Flutter Applications 141

18 title: title,

19 home: MyAppHome(),

20);

21 }

22 }

Now, we’re going to design the above MyAppHome() widget that
shows the profile page as its home page.

To do that, let’s first design the AppBar first.

1 class MyAppHome extends StatelessWidget {

2 const MyAppHome({Key? key}) : super(key: key);

3

4 static const String userUrl =

5 'https://cdn.pixabay.com/photo/2019/05/04/15/24/art-4\

6 178302_960_720.jpg';

7

8 @override

9 Widget build(BuildContext context) {

10 return DefaultTabController(

11 length: 4,

12 child: Scaffold(

13 appBar: AppBar(

14 centerTitle: true,

15 flexibleSpace: Container(

16 decoration: const BoxDecoration(

17 gradient: LinearGradient(

18 colors: [

19 Colors.pink,

20 Colors.grey,

21],

22 begin: Alignment.topRight,

23 end: Alignment.bottomRight,

24),

25),

3. What are responsive and adaptive Flutter Applications 142

26),

27 titleSpacing: 80,

28 leading: const Icon(Icons.menu),

29 title: const Text(

30 'Let\'s Go!',

31 textAlign: TextAlign.center,

32),

33 actions: [

34 buildIcons(

35 const Icon(Icons.add_a_photo),

36),

37 buildIcons(

38 const Icon(

39 Icons.notification_add,

40),

41),

42 buildIcons(

43 const Icon(

44 Icons.settings,

45),

46),

47 buildIcons(

48 const Icon(Icons.search),

49),

50],

51 bottom: const TabBar(

52 isScrollable: true,

53 indicatorColor: Colors.red,

54 indicatorWeight: 10,

55 tabs: [

56 Tab(

57 icon: Icon(

58 Icons.home,

59),

60 text: 'Home',

3. What are responsive and adaptive Flutter Applications 143

61),

62 Tab(

63 icon: Icon(

64 Icons.panorama_fish_eye,

65),

66 text: 'Log in',

67),

68 Tab(

69 icon: Icon(

70 Icons.settings,

71),

72 text: 'Settings',

73),

74 Tab(

75 icon: Icon(

76 Icons.local_activity,

77),

78 text: 'Location',

79),

80],

81),

82),

83 ...

We’ve wrapped the Scaffold widget with DefaultTabController
widget that has a required parameter length which decides how
many tabs we should use in TabBar widget. Moreover, according
to that length mentioned we need to return the same number of
pages in TabBarView widget in the body parameter.

Firstly, any TabBar needs a TabBarView widget to display different
pages.

Although before that, when a tab is selected, the TabBar widget
always looks up and tries to find the nearest DefaultTabController.

Basically, the TabController is created by the DefaultTabController.

3. What are responsive and adaptive Flutter Applications 144

Because of that reason, we wrap the Scaffold widget by DefaultTab-
Controller.

Let us take a look at the body parameter.

What is Stack-positioned

1 ...

2 body: TabBarView(children: [

3 ListView(

4 children: [

5 Stack(

6 clipBehavior: Clip.none,

7 children: [

8 Container(

9 height: 200,

10 decoration: const BoxDecoration(

11 gradient: LinearGradient(

12 colors: [

13 Colors.pink,

14 Colors.grey,

15],

16 begin: Alignment.bottomRight,

17 end: Alignment.topRight,

18),

19),

20),

21 Positioned(

22 bottom: -20,

23 left: 0,

24 right: 0,

25 child: Center(

26 child: Container(

27 width: 100,

28 height: 100,

3. What are responsive and adaptive Flutter Applications 145

29 decoration: BoxDecoration(

30 borderRadius: BorderRadius.ci\

31 rcular(50),

32 boxShadow: const [

33 BoxShadow(

34 color: Colors.white,

35 spreadRadius: 4,

36),

37],

38 image: const DecorationImage(

39 fit: BoxFit.cover,

40 image: NetworkImage(userUrl),

41),

42),

43),

44),

45),

46 Positioned(

47 bottom: -150,

48 left: 0,

49 right: 0,

50 child: Center(

51 child: Container(

52 margin: const EdgeInsets.all(17),

53 width: 300,

54 height: 100,

55 child: const Text(

56 'Lady Ada Lovelace',

57 textAlign: TextAlign.center,

58 style: TextStyle(

59 fontSize: 30,

60 fontWeight: FontWeight.bold,

61),

62),

63),

3. What are responsive and adaptive Flutter Applications 146

64),

65),

66],

67),

68 /// coming out of Stack

69 ///

70 Container(

71 margin: const EdgeInsets.all(10),

72 padding: const EdgeInsets.only(top: 75),

73 child: const Text(

74 'Augusta Ada King, Countess of Lovela\

75 ce (née Byron; 10 December 1815 - 27 November 1852) '

76 'was an English mathematician and wri\

77 ter, chiefly known for her work on Charles Babbage\'s '

78 'proposed mechanical general-purpose \

79 computer, the Analytical Engine. She was the '

80 'first to recognise that the machine \

81 had applications beyond pure calculation, and '

82 'to have published the first algorith\

83 m intended to be carried out by such a machine. '

84 'As a result, she is often regarded a\

85 s the first computer programmer.',

86 textAlign: TextAlign.left,

87 style: TextStyle(

88 fontSize: 22,

89),

90),

91),

92],

93),

94 newPage('Log in'),

95 newPage('Settings'),

96 newPage('Location'),

97])),

98);

3. What are responsive and adaptive Flutter Applications 147

99 }

100

101 IconButton buildIcons(Icon icon) {

102 return IconButton(

103 onPressed: () {},

104 icon: icon,

105);

106 }

In the body part, we’ve wrapped the whole widget tree with
ListView widget.

Because we want to scroll if necessary, here a scrolling widget
might help us doing so.

Next, we have used the Stack widget, and used three Container
widgets as the children of the Stack and decorate them accordingly.

The first Container is the bottom-most, and the third Container is
the top-most.

Since the first Container is the bottom-most, we have made it non-
positioned.

However, the second and the third Containers are Positioned.

And to distinguish them with each other, we’ve used a property,
bottom; and, after that we’ve provided a negative value, so that it
shifts towards the negative side of Y axis.

The Second Container belonging to the Stack shifts 20 pixel down
towards the negative side of Y axis.

Stack-Positioned-bottom

3. What are responsive and adaptive Flutter Applications 148

1 Positioned(

2 bottom: -20,

3 left: 0,

4 right: 0,

5 child: Center(

6 child: Container(

7 ...

And the Third Container belonging to the Stack shifts 150 pixel
down towards the negative side of Y axis.

1 Positioned(

2 bottom: -150,

3 left: 0,

4 right: 0,

5 child: Center(

6 child: Container(

7 ...

As the the child widget in a stack can be either positioned or non-
positioned, we need to be careful to use them so that they are placed
properly.

We always wrap the positioned items with Positioned widget and
the must have a one non-null property.

To get the full code please visit the respective GitHub repository.

Stack-Alignment

We provide the value and according to which the Stack widget
adjusts its size. Moreover, we can also adjust the position of non-
positioned child widgets with the help of alignment which by
default positions to the top-left corner in left-to-right environments
and the top-right corner in right-to-left environments.

3. What are responsive and adaptive Flutter Applications 149

We can learn more about the stack layout algorithm, in Render-
Stack.

The full code repository for this section, please check the respective
branches¹⁴

¹⁴https://github.com/sanjibsinha/flutter_artisan/tree/basic-layout-part-one

https://github.com/sanjibsinha/flutter_artisan/tree/basic-layout-part-one
https://github.com/sanjibsinha/flutter_artisan/tree/basic-layout-part-one
https://github.com/sanjibsinha/flutter_artisan/tree/basic-layout-part-one

4. How to build a Quiz
App

List in Flutter is a collection of items. It is the most common
collection where we keep ordered objects.

A common list looks quite simple.

var list = [1, 2, 3];

However, when a List collects a combination of list and map inside,
it might look complicated.

Consider the following list.

var questions = [{ ‘question’: ‘Who are you?’, ‘answer’: [‘Robot’,
‘Human’, ‘Alien’,], }, { ‘question’: ‘What is your name?’, ‘answer’: [
‘Robu’, ‘Honu’, ‘Alu’,], }, { ‘question’: ‘What do you eat?’, ‘answer’:
[‘Electricity’, ‘Everything’, ‘Water of Mars’,], }, { ‘question’: ‘What
do you want?’, ‘answer’: [‘Follow the instruction’, ‘Go to war and
destroy.’, ‘Go back to Mars.’,], },];

In the above code, a list contains a map. A map is an object that
associates keys and values.

However, both keys and values can be any type of object. Exactly
that happens here.

The above list has four maps. Each map again has two key-value
pair. The first key-value pair are both String.

But the second key-value pair is String and List<String>.

In our previous discussion, we have two separate lists of items. On
the contrary, here, we want to relate question and answer in one
single list.

4. How to build a Quiz App 151

How do you Map a list in flutter?

Now, each question might have several answers. For a test case, we
will learn how we can map this list in Flutter.

Let us consider a simple code like the following one.

import ‘package:flutter/material.dart’;

import ‘question.dart’; import ‘answer.dart’;

main() { runApp(const QuizApp());

}

class QuizApp extends StatelessWidget { const QuizApp({Key? key})
: super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'Playxis - Play + Lexis',

5 home: QuizPage(),

6);

7 }

}

class QuizPage extends StatefulWidget { const QuizPage({Key? key})
: super(key: key);

1 @override

2 State<QuizPage> createState() => _QuizPageState();

}

class _QuizPageState extends State<QuizPage> { int index = 0;
void increment() { setState(() { index = index + 1; }); if (index ==
questions.length) { index = 0; } }

4. How to build a Quiz App 152

1 var questions = [

2 {

3 'question': 'Who are you?',

4 'answer': [

5 'Robot',

6 'Human',

7 'Alien',

8],

9 },

10 {

11 'question': 'What is your name?',

12 'answer': [

13 'Robu',

14 'Honu',

15 'Alu',

16],

17 },

18 {

19 'question': 'What do you eat?',

20 'answer': [

21 'Electricity',

22 'Everything',

23 'Water of Mars',

24],

25 },

26 {

27 'question': 'What do you want?',

28 'answer': [

29 'Follow the instruction',

30 'Go to war and destroy.',

31 'Go back to Mars.',

32],

33 },

34];

35

4. How to build a Quiz App 153

36 @override

37 Widget build(BuildContext context) {

38 return Scaffold(

39 appBar: AppBar(

40 title: const Text(

41 'Playxis - Play + Lexis',

42),

43),

44 body: Center(

45 child: Column(

46 mainAxisAlignment: MainAxisAlignment.center,

47 mainAxisSize: MainAxisSize.min,

48 children: [

49 Text('${questions[index]['question']}'),

50 const SizedBox(

51 height: 10.0,

52),

53 Container(

54 width: double.infinity,

55 margin: const EdgeInsets.all(10.0),

56 child: ElevatedButton(

57 onPressed: increment,

58 child: const Text('Answer 1'),

59),

60),

61 Container(

62 width: double.infinity,

63 margin: const EdgeInsets.all(10.0),

64 child: ElevatedButton(

65 onPressed: increment,

66 child: const Text('Answer 2'),

67),

68),

69 Container(

70 width: double.infinity,

4. How to build a Quiz App 154

71 margin: const EdgeInsets.all(10.0),

72 child: ElevatedButton(

73 onPressed: increment,

74 child: const Text('Answer 3'),

75),

76),

77],

78),

79),

80);

81 }

}

If we run this code, it looks very simple.

We have hard coded the question and answer. As a result, if we run
the App, we see the following output.

4. How to build a Quiz App 155

Figure 4.1 – Hard coding a List in Flutter

At the same time, taking a close look at the code tells us to refactor
the code. We have unnecessarily repeated ourselves.

Instead, we can extract two separate custom Widgets. One for the
Question, and the other for the Answer.

The Question Widget looks like the following.

import ‘package:flutter/material.dart’; import ‘package:google_-
fonts/google_fonts.dart’;

class Question extends StatelessWidget {
const Question({Key? key, required this.questions, required
this.index}) : super(key: key); final List<Map<String, Object>>
questions; final int index;

4. How to build a Quiz App 156

1 @override

2 Widget build(BuildContext context) {

3 return Text(

4 '${questions[index]['question']}',

5 style: GoogleFonts.laila(

6 textStyle: const TextStyle(

7 fontSize: 30.0,

8 fontWeight: FontWeight.bold,

9),

10),

11);

12 }

}

We will pass two final variables. One is the List of questions which
is a List<Map<String, Object>>.

Actually, the data type of List is Map. And again, the Data type of
Map is String and List. However, Dart infers the List inside Map as
an Object.

After all, everything in Dart is Object.

On the contrary, the Answer Widget needs a final String variable
which will display the answer of the List.

And, besides, it also needs a VoidCallback function.

Why?

Because we want to press the ElevatedButton to change the ques-
tion.

Subsequently, with the change of the question, the answers will also
change.

import ‘package:flutter/material.dart’; import ‘package:google_-
fonts/google_fonts.dart’;

4. How to build a Quiz App 157

class Answer extends StatelessWidget { const Answer({ Key? key,
required this.answer, required this.pointToOnPress, }) : super(key:
key);

1 final String answer;

2 final VoidCallback pointToOnPress;

3

4 @override

5 Widget build(BuildContext context) {

6 return Container(

7 width: double.infinity,

8 margin: const EdgeInsets.all(10.0),

9 child: ElevatedButton(

10 onPressed: pointToOnPress,

11 child: Text(

12 answer,

13 style: GoogleFonts.langar(

14 textStyle: const TextStyle(

15 fontSize: 30.0,

16 fontWeight: FontWeight.bold,

17),

18),

19),

20),

21);

22 }

}

Now we can change the top-level main() function.

We can call the Widgets inside the Column Widgets.

import ‘package:flutter/material.dart’;

import ‘question.dart’; import ‘answer.dart’;

main() { runApp(const QuizApp());

4. How to build a Quiz App 158

}

class QuizApp extends StatelessWidget { const QuizApp({Key? key})
: super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'Playxis - Play + Lexis',

5 home: QuizPage(),

6);

7 }

}

class QuizPage extends StatefulWidget { const QuizPage({Key? key})
: super(key: key);

1 @override

2 State<QuizPage> createState() => _QuizPageState();

}

class _QuizPageState extends State<QuizPage> { int index = 0;
void increment() { setState(() { index = index + 1; }); if (index ==
questions.length) { index = 0; } }

1 var questions = [

2 {

3 'question': 'Who are you?',

4 'answer': [

5 'Robot',

6 'Human',

7 'Alien',

8],

9 },

4. How to build a Quiz App 159

10 {

11 'question': 'What is your name?',

12 'answer': [

13 'Robu',

14 'Honu',

15 'Alu',

16],

17 },

18 {

19 'question': 'What do you eat?',

20 'answer': [

21 'Electricity',

22 'Everything',

23 'Water of Mars',

24],

25 },

26 {

27 'question': 'What do you want?',

28 'answer': [

29 'Follow the instruction',

30 'Go to war and destroy.',

31 'Go back to Mars.',

32],

33 },

34];

35

36 @override

37 Widget build(BuildContext context) {

38 return Scaffold(

39 appBar: AppBar(

40 title: const Text(

41 'Playxis - Play + Lexis',

42),

43),

44 body: Center(

4. How to build a Quiz App 160

45 child: Column(

46 mainAxisAlignment: MainAxisAlignment.center,

47 mainAxisSize: MainAxisSize.min,

48 children: [

49 Question(questions: questions, index: index),

50 Answer(answer: 'Answer 1', pointToOnPress: incr\

51 ement),

52 Answer(answer: 'Answer 2', pointToOnPress: incr\

53 ement),

54 Answer(answer: 'Answer 3', pointToOnPress: incr\

55 ement),

56],

57),

58),

59);

60 }

}

Now, as we press the Button, each time the question will change.

It happens because the index number changes with the press of the
button.

Question(questions: questions, index: index),

Inside the Question Widget we have accessed each question the
following way.

’${questions[index][‘question’]}’,

And the above code makes the sense. We can access any List this
way.

However, the answers do not change. It remains the same. But we
want to access the answers the same way as we have accessed the
questions.

To do that, we need to map the list.

4. How to build a Quiz App 161

How do I get a List of Maps in Dart?

Themapmethod of any list returns one value that we again convert
to list.

Especially in Flutter, the Column Widget‘s children property re-
turns a List of Widgets.

Consequently, when we run the code, we see that each question
comes with multiple answers associated with it.

Figure 4.2 – Map a List in Flutter first example

However, we need to use the spread operators to add two lists and
make them one

Because the ColumnWidget’s children property returns one List of
Widgets. Right?

4. How to build a Quiz App 162

Therefore, the final code looks like the following.

import ‘package:flutter/material.dart’;

import ‘question.dart’; import ‘answer.dart’;

main() { runApp(const QuizApp());

}

class QuizApp extends StatelessWidget { const QuizApp({Key? key})
: super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'Playxis - Play + Lexis',

5 home: QuizPage(),

6);

7 }

}

class QuizPage extends StatefulWidget { const QuizPage({Key? key})
: super(key: key);

1 @override

2 State<QuizPage> createState() => _QuizPageState();

}

class _QuizPageState extends State<QuizPage> { int index = 0;
void increment() { setState(() { index = index + 1; }); if (index ==
questions.length) { index = 0; } }

4. How to build a Quiz App 163

1 var questions = [

2 {

3 'question': 'Who are you?',

4 'answer': [

5 'Robot',

6 'Human',

7 'Alien',

8],

9 },

10 {

11 'question': 'What is your name?',

12 'answer': [

13 'Robu',

14 'Honu',

15 'Alu',

16],

17 },

18 {

19 'question': 'What do you eat?',

20 'answer': [

21 'Electricity',

22 'Everything',

23 'Water of Mars',

24],

25 },

26 {

27 'question': 'What do you want?',

28 'answer': [

29 'Follow the instruction',

30 'Go to war and destroy.',

31 'Go back to Mars.',

32],

33 },

34];

35

4. How to build a Quiz App 164

36 @override

37 Widget build(BuildContext context) {

38 return Scaffold(

39 appBar: AppBar(

40 title: const Text(

41 'Playxis - Play + Lexis',

42),

43),

44 body: Center(

45 child: Column(

46 mainAxisAlignment: MainAxisAlignment.center,

47 mainAxisSize: MainAxisSize.min,

48 children: [

49 Question(questions: questions, index: index),

50 ...(questions[index]['answer'] as List<String>)\

51 .map((answer) {

52 return Answer(answer: answer, pointToOnPress:\

53 increment);

54 }).toList(),

55],

56),

57),

58);

59 }

}

The Column Widget’s children property now adds two lists in one
list. And the questions and answers are not separated anymore.

With the change of one question now we can get the associated
answer.

4. How to build a Quiz App 165

Figure 4.3 – Map a List in Flutter second example

We have solved the hardest part of the Quiz App that we are finally
going to build.

In the next section we will build a “Play with Lexis” App that will
help us to practice the uncommon vocabulary in English.

However, if you want to clone this preparatory App building
process, please clone the related GitHub repository.

How to change theme of an App?

If we do not provide any particular theme, Flutter uses a default
theme. And that default theme is used across the entire Flutter App.

4. How to build a Quiz App 166

What do we see when we create a new Flutter App?

flutter create my_app

By default Flutter comes up with a skeleton code where a default
theme has been provided.

As a result, the initial code looks like the following.

void main() { runApp(const MyApp()); }

class MyApp extends StatelessWidget { const MyApp({Key? key}) :
super(key: key);

1 // This widget is the root of your application.

2 @override

3 Widget build(BuildContext context) {

4 return MaterialApp(

5 title: 'Flutter Demo',

6 theme: ThemeData(

7 // This is the theme of your application.

8 //

9 // Try running your application with "flutter run".\

10 You'll see the

11 // application has a blue toolbar. Then, without qu\

12 itting the app, try

13 // changing the primarySwatch below to Colors.green\

14 and then invoke

15 // "hot reload" (press "r" in the console where you\

16 ran "flutter run",

17 // or simply save your changes to "hot reload" in a\

18 Flutter IDE).

19 // Notice that the counter didn't reset back to zer\

20 o; the application

21 // is not restarted.

22 primarySwatch: Colors.blue,

23),

24 home: const MyHomePage(title: 'Flutter Demo Home Page\

4. How to build a Quiz App 167

25 '),

26);

27 }

}

At the same time, Flutter tells us about the default theme that runs
across the entire app. Read the comment carefully. It is marked in
Bold. It summarizes everything.

In the above case, Flutter provides a ThemeData to theMaterialApp
Widget. We all know that it is Blue.

However, we can change this ThemeData.

Consider the Quiz Master App we have built in the last article.

We did not want ThemeData meddling in our affairs. Consequently,
the Flutter takes the default theme color Blue as the Button Color.
And the background was White.

The Google Font package although changes the Font-look.

Let us take a look at the previous Quiz Master App.

4. How to build a Quiz App 168

Figure 4.4 – Flutter list Quiz App third example

Now we can define the configuration of the overall visual Theme
for a MaterialApp.

As a result, The Widget sub-tree within the app might take a
different Color.

Suppose we want our same Quiz App looks like the following.

4. How to build a Quiz App 169

Figure 4.5 – Material Theme Color reddish

To do that, we can had used the ThemeData.dark constructor.

By default, the ThemeData.dark constructor makes the Text-color
White. However, we need to provide the background color, the
AppBar color, and others.

class QuizApp extends StatelessWidget { const QuizApp({Key? key})
: super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return MaterialApp(

4 theme: ThemeData.dark().copyWith(

5 primaryColor: const Color(0xFF8B3817),

6 scaffoldBackgroundColor: const Color(0xFFC23C3C),

7),

8 home: Scaffold(

9 appBar: AppBar(

10 backgroundColor: const Color(0xFF9D3A3A),

… // the code is incomplete for brevity // to clone the entire project
please visit the respective GitHub repository

4. How to build a Quiz App 170

Besides, to synchronize Button color, we need to change that too.

Container checkingAnswer(String corerctOrWrong, bool
trueOrFalse) { return Container(padding: const EdgeInsets.all(5.0),
decoration: BoxDecoration(color: const Color(0xFF9B5050), //
This color will change the Button color-shade borderRadius:
BorderRadius.circular(10.0),), child: ElevatedButton(style:
ElevatedButton.styleFrom(primary: const Color(0xFF682a2a),
// This color will change the Button color), onPressed: () {
checkAnswer(trueOrFalse); }, child: Text(corerctOrWrong, style:
GoogleFonts.laila(textStyle: const TextStyle(fontSize: 20.0,
fontWeight: FontWeight.bold,),),),),); } // to clone the entire
project please visit the respective GitHub repository

As a consequence, we can use the MaterialApp theme property to
configure the appearance of the entire app.

Now we can change the theme property from reddish to a greenish
tone.

4. How to build a Quiz App 171

Figure 4.6 – Material Theme Color Greenish

To make this happen, we have taken the same path. We have only
changed the constant Color constructor.

However, this time from reddish to a greenish tone.

class QuizApp extends StatelessWidget { const QuizApp({Key? key})
: super(key: key);

4. How to build a Quiz App 172

1 @override

2 Widget build(BuildContext context) {

3 return MaterialApp(

4 theme: ThemeData.dark().copyWith(

5 primaryColor: const Color(0xFF409B25),

6 scaffoldBackgroundColor: const Color(0xFF2C6F2E),

7),

8 home: Scaffold(

9 appBar: AppBar(

10 backgroundColor: const Color(0xFF81B165),

… // the code is incomplete for brevity // to clone the entire project
please visit the respective GitHub Repository

And the same way, we have changed the color of the Elevated
Button providing a shadow color.

Container checkingAnswer(String corerctOrWrong, bool
trueOrFalse) { return Container(padding: const EdgeInsets.all(5.0),
decoration: BoxDecoration(color: const Color(0xFFC5DA28),
// This changes from reddish to greenish tone borderRadius:
BorderRadius.circular(10.0),), child: ElevatedButton(style:
ElevatedButton.styleFrom(primary: const Color(0xFF3C9415),
// This changes from reddish to greenish tone), onPressed: ()
{ checkAnswer(trueOrFalse); }, child: Text(corerctOrWrong,
style: GoogleFonts.laila(textStyle: const TextStyle(fontSize: 20.0,
fontWeight: FontWeight.bold,),),),),); } // to clone the entire
project please visit the respective GitHub Repository

What is hex color code

Finally, the question arises. How do we pick the hex color code?

Firstly, the hex color code values are a special code that represents
color values from 0 to 255. The color Green is represented by this
combination: #008000.

4. How to build a Quiz App 173

Secondly, to make it opaque we always add 0xFF in the place of #
tag.

As a result, our Color constructor looks like the following.

primary: const Color(0xFF008000),

We can add the Color Pick eye dropper extension to your Chrome
or Firefox Browser.

With the help of that we can pick up the value of any Color-shade.

How to use Theme property in the
Flutter Quiz App

We can use the Flutter theme property of the MaterialApp Widget,
to control the design across the entire app. However, we can do that
in various ways.

Previously, we have been building an interesting Quiz App. While
building the app, we have learned a few important concepts on
theme.We have used a custom theme class where we have declared
many static constant Color properties.

And later, we have used those properties in our Flutter app.

Let us see how our previous Quiz App looks like.

4. How to build a Quiz App 174

Figure 4.7 – Custom theme Flutter

As we see, the Flutter app uses a dark theme. And it was greenish.

Now, here is the most important question. Can we make this color
scheme light replacing the green by pinkish color?

We want to do that centrally, from the same custom theme class.

The answer is, yes, we can.

Not only that, we can add many other features, which will make
our Quiz App more interactive.

Let us see what we want to do first.

After that, we will learn how to do that.

4. How to build a Quiz App 175

Figure 4.8 – Flutter theme changes entire app design

Our “Play with Lexis Quiz App” is working the same way. We have
not changed the business logic part. Therefore, we are not going to
discuss that part.

If youwant to know howwe canmap a list, please read the previous
articles. We have discussed howwe can use List data type in Flutter
to make an interactive app.

In this section, we will concentrate on the Flutter theme part.

Firstly, we will build a custom ThemeData function that will return
our custom theme to the MaterialApp theme property.

import ‘package:flutter/material.dart’;

import ‘../model/quiz_theme.dart’; import ‘quiz_page.dart’;

4. How to build a Quiz App 176

QuizTheme myTheme = QuizTheme();

class QuizApp extends StatelessWidget { const QuizApp({Key? key})
: super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return MaterialApp(

4 title: 'Flutter Demo',

5 debugShowCheckedModeBanner: false,

6 home: const QuizPage(),

7

8 /// we've started changing and building new theme

9 /// from this point

10 theme: myTheme.buildTheme(),

11);

12 }

}

Secondly, our newly created “myTheme” object calls the custom
ThemeData function “buildTheme()”. After that, it returns the value
to the theme property of MaterialApp Widget.

Finally, we must take a look at the custom theme class. We have
changed it a lot.

import ‘package:flutter/material.dart’; import ‘package:google_-
fonts/google_fonts.dart’;

/// In a custom theme page we have described color and fonts ///
We may add more custom theme-features later ///

class QuizTheme { static const Color primaryColor =
Color(0xFF409B25); static const Color scaffoldBackgroundColor
= Color(0xFF2C6F2E); static const Color appBarBack-
groundColor = Color(0xFF2C6F2E); static const Color
boxDecorationColor = Color(0xFFC5DA28); static const

4. How to build a Quiz App 177

Color elevatedButtonPrimaryColor = Color(0xFF3C9415);
static const Color dividerColor = Color(0xFFD9DB26); static
const correctAnswerColor = Color(0xFFFACAFA); static const
questionTextColor = Color(0xFFF8E1F8); static const answerColor
= Color(0xFFFFFFFF);

1 static TextStyle answerStyle = GoogleFonts.langar(

2 textStyle: const TextStyle(

3 color: QuizTheme.answerColor,

4 fontSize: 20.0,

5 fontWeight: FontWeight.bold,

6),

7);

8

9 static TextStyle questionStyle = GoogleFonts.laila(

10 textStyle: const TextStyle(

11 color: QuizTheme.shrineBrown600,

12 fontSize: 30.0,

13 fontWeight: FontWeight.bold,

14),

15);

16

17 static TextStyle appbarStyle = GoogleFonts.salsa(

18 textStyle: const TextStyle(

19 color: QuizTheme.shrineBrown600,

20 fontSize: 20.0,

21 fontWeight: FontWeight.bold,

22),

23);

24

25 ThemeData _buildShrineTheme() {

26 final ThemeData base = ThemeData.light();

27 return base.copyWith(

28 colorScheme: _shrineColorScheme,

29 toggleableActiveColor: shrinePink400,

30 primaryColor: shrinePink100,

4. How to build a Quiz App 178

31 primaryColorLight: shrinePink100,

32 scaffoldBackgroundColor: shrineBackgroundWhite,

33 cardColor: shrineBackgroundWhite,

34 textSelectionTheme:

35 const TextSelectionThemeData(selectionColor: shri\

36 nePink100),

37 errorColor: shrineErrorRed,

38 buttonTheme: ButtonThemeData(

39 colorScheme: _shrineColorScheme.copyWith(primary: s\

40 hrinePink400),

41 textTheme: ButtonTextTheme.normal,

42),

43 primaryIconTheme: _customIconTheme(base.iconTheme),

44 textTheme: _buildShrineTextTheme(base.textTheme),

45 primaryTextTheme: _buildShrineTextTheme(base.primaryT\

46 extTheme),

47 iconTheme: _customIconTheme(base.iconTheme),

48);

49 }

50

51 ThemeData buildTheme() {

52 return _buildShrineTheme();

53 }

54

55 IconThemeData _customIconTheme(IconThemeData original) {

56 return original.copyWith(color: shrineBrown900);

57 }

58

59 TextTheme _buildShrineTextTheme(TextTheme base) {

60 return base

61 .copyWith(

62 caption: base.caption!.copyWith(

63 fontWeight: FontWeight.w400,

64 fontSize: 14,

65 letterSpacing: defaultLetterSpacing,

4. How to build a Quiz App 179

66),

67 button: base.button!.copyWith(

68 fontWeight: FontWeight.w500,

69 fontSize: 14,

70 letterSpacing: defaultLetterSpacing,

71),

72)

73 .apply(

74 fontFamily: 'Rubik',

75 displayColor: shrineBrown900,

76 bodyColor: shrineBrown900,

77);

78 }

79

80 static const ColorScheme _shrineColorScheme = ColorScheme(

81 primary: shrinePink100,

82 secondary: shrinePink50,

83 surface: shrineSurfaceWhite,

84 background: shrineBackgroundWhite,

85 error: shrineErrorRed,

86 onPrimary: shrineBrown900,

87 onSecondary: shrineBrown900,

88 onSurface: shrineBrown900,

89 onBackground: shrineBrown900,

90 onError: shrineSurfaceWhite,

91 brightness: Brightness.light,

92);

93

94 static const Color shrinePink50 = Color(0xFFFEEAE6);

95 static const Color shrinePink100 = Color(0xFFFEDBD0);

96 static const Color shrinePink300 = Color(0xFFFBB8AC);

97 static const Color shrinePink400 = Color(0xFFEAA4A4);

98

99 static const Color shrineBrown900 = Color(0xFF442B2D);

100 static const Color shrineBrown600 = Color(0xFF7D4F52);

4. How to build a Quiz App 180

101

102 static const Color shrineErrorRed = Color(0xFFC5032B);

103

104 static const Color shrineSurfaceWhite = Color(0xFFFFFBFA);

105 static const Color shrineBackgroundWhite = Colors.white;

106

107 static const defaultLetterSpacing = 0.03;

}

As we see, there are lots of constant Color properties. Besides, we
have built custom ThemeData, TextTheme, and IconThemeData
instance methods.

As a result, later, we have used them as necessary to give our Quiz
App a complete new look.

Quite naturally, we have modified the code of “quiz_page.dart”, as
well. So that we can accommodate the bottom navigation bar.

import ‘package:flutter/material.dart’; import ‘package:rflutter_-
alert/rflutter_alert.dart’;

import ‘../model/questions_list.dart’; import ‘../model/quiz_-
theme.dart’; import ‘answer.dart’; import ‘question.dart’;

class QuizPage extends StatefulWidget { const QuizPage({Key? key})
: super(key: key);

1 @override

2 State<QuizPage> createState() => _QuizPageState();

}

class _QuizPageState extends State<QuizPage> { int _currentIndex
= 0; QuizMaster quiz = QuizMaster(); String _correctAnswer
= ‘Choose your correct answer!’; int _index = 0; void
increment() { setState(() { _index = _index + 1; }); if (_index
== quiz.questionList.length + 1) { _index = 0; } if (_index == 0) {

4. How to build a Quiz App 181

_correctAnswer = ‘Choose your correct answer!’; } else if (_index
== 1) { _correctAnswer = ‘Synonym of Mendacity was: Falsehood’;
} else if (_index == 2) { _correctAnswer = ‘Synonym of Culpable
was: Guilty’; } else { _index = 0; _correctAnswer = ‘Choose your
correct answer!’; Alert(context: context, title: ‘Quiz Completed.’,
desc: ‘We’ve reached the end. Thanks for taking part. Meet you
again.’,).show(); } }

1 @override

2 Widget build(BuildContext context) {

3 final colorScheme = Theme.of(context).colorScheme;

4 final textTheme = Theme.of(context).textTheme;

5 return Scaffold(

6 appBar: AppBar(

7 title: Text(

8 'Playxis - Play + Lexis',

9 style: QuizTheme.appbarStyle,

10),

11 backgroundColor: QuizTheme.shrinePink300,

12),

13 body: SafeArea(

14 child: Column(

15 mainAxisAlignment: MainAxisAlignment.center,

16 mainAxisSize: MainAxisSize.min,

17 children: [

18 Question(questions: quiz.questionList, index: _\

19 index),

20 ...(quiz.questionList[_index]['answer'] as List\

21 <String>)

22 .map((answer) {

23 return Answer(answer: answer, pointToOnPress:\

24 increment);

25 }).toList(),

26 Container(

27 padding: const EdgeInsets.all(5.0),

4. How to build a Quiz App 182

28 width: 250.0,

29 child: const Divider(

30 thickness: 5.0,

31 color: QuizTheme.shrinePink400,

32),

33),

34 Container(

35 width: double.infinity,

36 alignment: Alignment.topCenter,

37 margin: const EdgeInsets.only(

38 left: 10.0,

39 right: 10.0,

40),

41 child: Text(

42 _correctAnswer,

43 style: QuizTheme.questionStyle,

44),

45),

46],

47),

48),

49 bottomNavigationBar: BottomNavigationBar(

50 type: BottomNavigationBarType.fixed,

51 currentIndex: _currentIndex,

52 backgroundColor: colorScheme.surface,

53 selectedItemColor: colorScheme.onSurface,

54 unselectedItemColor: colorScheme.onSurface.withOpac\

55 ity(.60),

56 selectedLabelStyle: textTheme.caption,

57 unselectedLabelStyle: textTheme.caption,

58 onTap: (value) {

59 // Respond to item press.

60 setState(

61 () => _currentIndex = value,

62);

4. How to build a Quiz App 183

63 },

64 items: const [

65 BottomNavigationBarItem(

66 label: 'Favorites',

67 icon: Icon(Icons.favorite),

68),

69 BottomNavigationBarItem(

70 label: 'Music',

71 icon: Icon(Icons.music_note),

72),

73 BottomNavigationBarItem(

74 label: 'Places',

75 icon: Icon(Icons.location_on),

76),

77 BottomNavigationBarItem(

78 label: 'News',

79 icon: Icon(Icons.library_books),

80),

81],

82),

83);

84 }

}

In some place we have also used the modified custom theme class.

In some place, we have used the constant Color variables that are
static in nature. As a result we can access those constant Color
properties through class name.

In the code above, we have seen a few examples like the following.

color: QuizTheme.shrinePink400, … backgroundColor:
QuizTheme.shrinePink300,

After changing the custom theme from dark to light, we can also
add some more pages. Aside from this, we will learn how to
navigate to another page.

4. How to build a Quiz App 184

In the next section, we learn them. Before that, if you want to clone
the newly modified Quiz App, please use this GitHub repository.

So stay tuned and happy Fluttering.

The code repositories for this section¹⁵

How we use List in the Quiz App?

One of the most common collection in every programming lan-
guage is List. It is also known as array in other programming
language. The list in Flutter is an ordered group of objects. We
commonly call them lists.

The list plays a very important role in any Flutter App. You may
ask why?

The answer is quite simple.

Any small to medium, or a big Flutter App needs to place data in
order. Right?

Take a look at this Flutter App.

We have two separate lists of questions and answers. As a built in
data type, list in Flutter allows any data “Type”. That means, if we
keep our list objects in a Class, we can call the list by mentioning
that class data Type. We will see a lot of examples later.

Anyway, it is always easy to find any particular element when they
are placed in ordered list.

Because an ordered list has an index that starts from 0, we can easily
track that index number and find out the element.

In addition, Flutter and Dart comes with plenty of methods that we
can use to handle the List.

¹⁵https://github.com/sanjibsinha/quiz_master/tree/material-design

https://github.com/sanjibsinha/quiz_master/tree/material-design
https://github.com/sanjibsinha/quiz_master/tree/material-design

4. How to build a Quiz App 185

Before we jump in to learn how we have built this simple “English
Test App” let us some list examples in Dart console.

Watch the output, that will also clarify how list in Flutter and Dart
works.

void main() {

1 IntroToList question = IntroToList();

2

3 print(question.questions.length); // 4

4

5 print(question.questions.reversed);

6

7 /**

8 * (The synonym of scorn is despise.,

9 * The sound a Frog makes is known as croak.,

10 * A young horse is called a duckling.,

11 * 640 acres equal 1 square mile.)*

12 *

13 * */

14

15 print(question.questions.firstWhere((i) => i.length > 1))\

16 ;

17 // 640 acres equal 1 square mile.

18

19 print(question.questions.first);

20 // 640 acres equal 1 square mile.

21

22 print(question.questions.every((element) => element.start\

23 sWith('a')));

24 // false

25 // because every element does not start with letter 'a'

26

27

28

29 question.checkAnswer(1);

4. How to build a Quiz App 186

30 // Corerct Answer was: A young horse = a duckling.

31 question.checkAnswer(3);

32 // The synonym of scorn is despise.

33

34 for (final q in question.questions) {

35 print(q);

36 }

37

38 /**

39 * <<< OUTPUT>>>

640 acres equal 1 square mile. A young horse is called a duckling.
The sound a Frog makes is known as croak. The synonym of scorn
is despise. * * * */

}

class IntroToList {

1 List<String> questions = [

2 '640 acres equal 1 square mile.',

3 'A young horse is called a duckling.',

4 'The sound a Frog makes is known as croak.',

5 'The synonym of scorn is despise.',

6];

7

8 int questionIndex = 0;

9

10 List<bool> answers = [

11 true,

12 false,

13 true,

14 true,

15];

16

17 String check = '';

4. How to build a Quiz App 187

18

19 void checkAnswer(int questionIndex) {

20

21 if (questionIndex == 0) {

22 check = '';

23 } else if (questionIndex == 1) {

24 check = questions[questionIndex];

25 } else if (questionIndex == 2) {

26 check = questions[questionIndex];

27 } else if (questionIndex == 3) {

28 check = questions[questionIndex];

29 } else if (questionIndex > 3) {

30 check = questions[questionIndex];

31 }

32

33 print(check);

34 }

}

What we see above is just a glimpse. There are plenty of other
methods that Dart and Flutter List uses.

However, we do not have to use them all. In fact, a very few of the
methods are used while we build a Flutter App.

In the coming sections, we will see how we can use List in Flutter
to make different type of Applications.

To start with, let us build a Flutter App, that tests English knowl-
edge. It is a simple App that displays a question. Below that question
we have true and false button.

You press any button, and it will show the correct answer below.
As a result, you know whether you have pressed the correct button,
or not.

As we progress, we will make this Flutter App more interesting.

4. How to build a Quiz App 188

For the time being let us be simple in our approach so that we can
understand the basic of Flutter lists.

Let us start with the top-level main() function which is our entry
point.

import ‘package:flutter/material.dart’;

import ‘view/app.dart’;

void main() ⇒ runApp(const App());

Next, we create a “view” folder, in our root directory, and place the
custom Widget App() there.

That will take us to the AppHomePage() Widget.

import ‘package:flutter/material.dart’;

import ‘app_home_page.dart’;

class App extends StatelessWidget { const App({Key? key}) : su-
per(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return const MaterialApp(

4 title: 'Introduction to List',

5 home: AppHomePage(),

6);

7 }

}

In the AppHomePage() Widget, we will declare two separate lists.
One list will be a collection of questions, and the other will be
answers.

However, two lists will be of different data type.

Let us take a look at the lists firstly.

4. How to build a Quiz App 189

List<String> questions = [‘640 acres equal 1 square mile.’, ‘A young
horse is called a duckling.’, ‘The sound a Frog makes is known as
croak.’, ‘The synonym of scorn is despise.’,];

1 int questionIndex = 0;

2

3 List<bool> answers = [

4 true,

5 false,

6 true,

7 true,

8];

We must always declare the data type of the list items.

As we see, the first list has a data type String. Subsequently, the
second list has data type Boolean. Therefore, it consists of true and
false.

In between two lists, we have an index number which is of integer
data type. We need to track, or iterate both lists at the same time.
Consequently, we can track which button is pressed. True or false?

As the first list of questions shows, the second statement is false.
Otherwise, the rest of the lists are true.

Therefore, we have made our second list of answers matching them
in accordance with the questions.

Let us see the full code snippet now.

import ‘package:flutter/material.dart’; import ‘package:google_-
fonts/google_fonts.dart’;

class AppHomePage extends StatefulWidget { const AppHome-
Page({Key? key}) : super(key: key);

4. How to build a Quiz App 190

1 @override

2 _AppHomePageState createState() => _AppHomePageState();

}

class _AppHomePageState extends State<AppHomePage> {
List<String> questions = [‘640 acres equal 1 square mile.’, ‘A
young horse is called a duckling.’, ‘The sound a Frog makes is
known as croak.’, ‘The synonym of scorn is despise.’,];

1 int questionIndex = 0;

2

3 List<bool> answers = [

4 true,

5 false,

6 true,

7 true,

8];

9

10 String check = '';

11

12 void checkAnswer() {

13 if (questionIndex == 0) {

14 check = '';

15 } else if (questionIndex == 1) {

16 check = 'Corerct Answer was: 640 acres = 1 square mil\

17 e.';

18 } else if (questionIndex == 2) {

19 check = 'Corerct Answer was: A young horse = a foal.';

20 } else if (questionIndex == 3) {

21 check = 'Corerct Answer was: The sound a Frog makes =\

22 croak.';

23 } else if (questionIndex > 3) {

24 check = 'Corerct Answer was: The synonym of scorn = d\

25 espise.';

26 }

4. How to build a Quiz App 191

27 }

28

29 @override

30 Widget build(BuildContext context) {

31 return Scaffold(

32 backgroundColor: Colors.blue.shade900,

33 appBar: AppBar(

34 title: const Text('Introduction to List'),

35),

36 body: SafeArea(

37 child: Center(

38 child: Column(

39 mainAxisSize: MainAxisSize.min,

40 mainAxisAlignment: MainAxisAlignment.center,

41 crossAxisAlignment: CrossAxisAlignment.stretch,

42 children: [

43 Text(

44 questions[questionIndex],

45 textAlign: TextAlign.center,

46 style: GoogleFonts.laila(

47 textStyle: Theme.of(context).textTheme.he\

48 adline6,

49 fontSize: 30,

50 fontWeight: FontWeight.w900,

51 color: Colors.amber.shade400,

52),

53),

54 buildButtonInsideContainer(

55 'True',

56 Colors.white,

57),

58 buildButtonInsideContainer(

59 'False',

60 Colors.black,

61),

4. How to build a Quiz App 192

62 Text(

63 check,

64 textAlign: TextAlign.center,

65 style: GoogleFonts.caveat(

66 textStyle: Theme.of(context).textTheme.he\

67 adline6,

68 fontSize: 20,

69 fontWeight: FontWeight.w700,

70 color: Colors.blue.shade50,

71),

72),

73],

74),

75),

76),

77);

78 }

79

80 Container buildButtonInsideContainer(String answer, Color\

81 color) {

82 return Container(

83 padding: const EdgeInsets.all(10.0),

84 child: ElevatedButton(

85 onPressed: () {

86 setState(() {

87 answers[questionIndex];

88 questionIndex++;

89 checkAnswer();

90 });

91 if (questionIndex > 3) {

92 questionIndex = 0;

93 }

94 },

95 child: Text(

96 answer,

4. How to build a Quiz App 193

97 style: GoogleFonts.lato(

98 textStyle: Theme.of(context).textTheme.headline\

99 6,

100 fontSize: 20,

101 fontWeight: FontWeight.w700,

102 color: color,

103),

104),

105),

106);

107 }

}

Since both the Button Widgets inside a Container Widget, we
have used a common function that return a Container Widget. As
parameters we pass the “answer” and the “color”.

Why?

Because one answer might be “True”, or “False”.

However, we track the index number of question list, and each press
moves the question forward.

Besides, through a simple if-else conditional, we track the index
number and show the correct answer.

Watch the second question below.

The answer is false. As we know that young horse is known as a
foal.

Therefore, if someone presses the “True” button, without knowing
the correct answer, she will be informed immediately.

Suppose a user presses any button, by knowingly, or unknwoingly.

She will be notified and the third question will pop up at the same
time.

4. How to build a Quiz App 194

Although we have shown the full code, still you may wish to clone
the project and run it in your local machine.

In that case, please visit the respective branch of the GitHub
repository.

In the next section we will try to make this Flutter App more object
oriented.

So stay tuned, and happy Fluttering.

The code repositories for this ection¹⁶

List and Map in Quiz App

In our last section, we have built a Flutter Quiz App using List.
However, we tried to do in a simple way.

For one reason.

We did not want to make things complicated firstly. Secondly, we
tried to give an idea how we can use list in Flutter.

Earlier we have learned that list is a collection of items. It is an
ordered collection. Moreover it is sequential.

Because a list in Flutter is sequential, the index number starts with
0. And every index refers to an item.

As a result, we can easily manipulate a list. And to do that, Dart
comes with a lot of list methods. In the previous section, we have
also seen some examples.

This time, we will build one Quiz App in a more object oriented
way.

¹⁶https://github.com/sanjibsinha/elementary_dart_flutter_for_beginners/tree/chap-six-1-
intro-list

https://github.com/sanjibsinha/elementary_dart_flutter_for_beginners/tree/chap-six-1-intro-list
https://github.com/sanjibsinha/elementary_dart_flutter_for_beginners/tree/chap-six-1-intro-list
https://github.com/sanjibsinha/elementary_dart_flutter_for_beginners/tree/chap-six-1-intro-list

4. How to build a Quiz App 195

Why we need Object Oriented Style?

We know Dart is an object oriented programming language. As a
consequence, everything in Dart is Object.

That means, behind every Object there is a Class. Which defines
the Type of that object.

We can relate this concept to Flutter. Because, in Flutter, everything
is Widget, which is actually a Class.

There are four pillars in Object Oriented Programming.

Abstraction Encapsulation Inheritance Polymorphism

When we implement these concepts, we understand them better.
While building the Quiz App, in an object oriented way, we will
implement first two concepts. Abstraction and Encapsulation.

Firstly, we have used two Flutter packages to give our App a unique
look and feel.

Therefore, let us first add the dependencies in our “pubspec.yaml”
file.

dependencies: flutter: sdk: flutter

1 google_fonts: ^2.3.1

2 rflutter_alert: ^2.0.4

We have used Google Fonts package before. However, the alert
dialog package is new. Basically when our quiz ends, it will alert
the user with a dialog box.

4. How to build a Quiz App 196

Figure 4.9 – Flutter list Quiz App alert dialog at the end

We will develop the previous Quiz App in an Object oriented way.

To implement the first principle of Abstraction, we will create a
Question class in our model folder.

class Question { String question; bool answer;

1 Question(

2 this.question,

3 this.answer,

4);

}

Now, inside another class QuizMaster we can add the list items by
using the Question Class constructors.

4. How to build a Quiz App 197

As a result, we can establish a relationship between question and
answer in one object.

We have also declared an integer as the list index and set the value
to 0.

import ‘question.dart’;

class QuizMaster { int _indexNumber = 0;

1 final List<Question> _quiz = [

2 Question('29 - 3 = 26', true),

3 Question('711 - 4 = 677', false),

4 Question('455 * 3 = 1365', true),

5 Question('76 / 8 = 9.5', true),

6 Question('Many Thanks, press any button to end the Quiz\

7 .', true),

8];

9

10 void nextQuestion() {

11 if (_indexNumber <= _quiz.length) {

12 _indexNumber++;

13 }

14 }

15

16 String getQuestion() {

17 return _quiz[_indexNumber].question;

18 }

19

20 bool getAnswer() {

21 return _quiz[_indexNumber].answer;

22 }

23

24 bool isFinished() {

25 if (_indexNumber >= _quiz.length - 1) {

26 return true;

27 } else {

4. How to build a Quiz App 198

28 return false;

29 }

30 }

31

32 void reset() {

33 _indexNumber = 0;

34 }

}

As we see in the above code, now we are in more control to move
forward our questions.

Not only that, we can get the question, answer and move to the
next question.

Encapsulation and Private property

Apart from that, we have marked each property of the class as
“private” by adding an underscore “_” before the name of the
property.

class QuizMaster { int _indexNumber = 0;

1 final List<Question> _quiz = [

…

It implements another important principle of object oriented pro-
gramming. Encapsulation.

As we have made each property “private”, no one can access these
properties from outside this class.

Now we can create a QuizMaster object in our top-level main()
function. And, consequently, we can create our whole quiz app.

4. How to build a Quiz App 199

import ‘package:flutter/material.dart’; import ‘package:google_-
fonts/google_fonts.dart’;

import ‘package:rflutter_alert/rflutter_alert.dart’; import
‘model/quiz_master.dart’;

QuizMaster quizMaster = QuizMaster();

void main() ⇒ runApp(const QuizApp());

class QuizApp extends StatelessWidget { const QuizApp({Key? key})
: super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return MaterialApp(

4 home: Scaffold(

5 appBar: AppBar(

6 backgroundColor: Colors.white,

7 title: Text(

8 'Mathematical Quiz',

9 style: GoogleFonts.lacquer(

10 textStyle: TextStyle(

11 color: Colors.purple.shade600,

12 fontSize: 20.0,

13 fontWeight: FontWeight.bold,

14),

15),

16),

17),

18 body: const SafeArea(

19 child: Padding(

20 padding: EdgeInsets.symmetric(horizontal: 10.0),

21 child: QuizPage(),

22),

23),

24),

4. How to build a Quiz App 200

25);

26 }

}

class QuizPage extends StatefulWidget { const QuizPage({Key? key})
: super(key: key);

1 @override

2 _QuizPageState createState() => _QuizPageState();

}

class _QuizPageState extends State<QuizPage> { List<Text> check
= [];

1 void checkAnswer(bool userPickedAnswer) {

2 bool correctAnswer = quizMaster.getAnswer();

3

4 setState(() {

5 if (quizMaster.isFinished() == true) {

6 Alert(

7 context: context,

8 title: 'Quiz Completed.',

9 desc:

10 'We\'ve reached the end. Thanks for taking pa\

11 rt. Meet you again.',

12).show();

13

14 quizMaster.reset();

15

16 check = [];

17 } else {

18 if (userPickedAnswer == correctAnswer) {

19 check.add(

20 Text(

4. How to build a Quiz App 201

21 'You\'re Right. Well Done.',

22 style: GoogleFonts.laila(

23 textStyle: const TextStyle(

24 fontSize: 20.0,

25 fontWeight: FontWeight.bold,

26),

27),

28),

29);

30 } else {

31 check.add(

32 Text(

33 'You\'re Wrong. Try Again.',

34 style: GoogleFonts.laila(

35 textStyle: const TextStyle(

36 fontSize: 20.0,

37 fontWeight: FontWeight.bold,

38),

39),

40),

41);

42 }

43 quizMaster.nextQuestion();

44 }

45 });

46 }

47

48 @override

49 Widget build(BuildContext context) {

50 return SafeArea(

51 top: true,

52 child: Center(

53 child: ListView(

54 children: <Widget>[

55 Container(

4. How to build a Quiz App 202

56 margin: const EdgeInsets.fromLTRB(20.0, 5.0, \

57 20.0, 5.0),

58 alignment: Alignment.center,

59 child: Text(

60 quizMaster.getQuestion(),

61 style: GoogleFonts.lalezar(

62 textStyle: const TextStyle(

63 fontSize: 30.0,

64 fontWeight: FontWeight.bold,

65),

66),

67),

68),

69 checkingAnswer('Correct', true),

70 checkingAnswer('Wrong', false),

71 Padding(

72 padding: const EdgeInsets.all(8.0),

73 child: Column(

74 mainAxisSize: MainAxisSize.min,

75 mainAxisAlignment: MainAxisAlignment.center,

76 children: check,

77),

78)

79],

80),

81),

82);

83 }

84

85 Container checkingAnswer(String corerctOrWrong, bool true\

86 OrFalse) {

87 return Container(

88 padding: const EdgeInsets.all(5.0),

89 child: ElevatedButton(

90 onPressed: () {

4. How to build a Quiz App 203

91 checkAnswer(trueOrFalse);

92 },

93 child: Text(

94 corerctOrWrong,

95 style: GoogleFonts.laila(

96 textStyle: const TextStyle(

97 fontSize: 20.0,

98 fontWeight: FontWeight.bold,

99),

100),

101),

102),

103);

104 }

}

we have used common Container Widget for two Elevated Buttons.

Therefore, we can refactor this part of code. We have extracted a
common method only changing the parameters.

checkingAnswer(‘Correct’, true), checkingAnswer(‘Wrong’, false),

How Flutter List Quiz App works

Here the setState() method plays a crucial role. As it updates the
question. It also checks whether the answer is correct or wrong.

After that, it adds the answers to another list which we show inside
a Column below.

The first mathematical equation is quite easy. It is correct.

When user presses the Correct button, it will rightly show the
answer and displays the next equation.

4. How to build a Quiz App 204

Suppose this time user cannot choose the correct answer. Accord-
ingly, it will show that user is wrong, and displays the third
equation as follows.

Figure 4.10 – Flutter list Quiz App second example

As we progress, one time, we reach the end point.

Now it is time to press any button to finish the quiz.

Completing this journey, will finally display the alert dialog that
we have seen before.

You can just create the same Quiz App by following the above code.
Or, you can clone the respective GitHub repository.

The code repositories for this ection¹⁷

¹⁷https://github.com/sanjibsinha/quiz_master/tree/mathematico

https://github.com/sanjibsinha/quiz_master/tree/mathematico
https://github.com/sanjibsinha/quiz_master/tree/mathematico

5. Let’s Build a Happiness
Calculator

We are going to build a Flutter App. Name is “Happiness Calcula-
tor”. In this section, we will learn how to use Slider Widget.

So far we have been progressing step-by-step.

We have learned how to use enum. After that, we have used ternary
operator to reduce the code length.

In this section we will learn what is the Slider widget. How to use
it. Moreover, why we need the Slider Widget.

What is Slider Widget

Firstly, the Slider Widget requires a Material widget as its ancestor.

Secondly, it inherits from a MediaQuery widget. That means we
need the MaterialApp widget at the top of the Widget tree.

Next, we need to remember another important thing.

The Slider Widget selects a range of values. It starts from the
minimum and might proceed to the maximum.

As a result, the state changes. The build() method rebuilds the
Widget. Therefore, we also need a Stateful Widget that will track
the number.

Why?

Because as we drag the slider, the number changes.

Let us take a look. That will give us an idea how the Slider Widget
works.

5. Let’s Build a Happiness Calculator 206

Figure 5.1 – Slider displays with the minimum value

As we drag the Slider, it proceeds to the maximum value.

During dragging the state changes. However, the Slider widget does
not maintain any state.

On the contrary, to maintain state, the slider widget calls the
onChanged callback.

As a result, when we drag it further, the number increases.

5. Let’s Build a Happiness Calculator 207

Figure 5.2 – Slider proceeds to the maximum value

Why we need and how to use Slider

Firstly, with the help of the Slider Widget we can change a value.
This mechanism might help us to decide something else with
respect to that value.

Since we want to calculate happiness, we can set the value by
dragging the slider.

5. Let’s Build a Happiness Calculator 208

Secondly, the onChanged property expects a callback that must
have the setState() method.

Not only that, it also passes a double value that takes the new value
as the value changes.

Finally we see how the Slider Widget uses the abstraction.

To make it happen, we just initialise an integer value which points
to the minimum value. Once the range is set, we can provide the
maximum value also.

1 Slider(

2 value: height.toDouble(),

3 min: 120.0,

4 max: 220.0,

5 activeColor: activeColor,

6 inactiveColor: Colors.black26,

7 onChanged: (double newValue) {

8 setState(() {

9 height = newValue.round();

10 });

11 },

12),

We see in the above code many properties of the Slider Widget. But
we can customise it more by adding more features to it.

Let us take a look at the full code, so it will clear every confusion.

5. Let’s Build a Happiness Calculator 209

1 import 'package:flutter/material.dart';

2

3 import '../model/constants.dart';

4 import '../model/container_color.dart';

5

6 class HappinessHomePage extends StatefulWidget {

7 const HappinessHomePage({

8 Key? key,

9 required this.title,

10 }) : super(key: key);

11

12 final String title;

13

14 @override

15 State<HappinessHomePage> createState() => _HappinessHomeP\

16 ageState();

17 }

18

19 class _HappinessHomePageState extends State<HappinessHome\

20 Page> {

21 ContainerColor? selectedContainer;

22 int height = 120;

23

24 @override

25 Widget build(BuildContext context) {

26 return Scaffold(

27 appBar: AppBar(

28 title: Text(widget.title),

29),

30 body: Center(

31 child: Column(

32 mainAxisAlignment: MainAxisAlignment.center,

33 children: <Widget>[

34 Row(

35 children: [

5. Let’s Build a Happiness Calculator 210

36 expandEnum(ContainerColor.first),

37 expandEnum(ContainerColor.second),

38],

39),

40 Expanded(

41 child: Container(

42 margin: const EdgeInsets.all(15.0),

43 alignment: Alignment.center,

44 color: inactiveColor,

45 width: double.infinity,

46 child: Column(

47 children: [

48 const Text('How The Slider Widget Wor\

49 ks'),

50 Row(

51 mainAxisAlignment: MainAxisAlignment.\

52 center,

53 crossAxisAlignment: CrossAxisAlignmen\

54 t.baseline,

55 textBaseline: TextBaseline.alphabetic,

56 children: [

57 Text(

58 height.toString(),

59 style: const TextStyle(

60 fontSize: 60.0,

61 fontWeight: FontWeight.w900,

62),

63),

64 const Text(

65 'cm',

66 style: TextStyle(

67 fontSize: 15.0,

68 fontWeight: FontWeight.w100,

69 fontStyle: FontStyle.italic,

70),

5. Let’s Build a Happiness Calculator 211

71),

72],

73),

74 Slider(

75 value: height.toDouble(),

76 min: 120.0,

77 max: 220.0,

78 activeColor: activeColor,

79 inactiveColor: Colors.black26,

80 onChanged: (double newValue) {

81 setState(() {

82 height = newValue.round();

83 });

84 },

85),

86],

87),

88),

89)

90],

91),

92),

93);

94 }

95

96 Expanded expandEnum(ContainerColor? containerColor) {

97 return Expanded(

98 child: Padding(

99 padding: const EdgeInsets.all(18.0),

100 child: GestureDetector(

101 onTap: () {

102 setState(() {

103 selectedContainer = containerColor;

104 });

105 },

5. Let’s Build a Happiness Calculator 212

106 child: Container(

107 alignment: Alignment.center,

108 color: selectedContainer == containerColor

109 ? activeColor

110 : inactiveColor,

111 width: 150.0,

112 height: 150.0,

113 child: const Text('Press Me'),

114),

115),

116),

117);

118 }

119 }

In the next section we will learn to customise the Slider. For
example the round thumb inside the Slider might be bigger.

Previously we have learned how to use a common theme across the
entire Flutter App.

We can implement that concept here. By the way, if you want to
clone this part of the project please visit the respective branch of
GitHub repository.

So stay tuned.

Customizing the theme

We have been building a “Happiness Calculator App” in Flutter.
However, we are building it step-by-step. In this section, we will
customize the theme of Slider Widget. And, to do that we will use
“SliderTheme” in Flutter.

Firstly, we have discussed enum before. Secondly, we have reduced
the code size by using the ternary operator. And finally, we have
discussed Slider in Flutter.

5. Let’s Build a Happiness Calculator 213

Actually, these are steps that define how we can build the App.

During building the App, the last stage was as follows.

Figure 5.3 – Slider proceeds to the maximum value

However, we want to give it a professional look. And to do that, we
must have a common theme that applies color and font across the
entire app.

As a result, it will look as follows.

5. Let’s Build a Happiness Calculator 214

Figure 5.4 – Customized Slider Theme that runs across the entire Flutter App

Have you not read the previous sections where we have discussed

5. Let’s Build a Happiness Calculator 215

how to customize color and fonts across the App? In that case,
please read how to customize color, and how to customize font and
design.

Firstly, when we try to calculate Happiness, we need some inputs.
Say, it is greed. A greedy person suffers from eternal unhappiness.

Therefore, as we raise the Slider bar that means we raise the amount
of Greed.

Secondly, the amount of happiness differs from male to female. So
we have used two icons that represent gender.

As a whole, up to now, we have designed this part. And in this
section, we will learn how we have achieved that.

How to use the custom theme

Althoughwe have discussed this part before, still recapitulationwill
not harm.

To customize a theme that will work across the entire Flutter App,
we need a custom theme class.

Let us see how this custom theme class look like.

1 import 'package:flutter/material.dart';

2 import 'package:google_fonts/google_fonts.dart';

3

4 /// In a custom theme page we have described color and fo\

5 nts

6 /// We may add more custom theme-features later

7 ///

8

9 class HappyTheme {

10 static const Color primaryColor = Color(0xFF409B25);

11 static const Color scaffoldBackgroundColor = Color(0xFF2C\

5. Let’s Build a Happiness Calculator 216

12 6F2E);

13 static const Color appBarBackgroundColor = Color(0xFF2C6F\

14 2E);

15 static const Color boxDecorationColor = Color(0xFFC5DA28);

16 static const Color elevatedButtonPrimaryColor = Color(0xF\

17 F3C9415);

18 static const Color dividerColor = Color(0xFFD9DB26);

19 static const correctAnswerColor = Color(0xFFFACAFA);

20 static const questionTextColor = Color(0xFFF8E1F8);

21 static const answerColor = Color(0xFFFFFFFF);

22

23 static TextStyle answerStyle = GoogleFonts.langar(

24 textStyle: const TextStyle(

25 color: HappyTheme.answerColor,

26 fontSize: 20.0,

27 fontWeight: FontWeight.bold,

28),

29);

30

31 static TextStyle greedStyle = GoogleFonts.laila(

32 textStyle: const TextStyle(

33 color: HappyTheme.shrinePink100,

34 fontSize: 60.0,

35 fontWeight: FontWeight.bold,

36),

37);

38

39 static TextStyle genderStyle = GoogleFonts.antic(

40 textStyle: const TextStyle(

41 color: HappyTheme.shrineSurfaceWhite,

42 fontSize: 15.0,

43 fontWeight: FontWeight.bold,

44),

45);

46

5. Let’s Build a Happiness Calculator 217

47 static TextStyle questionStyle = GoogleFonts.laila(

48 textStyle: const TextStyle(

49 color: HappyTheme.shrineBrown600,

50 fontSize: 30.0,

51 fontWeight: FontWeight.bold,

52),

53);

54

55 static TextStyle appbarStyle = GoogleFonts.salsa(

56 textStyle: const TextStyle(

57 color: HappyTheme.shrineBrown600,

58 fontSize: 20.0,

59 fontWeight: FontWeight.bold,

60),

61);

62

63 ThemeData _buildShrineTheme() {

64 final ThemeData base = ThemeData.light();

65 return base.copyWith(

66 colorScheme: _shrineColorScheme,

67 toggleableActiveColor: shrinePink400,

68 primaryColor: shrinePink100,

69 primaryColorLight: shrinePink100,

70 scaffoldBackgroundColor: shrineBackgroundWhite,

71 cardColor: shrineBackgroundWhite,

72 textSelectionTheme:

73 const TextSelectionThemeData(selectionColor: shri\

74 nePink100),

75 errorColor: shrineErrorRed,

76 buttonTheme: ButtonThemeData(

77 colorScheme: _shrineColorScheme.copyWith(primary:\

78 shrinePink400),

79 textTheme: ButtonTextTheme.normal,

80),

81 primaryIconTheme: _customIconTheme(base.iconTheme),

5. Let’s Build a Happiness Calculator 218

82 textTheme: _buildShrineTextTheme(base.textTheme),

83 primaryTextTheme: _buildShrineTextTheme(base.primaryT\

84 extTheme),

85 iconTheme: _customIconTheme(base.iconTheme),

86);

87 }

88

89 ThemeData buildTheme() {

90 return _buildShrineTheme();

91 }

92

93 IconThemeData _customIconTheme(IconThemeData original) {

94 return original.copyWith(color: shrineBrown900);

95 }

96

97 TextTheme _buildShrineTextTheme(TextTheme base) {

98 return base

99 .copyWith(

100 caption: base.caption!.copyWith(

101 fontWeight: FontWeight.w400,

102 fontSize: 14,

103 letterSpacing: defaultLetterSpacing,

104),

105 button: base.button!.copyWith(

106 fontWeight: FontWeight.w500,

107 fontSize: 14,

108 letterSpacing: defaultLetterSpacing,

109),

110)

111 .apply(

112 fontFamily: 'Rubik',

113 displayColor: shrineBrown900,

114 bodyColor: shrineBrown900,

115);

116 }

5. Let’s Build a Happiness Calculator 219

117

118 static const ColorScheme _shrineColorScheme = ColorScheme(

119 primary: shrinePink100,

120 secondary: shrinePink50,

121 surface: shrineSurfaceWhite,

122 background: shrineBackgroundWhite,

123 error: shrineErrorRed,

124 onPrimary: shrineBrown900,

125 onSecondary: shrineBrown900,

126 onSurface: shrineBrown900,

127 onBackground: shrineBrown900,

128 onError: shrineSurfaceWhite,

129 brightness: Brightness.light,

130);

131

132 static const Color activeCoor = Color(0xFFaa1111);

133 static const Color inactiveCoor = Color(0xFF893131);

134

135 static const Color shrinePink50 = Color(0xFFFEEAE6);

136 static const Color shrinePink100 = Color(0xFFFEDBD0);

137 static const Color shrinePink300 = Color(0xFFFBB8AC);

138 static const Color shrinePink400 = Color(0xFFEAA4A4);

139

140 static const Color shrineBrown900 = Color(0xFF4f0808);

141 static const Color shrineBrown600 = Color(0xFF893131);

142

143 static const Color shrineErrorRed = Color(0xFFC5032B);

144

145 static const Color shrineSurfaceWhite = Color(0xFFFFFBFA);

146 static const Color shrineBackgroundWhite = Colors.white;

147

148 static const defaultLetterSpacing = 0.03;

149 }

We can give this file any name, however, the name should be
meaningful.

