
1 S T E D I T I O N

Streamlining Cloud Deployments Using Code

Infrastructure as Code
with Pulumi

ADORA NWODO

• Build your first Pulumi projects using familiar programming languages
• Deploy and manage infrastructure across AWS, Azure, Google Cloud,

and Kubernetes
• Integrate Pulumi into CI/CD pipelines for automated infrastructure

management
• Explore Pulumi’s provider ecosystem and create custom providers
• Manage multi-region, multi-cloud, and hybrid cloud deployments

effectively
• Apply programming best practices to write scalable, maintainable

Pulumi code
• Implement testing, debugging, and policy as code for secure,

compliant deployments
• Migrate infrastructure projects from Terraform, CloudFormation,

ARM, and Kubernetes YAML to Pulumi

WHAT YOU WILL LEARN

Infrastructure Automation with Pulumi is your ultimate guide to mastering infrastructure as Code across
multi-cloud environments. This comprehensive resource walks you through sett ing up Pulumi, deploying
across major cloud providers, and confi dently scaling complex architectures.

Starting with the fundamentals of infrastructure as code, you’ll set up Pulumi, learn its core concepts like
resources, stacks, and state management, and build your fi rst infrastructure projects. As you progress,
you’ll explore advanced techniques for deploying on AWS, Azure, Google Cloud, and Kubernetes. You’ll also
learn to integrate Pulumi into CI/CD pipelines for continuous deployment and automate cloud infrastructure
management. You’ll dive deep into Pulumi’s provider ecosystem, tackle real-world challenges like
multi-region, multi-cloud, and hybrid deployments, and ensure compliance using Policy as Code techniques.
With practical examples, real-world scenarios, and hands-on exercises, you’ll gain the skills to confi dently
build scalable, secure, and eff icient cloud infrastructure using Pulumi.

By the end of this book, you’ll have mastered Pulumi’s advanced capabilities, applied best practices for
maintainable and testable infrastructure code, and be prepared to migrate existing projects from other
IaC tools to Pulumi seamlessly.

1 S T E D I T I O N

Infrastructure as Code
with Pulumi

www.packtpub.com

Infrastructure as Code
w

ith Pulum
i

ADORA NWODO

Infrastructure as Code
with Pulumi

Streamlining Cloud Deployments Using Code

Adora Nwodo

Infrastructure as Code with Pulumi
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Kartikey Pandey

Relationship Lead: Aaron Tanna

Project Manager: Sonam Pandey

Content Engineer: Sarada Biswas

Technical Editor: Simran Ali

Copy Editor: Safis Editing

Indexer: Rekha Nair

Proofreader: Sarada Biswas

Production Designer: Shankar Kalbhor

Growth Lead: Amit Ramadas

First published: September 2025

Production reference: 1260825

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83546-752-7

www.packtpub.com

http://www.packtpub.com

I dedicate this to my mother, who gave me roots and the courage to grow wings.

– Adora Nwodo

Contributors

About the author
Adora Nwodo is a multi-award-winning Engineering Manager, Author, and Educator advanc-

ing cloud-native platforms, developer experience, and AI infrastructure. She has written seven

books on cloud technologies and AI, taught widely accessed technical courses, and delivered over

200 talks globally. Her work is used in academic and professional settings worldwide, and she

is passionate about creating opportunities for the next generation of technologists. Recognized

internationally for her impact, Adora continues to shape the future of technology through engi-

neering, teaching, and storytelling.

About the reviewer
Trenton VanderWert is a Cloud Native Consulting Architect with deep expertise in Kuber-

netes, DevOps, and Infrastructure as Code (IaC). He has implemented modern IaC solutions to

help organizations across fintech, healthcare, manufacturing, and banking modernize and scale

their platforms. Skilled in Rust, Go, Python, and automation frameworks, Trenton focuses on

accelerating developer productivity, improving security, and building resilient, high-performance

cloud environments. Passionate about bridging strategy and execution, he empowers teams to

innovate confidently in an ever-evolving cloud landscape.

Table of Contents

Preface � xix

Your Book Comes with Exclusive Perks - Here’s How to Unlock Them ���������������������������� xxiii

Part 1: Introduction to Pulumi and Infrastructure as Code � 1

Chapter 1: Introduction to Infrastructure as Code and Pulumi � 3

Technical requirements ��� 4

Introduction to IaC �� 4

Installing Pulumi and dependencies �� 6

Installing Pulumi on Windows • 6

Installing using Chocolatey • 6

Installing using the installation script • 7

Installing manually • 8

Installing Pulumi on macOS • 8

Installing using Homebrew • 8

Installing using the installation script • 9

Installing manually • 9

Installing Pulumi on Linux • 10

Installing using the installation script • 10

Installing manually • 11

Installing dependencies • 11

Understanding resources and stacks �� 12

Pulumi state and state management ��� 15

Where is Pulumi state stored? • 16

Pulumi Cloud • 16

Table of Contentsviii

Self-hosted state backends • 16

Local state • 17

Managing Pulumi state • 18

The Pulumi programming model ��� 20

Pulumi CLI: key commands and operations �� 21

Input, output, and configuration ��� 26

Inputs • 27

Outputs • 27

Configuration in Pulumi • 28

Summary ��� 29

Questions ��� 30

Further reading �� 30

Chapter 2: Creating Your First Pulumi IaC � 31

Technical requirements ��� 32

Kickstarting your first project �� 32

Laying the foundation: Basic resource creation ��� 34

Secrets and configs: Managing sensitive data �� 37

Dynamic infrastructure with configs • 39

Accessing configuration values • 41

Using require() for mandatory values • 41

Combining require() and get() • 42

Providing default values • 43

Retrieving secret configurations • 43

Smart infrastructure: Using conditional logic �� 44

Conditional logic • 44

Using loops • 45

Scaling complexity: From simple to sophisticated ��� 46

Summary ��� 49

Questions ��� 49

Table of Contents ix

Part 2: Deploying Infrastructure Across Major
Cloud Providers � 51

Chapter 3: Deploying with Pulumi on AWS � 53

Technical requirements ��� 54

Setting up your AWS environment ��� 54

Creating and managing core AWS resources �� 56

Creating an S3 bucket • 57

Creating an EC2 instance • 59

Working with IAM roles • 60

Creating custom AWS resources ��� 61

Why create custom resources? • 62

Custom resources with Pulumi’s ComponentResource • 62

Organizing and sharing custom resources • 66

Versioning custom resources • 66

Automation and continuous integration �� 66

Summary ��� 68

Questions ��� 69

Chapter 4: Deploying with Pulumi on Azure � 71

Technical requirements ��� 72

Setting up your Azure environment ��� 72

Creating and managing core Azure resources ��� 75

Creating an AKS cluster • 76

Creating an Azure key vault • 76

Creating an Azure web app (Azure App Service) • 77

Configuring an Azure Load Balancer • 78

Creating custom Azure resources ��� 79

Automation and continuous integration �� 81

Summary ��� 83

Questions ��� 83

Table of Contentsx

Chapter 5: Deploying with Pulumi on Google Cloud � 85

Technical requirements ��� 86

Setting up your Google Cloud environment ��� 86

Creating and managing core Google Cloud resources �� 89

Creating a Compute Engine instance • 89

Creating a Cloud SQL database • 90

Creating your Cloud functions infrastructure • 93

Creating a Cloud Pub/Sub topic • 95

Creating custom Google Cloud resources ��� 96

Automation and continuous integration �� 98

Summary ��� 100

Questions �� 101

Chapter 6: Deploying with Pulumi on Kubernetes � 103

Technical requirements ��� 104

Setting up your Kubernetes environment �� 105

Defining and deploying Kubernetes resources ��� 108

Introduction to Kubernetes resources • 108

Defining Kubernetes resources with Pulumi • 110

Deploying Kubernetes resources with Pulumi • 118

Updating and managing existing resources • 121

Multi-cloud Kubernetes management �� 124

Summary �� 127

Questions �� 127

Part 3: Integration and Cross-Provider Capabilities � 129

Chapter 7: Integrating Pulumi with CI/CD Pipelines � 131

Technical requirements �� 132

Setting up Pulumi in CI/CD environments �� 133

Automating build, test, and deployment processes ��� 136

Table of Contents xi

Managing secrets and secure access �� 142

Secure secrets management in GitHub Actions • 143

Secure secrets management in Azure DevOps • 144

Secure secrets management in CircleCI • 146

Handling rollbacks and error management �� 147

Best practices for pipeline security and efficiency �� 150

Summary �� 153

Questions �� 153

Chapter 8: Exploring Pulumi’s Provider Ecosystem � 155

Technical requirements �� 156

Introduction to Pulumi providers ��� 156

Why are Pulumi providers important? • 156

Types of Pulumi providers • 157

Core cloud providers • 157

SaaS and third-party service providers • 158

Custom providers • 159

Using core cloud providers �� 159

Exploring community and custom providers �� 162

The Pulumiverse ecosystem • 163

Custom Pulumi providers • 164

Summary ��� 168

Questions �� 169

Chapter 9: Managing your IaC in Multiple Regions and Environments � 171

Technical requirements �� 172

Planning for multi-region deployments �� 173

Key concepts of multi-region design • 174

Designing a multi-region architecture • 178

Parent-child stack model • 180

Pulumi ESC • 183

Table of Contentsxii

Best practices for multi-region deployments • 186

Minimize region-specific customizations • 186

Enable monitoring and observability for every region • 187

Cost optimizations for multi-region deployments • 187

Environment management strategies �� 188

Automating environment setup and management �� 191

Summary ��� 194

Questions �� 195

Chapter 10: Managing Multi-Cloud and Hybrid Scenarios � 197

Technical requirements ��� 198

Understanding multi-cloud and hybrid architectures ��� 198

Use case examples • 199

Snapstagram • 199

Doora AI • 199

Motivations behind multi-cloud strategies • 200

Motivations behind hybrid architectures • 200

Designing multi-cloud and hybrid cloud architectures • 201

Standardization is key • 201

Planning for interoperability • 205

Centralized monitoring and observability • 207

Scalability and performance • 209

Designing cross-platform network configurations �� 210

Implementing consistent IP addressing and DNS across clouds • 210

Configuring load balancing and traffic routing • 211

Data integration and management across clouds ��� 213

Real-time data streaming • 215

Batch processing • 215

Using Pulumi to Automate Pipeline Deployment • 216

Table of Contents xiii

Security and compliance in multi-cloud environments �� 217

Encrypting data at rest • 217

Encrypting data in transit • 219

Summary �� 221

Questions �� 221

Part 4: Advanced Features, Best Practices and
Hands-On Examples � 223

Chapter 11: Advanced Pulumi Features � 225

Technical requirements ��� 226

Mastering Pulumi ESC: Environments, Secrets, and Configuration ��������������������������������� 226

Key concepts of Pulumi ESC • 226

Environments • 227

Sources • 227

Targets • 228

Centralized management • 228

Setting up Pulumi ESC • 228

Building your projects using Pulumi AI ��� 231

Automation API: scripting and workflow automation ��� 233

Workspace • 233

Stack • 234

Local program versus inline program • 234

Use cases for Automation API • 234

Dynamic configuration management techniques �� 236

Azure Key Vault • 237

CI/CD pipelines • 239

Summary ��� 240

Questions �� 241

Table of Contentsxiv

Chapter 12: Writing Maintainable, Testable, and Scalable Code in Pulumi � 243

Technical requirements ��� 244

Modularity and code reusability �� 244

Applying traditional programming paradigms to IaC �� 248

Understanding DRY and its application in IaC • 249

Without DRY (repetitive code) • 249

With DRY (reusable function) • 250

Using SOLID principles to improve infrastructure code • 251

Single responsibility principle • 251

Open-closed principle • 252

Liskov substitution principle • 253

Interface segregation principle • 255

Dependency inversion principle • 256

Applying Gang of Four Design patterns to IaC • 258

Using the Factory Method pattern • 258

Using the Builder pattern • 260

Using the Singleton pattern • 261

Ensuring infrastructure validity with basic assertions • 262

Consistent naming and documentation practices �� 264

Establishing a naming convention • 265

The role of good documentation • 269

Using README files • 269

Inline comments • 270

Summary �� 271

Questions �� 271

Chapter 13: Testing and Debugging Your Pulumi IaC � 273

Technical requirements ��� 274

Introduction to testing in Pulumi �� 274

Unit testing • 274

Table of Contents xv

Integration testing • 275

Property testing • 275

Unit testing your Pulumi code ��� 275

Working with mocks in Pulumi • 276

Limitations of unit testing • 279

Integration testing for Pulumi ��� 279

Writing integration tests • 281

Testing deployments without Pulumi integration tests • 286

Common challenges in integration testing • 287

Automating tests in CI/CD pipelines �� 288

Debugging Pulumi Programs ��� 290

Summary �� 291

Questions ��� 292

Chapter 14: Implementing Policy as Code � 293

Technical requirements ��� 294

Introduction to PaC ��� 294

How PaC works in Pulumi • 295

Use cases for PaC • 296

Enforcing security standards • 296

Validating resource configurations • 297

Auditing infrastructure for regulatory compliance • 297

Preventing misconfigurations • 297

Writing and defining policies ��� 298

Applying policies to infrastructure ��� 302

Summary ��� 304

Questions ��� 304

Table of Contentsxvi

Chapter 15: Migrating from Other Tools to Pulumi � 305

Technical requirements ��� 306

Introduction to migration �� 306

Migrating from Terraform to Pulumi ��� 307

Coexisting with existing Terraform workspaces • 307

Converting HCL configurations to Pulumi code • 308

Integrating Pulumi into Terraform-based workflows • 309

Migrating from AWS CloudFormation to Pulumi ��� 310

Working with CloudFormation and Pulumi together • 310

Importing resources into Pulumi • 311

Converting CloudFormation templates to Pulumi code • 311

Migrating from Azure Resource Manager or Azure Bicep to Pulumi ���������������������������������� 312

Working with ARM or Bicep and Pulumi together • 312

Importing existing resources into Pulumi • 313

Converting ARM templates to Pulumi code • 314

Migrating from Kubernetes YAML or Helm to Pulumi ��� 314

Reusing Kubernetes YAML files in Pulumi • 314

Deploying Helm charts with Pulumi • 315

Converting Kubernetes YAML to Pulumi programs • 316

Migrating from any other cloud to Pulumi �� 316

Best practices for minimizing downtime during migration �� 317

Summary ��� 318

Questions �� 319

Chapter 16: Tests and Exercises on Infrastructure Automation with Pulumi � 321

Technical requirements ��� 322

Getting started with Pulumi IaC scripts ��� 322

Exercise 1: Creating a storage bucket • 323

Exercise 2: Setting up multiple resources using a loop • 324

Exercise 3: Using conditionals to control resource creation • 324

Table of Contents xvii

Exercise 4: Using outputs as inputs for dependencies • 325

Exercise 5: Dynamically configuring resources with stacks • 326

Building and testing complex Pulumi projects ��� 326

Exercise 1: Dynamically managing environments with stacks • 326

Exercise 2: Using stack references to share data between projects • 327

Exercise 3: Securing resources with Pulumi secrets • 328

Exercise 4: Implementing cross-region infrastructure • 329

Exercise 5: Writing unit tests with Pulumi’s testing framework • 330

Exercise 6: Writing integration tests to validate deployed infrastructure • 331

Simulating multi-cloud deployments �� 332

Exercise 1: Load balancing AWS Lambda and Azure Functions

with Azure Traffic Manager • 332

Exercise 2: Accessing an AWS database from an Azure Web App • 333

Exercise 3: Implementing a multi-cloud backup solution • 334

Implementing policy as code ��� 335

Exercise 1: Enforcing resource tags across deployments • 335

Exercise 2: Restricting public access to storage buckets • 336

Exercise 3: Limiting resource creation to specific regions • 337

Best practices and advanced techniques �� 337

Exercise 1: Implementing CI/CD for deploying to dev, staging, and prod environments • 337

Exercise 2: Using the Pulumi Automation API for programmatic deployment • 338

Exercise 3: Implementing resource modularization for code reuse • 339

Exercise 4: Building a custom resource component with validation logic • 340

Summary ��� 342

Other Books You May Enjoy � 345

Index � 349

Preface

In the past, setting up cloud infrastructure often meant clicking through endless dashboards,

running manual scripts, and hoping everything was configured the same way the next time you

needed it. Over time, that approach stopped keeping up with the speed and complexity of modern

systems. Teams needed something more reliable, more repeatable, and easier to scale.

That is where Infrastructure as Code (IaC) comes in. By defining infrastructure in code, teams can

version, review, and automate the environments their applications depend on. Pulumi takes this

idea further by letting you write infrastructure in the same programming languages you already

use for application development, bringing both worlds together in a way that feels natural and

flexible.

This book is here to help you make that shift. We will start with the basics of IaC and Pulumi’s core

ideas, then move into hands-on deployments across AWS, Azure, Google Cloud, and Kubernetes.

You will learn how to integrate Pulumi into CI/CD pipelines, work across multiple regions and

providers, and take advantage of the rich provider ecosystem that extends Pulumi far beyond

the major clouds.

Later, we will explore advanced features, proven practices for writing clean and maintainable

infrastructure code, and ways to enforce governance with Policy as Code. You will also learn how

to migrate from other tools and put your skills to the test with real world style exercises.

Each chapter mixes clear explanations with practical examples so you can apply what you learn

immediately. The aim is to give you both the knowledge and the confidence to automate infra-

structure for anything from a small proof of concept to a complex multi cloud production system.

Who this book is for
This book is for DevOps engineers, cloud engineers, site reliability engineers, infrastructure engi-

neers, and platform engineers who want to explore new ways of managing infrastructure using

Pulumi as a modern alternative to traditional infrastructure as code tools. It is also for software

engineers at any experience level who want to expand their skills into infrastructure engineering.

Basic familiarity with cloud concepts and at least one programming language will help you get

the most out of this book.

Prefacexx

What this book covers
Chapter 1, Introduction to Infrastructure as Code and Pulumi, provides an understanding of Infrastruc-

ture as Code (IaC) and how Pulumi enables managing cloud resources through code, covering

core concepts, principles, and essential CLI workflows.

Chapter 2, Creating Your First Pulumi IaC, guides readers through the hands-on process of building

their first infrastructure as code project using Pulumi.

Chapter 3, Deploying with Pulumi on AWS, guides readers through using Pulumi to deploy and

manage infrastructure on Amazon Web Services.

Chapter 4, Deploying with Pulumi on Azure, introduces readers to deploying and managing infra-

structure on Microsoft Azure using Pulumi.

Chapter 5, Deploying with Pulumi on Google Cloud, introduces readers to deploying and managing

infrastructure on Google Cloud using Pulumi.

Chapter 6, Deploying with Pulumi on Kubernetes, covers managing Kubernetes clusters and work-

loads with Pulumi, including environment setup, resource deployment, configuration best prac-

tices, scaling, and high availability.

Chapter 7, Integrating Pulumi with CI/CD Pipelines, explains how to integrate Pulumi with CI/CD

pipelines to automate infrastructure deployment, covering workflow setup, secrets management,

rollback strategies, and pipeline security best practices.

Chapter 8, Exploring Pulumi’s Provider Ecosystem, explores Pulumi’s support for multiple cloud and

service providers, detailing provider setup, resource management, and cross-provider integration

for unified infrastructure control.

Chapter 9, Managing your IaC in Multiple Regions and Environments, covers best practices for

multi-region and multi-environment infrastructure management with Pulumi, including envi-

ronment-specific configurations, resource isolation, and staging workflows.

Chapter 10, Managing Multi-Cloud and Hybrid Scenarios, explores multi-cloud and hybrid infrastruc-

ture orchestration with Pulumi, covering benefits, challenges, and best practices for networking,

data integration, and security across platforms.

Chapter 11, Advanced Pulumi Features, explores the advanced capabilities of Pulumi, including the

Pulumi ESC (Environments, Secrets, and Configuration), Pulumi AI and Automation API.

Preface xxi

Chapter 12, Writing Maintainable, Testable, and Scalable Code in Pulumi, applies programming

paradigms and design principles to Pulumi IaC, emphasizing modularity, reusability, and best

practices for project structure, naming, and documentation.

Chapter 13, Testing and Debugging Your Pulumi IaC, talks about the importance of testing your

Pulumi Infrastructure as Code (IaC) to ensure that your cloud resources are configured correctly,

securely, and efficiently.

Chapter 14, Implementing Policy as Code, focuses on using Pulumi’s policy framework to enforce

compliance, security, and operational best practices within infrastructure as code.

Chapter 15, Migrating From Other Tools to Pulumi, guides migrating existing IaC projects to Pulumi,

covering framework evaluation, configuration translation, multi-language support, state man-

agement, and best practices for a smooth, low-downtime transition.

Chapter 16, Tests and Exercises on Infrastructure Automation with Pulumi, provides practical exercises

and case studies to reinforce the concepts learned throughout the book.

To get the most out of this book
•	 Have a basic understanding of cloud computing concepts and services

•	 Be comfortable with at least one programming language such as Python, TypeScript, or C#

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Run the

pb_arista_facts.yml playbook to validate the operational state of our fabric.”

A block of code is set as follows:

const vnet = new azure.network.VirtualNetwork("myVnet", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 addressSpace: {

 addressPrefixes: ["10.0.0.0/16"],

 },

});

Prefacexxii

Any command-line input or output is written as follows:

$ pulumi new azure-typescript

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Begin by navigating to

the Project Settings page for your specific project. From there, you can manage project environ-

ment variables by selecting the Environment Variables tab.”

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-

back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packt.com/submit-errata
http://authors.packt.com/

Preface xxiii

Your Book Comes with Exclusive Perks - Here’s How
to Unlock Them

Enhanced reading experience with our Next-gen Reader:

 Multi-device progress sync: Learn from any device with seamless progress sync.

 Highlighting and notetaking: Turn your reading into lasting knowledge.

 Bookmarking: Revisit your most important learnings anytime.

 Dark mode: Focus with minimal eye strain by switching to dark or sepia mode.

Learn smarter using our AI assistant (Beta):

 Summarize it: Summarize key sections or an entire chapter.

 AI code explainers: In the next-gen Packt Reader, click the Explain button above each code

block for AI-powered code explanations.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search this book by name. Ensure it’s the

correct edition.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

Prefacexxiv

Learn anytime, anywhere:

�Access your content offline with DRM-free PDF and ePub versions—compatible with your

favorite e-readers.

Unlock Your Book’s Exclusive Benefits
Your copy of this book comes with the following exclusive benefits:

 Next-gen Packt Reader

 AI assistant (beta)

 DRM-free PDF/ePub downloads

Use the following guide to unlock them if you haven’t already. The process takes just a few min-

utes and needs to be done only once.

How to unlock these benefits in three easy steps
Step 1
Keep your purchase invoice for this book ready, as you’ll need it in Step 3. If you received a physical

invoice, scan it on your phone and have it ready as either a PDF, JPG, or PNG.

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help.

Note: The AI assistant is part of next-gen Packt Reader and is still in beta.

Note: Did you buy this book directly from Packt? You don’t need an invoice. After

completing Step 2, you can jump straight to your exclusive content.

Preface xxv

Step 3
Sign in to your Packt account or create a new one for free. Once you’re logged in, upload your

invoice. It can be in PDF, PNG, or JPG format and must be no larger than 10 MB. Follow the rest

of the instructions on the screen to complete the process.

Step 2
Scan this QR code or go to https://packtpub.com/unlock.

On the page that opens (which will look similar to Figure 0.1 if you’re on desktop), search for this

book by name. Make sure you select the correct edition.

Figure 0.1: Packt unlock landing page on desktop

Prefacexxvi

Share your thoughts
Once you’ve read Infrastructure as Code with Pulumi, we’d love to hear your thoughts! Please click

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

Need help?
If you get stuck and need help, visit https://www.packtpub.

com/unlock-benefits/help for a detailed FAQ on how to

find your invoices and more. The following QR code will take

you to the help page directly:

Note: If you are still facing issues, reach out to customercare@packt.com.

https://packt.link/r/1835467520
https://packt.link/r/1835467520

Part 1
Introduction to Pulumi
and Infrastructure as

Code
The first part of the book lays the foundation for everything that follows by introducing Infra-

structure as Code (IaC) and Pulumi as a modern, developer-friendly approach to building and

managing cloud infrastructure. You will see how Pulumi differs from other IaC tools, how it uses

familiar programming languages, and why its flexibility makes it a strong choice for single-cloud,

multi-cloud, and hybrid environments.

It begins with the fundamentals of IaC, explaining its benefits, core principles, and role in modern

DevOps practices, before moving on to Pulumi’s key concepts such as resources, stacks, projects,

and state management. You will explore how Pulumi fits into cloud workflows, how it interacts

with providers, and the basics of authoring infrastructure code.

From there, you will create your first Pulumi project step by step, starting with installation and

configuration and moving to deploying real infrastructure on a cloud provider. Along the way,

you will work with Pulumi’s CLI, preview and apply changes, and see how Pulumi tracks and

manages infrastructure state over time.

This part provides the essential knowledge and practical experience needed to begin building and

managing infrastructure with Pulumi, forming a solid base for the advanced scenarios covered

later in the book.

﻿2

This part of the book includes the following chapters:

•	 Chapter 1, Introduction to Infrastructure as Code and Pulumi

•	 Chapter 2, Creating Your First Pulumi IaC

1
Introduction to Infrastructure as
Code and Pulumi

With the increasing adoption of cloud technologies and DevOps practices, the ability to define

and manage infrastructure through code has become a highly sought-after skill. Developers today

are expected not only to build applications but also to deploy, manage, and scale them efficiently in

the cloud. Mastering Infrastructure as Code (IaC) is key to meeting these demands, and Pulumi

offers a flexible and powerful way to do just that. However, with the vast amount of information

available, structuring your learning to effectively adopt Pulumi can feel overwhelming. This

chapter, and the rest of this book, aim to simplify the process of understanding IaC and Pulumi,

setting you up for success from the start.

Beginnings are the seeds of the future, and when it comes to managing cloud infrastructure,

understanding the basics is key to long-term success. The cloud may sound like an abstract con-

cept, but it’s essentially a collection of highly powerful machines housed in data centers around

the world. With tools such as Pulumi, you can interact with these machines programmatically,

defining and managing resources through code rather than manual configurations.

In this chapter, we’ll introduce the core concepts behind IaC and dive into how Pulumi makes

it easier to manage your cloud infrastructure. By the end, you’ll have a solid foundation to build

upon as we explore more advanced topics in later chapters.

Introduction to Infrastructure as Code and Pulumi4

In this chapter, we’re going to cover the following main topics:

•	 Introduction to IaC

•	 Installing Pulumi and dependencies

•	 Understanding resources and stacks

•	 Pulumi state and state management

•	 The Pulumi programming model

•	 Pulumi CLI: key commands and operations

•	 Input, output, and configuration

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from https://

www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

Introduction to IaC
One of the main problems IaC solves is configuration drift. In the early days of managing infra-

structure, system administrators would manually configure servers, networks, and storage. Over

time, as systems were updated and maintained, the configuration of one server might start to

differ from another. This inconsistency, known as configuration drift, could lead to unpredictable

behavior, bugs, or failures because different servers no longer worked the same way.

Before IaC, the process of managing infrastructure was also slow and prone to human error. If

you needed to set up new servers, you’d do it manually, often following a checklist. But if that

checklist wasn’t followed exactly or someone made a mistake, the new server might not work

properly. Reproducing the exact environment became difficult, and scaling was even harder. If

you needed to deploy 10 or 100 servers, you’d have to configure each one individually, which took

a lot of time and effort.

Then came IaC. IaC allows you to manage and provision your infrastructure using code, just like

you would manage an application. Instead of manually configuring servers, you write code that

specifies what you want your infrastructure to look like. This code can be saved, shared, reviewed,

and updated just like any other code in a software project.

https://www.pulumi.com/docs/iac/download-install/
https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/

Chapter 1 5

With IaC, setting up a server becomes as simple as running a script. The true power of IaC lies in

its automation—automating infrastructure management was the driving force behind the need

for a solution such as IaC, enabling organizations to scale quickly, reduce human error, and ensure

that environments are consistently and accurately configured every time.

