ULTIMATE

GraphQL for
Scalable Web Apps

Build and Scale Production-Ready
Applications Using GraphQL,
React, Node.js, and Apollo

b

AVA

GraphQL for
Scalable Web Apps

Build and Scale Production-Ready
Applications Using GraphQL,
React, Node.js, and Apollo

Robins Gupta

Ultimate GraphQL for
Scalable Web Apps

Build and Scale Production-Ready
Applications
Using GraphQL, React, Node.js, and Apollo

Robins Gupta

AVA

Www.orangeavad.com

http://www.orangeava.com/

Copyright © 2025 Orange Education Pvt Ltd, AVA®

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be
held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capital. However, Orange
Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive
names, registered names, trademarks, service marks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

First Published: December 2025
Published by: Orange Education Pvt Ltd, AVA®
Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,
N1 7AA, United Kingdom

ISBN (PBK): 978-93-49888-76-0
ISBN (E-BOOK): 978-93-49888-02-9

Scan the QR code to explore our entire catalogue

www.orangeava.com

http://www.orangeava.com/

Dedicated To

My Beloved Parents,

Mr. Vijay Gupta
Mprs. Nilam Gupta

whose values shaped my path

And

Dr. Prince Kumar Gupta
Jigyasa Kaushik
for their constant inspiration and belief in me

About the Author

Robins Gupta is an engineering leader and entrepreneur with a proven
track record of building successful products and driving innovation across
multiple industries. His entrepreneurial journey includes co-founding
several startups, and developing successful software products from the
ground up, demonstrating his ability to transform ideas into scalable
solutions.

With extensive experience spanning construction, gaming, e-commerce,
finance, and hospitality sectors, Robins has developed deep expertise in
building high-performance applications that solve real-world problems. His
cross-industry perspective enables him to approach technical challenges
with creativity and pragmatism, always focusing on delivering value to end
users.

Robins specializes in modern web technologies, with particular expertise in
GraphQL, Node.js, React, and the Apollo ecosystem. His hands-on
experience building production-grade applications has given him unique
insights into the challenges developers face when scaling applications and
optimizing performance. This book reflects years of practical knowledge
gained from implementing GraphQL in real-world scenarios, making
complex concepts accessible through clear explanations and hands-on
examples.

Beyond his professional accomplishments, Robins is deeply committed to
knowledge sharing and community building. He actively contributes to the
tech community through articles, inspiring developers to embrace
continuous learning and innovation. His teaching philosophy emphasizes
practical, project-based learning that equips developers with immediately
applicable skills.

Currently, Robins is building RevampKey, an Al-based Agentic IDE
platform designed to revolutionize development workflows through spec-
driven development using AIl. This venture reflects his forward-thinking
approach and commitment to exploring emerging technologies that
empower developers to build better software faster.

In his free time, Robins stays at the forefront of technology by exploring the
latest trends and working on innovative projects. His passion for learning
and building continues to drive his contributions to the developer
community, making him not just an accomplished engineer and

entrepreneur, but also a mentor and advocate for the next generation of
developers.

About the Technical Reviewers

Deeptiman Mallick has over seven years of experience building high-
stake, consumer facing, large-scale enterprise web applications. He began
his journey as a freelance developer during the second year of his
bachelor’s degree in Information Technology, building web applications
with PHP and jQuery from his hostel room.

In his professional career, he has built internal dashboards for leading
central as well as consumer banks dealing in transactions worth millions of
dollars daily. Deeptiman has worked on some of the most marketed features
of JioCinema, which have stood along the scale, and been enjoyed by
millions of cricket fans in India, during the Indian Premier League.

He currently works as a freelance consultant in emerging early stage
startups, helping them in building full-stack web and mobile applications.
He also assists these startups in building engineering teams, efficiently
integrating Al in the development process, and setting up engineering
processes following industry-wide best practices.

Surya Pratap Singh is a full-stack software engineer with over four years
of experience in designing and optimizing scalable web and backend
systems. He specializes in building distributed architectures and data-driven
applications using technologies such as Node.js, React, GraphQL, and
Kafka.

At Fynd (Shopsense Retail Pvt. Ltd.), he has contributed to the
architecture of Fynd Engage, a loyalty and rewards SaaS platform serving
over 100,000 users. Surya led initiatives to modularize backend services for
transactions, reward management, and point redemption, improving
scalability and maintainability. He also migrated the key APIs from REST
to GraphQL, enhancing performance and reducing redundant data calls.
Surya has designed event-driven pipelines enabling near real-time
processing and analytics, supporting seamless integrations with major retail
partners such as Tira, Netmeds, and JioMart.

Previously, at Softsensor.ai, Surya developed optimized front-end libraries
for large-scale image annotation systems. His current interests include

distributed systems, data engineering, and automation workflows that help
improve reliability and performance at scale.

Acknowledgements

I would like to express my heartfelt gratitude to my parents, Mr. Vijay
Gupta and Mrs. Nilam Gupta, for their endless love, encouragement, and
belief in me. Their values and support have been the foundation of
everything I do.

My sincere thanks to my brother, Dr. Prince Gupta, whose constant
guidance and motivation have been my strength throughout this journey.

A special thanks to Jigyasa Kaushik, whose encouragement and positivity
inspired me to complete this book with dedication.

I am also deeply thankful to my family, friends, and colleagues, especially
Dr Shiwani and Saurabh, for their continuous support, patience, and
understanding.

I gratefully acknowledge Mr. Surya Pratap and Mr. Deeptiman Mallick for
their valuable technical review and guidance during the preparation of this
book.

Finally, my gratitude goes to the entire editorial team at Orange Education
Pvt. Ltd. for their unwavering support, and providing the time and
flexibility needed to complete this work.

Preface

The world of web development has transformed dramatically over the past
decade. As applications grow more complex and user expectations soar,
developers face an ever-present challenge as to how do we build APIs that
are flexible, efficient, and maintainable? This book introduces you to
GraphQL, a revolutionary approach to API design that puts the client in
control, eliminates over-fetching and under-fetching, and brings clarity to
the way we think about data.

GraphQL emerged from Facebook in 2012 to solve the real problems faced
by tech giants such as Airbnb, Twitter, and GitHub. These companies
needed a better way to deliver precise data to mobile apps and web
interfaces without the constraints of traditional REST APIs. Today,
GraphQL has become an essential skill for modern web developers, and this
book is your comprehensive guide to mastering it.

The book takes a uniquely practical approach. Rather than dwelling on
theory alone, we will guide you through building "Streamify" a feature-rich
streaming platform similar to Netflix. Starting from the fundamentals of
GraphQL schemas, queries, and mutations, you will progress through real-
world challenges such as user authentication with Google OAuth, video
content management, rating systems, personalized recommendations, and
advanced performance optimization techniques.

You will work with a modern, production-ready tech stack: Node.js and
Express on the backend, Apollo Server for GraphQL implementation,
MongoDB for data persistence, React with Vite for the frontend, and Apollo
Client for seamless data management. Each chapter builds upon the
previous, reinforcing the best practices, while encouraging hands-on
experimentation.

This book is structured in three parts, spanning 13 comprehensive chapters.
Part One establishes your GraphQL foundation, covering core concepts,
backend setup with Apollo Server, and frontend integration with React. Part
Two guides you through building the Streamify platform from the ground
up creating an admin panel for content management, designing an engaging
storefront, implementing video detail pages with ratings, and developing

intelligent recommendation systems. Part Three elevates your skills to
production-level expertise, exploring caching strategies on both frontend
and backend, solving the notorious N+1 query problem with Datal.oader,
implementing scalable architectures, and optimizing performance for real-
world traffic.

While each chapter builds upon the previous one, this book is designed with
flexibility in mind. If you have a solid foundation in GraphQL basics, feel
free to skip Part One and jump directly to Part Two to dive into building the
Streamify platform. If you are an experienced GraphQL developer
interested only in advanced techniques and best practices, you can head
straight to Part Three to explore production-level optimization strategies.
Choose your starting point based on your current skill level and learning
goals. Thus, whether you are a frontend developer looking to master
GraphQL, a backend engineer seeking to build efficient APIs, or a full-
stack developer ready to create production-grade applications, this book
will equip you with the knowledge and confidence to tackle ambitious web
development projects.

Also, to make the learning experience hands-on, all code examples and
datasets used in this book are available on GitHub:

https://github.com/ava-orange-education/Ultimate-GraphQL-Web-
Development-Handbook

So, let us embark on this exciting journey together, and unlock the full
potential of GraphQL in modern web development. The details are as
follows:

Part 1: Introduction to GraphQL and Core Concepts

Chapter 1. Introduction to GraphQL introduces you to the revolutionary
world of GraphQL and its transformative impact on web development.
Here, you will discover why tech giants like Facebook, Airbnb, and Twitter
adopted GraphQL to overcome REST API limitations. Through practical
examples, you will learn about precise data retrieval, strongly-typed
schemas, and real-time capabilities. The chapter compares GraphQL with
REST using a blogging website example, demonstrating how GraphQL
eliminates over-fetching and under-fetching, while providing a single,
flexible endpoint for all your data needs.

https://github.com/ava-orange-education/Ultimate-GraphQL-Web-Development-Handbook

Chapter 2. Installing GraphQL.: Backend guides you through setting up a
production-ready GraphQL server using Node.js and Apollo Server v4.
Here, you will understand GraphQL's language-agnostic nature, and why
Node.js with Express provides an ideal backend foundation. The chapter
covers initializing your project, configuring the server environment, and
introduces GraphQL Playground for interactive API testing. You will build
your first GraphQL schemas and resolvers for a blogging platform,
establishing a solid foundation for backend development.

Chapter 3. Building with GraphQL: Frontend and Apollo Integration
seamlessly connects your frontend to GraphQL using React and Apollo
Client. Starting with setting up React using Vite for optimal performance,
you will install and configure Apollo Client to manage GraphQL data
efficiently. The chapter demonstrates executing queries with plain
JavaScript before integrating them into React components, and then
progresses to implementing mutations for creating and updating blog posts.
By the end, you will have a fully functional React application powered by
GraphQL.

Part 2: Building Streamify: A Netflix-Like Streaming Platform

Chapter 4. Setting_the Stage for Building_a Streaming_Website marks
the transition from theory to building a real-world streaming platform. You
will define the project scope, explore core features including user
authentication and video playback, and understand the recommendation
system architecture. The chapter establishes the project structure, separating
backend and frontend concerns, and prepares your development
environment with Node.js, Express, React and Next.js. You will also learn
why we are using YouTube videos as our content source, and how to
organize the code for scalability.

Chapter S. Building_the Admin Panel focuses on creating the
administrative backbone of Streamify. You will design data schemas for
AdminUser and VideoStream entities, implement Google OAuth
authentication with Passport.js, and build a secure admin authentication
system. The chapter covers constructing the Ul for admin login and video
upload, creating GraphQL mutations for content management, and
implementing access control to ensure that only authorized users can upload

videos. By the end, you will have a fully functional admin panel for
managing video content.

Chapter 6. Designing_the Storefront brings the user-facing side of
Streamify to life. You will implement Google Authentication for regular
users, while adding admin-level restrictions using environment variables.
The chapter covers updating MongoDB and GraphQL schemas with role-
based access control, crafting an elegant login page UI, and designing
GraphQL queries to fetch homepage data organized by genres. Thus, you
will build the homepage with dynamic content loading, creating an
engaging entry point for your streaming platform.

Chapter 7. Crafting the Video Detail Page creates an immersive viewing
experience for users. You will design GraphQL queries to fetch
comprehensive video information by ID, implement a sophisticated rating
system with mutations and queries, and extend the VideoStream schema
with rating fields. The chapter demonstrates using Mongoose middleware
hooks for automatic updates, and building an interactive video detail UI that
displays ratings and allows users to rate content. This feature becomes
crucial for the recommendation engine that you will build next.

Chapter 8. Building_Video Recommendations implements intelligent
content discovery to keep users engaged. Using MongoDB queries, rather
than complex Al models will help you create a practical recommendation
system that suggests similar videos based on genre and ratings. The chapter
covers designing GraphQL queries for personalized suggestions,
implementing a "Recently Watched Videos" feature, and integrating
recommendation components into the video detail page. You will also learn
how simplified techniques can still deliver effective results for content
discovery.

Chapter 9. Unleashing_the Power of Caching_in GraphQL optimizes
your application's performance through strategic caching. You can explore
different caching mechanisms in GraphQL, understanding the role of
caching in both frontend and backend. The chapter implements Apollo
Client cache policies (cache-first, network-only, cache-and-network), adds
pagination with caching for efficient data loading, and discusses when to
use different fetch policies. You will also learn to reduce redundant queries,
improve load times, and create a blazing-fast user experience.

Part 3: Scalability and Advanced Concepts

Chapter 10. Ensuring__ Scalability: Backend Strategies tackles
production-level challenges head-on. You will be able to solve the notorious
N+1 query problem using Datal.oader for batching and caching database
calls. The chapter implements HTTP caching strategies with Apollo Server
v3, leveraging CDN and browser caching for optimal performance. You
will also learn to design efficient GraphQL schemas, avoid common query
anti-patterns, and implement scalable architectures that handle real-world
traffic. The focus on HTTP caching over Redis reflects modern best
practices for global performance.

Chapter 11. Advanced Frontend Development: High Scalability
transforms your frontend architecture for production readiness. You will be
able to implement a feature-first folder structure that improves
maintainability and team collaboration, co-locate GraphQL queries with
components for better code organization, and separate concerns into pages,
features, and reusable elements. The chapter covers lazy loading with React
Suspense, implementing React.memo for performance optimization, and
building modular components that scale with your application's growth.

Chapter 12. Caching_on the Frontend: Performance Optimization
pushes Apollo Client caching to its limits. You can master the advanced
techniques such as read Fragment and write Fragment for granular cache
updates, implement local Storage persistence using apollo3-cache-persist
for offline-ready experiences, and create optimistic Ul updates for instant
user feedback. The chapter also demonstrates the stale-while-revalidate
pattern, efficient pagination strategies, and how to build applications that
feel responsive even on slow connections.

Chapter 13. Conclusion: The Future of Web Development reflects on
your journey and looks ahead to emerging trends. You can explore
serverless GraphQL deployment, GraphQL Federation for microservices,
real-time experiences with subscriptions, and Al integration possibilities.
The chapter provides a roadmap for continued growth, encouraging you to
contribute to open source, experiment with new patterns, and build
production-grade applications. In fact, you will be well-equipped with the
skills that are directly applicable to real-world projects, and highly valued
across the industry.

Get a Free eBook

We hope you are enjoying your recently purchased book! Your feedback is
incredibly valuable to us, and to all other readers looking for great books.

If you found this book helpful or enjoyable, we would truly appreciate it, if
you could take a moment to leave a short review with a 5 star rating on
Amazon. It helps us grow, and lets other readers discover our books.

As a thank you, we would love to send you a free digital copy of this book,
and a 30% discount code on your next cart value on our official websites:

www.orangeava.com

www.orangeava.in (For Indian Subcontinent)

Here's how:
Leave a review for the book on Amazon.

Take a screenshot of your review, and send an email to
info@orangeava.com (it can be just the confirmation screen).

Once, we receive your screenshot, we will send you the digital file, within
24 hours.

Thank you so much for your support - it means a lot to us!

http://www.orangeava.com/
http://www.orangeava.in/
mailto:info@orangeava.com

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-
education/Ultimate-GraphQL-for-
Scalable-Web-Apps

The code bundles and images of the book are also hosted on
htips://rebrand.ly/ab5e3c

https://github.com/ava-orange-education/Ultimate-GraphQL-for-Scalable-Web-Apps
https://rebrand.ly/ab5e3c

In case there’s an update to the code, it will be updated on the existing
GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and
follow best practices to ensure the accuracy of our content to provide an
indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved. To
let us maintain the quality and help us reach out to any readers who might
be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

mailto:errata@orangeava.com

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of
every book published, with PDF and ePub files available? You can
upgrade to the eBook version at www.orangeava.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on AVA® Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at info@orangeava.com
with a link to the material.

ARE YOU INTERESTED IN AUTHORING
WITH US?

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please write to us at
business@orangeava.com. We are on a journey to help developers and
tech professionals to gain insights on the present technological
advancements and innovations happening across the globe and build a
community that believes Knowledge is best acquired by sharing and
learning with others. Please reach out to us to learn what our audience
demands and how you can be part of this educational reform. We also
welcome 1deas from tech experts and help them build learning and
development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

can then see and use your unbiased opinion to make purchase decisions.
We at Orange Education would love to know what you think about our
products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit
WWW.orangeava.com.

http://www.orangeava.com/

Table of Contents

Part 1 Introduction to GraphQL and Core Concepts

1. Introduction to GraphQL

Introduction

Structure

Understanding GraphQL’s Advantages
The Significance of GraphQL
Big Companies Embracing GraphQL
Airbnb s GraphQL Adoption

Comparing GraphQL over REST
Advantages of GraphQL over REST
Precise Data Retrieval (Reduced Over-Fetching)
Single Endpoint (Under-Fetching Prevention)
Strongly Typed Schema (GraphQL Advantage)
Real-Time Updates with Subscriptions
Self~-Documentation
Versionless API
Building a Blogging Website with REST

Core Concepts of GraphQL
Exploring GraphQL Operations: Query, _Mutation, and

Subscription

Query: Fetching Data
Mutation: Modifying Data
Subscription: Real-Time Data
Understanding GraphQL Schemas
Importance of Schemas
Basic Schemas in GraphQL
Roles of Basic Scalar Types
List and Non-Null Types
Non-Null Types
Enumeration Types
Custom Types
Summary,

Introduction to Basics of Writing GraphQL Queries
Basic Query Syntax in GraphQL
Advanced Querying_ in GraphQL
Union, Interfaces, and Fragments: When to Use What
GraphQL Fragments
Union Types
Interfaces
Setting the Stage for Practical Implementation
Bringing It All Together: Building a Blogging Platform
Creating the Schema
Constructing Queries
Performing Mutations
GraphQL Cheat Sheet
Conclusion

2. Installing GraphQL.: Backend
Introduction
Structure

GraphQL's Adaptability to Various Programming Languages
The Language of Choice

Building Unified APIs

Why, Choose Node.js and Express

Node.js: The ldeal Backend Runtime

Installing Node.js

Initializing a Project

Configuring the Server Environment for GraphQL
GraphQL API Testing

Introduction to GraphQL Playground

Interactive Testing and Exploration of GraphQL APIs

GraphQL Playground in Apollo Server

Customization and Configuration

Enabling GraphQL Playground in Production

Summary,
Building a Blogging Platform Schema with GraphQL

Introduction to Schema Design in GraphQL

Optimizing Data Retrieval and Manipulation through Schema
Design
Creating GraphQL Types for a Blogging Platform
Entities in Qur Blogging Platform
Defining the Schema
Uses of #graphgl
Author Type
Post Type
Comment Type
Integrating the Schema
Establishing Relationships in a Blogging Schema
Summary,
Building GraphQL Queries and Mutations for a Blogging Platform
Efficient Data Retrieval with GraphQL Queries
Iesting Queries in GraphQL Playground
Empowering Data Manipulation with GraphQL Mutations
Introduction to GraphQL Mutations
Schema Design for Mutations
Resolvers for Mutations
Executing Mutations in GraphQL Playground
Conclusion
Points to Remember

3. Building with GraphQL: Frontend and Apollo Integration
Introduction
Structure
Installing React Locally with Vite
The Benefits of React with Vite
Vite: A Quick Overview
Understanding the Folder Structure
Installing capolio/client and GraphQL Dependencies
Introduction to Apollo Client

GraphQL
Initializing ApolloClient_in index.js
Executing a Query with Plain JavaScript
Integrating Queries for Blog Posts

Connecting Apollo Client to React
Introduction to useQuery Hook
Building the Blog Page Component
Integrating DisplayPosts_into App.js
Running and Testing the Application
Integrating Mutations for Blog Posts
Implementing GraphQL Mutations for Adding and Updating Blog
Posts
Unveiling the Power of useMutation
Integrating Mutation Functionality into the React Components
Enhancing Post Listing with Dynamic Updates Using Refetch
Queries
Understanding Apollo Client’s Internal Cache Mechanism
Conclusion

Part 2 Building Streamify: A Netflix-Like Streaming Platform

4. Setting the Stage for Building a Streaming Website
Introduction
Structure

Netflix
Defining Project Scope and Goals
Introduction to Core Features to be Developed
Identifying Essential Features such as User Authentication and
Video Playback
Discussing Key Components such as Content Recommendation
Systems

Configuring the Project Structure
Configuring Backend Environment with Node.js and Express.js
Establishing a Frontend Environment with React.js and Next.js

Conclusion

S. Building the Admin Panel
Introduction
Structure

Setting Up Admin Panel Project
Designing Data Schemas for the Admin Panel
AdminUser Schema
Authentication Schema
VideoStream Schema
Mutations and Queries

Implementing an Admin Authentication System
Understanding JWT Tokens (JSON Web Tokens)
Integrating Passport.js for Authentication
Introduction to MongoDB: A Simple and Flexible Database

Solution
Introduction to Mongoose: Simplifying MongoDB Operations
Creating Schemas for AdminUser_and VideoStream Entities
Creating Schema for AdminUser_Entity
Implementing Authentication Methods in AdminUser Schema
Introduction to Authentication Methods
Implementation Details
Defining Methods for videoStream Schema
Updating Timestamps before Saving
Retrieving Video Streams by User ID
Uploading New Video Streams
Building Mutations Resolver for signUpGoogle
Implementation Details
Resolver Function Explanation
Resolver Integration
Building Middleware for GraphQL
Integrating Middleware with Apollo Server
Implementing Authentication Middleware
Implementing checkLogin Resolver
Defining the GraphQL Schema
Implementing the Resolver
Integrating Resolver with GraphQL

Constructing the Ul for Admin Login
Setting up the Project
Creating the Admin Login Component
Summary,

Adding Google OAuth and Apollo Client to Your Application
Authorization Link
Purpose of the Authorization Link
Returning Modified Headers
Usage
Running the Admin 1ogin Page
Building Ul Components for Content Management
Header Component
useQuery. Hook
useEffect_Hook
Conditional Rendering
Header Markup
Creating the Video Upload Form
Mutation for Video Upload
Video Upload Form Component
GraphQL Mutation
State Initialization
handleChange Function
handleSubmit Function
Form Rendering
Listing Videos Uploaded by Admin Users
Explanation
Understanding the Code
Handling Loading and Error States
Rendering the Video List
Fetch Policies in Apollo Client
Understanding cache-and-network
Conclusion

6. Designing the Storefront

Introduction

Structure

Implementing Google Authentication for User Access
Simplifying Our Implementation for Admin Access
Step-by-Step Implementation
Updating Schema for User Role Management
Updating GraphQL Schema for User Roles

Implementing Access Control Middleware for GraphQL
Operations
Crafting the UT for the Login Page
Building the <authprovider>_Component for Unified
Authentication
Understanding React’s usecontext_Hook
Wrapping the authprovider Component in React
Using Login User Information
Designing GraphQL Queries for Homepage Data
Updated GraphQL Schema for Storefront
Deep Dive into videosByGenre Query
Benefit of GraphQL for Performance
Analyzing the Current MongoDB Schema
Refinement: Indexing the Genre Field
Defining GraphQL Resolvers
Defining GraphQL Resolvers for genresWithTopVideos_and
recentlyUploadedVideos
VideoStream Static Methods
Summary
Building the Home Page and Connecting with GraphQL
Step-by-Step Implementation: Building the Home Page with
React, GraphQL, and Apollo Client
Using Apollo Client s useguery_Hook
Populating Video Sections on the Home Page
Populating the Genres Section
Populating the Recently Uploaded Videos Section
Building the videocard Component
Conclusion

7. Crafting the Video Detail Page

Introduction

Structure

Switching to Chapter 7 Codebase

Designing GraphQL Queries for Video Detail Pages

Implementing a Rating System with GraphQL Mutations and Queries
Designing MongoDB Schemas for the Rating System
Building GraphQL Schema for the Rating System

Implementing the fetchRrating Resolver
Building GraphQL Mutations: CreateOrUpdateRatingInput
GraphQL Schema Modifications
lesting in GraphiQL Playground
Crafting Ul for Video Detail Page
Building the Router and Skeleton Component for the Video Detail
Page
Start the Frontend and Backend Servers
Building the Skeleton for the Video Detail Page
VideoDetailWithData_Component
VideoDetail Component
Integrating Ul with GraphQL for Seamless User Experience
Fetching Video Details with GraphQL Query,

Code Walkthrough
Conclusion

8. Building Video Recommendations

Introduction

Structure
Switching to Chapter 8 Codebase
Start the Backend Server
Start the Frontend Server

Overview of Recommendation Systems
Importance of Recommendations in User Engagement and

Retention

Comparison of AlI-Driven and Query-Based Approaches

Schema Design for Similar Video Recommendations
Defining the GraphQL Query
Implementing the Resolver
Query, Playground
Implementing GraphQL Queries for Personalized Suggestions
Building MongoDB Queries for Personalized Recommendations
Setting Up the Resolver for the Query,
Explanation
Implementing the Recently Watched Videos Feature

Integrating the Recommendations Component into the Video Detail
Page
Integrating the Recently Watched Videos Section into the Home
Page
Step 1: Update the Query in index.js
Step 2: Add the Component in Home. js
Step 3. Connect the Query, to the Component
Integrating Similar Video and Personalized Video Suggestions
into the video Detail Page
Step 1. Update the Query in index. js
Step 2: Add the Components in VideoDetail. js
Enhancing User Engagement with Recommendations
Conclusion

9. Unleashing the Power of Caching in GraphQL
Introduction
Structure
Switching to Chapter 9 Codebase
Understanding the Role of Caching in GraphQL
Exploring Caching Mechanisms and Techniques
Frontend Caching (Client-Side Caching)
Cache Policies in Apollo Client
Dynamic Fetch Policies with nextFetchPolicy
Dypes of Cache Policies in Apollo Client
Caching with Pagination
Apollo Clients Approach to Caching Paginated Data
Backend Caching_(Server-Side Caching)
Implementing Caching Strategies with Apollo Client
Step 1: Uploading a Video in Admin Panel
Step 2. Inspecting the Code
Step 3: Testing Different Cache Policies

Fine-Tuning Cache Policies for Improved Performance
Configuring Apollo Clients Cache
How Data is Stored in Apollo Cache
Reading and Writing Directly to the Cache
readouery () — Reading from the Cache

writeQuery () — Writing to the Cache

Customizing Field Behavior in the Cache (Brief Overview)

The Need for Field Policies

read Policy,

merge_Policy

Pagination with GraphQL in Apollo Client

But Wait — There'’s a Challenge!

The Goal

Implementing Pagination Caching with fetchMore_and Field
Policies

Add Pagination Support in Your Backend

Update the Frontend Query

Use fetchMore and Pass loadMoreVideos to Ul

Update adminvideoList.jsto Accept and Use 1oadMoreVideos

Merge Paginated Results with Field Policies

Embracing the Challenge: Further Enhancements and Bonus
Exercises
Conclusion

Part 3 Scalability and Advanced Concepts

10. Ensuring Scalability: Backend Strategies

Introduction

Structure

Addressing Scalability Challenges in the GraphQL Backend
Inefficient Resolver Patterns
Lack of Smart Caching
Poor Query Design

Introduction to Datal oader for Efficient Data Fetching
Understanding the Problem Visually
Defining Datal.oader
Step 1: Install bataLoader
Step 2: Create a userlLoader for AdminUser
Step 3: Add userlLoader_to Apollo Context
S_tep 4: Use userLoader in VideoStream. uploadedBy. Resolver
Why, This Matters

Caching Strategies on the Backend
Understanding HTTP Caching versus Server-Side Caching
Using the @cachecontrol Directive
Understanding Scope: PUBLIC versus PRIVATE
Enabling HTTP Cache Headers in Apollo Server v
Dynamic Caching in Resolvers
Complete Apollo Server v5 Setup

Qverfetching and Underfetching

Unbounded or Nested Queries (n+1 Revisited)

Lack of Pagination

Not Validating or Rate Limiting Queries
Designing GraphQL Subscriptions for Scalability

How GraphQL Subscriptions Work

Backend Setup with Apollo Server

Resolver Implementation

Connecting the Frontend Using Apollo Client
Conclusion

11. Advanced Frontend Development: High Scalability

Introduction

Structure

Designing a High-Scale Frontend Architecture
Streamify Folder Structure
Why, Feature-First
Traditional Layer-Based Layout (Anti-Pattern)
Feature Spotlight: AdminvideoList
Co-Locating GraphQL with the Upload Form
Shared Ul in elements
Quick Wins for Even Better Reuse

Scaling React Components for Complex Uls

Container/Presentational Split
Pagination — Loading More as you Scroll
Route-Driven Queries — One URL, One Query
Composition over Complexity

Managing State and Data with Apollo Client at Scale

12

Why, we Trust Apollo’s Cache
Query-Driven Screens
Home page — Three Lists, One Round-Trip
Upload Form — Writing Data with a Mutation
Admin Video List — Pagination with fetchMore
Handling Loading and Error States
When to Keep State Local Instead
Handling Loading, Errors,_and States at Scale
When to Use Local State Instead
Techniques for Optimizing the User Interface
Route-Level Code Splitting
Incremental List Rendering with Pagination
Memoizing Pure Components
Image and iframe Lazy Loading
CSS Containment and Scoped Styles
Persisting Apollo Cache Between Sessions
Skeleton loaders for Perceived Speed
Conclusion

. Caching on the Frontend: Performance Optimization

Introduction
Structure
Optimizing Frontend Performance with Apollo Client Caching
Where We Left Off (Quick Recap)
Extracting a Reusable Client Module
Slimmer index. js
Result
Efficient Data Retrieval and Granular Updates
Optimistic Ul in Two Lines
Sidebar: Reactive Variables (client-only State)
Lazy Loading and Paginated Delivery of Large Datasets
The Scrolling Pain
Pagination Patterns in GraphQL
Query Shape (with Total Count)
Wiring Apollo’s Cache
Fetching More Rows in videoList
Avoiding Duplicates and Race Conditions

Prefetch on Scroll (IntersectionObserver)
Enhancing User Experience with Cached and Offline-Ready Data
Persisting Apollos cache to localStorage
Bootstrapping React after Hydration
Retrying Mutations after Connectivity Returns
Keep Secrets Qut of Storage
Optional: Add a Service Worker
Checlklist
Conclusion

13. Conclusion: The Future of Web Development

Introduction

Structure

Reflecting on the Journey,

The Evolving Landscape: What’s Next?
Your Roadmap for Continued Growth
Conclusion

Part 1

Introduction to GraphQL and Core
Concepts

CHAPTERS 1-3

CHAPTER 1
Introduction to GraphQL

Introduction

This chapter marks the beginning of your journey into the world of
GraphQL, a technology designed to revolutionize the way we build and
interact with web applications. We will explore GraphQL in a
straightforward and engaging manner, ensuring that the content is easy to
understand and interesting to read. As we progress through this chapter, we
will discover the fundamental concepts of GraphQL, its advantages, and why
it has become a crucial skill for developers like you.

Structure

In this chapter, we will cover the following topics:

e Understanding GraphQL’s Advantages

o The Significance of GraphQL
o Big Companies Embracing GraphQL
o Airbnb’s GraphQL Adoption
e Comparing GraphQL with REST
e Core Concepts of GraphQL
o Setting the Stage for Practical Implementation

Understanding GraphQL’s Advantages

Welcome to the world of GraphQL, a transformative force in web
development that promises to revolutionize how we interact with data. In
this chapter, we will delve into GraphQL’s strengths, unraveling the reasons
behind its meteoric rise in the world of APIs.

Not too long ago, RESTful APIs were the workhorses of data exchange,
connecting clients ranging from web applications to mobile apps with

servers. They offered reliability, but as applications grew more intricate,
REST began to reveal its limitations. Developers grappled with data requests
that often led to inefficiencies - sometimes too much data, other times too
little. These challenges gave rise to performance issues and added layers of
complexity.

Enter GraphQL, the brainchild of Facebook in 2012. It was born to address
the shortcomings of REST. Even tech giants such as Facebook encountered
hurdles when it came to efficiently delivering data to mobile apps. RESTful
APIs often inundated devices with more data than necessary, gobbling up
precious mobile bandwidth and resulting in frustratingly slow load times.

GraphQL introduced a groundbreaking approach. It empowered Facebook to
craft precise data queries, breaking free from the constraints of predefined
endpoints. Instead, it embraced a flexible, client-centric data request model.
This innovation paved the way for quicker, more efficient data delivery,
ultimately enhancing the performance of their mobile applications.

However, the impact of GraphQL extended far beyond Facebook’s
headquarters. Its ability to streamline data retrieval within intricate web
services earned it recognition across various industries. So, what sets
GraphQL apart, making it an invaluable asset? Join us on this enlightening
journey as we uncover the secrets that underpin GraphQL’s prowess.

In the next section, we will delve deeper into the significance of GraphQL
and explore its relevance in today’s dynamic web development landscape.

The Significance of GraphQL

Now that we have seen GraphQL’s entrance onto the web development
stage, it is time to delve into the significance of GraphQL. What makes it
more than just a buzzword or a passing trend?

The answer lies in its ability to address the fundamental challenges that
RESTful APIs encountered as applications grew increasingly complex.
GraphQL emerged as a solution that redefined how we interact with data.

Before GraphQL, RESTful APIs were the default choice for data
communication between clients (such as web or mobile apps) and servers.
While they served their purpose, they started to reveal limitations as
applications became more intricate. Developers often found themselves
trapped in a dilemma, either fetching too much data or too little. These

limitations led to performance issues and added layers of complexity to the
development process.

In 2012, Facebook introduced GraphQL to tackle these issues head-on.
Facebook faced the challenge of efficiently delivering data to its mobile
apps. RESTful APIs, designed around predefined endpoints, often sent more
data than necessary, causing slower load times and devouring precious
mobile bandwidth.

GraphQL offered a revolutionary approach. It empowered Facebook to
create precise data queries that catered to the specific needs of their
applications. Instead of being restricted by predefined endpoints, GraphQL
adopted a flexible, client-centric model for data requests. This
transformation enabled Facebook to significantly enhance the performance
of their mobile apps by optimizing data delivery.

But GraphQL’s transformative power did not stop at Facebook; it
reverberated throughout the tech world and beyond. Its unique ability to
simplify data retrieval in complex web service environments earned it
acclaim across various industries.

So, what makes GraphQL an indispensable tool in modern web
development? To answer that question, we will explore its core strengths,
advantages, and real-world applications. Join us as we unravel the
compelling reasons why GraphQL has become a cornerstone of modern web
development.

Big Companies Embracing GraphQL

In recent years, GraphQL has witnessed a surge in popularity and has been
embraced by some of the biggest names in the tech world. Leading the
charge are giants including Airbnb, Facebook, Twitter, and GitHub. Among
these giants, Airbnb has emerged as a standout player.

Airbnb’s GraphQL Adoption

For Airbnb, GraphQL has emerged as the ultimate solution for
supercharging its data-fetching capabilities and optimizing the performance
of its mobile applications as well as website. Thanks to GraphQL, Airbnb
can now retrieve exactly the data it needs for each view, leaving behind the

old woes of data overloads or shortages. The outcome? Speedy loading times
and delighted users.

But GraphQL’s magic does not stop there. Airbnb has harnessed the power
of GraphQL to unite its diverse APIs under a single GraphQL endpoint. This
transformation streamlines the development process and paves the way for
the creation of new features with remarkable ease. Moreover, GraphQL’s
flexibility and efficiency mean Airbnb can race ahead in iteration and
innovation, propelling their services to new heights.

These success stories from Airbnb and other industry giants demonstrate the
transformative potential of GraphQL. Its adoption continues to grow, not
only because of its effectiveness but also because it aligns perfectly with the
ever-evolving needs of modern web development.

As we dive deeper into the world of GraphQL, we will uncover more about
its core concepts and practical implementation, setting the stage for a
comprehensive understanding of this powerful technology.

Comparing GraphQL over REST

Our adventure continues as we delve into the comparative analysis of
GraphQL and REST. We’ll explore the factors that make GraphQL a
superior choice, backed by real-world examples.

In the first subtopic, we will examine the core advantages of GraphQL over
REST. Then, we’ll dive into an exercise to design a simple blogging website
using REST, highlighting the challenges it presents.

Finally, we will demonstrate how GraphQL simplifies achieving the same
goal, complete with code snippets and wireframes. This journey promises to
shed light on the practical benefits of GraphQL and solidify your
understanding of this powerful technology.

e Advantages of GraphQL over REST

o Exploring the core strengths of GraphQL.
o Highlighting key differences that give GraphQL the edge.
e Building a Blogging Website with REST

o Designing a simple blog website using RESTful APIs.
o Identifying challenges and limitations in the REST approach.

e Solving Blogging Challenges with GraphQL

o Applying GraphQL to create the same blogging website.
o Demonstrating how GraphQL addresses the challenges

encountered with REST.
o Providing code snippets and wireframes for practical
implementation.

Advantages of GraphQL over REST

As we delve deeper into the world of GraphQL, it is essential to understand
what sets it apart from its predecessor, REST. GraphQL offers several key
advantages that make it a compelling choice for modern web development.
In this section, we will uncover these advantages, shedding light on why
GraphQL has garnered such widespread acclaim.

Precise Data Retrieval (Reduced Over-Fetching)

Problem with REST: In REST, data retrieval is often handled by predefined
endpoints, each designed for a specific resource or use case. This leads to
either over-fetching or under-fetching of data. For example, consider a
mobile app that displays user profiles. With REST, the endpoint might
provide more data than the app needs, such as the user’s address, phone
number, and other unwanted information. This results in wasted bandwidth
and slower load times.

// REST endpoint for fetching user data
GET /user/123

Solution with GraphQL: GraphQL addresses this issue by allowing clients
to specify their exact data requirements using queries. Clients request only
the fields they need, reducing over-fetching and optimizing data delivery.

// GraphQL query for precise data retrieval
query {
user (id: 123) {
name
email
}
}

Single Endpoint (Under-Fetching Prevention)

Conversely, under-fetching where clients need to make multiple requests to
obtain related data is a common challenge in REST. GraphQL tackles this
problem by allowing clients to specify their data requirements upfront,
preventing the need for subsequent requests to fill in the missing data.

Problem with REST: In RESTful APIs, each resource or operation typically
has its own endpoint (URL). This leads to a proliferation of endpoints,
making API management complex and introducing a level of
unpredictability for clients.

// REST endpoints for various resources
GET /users

GET /posts

POST /comments

Solution with GraphQL: With GraphQL, you can fetch data for posts,
comments, and users using a single endpoint and a single query:

// GraphQL query for fetching posts, comments, and users
query {
posts {
title
body
}
comments {
text
}
users {
name
email
}
}

In this GraphQL example, the client specifies the data it needs for posts,
comments, and users within a single query. The GraphQL server processes
this query and returns the requested data, eliminating the need to make
multiple requests to different endpoints. This consolidation of data retrieval
is one of the advantages of GraphQL over traditional REST APIs.

Strongly Typed Schema (GraphQL Advantage)

Problem with REST: In REST, there is no standard way to define the
structure of the data returned by API endpoints. This lack of structure can
lead to inconsistent responses and difficulties in understanding the data
model.

Solution with GraphQL: GraphQL employs a strongly typed schema to
define the structure of the available data. This schema acts as a contract
between the client and server, ensuring data consistency and enabling
powerful tooling for developers.

// Example GraphQL schema definition
type User
id: ID!
name: String!
email: String!
}
In this GraphQL schema, the User type is defined with specific fields and
their types, providing clarity and consistency.

Real-Time Updates with Subscriptions

GraphQL introduces real-time capabilities through subscriptions. Clients can
subscribe to specific data events and receive updates as soon as the data
changes on the server. This feature opens up new possibilities for building
responsive and interactive applications.

Self-Documentation

GraphQL APIs are self-documenting, meaning they provide introspection
capabilities that allow clients to explore the available data and operations.
This built-in documentation fosters better developer experiences and
accelerates development.

Versionless API

GraphQL obviates the need for versioning in APIs. With REST, maintaining
multiple API versions can be cumbersome. GraphQL’s flexible schema and
client-driven queries ensure that clients always receive the data they expect,
eliminating versioning complexities.

These advantages collectively position GraphQL as a formidable choice for
data-driven applications, addressing many of the limitations associated with
REST. In the next sections, we will explore these advantages further by
applying GraphQL in real-world scenarios and comparing the results with
REST.

Building a Blogging Website with REST

As we delve deeper into the topic of Comparing GraphQL with REST, our
journey takes us to the practical realm of web development. In this section,
Building a Blogging Website with REST, we will embark on a hands-on
exploration.

Imagine yourself as a web developer tasked with creating a simple blogging
website. This project will serve as an illustration of how REST APIs are
typically used in real-world scenarios.

We will draw inspiration from a commonly wused source,
https://jsonplaceholder.typicode.com, to fetch data via RESTful APIs.

Imagine a clean and minimalistic web page where you will find a neat list of
blog posts, each accompanied by the author’s name, the title of the blog, and
a concise summary of its contents. The goal is to provide an easily digestible
format for readers to explore and engage with blog posts.

Through this practical exercise, we will gain a firsthand experience in
working with REST APIs, highlighting both their advantages and
limitations. This groundwork will pave the way for a thorough comparison
with GraphQL in the following subtopic.

As we progress, we shall provide code snippets, wireframes, and detailed
explanations to ensure a comprehensive understanding of the concepts at
hand. So, get ready to roll up your sleeves and dive into the world of
RESTful web development.

https://jsonplaceholder.typicode.com/

Blog 1 title

2 My Blogs

&2 Seltings

Blog 2 title

Blog 3 title

Blog 4 title

Figure 1.1: Blog Websites with Title, Author s Avatar and Description

Let us take a closer look at the syntax of a REST API request and response.
We will explore the following URL:

Method: GET URL:
https://jsonplaceholder. typicode.com/posts

Response

[

"userId": 1,

"id": 1,
"title": "sunt aut facere repellat provident ..",
"body": "quia et suscipit\nsuscipit recusandae

consequuntur.."

by

"userId": 1,

"id": 2,
"title": "qui est esse",
"body": "est rerum tempore vitael\nsequi.."

}y
// More data..

]

In this example, we have a URL that points to a specific RESTful endpoint.
When we send a request to this endpoint, we receive a response in JSON
format. This response contains an array of objects, each representing a blog
post. Each object includes various properties such as "userid," "id,"
"title," and "body," which provide details about the blog posts.

In our blogging website, we not only want to display blog posts but also
include the names and details of the authors. To achieve this, we have to
make an additional API call to fetch the user data for each author. Here is an
example of the API call:

Method: GET URL:
https://jsonplaceholder. typicode.com/users/1

Response

{
"id": 1,
"name": "Leanne Graham",
"username": "Bret",
"email": "Sincere(@april.biz",
"address": {

"street": "Kulas Light",
"suite": "Apt. 556",

"city": "Gwenborough",
"zipcode": "92998-3874",
"geo": {

"lat": "-37.3159",

"lng": "81.1496"

}
b

"phone": "1-770-736-8031 x56442",
"website": "hildegard.org",
"company": {

"name": "Romaguera-Crona'",
"catchPhrase": "Multi-layered client-server neural-net",
"bs": "harness real-time e-markets"

}
}

As you can see, fetching even the simplest blog content requires two
separate API calls: one for the blog post and another for the author’s details.
This complexity can quickly multiply, especially when we aim to display
additional data like the latest comments on each blog post. In such cases,
making subsequent API calls for each blog or comment can lead to a
significant performance hit, making users wait longer for the page to load.

Upon closer inspection of the user API response, we encounter not only the
need to make multiple REST API calls for data retrieval but also the burden
of carrying an abundance of extraneous information with each call. This
surplus data not only clutters the response but also exerts a toll on bandwidth
usage, ultimately affecting the overall performance of the website.

In larger websites with more extensive features and data requirements, the
number of REST API calls can skyrocket, leading to performance issues and
a less-than-optimal user experience. This is where GraphQL comes into play,
offering a more efficient and streamlined approach to data retrieval.

Let us explore how GraphQL addresses these challenges and simplifies the
process in the next sections.

Core Concepts of GraphQL

Welcome to the heart of GraphQL, where we will dive deep into its core
concepts. In the previous section, we have explored the advantages of
GraphQL and why it has become a game-changer in the world of web
development. Now, it is time to roll up our sleeves and get hands-on with the
fundamental principles that make GraphQL so powerful.

In this section, we will unravel the inner workings of GraphQL, breaking
down its key components and operations step by step. Whether you are new
to GraphQL or looking to solidify your understanding, this chapter is

designed to equip you with the knowledge and skills needed to harness the
full potential of GraphQL.

Our journey begins with an exploration of the basic building blocks: Query,
Mutation, and Subscription. These operations serve as the foundation for any
GraphQL API, allowing you to fetch, modify, and listen to data in a highly
efficient manner. We will provide clear syntax examples and practical use
cases to ensure a solid grasp of these concepts.

Next, we will delve into GraphQL schemas, the blueprints that define the
structure of your data. We will discover how schemas play a pivotal role in
shaping your GraphQL API and learn about the built-in data types GraphQL
offers out of the box.

As we progress, we will shift our focus to querying data in GraphQL. We
will start with the basics, guiding you through the process of writing your
first GraphQL queries. Then, we will venture into more advanced querying
techniques, including nested queries for retrieving complex data structures.

Lastly, we’ll bridge the gap between frontend and backend development,
demonstrating how to implement GraphQL in both environments. Whether
you are building a modern web application or an interactive mobile app,
understanding how to work with GraphQL on both ends is essential.

By the end of this, you will have a solid grasp of the core concepts that
underpin GraphQL. You’ll be equipped with the tools and knowledge to
create efficient, flexible APIs and query data like GraphQL Pro. So, let’s get
started and explore the inner workings of GraphQL together!

Exploring GraphQL Operations: Query,
xMutation, and Subscription

In the world of GraphQL, operations are the building blocks that allow you
to interact with your data. GraphQL provides three fundamental operations:
Query, Mutation, and Subscription. In this section, we will delve into each of
these operations, understanding their significance and how to wield them
effectively.

Query: Fetching Data

At the core of GraphQL lies the Query operation, which is all about fetching
data from your API. With Queries, you can specify exactly what data you
need and receive it in a structured format. Think of Queries as a way to ask
your GraphQL server for information.

Syntax:

query {
user (id: 1) {
name
email
}
}

Explanation:
e query { .. }: This is the opening of a GraphQL query operation. It
indicates that we’re going to request data from the server. The { ... }

contains the actual query where we specify what data we want to
retrieve.

® user(id: 1) { .. }: Within the query, user is a field we want to fetch.
It takes an argument id with a value of 1. This argument is used to
identify which user we want to retrieve based on their ID.

* name and email inside the user field: These are the fields we’re asking
for within the user field. We are interested in retrieving the name and
email of the user specified by the id.

So, when this GraphQL query is executed against a GraphQL server, it will
return the name and email of the user with an ID of 1.

Usage:

e Queries are used whenever you need to retrieve data from your
GraphQL API.

¢ Ideal for reading and displaying data in your application.

Mutation: Modifying Data

While Queries are for reading data, Mutations are used when you want to
make changes to your data. Mutations allow you to create, update, or delete
records in your API. They are similar to the "write" operations in GraphQL.

Syntax:

mutation {

createUser (input: {

name: "Alice"
email: "alicelexample.com"
b)) A
id
name
}
}
Explanation:
e mutation { .. }: This is the opening of a GraphQL mutation

operation. It indicates that we’re going to perform a mutation to modify
data on the server. The { .. } contains the actual mutation where we
specify what data we want to modify.

® createUser(input: { .. }) { .. }: Within the mutation, createUser
1s the name of the mutation field we want to execute. It takes an
argument input, which is an object containing the data we want to use
for creating a new user.

e Inside the createuser ficld, we specify the fields we want to retrieve
as a result of this mutation: id and name. These fields will be returned
once the user creation 1s successful.

So, when this GraphQL mutation is executed against a GraphQL server, it
will create a new wuser with the name "aAlice" and email
"alice@example.com." The server will respond with the id and name of the
newly created user, allowing you to confirm the success of the operation and
retrieve any relevant data.

Mutations are essential for making changes to your data and are one of the
core building blocks of GraphQL.

Usage:
e Mutations are employed for any data modification tasks.

o Perfect for actions such as creating a new user, updating a profile, or
deleting a post.

Subscription: Real-Time Data

Subscriptions bring real-time capabilities to GraphQL. They enable your
application to listen for specific events and receive data updates as they
happen. Subscriptions are like a live feed of information from your GraphQL
Server.

Syntax:

subscription {

newComment (postId: 1) {
text

author {

}
}

}

name

Explanation:

subscription { .. }: This is the opening of a GraphQL subscription
operation. It indicates that we’re setting up a subscription to listen for
specific events on the server and receive real-time updates. The { .. }
contains the actual subscription where we specify what events we want
to listen to and what data we want to receive.

newComment (postId: 1) { .. }:VVﬁhhlthesubSCﬂpﬁon,newComment
i1s the name of the event we want to listen to. It takes an argument
postId, which specifies the ID of the post we are interested in.

Inside the newcomment event, we specify the fields we want to receive
updates for: text and author. This means that when a new comment is
added to a post with ID 1, we want to receive the text of the comment
and the name of its author.

When you use this GraphQL subscription in your application, it sets up
a real-time connection to the GraphQL server. Whenever a new
comment is posted to the specified post (with ID 1), the server will
push updates containing the text of the comment and the name of its
author to your application in real time. This allows your application to
stay up-to-date with live data changes, making subscriptions a powerful
tool for building real-time features.

Usage:

e Subscriptions are used to receive real-time updates and changes in your
data.

e Essential for building features such as chat applications, live
notifications, and collaborative editing.

Understanding GraphQL Schemas

Schemas play a pivotal role in defining the structure and capabilities of your
API. In this section, we will unravel the concept of schemas and understand
their significance in GraphQL. Additionally, we will take a closer look at
basic schemas and how they shape your GraphQL API.

At its core, a GraphQL schema serves as the contract between the client and
the server. It defines the types of data that can be queried and the shape of
the response. Think of it as a blueprint that outlines the available data,
operations, and their relationships within your API.

Importance of Schemas

e Structure and Consistency: Schemas provide a clear, structured way
to interact with your data. This ensures that clients can make
predictable requests and receive data in a consistent format.

e Documentation: Schemas serve as self-documentation for your API.
Developers can explore the schema to understand what data is
available, how to query it, and what to expect in return.

e Type Safety: GraphQL schemas are strongly typed, meaning that the
data you request matches the expected types. This enhances developer
productivity and reduces runtime errors.

e Flexibility: Schemas are flexible and extensible. You can define
custom types and queries tailored to your application’s needs, making
GraphQL highly adaptable.

Basic Schemas in GraphQL

GraphQL comes with a set of built-in scalar types, including Int, Float,
String, Boolean, and ID. These types serve as the building blocks for
defining more complex types in your schema.

Roles of Basic Scalar Types

Scalars are the simplest data types in GraphQL, representing atomic values.
GraphQL provides several scalar types, including

e Int: Represents a 32-bit signed integer.

* Float: Represents a double-precision floating-point value.

* string: Represents a UTF-8 character sequence.

* Boolean: Represents a true or false value.

» 1D: Represents a unique identifier, often used as a primary key.

You can use these scalar types to define the data type of individual fields in
your schema. For example, you can specify that a field should return an Int,
String, or any other scalar type.

List and Non-Null Types

GraphQL allows you to create lists and non-null versions of any type,
including custom types. These are essential for defining relationships and
specifying whether a field can contain multiple values or must always have a
value.

List Types

[Type]: Represents a list of values of the specified type. For example, [Int]
defines a list of integers.

Here is an example of how to use a list type in a GraphQL schema:

type User ({
id: ID!
name: String!
emails: [String]!

}

In this example, the user type has a field called emails that returns a list of
strings ([String]!). The ! after the list type indicates that the field will
always return a non-null list, but the individual values within the list may be
null.

Non-Null Types

Type!: Represents a non-null value of the specified type. For example,
String! ensures that a field always returns a non-null string.

type Post {
id: ID!
title: String!
body: String!
author: User!

}

In this example, the author field is of type user!, which means that every
Post object must have a non-null author field. It guarantees that we will
always get a user object for the author.

Explanation:

e List types [Type] are used when a field can return multiple values. For
instance, the emails field in the User type can return an array of
strings, but it will never be null. However, individual email values
within the list can be null if not provided.

e Non-null types Type! ensure that a field always returns a value of the
specified type. In the Post type, the author field is marked as non-null
(User!), guaranteeing that each post has an associated author, and the
result won’t be null.

These type modifiers provide flexibility in defining your schema’s structure
and ensure that the data returned by your GraphQL API adheres to specific
constraints, enhancing the reliability and predictability of your API
responses.

Enumeration Types

Enumeration types, also known as enums, allow you to define a specific set
of values that a field can accept. This is useful when a field’s value is
restricted to a predefined list of options. For instance, you can define an enum
for days of the week with values including MoNDAY, TUESDAY, and so on.

Suppose you are building a GraphQL schema for a scheduling application,
and you want to define a field to represent the days of the week. Here 1s how
you can use an enum for this purpose:

enum DayOfWeek {

MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
SUNDAY

}

type Meeting ({
id: ID!
title: String!
day: DayOfWeek!
startTime: String!
endTime: String!

}
In this example:

We define an enum called payofweek that lists all the days of the week as
possible values. Enums are defined using the enum keyword, followed by the
enum name and a set of values enclosed in curly braces.

The Meeting type includes a field called day of type payofweek!. This
means that when you query for a meeting, the day field must have one of the
values defined in the Dayofweek enum. It cannot be null, and it cannot have a
value that is not in the enum.