5. Let’s Build a Happiness Calculator 220

Next, wewill use this custom theme object where we need to reflect
this theme design.

It could be any color or style property of the Scaffold, AppBar, or
the Text Widget.

Consequently, we can take a look at the full code.

1 import 'package:flutter/material.dart';

2

3 import '../model/happ_theme.dart';

4 import '../model/constants.dart';

5 import '../model/container_color.dart';

6

7 class HappinessHomePage extends StatefulWidget {

8 const HappinessHomePage({

9 Key? key,

10 required this.title,

11 }) : super(key: key);

12

13 final String title;

14

15 @override

16 State<HappinessHomePage> createState() => _HappinessHomeP\

17 ageState();

18 }

19

20 class _HappinessHomePageState extends State<HappinessHome\

21 Page> {

22 ContainerColor? selectedContainer;

23 int height = 0;

24

25 @override

26 Widget build(BuildContext context) {

27 return Scaffold(

28 backgroundColor: HappyTheme.shrineBrown900,

29 appBar: AppBar(

5. Let’s Build a Happiness Calculator 221

30 title: Text(

31 widget.title,

32 style: HappyTheme.answerStyle,

33),

34 backgroundColor: HappyTheme.shrineBrown600,

35),

36 body: Center(

37 child: Column(

38 mainAxisAlignment: MainAxisAlignment.center,

39 children: <Widget>[

40 Row(

41 children: [

42 expandEnum(

43 ContainerColor.first,

44 'Male',

45 Icons.male,

46),

47 expandEnum(

48 ContainerColor.second,

49 'Female',

50 Icons.female,

51),

52],

53),

54 Expanded(

55 child: Container(

56 margin: const EdgeInsets.all(15.0),

57 alignment: Alignment.center,

58 color: HappyTheme.shrineBrown600,

59 width: double.infinity,

60 child: Column(

61 children: [

62 Container(

63 padding: const EdgeInsets.only(

64 top: 5.0,

5. Let’s Build a Happiness Calculator 222

65),

66 child: Text(

67 'GREED',

68 style: HappyTheme.answerStyle,

69),

70),

71 Row(

72 mainAxisAlignment: MainAxisAlignment.\

73 center,

74 crossAxisAlignment: CrossAxisAlignmen\

75 t.baseline,

76 textBaseline: TextBaseline.alphabetic,

77 children: [

78 Text(

79 height.toString(),

80 style: HappyTheme.greedStyle,

81),

82],

83),

84 SliderTheme(

85 data: SliderTheme.of(context).copyWit\

86 h(

87 inactiveTrackColor: HappyTheme.sh\

88 rinePink50,

89 activeTrackColor: HappyTheme.shri\

90 neBackgroundWhite,

91 thumbColor: HappyTheme.shrineErro\

92 rRed,

93 overlayColor: HappyTheme.shrinePi\

94 nk50,

95 thumbShape: const RoundSliderThum\

96 bShape(

97 enabledThumbRadius: 15.0,

98),

99 overlayShape: const RoundSliderOv\

5. Let’s Build a Happiness Calculator 223

100 erlayShape(

101 overlayRadius: 35.0,

102),

103),

104 child: Slider(

105 value: height.toDouble(),

106 min: 0.0,

107 max: 100.0,

108 activeColor: activeColor,

109 inactiveColor: Colors.black26,

110 onChanged: (double newValue) {

111 setState(() {

112 height = newValue.round();

113 });

114 },

115),

116),

117],

118),

119),

120),

121],

122),

123),

124);

125 }

126

127 Expanded expandEnum(

128 ContainerColor? containerColor, String gender, IconDa\

129 ta genderIcon) {

130 return Expanded(

131 child: Padding(

132 padding: const EdgeInsets.all(18.0),

133 child: GestureDetector(

134 onTap: () {

5. Let’s Build a Happiness Calculator 224

135 setState(() {

136 selectedContainer = containerColor;

137 });

138 },

139 child: Container(

140 alignment: Alignment.center,

141 color: selectedContainer == containerColor

142 ? HappyTheme.activeCoor

143 : HappyTheme.inactiveCoor,

144 width: 150.0,

145 height: 100.0,

146 child: Column(

147 children: [

148 Icon(

149 genderIcon,

150 size: 80.0,

151),

152 Text(

153 gender,

154 style: HappyTheme.genderStyle,

155),

156],

157),

158),

159),

160),

161);

162 }

163 }

However, in the immediate parent Widget, we have defined the
MaterialApp theme property also.

Where we have created the custom theme data object.

5. Let’s Build a Happiness Calculator 225

1 import 'package:flutter/material.dart';

2 import 'package:happiness_calculator/model/happ_theme.dar\

3 t';

4

5 import 'happiness_home_page.dart';

6

7 HappyTheme happyTheme = HappyTheme();

8

9 class HappinessApp extends StatelessWidget {

10 const HappinessApp({Key? key}) : super(key: key);

11

12 // This widget is the root of your application.

13 @override

14 Widget build(BuildContext context) {

15 return MaterialApp(

16 title: 'Flutter Demo',

17 theme: happyTheme.buildTheme(),

18 home: const HappinessHomePage(title: 'Flutter Happine\

19 ss Calculator'),

20);

21 }

22 }

If you want to take a closer look at how code structure works, you
can clone the whole project from this GitHub repository branch.

Anyway, since we have discussed the usage of custom theme class,
we are not going to chew over the same topic.

Instead, we can examine how the Slider Theme Widget works.

How SliderTheme works

The SliderTheme Widget acts as a parent class to the Slider Widget.
It applies a slider theme to the descendant Slider widgets.

5. Let’s Build a Happiness Calculator 226

What is a slider theme?

It describes many properties that manage the theme, such as color,
and shape. However, we need to use the SliderTheme.of method
that passes the context.

And, as a result, we can access the copyWith() method. Conse-
quently the copyWith() method has many properties that expect
the slider components.

Let us take a look at the code snippet.

1 SliderTheme(

2 data: SliderTheme.of(context).copyWit\

3 h(

4 inactiveTrackColor: HappyTheme.sh\

5 rinePink50,

6 activeTrackColor: HappyTheme.shri\

7 neBackgroundWhite,

8 thumbColor: HappyTheme.shrineErro\

9 rRed,

10 overlayColor: HappyTheme.shrinePi\

11 nk50,

12 thumbShape: const RoundSliderThum\

13 bShape(

14 enabledThumbRadius: 15.0,

15),

16 overlayShape: const RoundSliderOv\

17 erlayShape(

18 overlayRadius: 35.0,

19),

20),

21 child: Slider(

22 value: height.toDouble(),

23 min: 0.0,

24 max: 100.0,

25 activeColor: activeColor,

5. Let’s Build a Happiness Calculator 227

26 inactiveColor: Colors.black26,

27 onChanged: (double newValue) {

28 setState(() {

29 height = newValue.round();

30 });

31 },

32),

33),

As you see, we have defined various properties that describe the
theme properties in detail.

In fact, now it becomes easy to customize the Slider Widget.

In the next section we will proceed forward to complete the App.

Router API in Flutter

What is Navigation in Flutter? It is a routingmechanism. As a result,
in a Flutter App, we go from one page to another page.

However, to accomplish this task, we need the Navigator Widget.
in addition, we can also go from one page to another page by using
the Router Widget.

Then, you may ask, what is the difference? Why not there is only
one mechanism?

Because it depends on its complexity. As the Flutter App becomes
more elaborate, or there are more pages to go and come back, the
Navigation becomes tedious.

Then we need the Router API.

But, for simple App like the Happiness Calculator App that we have
been building step by step, the Navigator API is enough.

What is navigation in Flutter Consider a simple example. Suppose
there is a bread on the table.

5. Let’s Build a Happiness Calculator 228

We place a second bread on top of the first bread. Next, we add the
third bread on top of the second bread.

Therefor, there are three breads one above the other.

Now, someone comes and pick up the third bread from the stack of
three breads.

What will happen?

The second bread will come on the top.

If we imagine Flutter pages in place of those breads, the same thing
happens. The home page from where we start our journey, is our
first bread.

As we keep adding pages, they place themselves one above the
other.

When we use the imperative API Navigator.push, it takes us from
the home page to the second page. On the contrary, when want
to come back to the home page again, we use the Navigator.pop
method.

Let us see how it looks. The image will say the thousands words.

5. Let’s Build a Happiness Calculator 229

Figure 5.6 – Navigation Flutter_ Home page of Happiness App

This is the home page of our Happiness Calculator App. The App
will count the index of Happiness by taking inputs from three
factors.

When the user sets the values as we are seeing above, the result will
show up in the next page.

5. Let’s Build a Happiness Calculator 230

Figure 5.7 – Navigation Flutter_ result page

This Happiness Calculator App works on simple principle. Between

5. Let’s Build a Happiness Calculator 231

the three factors, when greed is too high, and other two factors,
gratitude and diligence are low, the happiness index is also low,

However, if a user has low level of greed and high level of gratitude
and diligence, then the user becomes a happy person.

What is Navigator.push?

During building this Flutter App, we have learned a few key
concepts, such as enum, and ternary operator.

After that, we have learned to use the Flutter SliderWidget and also
learned how to customise it.

Similarly, in this section, we will learn the simple navigation where
we will go from the home page to the result page.

Let us take a look at the code of home page firstly. Because, we had
seen our App as follows before.

5. Let’s Build a Happiness Calculator 232

Figure 5.8 – Customized Slider Theme that runs across the entire Flutter App

We have added two more factors below the Slider Widget.

As a result, the code of Homepage has changed a lot.

In addition, the design has changed completely. And, now it looks
like below.

5. Let’s Build a Happiness Calculator 233

Figure 5.9 – Navigation Flutter_ Home page of Happiness App

To clarify, it would not happen if we did not change the code of
home page.

Let us see the code, first. Then we will discuss how we have added
the Navigation mechanism in this page.

5. Let’s Build a Happiness Calculator 234

1 import 'package:flutter/material.dart';

2 import 'package:happiness_calculator/view/happiness_resul\

3 t.dart';

4

5 import '../model/happy_theme.dart';

6 import '../model/constants.dart';

7 import '../model/container_color.dart';

8

9 class HappinessHomePage extends StatefulWidget {

10 const HappinessHomePage({

11 Key? key,

12 required this.title,

13 }) : super(key: key);

14

15 final String title;

16

17 @override

18 State<HappinessHomePage> createState() => _HappinessHomeP\

19 ageState();

20 }

21

22 class _HappinessHomePageState extends State<HappinessHome\

23 Page> {

24 ContainerColor? selectedContainer;

25 int greed = 20;

26 int gratitude = 10;

27 int dilligence = 20;

28

29 @override

30 Widget build(BuildContext context) {

31 return Scaffold(

32 backgroundColor: HappyTheme.shrineBrown900,

33 appBar: AppBar(

34 title: Text(

35 widget.title,

5. Let’s Build a Happiness Calculator 235

36 style: HappyTheme.appbarStyle,

37),

38 backgroundColor: HappyTheme.shrineBrown600,

39),

40 body: Center(

41 child: Column(

42 mainAxisAlignment: MainAxisAlignment.center,

43 children: <Widget>[

44 Row(

45 mainAxisAlignment: MainAxisAlignment.center,

46 mainAxisSize: MainAxisSize.min,

47 children: [

48 expandGender(

49 ContainerColor.first,

50 'Male',

51 Icons.male,

52),

53 expandGender(

54 ContainerColor.second,

55 'Female',

56 Icons.female,

57),

58],

59),

60 Expanded(

61 child: Container(

62 margin: const EdgeInsets.all(5.0),

63 alignment: Alignment.center,

64 color: HappyTheme.shrineBrown600,

65 width: double.infinity,

66 child: Column(

67 mainAxisAlignment: MainAxisAlignment.cent\

68 er,

69 mainAxisSize: MainAxisSize.min,

70 children: [

5. Let’s Build a Happiness Calculator 236

71 Container(

72 padding: const EdgeInsets.only(

73 top: 5.0,

74 bottom: 2.0,

75),

76 child: Text(

77 'GREED',

78 style: HappyTheme.appbarStyle,

79),

80),

81 Row(

82 mainAxisAlignment: MainAxisAlignment.\

83 center,

84 crossAxisAlignment: CrossAxisAlignmen\

85 t.baseline,

86 textBaseline: TextBaseline.alphabetic,

87 children: [

88 Text(

89 greed.toString(),

90 style: HappyTheme.greedStyle,

91),

92],

93),

94 SliderTheme(

95 data: SliderTheme.of(context).copyWit\

96 h(

97 inactiveTrackColor: HappyTheme.sh\

98 rinePink50,

99 activeTrackColor: HappyTheme.shri\

100 neBackgroundWhite,

101 thumbColor: HappyTheme.shrineErro\

102 rRed,

103 overlayColor: HappyTheme.shrinePi\

104 nk50,

105 thumbShape: const RoundSliderThum\

5. Let’s Build a Happiness Calculator 237

106 bShape(

107 enabledThumbRadius: 15.0,

108),

109 overlayShape: const RoundSliderOv\

110 erlayShape(

111 overlayRadius: 35.0,

112),

113),

114 child: Slider(

115 value: greed.toDouble(),

116 min: 20.0,

117 max: 100.0,

118 activeColor: activeColor,

119 inactiveColor: Colors.black26,

120 onChanged: (double newValue) {

121 setState(() {

122 greed = newValue.round();

123 });

124 },

125),

126),

127],

128),

129),

130),

131 Row(

132 mainAxisAlignment: MainAxisAlignment.center,

133 children: [

134 expandGratitude(),

135 expandDilligence(),

136],

137),

138],

139),

140),

5. Let’s Build a Happiness Calculator 238

141 bottomNavigationBar: Container(

142 width: double.infinity,

143 height: 60.0,

144 color: HappyTheme.activeCoor,

145 child: TextButton(

146 onPressed: () {

147 Navigator.push(

148 context,

149 MaterialPageRoute(

150 builder: (context) => const HappinessResu\

151 lt(),

152),

153);

154 },

155 child: Text(

156 'CALCULATE',

157 style: HappyTheme.appbarStyle,

158),

159),

160),

161);

162 }

163

164 Expanded expandDilligence() {

165 return Expanded(

166 child: Padding(

167 padding: const EdgeInsets.all(5.0),

168 child: Container(

169 alignment: Alignment.center,

170 width: double.infinity,

171 height: 100.0,

172 color: HappyTheme.inactiveCoor,

173 child: Column(

174 mainAxisAlignment: MainAxisAlignment.center,

175 mainAxisSize: MainAxisSize.min,

5. Let’s Build a Happiness Calculator 239

176 children: [

177 const Text(

178 'DILLIGENCE',

179 style: TextStyle(

180 fontSize: 20.0,

181 color: Colors.white,

182),

183),

184 Row(

185 mainAxisAlignment: MainAxisAlignment.spac\

186 eAround,

187 mainAxisSize: MainAxisSize.min,

188 children: [

189 FloatingActionButton(

190 heroTag: 'btn3',

191 onPressed: () {

192 setState(() {

193 dilligence--;

194 });

195 },

196 child: const Icon(

197 Icons.minimize,

198),

199),

200 Container(

201 padding: const EdgeInsets.only(

202 left: 10.0,

203 right: 10.0,

204),

205 child: Text(

206 dilligence.toString(),

207 style: HappyTheme.dilligenceStyle,

208),

209),

210 FloatingActionButton(

5. Let’s Build a Happiness Calculator 240

211 heroTag: 'btn4',

212 onPressed: () {

213 setState(() {

214 dilligence++;

215 });

216 },

217 child: const Icon(

218 Icons.add,

219),

220),

221],

222),

223],

224),

225),

226),

227);

228 }

229

230 Expanded expandGratitude() {

231 return Expanded(

232 child: Padding(

233 padding: const EdgeInsets.all(5.0),

234 child: Container(

235 alignment: Alignment.center,

236 width: double.infinity,

237 height: 100.0,

238 color: HappyTheme.inactiveCoor,

239 child: Column(

240 mainAxisAlignment: MainAxisAlignment.center,

241 mainAxisSize: MainAxisSize.min,

242 children: [

243 const Text(

244 'GRATITUDE',

245 style: TextStyle(

5. Let’s Build a Happiness Calculator 241

246 fontSize: 20.0,

247 color: Colors.white,

248),

249),

250 Row(

251 mainAxisAlignment: MainAxisAlignment.spac\

252 eAround,

253 mainAxisSize: MainAxisSize.min,

254 children: [

255 FloatingActionButton(

256 heroTag: 'btn1',

257 onPressed: () {

258 setState(() {

259 gratitude--;

260 });

261 },

262 child: const Icon(

263 Icons.minimize,

264),

265),

266 Container(

267 padding: const EdgeInsets.only(

268 left: 10.0,

269 right: 10.0,

270),

271 child: Text(

272 gratitude.toString(),

273 style: HappyTheme.dilligenceStyle,

274),

275),

276 FloatingActionButton(

277 heroTag: 'btn2',

278 onPressed: () {

279 setState(() {

280 gratitude++;

5. Let’s Build a Happiness Calculator 242

281 });

282 },

283 child: const Icon(

284 Icons.add,

285),

286),

287],

288),

289],

290),

291),

292),

293);

294 }

295

296 Expanded expandGender(

297 ContainerColor? containerColor, String gender, IconDa\

298 ta genderIcon) {

299 return Expanded(

300 child: Padding(

301 padding: const EdgeInsets.all(5.0),

302 child: GestureDetector(

303 onTap: () {

304 setState(() {

305 selectedContainer = containerColor;

306 });

307 },

308 child: Container(

309 alignment: Alignment.center,

310 color: selectedContainer == containerColor

311 ? HappyTheme.activeCoor

312 : HappyTheme.inactiveCoor,

313 width: double.infinity,

314 height: 100.0,

315 child: Column(

5. Let’s Build a Happiness Calculator 243

316 mainAxisAlignment: MainAxisAlignment.center,

317 mainAxisSize: MainAxisSize.min,

318 children: [

319 Icon(

320 genderIcon,

321 size: 80.0,

322 color: Colors.white,

323),

324 Text(

325 gender,

326 style: HappyTheme.genderStyle,

327),

328],

329),

330),

331),

332),

333);

334 }

335 }

Now, we can either make any value lower, or make it higher.
Meanwhile, we can press the “CALCULATE” button, and it takes
us to the result page.

In the bottom navigation bar property, in a Text Button we have
used the Navigator.push method.

5. Let’s Build a Happiness Calculator 244

1 bottomNavigationBar: Container(

2 width: double.infinity,

3 height: 60.0,

4 color: HappyTheme.activeCoor,

5 child: TextButton(

6 onPressed: () {

7 Navigator.push(

8 context,

9 MaterialPageRoute(

10 builder: (context) => const HappinessResu\

11 lt(),

12),

13);

14 },

15 child: Text(

16 'CALCULATE',

17 style: HappyTheme.appbarStyle,

18),

19),

20),

Certainly, the Happiness result page displays a dummy result.
Because we have only finished the design part. Besides, we make
an easy navigation defining the route.

As we see in the above code, Navigator.push method passes two
parameters.

The first parameter is the context. And the second parameter is the
MaterialPageRoute class constructor.

In this constructor the builder property expects that the context will
return the second page.

5. Let’s Build a Happiness Calculator 245

What is Navigtor.pop?

Let us go back to the previous examples. The Navigator.push
method basically puts one page over the other.

However, the Navigator.pop method does the opposite. It takes out
the page from the top.

As a result, the page below will again emerge.

This is the most basic routing mechanism where we go to one page,
and come back to the home page.

Here is the result page code that will explain how this routing
mechanism works.

1 import 'package:flutter/material.dart';

2 import 'package:happiness_calculator/model/happy_theme.da\

3 rt';

4

5 class HappinessResult extends StatelessWidget {

6 const HappinessResult({Key? key}) : super(key: key);

7

8 @override

9 Widget build(BuildContext context) {

10 return Scaffold(

11 backgroundColor: HappyTheme.shrineBrown900,

12 appBar: AppBar(

13 backgroundColor: HappyTheme.shrineBrown600,

14 title: Text(

15 'How Happy You Are!',

16 style: HappyTheme.appbarStyle,

17),

18),

19 body: Padding(

20 padding: const EdgeInsets.all(18.0),

21 child: Column(

5. Let’s Build a Happiness Calculator 246

22 mainAxisAlignment: MainAxisAlignment.center,

23 mainAxisSize: MainAxisSize.min,

24 children: [

25 Container(

26 margin: const EdgeInsets.all(5.0),

27 child: Text(

28 'Result',

29 style: HappyTheme.resultStyle,

30),

31),

32 Container(

33 width: double.infinity,

34 padding: const EdgeInsets.only(

35 top: 10.0,

36),

37 child: Column(

38 mainAxisAlignment: MainAxisAlignment.cent\

39 er,

40 mainAxisSize: MainAxisSize.min,

41 children: [

42 Text(

43 '10',

44 style: HappyTheme.happinessIndexStyle,

45),

46 Text(

47 'You are very unhappy. Reduce greed, \

48 increase gratitude and dilligence',

49 style: HappyTheme.happinessResultStyl\

50 e,

51),

52],

53),

54),

55],

56),

5. Let’s Build a Happiness Calculator 247

57),

58 bottomNavigationBar: Container(

59 width: double.infinity,

60 height: 60.0,

61 color: HappyTheme.activeCoor,

62 child: TextButton(

63 onPressed: () {

64 Navigator.pop(context);

65 },

66 child: Text(

67 'RE-CALCULATE',

68 style: HappyTheme.appbarStyle,

69),

70),

71),

72);

73 }

74 }

In the same vein, we use the bottom navigation bar, and a Text
Button.

In addition, we define the routing mechanism by using Naviga-
tor.pop method.

1 onPressed: () {

2 Navigator.pop(context);

3 },

As we press the bottom navigation bar button, It picks up the result
page. Therefore, the home page emerges from the below.

If you want to clone this step, please visit this branch of the GitHub
repository.

Certainly, this routing mechanism is simple. Moreover, it has not
sent any data from the home page to the result page.

5. Let’s Build a Happiness Calculator 248

But we can do that.

In fact, in the next section we will pass the data from home page to
the result page.

And based on that data, we will calculate the Happiness Index.

Business Logic behind an Flutter App

We have reached the final stage. So we will use the Flutter Business
Logic and finish our Happiness Calculator App.

While building the Flutter App, we have learned a few key concepts.

Firstly, we have learned how to use enum. Secondly, we have
learned ternary operator. Thirdly, we have grasped how to cus-
tomize the Slider theme.

Further, we have absorbed the basic route mechanism.

If you are a beginner, please follow the steps and clone the GitHub
repository. In fact, you will find them in the step-by-step branches.

Please clone them and test in your local machine.

What is the difference between
Business Logic and UI Logic?

Flutter is a cross-platform Framework or UI toolkit. What does that
mean? It means the user interface plays an important role.

Each time Flutter calls the build() method the old instance of
Widget destroys itself. As a result, the Widget rebuilds itself and
a new instance shows up.

Flutter mostly handles the UI logic. Therefore, we do not have to
bother. We just extends either Stateless, or a Stateful Widget. And,
we move on.

5. Let’s Build a Happiness Calculator 249

Of course, Flutter allows us to create our own Widget. Quite
naturally. Because Flutter is open source and we get the source code
in GitHub.

However, we need to create our Business Logic. As it happens in
our Happiness Calculator App.

In the previous section we have seen that the Result page displays
some static Text output. Right?

Take a look at the last stage where we have left.

Figure 5.10 – Navigation Flutter_ result page

5. Let’s Build a Happiness Calculator 250

The above page does not reflect the dynamic properties that should
have come from the home page.

A user will set the “greed” factor to a number. In respect to that she
will also have to choose two other factors, such as “gratitude” and
“diligence”.

Subsequently, our home page will store those values somewhere
and our business logic will decide whether the user is happy or
unhappy.

Moreover, based on that, the Flutter Business Logic will also advise
what to do. This mechanism will ensure code separation.

Why?

Because it is important for clean architecture.

How to create Flutter Business
Logic?

The algorithm is simple. We have seen that greed has a minimum
value 20. Because we all come to this planet with some in-built
greed. The maximum value is 100.

The same is true for other two factors. The “gratitude” and “dili-
gence” also have some minimum values. Subsequently, the user can
increase or decrease the value.

Here, our business logic is simple. Firstly, we combine the values of
the “gratitude” and “diligence”. Secondly, we subtract the value of
“greed” from it.

The result is the happiness index value.

Let us see the code.

5. Let’s Build a Happiness Calculator 251

1 class HappinessCalculator {

2 final int? greed;

3 final int? gratitude;

4 final int? diligence;

5

6 int? _happinessIndex;

7

8 HappinessCalculator({

9 required this.greed,

10 required this.gratitude,

11 required this.diligence,

12 });

13

14 String calculateHappiness() {

15 _happinessIndex = (gratitude! + diligence!) - greed!;

16 return _happinessIndex.toString();

17 }

18

19 String getResult() {

20 if (_happinessIndex! <= 50) {

21 return 'Unhappy';

22 } else {

23 return 'Happy';

24 }

25 }

26

27 String getAdvice() {

28 if (_happinessIndex! <= 50) {

29 return 'Please reduce greed and increase gratitude an\

30 d dligence.';

31 } else {

32 return 'You are a Happy person. Study old philosopher\

33 s, and stay cool.';

34 }

35 }

5. Let’s Build a Happiness Calculator 252

36 }

In the above code, if happiness index is equal and lower than 50,
you are unhappy. However, if the happiness index is greater than
50, then you are happy.

The real challenge is elsewhere.

We need to pass these values to the result page.

How to pass values through
Navigation?

In our previous sectionwe have finished the design part and learned
how to navigate to the result page.

Therefore, we are not going to repeat the full code of the Happiness
App home page.

We will take a look at the bottom navigation bar part where we
have handled the business logic.

1 bottomNavigationBar: Container(

2 width: double.infinity,

3 height: 60.0,

4 color: HappyTheme.activeCoor,

5 child: TextButton(

6 onPressed: () {

7 HappinessCalculator happy = HappinessCalculat\

8 or(

9 greed: greed,

10 gratitude: gratitude,

11 diligence: diligence,

12);

13 happy.calculateHappiness();

5. Let’s Build a Happiness Calculator 253

14 Navigator.push(

15 context,

16 MaterialPageRoute(

17 builder: (context) => HappinessResult(

18 greed: greed,

19 gratitude: gratitude,

20 diligence: diligence,

21 happinessIndex: happy.getResult(),

22 whatIsToBeDone: happy.getAdvice(),

23),

24),

25);

26 },

27 child: Text(

28 'CALCULATE',

29 style: HappyTheme.appbarStyle,

30),

31),

32),

In the above code, what do we see?

Firstly, we have created a HappinessCalculator object. After that,
we call the calculateHappiness() method that returns the happiness
index.

1 String calculateHappiness() {

2 _happinessIndex = (gratitude! + diligence!) - greed!;

3 return _happinessIndex.toString();

4 }

Now, we can pass that value to the result page through class
constructor.

5. Let’s Build a Happiness Calculator 254

1 MaterialPageRoute(

2 builder: (context) => HappinessResult(

3 greed: greed,

4 gratitude: gratitude,

5 diligence: diligence,

6 happinessIndex: happy.getResult(),

7 whatIsToBeDone: happy.getAdvice(),

8),

9),

10);

For that reason, now it becomes easier for us to display these values
in the result page.

Suppose the user has more greed and less gratitude and diligence.

The home page will look as follows.

When you have more greed, it overshadows every virtue.

As a result, the user becomes unhappy. But at the same time, we
can see the values on the result page.

5. Let’s Build a Happiness Calculator 255

Figure 5.11 – Flutter Business Logic calculates and finds the reasons of unhap-
piness

The result clearly shows why the user is unhappy. The reason is
simple. The user has greed 69, and on the contrary, gratitude is 10,
and diligence is 39.

However, if the user has less greed but more gratitude and dili-
gence?

The result page changes the values and displays them.

5. Let’s Build a Happiness Calculator 256

Figure 5.12 – Flutter Business Logic to calculates and finds out why the user is
happy

How we can display data got from
Business Logic?

It is not at all difficult. On the contrary, it is quite simple.

Because Flutter framework allows us to pass those data through
class constructor.

5. Let’s Build a Happiness Calculator 257

Let us take a look at the result page code.

1 import 'package:flutter/material.dart';

2 import 'package:happiness_calculator/model/happy_theme.da\

3 rt';

4

5 class HappinessResult extends StatelessWidget {

6 const HappinessResult({

7 Key? key,

8 required this.greed,

9 required this.gratitude,

10 required this.diligence,

11 required this.happinessIndex,

12 required this.whatIsToBeDone,

13 }) : super(key: key);

14 final int greed;

15 final int gratitude;

16 final int diligence;

17

18 final String happinessIndex;

19 final String whatIsToBeDone;

20

21 @override

22 Widget build(BuildContext context) {

23 return Scaffold(

24 backgroundColor: HappyTheme.shrineBrown900,

25 appBar: AppBar(

26 backgroundColor: HappyTheme.shrineBrown600,

27 title: Text(

28 'How Happy You Are!',

29 style: HappyTheme.appbarStyle,

30),

31),

32 body: Padding(

33 padding: const EdgeInsets.all(18.0),

34 child: Column(

5. Let’s Build a Happiness Calculator 258

35 mainAxisAlignment: MainAxisAlignment.center,

36 mainAxisSize: MainAxisSize.min,

37 children: [

38 Container(

39 margin: const EdgeInsets.all(15.0),

40 child: Text(

41 'Result: Your Greed is: $greed, '

42 'your Gratitude is: $gratitude '

43 'your Diligence is: $diligence.',

44 style: HappyTheme.resultStyle,

45),

46),

47 Container(

48 width: double.infinity,

49 padding: const EdgeInsets.only(

50 top: 10.0,

51),

52 child: Column(

53 mainAxisAlignment: MainAxisAlignment.cent\

54 er,

55 mainAxisSize: MainAxisSize.min,

56 children: [

57 Text(

58 happinessIndex,

59 style: HappyTheme.happinessIndexStyle,

60),

61 const SizedBox(

62 height: 10.0,

63),

64 Text(

65 whatIsToBeDone,

66 style: HappyTheme.happinessResultStyl\

67 e,

68),

69],

5. Let’s Build a Happiness Calculator 259

70),

71),

72],

73),

74),

75 bottomNavigationBar: Container(

76 width: double.infinity,

77 height: 60.0,

78 color: HappyTheme.activeCoor,

79 child: TextButton(

80 onPressed: () {

81 Navigator.pop(context);

82 },

83 child: Text(

84 'RE-CALCULATE',

85 style: HappyTheme.appbarStyle,

86),

87),

88),

89);

90 }

91 }

The above code shows us how the result page gets the values
through class constructors.

In addition, we can display them in Text Widgets. How? Because
in our business logic, we return String data type.

For brevity, we have avoided to show full code. But, if you want to
clone the final project, please visit this GitHub rpository.

• For full code snippet for this app, please visit the respective
GitHub Repository - ¹⁸

¹⁸https://github.com/sanjibsinha/happiness_calculator

https://github.com/sanjibsinha/happiness_calculator
https://github.com/sanjibsinha/happiness_calculator
https://github.com/sanjibsinha/happiness_calculator

6. How we can build a
Food Recipe App with

List and Map
GridView is a scrollable Widget in Flutter. It places list of elements
side by side. In this section we will learn how to use the GridView
while we build a recipe app. We call it “CooKingKong”.

Certainly it will not be a serious cooking lesson. Therefore do not
expect to be a expert cook after finishing this module.

Let us know how this module will go. What we are going to create.

Firstly, we will have a page of Categories as follows.

6. How we can build a Food Recipe App with List and Map 261

Figure 6.1 – GridView Flutter Recipe app first page

Secondly, when we click each Category, it will take us to a page
where we will find many recipes belonging to the same category.

Finally, as we click any individual item there, that will open another
page where we will find the detail of the recipe.

In our previous Flutter App, “Happiness Calculator”, we have seen
how we can use simple Navigation.

However, this time it will be a little different.

6. How we can build a Food Recipe App with List and Map 262

What is GridView Flutter and How it
works

As we have said earlier, our categories page will display a List of
categories.

Therefore, we need a Widget that will help us to accomplish that
task. Right?

The GridView in Flutter does the same job.

It has a property called children. Subsequently, the children prop-
erty expects a List of Widgets.

Let us take a look at how the GridView in Flutter looks like.

1 import 'package:flutter/material.dart';

2 import 'package:coo_king_kong/model/dummy_categories.dart\

3 ';

4 import 'package:coo_king_kong/view/category_item.dart';

5

6 class CategoriesPage extends StatelessWidget {

7 const CategoriesPage({Key? key}) : super(key: key);

8

9 @override

10 Widget build(BuildContext context) {

11 return GridView(

12 children: dummyCategories

13 .map(

14 (e) => CategoryItem(title: e.title, color: e.\

15 color),

16)

17 .toList(),

18 gridDelegate: const SliverGridDelegateWithMaxCrossAxi\

19 sExtent(

20 maxCrossAxisExtent: 300,

21 childAspectRatio: 1.50,

6. How we can build a Food Recipe App with List and Map 263

22 mainAxisSpacing: 20.0,

23 crossAxisSpacing: 20.0,

24),

25);

26 }

27 }

Our top level function main() which is also the entry point, runs
the “CooKingKong” App. As if you will be cooking as a King Kong.
However, there is no opponent like Godzilla.

Our Widget tree runs as follows.

1 import 'package:flutter/material.dart';

2 import 'view/coo_king_kong_app.dart';

3

4 void main() {

5 runApp(const CooKingKongApp());

6 }

7

8 class CooKingKongApp extends StatelessWidget {

9 const CooKingKongApp({Key? key}) : super(key: key);

10

11 // This widget is the root of your application.

12 @override

13 Widget build(BuildContext context) {

14 return MaterialApp(

15 title: 'Flutter Demo',

16 theme: ThemeData(

17 primarySwatch: Colors.blue,

18),

19 home: const CooKingKongHome(),

20);

21 }

22 }

23

6. How we can build a Food Recipe App with List and Map 264

24 class CooKingKongHome extends StatelessWidget {

25 const CooKingKongHome({Key? key}) : super(key: key);

26

27 @override

28 Widget build(BuildContext context) {

29 return Scaffold(

30 appBar: AppBar(

31 title: const Text('CooKingKong Recipe'),

32),

33 body: const CategoriesPage(),

34);

35 }

36 }

In the aboveWidget tree, the last one is the CategoriesPage() which
we have seen before.

But one Widget is still missing.

Because the build() method of the CategoriesPage() returns a Grid-
View.

And, as a result, the children property of the GridView expects a
List of Widgets.

That means we have to return all the categories through a class
constructor as follows.

1 import 'package:flutter/material.dart';

2

3 class CategoryItem extends StatelessWidget {

4 const CategoryItem({

5 Key? key,

6 required this.title,

7 required this.color,

8 }) : super(key: key);

9

6. How we can build a Food Recipe App with List and Map 265

10 final String title;

11 final Color color;

12

13 @override

14 Widget build(BuildContext context) {

15 return Container(

16 margin: const EdgeInsets.all(8.0),

17 child: Center(

18 child: Text(

19 title,

20 style: const TextStyle(

21 fontSize: 20.0,

22),

23 textAlign: TextAlign.center,

24),

25),

26 decoration: BoxDecoration(

27 gradient: LinearGradient(

28 colors: [

29 color.withOpacity(0.6),

30 color,

31],

32 begin: Alignment.bottomLeft,

33 end: Alignment.topRight,

34),

35 borderRadius: BorderRadius.circular(15.0),

36),

37);

38 }

39 }

The above image displays this page where we have designed how
each Container will look like.

We have used the decoration property of the Container class. And,
in addition,the decoration property expects a BoxDecoration class.

6. How we can build a Food Recipe App with List and Map 266

We have discussed how we can decorate a Container before.

For example, there are other types of GridView also. There are
GridView.builder, GridView.extent, and GridView.count.

We have discussed them in detail. Have a look to realise how Flutter
helps us to solve problems in many ways.

Anyway, we have built the first step of CooKIngKong App. Al-
though we have not discussed another important aspect of this
module.

How did we get the List items? How each list Item has a distinct
color?

Let us discuss that part as well.

Model folder is the source of data

We are following the MVC principle. Therefore, we are trying to
separate data source from our Business and UI Logic.

As a result, in the Model folder, we have a Category class that has
three properties.

1 import 'package:flutter/material.dart';

2

3 // this is first-step

4 class Category {

5 final String id;

6 final String title;

7 final Color color;

8

9 const Category({

10 required this.id,

11 required this.title,

12 this.color = Colors.deepOrange,

6. How we can build a Food Recipe App with List and Map 267

13 });

14 }

However, without a dummy category this Category class is mean-
ingless.

For that reason, we have a List of dummy categories.

1 import 'package:flutter/material.dart';

2 import 'category.dart';

3

4 // this is first-step

5 const dummyCategories = [

6 Category(id: 'c1', title: 'American', color: Colors.red),

7 Category(id: 'c2', title: 'Mexican', color: Colors.green),

8 Category(id: 'c3', title: 'African', color: Colors.blue),

9 Category(id: 'c4', title: 'French', color: Colors.yellow),

10 Category(id: 'c5', title: 'Chinese', color: Colors.teal),

11 Category(id: 'c6', title: 'Japanese', color: Colors.amber\

12),

13 Category(id: 'c7', title: 'Indian', color: Colors.pink),

14 Category(id: 'c8', title: 'Iranian', color: Colors.black1\

15 2),

16 Category(id: 'c9', title: 'German', color: Colors.purple),

17 Category(id: 'c10', title: 'Italian', color: Colors.red),

18];

Remember the CategoriesPage Widget. The children property uses
this dummy data through the CategoryItem Widget constructor.

6. How we can build a Food Recipe App with List and Map 268

1 return GridView(

2 children: dummyCategories

3 .map(

4 (e) => CategoryItem(title: e.title, color: e.\

5 color),

6)

7 .toList(),

8 ...

We need to understand one principle concept here.

The data source could be local. And in our case, that happens.
We are using a local data source that comes from this dummy
categories.

This is the simplest form. We cannot make it simpler than that.

For instance, when data comes from the backend data base, it no
longer remains so simple.

With reference to that, we have discussed SQLite database and
Flutter in great detail before. You may have a look.

So far, we have successfully built the first part of our “CooK-
IngKong” App.

If you wan to clone this part of Code, please visit this branch of
GitHub repository.

(You can clone this branch)[https://github.com/sanjibsinha/coo_-
king_kong/tree/first-step-cookingkong]

How to use Naviagtion to send data

Wehave been building a funny recipe app in Flutter. In the first part,
we have built a categories page. But in a very simple way. Now we
want to use Flutter navigation to send data.

6. How we can build a Food Recipe App with List and Map 269

That means when user clicks a category, it takes her to that category
page.

As a result, she can press the back button, and come back.

Let us see where we had left before.

Figure 6.2 – GridView Flutter Recipe app first page

As we can see, we had not used any custom theme. Although we
can use custom font. In addition, we can apply a custom theme
across the app.

6. How we can build a Food Recipe App with List and Map 270

How to add a custom Font

Firstly, we can use Google font package for Flutter. It’s a convenient
way to different fonts across the app.

In fact, in a previous article, we have discussed that.

But this time we will download Google fonts. After that, we will
add the fonts in pubspec.yaml file as follows.

1 fonts:

2 - family: Raleway

3 fonts:

4 - asset: assets/fonts/Raleway-Regular.ttf

5 - asset: assets/fonts/Raleway-Bold.ttf

6 weight: 700

7 - asset: assets/fonts/Raleway-Black.ttf

8 weight: 900

9 - family: RobotoCondensed

10 fonts:

11 - asset: assets/fonts/RobotoCondensed-Regular.ttf

12 - asset: assets/fonts/RobotoCondensed-Bold.ttf

13 weight: 700

14 - asset: assets/fonts/RobotoCondensed-Light.ttf

15 weight: 300

16 - asset: assets/fonts/RobotoCondensed-Italic.ttf

17 style: italic

Next we will customise our theme in MaterialApp Widget. Later
we will take that part to a separate class.

Subsequently, we have used our fonts and changed the color across
the app.

6. How we can build a Food Recipe App with List and Map 271

1 import 'package:flutter/material.dart';

2

3 import 'coo_king_kong_home.dart';

4

5 class CooKingKongApp extends StatelessWidget {

6 const CooKingKongApp({Key? key}) : super(key: key);

7

8 // This widget is the root of your application.

9 @override

10 Widget build(BuildContext context) {

11 return MaterialApp(

12 title: 'Flutter Demo',

13 theme: ThemeData(

14 canvasColor: const Color.fromRGBO(255, 254, 229, \

15 1),

16 fontFamily: 'Raleway',

17 textTheme: ThemeData.light().textTheme.copyWith(

18 bodySmall: const TextStyle(

19 color: Color.fromRGBO(20, 51, 51, 1),

20),

21 bodyMedium: const TextStyle(

22 color: Color.fromRGBO(20, 51, 51, 1),

23),

24 titleSmall: const TextStyle(

25 fontSize: 20,

26 fontFamily: 'RobotoCondensed',

27 fontWeight: FontWeight.bold,

28),

29 titleMedium: const TextStyle(

30 fontSize: 30,

31 fontFamily: 'RobotoCondensed',

32 fontWeight: FontWeight.bold,

33),

34 titleLarge: const TextStyle(

35 fontSize: 40,

6. How we can build a Food Recipe App with List and Map 272

36 fontFamily: 'RobotoCondensed',

37 fontWeight: FontWeight.bold,

38),

39),

40 colorScheme: ColorScheme.fromSwatch(primarySwatch\

41 : Colors.pink)

42 .copyWith(secondary: Colors.amber),

43),

44 home: const CooKingKongHome(),

45);

46 }

47 }

As a result, our CooKingKong App will have a different look.

6. How we can build a Food Recipe App with List and Map 273

Figure 6.3 – Flutter navigation send data_ categories page

Now the previous look is no longer there. Secondly, we will press
each category so that we can go to that particular page.

That is our next challenge.

Flutter navigation and sending data

How does the Flutter navigation work? We have discussed in a
previous lesson.

6. How we can build a Food Recipe App with List and Map 274

Navigator.push method places one page on top of the other pages.

Navigator.pop method displaces that page, so that the page below
can emerge. It’s a simple mechanism.

But there are other better ways to handle the same problem.

Why? Because this simple mechanism is okay with simple apps
where we deal with one, or two pages.

What happens when there are many pages?

Certainly, we need a better mechanism. We will discuss that topic
in our next section.

This time we will only pass data from categories item page to an
individual category page.

To do that, we need a Widget that has a tapping facility. So a user
can tap any category to see what items it contains.

1 import 'package:flutter/material.dart';

2

3 import 'individual_category_page.dart';

4

5 /// TODO: this page displays each category by name and co\

6 lor

7 /// we will add a method that will take us to individual

8 /// category page

9

10 class CategoryItem extends StatelessWidget {

11 const CategoryItem({

12 Key? key,

13 required this.id,

14 required this.title,

15 required this.color,

16 }) : super(key: key);

17

18 final String id;

6. How we can build a Food Recipe App with List and Map 275

19 final String title;

20 final Color color;

21

22 void selectCategory(BuildContext context) {

23 Navigator.of(context).push(

24 MaterialPageRoute(

25 builder: (context) {

26 return IndividualCategoryPage(

27 id: id,

28 title: title,

29 color: color,

30);

31 },

32),

33);

34 }

35

36 @override

37 Widget build(BuildContext context) {

38 return InkWell(

39 onTap: () => selectCategory(context),

40 splashColor: Theme.of(context).primaryColor,

41 borderRadius: BorderRadius.circular(15),

42 child: Container(

43 //margin: const EdgeInsets.all(8.0),

44 child: Center(

45 child: Text(

46 title,

47 style: Theme.of(context).textTheme.titleSmall,

48 textAlign: TextAlign.center,

49),

50),

51 decoration: BoxDecoration(

52 gradient: LinearGradient(

53 colors: [

6. How we can build a Food Recipe App with List and Map 276

54 color.withOpacity(0.6),

55 color,

56],

57 begin: Alignment.bottomLeft,

58 end: Alignment.topRight,

59),

60 borderRadius: BorderRadius.circular(15.0),

61),

62),

63);

64 }

65 }

In the above code, we send data through class constructor. We have
defined that mechanism in a separate method.

1 void selectCategory(BuildContext context) {

2 Navigator.of(context).push(

3 MaterialPageRoute(

4 builder: (context) {

5 return IndividualCategoryPage(

6 id: id,

7 title: title,

8 color: color,

9);

10 },

11),

12);

13 }

Meanwhile we call that method inside Inkwell Widget.

6. How we can build a Food Recipe App with List and Map 277

1 return InkWell(

2 onTap: () => selectCategory(context),

3 ...

We could have used the GestureDetector Widget. But InkWell gives
us more freedom to use the custom theme color.

1 splashColor: Theme.of(context).primaryColor,

How a Widget receives data

The mechanism is same. It receives data through class constructor.

Therefore, if we take a look at the individual category page, we can
see that it receives data through class constructor.

1 import 'package:flutter/material.dart';

2

3 class IndividualCategoryPage extends StatelessWidget {

4 const IndividualCategoryPage({

5 Key? key,

6 required this.id,

7 required this.title,

8 required this.color,

9 }) : super(key: key);

10

11 final String id;

12 final String title;

13 final Color color;

14

15 @override

16 Widget build(BuildContext context) {

17 return Scaffold(

6. How we can build a Food Recipe App with List and Map 278

18 appBar: AppBar(

19 title: Text(title),

20),

21 body: Center(

22 child: Container(

23 color: color,

24 child: Text(

25 title,

26 style: Theme.of(context).textTheme.titleLarge,

27),

28),

29),

30);

31 }

32 }

Nowwe can click any category, and see the same title in the AppBar,
body and the same color.

6. How we can build a Food Recipe App with List and Map 279

Figure 6.4 – Flutter navigation send data to a page

Finally, we have sent data to a page. However, we have not been
able to show everything in this section.

If you want to clone this step please visit the respective branch of
GitHub Repository.

In the next section we will discuss the named route, that will make
our code cleaner and robust.

(Clone this branch and run locally)[https://github.com/sanjibsinha/coo_-
king_kong/tree/second-step-cookingkong-passing-data-via-
navigation]

Named Route and sending data

In the previous post we had sent data through Flutter navigation.
But we could have done the same thing by Flutter named route.

We will see in a minute, how we can do this.

6. How we can build a Food Recipe App with List and Map 280

Firstly, we need to understand why we want Flutter named route.
Secondly, we will see how it makes our CooKingKong App more
dynamic.

Finally, we will compare every route mechanism in Flutter.

First thing first.

We want Flutter named route for one single reason. That is, for a
big application, we can manage many pages in a better way.

TheMaterialAppWidget has a “routes” property that expects aMap
object.

We have discussed Map earlier. So we have seen that a Map has key
and value pair.

But in our case, the value expects a #context object that returns the
page where we want to navigate.

Figure 6.5 – Flutter navigation send data to a page

6. How we can build a Food Recipe App with List and Map 281

Simple Flutter navigation

Let us see each case separately, so we can compare them.

First, we are using the #route property where we try to pass data
through class constructor.

1 import 'package:coo_king_kong/view/individual_category_pa\

2 ge.dart';

3 import 'package:flutter/material.dart';

4

5 import 'coo_king_kong_home.dart';

6

7 class CooKingKongApp extends StatelessWidget {

8 const CooKingKongApp({Key? key}) : super(key: key);

9

10 // This widget is the root of your application.

11

12 /// If only [routes] is given, it must include an entry f\

13 or the

14 ///[Navigator.defaultRouteName] (/), since that is the ro\

15 ute used

16 ///when the application is launched with an intent that s\

17 pecifies

18 ///an otherwise unsupported route.

19

20 @override

21 Widget build(BuildContext context) {

22 return MaterialApp(

23 title: 'Flutter Demo',

24 theme: useCustomTheme(),

25 home: const CooKingKongHome(),

26

27 /// this will throw error

28 routes: {

6. How we can build a Food Recipe App with List and Map 282

29 '/individual-category-page': ((context) =>

30 IndividualCategoryPage(id: id, title: title, \

31 color: color))

32 },

33);

34 }

35 }

36 // code is incomplete for brevity, to study the full code\

37 , please clone the entire GitHub repository

The #routes property which is a Map, uses the key as a String data.
Just like a web URL.

Although there is no naming convention, yet the name should be
meaningful. In our case, we want to navigate to “IndividualCatego-
ryPage” Widget. Therefore we have used that name as our key.

However, the value is a #context that returns the “IndividualCat-
egoryPage()” Widget which has many named parameters. In this
page it is impossible to supply them.

Why? Because we have define the named parameters in that
Widget.

1 import 'package:flutter/material.dart';

2

3 class IndividualCategoryPage extends StatelessWidget {

4 const IndividualCategoryPage({

5 Key? key,

6 required this.id,

7 required this.title,

8 required this.color,

9 }) : super(key: key);

10

11 final String id;

12 final String title;

13 final Color color;

6. How we can build a Food Recipe App with List and Map 283

14

15 @override

16 Widget build(BuildContext context) {

17 return Scaffold(

18 appBar: AppBar(

19 title: Text(title),

20),

21 body: Center(

22 child: Container(

23 color: color,

24 child: Text(

25 title,

26 style: Theme.of(context).textTheme.titleLarge,

27),

28),

29),

30);

31 }

32 }

As a result, we must discard this route mechanism. And we must
adopt the named route instead.

How to use Flutter named route

How can we do that?

We can change the #routes property as follows.

1 routes: {

2 '/individual-category-page': (context) =>

3 const IndividualCategoryPage(),

4 },

6. How we can build a Food Recipe App with List and Map 284

But to do that, we can not use Navigator.push() method. In place
of that, we should use the Navigator.of(context).pushNamed()
method.

The Navigator.of(context).pushNamed() method has #arguments as
its named parameter. Which is again a Map where we can associate
the key and value as follows.

1 import 'package:flutter/material.dart';

2

3 import 'individual_category_page.dart';

4

5 /// TODO: this page displays each category by name and co\

6 lor

7 /// we will add a method that will take us to individual

8 /// category page

9

10 class CategoryItem extends StatelessWidget {

11 const CategoryItem({

12 Key? key,

13 required this.id,

14 required this.title,

15 required this.color,

16 }) : super(key: key);

17

18 final String id;

19 final String title;

20 final Color color;

21

22 void selectCategory(BuildContext context) {

23 Navigator.of(context).pushNamed(

24 '/individual-category-page',

25 arguments: {

26 'id': id,

27 'title': title,

28 'color': color,

6. How we can build a Food Recipe App with List and Map 285

29 },

30);

31 }

32

33 @override

34 Widget build(BuildContext context) {

35 return InkWell(

36 onTap: () => selectCategory(context),

37 splashColor: Theme.of(context).primaryColor,

38 borderRadius: BorderRadius.circular(15),

39 child: Container(

40 //margin: const EdgeInsets.all(8.0),

41 child: Center(

42 child: Text(

43 title,

44 style: Theme.of(context).textTheme.titleSmall,

45 textAlign: TextAlign.center,

46),

47),

48 decoration: BoxDecoration(

49 gradient: LinearGradient(

50 colors: [

51 color.withOpacity(0.6),

52 color,

53],

54 begin: Alignment.bottomLeft,

55 end: Alignment.topRight,

56),

57 borderRadius: BorderRadius.circular(15.0),

58),

59),

60);

61 }

62 }

As a result, we can receive the values in the destination page with

6. How we can build a Food Recipe App with List and Map 286

the help of the ModalRoute class.

As a result, the entire code of the destination Widget, “Individual-
CategoryPage” will change as follows.

1 import 'package:flutter/material.dart';

2

3 class IndividualCategoryPage extends StatelessWidget {

4 const IndividualCategoryPage({

5 Key? key,

6 }) : super(key: key);

7

8 static const routeName = '/individual-category-page';

9

10 @override

11 Widget build(BuildContext context) {

12 final routeArguments =

13 ModalRoute.of(context)!.settings.arguments as Map\

14 <String, Object>;

15 //final id = routeArguments['id'];

16 final Object? title = routeArguments['title'];

17 final Color? color = routeArguments['color'] as Color;

18

19 return Scaffold(

20 appBar: AppBar(

21 title: Text(title.toString()),

22),

23 body: Center(

24 child: Container(

25 color: color,

26 child: Text(

27 title.toString(),

28 style: Theme.of(context).textTheme.titleLarge,

29),

30),

31),

6. How we can build a Food Recipe App with List and Map 287

32);

33 }

34 }

To avoid mistake in the #routes key value, we have defined the
name in the destination page as a static constant String.

After that, we have changed the value of the #routes property in
the MaterialApp.

1 routes: {

2 IndividualCategoryPage.routeName: (context) =>

3 const IndividualCategoryPage(),

4 },

What is the advantage?

The biggest advantage is when we have a plenty of pages to
navigate, the chance of mistake is low.

In fact, there is no chance that we do a spelling mistake and that
crashes the entire app.

To sum up, Flutter named route has many features that we should
take care of.

It makes our app dynamic. In addition, we can send any type of
data.

Object relationship in Flutter

What is relation? When we use the word, we mean connection
between two or many persons. Now, it is true for relation in Flutter
also.

Why?

6. How we can build a Food Recipe App with List and Map 288

Because, in Flutter we use many objects. Right? For that reason,
these objects may have relations.

Now, relation may be different.

Firstly, It can be one to one object. Secondly, it can be one to many
objects. And, finally, it can be many to many objects.

In our App, we have only categories. And we have seen that there
are many categories that we can display through GridView.

As a result we see all categories on the home page.

Figure 6.6 – Flutter navigation send data_ categories page

6. How we can build a Food Recipe App with List and Map 289

When we click any category, we see that category page. If we click
Mexican, we will see the Mexican category.

Figure 6.7 – Flutter navigation send data to a page

Aswe can see, the category comes with the title and color. But there
should be Food items which belong to that category. Isn’t it?

Because, Mexican category may have different food items. Right?

Therefore each category should display those food items on the
corresponding page.

Here comes the challenge to establish the relation in Flutter. Each
category has many food items. In other words, each food may have
many categories.

As a result, they have a relation. So our next challenge is to establish
this relation in Flutter. So that finally we can click any food item to
see its funny recipe.

6. How we can build a Food Recipe App with List and Map 290

Why we need relation in Flutter

As we have said earlier, our category page should display various
food items on the page. To make that happen, we must have a food
class and dummy food items.

In addition, those food itemsmay have different properties. Wewill
see that in a minute.

Firstly, we try to understand one key concept in relation flutter.

What is that?

In Food class, we can have a list of categories as its property. And,
in that list we can place different categories.

Therefore the vary first foodmay have three categories. That means
the first food may belong to African, Mexican and Indian category.

There is a connection, and there is also a commonness. That is why
we need to establish the relation in Flutter.

Secondly, we will look at the food class.

1 enum Complexity {

2 simple,

3 complex,

4 }

5

6 class LorenIpsumFood {

7 final String id;

8 final List<String> categoryID;

9 final String title;

10 final String imageUrl;

11 final List<String> ingredients;

12 final List<String> steps;

13 final int duration;

14 final Complexity complexity;

15 final bool isVegan;

6. How we can build a Food Recipe App with List and Map 291

16 final bool isVegetarian;

17

18 const LorenIpsumFood({

19 required this.id,

20 required this.categoryID,

21 required this.title,

22 required this.imageUrl,

23 required this.ingredients,

24 required this.steps,

25 required this.duration,

26 required this.complexity,

27 required this.isVegan,

28 required this.isVegetarian,

29 });

30 }

In the above code, we have many instance variables. Two of them
of the enum type. We have discussed enum earlier. If you are a
beginner, please read that section.

However, we have established relation in Flutter with one property
in Food class.

1 final List<String> categoryID;

Nowwe will create a few items of food. To do that, we create many
instances by passing values through class constructor.

6. How we can build a Food Recipe App with List and Map 292

1 import 'food.dart';

2

3 const dummyLorenIpsumLorenIpsumFood = [

4 LorenIpsumFood(

5 id: 'f1',

6 categoryID: ['c1', 'c2', 'c8'],

7 title: 'Lorem ipsum dolor sit amet',

8 complexity: Complexity.simple,

9 imageUrl:

10 'https://upload.wikimedia.org/wikipedia/commons/t\

11 humb/2/20/Spaghetti_Bolognese_mit_Parmesan_oder_Grana_Pad\

12 ano.jpg/800px-Spaghetti_Bolognese_mit_Parmesan_oder_Grana\

13 _Padano.jpg',

14 duration: 20,

15 ingredients: [

16 '1 Lorem ipsum dolor sit amet, consectetur adipiscing\

17 elit',

18 '1 Lorem ipsum dolor sit amet',

19 '1 Lorem ipsum dol',

20 '250g Lorem ipsum dolor',

21 'Lorem ipsum',

22 'Lorem ipsum dolor'

23],

24 steps: [

25 'Lorem ipsum dolor sit amet, consectetur adipiscing e\

26 lit.',

27 'Lorem ipsum dolor sit amet, consectetur.',

28 'Lorem ipsum dolo, consectetur adipiscing elit.',

29 'Lorem ipsum dolor sit amet, consectetur.',

30 'Lorem ipsum dolor sit amet, adipiscing elit.',

31 'Lorem ipsum dolor sit amet, consectetur adipiscing e\

32 lit.',

33 'Lorem ipsum dolor sit amet.'

34],

35 isVegan: true,

6. How we can build a Food Recipe App with List and Map 293

36 isVegetarian: true,

37),

38 LorenIpsumFood(

39 id: 'f2',

40 categoryID: ['c2', 'c5', 'c4'],

41 title: 'Lorem ipsum',

42 complexity: Complexity.simple,

43 ...

44 // code is incomplete for brevity

As we see, the first food object has three category properties. In the
similar vein, the second food item also belongs to three categories.

Now, all food titles can come on the individual category page.

So we need to change the code of the “IndividualCategoryPage”
Widget.

How to establish relation in Flutter

Here lies our main challenge. The dummy food list contains a list
of category id. Therefore, we can map that list and return each
category id.

The Dart List type has a “where” method that can map through the
items and return the list of items.

As a result, we can take an advantage of that List method.

Therefore, we should change the code of the “IndividualCategory-
Page” Widget.

6. How we can build a Food Recipe App with List and Map 294

1 import 'package:flutter/material.dart';

2

3 import '../model/dummy_foods.dart';

4

5 class IndividualCategoryPage extends StatelessWidget {

6 const IndividualCategoryPage({

7 Key? key,

8 }) : super(key: key);

9

10 static const routeName = '/individual-category-page';

11

12 @override

13 Widget build(BuildContext context) {

14 final routeArguments =

15 ModalRoute.of(context)!.settings.arguments as Map\

16 <String, Object>;

17 final id = routeArguments['id'];

18 final Object? title = routeArguments['title'];

19 final Color? color = routeArguments['color'] as Color;

20 final categoryMeals = dummyLorenIpsumLorenIpsumFood.w\

21 here((food) {

22 return food.categoryID.contains(id);

23 }).toList();

24

25 return Scaffold(

26 appBar: AppBar(

27 title: Text(title.toString()),

28),

29 body: ListView.builder(

30 itemBuilder: (ctx, index) {

31 return Container(

32 padding: const EdgeInsets.all(18.0),

33 color: color,

34 child: Text(

35 categoryMeals[index].title,

6. How we can build a Food Recipe App with List and Map 295

36 style: Theme.of(context).textTheme.bodyMedium,

37),

38);

39 },

40 itemCount: categoryMeals.length,

41),

42);

43 }

44 }

Nowwe can tap any category and get all the titles of the food items.

These food items belong to that category.

First, we tap the Mexican category to see what food items are there.

Figure 6.8 – Relation in Flutter first example

Four food titles are there.

Next, we tap the French category. It has two food items. Because
when we have created Food objects, we pass this category id in two
cases.

6. How we can build a Food Recipe App with List and Map 296

As a result, the category French has two food titles.

Figure 6.9 – Relation in Flutter second example

However, our CooKingKong App is not finished yet. We have just
scratched the surface.

Now we understand that we can display the food items with title
and image.

At the same time, we can also use Flutter named route to navigate
to the individual Food page where we can show our funny recipe.

To do that, we need to change the design and the business logic.

In the next section we will discuss that.

So stay tuned.

Model View Controller

Model view controller architecture is a software design pattern that
we can apply in Flutter. Why? Because we want clean code that will
help us.

6. How we can build a Food Recipe App with List and Map 297

Help us to what? It will help us to understand the code. Why we are
writing this part or that part. In addition, how we are connecting
every part.

In this section we will learn how we can follow model view
controller architecture. Moreover, how we can apply this principle
to our CooKingKong food app.

By the way, model view controller architecture is also known as
MVC. Therefore, further in our discussion we will use the term
MVC.

What does MVC mean?

In our Flutter project we create three folders under the root folder
“lib”. We name them controller, model, and view. If you want to
change the name view to screen, that’s fine.

Or you can change the name of controller to widgets. But, that does
not affect the design pattern.

The question is, how it works?

The principle says, we keep our data source at the model folder. As
a result, in our CooKingKong App, we have put all category, and
food classes, dummy data in Model folder.

Therefore, model supplies the data. And the view part will display
that data. But, the controller plays the role of a mediator between
them.

The view asks the controller, “Hey, I need this. Can you supply
this?”

The controller asks model, “Do you have this data?”

If the model says yes, then controller supplies that data to the view.
What is the end result? The view does not know where the data
comes from. Only controller knows that.

6. How we can build a Food Recipe App with List and Map 298

If model says, I don’t have this data, controller conveys that
message to the view.

As a result, user sees a relevant message.

Enough talking, let us jump in to our code. We have progressed a
little bit. But we need to take a look at how we have progressed so
far.

Firstly, we have seen how to display all categories using the
GridView.

So, the CooKingKong App looks like the following.

6. How we can build a Food Recipe App with List and Map 299

Figure 6.10 – Flutter navigation send data_ categories page

Next, we have seen how we can send data from one page to the
other page.

Consequently, we tap any category and see the relevant page.

6. How we can build a Food Recipe App with List and Map 300

Figure 6.11 – Flutter navigation send data to a page

After that, we have also learned the named route to send data in a
better way.