IaC is important because it has multiple benefits over the alternative (manual infrastructure

configuration). These benefits are listed here:

•	 Consistency: Since the infrastructure configuration is defined in code, you can ensure

that every server, network, or service is set up the same way every time. If you need to

deploy multiple environments, such as development, testing, and production, the same

code can be used for all of them. This eliminates the risk of configuration drift and reduces

the chances of errors caused by manual setup.

•	 Simplifies scaling: In traditional infrastructure management, scaling up would mean

repeating the manual configuration process for each new server. With IaC, you simply

modify the code to add more resources, and the system takes care of provisioning them

in the cloud. This makes it incredibly easy to add new servers or services when needed,

without worrying about configuration errors.

•	 Automation: Since everything is defined in code, you can automate the deployment pro-

cess, which saves time and reduces the risk of human error. This also allows for continuous

delivery and continuous integration (CI/CD) practices, where infrastructure changes are

automatically applied as part of the development pipeline, ensuring that environments

are always up to date.

•	 Documentation: In traditional setups, the documentation of infrastructure was often

separate from the configuration itself, which meant that documentation could easily

become outdated. With IaC, the code itself acts as the documentation, making it easy to

see exactly what your infrastructure looks like at any given time.

•	 Version control: Just like with application code, you can track changes to your infrastruc-

ture code over time. If something goes wrong after a change, you can easily roll back to

the previous version. This makes infrastructure management safer and more reliable, as

any mistakes can be quickly corrected.

•	 Collaboration: In traditional setups, only a few people, usually system administrators,

knew how the infrastructure was configured. With IaC, the infrastructure is defined in

code that can be reviewed, shared, and improved upon by different team members. This

leads to better communication and understanding across teams, making it easier to man-

age complex systems.

Introduction to Infrastructure as Code and Pulumi6

Installing Pulumi and dependencies
Pulumi is an IaC tool that takes a different approach by treating infrastructure like software.

This means that instead of using configuration files in a domain-specific language (DSL) like

other IaC tools, you can define and manage your infrastructure using general-purpose program-

ming languages such as JavaScript, Python, TypeScript, Go, or C#. With Pulumi, developers can

use familiar coding practices, making it easier to integrate infrastructure management into the

software development workflow.

The concept of infrastructure as software means that you can manage cloud resources in the

same way you manage software code. Just like you write code to build applications, you write

code to define your infrastructure. This code can be versioned, tested, reused, and shared, just

like application code. This approach brings together the worlds of software development and

cloud infrastructure, allowing for more flexible and powerful management.

Pulumi has several key benefits. One of the biggest advantages is the ability to use familiar pro-

gramming languages. This makes it easier for developers who are already skilled in these languages

to adopt Pulumi without needing to learn a new syntax. Another benefit is Pulumi’s support for

advanced coding features such as loops, conditionals, and functions, which allow for more com-

plex infrastructure configurations. You can also use existing tools and libraries from the language

ecosystem, which makes Pulumi highly extensible and adaptable to different needs.

Now that you know about Pulumi, let’s get it set up on your local machine. This step-by-step

guide will walk you through installing Pulumi and its dependencies on different operating systems,

so you can start using it to manage your cloud infrastructure. Follow the instructions based on

your operating system.

Installing Pulumi on Windows
To install Pulumi on Windows, you have multiple options depending on your preferred method:

Chocolatey, installation script, or manual installation. The following subsections contain step-

by-step instructions for each approach.

Installing using Chocolatey
Chocolatey is a package manager for Windows that simplifies the installation of software. It allows

you to easily install, update, and manage applications via the command line. You can download

Chocolatey from its website: https://chocolatey.org/install.

https://chocolatey.org/install

Chapter 1 7

Once you have it installed, you can install Pulumi by running the following command:

> choco install pulumi

This will install the Pulumi CLI to $($env:ChocolateyInstall)\lib\pulumi and cre-

ate the shims, which are small wrapper executables that point to the actual application,

$($env:ChocolateyInstall)\bin, to add Pulumi to your path. To verify that Pulumi was suc-

cessfully installed, you can run the following command:

> pulumi version

This command will return the current version of the Pulumi CLI that is installed on your machine.

However, if Pulumi does not exist on your machine because the installation wasn’t successful,

it will return an error message such as 'pulumi' is not recognized as an internal or

external command, operable program or batch file, or something similar. This indicates

that either Pulumi was not installed correctly or it is not in your system’s PATH. If you encounter

this error, double-check the installation steps and ensure that the Pulumi binary is added to the

PATH environment variable.

Installing using the installation script
You can run this installation script in your terminal. Open a new Command Prompt window

(WIN + R: cmd.exe). In the window, run the following command to download and install Pulumi:

> @"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.
exe" -NoProfile -InputFormat None -ExecutionPolicy Bypass
-Command "[Net.ServicePointManager]::SecurityProtocol = [Net.
SecurityProtocolType]::Tls12; iex ((New-Object System.Net.WebClient).
DownloadString('https: //get.pulumi. com/install.ps1'))" && SET
"PATH=%PATH%;%USERPROFILE%\.pulumi\bin"

If successful, the pulumi.exe CLI will be installed to %USERPROFILE%\.pulumi\bin and added to

your path. To verify that Pulumi was successfully installed, you can run the following command:

> pulumi version

This command will return the current version of the Pulumi CLI that is installed on your machine.

However, if Pulumi does not exist on your machine because the installation wasn’t successful, it

will return an error message such as 'pulumi' is not recognized as an internal or external

command, operable program or batch file, or something similar.

Introduction to Infrastructure as Code and Pulumi8

This indicates that either Pulumi was not installed correctly or it is not in your system’s PATH. If

you encounter this error, double-check the installation steps and ensure that the Pulumi binary

is added to the PATH environment variable.

Installing manually
You can also manually install Pulumi by downloading the Windows x64 binaries. First, download

the Pulumi binaries for Windows x64: https://www.pulumi.com/docs/iac/download-install/

versions.

After downloading the zip file, unzip it and extract its contents to a folder, such as C:\pulumi.

Finally, add C:\pulumi\bin to your system’s PATH. You can do this by going to System Properties

> Advanced > Environment Variables, then under User Variables, find the Path variable and

click Edit to add the path to the Pulumi folder. To verify that Pulumi was successfully installed,

you can run the following command:

> pulumi version

This command will return the current version of the Pulumi CLI that is installed on your machine.

However, if Pulumi does not exist on your machine because the installation wasn’t successful,

it will return an error message such as 'pulumi' is not recognized as an internal or

external command, operable program or batch file, or something similar. This indicates

that either Pulumi was not installed correctly or it is not in your system’s PATH. If you encounter

this error, double-check the installation steps and ensure that the Pulumi binary is added to the

PATH environment variable.

Installing Pulumi on macOS
To install Pulumi on macOS, you have multiple options depending on your preferred method:

Homebrew, installation script, or manual installation. The following subsections contain step-

by-step instructions for each approach.

Installing using Homebrew
Homebrew is a popular package manager for macOS that simplifies the installation of software

by managing dependencies and versions. You can download it by running the installation com-

mand provided on the Homebrew website: https://brew.sh.

Once you have it installed, you can install Pulumi by running the following command:

$ brew install pulumi

https://www.pulumi.com/docs/iac/download-install/versions
https://www.pulumi.com/docs/iac/download-install/versions
https://brew.sh

Chapter 1 9

This command will install the Pulumi CLI to the usual place (often, /usr/local/bin/pulumi) and

add it to your path. To verify that Pulumi was successfully installed, you can run the following

command:

$ pulumi version

This command will return the current version of the Pulumi CLI that is installed on your machine.

However, if Pulumi does not exist on your machine because the installation wasn’t successful,

it will return an error message such as 'pulumi' is not recognized as an internal or

external command, operable program or batch file, or something similar. This indicates

that either Pulumi was not installed correctly or it is not in your system’s PATH. If you encounter

this error, double-check the installation steps and ensure that the Pulumi binary is added to the

PATH environment variable.

Installing using the installation script
You can run this installation script in your terminal. Open a new window. In the window, run the

following command to download and install Pulumi:

$ curl -fsSL https: //get.pulumi.com | sh

If successful, this will install the Pulumi CLI to ~/.pulumi/bin and automatically add it to your

system’s PATH. If it cannot add Pulumi to your PATH automatically, you’ll receive a prompt with

instructions on how to add it manually. To verify that Pulumi was successfully installed, you can

run the following command:

$ pulumi version

This command will return the current version of the Pulumi CLI that is installed on your machine.

However, if Pulumi does not exist on your machine because the installation wasn’t successful,

it will return an error message such as 'pulumi' is not recognized as an internal or

external command, operable program or batch file, or something similar. This indicates

that either Pulumi was not installed correctly or it is not in your system’s PATH. If you encounter

this error, double-check the installation steps and ensure that the Pulumi binary is added to the

PATH environment variable.

Installing manually
You can also manually install Pulumi by downloading the binaries for macOS. First, download

the Pulumi binaries here: https://www.pulumi.com/docs/iac/download-install/versions.

https://www.pulumi.com/docs/iac/download-install/versions

Introduction to Infrastructure as Code and Pulumi10

After downloading the tarball file, extract its contents and move the binaries from the Pulumi

directory to a folder that is already included in your system’s $PATH. To verify that Pulumi was

successfully installed, you can run the following command:

$ pulumi version

This command will return the current version of the Pulumi CLI that is installed on your machine.

However, if Pulumi does not exist on your machine because the installation wasn’t successful,

it will return an error message such as 'pulumi' is not recognized as an internal or

external command, operable program or batch file, or something similar. This indicates

that either Pulumi was not installed correctly or it is not in your system’s PATH. If you encounter

this error, double-check the installation steps and ensure that the Pulumi binary is added to the

PATH environment variable.

Installing Pulumi on Linux
To install Pulumi on Linux, you have two options depending on your preferred method: the instal-

lation script or manual installation. The following subsections contain step-by-step instructions

for each approach.

Installing using the installation script
You can run this installation script in your Linux terminal. Run the following command in your

terminal to download and install Pulumi:

$ curl -fsSL https : //get.pulumi. com | sh

If successful, this will install the Pulumi CLI to ~/.pulumi/bin and automatically add it to your

system’s PATH. If it cannot add Pulumi to your PATH automatically, you’ll receive a prompt with

instructions on how to add it manually. You can verify the installation by running the following

command:

$ pulumi version

This command will return the current version of the Pulumi CLI that is installed on your machine.

However, if Pulumi does not exist on your machine because the installation wasn’t successful,

it will return an error message such as 'pulumi' is not recognized as an internal or

external command, operable program or batch file, or something similar. This indicates

that either Pulumi was not installed correctly or it is not in your system’s PATH. If you encounter

this error, double-check the installation steps and ensure that the Pulumi binary is added to the

PATH environment variable.

Chapter 1 11

Installing manually
You can also manually install Pulumi by downloading the binaries for Linux. First, download

the Pulumi binaries here: https://www.pulumi.com/docs/iac/download-install/versions.

After downloading the tarball file, extract its contents and move the binaries from the Pulumi

directory to a folder that is already included in your system’s $PATH. To verify that Pulumi was

successfully installed, you can run the following command:

$ pulumi version

This command will return the current version of the Pulumi CLI that is installed on your machine.

However, if Pulumi does not exist on your machine because the installation wasn’t successful,

it will return an error message such as 'pulumi' is not recognized as an internal or

external command, operable program or batch file, or something similar. This indicates

that either Pulumi was not installed correctly or it is not in your system’s PATH. If you encounter

this error, double-check the installation steps and ensure that the Pulumi binary is added to the

PATH environment variable.

Installing dependencies
To follow along with the entire book, one important dependency you’ll need to install is Node.

js, as we’ll be working with TypeScript for our Pulumi projects. Node.js provides the runtime

environment needed to execute JavaScript and TypeScript code. Additionally, it comes with npm

(short for Node Package Manager), which helps manage project dependencies and libraries.

To install Node.js, first visit the Node.js website at https://nodejs.org and download the latest

stable version. For most users, the recommended version is the long-term support (LTS) version.

Follow the installation prompts based on your operating system, whether you’re using Windows,

macOS, or Linux.

Once the installation is complete, open your terminal or Command Prompt to verify that Node.js

and npm were installed correctly. You can do this by running node -v to check the Node.js version

and npm -v to check the npm version. If both commands return version numbers, your installation

was successful. With Node.js now installed, you are ready to work with TypeScript and Pulumi

throughout the book.

https://www.pulumi.com/docs/iac/download-install/versions
https://nodejs.org

Introduction to Infrastructure as Code and Pulumi12

Understanding resources and stacks
When working with cloud infrastructure, resources are the basic building blocks of your system.

These resources represent services such as virtual machines, databases, networking components,

and storage systems. Each of these elements is critical to making your applications run efficiently

and at scale in the cloud. A resource in Pulumi represents a single cloud infrastructure component.

For example, an Amazon EC2 instance, an Azure Blob Storage container, or a Google Cloud SQL

instance can all be treated as resources in Pulumi.

Here’s an example of a simple Pulumi TypeScript code to define an Azure storage account (a

storage resource):

// Create an Azure resource group

const resourceGroup = new azure.resources.ResourceGroup("testgroup");

// Create an Azure storage account

const storage = new azure.storage.StorageAccount("teststorage", {

 resourceGroupName: resourceGroup.name,

 sku: {

 name: "Standard_LRS",

 },

 kind: "StorageV2",

});

In this example, we define a resource called storage using the azure.storage.StorageAccount

class from Pulumi’s Azure Native package. This code specifies that a storage account named

teststorage will be created in Azure. When you run this Pulumi program, the resource is auto-

matically provisioned in your Azure account.

Pulumi organizes resources into stacks. A stack in Pulumi represents an isolated instance of your

cloud infrastructure, similar to how you might have separate environments for development,

staging, and production. Each stack can have its own configuration settings, such as region, cre-

dentials, and environment variables. This enables you to deploy the same infrastructure code

across different environments while keeping each environment isolated.

Let’s say you have three environments: dev, staging, and production. You can create three sep-

arate stacks in Pulumi, each with its own set of configurations. These stacks might have the

same resources but different sizes, configurations, or credentials. For example, your production

environment might have more powerful resources than your dev environment.

Chapter 1 13

Here’s an example of how to create stacks using the Pulumi CLI:

pulumi stack init dev

pulumi stack init staging

pulumi stack init production

This command creates three separate stacks: dev, staging, and production. You can configure

each stack individually. To set specific configurations for a stack, you can use the following CLI

command:

pulumi config set azure:location westus --stack dev

pulumi config set azure:location eastus --stack production

In this example, we set the azure:location configuration to westus for the dev stack and eastus

for the production stack. This flexibility allows you to target different Azure regions or services

depending on the environment.

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book.

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Introduction to Infrastructure as Code and Pulumi14

A stack can be deployed by running the pulumi up command, which provisions all the resources

defined in your code for the selected stack, as in this example:

pulumi up --stack dev

This command applies the infrastructure changes to the dev stack. If you want to deploy your

changes to the production environment, you simply switch to the production stack and run

the command again:

pulumi up --stack production

Stack outputs can also be used to export useful information from a stack that might be needed by

other services or applications. You can define stack outputs by exporting values in your Pulumi

code:

export const storageAccountName = storageAccount.name;

export const blobContainerUrl = pulumi.
interpolate`https://${storageAccount.name}.blob.core.windows.
net/${container.name}`;

This blobContainerUrl value can then be used in other stacks or applications that need to access

the Azure Blob container.

In large infrastructure setups, you might have several stacks working together, each responsible

for a part of the system. For instance, you might have a networking stack that provisions the base

network resources (such as virtual networks and subnets) and an application stack that deploys

the application resources (such as web servers and databases). Pulumi allows you to reference

outputs from one stack in another, making it easier to build complex, multi-stack setups.

Here’s an example of referencing an output from another stack:

const infraStack = new pulumi.StackReference("org/project/stack");

const vnetId = infraStack.getOutput("vnetId");

const subnetId = infraStack.getOutput("subnetId");

The foundation of your Pulumi IaC journey is understanding stacks and knowing that they are

the key to organizing, isolating, and managing environments. Stacks help you deploy consis-

tent infrastructure across different stages of development while ensuring that your resources

are provisioned in a repeatable, automated way. By mastering how stacks and resources work

together, you gain full control over your cloud infrastructure, making it easier to scale, maintain,

and evolve your systems over time.

Chapter 1 15

Pulumi state and state management
One of the core concepts when working with IaC tools such as Pulumi is state management.

Pulumi tracks the state of your cloud infrastructure, which is necessary to understand what re-

sources exist, their current configuration, and how they relate to each other. This information is

crucial when making updates or destroying resources, as it allows Pulumi to know exactly what

needs to be created, modified, or deleted.

In Pulumi, state refers to a snapshot of the resources that have been deployed by Pulumi in a given

stack. Pulumi keeps this state to ensure that it can compare the current live infrastructure with the

desired infrastructure defined in your code. This state file is automatically updated whenever you

make changes to your infrastructure by running commands such as pulumi up or pulumi destroy.

When you run pulumi up, Pulumi takes the infrastructure configuration you’ve defined in code

(such as creating a virtual network or a storage account), compares it with the current state, and

then performs the necessary actions (creates, updates, or deletes resources). This comparison

ensures that only the differences between your desired state and actual infrastructure are applied,

which prevents unnecessary changes and downtime.

Here’s a simple example of what state looks like conceptually:

{

 "resources": [

 {

 "name": "myStorageAccount",

 "type": "azure:storage:Account",

 "id": "/subscriptions/.../mystorageaccount",

 "properties": {

 "resourceGroupName": "myResourceGroup",

 "location": "eastus"

 }

 },

 {

 "name": "myBlobContainer",

 "type": "azure:storage:BlobContainer",

 "id": "/subscriptions/.../mycontainer",

 "properties": {

Introduction to Infrastructure as Code and Pulumi16

 "accountName": "myStorageAccount",

 "publicAccess": "Blob"

 }

 }

]

}

This example state snippet shows that Pulumi is tracking two Azure resources: a storage account

and a blob container. When you make changes to your code, Pulumi will look at this state to

decide what needs to be updated.

Where is Pulumi state stored?
Pulumi state can be stored in several ways. By default, Pulumi stores the state in Pulumi Cloud

(also called Pulumi Service), which is a managed backend for storing and managing your state

files. However, you can also configure Pulumi to store the state in self-hosted options, such as an

Amazon S3 bucket, Azure Blob Storage, or Google Cloud Storage.

Pulumi Cloud
Pulumi Cloud is the default option for storing your state. It’s a fully managed service that securely

stores your state files in the cloud. Here’s how to use Pulumi Cloud:

•	 When you create a new Pulumi stack, the state is automatically saved in Pulumi Cloud.

You don’t need to configure anything special.

•	 To create a new stack using Pulumi Cloud, run the following:

pulumi stack init dev

This command will automatically set up your state in Pulumi Cloud, and you can view the stack’s

state by logging in to the Pulumi console at app.pulumi.com.

Self-hosted state backends
If you prefer not to use Pulumi Cloud, you can store your state in a self-hosted backend, such as

Azure Blob Storage, Amazon S3, or Google Cloud Storage. This gives you more control over where

your state files are stored, but it requires you to manage the storage and access policies yourself.

app.pulumi.com

Chapter 1 17

Let’s take a closer look at configuring Pulumi to use Azure Blob Storage for state management:

1.	 First, create an Azure storage account and a blob container that will hold your state files.

You can do that using the Azure portal or through your command line.

2.	 Once your storage account and blob container are created, you can configure Pulumi to

store state there by setting the PULUMI_BACKEND_URL environment variable:

export PULUMI_BACKEND_URL=azblob://<container-path>?

storage_account=<account_name>

This tells Pulumi to use the specified Azure Blob Storage container and storage account

to store its state files. Now, every time you run a command such as pulumi login, the

context will be for the self-hosted backend, and if you run pulumi up, the state will be

saved to the Azure Blob container instead of Pulumi Cloud.

You can also use Amazon S3 and Google Cloud Storage as your Pulumi backend. To use the Am-

azon S3 backend, pass s3://<bucket-name> as <backend-url>:

export PULUMI_BACKEND_URL=s3://<bucket-name>

To use the Google Cloud Storage backend pass gs://<bucket-path> as <backend-url>:

export PULUMI_BACKEND_URL=gs://<my-pulumi-state-bucket>

Using a self-hosted backend gives you full control over your state management and ensures that

your state files are stored in an environment you manage.

Local state
Another option is to store the state file locally on your machine. This can be useful for testing or

small projects where you don’t need the full features of a remote backend. However, it’s import-

ant to note that using local state comes with risks, such as losing state files if your local machine

crashes or is wiped.

To configure Pulumi to use local state, set PULUMI_BACKEND_URL to a local file path:

export PULUMI_BACKEND_URL=file://~/.pulumi

This will save the state files locally on your machine in the ~/.pulumi directory. Be sure to secure

and back up this directory if you choose to use local state, especially for anything beyond small

or experimental projects.

Introduction to Infrastructure as Code and Pulumi18

Managing Pulumi state
To interact with your Pulumi state, you can use several commands provided by the Pulumi CLI:

•	 pulumi stack export: This command allows you to export the current state of your

stack into a JavaScript Object Notation (JSON) file. This is useful if you want to manually

inspect the state or back it up:

pulumi stack export --stack dev > dev-state.json

This will save the current state of the dev stack to a file called dev-state.json.

•	 pulumi stack import: If you have exported your state file and want to import it back

into Pulumi, you can use the import command:

pulumi stack import --stack dev < dev-state.json

This will import the state from the dev-state.json file back into the dev stack.

•	 pulumi stack rm: If you no longer need a stack and want to remove its state file, you can

delete the stack with this command:

pulumi stack rm dev

This removes the dev stack and its associated state file.

•	 pulumi stack history: Pulumi Cloud tracks the history of your stack’s state. To view the

history of a stack, you can use the pulumi stack history command:

pulumi stack history

•	 pulumi state delete: This command allows you to delete a resource from a stack’s

state without affecting the actual resource in the cloud. This is helpful if a resource was

manually deleted outside of Pulumi, or if you want Pulumi to stop tracking a resource

without deleting it. The following code snippet shows how to use it:

pulumi state delete "azure:storage/
account:Account::mystorageaccount"

In this example, the mystorageaccount resource is deleted from Pulumi’s state file but

not from the cloud. This means Pulumi will no longer manage or track this resource, and

subsequent updates won’t affect it. This command is useful when you have resources that

you want to manage manually, or when a resource is no longer relevant to your stack but

still exists in your cloud provider.

Chapter 1 19

•	 pulumi state move: This command allows you to move resources from one stack to

another. This can be helpful when you are splitting your infrastructure across multiple

stacks or consolidating resources from multiple stacks into one. It ensures the resource is

now associated with the correct stack without needing to be reprovisioned. The following

code snippet shows how to use it:

pulumi state move --source dev --dest prod "azure:compute/virtualMac
hine:VirtualMachine::my-vm"

In this example, the virtual machine resource (my-vm) is moved from the dev stack to the

prod stack. Pulumi will now manage this resource as part of the prod stack, and it will no

longer be associated with the dev stack.

•	 pulumi state rename: This command allows you to rename a resource in the state file.

This is particularly useful when you’ve refactored your code and renamed a resource in

your program but need to align the existing state with the new name. The following code

snippet shows how to use it:

pulumi state rename "azure:storage/
account:Account::mystorageaccount" "azure:storage/
account:Account::newstorageaccount"

In this example, mystorageaccount is renamed to newstorageaccount in Pulumi’s state

file. The resource itself is not modified, but Pulumi will now track it under the new name.

•	 pulumi state unprotect: This command removes the protection flag from a resource in

your stack’s state. In Pulumi, protected resources cannot be deleted unless their protection

is explicitly removed. This command is useful when a resource was marked as protected

to prevent accidental deletion, but you now want to allow it to be destroyed as part of a

stack cleanup. The following code snippet shows how to use it:

pulumi state unprotect "azure:storage/
account:Account::mystorageaccount"

This command unprotects the specified Azure Storage Account resource (mystorageaccount),

allowing it to be deleted in subsequent updates or during a stack teardown.

Introduction to Infrastructure as Code and Pulumi20

•	 pulumi state upgrade: This command migrates your stack’s state to the latest supported

version of the Pulumi backend. This is important when Pulumi introduces new features

or changes to how state is handled, and you want to ensure your state is using the most

up-to-date format.

Upgrading your state can also help improve performance, ensure better compatibility with

new resource providers, and take advantage of any state-related enhancements or bug

fixes that have been introduced. It is a good practice to periodically upgrade your state,

especially after upgrading the Pulumi CLI to a new major version.

Before running this command, it’s recommended to back up your current state to avoid

any unforeseen issues. This is particularly important for production environments where

stability is critical.

The following code snippet shows how to use it:

pulumi state upgrade

Running this command will migrate your stack’s state to the latest version, allowing you

to fully benefit from the improvements and new capabilities provided by Pulumi.

The Pulumi programming model
The Pulumi programming model revolves around using standard programming constructs such

as loops, conditionals, functions, and variables to define cloud infrastructure. The benefit of using

familiar languages is that you can reuse libraries, apply business logic, and manage infrastructure

in a more dynamic and flexible way.

At a high level, Pulumi works by taking the code you write, comparing it to the current state of

your infrastructure, and then applying any necessary changes to reach the desired state. This is

done through a series of steps:

1.	 Write infrastructure code: You define your cloud infrastructure using code in the program-

ming language of your choice. For example, you might define virtual machines, storage

accounts, databases, or networking resources.

2.	 Pulumi CLI: The Pulumi CLI is the command-line tool used to manage your Pulumi proj-

ects. When you run commands such as pulumi up, Pulumi takes your infrastructure code,

converts it into API calls, and applies the changes to your cloud provider.

Chapter 1 21

3.	 State management: Pulumi compares your code to the current state of your infrastructure,

tracking what resources have been created, modified, or deleted. This is handled by Pulu-

mi’s state management system, which ensures that the infrastructure matches your code.

4.	 Resource provisioning: Pulumi sends the API requests to your cloud provider (e.g., Azure,

AWS, or GCP) to provision, update, or destroy resources as needed. Pulumi takes care

of managing dependencies between resources and ensures they are provisioned in the

correct order.

The Pulumi programming model makes it easier to manage both your application code and your

infrastructure code in one place, allowing developers to use the same tools and practices for both.

This approach helps teams work more efficiently, as they can use familiar programming languages

and apply the same methods they use for software development to managing cloud resources. It

also makes it easier to automate infrastructure changes, integrate them into existing workflows,

and ensure everything is consistent and well managed.

Pulumi CLI: key commands and operations
The Pulumi CLI is an essential tool when working with Pulumi. It provides the commands needed

to define, deploy, and manage your infrastructure through code. Pulumi’s CLI enables you to create,

update, and destroy cloud resources, as well as manage the different stacks (environments) that

you’re working with.

In this section, we will explore the most important Pulumi CLI commands, how to use them, and

what each one does. If you’re working with Pulumi, becoming comfortable with the CLI is crucial,

as it’s where you’ll spend most of your time deploying and managing your cloud infrastructure:

•	 pulumi new: This command initializes a new Pulumi project. When you’re starting a new

infrastructure project, this is the first command you’ll run. It sets up everything you need

to begin writing code to manage your cloud resources. Here’s how you can use it:

pulumi new azure-typescript

Introduction to Infrastructure as Code and Pulumi22

This command creates a new Pulumi project that uses TypeScript and is set up for Azure

using the azure-typescript template. Pulumi will prompt you for project details such

as the project name and the cloud region. If you’re not sure what project to use, you can

run pulumi new and choose from the 220+ templates Pulumi has available.

Figure 1.1: Pulumi templates

Quick tip: Need to see a high-resolution version of this image? Open this

book in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader is included for free with the purchase of this

book. Scan the QR code OR go to packtpub.com/unlock, then use the search

bar to find this book by name. Double-check the edition shown to make sure

you get the right one.

http://packtpub.com/unlock

Chapter 1 23

•	 pulumi up: This command is one of the most important and frequently used commands

in the Pulumi CLI. It deploys your cloud infrastructure based on the code you’ve written.