Now, when you query for a meeting’s day, you can only get one of the
specified days of the week as a response. For example:

{
meeting (id: "123") {
title
day
startTime
endTime
}
}

Response:
{

"title": "Team Meeting",

"day": "TUESDAY",
"startTime": "10:00 AM",
"endTime": "11:00 AM"

}

In this response, the day field is set to "TueEsDAY," which is one of the enum
values defined in payofweek.

Enums ensure that the data passed to and returned from your GraphQL API
adheres to a specific set of allowed values, making your schema more
predictable and less error-prone when handling fields with limited options.

Custom Types

In GraphQL, you have the flexibility to define custom types that go beyond
the built-in scalar types such as Int, String, Boolean, and others. These
custom types are used to represent entities or objects in your data model,
such as User, Post, or Comment. Custom types allow you to structure your
data in a way that makes sense for your application’s domain.

Let us explore custom types in GraphQL using an example schema for a
blogging platform:

Example Schema:
Consider a basic schema for a blogging platform:

type User ({
id: ID!
name: String!
email: String!
posts: [Post!]!
}
type Post {
id: ID!
title: String!
body: String!
author: User!

}
In this schema:

We define two custom types: user and post. Each type corresponds to an
entity in our application.

The user type has fields such as id, name, email, and posts. The posts field
is an array of Post objects, representing the posts created by that user.

The post type includes fields such as id, title, body, and author. The
author field is of type user, establishing a relationship between posts and
users.

Now, let us consider how a frontend application can query this schema to
retrieve data:

Query to Retrieve User and Their Posts:
{

user (id: "1") {
name
email
posts {

title

}

}

}

Response Format:
{

"data": {
"user": {
"name": "John Doe",
"email": "johndoe@example.com",
"posts": [
{
"title": "GraphQL Basics"

}y
{
"title": "Building a Blog with GraphQL"

Explanation: In this query, we ask for the name and email of a specific user
(identified by their id) and also request the title of each post authored by that
user. The GraphQL server responds with the requested data in a structured
format, making it easy for the frontend to work with.

Custom types in GraphQL empower you to model your data according to
your application’s requirements and provide a clear and efficient way to
query for and retrieve that data.

Summary

We have completed our deep dive into the world of GraphQL schemas.
We’ve explored how to define schemas, create custom types, and leverage
built-in data types to structure our data effectively. Additionally, we’ve
learned how to write GraphQL queries, mutations, and subscriptions to
interact with our data. Armed with this knowledge, you are now equipped to
design and query GraphQL schemas that suit your application’s
requirements.

Introduction to Basics of Writing GraphQL
Queries

Now that we have a solid foundation in understanding GraphQL schemas
and operations, it is time to put our knowledge to practical use.

In this section, we will unravel the art of constructing GraphQL queries step
by step. We will start from the basics, gradually building up to more
complex queries.

By the end of this chapter, you’ll be well-versed in crafting GraphQL queries
to retrieve precisely the data you need. So, let us roll up our sleeves and
begin our journey into the world of GraphQL queries!

Basic Query Syntax in GraphQL

To become proficient in GraphQL, it is crucial to grasp the fundamentals of
query syntax. GraphQL queries are constructed using a structure that
resembles JSON, which provides a clear and concise way to request data
from a GraphQL server. Let us break down the basic query syntax step by
step.

At its core, a GraphQL query follows a specific structure. Here is a simple
example:

{
user (id: 1) {
name
email
}
}

In this example, we are requesting information about a user with the id of 1.
The query consists of the following parts:

Operation Type: GraphQL queries can be of different types, including
query, mutation, and subscription. In this case, it’s a query operation.

Root Field: The root field is the entry point of the query. Here, user is the
root field, and it represents the starting point for fetching data.

Arguments: Inside the root field, you can provide arguments enclosed in
parentheses. These arguments help you filter and narrow down the data
you’re requesting. In this query, we’re passing the argument id with a value
of 1 to specify which user we want to retrieve.

Selection Set: The selection set is enclosed in curly braces {} and lists the
specific fields we want to retrieve for the user. In this case, we are requesting
the name and email fields.

Advanced Querying in GraphQL

Mastering basic query syntax is just the beginning. To harness the full power
of GraphQL, you’ll need to explore advanced querying techniques that allow
you to retrieve complex data structures and build efficient, data-driven
applications. In this section, we will delve into advanced querying concepts
step by step.

Nested Queries: GraphQL’s ability to nest queries is a game-changer. With
nested queries, you can request related data in a single round trip to the
server, reducing latency and improving performance. For example, imagine
you want to fetch a user’s profile along with all the posts they’ve authored,
as well as the comments on each post. In a single GraphQL query, you can
express this complex data requirement.

{

user (id: 1) {
name
email
posts {
title
body
comments {
text
}
}
}
}

This query retrieves a user’s name and email, all of their posts (including
titles and bodies), and the text of each comment on those posts. Nested
queries enable you to efficiently fetch deeply related data, reducing the need
for multiple API calls.

Union Types: Imagine a scenario where you have a content management
system, and you want to query both articles and videos from a feed. These
content types may share some common fields like title and
publishedDate, but they also have their unique properties. In GraphQL, you
can define a union type to represent this scenario.

union Content = Article | Video

type Article {
title: String!
body: String!
}

type Video {
title: String!
duration: Int!

}

Here, the content union type encompasses both Article and video. You
can use it in your queries to request content of either type without knowing
the specific type in advance.

{
feed {
id

. on Article {
title
body

}

. on Video {
title
duration

}

}
}

In this example, the feed query returns a list of content, and we use the .. on
syntax to specify the fields to retrieve for each content type.

Interface Types: Interface types are similar to union types but more
versatile. They allow you to define a set of fields that must be implemented
by any type that implements the interface. This ensures that implementing
types have certain common fields while still allowing for unique properties.

interface Content {
title: String!

}

type Article implements Content {
title: String!
body: String!

}

type Video implements Content {
title: String!
duration: Int!

}

Here, the content interface defines that any implementing type must have a
title field. Both aArticle and video implement this interface.

When querying, you can use the common fields defined in the interface
while also accessing type-specific fields:

{
content (id: "123") {
title

. on Article {

body
}
.. on Video {
duration
}
}
}

In this query, the content field returns content of any type that implements
the content interface, ensuring that you get the title field, and optionally,
type-specific fields depending on the concrete type.

By using union and interface types, you can model complex data structures
efficiently and ensure that your GraphQL schema accommodates varying
data types while maintaining a consistent structure.

Fragments: Fragments are a powerful feature in GraphQL that allows you
to define reusable sets of fields that can be included in multiple queries.
They are especially handy when you want to fetch the same fields on
multiple types or include complex fields multiple times without duplicating
your code.

Here is a step-by-step explanation of fragments:

1. Defining a Fragment: To create a fragment, you first define it by
specifying the fields you want to include:

fragment PostDetails on Post {
title

body

}

In this example, we have created a Postbetails fragment that includes
the title and body ficlds for a Post type.

2. Using a Fragment: Once you have defined a fragment, you can use it

in your queries. You apply a fragment to a field using the ".." spread
operator followed by the fragment name:

{
latestPost {
..PostDetails
}
}

In this query, we are using the PostDetails fragment to request the
title and body fields for the 1atestPost. GraphQL will substitute the
fragment with the specified fields when processing the query.

3. Fragment Spreads: You can apply fragments to multiple fields in a
query:
{
featuredArticle {
..PostDetails
}
popularVideo {
..PostDetails
}
}

Here, we’re using the PostDetails fragment for both
featuredArticle and popularvideo. This keeps your queries DRY
(Don’t Repeat Yourself) and makes them easier to maintain.

4. Inline Fragments: While named fragments are handy for reuse, inline
fragments allow you to include fields conditionally based on the type
of the object. For example:

{
latestContent {

.. on Post {
title
body

}

.. on Video {
title
duration

}

}
}

In this query, the .. on Post and .. on Vvideo inline fragments ensure
that we get the relevant fields based on the object type returned by
latestContent.

Fragments are a valuable tool for building flexible and maintainable
GraphQL queries. They promote code reusability and help you avoid
duplicating field selections across multiple queries.

Union, Interfaces, and Fragments: When to Use
What

This section explains three powerful GraphQL features that help structure
complex APIs and write cleaner queries: interfaces, unions, and fragments.
Each solves a different problem, and understanding when to use them makes
your schema and queries more efficient.

GraphQL Fragments

GraphQL fragments allow you to define reusable selections of fields within
a query. They help organize and standardize your queries by defining sets of
fields that you can include wherever needed. Fragments enhance query
readability and maintainability.

Define a fragment for common Content fields
fragment ContentFields on Content ({

id

title

publishedDate
}

Use the ContentFields fragment in a query
query {
getContentById(id: "123™) {
..ContentFields
}
}

Union Types

Union types enable you to retrieve data that may belong to multiple types in
a single query. They represent a way to combine multiple object types under
a common type. This is particularly useful when you want to retrieve data
that can be of different types but share some common fields.

Define a union type to represent different content types

union ContentItem = Article | Video | Image

Query for content items and specify the desired fields
query {
searchContent (query: "GraphQL") {
. on ContentItem {
..ContentFields

Interfaces

Interfaces define a blueprint for object types, specifying a set of fields that
must be implemented by any object type that uses the interface. Interfaces
are used when you want to ensure that multiple object types share a common
set of fields, allowing you to query these fields without knowing the specific
object type.

Define an interface for Content with common fields
interface Content {

id: ID!

title: String!

publishedDate: Date!
}

Implement the Content interface in Article, Video, and Image
types
type Article implements Content {
id: ID!
title: String!
publishedDate: Date!
author: String!
body: String!
}

type Video implements Content {
id: ID!
title: String!
publishedDate: Date!

duration: Int!

}

type Image implements Content {
id: ID!
title: String!
publishedDate: Date!
description: String!
imageUrl: String!

}

e Use fragments when you want to reuse specific field selections across
multiple queries to improve query structure and maintainability.

e Use union types when you need to query for data that may belong to
multiple types, and you want to retrieve common fields shared by those

types.

e Use interfaces when you want to define a common set of fields for
multiple object types, ensuring consistency in the schema.

In summary, fragments help with query organization, union types handle
polymorphic data, and interfaces ensure schema consistency. Choose the
appropriate tool based on your specific GraphQL query needs to optimize
your data retrieval strategy.

Setting the Stage for Practical Implementation

In this final section, we are about to embark on an exciting journey, armed
with the knowledge of GraphQL’s core concepts.

You have learned about queries, mutations, subscriptions, schemas, types,
and how to structure your GraphQL requests. Now, it is time to put this
knowledge into action and see how GraphQL can transform a real-world
scenario.

Bringing It All Together: Building a Blogging
Platform

Now, it is time to apply this knowledge to a practical scenario. We are going
to build a blogging platform. Imagine you want to create a dynamic website

where users can post articles, and interact in real-time. GraphQL is the
perfect tool for this task.

Creating the Schema

First, we will define our GraphQL schema. We have types like user, and
post. Users can write posts. Each type will have its fields and relationships
clearly defined.

Here are the schema definitions for user and Post:

type User ({
id: ID!
name: String!
email: String!
posts: [Post!]!
}

type Post {
id: ID!
title: String!
body: String!
author: User!

}

type Query {
getAllPosts: [Post!]!
getUser (id: ID!): User
}

type Mutation {
createPost (input: PostInput!): Post

}

input PostInput {
title: String!
body: String!
authorId: ID!

}

In GraphQL, input types are specifically designed for passing data to
mutations. They allow you to define a structured format for input arguments,
ensuring that the required data is provided when executing mutations.

Constructing Queries

Now that we have our schema defined, we can write queries to fetch the data
we need. For instance, we will create a query getAllPosts to retrieve a list of
all posts along with their authors. Here is an example:

query {
getAllPosts {
id
title
author {
id

name

Performing Mutations

Users need to create new posts, right? We will implement a mutation for
that. Here is an example mutation to create a post:

mutation {
createPost (input: {
title: "New Blog Post"
body: "This is the content of the blog post."
authorId: "1" # Replace with the actual user's ID
b)) |
id
title
body
author {
id

name

}

In the upcoming chapters, we will delve into setting up an Interactive
GraphQL Playground. Here, you will have the opportunity to experiment
with various queries, mutations, and experience real-time data updates

through subscriptions. This hands-on experience will vividly demonstrate
the power of GraphQL.

As we explore practical implementation in the upcoming chapters, you will
witness firsthand how GraphQL simplifies the development of complex
applications, streamlines data fetching, and elevates user interactions. Thus,
prepare to dive in and uncover how GraphQL can revolutionize your web
development projects.

GraphQL Cheat Sheet

Use this GraphQL cheat sheet to quickly reference key syntax and concepts
in GraphQL.:

Query: Fetching Data

e Use to read data from the server.
e Fetch specific fields from types.
e Syntax:

query {
user (id: 1) {
name
email
}
}

Mutation: Modifying Data
e Used to create, update, or delete records.

e Syntax:

mutation {

createUser (input: {

name: "Alice"

email: "alice@example.com"
) A

id

name

Subscription: Real-Time Data

e Enables real-time data updates.
e Syntax:
subscription {
newComment (postId: 1) {
text
author {

name

}

}

Schema Definitions

e Define types for data structures.
e Syntax:

type User {
id: ID!
name: String!
email: String!
posts: [Post!]!

}

type Post {
id: ID!
title: String!
body: String!
author: User!

}
Query Schema

e Define available queries.
e Syntax:

type Query {
getAllPosts: [Post!]!
getUser (id: ID!): User
}

Mutation Schema

e Define available mutations.
e Syntax:

type Mutation {

createPost (input: PostInput!): Post

}
Input Types

e Define input types for mutations.
e Syntax:

input PostInput {
title: String!
body: String!
authorId: ID!

}

Union and Interfaces

» (reate abstract types for multiple types.
e Syntax:

union SearchResult = Post | User
interface Node {

id: ID!

}

Fragments

* Reuse parts of a query in multiple places.
e Syntax:

fragment PostDetails on Post {
title

body

}

Inline Fragments

e Conditionally fetch fields based on type.

e Syntax:

.. on User {
name
email

}

Conclusion

In this chapter, we embarked on an exciting journey into the world of
GraphQL, uncovering its core concepts and advantages. We started by
understanding GraphQL’s strengths and why it has gained traction as a
powerful alternative to REST APIs. We explored its adoption by big
companies including Airbnb, Facebook, Twitter, and GitHub, witnessing
how it transformed their data-fetching capabilities.

Moving deeper, we delved into GraphQL’s core concepts, such as Queries,
Mutations, and Subscriptions, gaining a solid understanding of how to
construct basic and complex queries. We also explored the concept of
schemas in GraphQL, including basic schemas and built-in data types.

We demystified GraphQL’s unique features such as Union, Interfaces, and
Fragments, learning how to structure our data effectively.

In the next chapter, we will dive into the practical side of GraphQL. We will
learn how to set up GraphQL on the backend, building a robust foundation
for developing GraphQL-powered APIs. So, get ready to roll up your sleeves
and start building with GraphQL!

CHAPTER 2
Installing GraphQL: Backend

Introduction

Welcome to our exploration into the exciting realm of GraphQL. In this
chapter, we will embark on a journey that takes us deep into the process of
setting up a GraphQL server on the backend, leveraging the power of
Node.js. We will guide you through each step, from the fundamentals of
schema design to the creation of GraphQL types, the implementation of
queries and mutations, and extensive testing of GraphQL APIs. By the time
you complete this chapter, you will have gained a robust understanding of
how to establish a formidable GraphQL backend that will empower your
web development projects.

Throughout this chapter, we will provide plenty of code examples and
practical exercises, so keep your development environment ready. you will
need to have Node.js installed and a basic understanding of JavaScript to
follow along. By the end of this chapter, you will be well-equipped to build
robust GraphQL backends and integrate them with front-end applications.

Let us dive into the world of GraphQL on the backend and get started with
the installation process.

Structure

In this chapter, we will cover the following topics:

e Programming Language Agnosticism
o GraphQL’s Adaptability to Various Programming Languages
o Why Choose Node.js and Express

e Setting Up GraphQL with Node.js

o Installing Node.js
o Initializing a Project

o Configuring the Server Environment for GraphQL
e GraphQL API Testing

o Introduction to GraphQL Playground
o Interactive Testing and Exploration of GraphQL APIs
o GraphQL Playground in Apollo Server

e Building a Blogging Platform Schema with GraphQL

o Introduction to Schema Design in GraphQL
o Creating GraphQL Types for a Blogging Platform

e Building GraphQL Queries and Mutations for a Blogging Platform

o Efficient Data Retrieval with GraphQL Queries
o Empowering Data Manipulation with GraphQL Mutations

Programming L.anguage Agnosticism

In the ever-evolving landscape of web development, compatibility and
adaptability are key. GraphQL, at its core, is a query language for your API,
and one of its most compelling attributes is its programming language
agnosticism. This means that GraphQL can seamlessly integrate with a wide
range of programming languages, making it a versatile and language-
agnostic solution.

GraphQL’s Adaptability to Various Programming
Languages

GraphQL’s adaptability to various programming languages is one of its
defining features. It was designed from the ground up to be language-
agnostic, making it a versatile and flexible choice for building APIs. Let us
delve into why GraphQL has become the language of choice for many
developers and how it plays a crucial role in building federation services.

The Language of Choice

In the diverse landscape of programming languages, GraphQL stands out as
a universal language for querying and manipulating data. Unlike REST,

which often requires custom endpoints for specific data needs, GraphQL
allows you to request precisely the data you need, and nothing more. This
approach is incredibly appealing to developers, regardless of their
programming language preferences.

Here is how GraphQL’s language-agnosticism benefits developers:

e No Backend-Locking: With GraphQL, your frontend and backend can
be developed independently, using different programming languages if
necessary. As long as both can speak GraphQL, they can seamlessly
communicate.

e Efficient Data Fetching: GraphQL optimizes data fetching by
eliminating over-fetching and under-fetching of data. This is a
universal concern in web development, regardless of the programming
language you use.

e Client Flexibility: Clients, whether web, mobile, or IoT devices, can
request exactly the data they need, making GraphQL an ideal choice
for modern applications.

e Service Integration: GraphQL can act as a common gateway for
integrating multiple services. In a microservices architecture, where
each service may use a different language, GraphQL provides a unified
interface for aggregating and querying data from these services.

Building Unified APIs

Unified APIs are a powerful use case of GraphQL’s language-agnostic
capabilities. In a unified architecture, you have multiple microservices, each
responsible for a specific domain or functionality. These microservices can
be developed using different programming languages, databases, and
technologies.

GraphQL serves as the orchestrator in this scenario. It acts as a common
gateway or unification layer that coordinates requests from clients and routes
them to appropriate microservices. This means that clients can make a single
request to the GraphQL gateway, which then fans out the necessary queries
to the relevant services. The responses are aggregated and returned to the
client as a single, coherent result.

L@= J

i

_ GraphQL Server as _
" Unified APl Gateway

'

@ REST AP $ REST API @

Shipping Notification -

Figure 2.1: GraphQL Unified API Server Architecture

Payment

User Service

The advantages of this approach are manifold, including:

Service

e Decoupled Development: Each microservice team can work
independently, choosing the programming language and technology
stack that best suits their needs.

e Unified API: Clients interact with a single GraphQL API, simplifying
client-side code and reducing the complexity of managing multiple
endpoints.

o Efficient Data Retrieval: GraphQL optimizes data retrieval, ensuring
that clients get exactly the data they request, even when it spans
multiple services.

e Scalability: Unified APIs can scale horizontally by adding more
microservices as needed, allowing your application to grow gracefully.

As we progress through this chapter, you will see firsthand how GraphQL’s
language-agnostic nature makes it a powerful tool for building unified APIs
and much more. Hence, whether you are building a monolithic application or
a distributed system with microservices, GraphQL’s adaptability ensures that
you have a flexible and efficient solution at your disposal.

Why Choose Node.js and Express

In our journey to explore GraphQL on the backend, we have decided to use
Node.js and Express as our primary tools. In this section, we will delve into
the reasons behind this choice and why Node.js and Express are well-suited
for building GraphQL servers.

Node.js: The Ideal Backend Runtime

Node.js is a runtime environment that allows you to execute JavaScript on
the server-side. It has gained immense popularity in recent years for several
compelling reasons, such as:

JavaScript Everywhere: JavaScript is one of the most widely used
programming languages, and it is the language of the web. By using
Node.js, you can unify your frontend and backend development,
allowing developers to use JavaScript on both sides of your
application. This alignment simplifies the development process and
enables more efficient code sharing between teams.

Non-Blocking, Asynchronous I/0: Node.js employs a non-blocking,
event-driven architecture that makes it highly efficient for handling
concurrent requests. This is crucial for building real-time applications
and APIs that can handle multiple requests simultaneously without
sacrificing performance.

Rich Ecosystem: Node.js boasts a rich ecosystem of libraries and
packages available through npm (Node Package Manager). This
extensive collection of open-source modules simplifies development,
as you can leverage existing solutions to solve common problems.

Community Support: Node.js has a vibrant and active community of
developers, which means you’ll have access to a wealth of resources,
tutorials, and community-driven solutions when building your
GraphQL backend.

Express: A Minimalist Framework for GraphQL: Express is a
minimal and flexible Node.js web application framework that provides
a robust set of features for web and mobile applications. It is known for
its simplicity and its ability to work seamlessly with Node.js. Here is
why we have chosen Express for this book:

Flexibility: Express allows you to create lightweight, fast, and scalable
web applications. It doesn’t impose strict patterns or architectural

decisions, giving you the freedom to structure your application the way
you want. This flexibility is ideal for integrating GraphQL into your
project.

o Middleware: Express’s middleware system is a powerful feature that
simplifies tasks, such as routing, authentication, and error handling.
You can easily plug in middleware to handle various aspects of your
GraphQL API, making it a breeze to extend and customize.

e GraphQL Integration: In Node.js, we have several libraries such as
https://www.npmjs.com/package/graphql-http and
https://www.npmjs.com/package/@apollo/server that seamlessly
integrates with Express to set up a GraphQL endpoint and define your
schema. These libraries offer a range of features and flexibility,
allowing you to choose the one that best fits your project’s needs.

e Community and Documentation: Express has a large user base, an
active community, and well-maintained documentation. This ensures
that you’ll have access to a wealth of resources and support as you
work with Express in the context of GraphQL.

By choosing Node.js and Express, we aim to provide you with a practical
and accessible foundation for implementing GraphQL on the backend. These
technologies offer the flexibility, performance, and support necessary to
build robust GraphQL servers that can serve a wide range of applications
and use cases.

As we move forward in this chapter, we will guide you through the process
of setting up Node.js and Express, configuring your development
environment, and creating a GraphQL schema that powers your backend.
Get ready to embark on this hands-on journey to bring GraphQL to life on
the server side.

Setting Up GraphQL with Node.js

In this section, we will walk you through the process of setting up a
GraphQL server using Node.js. GraphQL is highly adaptable and can be
implemented with various programming languages. However, for the
purpose of this book, we have chosen Node.js due to its ease of use, a
vibrant ecosystem of libraries, and excellent support for GraphQL.

https://www.npmjs.com/package/graphql-http
https://www.npmjs.com/package/@apollo/server

Installing Node.js

Before we begin setting up our GraphQL server, we need to ensure that
Node.js is installed on your system. Node.js allows us to run JavaScript on
the server side.

Following, you will find installation instructions for various operating
systems:

Windows: Visit the official Node.js website at https:/nodejs.org/ and
download the LTS (Long Term Support) version that matches your system
architecture (32-bit or 64-bit). Run the installer and follow the on-screen
instructions.

macOS: There are two common methods for installing Node.js on macOS:

1. Using a Package Manager (Recommended): You can use a package
manager like https://brew.sh to install Node.js. First, install Homebrew
if you haven’t already, and then run the following command:

> brew install node

2. Downloading the Installer: Alternatively, you can download the
macOS installer directly from the Node.js website. Visit
https://nodejs.org/ and download the LTS version. Run the installer and
follow the on-screen instructions.

Linux: The recommended way to install Node.js on Linux is to use the
package manager provided by your distribution. For example, on Ubuntu,
you can use apt, and on CentOS, you can use yum. Here are the commands
for Ubuntu:

> sudo apt update > sudo apt install nodejs npm
After installation, you can verify it with:

> node -v

> npm -v

For more detailed installation instructions, including alternative methods and
troubleshooting tips, please refer to the official Node.js download page at
https://nodejs.org/.

With Node.js successfully installed, you are now ready to initialize your
project and set up the server environment for GraphQL.

https://nodejs.org/
https://brew.sh/
https://nodejs.org/
https://nodejs.org/

Initializing a Project

Once you have Node.js installed on your system, the next step is to initialize
a project. Initializing a project helps you manage dependencies, scripts, and
project-specific configurations. For this chapter, we will use npm (Node
Package Manager) to create a new project and install the necessary libraries.

Here are the steps to initialize your project:

1. Create a New Directory: Start by creating a new directory for your
GraphQL project. You can name it anything you like. For example, let
us create a directory called graphgl-server.

> mkdir graphgl-server
> cd graphgl-server

2. Initialize a New npm Project: To initialize a new npm project, run the
following command inside your project directory:

> npm init -y
This command will generate a package. json file with default settings.

The -y flag skips the interactive setup and uses default values for
project configuration.

3. Install Required Dependencies: To set up a GraphQL server, you will
need a GraphQL library. There are several popular libraries available,
including Apollo Server and graphgl-http.

Why Apollo Server?

Apollo Server is a well-maintained and full-featured GraphQL server
with a strong community. It provides a powerful set of tools and
features for building robust GraphQL APIs. By choosing Apollo
Server, you will have access to a wide range of capabilities, including
schema stitching, subscriptions, and more.

Version 4: At the time of writing, Apollo Server has released version
4, which offers enhanced performance and new features. We will be
using Apollo Server version 4 to integrate with Express in this chapter.

To install Apollo Server and its dependencies, run the following
command:

> npm install @apollo/server (@as-integrations/express4

graphgl express@4 cors body-parser @faker-js/faker

If you are using TypeScript, you may also need to install type
declaration packages as development dependencies to prevent common
type-related errors. Use the following command to install these type
declaration packages:

> npm install --save-dev (@types/cors @types/express
@types/body-parser

These packages are essential for Apollo Server and Express to work
together seamlessly. Once you have installed them, you will be ready to
configure your GraphQL server and start building your API.

4. Project Structure: With the required packages installed, it is time to
organize your project. In your project’s root directory, create a file
named server.js. Using the .js extension ensures that you can use
the await keyword at the top level of your code, which is especially
helpful for asynchronous operations like setting up your GraphQL
server. This server.js file will serve as the entry point for your
GraphQL server.

Here is a simplified project structure to get you started:

graphgl-server/

F—— server.js

— node modules/

F—— package.json
L — package-lock.json

In this structure:

e server.js will house your GraphQL server setup.

e node modules/ Will contain the installed packages.

i package.jsonEnuipackage—lock.json(Oryarn.lockifyouzﬂelhﬁng
Yarn) are configuration files for managing project dependencies.

With this structure in place, you are ready to begin configuring your
GraphQL server in the server.js file.

Configuring the Server Environment for
GraphQL

To configure the server environment for GraphQL, you need to clone the
code for this chapter in the GitHub repository: https:/github.com/ava-
orange-education/Ultimate-GraphQL-Web-Development-Handbook Please
clone the repository and navigate to the "chapter-2" folder to follow along.

Import Required Libraries: In the code, we start by importing the
necessary libraries using ES6 import statements. These libraries include
ApolloServer, expressMiddleware,
ApolloServerPluginDrainHttpServer, express, http, cors, and body-
parser. These libraries are essential for setting up a GraphQL server with
Node.js.

import { ApolloServer } from "@apollo/server";

import { expressMiddleware } from "@as-integrations/expressd";
import { ApolloServerPluginDrainHttpServer } from
"@apollo/server/plugin/drainHttpServer";

import express from "express";

import http from "http";

import cors from "cors";

import bodyParser from "body-parser";

Define GraphQL Schema: Next, we define our GraphQL schema using the
typeDefs variable. In this example, we have a simple query named hello
that returns a string.

const typeDefs =
type Query {
hello: String
}
Define Resolvers: We also provide a set of resolver functions in the
resolvers object. Resolvers are responsible for fetching the actual data for
the GraphQL fields. In this case, the hello query resolver returns the string

"world."

const resolvers = {
Query: {
hello: () => "world",
by
}i

https://github.com/ava-orange-education/Ultimate-GraphQL-Web-Development-Handbook

Set Up Express Server: We create an Express app using express() and
create an HTTP server using http.createServer (app) . Express is a popular
web framework for Node.js, and it is used to handle HTTP requests and
responses.

const app = express();

const httpServer = http.createServer (app):;

Initialize Apollo Server: We create an instance of Apollo Server, passing in
the schema (typeDefs and resolvers) and configuring it with plugins. In
this example, we use the ApolloServerPluginDrainHttpServer to drain the
HTTP server during server shutdown.

const server = new ApolloServer ({

typeDefs,

resolvers,

plugins: [ApolloServerPluginDrainHttpServer ({ httpServer })],
b):

awalt server.start():;

Middleware Setup: We configure the Express app to use middleware such
as cors, body-parser, and expressMiddleware (server) tO handle
GraphQL requests.

app.use(cors (), bodyParser.json(), expressMiddleware (server));

Start Server: Finally, we start the HTTP server on port 4000 and log a
message indicating that the server is ready.

await new Promise ((resolve) => httpServer.listen({ port: 4000
}, resolve));

console.log(4" Server ready at http://localhost:40007);

With this setup, you can run your GraphQL server on http://localhost:4000.
You can interact with it using the GraphQL Playground, where you can write
and execute queries and explore your GraphQL API.

Run Server: On your terminal, go to the root folder and run the command:
> node server.js

After running the server using node server.js, you can open your web
browser and navigate to http://localhost:4000.

If everything is set up correctly, you will see the GraphQL Playground,
which we will explore further in a later chapter. The playground consists of

three sections: Documentation, Operation, and Response.

[ODocumentation P— m v X

Figure 2.2: Apollo GraphQL Playground Running on localhost:4000

In the operation section, you can write and execute GraphQL queries.

Go to the operation section and enter the following query (which we
created in the code):

query {
hello

}
And in the Response section, you will receive the following response:

{
"data": {
"hello": "world"
}
}

This code sets up a basic GraphQL server environment using Apollo Server,
Express, and other necessary libraries.

In conclusion, setting up a GraphQL server with Node.js and Express is the
foundation for building powerful GraphQL APIs. In this section, we walked
through the process of initializing a project, importing the necessary
libraries, defining the GraphQL schema and resolvers, and configuring the

server environment. We also discussed how to use Apollo Server, a robust
GraphQL server implementation, to streamline the development process.

With your GraphQL server up and running, you are now equipped to create
and test GraphQL APIs that provide data to your frontend applications. But
how do you ensure that your APIs work as expected and handle different
scenarios efficiently? That is where GraphQL API testing comes into play.

In the next topic, GraphQL API Testing, we will explore the importance of
testing GraphQL APIs thoroughly. We will introduce you to GraphQL
Playground, an interactive tool for testing and exploring GraphQL APIs.
You will learn how to write and execute queries, mutations, and
subscriptions to verify that your API behaves as intended. So, let us dive into
the world of GraphQL testing and ensure the reliability and robustness of
your APIs.

GraphQL API Testing

In this section, we will introduce you to GraphQL Playground a dynamic,
browser-based Integrated Development Environment (IDE) tailored for
GraphQL. This powerful tool, developed by Prisma and inspired by
GraphiQL, opens up a world of possibilities for testing and exploring
GraphQL APIs.

Introduction to GraphQL Playground

GraphQL Playground is your go-to graphical IDE for interactive GraphQL
development. It is designed to simplify the process of crafting, testing, and
fine-tuning your GraphQL queries, mutations, and subscriptions. Whether
you are a GraphQL novice or a seasoned pro, GraphQL Playground provides
an intuitive and efficient platform for building and testing GraphQL
operations.

Figure 2.3: GraphQL Playground

Interactive Testing and Exploration of GraphQL
APIs

At its core, GraphQL Playground serves as a virtual sandbox where you can
interactively test and explore GraphQL APIs. Here are some key highlights:

e Dynamic Auto-Completion: As you craft queries and mutations,
GraphQL Playground offers dynamic auto-completion. It intelligently
suggests types, fields, and arguments in real-time, reducing the risk of
syntax errors.

 Rich Documentation: GraphQL Playground provides access to
detailed documentation for your GraphQL schema. This invaluable
resource offers insights into your API’s structure, available types, and
supported operations.

e Real-Time Responses: Execute a query or mutation, and GraphQL
Playground instantly displays the response data. This real-time
feedback allows you to inspect the returned data structure and ensure
that it aligns with your expectations.

o Efficient Variable Management: Managing variables within
GraphQL requests is a breeze in GraphQL Playground. Define
variables, specify their data types, and reuse them across multiple
queries and mutations.

e Code Sharing and Collaboration: For collaborative development,
GraphQL Playground offers convenient code-sharing features. Export
queries and mutations as files or utilize built-in sharing capabilities to
foster teamwork and knowledge exchange.

GraphQL Playground in Apollo Server

When it comes to setting up your GraphQL server with Apollo Server, you
can take full advantage of GraphQL Playground—an essential tool for
development and testing. Apollo Server seamlessly integrates GraphQL
Playground, providing a dynamic and interactive environment for crafting
and exploring GraphQL queries, mutations, and subscriptions.

Understanding GraphQL Playground

GraphQL Playground is a graphical, in-browser Integrated Development
Environment (IDE) for GraphQL. Developed by Prisma and inspired by
GraphiQL, it is designed to streamline your GraphQL development
experience. Thus, whether you are a beginner or an expert, GraphQL
Playground offers a user-friendly platform to interactively build and test
GraphQL operations.

GraphQL Playground in Apollo Server

Apollo Server, a premier choice for implementing GraphQL backends,
seamlessly integrates with GraphQL Playground. During development,
Apollo Server automatically serves GraphQL Playground on the same URL
as the GraphQL server itself (for example, http://localhost:4000 in our case).

This enhances your development experience by providing a comprehensive
GUI for web browsers, making it a valuable asset for testing and exploration.

Customization and Configuration

GraphQL Playground is highly customizable to meet your specific needs.
The Apollo Server constructor allows you to fine-tune its behavior. You can
adjust various settings, such as the theme and default queries presented when

the playground loads. For advanced configuration options and settings,
check out the https://github.com/graphql/graphql-playground#usage.

new ApolloServer ({
typeDefs,
resolvers,
playground: {
settings: {
'editor.theme': 'light',
by
tabs: [
{
endpoint,
query: defaultQuery,
by

Enabling GraphQL Playground in Production

While GraphQL Playground is invaluable during development, it is often
recommended to disable it in production environments. To adhere to best
practices, Apollo Server, when set to the production environment
(NODE_ENV: production), disables GraphQL Playground and introspection
by default. However, there may be scenarios where enabling GraphQL
Playground in production is necessary. In such cases, you can explicitly
enable it by configuring your Apollo Server to allow introspection and
enable the playground.

Summary

GraphQL Playground will play a crucial role in your GraphQL development
journey. In upcoming sections, we will leverage this powerful tool to test and
explore GraphQL APIs, gaining practical experience in using it effectively.
Get ready to unlock the full potential of your GraphQL APIs with GraphQL
Playground as your trusted companion.

https://github.com/graphql/graphql-playground#usage

Building a Blogging Platform Schema with
GraphQL

In this section, we will embark on a hands-on journey to craft a GraphQL
schema for an interactive blogging platform. Get ready to dive into the realm
of defining types, connecting data relationships, and creating powerful
queries and mutations. This is not your typical theory session, brace yourself
for practical schema creation, evolving our blogging universe into a dynamic
GraphQL playground. So, let us bring our blogging dreams to life, one
schema at a time!

Introduction to Schema Design in GraphQL

Let us embark on a journey to create the schema for an exciting blogging
platform using GraphQL. Think of schema design as sketching out the
blueprint for our application’s data world. In this scenario, we will be
defining types such as "author," "Post," and "Comment," each capturing
specific data attributes. For example, the "post" type could have fields such
as "title," "body," and a reference to its "Author".

Through this illustrative example, schema design comes to life as the
foundational step where we architect how our application’s data components
connect and collaborate.

Optimizing Data Retrieval and Manipulation through Schema
Design

Crafting a thoughtful schema in GraphQL offers a tailored approach to
handling data. As we shape our schema, we are essentially defining how
clients can interact with the server. A well-designed schema empowers
clients to request precisely the information they need, minimizing data
transfer and enhancing the overall performance.

Using our blogging platform as an example, a meticulously designed schema
ensures that fetching details about a post, its author, and associated
comments becomes an intuitive and efficient process. The schema acts as a
guiding force, ensuring that GraphQL interactions are not just data queries
but rather orchestrated conversations between the client and server.

Creating GraphQL Types for a Blogging Platform

Imagine you are tasked with designing the GraphQL schema for a modern
Blogging Platform. The schema needs to encapsulate entities such as
Authors, Posts, and Comments, fostering a seamless representation of
relationships between them. This task involves crafting GraphQL types that
not only define the structure of the data but also establish meaningful
connections to create a comprehensive data schema.

Entities in Our Blogging Platform

Let us start by identifying the main entities that form the backbone of our
Blogging Platform:

e Author:

o id: ID!
O name: String!

O email: String!

O posts: [Post]
® Post:
© id: ID!

© title: String!
© body: String!
© author: Author

O comments: [Comment]
® Comment:
© id: ID!
© text: String!
© author: Author
O post: Post
The structure outlined above illustrates the relationships between Authors,

Posts, and Comments. An Author can be linked to multiple Posts, and each
Post can have various Comments associated with it.

Defining the Schema

Now, let us translate these entities into GraphQL types. Create a file named
schema. js and add the following code:

// schema.js
const schema = "#graphgl
type Author {
id: ID!
name: String!
email: String!
posts: [Post]
}

type Post {
id: ID!
title: String!
body: String!
author: Author
comments: [Comment]

}

type Comment {
id: ID!
text: String!
author: Author
post: Post
}
export default schema;

This snippet showcases the GraphQL schema for our Blogging Platform,
including the definition of Author, Post, and Comment types.

Uses of #graphql

The #graphql directive at the beginning of the schema serves as a comment
or identifier indicating that the content within this file is written in GraphQL
syntax. While it is not a standard GraphQL syntax element, it is often used
as a visual cue or convention for developers and tools to recognize files
containing GraphQL definitions.

Author Type

The author type represents the structure of an author in our Blogging
Platform schema. Each author has a unique identifier (id), a name, an email
address, and an array of posts they have authored. Let us break down its
components:

e id: 1ID!': A unique identifier for the author, emphasizing its non-null
nature.

* name: String!: The author’s name, marked as a required non-null
string.

* email: String'!: The author’s email address, also specified as a
required non-null string.

* posts: [Post]: An array of posts authored by this author. The array is
an optional field.

Post Type

The post type defines the structure of a blog post. It includes an identifier
(iq), a title, the post content (body), the author of the post, and an array of
comments associated with the post. Key details are as follows:

e id: ID!: A unique identifier for the post, non-null.

e title: String!: The title of the post, a non-null string.

* body: String!: The content or body of the post, a non-null string.

e author: Author: The author of the post, creating a relationship with
the Author type.

* comments: [Comment]: An array of comments related to this post. The
array is an optional field.

Comment Type

The Comment type models a comment on a blog post. It includes an
identifier (id), the textual content of the comment (text), the author of the
comment, and the post to which the comment belongs. Key details are as
follows:

e id: 1D!: Unique identifier for the comment, non-null.

* text: String!: The content of the comment, a non-null string.

® author: Author: The author of the comment, linked to the Author
type.

e post: Post: The post to which the comment is attached, establishing a
relationship with the Post type.

Integrating the Schema

Next, integrate this schema into the main server. Open the server.js file
and import the schema:

// server.js

import { ApolloServer } from "@apollo/server";

import { expressMiddleware } from "Q@as-integrations/expressd";
import { ApolloServerPluginDrainHttpServer } from
"@apollo/server/plugin/drainHttpServer";

import express from "express";

import http from "http";

import cors from "cors";

import bodyParser from "body-parser";

import schema from "./schema.js";

// A map of functions which return data for the schema.
const resolvers = {
// .. (existing resolvers)
i
const app = express();

const httpServer = http.createServer (app):;

// Set up Apollo Server with the integrated schema
const server = new ApolloServer ({

typeDefs: schema,

resolvers,

plugins: [ApolloServerPluginDrainHttpServer ({ httpServer })],
1)

// .. (rest of the server setup)

This schema, organized by Author, Post, and Comment types, forms the
backbone of our Blogging Platform’s data structure. It provides a clear
representation of how authors, posts, and comments are interconnected,

facilitating efficient data retrieval and manipulation through GraphQL
queries and mutations.

Establishing Relationships in a Blogging Schema

In a GraphQL schema, relationships between different types play a crucial
role in defining how data is interconnected.

In our Blogging Platform schema, we establish meaningful relationships
between the Author, Post, and Comment types to create a comprehensive and
interconnected data model.

Relationship: Author to Post

One primary relationship is between the Author and pPost types. Each
author can have multiple authored posts, creating a one-to-many
relationship. This relationship is reflected in the schema through the posts
field within the author type. This field is an array of Ppost types,
representing all the posts authored by a specific author.

Relationship: Post to Author

Conversely, each post has a reference to its author through the author field.
This field is of type Author, establishing a connection back to the Author
type. This bidirectional relationship allows us to traverse from an author to
their posts and from a post to its author seamlessly.

Relationship: Post to Comment

Another essential relationship exists between the post and Comment types.
Each post can have multiple comments, forming a one-to-many relationship.
The comments field within the post type is an array of Comment types,
representing all the comments associated with a particular post.

Relationship: Comment to Author and Post

In the comment type, we establish two relationships. The author field
connects a comment to its author through the author type. Similarly, the
post field links a comment to the post on which it was made through the
Post type. These relationships provide context to each comment, indicating
both the author of the comment and the post being commented on.

Summary

Establishing clear and well-defined relationships in our Blogging Platform
schema enhances the depth and richness of data interactions. Through these
relationships, we enable queries that traverse the data graph, allowing clients
to retrieve interconnected information with precision and efficiency.

In the next sections, we will explore how to query and mutate data within
this schema, leveraging these established relationships for a more dynamic
and interactive GraphQL experience.

Get ready to breathe life into your Blogging Platform with GraphQL!

Building GraphQL Queries and Mutations for a
Blogging Platform

As we venture into this topic, we will unravel the intricacies of writing
GraphQL queries for optimal data retrieval, delve into the transformative
power of mutations for data manipulation, and explore versatile strategies to
enhance the overall data retrieval and modification processes in the context
of your blogging platform.

Prepare to enhance your GraphQL expertise and witness how these queries
and mutations will play a pivotal role in shaping the functionality of your
GraphQL-powered blogging backend. So, let us dive in!

Efficient Data Retrieval with GraphQL Queries

Let us craft our first GraphQL queries for efficient data retrieval in our
blogging platform. Open the schema.js file, and enhance our GraphQL
schema with these queries.

To enable efficient data retrieval in our blogging platform, let us enhance our
GraphQL schema with some queries.

Open the schema. js file and add the following queries:

const schema = "#graphqgl
type Query {
hello: String
Retrieve a list of all authors
allAuthors: [Author]
Retrieve a list of all posts
allPosts: [Post]

Retrieve a specific post by ID
post (id: ID!): Post
}

type Author {

id: ID!
name: String!
email: String!
posts: [Post]

}

type Post {
id: ID!
title: String!
body: String!
author: Author
comments: [Comment]

}

type Comment {
id: ID!
text: String!
author: Author
post: Post

}

export default schema;

Let us understand these queries:

l. allauthors: Fetches a list of all authors in the blogging platform.

2. allposts: Retrieves a list of all posts published on the platform.

3. post(id: 1ID!): Fetches a specific post by providing its unique ID.
These queries will serve as powerful tools for extracting precisely the data

your blogging platform needs. Now, let us explore the art of executing these
queries and extracting meaningful data.

To bring our GraphQL queries to life, we need resolvers. Resolvers are
functions that handle the logic of fetching the requested data. Hence, let us
create a resolvers. js file and populate it with resolver functions:

File: resolvers.js

// Import any necessary libraries for generating dummy data

import { faker } from 'Q@faker-js/faker';

// Dummy data for authors, posts, and comments

const authors = Array.from({ length: 5 }, (_, index) => ({
id: String(index + 1),
name: faker.person.fullName (),
email: faker.internet.email(),

1))

const posts = Array.from({ length: 10 }, (, index) => ({
id: String(index + 1),
title: faker.lorem.sentence(),
body: faker.lorem.paragraph(),
authorId: String(Math.floor (Math.random() * 5) + 1),
1))

const comments = Array.from({ length: 20 }, (, index) => ({
id: String(index + 1),
text: faker.lorem.sentence(),
authorId: String(Math.floor (Math.random() * 5) + 1),
postId: String(Math.floor (Math.random() * 10) + 1),

1))

const resolvers = {
Query: |
hello: () => 'world',
allAuthors: () => authors,
allPosts: () => posts,
post: (, { id }) => posts.find((post) => post.id === id),
Yy
Author: {
posts: (author) => posts.filter ((post) => post.authorId ===
author.id),
by
Post: {
author: (post) => authors.find((author) => author.id ===
post.authorId),
comments: (post) => comments.filter ((comment) =>

comment .postId === post.id),

Yy
Comment: {
author: (comment) => authors.find((author) => author.id ===
comment.authorId),
post: (comment) => posts.find((post) => post.id ===
comment.postld),
Yo
}i
export default resolvers;
Now, let us integrate these resolvers into our server. In the server.js file,
import the resolvers and bind them to our Apollo Server instance.

File: server.js

// ... (rest of the server code)
import bodyParser from 'body-parser';
import typeDefs from './schema.js';

import resolvers from './resolvers.ijs';

const app = express();
const httpServer = http.createServer (app)

// Set up Apollo Server
const server = new ApolloServer ({
typeDefs,
resolvers,
plugins: [ApolloServerPluginDrainHttpServer ({ httpServer })],

)

// .. (rest of the server setup)
Explanation
1. Dummy Data Generation: We use the @faker-js library to generate

dummy data for authors, posts, and comments. This is common
practice when developing without an actual database.

2. Query Resolvers:

e The oguery resolver object contains functions for handling
different queries.

" hello: A simple query returning the string ‘world’.
" allauthors: Returns an array of all authors.

" allPosts: Returns an array of all posts.
» post: Takes an id argument and returns the post with the
matching ID.
3. Entity Resolvers:

e For each entity (author, Post, Comment), there are resolvers
defined.

» author: Includes a resolver for the posts field, returning all
posts authored by the specific author.

» post: Includes resolvers for the author and comments fields,
fetching the corresponding author and comments for a post.

= comment: Includes resolvers for the author and post fields,
fetching the corresponding author and post for a comment.

4. Export Resolvers: The resolvers object is exported for integration
with the Apollo Server.

These resolvers provide the necessary logic for handling queries and
resolving relationships between entities in our blogging platform schema.

Testing Queries in GraphQL Playground

Now that we have set up our GraphQL server and defined resolvers, it is
time to test our queries using GraphQL Playground.

I. Run GraphQL Server:

a. Open your terminal and navigate to the project directory.
b. Run the command: node server.js.

c. This will start the server, and you should see a message indicating
that the server is ready at http://localhost:4000.

2. Open GraphQL Playground:

a. Open your web browser and navigate to
http://localhost:4000/graphql.

b. GraphQL Playground should open, providing an interactive
environment to test queries.

3. Write and Execute Query:

a. On the left side, you can write your queries. For example, let us
fetch all posts with their authors and titles.

b. Use the following query:

query {
hello
allPosts {
author {
email
id

name

id
title

}
}

c. As you type, you can press ctrl + space to get auto-suggestions
for your queries.

4. View Results:

a. After writing the query, click the "run" button.
b. The right panel will show the results of your query.

5. Explore the Playground:

a. GraphQL Playground provides tabs for "Documentation"
(documentation), "schema" (schema exploration), and "History"
(query history).

b. You can explore the schema, view documentation, and experiment
with different queries.

Figure 2.4: Testing Queries in GraphQL Playground
Screenshot Explanation:

1. The screenshot shows the GraphQL Playground interface.
2. On the left in operation section, you can see the query we wrote.

3. On the right, you can see the response with all posts, each containing
the author’s email, ID, name, post ID, and title.

Empowering Data Manipulation with GraphQL
Mutations

In this section, we will explore the capabilities of GraphQL mutations to
empower data manipulation within our blogging platform. Mutations allow
us to perform actions that modify or create data, providing a powerful
mechanism for saving new posts and comments.

Introduction to GraphQL Mutations

While queries in GraphQL are used for fetching data, mutations are designed
for making modifications to the data. In the context of our blogging

platform, we will leverage mutations to add new posts and comments,
enhancing the interactive and dynamic nature of our application.

Schema Design for Mutations

Let us extend our existing schema in the schema. js file to include mutation
types for creating and updating data. We will start by adding mutation types
for creating a new post and saving a comment. These mutations will allow
users to interact with the platform by contributing new content and engaging
in discussions.

Extend your existing schema. js file with the following mutation types:

const schema = "#graphgl
type Mutation {
createPost (input: PostInput!): Post
createComment (input: CommentInput!): Comment

}

input PostInput {
title: String!
body: String!
authorId: ID!

}

input CommentInput {
text: String!
postId: ID!
authorId: ID!

}
.. (rest of the graphgl schemas)

export default schema;

In the preceding schema:

e The Mutation type includes two mutations: createPost and
createComment.

e PostInput and CommentInput are input types that define the expected
structure of input data for creating a post and a comment, respectively.

Resolvers for Mutations

Now, let us create resolvers for these mutations in a separate file called

resolvers. js:

// Import any necessary libraries for generating dummy data
import { faker } from "Q@faker-js/faker";
import { v4 as uuidv4 } from "uuid";
// Dummy data for authors, posts, and comments
const authors = Array.from({ length: 5 }, (_, index) => ({
id: String(index + 1),
name: faker.person.fullName (),
email: faker.internet.email(),

1))

// ... (rest of the code)
const resolvers = {
Mutation: {
createbPost: (, { input }) => {
const post = {

id: uuidv4 (),
title: input.title,
body: input.body,
authorId: input.authorId,
i
posts.push (post) ;
return post;
Yy
createComment: (, { input }) => {
const comment = ({
id: uuidv4 (),
text: input.text,
postId: input.postId,
authorId: input.authorId,
i
comments.push (comment) ;
return comment;

by

}, // end mutation resolvers

.. (rest of the resolvers code)

}; // end resolvers

export default resolvers;

Explanation

l. createPost and createComment are mutation resolvers responsible for
adding new posts and comments, respectively.

2. Each resolver functions takes three parameters:

e : The root value, not used in this example.

e { input }: Destructuring the input argument, which contains data
for creating a new post or comment.

e {}: The context, which is not used in this specific scenario.
3. Inside the resolvers:

e Unique IDs are generated using uuidv4 () to ensure uniqueness.
e New posts and comments are created using the provided input.

e The newly created entities are added to the respective arrays
(posts(nfcomments)

e The created object is returned, allowing the client to receive
information about the newly added post or comment.

Executing Mutations in GraphQL Playground

Now that we have defined mutation operations in our GraphQL schema, let
us explore how to execute mutations using GraphQL Playground. Mutations
in GraphQL are used for data manipulation, allowing us to perform actions
that modify or create data. In this example, we will use the createPost
mutation to add a new post to our blogging platform.

Mutation Operation:

mutation (S$input: PostInput!) {
createPost (input: $input) {
id
title
body

author {

id
email

name

}
Explanation:

l. mutation: Indicates that we are performing a mutation operation.

2. ($input: PostInput!): Defines a variable named input of type
PostInput. The exclamation mark (!) denotes that this variable is
required.

3. createPost (input: $input): Calls the createPost mutation with the
provided input.

4. Inside the mutation, we specify the fields of the newly created post that
we want to retrieve.
Input Section:
{

"input": {
"authorId": "2",
"title": "Empowering Data Manipulation with GraphQL

Mutations",
"body": "Mutations allow us to perform actions that modify or
create data, providing a powerful mechanism for saving new

posts and comments"

}
Explanation:

1. The input variable is provided with values for authorid, title, and
body.

2. We specify the authorid as "2", indicating that the new post will be
authored by the author with ID "2".

3. The title and body fields contain the content for the new post.

Executing the Mutation:

1. Open GraphQL Playground at http://localhost:4000/graphql (assuming
your server 1s running on this URL).

2. In the left panel, paste the mutation operation and input values.
3. Click on the "run" button to execute the mutation.

Expected Response: After executing the mutation, you should receive a
response with details about the newly created post, including its id, title,
body, and information about the author:

{
"data": {
"createPost": {
"id": "2830ab35-aaf4-44b5-9ae3-41910c057940", // The newly
generated ID for the post
"title": "Empowering Data Manipulation with GraphQL
Mutations",
"body": "Mutations allow us to perform actions that modify
or create data, providing a powerful mechanism for saving
new posts and comments",
"author": {
"id": "2",
"email": "author2@example.com",

"name": "Author 2"

(== L] Erigeinid -
=

Figure 2.5: Testing Mutation in GraphQL Playground

This response confirms that the mutation was successful, and the new post
has been added to the blogging platform. The provided input values have
been used to create the post, and the response includes the requested
information about the created post.

Conclusion

In this chapter, we were introduced to the fundamentals of GraphQL and
explored how it solves common API challenges through its flexible and
efficient query model. We set up a GraphQL backend using Node.js,
Express, and Apollo Server, designed a clear schema for a blogging
platform, and learned how to write and test queries and mutations using
GraphQL Playground.