Why we need the named route to send data? The main reason is,
as our app size grows, number of pages also grow. In addition, we
need to send data from one page to another page.

As a result, the relation between these pages becomes complex.

How do we handle this relation?

We have used ModalRoute.of() method to get all properties. And,
after that, we display some of the properties on individual food
page.

6. How we can build a Food Recipe App with List and Map 301

Figure 6.12 – Relation in Flutter first example

We need to understand that each individual category should have
many food items. Right?

Therefore, the individual category page code looks as follows.

1 import 'package:flutter/material.dart';

2

3 import '../model/dummy_foods.dart';

4

5 class IndividualCategoryPage extends StatelessWidget {

6 const IndividualCategoryPage({

7 Key? key,

8 }) : super(key: key);

9

10 static const routeName = '/individual-category-page';

11

12 @override

13 Widget build(BuildContext context) {

14 final routeArguments =

15 ModalRoute.of(context)!.settings.arguments as Map\

6. How we can build a Food Recipe App with List and Map 302

16 <String, Object>;

17 final id = routeArguments['id'];

18 final Object? title = routeArguments['title'];

19 final Color? color = routeArguments['color'] as Color;

20 final categoryMeals = dummyLorenIpsumLorenIpsumFood.w\

21 here((food) {

22 return food.categoryID.contains(id);

23 }).toList();

24

25 return Scaffold(

26 appBar: AppBar(

27 title: Text(title.toString()),

28),

29 body: ListView.builder(

30 itemBuilder: (ctx, index) {

31 return Container(

32 padding: const EdgeInsets.all(18.0),

33 color: color,

34 child: Text(

35 categoryMeals[index].title,

36 style: Theme.of(context).textTheme.bodyMedium,

37),

38);

39 },

40 itemCount: categoryMeals.length,

41),

42);

43 }

44 }

But that was the fourth step where we have just displayed the titles
of the food items. If you want to understand the fourth step to
understand the flow of logic, please clone this branch of GitHub
repository.

But it was not our intention to show only titles.

6. How we can build a Food Recipe App with List and Map 303

Instead we want to display each food item with respective image,
and other properties.

That’s why we separate the logic in separate folders applying the
MVC architecture.

Now, in themodel folder we have category and food classes. Further
we keep dummy data there.

After that, in controller folder we keep category and food item logic
that will take data from model and supply them to the view folder
pages.

Role of controller in MVC

As we have said earlier the controller bridges between model and
view. In other words, controller relays the message between these
two components.

So we keep category item and food item Widgets in controller
folder.

The category item will send the data by Naviga-
tor.of(context).pushNamed() method to the individual category
page.

1 import 'package:flutter/material.dart';

2

3 class CategoryItem extends StatelessWidget {

4 const CategoryItem({

5 Key? key,

6 required this.id,

7 required this.title,

8 required this.color,

9 }) : super(key: key);

10

11 final String id;

6. How we can build a Food Recipe App with List and Map 304

12 final String title;

13 final Color color;

14

15 void selectCategory(BuildContext context) {

16 Navigator.of(context).pushNamed(

17 '/individual-category-page',

18 arguments: {

19 'id': id,

20 'title': title,

21 'color': color,

22 },

23);

24 }

25

26 @override

27 Widget build(BuildContext context) {

28 return InkWell(

29 onTap: () => selectCategory(context),

30 splashColor: Theme.of(context).primaryColor,

31 borderRadius: BorderRadius.circular(15),

32 child: Container(

33 //margin: const EdgeInsets.all(8.0),

34 child: Center(

35 child: Text(

36 title,

37 style: Theme.of(context).textTheme.titleSmall,

38 textAlign: TextAlign.center,

39),

40),

41 decoration: BoxDecoration(

42 gradient: LinearGradient(

43 colors: [

44 color.withOpacity(0.6),

45 color,

46],

6. How we can build a Food Recipe App with List and Map 305

47 begin: Alignment.bottomLeft,

48 end: Alignment.topRight,

49),

50 borderRadius: BorderRadius.circular(15.0),

51),

52),

53);

54 }

55 }

It gets the data from the model. Consequently, it sends data to
category page.

The category page is in the view folder.

1 import 'package:coo_king_kong/model/dummy_categories.dart\

2 ';

3 import 'package:coo_king_kong/controller/category_item.da\

4 rt';

5 import 'package:flutter/material.dart';

6

7 class CategoriesPage extends StatelessWidget {

8 const CategoriesPage({Key? key}) : super(key: key);

9

10 @override

11 Widget build(BuildContext context) {

12 return GridView(

13 padding: const EdgeInsets.all(15.0),

14 children: dummyCategories

15 .map(

16 (e) => CategoryItem(id: e.id, title: e.title,\

17 color: e.color),

18)

19 .toList(),

20 gridDelegate: const SliverGridDelegateWithMaxCrossAxi\

21 sExtent(

6. How we can build a Food Recipe App with List and Map 306

22 maxCrossAxisExtent: 300,

23 childAspectRatio: 1.50,

24 mainAxisSpacing: 20.0,

25 crossAxisSpacing: 20.0,

26),

27);

28 }

29 }

For that reason, we see all categories on the home page.

But, as we tap any category, that takes us to the individual category
page where we see all the food items belonging to that category.

6. How we can build a Food Recipe App with List and Map 307

Figure 6.13 – Model view controller architecture first Example

As we see, the Mexican category has many food items in its page.

To scroll and see all the food items we have used ListView.builder()
method. Not only that, in this page another controller, food item
controller sends every food item.

6. How we can build a Food Recipe App with List and Map 308

1 import 'package:flutter/material.dart';

2

3 import '../controller/food_item.dart';

4 import '../model/dummy_foods.dart';

5

6 class IndividualCategoryPage extends StatelessWidget {

7 const IndividualCategoryPage({

8 Key? key,

9 }) : super(key: key);

10

11 static const routeName = '/individual-category-page';

12

13 @override

14 Widget build(BuildContext context) {

15 final routeArguments =

16 ModalRoute.of(context)!.settings.arguments as Map\

17 <String, Object>;

18 final id = routeArguments['id'];

19 final Object? title = routeArguments['title'];

20 final categoryMeals = dummyLorenIpsumLorenIpsumFood.w\

21 here((food) {

22 return food.categoryID.contains(id);

23 }).toList();

24

25 return Scaffold(

26 appBar: AppBar(

27 title: Text(title.toString()),

28),

29 body: ListView.builder(

30 itemBuilder: (ctx, index) {

31 return FoodItem(

32 id: categoryMeals[index].id,

33 title: categoryMeals[index].title,

34 imageUrl: categoryMeals[index].imageUrl,

35 duration: categoryMeals[index].duration,

6. How we can build a Food Recipe App with List and Map 309

36 complexity: categoryMeals[index].complexity,

37);

38 },

39 itemCount: categoryMeals.length,

40),

41);

42 }

43 }

Again the food item controller acts as a supplier. Moreover, it paves
the way to go to the individual food page where we will see the
food item in detail.

1 import 'package:coo_king_kong/view/individual_food_page.d\

2 art';

3 import 'package:flutter/material.dart';

4

5 import '../model/food.dart';

6

7 class FoodItem extends StatelessWidget {

8 final String id;

9 final String title;

10 final String imageUrl;

11 final int duration;

12 final Complexity complexity;

13

14 const FoodItem({

15 Key? key,

16 required this.id,

17 required this.title,

18 required this.imageUrl,

19 required this.complexity,

20 required this.duration,

21 }) : super(key: key);

22

6. How we can build a Food Recipe App with List and Map 310

23 String get complexityText {

24 switch (complexity) {

25 case Complexity.simple:

26 return 'Simple';

27 case Complexity.complex:

28 return 'Complex';

29 default:

30 return 'Unknown';

31 }

32 }

33

34 void selectMeal(BuildContext context) {

35 Navigator.of(context).pushNamed(

36 IndiividualFoodPage.routeName,

37 arguments: title,

38);

39 }

40

41 @override

42 Widget build(BuildContext context) {

43 return InkWell(

44 onTap: () => selectMeal(context),

45 child: Card(

46 shape: RoundedRectangleBorder(

47 borderRadius: BorderRadius.circular(15),

48),

49 elevation: 4,

50 margin: const EdgeInsets.all(10),

51 child: Column(

52 children: <Widget>[

53 Stack(

54 children: <Widget>[

55 ClipRRect(

56 borderRadius: const BorderRadius.only(

57 topLeft: Radius.circular(15),

6. How we can build a Food Recipe App with List and Map 311

58 topRight: Radius.circular(15),

59),

60 child: Image.network(

61 imageUrl,

62 height: 250,

63 width: double.infinity,

64 fit: BoxFit.cover,

65),

66),

67 Positioned(

68 bottom: 20,

69 right: 10,

70 child: Container(

71 width: 300,

72 color: Colors.black54,

73 padding: const EdgeInsets.symmetric(

74 vertical: 5,

75 horizontal: 20,

76),

77 child: Text(

78 title,

79 style: const TextStyle(

80 fontSize: 26,

81 color: Colors.white,

82),

83 softWrap: true,

84 overflow: TextOverflow.fade,

85),

86),

87)

88],

89),

90 Padding(

91 padding: const EdgeInsets.all(20),

92 child: Row(

6. How we can build a Food Recipe App with List and Map 312

93 mainAxisAlignment: MainAxisAlignment.spac\

94 eAround,

95 children: <Widget>[

96 Row(

97 children: <Widget>[

98 const Icon(

99 Icons.schedule,

100),

101 const SizedBox(

102 width: 6,

103),

104 Text('$duration min'),

105],

106),

107 Row(

108 children: <Widget>[

109 const Icon(

110 Icons.work,

111),

112 const SizedBox(

113 width: 6,

114),

115 Text(complexityText),

116],

117),

118 Row(

119 children: const <Widget>[

120 Icon(

121 Icons.attach_money,

122),

123 SizedBox(

124 width: 6,

125),

126],

127),

6. How we can build a Food Recipe App with List and Map 313

128],

129),

130),

131],

132),

133),

134);

135 }

136 }

Watch the this piece of code.

The following code gives us the hint.

1 void selectMeal(BuildContext context) {

2 Navigator.of(context).pushNamed(

3 IndiividualFoodPage.routeName,

4 arguments: title,

5);

6 }

Now, as a result, we can show the title of the food on the individual
food page.

Later we will design the page so that it displays all food properties
in detail.

6. How we can build a Food Recipe App with List and Map 314

Figure 6.14 – Model view controller architecture second Example

Now we can take a look at the individual food page. At present we
have a small code snippet.

1 import 'package:flutter/material.dart';

2

3 class IndiividualFoodPage extends StatelessWidget {

4 const IndiividualFoodPage({Key? key}) : super(key: key);

5 static const routeName = '/food-detail';

6

7 @override

8 Widget build(BuildContext context) {

9 final foodTitle = ModalRoute.of(context)!.settings.ar\

10 guments as String;

11 return Scaffold(

12 appBar: AppBar(

13 title: Text(foodTitle),

14),

15 body: Center(

16 child: Text('The Food Title - $foodTitle!'),

6. How we can build a Food Recipe App with List and Map 315

17),

18);

19 }

20 }

For example, we have displayed only the food title on a page that
resides on the view folder. But the data comes from themodel folder.
In addition, the controller supplies that data to the view folder.

The Next Challenge

Our next challenge will be to display the full food items on the
individual food page.

To understand the whole MVC architecture you may clone this
GitHub repository. After that, you can run the code in your local
machine, and see how it has worked.

(Clone this step)[https://github.com/sanjibsinha/coo_king_-
kong/tree/fifth-step-mvc]

Relation between tables, list and
map

As the relation between the pages becomes complex, we need to be
careful. Why?Because we have been handling List and Map. When
we iterate Flutter List, we must assure that we send correct data.

Otherwise, our app might crash.

So far, we have learned a few key concepts while building a recipe
app.

We have seen how we can send data from one page to the other
page.

6. How we can build a Food Recipe App with List and Map 316

In addition, we have also learned the named route to send data in
a better way.

Let us take a look at the previous steps.

Firstly, we have built the categories home page. Here we can see
every category of food recipe.

Figure 6.15 – Flutter navigation send data_ categories page

Next, we see how every category houses different type of food
items.

6. How we can build a Food Recipe App with List and Map 317

Figure 6.16 – Model view controller architecture first Example

After that, we can click any food item and see the associated title.

6. How we can build a Food Recipe App with List and Map 318

Figure 6.17 – Model view controller architecture second Example

But, we want to see the full content of a food item. Why? Because,
we know that dummy food class has many properties.

The question is, how we can get every content of the food item?

It is only possible if we pass the unique food id through the
controller food item.

1 void selectMeal(BuildContext context) {

2 Navigator.of(context).pushNamed(

3 IndiividualFoodPage.routeName,

4 arguments: id,

5);

6 }

7

8 // code is incomplete for brevity

9 // please clone this branch of GitHub repository

In our previous section, we have sent the title. As a result, whenever
we had tapped any food item, we saw the title.

6. How we can build a Food Recipe App with List and Map 319

However, that is not our intention. We want to see all the recipe on
the individual food page. Right?

Therefore, this time we have replaced the title argument to id.

As a result, we can now use a Dart list method “firstWhere”.

What does this function do?

This function takes one parameter element and searches that ele-
ment in the list.

In our case, we have searched the same way.

final foodId = ModalRoute.of(context)!.settings.arguments as
String; final selectedMeal = dummyLorenIpsumLorenIpsum-
Food.firstWhere((food) ⇒ food.id == foodId);

// code is incomplete for brevity // please clone this branch of
GitHub repository

Why Flutter List Iterate is
important?

We will answer the above question. But, before that, we want to
answer the following query.

If we take a look at any list in Dart or Flutter, what do we see?

We see a list of items. Right?

Our dummy food list is also like that.

6. How we can build a Food Recipe App with List and Map 320

1 import 'food.dart';

2

3 const dummyLorenIpsumLorenIpsumFood = [

4 LorenIpsumFood(

5 id: 'f1',

6 categoryID: ['c1', 'c2', 'c8'],

7 title: 'Lorem ipsum dolor sit amet',

8 complexity: Complexity.simple,

9 imageUrl:

10 'https://cdn.pixabay.com/photo/2016/08/11/08/04/v\

11 egetables-1584999_960_720.jpg',

12 duration: 20,

13 ingredients: [

14 '1 DolorSan sit amet, consectetur adipiscing elit',

15 '1 Lorem ipsum dolor sit amet',

16 '1 Lorem ipsum dol',

17 '250g Lorem ipsum dolor',

18 'Lorem ipsum',

19 'Lorem ipsum dolor'

20],

21 steps: [

22 'Lorem ipsum dolor sit amet, consectetur adipiscing e\

23 lit.',

24 'Lorem ipsum dolor sit amet, consectetur.',

25 'Lorem ipsum dolo, consectetur adipiscing elit.',

26 'Lorem ipsum dolor sit amet, consectetur.',

27 'Lorem ipsum dolor sit amet, adipiscing elit.',

28 'Lorem ipsum dolor sit amet, consectetur adipiscing e\

29 lit.',

30 'Lorem ipsum dolor sit amet.'

31],

32 isVegan: true,

33 isVegetarian: true,

34),

35 LorenIpsumFood(

6. How we can build a Food Recipe App with List and Map 321

36 id: 'f2',

37 categoryID: ['c2', 'c5', 'c4'],

38 title: 'Lorem ipsum',

39 complexity: Complexity.simple,

40 ...

41 // code is incomplete for brevity

42 // please clone this branch of GitHub repository

The above data is coming from the model folder.

We have created objects. And each food object has unique id. Now,
based on that id we can search the list.

But we need to be careful that as the argument we should pass the
id. Not any other property.

Suppose we have mistakenly sent the title instead of id.

What will happen?

1 void selectMeal(BuildContext context) {

2 Navigator.of(context).pushNamed(

3 IndiividualFoodPage.routeName,

4 arguments: title,

5);

6 }

7 ...

8 final foodId = ModalRoute.of(context)!.settings.arguments\

9 as String;

10 final selectedMeal =

11 dummyLorenIpsumLorenIpsumFood.firstWhere((food) =\

12 > food.id == foodId);

13 ...

As we see these properties don’t match at all.

As a result, this will crash the app and throw an error.

6. How we can build a Food Recipe App with List and Map 322

Figure 6.18 – Flutter List iterate example one

However, if send the id, and check that against the list items, it will
work.

Now we can click any food item on the category page. And it takes
us to the individual food page.

6. How we can build a Food Recipe App with List and Map 323

Figure 6.19 – Flutter List iterate example two

Everybody loves Chinese food. So we scroll down and tap the last
item.

It will display the detail.

6. How we can build a Food Recipe App with List and Map 324

Figure 6.20 – Flutter List iterate example three

Now the individual food page has many features. We can scroll the
page to see every property.

Not only that we can also scroll the individual properties like “steps”
as we see in the above image.

Let us see the code of individual food page, so that we will realize
how it works.

6. How we can build a Food Recipe App with List and Map 325

1 import 'package:flutter/material.dart';

2

3 import '../model/dummy_foods.dart';

4

5 ///Displaying the individual food page

6 ///

7 class IndiividualFoodPage extends StatelessWidget {

8 const IndiividualFoodPage({Key? key}) : super(key: key);

9 static const routeName = '/food-detail';

10

11 Widget displayTitle(BuildContext context, String text) {

12 return Container(

13 margin: const EdgeInsets.symmetric(vertical: 10),

14 child: Text(

15 text,

16 style: Theme.of(context).textTheme.headline2,

17),

18);

19 }

20

21 Widget displayContent(Widget child) {

22 return Container(

23 decoration: BoxDecoration(

24 color: Colors.white,

25 border: Border.all(color: Colors.grey),

26 borderRadius: BorderRadius.circular(10),

27),

28 margin: const EdgeInsets.all(10),

29 padding: const EdgeInsets.all(10),

30 height: 150,

31 width: 300,

32 child: child,

33);

34 }

35

6. How we can build a Food Recipe App with List and Map 326

36 @override

37 Widget build(BuildContext context) {

38 final foodId = ModalRoute.of(context)!.settings.argum\

39 ents as String;

40 final selectedMeal =

41 dummyLorenIpsumLorenIpsumFood.firstWhere((food) =\

42 > food.id == foodId);

43 return Scaffold(

44 appBar: AppBar(

45 title: Text(selectedMeal.title),

46),

47 body: SingleChildScrollView(

48 child: Column(

49 children: <Widget>[

50 Container(

51 padding: const EdgeInsets.all(2.0),

52 height: 300,

53 width: double.infinity,

54 child: Image.network(

55 selectedMeal.imageUrl,

56 fit: BoxFit.cover,

57),

58),

59 displayTitle(context, 'Ingredients'),

60 displayContent(

61 ListView.builder(

62 itemBuilder: (ctx, index) => Card(

63 color: Theme.of(context).colorScheme.seco\

64 ndary,

65 child: Padding(

66 padding: const EdgeInsets.symmetric(

67 vertical: 5,

68 horizontal: 10,

69),

70 child: Text(selectedMeal.ingredients[\

6. How we can build a Food Recipe App with List and Map 327

71 index])),

72),

73 itemCount: selectedMeal.ingredients.lengt\

74 h,

75),

76),

77 displayTitle(context, 'Steps'),

78 displayContent(

79 ListView.builder(

80 itemBuilder: (ctx, index) => Column(

81 children: [

82 ListTile(

83 leading: CircleAvatar(

84 child: Text('# ${(index + 1)}'),

85),

86 title: Text(

87 selectedMeal.steps[index],

88),

89),

90 const Divider()

91],

92),

93 itemCount: selectedMeal.steps.length,

94),

95),

96],

97),

98),

99);

100 }

101 }

Certainly we canmove forward andmake this app bigger by adding
the sellers list. And as a result we can convert this recipe app to a
shopping app.

6. How we can build a Food Recipe App with List and Map 328

Clone the repository and run locally

In the next sections, wewill learn somemore core features of Flutter.
However, if you want to test this step in your local machine, please
clone this GitHub repository.

(Clone and run locally)[https://github.com/sanjibsinha/coo_king_-
kong/tree/sixth-step-display-food]

What is clean navigation

What do we mean by clean navigation in Flutter? It means, in any
case, our app will not crash. When does a Flutter app crash? For
many reasons it may happen.

But it happens mostly when we send wrong data to a page.

In our previous section, we have seen such example.

Figure 6.21 – Flutter List iterate example one

Why did it happen? Because we had sent wrong data to a page.

But we could have avoided that. If we had adopted the clean
navigation approach, it would not happen.

How can we do that?

We need to modify our route mechanism. To do that we need to
work on the page where we had set the navigation rule.

6. How we can build a Food Recipe App with List and Map 329

Let us take a look at the “coo_king_kong_app.dart” page code.

1 import 'package:coo_king_kong/view/individual_category_pa\

2 ge.dart';

3 import 'package:coo_king_kong/view/individual_food_page.d\

4 art';

5 import 'package:coo_king_kong/view/individual_seller_page\

6 .dart';

7 import 'package:flutter/material.dart';

8

9 import 'coo_king_kong_home.dart';

10

11 class CooKingKongApp extends StatelessWidget {

12 const CooKingKongApp({Key? key}) : super(key: key);

13

14 // This widget is the root of your application.

15

16 /// If only [routes] is given, it must include an entry f\

17 or the

18 ///[Navigator.defaultRouteName] (/), since that is the ro\

19 ute used

20 ///when the application is launched with an intent that s\

21 pecifies

22 ///an otherwise unsupported route.

23

24 @override

25 Widget build(BuildContext context) {

26 return MaterialApp(

27 title: 'Flutter Demo',

28 theme: useCustomTheme(),

29 initialRoute: '/',

30 routes: {

31 '/': (context) => const CooKingKongHome(),

32 IndividualCategoryPage.routeName: (context) =>

33 const IndividualCategoryPage(),

34 IndiividualFoodPage.routeName: (context) => const\

6. How we can build a Food Recipe App with List and Map 330

35 IndiividualFoodPage(),

36 },

37 },

38);

39 }

40 // code is incomplete for brevity, please visit GitHub re\

41 pository for full code

As we see, in the above code, there is no “home” property anymore.
Instead, we have used the “initialRoute” property of the Materi-
alApp Widget.

After that, what do we do?

We have used “routes” property which is a Map and through
“routes” we have set the navigation rule.

As a result, one thing happens. Our code looks tight. Why? Because
there is no flexibility.

Suppose, our app grows bigger and we keep adding many more
pages. Consequently, we need to send more data to more pages.

What may happen? We may send wrong data to a page, and our
whole Flutter app crash.

But we can avoid that.

How?

We can create a fallback page as we see in web pages. When we
don’t get any page, it pops up a 404 page.

It reads, sorry, we don’t find this page.

We can do the same thing in Flutter also.

What is onGenerateRoute and onUnknownRoute? The
MaterialApp Widget has two properties. Both the
“onGenerateRoute” and “onUnknownRoute” properties are
callback.

6. How we can build a Food Recipe App with List and Map 331

What does that mean? We have discussed callback before. Still we
want recapitulate in one line.

A callback represents a function which we pass as an argument.

The MaterialApp Widget passes these two functions as the call-
backs.

Flutter calls the “onUnknownRoute” property when the onGener-
ateRoute fails to generate a route, except for the initialRoute.

It means a lot for our app. Why? Because, now, if we fail to send
the correct data to any page, our app will not crash.

As a result, this acts as a 404 page. In addition, we can specify which
page will act as our 404 page.

It assures that our navigation is clean.

Let us see how we can change the build method of the above code
to fit these two properties.

1 @override

2 Widget build(BuildContext context) {

3 return MaterialApp(

4 title: 'Flutter Demo',

5 theme: useCustomTheme(),

6 initialRoute: '/',

7 routes: {

8 '/': (context) => const CooKingKongHome(),

9 IndividualCategoryPage.routeName: (context) =>

10 const IndividualCategoryPage(),

11 IndiividualFoodPage.routeName: (context) => const\

12 IndiividualFoodPage(),

13 },

14 onGenerateRoute: (settings) {

15 return MaterialPageRoute(

16 builder: (ctx) => const CooKingKongHome(),

17);

6. How we can build a Food Recipe App with List and Map 332

18 },

19 onUnknownRoute: (settings) {

20 return MaterialPageRoute(

21 builder: (ctx) => const CooKingKongHome(),

22);

23 },

24);

25 }

26 // code is incomplete for brevity, please visit GitHub re\

27 pository for full code

When our flutter app grows to be bigger, we need to assure that
under any circumstance, our app will not crash.

Do you want to clone this step? The process is quite easy.

You can download the zipped folder. Or, you can clone the URL of
the GitHub repository.

Hence, we can use these two properties.

(Clone this repository)[https://github.com/sanjibsinha/coo_king_-
kong/tree/seventhg-step-different-routes]

Routes property and its functions

We have to be careful when we deal with the navigation in Flutter.
In previous section we have discussed it. Yet, in our final step, we
would like to chew over route in Flutter again.

Why?

Because, it is one of the important components in Flutter. If we do
not send correct data to another page, our app will crash.

Therefore, we have to be careful when we set the “routes” property
in MaterialApp Widget.

6. How we can build a Food Recipe App with List and Map 333

To clarify, we can use Navigator.push method with
Navigator.pushNamed.

However, there is a warning.

In this section we will discuss that.

How to use GestureDetector inside InkWell To understand, we see
the images first.

That will explain better than words.

The CooKingKong App opens with all categories.

6. How we can build a Food Recipe App with List and Map 334

Figure 6.22 – Flutter navigation send data_ categories page

Now, we can tap any category. As a result, all the food items will
show up.

6. How we can build a Food Recipe App with List and Map 335

Figure 6.23 – Model view controller architecture first Example

After that, we can click any food item to see the detail of recipe.

The page will display all the properties.

6. How we can build a Food Recipe App with List and Map 336

Figure 6.24 – Flutter List iterate example three

But we cannot either order the item, or add the item to cart. To do
that, we can change the design of the food item controller where
we have used the icons.

Consequently, the look of the page will change.

6. How we can build a Food Recipe App with List and Map 337

Figure 6.25 – Route Flutter final step first example

Now, from the food item page we can either order, or add the item
to cart to order later.

However, to do that, we need to create separate route. So that we
will reach the order page and cart page accordingly. Right?

But, at a glance, it looks difficult.

Why?

Because every food item is under the InkWell Widget which is a
rectangular area of a Material that responds to touch.

As a result, if we click the icon, it will take us to the individual food
page.

Let us take a look at the previous code.

6. How we can build a Food Recipe App with List and Map 338

1 import 'package:flutter/material.dart';

2

3 import '../model/food.dart';

4 import '/view/individual_food_page.dart';

5 import '/view/individual_seller_page.dart';

6

7 class FoodItem extends StatelessWidget {

8 final String id;

9 final String title;

10 final String imageUrl;

11 final int duration;

12 final Complexity complexity;

13

14 const FoodItem({

15 Key? key,

16 required this.id,

17 required this.title,

18 required this.imageUrl,

19 required this.complexity,

20 required this.duration,

21 }) : super(key: key);

22

23 String get complexityText {

24 switch (complexity) {

25 case Complexity.simple:

26 return 'Simple';

27 case Complexity.complex:

28 return 'Complex';

29 default:

30 return 'Unknown';

31 }

32 }

33

34 void selectMeal(BuildContext context) {

35 Navigator.of(context).pushNamed(

6. How we can build a Food Recipe App with List and Map 339

36 IndiividualFoodPage.routeName,

37 arguments: id,

38);

39 }

40

41 @override

42 Widget build(BuildContext context) {

43 return InkWell(

44 onTap: () => selectMeal(context),

45 child: Card(

46 shape: RoundedRectangleBorder(

47 borderRadius: BorderRadius.circular(15),

48),

49 elevation: 4,

50 margin: const EdgeInsets.all(10),

51 child: Column(

52 children: <Widget>[

53 Stack(

54 children: <Widget>[

55 ClipRRect(

56 borderRadius: const BorderRadius.only(

57 topLeft: Radius.circular(15),

58 topRight: Radius.circular(15),

59),

60 child: Image.network(

61 imageUrl,

62 height: 250,

63 width: double.infinity,

64 fit: BoxFit.cover,

65),

66),

67 Positioned(

68 bottom: 20,

69 right: 10,

70 child: Container(

6. How we can build a Food Recipe App with List and Map 340

71 width: 300,

72 color: Colors.black54,

73 padding: const EdgeInsets.symmetric(

74 vertical: 5,

75 horizontal: 20,

76),

77 child: Text(

78 title,

79 style: const TextStyle(

80 fontSize: 26,

81 color: Colors.white,

82),

83 softWrap: true,

84 overflow: TextOverflow.fade,

85),

86),

87)

88],

89),

90 Padding(

91 padding: const EdgeInsets.all(20),

92 child: Row(

93 mainAxisAlignment: MainAxisAlignment.spac\

94 eAround,

95 children: <Widget>[

96 Row(

97 children: <Widget>[

98 const Icon(

99 Icons.schedule,

100),

101 const SizedBox(

102 width: 6,

103),

104 Text('$duration min'),

105],

6. How we can build a Food Recipe App with List and Map 341

106),

107 Row(

108 children: <Widget>[

109 const Icon(

110 Icons.work,

111),

112 const SizedBox(

113 width: 6,

114),

115 Text(complexityText),

116],

117),

118 Row(

119 children: <Widget>[

120 GestureDetector(

121 onTap: () {

122 Navigator.push(

123 context,

124 MaterialPageRoute(

125 builder: (context) =>

126 const IndividualSellerPag\

127 e(),

128),

129);

130 },

131 child: const Icon(

132 Icons.manage_search_rounded,

133),

134),

135 const SizedBox(

136 width: 6,

137),

138],

139),

140],

6. How we can build a Food Recipe App with List and Map 342

141),

142),

143],

144),

145),

146);

147 }

148 }

The above code shows it clearly. Every icon is under the InkWell
Widget. Now we can add two Row Widgets that will display two
more icons.

However, that will again come under the InkWell widget that uses
a navigation.

1 void selectMeal(BuildContext context) {

2 Navigator.of(context).pushNamed(

3 IndiividualFoodPage.routeName,

4 arguments: id,

5);

6 }

7 ...

8 @override

9 Widget build(BuildContext context) {

10 return InkWell(

11 onTap: () => selectMeal(context),

12 child: Card(

13 ...

How can we solve this problem?

To solve this problem, we need to wrap the icons with Gesture
Detector Widget that detects gestures.

So we have to write the above code as follows.

6. How we can build a Food Recipe App with List and Map 343

1 import 'package:coo_king_kong/view/add_to_cart_page.dart';

2 import 'package:flutter/material.dart';

3

4 import '../model/food.dart';

5 import '/view/individual_food_page.dart';

6 import '/view/individual_seller_page.dart';

7

8 class FoodItem extends StatelessWidget {

9 final String id;

10 final String title;

11 final String imageUrl;

12 final int duration;

13 final Complexity complexity;

14

15 const FoodItem({

16 Key? key,

17 required this.id,

18 required this.title,

19 required this.imageUrl,

20 required this.complexity,

21 required this.duration,

22 }) : super(key: key);

23

24 String get complexityText {

25 switch (complexity) {

26 case Complexity.simple:

27 return 'Simple';

28 case Complexity.complex:

29 return 'Complex';

30 default:

31 return 'Unknown';

32 }

33 }

34

35 void selectMeal(BuildContext context) {

6. How we can build a Food Recipe App with List and Map 344

36 Navigator.of(context).pushNamed(

37 IndiividualFoodPage.routeName,

38 arguments: id,

39);

40 }

41

42 @override

43 Widget build(BuildContext context) {

44 return InkWell(

45 onTap: () => selectMeal(context),

46 child: Card(

47 shape: RoundedRectangleBorder(

48 borderRadius: BorderRadius.circular(15),

49),

50 elevation: 4,

51 margin: const EdgeInsets.all(10),

52 child: Column(

53 children: <Widget>[

54 Stack(

55 children: <Widget>[

56 ClipRRect(

57 borderRadius: const BorderRadius.only(

58 topLeft: Radius.circular(15),

59 topRight: Radius.circular(15),

60),

61 child: Image.network(

62 imageUrl,

63 height: 250,

64 width: double.infinity,

65 fit: BoxFit.cover,

66),

67),

68 Positioned(

69 bottom: 20,

70 right: 10,

6. How we can build a Food Recipe App with List and Map 345

71 child: Container(

72 width: 300,

73 color: Colors.black54,

74 padding: const EdgeInsets.symmetric(

75 vertical: 5,

76 horizontal: 20,

77),

78 child: Text(

79 title,

80 style: const TextStyle(

81 fontSize: 26,

82 color: Colors.white,

83),

84 softWrap: true,

85 overflow: TextOverflow.fade,

86),

87),

88)

89],

90),

91 Padding(

92 padding: const EdgeInsets.all(20),

93 child: Row(

94 mainAxisAlignment: MainAxisAlignment.spac\

95 eAround,

96 children: <Widget>[

97 Row(

98 children: <Widget>[

99 const Icon(

100 Icons.schedule,

101),

102 const SizedBox(

103 width: 6,

104),

105 Text('$duration min'),

6. How we can build a Food Recipe App with List and Map 346

106],

107),

108 Row(

109 children: <Widget>[

110 const Icon(

111 Icons.work,

112),

113 const SizedBox(

114 width: 6,

115),

116 Text(complexityText),

117],

118),

119 Row(

120 children: <Widget>[

121 GestureDetector(

122 onTap: () {

123 Navigator.push(

124 context,

125 MaterialPageRoute(

126 builder: (context) =>

127 const IndividualSellerPag\

128 e(),

129),

130);

131 },

132 child: Row(

133 children: const [

134 Icon(Icons.add_call),

135 SizedBox(

136 width: 6,

137),

138 Text('Order'),

139],

140),

6. How we can build a Food Recipe App with List and Map 347

141),

142],

143),

144 Row(

145 children: <Widget>[

146 GestureDetector(

147 onTap: () {

148 Navigator.push(

149 context,

150 MaterialPageRoute(

151 builder: (context) => const A\

152 ddToCartPage(),

153),

154);

155 },

156 child: Row(

157 children: const [

158 Icon(

159 Icons.add_shopping_cart,

160),

161 SizedBox(

162 width: 6,

163),

164 Text('Cart'),

165],

166),

167),

168],

169),

170],

171),

172),

173],

174),

175),

6. How we can build a Food Recipe App with List and Map 348

176);

177 }

178 }

Route Flutter tips and tricks

Therefore we have adjusted our new navigation that we have not
defined earlier.

But it works.

Now, as we tap the order icon, it takes us to the order page.

Figure 6.26 – Route Flutter final step second example

The same is true for the cart icon. For example, we can tap the cart
icon and it takes us to the cart page.

6. How we can build a Food Recipe App with List and Map 349

Figure 6.27 – Route Flutter final step third example

Certainly, we can convert this app to an E-Commerce App. We can
add more functions.

But at present, we will stop here. You will find more Flutter App
examples under one category.

If you want to clone the final step please visit this GitHub reposi-
tory.

• For full code snippet please visit the respective GitHub Repos-
itory - ¹⁹

• Read updated articles on Flutter, Dart, and Algorithm - ²⁰

¹⁹https://github.com/sanjibsinha/coo_king_kong/tree/final-step-add-to-cart
²⁰https://sanjibsinha.com

https://github.com/sanjibsinha/coo_king_kong/tree/final-step-add-to-cart
https://github.com/sanjibsinha/coo_king_kong/tree/final-step-add-to-cart
https://sanjibsinha.com/
https://github.com/sanjibsinha/coo_king_kong/tree/final-step-add-to-cart
https://sanjibsinha.com/

7. Let’s learn how a
Weather App uses API
and serializes JSON data

A step by step guide to build a Current Weather Tracker App.

Future then, aync, await, API, JSON:
Let’s build a Current Weather

Tracker App

There are plugins like “Geolocator” and “http” that will easily
connect through API and track live current Weather data.

However, we need to understand a few important concepts such as
Future then, aync, await, and API, JSON in Flutter.

We will build the Current Weather Tracker App step-by-step. And,
finally, we will see the output at the end.

However, you can clone each step from the respective GitHub
repoitory branches.

Let’s name the App - “WithHer”.

Future Flutter: WithHer App – Step 1

We are going to build a Weather App. As before, we’ll build it step
by step. And this is our first step where we will understand a key
concept – Future in Flutter.

7. Let’s learn how a Weather App uses API and serializes JSON data 351

But to start with let me assure you one thing first.

It does not take much effort to build a weather app. Let’s name it
“WithHer”.

Why it is not difficult?

Because we will build this app with a Flutter Geolocator plugin. In
this first step, first we’ll see howwe can get the location. As a result,
we will print the latitude and longitude.

After that, we will discuss the role of Future in Flutter. By the way,
the Future class returns the result of an asynchronous programme.

Why we need to understand the role of Future in getting the
location?

We’ll see it in a minute.

However, besides, we need to understandwhat is asynchronous pro-
gramming. In addition, we will have to understand two keywords
– async and await.

How to the get the location in Flutter? Firstly, we need to add the
dependency of the Geolocator plugin in our “pubspec.yaml” file.

1 dependencies:

2 flutter:

3 sdk: flutter

4

5 cupertino_icons: ^1.0.2

6 geolocator: ^8.2.0

Secondly, in our Flutter app, we need to import the plugin where
we need it.

To make it simple, we will test our weather app in the top-level
main() file.

7. Let’s learn how a Weather App uses API and serializes JSON data 352

1 import 'package:geolocator/geolocator.dart';

How do we know a location?

Certainly the latitude and the longitude help us to know the exact
location.

And the Geolocator plugin helps us to control how exact we want
to be. However, we will keep our priority at the lowest level.

Why?

Because if we want to get the exact location of the user, it may
take more time. For that reason, we will make it the lowest. So that,
within a radius of 500 meters we can get the weather update.

With reference to that, we must remember one thing. The Geoloca-
tor plugin gets the data from internet.

Therefore, it may take an uncertain time. Moreover, the plugin has
curtailed our job. If we want to do the low level plumbing and write
the whole code we have to write long lines of code.

In addition, we need a certain level of expertise.

But with a few lines of code, the Geolocator plugin has done the
same task.

1 void getLocation() async {

2 Position position = await Geolocator.getCurrentPositi\

3 on(

4 desiredAccuracy: LocationAccuracy.lowest);

5 print(position);

6 }

Actually we’re riding the Geolocator plugin’s back and shoulders
and curtail the heavy task. Right?

7. Let’s learn how a Weather App uses API and serializes JSON data 353

Geolocator plugin makes our life
easier

Let us see the full code snippet now.

1 import 'package:flutter/material.dart';

2 import 'package:geolocator/geolocator.dart';

3

4 void main() {

5 runApp(const MyApp());

6 }

7

8 class MyApp extends StatelessWidget {

9 const MyApp({Key? key}) : super(key: key);

10

11 // This widget is the root of your application.

12 @override

13 Widget build(BuildContext context) {

14 return MaterialApp(

15 title: 'Flutter Demo',

16 theme: ThemeData(

17 primarySwatch: Colors.blue,

18),

19 home: const MyHomePage(title: 'Flutter Demo Home Page\

20 '),

21);

22 }

23 }

24

25 class MyHomePage extends StatefulWidget {

26 const MyHomePage({Key? key, required this.title}) : super\

27 (key: key);

28

29 final String title;

7. Let’s learn how a Weather App uses API and serializes JSON data 354

30

31 @override

32 State<MyHomePage> createState() => _MyHomePageState();

33 }

34

35 class _MyHomePageState extends State<MyHomePage> {

36 void getLocation() async {

37 Position position = await Geolocator.getCurrentPosition(

38 desiredAccuracy: LocationAccuracy.lowest);

39 print(position);

40 }

41

42 @override

43 Widget build(BuildContext context) {

44 return Scaffold(

45 appBar: AppBar(

46 title: Text(widget.title),

47),

48 body: Center(

49 child: Column(

50 mainAxisAlignment: MainAxisAlignment.center,

51 children: <Widget>[

52 const Text(

53 'We\'re trying to find the Lat and Lang:',

54),

55 Text(

56 'Location',

57 style: Theme.of(context).textTheme.headline4,

58),

59],

60),

61),

62 floatingActionButton: FloatingActionButton(

63 onPressed: () {

64 getLocation();

7. Let’s learn how a Weather App uses API and serializes JSON data 355

65 },

66 tooltip: 'Get Location',

67 child: const Icon(Icons.location_on),

68), // This trailing comma makes auto-formatting nicer\

69 for build methods.

70);

71 }

72 }

As we see, the getLocation() method uses two keywords “async”
and “await”. Later we have called that method through the on-
Pressed property of the floating action button.

If you want to follow the steps, please clone this branch of GitHub
repository.

As we see the above code we find that the two keywords “async”
and “await” play an important role here.

We’ll come back to that point in a minute. Before that let’s run the
app.

Let’s run the app first.

If we click the floating action button, we will get the latitude and
longitude.

However, without the user’s permission we cannot get her location.
Right?

Therefore, if we click the floating action button to get the location,
the app will seek permission of the user.

Click allow to proceed. And in return it will print the latitude and
longitude in the terminal.

1 Latitude: 22.5892652, Longitude: 88.3056119

Our WithHer App is working perfectly. Now, the time has come
to understand what is Future in Flutter. In addition, what is the
relation between the Future class and asynchronous programming.

7. Let’s learn how a Weather App uses API and serializes JSON data 356

What is asynchronous
programming?

Firstly, there are two types of programming. Synchronous and
asynchronous.

We need to understand why we need asynchronous programming?

Take a look at the following code which represents synchronous
programming.

1 /// an example of synchronous programme

2 ///

3

4 void main() {

5 callEveryTask();

6 }

7

8 void callEveryTask() {

9 doThisFirst();

10 doThisSecond();

11 doThisThird();

12 }

13

14 void doThisFirst() {

15 print('Doing it first');

16 }

17

18 void doThisSecond() {

19 print('Doing it second');

20 }

21

22 void doThisThird() {

23 print('Doing it third');

24 }

7. Let’s learn how a Weather App uses API and serializes JSON data 357

Whenwe run the above code, the executionwill take synchronously.
That means it will execute the first function. Then the second, and
lastly it executes the third function.

1 Output:

2

3 Doing it first

4 Doing it second

5 Doing it third

The code execution is sequential. But what will happen, if the
second function takes much time to execute?

In that case, the third function will have to wait until the second
function finishes its task. Right?

Now, consider a case, where the second function is downloading a
big file, or gets an image from the internet.

In such cases, user will have to wait to get the result of the third
function.

But we don’t want this to happen.

Why?

It does not go with our principle. Because we want to give the user
a good experience, we should allow the third function to go ahead
and after that the second function may execute.

What is Future in Flutter?

We can achieve this with the help of the Future class in Flutter.

The Future class has a named constructor Future.delayed(). It runs
the computation after a certain delay.

Let’s use this Future constructor to delay the second function for 2
seconds.

7. Let’s learn how a Weather App uses API and serializes JSON data 358

1 /// an example of asynchronous programme

2 ///

3

4 void main() {

5 callEveryTask();

6 }

7

8 void callEveryTask() {

9 doThisFirst();

10 doThisSecond();

11 doThisThird();

12 }

13

14 void doThisFirst() {

15 String result = 'First task completed.';

16 print('Doing it first');

17 }

18

19 String doThisSecond() {

20 String result = 'Second task completed.';

21 Duration duration = const Duration(seconds: 2);

22 Future.delayed(duration, () {

23 print('Doing it second');

24 result;

25 });

26 return result;

27 }

28

29 void doThisThird() {

30 String result = 'Third task completed.';

31 print('Doing it third');

32 }

As a result, when we run the code, the third function will execute
after the first function executes.

7. Let’s learn how a Weather App uses API and serializes JSON data 359

Then, after 2 seconds the second function will execute.

1 output ##

2

3 Doing it first

4 Doing it third

5 Doing it second

This time, we have coded asynchronously. Although we have
established a relation between the Future class and asynchronous
programming, yet we need to know two keywords – “async” and
“await”.

What are async and await?

Just like any other TYPE in Dart, the Future is also a TYPE. As
we have learned before that every class is a TYPE of an object, or
instance of that class, Future is also a TYPE.

Why?

The reason is simple. It’s a class. Right?

Therefore, we can change the TYPE of the second function from
String to Future. But to do that, we have to use two keywords –
async and await.

So our previous code changes as follows.

7. Let’s learn how a Weather App uses API and serializes JSON data 360

1 void main() {

2 callEveryTask();

3 }

4

5 void callEveryTask() async {

6 doThisFirst();

7 String secondTask = await doThisSecond();

8 doThisThird(secondTask);

9 }

10

11 void doThisFirst() {

12 String result = 'First task completed.';

13 print('Doing it first');

14 }

15

16 Future doThisSecond() async {

17 String result = '..second task completed..';

18 Duration duration = const Duration(seconds: 2);

19 await Future.delayed(duration, () {

20 result;

21

22 print('Please Wait');

23 });

24 return result.toString();

25 }

26

27 void doThisThird(String secondTask) {

28 String result = 'Third task completed.';

29 print('Doing it third with $secondTask');

30 }

We have tweaked the previous code a little bit. Now, we have forced
the third function to take the output from the second function as
its input.

As a result, we need to tell the second function that another function

7. Let’s learn how a Weather App uses API and serializes JSON data 361

is waiting for your output. Therefore, if you have anything to do,
do it now, However, after that, pass the output to the third function.

As a result, we get the following output.

1 output ##

2

3 Doing it first

4 Please Wait

5 Doing it third with ..second task completed..

Now, as the second function stops for 2 seconds, the user gets a
message like “Please Wait ….“.

Certainly it gives the user a better experience. Because the user
knows that she has to wait, she will wait patiently.

This is an introduction to Future and asynchronous programming.
Later while we build the weather app, we will discuss it more.

Flutter State: WithHer App – Step 2

We have been building a weather App. In the first step, the “With-
Her” App has used the Geolocator plugin. In addition, we have also
used a Stateful Widget.

Why we have used a Stateful Widget? We will realise as we
progress.

But before that, we need to understand a few important concepts
that revolve around the State class.

Firstly, the State class is an abstract class that defines the logic and
internal state for a Stateful Widget.

Secondly, it does not act like a Stateless Widget.

7. Let’s learn how a Weather App uses API and serializes JSON data 362

What is the main difference? During the lifetime of a Stateless
Widget, it does not change. On the contrary, it destroys the old
instance and creates a new instance.

But in its lifetime, a Stateful Widget may change its information.

Let us consider a Flutter App that has two pages. We can use the
“routes” property to mention the path.

1 import 'package:flutter/material.dart';

2 import 'first_page.dart';

3 import 'my_app_home.dart';

4 import 'second_page.dart';

5

6 class MyApp extends StatelessWidget {

7 const MyApp({Key? key}) : super(key: key);

8

9 // This widget is the root of your application.

10 @override

11 Widget build(BuildContext context) {

12 return MaterialApp(

13 title: 'Flutter Demo',

14 theme: ThemeData(

15 primarySwatch: Colors.blue,

16),

17 //home: const MyAppHome(title: 'Flutter Demo Home Pag\

18 e'),

19 initialRoute: '/',

20 routes: {

21 '/': (context) => const FirstPage(),

22 SecondPage.routeName: (context) => const SecondPa\

23 ge(),

24 },

25);

26 }

27 }

7. Let’s learn how a Weather App uses API and serializes JSON data 363

Certainly the First page is a Stateless widget which has a Text
Button that redirects us to the second page.

1 import 'package:flutter/material.dart';

2 import 'package:with_her/view/second_page.dart';

3

4 class FirstPage extends StatelessWidget {

5 const FirstPage({Key? key}) : super(key: key);

6

7 static const routeName = '/first-page';

8

9 @override

10 Widget build(BuildContext context) {

11 return Scaffold(

12 appBar: AppBar(

13 title: const Text('First Page'),

14),

15 body: Center(

16 child: Container(

17 margin: const EdgeInsets.all(20.0),

18 width: 400.0,

19 height: 150.0,

20 child: TextButton(

21 onPressed: () {

22 Navigator.push(

23 context,

24 MaterialPageRoute(

25 builder: (context) => const SecondPage(),

26),

27);

28 },

29 child: const Text('Go to Second Page'),

30),

31),

32),

33);

7. Let’s learn how a Weather App uses API and serializes JSON data 364

34 }

35 }

On the other hand, the second page is a Stateful Widget with a Text
Button that on pressing takes us back to the First page again.

The second page has the following code.

1 import 'package:flutter/material.dart';

2

3 class SecondPage extends StatefulWidget {

4 const SecondPage({Key? key}) : super(key: key);

5

6 static const routeName = '/second-page';

7

8 @override

9 State<SecondPage> createState() => _SecondPageState();

10 }

11

12 class _SecondPageState extends State<SecondPage> {

13 @override

14 void initState() {

15 // TODO: implement initState

16 super.initState();

17 print('I am called first, after each State object has\

18 been created.');

19 }

20

21 @override

22 void deactivate() {

23 // TODO: implement deactivate

24 super.deactivate();

25 print('The state object removed from the tree');

26 }

27

28 @override

7. Let’s learn how a Weather App uses API and serializes JSON data 365

29 Widget build(BuildContext context) {

30 print('I am called after initState() method.');

31 return Scaffold(

32 appBar: AppBar(

33 title: const Text('Second Page'),

34),

35 body: Center(

36 child: Container(

37 margin: const EdgeInsets.all(20.0),

38 width: 400.0,

39 height: 150.0,

40 child: TextButton(

41 onPressed: () {

42 Navigator.pop(context);

43 },

44 child: const Text('Go to Frist Page'),

45),

46),

47),

48);

49 }

50 }

How Flutter State works

As we come to the second page, two methods fire immediately.

In our terminal we have got two outputs.

1 I am called first, after each State object has been creat\

2 ed.

3 I am called after initState() method.

The first output comes from the initState() method. And the second
output comes from the build() method.

7. Let’s learn how a Weather App uses API and serializes JSON data 366

However, whenwe press the back button to go back to the first page,
another output comes in.

1 The state object removed from the tree

2 This output comes from the deactivate() method.

As a result, we have a clear picture how the life cycle of the Stateful
Widget starts and ends.

As we progress with our weather app, we will discuss this topic
again. But now we have a basic understanding of how the Stateful
widget works.

API Flutter: WithHer App – Step 3

How can we use API in Flutter? In fact, only with API we can build
the weather App “WithHer”. Without the API? We cannot build it.

Therefore, firstly, we need to know what is API? Secondly, how we
can use the API so that we can build the weather App.

As a result, we would get the current weather of any city in the
world.

Till now, we have been progressing a little bit. We have learned how
we can use Future in Flutter.

After that, we have also discussed the life cycle of Stateful Widget.

Why?

Because Stateful Widget will play an important role in using the
API that will help us to get the current weather.

What is an API?

An API is a short name for Application Programming Interface.

7. Let’s learn how a Weather App uses API and serializes JSON data 367

But, to clarify, an API is actually a type of software.

What kind of software is it?

API is a kind of software that acts as an intermediary between two
applications. In short, an API can connect two applications.

In a wider sense, an API can connect two computers so that they
can communicate.

If we go to read the Flutter documentation, it says as follows:

Welcome to the Flutter API reference documentation!

In fact, when we use Flutter framework, we use API all the time.
But we do that without knowing.

For example, Flutter and Dart gives us plenty of classes, methods,
libraries to use.

Why?

The reason is simple. We do not have to write everything from
scratch. Instead, we can use them and build any app in a very short
period of time.

The same thing happens in our weather app, we will get the data
from the open weather map website.

We can go to that website anytime, and check the current weather
of any place.

Our “WithHer” App will fetch the weather data from there. And,
certainly, with the help of the API that they provide.

Without that API, our App cannot display the current data.

How can we use API in Flutter?

We will see in a minute how we can use API in Flutter. But, before
that, we would like to see what we are going to build.

7. Let’s learn how a Weather App uses API and serializes JSON data 368

In the first screenshot, we will see two Text Widgets. They display
a static text.

But below the Text Widgets, we have a Text Button. Once we press
the Button, the Text Widgets display the name of the city, and the
current weather there.

In our previous section, we have seen how we can get the latitude
and longitude.

For that we used the Geolocator plugin. Right?

Actually, in this case, we get the city name and current weather
with the help of latitude and longitude. But, with that, we need the
API key.

So that, we can get the weather as follows.

By the way, you may wonder about the name of the city.

Kara-Kulja is the center of Kara-Kulja District in Osh Region of
Kyrgyzstan.

In the morning, there was nice weather. Clear blue sky. I had seen
in my mind-eyes.

API and Format Exception error

Firstly, we need to register at the open weather map website to get
the API key, or app ID.

Secondly, we need to use the “http” plugin and add the dependency
in our “puspec.yaml” file.

7. Let’s learn how a Weather App uses API and serializes JSON data 369

1 dependencies:

2 flutter:

3 sdk: flutter

4

5 cupertino_icons: ^1.0.2

6 geolocator: ^8.2.0

7 http: ^0.13.4

Finally, we need to import the package in our file.

Then, firstly you register at the open weather map website, and get
your own API key. After that you will find that as we request for
data, the API responds and sends data in JSON format.

We will discuss JSON in our next section. Otherwise, we will not
understand why many people get the format exception error.

At present, we will take a look at the full code.

1 import 'dart:convert';

2 import 'dart:ui';

3 import 'package:flutter/material.dart';

4 import 'package:http/http.dart' as http;

5

6 class MyAppHome extends StatefulWidget {

7 const MyAppHome({Key? key, required this.title}) : super(\

8 key: key);

9

10 final String title;

11

12 @override

13 State<MyAppHome> createState() => _MyAppHomeState();

14 }

15

16 class _MyAppHomeState extends State<MyAppHome> {

17 String apiKey = 'Your Key';

18 double lat = 40.7128;

7. Let’s learn how a Weather App uses API and serializes JSON data 370

19 double lon = 74.0060;

20

21 Future<String> getCityName() async {

22 final httpsUri = Uri.http('api.openweathermap.org', '\

23 /data/2.5/weather', {

24 'lat': '$lat',

25 'lon': '$lon',

26 'appid': apiKey,

27 });

28

29 var request = await http.get(httpsUri);

30 if (request.statusCode == 200) {

31 String data = request.body.toString();

32 var city = jsonDecode(data)['name'];

33

34 return city;

35 } else {

36 return '${request.statusCode}';

37 }

38 }

39

40 Future<String> getWeather() async {

41 final httpsUri = Uri.http('api.openweathermap.org', '\

42 /data/2.5/weather', {

43 'lat': '$lat',

44 'lon': '$lon',

45 'appid': apiKey,

46 });

47

48 var request = await http.get(httpsUri);

49 if (request.statusCode == 200) {

50 String data = request.body.toString();

51 var description = jsonDecode(data)['weather'][0]['des\

52 cription'];

53

7. Let’s learn how a Weather App uses API and serializes JSON data 371

54 return description;

55 } else {

56 return '${request.statusCode}';

57 }

58 }

59

60 String city = 'Your ';

61 String description = 'Good Weather ';

62

63 @override

64 Widget build(BuildContext context) {

65 //var city = getData();

66 return Scaffold(

67 appBar: AppBar(

68 title: const Text('Get City and Weather'),

69),

70 body: Center(

71 child: Column(

72 mainAxisAlignment: MainAxisAlignment.center,

73 children: <Widget>[

74 Text(

75 'Welcome to ${city.toString()} city!',

76 style: Theme.of(context).textTheme.headline6,

77),

78 Text(

79 description.toString(),

80 style: Theme.of(context).textTheme.headline4,

81),

82 const SizedBox(

83 height: 20.0,

84),

85 TextButton(

86 onPressed: () {

87 getCityName().then((String result) {

88 setState(() {

7. Let’s learn how a Weather App uses API and serializes JSON data 372

89 city = result;

90 });

91 });

92 getWeather().then((String result) {

93 setState(() {

94 description = result;

95 });

96 });

97 },

98 child: const Text(

99 'Get City and Current Weather',

100 style: TextStyle(

101 color: Colors.white,

102 fontSize: 30.0,

103 fontWeight: FontWeight.bold,

104),

105),

106 style: ButtonStyle(

107 backgroundColor: MaterialStateProperty.al\

108 l(Colors.red),

109 shape: MaterialStateProperty.all(

110 RoundedRectangleBorder(

111 borderRadius: BorderRadius.circular(3\

112 0.0),

113),

114),

115),

116)

117],

118),

119),

120 // This trailing comma makes auto-formatting nicer fo\

121 r build methods.

122);

123 }

7. Let’s learn how a Weather App uses API and serializes JSON data 373

124 }

We have hard coded the latitude, longitude and the app ID.

As we progress, we will take the inputs and pass them dynamically.

But, till now, we have fetched the data from the open weather map
website with the help of API.

Without API, we cannot use the data as follows.

1 final httpsUri = Uri.http('api.openweathermap.org', '/dat\

2 a/2.5/weather', {

3 'lat': '$lat',

4 'lon': '$lon',

5 'appid': apiKey,

6 });

We cannot request the data as follows.

1 var request = await http.get(httpsUri);

After that, with the help of Dart convert package, we have con-
verted the JSON data to a human readable format.

1 import 'dart:convert';

2 ...

3 String data = request.body.toString();

4 var description = jsonDecode(data)['weather'][0]['des\

5 cription'];

Overall, we have progressed a lot to display the current weather
data. In the next sections, we will progress more.

Stay tuned.

7. Let’s learn how a Weather App uses API and serializes JSON data 374

JSON Flutter: WithHer App – Step 4

As we progress, we find that we need to format structured data to
run the weather app. In fact, in many Flutter app, at some point we
need to format JSON data.

In our “WithHer” App, we have done that.

It proves that our weather app is working. As a result, we have been
able to format the JSON data that comes from the open weather
map website API.

In our previous section we have discussed the role of API in Flutter.

And before that, we have discussed why we need a Stateful Widget
and what is Future in Flutter.

We need to understand them for the sake of our weather app. For
example, without API, StatefulWidget, and Future, we cannot build
this weather App.

Now, we need to know how we format the JSON data.

Firstly, we will know what does the term JSON mean? Secondly,
we will learn how we have formatted the JSON data.

What is JSON in Flutter?

Firstly, let us see a small JSON data which will give us an idea about
how it looks.

7. Let’s learn how a Weather App uses API and serializes JSON data 375

1 import 'dart:convert';

2

3 void main() {

4 var userProfile = {

5 "name": "Json Web",

6 "profession": "Spy",

7 "location": "Unknown"

8 };

9

10 String jsonString = jsonEncode(userProfile);

11

12

13 Map<String, dynamic> user = jsonDecode(jsonString);

14 print('${user['name']} is a ${user['profession']} and his\

15 location'

16 ' is ${user['location']}.');

17

18 }

19 // // Json Web is a Spy and his location is Unknown.

The above code shows that JSON data is a structured data that we
can encode into a String and later decode.

But we can always make this code better.

Therefore, we can use a User model to avoid the compile time error.

1 import 'dart:convert';

2

3 class User {

4 final String? name;

5 final String? profession;

6 final String? location;

7

8

9 User(this.name, this.profession, this.location);

7. Let’s learn how a Weather App uses API and serializes JSON data 376

10

11 User.fromJson(Map<String, dynamic> json)

12 : name = json['name'],

13 profession = json['profession'],

14 location = json['location'];

15

16 Map<String, dynamic> toJson() => {

17 'name': name,

18 'profession': profession,

19 'location': location,

20 };

21 }

22

23 void main() {

24 User userProfile = User('Json Web', 'Spy', 'Unknown');

25

26 String json = jsonEncode(userProfile);

27

28 Map<String, dynamic> userMap = jsonDecode(json);

29 var user = User.fromJson(userMap);

30

31

32 print('${user.name} is a ${user.profession} and his locat\

33 ion'

34 ' is ${user.location}.');

35

36 }

37

38 // Json Web is a Spy and his location is Unknown.

In that case, our code will be more type safe which we want. But
in our weather App, we can decode the JSON data.

The weather map JSON data and user location model class In our
weather App, we have added the dependency of the “http” plugin
in our “pubspec.yaml” file.

7. Let’s learn how a Weather App uses API and serializes JSON data 377

Why?

Because we will request the open weather map API to get the data
in JSON format.

After that, we have used the Dart convert package to decode JSON
data.

Let us see the user location model class firstly.

1 import 'dart:convert';

2 import 'package:http/http.dart' as http;

3

4 class UserLocation {

5 String apiKey = 'Secret Key';

6 double lat = 40.7128;

7 double lon = 74.0060;

8

9 Future<String> getCityName() async {

10 final httpsUri = Uri.http('api.openweathermap.org', '\

11 /data/2.5/weather', {

12 'lat': '$lat',

13 'lon': '$lon',

14 'appid': apiKey,

15 });

16

17 var request = await http.get(httpsUri);

18 if (request.statusCode == 200) {

19 String data = request.body.toString();

20 var city = jsonDecode(data)['name'];

21

22 return city;

23 } else {

24 return '${request.statusCode}';

25 }

26 }

27

7. Let’s learn how a Weather App uses API and serializes JSON data 378

28 Future<String> getWeather() async {

29 final httpsUri = Uri.http('api.openweathermap.org', '\

30 /data/2.5/weather', {

31 'lat': '$lat',

32 'lon': '$lon',

33 'appid': apiKey,

34 });

35

36 var request = await http.get(httpsUri);

37 if (request.statusCode == 200) {

38 String data = request.body.toString();

39 var description = jsonDecode(data)['weather'][0]['des\

40 cription'];

41

42 return description;

43 } else {

44 return '${request.statusCode}';

45 }

46 }

47 }

Secondly, we will take a look at how the open weather map website
sends us the current weather data in JSON format.

For example, we have typed any city name, then the website will
show the sample JSON data as follows.

7. Let’s learn how a Weather App uses API and serializes JSON data 379

1 {

2 "coord": {

3 "lon": -122.08,

4 "lat": 37.39

5 },

6 "weather": [

7 {

8 "id": 800,

9 "main": "Clear",

10 "description": "clear sky",

11 "icon": "01d"

12 }

13],

14 "base": "stations",

15 "main": {

16 "temp": 282.55,

17 "feels_like": 281.86,

18 "temp_min": 280.37,

19 "temp_max": 284.26,

20 "pressure": 1023,

21 "humidity": 100

22 },

23 "visibility": 10000,

24 "wind": {

25 "speed": 1.5,

26 "deg": 350

27 },

28 "clouds": {

29 "all": 1

30 },

31 "dt": 1560350645,

32 "sys": {

33 "type": 1,

34 "id": 5122,

35 "message": 0.0139,

7. Let’s learn how a Weather App uses API and serializes JSON data 380

36 "country": "US",

37 "sunrise": 1560343627,

38 "sunset": 1560396563

39 },

40 "timezone": -25200,

41 "id": 420006353,

42 "name": "Mountain View",

43 "cod": 200

44 }

As a result, when we request the data with our APP key, or app ID,
it will send us the data in the above format.

Certainly, we need to provide the latitude and longitude also.

As we progress, we will make it simple.

But at present it shortens the view page. Because we have defined
the properties and methods in the model class.

The Object Oriented Approach

Now we can create a user location object. And, after that, we can
access the methods.

1 UserLocation location = UserLocation();

It makes our code more object oriented than before.

There is one problem that we need to solve later.

What is that?

We still hard code the data. Instead we can make them dynamic.

Let’s see the landing page.

7. Let’s learn how a Weather App uses API and serializes JSON data 381

1 import 'package:flutter/material.dart';

2

3 import '../model/location.dart';

4

5 /// expleining json

6 ///

7 class MyAppHome extends StatefulWidget {

8 const MyAppHome({Key? key, required this.title}) : super(\

9 key: key);

10

11 final String title;

12

13 @override

14 State<MyAppHome> createState() => _MyAppHomeState();

15 }

16

17 class _MyAppHomeState extends State<MyAppHome> {

18 var city = 'Your ';

19 var description = 'Good Weather ';

20

21 @override

22 Widget build(BuildContext context) {

23 UserLocation location = UserLocation();

24

25 return Scaffold(

26 appBar: AppBar(

27 title: const Text('Get City and Weather'),

28),

29 body: Center(

30 child: Column(

31 mainAxisAlignment: MainAxisAlignment.center,

32 children: <Widget>[

33 Text(

34 'Welcome to ${city.toString()} city!',

35 style: Theme.of(context).textTheme.headline6,

7. Let’s learn how a Weather App uses API and serializes JSON data 382

36),

37 Text(

38 description.toString(),

39 style: Theme.of(context).textTheme.headline4,

40),

41 const SizedBox(

42 height: 20.0,

43),

44 TextButton(

45 onPressed: () {

46 location.getCityName().then((result) {

47 setState(() {

48 city = result;

49 });

50 });

51 location.getWeather().then((result) {

52 setState(() {

53 description = result;

54 });

55 });

56 },

57 child: const Text(

58 'Get City and Current Weather',

59 style: TextStyle(

60 color: Colors.white,

61 fontSize: 30.0,

62 fontWeight: FontWeight.bold,

63),

64),

65 style: ButtonStyle(

66 backgroundColor: MaterialStateProperty.al\

67 l(Colors.red),

68 shape: MaterialStateProperty.all(

69 RoundedRectangleBorder(

70 borderRadius: BorderRadius.circular(3\

7. Let’s learn how a Weather App uses API and serializes JSON data 383

71 0.0),

72),

73),

74),

75)

76],

77),

78),

79 // This trailing comma makes auto-formatting nicer fo\

80 r build methods.