When you run pulumi up, Pulumi compares your current state with the desired state de-

fined in your code and then applies the necessary changes to match your infrastructure

with your code. Pulumi will show a preview of the changes it will make, allowing you to

confirm before actually applying them. After confirming, Pulumi will create, update, or

delete resources as needed.

•	 pulumi destroy: If you want to tear down your infrastructure, the pulumi destroy

command is used. This command deletes all the resources defined in your Pulumi project,

returning your environment to its initial state. This command will show a preview of the

resources that will be destroyed, and after confirmation, Pulumi will delete them.

•	 pulumi stack: This command is used to manage different stacks in Pulumi. In previous

sections, you got exposed to some pulumi stack commands that you can use to manage

your stack and state (e.g., pulumi stack export, pulumi stack import, pulumi stack

rm, and pulumi stack history). Beyond those, there are some other commands.

For example, you can create a new stack using the following:

pulumi stack init dev

This command creates a new stack called dev. You can also list all available stacks with the fol-

lowing:

pulumi stack ls

To switch between stacks, use the following:

pulumi stack select dev

This command switches the current working stack to dev. After switching stacks, any changes

you make will only apply to that stack.

•	 pulumi config: This command is used to set, get, and manage configuration values for your

stacks. These configurations can include things such as cloud regions, resource names,

or secrets such as API keys and passwords. We will cover more about configurations in

the next section.

To set a configuration value, you can run the following:

pulumi config set azure:location eastus

Introduction to Infrastructure as Code and Pulumi24

This sets the azure:location configuration to eastus for the currently selected stack. If you’re

dealing with sensitive information such as passwords, you can store them securely using the

--secret flag:

pulumi config set dbPassword mySecurePassword --secret

•	 pulumi preview: Before making changes to your cloud infrastructure, it’s always a good

idea to run a preview. The pulumi preview command shows what changes will be made

without actually applying them. This is useful to verify what will happen before running

pulumi up.

•	 pulumi refresh: This command is used to synchronize Pulumi’s state with the real-world

state of your cloud resources. This is helpful when changes have been made outside of

Pulumi (for example, manually through a cloud provider’s console), and you want Pulumi

to reflect those changes in its state file.

•	 pulumi import: This command allows you to bring existing cloud resources under Pu-

lumi management. For example, if you have already created a virtual machine in Azure

manually, you can import it into Pulumi, so Pulumi starts managing it.

Here’s how you can import a resource:

pulumi import azure:compute/virtualMachine:VirtualMachine my-vm /
subscriptions/xxxxx/resourceGroups/myResourceGroup/providers/Microsoft.
Compute/virtualMachines/my-vm

This command imports an existing Azure virtual machine into Pulumi so that you can manage

it with your Pulumi program.

•	 pulumi state: This command allows you to interact directly with your Pulumi state.

These commands were discussed in the previous section, and they are pulumi state

delete, pulumi state move, pulumi state rename, pulumi state unprotect, and

pulumi state upgrade.

•	 pulumi login and pulumi logout: To access Pulumi’s managed backend (Pulumi Cloud)

or to connect to your chosen backend storage (such as Azure Blob or S3), you need to log

in. The pulumi login command is used for this purpose. To log in to Pulumi Cloud, run

the following:

pulumi login

If you’re using a self-hosted backend, you can specify it with a URL:

pulumi login azblob://my-state-container

Chapter 1 25

This connects Pulumi to the backend where your state will be stored. If you want to disconnect

from your backend, you can use the pulumi logout command. This is useful when you want to

switch backends. To log out of Pulumi Cloud or your managed backend, run the following:

pulumi logout

•	 pulumi cancel: This command is used to cancel an ongoing update. If you realize mid-de-

ployment that something has gone wrong or you want to stop the operation, you can

cancel the update.

•	 pulumi whoami: If you’re working with multiple Pulumi accounts or backends, you might

want to check which account you’re currently logged in to. The pulumi whoami command

shows you the current logged-in user.

•	 pulumi about: This command provides information about your current Pulumi installa-

tion, including version details, backend configuration, and the language runtime being

used.

•	 pulumi version: To check the version of the Pulumi CLI you’re using, the pulumi version

command is handy. Knowing the version helps in debugging and ensuring compatibility

with your project’s dependencies.

•	 pulumi logs: For debugging purposes, the pulumi logs command allows you to view

logs from your Pulumi deployments. This is useful if you’re trying to troubleshoot issues

or see what happened during a failed deployment.

•	 pulumi env: The pulumi env command allows you to manage environments. An envi-

ronment is a named collection of possibly secret, possibly dynamic data. There are some

common subcommands: pulumi env set, pulumi env get, pulumi env ls, pulumi env

rm, and more.

To set a value within an environment, you can use pulumi env set as illustrated here:

pulumi env set org/project/environment <name> <value>

To get a value within an environment, you can use pulumi env get as illustrated here:

pulumi env get org/project/environment[@version] <name>

To remove a value from an environment, you can use pulumi env rm as illustrated here:

pulumi env rm org/project/environment <name>

Introduction to Infrastructure as Code and Pulumi26

You can also list all the environments a logged-in user has access to. To do this, you can use the

pulumi env ls command.

•	 pulumi policy: This command allows you to implement policy-as-code for your Pulumi

projects. This feature enables you to define security and compliance policies that will be

enforced when deploying infrastructure, ensuring that your infrastructure meets the

required standards. Policies can help prevent misconfigurations, enforce best practices,

or comply with security requirements.

Policies in Pulumi are written using familiar programming languages, and they can be applied

to all of your stacks or just specific ones.

Some common subcommands are as follows:

•	 pulumi policy new: Creates a new policy pack

•	 pulumi policy publish: Publishes a policy pack for use in your organization

•	 pulumi policy enable: Enables a policy pack for a specific stack

•	 pulumi policy disable: Disables a policy pack for a stack

•	 pulumi policy ls: List all policy packs in your Pulumi organization

Chapter 14 will cover policy as code, and we will go over these in detail.

Input, output, and configuration
In Pulumi, inputs, outputs, and configuration are essential for managing cloud infrastructure.

These concepts work together to allow for the dynamic handling of resources, their dependencies,

and environment-specific values.

What is a Pulumi organization?

In Pulumi Cloud, a Pulumi organization is a way for teams to work together on

cloud projects. It helps manage who can access different projects and control how

resources are set up and maintained. With an organization, multiple people can

collaborate on the same infrastructure, make sure everyone follows the same rules,

and keep everything organized across different environments such as development

or production. It’s useful for teams or companies that need to manage cloud infra-

structure together in a safe and structured way.

Chapter 1 27

Inputs
Inputs in Pulumi represent values that are required to configure resources. These values can be

static (e.g., hardcoded strings) or dynamic, such as the result of another resource’s creation. In-

puts allow Pulumi to manage dependencies between resources. When one resource depends on

another (for example, a virtual machine depending on a network), Pulumi handles the ordering

and passing of information between them.

Let’s start with a simple example. Here, we create a storage account in Azure, passing the resource

group name as an input:

// Create a resource group

const rgroup = new azure.resources.ResourceGroup("myResourceGroup");

// Create a storage account, referencing the resource group's name as an

// Input

const storageAccount = new azure.storage.
StorageAccount("mystorageaccount", {

 resourceGroupName: rgroup.name, // This is pulumi.Input<string>

 sku: {

 name: "Standard_LRS",

 },

 kind: "StorageV2",

});

In this example, rgroup.name is an Input. Pulumi doesn’t immediately know what the resource

group’s name will be because it’s generated during the deployment process. However, Pulumi

ensures that the name is properly passed to the storage account once the resource group is created.

Outputs
Outputs in Pulumi represent values that are produced after resources are created or updated.

Outputs allow you to capture information about a resource (such as its name, ID, or IP address)

and pass this information to other resources or systems. Outputs are important for connecting

resources and exporting values from your Pulumi stack.

Introduction to Infrastructure as Code and Pulumi28

In this example, we’ll modify the previous code to export the storage account name as an output:

// Create a resource group

const rgroup = new azure.resources.ResourceGroup("myResourceGroup");

// Create a storage account, referencing the resource group's name as an

// Input

const storageAccount = new azure.storage.
StorageAccount("mystorageaccount", {

 resourceGroupName: rgroup.name, // This is pulumi.Input<string>

 sku: {

 name: "Standard_LRS",

 },

 kind: "StorageV2",

});

// Export the storage account name as an output

export const storageAccountName = storageAccount.name;

Here, storageAccount.name is an Output that Pulumi resolves after the storage account is created.

This value can be used in other parts of your program or exported as part of your stack’s outputs.

Configuration in Pulumi
With configurations, you can manage environment-specific settings, such as cloud regions, API

keys, or database URLs, without hardcoding these values in your code. Configuration values are

set using the Pulumi CLI or stored in configuration files and are accessible within your Pulumi

programs.

For example, you might want to set the region where resources are deployed:

pulumi config set azure:location eastus

In your Pulumi code, you can retrieve this configuration value:

import * as pulumi from "@pulumi/pulumi";

const config = new pulumi.Config();

const location = config.require("azure:location");

// Use the location as an input for a resource

Chapter 1 29

const resourceGroup = new azure.resources.
ResourceGroup("myResourceGroup", {

 location: location, // Input from configuration

});

Pulumi also allows you to store secrets securely in configuration, ensuring that sensitive data

such as passwords or API keys is encrypted and not exposed in code or logs. For example, you

can store a database password as a secret:

pulumi config set dbPassword mySecretPassword –secret

You can retrieve the secret in your code using config.requireSecret():

const dbPassword = config.requireSecret("dbPassword");

// Use the secret as an input

const sqlServer = new azure.sql.Server("mySqlServer", {

 administratorLogin: "adminuser",

 administratorLoginPassword: dbPassword, // Input using secret

});

This ensures that the secret is securely handled by Pulumi.

Summary
In this chapter, we covered essential concepts of IaC and the specific steps to get started with Pu-

lumi. We learned how IaC solves issues such as configuration drift and manual errors by allowing

infrastructure to be managed as code. The chapter outlined the installation process for Pulumi

on different operating systems, followed by explanations of key topics such as resources, stacks,

and state management. We also explored how Pulumi handles infrastructure changes by track-

ing the state and ensuring synchronization between code and the live environment. Important

commands such as pulumi up and pulumi stack were discussed, helping you understand how

to deploy, update, and destroy cloud resources, as well as manage multiple environments. This

chapter provided a solid foundation to begin using Pulumi effectively in cloud projects.

In the next chapter, you will build your first Pulumi IaC project, and ‘you’ll be exposed to writing

and organizing code, managing configurations, and handling common issues during deployment.

Introduction to Infrastructure as Code and Pulumi30

Questions
1.	 What is configuration drift, and how does IaC help prevent it?

2.	 How does IaC improve the reproducibility of infrastructure setups?

3.	 What are some of the main benefits of using code to manage cloud infrastructure instead

of manual configuration?

4.	 How can you verify that Pulumi was installed correctly on your machine?

5.	 What is a resource in Pulumi, and how is it defined using code?

6.	 What is the purpose of stacks in Pulumi, and how do they relate to different environments?

7.	 How can you set specific configuration values for different stacks in Pulumi?

8.	 What does Pulumi use state files for, and why are they critical to the IaC process?

9.	 What are the default and alternative storage options for Pulumi state?

10.	 What does the pulumi up command do, and how does it manage infrastructure changes?

11.	 How can you preview changes before deploying them in Pulumi, and why is it important?

12.	 What command would you use to destroy all the resources in a Pulumi stack?

13.	 What are Inputs in Pulumi, and how are they used in defining cloud resources?

14.	 How do you set and retrieve configuration values in Pulumi for different environments?

15.	 What command is used to store sensitive information, such as database passwords, se-

curely in Pulumi?

Further reading
To learn more about the basics of IaC using Pulumi, you can check out this blog post on the Pulumi

website: https://www.pulumi.com/what-is/what-is-infrastructure-as-code/.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

https://www.pulumi.com/what-is/what-is-infrastructure-as-code/
http://packtpub.com/unlock

2
Creating Your First Pulumi IaC

Now that we’ve covered the fundamentals of infrastructure as code (IaC) and Pulumi, it’s time

to create your first IaC project using Pulumi. In this chapter, we’ll walk you through building and

deploying a simple cloud infrastructure project step by step. You’ll start by setting up a project,

defining basic resources, and deploying them using the Pulumi CLI. We’ll explore the core concepts

of writing and organizing your Pulumi code, managing configuration settings, and addressing

common issues you might encounter during deployment.

By the end of this chapter, you’ll have a functional Pulumi project and a solid grasp of the essen-

tial workflows involved in creating and managing cloud infrastructure. You’ll also have learned

valuable techniques for handling configurations, managing secrets securely, and implementing

dynamic infrastructure that responds to changing conditions. This hands-on chapter will give

you the foundational knowledge you need to tackle more complex IaC projects with confidence.

In this chapter, we’re going to cover the following main topics:

•	 Kickstarting your first project

•	 Laying the foundation: Basic resource creation

•	 Secrets and configs: Managing sensitive data

•	 Smart infrastructure: Using conditional logic

•	 Scaling complexity: From simple to sophisticated

Creating Your First Pulumi IaC32

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from here:

https://www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

•	 Since we’ll be deploying resources to Microsoft Azure, you’ll need an Azure account. You

can sign up for a free account or use your existing Azure subscription. For more details,

visit https://azure.microsoft.com/en-us/free/.

•	 The Azure CLI is required to interact with Azure resources from your local machine. You

can install the Azure CLI by following the instructions here: https://docs.microsoft.

com/en-us/cli/azure/install-azure-cli.

Kickstarting your first project
Now that you’re ready to begin, let’s kickstart your very first Pulumi project! In this section, we’ll

guide you through creating a new Pulumi project, understanding its structure, and setting up a

basic infrastructure definition using TypeScript. Don’t worry if this seems overwhelming—by

the end of this section, you’ll have a working project and a clear understanding of the essential

pieces involved. To follow along with this chapter, you should log in to your Azure account by

typing the following command in your terminal:

$ az login

This command will open a browser window where you can sign in with your Azure credentials.

Once signed in, you’re ready to use Pulumi with Azure.

Now that your environment is set up, it’s time to create your first Pulumi project. Pulumi projects

are the foundation of your IaC work, and they help organize your code and configuration.

To create a new project, open your terminal and navigate to the directory where you want your

project to live. Then, run the following command to create a new project:

$ pulumi new azure-typescript

https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/
https://azure.microsoft.com/en-us/free/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Chapter 2 33

Pulumi will guide you through a series of prompts to configure your project:

•	 Project name: This will be the name of your Pulumi project

•	 Project description: You can give a short description of the project

•	 Stack name: Stacks are different environments for your infrastructure (e.g., dev, prod)

•	 Azure location: Choose the Azure region where you want to deploy resources (e.g.,

WestEurope, EastUS)

Once these prompts are completed, Pulumi will generate a new project folder with some starter

files, and you’ll be able to take a look at the basic structure of your new Pulumi project. You should

see a few key files in your project folder:

•	 Pulumi.yaml: This file contains the project configuration, including the project name

and description.

•	 Pulumi.<stack-name>.yaml: This file stores stack-specific configuration, such as envi-

ronment variables and settings.

•	 index.ts: This is the main file where you’ll write your infrastructure code. By default,

Pulumi has already placed some starter code here.

Here’s what your project might look like:

my-first-pulumi-project/

|

|── Pulumi.dev.yaml # Configuration for the "dev" stack

|── Pulumi.yaml # Project configuration

|── index.ts # Main infrastructure code file

|── node_modules/ # Installed dependencies

|── package.json # Project dependencies

|___ tsconfig.json # TypeScript configuration

As we can tell from the folder structure, this is a Pulumi TypeScript project, and we need to install

dependencies using npm. To install them, run the following command inside your project folder:

$ npm install

This will download and install all the necessary packages defined in your package.json file. Once

that’s done, you’re ready to start defining infrastructure.

Each file plays an important role, but the most critical file for now is index.ts, where we’ll define

the cloud resources.

Creating Your First Pulumi IaC34

Laying the foundation: Basic resource creation
Now that the project setup is complete, you can open your index.ts (the entry point) file and start

writing infrastructure declarations. This is where you’ll define the cloud resources that Pulumi

will create for you. For TypeScript projects like this one, the index.ts file is the main file where

all your infrastructure code goes. However, if you’re using other supported languages, such as

Python, Go, or C#, the entry point will be different (__main__.py for Python, main.go for Go, etc.).

For this chapter, we’re sticking with TypeScript.

A common resource in cloud projects is a storage account. Let’s add a simple Azure storage ac-

count to our project. In your index.ts file, start by adding the following code:

import * as pulumi from "@pulumi/pulumi";

import * as azure from "@pulumi/azure-native";

// Create an Azure Resource Group

const resourceGroup = new azure.resources.
ResourceGroup("myResourceGroup", {

 location: "WestEurope",

});

// Create an Azure Storage Account

const storageAccount = new azure.storage.
StorageAccount("mystorageaccount", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 sku: {

 name: "Standard_LRS",

 },

 kind: "StorageV2",

});

This code does a couple of things:

•	 We define an Azure resource group called myResourceGroup in the WestEurope region

•	 We create a storage account named myStorageAccount inside that resource group

•	 The Standard_LRS SKU specifies that we want a locally redundant storage account, and

StorageV2 is the account type

Chapter 2 35

Once you’ve added the code, you can preview the changes before deployment. This is a good

habit because it helps you understand what Pulumi is about to create. You can run the preview

using the following command:

$ pulumi preview

Pulumi will show you a preview of the changes—specifically, that it will create a new resource

group and a storage account. When you run the preview, your terminal should look like the

following screenshot:

Figure 2.1: Pulumi preview

If everything looks good, go ahead and deploy the resources by running the following command:

$ pulumi up

Pulumi will now create these resources in Azure. Once the deployment is complete, you should

see your storage account and resource group in the Azure portal.

Next, let’s expand our infrastructure by adding an Azure Virtual Network (VNet). VNets allow

your resources to communicate with each other securely.

Note

To successfully run pulumi preview, you may need to run pulumi login and az

login first. This is to authenticate you to the Pulumi CLI as well as the Azure CLI

(or the CLI for any other cloud you are using).

Creating Your First Pulumi IaC36

Add the following code to your index.ts file, just below the storage account:

const vnet = new azure.network.VirtualNetwork("myVnet", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 addressSpace: {

 addressPrefixes: ["10.0.0.0/16"],

 },

});

This creates a VNet named myVnet in the same resource group and region as your other resourc-

es. The addressSpace specifies the IP range for the network; in this case, we’re using a range of

10.0.0.0/16.

Now that we have a VNet, let’s add a subnet. A subnet is a range of IP addresses within a VNet,

and it allows you to segment your network for better management:

const subnet = new azure.network.Subnet("exampleSubnet", {

 resourceGroupName: resourceGroup.name,

 virtualNetworkName: vnet.name,

 addressPrefix: "10.0.1.0/24"

});

As usual, preview your changes before deploying:

$ pulumi preview

If everything looks good, deploy the resources:

$ pulumi up

Once the deployment is complete, you’ll have a VNet with a subnet. You can view these in the

Azure portal under the resource group you created.

Let’s take a moment to talk about how resources are configured in Pulumi. Every resource you

create has a set of properties that define its behavior. These properties are typically organized

into blocks such as resourceGroupName, which specifies the Azure resource group where the re-

source will be created; location, which indicates the geographical region for the resource; and

sku, which defines the pricing tier or performance level. You’ve already seen this with the storage

account and VNet, but it applies to every resource you create.

Chapter 2 37

For example, if you wanted to create a more complex virtual machine (VM), you would provide

detailed configurations for things such as size, storage, and networking. Pulumi’s declarative

approach makes it easy to define these configurations in code.

Secrets and configs: Managing sensitive data
Now that you’ve deployed your first infrastructure using Pulumi, it’s time to talk about dynamic

infrastructure and sensitive data. In real-world projects, you’ll often work with secrets such as

API keys, database passwords, and other sensitive information. Storing these values in plain

text can pose serious security risks. Luckily, Pulumi offers a way to manage sensitive data securely

using its built-in secrets management system.

In this section, we’ll explore how to manage secrets and configurations in Pulumi, ensuring that

your infrastructure remains secure.

Configurations in Pulumi allow you to customize the behavior of your infrastructure by setting

parameters such as environment names, resource sizes, and credentials. These settings are

stored in your Pulumi stack and can be accessed programmatically within your code.

To set configurations, Pulumi provides a pulumi config command, which we’ll explore shortly.

The configuration values can be either plain text (such as region names) or encrypted secrets

(such as passwords).

Pulumi treats sensitive data differently from regular configuration values. By marking a value as a

secret, Pulumi ensures that it’s encrypted and stored securely in your Pulumi state file. This means

that even if someone accesses your state file, they won’t be able to see the actual value of the secret.

Let’s go through how to use both configurations and secrets in your Pulumi project.

To start working with configurations, you’ll use the pulumi config command. For example, if

you want to set the location of your Azure resources as a configurable value, you can do so by

running the following:

$ pulumi config set azure:location WestEurope

This stores the WestEurope location in your configuration file, which you can reference in your

code. In your index.ts file, modify the code to use this configuration:

const config = new pulumi.Config();

const location = config.require("azure:location");

const rg = new azure.resources.ResourceGroup("testrg", {

 location: location,

});

Creating Your First Pulumi IaC38

Here, config.require() retrieves the value you stored using the pulumi config set command.

Now, let’s look at how to securely manage sensitive data such as passwords. Suppose you need

to store a database password. You can mark it as a secret by using the pulumi config set com-

mand with the --secret flag:

$ pulumi config set dbPassword --secret mySecretPassword

This ensures that mySecretPassword is encrypted and stored securely in your Pulumi configuration.

You can now retrieve this secret in your code using the requireSecret() method:

const dbPassword = config.requireSecret("dbPassword");

// Export the secret as output (this will remain encrypted in outputs)

export const password = dbPassword;

Even though the password is retrieved and used in your infrastructure code, it remains encrypted

when stored in the Pulumi state file and in the output logs.

Secrets can be applied to various aspects of your infrastructure. For instance, if you’re setting

up an Azure SQL database and need to provide a password for the admin user, you can use the

secret you stored:

const sqlServer = new azure.sql.Server("mySqlServer", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 administratorLogin: "adminUser",

 administratorLoginPassword: dbPassword, // Use the secret password

 // here

});

By using dbPassword as the admin password, Pulumi ensures that it’s not exposed in plain text,

even in the deployment logs.

One of Pulumi’s great features is how it handles sensitive data in the state file. When you store a

secret using pulumi config set --secret, Pulumi encrypts that value. If you look at your stack

configuration file (e.g., Pulumi.dev.yaml), you’ll see something like this:

config:

 myproject:dbPassword:

 secure: v1:k0x$s97... # Encrypted secret value

Chapter 2 39

The secure key indicates that the value is encrypted, making it unreadable without the proper de-

cryption keys. Pulumi handles this encryption behind the scenes, ensuring your secrets stay safe.

As you can see, the Pulumi configuration files, such as Pulumi.dev.yaml, often contain references

to sensitive data. Although these values are encrypted, it’s still good practice to keep configuration

files out of source control. You can add them to your .gitignore file to prevent accidental exposure:

Ignore Pulumi stack configs

Pulumi.*.yaml

This helps ensure that your secrets don’t accidentally end up in a public repository.

Dynamic infrastructure with configs
When provisioning cloud infrastructure, flexibility is essential. You don’t want to hardcode values

such as resource sizes, regions, or environment-specific details in your code. Pulumi’s configu-

ration system allows you to create dynamic infrastructure by making these values configurable,

meaning they can be easily adjusted without changing your core infrastructure code. This flex-

ibility allows you to reuse the same code base across different environments (e.g., development,

testing, and production) while making specific adjustments, such as selecting the appropriate

region or VM size, based on the needs of each environment.

Let’s look at an example where we use Pulumi configurations to dynamically adjust the size of a

VM, which is a virtualized instance that runs an operating system and applications, based on the

environment. Instead of hardcoding the VM size in your index.ts file, you can use a configuration

value that can be changed depending on the stack or environment to which you are deploying. To

do this, start by setting a configuration value for the VM size using the Pulumi CLI:

pulumi config set vmSize Standard_B2s

This command stores Standard_B2s as the size for the VM in the Pulumi configuration for the

current stack. You can use different sizes for different stacks (e.g., smaller sizes for dev and larger

ones for prod).

Once you’ve set the configuration, you can use it in your TypeScript code to define the VM size. In

index.ts, you can retrieve the configuration value and apply it to your infrastructure:

const config = new pulumi.Config();

const vmSize = config.
require("vmSize"); // Require ensures the value is mandatory

// Create a Virtual Machine using the dynamic VM size

Creating Your First Pulumi IaC40

const virtualMachine = new azure.compute.VirtualMachine("myVM", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 vmSize: vmSize, // Use the config value for VM size

 // more code here ...

});

In this example, we have the following:

•	 vmSize is pulled from the Pulumi configuration

•	 We use the value to dynamically determine the size of the VM

This approach allows you to create flexible infrastructure code that can be adapted to different

environments by simply changing the configuration value without modifying the underlying code.

You can set different configuration values for different environments (stacks). For instance, you

might want to use a smaller VM in your development environment and a larger one in production.

To achieve this, you can set the vmSize configuration for each stack.

For the development environment, set a smaller VM size:

pulumi stack select dev

pulumi config set vmSize Standard_B1s

For the production environment, set a larger VM size:

pulumi stack select prod

pulumi config set vmSize Standard_D2s_v3

Now, depending on which stack you deploy (dev or prod), Pulumi will use the appropriate con-

figuration for the VM size. This makes it easy to adjust your infrastructure across different envi-

ronments without touching the code.

Using dynamic configurations like this has some key benefits:

•	 Reusability: You can reuse the same infrastructure code across multiple environments

with different configurations

•	 Flexibility: Configuration changes are quick and don’t require changes to the infrastruc-

ture code itself, making deployments more flexible

•	 Environment-specific behavior: Configurations allow for environment-specific settings

(e.g., using different resource sizes for dev and prod environments), improving cost-effi-

ciency and performance optimization

Chapter 2 41

This dynamic approach is a best practice in IaC, as it ensures you adhere to the don’t repeat

yourself (DRY) principle and that infrastructure changes are simple and manageable.

Accessing configuration values
In previous sections, we’ve seen how configuration values can be accessed using the Config class.

However, there are two primary methods for retrieving these values: require() and get(). Let’s

explore the differences and see how you can use them effectively.

Using require() for mandatory values
The require() method is used when a configuration value is essential for your infrastructure

and should always be provided. If the configuration value is not set, Pulumi will throw an error,

ensuring that you don’t accidentally deploy incomplete or incorrect infrastructure.

Here’s an example where we use require() to retrieve a mandatory configuration value for the

Azure region:

const config = new pulumi.Config();

const region = config.require("azure:location"); // Fails if

 // 'azure:location' is

 // not set

// Create an Azure Resource Group using the region from config

const resourceGroup = new azure.resources.
ResourceGroup("myResourceGroup", {

 location: region,

});

In this code, config.require("azure:location") retrieves the region value that you set us-

ing pulumi config set azure:location WestEurope. If the configuration value is missing,

Pulumi will stop the deployment and raise an error, prompting you to provide the necessary

configuration.Using get() for optional values.

The get() method is used for optional configuration values. If the value is not set, Pulumi returns

undefined, allowing you to provide default values or handle the absence of the configuration

gracefully.

Creating Your First Pulumi IaC42

Here’s an example where get() is used to retrieve an optional setting for enabling diagnostics

in a VM:

const config = new pulumi.Config();

const enableDiagnostics = config.
get("enableDiagnostics") === "true"; // Optional config

// Create a Virtual Machine with optional diagnostics

const virtualMachine = new azure.compute.VirtualMachine("myVM", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 vmSize: "Standard_B2s",

 diagnosticsProfile: enableDiagnostics ? {

 bootDiagnostics: {

 enabled: true,

 },

 } : undefined, // If diagnostics are not enabled, no diagnostics

 // profile is provided

});

In this case, config.get("enableDiagnostics") returns the value of the enableDiagnostics

configuration if it exists. If the value is not set, it returns undefined, and we provide a default

behavior (no diagnostics). This allows you to create infrastructure that adapts based on whether

certain optional configurations are provided.