With the backend now ready, the next chapter will focus on integrating
GraphQL into the frontend using Apollo Client, where we will fetch,
manage, and update data seamlessly within a modern web application.

With our GraphQL backend fully operational, we are now ready to move
forward. In the next chapter, we will shift our focus to the frontend and

integrate GraphQL using Apollo Client. We’ll explore how to fetch data
from the backend, manage client-side state, and update data efficiently. This
will lay the foundation for building dynamic and responsive applications
powered end-to-end by GraphQL.

Points to Remember

GraphQL allows clients to request exactly the data they need, reducing
over-fetching and under-fetching.

Apollo Server combined with Node.js and Express provides a clean
and efficient setup for building GraphQL APIs.

A well-designed schema is the backbone of any GraphQL application
and determines how clients will interact with your data.

GraphQL Playground is a powerful tool for testing queries, mutations,
and exploring schemas interactively.

Queries are used for reading data, while mutations allow you to create
or update information in your API.

Resolver functions act as the bridge between your schema and your
actual data sources.

Libraries like uuid are useful for generating unique identifiers when
creating new posts or comments.

CHAPTER 3

Building with GraphQL: Frontend and
Apollo Integration

Introduction

Welcome to the dynamic world of frontend development, where we
seamlessly integrate GraphQL into a React application using the powerful
Apollo Client. In this chapter, our focus shifts from the backend
orchestration to crafting captivating user interfaces, optimizing performance,
and fostering harmonious collaboration between the frontend and backend
layers. In this chapter, we will take a step-by-step approach, ensuring that
you not only understand the concepts but also apply them in real-world
scenarios.

Structure

In this chapter, we will cover the following topics:

Section 1: Setting up the React Environment
e Installing React Locally with Vite

o Step-by-step guide to install React locally using Vite
o Setting up a clean React project for our blogging website

e Installing @apollo/client and GraphQL Dependencies

o Introduction to Apollo Client and its role in React applications
o Installing necessary dependencies for Apollo Client and GraphQL

Section 2: Integrating Queries and Mutations for Blog Posts
e Integrating Queries for Blog Posts
o Exploring how to fetch blog post data using GraphQL queries

o Implementing the integration of queries into the React
components

e Integrating Mutations for Blog Posts

o Implementing GraphQL mutations for adding and updating blog
posts

o Integrating mutation functionality into the React components

Installing React Locally with Vite

In this section, we will start by setting up your local development
environment using Vite.

React, a powerful JavaScript library developed by Facebook, is renowned
for its declarative and efficient Ul development. Its component-based
architecture and virtual DOM make it an ideal choice for creating dynamic
and interactive user interfaces.

The Benefits of React with Vite

Before we dive into the technicalities, let us address why we have chosen
React with Vite for this book. React’s popularity stems from its ability to
simplify the process of building reusable Ul components, providing a
structured and efficient way to manage complex user interfaces. Vite, a
modern build tool, enhances the development experience with extremely fast
cold starts and Hot Module Replacement (HMR). With a vast ecosystem and
strong community support, React combined with Vite has become a go-to
choice for frontend development, making it an excellent companion for our
journey into GraphQL integration.

Vite: A Quick Overview

Vite is a modern build tool that provides a faster and leaner development
experience for modern web projects. It consists of two major parts:

1. A dev server that serves your source files over native ES modules, with
rich built-in features and astonishingly fast Hot Module Replacement
(HMR).

2. A build command that bundles your code with Rollup, pre-configured
to output highly optimized static assets for production.

Now, let us get started with the installation process:

1. Open your terminal and enter the following command:

> npm create vite@latest frontend -- --template react

This command initializes a new React project named "frontend" using Vite.

1. Once the code generation is complete, navigate into the generated
project folder:

> cd frontend

2. Start the development server:

> npm run dev

This will launch your React application, and by default, it will be
running on http://localhost:5173.

Open this URL in your browser to see your React application in action!

Understanding the Folder Structure

While Vite typically generates a different folder structure, for this project,
we have customized the structure to better suit our needs. Let us take a brief
look at what each folder represents:

e public/: Contains static assets and the HTML file that serves as the
entry point for your application.

src/: Houses the source code of your React application.

e}

o

app.css: Styles specific to the App component.

app.js: The main component where you define the structure of
your application.

index.js: The entry point of your application where the App
component gets rendered into the DOM.

logo.svg: An SVG logo used in the default template.
reportWebVitals.js: A utility for reporting web vitals.
setupTests.js: Configuration for running tests.

* node modules/: Contains the project’s dependencies.

* package.json: Configuration file that lists the project’s dependencies
and scripts.

e .gitignore: Specifies files and directories that should be ignored by
version control systems like Git.

e README.md: Documentation file providing information about your
project.

This customized structure allows you to focus on building your React
components and integrating GraphQL without getting bogged down by
configuration complexities. In the upcoming sections, we will extend this
foundation by seamlessly integrating GraphQL using Apollo Client. Get
ready for an immersive experience in building dynamic and data-driven
React applications!

Installing @apollo/client and GraphQL
Dependencies

In this section, we will equip our React application with the necessary tools
for seamless integration with GraphQL using Apollo Client. Let us dive into
the two subtopics.

Introduction to Apollo Client

Apollo Client serves as the powerhouse for managing GraphQL data in your
React application. It consolidates various essential functionalities, including
an in-memory cache for efficient data storage, local state management, error
handling, and a React-based view layer. By adopting Apollo Client,
developers can effortlessly interact with GraphQL APIs, fetching and
updating data with minimal boilerplate code.

Installing Necessary Dependencies for Apollo Client and
GraphQL

Before we can fully harness the capabilities of Apollo Client, let us install
the required dependencies. Open your terminal and run the following
command:

> npm install @apollo/client graphgl

* @apollo/client: This package encapsulates all the essentials for
setting up Apollo Client. It includes the in-memory cache, local state
management, error handling, and the React-based view layer.

e graphql: This package provides the logic necessary for parsing
GraphQL queries.

With these dependencies in place, our React application is ready to embrace
GraphQL through Apollo Client.

Initializing ApolloClient in index.js

In your index. js file, let us import the necessary dependencies and initialize
the ApolloClient. Add the following lines at the beginning of your index. js
file:

// index.js
import { ApolloClient, InMemoryCache, ApolloProvider, gqgl }
from '@apollo/client';
const client = new ApolloClient ({
uri: "http://localhost:4000", // The URL of our GraphQL
backend server created in Chapter 2

cache: new InMemoryCache(),

1)

e uri: Specifies the URL of our GraphQL server.

* cache: An instance of InMemoryCache, utilized by Apollo Client to
cache query results after fetching them.

Executing a Query with Plain JavaScript

Ensure that your GraphQL backend server (http://localhost:4000) is running,
and GraphiQL is accessible.

Open GraphQL Playground and run this query for fetching Posts in
Operations section:

query GetAllPosts {
allPosts {
id
body

title
author {
id
name
}
}
}

Ensure that your GraphQL backend server (http://localhost:4000) is running,
and GraphiQL is accessible.

:‘i.: Lat Aty

D operten - oo [T

Figure 3.1: GraphQL Playground with Post Query

Now, before we integrate Apollo Client with React, let us test it by sending
the same query with plain JavaScript. In the same index.js file, add the
following code just after initializing the ApolloClient:

// index.js
client
.query ({
query: gqgl’
query GetAllPosts {
allPosts {
id
body
title

})

.then((result) => console.log(result)):;

This code sends a GraphQL query to retrieve all posts with their authors
from the backend server. The result should be logged to the console.

1. Run npm start in your terminal to open your React application in the
browser.

2. Open the browser console (right-click and select ' Inspect', then go to
the 'console’ tab).

3. Check the results logged in the console. You should see a data property
with posts attached.

Congratulations! With Apollo Client initialized and communicating with the
backend, we are ready to seamlessly integrate it with our React application.
So, stay tuned for the next steps as we proceed to enhance our React view
layers with GraphQL queries and mutations in the upcoming sections.

Integrating Queries for Blog Posts

In this section, we will seamlessly integrate GraphQL queries into our React
application using Apollo Client. This involves connecting Apollo Client to
React, utilizing the powerful useQuery hook, and building a component to
display the blog posts.

Connecting Apollo Client to React

Connecting Apollo Client to React is a crucial step in our integration
process. The aApolloProvider component acts as the bridge, allowing
Apollo Client to be accessed anywhere in the component tree.

// index.]js

// .. (previous code)

const root =
ReactDOM.createRoot (document.getElementById ("root")) ;
root.render (
<React.StrictMode>
<ApolloProvider client={client}>
<App />
</ApolloProvider>
</React.StrictMode>
) ;
This setup allows our React app to communicate with the Apollo Client,
facilitating the seamless integration of GraphQL into our components.

Introduction to useguery Hook

After setting up the ApolloProvider, we can start requesting data with the
useQuery hook. The useguery hook is a powerful React hook that shares
GraphQL data with your UI, providing an easy and efficient way to fetch
and manage data.

Explanation of useQuery:

* useQuery is a React hook provided by Apollo Client for querying data.
o [t takes a GraphQL query as an argument.

e Returns an object with properties such as 1oading, error, and data.

Now, let us move on to building a Blog Page to display the blog posts we
created.

Building the Blog Page Component

Create a new file named pisplayPosts.js to encapsulate the logic for
fetching and displaying blog posts. In this file, import React and the
necessary hooks, and define the GraphQL query for fetching posts.

// DisplayPosts.js
import { ggl, useQuery } from "@apollo/client";
import React from "react";

const GET_POSTS = gql
query GetAllPosts {
allPosts {

id

body

title

author {
id

name

}
const DisplayPosts = () => {
const { loading, error, data } = useQuery(GET POSTS);

if (loading) return <p>Loading..</p>;

if (error) return <p>Error : {error.message}</p>;

return data.allPosts.map(({ id, body, title, author: { name }
) => |
<div key={id} class="post">
<div class="post-title">{title}</div>
<div class="post-body">{body}</div>
<div class="post-author">Author: {name}</div>
</div>
))
}i
export default DisplayPosts;

In this component:

e We use the useguery hook to fetch data based on the GET posTs query.

e The loading and error states are handled, displaying a loading
message or an error message, respectively.

e The blog posts are mapped and displayed in the component.

Integrating DisplayPosts into App. js

Now, integrate the pisplayPosts component into your App.js file.

// App.Jjs

// Import necessary libraries
import "./App.css";
import DisplayPosts from "./DisplayPosts";

// Create the main App component
const App = () => {
return (
<>
<header>
<hl style={{ textAlign: "center" }}>Blog Posts</hl>
</header>
<div className="App">
<DisplayPosts />
</div>
</>
) ;
}

export default App;

Running and Testing the Application

Run npm start in your terminal to open your React application in the
browser. Open the browser console to inspect the results. The webpage
should display the blog posts fetched from the GraphQL backend.

Blog Posts

Velit doloribus sint nihil tenetur sed sed quos vel.

Deloram manima o cxplicabo oo iuslo recuserdas olficia. Sogs igsa ludantiu
voluptatem FSarnends recusandss

Qui voluptates qui tempora ea porro odio maxime quisquam.
Do archlacts udantiue st e Ui vt Guod dnn, Malus Dermpsrs delsotus
rerumy doiones. Uil mendma DS volaptas. evenke i reprehenders ure. Eligend st cormupti st
il WOl dadimis minus. Qs o1 Maes fo6

Porro sunt et eligendi non est inventore est.

Dolores cordequatur doboe. Fuga repellat sum cvenest Ol M3BDNET S cus non bore.

Figure 3.2: Blog Post with Graphql Query Integrated

In this section, we successfully integrated Apollo Client with React,
established a connection to the GraphQL backend, and implemented the
fetching and display of blog posts using the useQuery hook.

Thus, we have taken a significant step towards building a fully functional
blogging platform with GraphQL.

The next sections will further enhance our application by adding features
such as real-time updates and user authentication. Stay tuned for an exciting
journey ahead!

Integrating Mutations for Blog Posts

In the exciting journey of building our blogging website with GraphQL and
React, we now venture into the realm of mutations. Mutations, as we know,
are the bread and butter of any dynamic application, enabling users to add
and update data seamlessly.

In this section, we will dive into integrating mutations for blog posts,
empowering our users to create and modify content effortlessly.

Implementing GraphQL Mutations for Adding
and Updating Blog Posts

GraphQL mutations offer a powerful mechanism for modifying data on the
server, enabling developers to add, update, or delete resources with precision
and efficiency.

In this section, we will embark on a journey to explore the implementation
of GraphQL mutations within our React applications using Apollo Client.

Our primary focus will be on understanding and harnessing the capabilities
of the useMutation hook, a fundamental tool provided by Apollo Client for
executing mutations.

Unveiling the Power of useMutation

The useMutation hook serves as the cornerstone of mutation management in
Apollo Client. It empowers developers to orchestrate mutation logic with

ease, facilitating the seamless integration of mutation functionality into
React components.

Throughout this exploration, we will delve into the intricacies of
useMutation, unraveling its API reference, supported options, and best
practices for effective mutation execution. Thus, by leveraging real-world
examples and practical exercises, we aim to demystify the process of
implementing GraphQL mutations in our React applications.

To demonstrate the use of useMutation in Apollo Client, let us walk through
the process of creating a post using a GraphQL mutation.

First, ensure that the backend server is running by executing node
server.js Inside the backend folder. Then, open the Apollo Playground
server at http://localhost:4000/ in your browser.

Inside the playground, let us add a mutation for creating a post using the
createPost mutation:

mutation Mutation ($input: PostInput!) {
createPost (input: $input) ({
body,
id,
title,
author {
email,
id,
name,
___typename
}
}
}

This mutation takes an input object of type PostInput, which includes fields
such as authorid, body, and title. It returns the newly created post,
including its body, id, title, and details of the author.

Next, in the variable section, provide the input values for creating the post:
{

"input": {
"authorId": "1",

"body": "Welcome to the fascinating world of gquantum
computing! As technology continues to evolve at an
unprecedented rate, the realm of gquantum computing stands out
as one of the most intriguing and promising frontiers. In
this beginner's guide, we will embark on a journey to unravel
the mysteries of quantum computing and explore its potential
impact on various industries and scientific fields.",
"title": "Unveiling the Mysteries of Quantum Computing: A

Beginner's Guide"

}

In this JSON object, we specify the authorid, body, and title for the new
post. The authorid is the unique identifier of the author who is creating the
post, while the body contains the content of the post and the title is its title.

B omenen EIZZY o

Figure 3.3: Create a New Post with GraphQL Mutations Integrated

Integrating Mutation Functionality into the React
Components

Now, let us explore how we can execute this mutation using useMutation in
our React application. By calling the useMutation hook, we can integrate
this mutation logic into our components effortlessly.

The useMutation hook returns a tuple containing the mutation function and
its result object, which includes properties such as loading, error, and
data.

Step 1: Create the createPostForm. js File

Navigate to the directory where your React application resides. Typically,
this is the frontend directory of your project.

Within the srec directory of your React application, create a new file named
CreatePostForm. js.

After completing these steps, your directory structure should resemble the
following:

frontend/
| -— src/

| -— CreatePostForm.js

Now, let us proceed with implementing the createPostForm component in
the createPostForm.js file. This component will be responsible for
rendering a form to allow users to create new blog posts. We will utilize the
useMutation hook from Apollo Client to handle GraphQL mutations for
post creation.

Step 2: Import Necessary Dependencies and Define GraphQL Mutations
and Queries

In this step, we will import the necessary dependencies and define the
GraphQL mutations and queries required for our CreatePostForm
component.

a. Open the createPostForm. js file in your code editor.

b. Begin by importing the required dependencies from the Apollo Client
library and React. We will use the useMutation and useQuery hooks
from Apollo Client to handle GraphQL mutations and queries,
respectively. Additionally, we import the gql function to define
GraphQL operations and queries.

import React, { useState } from "react";

import { useMutation, useQuery, ggl } from
"@apollo/client";

import "./CreatePostForm.css"; // Import CSS file

c. Next, define the GraphQL mutation for creating a new post. We use the
gql function to define the mutation operation. The CREATE POST
mutation accepts a $input variable of type PostInput and returns the
fields body, id, title, and author, along with their respective
properties.
const CREATE POST = ggl-

mutation CreatePost ($input: PostInput!) {
createPost (input: S$input) {
body
id
title
author {
email
id
name
}
}
}

d. Similarly, define the GraphQL query to fetch authors for the post
creation form. The GET auTHORS query retrieves all authors from the
GraphQL server.
const GET AUTHORS = ggl®

query {
allAuthors {
id
name
}
}

.
4

With the dependencies imported and the GraphQL mutations and queries
defined, we are ready to proceed with implementing the rest of the
CreatePostForm component. Now, let us move on to the next step.

Step 3: Define the Component and Set Up State for Form Data

In this step, we will define the createPostForm functional component, and
set up the state to manage form data.

Begin by defining the createPostForm functional component. This
component will accept props, including setshowForm, which is a function to
control the visibility of the form.

const CreatePostForm = ({ setShowForm }) => {

// Component logic will go here..
bi
Inside the component, utilize the usestate hook to initialize the state for
form data. The formbata state will contain properties for the post title, body,
and author ID.

const [formData, setFormData] = useState ({
title: "V,
bOdy: nwn ,
authorId: "",

)

Implement the handlechange function to update the form data state
dynamically as the user inputs data into the form fields. This function will be
called whenever there is a change in the input fields.

const handleChange = (e) => {
setFormData ({ ..formData, [e.target.name]: e.target.value });
bi
The handlechange function utilizes the spread operator (..) to preserve the
existing form data and updates the specific field (e.target.name) with the
new value (e.target.value).

With the component defined and the form data state initialized, we have laid
the foundation for our post creation form. In the next steps, we will continue
building the form by adding input fields and handling form submission. Let
us proceed to the next step.

Step 4: Fetch Author Data with useQuery

In this step, we will use the useQuery hook to fetch author data from the
server.

Utilize the useguery hook provided by Apollo Client to fetch data from the
GraphQL server. Pass the GET_auTHORS query we defined earlier to retrieve
the list of authors.

const { loading: authorsLoading, error: authorsError, data:
authorsData } = useQuery (GET AUTHORS) ;

The usegQuery hook returns an object containing three properties:

* loading: A boolean value indicating whether the data is currently
being fetched.

e error: An error object containing details if an error occurs during the
fetch operation.

e data: The data returned from the server upon successful execution of
the query.

We are destructuring these properties from the object returned by the
useQuery hook.

e authorsLoading: This boolean variable indicates whether the data is
currently being loaded. It will be true while the query is in progress.

* authorsError: If an error occurs during the data-fetching process, this
variable will contain details about the error. Otherwise, it will be

undefined.

e authorsData: This variable holds the data retrieved from the server
upon successful execution of the query. It will be undefined while the
data is being loaded or if an error occurs.

With the author data fetched using useguery, we are ready to proceed to the
next steps where we will integrate this data into our form for selecting the
author when creating a new post. So, let us move on to the next step.

Step 5: Implement Mutation with useMutation

We will utilize the useMutation hook provided by Apollo Client to execute
the CREATE_PosT mutation we defined earlier.

const [createPost, { loading: createloading, error: createError
1=
useMutation (CREATE POST) ;

Here is a breakdown of what is happening:

e createPost: This variable holds a function that triggers the mutation
operation. We will use this function to execute the mutation when the
form is submitted.

® { loading: createloading, error: createError }: This ObjeCt
contains information about the state of the mutation:

o loading: Indicates whether the mutation is currently in progress.
It will be true while the mutation is executing.

o error: If an error occurs during the mutation, it will be captured
here.

Understanding the useMutation Hook:
e The useMutation hook is specifically designed for executing GraphQL

mutation operations in Apollo Client.

e [t takes the mutation document (CREATE POST in our case) as its
argument.

e The hook returns an array with two elements:

o The createPost function to execute the mutation.

o An object containing the loading and error states of the mutation
operation.

With the useMutation hook set up, we are now equipped to handle the
creation of new posts through GraphQL mutations. In the next steps, we will
integrate this functionality with our form submission logic. Let’s proceed to
the next step.

Step 6: Handle Form Submission

Now, let us implement the event handlers to manage form submission and
form input changes.

Handle Form Submission (handleSubmit):
We define an asynchronous function handlesubmit to handle form
submission events.
1. Upon form submission, we prevent the default behavior using
e.preventDefault().

2. We then call the createpost function, passing the form data as
variables to the mutation.

3. If the mutation is successful, we reset the form data and hide the form.
4. In case of an error during the mutation, we log the error to the console.

const handleSubmit = async (e) => {
e.preventDefault () ;
try {

awailt createPost ({ variables: { input: formData } });
setFormData ({ title: "", body: "", authorId: "" });
setShowForm() ;
} catch (error) {
console.error ("Error creating post:", error);
}
}i

Handle Form Input Changes (handleChange):

The handleChange function is responsible for updating the form data state
whenever the user inputs new values into the form fields.

const handleChange = (e) => {

setFormData ({ ..formData, [e.target.name]: e.target.value });
bi
Step 7: Render Form Elements

Next, let us render the form elements for creating a new post within the
CreatePostForm component.

return (

<form onSubmit={handleSubmit} className="create-post-form">

{/* Form elements */}

</form>
)
In the upcoming step, we will continue adding the form elements required
for users to input the title, body, and author of the new post. This will
complete the form implementation, enabling users to create new posts
seamlessly. Let us proceed to the next step.

Step 8: Add Conditional Rendering for Loading and Error States

Now, let us add conditional rendering to handle loading and error states
during data fetching and mutation execution.

{authorsLoading ? (
<p>Loading authors..</p>
) : authorsError ? (
<p>Error loading authors: {authorsError.message}</p>
) =
<select ..>
{/* Author options */}

</select>

)}

<button type="submit" disabled={createlLoading}>

{createloading ? "Creating.." : "Create Post"}
</button>

{createError && <p>Error: {createError.message}</p>}

In the preceding code:

We conditionally render a loading message while fetching author data.

If an error occurs during the data fetching process, we display an error
message.

Once the author data 1s successfully loaded, we render a dropdown list
of authors.

The submit button is disabled during mutation execution
(createLoading).

The button text dynamically changes based on the loading state.
If an error occurs during the mutation, we display an error message.

Step 9: Integrate Component in App. js

Finally, import and integrate the createPostForm component in the app. js
file to enable users to create new blog posts interactively.

In the app.js file, you can import the createPostForm component and
include it within the component tree. This allows users to access the form for
creating new posts directly from the main application interface.

By following these steps, you can seamlessly integrate the useMutation
functionality for creating new blog posts in your React application. This
empowers users to interact with your application, create content, and
contribute to the platform’s growth and engagement.

Blog Posts

Salal & el

Figure 3.4: Create a New Post Component with GraphQL useMutation Integrated

Blog Posts
=3

Introduction to GraphQL, Core Concepts

This part .'mtr.r founaticn by introducig NASHS 10 the et :w:mvmm | watE the
b for Thar sisst f thae ook, fsurie Bl eweryane, from Beginen 1 xnienced Sewiopery, st
with & solid s nl,‘\-ni rudrar .,-e Hhe hechnolngy.

Unveiling the Mysteries of Quantum Computing: A Beginner's

Guide
'\t"t:\ﬂl‘b:' e'a'.cu"-qm:rdr. .:.ur'l M LOeRaLUing .fl.lﬂ"...'o-: -.':ﬂ'm::--.-rd FF

o gl 1 Comprting Shanc cid 4 of e Figaing and
pc mu; o e 1'\-\ I.-lu..iml mhark |.¢_r-.|r. ey b0 wrravel the mysteries of

L Nr:w:-\.hxa'dn:-wc sp-obeﬂ.u r...a--:-ﬁ warous industries and scentic feids.

This is a title
dodmci kd cied ©

Inventore est ut ut quibusdam omnis ea ratione quidem.

Figure 3.5: New Blog Posted on All Blogs Page

Enhancing Post Listing with Dynamic Updates
Using Refetch Queries

In addition to creating new posts, it is important to update the list of posts
displayed on the blog website whenever a new post is added. This ensures
that users immediately see their new posts reflected on the platform. To
achieve this dynamic updating of post listings, we can leverage the
refetchQueries option available in the useMutation hook provided by
Apollo Client.

The refetchQueries option allows us to specify one or more GraphQL
queries to be refetched after a mutation is executed successfully. In our
scenario, we want to refetch the list of all posts (ceT_posTs) from the server
after a new post is created. This ensures that the latest data is fetched and
displayed to the user in real-time.

Here is the syntax for implementing refetchQueries within the
useMutation hook:

const GET POSTS = ggl®
query GetAllPosts {
allPosts {
id
body
title
author {
id
name
}
}
}
const [createPost, { loading: createloading, error: createError
bl o=
useMutation (CREATE POST, {
refetchQueries: [{ query: GET POSTS }],

b) g
In the preceding code:
e crREATE POST is the GraphQL mutation that adds a new post to the
database.

e GET_posTs is the GraphQL query used to fetch all existing posts from
the server.

e We use the useMutation hook to execute the CREATE_POST mutation.

e The refetchQueries option is provided as an object within the second
parameter of useMutation.

e We specify an array of objects inside refetchQueries, where each
object contains a query property referencing the GraphQL query to be
refetched.

e In our case, we want to refetch the GET posTs query after a new post is
created, ensuring that the list of posts is updated with the latest data.

Thus, by including refetchQueries in the useMutation options, we ensure
that the post listings are dynamically updated whenever a new post is added,
providing users with a seamless and responsive browsing experience on the
blogging platform.

Understanding Apollo Client’s Internal Cache
Mechanism

Apollo Client utilizes an internal cache mechanism to efficiently manage
data fetched from the server. When a mutation operation modifies data on
the server, it is crucial to ensure that the client-side cache reflects these
changes accurately. One way to achieve this is through refetch queries.

Consider an example where a new blog post is created using a mutation. By
employing a refetch query, such as the one defined by the GeT posTs
constant, Apollo Client automatically updates the local cache with the latest
data from the server. This ensures that the list of blog posts displayed to the
user remains up-to-date and reflects the newly created post.

const [createPost, { loading: createloading, error: createError
b=
useMutation (CREATE POST, ({
refetchQueries: [{ query: GET POSTS }], // Refetch blog list
after a new post is created
}) g

In Part 3 of this book, we will delve deeper into Apollo Client’s caching
strategies, exploring advanced techniques to optimize data consistency and
performance.

Conclusion

This chapter provided valuable insights into the seamless integration of
GraphQL into React applications using Apollo Client. By leveraging
GraphQL mutations and queries, developers can enhance the interactivity
and functionality of their React-based projects.

Looking ahead, the next chapter presents an ambitious challenge: building a
streaming website akin to Netflix. As we embark on this journey, we will
continue to harness the power of GraphQL and Apollo Client to create
dynamic and engaging web experiences.

Part 2

Building Streamify: A Netflix-Like
Streaming Platform

CHAPTERS 4-9

CHAPTER 4

Setting the Stage for Building a
Streaming Website

Introduction

Welcome to the next phase of our journey: building a streaming website
akin to industry leaders such as Netflix. In this chapter, we will lay the
groundwork for this exciting endeavor, defining our project’s scope, goals,
and key features.

As we delve into the practical implementation of GraphQL, we will explore
the intricacies of building a streaming platform. It is important to note that,
due to constraints, we will be leveraging YouTube videos for our content.
This limitation will provide a unique learning experience, allowing us to
focus on the technical aspects of building a streaming website.

Throughout this part of the book, you will learn how to translate your
GraphQL knowledge into real-world applications. Unlike the theoretical
discussions in the previous part, this section is all about practical coding
and implementation. Get ready to roll up your sleeves and dive deep into
the world of web development!

So, let us set the stage and embark on this exhilarating journey together. By
the end of this part, you will have the skills and confidence to tackle even
the most ambitious web development projects. Let’s get started!

Structure

In this chapter, we will cover the following topics:

e Presenting the Challenge: Building a Streaming Website such as
Netflix

e Defining Project Scope and Goals

e Introduction to Core Features to be Developed

Identifying essential features like user authentication and video
playback

Discussing key components such as content recommendation systems
e Configuring the Project Structure

Setting Up Backend and Frontend Environments

o Configuring backend environment with Node.js and Express.js
o Establishing frontend environment with React.js and Next.js

Presenting the Challenge: Building a Streaming
Website such as Netflix

In this section, we will embark on the exciting journey of constructing a
streaming website reminiscent of Netflix. Building upon the foundational
knowledge gained in the previous chapter, where we explored GraphQL
concepts and implemented a basic blogging website, we now shift our focus
to a more practical application of GraphQL in a larger-scale project.

Our objective is to leverage GraphQL to create a seamless streaming
experience for users, akin to popular platforms such as Netflix. However,
due to the limitations of this book, we will utilize YouTube videos as our
content medium, offering viewers a curated selection of movies and shows
across various genres.

Here is a glimpse of what lies ahead:

1. Admin Panel: We will begin by developing an admin panel, a central
hub for content management. Through this interface, administrators
can upload videos, input descriptions, titles, and other essential details.

2. Storefront: Next, we will design and implement the storefront, the
user-facing aspect of our streaming website. This section will feature a
home page showcasing content organized by genres. Additionally,
users will have the option to log in using their Google accounts for
personalized recommendations.

3. Video Detail Pages: Each video will have its dedicated detail page,
complete with a rating system. Viewers can provide ratings,
contributing to our recommendation engine’s data pool.

4. Recommendation System: Building upon user ratings, we will
develop a recommendation system that suggests similar or relevant
videos based on user preferences. These recommendations will
enhance the user experience by providing personalized content
suggestions.

By the end of this journey, you will have gained practical experience in
utilizing GraphQL to develop real-world applications. Through hands-on
projects and guided exercises, we will explore the intricacies of GraphQL
implementation in a streaming website context.

Hence, let us dive in and bring our streaming vision to life!

Defining Project Scope and Goals

In this section, we will outline the scope and goals specific to the upcoming
chapter, where we will focus on building the admin panel for our streaming
website project. Here is what you can expect:

e Scope Definition: Our project aims to deliver a comprehensive
streaming platform akin to Netflix, comprising an intuitive admin
panel for content management and a dynamic storefront website for
user engagement. This encompasses features such as video upload,
metadata management, user authentication, video playback, and
content recommendation systems.

e Objective Setting: Our primary goal is to build a scalable and feature-
rich streaming website that caters to both content managers and end-
users. This includes completing the backend implementation for the
admin panel and storefront, designing user-friendly interfaces, and
ensuring seamless integration between frontend and backend
components.

e User Experience Enhancement: We will prioritize enhancing the
user experience across both the admin panel and storefront, focusing
on intuitive navigation, engaging content presentation, and seamless
interaction flows. By incorporating user feedback and best practices in
UI/UX design, we aim to create an immersive and enjoyable
streaming experience for our audience.

e Technical Considerations: For backend development, we will
leverage Apollo GraphQL to build our GraphQL server, enabling
efficient data fetching and manipulation. On the frontend side, React.js
and Next.js will form the foundation for our UI components and page
routing. Additionally, we will utilize Tailwind CSS as our primary
CSS framework for streamlined and responsive page design.

e Outcome Expectations: By the end of the project, we aim to have a
fully functional streaming website with robust admin panel
capabilities, including video management and user authentication. The
storefront website will feature responsive design, seamless video
playback, and personalized content recommendations, enhancing user
engagement and satisfaction.

Introduction to Core Features to be Developed

In this section, we will delve into the fundamental features that form the
backbone of our streaming website project. These features are essential for
delivering a seamless and immersive user experience, encompassing
various aspects such as user authentication, video playback, and content
recommendation systems.

Identifying Essential Features such as User Authentication and
Video Playback

User Authentication: The authentication system plays a crucial role in
ensuring the security and integrity of our streaming platform.

To streamline the authentication process, we will implement Google Sign-In
as a convenient and secure authentication method for our users. Leveraging
the popular https:/www.passportjs.org library, we will integrate
https://www.passportjs.org/concepts/authentication/google seamlessly into
our application, enabling users to sign in with their Google accounts
effortlessly.

Video Playback: Video playback functionality is at the heart of our
streaming website, allowing users to access and enjoy a wide range of video
content seamlessly.

For video playback, we will leverage the robust capabilities of YouTube as
our primary video hosting platform. By embedding YouTube videos directly

https://www.passportjs.org/
https://www.passportjs.org/concepts/authentication/google

into our website, we can offer a diverse selection of high-quality video
content to our users while minimizing storage and bandwidth requirements
on our end.

Additionally, we will organize videos based on genres and tags, allowing
users to explore and discover content tailored to their preferences.

In the subsequent sections, we will delve deeper into each core feature,
discussing implementation strategies, technical considerations, and best
practices for delivering a polished and feature-rich streaming experience.
Through meticulous planning and execution, we aim to create a robust and
user-friendly streaming platform that delights and engages our audience.

Discussing Key Components such as Content Recommendation
Systems

In this section, we will explore the critical role of content recommendation
systems in enhancing user engagement and satisfaction within a streaming
platform. Content recommendation systems analyze user preferences and
viewing history to generate personalized recommendations, guiding users to
discover new content aligned with their interests and preferences. These
systems are integral to the success of streaming platforms including Netflix
and YouTube, driving user retention, and facilitating content discovery.

Understanding Content Recommendation Systems: Content
recommendation systems leverage machine learning algorithms and data
analysis techniques to predict user preferences and behavior, enabling
personalized content recommendations. By analyzing user interactions,
such as viewing history, likes, and dislikes, these systems generate tailored
recommendations that enhance user engagement and satisfaction. By
providing relevant and compelling content suggestions, recommendation
systems play a vital role in increasing user retention and driving platform
growth.

Benefits of Content Recommendation Systems

e Enhanced User Experience: By delivering personalized content
recommendations, recommendation systems enhance the user
experience, making it easier for users to discover new and relevant
content aligned with their interests.

e Increased Engagement: Personalized recommendations encourage
users to explore more content and spend additional time on the
platform, leading to increased engagement and retention.

e Improved Content Discovery: Recommendation systems facilitate
content discovery by surfacing relevant and diverse content options,
helping users find hidden gems and explore new genres or topics.

e Driving Revenue and Growth: By promoting content discovery and
user engagement, recommendation systems contribute to increased
viewership, driving revenue through ad impressions, subscriptions, or
content purchases.

Building Recommendation Systems for our Streaming Website

In this book, we will explore the practical implementation of
recommendation systems for our streaming website. While sophisticated
recommendation systems often rely on complex machine learning models
and algorithms, we will focus on a simpler approach using query-generated
recommendations based on MongoDB as our database.

By leveraging MongoDB’s flexible querying capabilities, we can generate
related/similar video recommendations and “You Might Also Like”
suggestions tailored to each user’s preferences.

Through hands-on examples and practical exercises, we will demonstrate
how to design and implement recommendation systems that enhance the
user experience and drive engagement on our streaming platform.

Hence, by mastering the art of content recommendation, we will empower
you to create compelling and personalized experiences for your users,
fostering long-term loyalty and success in the competitive streaming
industry.

Configuring the Project Structure

In this section, we will guide you through configuring the project structure
to prepare for building both the frontend and backend components of our
streaming website. By organizing the project’s folders and files effectively,
we can ensure a clean and maintainable codebase that facilitates efficient
development and collaboration.

Creating Project Scaffolding: To begin, we will extend the codebase
we used to build the simple blog website in the previous chapter.
While retaining the core functionality of our existing project, we will
enhance its structure to accommodate the requirements of a streaming
website. This includes separating concerns such as frontend and
backend components, organizing files logically, and adhering to best
practices for scalability and maintainability.

Folder Structure: We will organize the project into distinct folders
for the frontend and backend components, ensuring clear separation of
concerns and ease of navigation. Within each folder, we will further
categorize files based on their functionality, such as routes, controllers,
models, and components.

Backend Configuration: In the backend folder, we will configure the
necessary files and folders for setting up the GraphQL API server
using Apollo Server and Express.js. This includes defining GraphQL
schemas, resolvers, routes, middleware, and other backend
functionalities required to serve data to the frontend.

Frontend Configuration: In the frontend folder, we will configure the
project structure for building the React application with GraphQL
client capabilities using Apollo Client. We will organize components,
pages, stylesheets, and other frontend assets to create a cohesive user
interface that interacts seamlessly with the GraphQL backend.

Separation of Concerns: We will emphasize the importance of
separating concerns within the project structure, ensuring that each
component or module is responsible for a specific aspect of the
application's functionality. This separation facilitates code readability,
reusability, and maintainability, enabling developers to work on
different parts of the project independently.

Adhering to Best Practices: Throughout the configuration process,
we will adhere to best practices for project organization, including
naming conventions, folder structures, and file organization. By
following established guidelines, we can ensure consistency and
clarity across the codebase, making it easier for developers to
understand and contribute to the project.

Thus, by configuring the project structure effectively, we set the stage
for building a robust and scalable streaming website that leverages the

power of GraphQL for efficient data management and communication
between the frontend and backend components.

In the following sections, we will dive deeper into setting up the backend
and frontend environments, installing initial dependencies, and laying the
foundation for our streaming platform.

Configuring Backend Environment with Node.js and Express.js

In the backend folder of our project, we will focus on configuring the
environment for building the GraphQL API server using Node.js and
Express.js. Let us explore the project structure and break down each part:

Project Structure:

backend/

F—— connections/

| F—— apollo.js

| L — mongo.js

— schemas/

| F—— all-resolvers.js
| F—— all-schemas.js

| L — sample-schema.js

— .env
server.js
— y

L — package.json

e connections/: This directory contains modules related to establishing
connections, such as with Apollo Server and MongoDB.

o apollo.js: This module is responsible for starting Apollo Server
and defining its configuration.

© mongo.js: Here, we establish a connection to MongoDB using
Mongoose.

e schemas/: This directory contains modules related to GraphQL
schema definitions and resolvers.

o all-resolvers.js: Module containing resolvers for GraphQL
operations.

© all-schemas.js: Module containing the overall GraphQL
schema definition.

e .env: This file stores environment variables, such as the MongoDB
URI, to keep sensitive information separate from the codebase.

* server.js: This is the main file of our project where we start the
Express server and integrate Apollo Server with it. This file may also
include middleware setup, routes, and any additional server
configuration.

* package.json: This file contains metadata about the project and its
dependencies. It also includes scripts for running, testing, and building
the project.

Therefore, by organizing our project structure in this manner, we ensure a
clear separation of concerns between different parts of our application. This
makes it easier to maintain, understand, and document our codebase.
Additionally, it facilitates scalability and allows for easier integration of
new features or modules in the future.

Establishing a Frontend Environment with React.js and Next.js

In the frontend folder of our project, we will focus on establishing the
environment for building the user interface with React.js and Next.js. Let us
explore the project structure and understand its organization:

frontend/
— pages/
— features/
— elements/
L— graphql/

e pages/: This directory will serve as the entry point for our application,
where each file represents a different page or route. Next.js
automatically handles routing based on the files in this directory.

e features/: Here, we organize our components into feature-specific
folders, each containing components related to a particular feature of
our application. These components are designed to be reusable and
independent, encapsulating specific functionality.

e elements/: This directory contains the most basic building blocks of
our application, such as buttons, inputs, and other UI elements. These
atomic components can be used across different features and pages.

e graphgl/: In this folder, we store GraphQL queries and mutations that
are shared across multiple components. By centralizing our GraphQL
operations in one location, we promote code reusability and
maintainability.

Thus, by adopting this project structure, we aim to achieve a modular and
organized frontend architecture. Each folder serves a specific purpose,
allowing us to efficiently manage and develop different parts of our
application.

With React.js and Next.js, we can build interactive and dynamic user
interfaces while leveraging the power of GraphQL for data fetching and
management. In the next chapter, we will dive into building the frontend
components and integrating them with our GraphQL API.

Conclusion

In this chapter, we laid the groundwork for building a streaming website
such as Netflix by setting the stage and configuring the project structure.
We began by presenting the challenge of this ambitious endeavor and
defining our project scope and goals. By identifying essential features such
as user authentication and video playback, we outlined the core
functionalities to be developed.

Next, we delved into configuring the project structure, establishing backend
and frontend environments with Node.js, Express.js, React.js, and Next,js.
We organized our codebase into modular components and folders,
promoting scalability and maintainability.

Looking ahead, Chapter 5, Building the Admin Panel, will focus on crafting
the Admin Panel, where we will design data schemas and implement a
simple admin authentication system. With a solid foundation in place, we
are ready to dive into the practical implementation of our streaming
website.

So, stay tuned as we embark on the next phase of our journey, where we
will empower administrators to manage content and pave the way for a

seamless streaming experience. Join us in Chapter 3, Building_the Admin
Panel, as we take our first step towards bringing our streaming website to

life.

CHAPTER 5
Building the Admin Panel

Introduction

In this chapter, we will embark on a pivotal phase of our journey towards
crafting a streaming website like Netflix. Our focus shifts to the
administrative aspect of the platform as we delve into the construction of the
admin panel.

The admin panel serves as the nerve center of our streaming website,
empowering administrators to manage content efficiently and ensure
seamless operation. With a keen eye for detail and a commitment to
usability, we will design robust data schemas and implement an
authentication system to safeguard sensitive information.

Throughout this chapter, we will explore the intricacies of building the
admin panel, from conceptualizing data structures to implementing user
authentication mechanisms. By the end of our journey, you will be equipped
with the knowledge and skills to construct a functional admin interface,
setting the stage for content management and administration.

Let us begin our exploration of Building the Admin Panel.

Structure

In this chapter, we will cover the following topics:

e Setting Up Admin Panel Project

Designing Data Schemas for the Admin Panel

Implementing an Admin Authentication System

Constructing the UI for Admin Login

Building UI Components for Content Management

Setting Up Admin Panel Project

Setting up the Streamify Admin Panel project is our first step towards
building a robust administrative interface for our streaming platform. Before
we delve into designing data schemas, let us lay the groundwork by setting
up the project environment.

Firstly, let us name our project "streamify," reflecting its purpose of
streamlining video content for users. Now, open your terminal and navigate
to the folder where the project code is located. Next, switch to the branch
feature/chapter-5 to ensure that we are working on the correct feature
branch.

With the project structure in place, open two separate terminal tabs: one for
the frontend and another for the backend. Perform a fresh npm install in
both tabs to ensure all dependencies are up to date. Then, start the frontend
and backend servers using the command npm run start.

Once the servers are running, navigate your browser to the URL
http://localhost:3000/admin/. This will redirect you to the login screen,
indicating that no user is currently logged in.

Our next task is to enable login support for admin users using Google
OAuth. We will integrate Passport.js, a middleware for Node.js that provides
authentication capabilities, and obtain a client ID and secret from the Google
Cloud Console.

To obtain the Google OAuth client ID and secret:

1. Visit the Google Cloud Console at https://console.cloud.google.com.
2. Create a new project and give it a name.

3. Navigate to the "APIs and Services" section and click on
"credentials" in the left sidebar menu.

4. Click on "oauth client ID" and select "Web Application" as the
application type.

5.Add a name for the client, such as "streamify," and enter
http://localhost:3000 as the authorized URI.

6. Click "create" to generate the OAuth client ID and secret.
7. Your client ID and secret will be displayed on the next screen.
After obtaining the Google OAuth client ID and secret, let us proceed by

copying these values and adding them to our project’s environment
variables.

https://console.cloud.google.com/

Open the file .env located inside the backend folder of our Streamify project
in your code editor. Then, add the following environment variables with the
respective client ID and client secret obtained from the Google Cloud
Console:

GOOGLE CLIENT ID = "XXXXXXXXXXXXX"
GOOGLE CLIENT SECRET = "XXXXXXXXX"

Replace "xxxxxxxxxxxxx'" with your actual Google OAuth client ID and
"xxxxxxxxx' with your client secret. These environment variables will be
used to authenticate admin users with Google OAuth in our Streamify
Admin Panel project. Once added, save the file to apply the changes.

With the client ID and secret securely stored as environment variables, we
are now ready to integrate Google OAuth authentication into our admin
panel login system. Let us proceed with implementing the authentication
mechanism and providing admins with seamless access to the Streamify
platform.

Figure 5.1: Adding Google Client ID and Server in .env file

After setting up the backend server with the new environment variables for
Google OAuth, restart the server by running npm run start in the terminal.
Once the server is running, open your web browser and navigate to the URL

http://localhost:3000/admin/. You will be directed to the login screen of the
admin panel.

Click on the "Login with Google" button to initiate the Google OAuth
authentication process. You will be redirected to Google’s authentication
page, where you can select your Google account and authorize access to
your information. After successful authentication, you will be redirected
back to the admin panel.

Upon returning to the admin dashboard screen, you will see a message
indicating that no videos have been found yet. Additionally, there will be a
button labeled "upload video" for uploading new videos to the Streamify
platform. This marks the successful integration of Google OAuth
authentication into our admin panel, allowing authorized users to access and
manage video content efficiently.

Streamify Admin Panel Upicad Viden

No Videos Found

Uipkousd Wideno

Lbpioasd Vi

© 3004 Straamiy Al Fghts, resarend

Figure 5.2: Streamify s Admin Panel Home Screen

Since we are aiming to make Streamify a comprehensive platform featuring
documentaries and TED Talks, let us start by adding some videos. Click on
the "upload video" button, and a form will appear. Next, navigate to the
TED Talks channel on YouTube and select a few videos to upload to
Streamify. Copy the video titles, description, and URLs, and paste them into
the form fields accordingly.

Once you have uploaded around 4-5 videos, the home page of the admin
panel should resemble the following screenshot:

Streamify Admin Panel

Uploaded Videos

Hew a Cold War superco... Black Hole | Haydan Ar...
Haryten Arp parionming Black Hole.
Wrilin by Hianytden Aup, Viclin
Ehgateth Basofl, Clauda Dura

This. Lalk ouiines the history of the
Whirtwand computer, desigred ol MIT
in i 19500, and used.

Figure 5.3: Streamify s Admin Panel Home Screen with Videos

With these videos added to Streamify, users will have access to a diverse
range of content, enriching their streaming experience.

Now that we have established an admin panel with several uploaded videos,
let us delve into how we constructed this platform, beginning with the
process of designing data schemas for the admin panel.

Designing Data Schemas for the Admin Panel

As we embark on building the admin panel for our streaming website, the
first step is to define the data schemas that will govern the structure of our
administrative data. In this section, we will outline the essential data entities
and their corresponding GraphQL schemas.

AdminUser Schema

The Adminuser schema represents administrators who have access to the
admin panel. It includes fields for the user’s ID, first name, last name, and
email address.

type AdminUser {
id: ID!
firstName: String
lastName: String

email: String

Authentication Schema

For user authentication, we will implement a mutation for Google Sign-In.
This mutation takes an access token provided by Google OAuth and returns
an authentication response containing an access token and details of the
authenticated user.

type Mutation {

signUpGoogle (accessToken: String!): AuthResponse
}
type AuthResponse {

accessToken: String!

user: AdminUser

VideoStream Schema

The videostream schema represents individual video streams uploaded to
the platform. It includes fields such as title, description, genre(s), video
URL, thumbnail URL, uploader details, and timestamps for creation and
updates.

type VideoStream {
_id: ID!
title: String!
description: String
videoUrl: String!
genre: [String!]!
thumbnailUrl: String
uploadedBy: AdminUser
createdDate: String

updatedDate: String

Streamify Admin Panel

Upload Video Stream

Tithe:

Figure 5.4: Upload Video Screen

Mutations and Queries

We will define mutations for uploading new video streams and checking user
login status. Additionally, we will include a query operation to fetch a list of
video streams uploaded by a specific admin user.

type Mutation {
uploadVideoStream (input: UploadVideoStreamInput!) :
VideoStream!
signUpGoogle (accessToken: String!): AuthResponse

}

type Query {

checklLogin: AdminUser

videoStreamsByAdmin (userId: ID!): [VideoStream]
}

e Upload Video Mutation (uploadvideoStream): This mutation allows
administrators to upload new video streams to the platform. When
invoking this mutation, administrators provide details such as the title,

description, genre(s), video URL, thumbnail URL, and their own user
ID as the wuploader. The mutation returns the newly created
VideoStream object.

Google Sign-Up Mutation (signUpGoogle): This mutation enables
administrators to sign in to the admin panel using their Google
accounts. Administrators provide their Google access token obtained
through OAuth authentication. The mutation validates the token and
returns an authentication response containing an access token for future
requests and details of the authenticated user.

Check Login Query (checkLogin): This query allows administrators
to check their current login status. When invoked, it returns details of
the currently authenticated admin user, such as their ID, first name, last
name, and email address.

Video Streams by Admin Query (videoStreamsByAdmin): This query
retrieves a list of video streams uploaded by a specific admin user.
Administrators provide their user ID, and the query returns an array of
VideoStream objects associated with that user.

These operations form the backbone of our admin panel functionality,
enabling administrators to manage the video content effectively and
securely.

Input Type for VideoStream Upload

The UploadvideoStreamInput input type is used for uploading new video
streams. It contains fields for the title, description, genre(s), video URL,
thumbnail URL, and uploader ID.

input UploadVideoStreamInput ({

}

title: String!
description: String!
videoUrl: String!
genre: [String!]!
thumbnailUrl: String!
uploadedBy: ID!

In this section, we laid the groundwork for building the admin panel of our
streaming website, Streamify, by designing essential data schemas. We

defined schemas for AdminUser, VideoStream, and authentication, outlining
the fields and operations required for managing administrative tasks and
video content. With these schemas in place, we have a clear blueprint for
structuring our admin panel’s functionality. Next, we will delve into
implementing an authentication system to secure access to the admin panel.

Implementing an Admin Authentication System

Implementing an Admin Authentication System is a crucial aspect of
building the admin panel for our streaming website, Streamify.
Authentication ensures that only authorized administrators can access the
admin features and perform actions such as uploading videos and managing
content.

In this section, we will delve into the key components of an authentication
system, including JSON Web Tokens (JWT), Passport JS middleware,
and MongoDB for storing user data. We will explore how these technologies
work together to provide secure access to the admin panel and protect
sensitive information. By implementing a robust authentication system, we
will ensure that our admin panel remains secure and accessible only to
authorized users. Let us dive in and explore the intricacies of implementing
an Admin Authentication System.

Understanding JWT Tokens (JSON Web Tokens)

JSON Web Tokens (JWT) are widely used in authentication systems for their
simplicity, security, and compact format. JWTs are stateless, meaning they
do not require server-side storage, making them ideal for scalable systems.
They ensure security through digital signatures, making them resistant to
tampering.

As for security, JWTs are inherently secure when used correctly. The token’s
signature ensures its integrity, while encryption (if used) protects sensitive
information within the token payload. Additionally, JWTs have a built-in
expiration mechanism, allowing tokens to have a limited lifespan and
reducing the risk of unauthorized access if a token is compromised.

However, it is important to follow best practices when implementing JWT-
based authentication:

* Keep Secrets Secure: The secret key used to sign JWTs should be kept
confidential and securely managed. Exposing the secret key can
compromise the security of the entire authentication system.

e Use HTTPS: Always transmit JWTs over HTTPS to encrypt the
communication between the client and server, and prevent
eavesdropping or man-in-the-middle attacks.

e Implement Token Expiration: Set reasonable expiration times for
JWTs to minimize the risk of token misuse. Periodically refresh tokens
to maintain session validity and enhance security.

e Validate Tokens: Always validate JWT signatures and claims on the
server-side to ensure the authenticity and integrity of incoming tokens.
Reject any tokens that fail validation checks.

By adhering to these best practices and leveraging the inherent security
features of JWTs, developers can build robust and secure authentication
systems for their applications.

For more information on JWT, you can refer to the official documentation at
https://jwt.io.

Integrating Passport.js for Authentication

Passport.js is a popular authentication middleware for Node.js that supports
various authentication strategies, including JWT. It simplifies the process of
implementing authentication in Node.js applications by providing a flexible
and modular framework.

To integrate Passport.js into our admin panel project, we need to install the
passport and passport-jwt packages using npm:

npm install passport passport-jwt

Once installed, we can configure Passport.js to use JWT for
authentication. We will define a Passport strategy for JWT authentication
and use it to protect admin routes in our backend API.

Introduction to MongoDB: A Simple and Flexible
Database Solution

https://jwt.io/

MongoDB is a popular NoSQL database solution known for its simplicity,
flexibility, and scalability. Unlike traditional relational databases, MongoDB
stores data in flexible, JSON-like documents, making it ideal for handling
unstructured or semi-structured data.

One of the key advantages of MongoDB is its ease of use. The database’s
document-oriented model allows developers to store data in a way that
closely resembles the structure of their application objects. This makes it
intuitive to work with MongoDB, as developers can store and retrieve data
using familiar programming paradigms.

MongoDB also offers powerful querying capabilities, allowing developers to
perform complex queries using a simple and expressive syntax. Additionally,
MongoDB’s built-in replication and sharding features make it easy to scale
databases horizontally to handle large volumes of data and high traffic loads.

Overall, MongoDB provides a versatile and developer-friendly database
solution for a wide range of applications, from small-scale projects to
enterprise-level systems.

Introduction to Mongoose: Simplifying MongoDB

Operations

While MongoDB provides a powerful database solution, working directly
with the MongoDB Node.js driver can be complex, especially when dealing
with schema validation, data modeling, and querying.

https://mongoosejs.com 1s a popular Node.js library that simplifies
MongoDB operations by providing a schema-based modeling framework.
With Mongoose, developers can define schemas for their data models,
complete with validation rules, default values, and methods for interacting
with the database.

Mongoose also offers a wide range of features, including support for schema
inheritance, middleware hooks, virtual properties, and population of
referenced documents. These features make it easy to build robust and
maintainable applications on top of MongoDB.