81);

82 }

83 }

84 // you can clone this Step

The code repositories for this branch²¹

In the above code, we have used a special Future method.

In the next section, we will dig deeper to know that.

Future Then: WithHer App – Step 5

We told before that we would come back and discuss the role of the
“Future then” method in Flutter. Therefore, here we are.

In this step, we have accomplished many tasks. Certainly, we have
done that with a special Future method – then().

Future, then, async, and await

In our App, why do we need the “Future then” method? What is
the difference with the keywords – “Future async, and await”?

²¹https://github.com/sanjibsinha/with_her/tree/fourth-step-json-explained

https://github.com/sanjibsinha/with_her/tree/fourth-step-json-explained
https://github.com/sanjibsinha/with_her/tree/fourth-step-json-explained

7. Let’s learn how a Weather App uses API and serializes JSON data 384

In this section we will find the answers. In addition, we have also
changed the location class in our weather App.

As a result, our weather app is now getting the latitude and
longitude from the Geolocator plugin. We’re no longer hard coding
the value.

Now our “WithHer” App becomes dynamic. We will discuss that
part in the next section.

In this part we will concentrate on Future class.

Why?

Because the Future class plays an important role in our App.

What is Future.then() method?

Wehave learned that Flutter and Dart is single thread. It does all the
work on its main thread. It has no worker thread that runs parallel.

The main thread handles small tasks. When it simultaneously
performs heavy task, it may hang, or freeze.

That is why the multi thread concept comes up.

Now, the question is, how Flutter manages this heavy task?

The answer is asynchronous programming. In synchronous pro-
gramming, everything goes step by step. One after another.

Consequently, if a heavy task falls in themiddle, or in the beginning,
the whole program halts.

Asynchronous programming solves that issue. Flutter and Dart lets
the small tasks to perform before the heavy task. And the heavy
task is performed in the background.

7. Let’s learn how a Weather App uses API and serializes JSON data 385

Why the Future class is important?

To understand the importance of Future class, let us see a Dart
program first where we are downloading a dummy weather data.

The time to download the data takes 8 seconds.

Therefore when we call this function it takes 8 seconds and after
that it prints the output.

1 void main() {

2 performAnotherHevyTaskWithThen();

3 print('main thread starts....');

4 print('main thread ends....');

5 }

6

7 void performAnotherHevyTaskWithThen() {

8 Future<String> result = getWeatherDataUsingAnotherAPI();

9 result.then((value) {

10 print('The content of the file with Future then - $va\

11 lue');

12 });

13 }

14

15 Future<String> getWeatherDataUsingAnotherAPI() {

16 Future<String> result = Future.delayed(const Duration(sec\

17 onds: 8), () {

18 return 'Downloading File completed after 8 seconds.';

19 });

20 return result;

21 }

22

23 /**

24 OUTPUT:

25

26 main thread starts....

27 main thread ends....

7. Let’s learn how a Weather App uses API and serializes JSON data 386

28 The content of the file with Future then - Downloading Fi\

29 le completed after 8 seconds.

30

31 *

32 *

33 */

In the above code, we have used the “Future then” method. But
before that we have told Dart to perform a heavy task that takes 8
seconds to finish.

1 Future<String> getWeatherDataUsingAnotherAPI() {

2 Future<String> result = Future.delayed(const Duration(sec\

3 onds: 8), () {

4 return 'Downloading File completed after 8 seconds.';

5 });

6 return result;

7 }

After that, we use the “Future then” method to call the above
function.

Watch this part.

1 void performAnotherHevyTaskWithThen() {

2 Future<String> result = getWeatherDataUsingAnotherAPI();

3 result.then((value) {

4 print('The content of the file with Future then - $va\

5 lue');

6 });

7 }

Lastly, when we call this function in our main thread it executes
after 8 seconds. However, Dart allows the small tasks to perform
first.

7. Let’s learn how a Weather App uses API and serializes JSON data 387

1 void main() {

2 performAnotherHevyTaskWithThen();

3 print('main thread starts....');

4 print('main thread ends....');

5 }

6

7 /**

8 OUTPUT::::

9

10 main thread starts....

11 main thread ends....

12 The content of the file with Future then - Downloading Fi\

13 le completed after 8 seconds.

14

15 *

16 *

17 */

Before the “Future async and await”, we used the “Future then”.

But the “Future async and await” makes it more simple.

Let us see the code where we use the “Future async and await”
instead of “Future then”.

1 void main() {

2 performAHevyTaskWithAsyncAndAwait();

3 print('main thread starts....');

4 print('main thread ends....');

5 }

6 void performAHevyTaskWithAsyncAndAwait() async {

7 String result = await getWeatherDataUsingAnAPI();

8 print('The content of the file with Future, async and awa\

9 it - $result');

10 }

11

7. Let’s learn how a Weather App uses API and serializes JSON data 388

12 Future<String> getWeatherDataUsingAnAPI() {

13 Future<String> result = Future.delayed(const Duration(sec\

14 onds: 6), () {

15 return 'Downloading File completed after 6 seconds.';

16 });

17 return result;

18 }

19 /**

20 OUTPUT:::

21

22 main thread starts....

23 main thread ends....

24 The content of the file with Future, async and await - Do\

25 wnloading File completed after 6 seconds.

26

27 *

28 *

29 */

The difference between Future then
and async, await

As such, both type of Future functions program asynchronously.
But there is a major difference.

In “Future then” method, although we return a String value, yet we
cannot explicitly declare it.

As a result, we have to declare it as the Future<String> value.

7. Let’s learn how a Weather App uses API and serializes JSON data 389

1 void performAnotherHevyTaskWithThen() {

2 Future<String> result = getWeatherDataUsingAnotherAPI();

3 result.then((value) {

4 ...

But, in case of “Future async, await” we confirm that we are getting
a String value.

1 void performAHevyTaskWithAsyncAndAwait() async {

2 String result = await getWeatherDataUsingAnAPI();

3 ...

Certainly that makes our task easier than the “Future then” method.

But in some cases, we still prefer to use the “Future then” method.
We have done the same thing in our weather App. Take a look at
the following image.

The page displays a static Text output that will change as we press
the button.

The Geolocator plugin gets the current latitude and longitude
dynamically. After that, based on that value, the user gets the
current weather data.

The Text Button onPressed property updates the data using the
“Future then” method.

7. Let’s learn how a Weather App uses API and serializes JSON data 390

1 TextButton(

2 onPressed: () {

3 location.getCitynameWithGeolocator().then\

4 ((result) {

5 setState(() {

6 city = result;

7 });

8 });

9 location.getWeatherDescriptionWithGeoloca\

10 tor().then((result) {

11 setState(() {

12 description = result;

13 });

14 });

15 },

16 ...

17 // code is incomplete for brevity

18 // please clone the project from this branch of GitHub Re\

19 pository

To sum up, the Future object acts as a promise token. When Flutter
finds that some heavy task is waiting it promises the user that in
Future you will get it. So please wait.

What is the advantage?

Many.

Because the Future object can return any data type. In the above
code it returns String data type. But we can pass and return any
data type with the help of the Future object.

The code repositories for this branch²²

²²https://github.com/sanjibsinha/with_her/tree/fifth-step-future-then

https://github.com/sanjibsinha/with_her/tree/fifth-step-future-then
https://github.com/sanjibsinha/with_her/tree/fifth-step-future-then

7. Let’s learn how a Weather App uses API and serializes JSON data 391

Future in Flutter: WithHer App –
Step 6

While we’ve building the weather app, we have learned a few key
concepts in Flutter. Whenever we get data from outside resource,
we need to use Future in Flutter.

In the “WithHer” App, which we have been building, we have used
Future. In fact, in the first step, we have introduced the concept of
Future first.

After that, in the fifth step, we have discussed Future then, async
and await in great detail.

To sum up, we define Future as a function in Flutter and Dart. But,
instead of void, we use Future.Whenwe return a value from Future,
we pass it a Type.

In this section, we will finally show how we have organized our
code in a model weather class with Future and return weather data
in our view page.

What is Future in Flutter?

We have requested the data from open weather map website using
their API.

After that, the website responded and posted data in JSON format.

As a result, in our location model class, we have defined all the
properties and methods.

7. Let’s learn how a Weather App uses API and serializes JSON data 392

1 import 'dart:convert';

2 import 'package:geolocator/geolocator.dart';

3 import 'package:http/http.dart' as http;

4

5 /// this is sixth step

6 ///

7

8 class UserLocation {

9 Future<String> getCitynameWithGeolocator() async {

10 try {

11 Position position = await Geolocator.getCurrentPositi\

12 on(

13 desiredAccuracy: LocationAccuracy.lowest);

14 double lat = position.latitude;

15 double lon = position.longitude;

16 return getCityName(lat, lon, 'Secret');

17 } catch (e) {

18 return e.toString();

19 }

20 }

21

22 Future<String> getWeatherDescriptionWithGeolocator() asyn\

23 c {

24 try {

25 Position position = await Geolocator.getCurrentPositi\

26 on(

27 desiredAccuracy: LocationAccuracy.lowest);

28 double lat = position.latitude;

29 double lon = position.longitude;

30 return getWeatherDescription(lat, lon, 'Secret');

31 } catch (e) {

32 return e.toString();

33 }

34 }

35

7. Let’s learn how a Weather App uses API and serializes JSON data 393

36 Future<String> getCityName(double lat, double lon, String\

37 apiKey) async {

38 final httpsUri = Uri.http('api.openweathermap.org', '\

39 /data/2.5/weather', {

40 'lat': '$lat',

41 'lon': '$lon',

42 'appid': apiKey,

43 });

44

45 var request = await http.get(httpsUri);

46 if (request.statusCode == 200) {

47 String data = request.body.toString();

48 var city = jsonDecode(data)['name'];

49

50 return city;

51 } else {

52 return '${request.statusCode}';

53 }

54 }

55

56 Future<String> getWeatherDescription(

57 double lat, double lon, String apiKey) async {

58 final httpsUri = Uri.http('api.openweathermap.org', '\

59 /data/2.5/weather', {

60 'lat': '$lat',

61 'lon': '$lon',

62 'appid': apiKey,

63 });

64

65 var request = await http.get(httpsUri);

66 if (request.statusCode == 200) {

67 String data = request.body.toString();

68 var description = jsonDecode(data)['weather'][0]['des\

69 cription'];

70

7. Let’s learn how a Weather App uses API and serializes JSON data 394

71 return description;

72 } else {

73 return '${request.statusCode}';

74 }

75 }

76

77 Future getWeatherWithGeolocator() async {

78 try {

79 Position position = await Geolocator.getCurrentPositi\

80 on(

81 desiredAccuracy: LocationAccuracy.lowest);

82 double lat = position.latitude;

83 double lon = position.longitude;

84 var data = getWeatherData(lat, lon, 'Secret');

85 return data;

86 } catch (e) {

87 e;

88 }

89 }

90

91 Future getWeatherData(double lat, double lon, String apiK\

92 ey) async {

93 final httpsUri = Uri.http('api.openweathermap.org', '\

94 /data/2.5/weather', {

95 'lat': '$lat',

96 'lon': '$lon',

97 'appid': apiKey,

98 });

99

100 var request = await http.get(httpsUri);

101 if (request.statusCode == 200) {

102 String data = request.body;

103 var decodedData = jsonDecode(data);

104 return decodedData;

105 } else {

7. Let’s learn how a Weather App uses API and serializes JSON data 395

106 '${request.statusCode}';

107 }

108 }

109 }

As we see, in one method we have passed the latitude, longitude
and API key with the “http” plugin.

Then finally we have called that method in another method that
uses live data using the Geolocator plugin.

Consequently, we have got the city name and description in two
separate methods.

However, in one method, we have got the whole JSON Map data.

1 Future getWeatherWithGeolocator() async {

2 try {

3 Position position = await Geolocator.getCurrentPositi\

4 on(

5 desiredAccuracy: LocationAccuracy.lowest);

6 double lat = position.latitude;

7 double lon = position.longitude;

8 var data = getWeatherData(lat, lon, 'Secret');

9 return data;

10 } catch (e) {

11 e;

12 }

13 }

14

15 Future getWeatherData(double lat, double lon, String apiK\

16 ey) async {

17 final httpsUri = Uri.http('api.openweathermap.org', '\

18 /data/2.5/weather', {

19 'lat': '$lat',

20 'lon': '$lon',

21 'appid': apiKey,

7. Let’s learn how a Weather App uses API and serializes JSON data 396

22 });

23

24 var request = await http.get(httpsUri);

25 if (request.statusCode == 200) {

26 String data = request.body;

27 var decodedData = jsonDecode(data);

28 return decodedData;

29 } else {

30 '${request.statusCode}';

31 }

32 }

Since in this Future method we have not passed any Type, it
automatically assumes that the Type would be dynamic.

In fact, we will get the data in JSON Map format.

So far, we have learned that JSON is a structured data that consists
a Map. In addition, that Map has many Map or List inside.

Therefore, we can get the value by accessing key as follows.

1 var city = jsonDecode(data)['name'];

But in some cases, it could be complex as follows.

1 var description = jsonDecode(data)['weather'][0]['descrip\

2 tion'];

Display data with Future in Flutter

A Future is a promise token that we pass it to the user and says,
please wait,you will get the data in Future.

7. Let’s learn how a Weather App uses API and serializes JSON data 397

We get the Future data either with the “then” method, or with
“async, await”.

Let us take a look at the code below that uses both to display current
weather data based on user’s location.

1 import 'package:flutter/material.dart';

2

3 import '../model/location.dart';

4

5 /// this is sixth step and last one on Future

6 ///

7 class MyAppHome extends StatefulWidget {

8 const MyAppHome({Key? key, required this.title}) : super(\

9 key: key);

10

11 final String title;

12

13 @override

14 State<MyAppHome> createState() => _MyAppHomeState();

15 }

16

17 class _MyAppHomeState extends State<MyAppHome> {

18 UserLocation location = UserLocation();

19 var city = '';

20 var description = '';

21

22 @override

23 void initState() {

24 super.initState();

25 var description;

26 location.getWeatherWithGeolocator().then((value) {

27 description = value;

28 print(description);

29 });

30 }

7. Let’s learn how a Weather App uses API and serializes JSON data 398

31

32 @override

33 Widget build(BuildContext context) {

34 return Scaffold(

35 appBar: AppBar(

36 title: Text(widget.title),

37),

38 body: Center(

39 child: Column(

40 mainAxisAlignment: MainAxisAlignment.center,

41 children: <Widget>[

42 Text(

43 city.toString(),

44 style: Theme.of(context).textTheme.headline6,

45),

46 Text(

47 description.toString(),

48 style: Theme.of(context).textTheme.headline4,

49),

50 const SizedBox(

51 height: 20.0,

52),

53 TextButton(

54 onPressed: () async {

55 city = await location.getCitynameWithGeol\

56 ocator();

57 setState(() {

58 city = city;

59 });

60 description =

61 await location.getWeatherDescriptionW\

62 ithGeolocator();

63 setState(() {

64 description = description;

65 });

7. Let’s learn how a Weather App uses API and serializes JSON data 399

66 },

67 child: const Text(

68 'Get City and Current Weather',

69 style: TextStyle(

70 color: Colors.white,

71 fontSize: 30.0,

72 fontWeight: FontWeight.bold,

73),

74),

75 style: ButtonStyle(

76 backgroundColor: MaterialStateProperty.al\

77 l(Colors.red),

78 shape: MaterialStateProperty.all(

79 RoundedRectangleBorder(

80 borderRadius: BorderRadius.circular(3\

81 0.0),

82),

83),

84),

85)

86],

87),

88),

89 // This trailing comma makes auto-formatting nicer fo\

90 r build methods.

91);

92 }

93 }

In the above code, we have first get the whole weather data in JSON
Map format through init() method.

In the second step, we discussed the State object.

Therefore, once we run the app, we get the weather data in JSON
Map format on our console.

7. Let’s learn how a Weather App uses API and serializes JSON data 400

1 {coord: {lon: xx.3163, lat: xx.6066}, weather: [{id: 721,\

2 main: Haze, description: haze, icon: 50d}], base: statio\

3 ns,

4 main: {temp: 301.14, feels_like: 305.69, temp_min: 301.14\

5 , temp_max: 301.14, pressure: 1008, humidity: 83}, visibi\

6 lity:

7 2800, wind: {speed: 4.12, deg: 180}, clouds: {all: 75}, d\

8 t: 1648860766, sys: {type: 1, id: 9114, country: XX, sunr\

9 ise:

10 1648857516, sunset: 1648902114}, timezone: 19800, id: 134\

11 8747, name: xxxx, cod: 200}

As we see in the above code, the weather key has a value of List
that again consists of a Map. In that map, we have a description
keyword that has a value “haze”.

What does that mean?

The Geolocator and the http plugins have fetched the current
weather description of the place where the user is now at present.

Therefore, we can get that description key as follows.

1 var description = jsonDecode(data)['weather'][0]['descrip\

2 tion'];

And finally, we have displayed the description in our Text Widget.

1 Text(

2 description.toString(),

3 style: Theme.of(context).textTheme.headline4,

4),

What we have requested, we have got in clear text. The open
weather map website responded in JSON format which is also clear
text.

7. Let’s learn how a Weather App uses API and serializes JSON data 401

For that reason, the Future didn’t take much time and returned data
in a fast manner.

It doesn’t happen all the time.

Why?

Because sometimes the API may have to handle a large file, or open
an image which is big.

Anyway, we have progressed a lot.

Now we can design our app, take input from the user and show the
weather data.

The code repositories for this branch²³

Pass data to State Flutter: Final
Weather App

How do we pass data to State object in Flutter? In other words, how
we can pass data to a Stateful Widget? Is it same as we do in the
Stateless Widget?

The answer is no. Not exactly the same way we do that.

But in a similar vein, we pass data through class constructor first.
And, after that, we use the “widget” property of the State class to
access that data.

Firstly, in this section we will learn how we can accomplish that
task. Secondly, at the same way, we will also finish our weather
App “WithHer” that we have been building for some time.

Therefore, the first thing first.

Let us create a model class location. And keep that file in our model
folder.

²³https://github.com/sanjibsinha/with_her/tree/sixth-step-future-in-flutter

https://github.com/sanjibsinha/with_her/tree/sixth-step-future-in-flutter
https://github.com/sanjibsinha/with_her/tree/sixth-step-future-in-flutter

7. Let’s learn how a Weather App uses API and serializes JSON data 402

1 import 'dart:convert';

2 import 'package:geolocator/geolocator.dart';

3 import 'package:http/http.dart' as http;

4

5 /// this is seventh step

6 ///

7

8 class UserLocation {

9 Future<dynamic> getWeatherWithGeolocator() async {

10 try {

11 Position position = await Geolocator.getCurrentPositi\

12 on(

13 desiredAccuracy: LocationAccuracy.lowest);

14 double lat = position.latitude;

15 double lon = position.longitude;

16 var data = getWeatherData(lat, lon, 'Secret Key');

17 return data;

18 } catch (e) {

19 e;

20 }

21 }

22

23 Future<dynamic> getWeatherData(double lat, double lon, St\

24 ring apiKey) async {

25 final httpsUri = Uri.http('api.openweathermap.org', '\

26 /data/2.5/weather', {

27 'lat': '$lat',

28 'lon': '$lon',

29 'appid': apiKey,

30 });

31

32 var request = await http.get(httpsUri);

33 if (request.statusCode == 200) {

34 String data = request.body;

35 var decodedData = jsonDecode(data);

7. Let’s learn how a Weather App uses API and serializes JSON data 403

36 return decodedData;

37 } else {

38 '${request.statusCode}';

39 }

40 }

41 }

We have used three packages. The Dart convert library will help us
to convert the JSON data to a Future dynamic type.

As a result, later we can use this location object to get the current
weather data in our App through the API of the open weather map
website.

Passing data from a Stateful Widget

First, we need a Stateful Widget to load the current weather Data
from the API. Right?

Next, we will pass that dynamic Future data to a loading screen
where we will display the current weather of the location where
the user is staying at present.

For example, in this weekend, I had come to the Howrah City.
Therefore, my weather app should show that result.

However, since I have keptmy location accuracy at the lowest point,
it might vary. Consequently, the App may display some other place
around the Howrah city.

1 desiredAccuracy: LocationAccuracy.lowest);

Anyway, let us see the first page where we have created a location
object.

7. Let’s learn how a Weather App uses API and serializes JSON data 404

1 import 'package:flutter/material.dart';

2

3 import '../model/location.dart';

4 import 'weather_page.dart';

5

6 /// this is sixth step and last one on Future

7 ///

8 class MyAppHome extends StatefulWidget {

9 const MyAppHome({Key? key, required this.title}) : super(\

10 key: key);

11

12 final String title;

13

14 @override

15 State<MyAppHome> createState() => _MyAppHomeState();

16 }

17

18 class _MyAppHomeState extends State<MyAppHome> {

19 UserLocation location = UserLocation();

20

21 @override

22 void initState() {

23 super.initState();

24 updateWeather();

25 }

26

27 void updateWeather() {

28 var weather;

29 location.getWeatherWithGeolocator().then((value) {

30 weather = value;

31 Navigator.push(context, MaterialPageRoute(builder: (c\

32 ontext) {

33 return WeatherPage(

34 weather: weather,

35 title: 'Get City and Weather',

7. Let’s learn how a Weather App uses API and serializes JSON data 405

36);

37 }));

38 });

39 }

40

41 @override

42 Widget build(BuildContext context) {

43 return Scaffold(

44 backgroundColor: Colors.grey.shade600,

45);

46 }

47 }

Very simple logic that we have followed. Firstly, we have created a
location object.

1 UserLocation location = UserLocation();

Secondly, we have got the necessary weather data as a dynamic
Future object. After that we have sent that weather data to the
weather page where we will display the result.

1 void updateWeather() {

2 var weather;

3 location.getWeatherWithGeolocator().then((value) {

4 weather = value;

5 Navigator.push(context, MaterialPageRoute(builder: (c\

6 ontext) {

7 return WeatherPage(

8 weather: weather,

9 title: 'Get City and Weather',

10);

11 }));

12 });

13 }

7. Let’s learn how a Weather App uses API and serializes JSON data 406

Finally, we have called the above method in our “initState()”
method.

1 @override

2 void initState() {

3 super.initState();

4 updateWeather();

5 }

As the first screen loads it asks for the user permission first.

Figure 7.1 – Assking for User’s permision to display location on User’s screen

To get the current weather, we need to give the permission by
clicking the allow button.

As a result, it will pass the weather data as a dynamic Future object.

Pass data to a State object in Flutter

Getting data in a Stateless Widget does not make things tricky.
Rather it’s simple.

7. Let’s learn how a Weather App uses API and serializes JSON data 407

We have received the data in final variables and display them.
Right?

But in a Stateful Widget, we need to use the State “widget” property.

Certainly, we first receive that data in final variables just as we do
in a Stateless Widget.

But after that, we need to access that data through the “widget”
property.

Let us see the code. After that, we will discuss how it works.

1 import 'package:flutter/material.dart';

2

3 class WeatherPage extends StatefulWidget {

4 const WeatherPage({Key? key, required this.weather, requi\

5 red this.title})

6 : super(key: key);

7

8 final dynamic weather;

9 final String title;

10

11 @override

12 State<WeatherPage> createState() => _WeatherPageState();

13 }

14

15 class _WeatherPageState extends State<WeatherPage> {

16 @override

17 Widget build(BuildContext context) {

18 return Scaffold(

19 appBar: AppBar(

20 title: Text(widget.title),

21),

22 body: Center(

23 child: Container(

24 decoration: const BoxDecoration(

25 image: DecorationImage(

7. Let’s learn how a Weather App uses API and serializes JSON data 408

26 image: NetworkImage(

27 'https://cdn.pixabay.com/photo/2022/02/19\

28 /22/48/forest-7023487_960_720.jpg'),

29 fit: BoxFit.cover,

30),

31),

32 constraints: const BoxConstraints.expand(),

33 child: SafeArea(

34 child: Column(

35 mainAxisAlignment: MainAxisAlignment.center,

36 children: <Widget>[

37 Text(

38 'Welcome to ${widget.weather['name']}',

39 style: Theme.of(context).textTheme.headli\

40 ne3,

41),

42 Text(

43 'Current temperature: ${(widget.weather['\

44 main']['temp'] - 273.15).toStringAsFixed(2)} Celsius', \

45

46 style: Theme.of(context).textTheme.headli\

47 ne6,

48),

49 Text(

50 'Current condition: ${widget.weather['wea\

51 ther'][0]['description']}',

52 style: Theme.of(context).textTheme.headli\

53 ne4,

54),

55 const SizedBox(

56 height: 20.0,

57),

58],

59),

60),

7. Let’s learn how a Weather App uses API and serializes JSON data 409

61 // This trailing comma makes auto-formatting nice\

62 r for build methods.

63),

64),

65);

66 }

67 }

As we can see we have received two data from the parent widget.
One is the “weather” and the other is the “title”. As a result, we have
displayed the title as follows.

1 appBar: AppBar(

2 title: Text(widget.title),

3),

Here the “widget” property of the State class can access the proper-
ties of the Stateful Widget in this way.

For example, we have displayed the city name as follows.

1 Text(

2 'Welcome to ${widget.weather['name']}',

3 style: Theme.of(context).textTheme.headli\

4 ne3,

5),

Now we can display the current weather data of the user.

7. Let’s learn how a Weather App uses API and serializes JSON data 410

Figure 7.2 – Current Weather displayed on User’s screen

Remember, in our previous steps we have shown that the weather
data is actually a JSON Map as follows.

7. Let’s learn how a Weather App uses API and serializes JSON data 411

1 {coord: {lon: 88.3163, lat: 22.6066}, weather: [{id: 721,\

2 main: Haze, description: haze, icon: 50d}], base: statio\

3 ns,

4 main: {temp: 301.14, feels_like: 305.69, temp_min: 301.14\

5 , temp_max: 301.14, pressure: 1008, humidity: 83}, visibi\

6 lity:

7 2800, wind: {speed: 4.12, deg: 180}, clouds: {all: 75}, d\

8 t: 1648860766, sys: {type: 1, id: 9114, country: IN, sunr\

9 ise:

10 1648857516, sunset: 1648902114}, timezone: 19800, id: 134\

11 8747, name: Howrah, cod: 200}

Here the “name” acts as a key. So we have accessed the value of the
city name by using the key.

If you want to clone the whole project and test in your machine,
please clone the GitHub repository.

But you need to create and pass your own API key as app ID.

The code repositories for the final branch²⁴

²⁴https://github.com/sanjibsinha/with_her

https://github.com/sanjibsinha/with_her
https://github.com/sanjibsinha/with_her

8. How we can build a
Blog App and learn
Flutter backend

programming using
SQLite

Before we start building the a Blog App, and learn CRUD in Flutter
we must know what are new features in Flutter 2.8.

Why?

Because in this version of Flutter Future, await, async and backend
database play an important role.

Flutter 2.8, Future, await, async and
Database

Flutter 2.8 has added a major performance booster to our Flutter
Applications.

What is new in Flutter 2.8

Using Flutter’s single codebase we can create applications for
Android, iOS, Windows, Linux, Web and many more. Flutter 2.8
has added many interesting features that makes this development
much easier. In addition it’s added a major performance booster.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 413

If you’ve been reading my blog, you may have noticed that I have
written about the earlier Flutter revisions and releases.

However, Flutter 2.8 has overtaken 2.5 and improving the perfor-
mance of Flutter applications on mobile devices.

We can simply upgrade to the new version by issuing this command
on our terminal.

1 flutter upgrade

It takes some time to upgrade depending on the speed of your
internet.

Then you can check the Flutter and Dart version.

1 Flutter 2.8.0 • channel stable • https://github.com/flutt\

2 er/flutter.git

3 Framework • revision cf44000065 (3 days ago) • 2021-12-08\

4 14:06:50 -0800

5 Engine • revision 40a99c5951

6 Tools • Dart 2.15.0

7

8 Dart SDK version: 2.15.0 (stable) (Fri Dec 3 14:23:23 202\

9 1 +0100) on "linux_x64"

As a result, our Flutter applications open faster and consume less
memory.

As some of Google’s core apps like Google Play and Stadia uses
Flutter, it’s quite expected that Google will keep improving Flutter
core.

Flutter 2.8 ha made it much easier to connect to Firebase. The good
news is Firebase plugins for Flutter have been upgraded from “Beta”
to “Stable.”

Now, sign-in has also become easier with a Widget.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 414

We’ve just seen that with the revision and new release of Flutter 2.8,
Dart programming language SDK has also been updated to 2.15.

We’ll discuss in a separate post how we can utilise Dart’s new
features. Some features will definitely boost the development of
Flutter User Interfaces.

Dart 2.15 also brings concurrency improvements, enhanced enu-
merations, and optimisations that provide a 10 percent reduction
in memory utilisation.

However, I personally like the web view part.

The webview_flutter plugin has been upgraded to 3.0 and that
means provides preliminary support for a new platform: the web.

To use it, we can add the following line to your pubspec.yaml:

1 dependencies:

2 webview_flutter: ^3.0.0

3 webview_flutter_web: ^0.1.0

To sum up, Flutter 2.8 promises faster startup and lower resource
requirements for mobile apps. We can also easily connect with the
back-end services.

Let us try webview_flutter plugin in a simple Flutter 2.8 application.

1 import 'package:flutter/material.dart';

2 import 'package:webview_flutter/webview_flutter.dart';

3

4 void main() {

5 runApp(const MyApp());

6 }

7

8 class MyApp extends StatelessWidget {

9 const MyApp({Key? key}) : super(key: key);

10

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 415

11 // This widget is the root of your application.

12 @override

13 Widget build(BuildContext context) {

14 return MaterialApp(

15 title: 'Flutter Demo',

16 theme: ThemeData(

17 primarySwatch: Colors.blue,

18),

19 home: const MyHomePage(title: 'Flutter Demo Home Page\

20 '),

21);

22 }

23 }

24

25 class MyHomePage extends StatefulWidget {

26 const MyHomePage({Key? key, required this.title}) : super\

27 (key: key);

28

29 final String title;

30

31 @override

32 State<MyHomePage> createState() => _MyHomePageState();

33 }

34

35 class _MyHomePageState extends State<MyHomePage> {

36 @override

37 Widget build(BuildContext context) => Scaffold(

38 appBar: AppBar(title: const Text('Flutter WebView\

39 example')),

40 body: const WebView(initialUrl: 'https://sanjibsi\

41 nha.com'),

42);

43 }

Just run the code and you’ll find that web view has brought the web
pages as we want.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 416

Figure 8.1 – Flutter 2.8 and web view 3.0 plugin

We can always check out the new webview codelab, which might
give us a proper guide to host web content in our Flutter app.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 417

Future, await and async

Future in Flutter or Dart gives us a promise token and returns a
value at in future.

Flutter is mainly single thread. Why so? Because Dart language is
a single threaded language. However, Flutter uses several threads
to do its work.

Does it sound confusing?

Don’t worry. Basically, in Flutter all of our Dart code runs on User
Interface thread. In spite of that, it uses other threads besides that.
Just to name a few, there are Platform thread, I/O thread, etc.

On the contrary Android applications are not single threaded.
Besides the main thread Android applications can run the heavy
jobs in worker or background thread.

What do we mean by heavy jobs?

Well, let me explain. In any mobile application, users need to
accomplish many tasks simultaneously. Consider an event like
button click. That might do some small logical operations, such as
get the result of a small addition. The main thread can handle such
small operations and doesn’t take much time.

However, an image to be opened using a network, or downloading
a file isn’t a small operation. As a result, the main thread needs to
do the heavy lifting. And, that might halt the whole program.

However, Dart and Flutter have its answer. They together perform
long-running operations with the help of Future API, async, await
keywords, and then functions.

Together they perform asynchronous programming in Flutter.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 418

Asynchronous doesn’t mean multi-threaded. Basically it means the
code shouldn’t run at the same time and the job of main thread
shouldn’t be burdensome.

In case of Flutter, asynchronous means that an operation is sched-
uled to be run on the same thread after other tasks have finished.

With reference to asynchronous programming we need to under-
stand isolate also. In a separate section, we’ll discuss isolate.

When the conception of isolate comes into the picture, Dart no
longer remains single threaded language. Because it can create
separate isolate. Although within an isolate Dart again runs on a
single thread.

Future in Flutter or Dart gives us a promise token and says that a
value will be returned at some point in future.

It never says in which thread it will have its job done at that certain
point.

This part is little tricky. However, we need to see how we can write
a simple Dart code to understand this concept.

1 import 'dart:async';

2

3 void main(List<String> args) {

4 print('main thread starts >>>>>');

5 print('main process starts >>>>>');

6

7 openImage();

8

9 print('main process ends and starts counting seconds... >\

10 >>>>');

11 }

12

13 void openImage() async {

14 var imageFile = await downloadImage();

15 print('The downloaded file is --> $imageFile');

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 419

16 print('main thread ends after 10 seconds....');

17 }

18

19 Future<String> downloadImage() {

20 var image = Future<String>.delayed(Duration(seconds: 10),\

21 () {

22 return 'Here is an imaginative image downloaded.';

23 });

24 return image;

25 }

Let’s try to understand the above code.

Depending on that, as a consequence, we can later create a database
operations in Flutter. Remember, database queries takes time and
we must do using Future.

Future works on <T>, or type. In our case, we’ve used String type
and returns a text after 10 seconds.

However, when we run the program, the default process starts the
main thread. And it prints, main thread starts and main process
starts.

Then after 10 seconds we get the result that our Future object
returns. And at the same time, the main thread closes down.

Let’s run and watch the output, so that everything makes sense.

1 main thread starts >>>>>

2 main process starts >>>>>

3 main process ends and starts counting seconds... >>>>>

4 The downloaded file is --> Here is an imaginative image d\

5 ownloaded.

6 main thread ends after 10 seconds....

7 Exited

To sum up, here a Future object has produced a value of type

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 420

String. A Future object belongs to any one of the states – either
it’s completed, or it’s uncompleted.

When themain thread starts andwe call a Future, it queues upwork
and returns an uncompleted state.

But we don’t see that part in our bare eyes.

When the Future’s operation is finished, it returns a completed state
with a value of same type.

If it cannot, Future completes with an error.

Which database we use in Flutter

SQLite database with future, await, and async create, retrieve,
update, or delete data in Flutter.

We can use SQLite database in Flutter. However, we need to use
a special package or plugin sqflite which is available in pub.dev.
We also need to use Future API, async, await keywords, and then
functions to make it successful.

We’ve discussed this feature for absolute beginners in previous
section, is Flutter single thread?

Anyway, as a result, the sqflite package provides classes and func-
tions to interact with a SQLite database. Moreover, using SQLite
database is better than using a local file, or key-value store.

There are reasons to do that.

SQLite database provides faster CRUD. That is, we can create,
retrieve, update and delete data. And, it’s always better than the
local persistent solutions.

In this section we’ll see how we can create a users table in our
SQLite database, and retrieve that data on our Flutter application.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 421

It will be a gentle introduction to SQLite databasewith Flutter.We’ll
see how we can create a database, insert some data and after that,
retrieve them.

Later as we progress, we’ll see how we can improve the other
functionalities. To get the code snippets used in this section, we
have a respective GitHub repository. If you have interest, please
download and run the code.

Besides sqflite package, we need to use another package path, that
will define the location for storing the database on the disk.

For the beginners, here is a guide what SQLite database is.

What is SQLite database?

SQLite is a C-language library that implements many features at
one go. It is small, fast, self-contained, high-reliability, full-featured,
SQL database engine.

By the way, SQLite is the most used database engine in the world.
Besides, SQLite database file format is stable, cross-platform, and
backwards compatible.

There are over 1 trillion SQLite databases in active use at present.

Therefore, let’s go ahead and make our first Flutter Application
with SQLite database.

How do you make a database on Flutter
app?

Let’s add the dependencies in our pubspec.yaml file first.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 422

1 dependencies:

2 flutter:

3 sdk: flutter

4 sqflite:

5 path:

After that, create a model folder, inside lib folder, and create one
user class and a database helper class there.

Firstly, let’s take a look at the user model class.

1 class User {

2 final int? id;

3 final String name;

4 final String location;

5

6 User({

7 this.id,

8 required this.name,

9 required this.location,

10 });

11

12 User.fromMap(Map<String, dynamic> res)

13 : id = res["id"],

14 name = res["name"],

15 location = res["location"];

16

17 Map<String, Object?> toMap() {

18 return {

19 'id': id,

20 'name': name,

21 'location': location,

22 };

23 }

24 }

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 423

To get data stored in SQLite database, we need to convert them to a
map. The reason is simple. After all, in our Flutter Application we
need to convert them to a list of items.

That’s why we have created a named constructor User.fromMap()
and a method toMap().

Secondly, we’ll create a table with the help of the helper class.

1 import 'package:sqflite/sqflite.dart';

2 import 'package:path/path.dart';

3

4 import 'user.dart';

5

6 class DatabaseHandler {

7 Future<Database> initializeDB() async {

8 String path = await getDatabasesPath();

9 return openDatabase(

10 join(path, 'usersfirst.db'),

11 onCreate: (database, version) async {

12 await database.execute(

13 "CREATE TABLE usersfirst(id INTEGER PRIMARY KEY A\

14 UTOINCREMENT, name TEXT NOT NULL, location TEXT NOT NULL)\

15 ",

16);

17 },

18 version: 1,

19);

20 }

21

22 Future<int> insertUser(List<User> users) async {

23 int result = 0;

24 final Database db = await initializeDB();

25 for (var user in users) {

26 result = await db.insert('usersfirst', user.toMap());

27 }

28 return result;

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 424

29 }

30

31 Future<List<User>> retrieveUsers() async {

32 final Database db = await initializeDB();

33 final List<Map<String, Object?>> queryResult = await \

34 db.query('usersfirst');

35 return queryResult.map((e) => User.fromMap(e)).toList\

36 ();

37 }

38 }

The method getDatabasePath() of sqflite package will get the de-
fault database location. However, the join() method is inside the
package path that will join the given path into a single path.

As a matter of fact, two packages sqflite and path are necessary for
this reason.

In addition, to keep our first Flutter SQLite database application
simple, we’re going to create, insert, and retrieve the users. We’ll
add the list of users manually in our main method.

Now, we’re going to display the users data.

1 import 'package:flutter/material.dart';

2

3 import 'model/database_handler.dart';

4 import 'model/user.dart';

5

6 void main() {

7 runApp(const MyApp());

8 }

9

10 /// adding first branch

11 class MyApp extends StatelessWidget {

12 const MyApp({Key? key}) : super(key: key);

13

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 425

14 // This widget is the root of your application.

15 @override

16 Widget build(BuildContext context) {

17 return MaterialApp(

18 title: 'Flutter smimple database',

19 theme: ThemeData(

20 primarySwatch: Colors.blue,

21),

22 home: const MyHomePage(title: 'Flutter smimple databa\

23 se'),

24);

25 }

26 }

27

28 class MyHomePage extends StatefulWidget {

29 const MyHomePage({Key? key, required this.title}) : super\

30 (key: key);

31

32 final String title;

33

34 @override

35 State<MyHomePage> createState() => _MyHomePageState();

36 }

37

38 class _MyHomePageState extends State<MyHomePage> {

39 late DatabaseHandler handler;

40

41 @override

42 void initState() {

43 Future<int> addUsers() async {

44 User firstUser = User(name: "Mana", location: "Nabagr\

45 am");

46 User secondUser = User(name: "Babu", location: "Nabag\

47 ram");

48 User thirdUser = User(name: "Pata", location: "Nabagr\

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 426

49 am");

50 List<User> listOfUsers = [

51 firstUser,

52 secondUser,

53 thirdUser,

54];

55 return await handler.insertUser(listOfUsers);

56 }

57

58 super.initState();

59 handler = DatabaseHandler();

60 handler.initializeDB().whenComplete(() async {

61 await addUsers();

62 setState(() {});

63 });

64 }

65

66 @override

67 Widget build(BuildContext context) {

68 return Scaffold(

69 appBar: AppBar(

70 title: Text(widget.title),

71),

72 body: FutureBuilder(

73 future: handler.retrieveUsers(),

74 builder: (BuildContext context, AsyncSnapshot<Lis\

75 t<User>> snapshot) {

76 if (snapshot.hasData) {

77 return ListView.builder(

78 itemCount: snapshot.data?.length,

79 itemBuilder: (BuildContext context, int index\

80) {

81 return Card(

82 child: ListTile(

83 key: ValueKey<int>(snapshot.data![ind\

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 427

84 ex].id!),

85 contentPadding: const EdgeInsets.all(\

86 8.0),

87 title: Text(

88 snapshot.data![index].name,

89 style: Theme.of(context).textTheme.he\

90 adline3,

91),

92 subtitle: Text(

93 snapshot.data![index].location.toStri\

94 ng(),

95 style: Theme.of(context).textTheme.he\

96 adline5,

97),

98),

99);

100 },

101);

102 } else {

103 return const Center(child: CircularProgressIn\

104 dicator());

105 }

106 },

107),

108);

109 }

110 }

Next, we create an instance of class DatabaseHandler first. With
the help of the database handler object we can call initalizeDb()
method to create the SQLite database.

We know that Future in Flutter or Dart gives us a promise token and
says that a value will be returned at some point in future. Therefore,
when Future is completed, addUsers() method is called.

Consequently, the addUsers() method calls insertUsers() method to

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 428

insert the list of users to the SQLite database.

Next, the FutureBuilder widget builds itself based on the latest
snapshot of interaction with a Future. Moreover, unless the Future
is completed, it gives us the uncompleted state which shows a
circular progress indicator.

Figure 8.2 – Flutter application tries to retrieve data from SQLite database with
FutureBuilder

However, when the value is returned in Future, it retrieves data
from SQLite database successfully.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 429

Figure 8.3 – FutureBuilder retrieves data from SQLite database in Flutter

By the way, we’ve added this list of users manually.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 430

1 Future<int> addUsers() async {

2 User firstUser = User(name: "Mana", location: "Nabagr\

3 am");

4 User secondUser = User(name: "Babu", location: "Nabag\

5 ram");

6 User thirdUser = User(name: "Pata", location: "Nabagr\

7 am");

8 List<User> listOfUsers = [

9 firstUser,

10 secondUser,

11 thirdUser,

12];

13 return await handler.insertUser(listOfUsers);

14 }

In the next section, we’ll try to implement other features of CRUD
in our Flutter Application.

With the help of SQLite database in accordance with future, await,
and async we can insert, retrieve, update, or delete data in Flutter.

SQLite Database and Flutter

In this section, we’ll take a look at how we can insert data to SQL
database and display them. As we progress, we’ll learn the other
techniques to update and delete data.

It is preferable to use SQLite database in Flutter, because it is faster
than local file. However, we need to use a special package or plugin
sqflite which is available in pub.dev.We also need to use Future API,
async, await keywords, and then functions to make it successful.

We’ve discussed Future, await and async for absolute beginners in
previous section, is Flutter single thread?

Anyway, as a result, the sqflite package provides classes and
functions to interact with a SQLite database.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 431

What is SQLite database?

SQLite is a C-language library that implements many features at
one go. It is small, fast, self-contained, high-reliability, full-featured,
SQL database engine.

By the way, SQLite is the most used database engine in the world.
Besides, SQLite database file format is stable, cross-platform, and
backwards compatible.

There are over 1 trillion SQLite databases in active use at present.

Therefore, let’s go ahead and make our first Flutter Application
with SQLite database.

How to insert data in SQL database in
Flutter?

Firstly, we need a Text Controller to type on the screen. Right?

Then, we need a Text Button to press, so that that piece of data will
be inserted into the SQLite database.

Secondly, we need to add the dependency.

1 dependencies:

2 cupertino_icons: ^1.0.2

3 flutter:

4 sdk: flutter

5 intl: ^0.17.0

6 path_provider: ^2.0.8

7 provider: ^6.0.1

8 sqflite:

Next, we need amodel data class and Database Handler helper class
that will connect our SQLite database to the model data class.

First, data model class.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 432

1 class User {

2 final int? id;

3 final String name;

4

5 User({

6 this.id,

7 required this.name,

8 });

9

10 User.fromMap(Map<String, dynamic> res)

11 : id = res["id"],

12 name = res["name"];

13

14 Map<String, Object?> toMap() {

15 return {

16 'id': id,

17 'name': name,

18 };

19 }

20 }

We need to map that data model class so that later we can work on
it in Flutter.

To get data stored in SQLite database, we need to convert them to a
map. The reason is simple. After all, in our Flutter Application we
need to convert them to a list of items.

That’s why we have created a named constructor User.fromMap()
and a method toMap().

Secondly, we’ll create a table with the help of the helper class.

Why?

Because, the database helper class will provide the methods that
will create the database table, and help us to insert and retrieve
data from SQLite database.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 433

1 import 'package:sqflite/sqflite.dart';

2 import 'package:path/path.dart';

3

4 import 'user.dart';

5

6 class DatabaseHandler {

7 Future<Database> initializeDB() async {

8 String path = await getDatabasesPath();

9 return openDatabase(

10 join(path, 'usersix.db'),

11 onCreate: (database, version) async {

12 await database.execute(

13 "CREATE TABLE usersix(id INTEGER PRIMARY KEY AUTO\

14 INCREMENT, name TEXT NOT NULL)",

15);

16 },

17 version: 1,

18);

19 }

20

21 Future<int> insertUser(List<User> users) async {

22 int result = 0;

23 final Database db = await initializeDB();

24 for (var user in users) {

25 result = await db.insert('usersix', user.toMap());

26 }

27 return result;

28 }

29

30 Future<List<User>> retrieveUsers() async {

31 final Database db = await initializeDB();

32 final List<Map<String, Object?>> queryResult = await \

33 db.query('usersix');

34 return queryResult.map((e) => User.fromMap(e)).toList\

35 ();

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 434

36 }

37 }

It’s a good practice that we break down these code snippets and
keep this data model and helper class in our model folder inside lib
folder.

The method getDatabasePath() of sqflite package will get the de-
fault database location. However, the join() method is inside the
package path that will join the given path into a single path.

As a matter of fact, two packages sqflite and path are necessary for
this reason.

In addition, to keep our first Flutter SQLite database application
simple, we’re going to create, insert, and retrieve the users. We’ll
add the list of users manually in our main method.

Our next challenge is to show a text field to the user so that she can
type any text and press the button.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 435

Figure 8.4 – Inserting data in SQLite database in Flutter

At the same page we need to show the Navigate button, that will
take us to another screen where the inserted data will be displayed.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 436

Figure 8.5 – Data is being inserted in SQLite database in Flutter

1 import 'package:flutter/material.dart';

2 import 'package:flutter_data_and_backend/view/future_dark\

3 .dart';

4

5 import 'model/user.dart';

6

7 void main() {

8 runApp(const MyApp());

9 }

10

11 /// we're now in branch six

12 ///

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 437

13 class MyApp extends StatelessWidget {

14 const MyApp({Key? key}) : super(key: key);

15

16 @override

17 Widget build(BuildContext context) {

18 return const MaterialApp(

19 title: 'data',

20 home: MyAppHome(),

21);

22 }

23 }

24

25 class MyAppHome extends StatefulWidget {

26 const MyAppHome({Key? key}) : super(key: key);

27

28 @override

29 State<MyAppHome> createState() => _MyAppHomeState();

30 }

31

32 class _MyAppHomeState extends State<MyAppHome> {

33 final List<User> usersList = [];

34

35 final nameController = TextEditingController();

36

37 void addName(String name) {

38 final user = User(

39 name: name,

40);

41 setState(() {

42 usersList.add(user);

43 });

44 }

45

46 @override

47 Widget build(BuildContext context) {

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 438

48 return Scaffold(

49 appBar: AppBar(

50 title: const Text('Inserting Data'),

51 actions: <Widget>[

52 IconButton(

53 icon: const Icon(Icons.add_alert),

54 tooltip: 'Show Snackbar',

55 onPressed: () {

56 ScaffoldMessenger.of(context).showSnackBar(

57 const SnackBar(

58 content: Text('A SnackBar'),

59),

60);

61 },

62),

63 IconButton(

64 icon: const Icon(Icons.search_outlined),

65 tooltip: 'Search',

66 onPressed: () {

67 // our code

68 },

69),

70],

71),

72 body: Center(

73 child: Column(

74 children: [

75 Container(

76 padding: const EdgeInsets.all(5),

77 child: Card(

78 elevation: 10,

79 child: Column(

80 children: [

81 TextField(

82 decoration: const InputDecoration(

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 439

83 border: OutlineInputBorder(),

84 labelText: 'ITEM',

85 suffixStyle: TextStyle(

86 fontSize: 50,

87 fontWeight: FontWeight.bold,

88),

89),

90 controller: nameController,

91),

92 TextButton(

93 onPressed: () {

94 addName(

95 nameController.text,

96);

97 },

98 child: const Text(

99 'SUBMIT',

100 style: TextStyle(

101 fontSize: 25,

102 fontWeight: FontWeight.bold,

103),

104),

105),

106 const SizedBox(

107 height: 5,

108),

109],

110),

111),

112),

113 NavigationWidget(usersList: usersList),

114],

115),

116),

117);

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 440

118 }

119 }

120

121 class NavigationWidget extends StatelessWidget {

122 const NavigationWidget({

123 Key? key,

124 required this.usersList,

125 }) : super(key: key);

126

127 final List<User> usersList;

128

129 @override

130 Widget build(BuildContext context) {

131 return Center(

132 child: Container(

133 padding: const EdgeInsets.all(5),

134 height: 150,

135 width: 350,

136 child: Column(

137 children: usersList.map((e) {

138 return Column(

139 children: [

140 TextButton(

141 onPressed: () {

142 Navigator.push(

143 context,

144 MaterialPageRoute(

145 builder: (context) => FutureDark(

146 name: e.name,

147),

148),

149);

150 },

151 child: const Text(

152 'Navigate',

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 441

153 style: TextStyle(

154 fontSize: 30.0,

155 fontWeight: FontWeight.bold,

156 color: Colors.redAccent,

157),

158),

159),

160],

161);

162 }).toList(),

163),

164),

165);

166 }

167 }

The above code could be broken down to more pages or screens
using more custom widgets.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 442

Figure 8.6 – Data from SQLite database is being shown on Flutter screen

However, in one place will help us to understand the mechanism
of how we have used Text Controller, Text Button and a Material
Page Route to insert data and after that, we can see them.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 443

Figure 8.7 – SecondData from SQLite database is being shown on Flutter screen

Second Data from SQLite database is being shown on Flutter screen
How to retrieve data from SQLite database in Flutter?

Retrieving data from SQLite database is much easier than inserting
data.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 444

With the help of Future API, async, await keywords, and then
functions and FutureBuilder widget, we can do that.

At the same screen we also catch the data or list item that we’ve
sent from the home page.

1 import 'package:flutter/material.dart';

2

3 import 'package:flutter_data_and_backend/model/database_h\

4 andler.dart';

5 import 'package:flutter_data_and_backend/model/user.dart';

6

7 class FutureDark extends StatefulWidget {

8 const FutureDark({

9 Key? key,

10 required this.name,

11 }) : super(key: key);

12

13 final String name;

14

15 @override

16 State<FutureDark> createState() => _FutureDarkState();

17 }

18

19 class _FutureDarkState extends State<FutureDark> {

20 DatabaseHandler? handler;

21 @override

22 void initState() {

23 List<User> users = [

24 User(name: widget.name.toString()),

25];

26 Future<int> addUsers() async {

27 return await handler!.insertUser(users);

28 }

29

30 super.initState();

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 445

31 handler = DatabaseHandler();

32 handler!.initializeDB().whenComplete(() async {

33 await addUsers();

34 setState(() {});

35 });

36 }

37

38 @override

39 Widget build(BuildContext context) {

40 return Scaffold(

41 appBar: AppBar(

42 title: const Text('Showing Data'),

43),

44 body: FutureBuilder(

45 future: handler!.retrieveUsers(),

46 builder: (BuildContext context, AsyncSnapshot<Lis\

47 t<User>> snapshot) {

48 if (snapshot.hasData) {

49 return ListView.builder(

50 itemCount: snapshot.data?.length,

51 itemBuilder: (BuildContext context, int index\

52) {

53 return Card(

54 child: ListTile(

55 key: ValueKey<int>(snapshot.data![ind\

56 ex].id!),

57 contentPadding: const EdgeInsets.all(\

58 8.0),

59 title: Text(

60 snapshot.data![index].name,

61 style: Theme.of(context).textTheme.he\

62 adline3,

63),

64),

65);

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 446

66 },

67);

68 } else {

69 return const Center(child: CircularProgressIn\

70 dicator());

71 }

72 },

73),

74);

75 }

76 }

The Future Builder is a widget that builds itself based on the latest
snapshot of interaction with a Future.

We’ve obtained the future must have been obtained
earlier, during State.initState, State.didUpdateWidget, or
State.didChangeDependencies.

FutureBuilder must not be created during the State.build or State-
lessWidget.build method call when constructing the FutureBuilder.

Create, Retrieve, Update and Delete
with SQLite Database

In the previous chapter, we have had a gentle introduction on
SQLite database and Flutter. We have learned how to create a
SQLite database with the help of “sqflite” package.

In addition we’ve also seen how to use “path” package to define a
local path to create the database.

In the following two sections, we’ll learn how we can plan, create
and modify a SQLite database in Flutter, so that we can successfully
do the CRUD, or Create, Retrieve, Update and Delete data and build
a Blog Application using that knowledge.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 447

And in the last section we’ll convert the existing Blog Application
and refactor it to a “My Diary” Aplication.

SQLite Blog in Flutter: First Part

This is the first part of building a Blog application with SQLite
database in Flutter.

We’re going to learn how we can build a SQLite Blog Application
in Flutter. As it sounds, a Blog App must fulfill some criteria.

What are they?

The SQLite database should allow us to insert, update or delete data.
Moreover, we need to retrieve data as well.

For better understanding, let’s break this flutter tutorial in a few
parts.

So, in this first part will teach us to learn a couple of things.

Firstly, we’ll use a Flutter package or plugin, sqflite which is
available in pub.dev.

Secondly, we also need to use Future API, async, await keywords,
and then functions to make it successful.

We’ve discussed Future, await and async for absolute beginners
in previous section, is Flutter single thread? Therefore, if you’re
a beginner, you might take a look before we start.

Which database is best for Flutter?

The sqflite package provides classes and functions to interact with
a SQLite database.

And, finally, we need a Text Controller to type on the screen. Right?

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 448

We also need a Text Button or Elevated Button to press, so that that
piece of data will be inserted into the SQLite database.

To begin with, we need to add the dependencies in pubspec.yaml.

1 dependencies:

2 cupertino_icons: ^1.0.2

3 flutter:

4 sdk: flutter

5 flutter_staggered_grid_view: ^0.4.1

6 intl: ^0.17.0

7 path:

8 provider: ^6.0.1

9 sqflite:

After that, we need to use await and async in our entry point.

1 import 'package:flutter/material.dart';

2 import 'package:flutter/services.dart';

3 import 'view/all_pages.dart';

4

5 Future main() async {

6 WidgetsFlutterBinding.ensureInitialized();

7 await SystemChrome.setPreferredOrientations([

8 DeviceOrientation.portraitUp,

9 DeviceOrientation.portraitDown,

10]);

11

12 runApp(const MyApp());

13 }

14

15 class MyApp extends StatelessWidget {

16 static const String title = 'Blogs';

17

18 const MyApp({Key? key}) : super(key: key);

19

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 449

20 @override

21 Widget build(BuildContext context) => MaterialApp(

22 debugShowCheckedModeBanner: false,

23 title: title,

24 themeMode: ThemeMode.light,

25 theme: ThemeData(

26 primaryColor: Colors.pink.shade200,

27 scaffoldBackgroundColor: Colors.pink.shade600,

28 appBarTheme: const AppBarTheme(

29 backgroundColor: Colors.transparent,

30 elevation: 0,

31),

32),

33 home: const AllPages(),

34);

35 }

In our Material App widget, we’ve defined the global theme. In
addition, we pass that theme to our Home page AllPages.

Next, we need to define couple of things in this page, AllPages. If
there is no data in our SQLite database, then it will show a page
like below.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 450

Figure 8.8 – Home page of the Blog App in Flutter

As a result, we can start adding blog items to this Flutter Appli-
cation. However, in our Home page, AllPages stateful Widget, we
must define that.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 451

Let’s take a look at the AllPages code snippet.

1 import 'package:flutter/material.dart';

2 import 'package:flutter_staggered_grid_view/flutter_stagg\

3 ered_grid_view.dart';

4 import '/model/blogs.dart';

5 import '/model/blog.dart';

6 import 'edit.dart';

7 import 'detail.dart';

8 import '/controller/blog_card.dart';

9

10 class AllPages extends StatefulWidget {

11 const AllPages({Key? key}) : super(key: key);

12

13 @override

14 _AllPagesState createState() => _AllPagesState();

15 }

16

17 class _AllPagesState extends State<AllPages> {

18 late List<Blog> blogs;

19 bool isLoading = false;

20

21 @override

22 void initState() {

23 super.initState();

24

25 refreshingAllBogs();

26 }

27

28 @override

29 void dispose() {

30 BlogDatabaseHandler.instance.close();

31

32 super.dispose();

33 }

34

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 452

35 Future refreshingAllBogs() async {

36 setState(() => isLoading = true);

37

38 blogs = await BlogDatabaseHandler.instance.readAllBlo\

39 gs();

40

41 setState(() => isLoading = false);

42 }

43

44 @override

45 Widget build(BuildContext context) => Scaffold(

46 appBar: AppBar(

47 title: const Text(

48 'Blogs',

49 style: TextStyle(fontSize: 24),

50),

51 actions: [

52 Padding(

53 padding: const EdgeInsets.symmetric(vertical:\

54 8, horizontal: 12),

55 child: ElevatedButton(

56 style: ElevatedButton.styleFrom(

57 onPrimary: Colors.white,

58 primary: Colors.pink.shade900,

59),

60 onPressed: () async {

61 await Navigator.of(context).push(

62 MaterialPageRoute(builder: (context) \

63 => const EditPage()),

64);

65

66 refreshingAllBogs();

67 },

68 child: const Text('Add Blog'),

69),

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 453

70)

71],

72),

73 body: Center(

74 child: isLoading

75 ? const CircularProgressIndicator()

76 : blogs.isEmpty

77 ? const Text(

78 'No Blogs in the beginning...',

79 style: TextStyle(color: Colors.white,\

80 fontSize: 60),

81)

82 : buildingAllBlogs(),

83),

84);

85

86 Widget buildingAllBlogs() => StaggeredGridView.countBuild\

87 er(

88 padding: const EdgeInsets.all(8),

89 itemCount: blogs.length,

90 staggeredTileBuilder: (index) => const StaggeredT\

91 ile.fit(2),

92 crossAxisCount: 4,

93 mainAxisSpacing: 4,

94 crossAxisSpacing: 4,

95 itemBuilder: (context, index) {

96 final blog = blogs[index];

97

98 return GestureDetector(

99 onTap: () async {

100 await Navigator.of(context).push(MaterialPage\

101 Route(

102 builder: (context) => DetailPage(blogId: \

103 blog.id!),

104));

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 454

105

106 refreshingAllBogs();

107 },

108 child: BlogCard(blog: blog, index: index),

109);

110 },

111);

112 }

The above Widget plays a very important role in our Flutter SQLite
Blog Application.

Firstly, it would let us allow to add a new blog. To do that, this
widget takes us to a different Widget, EditPage.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 455

Figure 8.9 – Inserting data into Blog App in Flutter

After that, once we are done in the EditPage, that again sends us
back to this Widget, AllPages. And, here, we start seeing all the
blogs.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 456

Figure 8.10 – Retrieving data in Blog App in Flutter

Retrieving data from SQLite database is much easier than inserting
data. However, we’ll learn everything from scratch here while
building this Blog app in Flutter.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 457

Meanwhile, with the help of Future API, async, await keywords,
and then functions and FutureBuilder widget, we can do that.

At the same screen we also catch the data or list item that we’ve
sent from the home page.

In the above code, we’ve found a couple of interesting thing.

Firstly, the home page imports couple of other pages and twomodel
classes. The model classes provide the data models.

Secondly, the model class also serves as database handler utilities.

And, finally, we needed the edit page and the detail page to serve
other purposes, such as updating and deleting items.

At the end, after finishing all tasks, we come back to the home page
again.

This is the flow of logic that runs this SQLite Blog application in
Flutter.

In the next section, we’ll take a look at how we can build the data
model and database utilities with the help of sqflite package.

By that time, if you have interest, please visit the respective GitHub
repository.

• All related Code Snippet in this GitHub repository²⁵

SQLite Blog, Flutter: Second Part

This is the second part of building a Blog application with SQLite
database in Flutter.

We’ve already started building the SQLite Blog application in
Flutter. The previous section has discussed the application structure.

²⁵https://github.com/sanjibsinha/flutter_data_and_backend/tree/test-blog

https://github.com/sanjibsinha/flutter_data_and_backend/tree/test-blog
https://github.com/sanjibsinha/flutter_data_and_backend/tree/test-blog

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 458

In this second part, we’ll concentrate on database connection, data
model classes.

As we proceed, we’ll also learn how we can develop the same
application thematically. Therefore, we’ll add more functionalities.
We’ll keep in mind that our application should look great and
should be user friendly.

First thing first. Let’s recapitulate a few things about SQLite
database and Flutter.

Firstly, we’ll use a Flutter package or plugin, sqflite which is
available in pub.dev.

Secondly, we also need to use Future API, async, await keywords,
and then functions to make it successful.

We’ve discussed Future, await and async for absolute beginners
in previous section, is Flutter single thread? Therefore, if you’re
a beginner, you might take a look before we start.

Which DB is best for Flutter?

SQLite database is one of the best DB for Flutter. Although there
are couple more. Like Hive, Firebase, etc.

However we’re using SQLite database for this Blog application in
Flutter, because it’s local, fast and easy to maintain.

First of all, we need a Blog data model.

Let’s keep that class in model folder.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 459

1 const String tableOfBlogs = 'Blogs';

2

3 class BlogFields {

4 static final List<String> values = [

5 /// Adding all fields

6 id, title, description, time

7];

8

9 static const String id = '_id';

10 static const String title = 'title';

11 static const String description = 'description';

12 static const String time = 'time';

13 }

14

15 class Blog {

16 final int? id;

17 final String title;

18 final String description;

19 final DateTime createdTime;

20

21 const Blog({

22 this.id,

23 required this.title,

24 required this.description,

25 required this.createdTime,

26 });

27

28 Blog copy({

29 int? id,

30 String? title,

31 String? description,

32 DateTime? createdTime,

33 }) =>

34 Blog(

35 id: id ?? this.id,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 460

36 title: title ?? this.title,

37 description: description ?? this.description,

38 createdTime: createdTime ?? this.createdTime,

39);

40

41 static Blog fromJson(Map<String, Object?> json) => Blog(

42 id: json[BlogFields.id] as int?,

43 title: json[BlogFields.title] as String,

44 description: json[BlogFields.description] as Stri\

45 ng,

46 createdTime: DateTime.parse(json[BlogFields.time]\

47 as String),

48);

49

50 Map<String, Object?> toJson() => {

51 BlogFields.id: id,

52 BlogFields.title: title,

53 BlogFields.description: description,

54 BlogFields.time: createdTime.toIso8601String(),

55 };

56 }

We need to Map the data model object. It’s because Flutter wants a
list to display.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 461

Figure 8.11 – Retrieving blog items on Home page

Second thing we need a database handler class that will create the
table, and at the same time, it’ll do the CRUD.