Combining require() and get()
In many cases, you might need to combine both require() and get() in your infrastructure

code. For example, you might have a mandatory setting such as a resource region but an optional

setting such as resource tags:

const config = new pulumi.Config();

const region = config.require("azure:location"); // Required

const tags = config.get("resourceTags"); // Optional

 const resourceGroup = new azure.resources.
ResourceGroup("myResourceGroup", {

 location: region,

 tags: tags ? JSON.parse(tags) : undefined, // If tags are provided,

 // use them

});

Chapter 2 43

In this example, config.require("azure:location") ensures that the region is always specified,

while config.get("resourceTags") allows you to optionally provide tags. This combination

helps balance flexibility with ensuring that essential settings are provided.

Next, let’s look at how you can provide default values for optional configurations to ensure that

your infrastructure behaves predictably even when certain settings are not explicitly set.

Providing default values
Sometimes, when a configuration value is not set, you may want to provide a default value. This

can be useful when a configuration is optional, but you still want the infrastructure to behave in

a certain way if the value isn’t provided.

You can provide default values by using JavaScript’s || (OR) operator, like so:

const config = new pulumi.Config();

const vmSize = config.get("vmSize") || "Standard_B1s"; // Default to

 // 'Standard_B1s'

const virtualMachine = new azure.compute.VirtualMachine("myVM", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 vmSize: vmSize,

});

In this case, if the vmSize config is not set, the VM will use the default size of Standard_B1s. This

provides flexibility while ensuring your infrastructure still works if certain configurations are

missing.

Retrieving secret configurations
When working with sensitive data, such as passwords or API keys, Pulumi allows you to re-

trieve secrets securely using requireSecret() or getSecret(). These methods work similarly

to require() and get(), but they handle sensitive data securely by marking them as secrets.

For example, you might need to retrieve a secret database password:

const config = new pulumi.Config();

const dbPassword = config.requireSecret("dbPassword"); // Retrieves secret

const sqlServer = new azure.sql.Server("mySqlServer", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 administratorLogin: "adminUser",

Creating Your First Pulumi IaC44

 administratorLoginPassword: dbPassword, // Securely use the secret

 // password

});

In this example, requireSecret("dbPassword") ensures that the database password is treated as

a secret, meaning it will be encrypted and handled securely throughout the deployment process.

Now that we understand how to handle sensitive data securely, let’s explore how to make our in-

frastructure smarter by using conditional logic to adapt to different environments or requirements.

Smart infrastructure: Using conditional logic
When building cloud infrastructure, you often need to make decisions based on certain condi-

tions, such as whether you’re deploying to a production or development environment, or whether

certain resources should exist based on configuration. Pulumi gives you the flexibility to create

smart infrastructure by using conditional logic and loops directly within your code. This allows

you to build infrastructure that adapts to different environments or requirements.

In this section, we’ll explore how to implement conditional logic and loops in Pulumi using

TypeScript, making your infrastructure more dynamic and responsive.

In many cloud environments, you may need to make decisions based on the current configuration

or environment. Take the following examples:

•	 You might only want to create certain resources in a production environment

•	 You could conditionally enable or disable features, such as logging or diagnostics

•	 You may need to loop over a list of items, such as creating multiple VMs or storage accounts

Here, you’d be able to use familiar programming constructs (such as if statements and loops) to

make these decisions dynamically as you define your infrastructure.

Conditional logic
Let’s start with an example of conditional logic. Suppose you want to create an Azure storage

account only if you’re deploying to a production environment. First, you can set a configuration

value to indicate the environment type:

pulumi config set env prod

Chapter 2 45

Now, in your index.ts file, you can use this configuration to conditionally create the storage

account:

const config = new pulumi.Config();

const environment = config.require("env");

if (environment === "prod") {

 const storageAccount = new azure.storage.
StorageAccount("prodstorageaccount", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 sku: {

 name: "Standard_LRS",

 },

 kind: "StorageV2",

 });

}

In this example, the storage account will only be created if the env configuration is set to prod. If

you’re working in a different environment (e.g., dev or test), the storage account won’t be created.

Using loops
If you need to create several VMs or storage accounts based on a list of names, you can use a

loop to define these resources in one go. Let’s create multiple storage accounts based on a list of

environment names:

const environments = ["dev", "test", "prod"];

environments.forEach(env => {

 const storageAccount = new azure.storage.StorageAccount(`${env}
StorageAccount`, {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 sku: {

 name: "Standard_LRS",

 },

 kind: "StorageV2",

 });

});

Creating Your First Pulumi IaC46

In this example, we have the following:

•	 A loop iterates over a list of environments (dev, test, and prod)

•	 For each environment, a new storage account is created with a name that includes the

environment name

This pattern is useful when you need to create multiple similar resources without duplicating code.

Scaling complexity: From simple to sophisticated
Now that you’ve mastered the basics of building infrastructure with Pulumi, it’s time to scale

up and handle more complex scenarios. As your project grows, you’ll likely move from simple

setups to more sophisticated architectures. In this section, we’ll explore how to manage larger

infrastructure projects by organizing resources into multi-tier architectures.

A common architectural pattern in cloud infrastructure is the multi-tier architecture, where

different parts of your application are separated into layers. For example, a web application

might have the following:

•	 A frontend tier for serving web content

•	 A backend tier for processing data and handling logic

•	 A database tier for storing information

In Pulumi, you can define each of these tiers as separate resources, creating a well-organized

structure for your infrastructure.

Let’s start by creating a simple web server for the frontend tier. You can use an Azure app service

to host your frontend:

const appServicePlan = new azure.web.AppServicePlan("appServicePlan", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 sku: {

 name: "B1",

 tier: "Basic",

 },

});

const webApp = new azure.web.WebApp("frontendApp", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

Chapter 2 47

 serverFarmId: appServicePlan.id,

 siteConfig: {

 alwaysOn: true,

 },

});

Here, you’ve created a basic Azure App Service plan and a web app that will serve as the frontend

of your multi-tier architecture.

Next, let’s add a backend API tier. You can use an Azure Functions app to handle the backend logic:

const storageAccount = new azure.storage.
StorageAccount("backendStorage", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 sku: {

 name: "Standard_LRS",

 },

 kind: "StorageV2",

});

const functionApp = new azure.web.WebApp("backendFunctionApp", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 serverFarmId: appServicePlan.id,

 siteConfig: {

 appSettings: [

 {

 name: "AzureWebJobsStorage",

 value: "STORAGE_ACCOUNT_CONNECTION_STRING",

 },

 {

 name: "FUNCTIONS_EXTENSION_VERSION",

 value: "~3",

 },

 {

 name: "WEBSITE_RUN_FROM_PACKAGE",

 value: "1",

 },

Creating Your First Pulumi IaC48

],

 alwaysOn: true,

 },

});

The backend is connected to an Azure storage account, which serves as a storage layer for the

function app. This separation allows your application logic to be handled in the backend, inde-

pendent of the frontend.

For the database tier, you can add an Azure SQL database to store data for the application:

const sqlServer = new azure.sql.Server("sqlServer", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 administratorLogin: "adminUser",

 administratorLoginPassword: "Admin123!",

});

const sqlDatabase = new azure.sql.Database("appDatabase", {

 resourceGroupName: resourceGroup.name,

 serverName: sqlServer.name

});

With this, you’ve added a relational database to your architecture. The frontend and backend tiers

can now interact with this database to store and retrieve data. As your infrastructure becomes

more complex, it’s a good idea to organize your code into modules. Modules allow you to break

up your infrastructure into logical components, making the project easier to manage.

For example, you could separate your project into different files for each tier:

•	 frontend.ts for the web app

•	 backend.ts for the function app

•	 database.ts for the SQL database

Here’s how you could import and use these modules in your index.ts file:

import { createFrontend } from "./frontend";

import { createBackend } from "./backend";

import { createDatabase } from "./database";

const frontendApp = createFrontend(resourceGroup);

const backendApp = createBackend(resourceGroup);

const database = createDatabase(resourceGroup);

Chapter 2 49

This approach keeps your code clean and maintainable, especially as your infrastructure grows.

Summary
In this chapter, we covered the essential steps to create your first IaC project using Pulumi. You

learned how to set up a basic project, define and deploy resources to Microsoft Azure, and con-

figure your Pulumi project with dependencies.

We demonstrated creating fundamental resources such as Azure resource groups and storage

accounts using TypeScript, previewing and deploying the changes. We also explained how to

securely manage sensitive data, such as passwords, using Pulumi’s secrets management system.

Additionally, we explored making infrastructure flexible through configuration, accessing both

mandatory and optional values, and providing defaults. We introduced smart infrastructure

techniques using conditional logic and loops, enabling you to adapt your code to different envi-

ronments. Finally, we discussed scaling infrastructure complexity by organizing code for larger,

multi-tier setups.

In the next chapter, you will learn how to use Pulumi to deploy and manage infrastructure on

Amazon Web Services.

Questions
1.	 What are the key files in a Pulumi TypeScript project, and what is the role of each file?

2.	 How does Pulumi manage multiple environments using stacks, and how do you switch

between them?

3.	 What is the purpose of the pulumi preview command, and why is it important to run it

before pulumi up?

4.	 How does Pulumi handle sensitive data, and how would you securely store a database

password using Pulumi?

5.	 What is the difference between using require() and get() when accessing configuration

values in Pulumi? In what scenarios would you use each?

6.	 Explain how you would dynamically change the size of a VM using Pulumi’s configura-

tion system.

7.	 Describe how you can conditionally create resources based on the environment (e.g., only

create certain resources in production). Provide a code example.

Creating Your First Pulumi IaC50

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

Part 2
Deploying Infrastructure

Across Major Cloud
Providers

The second part of the book focuses on using Pulumi to deploy infrastructure across the four most

widely used cloud platforms. It moves from foundational concepts into practical, provider-spe-

cific implementations, demonstrating how to apply Pulumi’s capabilities in real environments.

You will start with AWS, learning how to provision and configure core services such as compute,

storage, and networking. From there, you will work with Azure to deploy resources that take ad-

vantage of its integrated ecosystem and enterprise features. The journey continues with Google

Cloud, where you will build and manage infrastructure using Pulumi’s Google Cloud provider.

Finally, you will explore Kubernetes deployments with Pulumi, creating and managing clusters

and resources with the same programming language driven approach used for cloud services.

By the end of this part, you will be confident in using Pulumi to deliver infrastructure on any of

these major platforms, applying consistent practices while adapting to each provider’s unique

capabilities.

This part of the book includes the following chapters:

•	 Chapter 3, Deploying with Pulumi on AWS

•	 Chapter 4, Deploying with Pulumi on Azure

•	 Chapter 5, Deploying with Pulumi on Google Cloud

•	 Chapter 6, Deploying with Pulumi on Kubernetes

3
Deploying with Pulumi on AWS

The introductions are out of the way, and it’s now time to use Pulumi to deploy infrastructure

across the major cloud providers. AWS is one of the most widely used cloud platforms in the

world, offering a broad range of services and resources that can be deployed and managed with

Pulumi. In this chapter, you will learn how to set up your AWS environment, configure Pulumi to

work with AWS, and deploy a variety of AWS resources in a secure, scalable, and efficient manner.

We’ll start by configuring your AWS credentials and setting up your Pulumi environment to ensure

secure and seamless interaction with AWS services. From there, we’ll move on to deploying core

AWS resources, such as EC2 instances, S3 buckets, and IAM roles, guiding you through hands-on

examples to help you master these essentials.

Once you’re comfortable with the basics, we’ll explore how to define and deploy custom AWS

resources tailored to your specific needs. These reusable components will allow you to streamline

your Pulumi projects and maximize efficiency.

Finally, we’ll dive into automation and continuous integration, demonstrating how to integrate

Pulumi with CI/CD pipelines to automate AWS deployments, handle updates, and ensure smooth

rollbacks when necessary.

By the end of this chapter, you’ll have the knowledge and confidence to deploy and manage AWS

infrastructure using Pulumi, leveraging automation to ensure your infrastructure is scalable,

reliable, and easy to maintain.

Deploying with Pulumi on AWS54

In this chapter, we’re going to cover the following main topics:

•	 Setting up your AWS environment

•	 Creating and managing core AWS resources

•	 Creating custom AWS resources

•	 Automation and continuous integration

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it here: https://

www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

•	 Since we’ll be deploying resources to AWS, you’ll need an AWS account. You can sign up

for a free account or use your existing AWS account. For more details, visit https://aws.

amazon.com/.

•	 The AWS CLI is required to interact with AWS resources from your local machine. You can

install the AWS CLI by following the instructions here: https://aws.amazon.com/cli/.

•	 The final section of this chapter is about automation and continuous integration, so you’ll

need a GitHub account so that you can create a GitHub Actions workflow. You can create

an account here: https://github.com/.

Setting up your AWS environment
Before you can deploy any infrastructure with Pulumi on AWS, you need to configure your AWS

environment and set up Pulumi to interact with AWS services securely. In this section, we’ll walk

through the steps to configure AWS credentials, set up your Pulumi environment, and ensure

everything is ready for deployment.

The first step is to install the AWS Command Line Interface (CLI). This tool allows you to inter-

act with AWS directly from your terminal and is essential for configuring your environment. To

install the AWS CLI, run the following command based on your operating system.

 https://www.pulumi.com/docs/iac/download-install/
 https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/cli/
https://github.com/

Chapter 3 55

For macOS or Linux, use the following:

curl "https: //awscli.amazonaws. com/AWSCLIV2. pkg" -o "AWSCLIV2.pkg"

sudo installer -pkg AWSCLIV2.pkg -target /

If you don’t want to run the preceding command, or if you’re on a Windows machine, download

and run the installer from the official AWS CLI installation page: https://docs.aws.amazon.
com/cli/latest/userguide/getting-started-install.html

Once the AWS CLI is installed, the next step is to configure your AWS credentials. These creden-

tials are required for Pulumi to interact with AWS securely. In your terminal, run the following:

aws configure sso

This command will prompt you for the following information:

•	 AWS Access Key ID: You can create or retrieve this from the AWS Management Console

under IAM (Identity and Access Management).

•	 AWS Secret Access Key: This is the secret key associated with your access key ID.

•	 Default region name: Choose the region where you want to deploy resources, such as

us-west-2 or eu-central-1.

•	 Default output format: You can set this to json, text, or table. For most cases, json is

recommended.

After entering this information, your AWS credentials will be saved locally and used by both the

AWS CLI and Pulumi.

You should already have the Pulumi CLI installed, and once you have the AWS CLI as well, you

will be able to set up your first Pulumi project for AWS. Navigate to the directory where you want

to store your project, and run the following command to create a new project:

pulumi new aws-typescript

This command will prompt you for several details:

•	 Project name: Choose a name for your Pulumi project

•	 Project description: Optionally, you can add a brief description of your project

•	 Stack name: You can choose dev, prod, or another environment name for this stack

•	 AWS region: Enter the AWS region where your resources will be deployed, such as us-

west-2

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Deploying with Pulumi on AWS56

Once completed, Pulumi will generate a project folder with several files, including Pulumi.yaml

and index.ts, where you will define your infrastructure.

In Pulumi, the AWS provider is what connects your Pulumi code to AWS. By default, Pulumi uses

the AWS credentials and region configured through the AWS CLI. If you need to customize the

AWS provider, you can do so in your Pulumi code.

Here’s an example of how to explicitly configure the AWS provider in your index.ts file:

import * as aws from "@pulumi/aws";

// Set up the AWS provider with a specific region

const provider = new aws.Provider("aws", {

 region: "us-west-2",

});

This example configures the AWS provider to deploy resources to the us-west-2 region. You can

adjust the region or other provider settings as needed.

Before deploying any resources, it’s important to verify that your AWS credentials and Pulumi

environment are properly configured. You can do this by running the following command:

pulumi config

This will display the current configuration for your Pulumi stack, including the AWS region. If

everything is correctly configured, you’re ready to start deploying resources. The following screen-

shot shows what a config may look like.

Figure 3.1: Pulumi config output

Creating and managing core AWS resources
Now that you’ve set up your AWS environment with Pulumi, it’s time to start creating and man-

aging core AWS resources. In this section, we’ll walk through deploying essential AWS resources

such as S3 buckets, EC2 instances, IAM roles, and VPCs. These resources form the backbone of

most AWS deployments, and you’ll get hands-on experience defining and managing them using

Pulumi and TypeScript.

Chapter 3 57

Creating an S3 bucket
Let’s start with one of the most common AWS resources—an S3 bucket. S3 is AWS’s object storage

service, used for storing data such as files, backups, and media. In your Pulumi index.ts file, add

the following code to create a basic S3 bucket:

import * as aws from "@pulumi/aws";

// Create an S3 bucket

const bucket = new aws.s3.Bucket("testBucket", {

 bucket: "test-pulumi-bucket",

 acl: "private", // Set access control to private

});

// Export the bucket name

export const bucketName = bucket.id;

This code creates a new S3 bucket with private access, meaning only authorized users can access

it. Make sure you replace testBucket here with your own unique storage bucket name to avoid

conflicts. To deploy this resource, run the following:

pulumi preview

pulumi up

This will create the S3 bucket in AWS, and the bucket name will be exported as an output (see

Figure 3.2).

Figure 3.2: pulumi up output

Deploying with Pulumi on AWS58

To further control access to the S3 bucket, you can attach policies that define who can access the

bucket and what actions they can perform. Here’s how to add a bucket policy that allows public

read access to objects in the bucket:

// Block public access configuration

const blockPublicAccess = new aws.
s3.BucketPublicAccessBlock("blockPublicAccess", {

 bucket: bucket.bucket,

 blockPublicAcls: false,

 ignorePublicAcls: false,

 blockPublicPolicy: false,

 restrictPublicBuckets: false,

});

// Define the bucket policy

const bucketPolicy = new aws.s3.BucketPolicy("bucketPolicy", {

 bucket: bucket.bucket, // Referencing the bucket created above

 policy: bucket.bucket.apply(bucketName => JSON.stringify({

 Version: "2012-10-17",

 Statement: [{

 Effect: "Allow",

Quick tip: Need to see a high-resolution version of this image? Open this book

in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader is included for free with the purchase of this book. Scan

the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Chapter 3 59

 Principal: "*",

 Action: [

 "s3:GetObject"

],

 Resource: [

 `arn:aws:s3:::${bucketName}/*`

]

 }]

 }))

}, { dependsOn: blockPublicAccess });

This policy allows anyone to read objects in the bucket, which is useful for hosting static websites.

You can modify the policy as needed to restrict or expand access.

Creating an EC2 instance
Next, let’s create an EC2 instance, which is a virtual server that allows you to run applications in

the cloud. First, you’ll need to define a security group that controls inbound and outbound traffic

to the instance. Add this code to your index.ts file:

const securityGroup = new aws.ec2.SecurityGroup("webSecurityGroup", {

 description: "Allow HTTP traffic",

 ingress: [{

 protocol: "tcp",

 fromPort: 80,

 toPort: 80,

 cidrBlocks: ["0.0.0.0/0"], // Allow traffic from anywhere

 }],

 egress: [{

 protocol: "-1",

 fromPort: 0,

 toPort: 0,

 cidrBlocks: ["0.0.0.0/0"], // Allow all outbound traffic

 }],

});

Deploying with Pulumi on AWS60

Now, define the EC2 instance itself:

// Get the most recent Amazon Linux 2 AMI ID

const ami = aws.ec2.getAmi({

 filters: [

 { name: "name", values: ["amzn2-ami-hvm-*-x86_64-gp2"] },

],

 owners: ["amazon"],

 mostRecent: true,

}).then(ami => ami.id);

const ec2Instance = new aws.ec2.Instance("myInstance", {

 instanceType: "t2.micro",

 ami: ami,

 vpcSecurityGroupIds: [securityGroup.id],

 tags: {

 Name: "PulumiEC2Instance",

 },

});

To deploy the EC2 instance and security group, run the following:

pulumi preview

pulumi up

Once the deployment is complete, the public IP of the instance will be displayed, allowing you to

SSH into the server or access it via a web browser if you’ve installed a web server.

Working with IAM roles
Identity and Access Management (IAM) roles in AWS allow you to manage permissions for AWS

services. For example, you may need to create an IAM role that allows an EC2 instance to access

S3 buckets. Here’s how to define an IAM role and attach a policy to allow S3 access:

const role = new aws.iam.Role("ec2S3AccessRole", {

 assumeRolePolicy: JSON.stringify({

 Version: "2012-10-17",

 Statement: [{

 Action: "sts:AssumeRole",

 Effect: "Allow",

 Principal: {

Chapter 3 61

 Service: "ec2.amazonaws.com",

 },

 }],

 }),

});

const policy = new aws.iam.RolePolicy("ec2S3AccessPolicy", {

 role: role.id,

 policy: JSON.stringify({

 Version: "2012-10-17",

 Statement: [{

 Action: ["s3:ListBucket", "s3:GetObject"],

 Effect: "Allow",

 Resource: "*"

 }],

 }),

});

There are so many AWS resources that you can create and manage with Pulumi, and although

we cannot cover everything in this book, the goal is to get you thinking about how you can use

Pulumi to simplify and automate your cloud infrastructure deployments. The hands-on exam-

ples in this section are just the beginning. With Pulumi, you can leverage a wide range of AWS

services and integrate them seamlessly into your projects, whether it’s for storage, compute,

networking, databases, or security. To see more resources and explore all the possibilities, check

out the Pulumi AWS documentation:

https://www.pulumi.com/registry/packages/aws/api-docs.

Creating custom AWS resources
In this section, we’ll explore how to define and deploy custom AWS resources that can be reused

across Pulumi projects. Creating custom resources allows you to package common infrastructure

patterns into modular, reusable components. This approach not only makes your code easier to

maintain but also helps ensure consistency and scalability across multiple deployments.

We’ll introduce how to build these custom resources using Pulumi’s ComponentResource and

explore why creating modular, reusable infrastructure can be a game-changer in managing com-

plex cloud environments.

https://www.pulumi.com/registry/packages/aws/api-docs

Deploying with Pulumi on AWS62

Why create custom resources?
As your infrastructure grows, you’ll often find yourself repeatedly creating the same AWS resourc-

es, such as S3 buckets, EC2 instances, or VPCs. While defining these resources manually works

in small projects, it quickly becomes inefficient and error-prone in larger setups. This is where

custom resources come in.

Custom resources allow you to encapsulate the logic for creating cloud resources into reusable

modules. Instead of duplicating code for every project, you can create a custom resource that

wraps the complexity and offers a clean, simplified interface for deploying infrastructure. By

using custom resources, you do the following:

•	 Increase consistency: Ensure that resources follow best practices (e.g., security settings,

encryption, naming conventions) across all projects.

•	 Improve reusability: Build once, use everywhere. Custom resources let you reuse the

same infrastructure logic across different teams or environments.

•	 Simplify maintenance: If you need to update infrastructure (e.g., a security policy change),

you can update the custom resource once and apply it across all projects that use it.

For example, if you’re frequently deploying S3 buckets with versioning and encryption enabled,

you can wrap this logic into a custom resource and use it across all your projects without having

to rewrite the same configuration.

Custom resources with Pulumi’s ComponentResource
Pulumi’s ComponentResource is a powerful feature that allows you to define custom resources

as reusable components. It helps you group together multiple AWS resources, such as an S3 bucket

and its associated policies, and treat them as a single logical unit.

Using ComponentResource allows you to create more complex infrastructure setups that are still

easy to manage and deploy. While ComponentResource is a key part of creating reusable modules,

it’s not the only tool for doing so—it just helps organize the resources effectively.

Let’s walk through a simple example of creating a custom S3 bucket resource. In this example,

we’ll create an S3 bucket with versioning and encryption enabled. We’ll then package this logic

into a custom resource that can be reused in different Pulumi projects.

Chapter 3 63

First, create a new file called customS3Bucket.ts:

import * as pulumi from "@pulumi/pulumi";

import * as aws from "@pulumi/aws";

export interface CustomS3BucketArgs {

 bucketName: string;

}

export class CustomS3Bucket extends pulumi.ComponentResource {

 public readonly bucket: aws.s3.Bucket;

 constructor(name: string, args: CustomS3BucketArgs, opts?:

 pulumi.ResourceOptions) {

 super("custom:resource:CustomS3Bucket", name, {}, opts);

 // Create the S3 bucket with versioning and encryption

 this.bucket = new aws.s3.Bucket(name, {

 bucket: args.bucketName,

 versioning: {

 enabled: true,

 },

 serverSideEncryptionConfiguration: {

 rule: {

 applyServerSideEncryptionByDefault: {

 sseAlgorithm: "AES256",

 },

 },

 },

 });

 // Register outputs for the bucket name

 this.registerOutputs({

 bucketName: this.bucket.bucket,

 });

 }

}

Deploying with Pulumi on AWS64

Here’s what’s happening in this code:

•	 CustomS3BucketArgs: This interface defines the inputs for the custom resource, such as

the S3 bucket name.

•	 CustomS3Bucket: This class extends ComponentResource, allowing us to group related

resources together. We use this class to create an S3 bucket with versioning and encryp-

tion enabled.

•	 registerOutputs(): This function registers any outputs (such as the bucket name), which

can be accessed by other parts of your infrastructure.

Once you’ve created your custom resource, you can use it in any Pulumi project. Here’s how to

instantiate the custom S3 bucket in index.ts:

import { CustomS3Bucket } from "./customS3Bucket";

// Create a custom S3 bucket

const myCustomBucket = new CustomS3Bucket("myCustomBucket", {

 bucketName: "my-custom-pulumi-bucket",

});

// Export the bucket name

export const bucketName = myCustomBucket.bucket.bucket;

By using this custom S3 bucket, you ensure that every bucket you create follows the same stan-

dards (versioning, encryption) without having to repeat the same code.

One of the benefits of creating custom resources is the ability to extend them easily. Let’s enhance

the custom S3 bucket by adding an event notification that triggers a Lambda function when an

object is uploaded.

•	 In customS3Bucket.ts, update the code as follows:

export class CustomS3BucketWithNotifications extends

pulumi.ComponentResource {

 public readonly bucket: aws.s3.Bucket;

 constructor(name: string, args: CustomS3BucketArgs, opts?:

 pulumi.ResourceOptions) {

 super(

 "custom:resource:CustomS3BucketWithNotifications",

 name,

Chapter 3 65

 {},

 Opts

);

 // Create the S3 bucket

 this.bucket = new aws.s3.Bucket(name, {

 bucket: args.bucketName,

 versioning: {

 enabled: true,

 },

 serverSideEncryptionConfiguration: {

 rule: {

 applyServerSideEncryptionByDefault: {

 sseAlgorithm: "AES256",

 },

 },

 },

 });

 // Add an event notification to trigger a Lambda function

 const notification = new aws.s3.BucketNotification(

 `${name}-notification`,

 {

 bucket: this.bucket.id,

 lambdaFunctions: [{

 lambdaFunctionArn: lambdaFunction.arn,

 events: ["s3:ObjectCreated:*"],

 }],

 });

 this.registerOutputs({

 bucketName: this.bucket.bucket,

 });

 }

}

•	 Now, this custom resource not only creates an S3 bucket but also triggers a Lambda func-

tion when objects are created in the bucket.

Deploying with Pulumi on AWS66

Organizing and sharing custom resources
Once you’ve created several custom resources, you’ll want to organize them in a way that makes it

easy to share and reuse them across projects. A good practice is to package your custom resources

into modules and libraries, which you can then publish to npm or a private repository.

For example, you might structure your project like this:

my-custom-aws-resources/

│

|── customS3Bucket.ts

|── customVpc.ts

|── customEc2.ts

By organizing custom resources into a directory structure like this, you can easily import and use

them in any Pulumi project.