To learn more about Mongoose and how to use it effectively with
MongoDB, you can visit the official documentation at
https://mongoosejs.com/docs/guide.html.

https://mongoosejs.com/
https://mongoosejs.com/docs/guide.html

Creating Schemas for AdminUser and videoStream Entities

To build an admin panel with authentication functionality and store video
details, we need to define schemas for the AdminUser and videoStream
entities. Let us start by creating a schema for the AdminUser entity.

Creating Schema for AdminUser Entity

To define the schema for the Adminuser entity, we will use Mongoose, a
MongoDB object modeling tool designed for Node.js. The AdminUser
schema will include fields for the administrator’s first name, last name, and
email address.

Let us dive into creating the admin-user schema using Mongoose, a
MongoDB object modeling tool designed to work in an asynchronous
environment such as Node.js.

Firstly, we will create a file named admin-user.js within the
backend/schemas/mongo folder to encapsulate our schema definition.

// Import necessary modules

import mongoose from "mongoose";

// Destructure Schema and model from mongoose

const { Schema, model } = mongoose;

// Define a constant for JWT secret

const SECRET = "my-secret-jwt-password";

// Define the schema for the admin user
const adminUserSchema = new Schema ({
firstName: {
type: String,
required: true,
by
lastName: {
type: String,
required: true,
Yy
email: {
type: String,
required: true,

unique: true,

lowercase: true,
trim: true,
}I
1)

// Create the AdminUser model using the schema

const AdminUser = model ("AdminUser", adminUserSchema) ;

// Export the AdminUser model

export default AdminUser;

In this schema definition:

e We import the mongoose module, which provides us with the tools
necessary to define MongoDB schemas and models.

e We destructure Schema and model from mongoose.

e We define a constant secreT to store the JWT secret key. This key is
used for signing and verifying JWT tokens for authentication purposes.

e We create an adminUserSchema using the Schema constructor provided
by Mongoose. This schema includes fields for the admin user’s first
Iunne,lam:nankz and email. The required,unique,lowercase,and
trim properties ensure data integrity and consistency.

e We create the adminUser model using the model function provided by
Mongoose, passing in the name '"AdminUser" and the
adminUserSchema.

e Finally, we export the Adminuser model to make it available for use in
other parts of our application.

This schema serves as the foundation for storing admin user data in our
MongoDB database. With Mongoose, we can easily interact with MongoDB
and perform CRUD operations on our AdminUser collection.

To complement our admin panel’s functionality, we require a schema to store
video details. This schema, named videostream, will represent individual
video streams uploaded to our platform. Let us create the videoStream
schema using Mongoose in a file named video-stream.js within the
backend/schemas/mongo folder.

import mongoose from "mongoose";
// Define the schema for the video stream
const videoStreamSchema = new mongoose.Schema ({

title: {
type: String,
required: true,

by

description: {
type: String,
required: true,

by

videoUrl: {
type: String,
required: true,

by

genre: {
type: [String],
required: true,
index: true,

by

thumbnailUrl: {
type: String,
required: true,

by

uploadedBy: {
type: mongoose.Schema.Types
ref: "AdminUser",
required: true,
index: true,

by

createdDate: {
type: Date,
default: Date.now,
index: true,

by

updatedDate: {
type: Date,
default: Date.now,

by

})

.Objectld,

// Create the VideoStream model using the schema

const VideoStream = mongoose.model ("VideoStream",

videoStreamSchema) ;

// Export the VideoStream model

export default VideoStream;

In this schema definition:

We define the videoStreamSchema using the mongoose.Schema
constructor, specifying the various fields that define a video stream.
Theseinchnk:title,description,videoUrl,genre,thumbnailUrl,
uploadedBy, createdDate, and updatedDate.

The title, description, videoUrl, genre, and thumbnailurl fields
are all of type string and are required for creating a video stream.

The genre ficld is an array of strings, allowing multiple genres to be
associated with a video stream. We specify index: true for this field
to enable indexing for faster queries based on genre.

The uploadedBy ficld 1s a reference to the AdminUser schema,
representing the admin user who uploaded the video stream. It is of
type mongoose.Schema. Types.ObjectId and 1s required.

The createdpate ficld stores the date and time when the video stream
was created. It defaults to the current date and time.

The updatedpate ficld stores the date and time when the video stream
was last updated. It also defaults to the current date and time.

We then create the videostream model using mongoose .model, passing
in the name "videoStream" and the videoStreamSchema.

Finally, we export the videostream model to make it available for use
in other parts of our application.

This schema allows us to store detailed information about each video stream
uploaded to our platform, including its title, description, genre, thumbnail
URL, and the admin user who uploaded it.

Implementing Authentication Methods in

AdminUser Schema

To ensure secure access to our admin panel, we need robust authentication
methods within our Adminuser schema. In this section, we will integrate
methods for generating JSON Web Tokens (JWTs) and verifying tokens,
allowing us to authenticate admin users securely.

Introduction to Authentication Methods

Authentication is a critical aspect of web application security, enabling users
to prove their identity and access protected resources. By implementing
authentication methods within our schema, we can authenticate admin users
and manage user sessions effectively.

Generating JSON Web Tokens (JWTs)

JWTs are widely used for authentication due to their simplicity, scalability,
and security features. We will create a method generategwr within our
AdminUser schema to generate JWTs containing user data, such as email, ID,
first name, last name, and expiration date. These tokens will be used to
authenticate admin users during login and subsequent requests.

Verifying JWT Tokens

To authenticate admin users based on JWT tokens, we will implement a
static method verifyToken within our AdminUser schema. This method
validates the authenticity and validity of a token by verifying its signature
and expiration date. If the token is valid, the method returns user data
extracted from the token, allowing seamless authentication and access
control.

Implementation Details

e Generating JWTs: We will define a method generategwr that
generates a JWT containing user data and an expiration date. This
method will be invoked whenever a new token is required, such as
during user login.

e Verifying JWT Tokens: We will implement a static method
verifyToken to verify the authenticity and validity of a JWT token.
This method will decode the token, verify its signature, and check its
expiration date to ensure it has not expired. If the token is valid, the
method returns user data extracted from the token.

import mongoose from "mongoose";

import jwt from "jsonwebtoken";
const { Schema, model } = mongoose;
const SECRET = "my-secret-jwt-password";

// Define the schema for the admin user
const adminUserSchema = new Schema ({
firstName: {
type: String,
required: true,
}y
lastName: {
type: String,
required: true,
}y
email: {
type: String,
required: true,
unique: true,
lowercase: true,
trim: true,
by
})

// Method to generate a JWT for the admin user

adminUserSchema.methods.generatedJWT = function () {

const today = new Date();

const expirationDate = new Date (today);

expirationDate.setDate (today.getDate() + 60); // Token

expires in 60 days

return jwt.sign(
{
email: this.email,
id: this. id,
firstName: this.firstName,
lastName: this.lastName,
exp: parselnt (expirationDate.getTime ()

I
SECRET

/ 1000, 10),

) 7
}i
// Static method to verify a JWT token

adminUserSchema.statics.verifyToken = async function
(token) {
try A

// Verify the token using the secret key

const decoded = jwt.verify(token, SECRET) ;

// Check if the token has expired

const currentTimestamp = Math.floor (Date.now() / 1000);

if (decoded.exp && decoded.exp < currentTimestamp) ({
throw new Error ("Token has expired");

}

// Extract relevant user data from the decoded token
const { id, email, firstName, lastName } = decoded;
// Find the admin user by ID
const user = await this.findById(id)
if (luser) {
throw new Error ("Admin user doesn't exist");
}
// Return the user data along with the ID
return { ..user.toObject (), id };
} catch (error) {
console.error ("Error verifying token:", error);
throw new Error ("Invalid token");
}
}:
// Create the AdminUser model using the schema
const AdminUser = model ("AdminUser", adminUserSchema) ;

// Export the AdminUser model
export default AdminUser;

In this updated schema:

e We define a method generatedWwT on the adminUserSchema instance,
which generates a JWT containing user data such as email, ID, first

name, last name, and expiration date. This method is invoked whenever
we need to generate a token for an admin user.

e We define a static method verifyToken on the adminUserSchema,
which verifies the authenticity and wvalidity of a JWT token. This
method is used to authenticate admin users based on the token provided
during login or subsequent requests.

These methods add powerful functionality to our Adminuser schema,
enabling secure authentication and authorization within our admin panel.
Further, by leveraging JWTs, we can maintain user sessions, enforce access
control, and enhance the security of our application.

Defining Methods for videoStream Schema

In our streaming website project, managing video streams efficiently is
crucial for providing a seamless user experience. To accomplish this, we
define specific methods within the videostream schema using Mongoose.
These methods enhance the functionality of our schema and enable
streamlined operations for uploading and retrieving video streams.

Updating Timestamps before Saving

To keep track of when a video stream was last updated, we will define a pre-
save hook in our schema. This hook will automatically update the
updatedbate field with the current date and time before saving the
document to the database.

videoStreamSchema.pre ("save", function (next) {
this.updatedDate = new Date();
next () ;

1)

Retrieving Video Streams by User ID

Our application needs the capability to fetch video streams uploaded by a
specific user. To implement this functionality, we define a static method
findByUserId () within the videoStream schema. This method queries the
database for video streams associated with the provided user ID and
populates the uploadedBy field with user details.

videoStreamSchema.statics.findByUserId = async function
(userId) {
try {
const videoStreams = await this.find({ uploadedBy: userId
}) .populate (
"uploadedBy"
) ;
return videoStreams;
} catch (error) {
throw new Error(Failed to fetch video streams:
S{error.message}) ;
}
}i

Uploading New Video Streams

The process of uploading new video streams involves creating and saving
documents based on user input. We define a static method uploadstream()
within the videostream schema to handle this operation. This method
validates the input data and creates a new document representing the
uploaded video stream.

videoStreamSchema.statics.uploadStream = async function (input)
{
try {
// Validate input data
// Create a new VideoStream document
const newVideoStream = await this.create (input);
return newVideoStream;
} catch (error) {
throw new Error (" Failed to upload video stream:
S{error.message}) ;
}
}i
These methods empower our application to efficiently manage video
streams, facilitating seamless content management and delivery. By
leveraging Mongoose’s capabilities, we ensure robust functionality within
our streaming platform.

Building Mutations Resolver for signUpGoogle

In the previous section, we defined a mutation schema for our GraphQL
API, including a mutation called signUpGoogle, responsible for
asynchronously signing up or logging in a user using Google authentication.
Now, let us delve into the implementation of this mutation resolver.

The signupGoogle mutation resolver is a crucial part of our authentication
system. It handles the process of authenticating users via Google OAuth,
creating new user accounts if necessary, and generating JSON Web Tokens
(JWTs) for authenticated users. This resolver ensures a seamless and secure
user authentication experience for administrators accessing our admin panel.

Implementation Details

To implement the signUpGoogle mutation resolver, we will create a file
named signup-google.js within the backend/auth folder. This file will
contain the resolver function along with any necessary helper functions.

import { authenticateGoogle } from "./passport.js"; //
Importing Google OAuth authentication function

import AdminUser from "../schemas/mongo/admin-user.js"; //
Importing AdminUser schema for MongoDB

/**
* Asynchronously signs up or logs in a user using Google
authentication.
*
* This function attempts to authenticate a user with Google
using the provided access token.
* If the user does not exist in the database, a new user is
created.
* It then generates a JWT for the user, which is returned

along with any relevant user information.

*/
export const signUpGoogle = async (, arg, ctx) => {
try {
const { req, res, user } = ctx; // Extracting request,

response, and user information from the context
reqg.body = {
..reqg.body,

access_token: arg.accessToken, // Adding the access token
to the request body
i
// Authenticating user with Google OAuth using the provided
access token
const { data, info } = await authenticateGoogle(req, res);

// Handling authentication errors, if any
if (info) {
switch (info.code) {
case "ETIMEDOUT":
throw new Error ("Failed to reach Google: Try Again");
default:

throw new Error ("Something went wrong");

}

// Extracting user information from the authentication data

const json = data. Jjson;

const { email } = Jjson;
const firstName = Jjson.given name;
const lastName = json.family name;

let accessToken =

mwiw
4

let message = "";

// Checking if the user is registered in the database
const userExist = await AdminUser.findOne ({
email: email.toLowerCase () .replace(/ /gi, "™), //
Normalizing email for case-insensitive comparison

1)

// Creating a new user if not registered

if (!userExist) {
const newUser = await AdminUser.create ({
email: email.toLowerCase () .replace(/ /gi, "™), //

Normalizing email for consistency
firstName,

lastName,
})

// Generating JWT for the new user

accessToken = newUser.generatedWT () ;

return {
message,
accessToken: “S${accessToken} , // Converting token to
string for response
user: newUser,
}i
}

// Generating JWT for existing user

accessToken = userExist.generatedWT () ;

return {
message,
accessToken: “S${accessToken} , // Converting token to
string for response
user: userkExist,
}i
} catch (error) {
return error; // Returning error object if an error occurs
}
}i

Resolver Function Explanation

e Input Parameters: The resolver function takes three parameters: _
(unused), arg (containing the accessToken), and ctx (context object
with request, response, and user information).

o Authentication Process: Using the authenticateGoogle function
from our Passport setup, we authenticate the user with Google using
the provided access token.

e User Creation or Retrieval: Based on the Google OAuth data, we
extract user information such as email, first name, and last name.
We then check if the user already exists in our database. If not, we
create a new user with the provided details.

e JWT Generation: For both new and the existing users, we generate a
JWT token using the generatedwT method defined in the adminUser
schema.

e Response Format: Finally, the resolver returns an object containing
the JWT token, user information, and any relevant messages or errors.

This resolver method facilitates seamless authentication with Google OAuth,
enabling users to securely sign up or log in to our application.

Resolver Integration

After implementing the signUpGoogle mutation resolver, we need to
integrate it into our GraphQL resolver object. We will create a separate file
named all-resolvers.js Wwithin the backend folder to house all our
GraphQL resolvers.

// Importing necessary libraries and resolvers

import { signUpGoogle } from "../auth/signup-google.js";
import { checkLogin } from "../auth/checkLogin.js";
import VideoStream from "./mongo/video-stream.js";

// GraphQL resolvers
const resolvers = {
Mutation: {
signUpGoogle: signUpGoogle, // Assigning signUpGoogle
resolver function to corresponding mutation
// Add other mutation resolvers here if applicable
Yo
Query: {
// Add query resolvers here if applicable
by
}i

export default resolvers; // Exporting the resolvers object

With the signUpGoogle mutation resolver in place, our GraphQL API is now
equipped to handle user authentication via Google OAuth seamlessly. This
marks a significant step forward in building a robust and secure admin panel
for our streaming website, empowering administrators with efficient access
management capabilities.

Building Middleware for GraphQL

In GraphQL, middleware plays a pivotal role in intercepting and augmenting
requests before they reach the resolver functions. Middleware functions are
executed on every GraphQL query or mutation, allowing developers to
enrich the request context with additional information or perform
authentication and authorization checks.

Integrating Middleware with Apollo Server

To implement middleware in our GraphQL server, we will utilize Apollo
Server’s Express integration along with custom middleware functions. We
will start by configuring middleware in the server. js file.

// Import necessary libraries and modules
import { expressMiddleware } from "Qapollo/server-express"; //
Middleware for integrating Apollo Server with Express

import authenticate from "./auth/authenticate.js";

// Start Apollo Server
const apolloServer = await startApolloServer (httpServer);

// Use middleware: CORS, JSON body parser, and Apollo Server's
Express middleware
app.use (
cors (),
bodyParser.json (),
expressMiddleware (apolloServer, {
context: async ({ reqg, res }) => {
const user = await authenticate (req);
return {
req,
res,
user: user,
i
by
})
)i
In the preceding code snippet:

A VVCinqanexpressMiddleware1}0nl@apollo/server—express,“&ﬂch
allows us to integrate Apollo Server with Express.

e The expressMiddleware function is applied to the Express app
instance (app) with additional configuration options.

e Within the context function, we invoke the authenticate middleware
to fetch user information from the request and add it to the GraphQL
context.

e The req and res objects are passed along with the user information to
ensure that they are available in resolver functions, if needed.

Implementing Authentication Middleware

The authenticate middleware function is responsible for validating the
user’s authentication token and retrieving user details from the database.

// backend/auth/authenticate.js
import AdminUser from "../schemas/mongo/admin-user.js";

const authenticate = async (req) => {
try {
// Extract the authentication token from the request headers

const token = reqg.headers.authorization || "";

// Verify the token and retrieve user information

const user = await AdminUser.verifyToken (token) ;

// Return the authenticated user
return user;
} catch (error) {
console.info ("Authentication error:", token, error);
}
i

export default authenticate;
In the authenticate function:
e We extract the authentication token from the request headers, typically
passed as the Authorization header.

e The token is then verified using the verifyToken method from the
AdminUser schema, which validates the token’s authenticity and

retrieves user information.

If authentication 1s successful, the authenticated user object is returned;
otherwise, an error is logged for debugging purposes.

Thus, by integrating middleware into our GraphQL server, we enhance its
capabilities to handle authentication and enrich the request context with user
information. This ensures that each GraphQL operation executed within our
application is performed within the appropriate user context, enabling secure
and tailored data access based on user privileges.

Implementing checkLogin Resolver

To enable users to check their login status via GraphQL, we will implement
a resolver function named checkLogin. This resolver will be responsible for
returning the current user’s information if they are logged in.

Defining the GraphQL Schema

First, we will define the checkLogin query in the GraphQL schema to allow
clients to request user information.

type Query {
checkLogin: AdminUser

Implementing the Resolver

Next, we will create the resolver function for checkLogin in the
checkLogin. js file under the auth folder.

// backend/auth/checkLogin.js

export const checkLogin = async (_, arg, ctx) => {
try {
// Extract user information from the context object

const { user } = ctx;

// Return the user information
return user;

} catch (error) {
// Handle any errors

return error;
}
}i
In the checkLogin resolver function:

e We extract the user object from the context (ctx) provided by Apollo
Server.

e The user object contains information about the currently logged-in
user, obtained from the authentication middleware which we have
implemented in the last topic.

e We return the user object, which will contain user details if the user is
logged in, or nu1l if the user is not authenticated.

Integrating Resolver with GraphQL

Finally, we will integrate the checkLogin resolver with the overall resolvers
in the all-resolver. js file.

// backend/all-resolver.js

import { checkLogin } from "../auth/checkLogin.js";

// GraphQL resolvers
const resolvers = {

Mutation: {

Yo
Query: {
// Resolver function for the "checkLogin" query

checkLogin: checkLogin,

oy
}s

export default resolvers; // Export the resolvers object
In the al1-resolver. js file:
e We import the checkLogin resolver function from the checkLogin. js
module.

e The checkLogin resolver function is then assigned to the checkLogin
query field in the Query resolver object.

With the checkLogin resolver implemented, clients can now query the
GraphQL server to determine whether a user is logged in. This functionality
enhances the user experience by providing real-time authentication status,
enabling clients to adjust their behavior accordingly based on the user’s
authentication status.

Constructing the Ul for Admin L.ogin

With the core authentication methods implemented (signUpGoogle,
checkLogin, and login), it 1s time to integrate these functionalities into the
admin panel and build a robust authentication system. This system will allow
administrators to securely log in, manage video streams, and perform other
administrative tasks.

Setting up the Project

In this section, we will create the components needed for the admin login
screen of our application. We will use the @react-oauth/google library to
handle Google OAuth authentication. This will allow users to log in using
their Google accounts securely and seamlessly.

Libraries Used

* @react-oauth/google: This library provides hooks and components to
integrate Google OAuth in React applications. It simplifies the process
of adding Google authentication to your app.

e QRapollo/client: This library is used to manage GraphQL operations
in our React application. It helps in querying, mutating, and caching
GraphQL data.

e graphql: The core library for GraphQL, used to define and validate
schemas and execute queries.

* react-icons: This library provides a collection of popular icons as
React components, making it easy to add icons to your project.
To install these libraries, run the following command:

npm install @react-ocauth/google @apollo/client graphgl react-

icons

Navigate to the frontend folder and create a new directory structure for the
login page components:

> mkdir -p frontend/pages/admin/Login

Creating the Admin Login Component

In this section, we will create the AdminLoginPage. js file, which will serve
as the main component for the admin login screen. This component uses the
@react-oauth/google library to handle Google OAuth authentication and
Rapollo/client to handle GraphQL mutations.

// src/pages/admin/AdminLoginPage.js

import { ggl, useMutation } from "@apollo/client";
import React from "react";

import Header from "../../../features/Header/Header";
import { useGooglelLogin } from "@react-oauth/google";
import { FcGoogle } from "react-icons/fc";

import "./AdminLogin.css";

const SIGNUP GOOGLE = ggl’
mutation SignUpGoogle ($accessToken: String!) {
signUpGoogle (accessToken: SaccessToken) {

accessToken

user {
email
id
firstName

lastName

}

const AdminLoginPage = () => {
const [signupGoogle, { loading: createloading, error:
createError }] =

useMutation (SIGNUP GOOGLE, {});

const handleGooglelLogin = useGoogleLogin ({

onSuccess: async (response) => {

const jwtToken = await signupGoogle ({
variables: {
accessToken: response.access token,
b
1)
console.log("Login Successfull",
jwtToken?.data?.signUpGoogle) ;
localStorage.setlItem(
"accessToken",
jwtToken?.data?.signUpGoogle?.accessToken
) ;
localStorage.setItem(
"user",
JSON.stringify (jwtToken?.data?.signUpGoogle?.user)
)
window.location.reload() ;
Yo
onError: (error) => {
console.log(error);
by
}) s

return (
<>
<Header />
<div className="admin-login-page">
<h2>Admin Login</h2>
<button className="google-login-button" onClick=
{handleGoogleLogin}>
<FcGoogle className="google-icon" />
Login with Google
</button>
</div>
</>
) ;
bi

export default AdminLoginPage;

Code Explanation
Imports

import { ggl, useMutation } from "@apollo/client";
import React from "react";
import Header from "../../../features/Header/Header";
import { useGooglelLogin } from "@react-ocauth/google";
import { FcGoogle } from "react-icons/fc";
import "./AdminLogin.css";

* @apollo/client: For handling GraphQL operations.

e React: For building the UI.

e Header: A header component for the admin login page.

* @react-oauth/google: For handling Google OAuth login.

* react-icons/fc: For displaying Google icon.

* AdminLogin.css: For styling the component.

GraphQL Mutation
const SIGNUP GOOGLE = ggl®
mutation SignUpGoogle (SaccessToken: String!) {

signUpGoogle (accessToken: SaccessToken) {
accessToken
user |
email
id
firstName
lastName

}
Defines the s1GNUP_GooGLE mutation to handle Google sign-up/login. This
mutation sends the Google accessToken to the backend and retrieves the
user details and a new accessToken.

AdminLoginPage Component

const AdminLoginPage = () => {

const [signupGoogle, { loading: createloading, error:

createError }] =
useMutation (SIGNUP GOOGLE, {});

useMutation hook initializes the signupGoogle function to execute the
SIGNUP_GOOGLE mutation. It also provides loading and error states.

Google Login Handler

const handleGooglelLogin = useGoogleLogin ({
onsSuccess: async (response) => {
const jwtToken = await signupGoogle ({
variables: {
accessToken: response.access_ token,
Yy
});

console.log("Login Successful",
jwtToken?.data?.signUpGoogle) ;
localStorage.setItem
"accessToken",
jwtToken?.data?.signUpGoogle?.accessToken
) ;
localStorage.setItem(
"user",
JSON.stringify (jwtToken?.data?.signUpGoogle?.user)
) ;
window.location.reload () ;
by
onkError: (error) => {
console.log(error);
by
1)

* useGoogleLogin hook handles the Google login process.

e onSuccess: Called when Google login succeeds. It executes the
signupGoogle mutation with the access token. If successful, it stores
the received accessToken and user details in localStorage and
reloads the page.

* onError: Logs any errors that occur during Google login.

1. Security Note: In this example, we are storing the JWT in localStorage
to keep things simple and let you experiment quickly. In a production
application, this approach is not recommended because localStorage is
accessible to JavaScript, making it vulnerable to XSS (Cross-Site Scripting)
attacks.

Instead, consider storing tokens in HTTP-only secure cookies, which are
not accessible from client-side JavaScript.

Component Render

return (
<>
<Header />
<div className="admin-login-page">
<h2>Admin Login</h2>
<button className="google-login-button" onClick=
{handleGooglelLogin}>
<FcGoogle className="google-icon" />
Login with Google
</button>
</div>
</>
) ;
}i
export default AdminLoginPage;

e The component renders the header, a title, and a button for Google
login.
¢ Clicking the button triggers the handleGoogleLogin function.

Summary

The adminLoginPage component facilitates Google OAuth login for the
admin panel. It uses the @react-oauth/google library for authentication and
Qapollo/client for communicating with the backend via a GraphQL
mutation. Successful logins store the user information and JWT token in
localStorage and refresh the page to complete the login process.

Adding Google OAuth and Apollo Client to Your Application

To integrate Google OAuth and Apollo Client in your React application,
follow these steps:

Code Implementation

Modify the src/index. js file to include the GoogleoauthProvider and set
up Apollo Client with an authorization link.

// src/index.js
import {
ApolloClient,
ApolloProvider,
createHttplink,
InMemoryCache,
} from "@apollo/client";
import { setContext } from "@apollo/client/link/context";
import React from "react";
import ReactDOM from "react-dom/client";
import { RouterProvider } from "react-router-dom";
import router from "./App";
import "./index.css";
import reportWebVitals from "./reportWebVitals";
import { GoogleOAuthProvider } from "Q@react-oauth/google";

// Create an authorization link to include the token in headers

const authLink = setContext((, { headers }) => {
const token = localStorage.getltem("accessToken");
return {

headers: {
..headers,
authorization: token ? ~${token} : "",
b
i
1)
// Create the HTTP link to connect to the backend
const httpLink = createHttpLink ({
uri: "http://localhost:4000",
1)

// Initialize Apollo Client with cache and authorization link

const client = new ApolloClient ({

cache: new InMemoryCache(),
link: authLink.concat (httpLink),
1)

// Create the root for React application
const root =
ReactDOM.createRoot (document.getElementById ("root")) ;
root.render (
<React.StrictMode>
<ApolloProvider client={client}>
<GoogleOAuthProvider
clientId="YOUR GOOGLE OAUTH CLIENT ID">
<RouterProvider router={router} />
</GoogleOAuthProvider>
</ApolloProvider>
</React.StrictMode>
) ;
Explanation

Imports

e Apollo Client libraries for handling GraphQL operations.
e React libraries for rendering the application.
e Google OAuth Provider for handling Google OAuth login.

Authorization Link

An Authorization Link in Apollo Client is a piece of middleware that allows
you to modify the headers of every request sent to your GraphQL server.
This is particularly useful for including authentication tokens in the headers,

enabling secure communication between the client and the server.

Purpose of the Authorization Link

The primary purpose of the Authorization Link is to ensure that each request
made to the server includes an authentication token, allowing the server to
verify the identity of the user making the request. This is a common practice

in applications that require user authentication and authorization.

Code Implementation

const authLink = setContext((, { headers }) => {
const token = localStorage.getltem("accessToken");
return {
headers: {
..headers,
authorization: token ? “${token} : "",
b
i
1)

setContext Function:

* setContext is a function from Apollo Client that allows you to create
middleware for modifying the request context.
e [t takes a function as an argument, which receives the current context
and headers of the request.
Fetching the Token:
const token = localStorage.getlItem("accessToken");
e The token is retrieved from the browser’s localstorage. This token is

typically stored after a user logs in and is used for authenticating
subsequent requests.

Returning Modified Headers

return {

headers: {
..headers,
authorization: token ? "${token} : "",
I
bi

e The function returns an object containing the modified headers.

e It spreads the existing headers (.headers) to ensure any existing
headers are preserved.

e [t adds an authorization header with the token value. If the token
exists, it is included in the authorization header. If not, an empty
string 1s assigned.

How it Works

e Middleware Function: The setContext function creates a middleware
function that runs before every request is sent. This middleware
modifies the request context by adding or updating the authorization
header.

e Token Inclusion: By including the token in the authorization header,
the client ensures that the server can authenticate the user based on the
token. This allows the server to perform actions such as verifying user
identity, checking permissions, and authorizing access to resources.

Usage

This Authorization Link is used when initializing the Apollo Client,
combining it with the HTTP link to ensure that every request sent to the
server includes the necessary authentication information.

Apollo Client Initialization

const client = new ApolloClient ({
cache: new InMemoryCache(),
link: authLink.concat (httpLink),
1) ;

ApollocClient: Initializes the Apollo Client with an in-memory cache and
the combined authorization and HTTP links.

Rendering the Application

const root =
ReactDOM. createRoot (document.getElementById ("root")) ;
root.render (
<React.StrictMode>
<ApolloProvider client={client}>
<GoogleOAuthProvider
clientId="YOUR GOOGLE OAUTH CLIENT ID">
<RouterProvider router={router} />
</GoogleOAuthProvider>
</ApolloProvider>
</React.StrictMode>
)i

e The root element is created and the React application is rendered.

* ApolloProvider: Wraps the application to provide Apollo Client
functionalities.

* GoogleOAuthProvider: Wraps the application to provide Google
OAuth functionalities, using your Google OAuth client ID.

* RouterProvider: Wraps the application to provide routing
functionalities.

Thus, by modifying the src/index. js file, we set up Apollo Client with an
authorization link to include the authentication token in the headers of every
request.

We also wrapped the application with GoogleoauthProvider to handle
Google OAuth login, facilitating the integration of Google login in our
application. This setup ensures that authenticated requests are made to the
backend and provides the necessary context for the application.

Running the Admin Login Page

After setting up the Admin Login Page and configuring the Apollo Client
with the Authorization Link, you can run your application to test the login
functionality.

Steps to Run the Application
1. Open your terminal and navigate to the frontend directory of your
project.
cd frontend
2. Run the following command to start the React development server:
npm run start
3. Open your web browser and navigate to http://localhost:3000/admin/.
Redirect to Login Page: If the user is not logged in, they will be redirected

to the login page. This page will allow the user to log in using their Google
account.

Streamify Admin Panel

Admin Login

Figure 5.5: Streamify Admin Panel

Building Ul Components for Content Management

After setting up the authentication system in the admin panel, the next step is
to build the UI components for content management. This involves creating
components for uploading videos and displaying a list of uploaded videos.

Streamify Admin Panel

Upload Video Stream

Title:

Figure 5.6: Upload Videos

Now that we have our authentication system in place, let us build the Ul
components necessary for content management. We will start with the
Header.js component, which ensures that only authenticated users can
access the admin pages. If a user is not authenticated, they will be redirected
to the login page.

Header Component

The Header.js component is responsible for checking if a user is logged in
and redirecting them to the appropriate page based on their authentication
status.

Code for Header Component

// src/components/Header/Header.js
import { ggl, useQuery } from "@apollo/client";
import React, { useEffect } from "react";
import { useNavigate, uselLocation } from "react-router-dom";
const CheckLoginQuery = gqgl’
query CheckLogin {

checkLogin {
id
email
firstName
lastName

}

.
14

N

const Header = () => {

const navigate = useNavigate();

const location useLocation () ;

const navigateToHome = () => {
navigate ("/admin/") ;

i
const { loading, error, data } = useQuery(CheckLoginQuery):;

useEffect (() => {
if (!loading && !data?.checkLogin) {
navigate ("/admin/login") ;

}

if (!loading && data?.checkLogin && location.pathname ===
"/admin/login") {
navigate ("/admin/") ;

}

}, [loading, data, location.pathname, navigatel]);
if (loading) return <p>Loading..</p>;
if (error) return <p>Error : {error.message}</p>;
return (

<header>

<div className="container mx-auto py-4 flex justify-between
items-center">
<hl onClick={navigateToHome} className="text-2x1 font-bold
logo">
Streamify Admin Panel
</hl>
<div className="flex items-center">

{/* Additional header content can go here */}
</div>
</div>
</header>
) 7
b
export default Header;
Explanation
GraphQL Query:

const CheckLoginQuery = ggl’
query CheckLogin {
checkLogin {
id
email
firstName

lastName

}
This query checks if the user is logged in by fetching the user data. If the
user is logged in, the data returned will contain the user information.
Otherwise, 1t will be null.

useQuery Hook
const { loading, error, data } = useQuery (CheckLoginQuery);

This hook executes the checkLoginQuery and returns the loading state, any
error encountered, and the data.

useEffect Hook

useEffect (() => {
if (!loading && !data?.checkLogin) {
navigate ("/admin/login") ;

}

if (!loading && data?.checkLogin && location.pathname ===
"/admin/login") {

navigate ("/admin/") ;

}

}, [loading, data, location.pathname, navigate]);

The useEffect hook runs when the component mounts and whenever the
loading, data, Or location.pathname values change. It handles the
redirection logic:

e If the data is loaded and no user is logged in (data?.checkLogin is
null), redirect to the login page.

o [f the data is loaded and a user is logged in, and the current path is
/admin/login, redirect to the admin home page.

Conditional Rendering

if (loading) return <p>Loading..</p>;
if (error) return <p>Error : {error.message}</p>;

These lines handle the display of loading and error states.

Header Markup

The header contains a title that navigates to the admin home page when
clicked. Additional content can be added to the header as needed.

return (
<header>
<div className="container mx-auto py-4 flex justify-between
items-center">
<hl onClick={navigateToHome} className="text-2x1 font-bold
logo">
Streamify Admin Panel
</hl1>
<div className="flex items-center">
{/* Additional header content can go here */}
</div>
</div>
</header>
) ;
This ensures that authentication is handled both on the frontend and
backend. Next, we can proceed to build the components for uploading

videos and displaying the list of uploaded videos in the admin panel.

Creating the Video Upload Form

To start building the video upload form, we will create a new component
UploadvideoForm which will use the UPLOAD VIDEO STREAM mutation to
upload video details to the backend.

Mutation for Video Upload

First, let us define the GraphQL mutation for uploading a video stream. This
mutation will be used to send video details to the server.

const UPLOAD VIDEO STREAM = gql°
mutation UploadVideoStream ($input: UploadVideoStreamInput!) {
uploadvVideoStream (input: S$input) {
_id
createdDate
description
genre
thumbnailUrl
updatedDate
videoUrl

title

Video Upload Form Component

Now, let us create the Upload component inside
frontend/src/pages/Upload/Upload.js. This component will render a
form for video upload and handle the submission to the server.

GraphQL Mutation

This mutation defines the GraphQL operation to upload video details. It
takes an input object of type UploadvideoStreamInput and returns the
uploaded video details.

const UPLOAD VIDEO STREAM = gqgl°

mutation UploadVideoStream($input: UploadVideoStreamInput!) {
uploadvVideoStream (input: S$input) {
_id
createdDate
description
genre
thumbnailUrl
updatedDate
videoUrl

title

State Initialization

The component initializes the state for the form data, including the user ID
from the logged-in user.

const user = JSON.parse (localStorage.getlItem("user")):;
const userId = user?.id;
const [formData, setFormData] = useState ({
title: "",
description: "",
genre: "",
thumbnailUrl: "",
videoUrl: "",
uploadedBy: userld,
})

handleChange Function

This function updates the form data state when the user types in the input
fields. The genre field is converted into an array.

const handleChange = (e) => {
const { name, value } = e.target;
setFormData ({
..formData,

[name] : name === "genre" ? value.split(",") : value,

1)
b

handleSubmit Function
This function handles the form submission. It sends the form data to the

server using the uploadvideosStream mutation and resets the form upon
successful upload. If an error occurs, it logs the error.

const handleSubmit = async (e) => {

e.preventDefault () ;

try A
const formValues = { ..formData, genre:
formData.genre.split(",") 1};
const { data } = await uploadVideoStream ({

variables: {
input: formValues,
by
b) g

setFormData ({
title: "',
description:

nmw
14

nmw

genre:
thumbnailUrl: "",
videoUrl: "",
uploadedBy: userld,
}) s
console.log ("Video uploaded successfully:",
data.uploadvVideoStream) ;
navigate ("/admin/") ;
} catch (error) {
console.error ("Error uploading video:", error);
}
}i

Form Rendering

This part renders the form fields for title, description, genre, thumbnail URL,
and video URL. It also includes a submit button that triggers the

handleSubmit function.

return (
<>
<Header />
<div className="form-container">
<h2>Upload Video Stream</h2>
<form onSubmit={handleSubmit}>
<div className="form-group">
<label htmlFor="title">Title:</label>
<input
type="text"
name="title"
value={formData.title}
onChange={handleChange}
/>
</div>
<div className="form-group">
<label>Description:</label>
<textarea
name="description"
value={formData.description}
onChange={handleChange}
/>
</div>
<div className="form-group">
<label>Genre:</label>
<input
type="text"
name="genre"
value={formData.genre}
onChange={handleChange}
/>
</div>
<div className="form-group">
<label>Thumbnail URL:</label>
<input
type="text"

name="thumbnailUrl"
value={formData.thumbnailUrl}
onChange={handleChange}
/>
</div>
<div className="form-group">
<label>Video URL:</label>
<input
type="text"
name="videoUrl"
value={formData.videoUrl}
onChange={handleChange}
/>
</div>
<div className="form-group">
<button type="submit" disabled={loading}>

{loading ? "Uploading.." : "Upload Video"}
</button>
{error && <p>Error: {error.message}</p>}
</div>
</form>
</div>

</>

)
This completes the video upload form component. We have seen how to
define the GraphQL mutation, create the form, and handle the form
submission. This component ensures that only authenticated users can
upload videos and handles all necessary interactions with the server.

Listing Videos Uploaded by Admin Users

In this section, we will walk through the process of listing all the videos
uploaded by admin users. We will cover how to fetch this data using
GraphQL and Apollo Client, and explain the use of different fetch policies.
This will ensure that only authenticated users can access and manage the
video content.

Explanation

Let us look at the code for listing the videos:

// Import necessary dependencies
import React from "react";
import { ggl, useQuery } from "@apollo/client";
import VideoList from "./AdminVideoList";
import { getJsonFromLocalStorage } from "../../utils";
// Get the logged-in user information from local storage
const user = getJsonFromLocalStorage ("user");
// Define the GraphQL query operation
const VIDEO STREAMS QUERY = ggl°
query Query (SuserId: ID!) {
videoStreamsByAdmin (userId: SuserId) {
_id
createdDate
description
genre
thumbnailUrl
updatedDate
uploadedBy {
firstName
id
lastName
}
videoUrl
title

}

const VideoListContainer = () => {
const userId = user?.id;
// Call the useQuery hook to fetch data from the GraphQL
server
const { loading, error, data } = useQuery(VIDEO STREAMS QUERY,
{

variables: { userId },

fetchPolicy: "cache-and-network",

)

// Handle loading and error states
if (loading) return <p>Loading..</p>;
if (error) return <p>Error: {error.message}</p>;

console.log ("VideoData", data);

// Render the VideoList component with the fetched data
return <VideoList videos={data.videoStreamsByAdmin} />;
i

export default VideoListContainer;

Understanding the Code

Importing Dependencies

e We start by importing necessary modules from React and Apollo

Client.

e We also import the videoList component, which will display the list
of videos, and a utility function to get user data from local storage.

Fetching User Information

e The logged-in user’s information is retrieved from local storage using
the getJsonFromLocalStorage function. This ensures that we know

which user is currently authenticated.

Defining the GraphQL Query

const VIDEO STREAMS QUERY = gql°
query Query (SuserId: ID!) {
videoStreamsByAdmin (userId: SuserId) {

_id

createdDate

description

genre

thumbnailUrl

updatedDate

uploadedBy {

firstName

id
lastName
}
videoUrl
title
}
}

e This GraphQL query fetches the video streams uploaded by a specific
admin user, identified by a user1d.

e [t retrieves fields such as video ID, created date, description, genre,
thumbnail URL, updated date, uploader details, video URL, and title.

Using useQuery Hook

const { loading, error, data } = useQuery(VIDEO STREAMS QUERY,
{
variables: { userId },

fetchPolicy: "cache-and-network",

b) 7
The useQuery hook is used to execute the GraphQL query. It takes two
arguments:
* variables: An object containing the userid to be passed to the query.

e fetchPolicy: A configuration option that determines how Apollo
Client fetches the query results.

Handling L.oading and Error States

if (loading) return <p>Loading..</p>;
if (error) return <p>Error: {error.message}</p>;

console.log ("VideoData", data);

The code checks if the query is still loading or if an error occurred and
displays appropriate messages. If the data is successfully fetched, it logs the
video data.

Rendering the Video List

return <VideolList videos={data.videoStreamsByAdmin} />;

Finally, the code renders the videoList component, passing the fetched
video data as a prop.

Fetch Policies in Apollo Client

Apollo Client offers several fetch policies to control how data is fetched and
cached:

cache-first (default):
e Checks the cache for data first. If the data is found, it returns it without
making a network request.
 [f the data is not found in the cache, a network request is made.
e Use Case: Ideal when quick response times are critical, and data does
not change frequently.

network-first:

e Makes a network request first. If the request fails (for example, no
network), it falls back to the cache.

o Use Case: Ensures that the most up-to-date data is fetched, with an
offline fallback.

cache-only:

e Only checks the cache for data and never makes a network request.

e Use Case: Useful when ensuring no network request is made and
relying entirely on cached data.

network-only:

e Always makes a network request and never checks the cache.
e Use Case: Critical for fetching the latest data from the server.

no-cache:

e Makes a network request and does not save the result in the cache.

o Use Case: Suitable for queries where storing results in the cache is
unnecessary.

cache-and-network:

e Returns the data from the cache first, then makes a network request to
fetch the latest data.

e Use Case: Provides a balance between quick response times (using
cached data) and ensuring that data is up-to-date.

Understanding cache-and-network

In our code, we use the cache-and-network fetch policy:

const { loading, error, data } = useQuery(VIDEO STREAMS QUERY,
{

variables: { userId },

fetchPolicy: "cache-and-network",

})
This fetch policy offers a good balance for the video list:

e Quick Initial Load: The UI can display cached data immediately,
providing a faster response time and a better user experience.

e Data Freshness: It ensures that the latest data is fetched from the
network, so the list of videos is always up-to-date.

By using cache-and-network, users get the benefits of both cached data for
quick access and the assurance that the latest data will be loaded and
displayed, once the network request completes.

This code demonstrates how to fetch and display a list of videos uploaded by
admin users using Apollo Client’s useguery hook and GraphQL queries.
The cache-and-network fetch policy is particularly useful in providing a
good user experience by balancing speed and data freshness.

By implementing these techniques, we ensure that only authenticated users
can access and manage video content, maintaining a secure and efficient
admin panel.

Streamify Admin Panel

Heow a Cold War superco...

They Lol (s B Fastiony of B

e Fhear. A inciuary r e

Figure 5.7: Streamify s Admin Panel Home Screen with Videos

Conclusion

In this chapter, we built and secured an admin panel for managing the video
content. We began by adding authentication with Google OAuth so that only
authorized users can access admin features. From there, we implemented a
form that allows authenticated users to upload videos, and set up
functionality to fetch and display a list of uploaded videos. For data fetching,
we used GraphQL queries with Apollo Client’s useQuery hook and a cache-
and-network policy to maintain a balance between responsiveness and up-
to-date information.

With these features in place, the admin panel now provides a secure and
efficient way to manage the video content. It is straightforward to use, yet
capable of handling core content management needs.

In the next chapter, we will shift our focus to the storefront, the part of the
application that users interact with directly. We will look at how to design a
clean, responsive interface where visitors can browse, search, and watch
videos. By the end, our project will have both a robust backend management
system and an engaging, user-friendly frontend experience.

CHAPTER 6

Designing the Storefront

Introduction

In this pivotal chapter, we will embark on the journey of constructing the
storefront, the heart of our streaming website. With a focus on backend
capabilities, we will delve into building the authentication system using
Google login, ensuring seamless user access to our platform. Next, we will
design GraphQL queries tailored for fetching data for the homepage, setting
the stage for dynamic content delivery. Guided by a meticulous approach,
we will craft the Ul for the login page, prioritizing user experience and
intuitive navigation. Subsequently, we will turn our attention to building the
homepage, integrating it with GraphQL queries to populate content
dynamically.

Structure

In this chapter, we will cover the following topics:

e Implementing Google Authentication for User Access

e Crafting the UI for the Login Page

e Designing GraphQL Queries for Homepage Data

e Building the Home Page and Connecting with GraphQL

Implementing Google Authentication for User
Access

In the previous chapter, while designing the admin panel for Streamify, we
implemented Google login authentication and connected it with the back
office UL. Now, we will reuse our previous implementation of Google Auth
Login to build our Storefront Login.

Previously, we created a login page, but it lacked restrictions, allowing
anyone to sign up and upload videos. This poses a significant security risk.
Therefore, in this topic first, we will focus on restricting access so that only
users with prior permission can log in.

By implementing these restrictions, we ensure that our platform remains
secure and only authorized users can upload and manage content. This
involves refining our authentication process to verify user permissions
before granting access, thereby maintaining the integrity and security of our
streaming service.

Simplifying Our Implementation for Admin
Access

In the previous chapter, we designed the login functionality using Google
OAuth for the admin panel of Streamify. Now, we will extend this
implementation to the storefront and add necessary restrictions to ensure
only authorized users can log in and perform admin-level actions, such as
uploading videos.

Step-by-Step Implementation

Open the code and go to chapter-6/ where we have cloned our repository:
In your terminal, navigate to the backend folder:

cd backend
Update the .env File:

First, ensure you have the correct environment variables set up for admin
access. Open the .env file and add your email address to grant admin
privileges:

ADMIN EMAIL=my-email@gmail.com

Note: Ensure you replace my-email@gmail.com with the actual email
address you want to grant admin access to.

This setup represents a simplified way to manage admin access. In a real-
world scenario, we would typically use a more robust solution to add a list of
authorized users. Additionally, we could implement an invite feature to grant
admin rights to other users dynamically.

Next, we will make changes in the code to recognize the specified user as an
admin.

In our ongoing efforts to bolster Streamify’s backend capabilities, we have
enhanced the signUpGoogle resolver function located in
backend/auth/signup-google. js.

This critical update introduces an isadmin field, a boolean identifier that

distinguishes admin users from regular users upon registration through
Google OAuth.

const ADMIN EMAIL = process.env.ADMIN EMAIL.toLowerCase () ;

export const signUpGoogle = async (_, arg, ctx) => {
try {
const { req, res, user } = ctx;

reqg.body = {
..req.body,
access token: arg.accessToken,
}i
// Authenticate user with Google OAuth

const { data, info } = await authenticateGoogle (req, res);

// Extract user information from Google OAuth data
const json = data. json;

let { email } = json;
const firstName = Jjson.given name;
const lastName = json.family name;

let accessToken = "";

let message = "";

email = email.toLowerCase () .replace(/ /gi, "");

// Check if user is registered

const userExist = await AdminUser.findOne ({
email: email,

}) i

// Create new user if not registered

if (luserExist) {
const newUser = await AdminUser.create ({

email: email,

firstName,
lastName,
isAdmin: ADMIN EMAIL === email, // Set isAdmin to true if
user's email matches ADMIN EMAIL
1)
accessToken = newUser.generatedWT() ;
return {
message,
accessToken: “${accessToken}’,
user: newUser,
i
}

accessToken = userExist.generatedWT () ;
return {

message,

accessToken: “S${accessToken}’,

user: userExist,
i
} catch (error) {
return error;
}
bi
This implementation ensures that upon successful signup via Google OAuth,
the signUpGoogle function checks i1f the wuser’s email matches the
aDMIN_EMAIL provided in the environment variables. If it does, the isAdmin
field for that user is set to true, granting administrative privileges.

In the next subtopic, we will extend this enhancement by updating both the
MongoDB user schema and the GraphQL schema to include the isAdmin
field. Additionally, we will develop a middleware to validate access for
admin-specific operations, ensuring robust security and administrative
control over Streamify’s functionalities.

Updating Schema for User Role Management

In our pursuit to enhance user role management within Streamify, we have
made pivotal updates to our MongoDB schema. Our primary focus has been
on introducing a dedicated field, isadmin, designed to distinguish between

administrators and regular users seamlessly. So, let us us delve into the
specifics of these updates and their significance.

MongoDB Schema Adjustment

Located within backend/schemas/mongo/admin-user.js, our user schema
underwent critical enhancements:

const userSchema = new Schema ({

firstName: {
type: String,
required: true,

Yo

lastName: {
type: String,
required: true,

by

email: {
type: String,
required: true,
unique: true,
lowercase: true,
trim: true,
index: true,

Y

isAdmin: {
type: Boolean,
required: false,
default: false,
index: true,

b,

1)

const User = model('User', userSchema)

export default User;

Key Updates:

e isAdmin Field: Introduced a boolean field named isadmin, defaulting
to false. This addition allows us to easily identify whether a user
possesses administrative privileges.

e Collection Naming: The collection name adminUser has been renamed
to user. This change aligns with our schema’s evolution to encompass
both admin and regular user data under a unified collection.

These modifications pave the way for robust user role management within
our MongoDB database, enabling us to implement granular access controls
and maintain data integrity effectively.

Next, we will proceed to update our GraphQL schema to integrate the
isAdmin field, ensuring seamless alignment between our data model and
GraphQL operations.

Updating GraphQL Schema for User Roles

To align our GraphQL schema with recent MongoDB updates, we will
enhance the definition of Adminuser to include the isadmin field. This
update ensures that our GraphQL queries and mutations accurately reflect
the user’s role within Streamify.

GraphQL Schema Adjustment

Navigate to backend/schemas/all-schemas.js to modify the GraphQL
schema as follows:

const schemas = °

type AdminUser {
id: ID!,
firstName: String,
lastName: String,
email: String,

isAdmin: Boolean

Key Changes:

e isAdmin Field: We have added the isadmin field to the AdminUser type
definition. This boolean field signifies whether a wuser holds
administrative privileges within our application.

By incorporating this update, our GraphQL schema now accurately reflects
the enhanced user role management capabilities introduced in our MongoDB
schema. This alignment ensures consistency across data models and
GraphQL operations, facilitating efficient query execution and data retrieval.

Implementing Access Control Middleware for GraphQL
Operations

What is ACL?

Access Control List (ACL) 1s a security mechanism that defines which users
or system processes are granted access to objects, as well as what operations
are allowed on given objects. ACLs are used to enforce security policies and
ensure that only authorized users can perform certain actions.

Creating the ACL Wrapper Function

To implement ACL in our GraphQL setup, we will create a wrapper function
called checkAccess(role, callbackFn) which will enforce role-based
access control for our resolver functions. This ensures robust security and
administrative control over the functionalities.

Let us create the wrapper function in a new file acl.js under backend/auth:

export const ROLES = {

authenticated: "Sauthenticated",
unauthenticated: "S$Sunauthenticated",
admin: "admin",

all: "all",

bi

export const checkAccess = (role, callbackFn) => {
return async (..args) => {

// Parse arguments

const [, , ctx] = args;
const { user } = ctx;
if (role === ROLES.admin && user && !user.isAdmin) {

throw new Error ("Unauthorized! User is not an admin");

}

if (role === ROLES.authenticated && !user) {

throw new Error ("Unauthorized! User is not logged in");

}

if (role === ROLES.unauthenticated && user) {
throw new Error ("Unauthorized! User is already logged in");

}

// Now call the callback function with the parameters..
return await callbackFn (..args);
bi
bi
Explanation of the Code and Roles

In this code, we define a function checkaccess that takes a role and a
callback function as parameters. This function checks if the current user
meets the role requirement before allowing the execution of the callback
function. The roLES object defines four types of roles:

l. authenticated: This role is for users who are logged in.

o Use case: Accessing user-specific content such as their watchlist
or profile.

2. unauthenticated: This role is for users who are not logged in.

o Use case: Accessing public pages such as the homepage,
browsing videos, or the signup/login page.
3. admin: This role is for users with administrative privileges.

o Use case: Accessing the admin dashboard, managing users, or
uploading and managing video content.

4. a11: This role allows access to all users regardless of their login status.

o Use case: Accessing common content such as the homepage, help
pages, or public video listings.

How We Get User from ‘ctx Arguments

The user information is extracted from the ctx (context) parameter, which is
provided to every resolver function. This context is populated by a
middleware we built in a previous chapter, located in the server.js file. Here
is a brief explanation of how it works:

app.use (

cors (),
cookieParser (),
bodyParser.json (),
expressMiddleware (apolloServer, {
context: async ({ reqg, res }) => {
const user = await authenticate(req);
return {
req,
res,
user: user,
i
Yy
1)
) ;
In this middleware, the authenticate function checks the Authorization
header in the incoming request to verify the user. If the header is present and
valid, the user information is fetched and included in the context. This
context is then available to all resolver functions, allowing them to access
the user object directly.

In the next step, we will apply this checkaccess wrapper to our resolver
functions. This will ensure that only authorized users can perform specific
actions in our GraphQL API, enhancing the security and control of our
application.

Wrapping Resolver Functions with ACL

To enable Access Control List (ACL) capabilities in our GraphQL resolvers,
we will wrap the checkaccess function around our existing resolver
functions. This ensures that only users with the appropriate roles can execute
certain operations. Let us explore how to implement this in our
backend/schemas/all-resolvers. js file.