We’ve learned what CRUD is. Create, retrieve, update and delete.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 462

Figure 8.12 – Adding Blog items to SQLite database in Flutter

In this SQLite Blog application we’ll also do the same. However,
we’ve tweaked the previous home page code to accommodate a
floating action button.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 463

1 import 'package:path/path.dart';

2 import 'package:sqflite/sqflite.dart';

3 import '../model/blog.dart';

4

5 class BlogDatabaseHandler {

6 static final BlogDatabaseHandler instance = BlogDatabaseH\

7 andler._init();

8

9 static Database? _database;

10

11 BlogDatabaseHandler._init();

12

13 Future<Database> get database async {

14 if (_database != null) return _database!;

15

16 _database = await _initDB('newblogs.db');

17 return _database!;

18 }

19

20 Future<Database> _initDB(String filePath) async {

21 final dbPath = await getDatabasesPath();

22 final path = join(dbPath, filePath);

23

24 return await openDatabase(path, version: 1, onCreate:\

25 _createDB);

26 }

27

28 Future _createDB(Database db, int version) async {

29 const idType = 'INTEGER PRIMARY KEY AUTOINCREMENT';

30 const textType = 'TEXT NOT NULL';

31

32 await db.execute('''

33 CREATE TABLE $tableOfBlogs (

34 ${BlogFields.id} $idType,

35 ${BlogFields.title} $textType,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 464

36 ${BlogFields.description} $textType,

37 ${BlogFields.time} $textType

38)

39 ''');

40 }

41

42 Future<Blog> create(Blog blog) async {

43 final db = await instance.database;

44

45 final id = await db.insert(tableOfBlogs, blog.toJson(\

46));

47 return blog.copy(id: id);

48 }

49

50 Future<Blog> readBlog(int id) async {

51 final db = await instance.database;

52

53 final maps = await db.query(

54 tableOfBlogs,

55 columns: BlogFields.values,

56 where: '${BlogFields.id} = ?',

57 whereArgs: [id],

58);

59

60 if (maps.isNotEmpty) {

61 return Blog.fromJson(maps.first);

62 } else {

63 throw Exception('ID $id not found');

64 }

65 }

66

67 Future<List<Blog>> readAllBlogs() async {

68 final db = await instance.database;

69

70 const orderBy = '${BlogFields.time} ASC';

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 465

71

72 final result = await db.query(tableOfBlogs, orderBy: \

73 orderBy);

74

75 return result.map((json) => Blog.fromJson(json)).toLi\

76 st();

77 }

78

79 Future<int> update(Blog blog) async {

80 final db = await instance.database;

81

82 return db.update(

83 tableOfBlogs,

84 blog.toJson(),

85 where: '${BlogFields.id} = ?',

86 whereArgs: [blog.id],

87);

88 }

89

90 Future<int> delete(int id) async {

91 final db = await instance.database;

92

93 return await db.delete(

94 tableOfBlogs,

95 where: '${BlogFields.id} = ?',

96 whereArgs: [id],

97);

98 }

99

100 Future close() async {

101 final db = await instance.database;

102

103 db.close();

104 }

105 }

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 466

In the above code, everything is very verbose.

Firstly, we’ve mentioned a path so the database gets created locally
and stores data locally.

Secondly, we’ve created the database and table with fields. As we
see, we’ve kept it simple.

Thirdly, we’ve created methods that will read, update, delete items.

Finally, we’ve closed the database.

At the same time, we’ve changed the code of our home page slightly.
As a result, we can now add or update the blog items either from
AppBar, or through the floating action button.

1 import 'package:flutter/material.dart';

2 import 'package:flutter_staggered_grid_view/flutter_stagg\

3 ered_grid_view.dart';

4 import '/model/blogs.dart';

5 import '/model/blog.dart';

6 import 'edit.dart';

7 import 'detail.dart';

8 import '/controller/blog_card.dart';

9

10 class AllPages extends StatefulWidget {

11 const AllPages({Key? key}) : super(key: key);

12

13 @override

14 _AllPagesState createState() => _AllPagesState();

15 }

16

17 class _AllPagesState extends State<AllPages> {

18 late List<Blog> blogs;

19 bool isLoading = false;

20

21 @override

22 void initState() {

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 467

23 super.initState();

24

25 refreshingAllBogs();

26 }

27

28 @override

29 void dispose() {

30 BlogDatabaseHandler.instance.close();

31

32 super.dispose();

33 }

34

35 Future refreshingAllBogs() async {

36 setState(() => isLoading = true);

37

38 blogs = await BlogDatabaseHandler.instance.readAllBlo\

39 gs();

40

41 setState(() => isLoading = false);

42 }

43

44 @override

45 Widget build(BuildContext context) => Scaffold(

46 appBar: AppBar(

47 title: const Text(

48 'Blogs',

49 style: TextStyle(fontSize: 24),

50),

51 actions: [

52 Padding(

53 padding: const EdgeInsets.symmetric(vertical:\

54 8, horizontal: 12),

55 child: ElevatedButton(

56 style: ElevatedButton.styleFrom(

57 onPrimary: Colors.white,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 468

58 primary: Colors.pink.shade900,

59),

60 onPressed: () async {

61 await Navigator.of(context).push(

62 MaterialPageRoute(builder: (context) \

63 => const EditPage()),

64);

65

66 refreshingAllBogs();

67 },

68 child: const Text(

69 'Add or Update Blog',

70 style: TextStyle(

71 fontSize: 20,

72),

73),

74),

75)

76],

77),

78 body: Center(

79 child: isLoading

80 ? const CircularProgressIndicator()

81 : blogs.isEmpty

82 ? const Text(

83 'No Blogs in the beginning...',

84 style: TextStyle(color: Colors.white,\

85 fontSize: 60),

86)

87 : buildingAllBlogs(),

88),

89 floatingActionButton: FloatingActionButton.extend\

90 ed(

91 tooltip: 'Add or Update Blog',

92 foregroundColor: Colors.white,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 469

93 backgroundColor: Colors.pink.shade900,

94 onPressed: () async {

95 await Navigator.of(context).push(

96 MaterialPageRoute(builder: (context) => const\

97 EditPage()),

98);

99

100 refreshingAllBogs();

101 },

102 label: const Text(

103 'Add or Update Blog',

104 style: TextStyle(

105 fontSize: 30,

106),

107),

108),

109);

110

111 Widget buildingAllBlogs() => StaggeredGridView.countBuild\

112 er(

113 padding: const EdgeInsets.all(8),

114 itemCount: blogs.length,

115 staggeredTileBuilder: (index) => const StaggeredT\

116 ile.fit(2),

117 crossAxisCount: 4,

118 mainAxisSpacing: 4,

119 crossAxisSpacing: 4,

120 itemBuilder: (context, index) {

121 final blog = blogs[index];

122

123 return GestureDetector(

124 onTap: () async {

125 await Navigator.of(context).push(MaterialPage\

126 Route(

127 builder: (context) => DetailPage(blogId: \

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 470

128 blog.id!),

129));

130

131 refreshingAllBogs();

132 },

133 child: BlogCard(blog: blog, index: index),

134);

135 },

136);

137 }

As a result, when there is no blog items, the home page looks like
the following one.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 471

Figure 8.13 – Adding a Floating action button to SQLite Blog Home page in
Flutter

In the next part, or section we’ll take a look at the edit page, where
actual action takes place.

After that, we’ll also see how we can use the Card widget to display
all inserted data.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 472

As we’re changing the previous code, we keep them in separate
GitHub branch. For full code for this section, please visit the
respective GitHub repository.

• All related Code Snippet in this GitHub repository²⁶

SQLite Blog, Flutter: Final Part

This is the final part of our Blog application in Flutter where we
use SQLite database and CRUD.

In this final part of building SQLite Blog application in Flutter we
will accomplish the basic principle of CRUD. As a consequence,
we’ll create, retrieve, update and delete data in SQLite database.

We’ve already built a significant part of a SQLite Blog Application
in Flutter. We might also see the progress of the initial phase in this
section – SQLite Blog application in Flutter.

The previous section has discussed the application structure.

In the second part, we’d concentrated on database connection, data
model classes.

In this final part we’ll take a look at the logic flow and see how we
can convert this Blog application to a My Diary application.

We’ve also changed the layout in a significant way.

Therefore, before we jump in, let’s recapitulate a few things about
SQLite database and Flutter.

Firstly, we’ll use a Flutter package or plugin, sqflite which is
available in pub.dev.

Secondly, we also need to use Future API, async, await keywords,
and then functions to make it successful.

²⁶https://github.com/sanjibsinha/flutter_data_and_backend/tree/one-blog

https://github.com/sanjibsinha/flutter_data_and_backend/tree/one-blog
https://github.com/sanjibsinha/flutter_data_and_backend/tree/one-blog

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 473

Finally, we’ve discussed Future, await and async for absolute
beginners in previous section, is Flutter single thread?

Therefore, if you’re a beginner, you might take a look before we
proceed towards the final section.

What packages we need for SQLite database in Flutter?

We’ll start with the pubspec.yaml file, where we must add all the
dependencies.

1 dependencies:

2 cupertino_icons: ^1.0.2

3 flutter:

4 sdk: flutter

5 flutter_staggered_grid_view: ^0.4.1

6 intl: ^0.17.0

7 path:

8 provider: ^6.0.1

9 sqflite:

To give this SQLite Blog Application in Flutter a final touch, we
need some packages or plugins.

The “sqflite”, “path”, “intl”, and “flutter_staggered_grid_view”
packages will help us in many ways.

The “sqflite”, and “path” packages work at tandem. They help each
other as we’ll find later. With the help of “path” package we define
the path of the local database.

We need the packages “intl”, and “flutter_staggered_grid_view” for
different purposes.

The package “intl” helps us to format the date in our Blog. And,
the “flutter_staggered_grid_view” package helps us in building the
layout while we display the blog or diary’s contents.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 474

Does flutter need a backend?

Yes, Flutter needs a backend.Moreover, we can choose between two.
Either we can go with a server, or we store our data locally with
SQLite database.

In our case, we have decided to use SQLite database.

Consequently, we need a service or utility class that will create a
database in local path first. Next, it will help us to use the SQL
language to create a table with required fields.

1 import 'package:path/path.dart';

2 import 'package:sqflite/sqflite.dart';

3 import '../model/blog.dart';

4

5 class BlogDatabaseHandler {

6 static final BlogDatabaseHandler instance = BlogDatabaseH\

7 andler._init();

8

9 static Database? _database;

10

11 BlogDatabaseHandler._init();

12

13 Future<Database> get database async {

14 if (_database != null) return _database!;

15

16 _database = await _initDB('newblogs.db');

17 return _database!;

18 }

19

20 Future<Database> _initDB(String filePath) async {

21 final dbPath = await getDatabasesPath();

22 final path = join(dbPath, filePath);

23

24 return await openDatabase(path, version: 1, onCreate:\

25 _createDB);

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 475

26 }

27

28 Future _createDB(Database db, int version) async {

29 const idType = 'INTEGER PRIMARY KEY AUTOINCREMENT';

30 const textType = 'TEXT NOT NULL';

31

32 await db.execute('''

33 CREATE TABLE $tableOfBlogs (

34 ${BlogFields.id} $idType,

35 ${BlogFields.title} $textType,

36 ${BlogFields.description} $textType,

37 ${BlogFields.time} $textType

38)

39 ''');

40 }

41

42 Future<Blog> create(Blog blog) async {

43 final db = await instance.database;

44

45 final id = await db.insert(tableOfBlogs, blog.toJson(\

46));

47 return blog.copy(id: id);

48 }

49

50 Future<Blog> readBlog(int id) async {

51 final db = await instance.database;

52

53 final maps = await db.query(

54 tableOfBlogs,

55 columns: BlogFields.values,

56 where: '${BlogFields.id} = ?',

57 whereArgs: [id],

58);

59

60 if (maps.isNotEmpty) {

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 476

61 return Blog.fromJson(maps.first);

62 } else {

63 throw Exception('ID $id not found');

64 }

65 }

66

67 Future<List<Blog>> readAllBlogs() async {

68 final db = await instance.database;

69

70 const orderBy = '${BlogFields.time} ASC';

71

72 final result = await db.query(tableOfBlogs, orderBy: \

73 orderBy);

74

75 return result.map((json) => Blog.fromJson(json)).toLi\

76 st();

77 }

78

79 Future<int> update(Blog blog) async {

80 final db = await instance.database;

81

82 return db.update(

83 tableOfBlogs,

84 blog.toJson(),

85 where: '${BlogFields.id} = ?',

86 whereArgs: [blog.id],

87);

88 }

89

90 Future<int> delete(int id) async {

91 final db = await instance.database;

92

93 return await db.delete(

94 tableOfBlogs,

95 where: '${BlogFields.id} = ?',

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 477

96 whereArgs: [id],

97);

98 }

99

100 Future close() async {

101 final db = await instance.database;

102

103 db.close();

104 }

105 }

Firstly, we’ve mentioned a path so the database gets created locally
and stores data locally.

Secondly, we’ve created the database and table with fields. As we
see, we’ve kept it simple.

Thirdly, we’ve created methods that will read, update, delete items.

Finally, we’ve closed the database.

At the same time, we’ve changed the code of our home page slightly.
As a result, we can now add or update the blog items either from
AppBar, or through the floating action button.

Subsequently, to help the utility class we need a data model class.

1 const String tableOfBlogs = 'Blogs';

2

3 class BlogFields {

4 static final List<String> values = [

5 /// Adding all fields

6 id, title, description, time

7];

8

9 static const String id = '_id';

10 static const String title = 'title';

11 static const String description = 'description';

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 478

12 static const String time = 'time';

13 }

14

15 class Blog {

16 final int? id;

17 final String title;

18 final String description;

19 final DateTime createdTime;

20

21 const Blog({

22 this.id,

23 required this.title,

24 required this.description,

25 required this.createdTime,

26 });

27

28 Blog copy({

29 int? id,

30 String? title,

31 String? description,

32 DateTime? createdTime,

33 }) =>

34 Blog(

35 id: id ?? this.id,

36 title: title ?? this.title,

37 description: description ?? this.description,

38 createdTime: createdTime ?? this.createdTime,

39);

40

41 static Blog fromJson(Map<String, Object?> json) => Blog(

42 id: json[BlogFields.id] as int?,

43 title: json[BlogFields.title] as String,

44 description: json[BlogFields.description] as Stri\

45 ng,

46 createdTime: DateTime.parse(json[BlogFields.time]\

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 479

47 as String),

48);

49

50 Map<String, Object?> toJson() => {

51 BlogFields.id: id,

52 BlogFields.title: title,

53 BlogFields.description: description,

54 BlogFields.time: createdTime.toIso8601String(),

55 };

56 }

We’ve kept these files in our “model” sub-folder.

After that, we have built three pages and to keep them we have
created a “view” sub-folder.

Which database is used for flutter?

As we’ve been discussing the topic we find, the Flutter team also
recommends to use SQLite database. They say, “Flutter apps can
make use of the SQLite databases via the sqflite plugin available on
pub.”

Why?

The reason is simple. And it’s explained below.

If our app needs to persist and query large amounts of data on the
local device, it’s always better to use a database instead of a local
file or key-value store.

In general, databases provide faster inserts, updates, and queries
compared to other local persistence solutions, and SQLite is the best
choice.

Let’s proceed with our code.

First, we have a home page, that will handle the layout and backend
at the same time.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 480

If there is no entry it shows us a blank page and we start adding
items.

If not, it shows like the following screenshot.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 481

Figure 8.14 – Home page of My Diary SQLite database app in flutter

We’ve already added three entries. As a result it shows like the
above screenshot.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 482

Next, we’ll see the code snippet of the home page.

1 import 'package:flutter/material.dart';

2 import 'package:flutter_staggered_grid_view/flutter_stagg\

3 ered_grid_view.dart';

4 import '/model/blogs.dart';

5 import '/model/blog.dart';

6 import 'edit.dart';

7 import 'detail.dart';

8 import '/controller/blog_card.dart';

9

10 class AllPages extends StatefulWidget {

11 const AllPages({Key? key}) : super(key: key);

12

13 @override

14 _AllPagesState createState() => _AllPagesState();

15 }

16

17 class _AllPagesState extends State<AllPages> {

18 late List<Blog> blogs;

19 bool isLoading = false;

20

21 @override

22 void initState() {

23 super.initState();

24

25 refreshingAllBogs();

26 }

27

28 @override

29 void dispose() {

30 BlogDatabaseHandler.instance.close();

31

32 super.dispose();

33 }

34

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 483

35 Future refreshingAllBogs() async {

36 setState(() => isLoading = true);

37

38 blogs = await BlogDatabaseHandler.instance.readAllBlo\

39 gs();

40

41 setState(() => isLoading = false);

42 }

43

44 @override

45 Widget build(BuildContext context) => Scaffold(

46 appBar: AppBar(

47 title: const Text(

48 'My Diary',

49 style: TextStyle(fontSize: 24),

50),

51),

52 body: Center(

53 child: isLoading

54 ? const CircularProgressIndicator()

55 : blogs.isEmpty

56 ? const Text(

57 'No Entry in the beginning...',

58 style: TextStyle(color: Colors.white,\

59 fontSize: 60),

60)

61 : buildingAllBlogs(),

62),

63 floatingActionButton: FloatingActionButton.extend\

64 ed(

65 tooltip: 'Write Diary...',

66 foregroundColor: Colors.white,

67 backgroundColor: Colors.pink.shade900,

68 onPressed: () async {

69 await Navigator.of(context).push(

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 484

70 MaterialPageRoute(builder: (context) => const\

71 EditPage()),

72);

73

74 refreshingAllBogs();

75 },

76 label: const Text(

77 'Write Diary...',

78 style: TextStyle(

79 fontSize: 30,

80),

81),

82),

83);

84

85 Widget buildingAllBlogs() => StaggeredGridView.countBuild\

86 er(

87 padding: const EdgeInsets.all(8),

88 itemCount: blogs.length,

89 staggeredTileBuilder: (index) => const StaggeredT\

90 ile.fit(2),

91 crossAxisCount: 4,

92 mainAxisSpacing: 4,

93 crossAxisSpacing: 4,

94 itemBuilder: (context, index) {

95 final blog = blogs[index];

96

97 return GestureDetector(

98 onTap: () async {

99 await Navigator.of(context).push(MaterialPage\

100 Route(

101 builder: (context) => DetailPage(blogId: \

102 blog.id!),

103));

104

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 485

105 refreshingAllBogs();

106 },

107 child: BlogCard(blog: blog, index: index),

108);

109 },

110);

111 }

We have a list of all blog entries. If it’s empty, it will show an empty
page with no contents. If not, it will take us to a controller.

1 import 'package:flutter/material.dart';

2 import 'package:intl/intl.dart';

3 import '../model/blog.dart';

4

5 /// these shades of colors will appear on

6 /// the display screen and it will appear

7 /// based on the index of the list

8 final shadeOfColors = [

9 Colors.pink.shade100,

10 Colors.purple.shade100,

11 Colors.teal.shade200,

12 Colors.orange.shade200,

13 Colors.white10,

14];

15

16 class BlogCard extends StatelessWidget {

17 const BlogCard({

18 Key? key,

19 required this.blog,

20 required this.index,

21 }) : super(key: key);

22

23 final Blog blog;

24 final int index;

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 486

25

26 @override

27 Widget build(BuildContext context) {

28 final color = shadeOfColors[index % shadeOfColors.len\

29 gth];

30 final time = DateFormat.yMMMd().format(blog.createdTi\

31 me);

32 final minHeight = getMinHeight(index);

33

34 return Card(

35 color: color,

36 child: Container(

37 constraints: BoxConstraints(minHeight: minHeight),

38 padding: const EdgeInsets.all(8),

39 child: Column(

40 mainAxisSize: MainAxisSize.min,

41 crossAxisAlignment: CrossAxisAlignment.start,

42 children: [

43 Text(

44 time,

45 style: TextStyle(color: Colors.grey.shade700),

46),

47 const SizedBox(height: 4),

48 Text(

49 blog.title,

50 style: const TextStyle(

51 color: Colors.black,

52 fontSize: 20,

53 fontWeight: FontWeight.bold,

54),

55),

56 const SizedBox(

57 height: 5,

58),

59 Text(

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 487

60 blog.description,

61 style: const TextStyle(

62 color: Colors.blueAccent,

63 fontSize: 16,

64 fontWeight: FontWeight.w300,

65),

66),

67],

68),

69),

70);

71 }

72

73 double getMinHeight(int index) {

74 switch (index % 4) {

75 case 0:

76 return 100;

77 case 1:

78 return 150;

79 case 2:

80 return 150;

81 case 3:

82 return 100;

83 default:

84 return 100;

85 }

86 }

87 }

The each Card widget has been defined here to show all the items.

Moreover, we can also start writing the content also. In that case,
the home page will take us to the Edit page.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 488

1 import 'package:flutter/material.dart';

2 import '../model/blogs.dart';

3 import '../model/blog.dart';

4 import '../controller/blog_form.dart';

5

6 class EditPage extends StatefulWidget {

7 final Blog? blog;

8

9 const EditPage({

10 Key? key,

11 this.blog,

12 }) : super(key: key);

13 @override

14 _EditPageState createState() => _EditPageState();

15 }

16

17 class _EditPageState extends State<EditPage> {

18 final _formKey = GlobalKey<FormState>();

19 late bool isImportant;

20 late int number;

21 late String title;

22 late String description;

23

24 @override

25 void initState() {

26 super.initState();

27

28 title = widget.blog?.title ?? '';

29 description = widget.blog?.description ?? '';

30 }

31

32 @override

33 Widget build(BuildContext context) => Scaffold(

34 appBar: AppBar(

35 actions: [buildButton()],

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 489

36),

37 body: Form(

38 key: _formKey,

39 child: BlogForm(

40 title: title,

41 description: description,

42 onChangedTitle: (title) => setState(() => thi\

43 s.title = title),

44 onChangedDescription: (description) =>

45 setState(() => this.description = descrip\

46 tion),

47),

48),

49);

50

51 Widget buildButton() {

52 final isFormValid = title.isNotEmpty && description.i\

53 sNotEmpty;

54

55 return Padding(

56 padding: const EdgeInsets.symmetric(vertical: 8, hori\

57 zontal: 12),

58 child: ElevatedButton(

59 style: ElevatedButton.styleFrom(

60 onPrimary: Colors.white,

61 onSurface: Colors.pink.shade900,

62 shadowColor: Colors.grey.shade600,

63 primary: isFormValid ? Colors.pink.shade900 : Col\

64 ors.pink.shade900,

65),

66 onPressed: addOrUpdateBlog,

67 child: const Text(

68 'Add or Update',

69 style: TextStyle(

70 fontSize: 20,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 490

71),

72),

73),

74);

75 }

76

77 void addOrUpdateBlog() async {

78 final isValid = _formKey.currentState!.validate();

79

80 if (isValid) {

81 final isUpdating = widget.blog != null;

82

83 if (isUpdating) {

84 await updateBlog();

85 } else {

86 await addBlog();

87 }

88

89 Navigator.of(context).pop();

90 }

91 }

92

93 Future updateBlog() async {

94 final blog = widget.blog!.copy(

95 title: title,

96 description: description,

97);

98

99 await BlogDatabaseHandler.instance.update(blog);

100 }

101

102 Future addBlog() async {

103 final blog = Blog(

104 title: title,

105 description: description,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 491

106 createdTime: DateTime.now(),

107);

108

109 await BlogDatabaseHandler.instance.create(blog);

110 }

111 }

Here we can start writing the fresh content just like the following
screenshot.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 492

Figure 8.15 – Writing content for my diary SQLite database in Flutter

After the writing is over, we can press the “Add or Update” button
and insert the data to SQLite database.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 493

How Do we insert data to SQLite Database?

Well, we need a text controller or a Form that will take care of it?
Right?

The usermust be able towrite her posts in this application.Whether,
she is writing a blog post or adding her diary entry, that does not
matter.

To make it happen, we need another blog form controller.

1 import 'package:flutter/material.dart';

2

3 class BlogForm extends StatelessWidget {

4 final String? title;

5 final String? description;

6

7 final ValueChanged<String> onChangedTitle;

8 final ValueChanged<String> onChangedDescription;

9

10 const BlogForm({

11 Key? key,

12 this.title = '',

13 this.description = '',

14 required this.onChangedTitle,

15 required this.onChangedDescription,

16 }) : super(key: key);

17

18 @override

19 Widget build(BuildContext context) => SingleChildScrollVi\

20 ew(

21 child: Padding(

22 padding: const EdgeInsets.all(16),

23 child: Column(

24 mainAxisSize: MainAxisSize.min,

25 children: [

26 buildTitle(),

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 494

27 const SizedBox(height: 8),

28 buildDescription(),

29 const SizedBox(height: 16),

30],

31),

32),

33);

34

35 Widget buildTitle() => TextFormField(

36 maxLines: 1,

37 initialValue: title,

38 style: const TextStyle(

39 color: Colors.white70,

40 fontWeight: FontWeight.bold,

41 fontSize: 24,

42),

43 decoration: const InputDecoration(

44 border: InputBorder.none,

45 hintText: 'Here Title...',

46 hintStyle: TextStyle(color: Colors.white70),

47),

48 validator: (title) =>

49 title != null && title.isEmpty ? 'Title canno\

50 t be empty' : null,

51 onChanged: onChangedTitle,

52);

53

54 Widget buildDescription() => TextFormField(

55 maxLines: 5,

56 initialValue: description,

57 style: const TextStyle(color: Colors.white60, fon\

58 tSize: 18),

59 decoration: const InputDecoration(

60 border: InputBorder.none,

61 hintText: 'Here description...',

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 495

62 hintStyle: TextStyle(color: Colors.white60),

63),

64 validator: (title) => title != null && title.isEm\

65 pty

66 ? 'Description cannot be empty'

67 : null,

68 onChanged: onChangedDescription,

69);

70 }

We need two text form field to accept the data from user.

Once we are over, the added items show on the screen.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 496

Figure 8.16 – Added item show on Home page

If we want to edit any of the items, we can just tap the item and
gesture detector will take us to detail page where we find the edit

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 497

and delete buttons.

However, in this time, we can edit them. In addition, we can also
delete them as well.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 498

Figure 8.17 – Edit or delete any item in SQLite database

This page has been taken care of by another page, that basically
assists our edit page to maintain the state and allow us to edit or

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 499

delete.

1 import 'package:flutter/material.dart';

2 import 'package:intl/intl.dart';

3 import '../model/blogs.dart';

4 import '../model/blog.dart';

5 import 'edit.dart';

6

7 class DetailPage extends StatefulWidget {

8 final int blogId;

9

10 const DetailPage({

11 Key? key,

12 required this.blogId,

13 }) : super(key: key);

14

15 @override

16 _DetailPageState createState() => _DetailPageState();

17 }

18

19 class _DetailPageState extends State<DetailPage> {

20 late Blog blog;

21 bool isLoading = false;

22

23 @override

24 void initState() {

25 super.initState();

26

27 refreshBlog();

28 }

29

30 Future refreshBlog() async {

31 setState(() => isLoading = true);

32

33 blog = await BlogDatabaseHandler.instance.readBlog(wi\

34 dget.blogId);

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 500

35

36 setState(() => isLoading = false);

37 }

38

39 @override

40 Widget build(BuildContext context) => Scaffold(

41 appBar: AppBar(

42 actions: [

43 const Text(' ... '),

44 editButton(),

45 const Text(' ... '),

46 deleteButton(),

47],

48),

49 body: isLoading

50 ? const Center(child: CircularProgressIndicat\

51 or())

52 : Padding(

53 padding: const EdgeInsets.all(12),

54 child: ListView(

55 padding: const EdgeInsets.symmetric(verti\

56 cal: 8),

57 children: [

58 const SizedBox(height: 10),

59 Text(

60 blog.title,

61 style: const TextStyle(

62 color: Colors.white,

63 fontSize: 22,

64 fontWeight: FontWeight.bold,

65),

66),

67 const SizedBox(height: 10),

68 Text(

69 DateFormat.yMMMd().format(blog.create\

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 501

70 dTime),

71 style: const TextStyle(color: Colors.\

72 white38),

73),

74 const SizedBox(height: 10),

75 Text(

76 blog.description,

77 style:

78 const TextStyle(color: Colors.whi\

79 te70, fontSize: 18),

80)

81],

82),

83),

84);

85

86 Widget editButton() => ElevatedButton(

87 style: ElevatedButton.styleFrom(

88 onPrimary: Colors.white,

89 onSurface: Colors.pink.shade900,

90 shadowColor: Colors.grey.shade600,

91 primary: Colors.pink.shade900,

92),

93 onPressed: () async {

94 if (isLoading) return;

95

96 await Navigator.of(context).push(

97 MaterialPageRoute(

98 builder: (context) => EditPage(blog: blog),

99),

100);

101

102 refreshBlog();

103 },

104 child: const Text(

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 502

105 'Edit',

106 style: TextStyle(

107 fontSize: 20,

108),

109),

110);

111

112 Widget deleteButton() => ElevatedButton(

113 style: ElevatedButton.styleFrom(

114 onPrimary: Colors.white,

115 onSurface: Colors.pink.shade900,

116 shadowColor: Colors.grey.shade600,

117 primary: Colors.pink.shade900,

118),

119 onPressed: () async {

120 await BlogDatabaseHandler.instance.delete(widget.\

121 blogId);

122

123 Navigator.of(context).pop();

124 },

125 child: const Text(

126 'Delete',

127 style: TextStyle(

128 fontSize: 20,

129),

130),

131);

132 }

As we can see in the above code, we have edit and delete buttons
both in our AppBar.

Now. we’ve accomplished the task of building a Blog SQLite
database application in Flutter. Of course, we can use the same
application as a My Diary.

For the full code snippet for this SQLite database application in

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 503

Flutter, please visit the respective GitHub repository.

• All related code with this section²⁷

Scoped Model, Provider, SQLite
Database and FutureBuilder

In this section we will delve deep into SQLite database and Flutter.
However, we change the State using Scoped Model and Provider.

SQLite with Provider in Flutter

Without a stateful widget can we use SQLite database in Flutter?
Yes, with Provider.

Can we use SQLite database with Provider package in Flutter? The
answer is, yes! We can.

Not only that, we can also reduce pressure on system resourcewhile
we store persistent data with provider package.

Most importantly, we always want to make our Flutter app faster
and performant. Since storing persistent data requires a lot of state
management, the Provider package always helps us to achieve that
target.

As a result, in this section, we try to use SQLite database with
Provider.

No stateful widget. No extra widget rebuilding. We’ve kept things
quite simple. However, if you are a beginner, please learn Future,
await and async first. As we’ve discussed Future, await and async
for absolute beginners in previous section- is Flutter single thread?

²⁷https://github.com/sanjibsinha/flutter_data_and_backend

https://github.com/sanjibsinha/flutter_data_and_backend
https://github.com/sanjibsinha/flutter_data_and_backend

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 504

Therefore, if you’re a beginner, you might take a look before we
proceed towards the final section.

Before using provider package, we’ve built an entire Blog, or My
Diary application using SQLite Database in Flutter.

Not only that, before doing that, in a step by step process we’ve
built the SQLite Blog Application in Flutter. We might also see the
progress of the initial phase in this section – SQLite Blog application
in Flutter.

The previous section has discussed the application structure.

In the second part, we’d concentrated on database connection, data
model classes.

Firstly, we’ll use a Flutter package or plugin, sqflite which is
available in pub.dev.

Secondly, we also need to use Future API, async, await keywords,
and then functions to make it successful.

And finally, we are going to store persistent data in our local SQLite
database, using provider package.

What is Sqflite flutter?

The sqflite is a very useful SQLite plugin for Flutter. It supports iOS,
Android and MacOS.

For any type of complex CRUD operations, we get support from
this plugin, or package. Moreover, this plugin supports transactions
and batches.

Therefore, we have helpers for insert, query, update and delete
queries. Above all, the DB operation executed in a background
thread on iOS and Android. As a result, we get a much faster Flutter
application than any other backend operation.

We need to add the dependencies first to our pubspec.yaml file.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 505

1 dependencies:

2 cupertino_icons: ^1.0.2

3 flutter:

4 sdk: flutter

5 path: ^1.8.0

6 provider: ^6.0.2

7 sqflite: ^2.0.1

The three packages in bold, are necessary to build our first Name-
Keeper Flutter Application using SQLite database and Provider.

How do I get data from SQLite database in
flutter?

Our next challenge is to create a helper class. It will not only
create the SQLite database in a given path, but also create the table.
Moreover, it will insert and retrieve data.

Besides the helper class, we need a User data model, and a User
Provider class that will notify the listeners.

We’ll take a look at the classes separately and try to understand
how they work together. We have kept three classes in our model
folder.

Firstly, the helper class.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 506

1 import 'package:sqflite/sqflite.dart';

2 import 'package:path/path.dart';

3

4 import 'user.dart';

5

6 class DatabaseHandler {

7 Future<Database> initializeDB() async {

8 String path = await getDatabasesPath();

9 return openDatabase(

10 join(path, 'usereleven.db'),

11 onCreate: (database, version) async {

12 await database.execute(

13 "CREATE TABLE usereleven(id INTEGER PRIMARY KEY A\

14 UTOINCREMENT, name TEXT NOT NULL, location TEXT NOT NULL)\

15 ",

16);

17 },

18 version: 1,

19);

20 }

21

22 Future<int> insertUser(List<User> users) async {

23 int result = 0;

24 final Database db = await initializeDB();

25 for (var user in users) {

26 result = await db.insert('usereleven', user.toMap());

27 }

28 return result;

29 }

30

31 Future<List<User>> retrieveUsers() async {

32 final Database db = await initializeDB();

33 final List<Map<String, Object?>> queryResult = await \

34 db.query('usereleven');

35 return queryResult.map((e) => User.fromMap(e)).toList\

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 507

36 ();

37 }

38 }

The above code is quite verbose and meaningful. The database
handler class will first define a path where SQLite database gets
created.

After that, it will create a table with ID auto increment, and two
columns where we store the name and location.

Finally, it defines two methods to insert and retrieve data from the
local database.

However, the Future object wants a list of Users that it can map to
list so that we can finally get them on screen after the insertion is
over.

Therefore, let’s take a look at the User class, next.

1 class User {

2 final int? id;

3 final String name;

4 final String location;

5

6 User({

7 this.id,

8 required this.name,

9 required this.location,

10 });

11

12 User.fromMap(Map<String, dynamic> res)

13 : id = res["id"],

14 name = res["name"],

15 location = res["location"];

16

17 Map<String, Object?> toMap() {

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 508

18 return {

19 'id': id,

20 'name': name,

21 'location': location,

22 };

23 }

24 }

Now we need a user provider class that will notify the listeners
whenwe press the button “Add Users” like the following screenshot.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 509

Figure 8.18 – SQLite database and Provider in Flutter first screen

At the same time, we’ll also keep the Provider at the top of the root
widget.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 510

1 import 'package:flutter/material.dart';

2 import '/model/user_provider.dart';

3 import 'view/my_app.dart';

4

5 void main() {

6 Provider.debugCheckInvalidValueType = null;

7 runApp(

8 MultiProvider(

9 providers: [

10 ChangeNotifierProvider(create: (_) => UserProvide\

11 r()),

12],

13 child: const MyApp(),

14),

15);

16 }

The User Provider class plays the most important role in this SQLite
database and Flutter application.

1 import 'package:flutter/material.dart';

2

3 import 'database_handler.dart';

4 import 'user.dart';

5

6 final handler = DatabaseHandler();

7

8 class UserProvider with ChangeNotifier {

9 User _userOne = User(name: 'Hagudu', location: 'Japan');

10 User get userOne => _userOne;

11 /*

12 User _userTwo = User(name: 'Mutudu', location: 'Hokkaidu'\

13);

14 User get userTwo => _userTwo;

15

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 511

16 User _userThree = User(name: 'John Smith', location: 'Eas\

17 t Coast');

18 User get userThree => _userThree;

19 */

20

21 void addingUsers() {

22 _userOne = _userOne;

23 //_userTwo = userTwo;

24 //_userThree = userThree;

25

26 notifyListeners();

27 }

28 }

We’ve commented out other users as we want to insert one user at
a time. We could have added them at once of course.

Is SQLite persistent?

We’re going to see how the SQLite database persistently stores
data, so we can keep adding one user name and location one after
another.

The Change Notifier Provider works with Future builder here, in
the my home page widget.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 512

1 import 'package:flutter/material.dart';

2 import 'package:provider/provider.dart';

3 import '/model/user_provider.dart';

4 import '/model/database_handler.dart';

5 import '/model/user.dart';

6

7 class MyHomePage extends StatelessWidget {

8 const MyHomePage({Key? key}) : super(key: key);

9

10 static const String title = 'Database Handling';

11

12 @override

13 Widget build(BuildContext context) {

14 final userProvider = Provider.of<UserProvider>(contex\

15 t);

16

17 final handler = DatabaseHandler();

18 Future<int> addUsers() async {

19 User firstUser = User(

20 name: userProvider.userOne.name,

21 location: userProvider.userOne.location,

22);

23

24 /*

25 User secondUser = User(

26 name: userProvider.userTwo.name,

27 location: userProvider.userTwo.location,

28);

29

30 User thirddUser = User(

31 name: userProvider.userThree.name,

32 location: userProvider.userThree.location,

33);

34 */

35 List<User> listOfUsers = [

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 513

36 firstUser,

37 //secondUser,

38 //thirddUser,

39];

40 return await handler.insertUser(listOfUsers);

41 }

42

43 return Scaffold(

44 appBar: customAppBar(title),

45 body: FutureBuilder(

46 future: handler.retrieveUsers(),

47 builder: (BuildContext context, AsyncSnapshot<Lis\

48 t<User>> snapshot) {

49 if (snapshot.hasData) {

50 return ListView.builder(

51 itemCount: snapshot.data?.length,

52 itemBuilder: (BuildContext context, int index\

53) {

54 return Card(

55 child: ListTile(

56 key: ValueKey<int>(snapshot.data![ind\

57 ex].id!),

58 contentPadding: const EdgeInsets.all(\

59 8.0),

60 title: Text(

61 snapshot.data![index].name,

62 style: const TextStyle(

63 fontSize: 30,

64 color: Colors.red,

65),

66),

67 subtitle: Text(

68 snapshot.data![index].location,

69 style: const TextStyle(

70 fontSize: 20,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 514

71 color: Colors.red,

72),

73),

74),

75);

76 },

77);

78 } else {

79 return const Center(child: CircularProgressIn\

80 dicator());

81 }

82 },

83),

84 floatingActionButton: FloatingActionButton.extended(

85 onPressed: () {

86 handler.initializeDB().whenComplete(() async {

87 await addUsers();

88 });

89

90 userProvider.addingUsers();

91 },

92 label: const Text(

93 'Add Users',

94 style: TextStyle(

95 fontSize: 25,

96 fontWeight: FontWeight.bold,

97),

98),

99),

100);

101 }

102

103 AppBar customAppBar(String title) {

104 return AppBar(

105 centerTitle: true,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 515

106 //backgroundColor: Colors.grey[400],

107 flexibleSpace: Container(

108 decoration: const BoxDecoration(

109 gradient: LinearGradient(

110 colors: [

111 Colors.pink,

112 Colors.grey,

113],

114 begin: Alignment.topRight,

115 end: Alignment.bottomRight,

116),

117),

118),

119 //elevation: 20,

120 titleSpacing: 80,

121 leading: const Icon(Icons.menu),

122 title: Text(

123 title,

124 textAlign: TextAlign.left,

125),

126 actions: [

127 buildIcons(

128 const Icon(Icons.add_a_photo),

129),

130 buildIcons(

131 const Icon(

132 Icons.notification_add,

133),

134),

135 buildIcons(

136 const Icon(

137 Icons.settings,

138),

139),

140 buildIcons(

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 516

141 const Icon(Icons.search),

142),

143],

144);

145 }

146

147 IconButton buildIcons(Icon icon) {

148 return IconButton(

149 onPressed: () {},

150 icon: icon,

151);

152 }

153 }

The flow of logic is quite simple. Inside our build method, we’ve
got the Provider of Type User Provider and its context.

Next, we have instantiated the Database handler object. Without
this handler we cannot initiate the process of inserting and retriev-
ing data.

As a result, we can press the “Add Users” button that fires the event
of inserting and retrieving data from the SQLite database.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 517

Figure 8.19 – SQLite database and Provider in Flutter with first user

Once we have inserted the first user name and location, we can
comment out the first user in User and User Handler class.

Then we can insert the second user’s name and location.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 518

Figure 8.20 – SQLite database and Provider in Flutter with second user

We can clearly see that how SQLite database persists data. However,
we don’t have to use stateful widget to manage state. The provider
package helps us to notify listeners which is a Future builder.

Now, we can add as many user’s name and location.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 519

Figure 8.21 – SQLite database and Provider in Flutter with third user

• For the full code snippet please visit the respective GitHub
repository.²⁸

²⁸https://github.com/sanjibsinha/flutter_artisan/tree/final-provider-sqflite

https://github.com/sanjibsinha/flutter_artisan/tree/final-provider-sqflite
https://github.com/sanjibsinha/flutter_artisan/tree/final-provider-sqflite
https://github.com/sanjibsinha/flutter_artisan/tree/final-provider-sqflite

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 520

What is Scoped Model in flutter

Scoped Model is the simplest version of Inherited Widget, manag-
ing State in Flutter.

As the name suggests, the Scoped Model in Flutter examines the
scope and passes data downwards. We can create the scope at the
top first with a type. And, after that in the descendant widgets, we
can pass that data type.

If you have already learned Provider, then you might sense the sim-
ilarity. However, provider is more versatile and might be complex.
Moreover, provider package uses ChangeNotifier of Flutter.

We’ll come to that point later.

Before that, let’s see what is Scoped Model, and how it works. In
addition, whether we can use scoped model with other packages or
not.

The best way to understand any topic is to view images first. There-
fore, let’s view the Flutter application we’ve built using Scoped
Model.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 521

Figure 8.22 – Scoped model example one

While we press the button, the state of the Text widget which
display the number changes. As a result, the number increases.

The increment reflects also on the AppBar, and on the screen facing
us.

Let’s see the next stage.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 522

Figure 8.23 – Scoped model example two

We’ve pressed the button five times, and the number changes in
two places.

Now, we’re going to press the Next Page button to navigate to
another page.

Why?

Because the Next Page is also another descendant of Scoped Model.
Therefore, in that case, the number should increase there too.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 523

Figure 8.24 – Scoped model example three

Voila! It works.

The number in the Next Page changes simultaneously along with
the home page.

Now, in this page, we will press the decrement button. As a result,
the number will lower down. But, will that change the number in
home page?

Let’s see. First, let’s press the decrement button.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 524

Figure 8.25 – Scoped model example four

We’ve pressed the decrement button twice and the number lowers
down to 3.

Fine.

Next, we move back to the home page.

What do we see?

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 525

Figure 8.26 – Scoped model example five

The number reduces to 3.

Consequently, we’ve successfully managed state with the help of
Scoped Model.

To sum up, Scoped Model helps us to manage state in a very simple
way.

Now, the time has come to inspect the code.

How do you use the scoped model in Flutter?

Firstly, we need to add the dependency.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 526

1 dependencies:

2 cupertino_icons: ^1.0.4

3 flutter:

4 sdk: flutter

5

6 scoped_model: ^2.0.0-nullsafety.0

We’ve made it sure that the scoped_model package we’re using
must adhere to the null safety.

Next, we should create a model class of Counter.

1 import 'package:scoped_model/scoped_model.dart';

2

3 class Counter extends Model {

4 int _counter = 0;

5 int get counter => _counter;

6 void increment() {

7 _counter++;

8 notifyListeners();

9 }

10

11 void decrement() {

12 _counter--;

13 notifyListeners();

14 }

15 }

Our Counter class extends the Model class provided by the package.
As a result, the Counter object can notify all the components that
subscribe to all the public properties and methods of Counter type.

Therefore, we need to declare the scope at the top and mention the
type which is Counter here.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 527

1 import 'package:flutter/material.dart';

2 import 'package:provider_et_sqflite/model/counter.dart';

3 import 'package:scoped_model/scoped_model.dart';

4

5 import 'my_home_page.dart';

6

7 class MyApp extends StatelessWidget {

8 const MyApp({

9 Key? key,

10 required this.counter,

11 }) : super(key: key);

12 final Counter counter;

13

14 // This widget is the root of your application.

15 @override

16 Widget build(BuildContext context) {

17 return ScopedModel<Counter>(

18 model: Counter(),

19 child: MaterialApp(

20 debugShowCheckedModeBanner: false,

21 title: 'Scoped Model Simple',

22 theme: ThemeData(

23 primarySwatch: Colors.blue,

24),

25

26 /// child widgets are now under its scope

27 /// and we can use this model anywhere below

28 ///

29 home: const MyHomePage(),

30),

31);

32 }

33 }

As a result, we can pass the Counter object to all the descendants.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 528

First see the Home page code.

1 import 'package:flutter/material.dart';

2 import 'package:provider_et_sqflite/model/counter.dart';

3 import 'package:scoped_model/scoped_model.dart';

4

5 import 'next_page.dart';

6

7 class MyHomePage extends StatelessWidget {

8 const MyHomePage({Key? key}) : super(key: key);

9

10 static const String title = 'Number increased to';

11

12 @override

13 Widget build(BuildContext context) {

14 return Scaffold(

15 appBar: customAppBar(title),

16

17 /// the child widget below can use the scoped model

18 ///

19 floatingActionButton: ScopedModelDescendant<Counter>(

20 builder: (context, child, model) => FloatingActio\

21 nButton.extended(

22 onPressed: () {

23 model.increment();

24 },

25 label: const Text(

26 'Press to Increment',

27 style: TextStyle(

28 fontSize: 30,

29 fontWeight: FontWeight.w600,

30),

31),

32),

33),

34

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 529

35 /// the child widget below can use the scoped model

36 ///

37 body: ScopedModelDescendant<Counter>(

38 builder: (context, child, model) => Column(

39 mainAxisAlignment: MainAxisAlignment.spac\

40 eEvenly,

41 children: [

42 const Text(

43 'Number increased to ...',

44 style: TextStyle(

45 fontSize: 30,

46 fontWeight: FontWeight.w600,

47 color: Colors.blueAccent,

48),

49),

50 Center(

51 child: Text(

52 model.counter.toString(),

53 style: const TextStyle(

54 fontSize: 100,

55 fontWeight: FontWeight.w600,

56 color: Colors.red,

57),

58),

59),

60 TextButton(

61 onPressed: () {

62 Navigator.push(

63 context,

64 MaterialPageRoute(

65 builder: (context) => const NextP\

66 age(),

67),

68);

69 },

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 530

70 child: const Text(

71 'Next Page',

72 style: TextStyle(

73 fontSize: 30,

74 fontWeight: FontWeight.w600,

75 color: Colors.red,

76),

77),

78)

79],

80)),

81);

82 }

83

84 AppBar customAppBar(String title) {

85 return AppBar(

86 centerTitle: true,

87 //backgroundColor: Colors.grey[400],

88 flexibleSpace: Container(

89 decoration: const BoxDecoration(

90 gradient: LinearGradient(

91 colors: [

92 Colors.pink,

93 Colors.grey,

94],

95 begin: Alignment.topRight,

96 end: Alignment.bottomRight,

97),

98),

99),

100 //elevation: 20,

101 titleSpacing: 80,

102 leading: const Icon(Icons.menu),

103 title: Text(

104 title,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 531

105 textAlign: TextAlign.left,

106),

107 actions: [

108 ScopedModelDescendant<Counter>(

109 builder: (context, child, model) => Container(

110 padding: const EdgeInsets.all(5),

111 child: Text(

112 model.counter.toString(),

113 style: const TextStyle(

114 fontSize: 30,

115 fontWeight: FontWeight.w900,

116 color: Colors.white,

117),

118),

119),

120),

121 buildIcons(

122 const Icon(

123 Icons.navigate_next,

124),

125),

126 buildIcons(

127 const Icon(Icons.search),

128),

129],

130);

131 }

132

133 IconButton buildIcons(Icon icon) {

134 return IconButton(

135 onPressed: () {},

136 icon: icon,

137);

138 }

139 }

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 532

Now, as we go down the widget tree, we can use the Scoped Model
Descendant with the type. So the descendant widgets can access
that type with the help of model.

1 floatingActionButton: ScopedModelDescendant<Counter>(

2 builder: (context, child, model) => FloatingActio\

3 nButton.extended(

4 onPressed: () {

5 model.increment();

6 },

7

In the same vein, the Next Page is the another descendant of Scoped
Model. Consequently, at that page we can access all properties and
methods of Counter class.

Moreover, the same state prevails across all the descendant widgets.

Let’s take a look at the Next Page code.

1 import 'package:flutter/material.dart';

2 import 'package:provider_et_sqflite/model/counter.dart';

3 import 'package:scoped_model/scoped_model.dart';

4

5 class NextPage extends StatelessWidget {

6 const NextPage({Key? key}) : super(key: key);

7

8 static const String title = 'Next Page';

9

10 @override

11 Widget build(BuildContext context) {

12 return Scaffold(

13 appBar: AppBar(

14 title: const Text(title),

15),

16

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 533

17 /// the child widget below can use the scoped model

18 ///

19 floatingActionButton: ScopedModelDescendant<Counter>(

20 builder: (context, child, model) => FloatingActio\

21 nButton.extended(

22 onPressed: () {

23 model.decrement();

24 },

25 label: const Text(

26 'Press to Decrement',

27 style: TextStyle(

28 fontSize: 30,

29 fontWeight: FontWeight.w600,

30),

31),

32),

33),

34

35 /// the child widget below can use the scoped model

36 ///

37 body: ScopedModelDescendant<Counter>(

38 builder: (context, child, model) => Column(

39 mainAxisAlignment: MainAxisAlignment.spac\

40 eEvenly,

41 children: [

42 const Text(

43 'Number lowered to ...',

44 style: TextStyle(

45 fontSize: 30,

46 fontWeight: FontWeight.w600,

47 color: Colors.blueAccent,

48),

49),

50 Center(

51 child: Text(

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 534

52 model.counter.toString(),

53 style: const TextStyle(

54 fontSize: 100,

55 fontWeight: FontWeight.w600,

56 color: Colors.red,

57),

58),

59),

60],

61)),

62);

63 }

64

65 AppBar customAppBar(String title) {

66 return AppBar(

67 centerTitle: true,

68 //backgroundColor: Colors.grey[400],

69 flexibleSpace: Container(

70 decoration: const BoxDecoration(

71 gradient: LinearGradient(

72 colors: [

73 Colors.pink,

74 Colors.grey,

75],

76 begin: Alignment.topRight,

77 end: Alignment.bottomRight,

78),

79),

80),

81 //elevation: 20,

82 titleSpacing: 80,

83 leading: const Icon(Icons.menu),

84 title: Text(

85 title,

86 textAlign: TextAlign.left,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 535

87),

88 actions: [

89 ScopedModelDescendant<Counter>(

90 builder: (context, child, model) => Container(

91 padding: const EdgeInsets.all(5),

92 child: Text(

93 model.counter.toString(),

94 style: const TextStyle(

95 fontSize: 30,

96 fontWeight: FontWeight.w900,

97 color: Colors.white,

98),

99),

100),

101),

102 buildIcons(

103 const Icon(

104 Icons.navigate_next,

105),

106),

107 buildIcons(

108 const Icon(Icons.search),

109),

110],

111);

112 }

113

114 IconButton buildIcons(Icon icon) {

115 return IconButton(

116 onPressed: () {},

117 icon: icon,

118);

119 }

120 }

As a result, we’ve seen how we can manage the state across the

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 536

whole flutter application.

Passing data across the Flutter Application

A Flutter User Interface can pass data all the way down the tree
from parent to child. We can always pass them through construc-
tors, or use Inherited widget.

But, doing that manually makes it cumbersome as our Flutter
application gets bigger.

To solve this issue, we can use Scoped Model, which is a simplified
version of Inherited widget. Of course, Provider works on the same
principle, although having a lot more options.

Moreover, using Provider is not as easy as using Scoped Model. In
both cases, we need to make a new Context.

Why?

Because the exposed data is included in the Context. Now any
widget that uses that Context can access that data.

Now it’s always a good practice to place that access point as low as
possible. In fact, we should use ScopedModel, or Provider as closest
as possible to the widget that uses that exposed data.

The biggest advantage of using Scoped Model is it separates the
User Interface and Business Logic. And that too in a very simple
way.

To get the full code please visit the respective GitHub Repository.

• For the full code snippet please visit the respective GitHub
repository.²⁹

²⁹https://github.com/sanjibsinha/provider_et_sqflite/tree/scoped-model-first

https://github.com/sanjibsinha/provider_et_sqflite/tree/scoped-model-first
https://github.com/sanjibsinha/provider_et_sqflite/tree/scoped-model-first
https://github.com/sanjibsinha/provider_et_sqflite/tree/scoped-model-first

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 537

Scoped Model and SQLite in Flutter

Just like Provider, we can use Scoped Model with SQLite database
in Flutter.

In the previous section we’ve seen how we can use Scoped Model
in Flutter. In a couple of previous sections, we’ve also examined
the scope of using SQLite Database in Flutter. In this section we’ll
discuss howwe can join ScopedModel and SQLite database, so that
they work at tandem in Flutter.

We’re going to build a Note-keeper app where we’ll store Name
and Location of users. Likewise, we’ve already built the same
applicationwith Provider and SQLite Database. If you have interest,
please check it.

Firstly, we can always use SQLite database in Flutter. However, we
need to use a special package or plugin sqflite which is available in
pub.dev. We also need to use Future API, async, await keywords,
and then functions to make it successful.

We’ve discussed this feature for absolute beginners in previous
section, is Flutter single thread? If you’re a complete beginner
searching to know about Future in Flutter, please check it.

First thing first, to use SQLite Database in Flutter, we use the sqflite
package.

Why?

Because this package provides classes and functions to interact
with a SQLite database. There are other reasons too, using SQLite
database is better than using a local file, or key-value store.

In addition, SQLite database provides faster CRUD. That is, we can
create, retrieve, update and delete data. And, it’s always better than
any other local persistent solutions.

Besides sqflite package, we need to use another package path, that
will define the location for storing the database on the disk.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 538

For the beginners, here is a guide what SQLite database is.

What is SQLite database and how it works?

SQLite is a C-language library that implements many features at
one go. It is small, fast, self-contained, high-reliability, full-featured,
SQL database engine.

By the way, SQLite is the most used database engine in the world.
Besides, SQLite database, file format is stable, cross-platform, and
backwards compatible.

There are over 1 trillion SQLite databases in active use at present.

Therefore, let’s go ahead and make our first Flutter Application
with SQLite database.

Besides, using Scoped Model, and SQLite database, we’ll also use
Future Builder widget. We’ll discuss Future Builder in detail later,
meanwhile let’s learn a few key points about Future Builder.

Scoped Model, SQLite database and Future
Builder

How about getting a gentle introduction to Future Builder?

Well, to understand the whole mechanism behind building a Note-
keeper application in Flutter, this initiation might help us.

Future Builder is a widget that builds itself based on the latest
snapshot of interaction with a Future.

According to the documentation we must obtain the future
object during State.initState, State.didUpdateWidget, or
State.didChangeDependencies.

However, while using with Provider or Scoped Model, we use the
Future Builder in a different way. We’ll see that in a minute.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 539

Next, let’s have another gentle introduction to “scoped_model”
package also. Because without this very useful package, we couldn’t
use Inherited Widget in the simplest way in Flutter.

How do you use scoped_model in flutter?

To start with we need to add all the dependencies first.

1 dependencies:

2 cupertino_icons: ^1.0.4

3 flutter:

4 sdk: flutter

5 path: ^1.8.0

6 scoped_model: ^2.0.0-nullsafety.0

7 sqflite: ^2.0.1

After that, with the help of Scoped Model we can easily pass a data
model from a parent Widget to a child Widget.

Moreover, it also rebuilds all of the children that use the model
when the model is updated.

The Scoped Model package provides three main classes.

Let’s see what they are.

Firstly, the Model class as we’ve used in the User Model, like the
following.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 540

1 import 'package:scoped_model/scoped_model.dart';

2

3 import 'database_handler.dart';

4 import 'user.dart';

5

6 class UserModel extends Model {

7 User _userOne = User(name: 'Json Web', location: 'Detroit\

8 ');

9 User get userOne => _userOne;

10

11 void addingUsers() {

12 _userOne = userOne;

13

14 notifyListeners();

15 }

16 }

We need another User class that will define the behaviour of user
object and map the items to give an output in a List of items.

1 class User {

2 final int? id;

3 final String name;

4 final String location;

5

6 User({

7 this.id,

8 required this.name,

9 required this.location,

10 });

11

12 User.fromMap(Map<String, dynamic> res)

13 : id = res["id"],

14 name = res["name"],

15 location = res["location"];

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 541

16

17 Map<String, Object?> toMap() {

18 return {

19 'id': id,

20 'name': name,

21 'location': location,

22 };

23 }

24 }

As a result, we can construct User object inside User model class.

Secondly, we need two more widgets.

The first one is the Scoped Model Widget where we tell the parent
widget to pass the Model class properties and methods to its
descendant children widgets.

Since we need to pass a Model deep down your Widget hierarchy,
you can wrap our Model in a ScopedModel Widget. This will make
the Model available to all descendant Widgets.

1 import 'package:flutter/material.dart';

2

3 import 'package:provider_et_sqflite/model/user_model.dart\

4 ';

5 import 'package:scoped_model/scoped_model.dart';

6

7 import 'my_home_page.dart';

8

9 class MyApp extends StatelessWidget {

10 const MyApp({

11 Key? key,

12 required this.user,

13 }) : super(key: key);

14 final UserModel user;

15

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 542

16 // This widget is the root of your application.

17 @override

18 Widget build(BuildContext context) {

19 return MaterialApp(

20 debugShowCheckedModeBanner: false,

21 title: 'Scoped Model Simple',

22 theme: ThemeData(

23 primarySwatch: Colors.blue,

24),

25

26 /// child widggets are now under its scope

27 /// and we can use this model anywhere below

28 ///

29 home: ScopedModel<UserModel>(

30 model: UserModel(),

31 child: const MyHomePage(),

32),

33);

34 }

35 }

As a result, the Home Page can now make the model available to
all descendant widgets.

Finally, we need the Scoped Model Descendant Widget that can
listen to the Models for any changes.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 543

1 import 'package:flutter/material.dart';

2 import 'package:scoped_model/scoped_model.dart';

3

4 import '../model/user_model.dart';

5 import '/model/database_handler.dart';

6 import '/model/user.dart';

7

8 class MyHomePage extends StatelessWidget {

9 const MyHomePage({Key? key}) : super(key: key);

10

11 static const String title = 'Database Handling';

12

13 @override

14 Widget build(BuildContext context) {

15 final userModel = ScopedModel.of<UserModel>(context);

16

17 final handler = DatabaseHandler();

18 Future<int> addUsers() async {

19 User firstUser = User(

20 name: userModel.userOne.name,

21 location: userModel.userOne.location,

22);

23 List<User> listOfUsers = [

24 firstUser,

25];

26 return await handler.insertUser(listOfUsers);

27 }

28

29 return ScopedModelDescendant<UserModel>(

30 builder: (context, child, model) => Scaffold(

31 appBar: customAppBar(title),

32 body: FutureBuilder(

33 future: handler.retrieveUsers(),

34 builder: (BuildContext context, AsyncSnapshot<Lis\

35 t<User>> snapshot) {

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 544

36 if (snapshot.hasData) {

37 return ListView.builder(

38 itemCount: snapshot.data?.length,

39 itemBuilder: (BuildContext context, int i\

40 ndex) {

41 return Card(

42 child: ListTile(

43 key: ValueKey<int>(snapshot.data![ind\

44 ex].id!),

45 contentPadding: const EdgeInsets.all(\

46 8.0),

47 title: Text(

48 snapshot.data![index].name,

49 style: const TextStyle(

50 fontSize: 30,

51 color: Colors.red,

52),

53),

54 subtitle: Text(

55 snapshot.data![index].location,

56 style: const TextStyle(

57 fontSize: 20,

58 color: Colors.blue,

59),

60),

61),

62);

63 },

64);

65 } else {

66 return const Center(child: CircularProgressIn\

67 dicator());

68 }

69 },

70),

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 545

71 floatingActionButton: FloatingActionButton.extend\

72 ed(

73 onPressed: () {

74 handler.initializeDB().whenComplete(() async {

75 await addUsers();

76 });

77

78 model.addingUsers();

79 },

80 label: const Text(

81 'Add Users',

82 style: TextStyle(

83 fontSize: 25,

84 fontWeight: FontWeight.bold,

85),

86),

87),

88),

89);

90 }

91

92 AppBar customAppBar(String title) {

93 return AppBar(

94 centerTitle: true,

95 //backgroundColor: Colors.grey[400],

96 flexibleSpace: Container(

97 decoration: const BoxDecoration(

98 gradient: LinearGradient(

99 colors: [

100 Colors.pink,

101 Colors.grey,

102],

103 begin: Alignment.topRight,

104 end: Alignment.bottomRight,

105),

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 546

106),

107),

108 //elevation: 20,

109 titleSpacing: 80,

110 leading: const Icon(Icons.menu),

111 title: Text(

112 title,

113 textAlign: TextAlign.left,

114),

115 actions: [

116 buildIcons(

117 const Icon(Icons.add_a_photo),

118),

119 buildIcons(

120 const Icon(

121 Icons.notification_add,

122),

123),

124 buildIcons(

125 const Icon(

126 Icons.settings,

127),

128),

129 buildIcons(

130 const Icon(Icons.search),

131),

132],

133);

134 }

135

136 IconButton buildIcons(Icon icon) {

137 return IconButton(

138 onPressed: () {},

139 icon: icon,

140);

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 547

141 }

142 }

The Model has been passed down from the parent to the child
Widget tree using an InheritedWidget. When an InheritedWidget
is rebuilt, it will rebuild all of the Widgets that depend on its data.

As a result, when we press the “Add Users” button, one User with
name and location is added to the SQLite Database. We’ve already
defined the insert and retrieve methods in a Database helper class,
like the following.

1 import 'package:sqflite/sqflite.dart';

2 import 'package:path/path.dart';

3

4 import 'user.dart';

5

6 class DatabaseHandler {

7 Future<Database> initializeDB() async {

8 String path = await getDatabasesPath();

9 return openDatabase(

10 join(path, 'userthirteen.db'),

11 onCreate: (database, version) async {

12 await database.execute(

13 "CREATE TABLE userthirteen(id INTEGER PRIMARY KEY\

14 AUTOINCREMENT, name TEXT NOT NULL, location TEXT NOT NUL\

15 L)",

16);

17 },

18 version: 1,

19);

20 }

21

22 Future<int> insertUser(List<User> users) async {

23 int result = 0;

24 final Database db = await initializeDB();

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 548

25 for (var user in users) {

26 result = await db.insert('userthirteen', user.toMap()\

27);

28 }

29 return result;

30 }

31

32 Future<List<User>> retrieveUsers() async {

33 final Database db = await initializeDB();

34 final List<Map<String, Object?>> queryResult =

35 await db.query('userthirteen');

36 return queryResult.map((e) => User.fromMap(e)).toList\

37 ();

38 }

39 }

Now, we need to add users through our User Model class, in two
steps, like the following.

1 class UserModel extends Model {

2 User _userOne = User(name: 'Json Web', location: 'Detroit\

3 ');

4 User get userOne => _userOne;

5 ...

6 Widget build(BuildContext context) {

7 final userModel = ScopedModel.of<UserModel>(context);

8

9 final handler = DatabaseHandler();

10 Future<int> addUsers() async {

11 User firstUser = User(

12 name: userModel.userOne.name,

13 location: userModel.userOne.location,

14);

15 List<User> listOfUsers = [

16 firstUser,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 549

17];

18 return await handler.insertUser(listOfUsers);

19 ...

Therefore, we get our first user added to our Name-keeper Flutter
application as press the “Add Users” button.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 550

Figure 8.27 – Scoped Model and SQLite database example in Flutter

Nowwe can keep added them through UserModel class by pressing
the button. However, we need to manually add them in User Model
class which is not advisable.

Yet, to understand the mechanism it’s okay for the time being.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 551

Later we’ll pass that Model class to the Scoped Model Descendant
Widget to initialise SQLite Database handling process by taking
user inputs.

So stay tuned.

• For full code snippet please visit the respective GitHub Repos-
itory - ³⁰

What is future builder in Flutter

The FutureBuilder widget obtains Future by change of state, or by
dependencies.

Future Builder is a widget that builds itself. But, it requires a
snapshot of interaction with a Future.

How will we get the Future?

We must have obtained the Future in three ways.

They are State.initState, State.didUpdateWidget, or
State.didChangeDependencies.

What does it mean?

We may have obtained Future either through change of state, or by
change in dependencies.

It means a lot.

Why?

The reason is, we can use FutureBuilder using Scoped Model or
Provider. In other Words using the Inherited Widget.

In fact, we are going to do the same thing here.

³⁰https://github.com/sanjibsinha/provider_et_sqflite/tree/sqflite-scoped-first

https://github.com/sanjibsinha/provider_et_sqflite/tree/sqflite-scoped-first
https://github.com/sanjibsinha/provider_et_sqflite/tree/sqflite-scoped-first
https://github.com/sanjibsinha/provider_et_sqflite/tree/sqflite-scoped-first

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 552

We will use both Scoped Model and Provider to insert data to a
SQLite database. As a result, the FutureBuilder widget will rebuild
itself and retrieve the data.

Actually we will execute asynchronous functions. Consequently
the asynchronous function will make the User Interface update.

By default FutureBuilder is stateful in nature. It maintains its own
state.