Versioning custom resources
As your infrastructure evolves, you’ll likely need to update your custom resources. When making

changes, it’s important to version your custom modules. Versioning ensures that different proj-

ects can continue using older versions of the resource without breaking, while newer projects

can take advantage of updates.

For example, if you enhance CustomS3Bucket with additional functionality (such as lifecycle

policies), you can release a new version of the module. Projects that rely on the older version can

continue working as expected.

Automation and continuous integration
Automation in AWS deployments helps reduce manual errors, as CI/CD pipelines ensure that

every infrastructure change is applied consistently. This consistency also speeds up deployments,

allowing infrastructure updates to be deployed faster with less manual intervention. Additionally,

automation enables rollbacks; if something goes wrong during a deployment, a well-configured

pipeline allows you to quickly revert to a previous stable version. By ensuring consistency across

environments, automation makes it easy to replicate infrastructure changes in different environ-

ments such as development, staging, and production, helping maintain reliability across the board.

To get started, you’ll need to create a GitHub Actions workflow that runs Pulumi commands

to manage your AWS infrastructure. First, ensure your Pulumi project is already set up in your

repository.

Chapter 3 67

Next, create a new file called .github/workflows/pulumi.yml to define the GitHub Actions work-

flow.

Here’s a basic example of a GitHub Actions workflow that deploys AWS infrastructure using

Pulumi:

name: Pulumi AWS Deploy

on:

 push:

 branches:

 - main

jobs:

 deploy:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout repository

 uses: actions/checkout@v2

 - name: Set up Node.js

 uses: actions/setup-node@v2

 with:

 node-version: '14'

 - name: Install Pulumi

 run: |

 curl -fsSL https://get.pulumi.com | sh

 export PATH=$PATH:$HOME/.pulumi/bin

 - name: Install dependencies

 run: npm install

 - name: AWS Configure

 uses: aws-actions/configure-aws-credentials@v1

 with:

 aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}

 aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}

 aws-region: us-west-2

 - name: Pulumi Preview

 run: pulumi preview

 - name: Pulumi Deploy

 run: pulumi up --yes

Deploying with Pulumi on AWS68

Here’s a breakdown of the key parts of the GitHub Actions workflow:

•	 on: push: This tells GitHub Actions to trigger the workflow whenever changes are pushed

to the main branch.

•	 jobs: The deploy job runs on the ubuntu-latest environment, meaning the workflow

will be executed in a Linux virtual machine.

•	 Set up Node.js and Pulumi: The workflow installs Node.js (required for TypeScript Pulumi

projects) and Pulumi.

•	 AWS Configure: This step configures the AWS credentials using the secrets stored in your

GitHub repository (AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY). Make sure you

add these credentials as secrets in your GitHub repo settings.

•	 Pulumi Preview and Deploy: Finally, the workflow runs pulumi preview to show the

planned changes and pulumi up --yes to apply the changes and deploy your AWS re-

sources.

The workflow example provided here is just the beginning—there are many ways to customize

and extend these workflows to fit your needs. We’ll dive deeper into CI/CD best practices and

other automation techniques using other CI/CD tools later in the book. For now, you’re equipped

to start automating your AWS deployments with Pulumi and GitHub Actions.

Summary
This chapter covered how to deploy infrastructure on AWS using Pulumi. We started by setting

up the AWS environment and configuring Pulumi to interact securely with AWS services. You

learned how to create core AWS resources such as S3 buckets, EC2 instances, and IAM roles, and

how to automate the process using continuous integration with GitHub Actions. The chapter

also explored creating custom AWS resources that can be reused across projects, making your

infrastructure deployments more modular and scalable.

In the next chapter, you will learn how to use Pulumi to deploy and manage infrastructure on

Microsoft Azure.

Chapter 3 69

Questions
1.	 How do you initialize a new Pulumi project for AWS using TypeScript?

2.	 What is the purpose of the AWS provider in Pulumi, and how is it configured?

3.	 Describe how to create an S3 bucket using Pulumi in TypeScript.

4.	 How do you create an EC2 instance in Pulumi?

5.	 What is the significance of IAM roles in AWS, and how are they created with Pulumi?

6.	 What are the key benefits of creating custom AWS resources using Pulumi’s

ComponentResource?

7.	 Explain the structure of a GitHub Actions workflow for deploying AWS infrastructure

using Pulumi.

8.	 How do you configure AWS region settings explicitly in Pulumi?

9.	 What role does automation play in Pulumi deployments, and how can it be integrated

with CI/CD?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

4
Deploying with Pulumi on
Azure

Azure is one of the most widely used cloud platforms in the world, offering a broad range of

services and resources that can be deployed and managed with Pulumi. In this chapter, you will

learn how to set up your Azure environment, configure Pulumi to work with Azure, and deploy

a variety of Azure resources in a secure, scalable, and efficient manner.

We’ll start by configuring your Azure credentials and setting up your Pulumi environment to en-

sure secure and seamless interaction with Azure services. From there, we’ll move on to deploying

core Azure resources.

Once you’re comfortable with the basics, we’ll explore how to define and deploy custom Azure

resources tailored to your specific needs. These reusable components will allow you to streamline

your Pulumi projects and maximize efficiency.

Finally, we’ll dive into automation and continuous integration, demonstrating how to integrate

Pulumi with CI/CD pipelines to automate Azure deployments, handle updates, and ensure smooth

rollbacks when necessary.

By the end of this chapter, you’ll have the knowledge and confidence to deploy and manage Azure

infrastructure using Pulumi, leveraging automation to ensure that your infrastructure is scalable,

reliable, and easy to maintain.

Deploying with Pulumi on Azure72

In this chapter, we’re going to cover the following main topics:

•	 Setting up your Azure environment

•	 Creating and managing core Azure resources

•	 Creating custom Azure resources

•	 Automation and continuous integration

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from https://

www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

•	 Since we’ll be deploying resources to Azure, you’ll need an Azure account. You can sign

up for a free account or use your existing Azure account. For more details, visit the Azure

website here:

•	 https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account.

•	 The Azure CLI is required to interact with Azure resources from your local machine. You

can install the Azure CLI by following the instructions here: https://learn.microsoft.

com/en-us/cli/azure/install-azure-cli.

•	 The final section of this chapter is about automation and continuous integration, so you’ll

need a GitHub account so that you can create a GitHub Actions workflow. You can create

an account here: https://github.com/.

Setting up your Azure environment
Before you can start deploying infrastructure to Azure with Pulumi, you need to configure your

Azure environment and ensure that Pulumi can interact securely with Azure services. In this sec-

tion, we’ll guide you through setting up Azure credentials, configuring the Pulumi environment,

and preparing everything for deployment.

The first step is to install the Azure Command-Line Interface (CLI), which is essential for man-

aging your Azure account and configuring authentication for Pulumi.

https://www.pulumi.com/docs/iac/download-install/
https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/
https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://github.com/

Chapter 4 73

For Linux, use the following command to install the Azure CLI:

curl -sL https : //aka. ms/InstallAzureCLIDeb | sudo bash

For macOS, it’s recommended to install the Azure CLI using Homebrew. Run the following com-

mand:

brew update && brew install azure-cli

For Windows, you can download the installer from the Azure CLI installation page: https://

learn.microsoft.com/en-us/cli/azure/install-azure-cli-windows.

Once installed, verify the Azure CLI is working by running the following:

az --version

Once you’ve verified that the Azure CLI has been installed, you need to log in to your Azure account.

Run the following command to initiate the login process:

az login

This will open a web browser where you can enter your Azure credentials. After successfully logging

in, the Azure CLI will display the details of your account and subscriptions. Depending on your

version of the Azure CLI, it will prompt you to choose a subscription, as displayed in Figure 4.1.

Figure 4.1: Azure CLI subscription selection

However, if that doesn’t happen, you can set a default subscription using the following command:

az account set --subscription "YOUR_SUBSCRIPTION_ID"

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-windows
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-windows

Deploying with Pulumi on Azure74

You should already have the Pulumi CLI installed, and once you have the Azure CLI as well, you

will be able to set up your first Pulumi project for Azure. Navigate to the directory where you want

to store your project, and run the following command to create a new project:

pulumi new azure-typescript

This command will prompt you to provide the following:

•	 Project name: Choose a name for your Pulumi project

•	 Project description: Optionally, add a description of your project

•	 Stack name: Select an environment for the stack, such as dev or prod

•	 Azure location: Choose a region for your resources, such as WestEurope or EastUS

Once complete, Pulumi will generate a basic project with several files, including Pulumi.yaml

(project settings) and index.ts (your main infrastructure code file).

Pulumi uses the Azure credentials configured through the Azure CLI to authenticate with Azure

services. By default, Pulumi will automatically pick up your Azure credentials from the CLI, but

if you need to specify additional options (such as different tenants or subscriptions), you can con-

figure this directly in your Pulumi code.

Here’s an example of how you can configure the Azure provider within your Pulumi project:

const provider = new azure.Provider("azure", {

 subscriptionId: process.env.AZURE_SUBSCRIPTION_ID,

 tenantId: process.env.AZURE_TENANT_ID,

});

In this example, environment variables such as AZURE_SUBSCRIPTION_ID and AZURE_TENANT_ID

can be used to specify credentials explicitly, which is especially useful in automation environ-

ments such as CI/CD.

Let’s verify that everything is working by creating a simple Azure resource. Resource groups are

used to group related resources together in Azure. In your index.ts file, add the following code

to create an Azure resource group:

const resourceGroup = new azure.resources.
ResourceGroup("myResourceGroup", {

 location: "WestEurope",

});

Chapter 4 75

To deploy this resource, run the following commands in your terminal:

pulumi preview

pulumi up

Pulumi will show you the planned changes and then deploy the resource group to Azure.

Creating and managing core Azure resources
In this section, we’ll explore how to deploy and manage essential Azure resources using Pulumi.

While you may be familiar with resources such as storage accounts and virtual networks, we’ll

focus on more advanced Azure services that are crucial for building robust cloud infrastructure.

Through hands-on examples, you’ll learn how to define and manage resources such as Azure

Kubernetes Service (AKS), Azure Key Vault, and Azure Load Balancer.

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book.

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Deploying with Pulumi on Azure76

Creating an AKS cluster
AKS is a managed Kubernetes service that simplifies deploying, managing, and scaling contain-

erized applications. Let’s create an AKS cluster using TypeScript.

In your index.ts file, add the following code:

const aksCluster = new azure.containerservice.
ManagedCluster("myAKSCluster", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 agentPoolProfiles: [{

 count: 2,

 vmSize: "Standard_DS2_v2",

 mode: "System",

 name: "agentpool",

 }],

 dnsPrefix: "myakscluster",

 identity: {

 type: "SystemAssigned",

 },

 kubernetesVersion: "<latest-version>",

 enableRBAC: true,

});

This code sets up an AKS cluster with two nodes using the Standard_DS2_v2 VM size. You can

adjust the cluster size, Kubernetes version, and other parameters depending on your requirements.

You can deploy the cluster by running pulumi up.

Creating an Azure key vault
Azure Key Vault is a secure storage service for secrets, keys, and certificates. You can use Key Vault

to store sensitive information such as API keys, passwords, and certificates securely. Here’s how to

create an Azure key vault in your Pulumi project:

const keyVault = new azure.keyvault.Vault("myKeyVault", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 properties: {

 sku: {

Chapter 4 77

 family: "A",

 name: "standard",

 },

 tenantId: azure.authorization.getClientConfig().then(config =>

 config.tenantId),

 accessPolicies: [],

 },

});

Once deployed, you can add secrets, certificates, and keys to the key vault for secure management.

Creating an Azure web app (Azure App Service)
Azure App Service is a fully managed platform for building, deploying, and scaling web applica-

tions. You can deploy a web app with Pulumi by creating an App Service plan and then deploying

the app itself. Here’s how to set up Azure App Service:

const appServicePlan = new azure.web.AppServicePlan("myAppServicePlan", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 sku: {

 name: "B1",

 tier: "Basic",

 },

});

 const webApp = new azure.web.WebApp(" mytestweb-app", {

 name: "mytestweb-app",

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 serverFarmId: appServicePlan.id,

 kind: "app"

});

The preceding code creates a basic web application hosted on an App Service plan. You can ad-

just the SKU to scale up or down based on your needs. You can also add app settings and other

configurations you might need.

Deploying with Pulumi on Azure78

Configuring an Azure Load Balancer
Azure Load Balancer distributes incoming traffic across multiple servers, helping you build

high-availability systems. Here’s how to create an Azure load balancer using Pulumi:

const publicIP = new azure.network.PublicIPAddress("myPublicIP", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 sku: {

 name: "Basic",

 }

});

const loadBalancer = new azure.network.LoadBalancer("myLoadBalancer", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 sku: {

 name: "Basic",

 },

 frontendIPConfigurations: [{

 name: "myFrontendIP",

 publicIPAddress: { id: publicIP.id }

 }],

});

This creates a public-facing load balancer that can be used to distribute traffic across multiple

backend resources. To deploy it, you can run the pulumi up command.

There are so many Azure resources that you can create and manage with Pulumi, and although

we cannot cover everything in this book, the goal is to get you thinking about how you can use

Pulumi to simplify and automate your cloud infrastructure deployments. The hands-on examples

in this section are just the beginning. With Pulumi, you can leverage a wide range of Azure services

and integrate them seamlessly into your projects, whether it’s for storage, compute, networking,

databases, or security. To see more resources and explore all the possibilities, check out the Pulumi

Azure documentation: https://www.pulumi.com/registry/packages/azure-native/api-docs/.

https://www.pulumi.com/registry/packages/azure-native/api-docs/

Chapter 4 79

Creating custom Azure resources
In this section, we will explore how to define and deploy custom Azure resources that can be re-

used across different Pulumi projects. Custom resources allow you to encapsulate infrastructure

configurations into reusable components, simplifying your setup and ensuring consistency across

your deployments. While we previously introduced ComponentResource in Chapter 3, we’ll apply

similar concepts here but focus on creating and customizing Azure resources.

Creating custom Azure resources is useful for managing infrastructure at scale. If you find your-

self repeatedly deploying the same types of resources (such as storage accounts, app services, or

databases), you can encapsulate the logic for these resources into reusable components. This not

only saves time but also ensures that all your deployments follow best practices and are consistent

across multiple environments, such as development, staging, and production.

Let’s begin with something small: a custom Azure storage account. We’ll create a storage account

with custom settings such as replication, access tier, and encryption. The goal is to define these

settings once and reuse them across different projects.

Here’s how you can define a custom Azure storage account in a custom file you create. You can

call it customStorageAccount.ts:

// import needed libraries

export class CustomStorageAccount {

 public readonly storageAccount: azure.storage.StorageAccount;

 constructor(name: string, resourceGroupName: pulumi.
Input<string>, location: pulumi.Input<string>) {

 this.storageAccount = new azure.storage.StorageAccount(name, {

 resourceGroupName: resourceGroupName,

 location: location,

 sku: {

 name: "Standard_LRS"

 },

 kind: "StorageV2",

 accessTier: "Hot",

 enableHttpsTrafficOnly: true,

 allowBlobPublicAccess: false,

 encryption: {

 services: {

Deploying with Pulumi on Azure80

 blob: {

 enabled: true,

 },

 },

 keySource: "Microsoft.Storage",

 },

 });

 }

}

In this code, we define a CustomStorageAccount class that encapsulates the logic for creating a

storage account with custom settings such as locally redundant storage (LRS), a Hot access tier,

and HTTPS-only access. You can reuse this class across your projects by passing different resource

group names and locations.

To use this custom storage account in your Pulumi project, instantiate the class and pass in the

required arguments, such as the resource group name and location. Here’s how to use it in your

index.ts file:

import { CustomStorageAccount } from "./customStorageAccount";

const storageAccount = new CustomStorageAccount("customstore",
resourceGroup.name, resourceGroup.location);

This setup creates a storage account with predefined settings, ensuring that you don’t need to

rewrite the same code every time you need a storage account in a different project. To deploy

this, run pulumi up.

Now, let’s extend this concept. Suppose you want to deploy a web app to an Azure App Service

Environment (ASE) with custom configurations. ASE provides an isolated and highly scalable

environment for running your web applications.

We can create a custom web app that is deployed into an ASE with specific settings, such as scaling

configurations and custom domains.

Here’s how to define a custom web app class that deploys to an ASE:

export class CustomWebApp {

 public readonly webApp: azure.web.WebApp;

 constructor(name: string, resourceGroupName: pulumi.
Input<string>, location: pulumi.Input<string>, aseId: pulumi.
Input<string>) {

Chapter 4 81

 const appServicePlan = new azure.web.AppServicePlan(`${name}-
plan`, {

 resourceGroupName: resourceGroupName,

 location: location,

 sku: {

 name: "I1", // Isolated SKU for ASE

 tier: "Isolated",

 },

 hostingEnvironmentProfile: {

 id: aseId,

 },

 });

 this.webApp = new azure.web.WebApp(name, {

 resourceGroupName: resourceGroupName,

 location: location,

 serverFarmId: appServicePlan.id,

 httpsOnly: true,

 siteConfig: {

 alwaysOn: true,

 minTlsVersion: "1.2",

 },

 });

 }

}

In this code, we define a CustomWebApp class that encapsulates the logic for creating a web app in

an ASE. The web app has custom settings such as HTTPS-only access, TLS 1.2 enforcement, and

an isolated SKU for better scalability. Once you have successfully created your custom web app,

you can also use it in index.ts.

Automation and continuous integration
Automating Azure deployments ensures that updates are applied consistently across different

environments such as development, staging, and production. This means you don’t need to

manually apply every change, which helps avoid mistakes. Automation also makes deployments

faster and smoother, allowing updates to happen as soon as the code is changed. If something

goes wrong, CI/CD pipelines make it easy to roll back to a previous working version, ensuring

minimal downtime.

Deploying with Pulumi on Azure82

We can create a GitHub Actions workflow that runs Pulumi commands automatically when you

push code to your repository’s main branch. Let’s create a simple GitHub Actions workflow to

automate the deployment process.

First, create a file called .github/workflows/pulumi.yml in your GitHub repository and add the

following content:

name: Pulumi Azure Deploy

on:

 push:

 branches:

 - main

jobs:

 deploy:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout repository

 uses: actions/checkout@v2

 - name: Set up Node.js

 uses: actions/setup-node@v2

 with:

 node-version: '14'

 - name: Install Pulumi

 run: |

 curl -fsSL https://get.pulumi.com | sh

 export PATH=$PATH:$HOME/.pulumi/bin

 - name: Azure CLI Login

 uses: azure/login@v1

 with:

 creds: ${{ secrets.AZURE_CREDENTIALS }}

 - name: Install dependencies

 run: npm install

 - name: Pulumi Preview

 run: pulumi preview

 - name: Pulumi Deploy

 run: pulumi up --yes

Chapter 4 83

Let’s break down the key parts of the GitHub Actions workflow:

•	 on: push: This tells GitHub Actions to trigger the workflow whenever changes are pushed

to the main branch.

•	 jobs: The deploy job runs the actual steps needed to deploy your Azure infrastructure

using Pulumi.

•	 Set up Node.js and Install Pulumi: Since Pulumi uses Node.js for TypeScript projects, the

workflow installs Node.js and the Pulumi CLI.

•	 Azure CLI Login: This step logs in to Azure using a service principal. Make sure to add

your Azure credentials as secrets in the GitHub repository.

•	 Pulumi Preview and Pulumi Deploy: The workflow first runs pulumi preview to show

planned changes, then runs pulumi up to deploy those changes automatically.

The workflow example provided here is just the beginning. There are many ways to customize

and extend these workflows to fit your needs. We’ll dive deeper into CI/CD best practices and

other automation techniques using other CI/CD tools in the Chapter 7. For now, you’re equipped

to start automating your Azure deployments with Pulumi and GitHub Actions.

Summary
In this chapter, we covered how to set up Pulumi for deploying and managing resources on Azure.

We started by configuring the Azure environment, setting up the Azure CLI, and ensuring that

Pulumi could securely connect to Azure services. After that, we explored how to create and man-

age core Azure resources, such as Kubernetes clusters, key vaults, and web apps. The chapter also

explained how to define custom Azure resources for reuse across projects, helping streamline

deployments. Finally, we discussed integrating Pulumi with automation tools such as GitHub

Actions to automate deployments through CI/CD pipelines, making infrastructure management

more efficient and scalable.

In the next chapter, we will cover using Pulumi to deploy resources to Google Cloud.

Questions
1.	 What command is used to create a new Pulumi project for Azure, and what key details

are required during project initialization?

2.	 How does Pulumi automatically pick up Azure credentials from the CLI, and how can you

manually configure Azure credentials in a Pulumi project?

Deploying with Pulumi on Azure84

3.	 How can you define an AKS cluster in Pulumi using TypeScript, and what are some of the

key parameters for configuring the cluster?

4.	 How does the reuse of custom resources improve consistency and follow best practices

across multiple Pulumi projects?

5.	 What are the benefits of automating Azure deployments using CI/CD pipelines?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

5
Deploying with Pulumi on
Google Cloud

Google Cloud is one of the most widely used cloud platforms in the world, offering a broad range

of services and resources that can be deployed and managed with Pulumi. In this chapter, you

will learn how to set up your Google Cloud environment, configure Pulumi to work with Google

Cloud, and deploy a variety of Google Cloud resources in a secure, scalable, and efficient manner,

similar to previous chapters with AWS and Microsoft Azure.

We’ll start by configuring your Google Cloud credentials and setting up your Pulumi environment

to ensure secure and seamless interaction with Google Cloud services. From there, we’ll move on

to deploying core Google Cloud resources.

Once you’re comfortable with the basics, we’ll explore how to define and deploy custom Google

Cloud resources tailored to your specific needs. These reusable components will allow you to

streamline your Pulumi projects and maximize efficiency.

Finally, we’ll dive into automation and continuous integration, demonstrating how to integrate

Pulumi with CI/CD pipelines to automate Google Cloud deployments, handle updates, and ensure

smooth rollbacks when necessary.

By the end of this chapter, you’ll have the knowledge and confidence to deploy and manage

Google Cloud infrastructure using Pulumi, leveraging automation to ensure your infrastructure

is scalable, reliable, and easy to maintain.

Deploying with Pulumi on Google Cloud86

In this chapter, we’re going to cover the following main topics:

•	 Setting up your Google Cloud environment

•	 Creating and managing core Google Cloud resources

•	 Creating custom Google Cloud resources

•	 Automation and continuous integration

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it here: https://

www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

•	 Since we’ll be deploying resources to Google Cloud, you’ll need a Google Cloud account.

You can sign up for a free account or use your existing Google Cloud account. For more

details, visit the Google Cloud website here: https://cloud.google.com/gcp.

•	 The Google Cloud CLI is required to interact with Google Cloud resources from your local

machine. You can install the Google Cloud CLI by following the instructions here: https://

cloud.google.com/sdk/docs/install.

•	 The final section of this chapter is about automation and continuous integration, so you’ll

need a GitHub account so that you can create a GitHub Actions workflow. You can create

an account here: https://github.com/.

Setting up your Google Cloud environment
Before you can start deploying infrastructure to Google Cloud with Pulumi, you need to configure

your Google Cloud environment and ensure that Pulumi can interact securely with Google Cloud

services. In this section, we’ll guide you through setting up Google Cloud credentials, configuring

the Pulumi environment, and preparing everything for deployment.

The first step is to install the Google Cloud CLI/SDK. This tool allows you to interact with Google

Cloud directly from your terminal and is essential for configuring your environment.

https://www.pulumi.com/docs/iac/download-install/
https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/
https://cloud.google.com/gcp
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install
https://github.com/

Chapter 5 87

To install the CLI, run the following command based on your operating system:

curl -O https: //dl.google.com/dl/cloudsdk/channels/rapid/downloads/google-
cloud-cli-<VERSION>-<OS>. tar. gz

tar -xf google-cloud-cli-<VERSION>-<OS>.tar.gz

./google-cloud-sdk/install.sh

If you don’t want to run the preceding command, or if you’re on a Windows machine, you can

either try other options or download and run the installer from the official Google Cloud CLI

installation page: https://cloud.google.com/sdk/docs/install.

Once the Google Cloud CLI is installed, the next step is to authenticate with Google Cloud so that

you are able to use Pulumi with Google Cloud. The following command shows how to authen-

ticate with Google Cloud:

gcloud auth login

Once you’ve successfully authenticated, you can configure gcloud to interact with your Google

Cloud project. To do so, use the following commands:

gcloud config set project <PROJECT_ID>

pulumi config set gcp:project <PROJECT_ID>

Replace <PROJECT_ID> with the ID of the project you want to use. This ensures that all subsequent

operations target this project. Next, enable application default credentials (ADC), which allows

Pulumi to authenticate and interact with your Google Cloud resources. Use this command:

gcloud auth application-default login

Once authenticated, you need to ensure that the required Google Cloud APIs are enabled for

your project. Pulumi uses these APIs to provision and manage resources. For example, to enable

Compute Engine and Cloud Storage APIs, run the following commands:

gcloud services enable compute.googleapis.com

gcloud services enable storage.googleapis.com

If you plan to use other Google Cloud services, enable their respective APIs in the same manner.

You should already have the Pulumi CLI installed, and once you have the gcloud CLI as well, you

will be able to set up your first Pulumi project for Google Cloud. Navigate to the directory where

you want to store your project, and run the following command to create a new project:

pulumi new gcp-typescript

https://cloud.google.com/sdk/docs/install

Deploying with Pulumi on Google Cloud88

This command initializes a new Pulumi project using the Google Cloud TypeScript template. You’ll

be prompted to provide a project name, stack name, and some optional configuration values. Fol-

low the prompts to complete the setup. Pulumi will create a set of starter files, including a Pulumi.

yaml configuration file, a Pulumi.<stack-name>.yaml file for storing stack-specific configuration,

and a program file (index.ts) where you will define your infrastructure.

Open the index.ts file and define the infrastructure you want to deploy. For example, to create

a Google Cloud Storage bucket, you can edit the file to include the following:

import * as pulumi from "@pulumi/pulumi";

import * as gcp from "@pulumi/gcp";

// Create a Google Cloud Storage Bucket

const bucket = new gcp.storage.Bucket("my-bucket", {

 location: "US",

 forceDestroy: true, // Deletes the bucket and contents when destroyed

});

// Export the bucket name

export const bucketName = bucket.name;

This code snippet creates a new storage bucket in the US region and ensures that the bucket and

its contents are deleted when the stack is destroyed.

After defining your infrastructure, you can preview and deploy the resources. First, preview the

changes by running this:

pulumi preview

This will show you what resources Pulumi will create, update, or delete. When you are satisfied

with the preview, deploy the stack by running this:

pulumi up

Pulumi will prompt you to confirm the deployment. Once you confirm it, the resources will be

provisioned in your Google Cloud project. After the deployment, Pulumi will display the outputs,

including the bucket name, which you can verify in the Google Cloud console.

Chapter 5 89

Creating and managing core Google Cloud
resources
Now that you’ve set up your Google Cloud environment with Pulumi, it’s time to start creating

and managing core Google Cloud resources. In this section, we’ll walk through deploying essen-

tial Google Cloud resources such as Compute Engine instances, Cloud SQL databases, Cloud

functions, and Cloud Pub/Sub topics. These resources form the backbone of most Google Cloud

deployments, and you’ll get hands-on experience defining and managing them using Pulumi

and TypeScript.

Creating a Compute Engine instance
Let’s start with creating a Compute Engine instance. Compute Engine instances are virtual

machines that provide the flexibility to run workloads of all types. You can run web applications,

data processing pipelines, and more.

For example, you might use a Compute Engine instance to host a small web server, act as a back-

end for your mobile app, or serve as a node in a larger distributed system. It has options ranging

from lightweight machine types optimized for cost to high-performance instances with GPUs

for machine learning.