Here is the updated code snippet:

// Import necessary libraries for generating dummy data

import { signUpGoogle } from "../auth/signup-google.js";

import { checkLogin } from "../auth/checkLogin.js";

import VideoStream from "./mongo/video-stream.js";

import { checkAccess, ROLES } from "../auth/acl.js";

const uploadVideoStream = async (, { input }) => {

return await VideoStream.uploadStream (input) ;

bi

const videoStreamsByAdmin = async (, { userId }) => {
return await VideoStream.findByUserId (userId);

}i

// GraphQL resolvers

const resolvers = {

Mutation: {
signUpGoogle: checkAccess (ROLES.unauthenticated,

signUpGoogle),
uploadvVideoStream: checkAccess (ROLES.admin,

uploadvVideoStream),

Yo

Query: {
checkLogin: checkAccess (ROLES.admin, checkLogin),
videoStreamsByAdmin: checkAccess (ROLES.admin,
videoStreamsByAdmin),

by
}s

export default resolvers; // Export the resolvers object

Explanation of the Code

In this code, we are wrapping our resolver functions with the checkaccess
function. Here is a detailed explanation of what each part does:

e Importing Modules:

o We import necessary functions such as signUpGoogle,
checkLogin, and videoStream.

o We also import checkAccess and ROLES from our acl. js file.

e Defining Resolver Functions:

o uploadvideoStream: Handles uploading a video stream.
o videoStreamsByAdmin: Retrieves video streams by admin user ID.

e Wrapping Resolvers with checkAccess:

o Mutation Resolvers:

® signUpGoogle: Wrapped with
checkAccess (ROLES.unauthenticated, signUpGoogle).
This ensures that only unauthenticated users can execute this
mutation.

® yploadVideoStream: Wrapped with
checkAccess (ROLES. admin, uploadvVideoStream). This
ensures that only admin users can upload video streams.

o Query Resolvers:

" checkLogin: Wrapped with checkAccess (ROLES.admin,
checkLogin). This ensures that only admin users can check
login status.

® videoStreamsByAdmin: Wrapped with
checkAccess (ROLES.admin, videoStreamsByAdmin). This
ensures that only admin users can retrieve video streams by
user ID.

By wrapping our resolvers with checkaccess, we enforce role-based access
control. This ensures that users with the appropriate roles can execute the
corresponding operations, enhancing the security and administrative control
of our application.

With ACL now enabled in our GraphQL setup, we have a robust mechanism
to distinguish between admin and non-admin users. This is crucial for
ensuring that only authorized users can perform certain actions, such as
uploading videos or accessing admin-specific data.

Since ACL is implemented, we can reuse the signUpGoogle (accessToken:
String!): AuthResponse mutation to build Google Auth for our Storefront.
This will streamline our authentication process and maintain a consistent
access control mechanism across our platform.

Next, we will proceed to integrate this Google Auth implementation into our
Storefront, ensuring a seamless and secure user experience.

Crafting the Ul for the Login Page

In the previous sections, we unified our admin panel’s GraphQL queries and
mutations to create a common authentication system. This system now caters
to both admin users and regular users who view our videos. In this topic, we

will extend these changes to the frontend, ensuring that our login process
supports both types of users seamlessly. While in the real world, admin
panels and storefronts are typically separate websites, we are simplifying our
approach by building a shared authentication system with Role-based Access
Control (RBAC).

Login to Streamify

Figure 6.1: Google Authentication for Streamify

To integrate the authentication system on the frontend, we need to define an
<AuthProvider> component. This component will wrap the entire React app
and provide a context-based useauth hook for fetching the logged-in user’s
information.

Let us start building the <authpProvider> in the next subtopic.

Building the <authProvider> Component for
Unified Authentication

To ensure that our application properly handles authentication, we need a
middleware that acts as a decision-maker before any page loads. This
middleware will check if a user is logged in or not. If the user is not logged
in, it will redirect them to the login screen. If the user is logged in, it will
store their information in a context so that any component can access it.

Understanding React’s useContext Hook

The usecontext hook in React is used to share data across components
without having to pass props down manually at every level. This is
particularly useful for global data including authentication status, user
settings, and theme preferences.

Here is how you typically use useContext:

1. Create a Context: Use React.createContext() to create a context
object.

2. Provide Context Value: Use the Context.Provider component to
make the context value available to any child components.

3. Consume Context Value: Use the usecontext hook in any functional
component to access the context value.

When to Use useContext?

e Global State Management: When you need to manage global state
across your application.

e Avoid Prop Drilling: When you want to avoid passing props through
multiple layers of components.

To build the AuthProvider, we will use the usecontext hook to create a
context for AuthProvider. Inside the AuthProvider, we will call the
GraphQL query checkLogin to fetch the logged-in user data. If the user is
not logged in, we will redirect them to the login page. If the user is logged
in, we will store their information and pass it as context.

Now, let us start building the authProvider component.
Open the file useauth. js inside the frontend/src/hooks/ directory:

The useauth. js file sets up an authentication context for a React application
using Apollo Client for GraphQL queries. This file defines an AuthProvider
component and a useauth hook to handle user authentication and
authorization.

Code Breakdown

import { ggl, useQuery } from "@apollo/client";
import { createContext, useContext, useEffect, useMemo } from

"react";

Imports:

¢ gql and useQuery from @apollo/client are used to define and execute
GraphQL queries.

® createContext, useContext, useEffect, and useMemo from React are
used to create and manage the context.

const AuthContext = createContext ()

Creating Context:

e AuthContext 1s created using createContext(). This will hold the
authentication state and functions.

const CheckLoginQuery = gqgl’
query CheckLogin {
checkLogin {
id
email
firstName
lastName

1sAdmin

}

GraphQL Query:
* CheckLoginQuery is a GraphQL query to check if a user is logged in

and fetch their basic information, including whether they are an admin.

export const AuthProvider = ({ children }) => {
const { loading, error, data } =

useQuery (CheckLoginQuery) ;
AuthProvider Component:

* AuthProvider uses the useQuery hook to execute the
CheckLoginQuery When the component mounts.
* loading, error, and data are destructured from the result of useQuery.

const user = data?.checkLogin;

Extract User Data:

e user is set to the data returned by the checkLogin query.

useEffect (() => {
const currentPath = window.location.pathname;
if (!loading && !user && currentPath !== "/login") {
login();
}
if (!loading && user && currentPath === "/login") {
navigateToHome () ;

}

}, [loading, user]);
Effect Hook:
e useEffect runs after each render and checks:

o If the query is not loading and there is no user, and the current
path is not /login, it calls the login function to redirect to the
login page.

o If the query is not loading and there is a user, and the current path
1S /login, it calls navigateToHome to redirect to the home page.

const login = async () => {
window.location = "/login";
}i

const navigateToHome = () => {
window.location = "/";

i
Helper Functions:

* login: Redirects to the login page.

* navigateToHome: Redirects to the home page.

const value = useMemo (
0O =
user: user,
login,
logout,
navigateToHome,

isAdmin: user?.isAdmin,

by

[user]

) ;

Memoizing Context Value: useMemo creates a memoized value for the
context, which includes the user data and helper functions. This ensures that
the context value only updates when the user changes.

return (
<AuthContext.Provider value={value}>
{!!'loading && <p>Loading.</p>}
{!!'error && <p>Error : {error.message}</p>}
{children}
</AuthContext.Provider>
)
b7
Providing Context:

* AuthContext.Provider wraps the children components, providing the
context value.

e Displays a loading message if the query is loading.
e Displays an error message if there is an error.

export const useAuth = () => {

return useContext (AuthContext) ;

}s

Custom Hook: useauth is a custom hook that returns the current context
value, allowing any component to access the authentication state and helper
functions.

The useauth.js file creates an authentication provider and context for a
React application. It uses Apollo Client to execute a GraphQL query to
check the user’s login status. The authProvider component manages the
authentication state, redirects users based on their login status, and provides
this state to the rest of the application through a context. The useauth hook
allows components to easily access the authentication state and helper
functions.

Wrapping the AuthProvider Component in React

To integrate our AuthProvider component for unified authentication, we
need to wrap it around the root of our React application. This ensures that
the authentication context is available throughout the entire app.

Here is how to do it in your frontend/src/index. js file.

In the index.js file, we import the AuthProvider component and integrate
it into our React application setup. This approach ensures that the entire
application is wrapped with authentication capabilities, allowing components
to access user authentication information and manage user sessions
effectively.

import {
ApolloClient,
ApolloProvider,
InMemoryCache,
createHttplink,
} from "@apollo/client";
import { setContext } from "@apollo/client/link/context";
import { GoogleOAuthProvider } from "@react-oauth/google";
import React from "react";
import ReactDOM from "react-dom/client";
import { RouterProvider } from "react-router-dom";
import { AuthProvider } from "../src/hooks/useAuth";
import router from "./App";
import { GOOGLE OAUTH CLIENT ID } from "./constant";

const authLink = setContext((, { headers }) => {
// get the authentication token from local storage if it
exists
const token = localStorage.getlItem("accessToken");
// return the headers to the context so httpLink can read them
return {
headers: {
..headers,
authorization: token ? “${token} : "V,
by
i
1)
const httplink = createHttpLink ({

uri: "http://localhost:4000", // Backend server Url
});

const client = new ApolloClient ({
cache: new InMemoryCache(),
link: authLink.concat (httpLink),
1)
const root =
ReactDOM.createRoot (document.getElementById ("root")) ;
root.render (
<React.StrictMode>
<ApolloProvider client={client}>
<GoogleOAuthProvider clientId={GOOGLE OAUTH CLIENT ID}>
<AuthProvider>
<RouterProvider router={router} />
</AuthProvider>
</GoogleOAuthProvider>
</ApolloProvider>
</React.StrictMode>
) ;
Explanation:

o AuthProvider Integration: The AuthProvider component is imported
from "../src/hooks/useAuth" and is used to encompass the entire
React application. It ensures that authentication-related context and
functionality are available to all components within the application.

o Apollo Client Configuration: Apollo Client is configured with a
combination of an HTTP link (httprLink) and an authentication link
(authLink). The authentication link checks for an access token in local
storage and includes it in the request headers for authenticated API
calls.

e Root Element Rendering: The ReactDOM.createRoot method
initializes the root element (<div id="root">) where the React
application will be rendered. Inside root.render(), the application is
wrapped in React.StrictMode for development mode checks and is
provided with Apollo Client for GraphQL operations, Google OAuth
for authentication, and AuthProvider for managing user authentication
state across components.

This setup ensures that the entire React application is equipped with
authentication capabilities, allowing seamless integration of user login, and
access control throughout the application.

Using L.ogin User Information

To access user authentication details, we utilize the useauth hook. This hook
provides access to the user object, isadmin flag, and the l1ogin method,
allowing components to interact with the user authentication data.

Following 1S a code snippet from
frontend/src/features/Header/Header.js, demonstrating how useAuth
is imported and utilized:

import { useAuth } from "../../hooks/useAuth";
import { useNavigate, uselLocation } from "react-router-dom";
const Header = () => {
const navigate = useNavigate(); // React Router hook for
navigation
const location = uselocation(); // React Router hook for
getting current location
const { user, isAdmin } = useAuth(); // Accessing user
authentication information
const firstName = user?.firstName; // Extracting the first
name of the logged-in user
const lastName = user?.lastName; // Extracting the last name

of the logged-in user

// Other code related to the Header component..
return (
// JSX for rendering the header component
) ;
}i
export default Header;
Explanation:
e Importing Hooks: The wuseauth hook 1s imported from

"../../hooks/useAuth", providing access to user authentication data
and methods.

e React Router Hooks: useNavigate and uselocation are imported
from "react-router-dom'" and used for navigation management as
well as current location retrieval within the application.

o Using useauth Hook: By invoking useauth, we retrieve the user
object and isadmin status, which represent the logged-in user’s details
and admin privileges, respectively.

o Accessing User Data: The firstName and lastName variables extract
specific details from the user object, enabling dynamic display of user-
specific information in components such as Header.

This setup allows components to effectively utilize authentication
information and tailor user interactions based on their logged-in status and
administrative role.

In this section, we have successfully integrated a unified authentication
system into our React application using the authProvider and useAuth
hook. The AuthProvider wraps our entire application, providing seamless
access to user authentication details such as user object, isadmin status, and
login method across components. Thus, by leveraging React’s useContext
and useEffect hooks, we manage user sessions, handle redirects based on
login status, and ensure secure navigation within our application.

Building on our integrated authentication system, the next topic will focus
on designing GraphQL queries to fetch and display homepage data in our
Streamify application. We will outline the structure of GraphQL queries
needed to retrieve featured videos, categories, and other relevant content.
Additionally, we will discuss how to optimize these queries for efficiency
and performance, ensuring a seamless user experience on the frontend.

Designing GraphQL Queries for Homepage Data

To design the main page of the storefront, which will feature a variety of
videos for users to explore and watch, we need to structure our GraphQL
schema in a way that organizes the content effectively. In this section, we
will design the queries to fetch videos for our main page and arrange them
into categories that enhance the user experience. We will divide the content
into the following sections:

Video Groups for Enhanced User Experience:

e Recently Watched: This will display the top videos the user has
recently watched, arranged in descending order. The idea is to allow
users to quickly resume watching videos from where they left off,
improving accessibility and ease of use.

e Recently Uploaded: This section will show the top most recently
uploaded videos, helping users discover fresh content.

e Videos by Genre: Here, videos will be organized by their genres,
allowing users to explore content based on their preferences.

Key Considerations

e Recently Watched Videos: The user’s userld will be automatically
fetched from the Authorization Header, thanks to the session
management we have already implemented in previous sections. This
ensures that the user’s watch history is correctly tied to their account.

e Logic for Recently Watched Videos: The logic for fetching data for
"Recently Watched Videos" will be covered in Chapter §,_Building
Video Recommendations. There, we will dive deeper into personalizing
video recommendations based on user activity.

Updated GraphQL Schema for Storefront

We have already defined the videostream type in previous sections.
Following is the schema for fetching videos for the storefront homepage:

type Query {
recentlyWatchedVideos: [VideoStream]!
recentlyUploadedVideos (limit: Int = 10): [VideoStream]'!

videosByGenre (genre: String!, limit: Int = 10): [VideoStream]!

}
VideoStream type as defined in earlier sections
type VideoStream {

_id: ID!

title: String!

description: String

videoUrl: String!

genre: [String!]

thumbnailUrl: String
uploadedBy: AdminUser
createdDate: String
updatedDate: String

Breakdown of Schema
l. recentlyWatchedvVideos:

a. Fetches the videos that the user has recently watched.

b. The user1id will be automatically fetched from the Authorization
Header, avoiding the need to pass it as an argument in the query.

2. recentlyUploadedVideos:

a. Fetches the top most recently uploaded videos (you can adjust the
limit if needed).

b. This helps keep the users updated with the latest content.
3. videosByGenre:

a. Fetches videos for a specific genre, with an option to limit the
number of videos returned.

b. Allows users to explore the content by their preferred categories.

Deep Dive into videosByGenre Query

To fetch videos by genre, we need to pass the genre as an argument to the
query. This query will return a list of videos belonging to a specific genre.
However, to display all genres and their corresponding videos effectively, we
first need to fetch all the genres available in the system. Once the genres are
fetched, we can query videos for each genre individually, but doing so would
require multiple queries, which could affect performance.

Instead, we can optimize this process by designing a single query that
returns all genres along with a limited number of top videos for each genre.
This approach will reduce the need for multiple round trips between the
frontend and backend, and improve the overall performance.

Adding a Query to Fetch Genres with Top Videos

In addition to the videosByGenre query, we can add another query that
retrieves all genres, along with a list of top videos (by a defined limit) for
each genre. This will reduce the number of queries made from the frontend,
leveraging GraphQL’s ability to request complex data in a single request.

Here’s the updated schema:

type Query {
recentlyWatchedvVideos: [VideoStream]!

recentlyUploadedVideos (limit: Int = 10): [VideoStream]'!
videosByGenre (genre: String!, limit: Int = 10): [VideoStream]!
genresWithTopVideos (genrelLimit: Int = 5, videoLimit: Int =
10) : [GenreWithVideos]'!

}
type GenreWithVideos {

genre: String!

topVideos: [VideoStream]'!
}
Explanation:

videosByGenre (genre: String!, limit: Int = 10):
e This query fetches videos by a specific genre, with a limit on the

number of videos returned. This ensures that we don’t overwhelm the
frontend with too much data.

e The 1imit argument allows you to control the number of videos
returned for a given genre.
genresWithTopVideos (genreLimit: Int = 5, videolLimit: Int = 10):
e This query fetches all the genres and includes a limited list of top
videos for each genre.

* The videoLimit argument controls how many videos to retrieve for
each genre.

* genreLimit argument controls how many genres to retrieve.

e By using this query, we can fetch all the necessary data (genres and
their corresponding videos) in one go, reducing the need for multiple
requests from the frontend.

Benefit of GraphQL for Performance

This design highlights one of the key advantages of using GraphQL: the
ability to fetch complex, nested data structures in a single query, reducing
the need for multiple separate requests. Instead of fetching genres first and
then making multiple requests for videos by genre, we can make a single
query to fetch all genres along with their top videos, which streamlines the
process and improves performance.

In this section, we explored how to optimize GraphQL queries by designing
queries that reduce the number of requests, improve data fetching
performance, and enhance the user experience. By using a single query to
fetch genres and their top videos, we leverage the full power of GraphQL,
creating a more efficient and performant solution for the storefront
homepage. This approach showcases the importance of structuring queries
thoughtfully, keeping both performance and simplicity in mind.

In the next section, we will explore how to implement these queries and
efficiently display the fetched data.

Analyzing the Current MongoDB Schema

The current videoStream schema looks like this:

new mongoose.Schema ({

title: {
type: String,
required: true,

Yo

description: {
type: String,
required: true,

by

videoUrl: {
type: String,
required: true,

by

genre: {
type: [String],
required: true,
index: true, // Indexing for faster query lookups

},
// Additional fields (e.g., uploadedBy, createdDate,

updatedDate)
1)

Here, the genre field is defined as an array of strings, allowing a video to be
associated with multiple genres. This is essential for videos that fit multiple
categories including “Action” and “Adventure.”

Refinement: Indexing the Genre Field

Indexing the Genre Field: Since we will be querying videos by genre
frequently, indexing this field is necessary for efficient lookups. The index:
true flag ensures that MongoDB can perform fast searches for videos by
genre.

Array of Strings: The current use of an array of strings for genre is
appropriate for our use case because it allows flexibility in categorizing
videos under multiple genres.

Defining GraphQL Resolvers

Now that the MongoDB schema is defined, we can write the resolvers that
will handle queries to retrieve video data by genre.

Defining GraphQL Resolvers for £indvideosByGenre

In this section, we will define the resolver for the findvideosByGenre query,
which allows us to retrieve video streams based on their genre with an
optional limit on the number of results.

1. videoStream Static Method: findvideosByGenre
First, we define the static method findvideosByGenre in the videoStream
model to handle fetching the videos from the database. This method takes
two parameters:

e genre: The genre of the videos to fetch.

e 1imit: The number of videos to fetch, with a default value of 10.
Open the file backend/schemas/mongo/video-stream.js and add the
following code:

videoStreamSchema.statics.findVideosByGenre = async function (

genre,
limit = 10
) A
try A
// Fetch video streams filtered by genre and limited by the
specified number
const videoStreams = await this.find({ genre }).limit(limit);
return videoStreams;
} catch (error) {
throw new Error(Failed to fetch video streams:
S{error.message}) ;
}
}i
Explanation:

1. The method queries the videostream collection, filtering the videos by
the specified genre.

2. It applies the 1imit to restrict the number of results returned.

3.If an error occurs during the database query, an error message is
thrown.

2. Resolver Definition for videosByGenre

Next, we need to define the resolver in all-resolvers.js to link the
GraphQL query with the findvideosByGenre method.

Open the file backend/schemas/all-resolvers.js and add the resolver
function:

const videosByGenre = async (_, args, ctx) => {
const { genre, limit } = args;
return VideoStream.findVideosByGenre (genre, limit);
bi
Then, add the resolver to the GraphQL schema:

const resolvers = {
Query: |
videosByGenre: checkAccess (ROLES.authenticated,
videosByGenre) ,
by

}i
Explanation:
e The resolver function videosByGenre takes genre and 1limit as

arguments. It uses these parameters to call the findvideosByGenre
static method in the videostream model.

e The checkaccess function is used to ensure that only authenticated
users can access this query. The user’s access level is verified using
roles.

We have successfully defined the findvideosByGenre query that allows us
to fetch a list of videos based on a specified genre and an optional limit. This
resolver efficiently handles the video stream retrieval by utilizing MongoDB
queries with filtering and limiting capabilities.

To test the videosByGenre resolver, follow these steps:

e Open GraphiQL Playground: Go to http://localhost:4000/graphiql in
your browser.

e Enter the Query: Use the following query to fetch videos based on
genre.

query ($Sgenre: String!, $limit: Int) {
videosByGenre (genre: S$genre, limit: $limit) {
_id
title
videoUrl
genre
createdDate
description
}
}

e Set Variables: To test this query, provide appropriate variables such as:
{

"genre": "Action",
"limit": 5

}

e Authorization Header: Ensure that the authorization token is included
in the headers section of the playground for authenticated access.

Figure 6.2: Testing the videosByGenre Resolver in GraphiQL Playground

Defining GraphQL Resolvers for genreswithTopvideos_and
recentlyUploadedVideos

In this section, we will define two GraphQL resolvers:
genresWithTopVideos and.recentlyUploadedVideos.’rheSCIBSOhKXS\Nﬂl
handle fetching video streams based on the top genres and recently uploaded
content.

VideoStream Static Methods

We have added two static methods defined in the video-stream. js file for
MongoDB queries:

videoStreamSchema.statics.findRecentlyWatchedVideos = async
function (
limit = 10
) |
try {
const videoStreams = await this.find()

.limit(limit)
.sort ({ createdbate: -1 });
return videoStreams;

} catch (error) {

}

};

throw new Error (' Failed to fetch video streams:

S{error.message}) ;

videoStreamSchema.statics.genresWithTopVideos = async function

(

genrelLimit = 10,
videoLimit = 10
) A
const allGenres = await this.distinct("genre");
return allGenres.slice (0, genrelimit) .map((genre) => {
const topVideos = this.findVideosByGenre (genre, videolLimit);
return {
genre,
topVideos,
}i
b) g
bi
Explanation:

l. findRecentlyWatchedvideos: This method fetches the most recently
watched videos and sorts them in descending order by createdbate.
The default limit is 10, but it can be customized.

2. genresWithTopvideos: This method fetches distinct genres and

retrieves the top videos for each genre based on the provided limits. It
slices the list of genres according to the genreLimit and returns the top
videos using the £indvideosByGenre static method.

Resolvers for genreswithTopVideos and recentlyUploadedvVideos

Now, let us define the resolvers in the backend/schemas/all-resolvers.js
file.

* genresWithTopvVideos Resolver: This resolver will handle fetching
genres with their top videos.

const genresWithTopVideos = async (, args, ctx) => {
const { genrelLimit, videoLimit } = args;
return VideoStream.genresWithTopVideos (genrelLimit,
videoLimit) ;

i

* recentlyUploadedvideos Resolver: This resolver will fetch the most

recently uploaded videos. We are using checkAccess to ensure only

authenticated users can access this query.

const recentlyUploadedVideos = async (_, args, ctx) => {
return VideoStream.findRecentlyWatchedVideos (args.limit);
i

Next, update the resolvers object to include these new queries:

const resolvers = {
Query: {
recentlyWatchedVideos: () => {
// Placeholder, will be implemented in Chapter 8

return [];

Yy
recentlyUploadedVideos: checkAccess (

ROLES.authenticated,
recentlyUploadedVideos

)
videosByGenre: checkAccess (ROLES.authenticated,

videosByGenre),
genresWithTopVideos: checkAccess (ROLES.authenticated,

genresWithTopVideos),
by

bi
Explanation:

* genresWithTopVideos: Fetches genres and their top videos based on
the provided limits for genres and videos.

* recentlyUploadedvideos: Fetches the most recently uploaded videos,
sorted by their creation date.

Summary

Now that we have defined all the necessary GraphQL queries and their
resolvers for fetching storefront data, we have also explored the use of
MongoDB queries such as distinct and £ind. These methods were crucial
in improving our data retrieval performance, especially when fetching genres
and their respective top videos.

Additionally, we optimized our GraphQL queries to reduce the number of
calls, thereby enhancing the overall performance of our application.

In the next section, we will build React components that utilize these queries
to fetch the GraphQL data and display it effectively on the storefront.

Building the Home Page and Connecting with
GraphQL

In this section, we will focus on building the home page of our storefront
using React, where all the videos will be displayed. We will learn how to
connect the frontend with our previously defined GraphQL queries to fetch
data including recently watched videos, recently uploaded videos, and
videos by genre.

This will involve integrating Apollo Client to make GraphQL queries and
efficiently rendering the data in the Ul for a rich user experience. Let us dive
into building the key components of the home page.

Streamify

L™ Anciant Aliens: Dimmi. .. Ancient Allens: Inslde ...

Figure 6.3: Streamify Home Page

Step-by-Step Implementation: Building the Home
Page with React, GraphQL, and Apollo Client

To build the homepage, we need to start by fetching the data from the
GraphQL server. The first step is to use Apollo Client in our React
component to send queries to our GraphQL server, fetch the necessary data,
and pass it to the Ul components for rendering.

To begin with, open the following file in your project:
File Path: frontend/src/pages/storefront/Home/index.3js

This file will be responsible for fetching the homepage data using GraphQL
and Apollo Client.

Open the file and inspect the following code:

We will be using Apollo Client’s useguery hook to fetch the necessary data
from the GraphQL server and pass it to our Home component for rendering.

// Import necessary dependencies
import React from "react";
import { ggl, useQuery } from "@apollo/client";

import Home from "./Home";

const HomePageQuery = gql’
query ($SgenrelLimit: Int, $limit: Int) {
recentlyWatchedVideos {
_id
createdDate
description
thumbnailUrl
updatedDate
title
}
recentlyUploadedVideos (1imit: $1imit) {
_id
createdDate
description
thumbnailUrl
updatedDate
title
}
genresWithTopVideos (genrelLimit: S$genrelimit) {
genre
topVideos {
_id
createdDate
description
thumbnailUrl
updatedDate

title

}
Explanation
In this snippet:

e We define a GraphQL query using Apollo Client’s gql template literal.
e The query fetches three main types of data:

© recentlyWatchedvideos: Returns an array of recently watched
videos with their basic information.

o recentlyUploadedVideos (limit: $limit): Fetches the most
recently uploaded videos, limited by the 1imit parameter.

© genresWithTopVideos (genreLimit: Sgenrelimit): Fetches
genres with their top videos. The number of genres is limited by
genreLimit, and for each genre, the top videos are fetched.

The query is designed to take two parameters:

e genreLimit: Limits the number of genres to return.

e limit: Limits the number of videos to return for recently uploaded
videos.

Using Apollo Client’s useguery Hook

Now we will fetch the data using Apollo Client’s useQuery hook and pass
the fetched data to the Home component for display.

const HomePage = () => {
// Call the useQuery hook to fetch data from the GraphQL

server
const { loading, error, data } = useQuery(HomePageQuery, {
variables: { genreLimit: 10, limit: 10 }, // Set default
limits
})
// Handle loading and error states
if (loading) return <p>Loading..</p>;
if (error) return <p>Error: {error.message}</p>;
return <Home data={data}></Home>; // Pass the fetched data to
the Home component
}i

export default HomePage;

Explanation

¢ useQuery Hook:

o We use the useguery hook provided by Apollo Client to fetch data
from the GraphQL server.

o The query passed to useQuery 1S HomePageQuery, and it takes two
variables: genreLimit and limit. These parameters limit the
number of genres and videos returned in the query results.

e State Handling:

o Loading State: If the data is still being fetched, we display a
loading message (<p>Loading..</p>).

o Error State: If there is an error during the data fetch, we display
the error message (<p>Error: {error.message}</p>).

* Rendering Data: After successfully fetching the data, we pass it as a
prop (data={data}) to the Home component. The Home component
will be responsible for rendering the homepage Ul using the provided
data.

In this section, we learned how to use Apollo Client’s useQuery hook to
fetch data for our homepage from the GraphQL server. We defined a
GraphQL query to fetch recently watched videos, recently uploaded videos,
and genres with top videos, as well as handled loading and error states in our
component.

In the next sections, we will focus on rendering this data in the Ul, designing
the videocard component, and optimizing the homepage layout for a better
user experience.

Populating Video Sections on the Home Page

In the previous section, we fetched the homepage data using Apollo Client
and passed it down to the Home component. Now, we will populate the video
sections (such as recently watched videos, recently uploaded videos, and
videos by genre) using the data provided.

Let us open the Home. js file located at:
Path: frontend/src/pages/storefront/Home/Home. js

In this component, we have received the following data from the GraphQL
query:

const { genresWithTopVideos, recentlyUploadedVideos,
recentlyWatchedVideos } = data;

We will use this data to dynamically populate each section of videos using
the VideoCard component.

Populating the Genres Section

We will map over the genreswithTopvideos data to display videos grouped
by their respective genres. Here is how the genre-based video sections will
be implemented:

{genresWithTopVideos &&
genresWithTopVideos.length > 0 &&
genresWithTopVideos.map (({ genre, topVideos }, index) => {
return (
<section key={index} className='categories'>
<h2 className='video-title'>{genre} Videos</h2>
<div className='video-container'>
{topVideos.map ((video) => {
return (
<VideoCard key={video. id} video={video} />
) ;
1)}
</div>
</section>
) ;
1)}
Explanation:

e Mapping over genres: We first check if genreswithTopvideos exists
and has data. Then, we use .map() to iterate over each genre. Each
genre contains a list of topvideos.

e Displaying Videos: For each genre, we render a section containing the
genre name and a list of videos for that genre. Each video 1s rendered
using the videoCard component.

e Key Prop: We provide a unique key prop (using video. id) to the
videocCard for each video, ensuring optimal rendering performance in
React.

Populating the Recently Uploaded Videos Section

Next, we will implement the section for recently uploaded videos in a
similar manner:

{recentlyUploadedVideos && recentlyUploadedVideos.length > 0 &&
(
<section className='categories'>
<h2 className='video-title'>Recently Uploaded</h2>
<div className='video-container'>
{recentlyUploadedVideos.map ((video) => {
return <VideoCard key={video. id} video={video} />;
1)}
</div>
</section>

) }
Explanation:

e Mapping over vrecently uploaded videos: We check if
recentlyUploadedvideos exists and has data. Then, we map over each
video and render it inside the videoCard component.

e Section Header: The section is titled "Recently Uploaded".

* Video Rendering: Similar to the genre section, each video is displayed
using the videoCard component.

Populating the Recently Watched Videos Section

You can follow the same approach for the "Recently wWatched" videos
section:

{recentlyWatchedVideos && recentlyWatchedVideos.length > 0 && (
<section className='featured'>
<h2 className='video-title'>Recently Watched</h2>
<div className='video-container'>
{recentlyWatchedVideos.map ((video) => {
return <VideoCard key={video. id} video={video} />;
1)}
</div>
</section>

)}

We have successfully populated the home page with video sections,
including recently watched videos, recently uploaded videos, and videos by

genre. Each section dynamically displays data using the videocard
component, making it reusable across different sections of the homepage.

Building the videocard Component

In this section, we will create the videocard component that will display
individual video data on the homepage. Let us begin by opening the file
located at:

Path: frontend/src/pages/storefront/VideoCard/VideoCard. js
Following is the code for the videocard component:

// src/pages/storefront/VideoCard/VideoCard.js
import React from "react";
import { Link } from "react-router-dom";
import "./VideoCard.css";
const VideoCard = ({ video }) => {
const { id, title, description, thumbnailUrl, createdDate } =
video;
return (
<div className='video-card'>
<Link className='video-link' to={'/video/${ id} }>
<img
src={thumbnailUrl}
alt={title}
className="'video-thumbnail'
/>
<div className='video-details'>
<h3 className='video-title'>{title}</h3>
<p className='video-description'>{description}</p>
</div>
</Link>
</div>
) ;
}i
export default VideoCard;

Explanation:

e Props Handling: The component receives a video object as a prop,
which contains all the video details, such as _id, title, description,
thumbnailUrl, and createdDate.

» Linking to Video Page: The Link component from react-router-dom
1s used to create a clickable video thumbnail and title that links to the
video’s detail page. The URL structure is /video/${_id}, where id is
the unique identifier of the video.

e Video Thumbnail: The img tag displays the video’s thumbnail,
providing a preview of the content.

e Video Details: Underneath the thumbnail, we display the video’s title
and description in the video-details section.

This component will be reused across different sections of the homepage to
display the video cards.

Streamify

. Amaring Scens nI'MI Creatures of the Grass..

ﬂ.REA Sl
3! &
-

Is there Life beyond Ea.. Anclest Alena: TOP 10... Crestures of the Grass... Amaziesg Beene of Wil.. Wypsbery of Area 51 | Ar... A by

€5 0 Sty Al rights rearead

Figure 6.4: Streamify Home Page with Recently Uploaded Section

Conclusion

In this chapter, we focused on building the storefront for our video streaming
platform. We began by defining and optimizing GraphQL queries to fetch
video data efficiently, covering recently watched videos, newly uploaded
videos, and top videos by genre. These queries were connected to MongoDB

through resolvers, allowing us to retrieve the right data with relevant limits
and filters. On the frontend, we built the homepage using React components,
including the videocard component to display individual video details, and
ensured that the design was both responsive and intuitive. Thus by
integrating Apollo Client, we connected the GraphQL server to our React
app, enabling smooth, real-time data rendering.

With the storefront in place, users can now browse and discover content in a
visually appealing and seamless way. In the next chapter, we will move to
the Video Detail Page, where users can view in-depth information about a
specific video, watch it directly on the page, and interact with features such
as liking, unliking, and exploring related videos. This will mark another step
in enhancing the overall user experience and interactivity of our application.

CHAPTER 7
Crafting the Video Detail Page

Introduction

In this chapter, we will dive deep into creating a rich and interactive video
detail experience that enhances user engagement. We will begin by
designing GraphQL queries specifically tailored for video detail pages,
ensuring that users can easily access comprehensive video information.

Following this, we will implement a rating system, leveraging GraphQL
mutations and queries to allow users to rate content and view aggregated
ratings. With a focus on user-friendly design, we will craft the Ul for the
video detail page, making sure it is intuitive and immersive. Finally, we will
connect the Ul components to the GraphQL queries and mutations,
integrating the rating functionality to create a seamless experience for users
as they interact with video content.

Structure

In this chapter, the following topics will be covered:

e Designing GraphQL Queries for Video Detail Pages

e Implementing Rating System with GraphQL Mutations and Queries
e Crafting UI for Video Detail Page

o Integrating Ul with GraphQL for Seamless User Experience

By the end of this chapter, you will have built a fully functional video detail
page that not only provides detailed video information but also empowers
users to give feedback through ratings. This immersive user experience will
lay the foundation for further enhancements, such as dynamic video
suggestions, which we will explore in the next chapter.

Switching to Chapter 7 Codebase

Before we begin working on crafting the video detail experience, let us
switch to the Chapter 7 codebase.

Running the Backend Server:

1. Navigate to the backend folder:
cd backend
2. Start the backend server:
npm run start
3. After starting the server, you should see the following response:

Connected to MongoDB
' Streamify API Server ready on http://localhost:4000

4. Make sure MongoDB is connected and the correct URL is set up in the
.env file of the backend.
e GraphQL Playground will be available at:
e GraphQL API will run at:

Running the Frontend Server:

1. Open a new terminal tab and navigate to the frontend folder:
cd frontend
2. Start the frontend server:

npm run start

3. Once the frontend server is running, you can access the application in
your browser at

Designing GraphQL Queries for Video Detail
Pages

In this section, we will create a GraphQL query that retrieves all video
details using a specific videoid. This is essential for populating the video
detail page with comprehensive information for users.

Step 1: Defining the GraphQL Query

a. Open all-schemas.js from the backend/schemas/directory in your code
editor.

b. Add the following query to fetch video details:

// GraphQL schema definition
const schema = ' #graphql

type Query {

Fetch video details by Id
fetchVideobyId(id: ID!'): VideoStream

}

type VideoStream {
_id: ID!
title: String!
description: String
videoUrl: String!
genre: [String!]
thumbnailUrl: String
uploadedBy: AdminUser
createdDate: String
updatedDate: String
}
c. Here, the fetchvideobyId(id: 1ID!) query takes a video ID as an
argument and returns a videoStream type, containing details such as
title, description, videoUrl, genre,andEK)On.

Step 2: Implementing the Resolver
Next, we will add a resolver for this newly defined query to handle the
request and return the relevant video data.

a.CHXHlall-resolvers.jsiﬁlbackend/schemas/.

b. Locate the place where resolvers are defined and add the following
code:

import VideoStream from "./mongo/video-stream.js";

import { checkAccess, ROLES } from "../auth/acl.js";

const fetchVideoById = (, arg, ctx) => {
const { req, res, user } = ctx;
const { id } = arg;

return VideoStream.findById(id) ;
i
const resolvers = {

Mutation: {

by
Query: {

fetchVideobyId: checkAccess (ROLES.authenticated,
fetchVideoById),
by

i

export default resolvers;

e Authorization Middleware: We wrap fetchvVideobyld with
checkAccess () to ensure only authenticated users can access this
query.

e Callback Function: The function fetchvideoById uses Mongoose’s
findById method to retrieve video details from the database, based on
the provided id.

Learn More: Mongoose’s findById(id) method quickly retrieves a
document by its unique _id, returning the document or null if not found. It
is ideal for fetching a single item, such as video details, based on ID
https://mongoosejs.com/docs/api/model.html#Model.findById().

Implementing a Rating System with GraphQL
Mutations and Queries

Now that we have established the foundation for fetching video details by
videoId, let us enhance our video data and overall user experience by
introducing a rating system.

https://mongoosejs.com/docs/api/model.html#Model.findById()

A robust rating system is a powerful tool to help users evaluate content
quality, making it easier to decide whether a video is worth watching. The
higher the average rating a video receives, the more likely it is to be featured
and recommended to others. As we build a recommendation engine in the
upcoming chapters, this rating will serve as a crucial factor for creating
personalized suggestions.

To create this rating system, we need a flexible structure that allows users to
rate content, while viewing it. Additionally, users should be able to edit their
ratings, and the video detail page will display the calculated average rating
based on community input.

Let us get started.

Designing MongoDB Schemas for the Rating
System

To implement a rating system for our video streaming platform, we need to
enhance the existing VideoStream schema to include rating-related fields
and create a Rating schema to track individual user ratings for each video.
Additionally, we will use Mongoose middleware hooks to keep the
VideoStream schema updated automatically whenever a rating is created,
updated, or removed.

Let us break this down step by step:
Step 1: Extending the videoStream Schema
The VideoStream schema will now include:

* totalRating: The sum of all individual ratings.
e numberOfRaters: The total number of users who have rated the video.

e averageRating: The average rating for the video.

Here is the updated schema:

// backend/schemas/mongo/video-stream.js

import mongoose from 'mongoose';

const videoStreamSchema = new mongoose.Schema ({
title: String,
description: String,
videoUrl: String,

genre: [String],

thumbnailUrl: String,

uploadedBy: String,

createdDate: Date,

updatedDate: Date,

totalRating: { type: Number, default: 0 },
numberOfRaters: { type: Number, default: 0 },
averageRating: { type: Number, default: 0 },
1)

export default mongoose.model ('VideoStream',

videoStreamSchema) ;

These fields allow us to compute and display aggregate rating data
efficiently without recalculating it each time a user views the video details.
Step 2: Creating the Rating Schema

The Rating schema will store:

e The user who provided the rating.
e The video being rated.
e The rating value.

Here 1s how it looks:

// backend/schemas/mongo/rating.js

import mongoose from 'mongoose';

const ratingSchema = new mongoose.Schema ({
videoId: { type: mongoose.Schema.Types.ObjectId, ref:
'VideoStream', required: true },
userId: { type: mongoose.Schema.Types.ObjectId, ref: 'User',
required: true },
rating: { type: Number, min: 1, max: 5, required: true },

)

// Index to ensure a user can rate a video only once
ratingSchema.index ({ videoId: 1, userId: 1 }, { unique: true
1)

export default mongoose.model ('Rating', ratingSchema);

Building GraphQL Schema for the Rating System

To enable the display of a user’s past rating on the video detail page and
provide an option to update the rating, we need to define a query to fetch the
rating by videoId and the currently logged-in user’s userid. The userid
will be extracted from the authorization token, instead of being passed as a
query parameter.

Here is the updated schema with the required changes:

// backend/schemas/all-schemas.js

const schema =

type VideoStream {

}

_id: ID!
title:
description:

String!

String
videoUrl: String!
genre:

thumbnailUrl:

[String!]

uploadedBy: AdminUser

createdDate:
updatedDate:
totalRating:

numberOfRaters:

String
String
Float!
Int!

averageRating: Float!

type Rating {

}

_id: ID!
videoId: ID!
ID!

Int!

userId:

rating:

type Query {

}

fetchRating (videoId:

a specific video

String

“#graphgl

ID!) :

Rating # Fetch a user's rating for

4

export default schema; // Export the GraphQL schema

Implementing the fetchRating Resolver

To fetch the user’s rating for a specific video, we need to define a resolver
for the fetchrating query.

// backend/schemas/all-resolvers.Js

import Rating from "./mongo/rating.js";

import { checkAccess, ROLES } from "../auth/acl.js";
const fetchRating = async (, { videoId }, { user }) => {
if (l!user) {

throw new Error ("Unauthorized. Please log in.");

}

return Rating.findOne ({ videoId, userId: user. id });
}i
// GraphQL resolvers
const resolvers = {

Query: |

fetchRating: checkAccess (ROLES.authenticated, fetchRating),

by
Mutation: {

by
}i

export default resolvers; // Export the resolvers object

Explanation:
1. fetchrating Resolver:

a. Accepts videoId as an argument.

b. Retrieves the currently logged-in user’s userid from the context
(user._id)

c. Queries the Rating collection to find a matching record with
videold and userid.

2. Authorization Middleware:

a. Ensures only authenticated users can query their ratings.

Tip: Use the checkaccess middleware to enforce authentication and ensure
users can only access their own data.

With this query in place, users will be able to see their past rating for a
video. Next, we will build resolvers for mutation and integrate this
functionality into the video detail page UI.

Building GraphQL Mutations: CreateOrUpdateRatingInput

Now that we have designed the GraphQL schema and queries for the rating
system, it is time to implement mutations to allow users to create and update
their ratings. These mutations will ensure that users can rate videos, modify
their ratings, and maintain accurate video statistics, such as average ratings,
total ratings, and the number of raters.

GraphQL Schema Modifications

In this section, we will explore how to create a GraphQL Mutation for
creating or updating ratings in a video streaming application. We will follow
a structured approach, starting with the schema definition, implementing
the resolver, and adding necessary Mongoose static methods for the
database operations.

1. GraphQL Schema Definition

The first step is to define the mutation and input types in our GraphQL
schema.

// File: backend/schemas/all-schemas.js
// GraphQL schema definition
const schema = "#graphgl
type Mutation {
createOrUpdateRating (input: CreateOrUpdateRatingInput!) :
Rating!
}

input CreateOrUpdateRatingInput {
videoId: ID!
rating: Int!

}

type Rating {
videoId: ID!
userId: ID!
rating: Int!
}
export default schema; // Export the GraphQL schema
In this schema:

* createOrUpdateRating 1S a mutation that takes an input of type
CreateOrUpdateRatingInput.

® CreateOrUpdateRatingInput Includes videoId and rating, which are
required fields.

e The mutation returns a Rating object containing the videold, userid,
and the rating value.

2. GraphQL Resolver Implementation

Resolvers handle the logic for the createorUpdateRating mutation.
Following is the implementation for the resolver, where we check if a user
has already rated the video. If so, the rating is updated; otherwise, a new
rating is created.

// File: backend/schemas/all-resolvers.]s

// Import necessary libraries and models

import VideoStream from "./mongo/video-stream.js";
import { checkAccess, ROLES } from "../auth/acl.]js";
import Rating from "./mongo/rating.js";

// Resolver for createOrUpdateRating
const createOrUpdateRating = async (_, { input }, { user }) =>

{

const { videoId, rating } = input;

// Check if the user has already rated the video
const existingRating = await Rating.findOne ({ videoId, userId:

user. id });

if (existingRating) {

// Update the existing rating

const updatedRating = await Rating.updateUserRating(videold,

rating, existingRating);

return updatedRating;

}

// Create a new rating

const newRating = await Rating.createUserRating(videold,

user. id, rating);

return newRating;

}s

// GraphQL resolvers

const resolvers = {

Mutation: {

createOrUpdateRating: checkAccess (ROLES.authenticated,

createOrUpdateRating),

o
}s

export default resolvers; // Export the resolvers object

Explanation:

The function createOrUpdateRating takes the input containing
videold and rating and uses the user from the context.

If a rating already exists for the user and video (existingRating), it
calls updateUserRating.

If no rating exists, it calls createUserRating to add a new rating.

checkAccess ensures only authenticated users can perform this
mutation.

3. Mongoose Static Methods

The

database logic for creating or updating ratings is implemented as

Mongoose static methods. Using static methods allows us to keep our
database operations organized and reusable.

Creating a New Rating

The createUserRating method adds a new rating for the video and updates
the video document’s totalRating, numberOfRaters, and averageRating.

// File: backend/schemas/mongo/rating.js

ratingSchema.statics.createUserRating = async function
(videoId, userId, ratingValue) {

// Create a new rating document

const newRating = await this.create({ videoId, userId, rating:

ratingValue });

// Fetch the current video document
const video = await VideoStream.findById(videolId)

if (!video) return;
const totalRating = video.totalRating || O;
const numberOfRaters = video.numberOfRaters || O;

// Update video ratings
await VideoStream.findByIdAndUpdate (
videolId,
{
Sinc: { totalRating: ratingValue, numberOfRaters: 1 },
$set: {
averageRating: (totalRating + ratingValue) /
(numberOfRaters + 1),
Yo
Yo
{ new: true }

) ;

return newRating;
bi
Updating an Existing Rating
The updateUserRating method updates the user’s existing rating and
recalculates the video’s total and average ratings.

// File: backend/schemas/mongo/rating.js
ratingSchema.statics.updateUserRating = async function
(videolId, ratingValue, oldRatingObj) {

const previousRatingValue = oldRatingObj.rating;

o0ldRatingObj.rating = ratingValue;

await oldRatingObj.savel() ;

// Fetch the current video document

const video = await VideoStream.findById(videolId) ;

if (!'video) return;
const totalRating = video.totalRating || O0;
const numberOfRaters = video.numberOfRaters || O;

// Update video ratings
awailt VideoStream.findByIdAndUpdate (
videolId,
{
Sset: {
totalRating: totalRating + (ratingValue -
previousRatingValue),
averageRating: (totalRating + (ratingValue -
previousRatingValue)) / numberOfRaters,
b
Yo

{ new: true }
) ;
return oldRatingObij;
bi
4. What are Mongoose Static Methods?

Mongoose static methods are functions defined on the model itself rather
than individual documents. These methods are useful for performing
operations that involve multiple documents or require additional logic.

Benefits of Static Methods:

e They allow you to write reusable logic for your models.

e You can perform complex queries or database updates directly on the
model.

e They keep your code clean and organized.

[Bage:In,ﬂkifﬁecedhqgcode,createUserRating and updateUserRating
are static methods defined on the rRating model. These methods encapsulate
the logic for creating and updating ratings while keeping the resolver clean.

Testing in GraphiQL Playground

Now that our schema is defined, let us test it in the GraphiQL Playground.

1. Run the backend server and navigate to the playground at:
http://localhost:4000/graphiqgl
2. In the operation field, enter the following mutation:

mutation Mutation ($input: CreateOrUpdateRatingInput!) {
createOrUpdateRating (input: S$input) {
_id,
rating,
userld,
videold,
}
}

3. Provide the required input variables, such as:
{

"input": {
"rating": 3,
"videoId": "66d491511de64a332aad8597"
}y
}

4. Execute the mutation. If everything is set up correctly, the result will
look similar to the following:

{
"data": {
"createOrUpdateRating": {
" id": "67619cbd860df8a349969121",
"rating": 3,
"userId": "66d4379e0£53d6575fle8efc",
"videoId": "66d491511de64a332aad8597"

}

Figure 7.1: Successful Execution of createOrUpdateRating Mutation

In this section, we covered:

e GraphQL Schema Definition for the createOrUpdateRating
mutation.

» Implementing the Resolver to handle the logic for creating or updating
ratings.

e Writing Mongoose Static Methods to handle database updates
efficiently.

e Testing the mutation in GraphiQL Playground.

Crafting Ul for Video Detail Page

In this section, we will focus on creating the router and designing the Ul
components for the Video Detail Page. The primary goal is to build a
visually appealing and interactive interface where users can view detailed
information about a video and provide their ratings.

We will:

1. Define a router to navigate to the video detail page.

2. Create UI components to display video information such as the title,
description, and average rating.

3. Design an intuitive rating Ul, enabling users to submit or update their
ratings seamlessly.

The integration of backend queries will be covered in the next section of this
chapter. For now, our focus will remain on building the essential frontend
structure and ensuring a user-friendly design for the Video Detail Page. So,
let us dive in!

Building the Router and Skeleton Component for
the Video Detail Page

In this section, we will create a router for the Video Detail Page and develop
a skeleton component to serve as the foundation for the page’s design.

Start the Frontend and Backend Servers

Before proceeding with the code, ensure both the frontend and backend
servers are running:

1. Open two terminals:
o One for the £frontend folder.
o One for the backend folder.

2. Run the following command in both terminals:
npm run start

3. Once the servers are started:
o Navigate to http://localhost:3000/ in your browser.
o The storefront will launch successfully.

Add a Router for the Video Detail Page:

1. Open your code editor and locate the frontend folder.
2. Open the app. js file.
3. Add a new router path for the Video Detail Page.

// frontend/src/App.Jjs

import * as React from "react";

import { createBrowserRouter } from "react-router-dom";

// Pages

import VideoDetail from "./pages/storefront/VideoDetail";

export default createBrowserRouter ([
{
path: "/,
element: <StoreFrontHomePage />,
b

{
path: "/video/:videoId",

element: <VideoDetail />,
b,

1)
Explanation
1. Dynamic Segment:

o The path /video/:videoId includes :videoid, a dynamic
segment that is replaced by the actual video ID at runtime.

o This allows you to display details specific to the selected video.
2. Video Detail Component:

o The element is set to <videoDetail />, linking this path to the
VideoDetail component.

o This component will be built next as a skeleton structure.
3. Reference for Dynamic Routing:

o For a deeper understanding of dynamic routes, check the
https://reactrouter.com/start/library/routing#dynamic-segments.

Now that the router is defined, let us proceed to build the <videobetail />
component as the skeleton for the Video Detail Page.

https://reactrouter.com/start/library/routing#dynamic-segments

Building the Skeleton for the Video Detail Page

In this section, we will build the basic structure of the videobetail page
using React. This component serves as the foundation for displaying video
details and allowing users to rate a video. We will begin with static dummy
data to design the UI. Later, we will replace the static data with GraphQL
queries and mutations to make the component dynamic.

Streamify

 F V1T O —
WITH= "\

LLiving With Maneaters, india - =8 wirpElh | wikdiite decumentary in Hindi
BaFrid P, P BUTUhe 10 DO wll W, B el 6. E Db 7o Vbbb 2ore] ool £ BB T o PO T ROl bl Ly (R arrol VTmabi pRa i 1 [P Dokl OF IR, TR0 o (A7) S 1) Tk BT
SEEETE N N N Eaplretng s nry. s cvering asra g sl brbawor, beasltlsking Landhe spes, snd the debicain balsmce 3 ecowmnbeTa

Herruge Rating: Humber of Bxiers: 7
e 1P, ek

Figure 7.2: Preview of Video Detail Page
The layout is divided into two main sections:

* Video Player: Displays the embedded YouTube video.

e Video Details and Ratings: Includes the title, description, genre,
average rating, number of raters, and an interactive star-based rating
system.

VideoDetailWithData Component
This component wraps videobetail and provides static props for the UI.

Note: The static data used here is temporary and serves as a placeholder to
build and test the component layout. In the next topic, we will replace this
static data with dynamic data fetched using a GraphQL query.

import VideoDetail from "./VideoDetail";
const VideoDetailWithData = () => {

const data = {
_id: "66d491511de64a332aad8597",
averageRating: 4,
description: "Across India, humans struggle...",
genre: ["Wildlife"™, "Documentary"],
numberOfRaters: 2,
thumbnailUrl: "..",
title: "Living With Maneaters,..",
totalRating: 8,
videoUrl: "..",

}i

const myRating = {
_id: "67619cbd860df8a349969121",
rating: 3,

s

return <VideoDetail data={data} myRating={myRating} />;
}i
export default VideoDetailWithData;

VideoDetail Component

This component implements the layout and UI logic for displaying video
details and the rating interface.

const VideoDetail = ({ data, myRating }) => {
const [selectedRating, setSelectedRating] =
useState (myRating.rating || 0);
const [hoveredRating, setHoveredRating] = useState(0);

const handleRatingSubmit = () => {
alert ("You rated the video ${selectedRating} stars!’);

// Logic for saving rating will go here..

bi

const { title, description, genre, averageRating,
numberOfRaters, videoUrl } = data;
const videoId = getYoutubeVideoId(videoUrl) ;

return (

<>
<Header />
<div className="video-detail-page">
<div className="video-frame">
{videoId ? (
<iframe
title={title}
width="100%"
height="100%"
src={ https://www.youtube.com/embed/${videoId} "}
frameBorder="0"
allowFullScreen
></iframe>
)
<p>Invalid YouTube URL</p>
) }
</div>
<div className="video-info">
<hl className="video-title">{title}</hl1>
<p className="video-description">{description}</p>
<div className="video-genre">
{genre.map ((g, index) => (

{g}

)}
</div>
<div className="video-rating">
<div className="rating-stat">
Average Rating:
{11, 2, 3, 4, 5].map((star) => (
<span
key={star}
className={ star ${averageRating >= star ? "active"
"
>

*

))}
</div>
<div className="rating-stat">
Number of Raters: {numberOfRaters}
</div>
</div>
<div className="rating-input">
<p>Rate this video:</p>
<div className="stars" onMouselLeave={ () =>
setHoveredRating (0) } >
{11, 2, 3, 4, 5].map((star) => (

<span
key={star}
className={ star ${
(hoveredRating || selectedRating) >= star ?
"active" : "V
bl
onMouseEnter={ () => setHoveredRating(star)}
onClick={ () => setSelectedRating(star)}
>
.4

))}
</div>

{selectedRating > 0 && (
<button className="submit-rating" onClick=
{handleRatingSubmit}>

Submit
</button>

) }

</div>
</div>
</div>
</>
) ;
bi

export default VideoDetail;
Explanation

1. Video Embedding:

o The getYoutubevideolId function extracts the video ID from a
YouTube URL.

o The iframe dynamically displays the video using this ID.
2. Video Details:

o Props from data are destructured to display the title, description,
genre, and average rating.

o Genres are displayed as individual badges for better styling.
3. Rating System:
o Two state variables manage user interaction:

" selectedRating: Tracks the clicked rating.