How does FutureBuilder work?

The FutureBuilder shows messages like “loading”. It does that
based on connection state. And, after that based on new “data”, or
“snapshot”, it updates the UI. As a consequence we get a new view.

The advantage of FutureBuilder is, it does not use two “state
variables”. When the new “data” arrives, it updates the “view”.

To sum up, the FutureBuilder is a wrapper or boilerplate of what
we do.

What is the difference between FutureBuilder and StreamBuilder?

We’ll discuss #StreamBuilder class in a separate article. However,
the StreamBuilder class has some similarities with the Future-
Builder class.

Firstly, they listen to changes that occur on their respective objects.

Secondly, after that, they trigger a new construction when they get
the notification.

This is the basic functionality that they both practice.

Then, what is the difference?

The object makes the difference. This is the object that they are
listening to.

As we told before, #Future is a representation of asynchronous
function. As a result, the #Future has one and only answer.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 553

If the #Future is completed successfully, we get the result. If not, we
get the error.

On the other hand, the #Stream will get each new value. Even if it
had an error, we would get the last value.

Therefore, the main difference is a #Future cannot listen to a change
that varies. The #Future has one single answer always.

Enough talking.

Let us view the screenshots first. Viewing the images of our Flutter
Applications will clarify the concept.

After that we will discuss the respective code.

When should I use FutureBuilder?

In our first Flutter Application we are going to use the Scoped
Model and the Provider with a single FutureBuilder widget. As a
result, it does not work properly.

However, the data has been inserted to the SQLite database prop-
erly.

Firstly, we will try to insert data to a SQLite database by a Provider
object.

Let us press the Button. According to our code, it should insert two
User objects. One from the Provider and the other from the Scoped
Model class.

Because the FutureBuilder listens to both objects it should update
the UI and display two user names.

But that did not happen.

The second user’s name will only be displayed when we click the
Button below.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 554

If we click the Button “Add Users by Provider” again, only one
name is displayed below the two Users. Although the second user
is inserted, it does not reflect on the UI.

Let us check the code where we have mixed the Scoped Model and
the Provider.

1 import 'package:flutter/material.dart';

2 import 'package:provider/provider.dart';

3

4 import 'package:scoped_model/scoped_model.dart';

5

6 import '/model/user_model.dart';

7 import '/model/user_prvider.dart';

8 import '/model/database_handler.dart';

9 import '/model/user.dart';

10

11 class MyHomePage extends StatelessWidget {

12 const MyHomePage({Key? key}) : super(key: key);

13

14 static const String title = 'Provider, Scoped Model, SQLi\

15 te';

16

17 @override

18 Widget build(BuildContext context) {

19 final userModel = ScopedModel.of<UserModel>(context);

20 final userProvider = Provider.of<UserProvider>(contex\

21 t);

22

23 final handler = DatabaseHandler();

24 Future<int> addUsers() async {

25 User firstUser = User(

26 name: userModel.userOne.name,

27 location: userModel.userOne.location,

28);

29 User secondUser = User(

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 555

30 name: userProvider.userTwo.name,

31 location: userProvider.userTwo.location,

32);

33 List<User> listOfUsers = [

34 firstUser,

35 secondUser,

36];

37 return await handler.insertUser(listOfUsers);

38 }

39

40 return ScopedModelDescendant<UserModel>(

41 builder: (context, child, model) => Scaffold(

42 appBar: customAppBar(title),

43 body: FutureBuilder(

44 future: handler.retrieveUsers(),

45 builder: (BuildContext context, AsyncSnapshot<Lis\

46 t<User>> snapshot) {

47 if (snapshot.hasData) {

48 return ListView.builder(

49 itemCount: snapshot.data?.length,

50 itemBuilder: (BuildContext context, int i\

51 ndex) {

52 return Column(

53 children: [

54 Card(

55 child: ListTile(

56 key: ValueKey<int>(snapshot.data!\

57 [index].id!),

58 contentPadding: const EdgeInsets.\

59 all(8.0),

60 title: Text(

61 snapshot.data![index].name,

62 style: const TextStyle(

63 fontSize: 30,

64 color: Colors.red,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 556

65),

66),

67 subtitle: Text(

68 snapshot.data![index].locatio\

69 n,

70 style: const TextStyle(

71 fontSize: 20,

72 color: Colors.blue,

73),

74),

75),

76 elevation: 20,

77),

78 TextButton(

79 onPressed: () {

80 handler.initializeDB().whenComple\

81 te(() async {

82 await addUsers();

83 });

84 model.addingUsers();

85 },

86 child: const Text(

87 'Add Users by Scoped Model',

88 style: TextStyle(

89 fontSize: 20,

90 fontWeight: FontWeight.w600,

91),

92),

93)

94],

95);

96 },

97);

98 } else {

99 return const Center(child: CircularProgressIn\

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 557

100 dicator());

101 }

102 },

103),

104 floatingActionButton: FloatingActionButton.extend\

105 ed(

106 onPressed: () {

107 handler.initializeDB().whenComplete(() async {

108 await addUsers();

109 });

110 userProvider.addingUsers();

111 },

112 label: const Text(

113 'Add Users by Provider',

114 style: TextStyle(

115 fontSize: 25,

116 fontWeight: FontWeight.bold,

117),

118),

119),

120),

121);

122 }

123

124 AppBar customAppBar(String title) {

125 return AppBar(

126 centerTitle: true,

127 //backgroundColor: Colors.grey[400],

128 flexibleSpace: Container(

129 decoration: const BoxDecoration(

130 gradient: LinearGradient(

131 colors: [

132 Colors.pink,

133 Colors.grey,

134],

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 558

135 begin: Alignment.topRight,

136 end: Alignment.bottomRight,

137),

138),

139),

140 elevation: 20,

141 titleSpacing: 80,

142 title: Text(

143 title,

144 textAlign: TextAlign.left,

145),

146);

147 }

148 }

For full code please visit the respective GitHub Repository given at
the end of this section.

However, we could have separated them. And that is what we have
done for the second Flutter Application.

As a result, the FutureBuilder and our Flutter Application works
perfectly.

How do you reset the future builder Flutter?

This time, we will add the first user by using the Scoped Model.

If we press the Button below it will add the user and it also displays
the name and location of User. Moreover, below the display of the
newly created User object, we can see the “Navigation Button”.

Let us see the code first. After that we will click the “Next Page”
Button to add another User by the Provider.

Firstly, we see the User Model class that extends the Model class
from the Scoped Model dependency.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 559

1 import 'package:scoped_model/scoped_model.dart';

2

3 import 'user.dart';

4

5 class UserModel extends Model {

6 User _userModel = User(name: 'John Smith', location: 'Bac\

7 k East');

8 User get userModel => _userModel;

9

10 void addingUsers() {

11 _userModel = userModel;

12

13 notifyListeners();

14 }

15 }

Secondly we will see the FutureBuilder widget that uses the Depen-
dent Scoped User Model to add the Users.

1 import 'package:flutter/material.dart';

2

3 import 'package:scoped_model/scoped_model.dart';

4

5 import '/model/user_model.dart';

6

7 import '/model/database_handler.dart';

8 import '/model/user.dart';

9 import 'provider_home_page.dart';

10

11 class ModelHomePage extends StatelessWidget {

12 const ModelHomePage({Key? key}) : super(key: key);

13

14 static const String title = 'Adding by Scoped Model';

15

16 @override

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 560

17 Widget build(BuildContext context) {

18 final userModel = ScopedModel.of<UserModel>(context);

19

20 final handler = DatabaseHandler();

21 Future<int> addUsers() async {

22 User firstUser = User(

23 name: userModel.userModel.name,

24 location: userModel.userModel.location,

25);

26

27 List<User> listOfUsers = [

28 firstUser,

29];

30 return await handler.insertUser(listOfUsers);

31 }

32

33 return ScopedModelDescendant<UserModel>(

34 builder: (context, child, model) => Scaffold(

35 appBar: customAppBar(title),

36 body: FutureBuilder(

37 future: handler.retrieveUsers(),

38 builder: (BuildContext context, AsyncSnapshot<Lis\

39 t<User>> snapshot) {

40 if (snapshot.hasData) {

41 return ListView.builder(

42 itemCount: snapshot.data?.length,

43 itemBuilder: (BuildContext context, int i\

44 ndex) {

45 return Column(

46 children: [

47 Card(

48 child: ListTile(

49 key: ValueKey<int>(snapshot.data!\

50 [index].id!),

51 contentPadding: const EdgeInsets.\

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 561

52 all(8.0),

53 title: Text(

54 snapshot.data![index].name,

55 style: const TextStyle(

56 fontSize: 30,

57 color: Colors.red,

58),

59),

60 subtitle: Text(

61 snapshot.data![index].locatio\

62 n,

63 style: const TextStyle(

64 fontSize: 20,

65 color: Colors.blue,

66),

67),

68),

69 elevation: 20,

70),

71 TextButton(

72 onPressed: () {

73 Navigator.push(

74 context,

75 MaterialPageRoute(

76 builder: (context) => const P\

77 roviderHomePage(),

78),

79);

80 },

81 child: const Text(

82 'Next Page, Add by Provider',

83 style: TextStyle(

84 fontSize: 20,

85 fontWeight: FontWeight.w600,

86),

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 562

87),

88)

89],

90);

91 },

92);

93 } else {

94 return const Center(child: CircularProgressIn\

95 dicator());

96 }

97 },

98),

99 floatingActionButton: FloatingActionButton.extend\

100 ed(

101 onPressed: () {

102 handler.initializeDB().whenComplete(() async {

103 await addUsers();

104 });

105 userModel.addingUsers();

106 },

107 label: const Text(

108 'Add Users by Model',

109 style: TextStyle(

110 fontSize: 25,

111 fontWeight: FontWeight.bold,

112),

113),

114),

115),

116);

117 }

118

119 AppBar customAppBar(String title) {

120 return AppBar(

121 centerTitle: true,

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 563

122 //backgroundColor: Colors.grey[400],

123 flexibleSpace: Container(

124 decoration: const BoxDecoration(

125 gradient: LinearGradient(

126 colors: [

127 Colors.pink,

128 Colors.grey,

129],

130 begin: Alignment.topRight,

131 end: Alignment.bottomRight,

132),

133),

134),

135 elevation: 20,

136 titleSpacing: 80,

137 title: Text(

138 title,

139 textAlign: TextAlign.left,

140),

141);

142 }

143 }

Next, we go the next page where we can add the second User by
using the Provider.

The next page correctly shows that one User has already been added
to the SQLite database.

Now, when we add the Button “Add Users by Provider”, another
user is added. Moreover, two users are displayed correctly on the
UI.

Let us take a look at the code now.

Firstly we will take a look at the User Provider class that extends
the ChangeNotifier. After that it notifies the listeners.

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 564

1 import 'package:flutter/material.dart';

2

3 import 'user.dart';

4

5 class UserProvider with ChangeNotifier {

6 User _userProvider = User(name: 'Json Web', location: 'De\

7 troit');

8 User get userProvider => _userProvider;

9

10 void addingUsers() {

11 _userProvider = userProvider;

12

13 notifyListeners();

14 }

15 }

Secondly we will see the FutureBuilder that rebuilds when the User
object changes its state.

We have created another FutureBuilder for this page, so that we can
add users by Provider.

1 import 'package:flutter/material.dart';

2 import 'package:provider/provider.dart';

3

4 import '/model/user_prvider.dart';

5 import '/model/database_handler.dart';

6 import '/model/user.dart';

7

8 class ProviderHomePage extends StatelessWidget {

9 const ProviderHomePage({Key? key}) : super(key: key);

10

11 static const String title = 'Adding By Provider';

12

13 @override

14 Widget build(BuildContext context) {

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 565

15 final userProvider = Provider.of<UserProvider>(contex\

16 t);

17

18 final handler = DatabaseHandler();

19 Future<int> addUsers() async {

20 User secondUser = User(

21 name: userProvider.userProvider.name,

22 location: userProvider.userProvider.location,

23);

24 List<User> listOfUsers = [

25 secondUser,

26];

27 return await handler.insertUser(listOfUsers);

28 }

29

30 return Scaffold(

31 appBar: AppBar(

32 title: const Text(title),

33),

34 body: FutureBuilder(

35 future: handler.retrieveUsers(),

36 builder: (BuildContext context, AsyncSnapshot<Lis\

37 t<User>> snapshot) {

38 if (snapshot.hasData) {

39 return ListView.builder(

40 itemCount: snapshot.data?.length,

41 itemBuilder: (BuildContext context, int index\

42) {

43 return Column(

44 children: [

45 Card(

46 child: ListTile(

47 key: ValueKey<int>(snapshot.data!\

48 [index].id!),

49 contentPadding: const EdgeInsets.\

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 566

50 all(8.0),

51 title: Text(

52 snapshot.data![index].name,

53 style: const TextStyle(

54 fontSize: 30,

55 color: Colors.red,

56),

57),

58 subtitle: Text(

59 snapshot.data![index].location,

60 style: const TextStyle(

61 fontSize: 20,

62 color: Colors.blue,

63),

64),

65),

66 elevation: 20,

67),

68],

69);

70 },

71);

72 } else {

73 return const Center(child: CircularProgressIn\

74 dicator());

75 }

76 },

77),

78 floatingActionButton: FloatingActionButton.extended(

79 onPressed: () {

80 handler.initializeDB().whenComplete(() async {

81 await addUsers();

82 });

83 userProvider.addingUsers();

84 },

8. How we can build a Blog App and learn Flutter backend programming using
SQLite 567

85 label: const Text(

86 'Add Users by Provider',

87 style: TextStyle(

88 fontSize: 25,

89 fontWeight: FontWeight.bold,

90),

91),

92),

93);

94 }

95 }

In the second Flutter Application we have successfully used The
Scoped Model and the Provider. However, we have implemented
the FutureBuilder widget separately.

For the full code snippet for this Flutter Application, please visit the
respective GitHub Repository.

• For full code snippet please visit the respective GitHub Repos-
itory - ³¹

³¹https://github.com/sanjibsinha/provider_et_sqflite/tree/experiment-provider-scoped-
one

https://github.com/sanjibsinha/provider_et_sqflite/tree/experiment-provider-scoped-one
https://github.com/sanjibsinha/provider_et_sqflite/tree/experiment-provider-scoped-one
https://github.com/sanjibsinha/provider_et_sqflite/tree/experiment-provider-scoped-one
https://github.com/sanjibsinha/provider_et_sqflite/tree/experiment-provider-scoped-one

9. NoWar App Challenge
We are going to build a NoWar Flutter App.While we build this app,
we will discuss a few important list-concepts in Flutter and Dart.
Wewill use various list methods. And one of them is the list.asMap()
method.

Firstly, let us see how the home page of this NoWar app will look
like.

Secondly, we will discuss the list method that we have used in the
home page.

Finally, we will build the whole app.

9. NoWar App Challenge 569

Figure 9.1 – Home Page

This is the home page which we can scroll down to see other parts.
As we scroll down, we will find more topics that we need to build.

In addition, there will be other pages as well.

Therefore, as a whole, we will use the ‘routes’ property of the
MaterialApp widget in a correct way.

Why?

Because we need to pass correct data. Besides, we will also design
those pages.

The middle of the page will look as follows as we scroll down.

9. NoWar App Challenge 570

Figure 9.2 – Home Page Middle part

In the middle part, we need a route to the page where we will
display what kind of weapons used in the last three centuries.

In addition, as our civilisation progresses, the style of war has
changed a lot. Therefore, we have added a page that discuses cyber
warfare.

That is the lower part of our NoWar app.

9. NoWar App Challenge 571

Figure 9.3 – Home Page lower part

What is Dart list asMap method?

In the upper part of the home page, we have three icons. These icons
represent last three centuries.

Of course, we could have hard coded those icons one after another.
But we will not do that.

Instead, we create a list of three icons and an index property, as
follows.

9. NoWar App Challenge 572

1 int _selectedIndex = 0;

2 final List _icons = [

3 '1700',

4 '1800',

5 '1900',

6];

After that, we will map this list one after another so that the key
represents the index, and the values are the elements at each index.

Let us a define it inside a Widget method like below.

1 Widget _buildIcons(int index) {

2 return GestureDetector(

3 onTap: () {

4 setState(() {

5 _selectedIndex = index;

6 });

7 Navigator.push(

8 context,

9 MaterialPageRoute(builder: (context) => const All\

10 Wars()),

11);

12 },

13 child: Container(

14 margin: const EdgeInsets.all(10.0),

15 width: 80.0,

16 height: 40.0,

17 alignment: Alignment.center,

18 decoration: const BoxDecoration(

19 borderRadius: BorderRadius.all(Radius.circular(30\

20 .00)),

21 boxShadow: [

22 BoxShadow(

23 color: Colors.red,

24 blurRadius: 4.00,

9. NoWar App Challenge 573

25 spreadRadius: 2.00,

26),

27],

28 gradient: LinearGradient(

29 begin: Alignment.centerLeft,

30 end: Alignment.centerRight,

31 colors: [

32 Colors.yellow,

33 Colors.white,

34],

35),

36),

37 child: Text(

38 '${_icons[index]}',

39 textAlign: TextAlign.center,

40 style: TextStyle(

41 fontSize: 25.00,

42 fontFamily: 'Trajan Pro',

43 fontWeight: FontWeight.bold,

44 color: _selectedIndex == index

45 ? Theme.of(context).primaryColor

46 : Colors.red,

47),

48),

49),

50);

51 }

The above method will pass the index as key. Besides, it returns a
Gesture Detector widget. As a result we can tap any of the icon,
and reach a page.

Now, inside, the home page widget, we are going to use the Dart
list asMap() method.

9. NoWar App Challenge 574

1 @override

2 Widget build(BuildContext context) {

3 return Scaffold(

4 body: SafeArea(

5 child: ListView(

6 padding: const EdgeInsets.all(32),

7 children: <Widget>[

8 Text(

9 'NO TO WAR!',

10 style: TextStyle(

11 fontSize: 55.0,

12 fontWeight: FontWeight.normal,

13 fontFamily: 'Trajan Pro',

14 foreground: Paint()

15 ..color = Colors.red

16 ..strokeWidth = 2.0

17 ..style = PaintingStyle.stroke),

18),

19 const SizedBox(

20 height: 20.00,

21),

22 Text(

23 'Let\'s Learn From the Bloody War History. St\

24 op War Now!',

25 style: TextStyle(

26 fontSize: 25.0,

27 fontWeight: FontWeight.normal,

28 fontFamily: 'Trajan Pro',

29 foreground: Paint()

30 ..color = Colors.blue

31 ..strokeWidth = 2.0

32 ..style = PaintingStyle.stroke),

33),

34 Row(

35 mainAxisAlignment: MainAxisAlignment.spaceAro\

9. NoWar App Challenge 575

36 und,

37 children: _icons

38 .asMap()

39 .entries

40 .map((MapEntry map) => _buildIcons(map.ke\

41 y))

42 .toList(),

43),

44 const SizedBox(

45 height: 20.00,

46),

47 const TopBattleController(),

48 const SizedBox(

49 height: 20.00,

50),

51 const WeaponController(),

52 const SizedBox(

53 height: 20.00,

54),

55 const CyberController(),

56],

57),

58),

59);

60 }

61 }

As a result, we can display the last three centuries in a Row.

Map through a list in Flutter

9. NoWar App Challenge 576

Figure 9.4 – List of Icons in a Row Widget

In this section we will concentrate how we have used the List
asMap() method. Certainly, we can map a list in Flutter other way
also.

Therefore, let us a take a close look at that part now.

1 Row(

2 mainAxisAlignment: MainAxisAlignment.spaceAro\

3 und,

4 children: _icons

5 .asMap()

6 .entries

7 .map((MapEntry map) => _buildIcons(map.ke\

8 y))

9 .toList(),

10),

To understand this list method, let’s consider a simple example first.

9. NoWar App Challenge 577

1 void main() {

2

3 List<String> words = ['A', 'B', 'C', 'D'];

4

5 words.asMap().forEach((index, value) => print(value));

6

7 }

8 // output

9 A

10 B

11 C

12 D

Let’s add twomore lines to the above code that will clarify the home
page code.

1 print(map[0]); // 'A';

2 map.keys.toList();

Now, let’s take a look at the whole code again.

Let us redefine the code in a new way where we can get the key as
index, and value as the element at that index position.

1 void main() {

2

3 List<String> words = ['A', 'B', 'C', 'D'];

4

5 words.asMap().entries.map((MapEntry map) => print('${map.\

6 key} : ${map.value}')).toList();

7

8 }

9

10 // output:

11 0 : A

9. NoWar App Challenge 578

12 1 : B

13 2 : C

14 3 : D

We have displayed the list of icons in the same way.

Our next task will be to build three separate pages that will
represent three centuries.

How to design a Flutter UI or user interface? That is one of the main
challenges that very Flutter developer face while building a Flutter
App.

For example, a challenge always ignites our passion to develop our
skill. Certainly, this is no exception.

We have just started and built a part of the NoWar app. However,
we can take it as a challenge to complete and make it a finished
Flutter App.

We have already seen the First Step where we have mainly built
the home page. In this section, we will build a few other pages. In
addition, we will also use some material deign-related Widgets.

Firstly, let us see the screenshots of the pages that we have finished
so far.

Secondly, we will watch the code of the pages where we have used
the material design-related widgets.

Finally, I will leave this NoWar App to your disposal to complete as
a challenge. I will give the link of the GitHub repository at the end
of this section.

Certainly, ending war and bringing peace to this planet is a chal-
lenge.

Always.

9. NoWar App Challenge 579

Figure 9.5 – Changed home page

This is our home page from where we can move to several pages.
However, we have defined each section as a class in our model
folder, so that we can follow the MVC design.

The plan is simple. We should click each icon to reach a home page.
Like the 1700 century icon represents a home page from where we
can go to other page that describes a war.

9. NoWar App Challenge 580

How to design Flutter UI

As we will follow the same material design pattern, that will take
time to build the pages. But, more or less, we will have to do the
same task for several times.

Again from that page, we can go back to the home page, or go to
the next page.

As you’re guessing, we need to create several pages. In addition, we
will link the pages. So our app should not crash while we navigate
to other pages, or come back.

That part belongs to the “routes” property of the MaterialApp
widget which we have discussed earlier.

Suppose we click the 1700 century icon. As a result, that will take
us to the home page where we will describe five links.

9. NoWar App Challenge 581

Figure 9.6 – 1700 century home page

Let us see the code of this page first.

9. NoWar App Challenge 582

1 import 'package:flutter/material.dart';

2 import '../../model/seventeen_hundred_wars.dart';

3 import 'seventeen_first.dart';

4

5 class SeventeenHome extends StatefulWidget {

6 static const routeNname = '/seventen-home';

7 const SeventeenHome({Key? key}) : super(key: key);

8

9 @override

10 _SeventeenHomeState createState() => _SeventeenHomeState(\

11);

12 }

13

14 class _SeventeenHomeState extends State<SeventeenHome> {

15 List<SeventeenHundredWars> seventeenWars = [

16 seventeenHundredWars[0],

17 seventeenHundredWars[1],

18 seventeenHundredWars[2],

19 seventeenHundredWars[3],

20 seventeenHundredWars[4],

21];

22

23 @override

24 Widget build(BuildContext context) {

25 return Scaffold(

26 body: CustomScrollView(

27 slivers: <Widget>[

28 SliverAppBar(

29 backgroundColor: Colors.white,

30 stretch: true,

31 expandedHeight: 350.0,

32 flexibleSpace: FlexibleSpaceBar(

33 background: Container(

34 padding: const EdgeInsets.all(8.0),

35 child: Image.network(

9. NoWar App Challenge 583

36 'https://cdn.pixabay.com/photo/2017/0\

37 8/01/14/42/knight-2565957_960_720.jpg'),

38),

39 stretchModes: const [

40 StretchMode.zoomBackground,

41],

42),

43),

44 SliverFixedExtentList(

45 itemExtent: 450,

46 delegate: SliverChildListDelegate([

47 Container(

48 color: Colors.white,

49 child: Column(

50 mainAxisSize: MainAxisSize.max,

51 mainAxisAlignment: MainAxisAlignment.spac\

52 eAround,

53 crossAxisAlignment: CrossAxisAlignment.en\

54 d,

55 // text direction does the same thing hor\

56 izontally

57 verticalDirection: VerticalDirection.down,

58 children: <Widget>[

59 Padding(

60 padding: const EdgeInsets.all(8.0),

61 child: Text(

62 'Five Bloody Battles - 1700',

63 style: TextStyle(

64 fontSize: 50.0,

65 fontWeight: FontWeight.bold,

66 fontFamily: 'Schuyler',

67 foreground: Paint()

68 ..color = Colors.red

69 ..strokeWidth = 2.0

70 ..style = PaintingStyle.strok\

9. NoWar App Challenge 584

71 e),

72 textAlign: TextAlign.center,

73),

74),

75 GestureDetector(

76 onTap: () {

77 Navigator.push(

78 context,

79 MaterialPageRoute(

80 builder: (context) => const S\

81 eventeenFirst()),

82);

83 },

84 child: Padding(

85 padding: const EdgeInsets.all(8.0\

86),

87 child: Text(

88 '1. ${seventeenWars[0].name}',

89 style: TextStyle(

90 fontSize: 21.0,

91 fontWeight: FontWeight.bold,

92 fontFamily: 'Trajan Pro',

93 foreground: Paint()

94 ..color = Colors.blue

95 ..strokeWidth = 2.0

96 ..style = PaintingStyle.s\

97 troke),

98 textAlign: TextAlign.center,

99),

100),

101),

102 Padding(

103 padding: const EdgeInsets.all(8.0),

104 child: Text(

105 '2. ${seventeenWars[1].name}',

9. NoWar App Challenge 585

106 style: TextStyle(

107 fontSize: 21.0,

108 fontWeight: FontWeight.bold,

109 fontFamily: 'Trajan Pro',

110 foreground: Paint()

111 ..color = Colors.blue

112 ..strokeWidth = 2.0

113 ..style = PaintingStyle.strok\

114 e),

115 textAlign: TextAlign.center,

116),

117),

118 Padding(

119 padding: const EdgeInsets.all(8.0),

120 child: Text(

121 '3. ${seventeenWars[2].name}',

122 style: TextStyle(

123 fontSize: 21.0,

124 fontWeight: FontWeight.bold,

125 fontFamily: 'Trajan Pro',

126 foreground: Paint()

127 ..color = Colors.blue

128 ..strokeWidth = 2.0

129 ..style = PaintingStyle.strok\

130 e),

131 textAlign: TextAlign.center,

132),

133),

134 Padding(

135 padding: const EdgeInsets.all(8.0),

136 child: Text(

137 '4. ${seventeenWars[3].name}',

138 style: TextStyle(

139 fontSize: 21.0,

140 fontWeight: FontWeight.bold,

9. NoWar App Challenge 586

141 fontFamily: 'Trajan Pro',

142 foreground: Paint()

143 ..color = Colors.blue

144 ..strokeWidth = 2.0

145 ..style = PaintingStyle.strok\

146 e),

147 textAlign: TextAlign.center,

148),

149),

150 Padding(

151 padding: const EdgeInsets.all(8.0),

152 child: Text(

153 '5. ${seventeenWars[4].name}',

154 style: TextStyle(

155 fontSize: 21.0,

156 fontWeight: FontWeight.bold,

157 fontFamily: 'Trajan Pro',

158 foreground: Paint()

159 ..color = Colors.blue

160 ..strokeWidth = 2.0

161 ..style = PaintingStyle.strok\

162 e),

163 textAlign: TextAlign.center,

164),

165),

166],

167),

168),

169 Container(),

170]),

171),

172],

173),

174);

175 }

9. NoWar App Challenge 587

176 }

As we see, we have used the CustomScrollView Widget so that we
can scroll down the page.

After that we want that the AppBar section will shrink or resize as
we scroll down as follows.

Figure 9.7 – AppBar section will shrink or resize as we scroll down

We canmake it happen by using the SliverAppBarWidget. Youmay
read how to collapse the header section.

We follow the same technique in the next page.

9. NoWar App Challenge 588

Figure 9.8 – SliverAppBar Widget resizes

How to use model class to design
Flutter UI?

In the previous section we have seen how to use the List methods
to use our model class where we have defined many properties.

Let us see one of the model class from where we have got the
images.

1 import 'weapon_used.dart';

2

3 class SeventeenHundredWars {

4 String imageUrl;

5 int centuries;

6 String name;

7 String place;

8 int howManyDied;

9 String description;

10 List<WeaponUsed> weapons;

11 String summary;

12

13 SeventeenHundredWars({

14 required this.imageUrl,

15 required this.centuries,

16 required this.name,

17 required this.place,

18 required this.howManyDied,

19 required this.description,

20 required this.weapons,

9. NoWar App Challenge 589

21 required this.summary,

22 });

23 }

24

25 List<SeventeenHundredWars> seventeenHundredWars = [

26 SeventeenHundredWars(

27 imageUrl:

28 'https://cdn.pixabay.com/photo/2016/03/27/07/38/p\

29 olice-1282330_960_720.jpg',

30 centuries: 1700,

31 name: 'War of the Spanish Succession 1701–1714',

32 place: 'Europe',

33 howManyDied: 100000,

34 description:

35 'Who would be to the throne of Spain following th\

36 e death of the childless Charles II;'

37 ' The last of the Spanish Habsburgs?'

38 ' The conflict arose from this question. Although\

39 three principal claimants '

40 'England, the Dutch Republic, and France signed a\

41 treaty of partition in October 1698, it did'

42 ' not last. A major conflict arose that centered \

43 around one question - who would occupy'

44 ' most places. An anti-French alliance was formed\

45 (September 7, 1701) by England, the Dutch Republic, and \

46 the emperor Leopold. '

47 ' They were later joined by Prussia, Hanover, oth\

48 er German states, and Portugal.'

49 ' On the other side, The electors of '

50 ' Bavaria and Cologne and the dukes of Mantua and\

51 Savoy allied themselves with France, although Savoy swit\

52 ched sides in 1703.'

53 'John Churchill, duke of Marlborough, played the \

54 leading role in Queen Anne’s government and on the battle\

55 field until his fall in 1711. '

9. NoWar App Challenge 590

56 ' He was ably supported on the battlefield by the\

57 imperial general Prince Eugene of Savoy.'

58 ' In Britain the enemies of Marlborough won influ\

59 ence with the queen and had him removed from command on D\

60 ecember 31, 1711. '

61 ' With the collapse of the alliance, peace negoti\

62 ations began in 1712. '

63 ' Because of the conflicts of interest between th\

64 e former allies, each dealt separately with France.',

65 weapons: weapons,

66 summary: 'Treaties of Utrecht marked the rise of the \

67 power of Britain',

68),

69 SeventeenHundredWars(

70 imageUrl:

71 'https://cdn.pixabay.com/photo/2014/10/02/06/34/w\

72 ar-469503_960_720.jpg',

73 centuries: 1700,

74 name: 'Great Northern War 1717–1720.',

75 place: 'Europe',

76 howManyDied: 10000,

77 description:

78 'Lorem ipsum dolor sit amet, consectetur adipisci\

79 ng elit. Praesent vestibulum metus ac quam laoreet accums\

80 an. Sed quis ultrices massa, quis elementum nunc. Nam a m\

81 assa varius lacus suscipit fringilla.',

82 weapons: weapons,

83 summary: 'Lorem ipsum dolor sit amet, consectetur adi\

84 piscing elit.',

85),

86 SeventeenHundredWars(

87 imageUrl:

88 'https://cdn.pixabay.com/photo/2017/11/08/12/04/w\

89 ar-2930223_960_720.jpg',

90 centuries: 1700,

9. NoWar App Challenge 591

91 name: 'War of the Austrian Succession 1740.',

92 place: 'Europe',

93 howManyDied: 15000,

94 description:

95 'Lorem ipsum dolor sit amet, consectetur adipisci\

96 ng elit. Nulla odio ipsum, rhoncus id libero id, pretium \

97 congue sem. Nunc vitae ultricies justo. In ac nunc a ligu\

98 la lobortis mattis sed ut ex. Etiam blandit ante sed lacu\

99 s ullamcorper pulvinar. Ut egestas massa a egestas accums\

100 an. Etiam eu velit ornare, consectetur urna quis, cursus \

101 ex. Suspendisse et ipsum mauris. Praesent vestibulum metu\

102 s ac quam laoreet accumsan. Sed quis ultrices massa, quis\

103 elementum nunc. Nam a massa varius lacus suscipit fringi\

104 lla.'

105 'Nulla ullamcorper euismod dui sit amet elementum\

106 . Suspendisse dapibus eu tellus eu placerat. Sed sit amet\

107 nisi ac lectus maximus convallis. Class aptent taciti so\

108 ciosqu ad litora torquent per conubia nostra, per incepto\

109 s himenaeos. Aliquam erat volutpat. Praesent vitae lacus \

110 ac dui aliquam vehicula et sed diam. In eget interdum era\

111 t. Donec vel ex quis mi ornare vulputate ut sit amet puru\

112 s. Curabitur aliquet ornare turpis, sed luctus orci ultri\

113 ces nec. Mauris vestibulum euismod arcu, eu mollis nulla \

114 fermentum eu. Donec sit amet nulla leo. Nam vitae justo n\

115 ec magna egestas venenatis. Sed ut ipsum fermentum, ferme\

116 ntum est nec, laoreet mauris. Duis et suscipit libero, ne\

117 c porttitor erat. Proin vel sem sollicitudin, hendrerit m\

118 auris ac, accumsan eros.'

119 'Proin non egestas velit, in pharetra neque. Etia\

120 m a sapien in nunc cursus pharetra. Integer mi nunc, inte\

121 rdum volutpat mi molestie, eleifend consequat lorem. Etia\

122 m mattis in libero eget fringilla. Mauris aliquet libero \

123 non massa blandit auctor. Duis vestibulum velit dignissim\

124 nunc ullamcorper porttitor. Ut vestibulum, neque id blan\

125 dit eleifend, lectus turpis consectetur nunc, id viverra \

9. NoWar App Challenge 592

126 mauris lacus vitae ipsum. Aliquam quis finibus risus. ',

127 weapons: weapons,

128 summary: 'Lorem ipsum dolor sit amet, consectetur adi\

129 piscing elit.',

130),

131 SeventeenHundredWars(

132 imageUrl:

133 'https://cdn.pixabay.com/photo/2017/11/24/05/38/j\

134 et-2974131_960_720.jpg',

135 centuries: 1700,

136 name: 'Anglo-Mysore Wars 1766–1799.',

137 place: 'India',

138 howManyDied: 20000,

139 description:

140 'Lorem ipsum dolor sit amet, consectetur adipisci\

141 ng elit. Nulla odio ipsum, rhoncus id libero id, pretium \

142 congue sem. Nunc vitae ultricies justo. In ac nunc a ligu\

143 la lobortis mattis sed ut ex. Etiam blandit ante sed lacu\

144 s ullamcorper pulvinar. Ut egestas massa a egestas accums\

145 an. Etiam eu velit ornare, consectetur urna quis, cursus \

146 ex. Suspendisse et ipsum mauris. Praesent vestibulum metu\

147 s ac quam laoreet accumsan. Sed quis ultrices massa, quis\

148 elementum nunc. Nam a massa varius lacus suscipit fringi\

149 lla.'

150 'Nulla ullamcorper euismod dui sit amet elementum\

151 . Suspendisse dapibus eu tellus eu placerat. Sed sit amet\

152 nisi ac lectus maximus convallis. Class aptent taciti so\

153 ciosqu ad litora torquent per conubia nostra, per incepto\

154 s himenaeos. Aliquam erat volutpat. Praesent vitae lacus \

155 ac dui aliquam vehicula et sed diam. In eget interdum era\

156 t. Donec vel ex quis mi ornare vulputate ut sit amet puru\

157 s. Curabitur aliquet ornare turpis, sed luctus orci ultri\

158 ces nec. Mauris vestibulum euismod arcu, eu mollis nulla \

159 fermentum eu. Donec sit amet nulla leo. Nam vitae justo n\

160 ec magna egestas venenatis. Sed ut ipsum fermentum, ferme\

9. NoWar App Challenge 593

161 ntum est nec, laoreet mauris. Duis et suscipit libero, ne\

162 c porttitor erat. Proin vel sem sollicitudin, hendrerit m\

163 auris ac, accumsan eros.'

164 'Proin non egestas velit, in pharetra neque. Etia\

165 m a sapien in nunc cursus pharetra. Integer mi nunc, inte\

166 rdum volutpat mi molestie, eleifend consequat lorem. Etia\

167 m mattis in libero eget fringilla. Mauris aliquet libero \

168 non massa blandit auctor. Duis vestibulum velit dignissim\

169 nunc ullamcorper porttitor. Ut vestibulum, neque id blan\

170 dit eleifend, lectus turpis consectetur nunc, id viverra \

171 mauris lacus vitae ipsum. Aliquam quis finibus risus. ',

172 weapons: weapons,

173 summary: 'Lorem ipsum dolor sit amet, consectetur adi\

174 piscing elit.',

175),

176 SeventeenHundredWars(

177 imageUrl:

178 'https://cdn.pixabay.com/photo/2014/06/21/21/57/a\

179 pocalyptic-374208_960_720.jpg',

180 centuries: 1700,

181 name: 'American Revolutionary War 1775–1783.',

182 place: 'US',

183 howManyDied: 50000,

184 description:

185 'Lorem ipsum dolor sit amet, consectetur adipisci\

186 ng elit. Nulla odio ipsum, rhoncus id libero id, pretium \

187 congue sem. Nunc vitae ultricies justo. In ac nunc a ligu\

188 la lobortis mattis sed ut ex. Etiam blandit ante sed lacu\

189 s ullamcorper pulvinar. Ut egestas massa a egestas accums\

190 an. Etiam eu velit ornare, consectetur urna quis, cursus \

191 ex. Suspendisse et ipsum mauris. Praesent vestibulum metu\

192 s ac quam laoreet accumsan. Sed quis ultrices massa, quis\

193 elementum nunc. Nam a massa varius lacus suscipit fringi\

194 lla.'

195 'Nulla ullamcorper euismod dui sit amet elementum\

9. NoWar App Challenge 594

196 . Suspendisse dapibus eu tellus eu placerat. Sed sit amet\

197 nisi ac lectus maximus convallis. Class aptent taciti so\

198 ciosqu ad litora torquent per conubia nostra, per incepto\

199 s himenaeos. Aliquam erat volutpat. Praesent vitae lacus \

200 ac dui aliquam vehicula et sed diam. In eget interdum era\

201 t. Donec vel ex quis mi ornare vulputate ut sit amet puru\

202 s. Curabitur aliquet ornare turpis, sed luctus orci ultri\

203 ces nec. Mauris vestibulum euismod arcu, eu mollis nulla \

204 fermentum eu. Donec sit amet nulla leo. Nam vitae justo n\

205 ec magna egestas venenatis. Sed ut ipsum fermentum, ferme\

206 ntum est nec, laoreet mauris. Duis et suscipit libero, ne\

207 c porttitor erat. Proin vel sem sollicitudin, hendrerit m\

208 auris ac, accumsan eros.'

209 'Proin non egestas velit, in pharetra neque. Etia\

210 m a sapien in nunc cursus pharetra. Integer mi nunc, inte\

211 rdum volutpat mi molestie, eleifend consequat lorem. Etia\

212 m mattis in libero eget fringilla. Mauris aliquet libero \

213 non massa blandit auctor. Duis vestibulum velit dignissim\

214 nunc ullamcorper porttitor. Ut vestibulum, neque id blan\

215 dit eleifend, lectus turpis consectetur nunc, id viverra \

216 mauris lacus vitae ipsum. Aliquam quis finibus risus. ',

217 weapons: weapons,

218 summary: 'Lorem ipsum dolor sit amet, consectetur adi\

219 piscing elit.',

220),

221];

Now you can write the content or you can use the dummy content
as we see above.

To complete please clone the GitHub repository, in your local
machine, and develop.

At the end of the project you will learn how to design a Flutter UI.

• For full code snippet please visit the respective GitHub Repos-

https://github.com/sanjibsinha/no_war

9. NoWar App Challenge 595

itory - ³²

³²https://github.com/sanjibsinha/no_war

https://github.com/sanjibsinha/no_war
https://github.com/sanjibsinha/no_war
https://github.com/sanjibsinha/no_war

10. How to build a
Exchange Rate App

For loop Flutter: PriceTracker App –
Step 1

Can we use for loop in Flutter? If we can, then how we can use for
loop in Flutter? We’re going to see that in a minute. In addition, we
will build a Price Tracker Flutter App which will use the for loop.

Because of that reason, we will first check how we can use for loop
in Flutter to build a custom Drop down menu Item.

Why do we use for loop?

The first and foremost reason is to to repeat a specific block of code
a known number of times.

As a result, we can start from 0 and stop at 4. And, in addition, we
can print each number.

Consider the code below.

10. How to build a Exchange Rate App 597

1 void main() {

2 for (int i = 0; i < 5; i++) {

3 print('hello ${i + 1}');

4 }

5 }

6

7 /**

8 hello 1

9 hello 2

10 hello 3

11 hello 4

12 hello 5

13 *

14 *

15 */

But, in Dart, and Flutter for loop can play another role.

What is that role?

The role is to iterate over the list of items. For that reason, we can
use the for-in loop.

For example, consider the code as follows where we have used the
for-in loop to iterate over a list of items.

1 void main() {

2

3 List<String> firstNameList = ['John', 'Json', 'Dracula', \

4 'Othelo'];

5

6 List<String> secndNameList = ['Hamlet', 'Json', 'Hegemoto\

7 ', 'Piku'];

8

9 checkNames(firstNameList); // You have 2 number of same n\

10 ames.

11 checkNames(secndNameList); // You have 1 number of same n\

10. How to build a Exchange Rate App 598

12 ames.

13

14 }

15

16 List<String> listOfNames = ['Macbeth', 'Othelo', 'Hamlet'\

17 , 'John', 'Shakespeare'];

18

19 void checkNames(List<String> nameList) {

20

21 int name = 0;

22

23 for(String names in nameList){

24 for(String matchingName in listOfNames) {

25 if(names == matchingName){

26 name++;

27 }

28

29 }

30 }

31

32 print('You have $name number of same names.');

33 }

The above code shows how we can read the items by using the
for-in loop. After that, we can also check whether a common name
exists or not.

The same way, we can create a drop down menu item widget using
a constant list of items.

Since we are going to display the exchange rate of US dollar in
different currency, we should display the list of currency first.

Let us see how it looks like.

10. How to build a Exchange Rate App 599

Figure 10.1 – For loop Flutter - PriceTracker App first

Firstly, to show a list of currency like above we should create a list
of currencies first.

We will keep that file in our model folder.

10. How to build a Exchange Rate App 600

1 const List<String> currencyList = [

2 'INR',

3 'JPY',

4 'MXN',

5 'NOK',

6 'NZD',

7 'PLN',

8 'RON',

9 'BRL',

10 'CAD',

11 'CNY',

12 'EUR',

13 'GBP',

14 'HKD',

15 'IDR',

16 'ILS',

17 'RUB',

18];

After that, we will create a custom drop down button method.

Why?

Because this method will keep the selected currency in a setState()
method as a value that we can display.

10. How to build a Exchange Rate App 601

Figure 10.2 – For loop Flutter - PriceTracker App second

We can see that the list starts with INR or Indian Rupees.

But at the same time we can choose any currency from the above
list.

10. How to build a Exchange Rate App 602

Figure 10.3 – For loop Flutter - PriceTracker App third

As the above image shows, we have chosen RUB or ruble.

How for loop in Flutter works?

It works just like any for-in loop. We iterate over the list of
currencies that we have kept in the model folder.

10. How to build a Exchange Rate App 603

1 DropdownButton<String> selectDropDownList() {

2 List<DropdownMenuItem<String>> dropDownItems = [];

3 for (String currency in currencyList) {

4 var newItem = DropdownMenuItem(

5 child: Text(currency),

6 value: currency,

7);

8 dropDownItems.add(newItem);

9 }

10

11 return DropdownButton<String>(

12 value: selectedCurrency,

13 items: dropDownItems,

14 onChanged: (value) {

15 setState(() {

16 selectedCurrency = value!;

17 });

18 },

19);

20 }

And, lastly we call this method in the bottom Container Widget.

As a result, when we select any currency, it will display the
exchange rate.

1 import 'package:flutter/material.dart';

2 import '../model/usd_data.dart';

3

4 class DisplayExchangerateInUSD extends StatefulWidget {

5 const DisplayExchangerateInUSD({Key? key}) : super(key: k\

6 ey);

7

8 @override

9 _DisplayExchangerateInUSDState createState() =>

10 _DisplayExchangerateInUSDState();

10. How to build a Exchange Rate App 604

11 }

12

13 class _DisplayExchangerateInUSDState extends State<Displa\

14 yExchangerateInUSD> {

15 String selectedCurrency = 'INR';

16

17 DropdownButton<String> selectDropDownList() {

18 List<DropdownMenuItem<String>> dropDownItems = [];

19 for (String currency in currencyList) {

20 var newItem = DropdownMenuItem(

21 child: Text(currency),

22 value: currency,

23);

24 dropDownItems.add(newItem);

25 }

26

27 return DropdownButton<String>(

28 value: selectedCurrency,

29 items: dropDownItems,

30 onChanged: (value) {

31 setState(() {

32 selectedCurrency = value!;

33 });

34 },

35);

36 }

37

38 String? value = '?';

39

40

41 @override

42 Widget build(BuildContext context) {

43 return Scaffold(

44 appBar: AppBar(

45 title: const Text('Price Tracker'),

10. How to build a Exchange Rate App 605

46),

47 body: Column(

48 mainAxisAlignment: MainAxisAlignment.spaceBetween,

49 crossAxisAlignment: CrossAxisAlignment.stretch,

50 children: <Widget>[

51 Padding(

52 padding: const EdgeInsets.fromLTRB(18.0, 18.0\

53 , 18.0, 0),

54 child: Card(

55 color: Colors.redAccent,

56 elevation: 5.0,

57 shape: RoundedRectangleBorder(

58 borderRadius: BorderRadius.circular(10.0),

59),

60 child: Padding(

61 padding: const EdgeInsets.symmetric(

62 vertical: 15.0, horizontal: 28.0),

63 child: Text(

64 '1 USD = $value $selectedCurrency',

65 textAlign: TextAlign.center,

66 style: const TextStyle(

67 fontSize: 20.0,

68 color: Colors.white,

69),

70),

71),

72),

73),

74 Container(

75 height: 150.0,

76 alignment: Alignment.center,

77 padding: const EdgeInsets.only(bottom: 30.0),

78 color: Colors.red,

79 child: selectDropDownList(),

80),

10. How to build a Exchange Rate App 606

81],

82),

83);

84 }

85 }

Finally, our goal is to use the API of the https://exchangeratesapi.io/
to display the exchange rate.

In that case, the drop down menu item will track the price.

We will discuss that part in our next step.

By that time if you want to clone this step, please use this GitHub
repository.

HTTP Request in Flutter:
PriceTracker App Final step

What is HTTP request in Flutter? Is it different than other HTTP
request? The answer is NO. Like any other application, Flutter App
also perform HTTP request like GET and POST.

Flutter performs the same HTTP request. But it makes in a simple
way.

Why?

Because Flutter uses the HTTP plugin. And this plugin makes the
job simple.

In this section, we will see how we can perform HTTP request to
an exchange rate website API. By using the API we will make the
HTTP request and get the conversion rate.

In our PriceTracker App final step, we will see what is the exchange
rate against 1 US dollar. By default, it shows the exchange rate of

10. How to build a Exchange Rate App 607

Indian rupees. You can set the initial currency according to your
country.

Figure 10.4 – HTTP request in Flutter first example

For example, a few hours back, our PriceTracker app displays that 1
dollar is equal to 1 euro. Actually, we had made a HTTP get request
to the website.

At present, euro gets stronger and 1 dollar is equal to 0.92 euro. It
always changes.

As a result, whenever you make a HTTP get request, the exchange
rate may vary.

10. How to build a Exchange Rate App 608

How do I send a HTTP request in flutter? It’s easy.

We use the HTTP plugin. Consequently, we add the dependency in
our “pubspec.yaml” file.

1 dependencies:

2 flutter:

3 sdk: flutter

4

5 cupertino_icons: ^1.0.2

6 http: ^0.13.4

7 google_fonts: ^2.3.1

We have also added the Google fonts plugin to add some more
styling.

As we have seen earlier, to perform HTTP request and use the API,
we need Future object.

Therefore, in our model folder, we need to use the API key. You can
create a free API key, however, with that you may send 250 HTTP
request.

If you want more, you need to use register to that site commercially.

Let us see the data model class first.

1 import 'dart:convert';

2 import 'package:http/http.dart' as http;

3

4 const List<String> currencyList = [

5 'INR',

6 'JPY',

7 'MXN',

8 'NOK',

9 'NZD',

10 'PLN',

11 'RON',

10. How to build a Exchange Rate App 609

12 'BRL',

13 'CAD',

14 'CNY',

15 'EUR',

16 'GBP',

17 'HKD',

18 'IDR',

19 'ILS',

20 'RUB',

21];

22

23 const String usd = 'USD';

24

25 const apiKey = 'Secret API Key';

26

27 class USDData {

28 Future getUSDDataMap(String selectedCurrency, String usd)\

29 async {

30 Map<String, String> convertedToSelectedCurrency = {};

31 final httpUri = Uri.http('api.exchangeratesapi.io', '\

32 /v1/latest', {

33 'access_key': apiKey,

34 });

35

36 var response = await http.get(httpUri);

37 if (response.statusCode == 200) {

38 var decodedData = jsonDecode(response.body);

39 double price = decodedData['rates'][selectedCurrency];

40 convertedToSelectedCurrency[usd] = price.toStringAsFi\

41 xed(2);

42 } else {

43 print(response.statusCode);

44 throw 'Problem with the get request';

45 }

46 return convertedToSelectedCurrency;

10. How to build a Exchange Rate App 610

47 }

48 }

Firstly, the class has a Future method that uses async and await
keyword. The response data comes as a JSON map data.

As a result, we have to decode the JSON map data. And after that,
we need to access the value by the key.

Secondly, this part is important.

1 var response = await http.get(httpUri);

2 if (response.statusCode == 200) {

3 var decodedData = jsonDecode(response.body);

4 double price = decodedData['rates'][selectedCurrency];

5 convertedToSelectedCurrency[usd] = price.toStringAsFi\

6 xed(2);

7 ...

After that, we have to pass this Future data to the page where we
will display the converted currency.

And, we can select the currency from the drop down menu item
widget.

10. How to build a Exchange Rate App 611

Figure 10.5 – HTTP request in Flutter second example

How do I get HTTP request flutter?

As we have sent the HTTP request, the website gets back to our app
with a response.

According to that response, we send the data to the next page.

How do we get and display the data?

Let us see the full code.

10. How to build a Exchange Rate App 612

1 import 'package:flutter/material.dart';

2 import 'package:price_tracker/model/happy_theme.dart';

3 import '../model/usd_data.dart';

4

5 class DisplayExchangerateInUSD extends StatefulWidget {

6 const DisplayExchangerateInUSD({Key? key}) : super(key: k\

7 ey);

8

9 @override

10 _DisplayExchangerateInUSDState createState() =>

11 _DisplayExchangerateInUSDState();

12 }

13

14 class _DisplayExchangerateInUSDState extends State<Displa\

15 yExchangerateInUSD> {

16 String selectedCurrency = 'INR';

17

18 DropdownButton<String> selectDropDownList() {

19 List<DropdownMenuItem<String>> dropDownItems = [];

20 for (String currency in currencyList) {

21 var newItem = DropdownMenuItem(

22 child: Text(currency),

23 value: currency,

24);

25 dropDownItems.add(newItem);

26 }

27

28 return DropdownButton<String>(

29 value: selectedCurrency,

30 items: dropDownItems,

31 onChanged: (value) {

32 setState(() {

33 selectedCurrency = value!;

34 getConvertedValueInSelectedCurrency();

35 });

10. How to build a Exchange Rate App 613

36 },

37);

38 }

39

40 String? value = '?';

41 String key = 'USD';

42

43 void getConvertedValueInSelectedCurrency() async {

44 try {

45 Map<String, String>? data =

46 await USDData().getUSDDataMap(selectedCurrency, k\

47 ey);

48 setState(() {

49 value = data![key];

50 });

51 } catch (e) {

52 throw '$e';

53 }

54 }

55

56 @override

57 void initState() {

58 super.initState();

59 getConvertedValueInSelectedCurrency();

60 }

61

62 @override

63 Widget build(BuildContext context) {

64 return Scaffold(

65 appBar: AppBar(

66 backgroundColor: HappyTheme.inactiveCoor,

67 title: Text(

68 'Exchange Rate',

69 style: HappyTheme.appbarStyle,

70),

10. How to build a Exchange Rate App 614

71),

72 body: Column(

73 mainAxisAlignment: MainAxisAlignment.spaceBetween,

74 crossAxisAlignment: CrossAxisAlignment.stretch,

75 children: <Widget>[

76 Padding(

77 padding: const EdgeInsets.fromLTRB(18.0, 18.0\

78 , 18.0, 0),

79 child: Card(

80 color: HappyTheme.shrineBrown600,

81 elevation: 5.0,

82 shape: RoundedRectangleBorder(

83 borderRadius: BorderRadius.circular(10.0),

84),

85 child: Padding(

86 padding: const EdgeInsets.symmetric(

87 vertical: 15.0, horizontal: 28.0),

88 child: Text(

89 '1 USD = $value $selectedCurrency',

90 textAlign: TextAlign.center,

91 style: HappyTheme.answerStyle,

92),

93),

94),

95),

96 Container(

97 height: 150.0,

98 alignment: Alignment.center,

99 padding: const EdgeInsets.only(bottom: 30.0),

100 color: HappyTheme.shrinePink300,

101 child: selectDropDownList(),

102),

103],

104),

105);

10. How to build a Exchange Rate App 615

106 }

107 }

The above code is large. However, the logic is simple.

Since we have got the response of HTTP request in JSON map data,
we have used the key to grab the value.

Our code works as we have used the Stateful widget. Therefore,
when we select the currency as EUR or euro, it stores the converted
value and displays.

10. How to build a Exchange Rate App 616

Figure 10.6 – HTTP request in Flutter third example

Certainly, you can clone the whole GitHub repository in your local
machine to run the code.

But before running the code, you must create your own API key.

• For full code snippet please visit the respective GitHub Repos-
itory - ³³

• Read updated articles on Flutter, Dart, and Algorithm - ³⁴

³³https://github.com/sanjibsinha/exchange_rate
³⁴https://sanjibsinha.com

https://github.com/sanjibsinha/exchange_rate
https://github.com/sanjibsinha/exchange_rate
https://sanjibsinha.com/
https://github.com/sanjibsinha/exchange_rate
https://sanjibsinha.com/

11. A Chat App with
Firebase Authentication
and Firestore Database

With Flutter Firebase we can build a Chat App. In this section, we
will learn the rules and see how a user can register and login by
email and password.

For example, to register and login process we use the Firebase
authentication.

After that, we will use the Firestore database to save our Chat
messages that user send to each other.

By the way, in previous sections, we have been building a News
App where Flutter acts as the frontend. But the WordPress acts as
the backend.

Although we have not finished that app yet in between we can take
a break to build a small Chat app with Flutter Firebase.

Why we use the Firebase?

Because just like the WordPress we can also use Firebase as the
backend to Flutter.

Before discussing the code and other rules of Firebase, let us see
how we can authenticate users through the Flutter App.

11. A Chat App with Firebase Authentication and Firestore Database 618

Figure 11.1 – Flutter Firebase welcome page

11. A Chat App with Firebase Authentication and Firestore Database 619

This is our welcome page where the new user can register. And the
existing user can login to join the Chat page.

The registration page looks as follows.

11. A Chat App with Firebase Authentication and Firestore Database 620

Figure 11.2 – Flutter Firebase registration page

11. A Chat App with Firebase Authentication and Firestore Database 621

We see that in the registration page a user is registering with email
and password.

Once the user gets registered, the data of the user will be available
in the Firebase authentication page.

Let’s see the screenshot. That will explain.

Figure 11.3 – Firebase authentication page shows list of users.

Just like the registration page, the login page also looks the same.

For instance, the login page takes inputs from the users. And as a
result, the registered-user can type in the email and password.

The Firebase authentication instantly checks the credential and
sends the user to the Chat page.

Let’s see how the login page looks like.

11. A Chat App with Firebase Authentication and Firestore Database 622

Figure 11.4 – Flutter Firebase login page

11. A Chat App with Firebase Authentication and Firestore Database 623

Is Flutter and Firebase full stack?

Yes, Flutter and Firebase can work together to build a full stack App.
In fact, the Chat App we are going to create will be an example of
full stack app.

However, we must remember that Flutter is a frontend UI toolkit
that wants a backend support to work with any database.

In that scenario, Firebase acts as the backend database.

In case of the News App, we have seen how WordPress gives the
backend database support.

The same thing happens in case of Firebase.

Is Firebase easy to learn?

Certainly, for a beginner, using the Firebase as a backend to the
Flutter may look tough.

But at one time, we all have started as a beginner. Right?

Therefore, just follow the instructions and code along with these
steps. You will find that neither Firebase, nor the Firestore looks
tough anymore.

So, first thing first.

We need to login to the Firebase home page with our Gmail account.
After that we need to click the “Go to Console” tab.

11. A Chat App with Firebase Authentication and Firestore Database 624

Figure 11.5 – Firebase Go to Console

You will find it on the top right hand corner of the page.

Once you click the tab, it will take you to the “Add a Project” page.

Figure 11.6 – Firebase Add Project

The Firebase Add project will guide you to do the rest of the things.

11. A Chat App with Firebase Authentication and Firestore Database 625

It will ask you to download a Google services JSON file. After
downloading the file, we need to place it inside the project’s
“android/app” folder.

Meanwhile we should also add a few lines in our “android/ap-
p/build.gradle” file. Besides, in our “android/build.gradle” file we
need to add a line.

From where we will get those lines?

Firebase instructs us to copy the line and place them where they
are needed.

We also need to add a few necessary packages to our
“pubspec.yaml” file dependency section.

dependencies: flutter: sdk: flutter

1 cupertino_icons: ^1.0.2

2 firebase_core: ^1.14.0

3 firebase_auth: ^3.3.13

4 cloud_firestore: ^3.1.11

We need to add the firebase_core, firebase_auth, and the cloud_-
firestore packages.

As we progress, we will see how these packages work together
when we build the Chat app.

So stay tuned and we will meet again in the next section.

Flutter and Firebase: How to
Initialise App and Avoid Errors

In the previous section we have learned that Flutter and Firebase
can work together. In fact, Flutter works as the frontend. And
Firebase acts as backend.

11. A Chat App with Firebase Authentication and Firestore Database 626

As a result, together they work as a full stack app.

However, before using the Firebase, we need to know a few basic
rules.

For a small Flutter app, Firebase is free. In that case, we should limit
ourselves within 100 connections.

For example, more than 100 users cannot use the Chat app that
we’ve been building.

But for a big app where many users can participate, we can pay and
increase our storage capacity.

What is Firebase in Flutter?

Beginners want to know the answer. So we need to clarify.

When we clarify, it makes sense. Right?

Firebase gives different types of backend services to Flutter.

What does the backend service mean? In fact, it means many things.

real time database cloud storage authentication crash reporting
machine learning and many more…

Since Flutter is a frontend UI toolkit, we need a backend service.

In the previous sections we have seen how we have built a News
App with WordPress as the backend.

Not only that, we have built a personal Blog App with SQLite
database as our backend.

Therefore, we can do many things and use Firebase in the similar
vein.

11. A Chat App with Firebase Authentication and Firestore Database 627

Initialise App and avoid errors

Firebase has changed its rules and developed gradually. Therefore,
please read the documentation to get the updated news.

One of them is we need to initialise Firebase at the entry point of
our Flutter app.

As an outcome, our top level main() function looks as follows.

void main() async { WidgetsFlutterBinding.ensureInitialized();
await Firebase.initializeApp(); runApp(const FirebaseLoginRegis-
ter()); }

But we need to import the “firebase_core” package which we’ve
added as a dependency.

import ‘package:firebase_core/firebase_core.dart’;

We also need some other packages as well to run the Chat App. We
have discussed that topic in our previous section.

dependencies: flutter: sdk: flutter

1 cupertino_icons: ^1.0.2

2 firebase_core: ^1.14.0

3 firebase_auth: ^3.3.13

4 cloud_firestore: ^3.1.11

Not only that, we also have to add another Firebase method before
we initialise the State of the Widget.

void initState() { super.initState(); Firebase.initializeApp().whenComplete(()
{ setState(() {}); }); }

We’ll discuss this topic in detail. With that we’ll also discuss other
important concepts.

Flutter and Firebase can act together. But we should know the rules
to use them as the full stack.

So stay tuned. We’ll meet in the next section.

11. A Chat App with Firebase Authentication and Firestore Database 628

Firebase and Flutter: Chat App
authentication

In the previous sections we have learned how we can avoid errors
while we use Firebase and Flutter.

Moreover, we have learned how to customise the button.

Now we’ll finish the authentication section pf our Chat App. To do
that we need Firebase and Flutter. Most importantly, they should
work together.

To sum up, the Firebase gives different types of backend services to
Flutter.

What does the backend service mean?

In fact, it means many things.

real time database cloud storage authentication crash reporting
machine learning and many more…

Since Flutter is a frontend UI toolkit, therefore we need a backend
service.

Certainly we can use other backend service. As we have built a
News App with WordPress as the backend.

Let us see the top-level main function first.

import ‘package:flutter/material.dart’; import ‘package:firebase_-
core/firebase_core.dart’;

import ‘view/chat.dart’; import ‘view/login.dart’; import ‘view/reg-
ister.dart’; import ‘view/welcome.dart’;

void main() async { WidgetsFlutterBinding.ensureInitialized();
await Firebase.initializeApp(); runApp(const FirebaseLoginRegis-
ter()); }

class FirebaseLoginRegister extends StatelessWidget { const Fire-
baseLoginRegister({Key? key}) : super(key: key);

11. A Chat App with Firebase Authentication and Firestore Database 629

1 @override

2 Widget build(BuildContext context) {

3 return MaterialApp(

4 debugShowCheckedModeBanner: false,

5 theme: ThemeData.dark().copyWith(

6 textTheme: const TextTheme(

7 bodyText1: TextStyle(color: Colors.black54),

8),

9),

10 initialRoute: Welcome.id,

11 routes: {

12 Welcome.id: (context) => const Welcome(),

13 Login.id: (context) => const Login(),

14 Register.id: (context) => const Register(),

15 Chat.id: (context) => const Chat(),

16 },

17);

18 }

}

Firstly, we need to initialise the Firebase service. After that, we have
used the”routes” property of the Material App Widget to define
various routes.

We need a welcome page where the new user either register or the
existing user will login so that they can chat.

How Firebase authentication works

In Firebase, there are several ways to authenticate users. The most
popular one is, of course, the email authentication.

First we need to enable that service.

After that, in the welcome page we use two buttons so that users
can either register, or login.

11. A Chat App with Firebase Authentication and Firestore Database 630

import ‘package:flutter/material.dart’; import ‘package:firebase_-
core/firebase_core.dart’; import ‘../model/rounded_button.dart’;
import ‘register.dart’;

import ‘login.dart’;

class Welcome extends StatefulWidget { const Welcome({Key? key})
: super(key: key); static const String id = ‘welcome’;

1 @override

2 _WelcomeState createState() => _WelcomeState();

}

class _WelcomeState extends State<Welcome> {
@override void initState() { super.initState(); Fire-
base.initializeApp().whenComplete(() { setState(() {}); }); }

1 @override

2 Widget build(BuildContext context) {

3 return Scaffold(

4 backgroundColor: Colors.redAccent,

5 body: Padding(

6 padding: const EdgeInsets.symmetric(horizontal: 24.\

7 0),

8 child: Column(

9 mainAxisAlignment: MainAxisAlignment.center,

10 crossAxisAlignment: CrossAxisAlignment.stretch,

11 children: <Widget>[

12 Row(

13 children: <Widget>[

14 Expanded(

15 child: Hero(

16 tag: 'logo',

17 child: Container(

18 padding: const EdgeInsets.all(8.0),

19 child: Image.network(

11. A Chat App with Firebase Authentication and Firestore Database 631

20 'https://cdn.pixabay.com/photo/20\

21 15/05/19/07/44/browser-773215_960_720.png'),

22 height: 160.0,

23 width: 160.0,

24),

25),

26),

27 const Expanded(

28 child: Text(

29 'Chatting Friends: Register or Login',

30 style: TextStyle(

31 fontSize: 45.0,

32 color: Colors.black,

33 fontWeight: FontWeight.w900,

34),

35),

36),

37],

38),

39 const SizedBox(

40 height: 18.0,

41),

42 RoundedButton(

43 title: 'Log In',

44 colour: Colors.black45,

45 onPressed: () {

46 Navigator.pushNamed(context, Login.id);

47 },

48),

49 RoundedButton(

50 title: 'Register',

51 colour: Colors.black45,

52 onPressed: () {

53 Navigator.pushNamed(context, Register.id);

54 },

11. A Chat App with Firebase Authentication and Firestore Database 632

55),

56],

57),

58),

59);

60 }

}

When Flutter initialises the State, we also initialise the Firebase
service.