To create a Compute Engine instance in your Pulumi project, open the index.ts file and add the

following code:

import * as pulumi from "@pulumi/pulumi";

import * as gcp from "@pulumi/gcp";

const instance = new gcp.compute.Instance("my-instance", {

 machineType: "e2-micro",

 zone: "us-central1-a",

 bootDisk: {

 initializeParams: {

 image: "debian-cloud/debian-11",

 },

 },

 networkInterfaces: [{

 network: "default",

 accessConfigs: [{}],

 }],

});

Deploying with Pulumi on Google Cloud90

export const instanceName = instance.name;

export const instanceIP = instance.networkInterfaces.apply(interfaces
=> interfaces[0].accessConfigs![0].natIp);

This code sets up a virtual machine with the e2-micro machine type, which is a good choice for

lightweight workloads such as testing, development, or running a small server. It’s configured

with a Debian 11 boot disk and is connected to the default network. The external IP address allows

you to access the instance over the internet.

Once you’ve added this code, deploy the instance using Pulumi. First, preview the changes to see

what will be created:

pulumi preview

When everything looks good, deploy the infrastructure:

pulumi up

Pulumi will ask for confirmation before proceeding. Once you confirm, the instance will be created

in your Google Cloud project. Pulumi will also output the instance’s name and public IP address,

which you can use to SSH into the instance or deploy applications.

Creating a Cloud SQL database
Next, let’s create a Cloud SQL database instance, which is a fully managed relational database

service on Google Cloud. Cloud SQL makes it easy to set up and manage databases such as MySQL,

PostgreSQL, and SQL Server without worrying about the underlying infrastructure. It handles

things such as backups, scaling, and updates automatically, so you can focus on building your

application instead of managing databases.

For example, you can use Cloud SQL to host the database for a web application, manage e-com-

merce data, or store analytics results. It’s also great for migrating existing databases to the cloud

because it takes care of a lot of the heavy lifting, such as security patches and scaling, for you.

Here’s how you can create a Cloud SQL database instance in Pulumi. Open your index.ts file

and add the following code:

import * as pulumi from "@pulumi/pulumi";

import * as gcp from "@pulumi/gcp";

const sqlInstance = new gcp.sql.DatabaseInstance("my-sql-instance", {

 databaseVersion: "MYSQL_8_0",

Chapter 5 91

 region: "us-central1",

 settings: {

 tier: "db-f1-micro",

 backupConfiguration: {

 enabled: true,

 },

 },

});

// Export the connection name so it can be used by applications

export const sqlInstanceConnectionName = sqlInstance.connectionName;

This code creates a MySQL database instance in the us-central1 region. The key parameter here

is databaseVersion. Its value is set to MYSQL_8_0, meaning that the instance will use MySQL

version 8.0 as its database engine. You can adjust this parameter to specify a different database

engine if MySQL isn’t the right fit for your application.

For example, if you want to create a PostgreSQL database, you can set databaseVersion to

POSTGRES_14 to use PostgreSQL version 14. Here’s how the code would look:

const sqlInstance = new gcp.sql.DatabaseInstance("my-postgres-instance", {

 databaseVersion: "POSTGRES_14",

 region: "us-central1",

 settings: {

 tier: "db-f1-micro",

 backupConfiguration: {

 enabled: true,

 },

 // other properties...

 },

});

export const sqlInstanceConnectionName = sqlInstance.connectionName;

If your application requires SQL Server, you can configure the database for Microsoft’s relational

database engine. For instance, setting databaseVersion to SQLSERVER_2019_STANDARD will create

an SQL Server 2019 Standard Edition instance.

Deploying with Pulumi on Google Cloud92

Here’s an example:

const sqlInstance = new gcp.sql.DatabaseInstance("my-sqlserver-
instance", {

 databaseVersion: "SQLSERVER_2019_STANDARD",

 region: "us-central1",

 settings: {

 tier: "db-custom-2-3840",

 backupConfiguration: {

 enabled: true,

 },

 },

});

export const sqlInstanceConnectionName = sqlInstance.connectionName;

Each engine—MySQL, PostgreSQL, and SQL Server—has its own use cases and strengths. MySQL

is widely supported and efficient for many general-purpose applications. PostgreSQL offers ad-

vanced features such as JSON support, making it great for complex or modern workloads. SQL

Server is ideal for enterprise applications, especially those deeply integrated with the Microsoft

ecosystem.

The process of deploying these database instances remains the same. Update databaseVersion

to match the engine you need, run pulumi up, and the appropriate database instance will be

provisioned in your Google Cloud project.

Beyond creating the database, let’s imagine that your team comes with an extra requirement to

ensure the database is backed up daily at a specific time. Instead of navigating the Cloud console

and manually enabling this, you can define the backup schedule directly in your infrastructure

code. Here’s how you can incorporate this into the gcp.sql.DatabaseInstance definition:

const sqlInstance = new gcp.sql.DatabaseInstance("my-sql-instance", {

 databaseVersion: "MYSQL_8_0",

 region: "us-central1",

 settings: {

 tier: "db-f1-micro",

 backupConfiguration: {

 enabled: true,

 startTime: "03:00", // Schedule backups at 3AM

Chapter 5 93

 },

 // More code here

 },

});

Now, suppose there’s another requirement to secure the database by keeping it isolated within

a private network, preventing it from being accessed publicly. You can handle this by adding a

private network configuration to the same instance:

const sqlInstance = new gcp.sql.DatabaseInstance("my-sql-instance", {

 databaseVersion: "MYSQL_8_0",

 region: "us-central1",

 settings: {

 tier: "db-f1-micro",

 ipConfiguration: {

 privateNetwork: "projects/{project}/global/networks/{network}",

 },

 // More code here

 },

});

With these configurations added, you’ve integrated automated backups and secure networking

into your database setup.

In the next section, you will see how to create infrastructure for Cloud functions.

Creating your Cloud functions infrastructure
Like other serverless functions from different cloud providers, Google Cloud functions let you

run small, event-driven bits of code without worrying about managing servers. They’re great for

things such as processing files, handling HTTP requests, or responding to events from Google

Cloud services such as Pub/Sub or Cloud Storage.

To deploy a Cloud function, the first thing you’ll need is a place to store the function’s source code.

For Google Cloud functions, the source code can be in a Cloud Storage bucket, so we’ll create one.

const bucket = new gcp.storage.Bucket("my-storage-bucket");

Deploying with Pulumi on Google Cloud94

Next, upload the zipped source code for the function to the bucket. This makes the code accessible

for deployment.

const archive = new gcp.storage.BucketObject("source-archive", {

 bucket: bucket.name,

 source: new pulumi.asset.FileAsset("./function-source.zip"), // Path
to the zip file

});

Here, archive represents the uploaded file. FileAsset points to the local path of your zipped

function code, which Pulumi packages and uploads to the bucket. This saves you from manually

uploading the file through the console or CLI, keeping the entire process defined in your project.

Now that the source code is stored in the bucket, you can define the Cloud function itself.

const cloudFunction = new gcp.cloudfunctions.Function("my-function", {

 runtime: "nodejs<XX>",

 entryPoint: "handler",

 sourceArchiveBucket: bucket.name,

 sourceArchiveObject: archive.name,

 triggerHttp: true,

 availableMemoryMb: 128,

 // other properties ...

});

This defines a Cloud function called my-function. Let’s break this down:

•	 runtime: "nodejs<XX>" specifies the environment the function runs in. You should set

it to the environment and version you want to use (e.g., Node.js version 22).

•	 entryPoint: "handler" tells Google Cloud the name of the function to execute. This

should match the exported function name in your source code.

•	 sourceArchiveBucket and sourceArchiveObject link the function to the storage bucket

and the uploaded code.

•	 triggerHttp: true sets up an HTTP trigger, making the function accessible via a URL.

•	 availableMemoryMb: 128 allocates 128 MB of memory for the function, which can be

adjusted based on your requirements.

Finally, export the function’s URL so you can use it in your application or testing.

export const functionUrl = cloudFunction.httpsTriggerUrl;

Chapter 5 95

This outputs the URL for accessing the function, making it immediately available after deployment

without needing to locate it in the cloud console.

In the next section, you will see how to create a cloud pub/sub topic.

Creating a Cloud Pub/Sub topic
This is another commonly used infrastructure component in cloud-native applications. A Cloud

Pub/Sub topic is essentially a messaging system that allows one service to send messages to other

services in a decoupled way. It’s used to build scalable, event-driven architectures where one part

of your application can publish events, and other parts can subscribe to them. For example, you

might have a service publishing user activity events, while another service processes those events

asynchronously, ensuring the two services don’t need to interact directly.

To create a Cloud Pub/Sub topic with Pulumi, start by defining it in your code. Here’s how you

can add a Pub/Sub topic to your infrastructure:

const topic = new gcp.pubsub.Topic("my-topic");

Let’s imagine that the topic gets events from a backend service whenever a new user signs up. The

backend would publish a message to the topic with details about the new user. Now, we want to

trigger an existing Cloud function whenever such a message is published to the topic. To do this,

we’ll set up a subscription that connects the topic to the Cloud function.

const subscription = new gcp.pubsub.Subscription("my-subscription", {

 topic: topic.name,

 pushConfig: {

 pushEndpoint: cloudFunction.httpsTriggerUrl,

 },

});

In this code, pushEndpoint is set to the Cloud function’s URL, so any message published to the

topic is pushed directly to the function. The subscription acts as the bridge between the topic

and the function, ensuring that messages are delivered reliably.

With this setup, the backend publishes a message when a user signs up, the topic receives the

event, and the subscription pushes it to the Cloud function. The function can then process the

message to send a welcome email, log the event, or perform any other required action.

In the next section, you will learn how to create custom Google Cloud resources.

Deploying with Pulumi on Google Cloud96

Creating custom Google Cloud resources
As we’ve said in previous chapters, custom resources allow you to encapsulate infrastructure

logic into reusable modules. This simplifies deployments, ensures consistency, and makes your

code more maintainable. Here, we’ll define a concept we’re calling an Archive Function App. This

custom resource bundles everything a serverless function needs—such as a storage bucket for its

source code, the function definition, and its trigger configuration—into one reusable component.

The idea is to streamline the process of deploying serverless applications. Instead of defining a

Cloud function, creating a storage bucket, and uploading the source code as separate steps, an

Archive Function App wraps these into a single resource. This abstraction not only saves time but

also ensures that the function is always deployed with the correct dependencies and configurations.

Let’s define the Archive Function App using Pulumi’s ComponentResource. The following code

creates a reusable resource that includes a Cloud function, its source code bucket, and support

for both HTTP and Pub/Sub triggers. For the first step, you can create the arguments that the

custom resource will need:

export interface ArchiveFunctionArgs {

 name: string;

 runtime: string;

 entryPoint: string;

 sourcePath: string;

 region: string;

 memory?: number;

 triggerType: "http" | "pubsub";

 topicName?: string;

}

The ArchiveFunctionArgs interface defines the arguments that can be passed to this custom

resource. It includes options for the function’s runtime, entry point, deployment region, source

code path, memory allocation, and trigger type (either HTTP or Pub/Sub). If the trigger is Pub/

Sub, you can optionally specify a topic name.

Now, let’s define the ArchiveFunctionApp class:

export class ArchiveFunctionApp extends pulumi.ComponentResource {

 public readonly functionUrl?: pulumi.Output<string>;

 constructor(name: string, args: ArchiveFunctionArgs, opts?:

 pulumi.ResourceOptions) {

Chapter 5 97

 super("custom:resource:ArchiveFunctionApp", name, {}, opts);

 const bucket = new gcp.storage.Bucket(

 `${name}-source-bucket`, {}, { parent: this }

);

 const sourceArchive = new gcp.storage.BucketObject(

 `${name}-source-archive`, {

 ... }, { parent: this });

const funcArgs: gcp.cloudfunctions.FunctionArgs = { ... };

if (args.triggerType === "http") {

 funcArgs.triggerHttp = true;

 } else if (args.triggerType === "pubsub" && args.topicName) {

 const topic = new gcp.pubsub.Topic(args.topicName, {},

 { parent: this });

 funcArgs.eventTrigger = {

 eventType: "google.pubsub.topic.publish",

 resource: topic.name,

 };

 }

 const cloudFunction = new gcp.cloudfunctions.Function(name,

 funcArgs, { parent: this });

 }

}

This custom resource encapsulates the following:

•	 A Cloud Storage bucket for the function’s source code

•	 The Cloud function definition, including runtime, entry point, and memory allocation

•	 Configurable triggers, supporting both HTTP and Pub/Sub

To use the Archive Function App, you can instantiate it like this:

import { ArchiveFunctionApp } from "./archiveFunctionApp";

// HTTP-triggered function

const httpFunction = new ArchiveFunctionApp("my-http-function", {

 name: "my-http-function",

 runtime: "nodejs16",

 entryPoint: "handler",

Deploying with Pulumi on Google Cloud98

 sourcePath: "./function-source.zip",

 region: "us-central1",

 triggerType: "http",

});

// Pub/Sub-triggered function

const pubsubFunction = new ArchiveFunctionApp("my-pubsub-function", {

 name: "my-pubsub-function",

 runtime: "nodejs16",

 entryPoint: "handler",

 sourcePath: "./function-source.zip",

 region: "us-central1",

 triggerType: "pubsub",

 topicName: "my-topic",

});

In this example, we deploy two functions: one triggered by HTTP and the other by Pub/Sub. Both

functions include everything they need—source code, storage bucket, and trigger configura-

tion—all managed in a single component. This abstraction keeps your infrastructure code clean,

reduces repetition, and simplifies updates across projects.

Automation and continuous integration
Let’s also look at a basic way to automate your Google Cloud and Pulumi infrastructure deploy-

ments using GitHub Actions. Automation ensures that deployments are consistent and reliable

while also integrating seamlessly with your development workflow. In this example, we’ll set

up a GitHub Actions workflow to authenticate with Google Cloud, configure Pulumi, and deploy

infrastructure whenever changes are pushed to the repository.

Here’s the full workflow file for .github/workflows/deploy.yml:

name: Deploy Infrastructure

on:

 push:

 branches:

 - main

jobs:

 deploy:

 runs-on: ubuntu-latest

Chapter 5 99

 steps:

 - name: Checkout repository

 uses: actions/checkout@v3

 - name: Authenticate with Google Cloud

 uses: google-github-actions/auth@v1

 with:

 credentials_json: ${{ secrets.GCP_CREDENTIALS }}

 - name: Set up gcloud CLI

 uses: google-github-actions/setup-gcloud@v1

 with:

 project_id: ${{ secrets.GCP_PROJECT_ID }}

 service_account_key: ${{ secrets.GCP_CREDENTIALS }}

 export_default_credentials: true

 - name: Install Pulumi

 run: |

 curl -fsSL https://get.pulumi.com | sh

 export PATH=$PATH:$HOME/.pulumi/bin

 - name: Install project dependencies

 run: npm install

 - name: Deploy with Pulumi

 run: pulumi up --yes

 env:

 PULUMI_ACCESS_TOKEN: ${{ secrets.PULUMI_ACCESS_TOKEN }}

This workflow begins by defining when it should be triggered. In this case, it looks out for pushes

to the main branch. This ensures that infrastructure deployments are tied directly to changes

merged into the primary branch, aligning with best practices for managing production infra-

structure. The on: push block specifies this trigger condition.

The first step in the workflow uses the actions/checkout action to pull the latest version of your

code repository into the runner. This ensures that the deployment is based on the most recent

changes.

Deploying with Pulumi on Google Cloud100

The next step authenticates with Google Cloud using the google-github-actions/auth action.

This action leverages a service account key stored in the GitHub secret GCP_CREDENTIALS. By

securely accessing this key, the workflow gains the permissions needed to deploy resources to

Google Cloud.

Once authentication is complete, the google-github-actions/setup-gcloud action is used to

install and configure the gcloud CLI. This sets up the project ID and service account credentials,

allowing the runner to interact with Google Cloud APIs. The configuration also exports default

credentials, enabling other tools, such as Pulumi, to use them seamlessly during the deployment

process.

Pulumi is then installed in the workflow environment using its official installation script. This

ensures the Pulumi CLI is available for subsequent steps. The workflow also updates the system

PATH to include the Pulumi installation directory. With Pulumi installed, the workflow runs npm

install to install any project-specific dependencies, such as Pulumi packages or other required

modules, ensuring the project is ready for deployment.

The deployment itself happens in the final step, where the pulumi up command is executed.

This applies the infrastructure changes defined in your project. The command uses the PULUMI_

ACCESS_TOKEN secret to authenticate with Pulumi’s backend for state management, ensuring a

smooth deployment process. The --yes flag is used to bypass interactive prompts, making the

workflow fully automated.

To make this setup work, you need to configure three GitHub secrets in your repository: GCP_

CREDENTIALS (a JSON key for a Google Cloud service account), GCP_PROJECT_ID (your Google Cloud

project ID), and PULUMI_ACCESS_TOKEN (a token for Pulumi’s backend). These secrets securely

store sensitive information and make it accessible only to the workflow. Adding these secrets can

be done via the repository: Settings > Secrets and variables > Actions page.

By integrating Pulumi and Google Cloud with GitHub Actions, this workflow ensures that your

infrastructure is deployed automatically and consistently. Whenever changes are pushed to the

repository, the pipeline handles authentication, configuration, and deployment, freeing you from

manual intervention while maintaining reliability.

Summary
This chapter covered how to deploy infrastructure on Google Cloud using Pulumi. We started

by setting up the Google Cloud environment and configuring Pulumi to interact securely with

Google Cloud services.

Chapter 5 101

You learned how to create core Google Cloud resources such as Google Cloud Storage buckets,

Compute Engine instances, Cloud SQL databases, Cloud functions, and Cloud Pub/Sub topics,

and how to automate the process using continuous integration with GitHub Actions. The chapter

also explored creating custom Google Cloud resources that can be reused across projects, making

your infrastructure deployments more modular and scalable.

In the next chapter, you will learn how to use Pulumi to deploy and manage infrastructure on

Kubernetes.

Questions
1.	 How do you initialize a new Pulumi project for Google Cloud using TypeScript?

2.	 Describe how to create a Cloud Storage bucket using Pulumi in TypeScript.

3.	 How do you create a Compute Engine instance in Pulumi?

4.	 How do you create a Cloud SQL database in Pulumi?

5.	 How do you create an instance of the Google Cloud functions infrastructure in Pulumi?

6.	 How do you create a Google Cloud Pub/Sub topic in Pulumi?

7.	 What are the key benefits of creating custom Google Cloud resources using Pulumi’s

ComponentResource?

8.	 Explain the structure of a GitHub Actions workflow for deploying Google Cloud infra-

structure using Pulumi.

9.	 What role does automation play in Pulumi deployments, and how can it be integrated

with CI/CD for Google Cloud?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

6
Deploying with Pulumi on
Kubernetes

Kubernetes is a powerful tool that helps developers and DevOps teams manage containerized

applications. It allows you to automate the deployment, scaling, and management of applications

across different environments. However, working with Kubernetes can get complicated, especially

when you have to deal with multiple cloud providers. This is where Pulumi makes a big difference.

Pulumi lets you define your Kubernetes infrastructure using familiar programming languages,

such as TypeScript, Python, Go, or C#. Instead of writing long YAML files, you can use real code to

create and manage your Kubernetes clusters and workloads in a more organized and efficient way.

In this chapter, you’ll learn how to set up a Kubernetes environment and connect it to Pulumi.

You’ll be guided through creating a cluster and configuring it so that it’s ready for use. You’ll also

see how to define and deploy important Kubernetes resources such as Pods, Services, and ingress

controllers. These are key parts of running containerized applications, and you’ll get hands-on

experience in managing them with Pulumi.

Later in the chapter, you’ll cover how to handle Kubernetes clusters across different cloud provid-

ers such as Amazon Web Services (AWS), Azure, and Google Cloud. You’ll learn how to manage

clusters on multiple clouds using a single approach. This is important for companies that use

more than one cloud platform or want to avoid being locked into one provider. By the end, you’ll

be able to create, manage, and deploy Kubernetes clusters no matter where they’re running.

Deploying with Pulumi on Kubernetes104

By the time you finish this chapter, you’ll know how to set up Kubernetes clusters, deploy appli-

cations on them, and manage them on multiple clouds.

In this chapter, we’re going to cover the following main topics:

•	 Setting up your Kubernetes environment

•	 Defining and deploying Kubernetes resources

•	 Multi-cloud Kubernetes management

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from here:

https://www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

•	 You’ll need access to a Kubernetes cluster to deploy resources. Here, you have multiple

options. This can be a local Kubernetes cluster, such as minikube (https://minikube.

sigs.k8s.io/docs/start) or kind (https://kind.sigs.k8s.io/), or a cloud-hosted

Kubernetes cluster such as AWS Elastic Kubernetes Service (EKS), Azure Kubernetes

Service (AKS), or Google Kubernetes Engine (GKE). You can choose the option that best

fits your environment.

•	 If you are running Kubernetes locally, you also need to have a Docker container or a vir-

tual machine (VM) environment set up. To install Docker, you can follow the instructions

here: https://docs.docker.com/engine/install/.

•	 The kubectl command-line tool is required to interact with your Kubernetes cluster. It

allows you to view cluster details, debug workloads, and verify that your deployments are

working as expected. You can install kubectl by following the instructions here: https://

kubernetes.io/docs/tasks/tools/.

•	 A kubeconfig file is needed to authenticate with and access your Kubernetes cluster. This

file contains the credentials and configuration details required to connect to your cluster.

You can set up kubeconfig by following these instructions: https://kubernetes.io/docs/

concepts/configuration/organize-cluster-access-kubeconfig/.

https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/
https://minikube.sigs.k8s.io/docs/start
https://minikube.sigs.k8s.io/docs/start
https://kind.sigs.k8s.io/
https://docs.docker.com/engine/install/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Chapter 6 105

Setting up your Kubernetes environment
Before you can start deploying infrastructure to Kubernetes with Pulumi, you need to configure

your environment and ensure that Pulumi can interact securely with Kubernetes. This section will

guide you through everything required to get your environment ready for Kubernetes deployments.

To start, you’ll need a working Kubernetes cluster. If you don’t have access to a managed Kuber-

netes service such as Amazon EKS, AKS, or GKE, you can create a local Kubernetes cluster using

tools such as Minikube or kind. These tools allow you to run Kubernetes locally on your machine.

To create a cluster with Minikube, run the following command:

minikube start

This command starts a local Kubernetes cluster, which can be used for development and testing

purposes. If you’re working with a cloud-hosted Kubernetes cluster, the process is different. For

example, with AWS, you can create an EKS cluster using the AWS CLI or the AWS Management

Console. Once your cluster is up, you’ll need access to it via kubeconfig, which contains the

credentials and endpoint details for connecting to the cluster.

Once installed, verify that it’s working by running the following:

kubectl version --client

This will display the version of the kubectl client installed on your machine. If you see an error,

make sure it’s correctly installed and included in your system’s PATH environment variable.

If you’re using a local Kubernetes cluster with Minikube, you can configure kubectl to use the

Minikube context. Run the following command:

kubectl config use-context minikube

NOTE

To interact with your Kubernetes cluster, you’ll need kubectl, the command-line

tool for Kubernetes. If you don’t already have it installed, follow the instructions in

the official Kubernetes installation guide: https://kubernetes.io/docs/tasks/

tools/.

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/

Deploying with Pulumi on Kubernetes106

This sets the active kubeconfig context to Minikube, and this means that all kubectl commands

will target your local Kubernetes cluster. If you’re working with a cloud-hosted cluster, such as

Amazon EKS, AKS, or GKE, you’ll need to download and configure the kubeconfig file for your

cluster.

For Amazon EKS, you can run the following command to configure your kubeconfig file:

aws eks update-kubeconfig

--region <region>

--name <cluster>

Replace <region> and <cluster> with the appropriate AWS region and cluster name. This com-

mand updates the kubeconfig file with the connection details for your EKS cluster.

For AKS, you can configure your kubeconfig file using the Azure CLI. Run the following command

to download the kubeconfig file for your AKS cluster:

az aks get-credentials

--resource-group <resource-group-name>

--name <aks-cluster-name>

Replace <resource-group-name> with the name of the resource group where your AKS cluster is

located and <aks-cluster-name> with the name of your AKS cluster. This command merges the

AKS cluster configuration with your existing kubeconfig file.

For GKE, you can configure your kubeconfig file using the Google Cloud CLI. Run the following

command to get the credentials for your GKE cluster:

gcloud container clusters get-credentials <cluster-name>

--region <region-name>

--project <project-id>

Replace <cluster-name>, <region-name>, and <project-id> with your cluster name, the region

where the cluster is running, and your Google Cloud project ID. This command retrieves the

credentials and updates the kubeconfig file, allowing kubectl to connect to your GKE cluster.

After running the respective commands for your cloud provider, you can verify access to your

cluster by running the following:

kubectl get nodes

Chapter 6 107

If everything is set up correctly, you’ll see a list of nodes in your cluster. This confirms that kubectl

is successfully connected to your Kubernetes cluster.

At this point, you’re ready to connect Pulumi to Kubernetes. Pulumi automatically uses the

kubeconfig file that kubectl relies on, so no additional configuration is required. To verify that

Pulumi can connect to Kubernetes, you’ll create a new Pulumi project. First, create a directory for

your project and initialize it with Pulumi:

mkdir pulumi-k8s && cd pulumi-k8s

pulumi new kubernetes-typescript

The pulumi new kubernetes-typescript command creates a new Pulumi project set up to work

with Kubernetes using TypeScript. As you run this command, Pulumi will ask you to log in (if you

haven’t already) and enter a name for your project stack.

To check that Pulumi is connected to your Kubernetes cluster, you can list all the pods in your

cluster. This requires using Pulumi’s query functionality, which is designed specifically for reading

existing Kubernetes resources. First, install the required package:

npm install @pulumi/query-kubernetes

Then, open the index.ts file in a text editor and replace its contents with the following code:

import * as pulumi from "@pulumi/pulumi";

import * as kq from "@pulumi/query-kubernetes";

// List all existing pods in the cluster

const pods = kq.list("v1", "Pod");

export const allPods = pods;

To run the script, use the following command:

pulumi up

This command will connect to your Kubernetes cluster using your current kubeconfig context

and display all pods running in the default namespace. If the connection is successful, you’ll see

a list of pod objects, confirming that Pulumi can communicate with your cluster. If there are no

pods in the default namespace, the command will return an empty list, which still indicates a

successful connection.

Deploying with Pulumi on Kubernetes108

Defining and deploying Kubernetes resources
In this section, you’ll learn how to define and deploy Kubernetes resources using Pulumi. Instead

of working with YAML files, you’ll use TypeScript to write resource definitions in a more familiar

and flexible way. This approach makes it easier to organize your configurations and reuse parts

of your code where needed.

You’ll start by understanding key Kubernetes resources such as Pods, Services, Deployments, and

ingress controllers. Each of these resources plays a role in how applications are run, scaled, and

accessed within a Kubernetes cluster. Once you know their purpose, you’ll see how to define

them using Pulumi.

After defining the resources, you’ll learn how to deploy them to a Kubernetes cluster. You’ll see

how to use Pulumi commands to preview, apply, and verify changes in your cluster. This process

ensures that you know what’s changing before any updates are made.

Introduction to Kubernetes resources
When building and running an application on Kubernetes, there are some important resources

you need to understand. Each of these resources plays a specific role in making sure your appli-

cation is always running, can be accessed by users, and is easy to update. When you understand

these resources, you’ll be able to manage your application more effectively.

Let’s say you’re building a website where people can ask and answer questions—similar to an

online forum or Q&A platform. The first key resource you’ll need is a pod. A pod is the smallest

part of a Kubernetes application and runs the container that holds your application code. For

example, if you have a service that handles user interactions such as posting questions, submit-

ting answers, and voting, Kubernetes will run it inside a pod. Sometimes, you may want more

than one container in a pod. For instance, you might have the main Q&A service and a logging

tool running together inside the same pod so that they can share storage and network access. If

a pod stops working (maybe the server it’s on crashes), Kubernetes will automatically create a

new pod to keep the application running. This way, users can always post questions and submit

answers without interruptions.

Next, you’ll want a deployment. While pods handle running containers, a deployment makes

sure you have the right number of pods running at all times. For your Q&A website, you might

want at least three pods running for the user interaction service so that if one pod goes down,

your app stays available. The deployment will automatically replace any pods that fail and keep

the total number of pods at three. Deployments also make it easy to update your app.