" hoveredRating: Temporarily highlights stars during mouse
hover.

o A Submit button is displayed once the user selects a rating.

Integrating Ul with GraphQL for Seamless User
Experience

In this final topic of the chapter, we will elevate the Video Detail Page by
connecting it to the backend using GraphQL, enabling a seamless and
dynamic user experience.

The static data used in the previous topic will be replaced with real-time data
fetched through a GraphQL query, ensuring that the video details displayed
are always accurate and up-to-date. Additionally, we will implement a
GraphQL mutation to allow users to submit their ratings. These ratings
will dynamically update the video’s average rating and the total number of
raters, providing an interactive and responsive interface.

By the end of this topic, the Video Detail Page will be fully functional,
capable of:

e Fetching Video Details: Dynamically load video information based on
the videoId parameter extracted from the router.

e Submitting Ratings: Let users rate the video, with updates reflected
immediately in the Ul for a smooth experience.
This integration will tie together the UI and backend logic, providing a
robust foundation for delivering a personalized and engaging user journey.
Let us get started by replacing the static data with a GraphQL query!

Fetching Video Details with GraphQL Query

In this section, we will implement a frontend operation to fetch video details
and ratings using GraphQL. This will involve using a GraphQL query to
retrieve the video details and the user’s rating in a single request, ensuring an
efficient and smooth experience for the user.

Here is the code for fetching video details and user ratings:

// frontend/src/pages/storefront/VideoDetail/index.js
import VideoDetail from "./VideoDetail";
import { ggl, useQuery } from "Q@apollo/client";

import { useParams } from "react-router";

const VideoDetailQuery = ggl’
query FetchVideobyId($videoId: ID!) ({
fetchVideobyId(id: $videoId) ({
_id
averageRating
description
genre
numberOfRaters
thumbnailUrl
title
totalRating
videoUrl
}
fetchRating(videoId: $videoId) {
_id
rating
userId

videoId
}
}
const VideoDetailWithData = () => {
const params = useParams() ;

const { loading, data } = useQuery(VideoDetailQuery, ({
variables: { videoId: params.videoId },

})

if (!loading && data?.fetchvideobyId) {
return (
<VideoDetail data={data?.fetchVideobyId} myRating=
{data?.fetchRating} />
) ;
}

return <div>Loading..</div>;
}i
Explanation:

1. GraphQL Query:
o The videobetailQuery fetches two pieces of data:

= Video Details: Information about the video such as title,
description, genre, average rating, total rating, and more.

» User Rating: Fetches the rating given by the logged-in user
for the specific video.

o Both queries (fetchvideobyId and fetchRating) are combined
into a single request to save bandwidth and avoid multiple
network calls.

2.useParams()IIOOkZ

o The useParams() hook from react-router-dom 1s used to
retrieve the dynamic videoId from the URL. This videoId is then
passed as a variable into the GraphQL query.

3. useQuery () Hook:

o We use Apollo Client’s useQuery() hook to execute the
VideoDetailQuery With the videoId as a query variable.

o The loading state is checked to ensure that the data is fetched
before rendering the videoDetail component.

4. Rendering the Data:

o Once the data is successfully fetched, the videobetail component
i1s rendered, passing the video details (data?.fetchvideobyId)
and the user’s rating (data?. fetchRating) as props.

Tip: To learn more about react-router-dom and dynamic segments as well as
the utilization of the useParams() hook, check out the
https://reactrouter.com/start/library/routingftdynamic-segments.

This approach ensures a seamless and efficient fetching of video details and
ratings, improving the user experience by reducing unnecessary network
requests.

Submitting Ratings Using GraphQL Mutation

This section adds functionality to submit ratings using a GraphQL mutation
in the videoDetail component of our storefront application.

Code Walkthrough

Importing Required Dependencies:

import { ggl, useMutation } from "Qapollo/client";

We import the gql function to define the GraphQL mutation and
useMutation to call it from our React component.

Defining the Mutation:

const CREATE OR UPDATE RATING = gql®
mutation Mutation ($input: CreateOrUpdateRatingInput!) {
createOrUpdateRating (input: $input) {
_id
rating
userld

videoId

https://reactrouter.com/start/library/routing#dynamic-segments

}
This mutation allows us to either create or update a rating for a specific
video. The input includes the video1d and rating. On success, it returns the
rating ID, user ID, video ID, and the rating value.

Using the Mutation:

const [createOrUpdateRating] =
useMutation (CREATE OR UPDATE RATING) ;

The useMutation hook initializes the createOrUpdateRating function that
is invoked when submitting a rating.

Handling the Rating Submission:

const handleRatingSubmit = async (selectedRating) => {
try A
awalt createOrUpdateRating ({
variables: {
input: {
videoId: data. id,
rating: selectedRating,
by
by

1) ;
setSelectedRating (selectedRating) ;

} catch (err) {
console.error ("Error submitting rating:", err);
alert ("Failed to submit the rating. Please try again.");
}
i
This function:

1. Calls the createorUpdateRating mutation with the selected rating and
videoId.
2. Updates the Ul by setting the selectedRating state.

3. Handles errors gracefully by displaying an alert if the submission fails.

Rendering the Component:

e Video Information: The component displays video details such as the
title, description, genre, average rating, and the number of raters.

e Interactive Rating System:

<div className='rating-input'>
<p>Rate this video:</p>
<div className='stars' onMouselLeave={ () =>
setHoveredRating (0) } >
{11, 2, 3, 4, 5].map((star) => (
<span
key={star}
className={ star $/{

(hoveredRating || selectedRating) >= star ? "active"

bl
onMouseEnter={ () => setHoveredRating(star) }
onClick={ () => handleRatingSubmit (star) }
>
»

))}
</div>
</div>

e Users can hover over the stars to preview their rating (hoveredRating).

e Clicking a star submits the rating using handleRatingSubmit.

Streamify

A Woli's Journey - T8 sTogifl | wikdlite documentary in Hindl

B, gy ma S pveryt ke, SRk T 1 el e e rubeed rrkl D pites R T ieb et vl oF ey s g e HAS WSS Dt cre ey Ehivne il rourtel o D bbby of ifuee feoe Pre Uik ueeied B e el

Eﬁf o8 O B PG Uy G g |BSIratng 87mal Bphavgny, DARaIraking langhsapes. Bng the GHCae Bance of SToFTIa.
Ao Rating Humbs gl Baers T

Figure 7.3: Video Detail Screen with Interactive Rating System
Conclusion

With the video detail page in place, we have added depth to the viewing
experience, enabling users to access richer information, watch videos
seamlessly, and interact through actions such as liking or unliking content.
By combining well-structured GraphQL queries and mutations with a clean,
responsive interface, we have created a solid framework for engaging
content consumption and user interaction.

In the next chapter, we will build on this foundation by introducing dynamic
video recommendations. These recommendations will help users discover
more content effortlessly, encouraging continued exploration and making the
platform feel more personalized and engaging.

CHAPTER 8

Building Video Recommendations

Introduction

In this chapter, we will focus on enhancing the user experience by
implementing a dynamic recommendation system. Recommendations play a
pivotal role in fostering exploration and discovery, enabling users to
effortlessly find content that aligns with their interests. While real-world
platforms such as Netflix employ sophisticated AI models trained on vast
datasets to generate recommendations, we will simplify this process for the
scope of our book.

Our approach involves using MongoDB queries to generate personalized
recommendations efficiently. By analyzing factors such as genre and user
ratings, we will create a system that delivers both similar video suggestions
and personalized content recommendations. These curated suggestions will
be seamlessly integrated into the Video Detail Page, enriching the content
discovery journey. This chapter demonstrates how simplified techniques can
still achieve effective results, paving the way for further exploration in
advanced Al-driven recommendation systems.

Structure

In this chapter, the following topics will be covered:

e Overview of Recommendation Systems

e Designing GraphQL Queries for Similar Video Recommendations
e Implementing GraphQL Queries for Personalized Suggestions

e Implementing the Recently Watched Videos Feature

e Integrating the Recommendations Component into the Video Detail
Page
e Enhancing User Engagement with Recommendations

By the end of this chapter, you will have a clear understanding of how to
design and implement a recommendation system using MongoDB and
GraphQL. Additionally, we will also gain insight into the foundational
concepts of content personalization in a streaming platform.

Switching to Chapter 8 Codebase

Before building the video recommendation feature, switch to the Chapter 8
folder.

Start the Backend Server
Navigate to the backend folder:

cd backend

npm run start

Ensure MongoDB is connected, and the correct URL is configured in the
.env file.

The server response should display:
Connected to MongoDB

%’ Streamify API Server ready on http://localhost:4000
GraphQL Playground: http://localhost:4000/graphiqgl

Start the Frontend Server

Open a new terminal, navigate to the frontend folder:

cd frontend

npm run start
Access the application at:
http://localhost:3000

Overview of Recommendation Systems

Recommendation systems play a pivotal role in enhancing user experience
by offering personalized content tailored to individual preferences. In the
context of streaming platforms, these systems provide users with relevant
video suggestions, keeping them engaged and helping them discover new
content.

Importance of Recommendations in User
Engagement and Retention

Recommendation systems are crucial for fostering a personalized and
engaging experience on streaming platforms. By analyzing user preferences,
behaviors, and interactions, these systems suggest videos that are most likely
to align with their interests, resulting in several benefits, such as:

e Increased Content Discovery: Recommendations help users explore
content that they may not have found on their own, expanding their
viewing options and enriching the platform’s value.

e Enhanced User Retention: Personalized suggestions based on
previous interactions ensure that users stay engaged, leading to longer
sessions and higher retention rates. When users continuously find
relevant content, they are more likely to return to the platform.

e Improved User Experience: A tailored experience improves user
satisfaction. The more relevant the suggestions, the better the overall
experience, which can translate into positive word-of-mouth and higher
conversion rates.

e Reduced Decision Fatigue: With an abundance of content, users may
feel overwhelmed. A recommendation system narrows down choices,
providing only those videos that are most likely to appeal, thus
simplifying the decision-making process.

By delivering recommendations, streaming platforms can increase user
interaction and loyalty, building a strong, long-term relationship with their
audience.

Comparison of AI-Driven and Query-Based
Approaches

There are two main types of recommendation system approaches: Al-driven
and Query-based. Both have their advantages and applications, depending
on the complexity of the platform and the available data.

Al-Driven Approaches: Al-driven recommendation systems, often powered
by machine learning algorithms, use sophisticated techniques to understand
user behavior, preferences, and interactions. These systems rely on large
datasets, where algorithms such as collaborative filtering, content-based
filtering, and matrix factorization are employed to make predictions.

Advantages:

e Highly personalized suggestions based on deep analysis of user
behavior and content similarities.

e Ability to scale and adapt over time, improving recommendations as
more data is gathered.

e Can offer real-time recommendations, reacting to user actions instantly.
Disadvantages:

e Requires significant computational resources and expertise in machine
learning.

e Needs substantial data to function effectively, making it less suitable
for new or small platforms with limited user data.

Query-Based Approaches: Query-based systems rely on predefined rules or
simple queries to retrieve recommendations based on static parameters such
as genre, ratings, or keywords. In a typical MongoDB-based system, for
instance, recommendations might be generated by querying a database for
videos similar to the ones a user has previously liked or interacted with.

Advantages:

» Easier to implement, requiring less computational power and expertise.

e Simpler to maintain and update, making it an ideal approach for small-
scale systems or MVPs.

Disadvantages:

e Less personalized than Al-driven systems, as they rely on basic
attributes and do not account for complex user behaviors.

* Does not adapt or scale as efficiently with an increase in data or users.

In our current chapter, we will use a query-based approach for simplicity
and practicality. Although Al-driven systems are widely used in large-scale
platforms such as Netflix, where user behavior is continuously analyzed and
leveraged, a query-based system is more manageable and suitable for our use
case.

By leveraging MongoDB queries, we can efficiently generate video
recommendations based on static parameters such as genre, ratings, and
related video data.

Designing GraphQL Queries for Similar Video
Recommendations

A key component of our recommendation system is generating suggestions
for similar videos based on attributes such as genre and user ratings. In this
section, we will focus on designing the GraphQL queries that retrieve these
recommendations efficiently from our MongoDB database.

Goals of Similar Video Recommendations

* Relevance: Ensure that the suggested videos align with the currently
viewed video by using attributes such as genre and ratings.

o Efficiency: Fetch recommendations with minimal latency to maintain a
smooth user experience.

e Simplicity: Design queries that are easy to extend or modify, making
future improvements seamless.

Schema Design for Similar Video
Recommendations

To implement a system for fetching and displaying similar videos, while
viewing a video, we will use GraphQL to define and retrieve data. The
approach involves querying the database for videos with the same genre as
the current video and sorting them by their total ratings to ensure the most
relevant and highly rated videos appear at the top.

Defining the GraphQL Query

We will begin by defining a getSimilarvideos query in our GraphQL
schema. This query will accept the following parameters:

e videold: The ID of the video currently being viewed.
e limit: An optional parameter to limit the number of similar videos
returned.
The query will return a list of videostream objects representing the
recommended videos.

Open the backend/schemas/all-schemas. js file:

// GraphQL schema definition
const schema = "#graphqgl

type Query {

getSimilarVideos (videoId: ID!, limit: Int): [VideoStream!]!
}

type VideoStream {
_id: ID!
title: String!
description: String
videoUrl: String!
genre: [String!]
thumbnailUrl: String
uploadedBy: AdminUser
totalRating: Float!
numberOfRaters: Int!
averageRating: Float!
createdDate: String

updatedDate: String

Explanation of the Schema:
® getSimilarVideos (videoId: ID!, limit: Int):

o Fetches a list of videos belonging to the same genre as the
provided videoId.

o Limits the results if the 1imit parameter is specified.

Implementing the Resolver

To fetch and return similar video recommendations, we implement a resolver
for the getsimilarvideos query. This resolver queries the database for
videos with genres matching the currently viewed video, excludes the video
itself, and sorts the results by averageRating in descending order.

Open the backend/schemas/all-resolvers. js file:

const fetchSimilarVideos = async (, arg, ctx) => {

const { videoId, limit = 10 } = arg;

// Fetch the currently viewed video
const currentVideo = await VideoStream.findById(videolId) ;
if (!currentVideo) {

throw new Error ("Video not found");

}

// Query for similar videos based on the same genre
const similarVideos = await VideoStream.find ({
genre: {
$in: currentVideo.genre, // Match any of the genres of the
current video
Yy
_id: { Sne: videoId }, // Exclude the current video itself
})
.sort ({ averageRating: -1 }) // Sort by highest ratings
.limit(limit); // Apply the limit
return similarVideos;
}i
// GraphQL resolvers

const resolvers = {
Query: |

getSimilarVideos: checkAccess (ROLES.authenticated,
fetchSimilarVideos),

by
};

Explanation

e Parameters:

o videold: Identifies the current video.
o 1limit: Defines how many similar videos to fetch (default: 10).

Fetching the Current Video:

o Use videoStream. findById (videoId) to locate the current video
in the database.

o Ifthe video is not found, throw an error ("video not found").

Query for Similar Videos:

o Match videos with at least one overlapping genre from the current
video ($in query).
o Exclude the current video itself using id: { $ne: videoId }.

Sorting and Limiting Results:

o Sort results in descending order by averageRating to prioritize
highly rated videos.

o Limit the number of results to the specified limit.

Access Control:

o Use checkAccess to ensure only authenticated users can access
the getsimilarvideos query.

Benefits of This Implementation
e Efficiency: MongoDB’s $in and sorting capabilities ensure efficient

retrieval of relevant results.

e Personalization: By focusing on the genre and prioritizing high
ratings, we improve user satisfaction.

* Robustness: Excluding the current video and handling edge cases
(such as, video not found) ensures a better user experience.

Query Playground

Once the query is implemented, it can be tested in the GraphQL Playground
with the following request:

Figure 8.1: GraphQL Playground

GraphQL Query:

query GetSimilarVideos (SvideoId: ID!,) {
getSimilarVideos (videoId: $videoId) {
_id,
title,
genre

averageRating,

}
Variables:

{
"videoId": "66d492181deocd4a332aad85a0"

}
Response Example:

{
"data": {
"getSimilarVideos": [
{
" id": "66e5f772db54a943d25b2784",

"title": "Amazing Scene of Wild Animals In 4K - Scenic
Relaxation Film",
"genre": [
"Wildlife",
"Documentary"
1y
"averageRating": 5
Yo

" id": "66e5f4a5fa51b002c837ee3c",
"title": "Ancient Aliens: Dimming Star Caused by Alien
Spacecraft (Season 20)",
"genre": [
"Alien",
"Documentary"

1,

"averageRating": 4

]
}
}

By completing this resolver, we enable the backend to provide dynamic,
genre-based recommendations, setting the stage for enhanced user
engagement.

Implementing GraphQL Queries for Personalized
Suggestions

Personalized video suggestions are key to enhancing user engagement and
retention. By providing content tailored to individual preferences, we create
a streaming experience that feels intuitive and relevant.

In real-world systems like Netflix, personalized suggestions are often
powered by sophisticated Al models that analyze extensive user behavior
data, including viewing history, preferences, and engagement patterns. These
models use collaborative filtering, content-based filtering, or hybrid
approaches to predict user interests accurately.

For this implementation, we simplify the process by using MongoDB
queries to create personalized recommendations. Our approach will involve
analyzing user behavior, specifically genres of previously watched videos, to
identify patterns. Based on this data, we compare the user’s preferences with
others who have similar viewing histories and fetch videos they have
enjoyed.

This method, though simplified, mimics collaborative filtering, where
recommendations are made based on the preferences of users with similar
tastes.

How Personalized Suggestions Work

e Analyzing User Behavior:

o Identify the genres, tags, and metadata associated with videos the
user has watched.

o Store this information for use in generating recommendations.
e Finding Similar Users:

o Compare the user’s viewing patterns with other viewers who have
watched similar videos.

o Identify those who share overlapping interests based on genres
and metadata.

e Generating Recommendations:

o Fetch videos liked or highly rated by similar viewers but not yet
watched by the user.

o Sort the results to prioritize the most relevant content.

By following this workflow, we create a basic personalized recommendation
engine using MongoDB, avoiding the complexities of Al-driven systems
while still delivering meaningful suggestions.

Building MongoDB Queries for Personalized
Recommendations
Defining the GraphQL Query for Personalized Videos

We will start by defining the GraphQL query that will enable us to fetch
personalized video recommendations. This query accepts the video1d of the
currently viewed video and a 1imit parameter to control the number of
recommendations returned.

Open the file: backend/schemas/all-schemas. js

type Query {

getPersonalizedVideos (videoId: ID!, limit: Int):
[VideoStream!]!

}

This query will serve as the entry point to fetch personalized
recommendations, ensuring flexibility through the optional 1imit parameter.

Setting Up the Resolver for the Query

Next, we define the resolver function to process the
getPersonalizedVideos qucry.

Open the file: backend/schemas/all-resolvers.js
Add the resolver for getPersonalizedvideos under the Query object:

Query: {

getPersonalizedVideos: checkAccess (ROLES.authenticated,
fetchPersonalizedVideos),

by
Here is a breakdown of the components:

e checkAccess Middleware: This middleware ensures that only
authenticated users can access the personalized recommendations. If
the user is not authenticated, the request is rejected with an appropriate
erTor.

e fetchPersonalizedvVideos Function: The actual logic for generating
personalized recommendations will reside in this function, which we

will define next.

To fetch personalized video suggestions, we have to make a few
assumptions. For the scope of this book, we are not storing each user’s
watch history. Instead, we assume that every user rates the videos they
watch. Based on these ratings, we will:

1. Fetch the most recently top-rated videos by the logged-in user.

2. Use these videos to identify other users who have also watched and
liked similar videos (rated 4 or 5).

3. Find videos recently watched and highly rated by these similar-interest
users that the current user has not watched.

We will use MongoDB’s aggregation pipeline to implement this
functionality. Aggregation pipelines allow us to process and transform data
in stages, making it powerful for performing complex queries. For more
information about aggregation pipelines, visit the official MongoDB
documentation available at:
https://www.mongodb.com/docs/manual/core/aggregation-pipeline/

Following is the resolver code for fetchPersonalizedvideos:

const fetchPersonalizedVideos = async (_, arg, { user }) => {

const { limit = 10 } = arg;

// Step 1l: Fetch the user's highly rated videos
// Fetch ratings from the Rating collection where the user has
rated a video highly (rating >= 4).
const mostRatedVideos = await Rating.find ({
userId: user. id,
rating: { Sgte: 4 },
)
.sort ({ createdDate: -1 }) // Sort by the date of the rating
in descending order to get the most recent ones
.1imit (10); // Limit the results to the 10 most recent

ratings

const recentlLikedVideoIds = mostRatedVideos.map((rating) =>

rating.videoId);

// Step 2: Find other users who have rated these videos highly

https://www.mongodb.com/docs/manual/core/aggregation-pipeline/

const similarUserIds = await Rating.aggregate ([
{
Smatch: {
videoId: { $in: recentLikedVideoIds }, // Match ratings of
videos that the user has highly rated
userId: { $ne: user. id }, // Exclude the current user
rating: { S$gte: 4 }, // Only include ratings that are 4 or
higher
}y
Yy
{
Sgroup: {
_id: "SuserId", // Group by userld to identify unique

users who have highly rated these videos

by

by
1) .then ((result) => result.map((user) => user. id)); //

Extract the user IDs from the grouped result

// Step 3: Fetch videos rated highly by similar users,
excluding already liked videos
const otherVideos = await Rating.aggregate ([
{
Smatch: {
userId: { $in: similarUserIds }, // Match ratings from
users who are similar to the current user
videoId: { $nin: recentlLikedVideoIds }, // Exclude videos
that the current user has already liked
rating: { S$gte: 4 }, // Only include ratings that are 4 or
higher
by
by
{
Sgroup: {
_id: "$videoId", // Group by videold to aggregate videos
that are highly rated by similar users
ratingCount: { $sum: 1 }, // Count how many users have

rated this video highly

b
Yo
{
$lookup: {
from: "videostreams", // Join with the 'videostreams'

collection to get video details

localField: " id", // Match the videoId from the previous
stage
foreignField: " id", // Match with the _id field in the

'videostreams' collection
as: "videoDetails", // The resulting video details will be

saved in the 'videoDetails' field

by
by
{

Sunwind: "S$videoDetails", // Unwind the videoDetails array
to get a flat structure
b

{
Ssort: { "videoDetails.createdDate": -1 }, // Sort videos

by their creation date in descending order
by
{

S$limit: limit, // Limit the number of results returned
based on the provided 'limit' parameter

b
1)7

// Step 4: Extract video details to return

// Map through the 'otherVideos' to extract and return only
the video details

return otherVideos.map((video) => video.videoDetails):;

};

Explanation
Step 1: Fetch Highly Rated Videos

a. We query the Rating collection to find videos rated 4 or above by the
current user.

b. These videos are sorted by the most recent createdpate and limited to
10.
Step 2: Identify Similar Users
a. Using the aggregate method, we find other users who have rated the
same videos highly.

b. We exclude the current user to ensure diversity in recommendations.
Step 3: Fetch Videos by Similar Users

a. We query for videos rated 4 or above by these similar-interest users.
b. Videos already liked by the current user are excluded.

c. Results are grouped by video1d to aggregate counts of highly-rated
videos.

d. A lookup stage is used to fetch video details from the videoStream
collection.

e. The results are sorted by the most recent createdpate and limited to
the specified number.
Step 4: Return Video Details

a. The final stage extracts the video details and returns them to the client.

Note

o Aggregation Pipelines: These are powerful tools in MongoDB that
allow for multi-stage data processing. Each stage transforms the data
and passes it to the next stage, similar to a conveyor belt. Common
stages include $match (filtering), $group (grouping data), $lookup
(joining collections), and $sort (sorting data).

o This implementation balances simplicity and functionality, leveraging
MongoDB's features to deliver personalized recommendations

efficiently.
Explanation of the Aggregation Pipeline:
Step 1:

* Rating.find(): Retrieves the videos that the user has rated highly
(rating >= 4) and limits the result to the most recent 10.

Step 2 (Aggregation Pipeline):
e $match: Filters the ratings to find other users who have rated the same
videos highly, excluding the current user.
e Sgroup: Groups the results by userid to get a list of users who have
rated these videos highly.
Step 3 (Aggregation Pipeline):
e $match: Filters to find videos that similar users have rated highly,
excluding videos the current user has already liked.

e Sgroup: Groups the results by videoId to count how many similar
users rated each video highly.

e $lookup: Performs a join with the videostreams collection to fetch the
video details based on video1d.

e sunwind: Flattens the array of video details to work with a single video
object rather than an array.

e $sort: Sorts the videos by their creation date in descending order.
e $limit: Limits the number of results to the specified limit (for
example, 10).
Step 4:

e The map() function extracts the videoDetails from the aggregation
result and returns them as the final output.

This aggregation pipeline is useful when you need to find videos that are
recommended based on similar user ratings, while also filtering out the
already liked videos, and ensuring that the results are sorted by recency and
highly rated by similar users.

Implementing the Recently Watched Videos
Feature

In this section, we will implement the recentlyWatchedvideos resolver to
provide users with a list of videos they have recently watched. To keep the

implementation simple and focused, we assume that users rate videos after
watching them. This assumption allows us to derive recently watched videos
directly from the rating collection.

The resolver will:

1. Fetch the user’s most recent ratings.

2. Use the video IDs from these ratings to fetch video details from the
VideoStream collection:

const recentlyWatchedvideos = async (, { arg }, { user })
= |
// Step 1: Fetch the user's most recent ratings
const recentlyRatedVideos = await Rating.find({
userId: user. id,
1)
.sort ({ createdDate: -1 }) // Sort by most recent
ratings
.1imit (10); // Limit to the last 10 ratings

// Extract video IDs from the recently rated videos
const videolds = recentlyRatedVideos.map((rating) =>

rating.videoId) ;

// Step 2: Fetch video details using the extracted video
IDs
const videos = await VideoStream.find ({
_id: { $in: videoIds },
1)

// Step 3: Reorder videos to match the order of videoIds

const videoMap = new Map (

videos.map ((video) => [video. id.toString(), video])
) ;
const orderedVideos = videoIds.map((id) =>

videoMap.get (id.toString()));

// Return the ordered videos
return orderedVideos;
}s

Why This Approach Works

1. Assumption: The user rates videos after watching them. Thus, their
rating activity provides an accurate record of the recently watched
videos.

2. Simplified Scope: By relying on the ratings data, there is no need for a
separate video-viewing tracking system, keeping the implementation
straightforward and focused.

This implementation completes the recentlyWatchedvideos functionality,
allowing the resolver to provide a list of recently watched videos based on
user activity.

We have now completed the GraphQL schema and resolvers for
recommendations, covering similar videos, personalized videos, and recently
watched videos. In the next section, we will focus on frontend integration
and utilize these queries.

Integrating the Recommendations Component into
the Video Detail Page

In this topic, we will integrate the queries we built earlier into the frontend to
enhance the user experience. Each query will serve a specific purpose on the
platform:

e Recently Watched Videos: This query will be connected to the Home
Page, showcasing a list of videos the user has recently interacted with.
It will help users easily revisit their previously watched content.

e Similar Video Recommendations: This query will be added to the
Video Details page. It will display a curated list of videos similar to the
one the user is currently viewing, making content discovery seamless.

e Personalized Video Recommendations: This query will also be
integrated into the Video Details page. It will provide users with
personalized recommendations based on their unique preferences and
interaction history, offering a tailored viewing experience.

Through this integration, we aim to create a cohesive and user-friendly
interface that leverages the power of our recommendation engine. Thus, let
us dive into the implementation process!

Integrating the Recently Watched Videos Section
into the Home Page

To enhance user engagement, we will integrate the “Recently Watched
Videos” feature into the Home Page. This section will display the most
recent videos that the user has interacted with, based on their rating history.
The implementation involves adding the required GraphQL query, fetching
the data using useQuery, and rendering the videos using a dedicated
component. Follow these steps to complete the integration:

Step 1: Update the Query in index. js

Open frontend/src/pages/storefront/Home/index.js and add the
recentlyWatchedvideos operation to the HomePageQuery. This query will
fetch essential fields, including _id, createdDate, description,
thumbnailUrl, updatedDate, and title. These fields will provide the
data needed to populate the Recently Watched section.

const HomePageQuery = ggl’
query (SgenrelLimit: Int, $limit: Int) {

recentlyWatchedVideos {
_id
createdDate
description
thumbnailUrl
updatedDate

title

}
const HomePage = () => {
// Fetch data using the useQuery hook
const { loading, error, data } = useQuery(HomePageQuery, {

variables: { genreLimit: 10, limit: 10 1},
P

// Handle loading and error states
if (loading) return <p>Loading..</p>;

if (error) return <p>Error: {error.message}</p>;
console.log ("Fetched Video Data:", data);

// Pass the fetched data to the Home component
return <Home data={data}></Home>;

}s

export default HomePage;

Step 2: Add the Component in Home. js

Navigate to frontend/src/pages/storefront/Home/Home.js and use the
recentlyWatchedvideos data to render a dedicated section on the Home
Page. Use the videocard component to display individual videos. Add a
conditional check to ensure that the section is displayed only if the data is
available.

{recentlyWatchedVideos && recentlyWatchedVideos.length > 0 && (
<section className='featured'>
<h2 className='video-title'>Recently Watched</h2>
<div className='video-container'>
{recentlyWatchedVideos.map ((video) => (
<VideoCard key={video. id} video={video}></VideoCard>
))}
</div>
</section>

) }

Step 3: Connect the Query to the Component

Ensure that the recentlyWatchedvideos data is passed correctly from the
HomePage component to the Home component. Verify that the GraphQL query
matches the required structure, and the frontend is designed to handle the
data seamlessly.

By following these steps, the Recently Watched Videos section will be
successfully integrated into the Home Page. This feature improves the user
experience by allowing quick access to previously watched videos,
encouraging users to continue their content exploration effortlessly.

Integrating Similar Video and Personalized Video
Suggestions into the video Detail Page

In this subtopic, we will enhance the video Detail Page by integrating
Similar Video Recommendations and Personalized Video
Recommendations. These features will help improve user engagement by
suggesting relevant content tailored to their interests and viewing history.

Thus, by combining multiple GraphQL queries into one operation, we will
optimize the data-fetching process, reducing the number of server requests
and saving bandwidth. Follow these steps to complete the integration:

Step 1: Update the Query in index. js

Open the file frontend/src/pages/storefront/VideoDetail/index.js
and add the getSimilarvideos and getPersonalizedvideos queries to the
existing videoDetailQuery. This consolidated query will fetch details about
the video, similar video recommendations, personalized suggestions, and the
user’s rating for the video.

Here is the updated query:

const VideoDetailQuery = gqgl"
query FetchVideobyId($videoId: ID!, $limit: Int) {

fetchVideobyId (id: $videoId) {
_id
averageRating
description
genre
numberOfRaters
thumbnailUrl
title
totalRating
videoUrl

}

getSimilarVideos (videoId: $videoId, limit: $1limit) {
_id
averageRating
description

genre

numberOfRaters
thumbnailUrl
title
totalRating
videoUrl

}

getPersonalizedVideos {
_id
averageRating
description
genre
numberOfRaters
thumbnailUrl
title
totalRating
videoUrl

}
const VideoDetailWithData = () => {

const params = useParams () ;

const { loading, data } = useQuery(VideoDetailQuery, {
variables: { videoId: params.videoId, limit: 10 1},

1)

if (!loading && data?.fetchVideobyId) {
return (
<VideoDetail
data={data?.fetchVideobyId}
similarVideos={data?.getSimilarVideos}
getPersonalizedVideos={data?.getPersonalizedVideos}
myRating={data?.fetchRating}
/>
) ;
}

return <div>Loading..</div>;

bi
Explanation:

e fetchvideobyId: Retrieves video details such as title, description, and
rating.

e getSimilarVideos: Fetches videos related to the current video based
on similarity criteria.

® getPersonalizedVideos: Provides videos tailored to the user’s
viewing habits and preferences.

e fetchRating: Fetches the user’s rating for the video.

Hence, by combining these queries, we improve the performance by
minimizing server requests and optimizing the data-fetching process.

Step 2: Add the Components in VideoDetail.js

Open frontend/src/pages/storefront/VideoDetail/VideoDetail. js
and add sections to display Similar Video Recommendations and
Personalized Video Recommendations. Use the fetched data from the
query to populate these sections dynamically.

Here is the updated videobetail component:

const VideoDetail = ({
data,
myRating,
similarVideos,
getPersonalizedVideos,
Pyo=> A

return (
<>
<Header />
<div className='video-detail-page'>

<div className='video-info'>
<hl>{title}</hl>

<p>{description}</p>
<p>Genre: {genre}</p>
<p>Average Rating: {averageRating} ({numberOfRaters}
raters) </p>
<p>Total Ratings: {totalRating}</p>
{similarVideos && similarVideos.length > 0 && (
<section className='featured' style={{ marginTop:
"50px" }}>
<h2 className='video-title'>Similar Videos</h2>
<div className='video-container'>
{similarVideos.map ((video) => (
<VideoCard key={video. id} video={video}>
</VideoCard>
))}
</div>
</section>
) }
{getPersonalizedVideos && getPersonalizedVideos.length >
0 && (
<section className='featured'>
<h2 className='video-title'>Personalized Videos</h2>
<div className='video-container'>
{getPersonalizedVideos.map ((video) => (
<VideoCard key={video. id} video={video}>
</VideoCard>
))}
</div>
</section>
) }
</div>
</div>
</>
) ;
}i
Explanation:

e Similar Videos Section: Displays videos similar to the current one,
fetched using getSimilarvideos.

e Personalized Videos Section: Showcases videos tailored to the user,
fetched using getPersonalizedvideos.

e Video Details: Includes video title, description, genre, and ratings
fetched using fetchvideobyId.

Therefore, by integrating Similar Video Recommendations and
Personalized Video Recommendations, the Video Detail Page now
provides users with a personalized and engaging experience. These features
enable users to explore content that matches their interests, enhancing
retention and satisfaction.

Enhancing User Engagement with
Recommendations

Recommendations play a pivotal role in keeping users engaged by offering
tailored and relevant content. By integrating Recently Watched Videos,
Similar Video Recommendations, and Personalized Video
Recommendations, we have transformed the platform into a more user-
centric and interactive space.

Why Recommendations are Important

e Personalization: Personalized suggestions enhance user satisfaction by
catering to individual preferences and viewing habits.

e Increased Engagement: Recommending similar and personalized
videos encourages users to explore more content, leading to longer
session durations.

e Retention: Providing value-added recommendations ensures that users
keep returning to the platform.

Key Enhancements Implemented

e Recently Watched Videos: Integrated on the Home Page to remind
users of their recently viewed content and help them quickly resume or
explore related options.

e Similar Video Recommendations: Added to the Video Detail Page,
these suggestions provide continuity by recommending content closely
related to the current video.

Personalized Video Recommendations: Also on the Video Detail
Page, these suggestions are generated based on the user’s viewing
history and preferences, making the experience uniquely tailored.

Benefits of the Implementation

Optimized Performance: By combining multiple GraphQL queries
into a single operation, the system minimizes server requests,
improving speed and reducing bandwidth usage.

Improved User Experience: With seamless integration across pages,
users can easily discover new content without navigating away from
their current context.

Scalability: The modular design allows future enhancements, such as
adding filters, sorting options, or expanding the recommendation logic.

Future Enhancements

While the current implementation lays a strong foundation, there are
opportunities for further improvement:

The

Dynamic Personalization: Use advanced algorithms to continuously
refine recommendations based on real-time user activity.

Collaborative Filtering: Leverage data from wusers with similar
interests to provide better suggestions.

Advanced Filtering Options: Allow wusers to customize
recommendations based on genre, rating, or release date.

integration of recommendations enhances the platform’s ability to

engage users, creating a more interactive and personalized experience. These
changes not only improve user satisfaction but also pave the way for future
growth by offering dynamic, scalable, and valuable content discovery
mechanisms.

Streamify

Bevest g arting: Murnibeer of Baters: 1

Ancient Alise: Inside ... Amazing Scone of Wild.., How Alesn improve chi.. Ancient Aliens: Dimenin... A Wolls Journey - B Crestures of the Orasal.., Anciest Allsna: T
1 Divcover amaging mikiif and g can &y child be s e 2t Coniury, the scarch i ety weil aprai il . Crauslarch arc home o i ek ot B

Properg lo wmover Lhe

Figure 8.2: Similar Video and Personalized Video Recommendation

Conclusion

In this chapter, we introduced advanced recommendation features to make
our video streaming platform more personalized and engaging. By adding
Recently Watched Videos, Similar Video Recommendations, and
Personalized Video Recommendations, we have improved content discovery,
making it easier for users to find videos that match their interests. These
features work together to create a smoother and more tailored viewing
experience that encourages users to keep exploring the platform.

We also focused on using GraphQL queries efficiently and taking advantage
of the platform’s architecture to build a recommendation system that
balances performance with usability. This approach gives us a strong base to
continue improving user experience while keeping the system scalable.

In the next chapter, we will shift our focus to performance optimization. We
will cover how caching can reduce server load, improve query
responsiveness, and be applied both on the client and server side. By
implementing these techniques, we will make our platform faster, more
efficient, and ready to handle increased traffic as it grows.

CHAPTER 9

Unleashing the Power of Caching in
GraphQL

Introduction

In the journey of building Streamify, we have covered everything from
authentication and authorization to queries, mutations, and
recommendations, creating a fully functional streaming website powered
by Apollo GraphQL. Now, with our platform up and running, it is time to
take its performance and responsiveness to the next level.

One of the biggest challenges in GraphQL APIs is efficiently managing
data fetching while ensuring a seamless and fast user experience. In this
chapter, we will unlock the power of caching, allowing us to reduce
redundant queries, improve load times, and optimize API calls.

We will explore different caching techniques and how they integrate with
Apollo Client and Apollo Server to build a highly efficient system.
Through strategic caching, we can ensure that our video content, user
preferences, and recommendations load quickly, enhancing the overall
user experience on Streamify.

Structure

In this chapter, the following topics will be covered:

e Understanding the Role of Caching in GraphQL
Exploring Caching Mechanisms and Techniques

Implementing Caching Strategies with Apollo Client

Fine-Tuning Cache Policies for Improved Performance

Embracing the Challenge: Further Enhancements and Bonus Exercises

Thus, by the end of this chapter, you will have a deeper understanding of
caching in GraphQL, enabling you to enhance the performance of your

APIs and deliver a blazing-fast user experience.

Let us dive in and optimize Streamify to its full potential! «

Switching to Chapter 9 Codebase

Before implementing caching strategies, let us ensure that we are working in
the correct codebase.

Step 1: Start the Backend Server
Navigate to the backend folder:

cd backend
npm install # Ensure all dependencies are installed

npm run start

Ensure MongoDB is connected, and the correct database URL is set in the
.env file. If everything is configured correctly, you should see this output:

Connected to MongoDB

¢’ Streamify API Server ready on http://localhost:4000
GraphQl Playground: http://localhost:4000/graphiqgl

Start the Frontend Server
Open a new terminal, navigate to the frontend folder:

cd frontend

npm run start
Access the application at:
http://localhost:3000
Now you’re ready to start implementing caching strategies for Streamify! ¢

Understanding the Role of Caching in GraphQL

As we continue to improve the performance and responsiveness of our
streaming platform, caching plays a crucial role in optimizing GraphQL
queries and reducing unnecessary network requests. In this section, we will
explore why caching is important, how caching works in GraphQL, and how
it is implemented on both the frontend and backend.

Why is Caching Needed?

Without caching, every time a user interacts with our application (such as,
fetching videos, viewing recommendations, or loading user preferences), a
new request is sent to the server. This leads to:

e Increased server load: Every request queries the database, making the
server work harder.

o Slower response times: Fetching data from the database repeatedly
slows down performance.

e Redundant network requests: Fetching the same data multiple times
is inefficient.

Caching solves these issues by storing frequently requested data so that
subsequent requests can retrieve the data faster without querying the server
every time.

Exploring Caching Mechanisms and Techniques

Caching plays a vital role in improving application performance by storing
frequently accessed data and reducing the need for repeated server requests.
In this section, we will explore different caching strategies and how they can
be applied in a GraphQL-powered application.

Frontend Caching (Client-Side Caching)

GraphQL APIs are typically queried by Apollo Client, which has built-in
caching mechanisms. The Apollo Cache stores responses in the browser,
allowing data to be retrieved instantly without making unnecessary network
calls.

How it works:
1. When a GraphQL query is made, Apollo Client checks if the data
exists in the cache.
2. If the data is cached, it is returned immediately.

3. If not, a network request is made, and the response is stored in the
cache for future use.

GraphQL Browser (In
Client (Apollo) Memory Cache) ‘ GraphQL Server ‘
' fetchVideobyld(id: *1") '
Video:1 not
Request1 ' found m cache
f Send query to server =
: fetchVideobyld(id: "1")
f‘ Response with Video
‘U’in'eﬁﬂ is
cached
.+________H_E_ll.lfr_lt$_}f_iqg? ________ .
) fetchVideobyld(id: "1")
A Video:1 is found
e in cache
Request 2 : :
; Returns Video
GraphQL Browser (In
Client (Apolio) ‘ Memory Cache) GraphQL Server

Figure 9.1: GraphQL Caching with Apollo Client

Cache Policies in Apollo Client

Apollo Client provides different cache policies that define how data is
retrieved whether from the cache or the server. These policies help optimize
performance and ensure up-to-date data while reducing unnecessary network
requests.

By default, the useQuery hook follows a cache-first approach, meaning it
checks the cache first and only queries the server if data is missing.
However, you can customize this behavior using the fetchPolicy option in
your query:

const { loading, error, data } = useQuery(GET DOGS, {

fetchPolicy: 'network-only', // Always fetches fresh data from
the server

1)

Dynamic Fetch Policies with nextFetchPolicy

Starting from Apollo Client v3.1, you can define a nextFetchPolicy, which
applies to subsequent executions of the query after the initial fetch:

const { loading, error, data } = useQuery(GET DOGS, {
fetchPolicy: 'network-only', // Used for the first execution
nextFetchPolicy: 'cache-first', // Future queries will check
the cache first

1)

This allows greater flexibility ensuring fresh data on the first request while
leveraging caching for improved performance in later queries.

In the next section, we will explore the different fetch policies available in
Apollo Client and how to apply them effectively in a GraphQL-powered
application.

Types of Cache Policies in Apollo Client

The following table lists the various types of Cache policies in Apollo
Client:

Fetch Policy Description

cache-first (default) | Checks the cache first. If all requested data is available, it returns from the
cache. Otherwise, it fetches from the server and updates the cache.
Optimizes for fewer network requests.

cache-only Retrieves data only from the cache. If the requested data is missing, it
throws an error. The server is never queried.

cache-and-network Retrieves data from the cache while simultaneously making a request to
the server. The Ul updates if the server returns fresh data. Ensures up-to-
date data while providing a fast initial response.

network-only Always fetches the latest data from the server and updates the cache.
Ignores cached results, ensuring data consistency but at the cost of
additional network requests.

no-cache Similar to network-only, but the fetched data is not stored in the cache.
Used when caching is unnecessary or when working with frequently
changing data.

Works like cache-first, but does not automatically update when cached
data changes. The query can be refreshed manually using refetch or
updateQueries.

standby

Table 9.1: Types of Cache Policies in Apollo Client

Caching with Pagination

GraphQL allows clients to request only the data they need, keeping network
responses efficient. However, when dealing with lists such as fetching
videos, users, or comments, GraphQL queries can return large amounts of
data, leading to performance issues.

To address this, pagination is used to retrieve data in smaller, manageable
chunks instead of fetching the entire dataset at once. A paginated query
typically includes parameters that specify which subset of data should be
returned, such as:

o Offset-based pagination (for example, skip and limit values)

e Cursor-based pagination (for example, after or before cursor)

e Page-number-based pagination (for example, page and size)

Apollo Client’s Approach to Caching Paginated Data

Apollo Client does not enforce a specific pagination strategy but provides
flexible caching mechanisms to merge paginated results efficiently. It allows
developers to:

e Merge new pages into the existing cache without overwriting
previous results.
e Handle forward and backward pagination seamlessly.

e Customize caching behavior to suit the pagination strategy used by
the GraphQL server.

By properly managing the cache, we can reduce redundant network requests
and provide a smooth user experience when fetching large datasets.

In the next section, we will implement pagination for the admin panel’s
video list, ensuring efficient caching of paginated results to enhance
performance.

Backend Caching (Server-Side Caching)

While frontend caching improves performance for individual users, backend
caching helps reduce load on the database by storing results of common
queries. Some common backend caching techniques include:

e In-Memory Caching: Using Redis or Memcached to store frequently
accessed data.

* Query Result Caching: Caching database query results to avoid
redundant computations.

e Response Caching: Storing complete API responses to serve repeated
requests faster.
We will briefly explore backend caching in the next chapter, Ensuring
Scalability - Backend Strategies.
Now that we understand why caching is important and how it works at the
frontend level, let us move on to the next topic where we will:
e Implement cache policies in Streamify

e Use caching with pagination in the admin panel

Implementing Caching Strategies with Apollo
Client

In this section, we will implement and test different caching strategies in
Streamify using Apollo Client. We will explore how caching policies
impact data fetching and user experience.

Step 1: Uploading a Video in Admin Panel

a. Open the streamify Admin Panel.
b. Click on the upload video button in the top-right corner.
c. Select a video and upload it.

Streamify

The BELK Maad V1asEs . ohe of buRaa 15 S0
T % 8

EL i e

Figure 9.2: Uploading New Video Content

After uploading, you will notice that the video instantly appears in the
Upload History without a page refresh.

Streamify

Amazing Scene of Wikd Mysbery of Area 81 | A...

o WAt ascide and Bt et Pughby Sacuing

Creatures of the Grass.
Carmanards sy home 1 P

an 1 P, s i o W sy ety b g A B

Figure 9.3: Understanding Apollo graphql Cache Policies

Let us understand how this works by checking the code.

Step 2: Inspecting the Code

Open the file: frontend/src/features/AdminvideoList/index.js
Here is the key piece of code that fetches the list of uploaded videos:

const VideoListContainer = () => {
const userId = user?.id;
// Call the useQuery hook to fetch data from the GraphQL
server
const { loading, error, data } = useQuery(VIDEO STREAMS QUERY,
{
variables: { userId },
fetchPolicy: "cache-and-network",
})

// Handle loading and error states
if (loading) return <p>Loading..</p>;

if (error) return <p>Error: {error.message}</p>;
console.log ("VideoData", data);

// Render the VideoList component with the fetched data

return <VideoList videos={data.videoStreamsByAdmin} />;
bi
The key part to focus on here is the fetchPolicy: "cache-and-network"
option. Let us break it down by experimenting with different caching
behaviors.

Step 3: Testing Different Cache Policies

Scenario 1: Removing the fetchpPolicy Option
What happens if we comment out the fetchPolicy line?

const { loading, error, data } = useQuery(VIDEO STREAMS QUERY,
{

variables: { userId },

// fetchPolicy: "cache-and-network",

)

Expected Behavior:
e After uploading a new video, it won’t appear immediately in the
Upload History.

e You will have to manually refresh the page to see the new video.

Why does this happen?
By default, Apollo Client uses the "cache-first" strategy. This means:

a. It checks the cache first to see if the data has already been fetched.
b. If the data is in the cache, it won’t make another network request.
c. Since our video list query was already fetched earlier, Apollo simply
returns the old data from the cache, and doesn’t check for updates.
Scenario 2: Using "cache-and-network'' (Recommended Approach)

Now, let us uncomment the fetchPolicy line and use "cache-and-
network" again:

const { loading, error, data } = useQuery(VIDEO STREAMS QUERY,
{

variables: { userId },

fetchPolicy: "cache-and-network",

b):
Expected Behavior:

e When the page loads, it first displays the existing data from the cache.
e Simultaneously, it makes a background request to the server.
e Once the latest data is retrieved, the Ul updates automatically without
needing a page refresh.
Why is this better?

e The user instantly sees the existing data (no blank screen).
e The app automatically updates when new data is available.

e The experience feels smooth and responsive, without unnecessary
page reloads.

Summary: Choosing the Right Caching Strategy

By using "cache-and-network", we ensure that users see existing data
immediately while still getting the latest updates without any extra effort.

Fetch Policy Behavior

cache-first (default) Loads data from cache. If already available, no network request is made.
New uploads won’t appear until the page is refreshed.

cache-and-network Loads cached data first, then fetches the latest data in the background,
updating the UI automatically.

Table 9.2: Comparison of Fetch Policies and Their Behaviors

In the next section, we will explore how caching strategies can be applied to
pagination, ensuring efficient data fetching when browsing large lists of
videos.

Fine-Tuning Cache Policies for Improved
Performance

Before we dive into tweaking cache behavior for advanced features such as
pagination, it is essential to build a strong foundation. In this section, we will
start with the basics of Apollo Client’s caching system how it is configured,
how it stores data, and how you can interact with it manually. This
understanding will set us up to confidently handle more complex scenarios
later in this chapter and in future chapters.

Configuring Apollo Client’s Cache

When you initialize Apollo Client on the frontend, it comes with a built-in
caching layer powered by InMemoryCache. This is where Apollo stores all
previously fetched data so that it can be reused across your app.

Here is a basic example of how caching is configured during Apollo Client
setup:
import { ApolloClient, InMemoryCache } from '@apollo/client’';

const client = new ApolloClient ({
uri: 'https://your-api-endpoint/graphgl’,
cache: new InMemoryCache (),

1)

Note: The InMemoryCache is the default caching implementation and is
highly customizable.

How Data is Stored in Apollo Cache

When your component runs a GraphQL query using useQuery, Apollo stores
the result in its normalized cache.

For example, if you query:

query {
video (id: "123"™) {
id
title
uploadedBy

}
}

Apollo stores it internally like:

{
"Video:123": {
id: "123",
title: "Sample Video",
uploadedBy: "Admin",
___typename: "Video"
}
}

Each object 1s stored by its unique identifier (__typename:id format). This
enables Apollo to quickly retrieve and update the data when needed.

Reading and Writing Directly to the Cache

So far, we have seen how Apollo Client fetches data from the server and
stores it in the cache to avoid unnecessary network calls. But sometimes, we
want more control.

Let us break this down.
Why would you read or write directly to the cache?

There are many situations where you may not want to (or need to) hit the
server again. For example:

* You just uploaded a video and want to instantly show it in the UI,
even before the server responds.

* You deleted an item and want to immediately remove it from the list
on screen.

* You updated some field like isFavorite on a video and want the UI to
reflect it without refetching the entire list.

e You want to pre-fill a form based on data already available in cache.
In all these cases, instead of calling the server again, you can read or write
directly to Apollo’s in-memory cache.

And the best part? The UI will automatically update if that piece of data is
being used by a component rendered on screen.

How does the UI know what changed?

Apollo uses reactivity under the hood. If you update something in the
cache and your component is using useQuery () for that data, Apollo will re-
render that component with the updated cache values without a network
request.

You don’t have to manually trigger a re-render.

readQuery ()_— Reading from the Cache

You can use readQuery() when you want to access cached data for a
specific query.

client.readQuery ({
query: YOUR QUERY,
variables: { yourVariables }
1)

Use Cases:

e To check if a specific item is already in cache before deciding to fetch.
e To read a list and then add/remove an item.
e To update only a part of the cache, you often read it first, then write the
updated version back.
Example:

const data = client.readQuery ({

query: GET ALL VIDEOS
1)

console.log(data.videos); // Logs the list of cached videos

writeQuery () — Writing to the Cache

This lets you manually update the cache, without waiting for a server
responsc.
client.writeQuery ({

query: YOUR QUERY,

variables: { yourVariables },

data: {

yourQueryField: updatedValue

}

})

Use Cases:

e Instantly show a new video in the list after uploading it.
e Optimistically update a Ul field such as 1ikeCount.
e Remove an item from a list after deletion.

Example:

client.writeQuery ({
query: GET ALL VIDEOS,
data: {
videos: [..existingVideos, newVideo]
}
1)

And boom, the component using GET ALL viDEOs will update automatically
if it 1s on screen.

Customizing Field Behavior in the Cache (Brief
Overview)

So far, we have learned how Apollo Client uses an in-memory cache to store
and serve query results. But what if you want to customize how certain fields
behave inside that cache?

That is where Field Policies come into play.
What is a Field Policy?

A field policy is a set of rules that tells Apollo how to read, write, and merge
data for a specific field in your cache.

Think of it as giving Apollo custom instructions:

e How should it behave when this field is queried again?
e Should it merge new data or overwrite?
e Should it format or transform the value before returning it?

e Should it fetch data from cache or calculate something on the fly?

The Need for Field Policies

Here are some real-world use cases:

e You are using pagination, and you want to append results instead of
replacing them.

e You want to combine local state and remote state for a field (for
example, isLiked from local state).

e You want to transform or filter the field’s data before returning it.

e You want to prevent overwriting existing data if only partial fields are
returned.