Certainly inside the setState() method, we can do some more tasks.

class _WelcomeState extends State<Welcome> {
@override void initState() { super.initState(); Fire-
base.initializeApp().whenComplete(() { setState(() {}); }); } …

The welcome page looks as follows.

11. A Chat App with Firebase Authentication and Firestore Database 633

Figure 11.7 – Flutter and Firebase Chatting App welcome page

11. A Chat App with Firebase Authentication and Firestore Database 634

In the register page we need two Firebase packages that we have
already added in our “pubspec.yaml” file.

dependencies: flutter: sdk: flutter

1 cupertino_icons: ^1.0.2

2 firebase_core: ^1.14.0

3 firebase_auth: ^3.3.13

4 cloud_firestore: ^3.1.11

To clarify, the “firebase_auth” and the “firebase_core” packages
help us to create the Firebase authentication instance.

final _auth = FirebaseAuth.instance; As a result, we can use that
instance to create users email and password.

final user = await _auth.createUserWithEmailAndPassword(email:
email!, password: password!,);

If we take a look at the register page, that will clarify how we use
Firebase and Flutter.

It’s simple.

Above all, the Firebase packages take care of the authentication
which we want. In addition, later the Flutter app authenticate users
based on that email and password.

Let’s see the code of register page.

import ‘package:flutter/material.dart’; import ‘package:firebase_-
auth/firebase_auth.dart’; import ‘package:firebase_core/firebase_-
core.dart’;

import ‘chat.dart’;

import ‘../model/rounded_button.dart’;

class Register extends StatefulWidget { const Register({Key? key}) :
super(key: key); static const String id = ‘register’;

11. A Chat App with Firebase Authentication and Firestore Database 635

1 @override

2 _RegisterState createState() => _RegisterState();

}

class _RegisterState extends State<Register> { final _auth = Fire-
baseAuth.instance;

1 String? email;

2 String? password;

3

4 User? loggedInUser;

5

6 @override

7 void initState() {

8 super.initState();

9 Firebase.initializeApp().whenComplete(() {

10 setState(() {});

11 });

12 getUser();

13 }

14

15 void getUser() {

16 try {

17 final user = _auth.currentUser;

18 if (user != null) {

19 loggedInUser = user;

20 }

21 } catch (e) {

22 throw e.toString();

23 }

24 }

25

26 @override

27 Widget build(BuildContext context) {

28 return Scaffold(

11. A Chat App with Firebase Authentication and Firestore Database 636

29 backgroundColor: Colors.redAccent,

30 body: Padding(

31 padding: const EdgeInsets.symmetric(horizontal: 24.\

32 0),

33 child: Column(

34 mainAxisAlignment: MainAxisAlignment.center,

35 crossAxisAlignment: CrossAxisAlignment.stretch,

36 children: <Widget>[

37 Flexible(

38 child: Hero(

39 tag: 'logo',

40 child: Container(

41 padding: const EdgeInsets.all(8.0),

42 child: Image.network(

43 'https://cdn.pixabay.com/photo/2015/0\

44 5/19/07/44/browser-773215_960_720.png'),

45 height: 160.0,

46 width: 160.0,

47),

48),

49),

50 const SizedBox(

51 height: 18.0,

52),

53 TextField(

54 decoration: const InputDecoration(

55 border: OutlineInputBorder(),

56 hintText: 'Enter Email',

57),

58 keyboardType: TextInputType.emailAddress,

59 textAlign: TextAlign.center,

60 onChanged: (value) {

61 email = value;

62 },

63 style: const TextStyle(

11. A Chat App with Firebase Authentication and Firestore Database 637

64 fontSize: 35.0,

65 fontWeight: FontWeight.bold,

66 color: Colors.white,

67),

68),

69 const SizedBox(

70 height: 8.0,

71),

72 TextField(

73 decoration: const InputDecoration(

74 border: OutlineInputBorder(),

75 hintText: 'Enter Password',

76),

77 obscureText: true,

78 textAlign: TextAlign.center,

79 onChanged: (value) {

80 password = value;

81 },

82 style: const TextStyle(

83 fontSize: 35.0,

84 fontWeight: FontWeight.bold,

85 color: Colors.white,

86),

87),

88 const SizedBox(

89 height: 24.0,

90),

91 RoundedButton(

92 title: 'Register',

93 colour: Colors.black45,

94 onPressed: () async {

95 setState(() {});

96 try {

97 final user = await _auth.createUserWithEm\

98 ailAndPassword(

11. A Chat App with Firebase Authentication and Firestore Database 638

99 email: email!,

100 password: password!,

101);

102 if (user != null) {

103 Navigator.pushNamed(context, Chat.id);

104 }

105

106 setState(() {});

107 } catch (e) {

108 throw e.toString();

109 }

110 },

111),

112],

113),

114),

115);

116 }

}

In the above code, the highlighted sections play the important role.

Is Firebase a backend or database?

As we have said earlier, Firebase is a backend service that supports
many things. And, of course, NoSQL database is one of them.

Moreover, it keeps data in JSON format, and that makes it faster
than other database.

When the user registers we can see the data in our Firebase console.

11. A Chat App with Firebase Authentication and Firestore Database 639

Figure 11.8 – Flutter Firebase users have been added

As an outcome now a registered user can login and take part in
chatting with other registered users.

The code of login page is almost identical as the register page.

import ‘package:flutter/material.dart’; import ‘package:firebase_-
core/firebase_core.dart’; import ‘package:firebase_auth/firebase_-
auth.dart’; import ‘chat.dart’;

import ‘../model/rounded_button.dart’;

class Login extends StatefulWidget { const Login({Key? key}) :
super(key: key); static const String id = ‘login’;

1 @override

2 _LoginState createState() => _LoginState();

}

class _LoginState extends State<Login> { final _auth =
FirebaseAuth.instance; String? email; String? password;

11. A Chat App with Firebase Authentication and Firestore Database 640

1 @override

2 void initState() {

3 super.initState();

4 Firebase.initializeApp().whenComplete(() {

5 setState(() {});

6 });

7 }

8

9 @override

10 Widget build(BuildContext context) {

11 return Scaffold(

12 backgroundColor: Colors.redAccent,

13 body: Padding(

14 padding: const EdgeInsets.symmetric(horizontal: 24.\

15 0),

16 child: Column(

17 mainAxisAlignment: MainAxisAlignment.center,

18 crossAxisAlignment: CrossAxisAlignment.stretch,

19 children: <Widget>[

20 Flexible(

21 child: Hero(

22 tag: 'logo',

23 child: Container(

24 padding: const EdgeInsets.all(8.0),

25 child: Image.network(

26 'https://cdn.pixabay.com/photo/2015/0\

27 5/19/07/44/browser-773215_960_720.png'),

28 height: 160.0,

29 width: 160.0,

30),

31),

32),

33 const SizedBox(

34 height: 48.0,

35),

11. A Chat App with Firebase Authentication and Firestore Database 641

36 TextField(

37 decoration: const InputDecoration(

38 border: OutlineInputBorder(),

39 hintText: 'Enter Email',

40),

41 keyboardType: TextInputType.emailAddress,

42 textAlign: TextAlign.center,

43 onChanged: (value) {

44 email = value;

45 },

46 style: const TextStyle(

47 color: Colors.white,

48 fontSize: 30.0,

49 fontWeight: FontWeight.bold,

50),

51),

52 const SizedBox(

53 height: 8.0,

54),

55 TextField(

56 decoration: const InputDecoration(

57 border: OutlineInputBorder(),

58 hintText: 'Enter Password',

59),

60 obscureText: true,

61 textAlign: TextAlign.center,

62 onChanged: (value) {

63 password = value;

64 },

65 style: const TextStyle(

66 color: Colors.white,

67 fontSize: 30.0,

68 fontWeight: FontWeight.bold,

69),

70),

11. A Chat App with Firebase Authentication and Firestore Database 642

71 const SizedBox(

72 height: 24.0,

73),

74 RoundedButton(

75 title: 'Log In',

76 colour: Colors.black45,

77 onPressed: () async {

78 setState(() {});

79 try {

80 final user = await _auth.signInWithEmailA\

81 ndPassword(

82 email: email!,

83 password: password!,

84);

85 if (user != null) {

86 Navigator.pushNamed(

87 context,

88 Chat.id,

89);

90 }

91

92 setState(() {});

93 } catch (e) {

94 throw e.toString();

95 }

96 },

97),

98],

99),

100),

101);

102 }

}

Flutter checks whether the user’s email and password match with

11. A Chat App with Firebase Authentication and Firestore Database 643

the Firebase authentication service.

If it matches, it takes the user to the Chat page.

11. A Chat App with Firebase Authentication and Firestore Database 644

Figure 11.9 – Flutter and Firebase Chatting App login page

11. A Chat App with Firebase Authentication and Firestore Database 645

For the Chat page we will use the Firestore database. In the next
section, we will discuss that and see how Firestore and Flutter work
together.

So stay tuned, and we will meet in the next section.

Flutter Firestore: Chat App Final
Step

What is the relation between Flutter and Firestore? In this final
section we’ll discuss that.

Basically, when we use Firebase with Flutter, we use the database
of Firestore as a service.

So Firebase and Firestore give us a few different type of backend
services.

We need to understand it first.

Therefore, our target will be to connect our Flutter Chat app with
the Firestore database. Right?

Why?

Because, authenticated users can can sign in and chat with other
registered users.

Meanwhile we discuss this topic, we will also finish our chat app
that we have been building for a while.

The previous section let’s us know how to use authentication in
Firebase.

Besides, we have learned how we can avoid errors while we
use Firebase and Flutter. Moreover, we have also learned how to
customise the button to give our Chat app a unique look.

As we have seen earlier, we need Firebase and Flutter.

11. A Chat App with Firebase Authentication and Firestore Database 646

Most importantly, they should work together.

Certainly we can use other backend service for Flutter. As we have
built a News App with WordPress as the backend.

How does Firestore work in Flutter? Firstly, we need a Firebase
membership that we can get by signing in with the Gmail account.

Secondly, we should enable Email as our authentication service.

Finally, we can create a collection in Firestore. On the dashboard
we can click the database option and create a collection.

It looks as follows.

Figure 11.10 – Flutter Firestore collection

As we see the above collection requires only two fields. Both are
texts. The first one represents the sender’s name.

Who is the sender?

Any authenticated user who have either registered or signed in.

As a result, in our Chat page we see all the messages. Besides we
can show the registered users on the Firebase page.

11. A Chat App with Firebase Authentication and Firestore Database 647

Figure 11.11 – Flutter Firestore Chat Page shows messages

Now our Chat App is perfectly working. As an outcome, new users
can register, or the registered users can sign in.

After that, they can start chatting.

The chatting does not start automatically. To chat, we need to
initialise the Firebase instance first.

@override void initState() { super.initState(); Fire-
base.initializeApp().whenComplete(() { setState(() {}); });
getCurrentUser(); }

After that, we can call the current user who can chat. How do we
get the current user?

To get the current user we use the Firebase authentication property
as follows.

final _auth = FirebaseAuth.instance;

As a result, we can define logged in user as the current user.

How do we get the logged in user?

It’s simple.

final _firestore = FirebaseFirestore.instance; User? loggedInUser;

11. A Chat App with Firebase Authentication and Firestore Database 648

With the logged in user we declare the Firestore instance as global
value.

What is the advantage?

For example, in the later part we can add messages to the Firestore
database collection.

onPressed: () { messageTextController.clear(); _fire-
store.collection(‘messages’).add({ ‘text’: messageText, ‘sender’:
loggedInUser!.email, }); },

Consequently, when the user press the button, her message and
email get added to the collection.

How do you fetch data from Firestore database in Flutter? We can
create two separate Widgets to fetch data from Firestore database.

Firstly, we need a Widget that will display the data from the
Firestore database. But it cannot display data if we don’t have a
Stream Builder widget as follows.

class MessageStreamBuilder extends StatelessWidget { const Mes-
sageStreamBuilder({Key? key}) : super(key: key);

1 @override

2 Widget build(BuildContext context) {

3 return StreamBuilder<QuerySnapshot>(

4 stream: _firestore.collection('messages').snapshots(),

5 builder: (context, snapshot) {

6 if (!snapshot.hasData) {

7 return const Center(

8 child: CircularProgressIndicator(

9 backgroundColor: Colors.lightBlueAccent,

10),

11);

12 }

13 final messages = snapshot.data!.docChanges.reversed;

14 List<DisplayMessages> displayMessages = [];

11. A Chat App with Firebase Authentication and Firestore Database 649

15 for (var message in messages) {

16 final messageText = message.doc['text'];

17 final messageSender = message.doc['sender'];

18

19 final currentUser = loggedInUser!.email;

20

21 final displayMessage = DisplayMessages(

22 sender: messageSender,

23 text: messageText,

24 isMe: currentUser == messageSender,

25);

26

27 displayMessages.add(displayMessage);

28 }

29 return Expanded(

30 child: ListView(

31 reverse: true,

32 padding:

33 const EdgeInsets.symmetric(horizontal: 10.0\

34 , vertical: 20.0),

35 children: displayMessages,

36),

37);

38 },

39);

40 }

}

Only after that, we can change the style of the Container Widget
that will display the data from Firestore.

Therefore, we can also define the widget which will display the
message on the screen.

class DisplayMessages extends StatelessWidget { const DisplayMes-
sages({ Key? key, required this.sender, required this.text, required

11. A Chat App with Firebase Authentication and Firestore Database 650

this.isMe, }) : super(key: key);

1 final String sender;

2 final String text;

3 final bool isMe;

4

5 @override

6 Widget build(BuildContext context) {

7 return Padding(

8 padding: const EdgeInsets.all(10.0),

9 child: Column(

10 crossAxisAlignment:

11 isMe ? CrossAxisAlignment.end : CrossAxisAlignm\

12 ent.start,

13 children: <Widget>[

14 Text(

15 sender,

16 style: const TextStyle(

17 fontSize: 25.0,

18 color: Colors.black54,

19 fontWeight: FontWeight.bold,

20),

21),

22 Material(

23 borderRadius: isMe

24 ? const BorderRadius.only(

25 topLeft: Radius.circular(30.0),

26 bottomLeft: Radius.circular(30.0),

27 bottomRight: Radius.circular(30.0))

28 : const BorderRadius.only(

29 bottomLeft: Radius.circular(30.0),

30 bottomRight: Radius.circular(30.0),

31 topRight: Radius.circular(30.0),

32),

33 elevation: 5.0,

34 color: isMe ? Colors.black54 : Colors.white,

11. A Chat App with Firebase Authentication and Firestore Database 651

35 child: Padding(

36 padding:

37 const EdgeInsets.symmetric(vertical: 10.0\

38 , horizontal: 20.0),

39 child: Text(

40 text,

41 style: TextStyle(

42 color: isMe ? Colors.white : Colors.black\

43 54,

44 fontSize: 30.0,

45 fontWeight: FontWeight.bold,

46),

47),

48),

49),

50],

51),

52);

53 }

}

Once we have defined these two widgets which will display data,
we can call them in the Chat widget as follows.

import ‘package:flutter/material.dart’; import ‘package:firebase_-
auth/firebase_auth.dart’; import ‘package:cloud_firestore/cloud_-
firestore.dart’; import ‘package:firebase_core/firebase_core.dart’;

final _firestore = FirebaseFirestore.instance; User? loggedInUser;

class Chat extends StatefulWidget { static const String id = ‘chat’;

1 const Chat({Key? key}) : super(key: key);

2 @override

3 _ChatState createState() => _ChatState();

}

11. A Chat App with Firebase Authentication and Firestore Database 652

class _ChatState extends State<Chat> { final messageTextController
= TextEditingController(); final _auth = FirebaseAuth.instance;

1 String? messageText;

2

3 @override

4 void initState() {

5 super.initState();

6 Firebase.initializeApp().whenComplete(() {

7 setState(() {});

8 });

9 getCurrentUser();

10 }

11

12 void getCurrentUser() {

13 try {

14 final user = _auth.currentUser;

15 if (user != null) {

16 loggedInUser = user;

17 }

18 } catch (e) {

19 throw e.toString();

20 }

21 }

22

23 @override

24 Widget build(BuildContext context) {

25 return Scaffold(

26 backgroundColor: Colors.redAccent,

27 appBar: AppBar(

28 leading: null,

29 actions: <Widget>[

30 IconButton(

31 icon: const Icon(Icons.close),

32 onPressed: () {

33 _auth.signOut();

11. A Chat App with Firebase Authentication and Firestore Database 653

34 Navigator.pop(context);

35 }),

36],

37 title: const Text(

38 'Chat',

39 style: TextStyle(

40 color: Colors.white,

41 fontSize: 30.0,

42 fontWeight: FontWeight.bold,

43),

44),

45 backgroundColor: Colors.red,

46),

47 body: SafeArea(

48 child: Column(

49 mainAxisAlignment: MainAxisAlignment.spaceBetween,

50 crossAxisAlignment: CrossAxisAlignment.stretch,

51 children: <Widget>[

52 const MessageStreamBuilder(),

53 Container(

54 width: double.infinity,

55 decoration: BoxDecoration(

56 border: Border.all(

57 color: Colors.grey,

58),

59),

60 child: Row(

61 crossAxisAlignment: CrossAxisAlignment.cent\

62 er,

63 children: <Widget>[

64 Expanded(

65 child: TextField(

66 controller: messageTextController,

67 onChanged: (value) {

68 messageText = value;

11. A Chat App with Firebase Authentication and Firestore Database 654

69 },

70 decoration: const InputDecoration(

71 border: OutlineInputBorder(),

72 hintText: 'Write your message.',

73),

74 style: const TextStyle(

75 fontSize: 30.0,

76 fontWeight: FontWeight.bold,

77),

78),

79),

80 TextButton(

81 onPressed: () {

82 messageTextController.clear();

83 _firestore.collection('messages').add\

84 ({

85 'text': messageText,

86 'sender': loggedInUser!.email,

87 });

88 },

89 child: const Text(

90 'Send',

91 style: TextStyle(

92 fontSize: 30.0,

93 fontWeight: FontWeight.bold,

94),

95),

96),

97],

98),

99),

100],

101),

102),

103);

11. A Chat App with Firebase Authentication and Firestore Database 655

104 }

}

Now users can write and send messages as well as they can view
their messages.

We have highlighted some sections in the above code to understand
the work flow. If you want to clone this repository and run in your
local machine, please use this GitHub repository.

But we can certainly make this Chat app much better and faster
with the help of the Provider package.

• Read updated articles on Flutter, Dart, and Algorithm - ³⁵

³⁵https://sanjibsinha.com

https://sanjibsinha.com/
https://sanjibsinha.com/

12. A Blog App with
Firebase Authentication
and Firestore Database

As we were discussing flutter 3.0 web app, we had hard coded the
initial blog data. There was no flutter sign in method so that the
user could log in.

It’s true that we had not introduced Firebase and Flutter sign in
methods in our previous discussion. Still we had progressed a little
bit.

Initially our Firebase, Provider web app looked like the following.

12. A Blog App with Firebase Authentication and Firestore Database 657

Figure 12.1 – User can select a portion of text with selectable text in flutter

We have changed the look a little bit.

As a result, the web app now looks as follows.

12. A Blog App with Firebase Authentication and Firestore Database 658

Figure 12.2 – Flutter sign in, home page

As a whole we are still not happy with the home page design, but
we will work on it later.

Similarly, we will later adopt material 3 design that flutter 3.0
allows us to apply.

At present regarding this flutter sign in topic, let’s see how we can
first write our business logic.

To begin with we need to go to the Firebase and create a project.

Secondly, we have discussed how to create a Firebase project before.
Therefore, we’re not repeating the same procedure again.

12. A Blog App with Firebase Authentication and Firestore Database 659

Flutter sign in business logic

Instead let’s concentrate on how we can write the business logic.

Certainly we have added all the dependencies to our pubspec.yaml
file, all the same that was the beginning.

Real work starts from the Firebase email authentication page.

Why?

Because we have enabled the flutter sign in methods.

Figure 12.3 – Flutter sign in with Firebase

As a result on Firebase email authentication page we see a bunch
of users’ names.

In addition, in the pubspec.yaml file we have seen all the dependen-
cies.

12. A Blog App with Firebase Authentication and Firestore Database 660

1 dependencies:

2 flutter:

3 sdk: flutter

4

5

6 cupertino_icons: ^1.0.2

7 firebase_core: ^1.14.0

8 firebase_auth: ^3.3.13

9 cloud_firestore: ^3.1.11

10 google_fonts: ^2.3.1

11 provider: ^6.0.2

In the same vein, we can nowwrite the flutter sign in business logic
where we can test the current status of the user.

For that we have used enums. By the way, we have an article on
enums earlier, you may check.

We have kept this flutter sign in logic in our controller folder.

1 import 'package:flutter/material.dart';

2 import 'package:google_fonts/google_fonts.dart';

3

4 import 'all_types_of_custom_forms.dart';

5 import 'all_widgets.dart';

6

7 enum UserStatus {

8 loggedOut,

9 emailAddress,

10 register,

11 password,

12 loggedIn,

13 }

14

15 class AuthenticationForFirebase extends StatelessWidget {

16 const AuthenticationForFirebase({

12. A Blog App with Firebase Authentication and Firestore Database 661

17 required this.loginState,

18 required this.email,

19 required this.startLoginFlow,

20 required this.verifyEmail,

21 required this.signInWithEmailAndPassword,

22 required this.cancelRegistration,

23 required this.registerAccount,

24 required this.signOut,

25 });

26

27 final UserStatus loginState;

28 final String? email;

29 final void Function() startLoginFlow;

30 final void Function(

31 String email,

32 void Function(Exception e) error,

33) verifyEmail;

34 final void Function(

35 String email,

36 String password,

37 void Function(Exception e) error,

38) signInWithEmailAndPassword;

39 final void Function() cancelRegistration;

40 final void Function(

41 String email,

42 String displayName,

43 String password,

44 void Function(Exception e) error,

45) registerAccount;

46 final void Function() signOut;

47

48 @override

49 Widget build(BuildContext context) {

50 switch (loginState) {

51 case UserStatus.loggedOut:

12. A Blog App with Firebase Authentication and Firestore Database 662

52 return Row(

53 children: [

54 Padding(

55 padding: const EdgeInsets.only(left: 24, bott\

56 om: 8),

57 child: StyledButton(

58 onPressed: () {

59 startLoginFlow();

60 },

61 child: Text(

62 'SignIn/Register',

63 style: GoogleFonts.laila(

64 fontSize: 30.0,

65 fontWeight: FontWeight.bold,

66),

67),

68),

69),

70],

71);

72 case UserStatus.emailAddress:

73 return CutomEmailForm(

74 callback: (email) => verifyEmail(

75 email, (e) => _showErrorDialog(context, '\

76 Invalid email', e)));

77 case UserStatus.password:

78 return CustomPasswordForm(

79 email: email!,

80 login: (email, password) {

81 signInWithEmailAndPassword(email, password,

82 (e) => _showErrorDialog(context, 'Failed \

83 to sign in', e));

84 },

85);

86 case UserStatus.register:

12. A Blog App with Firebase Authentication and Firestore Database 663

87 return CustomRegistrationForm(

88 email: email!,

89 cancel: () {

90 cancelRegistration();

91 },

92 registerAccount: (

93 email,

94 displayName,

95 password,

96) {

97 registerAccount(

98 email,

99 displayName,

100 password,

101 (e) =>

102 _showErrorDialog(context, 'Failed to \

103 create account', e));

104 },

105);

106 case UserStatus.loggedIn:

107 return Row(

108 children: [

109 Padding(

110 padding: const EdgeInsets.only(left: 24, bott\

111 om: 8),

112 child: StyledButton(

113 onPressed: () {

114 signOut();

115 },

116 child: const Text('LOGOUT'),

117),

118),

119],

120);

121 default:

12. A Blog App with Firebase Authentication and Firestore Database 664

122 return Row(

123 children: const [

124 Text("Internal error, this shouldn't happen..\

125 ."),

126],

127);

128 }

129 }

130

131 void _showErrorDialog(BuildContext context, String title,\

132 Exception e) {

133 showDialog<void>(

134 context: context,

135 builder: (context) {

136 return AlertDialog(

137 title: Text(

138 title,

139 style: const TextStyle(fontSize: 24),

140),

141 content: SingleChildScrollView(

142 child: ListBody(

143 children: <Widget>[

144 Text(

145 '${(e as dynamic).message}',

146 style: const TextStyle(fontSize: 18),

147),

148],

149),

150),

151 actions: <Widget>[

152 StyledButton(

153 onPressed: () {

154 Navigator.of(context).pop();

155 },

156 child: const Text(

12. A Blog App with Firebase Authentication and Firestore Database 665

157 'OK',

158 style: TextStyle(color: Colors.deepPurple\

159),

160),

161),

162],

163);

164 },

165);

166 }

167 }

At any rate now our app will know the user’s status. That means,
whether the user is a new user, or an existing user.

An existing user can sign in and start writing blogs.

12. A Blog App with Firebase Authentication and Firestore Database 666

Figure 12.4 – Flutter sign in page

However, our app will check the application state and allow a new
user to register.

In the next section, we will discuss that part in detail.

Multi Provider with Firebase

While building the Flutter web 3.0 blog app with Firebase and
Provider, we have faced some challenges.

12. A Blog App with Firebase Authentication and Firestore Database 667

Firstly, we cannot hard code the blog posts anymore.

Secondly, we have to assure that only the signed-in visitors will
post their blogs.

Finally, we will not use the multi provider technique. Instead we
will use the ChangeNotifierProvider class.

1 import 'package:flutter/material.dart';

2 import 'package:provider/provider.dart';

3 import 'model/state_of_application.dart';

4

5 import 'view/chat_app.dart';

6

7 /// moving to first branch

8

9 void main() {

10 runApp(

11 ChangeNotifierProvider(

12 create: (context) => StateOfApplication(),

13 builder: (context, _) => const ChatApp(),

14),

15);

16 }

For instance, Flutter hard code is just like any other hard code
principle that we cannot follow when we develop a dynamic flutter
app. Right?

Why?

Because in our case, we’re dealing with a remote database server
Firebase and Firestore.

As a result, particularly at this stage, users will insert data, and
retrieve data from Firebase.

On the contrary, we embed hard code into our source code. Neither
it comes from any external source, nor we change the value on

12. A Blog App with Firebase Authentication and Firestore Database 668

runtime. Right?

For example, we’ve seen the same instance in our Firebase, Firestore
and Provider web app.

What do we see on the screen?Let’s first see the home page of our
flutter web app.

Figure 12.5 – User can select a portion of text with selectable text in flutter

But after the initial change our current home page will look like the
following.

12. A Blog App with Firebase Authentication and Firestore Database 669

Figure 12.6 – Flutter web 3.0 homepage

As we see, here the first step is either you have to sign in, or you
can register so that later you can sign in.

As an outcome, the Firebase authentication page will show the
existing users who have registered already.

12. A Blog App with Firebase Authentication and Firestore Database 670

Figure 12.7 – Flutter web 3.0 Firebase authentication page

However, as we were discussing flutter 3.0 web app, initially it was
different.

Why so? Because we had hard coded the initial blog data.

There was no flutter sign in method so that the user could log in.

It’s true that we had not introduced Firebase and Flutter sign in
methods in our previous discussion.

How Flutter web 3.0 works with Firebase, and Provider While
talking about Flutter 3.0, we have seen what are the primary
changes.

Firstly, with reference to mobile application development, there has
not been a great change. Structurally what we have been doing, will
continue to do.

Secondly, we can work with Firebase and Provider just like before.

For that reason, we need to add the package dependencies first to
the pubspec.yaml file.

12. A Blog App with Firebase Authentication and Firestore Database 671

1 dependencies:

2 flutter:

3 sdk: flutter

4

5 cupertino_icons: ^1.0.2

6 firebase_core: ^1.14.0

7 firebase_auth: ^3.3.13

8 cloud_firestore: ^3.1.11

9 google_fonts: ^2.3.1

10 provider: ^6.0.2

As for the next move, we need to add the state management process
in our model folder.

This class will extend the Changenotifier class and initialize the
state.

Since our data source is external, we will use Future, async and
awit.

In this class we will define different types of methods. It will check
whether the user is new or existing.

Based on that, new users can register as follows.

12. A Blog App with Firebase Authentication and Firestore Database 672

Figure 12.8 – Flutter web 3.0 sign in, register page

By the way, we can take a look at the code where it also checks
whether the user is logged in or not.

On the other hand it will also add the blog posts to the Firebase
Firestore collection.

12. A Blog App with Firebase Authentication and Firestore Database 673

1 import 'package:flutter/material.dart';

2 import 'dart:async';

3 import 'package:firebase_core/firebase_core.dart';

4 import 'package:cloud_firestore/cloud_firestore.dart';

5 import 'package:firebase_auth/firebase_auth.dart';

6

7 import '../controller/authenticate_to_firebase.dart';

8 import '../firebase_options.dart';

9

10 import '../view/let_us_chat.dart';

11

12 class StateOfApplication extends ChangeNotifier {

13 StateOfApplication() {

14 init();

15 }

16

17 Future<void> init() async {

18 await Firebase.initializeApp(

19 options: DefaultFirebaseOptions.currentPlatform,

20);

21

22 FirebaseAuth.instance.userChanges().listen((user) {

23 if (user != null) {

24 _loginState = UserStatus.loggedIn;

25 _chatBookSubscription = FirebaseFirestore.instance

26 .collection('blog')

27 .orderBy('timestamp', descending: true)

28 .snapshots()

29 .listen((snapshot) {

30 _chatBookMessages = [];

31 for (final document in snapshot.docs) {

32 _chatBookMessages.add(

33 LetUsChatMessage(

34 name: document.data()['name'] as String,

35 title: document.data()['title'] as String,

12. A Blog App with Firebase Authentication and Firestore Database 674

36 body: document.data()['body'] as String,

37),

38);

39 }

40 notifyListeners();

41 });

42 } else {

43 _loginState = UserStatus.loggedOut;

44 _chatBookMessages = [];

45 }

46 notifyListeners();

47 });

48 }

49

50 UserStatus _loginState = UserStatus.loggedOut;

51 UserStatus get loginState => _loginState;

52

53 String? _email;

54 String? get email => _email;

55

56 StreamSubscription<QuerySnapshot>? _chatBookSubscription;

57 StreamSubscription<QuerySnapshot>? get chatBookSubscripti\

58 on =>

59 _chatBookSubscription;

60 List<LetUsChatMessage> _chatBookMessages = [];

61 List<LetUsChatMessage> get chatBookMessages => _chatBookM\

62 essages;

63

64 void startLoginFlow() {

65 _loginState = UserStatus.emailAddress;

66 notifyListeners();

67 }

68

69 Future<void> verifyEmail(

70 String email,

12. A Blog App with Firebase Authentication and Firestore Database 675

71 void Function(FirebaseAuthException e) errorCallback,

72) async {

73 try {

74 var methods =

75 await FirebaseAuth.instance.fetchSignInMethodsFor\

76 Email(email);

77 if (methods.contains('password')) {

78 _loginState = UserStatus.password;

79 } else {

80 _loginState = UserStatus.register;

81 }

82 _email = email;

83 notifyListeners();

84 } on FirebaseAuthException catch (e) {

85 errorCallback(e);

86 }

87 }

88

89 Future<void> signInWithEmailAndPassword(

90 String email,

91 String password,

92 void Function(FirebaseAuthException e) errorCallback,

93) async {

94 try {

95 await FirebaseAuth.instance.signInWithEmailAndPasswor\

96 d(

97 email: email,

98 password: password,

99);

100 } on FirebaseAuthException catch (e) {

101 errorCallback(e);

102 }

103 }

104

105 void cancelRegistration() {

12. A Blog App with Firebase Authentication and Firestore Database 676

106 _loginState = UserStatus.emailAddress;

107 notifyListeners();

108 }

109

110 Future<void> registerAccount(

111 String email,

112 String displayName,

113 String password,

114 void Function(FirebaseAuthException e) errorCallback)\

115 async {

116 try {

117 var credential = await FirebaseAuth.instance

118 .createUserWithEmailAndPassword(email: email, pas\

119 sword: password);

120 await credential.user!.updateDisplayName(displayName);

121 } on FirebaseAuthException catch (e) {

122 errorCallback(e);

123 }

124 }

125

126 void signOut() {

127 FirebaseAuth.instance.signOut();

128 }

129

130 Future<DocumentReference> addMessageToChatBook(String tit\

131 le, String body) {

132 if (_loginState != UserStatus.loggedIn) {

133 throw Exception('Must be logged in');

134 }

135

136 return FirebaseFirestore.instance.collection('blog').\

137 add(<String, dynamic>{

138 'title': title,

139 'body': body,

140 'timestamp': DateTime.now().millisecondsSinceEpoch,

12. A Blog App with Firebase Authentication and Firestore Database 677

141 'name': FirebaseAuth.instance.currentUser!.displayNam\

142 e,

143 'userId': FirebaseAuth.instance.currentUser!.uid,

144 });

145 }

146 }

At the same time we also define the nature of the Flutter 3.0
application.

While adding the project in Firebase, we need to choose the
platform. According to that it creates the API keywords.

Now in our code we can supply those keywords and connect with
Firebase.

1 import 'package:firebase_core/firebase_core.dart' show Fi\

2 rebaseOptions;

3 import 'package:flutter/foundation.dart'

4 show defaultTargetPlatform, kIsWeb, TargetPlatform;

5

6 /// we need to specify the associated values according to\

7 the platform

8 /// we're using, like in this case, we have chosen web pl\

9 atform

10 /// in Firebase console

11 ///

12 class DefaultFirebaseOptions {

13 static FirebaseOptions get currentPlatform {

14 if (kIsWeb) {

15 //return web;

16 }

17 // ignore: missing_enum_constant_in_switch

18 switch (defaultTargetPlatform) {

19 case TargetPlatform.android:

20 return android;

12. A Blog App with Firebase Authentication and Firestore Database 678

21 case TargetPlatform.iOS:

22 return ios;

23 case TargetPlatform.macOS:

24 return macos;

25 }

26

27 throw UnsupportedError(

28 'DefaultFirebaseOptions are not supported for this pl\

29 atform.',

30);

31 }

32

33 static const FirebaseOptions web = FirebaseOptions(

34 apiKey: "**",

35 appId: "***",

36 messagingSenderId: "***********",

37 projectId: "*********",

38);

39

40 static const FirebaseOptions android = FirebaseOptions(

41 apiKey: '',

42 appId: '',

43 messagingSenderId: '',

44 projectId: '',

45);

46

47 static const FirebaseOptions ios = FirebaseOptions(

48 apiKey: '',

49 appId: '',

50 messagingSenderId: '',

51 projectId: '',

52);

53

54 static const FirebaseOptions macos = FirebaseOptions(

55 apiKey: '',

12. A Blog App with Firebase Authentication and Firestore Database 679

56 appId: '',

57 messagingSenderId: '',

58 projectId: '',

59);

60 }

Certainly, in our case, we have chosen the web platform.

As a result, now we can see the titles of the blogs.

12. A Blog App with Firebase Authentication and Firestore Database 680

Figure 12.9 – Flutter web 3.0 all posts displaying titles

Flutter web 3.0 and Firestore
database

As our Flutter web 3.0 Firebase Provider blog app has built a
connection with Firestore database, users can insert data.

12. A Blog App with Firebase Authentication and Firestore Database 681

Once the data is into the external database, it is not difficult to
navigate to the blog detail page.

1 import 'package:flutter/material.dart';

2 import 'package:google_fonts/google_fonts.dart';

3 import 'package:provider/provider.dart';

4

5 import '../controller/all_widgets.dart';

6 import '../controller/authenticate_to_firebase.dart';

7 import '../model/state_of_application.dart';

8 import 'let_us_chat.dart';

9

10 class ChatHomePage extends StatelessWidget {

11 const ChatHomePage({Key? key}) : super(key: key);

12

13 @override

14 Widget build(BuildContext context) {

15 return Scaffold(

16 appBar: AppBar(

17 title: const Text('Provider Firebase Blog'),

18),

19 body: ListView(

20 children: <Widget>[

21 Image.network(

22 'https://cdn.pixabay.com/photo/2018/03/24/00/\

23 36/girl-3255402_960_720.png',

24 width: 250,

25 height: 250,

26 fit: BoxFit.cover,

27),

28 const SizedBox(height: 8),

29 Consumer<StateOfApplication>(

30 builder: (context, appState, _) => Authentica\

31 tionForFirebase(

32 email: appState.email,

33 loginState: appState.loginState,

12. A Blog App with Firebase Authentication and Firestore Database 682

34 startLoginFlow: appState.startLoginFlow,

35 verifyEmail: appState.verifyEmail,

36 signInWithEmailAndPassword: appState.signInWi\

37 thEmailAndPassword,

38 cancelRegistration: appState.cancelRegistrati\

39 on,

40 registerAccount: appState.registerAccount,

41 signOut: appState.signOut,

42),

43),

44 const Paragraph(

45 'Hi, I\'m Angel, I\'m Inviting you to write B\

46 logs. Please join me.'),

47 const Divider(

48 height: 8,

49 thickness: 1,

50 indent: 8,

51 endIndent: 8,

52 color: Colors.grey,

53),

54 const Header('Write your Blog'),

55 const Paragraph(

56 'Join your friends and write your blog!',

57),

58 Consumer<StateOfApplication>(

59 builder: (context, appState, _) => Column(

60 crossAxisAlignment: CrossAxisAlignment.start,

61 children: [

62 if (appState.loginState == UserStatus.log\

63 gedIn) ...[

64 TextButton(

65 onPressed: () {

66 Navigator.push(

67 context,

68 MaterialPageRoute(

12. A Blog App with Firebase Authentication and Firestore Database 683

69 builder: (context) => LetUsChat(

70 addMessageOne: (title, body) \

71 =>

72 appState.addMessageToChat\

73 Book(title, body),

74 messages: appState.chatBookMe\

75 ssages,

76),

77),

78);

79 },

80 child: Text(

81 'Let\'s Blog',

82 style: GoogleFonts.laila(

83 fontSize: 30.0,

84 fontWeight: FontWeight.bold,

85 color: Colors.yellow,

86 backgroundColor: Colors.red,

87),

88),

89),

90],

91],

92),

93),

94],

95),

96);

97 }

98 }

Before we have done a lot of such things.

12. A Blog App with Firebase Authentication and Firestore Database 684

Sending data through the class
constructor

But it would not be possible, if we had not used ChangeNoti-
fierProvider, ChangeNotifier, and Consumer from the Provider
package.

After all, we are sending data from the parent widget to the child
widget. In addition, we need to manage the state of the application.

Incidentally the child widget will now consume the data and
display the blog detail page.

1 import 'dart:async';

2

3 import 'package:flutter/material.dart';

4 import 'package:google_fonts/google_fonts.dart';

5 import 'package:provider/provider.dart';

6

7 import '../controller/all_widgets.dart';

8 import '../controller/authenticate_to_firebase.dart';

9 import '../model/state_of_application.dart';

10

11 class LetUsChatMessage {

12 LetUsChatMessage({

13 required this.name,

14 required this.title,

15 required this.body,

16 });

17 final String name;

18 final String title;

19 final String body;

20 }

21

22 class LetUsChat extends StatefulWidget {

12. A Blog App with Firebase Authentication and Firestore Database 685

23 const LetUsChat({

24 required this.addMessageOne,

25 required this.messages,

26 });

27 final FutureOr<void> Function(String messageOne, String m\

28 essageTwo)

29 addMessageOne;

30 final List<LetUsChatMessage> messages;

31

32 @override

33 _LetUsChatState createState() => _LetUsChatState();

34 }

35

36 class _LetUsChatState extends State<LetUsChat> {

37 final _formKey = GlobalKey<FormState>(debugLabel: '_LetUs\

38 Blog');

39 final _controllerOne = TextEditingController();

40 final _controllerTwo = TextEditingController();

41

42 @override

43 Widget build(BuildContext context) {

44 return Scaffold(

45 appBar: AppBar(

46 title: const Text('Provider Firebase Blog'),

47),

48 body: Padding(

49 padding: const EdgeInsets.all(8.0),

50 child: Form(

51 key: _formKey,

52 child: Column(

53 crossAxisAlignment: CrossAxisAlignment.start,

54 children: [

55 Expanded(

56 child: TextFormField(

57 controller: _controllerOne,

12. A Blog App with Firebase Authentication and Firestore Database 686

58 decoration: const InputDecoration(

59 hintText: 'title',

60),

61 validator: (value) {

62 if (value == null || value.isEmpty) {

63 return 'Enter your message to continu\

64 e';

65 }

66 return null;

67 },

68),

69),

70 const SizedBox(width: 10),

71 Expanded(

72 child: TextFormField(

73 controller: _controllerTwo,

74 decoration: const InputDecoration(

75 hintText: 'Body',

76),

77 validator: (value) {

78 if (value == null || value.isEmpty) {

79 return 'Enter your message to continu\

80 e';

81 }

82 return null;

83 },

84),

85),

86 const SizedBox(width: 10),

87 StyledButton(

88 onPressed: () async {

89 if (_formKey.currentState!.validate()) {

90 await widget.addMessageOne(

91 _controllerOne.text, _controllerT\

92 wo.text);

12. A Blog App with Firebase Authentication and Firestore Database 687

93 _controllerOne.clear();

94 _controllerTwo.clear();

95 }

96 },

97 child: Row(

98 children: const [

99 Icon(Icons.send),

100 SizedBox(width: 6),

101 Text('SUBMIT'),

102],

103),

104),

105 for (var message in widget.messages)

106 GestureDetector(

107 onTap: () {

108 Navigator.push(

109 context,

110 MaterialPageRoute(

111 builder: (context) => BlogDetailS\

112 creen(

113 name: message.name,

114 title: message.title,

115 body: message.body,

116),

117),

118);

119 },

120 child: Paragraph('${message.name}: ${mess\

121 age.title}'),

122),

123],

124),

125),

126),

127);

12. A Blog App with Firebase Authentication and Firestore Database 688

128 }

129 } // LetUsChat state ends

130

131 class BlogDetailScreen extends StatelessWidget {

132 // static const routename = '/product-detail';

133

134 const BlogDetailScreen({

135 Key? key,

136 required this.name,

137 required this.title,

138 required this.body,

139 }) : super(key: key);

140 final String name;

141 final String title;

142 final String body;

143

144 @override

145 Widget build(BuildContext context) {

146 return Scaffold(

147 appBar: AppBar(

148 title: Text(name),

149),

150 body: SingleChildScrollView(

151 child: Consumer<StateOfApplication>(

152 builder: (context, appState, _) => Column(

153 children: <Widget>[

154 if (appState.loginState == UserStatus.loggedI\

155 n) ...[

156 SizedBox(

157 height: 300,

158 width: double.infinity,

159 child: Image.network(

160 'https://cdn.pixabay.com/photo/2018/0\

161 3/24/00/36/girl-3255402_960_720.png',

162 width: 250,

12. A Blog App with Firebase Authentication and Firestore Database 689

163 height: 250,

164 fit: BoxFit.cover,

165),

166),

167 const SizedBox(height: 10),

168 Text(

169 title,

170 style: GoogleFonts.aBeeZee(

171 fontSize: 60.0,

172 fontWeight: FontWeight.bold,

173 color: Colors.yellow,

174 backgroundColor: Colors.red,

175),

176),

177 const SizedBox(

178 height: 10,

179),

180 Container(

181 padding: const EdgeInsets.symmetric(horiz\

182 ontal: 10),

183 width: double.infinity,

184 child: Text(

185 body,

186 textAlign: TextAlign.center,

187 softWrap: true,

188 style: GoogleFonts.aBeeZee(

189 fontSize: 30.0,

190 fontWeight: FontWeight.bold,

191 color: Colors.black26,

192 backgroundColor: Colors.lightBlue[300\

193],

194),

195),

196),

197 const SizedBox(

12. A Blog App with Firebase Authentication and Firestore Database 690

198 height: 10,

199),

200],

201],

202),

203),

204),

205);

206 }

207 }

Finally we can see the blog that Angel has just posted.

12. A Blog App with Firebase Authentication and Firestore Database 691

Figure 12.10 – Flutter web 3.0 blog detail page

At the same time the same blog post is present at the Firestore
database collection.

12. A Blog App with Firebase Authentication and Firestore Database 692

Figure 12.11 – Flutter web 3.0 Firebase Firestore database shows the blog posts

However, we are not happy with the design part. Therefore we
will introduce Material Design 3 and change the entire look of the
Flutter web 3.0 Firebase Provider blog app.

So stay tuned.

Text Form Field Flutter size, how to
increase in web app

How do we increase the size of the text form field size in a Flutter
app?

We need to increase the size because we’ve been building a Flutter
Firebase, Provider web app where users write blogs.

As a result, as an interface, on the screen users must give some
inputs through the TextFormField.

However we’re not happy with the default design of the TextForm-
Field.

For that reasonwe need to tweak the code and find a solutionwhere
the size of the title field is small.

But the size of the TextFormField where users will write the content,
will be bigger than the title field.

Initially it looked as follows.

12. A Blog App with Firebase Authentication and Firestore Database 693

Figure 12.12 – Flutter web 3.0 all posts displaying titles

As we see both the TextFields look the same. In addition, they are
not user friendly.

Therefore we want to make them look as follows where the
TextField for content will be bigger than the title field.

12. A Blog App with Firebase Authentication and Firestore Database 694

Figure 12.13 – Text form field flutter size matters

Certainly it looks better than before, all the same we can make it
more attractive.

The interesting part of this TextFormField is when users tap in, it
changes its border color from green to blue.

Not only that, it also changes its shape.

12. A Blog App with Firebase Authentication and Firestore Database 695

As a whole it gives a rich user experience.Before discussing how
we do that, let’s see some key concepts of a TextFormField.

Does the text form field flutter size
vary?

Can we vary the size of the text form field flutter?

Is there any kind of in-built properties that will help us in achieving
this goal?

A TextFormField is a FormField that contains a TextField.

Why do we need this widget?

To give some inputs to the flutter app.

How does it work? What are the basic principles?

Firstly, it’s a convenience widget that wraps a TextField widget in
a FormField.

Although we don’t always need a Form ancestor, in our case, we
have a Form ancestor.

Why?

Because the Form ancestor makes it easier to save, reset, or validate
multiple fields at once.

We have done exactly the same. Because we have multiple fields
like title and body of a blog. Right?

Secondly, if you plan to use the TextFormField without the Form
ancestor then you can pass a GlobalKey to the constructor and use
GlobalKey.currentState to save or reset the form field.

Let’s see our code that will explain this further.

12. A Blog App with Firebase Authentication and Firestore Database 696

1 import 'dart:async';

2

3 import 'package:flutter/material.dart';

4 import 'package:google_fonts/google_fonts.dart';

5 import 'package:provider/provider.dart';

6

7 import '../controller/all_widgets.dart';

8 import '../controller/authenticate_to_firebase.dart';

9 import '../model/state_of_application.dart';

10

11 class LetUsChatMessage {

12 LetUsChatMessage({

13 required this.name,

14 required this.title,

15 required this.body,

16 });

17 final String name;

18 final String title;

19 final String body;

20 }

21

22 class LetUsChat extends StatefulWidget {

23 const LetUsChat({

24 required this.addMessageOne,

25 required this.messages,

26 });

27 final FutureOr<void> Function(String messageOne, String m\

28 essageTwo)

29 addMessageOne;

30 final List<LetUsChatMessage> messages;

31

32 @override

33 State<LetUsChat> createState() => _LetUsChatState();

34 }

35

12. A Blog App with Firebase Authentication and Firestore Database 697

36 class _LetUsChatState extends State<LetUsChat> {

37 final _formKey = GlobalKey<FormState>(debugLabel: '_LetUs\

38 Blog');

39 final _controllerOne = TextEditingController();

40 final _controllerTwo = TextEditingController();

41

42 @override

43 Widget build(BuildContext context) {

44 return Scaffold(

45 appBar: AppBar(

46 title: const Text('Provider Firebase Blog'),

47),

48 body: Padding(

49 padding: const EdgeInsets.all(8.0),

50 child: Form(

51 key: _formKey,

52 child: Column(

53 crossAxisAlignment: CrossAxisAlignment.start,

54 children: [

55 TextFormField(

56 controller: _controllerOne,

57 decoration: InputDecoration(

58 hintText: 'Title',

59 enabledBorder: OutlineInputBorder(

60 borderRadius: BorderRadius.circular(5\

61),

62 borderSide: const BorderSide(

63 color: Colors.green,

64 width: 1.0,

65),

66),

67 focusedBorder: OutlineInputBorder(

68 borderRadius: BorderRadius.circular(3\

69 0),

70 borderSide: const BorderSide(

12. A Blog App with Firebase Authentication and Firestore Database 698

71 color: Colors.purple,

72 width: 2.0,

73),

74),

75),

76 validator: (value) {

77 if (value == null || value.isEmpty) {

78 return 'Enter your message to continu\

79 e';

80 }

81 return null;

82 },

83),

84 Expanded(

85 child: SizedBox(

86 height: 150.0,

87 child: TextFormField(

88 controller: _controllerTwo,

89 maxLines: 10,

90 decoration: InputDecoration(

91 hintText: 'Body',

92 enabledBorder: OutlineInputBorder(

93 borderRadius: BorderRadius.circul\

94 ar(5),

95 borderSide: const BorderSide(

96 color: Colors.green,

97 width: 1.0,

98),

99),

100 focusedBorder: OutlineInputBorder(

101 borderRadius: BorderRadius.circul\

102 ar(30),

103 borderSide: const BorderSide(

104 color: Colors.purple,

105 width: 2.0,

12. A Blog App with Firebase Authentication and Firestore Database 699

106),

107),

108),

109 validator: (value) {

110 if (value == null || value.isEmpty) {

111 return 'Enter your message to con\

112 tinue';

113 }

114 return null;

115 },

116),

117),

118),

119 const SizedBox(width: 10.0),

120 StyledButton(

121 onPressed: () async {

122 if (_formKey.currentState!.validate()) {

123 await widget.addMessageOne(

124 _controllerOne.text, _controllerT\

125 wo.text);

126 _controllerOne.clear();

127 _controllerTwo.clear();

128 }

129 },

130 child: Row(

131 children: const [

132 Icon(Icons.send),

133 SizedBox(width: 6),

134 Text('SUBMIT'),

135],

136),

137),

138 for (var message in widget.messages)

139 GestureDetector(

140 onTap: () {

12. A Blog App with Firebase Authentication and Firestore Database 700

141 Navigator.push(

142 context,

143 MaterialPageRoute(

144 builder: (context) => BlogDetailS\

145 creen(

146 name: message.name,

147 title: message.title,

148 body: message.body,

149),

150),

151);

152 },

153 child: Paragraph('${message.name}: ${mess\

154 age.title}'),

155),

156],

157),

158),

159),

160);

161 }

162 }

How did we increase the text form field in flutter? Simple. We’ve
used a SizedBox Widget as its immediate parent and made the
height property 150.

We’ve specified a TextEditingController that defines the initial-
Value.

In addition, the StatefulWidget as an ancestor manages the con-
troller’s lifetime.

In our case, the same thing happens.

We’ve called TextEditingController.dispose of the TextEditingCon-
troller. Because we no longer need it once users have typed in and
press the submit button.

12. A Blog App with Firebase Authentication and Firestore Database 701

This will ensure we discard any resources used by the object.

Let’s see the code.

1 StyledButton(

2 onPressed: () async {

3 if (_formKey.currentState!.validate()) {

4 await widget.addMessageOne(

5 _controllerOne.text, _controllerT\

6 wo.text);

7 _controllerOne.clear();

8 _controllerTwo.clear();

9 }

10 },

11 child: Row(

12 children: const [

13 Icon(Icons.send),

14 SizedBox(width: 6),

15 Text('SUBMIT'),

16],

17),

18),

Apart from controlling the size, we can also decorate the text form
field in flutter.

And that certainly adds a style statement to our Firebase, Provider
web app.

We’ll discuss that topic in the next section.

Theme color Flutter, how to use in
web app

In Flutter 3.0 theme color we’ll use Material design 3. Certainly we
will adopt the same principle in our ongoing web app.

12. A Blog App with Firebase Authentication and Firestore Database 702

However, we need to understand how we can configure the overall
visual Theme for a MaterialApp or a widget subtree within the app.

That’s the first step.

In fact, this sectionwill explain the basics. After that wewill discuss
how we can implement the same principle in our web app using
Material design 3.

The theme property of the MaterialApp configures the appearance
of the whole app.

As an outcome, we can implement the same pattern across the
whole app. Most importantly it helps us to customise the color, font
and many more.

First of all, we need to fill our ThemeData widget properties with
custom colours.

In addition it will help us to maintain a custom theme. At the same
time, we can also change colours at one place like the following:

1 ThemeData _customTheme() {

2 return ThemeData(

3 accentColor: Color(0xFF442B2D),

4 primaryColor: Color(0xFFFEDBD0),

5 buttonColor: Color(0xFFFEDBD0),

6 scaffoldBackgroundColor: Colors.white,

7 cardColor: Color(0xFF883B2D),

8 textSelectionTheme: TextSelectionThemeData(

9 selectionColor: Color(0xFFFEDBD0),

10),

11 errorColor: Colors.red,

12 buttonTheme: ThemeData.light().buttonTheme.copyWith(

13 buttonColor: Color(0xFFFEDBD0),

14 colorScheme: ThemeData.light().colorScheme.copyWith(

15 secondary: Color(0xFF442B2D),

16),

17),

12. A Blog App with Firebase Authentication and Firestore Database 703

18 buttonBarTheme: ThemeData.light().buttonBarTheme.copy\

19 With(

20 buttonTextTheme: ButtonTextTheme.accent,

21),

22 primaryIconTheme: ThemeData.light().primaryIconTheme.\

23 copyWith(

24 color: Color(0xFF442B2D),

25),

26);

27 }

Wherever we keep this custom colours theme we need to call this
method inside MaterialApp.

Because MaterialApp theme property returns ThemeData construc-
tor, we can use the custom color theme method.

1 class MaterialDesignThemeControl extends StatelessWidget {

2 const MaterialDesignThemeControl({Key? key}) : super(\

3 key: key);

4

5 @override

6 Widget build(BuildContext context) {

7 // ignore: todo

8 // TODO: building custom theme that'll control color \

9 and text

10 return MaterialApp(

11 title: 'Material Design Theme Control',

12 home: MaterialDesignCustomTheme(),

13 theme: _customTheme(),

14 debugShowCheckedModeBanner: false,

15);

16 }}

The following line is important here.

12. A Blog App with Firebase Authentication and Firestore Database 704

1 theme: _customTheme(),

As a result, we can have this output in our virtual device.

12. A Blog App with Firebase Authentication and Firestore Database 705

Figure 12.14 – Theme color Flutter example

Consequently, changing colors in Flutter using a custom theme
becomes easy now.

12. A Blog App with Firebase Authentication and Firestore Database 706

In one single file, you can add more functionalities.

We always want to make things simple. Isn’t it?

Moreover, from MaterialApp, now you can control the color theme
throughout the app.

Theme color across the flutter app

We can control AppBar color through Scaffold widget.

1 class MaterialDesignCustomTheme extends StatelessWidget {

2 const MaterialDesignCustomTheme({Key? key}) : super(k\

3 ey: key);

4

5 @override

6 Widget build(BuildContext context) {

7 return Scaffold(

8 appBar: AppBar(

9 title: Text(

10 'Material Design Custom Theme',

11 style: TextStyle(

12 fontSize: 20,

13 color: Theme.of(context).primaryColorDark,

14),

15),

16 backgroundColor: Theme.of(context).scaffoldBackground\

17 Color,

18),

19 body: CustomPage(),

20);

21 }

22 }

After that, we can use a CustomPage widget where we can build
the page using our custom theme.

12. A Blog App with Firebase Authentication and Firestore Database 707

1 class MaterialDesignCustomTheme extends StatelessWidget {

2 const MaterialDesignCustomTheme({Key? key}) : super(k\

3 ey: key);

4

5 @override

6 Widget build(BuildContext context) {

7 return Scaffold(

8 appBar: AppBar(

9 title: Text(

10 'Material Design Custom Theme',

11 style: TextStyle(

12 fontSize: 20,

13 color: Theme.of(context).primaryColorDark,

14),

15),

16 backgroundColor: Theme.of(context).scaffoldBackground\

17 Color,

18),

19 body: CustomPage(),

20);

21 }

22 }

23

24 class CustomPage extends StatelessWidget {

25 const CustomPage({Key? key}) : super(key: key);

26

27 @override

28 Widget build(BuildContext context) {

29 return ListView(

30 children: [

31 Container(

32 margin: EdgeInsets.all(10),

33 padding: EdgeInsets.all(5),

34 decoration: BoxDecoration(

35 border: Border.all(

12. A Blog App with Firebase Authentication and Firestore Database 708

36 width: 5,

37 color: Theme.of(context).accentColor,

38),

39),

40 child: Text(

41 'Material Design Custom Theme Page',

42 style: TextStyle(

43 fontSize: 30,

44 fontWeight: FontWeight.bold,

45 color: Theme.of(context).cardColor,

46),

47),

48),

49 Container(

50 margin: EdgeInsets.all(10),

51 padding: EdgeInsets.all(8),

52 child: Card(

53 elevation: 30,

54 shadowColor: Theme.of(context).cardColor,

55 child: Container(

56 margin: EdgeInsets.all(10),

57 padding: EdgeInsets.all(8),

58 child: Column(

59 children: [

60 TextField(

61 decoration: InputDecoration(

62 labelText: 'Username',

63 labelStyle: TextStyle(

64 color: Theme.of(context).primaryColorLight,

65),

66),

67),

68 SizedBox(height: 12.0),

69 TextField(

70 decoration: InputDecoration(

12. A Blog App with Firebase Authentication and Firestore Database 709

71 labelText: 'Password',

72 labelStyle: TextStyle(

73 color: Theme.of(context).primaryColorLight,

74),

75),

76 obscureText: true,

77),

78 ButtonBar(

79 children: <Widget>[

80 TextButton(

81 child: Text(

82 'CANCEL',

83 style: TextStyle(

84 color: Theme.of(context).buttonColor,

85),

86),

87 onPressed: () {},

88),

89 ElevatedButton(

90 child: Text(

91 'NEXT',

92 style: TextStyle(

93 color: Theme.of(context).buttonColor,

94),

95),

96 onPressed: () {},

97),

98],

99),

100],

101),

102),

103),

104)

105],

12. A Blog App with Firebase Authentication and Firestore Database 710

106);

107 }

108 }

We need to remember a few points here. The Theme.of method can
help the other widgets to obtain the custom theme.

Material components typically depend exclusively on the
colorScheme and textTheme.

We’ll discuss that topic in the next section when we’ll implement
Material design 3.

Material design 3 Flutter : A Light
Theme

What is Material design 3? How would we apply this theme to new
Flutter 3.0? Well, let’s try to answer the questions one after another.

Firstly, Material design 3 is the next generation design language.

It’s good news that Flutter has supportedMaterial design 3 from the
very beginning. As a result, what we have seen till now, designed
in Material design 2.

We’ve been building a web app where users can write their blogs
and share with other members. However, initially we have used the
Material design 2 theme.

As a result, our old Firebase, Provider web app will have a different
look.

Let’s see the homepage with the old theme first.

12. A Blog App with Firebase Authentication and Firestore Database 711

Figure 12.15 – Flutter web 3.0 homepage

To apply Material design 2 theme, we used the following code.

12. A Blog App with Firebase Authentication and Firestore Database 712

1 return MaterialApp(

2 title: 'Provider Firebase Blog',

3 debugShowCheckedModeBanner: false,

4 theme: ThemeData(

5 buttonTheme: Theme.of(context).buttonTheme.copyWi\

6 th(

7 highlightColor: Colors.black45,

8),

9 primarySwatch: Colors.deepOrange,

10 textTheme: GoogleFonts.latoTextTheme(

11 Theme.of(context).textTheme,

12),

13 visualDensity: VisualDensity.adaptivePlatformDens\

14 ity,

15),

16 home: const ChatHomePage(),

17);

However, with the newMaterial design 3 theme, the homepage will
look different now.

12. A Blog App with Firebase Authentication and Firestore Database 713

Figure 12.16 – Flutter 3.0 Material 3 Theme

Not only on the home page, the new Material design 3 theme will
reflect in each page, as an outcome.

We’ve chosen the light theme.

12. A Blog App with Firebase Authentication and Firestore Database 714

Figure 12.17 – Flutter 3.0 Material 3 Theme changes look

Finally, after signing in, users can click the “Let’s Blog” button and
join other members.

12. A Blog App with Firebase Authentication and Firestore Database 715

Figure 12.18 – Flutter 3.0 Material 3 Theme design change

In the next section we’ll look at how we have changed Material
design from 2 to 3.

Moreover, we will also learn Material design 3 in Flutter 3.0 great
detail.

So stay tuned.

12. A Blog App with Firebase Authentication and Firestore Database 716

Material 3 Flutter : A Dark Theme in
Web App

We’ve been building a Firebase, Firestore and Provider based web
app where we have already used Material design 3.

Firstly, what is Material design 3? It’s the next generation design
that will rule the cross platform application world.

Secondly, in our previous section we have changed the look of the
existing web app. However, we used the light mode.

Finally, we want to change it to dark mode and see how it looks.

Besides, we want to show the code and the implementation.

However, it’s always good to look back and recapitulate.

Therefore, we must remember why we use Flutter?

We use Flutter for building beautiful applications for mobile, web,
desktop, and embedded devices from a single codebase. Right?

In addition, Flutter always implements the Material Design guide-
lines.

Moreover, there are lots of Material Widgets that implement these
guidelines.

Let’s take a quick look at the list of widgets that can implement
Material 3.

1 App structure and navigation

2 Buttons

3 Input and selections

4 Dialogs, alerts, and panels

5 Information displays

6 Layout

You can get more widgets in the widget catalog.

12. A Blog App with Firebase Authentication and Firestore Database 717

Let’s take a look at the previous design which used the light mode.

Figure 12.19 – Flutter 3.0 Material 3 Theme

But the design changes when we use dark mode. It no longer
remains the same.

12. A Blog App with Firebase Authentication and Firestore Database 718

Figure 12.20 – Flutter Material 3 Web App

Firstly, we have used a Theme Provider to customize our theme.

Secondly, let’s watch the code.