Chapter 6 109

For example, if you release a new version of your user interaction service, the deployment will

slowly update each pod, one at a time, instead of shutting everything down all at once. This

process, called a rolling update, makes sure users don’t see any downtime while the update hap-

pens. Without deployments, you would have to manage each pod manually, which would be

time-consuming and error-prone.

While a deployment works great for stateless services (services that don’t have a data store), such

as the user interaction service, it’s not enough when you have services that need to store data,

such as a database. Here, you’d need a StatefulSet. A StatefulSet is similar to a deployment, but

it’s designed to handle stateful applications such as databases. For a Q&A website, you’ll probably

need a database to store user profiles, questions, answers, and votes. Unlike regular pods that

can be created and destroyed without issue, database pods must maintain their data and iden-

tity. For example, if a database pod crashes and a new one is created, it must keep the same data

and hostname as before. StatefulSets ensure that each pod has a unique, stable identifier (such

as db-0, db-1, db-2), and they attach persistent storage to each pod. This means if db-0 crashes,

Kubernetes will replace it but attach it to the same storage volume, so no data is lost. Without

StatefulSets, your database pods would lose their data every time they restart, which would be a

disaster for a site where user questions and answers must be saved permanently.

Once your pods are running, you’ll need a way for users to access them. You can use a service for

this. A service acts like a bridge between the pods and the outside world. For your Q&A website,

you want users to access the user interaction service no matter which pod is handling it. Pods can

move between nodes or restart, but the service provides a single, stable entry point for the user.

If you’ve ever typed a website URL such as www.thisismywebsite.com, you’ve used something

like a service. The service makes sure that users are always connected to the right pod, even if

that pod changes. There are different types of services. If you only want your app to be accessible

inside the cluster (such as internal APIs), you would use a ClusterIP service. If you want users

outside the cluster (such as your website visitors) to access your app, you’d use a LoadBalancer

service, which makes your app available on the internet.

Now, if you want users to access specific pages in your Q&A site, such as /questions to browse

questions or /profile to view user profiles, you’ll need an ingress. An ingress works like a

traffic controller for web traffic. Instead of exposing every part of your app separately, the in-

gress allows you to route all traffic through a single entry point. For example, users could visit

myquestionswebsite.com/questions to see a list of questions or myquestionswebsite.com/

profile to access their user profile. Without ingress, you’d need to create multiple services, which

would be more complex to manage.

www.thisismywebsite.com

Deploying with Pulumi on Kubernetes110

You’ll also need ConfigMaps and Secrets. These two resources help you store settings and sen-

sitive information separately from your application code. For example, if your user interaction

service connects to an external API to analyze trending questions, you don’t want to hardcode the

API URL, username, or password directly in your app. Instead, you can store this information in

a ConfigMap (for general configuration) or a Secret (for sensitive data such a passwords). When

the pods start, they can load this information automatically. This makes it easier to manage

different environments, such as development, staging, and production, where the API URL or

credentials might change.

These Kubernetes resources work together to run, update, and protect your application. Now that

you know about them in theory, let’s see how to define them using Pulumi.

Defining Kubernetes resources with Pulumi
Now that you understand the Kubernetes resources needed for your Q&A website, it’s time to

define them using Pulumi.

To start, let’s define a pod. In Pulumi, you define a pod using k8s.core.v1.Pod. The metadata

section allows you to specify a name and labels for the pod, which are useful for identifying it in

the cluster. The spec section defines the containers that the pod will run. Here’s an example of a

pod definition with two containers:

import * as k8s from "@pulumi/kubernetes";

const qaPod = new k8s.core.v1.Pod("qa-pod", {

 metadata: {

 name: "qa-service-pod",

 labels: { app: "qa-service" },

 },

 spec: {

 containers: [

 {

 name: "qa-container",

 image: "myrepo/qa-service:latest",

 ports: [{ containerPort: 80 }]

 },

 {

 name: "logging-container",

 image: "myrepo/logging-agent:latest",

 ports: [{ containerPort: 8080 }]

Chapter 6 111

 }

]

 }

});

Here, the containers array defines two containers inside the pod. Each container specifies an im-

age to use and a port that it listens on: the main container that runs the Q&A service and a logging

container that tracks user activity. Each container has its own port configuration. The labels in

the metadata section allow other Kubernetes resources, such as services, to connect to this pod.

Next, let’s look at a deployment. A deployment is defined using k8s.apps.v1.Deployment. The

spec section includes the number of replicas and the container template that defines what each

pod will look like. Here’s how you create a deployment that ensures three replicas of the Q&A

service are always running:

const qaDeployment = new k8s.apps.v1.Deployment("qa-deployment", {

 metadata: {

 name: "qa-service-deployment",

 },

 spec: {

 replicas: 3,

 selector: {

 matchLabels: { app: "qa-service" }

 },

 template: {

 metadata: {

 labels: { app: "qa-service" }

 },

 spec: {

 containers: [

 {

 name: "qa-container",

 image: "myrepo/qa-service:latest",

 ports: [{ containerPort: 80 }]

 }

]

 }

 }

 }

});

Deploying with Pulumi on Kubernetes112

In this deployment, the replicas field specifies that three pods should always be running. The

selector field ensures that only pods with the app: qa-service label are controlled by this de-

ployment. The container template is similar to the pod definition, but since this is a deployment,

Kubernetes automatically creates and manages multiple pods.

For managing persistent data, you’ll need a StatefulSet. A StatefulSet uses k8s.apps.

v1.StatefulSet and requires volume configuration to persist data across pod restarts. Here’s

an example for defining a PostgreSQL database:

const qaDatabase = new k8s.apps.v1.StatefulSet("qa-db", {

 metadata: { name: "qa-db" },

 spec: {

 serviceName: "qa-db-service",

 replicas: 1,

 selector: {

 matchLabels: { app: "qa-db" }

 },

 template: {

 metadata: {

 labels: { app: "qa-db" }

 },

 spec: {

 containers: [{

 name: "postgres",

 image: "postgres:14",

 ports: [{ containerPort: 5432 }],

 env: [

 {

 name: "POSTGRES_DB",

 value: "qadb"

 },

 {

 name: "POSTGRES_USER",

 value: "qauser"

 },

 {

 name: "POSTGRES_PASSWORD",

 value: "qapassword"

Chapter 6 113

 },

 {

 name: "PGDATA",

 value: "/var/lib/postgresql/data/pgdata"

 }],

 volumeMounts: [{

 name: "db-storage",

 mountPath: "/var/lib/postgresql/data"

 }]

 }

]

 }

 },

 volumeClaimTemplates: [{

 metadata: {

 name: "db-storage"

 },

 spec: {

 accessModes: ["ReadWriteOnce"],

 resources: {

 requests: {

 storage: "10Gi"

 }

 }

 }

 }]

 }

});

The key part of this StatefulSet is the volumeClaimTemplates part, which requests 10 Gi of stor-

age for each pod. The volumeMounts part attaches the volume to the container at /var/lib/

postgresql/data. This ensures that the database data is retained even if the pod restarts.

Once your services are running, you’ll need a service to expose them. A service is defined using

k8s.core.v1.Service, and it allows you to route traffic to your pods.

Deploying with Pulumi on Kubernetes114

Here’s how you can define a LoadBalancer service that exposes the Q&A service to the internet:

const qaService = new k8s.core.v1.Service("qa-service", {

 metadata: {

 name: "qa-service"

 },

 spec: {

 type: " ClusterIP",

 ports: [{ port: 80, targetPort: 80 }],

 selector: { app: "qa-service" }

 }

});

In this service definition, type: ClusterIP creates an internal service that’s only accessible within

the cluster. The selector field tells the service to route traffic to pods labeled app: qa-service.

This type of service is ideal when you’re using an ingress controller to manage external access, as

the ingress will handle routing internet traffic to your ClusterIP services internally.

If you want to route users to specific pages, you’ll need an ingress resource. Before creating an

ingress, you must first install an ingress controller, such as ingress-nginx or Traefik, in your

cluster, as most Kubernetes clusters don’t include one by default. The ingress controller handles

the actual traffic routing based on your Ingress rules.

An ingress is defined using k8s.networking.v1.Ingress and allows you to define URL paths that

route traffic to specific services. Here’s how to define an ingress for paths such as /questions

and /profile:

const qaIngress = new k8s.networking.v1.Ingress("qa-ingress", {

 metadata: {

 name: "qa-ingress",

 annotations: { "nginx.ingress.kubernetes.io/rewrite-target": "/" }

 },

 spec: {

 rules: [

 {

 host: "myquestionswebsite.com",

 http: {

 paths: [

 {

Chapter 6 115

 path: "/questions",

 pathType: "Prefix",

 backend: {

 service: {

 name: "qa-service",

 port: { number: 80 }

 }

 }

 },

 {

 path: "/profile",

 pathType: "Prefix",

 backend: {

 service: {

 name: "qa-service",

 port: { number: 80 }

 }

 }

 }

]

 }

 }

]

 }

});

This ingress specifies rules to route traffic to /questions and /profile, sending it to qa-service.

Each path uses pathType: Prefix, which matches requests that start with the given path.

To manage application configuration and sensitive data, you’ll need ConfigMaps and Secrets.

ConfigMaps store general settings, while Secrets store encrypted sensitive data such as passwords.

Here’s how you define them:

const qaConfigMap = new k8s.core.v1.ConfigMap("qa-config", {

 metadata: {

 name: "qa-config"

 },

 data: {

 "app.environment": "production",

Deploying with Pulumi on Kubernetes116

 "api.baseUrl": "https://api. myquestionswebsite.com"

 }

});

const qaSecret = new k8s.core.v1.Secret("qa-secret", {

 metadata: {

 name: "qa-secret"

 },

 stringData: {

 "dbUser": "admin",

 "dbPassword": "hello123"

 }

});

The qaConfigMap field defines two configuration keys that are loaded into the app, while the

qaSecret field stores the database username and password securely. The stringData field is used

to provide the Secret values in plain text. Kubernetes encrypts this data before storing it. Although

this example writes this information in plain text just for illustration, you shouldn’t do this in a

real environment. Instead, you should use a more secure approach for handling sensitive data.

A more secure approach would be to use Pulumi’s built-in secrets management functionality to

encrypt sensitive values automatically or integrate Kubernetes with a cloud-native secrets store

such as Azure Key Vault, AWS Secrets Manager, or Google Secret Manager. These tools allow for

encryption at rest, access policies, and automatic rotation of secrets.

Pulumi has Environment, Secrets, and Configuration (ESC), a concept we will discuss in more

detail in Chapter 11, which can help you manage configuration values and secrets securely across

multiple environments such as development, staging, and production. ESC allows you to encrypt

secrets directly in Pulumi’s configuration files and manage them centrally. You can use ESC or

store the secret in the configuration as a secret using the regular Pulumi CLI (we covered this in

Chapter 2).

To securely manage sensitive information such as database credentials using Pulumi ESC, you

can follow these steps:

1.	 Set up Pulumi ESC: Begin by setting up Pulumi ESC in your project. This involves creating

an environment that will hold your configuration and secrets. You can do this using the

Pulumi ESC CLI:

esc env init myproject/dev

Chapter 6 117

This command initializes a new environment named dev within the myproject project.

2.	 Define secrets in the environment: Next, add your sensitive data, such as database cre-

dentials, to the environment. Pulumi ESC allows you to define secrets that are encrypted

and securely stored. You can set a secret using the following command:

esc env set myproject/dev dbPassword hello123 --secret

The --secret flag ensures that the value is treated as a secret and encrypted accordingly.

3.	 Access secrets in your Pulumi program: Now that you have the secret saved in your en-

vironment, you can access it in your Pulumi program by referencing the environment in

your stack configuration and then accessing the secret, like this:

import * as pulumi from "@pulumi/pulumi";

const config = new pulumi.Config();

const dbPassword = config.requireSecret("dbPassword");

The requireSecret function retrieves the secret value securely, and this ensures that it

is not exposed in logs or outputs.

4.	 Use secrets in resource definitions: When defining resources that require a secret, such

as a Kubernetes Secret, you can pass the retrieved secret value directly. Here’s an example:

const qaSecret = new k8s.core.v1.Secret("qa-secret", {

 metadata: {

 name: "qa-secret"

 },

 stringData: {

 "dbPassword": dbPassword

 }

});

In this example, dbPassword is securely injected into the Kubernetes secret without exposing its

plain-text value.

With these definitions and your secure secret referenced properly, you now have all the key Ku-

bernetes resources required for your Q&A website. Now that you have the resources defined, it’s

time to deploy them to your Kubernetes cluster.

Deploying with Pulumi on Kubernetes118

Deploying Kubernetes resources with Pulumi
Once you’ve defined all the Kubernetes resources for your Q&A website, the next step is to deploy

them to a Kubernetes cluster. You can do this by running the following command:

pulumi up

When you run pulumi up, Pulumi will analyze the changes required to achieve the desired state

and present a preview of the resources it will create, update, or delete. Here’s an example of what

you might see when you run pulumi up for the first time:

Previewing update (dev):

 Type Name Plan

+ pulumi:pulumi:Stack qa-platform-dev create

+ kubernetes:core/v1:Pod qa-pod create

+ kubernetes:apps/v1:Deployment qa-deployment create

+ kubernetes:apps/v1:StatefulSet qa-database create

+ kubernetes:core/v1:Service qa-service create

+ kubernetes:networking/v1:Ingress qa-ingress create

+ kubernetes:core/v1:Secret qa-secret create

Resources:

 + 7 to create

The + symbol indicates that these resources will be created. Pulumi shows you what will happen

before making any changes. This gives you an opportunity to review and confirm the update. If

everything looks correct, proceed with the deployment. Pulumi will then create the resources in

your Kubernetes cluster.

Once the deployment is complete, Pulumi provides a summary of the changes it made. The output

might look like this:

Updating (dev):

Type Name Status

+ pulumi:pulumi:Stack qa-platform-dev created

+ kubernetes:core/v1:Pod qa-pod created

+ kubernetes:apps/v1:Deployment qa-deployment created

+ kubernetes:apps/v1:StatefulSet qa-database created

+ kubernetes:core/v1:Service qa-service created

+ kubernetes:networking/v1:Ingress qa-ingress created

Chapter 6 119

+ kubernetes:core/v1:Secret qa-secret created

Outputs:

Resources:

 + 7 created

Duration: 45s

This output confirms that Pulumi successfully created seven resources. After running pulumi up,

you can verify the state of the resources directly in Kubernetes using kubectl. Pulumi tracks the

desired state, but Kubernetes itself maintains the running state of the resources. To check if your

pods are running, use the following command:

kubectl get pods

This command returns a list of pods that are currently running in your Kubernetes cluster. The

output might look like this:

NAME READY STATUS RESTARTS AGE

qa-pod 1/1 Running 0 2m

qa-service-deployment-7xx 1/1 Running 0 2m

qa-service-deployment-748 1/1 Running 0 2m

qa-service-deployment-7c7 1/1 Running 0 2m

qa-database-0 1/1 Running 0 2m

This output shows that several pods are running. The READY column tells you how many containers

in each pod are running. For example, 1/1 means one container is running, and the pod is fully

operational. The qa-service-deployment pod has multiple pods running since it’s a deployment

with three replicas. The qa-database-0 pod is part of a StatefulSet, and its name reflects its index

(starting from 0) to maintain order.

To verify the status of services, you can run the following command:

kubectl get services

The output might look like this:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 2d

qa-service LoadBalancer 10.0.170.75 34.75.210.58 80:31/TCP 2m

Deploying with Pulumi on Kubernetes120

This output shows the qa-service service, which is exposed as a LoadBalancer service. The

EXTERNAL-IP value is the public IP address you can use to access the service. If you navigate to

http://34.75.210.58 (or what your EXTERNAL-IP value is when you do your own deployment),

you should be able to access the Q&A website. Note that it may take a few minutes for the external

IP to become available as the cloud provider sets up the LoadBalancer service.

If you want to see the current state of deployments, you can run the following command:

kubectl get deployments

The output will look like this:

NAME READY UP-TO-DATE AVAILABLE AGE

qa-service-deployment 3/3 3 3 2m

This output shows that qa-service-deployment has three pods running. The UP-TO-DATE column

confirms that all three replicas are running the latest version of the image. The AVAILABLE column

confirms that all three pods are available and ready to serve traffic.

To check the status of the StatefulSet, you can run the following:

kubectl get statefulsets

The output will look like this:

NAME READY AGE

qa-database 1/1 2m

This output shows that the qa-database StatefulSet has one pod running, and it is ready. If the

database pod is deleted for any reason, Kubernetes will automatically re-create it, ensuring that

it stays available.

If you want to see the ingress routing rules, you can run the following:

kubectl get ingress

The output will look like this:

NAME CLASS HOSTS ADDRESS PORTS AGE

qa-ingress <none> myquestionswebsite.com 34.75.210.58 80 2m

http://34.75.210.58

Chapter 6 121

This output shows the ingress resource for your Q&A website. The HOSTS column indicates that

traffic to myquestionswebsite.com will be routed according to the rules defined in the ingress.

The ADDRESS value is the IP address of the LoadBalancer service used to expose the ingress. If

you’ve configured DNS to point myquestionswebsite.com to this IP, users will be able to access

the site at https:// myquestionswebsite.com.

Pulumi maintains the state of all these resources. If you make changes to your Pulumi definitions

(such as updating the container image for the Q&A service), Pulumi will automatically detect the

changes when you run pulumi up. It will only modify the parts of the infrastructure that need

updating.

Once you are done trying out different things with your Pulumi x Kubernetes configuration and

you want to delete all the resources, you can use the following command:

pulumi destroy

Pulumi will show you a preview of all the resources that will be deleted and ask for confirmation.

After you confirm, all the resources will be deleted from your Kubernetes cluster, and Pulumi will

update its state file to reflect that the resources no longer exist.

Updating and managing existing resources
Once your Q&A website is deployed, you’ll likely need to make updates to your Kubernetes re-

sources. This could be as simple as adding a new configuration or updating an existing one. To

illustrate this, let’s work with a ConfigMap. Suppose you originally created a ConfigMap with

the following Pulumi code:

const qaConfigMap = new k8s.core.v1.ConfigMap("qa-config", {

 metadata: {

 name: "qa-config"

 },

 data: {

 "app.environment": "production",

 "api.baseUrl": "https://api.myquestionswebsite.com"

 }

});

Deploying with Pulumi on Kubernetes122

This ConfigMap defines two configuration keys: app.environment and api.baseUrl. Let’s say you

want to add a new configuration key called featureFlags.enableVoting, which will be used to

enable or disable a voting feature on your Q&A site. To make this change, you update the data

section of the ConfigMap to include the new key, like this:

const qaConfigMap = new k8s.core.v1.ConfigMap("qa-config", {

 metadata: {

 name: "qa-config"

 },

 data: {

 "app.environment": "production",

 "api.baseUrl": "https://api.myquestionswebsite.com",

 "featureFlags.enableVoting": "true"

 }

});

Notice that only one line was added: "featureFlags.enableVoting": "true". This change

updates the ConfigMap to include a new feature flag, which can be used to control the behavior

of your Q&A application.

To apply this update, you run the following:

pulumi up

Pulumi will detect that the qa-config resource has changed. Instead of deleting and recreating

the ConfigMap, Pulumi will issue an update to modify only the data section. The preview output

might look like this:

Previewing update (dev):

 Type Name Plan

~ kubernetes:core/v1:ConfigMap qa-config update

Resources:

 ~ 1 to update

The ~ symbol indicates that the resource will be updated. Unlike destructive changes (which

require deletion and recreation), this change only modifies the data field of the ConfigMap. This

approach ensures no downtime and avoids unnecessary re-creation of resources.

Chapter 6 123

If everything looks correct, apply the changes. Pulumi will display a log of the update process,

which might look like this:

Updating (dev):

 Type Name Status

~ kubernetes:core/v1:ConfigMap qa-config updated

Resources:

 ~ 1 updated

The log confirms that Pulumi successfully updated the ConfigMap. No other Kubernetes resources

were affected, and the update was applied efficiently.

To verify the changes in Kubernetes, you can use kubectl to view the contents of the ConfigMap.

Run the following command:

kubectl get configmap qa-config -o yaml

The output will look like this:

apiVersion: v1

data:

 app.environment: production

 api.baseUrl: https ://api. myquestionswebsite. com

 featureFlags.enableVoting: "true"

kind: ConfigMap

metadata:

 name: qa-config

 namespace: default

You can see that the new key, featureFlags.enableVoting, has been added to the data section

of the ConfigMap. This confirms that the update was applied successfully.

Beyond ConfigMaps, you can manage and update the declarations of your Kubernetes resources

using Pulumi. Whether you’re updating container images, scaling deployments, or modifying

StatefulSets, Pulumi tracks only the changes you make and updates them efficiently. Now that

you’ve seen how to use Pulumi to create and manage your Kubernetes resources, let’s go over best

practices for managing Kubernetes in a multi-cloud setting.

Deploying with Pulumi on Kubernetes124

Multi-cloud Kubernetes management
Managing Kubernetes across multiple cloud providers can be challenging, but it also provides

significant benefits, such as increased redundancy and the ability to avoid vendor lock-in. With

a multi-cloud approach, you can run your Kubernetes workloads on different cloud providers

such as AWS, Azure, and Google Cloud, ensuring that your application remains highly available,

even if one cloud provider experiences an outage. However, managing Kubernetes clusters across

multiple providers requires consistent configurations, secure secrets management, and a way to

orchestrate changes across all environments.

Pulumi simplifies multi-cloud Kubernetes management by allowing you to define, deploy, and

update Kubernetes resources on multiple clouds from a single program. Instead of managing

separate configurations for each provider, you can use Pulumi to write a unified, reusable script

that works across AWS, Azure, and Google Cloud. This eliminates the complexity of using dif-

ferent cloud-native tools.

To manage Kubernetes across multiple cloud providers, the first step is to define multiple Kuber-

netes providers in Pulumi. Each provider is linked to a specific Kubernetes cluster. For example,

you might have an Amazon EKS cluster, an AKS cluster, and a GKE cluster. Here’s how you can

configure providers for each of these clouds:

import * as pulumi from "@pulumi/pulumi";

import * as k8s from "@pulumi/kubernetes";

// AWS Kubernetes Provider (EKS)

const awsProvider = new k8s.Provider("aws-k8s", {

 kubeconfig: "eks-kubeconfig-contents"

});

// Azure Kubernetes Provider (AKS)

const azureProvider = new k8s.Provider("azure-k8s", {

 kubeconfig: " aks-kubeconfig-contents"

});

// Google Cloud Kubernetes Provider (GKE)

const gcpProvider = new k8s.Provider("gcp-k8s", {

 kubeconfig: " gke-kubeconfig-contents "

});

Chapter 6 125

Once you have multiple providers set up, you can define shared resources across multiple clusters.

For example, suppose you want to deploy a simple Kubernetes service on all three clouds. Instead

of writing the service three times, you can define it once and use it across all the providers. Here’s

how to do it:

function createService(name: string, provider: k8s.Provider) {

 return new k8s.core.v1.Service(name, {

 metadata: {

 name: name

 },

 spec: {

 type: "LoadBalancer",

 ports: [{ port: 80, targetPort: 80 }],

 selector: { app: name }

 }

 }, { provider });

}

// Create the same service on AWS, Azure, and GCP

const awsService = createService("qa-service-aws", awsProvider);

const azureService = createService("qa-service-azure", azureProvider);

const gcpService = createService("qa-service-gcp", gcpProvider);

In this code, the createService function defines a Kubernetes service. The function is called

three times, each time using a different provider. This creates identical LoadBalancer services

on AWS, Azure, and Google Cloud. Each cloud provider will allocate a public IP address for the

service, giving you three independent endpoints for your Q&A website.

Synchronizing configurations across clouds is one of the most difficult parts of multi-cloud man-

agement. You want to ensure that your Kubernetes resources remain consistent across all clouds.

One approach to this is to use Pulumi’s environment configuration. With Pulumi, you can store

configurations for each cloud provider in the Pulumi.<stack>.yaml file. For example, you might

define different configurations for development, staging, and production environments.

Deploying with Pulumi on Kubernetes126

Here’s an example of what a configuration file might look like:

Pulumi.dev.yaml

config:

 aws:region: "us-east-1"

 azure:region: "eastus"

 gcp:region: "us-central1"

 replicas: 2

This configuration defines the region for each cloud provider and the number of replicas you

want for each cluster. You can access these configuration values in your Pulumi program like this:

import * as pulumi from "@pulumi/pulumi";

const config = new pulumi.Config();

const replicas = config.requireNumber("replicas");

const deployment = new k8s.apps.v1.Deployment("qa-deployment", {

 metadata: { name: "qa-service-deployment" },

 spec: {

 replicas: replicas,

 selector: { matchLabels: { app: "qa-service" } },

 template: {

 metadata: { labels: { app: "qa-service" } },

 spec: {

 containers: [

 {

 name: "qa-container",

 image: "myrepo/qa-service:latest",

 ports: [{ containerPort: 80 }]

 }

]

 }

 }

 }

});

When you run pulumi up, the number of replicas will be set based on the environment configura-

tion. For development, you might have two replicas, but in production, you could have five replicas.

With these, you can more efficiently manage Kubernetes clusters across multiple clouds.

Chapter 6 127

Summary
In this chapter, we covered how to define, deploy, and manage Kubernetes resources using Pulu-

mi. You learned how to set up a Kubernetes environment, define essential resources such as Pods,

Deployments, StatefulSets, Services, ConfigMaps, and Secrets, and deploy them using pulumi up.

We also explored how to manage updates efficiently without re-creating resources and how to

verify deployments using kubectl. Finally, we discussed multi-cloud Kubernetes management,

where you learned how to manage clusters on AWS, Azure, and Google Cloud from a single Pulumi

program. These skills will equip you to build, update, and maintain Kubernetes infrastructure

with consistency and control.

In the next chapter, we will cover integrating Pulumi with continuous integration/continuous

deployment (CI/CD) pipelines.

Questions
1.	 Explain the process of connecting Pulumi to a cloud-hosted Kubernetes cluster and how

kubeconfig is used in this process.

2.	 How does Pulumi’s approach to defining Kubernetes resources differ from using YAML

manifests, and what are the key benefits of this approach?

3.	 How would you handle environment-specific configuration for a Kubernetes Deployment

across development, staging, and production environments using Pulumi?

4.	 In multi-cloud Kubernetes management, how would you ensure that Kubernetes resourc-

es remain consistent across AWS, Azure, and GCP? Describe your strategy for handling

configuration differences.

5.	 When creating a Kubernetes Service in Pulumi, explain how to expose it to the internet

using a LoadBalancer service. What configurations are required in the Service definition?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

Part 3
Integration and Cross-
Provider Capabilities

The third part of the book focuses on taking Pulumi beyond single-provider deployments and

integrating it into broader workflows. It shows how to combine automation, governance, and

cross platform flexibility to manage complex infrastructure at scale.

You will begin by integrating Pulumi into CI/CD pipelines, enabling automated delivery of in-

frastructure changes alongside application code. From there, you will explore Pulumi’s provider

ecosystem, extending your automation to services beyond the major cloud platforms, including

SaaS tools and on-premises systems.

Next, you will learn strategies for managing infrastructure across multiple regions and environ-

ments, ensuring consistency, reliability, and repeatability. This leads to multi cloud and hybrid

scenarios, where Pulumi’s flexibility allows you to orchestrate resources across different providers

and environments from a single codebase.

By the end of this part, you will be able to design and implement infrastructure that spans pro-

viders, regions, and environments while maintaining control, security, and operational efficiency.

This part of the book includes the following chapters:

•	 Chapter 7, Integrating Pulumi with CI/CD Pipelines

•	 Chapter 8, Exploring Pulumi’s Provider Ecosystem

•	 Chapter 9, Managing your IaC in Multiple Regions and Environments

•	 Chapter 10, Managing Multi-Cloud and Hybrid Scenarios

7
Integrating Pulumi with
CI/CD Pipelines

Up until this point, all the Pulumi CLI commands have been executed directly from your local

terminal. While this is a great way to learn and experiment, it is not a viable approach for pro-

duction environments. This is because production-grade infrastructure demands consistency,

repeatability, and the ability to scale changes across multiple environments without manual

intervention. Relying on local execution can introduce human error, delay deployments, and

make it difficult to track changes or maintain auditability. To address these challenges, modern

development teams rely on continuous integration/continuous deployment (CI/CD) pipelines

to automate the process of building, testing, and deploying infrastructure as code (IaC). These

pipelines ensure that infrastructure updates are consistent, traceable, and can be rolled back in

the event of a failure.