Where to Define Field Policies
You define field policies when setting up your InMemoryCache:

const cache = new InMemoryCache ({
typePolicies: {
Query: {
fields: {
videoStreamsByAdmin:
keyArgs: false,
merge (existing = [], incoming) {
return [..existing, ..incoming];
}
}
}

}
}
1)

Let’s now briefly look at the two most common types of policies:

read Policy
This lets you override how a field’s value is returned from the cache.
Example:

read (existing, { args, toReference }) {
return existing ?7? "Default Value";

}
Use when you want to:

e Provide a default value
e Add computed logic
e Read from a different field or transform the data

merge Policy

This defines how incoming data should be combined with existing cached
data.

This is especially useful in pagination, where you fetch more data and want
to append it to the list instead of replacing it.

Example:
merge (existing = [], incoming) {
return [..existing, ..incoming];

}
Use when you want to:

e Handle pagination results
e Combine server and client state

e Prevent overwriting existing lists

This was just the start of what’s possible with direct cache interaction.

In Chapter 12, Caching_on the Frontend: Performance Optimization, we
will go deeper into topics like:

e How to read or write fragments of your cache (instead of full queries)
» Using cache to support offline-ready apps

These advanced techniques help you build blazing-fast, real-time-feeling
apps, even when the network is slow or offline.

Now that you’ve got the fundamentals of field policies, let us move forward
and see how we can apply them in real-world pagination caching.

Pagination with GraphQL in Apollo Client

Let us head back to our Admin Panel home screen, where we list all the
videos uploaded by the currently logged-in user.

Streamify

Figure 9.4: Pagination Using Apollo Client and GraphQL

Over time, as more videos are uploaded, this list can become quite large.
Naturally, we don’t want to load all the videos at once that would be
inefficient and slow. Instead, we want to load videos in smaller chunks, or
pages, just like infinite scroll or "Load More" functionality.

But Wait — There’s a Challenge!

In GraphQL, we often use the same query to fetch multiple pages of data,
but with different arguments (such as, skip and 1imit).

Here is where it gets tricky:

Apollo Client stores each result in its in-memory cache, and by default, it
uses the query arguments (such as, skip and 1imit) to decide how to store
the result.

So, this means:

e Page 1 data (skip: 0, limit: 10) is stored in one place in cache.

e Page 2 data (skip: 10, limit: 10) is stored somewhere else entirely.

Apollo has no idea that these are related pages of the same list, so it doesn’t
automatically combine or append them in the UL

The Goal

What we want instead is:

e To append the next page of videos to the current list.
* To merge these paginated results into a single list in Apollo’s cache.

e And to make sure the UI updates smoothly when we fetch more.

Implementing Pagination Caching with fetchMore
and Field Policies

Now that we have learned why pagination and cache merging are essential,
it is time to dive into the real implementation using Apollo Client.

Add Pagination Support in Your Backend

To support pagination, we need to update our GraphQL schema and resolver
to accept offset and 1imit arguments for the video list query.

Updated GraphQL Schema

const schema = "#graphqgl

type Query {
checkLogin: AdminUser

Updated to support pagination

videoStreamsByAdmin (offset: Int, limit: Int): [VideoStream]
}
const videoStreamsByAdmin = async (, { offset = 0, limit = 10
}, { user }) => {
return await VideoStream.findByUserId(user. id, offset,
limit);

};

videoStreamSchema.statics.findByUserId = async function (
userld,

offset = 0,

limit = 10
) A
try {
const videoStreams = await this.find({ uploadedBy: userId })

.skip (offset)
.limit (limit)
.populate ("uploadedBy") ;
return videoStreams;
} catch (error) {
throw new Error(Failed to fetch video streams:
S{error.message}) ;
}
}i

Once done, test it out in the GraphQL Playground using arguments such as
offset: 0, limit: 10 to ensure it returns the correct paginated data.

query VideoStreamsByAdmin (Soffset: Int, $limit: Int) {
videoStreamsByAdmin (offset: $offset, limit: $limit) {
_id
createdDate
description
genre
thumbnailUrl
updatedDate
uploadedBy {
firstName
id

lastName

}

videoUrl
title

Update the Frontend Query

Now, let us head to frontend/src/features/AdminVideoList/index.js
and update our query to accept offset and limit variables.

const VIDEO STREAMS QUERY = gql°
query VideoStreamsByAdmin (Soffset: Int, $limit: Int) {
videoStreamsByAdmin (offset: Soffset, limit: $limit) {
_id
title
videoUrl
thumbnailUrl
description
genre
createdDate
updatedDate
uploadedBy {
id
firstName

lastName

Use fetchMore and Pass 1oadMorevideos to Ul

Apollo’s fetchMore method helps load additional pages and append them to
your existing results without reloading the whole list.

Here’s how it looks:

const { loading, error, data, fetchMore } =
useQuery (VIDEO STREAMS QUERY, {

variables: { offset: 0, limit: 10 1},

1)

// Load more videos when user scrolls or clicks
const loadMoreVideos = () => {
fetchMore ({
variables: {
offset: data.videoStreamsByAdmin.length,
limit: 10,
Yo
}) s
}i
We will enhance the container component to:

a. Call fetchMore () to get the next page of results.
b. Pass the 1loadMorevideos function to AdminvideoList. js.

Update AdminvideoList.js to Accept and Use loadMoreVideos

Now that we have passed the loadMorevideos function from our container,
we need to update the AdminvideoList component to accept this function
and use it to load more videos when the user clicks a "Load More' button.

const VideoList = ({ videos, loadMoreVideos }) => {

return (
<div className='video-list'>
<h2>Uploaded Videos</h2>

{/* Load More Button */}
<div style={{ textAlign: "center", marginTop: "20px" }}>
<button onClick={loadMoreVideos} className='load-more-
btn'>
Load More Videos
</button>

</div>
</div>
)i
i

Merge Paginated Results with Field Policies

When working with paginated queries, Apollo Client does not automatically
know how to combine results from multiple pages into a single cached list.
Each time you call the same query with different variables (e.g., offset: 0,
offset: 10), Apollo treats them as separate entries in the cache unless told
otherwise.

To fix this, we can customize how Apollo caches and merges paginated
results using fieldPolicies.

What are merge and keyArgs?

* keyArgs: Instructs Apollo which query arguments should be used to
uniquely identify the cache entry. Setting it to false tells Apollo to
group all results under the same field regardless of arguments including
offset, limit, and more.

* merge: A function that defines how incoming data (from the new page)
should be combined with existing cached data.

Update Apollo Client Cache Configuration

In your Apollo Client setup (usually in src/apolloClient.js), update your
InMemoryCache configuration as follows:

import { ApolloClient, InMemoryCache, HttpLink } from
"Qapollo/client";

const client = new ApolloClient ({
link: new HttpLink ({ uri: "http://localhost:4000/graphgl" }),
cache: new InMemoryCache ({
typePolicies: {
Query: {
fields: {
videoStreamsByAdmin: {
keyArgs: ["userId"], // All results for the same userId

should merge

merge (existing = [], incoming) {
return [..existing, ..incoming]; // Concatenate new data
with existing data

by
by
by
by

export default client;

Why This Works
Now, when you call fetchMore() from the Ul with updated offset and
limit:

a. Apollo will reuse the same cache entry (thanks to keyargs).

b. Apollo will merge the results using the custom merge () logic.

c. Your UI will automatically update, and previously loaded videos will
be retained.

This configuration ensures:

 Efficient caching
e Smooth infinite scroll or "Load More" experience
e No duplicate data fetching

Now that our caching strategy is set:

e We have built a solid base for pagination with smart merging.

o In Chapter 12, Caching on the Frontend - Performance Optimization,
we will go deeper and learn more advanced cache handling, including:
o Reading/writing fragments from the cache
o Creating offline-friendly UI using Apollo cache
o Partial updates without refetching whole queries

Embracing the Challenge: Further Enhancements
and Bonus Exercises

You have now seen Apollo Client’s powerful caching mechanisms and how
they improve performance and UX in real-world applications. But to truly
master this, you should experiment and try building upon what you’ve
learned. Here are a few bonus challenges to solidify your understanding and
encourage deeper exploration:

Bonus Enhancements

1. Implement Infinite Scrolling: Replace the "Load More" button with
infinite scroll behavior. Trigger fetchMore () when the user scrolls near
the bottom of the list.

2. Offline Support with Apollo Cache: Try building a lightweight
offline experience using Apollo’s local cache. Can your user see the
last-viewed videos even if the network disconnects?

3. Use readFragment and writeFragment: Update specific fields (for
example, video title, like count, and more) using Apollo’s
readFragment and writeFragment without refetching full queries.

Conclusion

In this chapter, we explored Apollo Client’s caching system in depth,
learning how to configure and customize cache behavior for maximum
performance. We covered how Apollo stores and retrieves data, how to
interact directly with the cache, and how to fine-tune behavior using field
policies. Along the way, we also implemented pagination and managed
cache updates efficiently, creating a smoother and more responsive user
experience. These caching techniques ensure that our application can handle
complex data flows while remaining fast and interactive.

With this, we wrap up Part 2 of our journey, where we built a fully
functional, Netflix-style streaming platform powered by GraphQL and
Apollo. We have gone from backend design to frontend integration, secured
our application with authentication, and optimized performance using
practical caching strategies. Next, we will move into Part 3, where the focus
shifts to scalability and advanced concepts. In the following chapter, we will

explore backend strategies to make our GraphQL system robust, performant,
and ready for production at scale.

Part 3
Scalability and Advanced Concepts

CHAPTERS 10-13

CHAPTER 10

Ensuring Scalability: Backend
Strategies

Introduction

As your application grows and attracts more users, performance and
scalability become critical. While GraphQL provides flexibility and
efficiency on the surface, it also introduces unique challenges that can affect
backend performance if not addressed properly.

In this chapter, we shift our focus from building to scaling. We will dive
into the most common bottlenecks that emerge in GraphQL backends and
learn how to overcome them using proven strategies and production-ready
tools.

We will cover the n+1 query problem, a notorious inefficiency that can
cripple GraphQL APIs, and solve it using Datal.oader, a batching and
caching utility purpose-built for GraphQL. Next, we will explore HTTP
caching strategies using Apollo Server v5’s cache control directives to
leverage CDN and browser caching for optimal performance.

Why we choose HTTP caching over Redis: Modern web applications
benefit more from leveraging existing CDN and browser infrastructure
rather than adding server-side cache complexity. This approach provides
better global performance, reduces operational overhead, and scales
naturally with traffic.

Additionally, we will discuss smart query design, helping you avoid
common anti-patterns and structure your schema for long-term scalability.

Structure

In this chapter, the following topics will be covered:

e Addressing Scalability Challenges in the GraphQL Backend

e Introduction to DatalLoader for Batching and Caching Database Calls
e Caching Strategies on the Backend

e Avoiding Common Pitfalls in Query Design that affect Backend
Performance

e Designing GraphQL Subscriptions for Scalability
By the end of this chapter, you will be equipped with practical techniques to

make your GraphQL backend efficient, scalable, and ready for
production traffic.

Let us begin by understanding where and why GraphQL backends struggle
as they scale.

Addressing Scalability Challenges in the
GraphQL Backend

GraphQL shines in delivering precise and flexible data to clients. However,
this power comes with challenges especially as your application scales. So,
let us unpack why.

The n+1 Query Problem

One of the most notorious performance bottlenecks in GraphQL is the n+1
query problem. It occurs when fetching nested or relational data results in
multiple repetitive database queries.

Example Scenario:
Imagine a query like this:
{
videoStreamsByAdmin {
title
uploadedBy {
firstName
lastName
}

}
}

If you’re fetching 10 videos, and for each video, you fetch the uploadedBy
user from the database, your server may end up executing 1 query to fetch

the videos + 10 additional queries to fetch each user—that is 11 queries
for a single request!

This becomes exponentially worse as the number of records increases.

Inefficient Resolver Patterns

GraphQL resolvers are typically written per field. If not optimized, this can
cause the server to:

e Repeat the same logic across requests.
e Overfetch Or underfetch from the database.

e Lead to unnecessary processing or transformation.

Lack of Smart Caching

GraphQL responses are tailored and query-specific, making them harder to
cache at the HTTP level like REST. Without proper caching strategies in the
backend, every request can hit your database, increasing server load.

Poor Query Design

Sometimes the performance issues are not technical, they stem from badly
designed queries or schemas. Examples include:

e Overly nested queries

e Fetching large collections without pagination

e Returning unindexed fields or fields with heavy computation

Why it Matters
While things might work fine with a handful of users or test data, these
inefficiencies start to compound rapidly under real-world traffic. If left
unaddressed, they can lead to:

e High server response times

e Increased infrastructure costs

e Frustrated users due to slow loading

That’s why this chapter is dedicated to implementing backend-side
optimizations that scale with you.

Up next, we will tackle the n+1 query problem head-on using one of the
most effective tools in the GraphQL ecosystem Datal.oader.

Introduction to Datal.oader for Efficient Data
Fetching

In large-scale GraphQL applications, one of the biggest performance
bottlenecks arises from the N+1 problem especially when resolving nested
fields that rely on database calls. For example, if we fetch a list of
VideoStream entries and each one has an uploadedBy field, our resolver
might end up querying the database N additional times (once for each
video) just to get the user info.

This 1s 1nefficient. To solve it, we use Facebook’s DatalLoader
(https://github.com/graphgl/dataloader), a generic utility that batches and
caches calls efficiently.

Let’s dive into how we implement this using our existing GraphQL
structure for videoStream and AdminUser.

Understanding the Problem Visually

Let’s look at this field in your schema:

type VideoStream {
uploadedBy: AdminUser

}

If you request 10 videos, each with an uploadedBy field, you could
unknowingly trigger 10 separate database queries for those 10 admin users.
Not ideal.

The solution? pataLoader, a utility created by Facebook that batches and
caches similar requests, preventing unnecessary overhead and improving
backend efficiency.

Defining Datal.oader

https://github.com/graphql/dataloader

DataLoader is a generic utility (not GraphQL-specific) that batches and
caches requests made during a single execution context, typically a
GraphQL request. It solves the n+1 problem by reducing many database
calls into a single batched call.

Benefits of Datal.oader:

e Batching: Automatically groups multiple load requests into one.
e Caching: Prevents duplicate fetches during the same request cycle.

e Performance Boost: Significantly reduces the number of DB queries.

Step 1: Install bataloader

First, make sure you have pataLoader installed in your backend project:

npm install dataloader

Step 2: Create a userLoader fOor AdminUser

First, let us create a reusable loader to fetch multiple admin users in a single
batched request:

// loaders/userLoader.js

import Dataloader from "dataloader";

import AdminUser from "../schemas/mongo/admin-user.js";

/**
* DatalLoader for batching AdminUser queries to solve N+1
problem
* This loader batches multiple user ID requests into a single

database query

*/
const createUserLoader = () => {
return new Dataloader (async (userIds) => {
try {

// Batch query all users by their IDs
const users = await AdminUser.find({ id: { S$in: userIds }

1)

// Create a map for O(1l) lookup

const userMap = new Map ()

users.forEach ((user) => userMap.set (user. id.toString(),
user)) ;

// Return users in the same order as requested userIds
return userIds.map((id) => userMap.get(id.toString()) ||
null) ;

} catch (error) {
console.error ("Error in userlLoader:", error);

return userIds.map(() => error);

1)
b

export default createUserLoader;

How it works: Instead of hitting the DB multiple times, pataLoader will
collect all unique userids, query them in a single call, and then map them
back to the original request order.

Step 3: Add userLoader to Apollo Context

To make the loader available in your GraphQL resolvers, inject it into the
context during Apollo Server setup:

// server.js

import { expressMiddleware } from "@apollo/server/expressid";
import authenticate from "./auth/authenticate.]js";

import createUserLoader from "./loaders/userLoader.js";
import { createVideolLoader, createVideosByGenrelLoader } from
"./loaders/videoLoader.js";

// .. other imports

app.use (
expressMiddleware (apolloServer, {
context: async ({ req, res }) => {

const user = await authenticate(req);

// Create fresh DatalLoader instances for each request
// This ensures proper caching scope and prevents data
leakage between requests

return {

req,
res,
user: user,
// DatalLoaders for efficient batching and caching
userlLoader: createUserLoader(),
videolLoader: createVideoLoader (),
videosByGenreloader: createVideosByGenreloader (),
i
bo
1)
) ;
Now, userLoader will be accessible in all your resolvers through the
context object.

Step 4: Use userLoader in VideoStream.uploadedBy Resolver

Now let us resolve the uploadedsy field efficiently using the bataLoader in
your resolver:

// resolvers.js (only relevant part)
const resolvers = {
VideoStream: {
uploadedBy: async (parent, , { userLoader }) => {
if (!parent.uploadedBy) return null;
return userloader.load (parent.uploadedBy. toString()) ;

by
by
i
When GraphQL encounters the uploadedBy field, this custom resolver uses
the userLoader to batch requests instead of querying the DB individually
per video.

Why This Matters

Imagine your frontend makes this query:

query {
videoStreamsByAdmin (offset: 0, limit: 5) {
title

uploadedBy {
firstName
email

}

e Without DataLoader: X 1 DB query for videos + 5 separate DB
queries for admin users.

e With DataLoader: v 1 DB query for videos + 1 batched query for
all admin users.

This is a massive win for performance and scalability, especially as your
app grows.
In this section, we have:
e Understood the N+1 query problem and how it affects GraphQL
performance.
e Integrated pataLoader to batch and cache database calls efficiently.
e Cleanly implemented it in our GraphQL resolver for the uploadedBy
field in videoStream.

By using pataLoader, we significantly reduce redundant database queries,
laying a strong foundation for scalable GraphQL APIs.

Caching Strategies on the Backend

Modern GraphQL applications should prioritize HTTP caching through
CDNs and browsers rather than implementing complex server-side response
caching. This approach leverages existing web infrastructure, provides
better performance globally, and significantly reduces operational
complexity.

This section will walk you through:
e Why HTTP caching is superior to server-side response caching for
most applications
e Using @cacheControl directive to set proper HTTP cache headers

e Understanding cache scope (PUBLIC versus PRIVATE)

e How CDNs and browsers handle caching automatically
e When pataLoader provides sufficient backend optimization

Understanding HTTP Caching versus Server-Side Caching

HTTP caching allows responses to be stored closer to users, improving
latency and reducing load on your GraphQL server. When Apollo Server
sends proper cache headers such as Cache-Control: max-age=600, public,
CDNs and browsers automatically handle caching and serving cached
responses.

Server-side response caching (like Redis) adds complexity and is often
unnecessary when proper HTTP caching is implemented.

Using the @cacheControl Directive

Apollo Server provides a directive @cacheControl to define how long a
field or object should be cached. The directive can be used at the type level
or on individual fields.

First, you must define the cache control directive in your schema:

Cache Control Directive for Apollo Server v5
directive @cacheControl (

maxAge: Int

scope: CacheControlScope
) on FIELD DEFINITION | OBJECT | INTERFACE | UNION

enum CacheControlScope {
PUBLIC
PRIVATE

}
Example: Caching a Type for 60 seconds

type VideoStream @cacheControl (maxAge: 300, scope: PUBLIC) {
_id: ID!
title: String!
uploadedBy: AdminUser
.. other fields

}

Example: Caching Query Results with Different TTLs

type Query {
Private user data - shorter cache time
recentlyWatchedvVideos: [VideoStream]! @cacheControl (maxAge:
30, scope: PRIVATE)

Public data - longer cache time
recentlyUploadedVideos (1limit: Int = 10): [VideoStream]!
@cacheControl (maxAge: 300, scope: PUBLIC)

videosByGenre (genre: String!, limit: Int = 10):

[VideoStream]! @cacheControl (maxAge: 600, scope: PUBLIC)

Understanding Scope: PUBLIC versus PRIVATE

When caching, you must decide who can share the cache:

e puBLIC: Safe to cache across all wusers (e.g., homepage
recommendations).

e pRIVATE: Cache is unique per user (e.g., personalized videos, watch
history).

@cacheControl (maxAge: 60, scope: PRIVATE)
This means:

e The result will be cached for 60 seconds.
e The cache is specific to the user (cannot be reused between users).

Enabling HTTP Cache Headers in Apollo Server vS

Apollo Server v5 uses the @cacheControl directive to generate proper
HTTP cache headers. You must add the ApolloServerPluginCacheControl
plugin to enable this functionality.

Setup your server:

// connections/apollo.js

import { ApolloServer } from '@apollo/server';
import { ApolloServerPluginCacheControl } from
'@apollo/server/plugin/cacheControl’;

// .. other imports

const server = new ApolloServer ({

schema,
plugins: |
ApolloServerPluginCacheControl ({
defaultMaxAge: 60, // Default cache time in seconds
calculateCacheControlHeaders: true, // Generate HTTP cache
headers
1)y
// .. other plugins
1y
})
This configuration generates Cache-Control headers that CDNs and
browsers use automatically.

Dynamic Caching in Resolvers

You «can also set cache behavior programmatically using
cacheControl.setCacheHint inside resolvers.

import { cacheControlFromInfo } from '@apollo/cache-control-

types';
videoStreamsByAdmin: async (_, args, context, info) => {
const cacheControl = cacheControlFromInfo (info)

cacheControl.setCacheHint ({
maxAge: 60,
scope: 'PRIVATE',

1)

return videoStreamModel.find({ uploadedBy: context.user.id

}) .skip(args.offset).limit (args.limit);
}
This is useful when you want to dynamically control cache based on user or
logic.

Complete Apollo Server vS Setup

Here 1s how all the pieces fit together in a production-ready Apollo Server
v5 setup focused on HTTP caching:

// connections/apollo.]js

import { ApolloServer } from "@apollo/server";

import { ApolloServerPluginDrainHttpServer } from
"Qapollo/server/plugin/drainHttpServer";

import { ApolloServerPluginCacheControl } from
"@apollo/server/plugin/cacheControl";

import { makeExecutableSchema } from "@graphgl-tools/schema";
import { WebSocketServer } from "ws";

import { useServer } from "graphgl-ws/lib/use/ws";

import { PubSub } from "graphgl-subscriptions";

// Create PubSub instance for subscriptions

export const pubsub = new PubSub/();

const startApolloServer = async (httpServer) => {

const schema = makeExecutableSchema ({ typeDefs, resolvers });

console.log("v Using Apollo Server v5 with HTTP cache headers

for CDN/browser caching");

// Set up WebSocket server for subscriptions
const wsServer = new WebSocketServer ({
server: httpServer,
path: "/graphqgl",
})

// Configure WebSocket server with GraphQL subscriptions

const serverCleanup = useServer (
{
schema,
context: async (ctx, msg, args) => {
return {
pubsub,

userLoader: createUserLoader (),
videoLoader: createVideoLoader (),
videosByGenreloader: createVideosByGenrelLoader (),
bi
by
by
wsServer

) ;

// Set up Apollo Server focused on HTTP caching
const apolloServer = new ApolloServer ({
schema,
plugins: [
// Cache Control Plugin - generates HTTP cache headers for
CDN/browser caching
ApolloServerPluginCacheControl ({
defaultMaxAge: O,
calculateCacheControlHeaders: true,
}) oy
ApolloServerPluginDrainHttpServer ({ httpServer }),
{
async serverWillStart () {
return {
async drainServer () {
awalt serverCleanup.dispose():;
by
}i
by
}y
1,
})

await apolloServer.start();
return apolloServer;

}i

export default startApolloServer;

Avoiding Common Pitfalls in GraphQL Query
Design

Designing efficient GraphQL queries is just as important as writing scalable
backend code. Poorly designed queries can lead to performance bottlenecks,
increased server load, and slower client experiences.

In this section, we will explore common pitfalls developers encounter and
best practices to avoid them when designing GraphQL queries, especially
for streaming apps like Streamify.

Overfetching and Underfetching

Overfetching: One of GraphQL’s biggest benefits i1s precise data fetching
but that power can be misused.

Example of overfetching:

query {
videoStreamsByAdmin {
_id
title
description
uploadedBy {
id
firstName
lastName
email
isAdmin
}
averageRating
totalRating
numberOfRaters
createdDate
updatedDate
}
}

In this case, if the Ul only needs title and thumbnailurl, fetching all other
fields wastes bandwidth and computing time.

v Best Practice: Always fetch only the fields required by the UI.

Unbounded or Nested Queries (n+1 Revisited)

GraphQL makes it easy to request deeply nested data but this can
accidentally cause n+1 problems, even with pataLoader, if not properly
scoped.

Example:

query A
videoStreamsByAdmin {

title
uploadedBy {
firstName
}
}
}

If this runs a separate database query for every uploadedBy, it leads to
performance degradation.

v Best Practice: Use DataLoader, batch resolvers, and always monitor
query complexity.

Lack of Pagination

Queries that return unlimited lists can overload the backend and client.

Bad example:

query {
allvideos {
title
description
}
}

This will grow indefinitely as more content is uploaded.

v Best Practice: Always implement pagination using arguments such as
offset and limit, or first and after (for cursor-based pagination).

query {
videoStreamsByAdmin (offset: 0, limit: 10) {
title
thumbnailUrl

}
}

Not Validating or Rate Limiting Queries

Since GraphQL gives clients a lot of flexibility, clients can write expensive
queries either accidentally or maliciously.

v Best Practice:

e Use query complexity analyzers (for example, graphql-query-
complexity)

e Set depth limits
e Add server-side rate limits

By following these best practices, we ensure that our API is efficient,
secure, and ready to scale with real-world traffic.

Designing GraphQL Subscriptions for Scalability

Real-time functionality is becoming a must-have in modern applications,
whether 1t’s for live sports updates, multiplayer gaming, collaborative
editing, or instant chat. In our streaming platform, real-time updates can
greatly improve user experience. Imagine a user seeing a new video appear
in their feed without refreshing the page, or receiving a live notification
when a creator they follow uploads content.

GraphQL handles real-time communication through Subscriptions, which
allow clients to listen for specific events and get data pushed from the
server as soon as those events occur. Unlike queries and mutations, which
work over HTTP requests, subscriptions typically use persistent
connections (most often WebSockets) to keep a channel open between
client and server.

While subscriptions are powerful, scaling them to production-level usage
requires careful design. In this section, we will cover:

e How GraphQL subscriptions work.

e Backend Setup with Apollo Server

e Connecting the frontend using Apollo Client.

How GraphQL Subscriptions Work

Subscriptions in GraphQL provide a way for the server to send real-time
data to clients whenever specific events occur, such as a new video upload
or a user action. Unlike queries and mutations, which follow a request-

response model, subscriptions keep a connection open so the server can
push updates instantly without waiting for the client to request them.

Here is how the three main GraphQL operation types differ:
e Queries: One-time request and response. The client asks for data, and
the server returns it.
e Mutations: Similar to queries but also modify data on the server.

e Subscriptions: Maintain a persistent connection (commonly via
WebSockets) so the server can proactively send data to the client in
real time when events happen.

Technically, GraphQL subscriptions are defined in the schema like any
other operation type:

type Subscription {
videoUploaded (genre: String): VideoStream

}

When a client subscribes to videoUploaded, the server keeps the
connection open and sends back data whenever a new video that matches
the filter (for example, genre) is uploaded.

Backend Setup with Apollo Server

We will use Apollo Server with the graphgl-ws library to implement
subscriptions.

Step 1: Install Dependencies
> npm install graphgl-ws ws
Step 2: Update Schema with Subscription Type

Cache Control Directive for Apollo Server vb
directive (@cacheControl (

maxAge: Int

scope: CacheControlScope
) on FIELD DEFINITION | OBJECT | INTERFACE | UNION

enum CacheControlScope {
PUBLIC
PRIVATE

}

type Subscription {
videoUploaded (genre: String): VideoStream!
ratingUpdated (videoId: ID!): Rating!

}

type Query {
videoStreamsByAdmin (offset: Int, limit: Int): [VideoStream]
@cacheControl (maxAge: 60, scope: PRIVATE)
recentlyWatchedvVideos: [VideoStream]! @cacheControl (maxAge:
30, scope: PRIVATE)

recentlyUploadedvVideos (limit: Int = 10): [VideoStream]!
@cacheControl (maxAge: 300, scope: PUBLIC)
.. other queries with @cacheControl directives

}

type VideoStream @cacheControl (maxAge: 300, scope: PUBLIC) {
_id: ID!
title: String!
uploadedBy: AdminUser
.. other fields
}

Step 3: Implement the Resolver with a PubSub System

For development and small-scale testing, Apollo provides an in-memory
Pubsub utility from the graphgl-subscriptions package. It is quick to set
up, requires no external dependencies, and works perfectly when you have
only one server instance.

However, in production environments, especially when your app is
horizontally scaled (multiple GraphQL servers running behind a load
balancer), in-memory PubSub falls short. This is because each server keeps
its own memory state. If a subscription event occurs on Server A, it won’t
automatically be known to Server B. As a result:

e Some clients connected to other server instances won’t receive
updates.

e Events are inconsistent because subscription data is not shared
between instances.

To solve this, we use a distributed pub/sub system such as Redis
Pub/Sub, Kafka, or RabbitMQ. These tools act as central message

brokers, ensuring that when one server publishes an event, all other
servers subscribed to the same topic receive it instantly.

In short:
e Development/small projects: In-memory Pubsub (simple, but not
scalable).
e Production/scalable apps: Redis or Kafka to ensure every subscriber,
across all servers, receives events reliably.
Example with In-Memory pubsub (Development)

import { PubSub } from 'graphgl-subscriptions';
const pubsub = new PubSub/();

const resolvers = {
Subscription: {
videoUploaded: {
subscribe: (, { genre }) =>
pubsub.asyncIterator (['VIDEO UPLOADED']),
b
by
Y
Publishing Events (pubsub.publish)

The pubsub.publish method is how you send an event to all subscribers
who are listening for it.

Think of it like broadcasting a message:

e Pubsub.publish: The action of sending the event.

e Event name ('viDEo UPLOADED'): The channel/topic subscribers are
listening on.

e Payload: The actual data that will be sent to subscribers.

Example:

pubsub.publish ('VIDEO UPLOADED', {
videoUploaded: newVideoData,
})

What’s happening here?

e 'VIDEO UPLOADED' is the channel name. Any subscription resolver
using pubsub.asyncIterator (['VIDEO UPLOADED']) will listen to
this channel.

e The second argument is an object containing the data you want to
send.

o The key videoUploaded must match the subscription field name
in your schema.

© newVideoData 1S the actual object (e.g., { title: 'New
Trailer', thumbnailUrl: '..' }).

e Once called, Apollo will push this payload to all clients connected and
subscribed to this channel.

Key takeaway:

* pubsub.asyncIterator([..]): Defines what events to listen for.

¢ pubsub.publish(eventName, payload): Sends data to cveryone
currently subscribed to that event.

Resolver Implementation

Here is how DataLoader and subscriptions work together in resolvers:

// schemas/all-resolvers.js
// .. other imports
import { pubsub } from "../connections/apollo.js";
const EVENTS = {
VIDEO UPLOADED: 'VIDEO UPLOADED',
RATING UPDATED: 'RATING UPDATED',
i
const resolvers = {
// Field resolver for VideoStream.uploadedBy to solve N+1
problem
VideoStream: {
uploadedBy: async (parent, , { userLoader }) => {
if (!parent.uploadedBy) return null;
return userloader.load(parent.uploadedBy.toString())

by

by

Mutation: {
uploadVideoStream: async (, { input }, { pubsub }) => {

const newVideo = await VideoStream.uploadStream (input) ;

// Publish real-time event for subscribers
awalt pubsub.publish (EVENTS.VIDEO UPLOADED, {

videoUploaded: newVideo,

1)

return newVideo;
}y
// .. other mutations

by

Subscription: {
videoUploaded: {
subscribe: (, { genre }, { pubsub }) => {
return pubsub.asyncIterator ([EVENTS.VIDEO UPLOADED]) ;
by
by
// .. other subscriptions
by
i
Step 4: Configure WebSocket Server

// server.js

import { WebSocketServer } from 'ws';
import { useServer } from 'graphgl-ws/lib/use/ws';

import { makeExecutableSchema } from '@graphgl-tools/schema';
// .. other imports

const httpServer = createServer (app):;

const schema = makeExecutableSchema ({ typeDefs, resolvers });

// Set up WebSocket server for subscriptions
const wsServer = new WebSocketServer ({
server: httpServer,
path: '/graphqgl',
})

// Configure WebSocket server with GraphQL subscriptions

const serverCleanup = useServer (
{
schema,
context: async (ctx, msg, args) => {
return {
pubsub,

userLoader: createUserLoader (),
// .. other context
i
by
Yy
wsServer
)i
httpServer.listen (4000, () => {
console.log('Server running at
http://localhost:4000/graphgl!') ;
})

Connecting the Frontend Using Apollo Client

On the client side, Apollo Client can manage subscriptions using a
WebSocket link in combination with the existing HTTP link used for
queries and mutations. This allows queries and mutations to continue using
regular HTTP requests while subscriptions use persistent WebSocket
connections for real-time updates.

Step 1: Install Client Dependencies
> npm install @apollo/client graphgl-ws
Step 2: Create a WebSocket Link
In Apollo Client, a link determines how operations are sent to the server.
We will create two links:
e HTTP link: for queries and mutations.
* WebSocket link: for subscriptions.

Then we will use Apollo’s sp1lit function to send subscription operations
through the WebSocket link and everything else through the HTTP link.

import { createClient } from 'graphgl-ws';

import { GraphQLWsLink } from
'@apollo/client/link/subscriptions’;

import { ApolloClient, InMemoryCache, split, HttpLink } from
'@apollo/client’';

import { getMainDefinition } from '@apollo/client/utilities’';

// 1. HTTP link for queries & mutations
const httplLink = new HttpLink({ uri:
'http://localhost:4000/graphgl' 1});

// 2. WebSocket link for subscriptions
const wsLink = new GraphQLWsLink (createClient ({

url: 'ws://localhost:4000/graphgl', // The WebSocket endpoint
1))

// 3. Split link decide which link to use based on the
operation type
const splitLink = split/(

({ query }) => {

const definition = getMainDefinition (query);

return (
definition.kind === 'OperationDefinition' &&
definition.operation === 'subscription' // If subscription,

use wsLink
) ;

Yy

wsLink, // Used for subscriptions

httpLink // Used for queries and mutations
)
// 4. Create Apollo Client instance
const client = new ApolloClient ({

link: splitLink,

cache: new InMemoryCache(),

b):
What’s happening here?

e HttpLink: Sends requests over HTTP (default for queries/mutations).

* GraphQLWsLink: Manages persistent WebSocket connections for
subscriptions.

e split(): Routes operations to the correct link based on their type.
* InMemoryCache: Stores GraphQL results locally for fast retrieval.

Step 3: Use a Subscription in React

We can now subscribe to real-time events in React using Apollo’s
useSubscription hook. Here is an example that listens for new videos in a
specific genre:

import { ggl, useSubscription } from '@apollo/client’';

// Define the subscription query
const VIDEO UPLOADED = gql°
subscription OnVideoUploaded ($Sgenre: String) {
videoUploaded (genre: S$genre) {
title
thumbnailUrl

}
export default function VideoFeed () {
// Subscribe to video uploads in the "Action" genre

const { data, loading } = useSubscription(VIDEO UPLOADED, ({

variables: { genre: 'Action' },

1)
if (loading) return <p>Loading..</p>;
return <div>New Video: {data?.videoUploaded?.title}</div>;
}
How it works:
e When the component mounts, useSubscription opens a WebSocket
connection to the server.

e The vipEo UPLOADED subscription listens for new videos in the given
genre.

e When the backend publishes a matching event, Apollo Client
automatically updates data in real time without refreshing the page.

This end-to-end setup ensures that queries and mutations remain fast and
efficient over HTTP, while subscriptions deliver instant updates over
WebSockets perfect for live content like our video streaming app.

Conclusion

In this chapter, we tackled GraphQL’s biggest performance challenges
with production-ready solutions. We eliminated the n+1 query problem
using DatalLoader, implemented HTTP caching with Apollo Server v5 for
global CDN performance, and designed scalable subscriptions for real-
time features.

Our foundation is HTTP caching with @cacheControl directives that
powers our performance strategy. CDNs and browsers automatically handle
response caching, giving us global distribution and instant scalability. With
Datal.oader, managing database efficiency and proper cache headers
optimizing delivery, we have created a production-ready backend that scales
effortlessly.

Ready for the next challenge? Frontend optimization awaits.

CHAPTER 11

Advanced Frontend Development:
High Scalability

Introduction

As Streamify’s user base grows and more features are added—such as
video ratings, personalized recommendations, a robust admin panel, and
genre-wise segregation—the frontend must evolve from a simple interface
to a well-architected, scalable, and performant system.

In this chapter, we will focus on building a frontend that can scale
seamlessly alongside the backend. This involves designing a modular
component architecture, managing state at scale, optimizing Apollo Client
usage, and applying Ul-level performance enhancements that make a
noticeable impact on real-world usage.

We will dive deep into component design patterns, efficient state
management, frontend caching, lazy loading, and persistent storage all
aimed at improving performance, maintainability, and user experience.

Structure

In this chapter, the following topics will be covered:

e Designing a High-Scale Frontend Architecture
» Scaling React Components for Complex Uls
e Managing State and Data with Apollo Client at Scale
e Techniques for Optimizing the User Interface
Thus, by the end of this chapter, you will be equipped with the tools and

patterns required to architect a frontend that performs reliably as your
application and user base grow.

Let us dive in and scale the Streamify frontend to the next level!

Designing a High-Scale Frontend Architecture

As Streamify evolves from a proof-of-concept to a production-grade
platform, the frontend must stay modular, testable, and team-friendly.
In a GraphQL-first stack, this boils down to two core ideas:

1. Align component boundaries with data boundaries (Apollo queries
live next to the components that consume them).

2. Organize the repository by features, not by technical type.

Streamify Folder Structure

src/
I— pages/
| L — admin/
| L— Upload/
| L— Upload.js — mutation + form UI
— features/
| L — AdminvideoList/
| — index.js ~ re-export helper
| — AdminvideoList.js — data fetching + grid UI
| L— AdminvideoList.css ~ scoped styles
L — elements/

L— videoCard/

L— videoCard.js —~ reusable card component

Why Feature-First

e Ownership and onboarding: A contributor working on the admin
dashboard reads only features/AdminvideoList and the admin pages.

e Refactor safety: Moving or deleting a feature directory has minimal
blast-radius.

e Lazy-loading ready: Each folder can later be turned into a separately
loaded chunk with React 1azy ().

In contrast to a traditional layer-based layout (components/, hooks/,
queries/), the feature-first approach keeps everything a teammate needs
in one place UI, styles, GraphQL operations, and tests. When marketing

asks for a new AdminvideoList module, the team spins up
features/Ratings/ without touching unrelated code. QA can test that
folder in 1solation, docs link directly to it, and future refactors are localized.

This structure also aligns neatly with Git workflows: branches and pull-
requests map to a single feature directory, making code reviews faster and
merge conflicts rare. Finally, because dependencies rarely cross feature
boundaries, Webpack (or Vite) can tree-shake unused chunks, giving users
smaller bundles and faster start-up times.

Traditional L.ayer-Based Layout (Anti-Pattern)

A conventional React codebase often separates files by technical type:

src/

|— components/

| I— VideoCard.js
| L — Header.js

— hooks/

| L— useAuth.js

F— queries/
| L— GET ALL VIDEOS.gql

— pages/
| L — Home.js
L — styles/

L — home.css

At first glance this seems organized, but every edit to the AdminvideoList
feature now touches multiple distant folders risking merge conflicts and
making code review harder. Developers must mentally stitch together the
component, its CSS, the GraphQL query, and related tests scattered across
the repo.

Feature-first flips this model: features/AdminvideoList/ owns all of
those artifacts. The mental map is smaller, onboarding is faster, and deleting
a stale feature means deleting a single folder.

Feature Spotlight: AdminvideoList

src/features/AdminvVideoList/index.js acts as the container: it fetches
the admin’s videos with a GraphQL query and passes them to the pure-UI

list component (AdminvideoList.js). Pagination is handled with Apollo’s
fetchMore, keeping local state minimal.

// src/features/AdminVideoList/index.js (excerpt)
const VIDEO STREAMS QUERY = ggl®
query VideoStreamsByAdmin (Soffset: Int, $limit: Int)
videoStreamsByAdmin (offset: $Soffset, limit: $1imit) {
_id
title
videoUrl
description

genre

}
const { loading, error, data, fetchMore } =
useQuery(VIDEO_STREAMS_QUERY, {

variables: { offset: 0, limit: 5 },
1) ;

const loadMoreVideos = () =>
fetchMore ({ variables: { offset:
data.videoStreamsByAdmin.length, limit: 5 } });

The presentational component (AdminvideoList.js) receives videos and
loadMoreVideos as props and maps each item to a reusable videoCard.

This split keeps GraphQL logic co-located with the feature while letting the
Ul remain stateless and easily testable.

Co-Locating GraphQL with the Upload Form

The admin wupload screen keeps both the React form and the
uploadVideoStream mutation n a single file
(src/pages/admin/Upload/Upload. js).

That makes the feature easy to reason about everything you need sits side-
by-side.
// mutation + hook
const UPLOAD VIDEO STREAM = ggl'
mutation UploadVideoStream ($input: UploadVideoStreamInput!) {

uploadVideoStream (input: S$input) {
_id
title
}
}
const [uploadVideoStream, { loading, error }] =
useMutation (UPLOAD VIDEO STREAM) ;

// on submit
const handleSubmit = async (e) => {
e.preventDefault () ;
awalt uploadvVideoStream({ variables: { input: formData } });
navigate ("/admin"); // go back to list
Y
Apollo automatically adds the new video to the cache, so when the admin
returns to the list the fresh item is already there, no extra state handling
needed.

Shared Ul in elements/

The elements folder is home to tiny, reusable building blocks such as
Header and videoCard. They follow three simple rules:

* No data fetching: Logic-free components receive all data via props.

e Local styles: Each ships with its own CSS (ideally CSS Modules).

e Zero coupling: Usable from both storefront and admin screens.

A trimmed tree looks as follows:

src/elements/

L videoCard/
F—— VideoCard.js
L— videoCard.css

Following is an excerpt from the real videocard.js. Notice that it only
renders the UI; there is no GraphQL code inside:

const VideoCard = ({ wvideo }) => {

const { id, title, description, thumbnailUrl } = video;

return (
<div className="video-card">
<Link to={'/video/${ id} }> {/* route param */}

<h3>{title}</h3>
<p>{description}</p>
</Link>
</div>
);
};

Quick Wins for Even Better Reuse

Following is an improved videocard that puts the tips into practice. Skim
through the diff and copy-paste as needed:

// VideoCard.]js (shared element)

import { Link } from 'react-router-dom';

import PropTypes from 'prop-types';

import React from 'react';

import styles from './VideoCard.module.css'; // CSS Module
function VideoCard({ video }) {
const { id, title, description, thumbnailUrl } = video;
return (

<div className={styles.card}>
<Link to={'/video/${ id} "} className={styles.link}>
{/* Lazy-load off-screen thumbnails */}
<img
src={thumbnailUrl}
alt={title}
loading="1lazy"
className={styles.thumbnail}
/>
<div className={styles.details}>
<h3 className={styles.title}>{title}</h3>
<p className={styles.description}>{description}</p>
</div>
</Link>

</div>
)
}
// Memoise so React skips re-render when props are unchanged

export default React.memo (VideoCard) ;

// Document expected props for IDE autocompletion & runtime
safety
VideoCard.propTypes = {
video: PropTypes.shape ({
_id: PropTypes.string.isRequired,
title: PropTypes.string.isRequired,
description: PropTypes.string,
thumbnailUrl: PropTypes.string.isRequired,
}) .isRequired,
}:
Why these tweaks matter:
e CSS Modules isolate styles and prevent accidental overrides.
e React.memo reduces wasted renders in long video grids, boosting FPS.
* PropTypes** catch integration mistakes early and serve as live docs.
* loading="lazy" saves bandwidth on mobile by deferring off-screen
1mages.
Together they keep the shared layer lean, predictable, and performant
exactly what you want in a codebase that multiple teams touch.

This clear hierarchy pages - features - elements prevents a tangle of
imports and makes it obvious where code belongs.

Scaling React Components for Complex Uls

Big React apps can turn messy when one component tries to do everything;
fetch data, handle routing, and draw the UI. Streamify stays tidy by
following one rule:

Each page fetches its own data, each small component worries only about
its look.

Component-Level Responsibility with Apollo

The storefront/videoDetail route is the clearest illustration. Routing is
declared once in App. js:

{
path: "/video/:videoId",
element: <VideoDetail />, // wrapper shown below

}

And the wrapper (src/pages/storefront/VideoDetail/index.js) does
exactly one thing: fetch the data it needs and pass it down.

import { ggql, useQuery } from "@apollo/client";
import { useParams } from "react-router";

import VideoDetail from "./VideoDetail";

const VIDEO DETAIL QUERY = ggl”
query (S$videoId: ID!, S$limit: Int) {
fetchVideobyId(id: SvideoId) { id title description
videoUrl genre }
getSimilarVideos (videoId: $videoId, limit: $limit) { id
title thumbnailUrl }
getPersonalizedVideos { _id title thumbnailUrl }
fetchRating (videoId: $SvideoId) { _id rating }
}
export default function VideoDetailWithData() {
const { videoId } = useParams|{():;
const { loading, data } = useQuery(VIDEO DETAIL QUERY, ({
variables: { videoId, limit: 10 1},

1)

if (loading) return <p>Loading..</p>;
return (
<VideoDetail
data={data.fetchVideobyId}
similarVideos={data.getSimilarVideos}
getPersonalizedVideos={data.getPersonalizedVideos}
myRating={data.fetchRating}
/>

) ;
}
Key take-aways:
e No prop-drilling: The page wrapper fetches the data and hands it
straight to the child component.

e Simple loading state: Shows a <p>Loading.</p> while Apollo
fetches.

e Cache first: Revisits the same video and Apollo serves it instantly
from memory.

Container/Presentational Split

That wrapper is a container. Its neighbor videoDetail.js 1S a
presentational component (only JSX and a small rating mutation, no
useQuery at all).

This pattern repeats elsewhere:

Screen Container with useguery Pure UI component
Home page src/pages/storefront/Home/index.js Home.js + VideoCard
Admin list features/AdminvideoList/index.]js AdminVideoList.js

Table 11.1: Examples of Container and Presentational Component Separation in the Codebase

Pagination — L.oading More as you Scroll

Long lists can feel slow if you fetch everything at once. In the admin video
list, we grab 10 videos at a time and ask for more only when the reader
clicks "Load More". Apollo makes this two-line simple:

const { data, fetchMore } = useQuery (ADMIN VIDEO STREAMS, {
variables: { offset: 0, limit: 10 1},
b))

function loadMore () {
fetchMore ({
variables: { offset: data.videoStreams.length }, // next
page
})

}
Why this works:

e The offset is calculated from the current list length—mno extra state
object.

* fetchMore stitches the new page onto the existing array, so the Ul
updates instantly.

e Everything stays inside the feature: no Redux, no global page counter.

Tip: Swap the button for an IntersectionObserver and call loadMore ()
when the user nears the bottom instant infinite scroll.

Route-Driven Queries — One URL, One Query

Every detail page in Streamify owns its data. The wrapper reads the video
ID from the address bar and feeds it straight into the GraphQL query:

const { videoId } = useParams/();
const { loading, data } = useQuery (VIDEO DETAIL QUERY, ({
variables: { videoId, limit: 10 1},

b):
Benefits at a glance:
e Shareable links: Copy/paste the URL and anyone will see the exact
video.

o Automatic cache hits: Visiting the same link twice reads from
memory first.

e No hidden globals: The page has everything it needs after a hard
refresh.

When you combine route-driven queries with local pagination, each screen
becomes a self-contained island easy to test, move, or even delete without
ripple effects elsewhere.

Composition over Complexity

Smaller presentational parts like elements/vVideocard are reused across
lists (home carousels, similar videos, admin grid). They receive only
primitive props, which means they never re-render due to unrelated cache

updates. Performance stays predictable even when hundreds of videos are
on screen.

Next, we will dive deeper into Apollo’s cache layer and see how Streamity
manages state without introducing Redux or additional global stores.

Managing State and Data with Apollo Client at
Scale

In this section, we will explore how Streamify uses Apollo Client to scale
state management effectively without introducing unnecessary complexity.
We will also review query patterns across components to understand how
consistent state is maintained between views, such as the home screen,
admin dashboard, video details page, and more.

Why we Trust Apollo’s Cache

Before adding extra state tools, Streamify asks one question:

Can Apollo s cache already solve this?

Nine times out of ten, the answer is yes. Reads, writes, pagination, even
optimistic updates all live in one place. That keeps code small and mental
overhead low.

Query-Driven Screens

In Streamify, every screen is designed around the idea that the Ul should be
powered directly by GraphQL queries. Instead of maintaining multiple local
states, reducers, or custom data-fetching logic, each page derives its data
straight from Apollo’s useQuery hook. This approach keeps components
simple, predictable, and automatically in sync with the backend. When the
underlying data changes, Apollo updates the cache and the UI re-renders
without any manual state management. This 1s the foundation of a clean,
maintainable frontend architecture.

Home page — Three Lists, One Round-Trip

In Streamify, most components rely directly on Apollo queries to retrieve
and manage the data they display. This ensures:

e Data stays in sync with the backend
e Apollo cache eliminates unnecessary network requests
e The component re-renders automatically when the query updates

Let us look at a few examples where query-driven design powers stateful
Uls.

The landing page pulls everything it needs with a single query stored in

src/pages/storefront/Home/index. js:

const HomePageQuery = ggl-
query (SgenrelLimit: Int, $1limit: Int) {
recentlyWatchedVideos {
_id
title
thumbnailUrl
}
recentlyUploadedvVideos (limit: $1limit) {
_id
title
thumbnailUrl
}
genresWithTopVideos (genrelLimit: Sgenrelimit) {
genre
topVideos {
_id
title
thumbnailUrl

}
const { loading, error, data } = useQuery(HomePageQuery, {
variables: { genreLimit: 10, limit: 10 1},
b):
Because the three sections are already separated in the result shape, the
component renders each carousel without further transformation, no ad-hoc
reducers or context providers required.

Upload Form — Writing Data with a Mutation

The admin upload screen (src/pages/admin/Upload/Upload.js) mixes
local form state with an Apollo mutation. The component keeps the form
fields in "usestate’, then ships everything to the server in one go:

const UPLOAD VIDEO STREAM = ggl"
mutation UploadVideoStream($input: UploadVideoStreamInput!) ({
uploadVideoStream (input: S$input) ({
_id
title
}
}
const [uploadVideoStream, { loading, error }] =
useMutation (UPLOAD VIDEO STREAM) ;

async function handleSubmit (e) {
e.preventDefault ()
awalt uploadVideoStream({ variables: { input: formData } });
navigate ("/admin") ;

[NEENEEN

title
description
genre
thumbnailUrl

videoUrl

}
const { data, loading, error, refetch } =
useQuery (GET ALL STREAMS) ;

If loading is true, we disable the submit button; if error is set, we print
the message.

mutation DeleteVideoStream ($SvideoId: ID!) {
deleteVideoStream(videoId: $videoId)

}

const [deleteVideoStream] = useMutation (DELETE VIDEO, {

onCompleted: () => refetch(), // Triggers refetch on delete
})

Admin Video List — Pagination with fetchMore

The list of uploaded videos (src/features/AdminVideoList/index.js)
shows how queries can grow as the user scrolls without any extra state
library:
const VIDEO STREAMS QUERY = ggl®
query VideoStreamsByAdmin (Soffset: Int, $1limit: Int) {
videoStreamsByAdmin (offset: Soffset, limit: $limit) {
_id
title
thumbnailUrl
videoUrl

}
const { data, loading, error, fetchMore } =
useQuery (VIDEO STREAMS QUERY, {

variables: { offset: 0, limit: 5 },

P) s

function loadMoreVideos () {
fetchMore ({
variables: {
offset: data.videoStreamsByAdmin.length,
limit: 5,
b
}) g
}

Apollo stitches the extra page onto the existing array so the UI updates
instantly, no reducer required.

Handling L.oading and Error States

Every query or mutation returns a pair of booleans—1oading and error—
that you can check inline:

const { loading, error, data } = useQuery(HomePageQuery)
if (loading) return <p>Loading..</p>;

if (error) return <p>Oops: {error.message}</p>;

This pattern scales from tiny components to whole pages without extra
helpers.

When to Keep State Local Instead

Not every piece of state belongs to Apollo. Use plain usestate when:

e The value never leaves the component (e.g., form inputs, toggle
menus).

e You only need it for a short time (modal open/close).
e It doesn’t come from the server (hover state for star-rating in
VideoDetail.js)

Combining local state for Ul feel with Apollo state for remote data keeps
components simple and fast.

Handling L.oading, Errors, and States at Scale

Every component that uses useQuery in Streamify also handles loading and
error states locally:

const { loading, error, data } = useQuery(..);
if (loading) return <LoadingComponent />;

if (error) return <ErrorFallback />;

This pattern scales well across the app:

 State is collocated with the data that needs it
e Apollo handles the async logic
e No need for additional Redux-style loading flags

When to Use Local State Instead

In some situations, local Ul state (e.g., modal open/close, form toggles) is
best managed using usestate. Streamify handles this cleanly without
mixing concerns.

A concrete example is the rating widget n
src/pages/storefront/VideoDetail/VideoDetail. js:

// Local UI state only
const [selectedRating, setSelectedRating] =

useState (myRating?.rating || 0);
const [hoveredRating, setHoveredRating] = useState(0);
Rule of Thumb:

If it comes from or affects the server, use Apollo.
If it’s purely UI and ephemeral, use usestate.