12. A Blog App with Firebase Authentication and Firestore Database 719

1 import 'dart:math';

2

3 import 'package:flutter/material.dart';

4 import 'package:material_color_utilities/material_color_u\

5 tilities.dart';

6

7 class ThemeSettingChange extends Notification {

8 ThemeSettingChange({required this.settings});

9 final ThemeSettings settings;

10 }

11

12 class ThemeProvider extends InheritedWidget {

13 const ThemeProvider(

14 {super.key,

15 required this.settings,

16 required this.lightDynamic,

17 required this.darkDynamic,

18 required super.child});

19

20 final ValueNotifier<ThemeSettings> settings;

21 final ColorScheme? lightDynamic;

22 final ColorScheme? darkDynamic;

23

24 Color custom(CustomColor custom) {

25 if (custom.blend) {

26 return blend(custom.color);

27 } else {

28 return custom.color;

29 }

30 }

31

32 Color blend(Color targetColor) {

33 return Color(

34 Blend.harmonize(targetColor.value, settings.value\

35 .sourceColor.value));

12. A Blog App with Firebase Authentication and Firestore Database 720

36 }

37

38 Color source(Color? target) {

39 Color source = settings.value.sourceColor;

40 if (target != null) {

41 source = blend(target);

42 }

43 return source;

44 }

45

46 ColorScheme colors(Brightness brightness, Color? targetCo\

47 lor) {

48 final dynamicPrimary = brightness == Brightness.light

49 ? lightDynamic?.primary

50 : darkDynamic?.primary;

51 return ColorScheme.fromSeed(

52 seedColor: dynamicPrimary ?? source(targetColor),

53 brightness: brightness,

54);

55 }

56

57 ShapeBorder get shapeMedium => RoundedRectangleBorder(

58 borderRadius: BorderRadius.circular(8),

59);

60

61 CardTheme cardTheme() {

62 return CardTheme(

63 elevation: 0,

64 shape: shapeMedium,

65 clipBehavior: Clip.antiAlias,

66);

67 }

68

69 ListTileThemeData listTileTheme(ColorScheme colors) {

70 return ListTileThemeData(

12. A Blog App with Firebase Authentication and Firestore Database 721

71 shape: shapeMedium,

72 selectedColor: colors.secondary,

73);

74 }

75

76 AppBarTheme appBarTheme(ColorScheme colors) {

77 return AppBarTheme(

78 elevation: 0,

79 backgroundColor: colors.surface,

80 foregroundColor: colors.onSurface,

81);

82 }

83

84 TabBarTheme tabBarTheme(ColorScheme colors) {

85 return TabBarTheme(

86 labelColor: colors.secondary,

87 unselectedLabelColor: colors.onSurfaceVariant,

88 indicator: BoxDecoration(

89 border: Border(

90 bottom: BorderSide(

91 color: colors.secondary,

92 width: 2,

93),

94),

95),

96);

97 }

98

99 BottomAppBarTheme bottomAppBarTheme(ColorScheme colors) {

100 return BottomAppBarTheme(

101 color: colors.surface,

102 elevation: 0,

103);

104 }

105

12. A Blog App with Firebase Authentication and Firestore Database 722

106 BottomNavigationBarThemeData bottomNavigationBarTheme(Col\

107 orScheme colors) {

108 return BottomNavigationBarThemeData(

109 type: BottomNavigationBarType.fixed,

110 backgroundColor: colors.surfaceVariant,

111 selectedItemColor: colors.onSurface,

112 unselectedItemColor: colors.onSurfaceVariant,

113 elevation: 0,

114 landscapeLayout: BottomNavigationBarLandscapeLayout.c\

115 entered,

116);

117 }

118

119 NavigationRailThemeData navigationRailTheme(ColorScheme c\

120 olors) {

121 return const NavigationRailThemeData();

122 }

123

124 DrawerThemeData drawerTheme(ColorScheme colors) {

125 return DrawerThemeData(

126 backgroundColor: colors.surface,

127);

128 }

129

130 ThemeData light([Color? targetColor]) {

131 final colorScheme = colors(Brightness.light, targetCo\

132 lor);

133 return ThemeData.light().copyWith(

134 //pageTransitionsTheme: pageTransitionsTheme,

135 colorScheme: colorScheme,

136 appBarTheme: appBarTheme(colorScheme),

137 cardTheme: cardTheme(),

138 listTileTheme: listTileTheme(colorScheme),

139 bottomAppBarTheme: bottomAppBarTheme(colorScheme),

140 bottomNavigationBarTheme: bottomNavigationBarTheme(co\

12. A Blog App with Firebase Authentication and Firestore Database 723

141 lorScheme),

142 navigationRailTheme: navigationRailTheme(colorScheme),

143 tabBarTheme: tabBarTheme(colorScheme),

144 drawerTheme: drawerTheme(colorScheme),

145 scaffoldBackgroundColor: colorScheme.background,

146 useMaterial3: true,

147);

148 }

149

150 ThemeData dark([Color? targetColor]) {

151 final colorScheme = colors(Brightness.dark, targetCol\

152 or);

153 return ThemeData.dark().copyWith(

154 colorScheme: colorScheme,

155 appBarTheme: appBarTheme(colorScheme),

156 cardTheme: cardTheme(),

157 listTileTheme: listTileTheme(colorScheme),

158 bottomAppBarTheme: bottomAppBarTheme(colorScheme),

159 bottomNavigationBarTheme: bottomNavigationBarTheme(co\

160 lorScheme),

161 navigationRailTheme: navigationRailTheme(colorScheme),

162 tabBarTheme: tabBarTheme(colorScheme),

163 drawerTheme: drawerTheme(colorScheme),

164 scaffoldBackgroundColor: colorScheme.background,

165 useMaterial3: true,

166);

167 }

168

169 ThemeMode themeMode() {

170 return settings.value.themeMode;

171 }

172

173 ThemeData theme(BuildContext context, [Color? targetColor\

174]) {

175 final brightness = MediaQuery.of(context).platformBri\

12. A Blog App with Firebase Authentication and Firestore Database 724

176 ghtness;

177 return brightness == Brightness.light

178 ? light(targetColor)

179 : dark(targetColor);

180 }

181

182 static ThemeProvider of(BuildContext context) {

183 return context.dependOnInheritedWidgetOfExactType<The\

184 meProvider>()!;

185 }

186

187 @override

188 bool updateShouldNotify(covariant ThemeProvider oldWidget\

189) {

190 return oldWidget.settings != settings;

191 }

192 }

193

194 class ThemeSettings {

195 ThemeSettings({

196 required this.sourceColor,

197 required this.themeMode,

198 });

199

200 final Color sourceColor;

201 final ThemeMode themeMode;

202 }

203

204 Color randomColor() {

205 return Color(Random().nextInt(0xFFFFFFFF));

206 }

207

208 // Custom Colors

209 const linkColor = CustomColor(

210 name: 'Link Color',

12. A Blog App with Firebase Authentication and Firestore Database 725

211 color: Color(0xFF00B0FF),

212);

213

214 class CustomColor {

215 const CustomColor({

216 required this.name,

217 required this.color,

218 this.blend = true,

219 });

220

221 final String name;

222 final Color color;

223 final bool blend;

224

225 Color value(ThemeProvider provider) {

226 return provider.custom(this);

227 }

228 }

By the way, we have highlighted the dark ThemeData section so
that you can follow along with the code.

But, how will we use the custom Material 3 and implement the
design to our web app?

Material 3 Flutter : Parent and Child

Probably you may have noticed how we have extended the Theme
Provider class.

Because it extends an Inherited Widget.

12. A Blog App with Firebase Authentication and Firestore Database 726

1 class ThemeProvider extends InheritedWidget {

2 const ThemeProvider(

3 {super.key,

4 required this.settings,

5 required this.lightDynamic,

6 required this.darkDynamic,

7 required super.child});

8

9 final ValueNotifier<ThemeSettings> settings;

10 ...

As a result, any child theme can use the theme. To do that we will
create an instance at the very beginning and pass it to the scoped
theme object in MaterialApp.

Now any nested child widget can inherit the theme. Right?

1 import 'package:dynamic_color/dynamic_color.dart';

2 import 'package:flutter/material.dart';

3 import 'package:provider/provider.dart';

4 import 'model/state_of_application.dart';

5

6 import 'model/theme.dart';

7 import 'view/chat_app.dart';

8

9 /// moving to second branch

10 final settings = ValueNotifier(ThemeSettings(

11 sourceColor: Colors.pink,

12 themeMode: ThemeMode.system,

13));

14 void main() {

15 runApp(

16 ChangeNotifierProvider(

17 create: (context) => StateOfApplication(),

18 builder: (context, _) => DynamicColorBuilder(

19 builder: (lightDynamic, darkDynamic) => ThemeProv\

12. A Blog App with Firebase Authentication and Firestore Database 727

20 ider(

21 lightDynamic: lightDynamic,

22 darkDynamic: darkDynamic,

23 settings: settings,

24 child: ChatApp(),

25),

26),

27),

28);

29 }

30 //

By the way, to make this happen, we have used a package –
dynamic color.

After that we have added the dependency to our “pubspec.yaml”
file.

1 dependencies:

2 flutter:

3 sdk: flutter

4

5

6 cupertino_icons: ^1.0.2

7 firebase_core: ^1.14.0

8 firebase_auth: ^3.3.13

9 cloud_firestore: ^3.1.11

10 google_fonts: ^2.3.1

11 provider: ^6.0.2

12 material_color_utilities: ^0.1.4

13 dynamic_color: ^1.1.2

Now we can pass the ThemeData to the MaterialApp widget and
set the theme mode to dark.

12. A Blog App with Firebase Authentication and Firestore Database 728

1 import 'package:flutter/material.dart';

2 //import 'package:dynamic_color/dynamic_color.dart';

3

4 //import 'package:google_fonts/google_fonts.dart';

5

6 import '../main.dart';

7 import 'chat_home_page.dart';

8 import '../model/theme.dart';

9

10 class ChatApp extends StatelessWidget {

11 ChatApp({Key? key}) : super(key: key);

12

13 @override

14 Widget build(BuildContext context) {

15 final theme = ThemeProvider.of(context);

16 return MaterialApp(

17 title: 'Provider Firebase Blog',

18 debugShowCheckedModeBanner: false,

19 theme: theme.dark(settings.value.sourceColor),

20 home: const ChatHomePage(),

21);

22 }

23 }

You may have noticed that we have used Pink as the source color.

Certainly you can change it in your main file, where we have
defined the source color.

12. A Blog App with Firebase Authentication and Firestore Database 729

1 final settings = ValueNotifier(ThemeSettings(

2 sourceColor: Colors.pink,

3 themeMode: ThemeMode.system,

4));

5 void main() {

6 runApp(

7 ChangeNotifierProvider(

8

Of course we will discuss and learn more about using the Material
3 Flutter design.For this step you may clone the GitHub repository.

Material 3 : Flutter Firebase,
Provider Blog App Final

Material 3, which is a short form of Material Design 3, is the next
generation theme for Flutter apps.

According to the Google team, it is the most expressive and adapt-
able design system yet.

How will you adopt Material 3, and apply a custom theme across
your Flutter app, depends on you.

In other words, the Flutter 3.0 theme color we’ll take a new style
using Material design 3. Certainly we will adopt the same principle
in our ongoing Firebase, Provider Flutter app.

However, we need to understand how we can configure the overall
visual Theme for a MaterialApp or a widget subtree within the app.

We’ve been building a Firebase, Firestore and Provider based web
app where we have already used Material design 3.

Above all, we have reached the final stage.

Let us explain how we have progressed step by step.

12. A Blog App with Firebase Authentication and Firestore Database 730

Firstly, we have added the dependencies to the “pubspec.yaml” file.

1 dependencies:

2 flutter:

3 sdk: flutter

4

5

6 cupertino_icons: ^1.0.2

7 firebase_core: ^1.14.0

8 firebase_auth: ^3.3.13

9 cloud_firestore: ^3.1.11

10 google_fonts: ^2.3.1

11 provider: ^6.0.2

12 material_color_utilities: ^0.1.4

13 dynamic_color: ^1.1.2

The second step involves the most important step. Providing the
values to the Firebase options constructor.

The API key, App ID, project ID, etc.

Since our Flutter app is cross-platform, we can provide multiple
values as we have defined in our class.

1 import 'package:firebase_core/firebase_core.dart' show Fi\

2 rebaseOptions;

3 import 'package:flutter/foundation.dart'

4 show defaultTargetPlatform, kIsWeb, TargetPlatform;

5

6 /// we need to specify the associated values according to\

7 the platform

8 /// we're using, like in this case, we have chosen web pl\

9 atform

10 /// in Firebase console

11 ///

12 class DefaultFirebaseOptions {

12. A Blog App with Firebase Authentication and Firestore Database 731

13 static FirebaseOptions get currentPlatform {

14 if (kIsWeb) {

15 return web;

16 }

17 // ignore: missing_enum_constant_in_switch

18 switch (defaultTargetPlatform) {

19 case TargetPlatform.android:

20 return android;

21 case TargetPlatform.iOS:

22 return ios;

23 case TargetPlatform.macOS:

24 return macos;

25 }

26

27 throw UnsupportedError(

28 'DefaultFirebaseOptions are not supported for this pl\

29 atform.',

30);

31 }

32

33 static const FirebaseOptions web = FirebaseOptions(

34 apiKey: "**",

35 appId: "***",

36 messagingSenderId: "***********",

37 projectId: "*********",

38);

39

40 static const FirebaseOptions android = FirebaseOptions(

41 apiKey: "**",

42 appId: "***",

43 messagingSenderId: "***********",

44 projectId: "*********",

45);

46

47 static const FirebaseOptions ios = FirebaseOptions(

12. A Blog App with Firebase Authentication and Firestore Database 732

48 apiKey: '',

49 appId: '',

50 messagingSenderId: '',

51 projectId: '',

52);

53

54 static const FirebaseOptions macos = FirebaseOptions(

55 apiKey: '',

56 appId: '',

57 messagingSenderId: '',

58 projectId: '',

59);

60 }

Next, we’ll use Material 3. Therefore, we will write a custom theme
provider class that extends Inherited widget.

Why have we used the Inherited Widget?

Because we can apply the same theme across the whole widget tree.
Right?

As a result, we have kept the custom theme class in our Model
folder.

1 import 'dart:math';

2

3 import 'package:flutter/material.dart';

4 import 'package:material_color_utilities/material_color_u\

5 tilities.dart';

6

7 class ThemeSettingChange extends Notification {

8 ThemeSettingChange({required this.settings});

9 final ThemeSettings settings;

10 }

11

12 class ThemeProvider extends InheritedWidget {

12. A Blog App with Firebase Authentication and Firestore Database 733

13 const ThemeProvider(

14 {super.key,

15 required this.settings,

16 required this.lightDynamic,

17 required this.darkDynamic,

18 required super.child});

19

20 final ValueNotifier<ThemeSettings> settings;

21 final ColorScheme? lightDynamic;

22 final ColorScheme? darkDynamic;

23

24 Color custom(CustomColor custom) {

25 if (custom.blend) {

26 return blend(custom.color);

27 } else {

28 return custom.color;

29 }

30 }

31

32 Color blend(Color targetColor) {

33 return Color(

34 Blend.harmonize(targetColor.value, settings.value\

35 .sourceColor.value));

36 }

37

38 Color source(Color? target) {

39 Color source = settings.value.sourceColor;

40 if (target != null) {

41 source = blend(target);

42 }

43 return source;

44 }

45

46 ColorScheme colors(Brightness brightness, Color? targetCo\

47 lor) {

12. A Blog App with Firebase Authentication and Firestore Database 734

48 final dynamicPrimary = brightness == Brightness.light

49 ? lightDynamic?.primary

50 : darkDynamic?.primary;

51 return ColorScheme.fromSeed(

52 seedColor: dynamicPrimary ?? source(targetColor),

53 brightness: brightness,

54);

55 }

56

57 ShapeBorder get shapeMedium => RoundedRectangleBorder(

58 borderRadius: BorderRadius.circular(8),

59);

60

61 CardTheme cardTheme() {

62 return CardTheme(

63 elevation: 0,

64 shape: shapeMedium,

65 clipBehavior: Clip.antiAlias,

66);

67 }

68

69 ListTileThemeData listTileTheme(ColorScheme colors) {

70 return ListTileThemeData(

71 shape: shapeMedium,

72 selectedColor: colors.secondary,

73);

74 }

75

76 AppBarTheme appBarTheme(ColorScheme colors) {

77 return AppBarTheme(

78 elevation: 0,

79 backgroundColor: colors.surface,

80 foregroundColor: colors.onSurface,

81);

82 }

12. A Blog App with Firebase Authentication and Firestore Database 735

83

84 TabBarTheme tabBarTheme(ColorScheme colors) {

85 return TabBarTheme(

86 labelColor: colors.secondary,

87 unselectedLabelColor: colors.onSurfaceVariant,

88 indicator: BoxDecoration(

89 border: Border(

90 bottom: BorderSide(

91 color: colors.secondary,

92 width: 2,

93),

94),

95),

96);

97 }

98

99 BottomAppBarTheme bottomAppBarTheme(ColorScheme colors) {

100 return BottomAppBarTheme(

101 color: colors.surface,

102 elevation: 0,

103);

104 }

105

106 BottomNavigationBarThemeData bottomNavigationBarTheme(Col\

107 orScheme colors) {

108 return BottomNavigationBarThemeData(

109 type: BottomNavigationBarType.fixed,

110 backgroundColor: colors.surfaceVariant,

111 selectedItemColor: colors.onSurface,

112 unselectedItemColor: colors.onSurfaceVariant,

113 elevation: 0,

114 landscapeLayout: BottomNavigationBarLandscapeLayout.c\

115 entered,

116);

117 }

12. A Blog App with Firebase Authentication and Firestore Database 736

118

119 NavigationRailThemeData navigationRailTheme(ColorScheme c\

120 olors) {

121 return const NavigationRailThemeData();

122 }

123

124 DrawerThemeData drawerTheme(ColorScheme colors) {

125 return DrawerThemeData(

126 backgroundColor: colors.surface,

127);

128 }

129

130 ThemeData light([Color? targetColor]) {

131 final colorScheme = colors(Brightness.light, targetCo\

132 lor);

133 return ThemeData.light().copyWith(

134 //pageTransitionsTheme: pageTransitionsTheme,

135 colorScheme: colorScheme,

136 appBarTheme: appBarTheme(colorScheme),

137 cardTheme: cardTheme(),

138 listTileTheme: listTileTheme(colorScheme),

139 bottomAppBarTheme: bottomAppBarTheme(colorScheme),

140 bottomNavigationBarTheme: bottomNavigationBarTheme(co\

141 lorScheme),

142 navigationRailTheme: navigationRailTheme(colorScheme),

143 tabBarTheme: tabBarTheme(colorScheme),

144 drawerTheme: drawerTheme(colorScheme),

145 scaffoldBackgroundColor: colorScheme.background,

146 useMaterial3: true,

147);

148 }

149

150 ThemeData dark([Color? targetColor]) {

151 final colorScheme = colors(Brightness.dark, targetCol\

152 or);

12. A Blog App with Firebase Authentication and Firestore Database 737

153 return ThemeData.dark().copyWith(

154 colorScheme: colorScheme,

155 appBarTheme: appBarTheme(colorScheme),

156 cardTheme: cardTheme(),

157 listTileTheme: listTileTheme(colorScheme),

158 bottomAppBarTheme: bottomAppBarTheme(colorScheme),

159 bottomNavigationBarTheme: bottomNavigationBarTheme(co\

160 lorScheme),

161 navigationRailTheme: navigationRailTheme(colorScheme),

162 tabBarTheme: tabBarTheme(colorScheme),

163 drawerTheme: drawerTheme(colorScheme),

164 scaffoldBackgroundColor: colorScheme.background,

165 useMaterial3: true,

166);

167 }

168

169 ThemeMode themeMode() {

170 return settings.value.themeMode;

171 }

172

173 ThemeData theme(BuildContext context, [Color? targetColor\

174]) {

175 final brightness = MediaQuery.of(context).platformBri\

176 ghtness;

177 return brightness == Brightness.light

178 ? light(targetColor)

179 : dark(targetColor);

180 }

181

182 static ThemeProvider of(BuildContext context) {

183 return context.dependOnInheritedWidgetOfExactType<The\

184 meProvider>()!;

185 }

186

187 @override

12. A Blog App with Firebase Authentication and Firestore Database 738

188 bool updateShouldNotify(covariant ThemeProvider oldWidget\

189) {

190 return oldWidget.settings != settings;

191 }

192 }

193

194 class ThemeSettings {

195 ThemeSettings({

196 required this.sourceColor,

197 required this.themeMode,

198 });

199

200 final Color sourceColor;

201 final ThemeMode themeMode;

202 }

203

204 Color randomColor() {

205 return Color(Random().nextInt(0xFFFFFFFF));

206 }

207

208 // Custom Colors

209 const linkColor = CustomColor(

210 name: 'Link Color',

211 color: Color(0xFF00B0FF),

212);

213

214 class CustomColor {

215 const CustomColor({

216 required this.name,

217 required this.color,

218 this.blend = true,

219 });

220

221 final String name;

222 final Color color;

12. A Blog App with Firebase Authentication and Firestore Database 739

223 final bool blend;

224

225 Color value(ThemeProvider provider) {

226 return provider.custom(this);

227 }

228 }

As we have set two settings – light and dark, we can use any one
of them.

In the beginning, we have seen how we can use the light theme.

12. A Blog App with Firebase Authentication and Firestore Database 740

Figure 12.21 – Flutter 3.0 Material 3 Theme

But we can easily change the theme to the dark mode in our
MaterialApp.

12. A Blog App with Firebase Authentication and Firestore Database 741

1 import 'package:flutter/material.dart';

2 //import 'package:dynamic_color/dynamic_color.dart';

3

4 //import 'package:google_fonts/google_fonts.dart';

5

6 import '../main.dart';

7 import 'chat_home_page.dart';

8 import '../model/theme.dart';

9

10 class ChatApp extends StatelessWidget {

11 ChatApp({Key? key}) : super(key: key);

12

13 @override

14 Widget build(BuildContext context) {

15 final theme = ThemeProvider.of(context);

16 return MaterialApp(

17 title: 'Provider Firebase Blog',

18 debugShowCheckedModeBanner: false,

19 theme: theme.dark(settings.value.sourceColor),

20 home: const ChatHomePage(),

21);

22 }

23 }

12. A Blog App with Firebase Authentication and Firestore Database 742

Figure 12.22 – Flutter Material 3 Web App

Material 3 and Flutter 3.0

Flutter supports Material design from the very beginning. However,
Material 3 is the next level design. As a result, Flutter also launches
the 3.0 version which is much faster than the previous versions.

12. A Blog App with Firebase Authentication and Firestore Database 743

Most importantly, it adopts Material Design 3.

Therefore we have successfully adopted Material 3. Now, we would
like to give it a final touch.

Previously we have seen that once the user posts a blog, it shows
on the same page.

We’ve changed that part.

For example, we have changed the code a little bit. We’re no longer
showing the blog titles on the same page.

On the contrary, we have used a Text Button and navigated to
another page.

1 import 'dart:async';

2

3 import 'package:blog_web_app_with_firebase/view/all_blogs\

4 .dart';

5 import 'package:flutter/material.dart';

6 import 'package:google_fonts/google_fonts.dart';

7 import 'package:provider/provider.dart';

8

9 import '../controller/all_widgets.dart';

10 import '../controller/authenticate_to_firebase.dart';

11 import '../model/state_of_application.dart';

12

13 class LetUsChatMessage {

14 LetUsChatMessage({

15 required this.name,

16 required this.title,

17 required this.body,

18 });

19 final String name;

20 final String title;

21 final String body;

22 }

12. A Blog App with Firebase Authentication and Firestore Database 744

23

24 class LetUsChat extends StatefulWidget {

25 const LetUsChat({

26 required this.addMessageOne,

27 required this.messages,

28 });

29 final FutureOr<void> Function(String messageOne, String m\

30 essageTwo)

31 addMessageOne;

32 final List<LetUsChatMessage> messages;

33

34 @override

35 State<LetUsChat> createState() => _LetUsChatState();

36 }

37

38 class _LetUsChatState extends State<LetUsChat> {

39 final _formKey = GlobalKey<FormState>(debugLabel: '_LetUs\

40 Blog');

41 final _controllerOne = TextEditingController();

42 final _controllerTwo = TextEditingController();

43

44 @override

45 Widget build(BuildContext context) {

46 return Scaffold(

47 appBar: AppBar(

48 title: Text(

49 'Provider Firebase Blog',

50 style: TextStyle(

51 color: Theme.of(context).appBarTheme.foregrou\

52 ndColor,

53),

54),

55),

56 body: Padding(

57 padding: const EdgeInsets.all(8.0),

12. A Blog App with Firebase Authentication and Firestore Database 745

58 child: Form(

59 key: _formKey,

60 child: Column(

61 crossAxisAlignment: CrossAxisAlignment.start,

62 children: [

63 TextFormField(

64 controller: _controllerOne,

65 decoration: InputDecoration(

66 hintText: 'Title',

67 enabledBorder: OutlineInputBorder(

68 borderRadius: BorderRadius.circular(5\

69),

70 borderSide: BorderSide(

71 color: Theme.of(context).highlightCol\

72 or,

73 width: 1.0,

74),

75),

76 focusedBorder: OutlineInputBorder(

77 borderRadius: BorderRadius.circular(3\

78 0),

79 borderSide: const BorderSide(

80 color: Colors.purple,

81 width: 2.0,

82),

83),

84),

85 validator: (value) {

86 if (value == null || value.isEmpty) {

87 return 'Enter your message to continu\

88 e';

89 }

90 return null;

91 },

92),

12. A Blog App with Firebase Authentication and Firestore Database 746

93 Expanded(

94 child: SizedBox(

95 height: 150.0,

96 child: TextFormField(

97 controller: _controllerTwo,

98 maxLines: 10,

99 decoration: InputDecoration(

100 hintText: 'Body',

101 enabledBorder: OutlineInputBorder(

102 borderRadius: BorderRadius.circul\

103 ar(5),

104 borderSide: BorderSide(

105 color: Theme.of(context).highligh\

106 tColor,

107 width: 1.0,

108),

109),

110 focusedBorder: OutlineInputBorder(

111 borderRadius: BorderRadius.circul\

112 ar(30),

113 borderSide: const BorderSide(

114 color: Colors.purple,

115 width: 2.0,

116),

117),

118),

119 validator: (value) {

120 if (value == null || value.isEmpty) {

121 return 'Enter your message to con\

122 tinue';

123 }

124 return null;

125 },

126),

127),

12. A Blog App with Firebase Authentication and Firestore Database 747

128),

129 const SizedBox(width: 10.0),

130 StyledButton(

131 onPressed: () async {

132 if (_formKey.currentState!.validate()) {

133 await widget.addMessageOne(

134 _controllerOne.text, _controllerT\

135 wo.text);

136 _controllerOne.clear();

137 _controllerTwo.clear();

138 }

139 },

140 child: Row(

141 children: const [

142 Icon(Icons.send),

143 SizedBox(width: 6),

144 Text('SUBMIT'),

145],

146),

147),

148 const SizedBox(

149 height: 20.0,

150),

151 TextButton(

152 onPressed: () {

153 Navigator.push(

154 context,

155 MaterialPageRoute(

156 builder: (context) =>

157 AllBlogs(messages: widget.mes\

158 sages),

159),

160);

161 },

162 child: Text(

12. A Blog App with Firebase Authentication and Firestore Database 748

163 'All Titles',

164 style: GoogleFonts.aBeeZee(

165 fontSize: 60.0,

166 fontWeight: FontWeight.bold,

167),

168))

169],

170),

171),

172),

173);

174 }

175 } // LetUsChat state ends

As an outcome, we press the button, and reach a new page where
we can see all the blog titles.

12. A Blog App with Firebase Authentication and Firestore Database 749

Figure 12.23 – Material 3 and Flutter Firebase Provider Blog

Showing all titles is not difficult. We have passed the blog collection
which we retrieve from the Firestore database.

In the above code watch this part in particular.

12. A Blog App with Firebase Authentication and Firestore Database 750

1 final List<LetUsChatMessage> messages;

2 ...

3 TextButton(

4 onPressed: () {

5 Navigator.push(

6 context,

7 MaterialPageRoute(

8 builder: (context) =>

9 AllBlogs(messages: widget.mes\

10 sages),

11),

12);

13 },

14 child: Text(

15 'All Titles',

16 style: GoogleFonts.aBeeZee(

17 fontSize: 60.0,

18 fontWeight: FontWeight.bold,

19),

20))

Meanwhile we can click any title and read the entire blog.

But before that we need to show them. Right?

12. A Blog App with Firebase Authentication and Firestore Database 751

Figure 12.24 – Material 3 and Flutter Firebase Provider Blog all titles

Let’s take a look at the full code. That’ll give you an idea of how
we can use the for loop to select each title, and after that we have
used a Gesture Detector Widget so that we can navigate and reach
individual posts.

1 import 'dart:async';

2

3 import 'package:flutter/material.dart';

4 import 'package:google_fonts/google_fonts.dart';

5 import 'package:provider/provider.dart';

6

7 import '../controller/all_widgets.dart';

8 import '../controller/authenticate_to_firebase.dart';

9 import '../model/state_of_application.dart';

10

12. A Blog App with Firebase Authentication and Firestore Database 752

11 class AllBlogs extends StatefulWidget {

12 const AllBlogs({

13 required this.messages,

14 });

15

16 final messages;

17

18 @override

19 State<AllBlogs> createState() => _AllBlogsState();

20 }

21

22 class _AllBlogsState extends State<AllBlogs> {

23 @override

24 Widget build(BuildContext context) {

25 return Scaffold(

26 appBar: AppBar(

27 title: Text(

28 'Provider Firebase Blog',

29 style: TextStyle(

30 color: Theme.of(context).appBarTheme.foregrou\

31 ndColor,

32),

33),

34),

35 body: ListView(

36 children: [

37 for (var message in widget.messages)

38 GestureDetector(

39 onTap: () {

40 Navigator.push(

41 context,

42 MaterialPageRoute(

43 builder: (context) => BlogDetailScree\

44 n(

45 name: message.name,

12. A Blog App with Firebase Authentication and Firestore Database 753

46 title: message.title,

47 body: message.body,

48),

49),

50);

51 },

52 child: Paragraph('${message.name}: ${mess\

53 age.title}'),

54),

55],

56));

57 }

58 } // AllBlogs state ends

59

60 class BlogDetailScreen extends StatelessWidget {

61 // static const routename = '/product-detail';

62

63 const BlogDetailScreen({

64 Key? key,

65 required this.name,

66 required this.title,

67 required this.body,

68 }) : super(key: key);

69 final String name;

70 final String title;

71 final String body;

72

73 @override

74 Widget build(BuildContext context) {

75 return Scaffold(

76 appBar: AppBar(

77 title: Text(name),

78),

79 body: SingleChildScrollView(

80 child: Consumer<StateOfApplication>(

12. A Blog App with Firebase Authentication and Firestore Database 754

81 builder: (context, appState, _) => Column(

82 children: <Widget>[

83 if (appState.loginState == UserStatus.loggedI\

84 n) ...[

85 SizedBox(

86 height: 300,

87 width: double.infinity,

88 child: Image.network(

89 'https://cdn.pixabay.com/photo/2018/0\

90 3/24/00/36/girl-3255402_960_720.png',

91 width: 250,

92 height: 250,

93 fit: BoxFit.cover,

94),

95),

96 const SizedBox(height: 10),

97 Text(

98 title,

99 style: GoogleFonts.aBeeZee(

100 fontSize: 60.0,

101 fontWeight: FontWeight.bold,

102),

103),

104 const SizedBox(

105 height: 10,

106),

107 Container(

108 padding: const EdgeInsets.symmetric(horiz\

109 ontal: 10),

110 width: double.infinity,

111 child: Text(

112 body,

113 textAlign: TextAlign.center,

114 softWrap: true,

115 style: GoogleFonts.aBeeZee(

12. A Blog App with Firebase Authentication and Firestore Database 755

116 fontSize: 30.0,

117 fontWeight: FontWeight.bold,

118),

119),

120),

121 const SizedBox(

122 height: 10,

123),

124],

125],

126),

127),

128),

129);

130 }

131 }

Most importantly, each post shows the user’s name on the AppBar
Widget.

And in the body section we see the title and content.

12. A Blog App with Firebase Authentication and Firestore Database 756

Figure 12.25 – Material 3 and Flutter Firebase Provider Blog individual post
page

Do you want to clone the entire project and want to modify the
code?

Please clone this GitHub Repository.

12. A Blog App with Firebase Authentication and Firestore Database 757

For more Flutter related Articles and Resources³⁶

The code repositories for this book³⁷

³⁶https://sanjibsinha.com/blog_web_app_with_firebase
³⁷https://github.com/sanjibsinha/

https://sanjibsinha.com/blog_web_app_with_firebase
https://github.com/sanjibsinha/
https://sanjibsinha.com/blog_web_app_with_firebase
https://github.com/sanjibsinha/

13. A Complete News App
- Using WordPress as the

backend
Can we integrate a WordPress app to our Flutter App? Certainly
we can. It’s a challenge that we are going to discuss in this section.

For example we can useWordPress as the backend to to Flutter App.

As a result it cuts short our tasks.

The question is how we can shorten this task?

How we will shorten this task? Before we answer, let’s see how
WordPress and Flutter work together.

How Flutter and WordPress work
together?

Flutter is a cross-platform UI toolkit. On the other hand, WordPress
manages the backend with MySQL database.

To make them work together we need HTTP plugin that connects
Flutter and WordPress.

So, we can manage the front with Flutter and manage the backend
database with WordPress.

Consequently, they work together.

Meanwhile, to manage the backend with Flutter is not easy. Word-
Press makes it easy.

13. A Complete News App - Using WordPress as the backend 759

How does the WordPress make it easy?

Let’s see the image first. An image speaks thousand words.

Figure 13.1 – Flutter WordPress challenge first example

For example, the above image shows the WordPress Web App
where I write on PHP,Python and Algorithm.

How we can display the same post on our Flutter App?

Let’s see the second image where we have displayed the same titles
on the Flutter App.

13. A Complete News App - Using WordPress as the backend 760

Figure 13.2 – Flutter WordPress challenge second example

We have made our Flutter App work together with the WordPress
App so readers can read the same posts.

To read the post, they will just tap the title and read the full article.

13. A Complete News App - Using WordPress as the backend 761

How do I link my WordPress to
Flutter?

If we want to link the WordPress to Flutter, we need the HTTP
Package. In addition, we will add the Google fonts package to add
some styling.

Now we are ready to go.

Firstly, to use that package we add the dependency to the “pub-
spec.yaml” file.

1 dependencies:

2 flutter:

3 sdk: flutter

4

5 cupertino_icons: ^1.0.2

6 http: ^0.13.4

7 google_fonts: ^2.3.1

Secondly, we will use the HTTP package in our model folder where
we’re sending the request to the WordPress app.

In that way, we can link the Flutter mobile App to the WordPress
web App.

1 import 'dart:convert';

2 import 'package:http/http.dart' as http;

3

4 class Post {

5 String baseURL =

6 'http://algorithm.sanjibsinha.com/wp-json/wp/v2/posts\

7 ?_embed';

8

9 Future<List> getAllPosts() async {

13. A Complete News App - Using WordPress as the backend 762

10 try {

11 var response = await http.get(Uri.parse(baseURL));

12 if (response.statusCode == 200) {

13 return jsonDecode(response.body);

14 } else {

15 return Future.error('Server Error');

16 }

17 } catch (e) {

18 throw '$e';

19 }

20 }

21 }

Most importantly, we will make the Type of the method Future
whose Type will be a List.

Why?

Because we want to get the posts in a List so that we can iterate
over them and display on the screen. Right?

Moreover, we get the posts from the base URL.

1 String baseURL =

2 'http://algorithm.sanjibsinha.com/wp-json/wp/v2/posts\

3 ?_embed';

Meanwhile, we get the response with the help of the HTTP package.

The response is in JSON Map format. So we need to decode the
data.

Once we have decoded the data, we can use them in our page.

13. A Complete News App - Using WordPress as the backend 763

Can we convert the WordPress app
into the Flutter app?

That is the real challenge. Because we are going to convert the
existing WordPress web app into a Flutter App.

To convert we need the Future Builder Widget that will use the List
Type.

So the future property of the Future Builder Widget will use the
Future method we have already defined in our model folder.

After that, the builder property of the Future Builder widget will
return a ListView builder constructor which will display the post
as the List items.

Let’s see the code.

1 import 'package:flutter/material.dart';

2 import 'package:flutter_wordpress_challenge/model/happy_t\

3 heme.dart';

4

5 import '../model/post.dart';

6

7 class FlutterWordPressHomePage extends StatefulWidget {

8 const FlutterWordPressHomePage({Key? key, required this.t\

9 itle})

10 : super(key: key);

11

12 final String title;

13

14 @override

15 State<FlutterWordPressHomePage> createState() =>

16 _FlutterWordPressHomePageState();

17 }

18

13. A Complete News App - Using WordPress as the backend 764

19 class _FlutterWordPressHomePageState extends State<Flutte\

20 rWordPressHomePage> {

21 @override

22 void initState() {

23 super.initState();

24 Post().getAllPosts();

25 }

26

27 @override

28 Widget build(BuildContext context) {

29 Post posts = Post();

30 return Scaffold(

31 backgroundColor: HappyTheme.shrineErrorRed,

32 appBar: AppBar(

33 backgroundColor: HappyTheme.shrineBrown600,

34 title: Text(

35 widget.title,

36 style: HappyTheme.appbarStyle,

37),

38),

39 body: Center(

40 child: Container(

41 color: HappyTheme.shrinePink300,

42 margin: const EdgeInsets.all(8.0),

43 child: FutureBuilder<List>(

44 future: posts.getAllPosts(),

45 builder: (context, snapshot) {

46 if (snapshot.hasData) {

47 if (snapshot.data!.isEmpty) {

48 return const Center(

49 child: Text('No Post available.'),

50);

51 }

52 return ListView.builder(

53 itemCount: snapshot.data?.length,

13. A Complete News App - Using WordPress as the backend 765

54 itemBuilder: (context, index) {

55 return Card(

56 elevation: 10.0,

57 shadowColor: HappyTheme.shrineErrorRe\

58 d,

59 color: HappyTheme.inactiveCoor,

60 child: ListTile(

61 title: Row(

62 children: [

63 /* Expanded(

64 child: Image.network(snapshot\

65 .data![index]

66 ['_embeded']['wp:feat\

67 uredmedia'][0]

68 ['source_url']),

69), */

70 Expanded(

71 child: Container(

72 padding: const EdgeInsets\

73 .all(10.0),

74 child: Text(

75 snapshot.data![index]['ti\

76 tle']['rendered'],

77 style: HappyTheme.answerS\

78 tyle,

79),

80),

81)

82],

83),

84),

85);

86 },

87);

88 } else if (snapshot.hasError) {

13. A Complete News App - Using WordPress as the backend 766

89 return Center(

90 child: Text(snapshot.error.toString()),

91);

92 } else {

93 return const Center(

94 child: CircularProgressIndicator(),

95);

96 }

97 },

98),

99),

100),

101 // This trailing comma makes auto-formatting nicer fo\

102 r build methods.

103);

104 }

105 }

Wehave commented out the image part because theWordPress web
App has no featured image.

However, we have fetched the post and display them on the Flutter
App.

If you want to clone this step, you can use this GitHub repository.

• For full code snippet please visit the respective GitHub Repos-
itory - ³⁸

Create, retrieve, update, and delete

In the previous section, we have seen how we can use WordPress
as the backend of the Flutter app. Flutter and WordPress can work
together.

³⁸https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/first-step

https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/first-step
https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/first-step
https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/first-step

13. A Complete News App - Using WordPress as the backend 767

We can create, retrieve, update, and delete our posts in the Word-
Press web app. And, as an effect, that will reflect on the Flutter
App.

For example, we had created a minimalist App which looks as
follows.

Figure 13.3 – Flutter WordPress challenge second example

From the WordPress database, it retrieves the titles and display
them on our Flutter App.

However, we cannot just display the title only. On the contrary, we

13. A Complete News App - Using WordPress as the backend 768

should display the posts, images also.

How to create a NewsApp in
WordPress?

All we need a basic understanding of WordPress. That will help us
to install a ready made theme that comes with demo content.

Therefore, it does not take much time to create a NewsApp in
WordPress.

But to use that NewsApp as a backend for Flutter, we need a
package first.

In our earlier sections, we have discussed how to use HTTP package.
We will use the same package here.

As a result, in our model folder, we have a Post class.

1 import 'dart:convert';

2 import 'package:http/http.dart' as http;

3

4 /// fourth test to test latest post by category ID

5

6 class Post {

7 String baseURLForAllPosts =

8 'http://news.sanjibsinha.com/wp-json/wp/v2/posts?_emb\

9 ed';

10

11 String latestPostsByCategoryID =

12 'http://news.sanjibsinha.com/wp-json/wp/v2/latest-pos\

13 ts/';

14

15 Future<List> getAllPosts() async {

16 try {

17 var response = await http.get(Uri.parse(baseURLForAll\

13. A Complete News App - Using WordPress as the backend 769

18 Posts));

19 if (response.statusCode == 200) {

20 return jsonDecode(response.body);

21 } else {

22 return Future.error('Server Error');

23 }

24 } catch (e) {

25 throw '$e';

26 }

27 }

28

29 Future<List> getPostsByCategoryID(int id) async {

30 String latestPosts = '$latestPostsByCategoryID/$id';

31 try {

32 var response = await http.get(Uri.parse(latestPosts));

33 if (response.statusCode == 200) {

34 return jsonDecode(response.body);

35 } else {

36 return Future.error('Server Error');

37 }

38 } catch (e) {

39 throw '$e';

40 }

41 }

42 }

Firstly, we will display all the posts on our home page of the Flutter
App.

13. A Complete News App - Using WordPress as the backend 770

Figure 13.4 – Flutter backend WordPress first

13. A Complete News App - Using WordPress as the backend 771

Our home page displays all the posts. We can scroll down so we
can view other posts also.

Figure 13.5 – Flutter backend WordPress second

Each post comes with the title, featured image and the post. Al-
though the post shows a few lines only.

13. A Complete News App - Using WordPress as the backend 772

Meanwhile, to read the full post, we can click any post on the home
page. That will take us to the destination page.

13. A Complete News App - Using WordPress as the backend 773

Figure 13.6 – Flutter backend WordPress third

13. A Complete News App - Using WordPress as the backend 774

For instance, just like the home page, we can scroll down the single
post to read the full post.

Figure 13.7 – Flutter backend WordPress fourth

In addition, we can press the back button to get back to the home
page again.

13. A Complete News App - Using WordPress as the backend 775

As we add the new post, that will reflect on our Flutter home page.
How does it happen? Let’s see.

How Can I use Flutter with
WordPress?

Firstly, we have added the dependency in our “pubspec.yaml” file.
Remember, we need the HTTP package to send the request and
receive the response.

After that, based on that response, we retrieve the content. In other
words, the HTTP package plays the most important role.

1 dependencies:

2 flutter:

3 sdk: flutter

4

5 cupertino_icons: ^1.0.2

6 http: ^0.13.4

7 google_fonts: ^2.3.1

On the other hand, the Google fonts package helps us to enhance
the styling. For example we can use any fancy font, if we wish.

But, we should always use the fonts that are easy to read.

Secondly, in the home page we will use the Future Builder widget
that has a property future which get all posts.

Besides, the builder property will return the ListView builder
constructor that will display all the posts with title, image and
content.

13. A Complete News App - Using WordPress as the backend 776

1 import 'package:flutter/material.dart';

2 import 'package:flutter_wordpress_challenge/model/happy_t\

3 heme.dart';

4

5 import '../model/post.dart';

6 import 'post_detail.dart';

7

8 /// added content

9 /// adding the navigation

10

11 class FlutterWordPressHomePage extends StatefulWidget {

12 const FlutterWordPressHomePage({Key? key, required this.t\

13 itle})

14 : super(key: key);

15

16 final String title;

17

18 @override

19 State<FlutterWordPressHomePage> createState() =>

20 _FlutterWordPressHomePageState();

21 }

22

23 class _FlutterWordPressHomePageState extends State<Flutte\

24 rWordPressHomePage> {

25 @override

26 void initState() {

27 super.initState();

28 Post().getAllPosts();

29 }

30

31 @override

32 Widget build(BuildContext context) {

33 Post posts = Post();

34 return Scaffold(

35 backgroundColor: HappyTheme.shrineErrorRed,

13. A Complete News App - Using WordPress as the backend 777

36 appBar: AppBar(

37 backgroundColor: HappyTheme.shrineBrown600,

38 title: Text(

39 widget.title,

40 style: HappyTheme.appbarStyle,

41),

42),

43 body: Center(

44 child: Container(

45 color: HappyTheme.shrinePink300,

46 margin: const EdgeInsets.all(8.0),

47 child: FutureBuilder<List>(

48 future: posts.getAllPosts(),

49 builder: (context, snapshot) {

50 if (snapshot.hasData) {

51 if (snapshot.data!.isEmpty) {

52 return const Center(

53 child: Text('No Post available.'),

54);

55 }

56 return ListView.builder(

57 itemCount: snapshot.data?.length,

58 itemBuilder: (context, index) {

59 return Card(

60 elevation: 10.0,

61 shadowColor: HappyTheme.shrineErrorRe\

62 d,

63 child: ListTile(

64 title: Row(

65 children: [

66 Expanded(

67 child: Container(

68 padding: const EdgeInsets\

69 .all(8.0),

70 width: 150,

13. A Complete News App - Using WordPress as the backend 778

71 height: 150,

72 child: Image.network(snap\

73 shot.data![index]

74 ['_embedded']['wp\

75 :featuredmedia'][0]

76 ['source_url']),

77),

78),

79 Expanded(

80 child: Container(

81 padding: const EdgeInsets\

82 .all(10.0),

83 child: Text(

84 snapshot.data![index]['ti\

85 tle']['rendered'],

86 style: HappyTheme.titleSt\

87 yle,

88),

89),

90),

91],

92),

93 subtitle: Container(

94 padding: const EdgeInsets.all(10.\

95 0),

96 child: Text(

97 snapshot.data![index]['conten\

98 t']['rendered']

99 .toString()

100 .replaceAll('<p>', '')

101 .replaceAll('</p>', '')

102 .replaceAll('', '\

103 ')

104 .replaceAll('', \

105 ''),

13. A Complete News App - Using WordPress as the backend 779

106 maxLines: 4,

107 overflow: TextOverflow.ellips\

108 is,

109 style: HappyTheme.contentStyl\

110 e,

111),

112),

113 onTap: () {

114 Navigator.push(

115 context,

116 MaterialPageRoute(

117 builder: (context) => PostDet\

118 ail(

119 data: snapshot.data![inde\

120 x],

121),

122),

123);

124 },

125),

126);

127 },

128);

129 } else if (snapshot.hasError) {

130 return Center(

131 child: Text(snapshot.error.toString()),

132);

133 } else {

134 return const Center(

135 child: CircularProgressIndicator(),

136);

137 }

138 },

139),

140),

13. A Complete News App - Using WordPress as the backend 780

141),

142 // This trailing comma makes auto-formatting nicer fo\

143 r build methods.

144);

145 }

146 }

Finally, we should be careful about getting the data in the right
manner.

Why?

Because the data comes in a JSON format. Therefore, we have to
extract the key to get the value.

Sending data to the single post pageWe have discussed how to send
data from one page to another page. In addition,we have the data
as a single List of various maps and lists inside.

Above all, every post has the index associated with it.

1 import 'package:flutter/material.dart';

2 import 'package:flutter_wordpress_challenge/model/happy_t\

3 heme.dart';

4

5 class PostDetail extends StatelessWidget {

6 const PostDetail({

7 Key? key,

8 required this.data,

9 }) : super(key: key);

10 final Map<dynamic, dynamic> data;

11

12 @override

13 Widget build(BuildContext context) {

14 return Scaffold(

15 appBar: AppBar(

16 title: const Text('Back Home'),

13. A Complete News App - Using WordPress as the backend 781

17),

18 body: ListView(

19 children: [

20 Container(

21 margin: const EdgeInsets.all(10.0),

22 child: Text(

23 data['title']['rendered'],

24 style: const TextStyle(

25 fontSize: 40.0,

26 fontWeight: FontWeight.bold,

27),

28),

29),

30 const SizedBox(

31 height: 10.0,

32),

33 Container(

34 padding: const EdgeInsets.all(8.0),

35 width: 450,

36 height: 450,

37 child: ClipOval(

38 child: Image.network(

39 data['_embedded']['wp:featuredmedia'][0][\

40 'source_url'],

41 fit: BoxFit.cover,

42),

43),

44),

45 Container(

46 padding: const EdgeInsets.all(10.0),

47 child: Text(

48 data['content']['rendered']

49 .toString()

50 .replaceAll('<p>', '')

51 .replaceAll('</p>', '')

13. A Complete News App - Using WordPress as the backend 782

52 .replaceAll('', '')

53 .replaceAll('', ''),

54 style: HappyTheme.postContentStyle,

55),

56),

57],

58),

59);

60 }

61 }

Now we can display the single post as we have used the Navigator
push method.

As a result, it pushes the data through the class constructor.

If you want to clone this step please visit the respective branch of
the GitHub repository.

• For full code snippet please visit the respective GitHub Repos-
itory - ³⁹

How to show Categories in the
NewsApp

In this section we will learn how to use Tab in Flutter to show the
Categories. We have been building the NewsApp.

So far we have progressed a little bit. In the previous sections, we
have shown how to use the WordPress as the backend.

We have also been able to display the latest posts on the home page.
But this is not enough. For example, a post may belong to one or
many categories.

³⁹https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/fourth-step

https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/fourth-step
https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/fourth-step
https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/fourth-step

13. A Complete News App - Using WordPress as the backend 783

Therefore, in this section we will try to show each category on the
upper part of our Flutter App. In addition, we can also allow users
to click any category to see all posts that belong to that category.

Finally, we will also retrieve every category on a single page.

Why?

Because users can click any category to view all the posts belong to
that category.

There are lot of things to do.

To get an idea, we may take a look at the categories.

13. A Complete News App - Using WordPress as the backend 784

Figure 13.8 – Flutter backend WordPress fourth

In the above image we have clicked the category entertainment.
And, as a result, we have displayed all the posts belonging to that
category.

The next imagewill show you howwe can retrieve all the categories
in one page.

13. A Complete News App - Using WordPress as the backend 785

Figure 13.9 – Tab Flutter second example

How to use Tab in Flutter?

To make it happen we have used the Tab in Flutter. In any Flutter
App, the tab layout is the part of the material library.

We can display all the categories in the Tab layout.

To do this we follow the following steps.

13. A Complete News App - Using WordPress as the backend 786

1 Firstly, Create a TabController.

2 Secondly, Create the tabs.

3 Finally, Create content for each tab.

After that, we have created a Tab Controller in the Dashboard
controller. And in the Tab controller we have mentioned name of
the each category.

Let us see the full code first. Meanwhile we can discuss the code
later.

1 import 'package:flutter/material.dart';

2 import 'package:flutter/services.dart';

3

4 import '../view/categories/posts_by_category_id_one.dart';

5

6 import 'dashboard_drawer.dart';

7 import '../view/latest_posts.dart';

8 import '../view/categories/posts_by_category_id_two.dart';

9 import '../view/categories/posts_by_category_id_three.dar\

10 t';

11 import '../view/categories/posts_by_category_id_four.dart\

12 ';

13 import '../view/categories/test_page.dart';

14

15 class DashBoardHome extends StatefulWidget {

16 const DashBoardHome({

17 Key? key,

18 }) : super(key: key);

19

20 @override

21 State<DashBoardHome> createState() => _DashBoardHomeState\

22 ();

23 }

24

25 class _DashBoardHomeState extends State<DashBoardHome>

13. A Complete News App - Using WordPress as the backend 787

26 with SingleTickerProviderStateMixin {

27 TabController? _tabController;

28

29 final List<Tab> topTabs = <Tab>[

30 const Tab(child: Text('LATEST')),

31 const Tab(child: Text('OVERALL')),

32 const Tab(child: Text('BUSINESS')),

33 const Tab(child: Text('ENTERTAINMENT')),

34 const Tab(child: Text('FASHION')),

35 const Tab(child: Text('ALL CATEGORIES')),

36];

37

38 @override

39 void initState() {

40 _tabController =

41 TabController(length: topTabs.length, initialInde\

42 x: 0, vsync: this)

43 ..addListener(() {

44 setState(() {});

45 });

46

47 super.initState();

48 }

49

50 Future<bool> _onWillPop() async {

51 if (_tabController?.index == 0) {

52 await SystemNavigator.pop();

53 }

54

55 Future.delayed(const Duration(microseconds: 100), () {

56 _tabController?.index = 0;

57 });

58

59 return _tabController?.index == 0;

60 }

13. A Complete News App - Using WordPress as the backend 788

61

62 final _scaffoldKey = GlobalKey<ScaffoldState>();

63

64 @override

65 Widget build(BuildContext context) {

66 return Container(

67 margin: const EdgeInsets.all(5.0),

68 child: WillPopScope(

69 onWillPop: _onWillPop,

70 child: Scaffold(

71 key: _scaffoldKey,

72 appBar: AppBar(

73 title: const Text(

74 'Flutter WordPress Challenge',

75 style: TextStyle(

76 fontSize: 30,

77),

78),

79 actions: [

80 Container(

81 child: IconButton(

82 icon: const Icon(Icons.search),

83 splashColor: Colors.transparent,

84 highlightColor: Colors.transparent,

85 onPressed: () {},

86),

87 decoration: BoxDecoration(

88 shape: BoxShape.circle,

89 color: Colors.pink[300],

90),

91),

92 Container(

93 margin: const EdgeInsets.symmetric(horizo\

94 ntal: 10.0),

95 child: IconButton(

13. A Complete News App - Using WordPress as the backend 789

96 icon: const Icon(Icons.menu),

97 splashColor: Colors.transparent,

98 highlightColor: Colors.transparent,

99 onPressed: () => _scaffoldKey.currentStat\

100 e!.openEndDrawer(),

101),

102 decoration: BoxDecoration(

103 shape: BoxShape.circle,

104 color: Colors.pink[300],

105),

106),

107],

108 bottom: TabBar(

109 controller: _tabController,

110 indicatorColor: Colors.black,

111 tabs: topTabs,

112 isScrollable: true,

113),

114),

115 endDrawer: Container(

116 padding: const EdgeInsets.all(5.0),

117 child: const DashBoardDrawer(),

118),

119 body: TabBarView(

120 controller: _tabController,

121 children: const [

122 /// all categories displayed on tabs

123 ///

124 LatestPosts(),

125 PostsByCategoryIDOne(),

126 PostsByCategoryIDTwo(),

127 PostsByCategoryIDThree(),

128 PostsByCategoryIDFour(),

129 TestPage(),

130],

13. A Complete News App - Using WordPress as the backend 790

131),

132),

133),

134);

135 }

136 }

How Tab Controller works in Flutter

First thing first.

We have created a Tab Controller and a List of Type Tab.

1 TabController? _tabController;

2

3 final List<Tab> topTabs = <Tab>[

4 const Tab(child: Text('LATEST')),

5 const Tab(child: Text('OVERALL')),

6 const Tab(child: Text('BUSINESS')),

7 const Tab(child: Text('ENTERTAINMENT')),

8 const Tab(child: Text('FASHION')),

9 const Tab(child: Text('ALL CATEGORIES')),

10];

Next, we have initiated the Tab Controller once the page loads.

13. A Complete News App - Using WordPress as the backend 791

1 @override

2 void initState() {

3 _tabController =

4 TabController(length: topTabs.length, initialInde\

5 x: 0, vsync: this)

6 ..addListener(() {

7 setState(() {});

8 });

9

10 super.initState();

11 }

After that, we ensure that the back home button should take us to
the home page.

1 Future<bool> _onWillPop() async {

2 if (_tabController?.index == 0) {

3 await SystemNavigator.pop();

4 }

5

6 Future.delayed(const Duration(microseconds: 100), () {

7 _tabController?.index = 0;

8 });

9

10 return _tabController?.index == 0;

11 }

In the bottom property we have defined few other properties.

Firstly, the Tab should be scrollable. Secondly, whenever users click,
it should have a indicator shadow color below.

Finally, we have made it sure that the value of the controller
indicates to the Tab Controller.

13. A Complete News App - Using WordPress as the backend 792

1 bottom: TabBar(

2 controller: _tabController,

3 indicatorColor: Colors.black,

4 tabs: topTabs,

5 isScrollable: true,

6),

At the body property we have used a TabBarView Widget whose
children property returns a List of pages.

1 body: TabBarView(

2 controller: _tabController,

3 children: const [

4 /// all categories displayed on tabs

5 ///

6 LatestPosts(),

7 PostsByCategoryIDOne(),

8 PostsByCategoryIDTwo(),

9 PostsByCategoryIDThree(),

10 PostsByCategoryIDFour(),

11 TestPage(),

12],

13),

In the next section we will discuss how we can get all the pages
using the Drawer Widget.

If you want to see the related code snippets please read this branch
of GitHub repository.

• For full code snippet please visit the respective GitHub Repos-
itory - ⁴⁰

• Read updated articles on Flutter, Dart, and Algorithm - ⁴¹

⁴⁰https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/sixth-step
⁴¹https://sanjibsinha.com

https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/sixth-step
https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/sixth-step
https://sanjibsinha.com/
https://github.com/sanjibsinha/flutter_wordpress_challenge/tree/sixth-step
https://sanjibsinha.com/

14. Flutter app and
Artificial Intelligence

Can we use artificial intelligence in the Flutter app? Yes, we can.
We can make Artificial Intelligence Apps using Flutter.

Not only that, we can use Flutter as a part of a Machine Learning
tool also.

How can we do that?

We can do that with the TensorFlow Lite package.

What is TensorFlow?

Firstly, we know that a scalar means a single number. Secondly, we
know that a vector means one dimensional array. Thirdly, a matrix
represents a two dimensional array.

In Flutter we use List and Map.

Right?

And finally, comes the tensor that represents the N-Dimensional
array.

When we say, N dimension, it means N represents any number. It
could be 3 and more than 3.

Now, it’s easy to say, 3 dimensions. But in reality, from 3 dimensions
the complexity grows.

As a result, let’s try to make it simple.

14. Flutter app and Artificial Intelligence 794

In TensorFlow main objects are tensors. And as we progress we
will find that the TensorFlow library manipulates tensors in many
ways.

As a result, we get value. To do that, we need to import it first. And
then we can check the version in Google Colab.

• To know more on TensorFlow please read the full discussion.
- ⁴²

Therefore, we can use TensorFlow Machine Learning concepts to
develop artificially intelligent flutter apps.

As a result, we can train a model for the apps, besides, we can also
use these trained-models in the apps.

Finally we can build Artificially Intelligent, Deep Learning and
Machine Learning Apps for the Android Smart Phones and iOS
using Flutter SDK with TensorFlow Lite.

Besides these we can also develop Flutter apps using Firebase
Machine Learning Kit which we know as Firebase ML Kit.

We have discussed Machine Learning Algorithms separately on
another website dedicated to TensorFlow, Machine Learning, and
Artificial Intelligence.

How Artificial Intelligence helps us
to move forward

We can make significant advancement and innovations using Arti-
ficial Intelligence.

As AI has become a rising star in the mobile app development
services, we can use it to make more advanced Flutter apps.

⁴²https://sinhasanjib.com

https://sinhasanjib.com/
https://sinhasanjib.com/
https://sinhasanjib.com/

14. Flutter app and Artificial Intelligence 795

It’s true that the combination of Flutter and Artificial Intelligence
may bring out some unique methods which is the present need for
the business growth.

Are there any examples of Artificial
Intelligence?

Certainly, there are.

Personalized Shopping Recommendations is one of them.

AI-driven Chat-bot has become popular. And there are many
others.

Because AI has become a buzzword in the market of mobile app
development, we must adopt it also.

We will discuss more on the Firebase ML kit later.

Why?

Because, there are many things to learn.

Above all, many things to come while we have been building our
E Commerce App.

So stay tuned.

15. What Next
If you find these information useful, I am happy. For any Flutter
related query, you may send an email to

1. sanjib12sinha@gmail.com.

And at the same time don’t forget to visit the website where I write
regularly on Flutter only.

You’ll get the updated Flutter tips and tricks. So how about take the
trips? :)

For more Flutter related Articles and Resources⁴³

For more TensorFlow, Machine Learning and AI related Articles
and Resources⁴⁴

The code repositories for this book⁴⁵

⁴³https://sanjibsinha.com
⁴⁴https://sinhasanjib.com
⁴⁵https://github.com/sanjibsinha/

https://sanjibsinha.com/
https://sinhasanjib.com/
https://sinhasanjib.com/
https://github.com/sanjibsinha/
https://sanjibsinha.com/
https://sinhasanjib.com/
https://github.com/sanjibsinha/

	Table of Contents
	1. Getting Started with Flutter 3.0
	Download or Upgrade to the latest Flutter 3.0
	What is new in Flutter 3.0
	1 How Widget tree follows the design and layout principles
	Does Flutter require coding?
	What is Widget in Flutter
	How to use Widget
	Difference between Non-Material and Material Widgets
	What are constraints in flutter
	What is the problem here?
	How do you use constraints in flutter?
	What are BoxConstraints in Flutter
	What is Align in Flutter
	How to use aspect ratio widget
	What is Baseline in Flutter

	2. How to implement a design by building layouts
	How to paint in Flutter?
	What is layout in Flutter
	How we build Flutter Layout
	What is an AppBar? How do you use AppBar in Flutter?
	AppBar Flutter: How to use AppBar right way?
	What is SliverAppBar in flutter?
	How to use AppBar Toolbars in flutter
	How to make tab bar view in flutter
	How to use TabBar in Flutter
	How to make the AppBar transparent

	3. What are responsive and adaptive Flutter Applications
	How to use Stack in Flutter
	What is Stack-positioned
	Stack-Positioned-bottom
	Stack-Alignment

	4. How to build a Quiz App
	How do you Map a list in flutter?
	How do I get a List of Maps in Dart?
	How to change theme of an App?
	What is hex color code
	How to use Theme property in the Flutter Quiz App
	How we use List in the Quiz App?
	List and Map in Quiz App
	Why we need Object Oriented Style?
	Encapsulation and Private property
	How Flutter List Quiz App works

	5. Let's Build a Happiness Calculator
	What is Slider Widget
	Why we need and how to use Slider
	Customizing the theme
	How to use the custom theme
	How SliderTheme works
	Router API in Flutter
	What is Navigator.push?
	What is Navigtor.pop?
	Business Logic behind an Flutter App
	What is the difference between Business Logic and UI Logic?
	How to create Flutter Business Logic?
	How to pass values through Navigation?
	How we can display data got from Business Logic?

	6. How we can build a Food Recipe App with List and Map
	What is GridView Flutter and How it works
	Model folder is the source of data
	How to use Naviagtion to send data
	How to add a custom Font
	Flutter navigation and sending data
	How a Widget receives data
	Named Route and sending data
	Simple Flutter navigation
	How to use Flutter named route
	Object relationship in Flutter
	Why we need relation in Flutter
	How to establish relation in Flutter
	Model View Controller
	Role of controller in MVC
	The Next Challenge
	Relation between tables, list and map
	Why Flutter List Iterate is important?
	What is clean navigation
	Routes property and its functions
	Route Flutter tips and tricks

	7. Let's learn how a Weather App uses API and serializes JSON data
	Future then, aync, await, API, JSON: Let's build a Current Weather Tracker App
	Future Flutter: WithHer App – Step 1
	Geolocator plugin makes our life easier
	What is asynchronous programming?
	What is Future in Flutter?
	What are async and await?
	Flutter State: WithHer App – Step 2
	API Flutter: WithHer App – Step 3
	What is an API?
	How can we use API in Flutter?
	JSON Flutter: WithHer App – Step 4
	What is JSON in Flutter?
	Future Then: WithHer App – Step 5
	What is Future.then() method?
	The difference between Future then and async, await
	Future in Flutter: WithHer App – Step 6
	What is Future in Flutter?
	Display data with Future in Flutter
	Pass data to State Flutter: Final Weather App
	Passing data from a Stateful Widget
	Pass data to a State object in Flutter

	8. How we can build a Blog App and learn Flutter backend programming using SQLite
	Flutter 2.8, Future, await, async and Database
	What is new in Flutter 2.8
	Future, await and async
	Which database we use in Flutter
	SQLite Database and Flutter
	Create, Retrieve, Update and Delete with SQLite Database
	SQLite Blog in Flutter: First Part
	SQLite Blog, Flutter: Second Part
	SQLite Blog, Flutter: Final Part
	Scoped Model, Provider, SQLite Database and FutureBuilder
	SQLite with Provider in Flutter
	What is Scoped Model in flutter
	Scoped Model and SQLite in Flutter
	What is future builder in Flutter

	9. NoWar App Challenge
	What is Dart list asMap method?
	How to design Flutter UI
	How to use model class to design Flutter UI?

	10. How to build a Exchange Rate App
	For loop Flutter: PriceTracker App – Step 1
	Why do we use for loop?
	How for loop in Flutter works?
	HTTP Request in Flutter: PriceTracker App Final step
	How do I get HTTP request flutter?

	11. A Chat App with Firebase Authentication and Firestore Database
	Why we use the Firebase?
	Is Flutter and Firebase full stack?
	Is Firebase easy to learn?
	Flutter and Firebase: How to Initialise App and Avoid Errors
	What is Firebase in Flutter?
	Initialise App and avoid errors
	Firebase and Flutter: Chat App authentication
	How Firebase authentication works
	Is Firebase a backend or database?
	Flutter Firestore: Chat App Final Step

	12. A Blog App with Firebase Authentication and Firestore Database
	Flutter sign in business logic
	Multi Provider with Firebase
	Flutter web 3.0 and Firestore database
	Sending data through the class constructor
	Text Form Field Flutter size, how to increase in web app
	Does the text form field flutter size vary?
	Theme color Flutter, how to use in web app
	Theme color across the flutter app
	Material design 3 Flutter : A Light Theme
	Material 3 Flutter : A Dark Theme in Web App
	Material 3 Flutter : Parent and Child
	Material 3 : Flutter Firebase, Provider Blog App Final
	Material 3 and Flutter 3.0

	13. A Complete News App - Using WordPress as the backend
	How Flutter and WordPress work together?
	How do I link my WordPress to Flutter?
	Can we convert the WordPress app into the Flutter app?
	Create, retrieve, update, and delete
	How to create a NewsApp in WordPress?
	How Can I use Flutter with WordPress?
	How to show Categories in the NewsApp
	How to use Tab in Flutter?
	How Tab Controller works in Flutter

	14. Flutter app and Artificial Intelligence
	What is TensorFlow?
	How Artificial Intelligence helps us to move forward
	Are there any examples of Artificial Intelligence?

	15. What Next