Streamify demonstrates a clean, scalable approach to state and data
management by relying heavily on Apollo Client. Through its normalized
cache, declarative queries/mutations, and error/loading support, Apollo
serves both as a data-fetching layer and remote state manager.

This eliminates the need for additional libraries like Redux or Zustand and
ensures our components stay clean, readable, and maintainable even as the
application grows.

In the next section, we will explore how to further optimize the frontend by
improving UI performance through techniques like lazy loading, code
splitting, and component-level caching.

Techniques for Optimizing the User Interface

Even with a solid architecture and efficient data layer, a sluggish Ul can
ruin the experience. Streamify applies several front-end performance
techniques that you can replicate in any React + Apollo project.

Route-L.evel Code Splitting

Large bundles delay the first paint. React’s 1azy () and suspense make it
trivial to split each page into its own chunk.

src/App.js currently imports every screen eagerly. A drop-in optimization
is to load heavy routes on demand:

import { lazy, Suspense } from "react";

import { createBrowserRouter } from "react-router-dom";

const StoreFrontHomePage = lazy(() =>
import ("./pages/storefront/Home")) ;
const VideoDetail = lazy(() =>

import ("./pages/storefront/VideoDetail")) ;

const AdminHome = lazy(() =>
import ("./pages/admin/Home/Home")) ;
const AdminUpload = lazy(() =>

import ("./pages/admin/Upload/Upload")) ;
const Login = lazy(() => import("./features/Login"));

export default createBrowserRouter ([
{
path: "/",
element: (
<Suspense fallback={<p>Loading..</p>}>
<StoreFrontHomePage />
</Suspense>
)
Yy
// ..repeat for other routes

1)7

The suspense boundary guarantees users see a quick fallback while the
chunk downloads.

Incremental List Rendering with Pagination

As covered in the admin dashboard, lists grow in batches via fetchMore.
The UI never attempts to render hundreds of DOM nodes at once, avoiding
jank on lower-powered devices.

<button onClick={loadMoreVideos} className="load-more-btn">
Load More Videos
</button>

Because the new items append to the existing array, React diffing is
minimal and scroll position stays intact.

Memoizing Pure Components

elements/VideoCard/VideoCard.js 1S a pure presentational widget.
Wrapping it in React.memo prevents useless rerenders when parent lists
change state:

const VideoCard = React.memo (function VideoCard({ wvideo }) {
// ..same implementation

P) s

This single line delivers noticeable FPS improvements on the Home page
carousels.

Image and iframe Lazy Loading

Thumbnail images already load small JPEG/WEBP files, but browsers can
further defer off-screen resources:

<img src={thumbnailUrl} loading="lazy" alt={title}
className="video-thumbnail" />

YouTube iframes in videoDetail. js are above-the-fold, so they stay eager;
everything else should opt-in to 1loading="1azy".

CSS Containment and Scoped Styles

Every feature and element ships its own .ess file imported locally isolating
style recalculation to the component tree that changed. Coupled with BEM-
style class names, this minimizes layout thrashing.

Persisting Apollo Cache Between Sessions

Cold page reloads force every query to refetch. By persisting the in-
memory cache to localStorage, repeat visitors get an instant, offline-
friendly experience.

import { ApolloClient, InMemoryCache } from "@apollo/client";
import { persistCache, LocalStorageWrapper } from "apollo3-

cache-persist";

const cache = new InMemoryCache () ;

await persistCache ({ cache, storage: new
LocalStorageWrapper (window.localStorage) 1});
export const client = new ApolloClient ({
uri: "/graphgl",
cache,
})

The initial render now hydrates from storage; background refetches keep
data fresh.

Skeleton loaders for Perceived Speed

Showing a blank screen during loading hurts UX. Streamify uses
lightweight skeleton components in carousels and lists:

const { loading, data } = useQuery (HomePageQuery):;
if (loading) return <SkeletonGrid rows={2} cols={5} />;

Skeletons communicate progress without layout shift, keeping Core Web
Vitals in the green.

Applied together, these tactics bring initial bundle size down, keep runtime
FPS high, and ensure Streamify feels snappy even on mid-tier mobile
devices.

Conclusion

Over the course of this chapter, we saw Streamify evolve from a handful of
React files into a production-ready application, maintaining both clarity and
speed. We refined our component architecture so that containers supply data
while presentational components remain pure and reusable. By leaning on
Apollo Client’s cache, we replaced bespoke REST calls and global stores,
streamlining the state layer. Alongside this, we introduced patterns such as
lazy-loaded routes, React.memo, progressive pagination, skeleton loaders,
and CSS containment. These are small but impactful changes that together
create a smoother and more responsive user experience.

In the next chapter, we will take the caching fundamentals you mastered
earlier, such as cache-first reads, fetch policies, and pagination merging and
push them further. You will learn how to turn Apollo’s cache into an active
performance engine that powers near-instant screens, intelligent updates,

and silky-smooth lists, even on unstable networks. By blending efficient
data retrieval, smart cache updates, and optimized pagination, we will
elevate our frontend performance to the next level, ensuring that users stay
engaged while the network remains quiet.

CHAPTER 12

Caching on the Frontend:
Performance Optimization

Introduction

In Chapter 9, _Unleashing the Power of Caching_in GraphQL, we turned on
Apollo Client’s cache and made Streamify faster right away. That was our
first step.

In this chapter, we will push the cache much further.

Our goal: pages that open instantly, even when the network is slow or
offline.

We will cover four big ideas:
e Tiny updates with readFragment and writeFragment adjust one field
without fetching the whole object.

e Saving the cache to 1ocalstorage, so repeat visitors see real data
before any requests finish.

e Lazy loading and pagination that keep huge lists smooth and
responsive.

e Optimistic UI that makes a slow connection feel quick.

By the end of this chapter, these techniques will keep your Ul responsive
even on a slow connection.

Structure

In this chapter, the following topics will be covered:

* Optimizing Frontend Performance with Apollo Client Caching
o Efficient Data Retrieval and Granular Updates
o Lazy Loading and Paginated Delivery of Large Datasets

e Enhancing User Experience with Cached and Oftline-Ready Data

Optimizing Frontend Performance with Apollo
Client Caching

Before we dive into fancy fragment tricks, let us make sure our Apollo
client itself is set up for success.

Where We Left Off (Quick Recap)

In Chapter 9, Unleashing the Power of Caching_in GraphQL, we
introduced the normalized cache and implemented a single field policy for
videoStreamsByAdmin. That change alone removed duplicate network calls
when an admin paged through their videos.

However, the rest of Streamify still built the ApolloClient inline in
src/index. js, had no global fetchPolicy defaults, and managed only one
pagination policy.

Extracting a Reusable Client Module

We moved all client logic into frontend/src/apollo/client. js.

export function makeApolloClient () {
const authLink = setContext((, { headers }) => {
const token = localStorage.getltem("accessToken");
return { headers: { ..headers, authorization: token || "" }
i
})

const httpLink = createHttpLink ({ uri:
"http://localhost:4000" });

const cache = new InMemoryCache ({
typePolicies: {
Query: {
fields: {
videoStreamsByAdmin: offsetLimitPolicies(),
recentlyUploadedVideos: offsetLimitPolicies(),
genresWithTopVideos: offsetLimitPolicies(),

searchVideos: offsetLimitPolicies({ keyArgs: ["keyword"]
1)y
bo
by
}y
}) g
return new ApolloClient ({
link: authLink.concat (httpLink),
cache,
defaultOptions: {
query: { fetchPolicy: "cache-first", errorPolicy: "all" },
watchQuery: { fetchPolicy: "cache-and-network" 1},
mutate: { errorPolicy: "all" 1},
b
})
}

export const client = makeApolloClient();
Key take-aways:
e Single source of truth: Tests and potential SSR builds can call
makeApolloClient().

e Default fetch policies: Most queries now hit the cache first; list
screens still refetch in the background.

e Pagination helpers everywhere: The small offsetLimitPolicies ()
function re-uses the docs’ merge logic across lists.

Slimmer index.js

With the client extracted, the app entry is just wiring:

const root =
ReactDOM. createRoot (document.getElementById ("root")) ;
root.render (
<React.StrictMode>
<ApolloProvider client={client}>
<GoogleOQAuthProvider clientId={GOOGLE OAUTH CLIENT ID}>
<AuthProvider>

<RouterProvider router={router} />

</AuthProvider>
</GoogleOAuthProvider>
</ApolloProvider>
</React.StrictMode>
)7
No auth, link, or cache code lives here anymore, keeping the entry file
readable.

Result

Open Apollo pevTools — cache. Scroll a storefront page, then click "Load
More."

e Entity counts rise, but page-1 rows are not re-fetched.
e Network tab shows a single request for the next slice.

That’s an immediate bandwidth win with only a few lines of code.

Tip: offsetLimitPolicies () mirrors the example in Apollo docs. If you
switch to cursor-based pagination later, swap in relayStylePagination ()
and you re done.

Next, we will zoom in on granular updates with readFragment and
writeFragment, sO tiny Ul actions never trigger full re-queries.

Efficient Data Retrieval and Granular Updates

Modern Uls should update only the specific pieces of data that change,
rather than refetching entire query results. In Streamify, we achieve this by
using Apollo Client’s fine-grained cache updates instead of heavy network
round-trips. This allows our interface to stay responsive, reduces bandwidth
usage, and ensures every component reflects the latest state instantly
without unnecessary re-renders.

e Why refetching hurts: Every time Streamify calls refetch () after a
mutation it:
1. Waits for the network round-trip.

2. Downloads a whole JSON payload even when only one field
changed.

3. Re-renders every component that consumes that query.

On a slow connection, this can take hundreds of milliseconds.

e A naive pattern in the wild: Open
frontend/src/pages/storefront/VideoDetail/VideoDetail. js
(before refactor) and you’ll see:

awalt createOrUpdateRating({ variables: { input } });
refetch(); // < heavy-handed

We will replace that with a precise cache write.

e Tiny updates with fragments: We will use Apollo fragments to

update just the rating field without downloading the whole video
object.

Step 1: Declare one reusable fragment

// ggql = GraphQL literal helper from @apollo/client
export const VIDEO SUMMARY FIELDS = ggl°

fragment VideoSummaryFields on Video {

_id # the video's primary key - needed so Apollo
knows which entity we're touching

rating # the only field we plan to overwrite in this
example

}

4

And inside videoDetail.js, we swap the heavy refetch () with a precise
fragment write:

await createOrUpdateRating ({
variables: { input: { videoId, rating: selected } },
optimisticResponse: {
___typename: 'Mutation',
createOrUpdateRating: {
___typename: 'Rating',
_id: videolId,
rating: selected,
userId: 'me',
videoId,

b
}y
update (cache) {
const id = cache.identify({ _ typename: 'Video',6 id:
videoId });
cache.writeFragment ({
id,
fragment: VIDEO SUMMARY FIELDS,
data: { 1id: videoId, rating: selected },
}) g
Yy
})

What each option does:

Part Purpose

Variables Payload that actually goes to the server. Here, we send the video ID and
the new rating.

optimistic Response | A fake response that Apollo will put in the cache immediately so the UI
updates before the network round-trip finishes. If the server later errors,
Apollo rolls the change back automatically. Must match the shape of the
real response.

update (cache) A callback that runs after the server responds (or right after the
optimistic response). It gives you direct access to Apollo’s in-memory
cache. We use it to surgically edit one record instead of calling
refetch().

cache.identify () Builds the internal cache key (e.g. Video:abc123). You pass the
typename and primary key values.

cache.writeFragment | Writes a partial object, only the fields defined in fragment into that cache
0 record. Other fields stay untouched. Ideal for counters, toggles, or any
small change.

Table 12.1: How Apollo Client Mutation Options Work for Targeted Cache Updates

Think of writeFragment as setstate for Apollo cache: you point at one
entity and overwrite the specific fields you care about.

e No refetch.

o The Similar Videos list instantly shows the new average because every
Ul piece points to the same cache entry.

e Only the mutated rating field travels over the wire (tens of bytes).

e Lists such as Similar Videos instantly reflect the new count because
they share the same entity in the cache.

Optimistic Ul in Two Lines

The optimisticResponse block above lets the stars update immediately.
Apollo rolls back if the server fails.

Sidebar: Reactive Variables (client-only State)

Not every piece of UI state belongs on the server. Theme toggles, search
boxes, modal visibility—all of these live entirely on the client. Apollo gives
you a super-lightweight key-value store for such cases: reactive variables.

import { makeVar, useReactiveVar } from '@apollo/client’;
// create the variable (think of it like useState outside
React)

export const darkModeVar = makeVar (false);

// read it inside any component

function ThemeSwitch () {
const dark = useReactiveVar (darkModeVar); // subscribes to
changes
return (
<button onClick={ () => darkModeVar (!dark) }>
{dark ? '& Light' : ! Dark'}
</button>

) ;
}
How does this work?

The following table explains the core functions for working with Apollo
Client’s reactive variables, describing what each function does and when it
should be used.

API What it is When to use
makeVar (initial) Creates a standalone piece of reactive state. | Any client-only value
Returns a function that acts as both getter and | that multiple

setter. components need.

darkModeVar () Call with no args to read the current value. Non-React files (e.g.
plain JS utilities) that
need the value once.

darkModeVar (newvalu | Call with an arg to update the value and notify | Anywhere you’d
e) subscribers. normally call a state
setter.

useReactiveVar (varF | React hook that subscribes a component to the | Ul components that
n) variable. Renders again when the value | should update
changes, just like usestate. automatically.

Table 12:2: Apollo Client Reactive Variable API and Usage

Behind the scenes, Apollo stores reactive vars in the same in-memory cache
as your query data, so they integrate smoothly: you can even read them
from GraphQL queries using the eclient directive.

Why not just usecontext or Redux?

e Zero boilerplate: Two lines and you’re done no provider, no reducer.

e No prop-drilling: Any file that can import the var can mutate/read it.

e Works with cache: You can blend server and client fields in one
query.

Keep them for ephemeral Ul state. Anything that must survive a full page
reload (for example, auth token) still belongs in something persistent as
localstorage.

Best Practices — and Why They Matter

e Always include _ typename + primary key. These two properties
form the unique cache key. Omitting either risks duplicate or stale
data.

e Prefer cache.modify for counters. It updates a field based on its
previous value, so simultaneous increments don’t overwrite each
other.

e Trim optimistic payloads. Send only the fields you actually change to
keep writes fast and rollback simple.

Lazy Loading and Paginated Delivery of Large
Datasets

Even Netflix doesn’t ship its entire catalog in one JSON blob and neither
should Streamify. In this section, you will see how offset-limit pagination
plus lazy loading gives viewers instant first paint, while keeping scroll
silky-smooth.

The Scrolling Pain

A page that pulls all 3000 videos stalls the main thread, blows up memory,
and forces the network to send megabytes the user may never watch. We
will instead fetch 10 rows at a time.

Pagination Patterns in GraphQL

Streamify sticks with classic offset + limit pagination: it maps directly to
MongoDB’s skip()/ 1limit() pipeline stages, suits a catalogue that
changes only a few times per hour, and keeps both the resolver and cache
policy code tiny.

Pattern Pros Cons
Offset/limit Simple math, easy SQL Duplicate/skip if list changes
Cursor Stable as list mutates Slightly more boilerplate

Table 12:3: Comparing Pagination Patterns in GraphQL

Query Shape (with Total Count)

query Videos (Soffset: Int!, S$limit: Int!) {
videos (offset: $Soffset, limit: $1limit) {
_id
title
thumbnail
}

videosTotal

}
The query contains three key ingredients:

e offset: How many records to skip in the collection. You pass the
current list length from the Ul, so the next slice starts where the last
one ended.

e limit: The maximum batch size. Pick a number that keeps each
payload comfortably under 10 kB; Streamify uses 10.

* videosTotal: One integer that represents the full size of the catalog.

Why a separate scalar? Re-sending the same count inside every video object
would bloat the payload and break normalization rules. A standalone field
stays small and is easy to read from React (data.videosTotal).

With the count in hand, the Ul can:

e Disable the Load more button when offset + 1limit >=

videosTotal.

e Unsubscribe the IntersectionObserver to save CPU cycles once
everything is loaded.

Should you ever migrate to cursor pagination, you will swap offset for a
cursor argument and perhaps drop videosTotal, but the merging logic
you’ll write in the next steps stays the same.

Wiring Apolle’s Cache

Disable kxeyargs: When you merge pages, you do not want a separate
cache entry for every offset. Set keyArgs: false, so Apollo stores one
unified list.

Re-use Streamify’s helper

frontend/src/apollo/client.js already ships with a factory that does the
heavy lifting:

function offsetLimitPolicies ({ keyArgs = false } = {}) {

return {
keyArgs,
merge (existing = [], incoming, { args }) {
const merged = existing.slice();

// 2. Drop the incoming slice into the right slot

const start = args?.offset ?? 0;

for (let i = 0; i1 < incoming.length; ++i) {
merged[start + 1] = incoming[i];

}

return merged; // 3. Apollo writes this back into the cache

b
// optional read() could go here (defaults work fine)
i
}

Why copy with slice()? Mutating existing in place would violate
Apollo’s immutability rules and break cache ref tracking.

If you ever worry about duplicate IDs, say two overlapping fetchMore
calls, you can enhance the loop to skip items already present using
readField('_id', incoming[i]).

With this policy in place, every new page extends the same array, and any

component that queried videos automatically re-renders with the extra
items.

Fetching More Rows in videoList

// Run the first page as soon as the component mounts

const { data, fetchMore } = useQuery(VIDEOS QUERY, ({
variables: { offset: 0, limit: 10 1},

})

// Called from a button click or IntersectionObserver
function loadMore () {
fetchMore ({
variables: {
// Skip everything we've already rendered
offset: data.videos.length,
limit: 10,
by
})
}

Because of the merge policy, the cache combines old and new pages, and
React re-renders without duplicates.

Avoiding Duplicates and Race Conditions

If two fetchMore calls overlap, you might receive the same row twice.
Apollo deduplicates by _ typename + _id, but only if your server returns

stable sorting. If you can’t guarantee that, use readrField (" _id") inside
merge () to skip incoming items already present.

Prefetch on Scroll (IntersectionObserver)

Add a tiny hook so the next page starts downloading before the user hits the
bottom:

export function useInfiniteScroll (ref, callback) {

usekEffect (() => {
if (!'ref.current) return;
const observer = new IntersectionObserver (([e]) => {

if (e.isIntersecting) callback();

DN
observer.observe (ref.current) ;
return () => observer.disconnect () ;

}, [ref, callback]);
}

Attach it to the last <videocard> element and call 10adMore.
Knowing When to Stop

const reachedEnd = data.videos.length >= data.videosTotal;

if (reachedEnd) observer.disconnect():;
Disable the button and observer once the UI holds every record.
Performance Recap

e First 10 videos arrive < 200 ms.
e Each additional page costs ~5 KB JSON, not megabytes.
e Stable cache keys + merge policy ensure zero duplicates.

Enhancing User Experience with Cached and
Offline-Ready Data

Even with blazing-fast pagination, users still feel the sting of cold starts and
spotty networks. In this final section, you will turn Streamify into an
instant-loading, works-on-the-train web app.

What “offline-ready” Means

e Persisted cache: Apollo’s in-memory data survives page reloads and
device restarts.

o Stale-while-revalidate: Show last-known data immediately, then
silently refresh.

e Fail-proof mutations: Queue writes while offline and replay them
when signal returns.

Persisting Apollo’s cache t0 localStorage

Install once: npm i apollo3-cache-persist

Hook it up inside the client factory:

import { persistCache, LocalStorageWrapper } from 'apollo3-
cache-persist';

export async function makeApolloClient () {
const cache = new InMemoryCache ({ /* existing typePolicies */

1)

awailt persistCache({ cache, storage: new

LocalStorageWrapper (window.localStorage) 1});

return new ApolloClient ({ uri: '/graphgl', cache });
}
await persistCache hydrates the cache before React renders, avoiding a
white flash.

Bootstrapping React after Hydration

(async () => {
const client = await makeApolloClient () ;
createRoot (document.getElementById ('root')) .render (

<ApolloProvider client={client}>
<App />
</ApolloProvider>
) ;
b)) O
Add a minimal "Launching.." splash if you want visual feedback during the

async call.

Stale-while-revalidate in One Prop

useQuery (VIDEOS QUERY, { fetchPolicy: 'cache-and-network' });

e First paint: Cached data (from memory or localStorage).
o Later: Network response refreshes the list.

Retrying Mutations after Connectivity Returns

export function useRetryableMutation (doc, options) {

const [mutate, state] = useMutation (doc, options);
const safeMutate = async (vars) => {
try {

await mutate ({ variables: vars });
} catch (e) {
if (!'navigator.onLine) {
window.addEventListener ('online', () => mutate ({
variables: vars }), { once: true });
} else {
throw e;
}
}
i
return [safeMutate, state];

}

Combine this with the optimistic Ul technique described earlier in this

chapter, and users will hardly notice they were offline.

Keep Secrets Out of Storage

localStorage is plain text. Never persist JWTs or refresh tokens. Mark
auth fields as @client-only or strip them in a merge () function before the

cache writes.

Optional: Add a Service Worker

Tools such as workbox can precache HTML, CSS, and JS so the entire app
launches offline. Pair that with the persisted Apollo cache and users can

literally watch previously buffered videos underground.

Checklist

Cache persisted to localstorage

cache-and-network fetch policy for background refresh
Mutations retry when back online

Sensitive fields excluded from persistence

With these tweaks, Streamify loads in < 100 ms on repeat visits and remains
usable in airplane mode, a polished finish for your GraphQL front-end.

Conclusion

In this chapter, we transformed Apollo Client’s cache from a simple store
into a powerful performance tool. Instead of refetching entire objects, we
learned how to update only the changed fields with writeFragment or
cache.modify, reducing network usage and refreshing the UI instantly. We
implemented smart pagination strategies, loading lists in small chunks for
smooth scrolling, and used optimistic Ul updates so that user actions such
as liking a video or adding a comment appear immediately, even on slower
connections. We also explored offline capabilities by persisting the cache to
localStorage, allowing the app to load real data instantly and sync changes
when the connection returns.

These techniques combine to deliver an application that opens in under a
second, remains smooth while scrolling, and continues working even with
unstable connectivity. The concepts applied from normalized entities to
merge policies and optimistic layers can be reused in any GraphQL project.
In the next chapter, we will map the road ahead, exploring edge runtimes,
ultra-fast GraphQL routers, React Server Components, durable browser
storage, and the rise of Al-powered tooling, giving you a clear plan to stay
ahead and beyond.

CHAPTER 13

Conclusion: The Future of Web
Development

Introduction

Congratulations on reaching the final chapter of this book! Together, we
have journeyed through the foundations of GraphQL, built a feature-rich
streaming platform, and mastered advanced concepts in scalability,
performance, and modern frontend architecture. Now, it 1s time to reflect on
what we have accomplished and look ahead to the ever-evolving future of
web development with GraphQL, Node.js, React, Apollo, and MongoDB.

Structure

In this chapter, we will cover the following topics:

e Reflecting on the Journey
e The Evolving Landscape: What is Next?
e Your Roadmap for Continued Growth

By the end of this chapter, you will:

e Recap the essential skills and concepts built throughout the book.

e Understand how current industry trends are shaping the future of full-
stack web development.

e Gain a roadmap for further exploration and innovation with GraphQL
and related technologies.

e Be inspired to continue your learning journey and contribute to the
next generation of web experiences.

Reflecting on the Journey

Let’s revisit the major milestones achieved:

Mastering GraphQL Fundamentals: We explored GraphQL’s client-
centric data model, schema design, queries, and mutations,
establishing a solid foundation for modern API development.

Building with Node.js and Apollo: You learned to set up robust
GraphQL servers using Node.js, Express, and Apollo Server,
connecting data sources and implementing authentication and
authorization.

Frontend Integration with React and Apollo Client: We integrated
GraphQL seamlessly into React applications, leveraging Apollo Client
for efficient data management, Ul reactivity, and real-time updates.

Project-Based Learning: The hands-on Streamify project guided you
through building a streaming platform, covering admin panels,
storefronts, video detail pages, recommendations, and user ratings.

Scalability and Performance: You tackled real-world challenges
solving the n+1 query problem, implementing caching (both backend
and frontend), optimizing queries, and designing for high scalability.

Advanced UI and User Experience: We explored modular frontend
architecture, lazy loading, persistent caching, and offline-ready
interfaces for a polished, production-grade experience.

Note: Each chapter built on the previous, reinforcing best practices and
encouraging experimentation. The skills you have gained are directly
applicable to real-world projects and in-demand across the industry.

The Evolving Landscape: What’s Next?

Web development is in constant motion. Here are some key trends and
directions shaping the future:

Serverless and Edge Computing

Serverless GraphQL: Deploy GraphQL APIs on serverless platforms
(for example, AWS Lambda, Vercel, Netlify Functions) for automatic
scaling and reduced operational overhead.

Edge Functions: Move data processing closer to users for ultra-low
latency experiences, leveraging tools such as Cloudflare Workers and

Vercel Edge.
Federation and Microservices

e GraphQL Federation: Compose multiple GraphQL services into a
single API, enabling large teams to collaborate and scale
independently.

e Composable Architectures: Break monoliths into modular,
maintainable services for greater agility and resilience.

Real-Time and Offline Experiences

e Subscriptions and Live Queries: Deliver real-time updates to users,
powering collaborative apps, live dashboards, and instant
notifications.

e Progressive Web Apps (PWAs): Combine caching, background sync,
and offline support for robust, app-like user experiences.

Al-Powered APIs and Automation

e Al Integration: Enhance GraphQL APIs with AI/ML
recommendation engines, natural language interfaces, and intelligent
automation.

e Developer Tooling: Expect smarter code generation, schema
management, and automated testing tools to accelerate development.

Security and Privacy

e Fine-Grained Authorization: Implement robust access control, rate
limiting, and monitoring to secure APIs at scale.

e Privacy by Design: Embrace best practices for data protection,
compliance, and user trust.

The Rise of Type-Safe and Strongly Typed APIs

e TypeScript Everywhere: Adopt end-to-end type safety for both
backend and frontend, reducing bugs and improving developer
confidence.

e Schema-Driven Development: Leverage GraphQL’s strongly typed
schema as the single source of truth across the stack.

Tip:

Stay curious and proactive;, new frameworks, libraries, and cloud

services are released regularly. The best developers are lifelong learners!

Your Roadmap for Continued Growth

Contribute to Open Source: Join the vibrant GraphQL, Node.js,
React, and Apollo communities. Contribute code, documentation, or
help others in forums and GitHub projects.

Experiment with New Patterns: Try serverless deployment, edge
caching, or GraphQL federation in your own projects.

Build Real-World Apps: Apply your skills to build production-grade
applications, portfolio projects, freelance work, or startup ideas.

Follow Industry Leaders: Stay updated with blogs, podcasts, and
conferences from the creators of GraphQL, Apollo, React, and related
tech.

Teach and Mentor: Share your knowledge by writing articles,
recording tutorials, or mentoring aspiring developers.

Conclusion

The journey does not end here. The skills, patterns, and mindset you have
developed are a launchpad for your continued growth as a web developer.
The future of web development is bright, driven by innovation,
collaboration, and a relentless pursuit of better user experiences.

Keep building. Stay curious. Shape the future.

Thank you for being a part of this journey. The world needs your creativity
and passion to go forth and create something extraordinary!

Symbols

@cacheControl 253
#graphql 48

A

Access Control List (ACL) 145
ACL, illustrating 145-149
Admin Authentication System 100
Admin Authentication System, components
JSON Web Tokens (JWT) 100
MongoDB 101
Mongoose 102
Passport.js 101
Admin Login 117
Admin Login, components
Authorization Link 124
Google OAuth/Apollo Client 122
Admin Login, configuring 117
Admin Login, initializing 118-120
Admin Panel 94
Admin Panel, ensuring 94-96
Admin Panel, schemas
AdminUser 97
Authentication 97
Input Type 99
Mutations/Queries 98
VideoStream 97
AdminUser Schema 106
AdminUser Schema, terms
Apollo Server 114
Authentication 106
Authentication Middleware 114
CheckLogin Resolver 115
GraphQL 113
Resolver Function 112
Resolver Integration 113
signUpGoogle 110
Update Timestamps 109
User ID, retrieving 109
Video Stream 109
Advanced Querying 20
Advanced Querying, steps

Index

Fragments 23
Interface Types 22
Nested Queries 20
Union Types 21
Al-Driven Recommendation 201
Al-Driven Recommendation, advantages 201
Al-Driven Recommendation, disadvantages 202
Airbnb 3
Airbnb, configuring 3, 4
Apollo Client 66, 239
Apollo Client Cache 233
Apollo Client Cache, configuring 234
Apollo Client Cache, ensuring 234, 235
Apollo Client Caching 286
Apollo Client Caching, terms
Cache Code 287
Client Module, extracting 286
Normalized Cache 286
Apollo Client, configuring 66, 239
Apollo Client, executing 67, 68
Apollo Client, goal 239
Apollo Client, initializing 66
Apollo Client, policies 137
Apollo Client, preventing 82, 83
Apollo Client, terms
Code Explanation 135
Error Rates 137
Modules Dependencies 136
Video List 137
Apollo Server 44
ApolloProvider 68
ApolloProvider, configuring 69
Authorization Link 124
Authorization Link, configuring 124
Authorization Link, integrating 125, 126
Authorization Link, terms
Middleware Function 125
Token Inclusion 125
AuthProvider 154
AuthProvider, integrating 154, 155

B

Backend Caching 229, 230

Blog Posts 68

Blog Posts, components
ApollpProvider 68
DisplayPost, encapsulating 69
React Application 71

Blog Posts, terms

GraphQL Mutations 72
Refetch Queries 81
useMutation 74

C

cache-and-network 138
Caching 225
Caching, configuring 226
Caching, mechanisms
Backend 229
Frontend 226
Caching, steps
Admin Panel, uploading 230
Cache Policies, testing 232
Code, inspecting 231
Caching, strategies
Apollo Server 255
Dynamic 255
HTTP 253
Complex Uls 274
Complex Uls, components
Container/Presentation 275
Pagination 275
Performance Cache 276
Route-Driven Queries 276
Routing 274
Content Management 127
Content Management, components
Conditional Rendering 130
Form Render 133
GaphQL Mutation 131
Header Contains 130
Header.js 128
State Initialization 132
Video Stream 131
Video Upload Form 131
Content Recommendation Systems 87
Content Recommendation Systems, benefits 88

D

DatalLoader 248

DatalLoader, architecture 249
DatalLoader, benefits 249
Datal.oader, steps 249-251

Data Retrieval 51

Data Retrieval, integrating 51-54

E

Efficient Data Retrieval 288

Efficient Data Retrieval, configuring 288

F

Field Policy 236
Field Policy, types
merge 238
read 237
Field Policy, use cases 237
Fine-Tuning Cache Policies 233
Fine-Tuning Cache Policies, terms
Admin Panel 238
Apollo Client Cache 233
Customize Field Behavior 236
Pagination 240
Folder Structure 65
Folder Structure, configuring 65
Fragments 23
Fragments, steps 23
Frontend Caching 226
Frontend Caching, terms
Cache Policies 227
Dynamic Fetch Policies 228
Paginated Data 229
Pagination 229

G

Google Authentication 140

Google Authentication, initializing 141-143

Google Authentication, terms
Access Control List (ACL) 145
GraphQL Schema 144
User Role Management 143

GraphQL 1

GraphQL Adaptability 33

GraphQL Adaptability, role
GraphQL Language Agnosticism 33
Unified APIs 34

GraphQL, architecture 10

GraphQL Backend 247

GraphQL Backend, scenarios
Inefficient Resolver Patterns 247
Poor Query Design 248
Smart Caching 248

GraphQL, configuring 2, 3

GraphQL, features

GraphQL Fragments 24

Interfaces 25

Union Types 25
GraphQL, history 2
GraphQL Language Agnosticism 33
GraphQL Language Agnosticism, benefits 33
GraphQL Mutation 181
GraphQL Mutations 56
GraphQL Mutation, steps 181-185
GraphQL Mutations, terms

GraphQL Schema 59, 60

Resolvers 57

Schema Design 57
GraphQL, operations

Mutation 12

Query 11

Subscription 13
GraphQL Playground 42
GraphQL Playground, architecture 42
GraphQL Playground, asset

Customization/Configuration 44

Production Environments 45
GraphQL Playground, highlights 43
GraphQL Playground, implementing 54, 55
GraphQL Queries 19
GraphQL Queries, configuring 20
GraphQL Queries, functionality

Data Retrieval 51

GraphQL Playground 54
GraphQL Resolvers 161
GraphQL Resolvers, integrating 161, 162
GraphQL Subscriptions 259
GraphQL Subscriptions, configuring 259
GraphQL Subscriptions, terms

Apollo Client 264

Backend Setup 260

Resolver 262
GraphQL, syntax 29-31
GraphQL, tasks

Construct Queries 27

Perform Mutations 28

Schema, crating 27

H

High-Scale Frontend 269

High-Scale Frontend, features
Lazy-Loading 269
Ownership/Onboarding 269
Refactor Safety 269

High-Scale Frontend, terms
Feature Spotlight 270
Layer-Based Layout 270
React Form 271
Shared UI 272
VideoCard 272

Home Page 166

Home Page, integrating 167, 168

Home Page, terms
Apollo Client 168
Genres Section 170
Upload Video Section 170
VideoCard 171
Video Sections 169

I

Interactive Blogging 45
Interactive Blogging, elements
Author Type 48
Comment Type 48
Post Type 48
Interactive Blogging, entities 46, 47
Interactive Blogging, illustrating 50
Interactive Blogging, integrating 49
Interactive Blogging, terms
Data Retrieval 46
Schema Design 45

J

JSON Web Tokens (JWT) 100
JWT, implementing 100, 101

M

MongoDB 101

Mongoose 102

Mongoose, features
AdminUser Entity 102
VideoStream 102

Mutation 12

Mutation, ensuring 12

N

Node.js 36

Node.js, configuring 37
Node.js/Express 35
Node.js/Express.js 90

Node.js/Express.js, structure 90
Node.js/Express, reasons 35, 36
Node.js, illustrating 39-42
Node.js, initializing 38, 39

O

Offline-Ready Data 295
Offline-Ready Data, terms
Checklist 297
Connectivity Returns 296
LocalStarage 296
Persist Apollo 295
Service Worker 296

P

Paginated Delivery 291
Paginated Delivery, points

Apollo Cache 293

Cache Policy Code 292

Query Shape 292

Race Conditions 294

Scrolling Pain 292
Pagination, points

Apollo Client 243

Frontend Query 241

GraphQL Schema 240

Merge Paginated Results 243
Passport.js 101
Personalized Suggestions 207
Personalized Suggestions, configuring 208
Personalized Suggestions, illustrating 209
Personalized Suggestions, integrating 208
Personalized Suggestions, steps 212
Programming Language Agnosticism 33

Q

Query 11
Query-Based Systems 202
Query-Based Systems, advantages 202
Query-Based Systems, disadvantages 202
Query Design 257
Query Design, pitfalls
Nested Data 258
Overfatching/Underfetching 257
Pagination 258
Rate Limiting 259
Query-Driven Screens 277

Query-Driven Screens, points
Error States 280
Home Page 277
Local State 280
State Library 279
Upload Form 278
Query, ensuring 11

R

React 64
React.js/Next.js 91
React.js/Next.js, structure 91
Recently Watched Video, implementing 213, 214
Recently Watched Video, integrating 217-220
Recently Watched Video, steps 215, 216
Recommendation Systems 200
Recommendation Systems, architecture 200
Recommendation Systems, benefits

Content Discovery 201

Decision Fatigue 201

User Experience 201

User Retention 201
REST 4
REST, advantages

API Endpoints 6

Data Events 6

Data Retrieval 5

Self-Documentation 6

Under-Fetch Prevention 5

Versionless API 7
REST, configuring 4
REST, integrating 7-10
Robust Rating System 177
Robust Rating System, configuring 177, 178
Robust Rating System, integrating 179
Robust Rating System, steps 178

S

Scalar Types 14

Scalar Types, roles
Custom Types 17
Enumeration Types 16
List Types 15
Non-Null Types 15

Schema Design 45

Schemas 14

Schemas, fundamentals
Documentation 14

Structure/Consistency 14
Seamless User Experience 193
Seamless User Experience, terms
Fetch Video Details 193
GraphQL Mutation 195
signUpGoogle 110
signUpGoogle, implementing 110
Similar Video Recommendations 202
Similar Video Recommendations, architecture 203
GraphQL Query 203
Query Playground 206
Resolver, implementing 204
Similar Video Recommendations, ensuring 221, 222
Similar Video Recommendations, goals
Efficiency 203
Relevance 202
Simplicity 203
Sophisticate System 88
Storefront 157
Storefront, configuring 16

Storefront, initializing 157, 158
Streaming Website 85
Streaming Website, features
Content Recommendation Systems 87
Sophisticate System 88
User Authentcation/Video Playback 87
Streaming Website, foundation
Node.js/Express.js 90
React.js/Next.js 91
Streaming Website, glimpse
Admin Panel 85
Recommendation 85
Storefront 85
Video Detail Pages 85
Streaming Website, integrating 89, 90
Streaming Website, scope
Objective Setting 86
Outcome Expectations 86
Technical Considerations 86
User Engagement 86
User Experience 86
Subscription 13
Subscription, ensuring 13

U

UI, techniques
CSS Containment 283
ifame Lazy Loading 283
Incremental List Rendering 282

In-Memory Cache 283
Pure Presentational 282
Route-Level Code Splitting 281
Skeleton Loaders 283
Unified APIs 34
Unified APIs, advantages 35
useContext Hook 150
useContext Hook, architecture 150
useContext Hook, integrating 151-153
useMutation 72
useMutation, implementing 74-78
User Authentcation/Video Playback 87
User Interface (UI) 281
User Role Management 143

\%

Video Detail Pages 175

Video Detail Pages, configuring 187

Video Detail Pages, steps 175-177
Frontend/Backend Servers 187
Static Dummy Data 189

videosByGenre 159

Vite 64

Vite, configuring 64, 65

W

Web Development 299

Web Development, trends
Al-Powered APIs/Automation 300
Federation/Microservices 300
Offline Experiences 300
Security/Privacy 300

Serverless/Edge Computing 299

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Technical Reviewers
	Acknowledgements
	Preface
	Get a Free eBook
	Errata
	Table of Contents
	Part 1 Introduction to GraphQL and Core Concepts
	1. Introduction to GraphQL
	Introduction
	Structure
	Understanding GraphQL’s Advantages
	The Significance of GraphQL
	Big Companies Embracing GraphQL
	Airbnb’s GraphQL Adoption

	Comparing GraphQL over REST
	Advantages of GraphQL over REST
	Precise Data Retrieval (Reduced Over-Fetching)
	Single Endpoint (Under-Fetching Prevention)
	Strongly Typed Schema (GraphQL Advantage)
	Real-Time Updates with Subscriptions
	Self-Documentation
	Versionless API
	Building a Blogging Website with REST

	Core Concepts of GraphQL
	Exploring GraphQL Operations: Query, Mutation, and Subscription
	Query: Fetching Data
	Mutation: Modifying Data
	Subscription: Real-Time Data
	Understanding GraphQL Schemas
	Importance of Schemas
	Basic Schemas in GraphQL
	Roles of Basic Scalar Types
	List and Non-Null Types
	Non-Null Types
	Enumeration Types
	Custom Types
	Summary
	Introduction to Basics of Writing GraphQL Queries
	Basic Query Syntax in GraphQL
	Advanced Querying in GraphQL
	Union, Interfaces, and Fragments: When to Use What
	GraphQL Fragments
	Union Types
	Interfaces

	Setting the Stage for Practical Implementation
	Bringing It All Together: Building a Blogging Platform
	Creating the Schema
	Constructing Queries
	Performing Mutations

	GraphQL Cheat Sheet
	Conclusion

	2. Installing GraphQL: Backend
	Introduction
	Structure
	Programming Language Agnosticism
	GraphQL’s Adaptability to Various Programming Languages
	The Language of Choice
	Building Unified APIs
	Why Choose Node.js and Express
	Node.js: The Ideal Backend Runtime

	Setting Up GraphQL with Node.js
	Installing Node.js
	Initializing a Project
	Configuring the Server Environment for GraphQL

	GraphQL API Testing
	Introduction to GraphQL Playground
	Interactive Testing and Exploration of GraphQL APIs
	GraphQL Playground in Apollo Server
	Customization and Configuration
	Enabling GraphQL Playground in Production
	Summary

	Building a Blogging Platform Schema with GraphQL
	Introduction to Schema Design in GraphQL
	Optimizing Data Retrieval and Manipulation through Schema Design
	Creating GraphQL Types for a Blogging Platform
	Entities in Our Blogging Platform
	Defining the Schema
	Uses of #graphql
	Author Type
	Post Type
	Comment Type
	Integrating the Schema
	Establishing Relationships in a Blogging Schema
	Summary

	Building GraphQL Queries and Mutations for a Blogging Platform
	Efficient Data Retrieval with GraphQL Queries
	Testing Queries in GraphQL Playground
	Empowering Data Manipulation with GraphQL Mutations
	Introduction to GraphQL Mutations
	Schema Design for Mutations
	Resolvers for Mutations
	Executing Mutations in GraphQL Playground

	Conclusion
	Points to Remember

	3. Building with GraphQL: Frontend and Apollo Integration
	Introduction
	Structure
	Installing React Locally with Vite
	The Benefits of React with Vite
	Vite: A Quick Overview
	Understanding the Folder Structure

	Installing @apollo/client and GraphQL Dependencies
	Introduction to Apollo Client
	Installing Necessary Dependencies for Apollo Client and GraphQL
	Initializing ApolloClient in index.js
	Executing a Query with Plain JavaScript

	Integrating Queries for Blog Posts
	Connecting Apollo Client to React
	Introduction to useQuery Hook
	Building the Blog Page Component
	Integrating DisplayPosts into App.js
	Running and Testing the Application

	Integrating Mutations for Blog Posts
	Implementing GraphQL Mutations for Adding and Updating Blog Posts
	Unveiling the Power of useMutation
	Integrating Mutation Functionality into the React Components
	Enhancing Post Listing with Dynamic Updates Using Refetch Queries

	Understanding Apollo Client’s Internal Cache Mechanism
	Conclusion

	Part 2 Building Streamify: A Netflix-Like Streaming Platform
	4. Setting the Stage for Building a Streaming Website
	Introduction
	Structure
	Presenting the Challenge: Building a Streaming Website such as Netflix
	Defining Project Scope and Goals
	Introduction to Core Features to be Developed
	Identifying Essential Features such as User Authentication and Video Playback
	Discussing Key Components such as Content Recommendation Systems
	Building Recommendation Systems for our Streaming Website

	Configuring the Project Structure
	Configuring Backend Environment with Node.js and Express.js
	Establishing a Frontend Environment with React.js and Next.js

	Conclusion

	5. Building the Admin Panel
	Introduction
	Structure
	Setting Up Admin Panel Project
	Designing Data Schemas for the Admin Panel
	AdminUser Schema
	Authentication Schema
	VideoStream Schema
	Mutations and Queries
	Input Type for VideoStream Upload

	Implementing an Admin Authentication System
	Understanding JWT Tokens (JSON Web Tokens)
	Integrating Passport.js for Authentication
	Introduction to MongoDB: A Simple and Flexible Database Solution
	Introduction to Mongoose: Simplifying MongoDB Operations
	Creating Schemas for AdminUser and VideoStream Entities
	Creating Schema for AdminUser Entity
	Implementing Authentication Methods in AdminUser Schema
	Introduction to Authentication Methods
	Implementation Details
	Defining Methods for VideoStream Schema
	Updating Timestamps before Saving
	Retrieving Video Streams by User ID
	Uploading New Video Streams
	Building Mutations Resolver for signUpGoogle
	Implementation Details
	Resolver Function Explanation
	Resolver Integration
	Building Middleware for GraphQL
	Integrating Middleware with Apollo Server
	Implementing Authentication Middleware
	Implementing checkLogin Resolver
	Defining the GraphQL Schema
	Implementing the Resolver
	Integrating Resolver with GraphQL

	Constructing the UI for Admin Login
	Setting up the Project
	Creating the Admin Login Component
	Summary
	Adding Google OAuth and Apollo Client to Your Application
	Authorization Link
	Purpose of the Authorization Link
	Returning Modified Headers
	Usage
	Running the Admin Login Page

	Building UI Components for Content Management
	Header Component
	useQuery Hook
	useEffect Hook
	Conditional Rendering
	Header Markup
	Creating the Video Upload Form
	Mutation for Video Upload
	Video Upload Form Component
	GraphQL Mutation
	State Initialization
	handleChange Function
	handleSubmit Function
	Form Rendering
	Listing Videos Uploaded by Admin Users
	Explanation
	Understanding the Code
	Handling Loading and Error States
	Rendering the Video List
	Fetch Policies in Apollo Client
	Understanding cache-and-network

	Conclusion

	6. Designing the Storefront
	Introduction
	Structure
	Implementing Google Authentication for User Access
	Simplifying Our Implementation for Admin Access
	Step-by-Step Implementation
	Updating Schema for User Role Management
	Updating GraphQL Schema for User Roles
	Implementing Access Control Middleware for GraphQL Operations

	Crafting the UI for the Login Page
	Building the <AuthProvider> Component for Unified Authentication
	Understanding React’s useContext Hook
	Wrapping the AuthProvider Component in React
	Using Login User Information

	Designing GraphQL Queries for Homepage Data
	Updated GraphQL Schema for Storefront
	Deep Dive into videosByGenre Query
	Benefit of GraphQL for Performance
	Analyzing the Current MongoDB Schema
	Refinement: Indexing the Genre Field
	Defining GraphQL Resolvers
	Defining GraphQL Resolvers for genresWithTopVideos and recentlyUploadedVideos
	VideoStream Static Methods

	Summary

	Building the Home Page and Connecting with GraphQL
	Step-by-Step Implementation: Building the Home Page with React, GraphQL, and Apollo Client
	Using Apollo Client’s useQuery Hook
	Populating Video Sections on the Home Page
	Populating the Genres Section
	Populating the Recently Uploaded Videos Section
	Building the VideoCard Component

	Conclusion

	7. Crafting the Video Detail Page
	Introduction
	Structure
	Switching to Chapter 7 Codebase
	Designing GraphQL Queries for Video Detail Pages
	Implementing a Rating System with GraphQL Mutations and Queries
	Designing MongoDB Schemas for the Rating System
	Building GraphQL Schema for the Rating System
	Implementing the fetchRating Resolver
	Building GraphQL Mutations: CreateOrUpdateRatingInput
	GraphQL Schema Modifications
	Testing in GraphiQL Playground

	Crafting UI for Video Detail Page
	Building the Router and Skeleton Component for the Video Detail Page
	Start the Frontend and Backend Servers
	Building the Skeleton for the Video Detail Page
	VideoDetailWithData Component
	VideoDetail Component

	Integrating UI with GraphQL for Seamless User Experience
	Fetching Video Details with GraphQL Query
	Submitting Ratings Using GraphQL Mutation
	Code Walkthrough

	Conclusion

	8. Building Video Recommendations
	Introduction
	Structure
	Switching to Chapter 8 Codebase
	Start the Backend Server
	Start the Frontend Server

	Overview of Recommendation Systems
	Importance of Recommendations in User Engagement and Retention
	Comparison of AI-Driven and Query-Based Approaches

	Designing GraphQL Queries for Similar Video Recommendations
	Schema Design for Similar Video Recommendations
	Defining the GraphQL Query
	Implementing the Resolver
	Query Playground

	Implementing GraphQL Queries for Personalized Suggestions
	Building MongoDB Queries for Personalized Recommendations
	Setting Up the Resolver for the Query
	Explanation

	Implementing the Recently Watched Videos Feature
	Integrating the Recommendations Component into the Video Detail Page
	Integrating the Recently Watched Videos Section into the Home Page
	Step 1: Update the Query in index.js
	Step 2: Add the Component in Home.js
	Step 3: Connect the Query to the Component
	Integrating Similar Video and Personalized Video Suggestions into the Video Detail Page
	Step 1: Update the Query in index.js
	Step 2: Add the Components in VideoDetail.js

	Enhancing User Engagement with Recommendations
	Conclusion

	9. Unleashing the Power of Caching in GraphQL
	Introduction
	Structure
	Switching to Chapter 9 Codebase

	Understanding the Role of Caching in GraphQL
	Exploring Caching Mechanisms and Techniques
	Frontend Caching (Client-Side Caching)
	Cache Policies in Apollo Client
	Dynamic Fetch Policies with nextFetchPolicy
	Types of Cache Policies in Apollo Client
	Caching with Pagination
	Apollo Client’s Approach to Caching Paginated Data
	Backend Caching (Server-Side Caching)

	Implementing Caching Strategies with Apollo Client
	Step 1: Uploading a Video in Admin Panel
	Step 2: Inspecting the Code
	Step 3: Testing Different Cache Policies
	Summary: Choosing the Right Caching Strategy

	Fine-Tuning Cache Policies for Improved Performance
	Configuring Apollo Client’s Cache
	How Data is Stored in Apollo Cache
	Reading and Writing Directly to the Cache
	readQuery() – Reading from the Cache
	writeQuery() – Writing to the Cache
	Customizing Field Behavior in the Cache (Brief Overview)
	The Need for Field Policies
	read Policy
	merge Policy
	Pagination with GraphQL in Apollo Client
	But Wait – There’s a Challenge!
	The Goal
	Implementing Pagination Caching with fetchMore and Field Policies
	Add Pagination Support in Your Backend
	Update the Frontend Query
	Use fetchMore and Pass loadMoreVideos to UI
	Update AdminVideoList.js to Accept and Use loadMoreVideos
	Merge Paginated Results with Field Policies
	Update Apollo Client Cache Configuration

	Embracing the Challenge: Further Enhancements and Bonus Exercises
	Conclusion

	Part 3 Scalability and Advanced Concepts
	10. Ensuring Scalability: Backend Strategies
	Introduction
	Structure
	Addressing Scalability Challenges in the GraphQL Backend
	Inefficient Resolver Patterns
	Lack of Smart Caching
	Poor Query Design

	Introduction to DataLoader for Efficient Data Fetching
	Understanding the Problem Visually
	Defining DataLoader
	Step 1: Install DataLoader
	Step 2: Create a userLoader for AdminUser
	Step 3: Add userLoader to Apollo Context
	Step 4: Use userLoader in VideoStream.uploadedBy Resolver
	Why This Matters

	Caching Strategies on the Backend
	Understanding HTTP Caching versus Server-Side Caching
	Using the @cacheControl Directive
	Understanding Scope: PUBLIC versus PRIVATE
	Enabling HTTP Cache Headers in Apollo Server v5
	Dynamic Caching in Resolvers
	Complete Apollo Server v5 Setup

	Avoiding Common Pitfalls in GraphQL Query Design
	Overfetching and Underfetching
	Unbounded or Nested Queries (n+1 Revisited)
	Lack of Pagination
	Not Validating or Rate Limiting Queries

	Designing GraphQL Subscriptions for Scalability
	How GraphQL Subscriptions Work
	Backend Setup with Apollo Server
	Resolver Implementation
	Connecting the Frontend Using Apollo Client

	Conclusion

	11. Advanced Frontend Development: High Scalability
	Introduction
	Structure
	Designing a High-Scale Frontend Architecture
	Streamify Folder Structure
	Why Feature-First
	Traditional Layer-Based Layout (Anti-Pattern)
	Feature Spotlight: AdminVideoList
	Co-Locating GraphQL with the Upload Form
	Shared UI in elements/
	Quick Wins for Even Better Reuse

	Scaling React Components for Complex UIs
	Component-Level Responsibility with Apollo
	Container/Presentational Split
	Pagination – Loading More as you Scroll
	Route-Driven Queries – One URL, One Query
	Composition over Complexity

	Managing State and Data with Apollo Client at Scale
	Why we Trust Apollo’s Cache
	Query-Driven Screens
	Home page – Three Lists, One Round-Trip
	Upload Form – Writing Data with a Mutation
	Admin Video List – Pagination with fetchMore
	Handling Loading and Error States
	When to Keep State Local Instead
	Handling Loading, Errors, and States at Scale
	When to Use Local State Instead

	Techniques for Optimizing the User Interface
	Route-Level Code Splitting
	Incremental List Rendering with Pagination
	Memoizing Pure Components
	Image and iframe Lazy Loading
	CSS Containment and Scoped Styles
	Persisting Apollo Cache Between Sessions
	Skeleton loaders for Perceived Speed

	Conclusion

	12. Caching on the Frontend: Performance Optimization
	Introduction
	Structure
	Optimizing Frontend Performance with Apollo Client Caching
	Where We Left Off (Quick Recap)
	Extracting a Reusable Client Module
	Slimmer index.js
	Result

	Efficient Data Retrieval and Granular Updates
	Optimistic UI in Two Lines
	Sidebar: Reactive Variables (client-only State)

	Lazy Loading and Paginated Delivery of Large Datasets
	The Scrolling Pain
	Pagination Patterns in GraphQL
	Query Shape (with Total Count)
	Wiring Apollo’s Cache
	Fetching More Rows in VideoList
	Avoiding Duplicates and Race Conditions
	Prefetch on Scroll (IntersectionObserver)

	Enhancing User Experience with Cached and Offline-Ready Data
	Persisting Apollo’s cache to localStorage
	Bootstrapping React after Hydration
	Retrying Mutations after Connectivity Returns
	Keep Secrets Out of Storage
	Optional: Add a Service Worker
	Checklist

	Conclusion

	13. Conclusion: The Future of Web Development
	Introduction
	Structure
	Reflecting on the Journey
	The Evolving Landscape: What’s Next?
	Your Roadmap for Continued Growth
	Conclusion

	Index