In this chapter, we will explore how to integrate Pulumi into CI/CD environments to enable seam-

less, automated workflows for infrastructure management. You will learn how to configure CI/

CD pipelines to build, test, and deploy Pulumi projects, ensuring that infrastructure changes are

applied consistently across development, staging, and production environments. We will walk

through the process of setting up secure access to sensitive information such as API keys and

credentials, which are essential for pipeline execution. Additionally, we’ll cover how to handle

deployment errors and rollbacks, a crucial aspect of ensuring high availability and stability in

production environments. Security is a key focus throughout this chapter, as we’ll highlight best

practices to prevent unauthorized access and maintain a secure CI/CD process for your Pulumi

projects.

Integrating Pulumi with CI/CD Pipelines132

By the end of this chapter, you will be equipped to integrate Pulumi with popular CI/CD tools,

enabling fully automated infrastructure deployments. You will know how to securely manage

secrets, handle rollbacks, and establish a secure, efficient CI/CD process that can be applied

across multiple environments. With this knowledge, you’ll be able to increase the reliability and

speed of your infrastructure delivery workflows, ultimately enhancing the overall efficiency of

your development lifecycle.

In this chapter, we’re going to cover the following main topics:

•	 Setting up Pulumi in CI/CD environments

•	 Automating build, test, and deployment processes

•	 Managing secrets and secure access

•	 Handling rollbacks and error management

•	 Best practices for pipeline security and efficiency

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from here:

https://www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

•	 Access to a GitHub account (for using GitHub Actions) is required. You can create your

GitHub account here: https://github.com.

•	 Access to a CircleCI account is required. You can create your CircleCI account here: https://

circleci.com/.

•	 Access to an Azure DevOps account is required. You can create one here: https://azure.

microsoft.com/en-gb/products/devops.

•	 We’ll be deploying resources to Azure for this chapter, so you’ll need an Azure account.

You can sign up for a free account or use your existing Azure account. For more details,

visit the Azure website here: https://azure.microsoft.com/en-us/pricing/purchase-

options/azure-account.

https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/
https://github.com
https://circleci.com/
https://circleci.com/
https://azure.microsoft.com/en-gb/products/devops
https://azure.microsoft.com/en-gb/products/devops
https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account
https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account

Chapter 7 133

•	 You will need a text editor or integrated development environment (IDE) such as Visual

Studio Code, which provides syntax highlighting and other development aids for Pulumi

configuration files.

•	 Familiarity with Git, YAML files, and simple scripting concepts is needed to understand

CI/CD pipeline definitions and automation scripts.

Setting up Pulumi in CI/CD environments
You must create processes for automated, reliable, and traceable infrastructure deployments as

you integrate Pulumi into your CI/CD setup. These processes guarantee that modifications are

repeatable and error-free while enabling smooth infrastructure updates across development,

staging, and production environments.

Here’s how to set up Pulumi with GitHub Actions, CircleCI, and Azure DevOps:

1.	 To use GitHub Actions, start by creating a .github/workflows directory at the root of

your repository.

2.	 Inside this directory, create a file called pulumi.yml. This file defines the CI/CD steps for

GitHub to follow when a change is made to the repository’s main branch. The pipeline

runs automatically as long as the file is in the .github/workflows directory and contains

a valid on trigger, which tells GitHub Actions when to execute the workflow. Here is an

example configuration:

name: Pulumi CI/CD

on:

 push:

 branches:

 - main

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v3

 - name: Set up Pulumi CLI

 uses: pulumi/actions@v3

 with:

 command: preview

 - name: Run Pulumi Preview

 run: pulumi preview

Integrating Pulumi with CI/CD Pipelines134

3.	 To store sensitive information such as PULUMI_ACCESS_TOKEN, navigate to Settings | Secrets

and Variables in the GitHub repository and add the necessary secrets.

4.	 If you’re using CircleCI, you’ll need to create a .circleci/config.yml file in the root

of your project. This file defines how CircleCI will run your jobs and workflows. Unlike

GitHub Actions, CircleCI requires that you activate the project in CircleCI’s dashboard.

Quick tip: Enhance your coding experience with the AI Code Explainer

and Quick Copy features. Open this book in the next-gen Packt Reader. Click

the Copy button

(1) to quickly copy code into your coding environment, or click the Explain

button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this

book. Scan the QR code OR visit packtpub.com/unlock, then use the search

bar to find this book by name. Double-check the edition shown to make sure

you get the right one.

http://packtpub.com/unlock

Chapter 7 135

5.	 After logging in to CircleCI, you’ll select your project, enable CircleCI for that repository,

and then CircleCI will begin monitoring changes. Once a .circleci/config.yml file is

present in the repository and the project is activated in CircleCI, pipelines will automati-

cally run when a commit is pushed to the configured branches. A sample CircleCI config-

uration for running pulumi preview will look like the following code snippet:

version: 2.1

jobs:

 build:

 docker:

 - image: circleci/node:latest

 steps:

 - checkout

 - run: npm install -g pulumi

 - run: pulumi login --local

 - run: pulumi preview

workflows:

 version: 2

 build-and-preview:

 jobs:

 - build

6.	 To run this, you may also need environment variables such as PULUMI_ACCESS_TOKEN

and the credentials for the cloud provider you are trying to log in to. To secure these

environment variables, go to CircleCI, open Project Settings, and add the values under

Environment Variables.

7.	 For Azure DevOps, you’ll create a pipeline using an azure-pipelines.yml file at the root

of your repository. This file specifies how to run the pipeline. To make the pipeline run,

you’ll need to create a pipeline in the Azure DevOps UI. Navigate to Pipelines | New Pipe-

line, select your repository, and link it to the azure-pipelines.yml file. Once the pipeline

is created, Azure DevOps will detect and run it automatically on every commit to the

configured branch.

Integrating Pulumi with CI/CD Pipelines136

8.	 Here’s an example configuration:

trigger:

 branches:

 include:

 - main

pool:

 vmImage: 'ubuntu-latest'

steps:

 - task: UseNode@1

 inputs:

 version: '14.x'

 - script: npm install -g pulumi

 displayName: 'Install Pulumi CLI'

 - script: pulumi login --local

 displayName: 'Login to Pulumi'

 - script: pulumi preview

 displayName: 'Pulumi Preview'

9.	 To store pipeline variables and secrets in Azure DevOps, navigate to Pipelines | Library

to create variable groups. Add environment variables such as PULUMI_ACCESS_TOKEN and

any cloud provider credentials required for deployments. These values are referenced

securely in the pipeline.

This section showed you how to set up Pulumi in CI/CD environments such as GitHub Actions,

CircleCI, and Azure DevOps. Now, let’s see how to automate testing, builds, and deployment

processes.

Automating build, test, and deployment processes
To effectively automate the process of building, testing, and deploying infrastructure using Pu-

lumi, you need a CI/CD pipeline that ensures code quality, reliable infrastructure changes, and

smooth deployments. In this section, we’ll explore how to set up a complete CI/CD pipeline to

automate the process from start to finish. The pipeline will handle everything from building a

backend application, running unit and integration tests, provisioning cloud infrastructure, and

finally, deploying the app to a live environment using a blue-green deployment strategy. This

strategy is important for minimizing downtime and allowing for seamless rollbacks if issues arise

after deployment. This strategy allows traffic to be shifted to a new, fully tested environment only

when everything works as expected.

Chapter 7 137

Follow these steps:

1.	 The process begins with building the hypothetical backend application, which, in this

case, is written in TypeScript. The first step is to ensure that the application is compiled

and packaged correctly. The following code snippet shows how to install dependencies

and build the application:

GitHub Actions

- name: Install dependencies

 run: npm install

- name: Build the application

 run: npm run build

Azure DevOps

- task: Npm@1

 inputs:

 command: 'install'

- script: npm run build

 displayName: 'Build the application'

Circle CI

- run: npm install

- run: npm run build

2.	 Once the application is built, the next stage is running unit tests. Unit tests are essential

for validating the logic of individual components in the application. This ensures that

the app’s core functions work as intended before proceeding. If any of these tests fail, the

pipeline stops immediately, preventing broken code from being deployed. The process

is similar across all platforms, using npm test to execute the tests. The following code

snippet shows you how this is done across the three pipelines:

GitHub Actions

- name: Run unit tests

 run: npm test

Azure DevOps

- script: npm test

Integrating Pulumi with CI/CD Pipelines138

 displayName: 'Run unit tests'

Circle CI

- run: npm test

3.	 Once the unit tests pass, the process shifts to logging in to Azure before proceeding with

infrastructure changes. Azure login is a critical step that must happen before Pulumi can

access and preview or apply changes to Azure resources. This step provides the authentica-

tion required for Pulumi to access and manipulate the cloud infrastructure. The following

code snippet shows you how this is done across the three pipelines:

GitHub Actions

- name: Login to Azure

 uses: azure/login@v1

 with:

 creds: ${{ secrets.AZURE_CREDENTIALS }}

Azure DevOps

- task: AzureCLI@2

 inputs:

 azureSubscription: 'My Azure Subscription'

 scriptType: 'bash'

 scriptLocation: 'inlineScript'

 inlineScript: |

 az login --service-principal

-u $(AZURE_CLIENT_ID)

-p $(AZURE_CLIENT_SECRET)

--tenant $(AZURE_TENANT_ID)

CircleCI

- run: |

 az login --service-principal

-u $AZURE_CLIENT_ID

-p $AZURE_CLIENT_SECRET

--tenant $AZURE_TENANT_ID

Chapter 7 139

4.	 After logging in to Azure, it’s time to preview the infrastructure changes using Pulumi

Preview. This step shows what resources will be created, updated, or deleted, giving

developers a chance to review and approve changes. The pipeline stops if there are any

misconfigurations or if unexpected changes are detected. Pulumi Preview provides visi-

bility into what will change in the infrastructure, and each platform implements this step

using the respective CI/CD commands. The following code snippet shows you how this

is done across the three pipelines:

GitHub Actions

- name: Run Pulumi Preview

 env:

 PULUMI_ACCESS_TOKEN: ${{ secrets.PULUMI_ACCESS_TOKEN }}

 run: |

 pulumi login

 pulumi preview

Azure DevOps

- script: |

 pulumi login

 pulumi preview

 displayName: 'Run Pulumi Preview'

 env:

 PULUMI_ACCESS_TOKEN: $(PULUMI_ACCESS_TOKEN)

CircleCI

- run: |

 pulumi login

 pulumi preview

 environment:

 PULUMI_ACCESS_TOKEN: $PULUMI_ACCESS_TOKEN

5.	 If the preview is successful, the next stage is to apply the infrastructure changes using

Pulumi Up. This command creates or updates resources such as virtual machines, data-

bases, and storage. Using the --yes flag ensures that the pipeline doesn’t require manual

confirmation. This process is essential for provisioning all the cloud resources required

for the application. This step is similar for GitHub Actions, Azure DevOps, and CircleCI.

Integrating Pulumi with CI/CD Pipelines140

The following code snippet shows how it’s done:

GitHub Actions

- name: Run Pulumi Up

 env:

 PULUMI_ACCESS_TOKEN: ${{ secrets.PULUMI_ACCESS_TOKEN }}

 run: |

 pulumi login

 pulumi up --yes

Azure DevOps

- script: |

 pulumi login

 pulumi up --yes

 displayName: 'Run Pulumi Up'

 env:

 PULUMI_ACCESS_TOKEN: $(PULUMI_ACCESS_TOKEN)

CircleCI

- run: |

 pulumi login

 pulumi up --yes

 environment:

 PULUMI_ACCESS_TOKEN: $PULUMI_ACCESS_TOKEN

6.	 Once the infrastructure is provisioned, the next stage is to deploy the backend application.

The new version of the app is deployed to the green environment as part of the blue-green

strategy. This allows testing of the new app without affecting live users. If the deployment

succeeds, the system moves on to testing. The following code snippet shows how it’s done:

GitHub Actions

- name: Deploy to Azure

 uses: azure/webapps-deploy@v2

 with:

 app-name: ${{ secrets.AZURE_APP_NAME }}

 package: ./build

 slot-name: green

 publish-profile: ${{ secrets.AZURE_PUBLISH_PROFILE }}

Chapter 7 141

Azure DevOps

- task: AzureWebApp@1

 inputs:

 azureSubscription: 'My Azure Subscription'

 appName: $(AZURE_APP_NAME)

 package: $(System.DefaultWorkingDirectory)/build

 slot: green

CircleCI

- run: |

 az webapp deployment source config-zip

--resource-group $AZURE_RESOURCE_GROUP

--name $AZURE_APP_NAME

--slot green

--src ./build.zip

7.	 If all integration tests pass, blue-green deployment begins. Traffic is shifted from blue to

green using the az webapp deployment slot swap command. This switch occurs instantly,

allowing the new version to go live without downtime. If any errors are detected after the

swap, the pipeline rolls back to the previous version by swapping the production slot back

to the blue environment. The following code snippet shows how it’s done:

GitHub Actions

- name: Swap Blue-Green Environments

 run: |

 az webapp deployment slot swap

 --name ${{ secrets.AZURE_APP_NAME }}

 --resource-group ${{ secrets.AZURE_RESOURCE_GROUP }}

 --slot green

 --target-slot production

Azure DevOps

- task: AzureCLI@2

 inputs:

 azureSubscription: 'My Azure Subscription'

 scriptType: bash

 scriptLocation: inlineScript

 inlineScript: |

Integrating Pulumi with CI/CD Pipelines142

 az webapp deployment slot swap

--name $(AZURE_APP_NAME)

--resource-group $(AZURE_RESOURCE_GROUP)

--slot green

--target-slot production

Circle CI

- run: |

 az webapp deployment slot swap

--name $AZURE_APP_NAME

--resource-group $AZURE_RESOURCE_GROUP

--slot green

--target-slot production

If a rollback is required, the system swaps the slots back so the blue environment is live. This

ensures the system returns to a known stable state.

With this end-to-end process, you have successfully integrated your Pulumi infrastructure de-

ployment step into your CI/CD process.

Managing secrets and secure access
In CI/CD pipelines, managing secrets and secure access is essential to protect sensitive informa-

tion such as API keys, cloud provider credentials, and service principal tokens. These secrets are

critical because they allow the pipeline to authenticate with third-party services, access cloud

environments, and deploy infrastructure. Without proper security measures, these secrets could

be exposed, leading to serious consequences such as unauthorized access, data breaches, and

infrastructure misuse.

The risks associated with exposed secrets are significant. If API keys or cloud credentials are acci-

dentally leaked, attackers could use them to control infrastructure, access sensitive data, or run

expensive cloud services at the victim’s expense. For example, there have been real-world cases

where AWS keys exposed on public GitHub repositories allowed attackers to launch cryptocur-

rency mining operations using the victim’s cloud resources. This highlights the critical need to

secure these keys and prevent accidental exposure.

To address these risks, CI/CD platforms such as GitHub Actions, Azure DevOps, and CircleCI pro-

vide built-in secret management systems. These platforms offer secure storage mechanisms to

store secrets encrypted at rest, ensuring they are only accessible to authorized jobs in the pipeline.

Chapter 7 143

Secure secrets management in GitHub Actions
GitHub Actions provides a secure way to store and access sensitive information such as API keys,

cloud provider credentials, and service principal tokens through GitHub Secrets.

To manage secrets, navigate to the Settings tab of your GitHub repository, then go to Secrets and

Variables under Actions. Here, you can add new secrets such as PULUMI_ACCESS_TOKEN, AZURE_

CREDENTIALS, AZURE_APP_NAME, and AZURE_RESOURCE_GROUP. Each secret is given a name and

value, and once saved, it can only be accessed within GitHub Actions workflows.

To use these secrets in a workflow, reference them with ${{ secrets.NAME }}. Here’s a simple

example where the Azure login and Pulumi Up steps use secrets for authentication:

- name: Login to Azure

 uses: azure/login@v1

 with:

 creds: ${{ secrets.AZURE_CREDENTIALS }}

- name: Run Pulumi Up

 env:

 PULUMI_ACCESS_TOKEN: ${{ secrets.PULUMI_ACCESS_TOKEN }}

 run: |

 pulumi login

 pulumi up --yes

When managing secrets in GitHub Actions for your IaC workflows, there are a few best practices

that you can follow:

•	 Store sensitive information as secrets: Avoid hardcoding sensitive information such as API

keys and tokens in workflow files. Instead, store them as secrets in Settings | Secrets and

Variables | Actions. Secrets are encrypted and only accessible during workflow execution.

•	 Use secret references in workflows: Instead of hardcoding credentials in the YAML file,

use ${{ secrets.NAME }} to access secrets securely. This prevents sensitive data from

being exposed in your repository or logs.

•	 Limit access to secrets: Only users with admin permissions can add, modify, or delete

secrets. Restrict repository access to essential personnel and enforce branch protection

rules to control which workflows can access secrets.

Integrating Pulumi with CI/CD Pipelines144

•	 Rotate secrets regularly: Periodically rotate API keys and tokens to reduce the impact of

potential exposure. If a secret is compromised, replace it immediately and remove the old

one from GitHub Secrets and cloud providers.

•	 Prevent secret exposure in logs: Be cautious of logging commands that might accidentally

print secrets. GitHub masks secrets in logs by default, but avoid commands such as echo

$SECRET in workflows to prevent accidental exposure.

Secure secrets management in Azure DevOps
Azure DevOps provides a secure way to manage sensitive information using variable groups and

pipeline variables. Secrets stored in variable groups are only accessible during pipeline execution,

ensuring that sensitive information is never exposed in YAML files, logs, or source code. This secure

method prevents accidental leakage of secrets and limits access to authorized workflows and users.

To create secrets in Azure DevOps, you need to navigate to the Pipelines section and access the

library. Once inside, you can create a new variable group, which serves as a container for multiple

secrets that can be shared across multiple pipelines. This centralization makes it easier to manage

secrets for all your CI/CD workflows. When adding secrets to a variable group, you can define

key-value pairs, such as PULUMI_ACCESS_TOKEN, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET, and

AZURE_TENANT_ID. It is critical to check the Keep this value secret option, which encrypts the

value and prevents it from being viewed later, even by administrators. After creating the variable

group, link it to your pipeline, so the secrets become accessible during pipeline execution.

To use these secrets in an Azure DevOps YAML pipeline, you must link the variable group to

the pipeline and reference the secrets as environment variables. In the following example, the

pipeline references a variable group named Pulumi-Deployment-Variables. The Azure login

process is handled using the AzureCLI task, where the client ID, client secret, and tenant ID are

securely accessed as environment variables. Pulumi also logs in using its access token, stored as

a secret in the variable group. This method ensures that sensitive data is never directly exposed

in YAML files or logs:

variables:

 - group: Pulumi-Deployment-Variables

jobs:

 - job: Deploy

 pool:

 vmImage: 'ubuntu-latest'

Chapter 7 145

 steps:

 - task: AzureCLI@2

 inputs:

 azureSubscription: 'My Azure Subscription'

 scriptType: 'bash'

 scriptLocation: 'inlineScript'

 inlineScript: |

 az login --service-principal

-u $(AZURE_CLIENT_ID)

-p $(AZURE_CLIENT_SECRET)

--tenant $(AZURE_TENANT_ID)

 - script: |

 pulumi login

 pulumi up --yes

 env:

 PULUMI_ACCESS_TOKEN: $(PULUMI_ACCESS_TOKEN)

This pipeline links the variable group to the pipeline and references it using the variables sec-

tion. The AzureCLI task logs in to Azure using the stored service principal credentials, accessed

securely with the $(AZURE_CLIENT_ID), $(AZURE_CLIENT_SECRET), and $(AZURE_TENANT_ID)

variables. Once authenticated, the Pulumi CLI logs in using the $(PULUMI_ACCESS_TOKEN) variable.

This process ensures that sensitive information is securely accessed without being hardcoded or

displayed in logs.

When managing secrets in Azure DevOps for your IaC workflows, there are a few best practices

that you can follow:

•	 Use variable groups to centralize and share secrets across multiple pipelines.

•	 Check the Keep this value secret option when adding secrets to variable groups to ensure

encryption and prevent viewing of the secret value.

•	 Access secrets via environment variables in the YAML file using $(VARIABLE_NAME) instead

of hardcoding them in scripts.

•	 Rotate secrets periodically to limit the impact of secret exposure. If a secret is compromised,

rotate it immediately and update the variable group with the new value.

•	 Restrict permissions for accessing secrets by limiting access to variable groups and en-

suring only essential users and pipelines can access or modify them.

Integrating Pulumi with CI/CD Pipelines146

Secure secrets management in CircleCI
CircleCI provides two primary methods for managing secrets: project environment variables and

context variables. Project environment variables are linked to a specific project, while context

variables can be shared across multiple projects. Project environment variables are created within

the project’s settings and are available to any workflow within that project. Context variables, on

the other hand, offer a way to reuse the same set of secrets across multiple projects while main-

taining secure access control. Both methods ensure that secrets are encrypted and only accessible

during job execution, with no direct visibility in logs.

To create secrets in CircleCI, you need to access the project settings. Begin by navigating to the

Project Settings page for your specific project. From there, you can manage project environment

variables by selecting the Environment Variables tab. Click the Add Environment Variable button

and enter the name and value of the secret. Common secrets to store include PULUMI_ACCESS_TOKEN,

AZURE_CLIENT_ID, AZURE_CLIENT_SECRET, and AZURE_TENANT_ID. Once saved, these secrets are

encrypted and can no longer be viewed or modified directly.

For managing secrets that are shared across multiple projects, contexts are used. To create a con-

text, go to Organization Settings in CircleCI and define a new context. You can add environment

variables to this context, which can then be shared with specific jobs or workflows. This approach

allows for reusable secret management across multiple projects.

Once secrets have been created, you can reference them in CircleCI YAML configurations. The

secrets are injected as environment variables, allowing them to be accessed in command-line

scripts. Secrets are referenced using the $VARIABLE_NAME syntax. The following is an example

of how to log in to Azure and run Pulumi commands using environment variables in CircleCI:

version: 2.1

jobs:

 deploy:

 docker:

 - image: circleci/node:latest

 environment:

 PULUMI_ACCESS_TOKEN: $PULUMI_ACCESS_TOKEN

 steps:

 - checkout

 - run: |

 az login --service-principal

Chapter 7 147

 -u $AZURE_CLIENT_ID

 -p $AZURE_CLIENT_SECRET

 --tenant $AZURE_TENANT_ID

 - run: |

 pulumi login

 pulumi up –yes

In this configuration, CircleCI uses a deploy job with a Node.js container to execute the deploy-

ment. The PULUMI_ACCESS_TOKEN, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET, and AZURE_TENANT_

ID secrets are accessed as environment variables. The first step logs in to Azure using the az login

command, which relies on the client ID, client secret, and tenant ID. After logging in to Azure, the

Pulumi commands run to preview and apply changes to the infrastructure. These commands use

PULUMI_ACCESS_TOKEN to authenticate with Pulumi’s backend.

When managing secrets in CircleCI for your IaC workflows, there are a few best practices that

you can follow:

•	 Use environment variables to store sensitive information such as API keys and cloud

credentials.

•	 Prefer contexts for secrets that need to be shared across multiple CircleCI projects. Contexts

allow for centralized secret management and improved reusability.

•	 Avoid echoing secrets to the console to prevent accidental exposure. Commands such

as echo $VARIABLE_NAME should be avoided or masked to prevent sensitive information

from appearing in logs.

•	 Rotate secrets regularly to reduce the impact of compromised credentials. If a secret is

leaked or suspected of being exposed, rotate it immediately and update it in CircleCI.

•	 Use role-based access control (RBAC) to limit access to context secrets. CircleCI allows

you to control which jobs and workflows can access contexts, ensuring that only autho-

rized users and jobs have access.

Handling rollbacks and error management
In the context of CI/CD pipelines, a rollback is the process of returning an application or infra-

structure to a previous stable version after a failed deployment. It serves as a safety net when

something goes wrong, such as failed tests, broken features, or system errors. Error management

is crucial in this process because it ensures that issues are detected early and resolved quickly to

avoid prolonged downtime. Automated rollbacks are especially important as they allow the system

to recover without manual intervention, reducing delays and keeping applications stable for users.

Integrating Pulumi with CI/CD Pipelines148

There are several rollback strategies that organizations can use, depending on the context and

the system’s complexity. Full rollbacks revert the entire system to a previous version, often by

redeploying a previously known stable build. Partial rollbacks focus on reverting specific com-

ponents of the system, such as rolling back only a microservice or a specific container. Another

approach is to use environment slot swaps, as seen in blue-green or canary deployments. In

blue-green deployments, two environments (blue and green) exist simultaneously, with one

handling live traffic and the other being the staging environment. If the new deployment fails in

the green environment, traffic is switched back to the blue environment, providing a seamless

rollback experience. Similarly, canary deployments gradually roll out changes to a small percent-

age of users. If issues are detected during the incremental release, the rollout is paused, and the

previous stable version is maintained.

It is important to distinguish between rollbacks and retries. While a rollback reverts the system

to a stable state, a retry attempts to re-execute the failed step. Retries are used when the failure

is believed to be temporary, such as network timeouts or transient API errors. For example, if a

pipeline fails due to a brief network interruption, a retry will attempt to rerun the failed step

instead of reverting the entire deployment. Rollbacks, on the other hand, are applied when the

issue is persistent or caused by changes in the deployment itself. Both mechanisms have their

place, but rollbacks are the safer option when system stability is at risk.

Rollback mechanisms can be categorized into three main types. Automatic rollbacks are triggered

when a specific condition is met, such as failed health checks, deployment errors, or failed test cas-

es. For instance, an automated system may detect that the production environment is experiencing

higher error rates and immediately revert to the last stable version. Manual rollbacks require

human intervention, often initiated by engineers or DevOps teams when a problem is detected

after the deployment has completed. This type of rollback is used when issues are discovered

later in production, often through user feedback or system monitoring. Conditional rollbacks are

based on predefined criteria, such as a health check threshold, application performance metrics,

or log-based anomaly detection. If the conditions are met, the rollback is triggered automatical-

ly. Conditional rollbacks provide flexibility and customization, allowing teams to define what

“failure” means for their specific system, ensuring that rollbacks happen only when necessary.

Rollbacks in CI/CD pipelines occur when specific conditions are met to protect system stability

and reduce downtime. One key trigger is test failures. During deployment, unit, integration, and

end-to-end tests are run to ensure the new changes work as expected. If any of these tests fail,

the system automatically reverts to the previous stable version.

Chapter 7 149

Health check failures are another important trigger. After deployment, health checks monitor the

live environment to ensure that the application responds correctly to requests. If the application

returns errors such as 500 or 404 status codes instead of the expected 200, an alert is triggered to

notify the team, and they can decide whether to roll back or deploy a fix. Deployment failures are

another common trigger. If Pulumi encounters issues while creating or updating cloud resources,

the pipeline will revert to the previous stable version. Rollbacks can also be triggered by timeouts.

If a pipeline step takes too long, the system considers it a failure and initiates a rollback. Custom

triggers can also be set, such as rolling back when error rates exceed a certain threshold or when

logs detect a specific error pattern.

CI/CD pipelines use error detection to decide when to stop a deployment or trigger a rollback. One

way errors are detected is through exit codes. Every command executed in a pipeline returns an

exit code, where zero means success and non-zero indicates an error. Test assertions are another

method. During testing, if actual results differ from expected results, an error is flagged. Health

checks in production are also crucial for detecting issues. After deployment, health checks mon-

itor whether the system is running properly. If health checks fail, alerts are triggered to notify

the team, and they can decide whether to roll back or deploy a fix. Logging and monitoring play

a key role in detecting errors that aren’t obvious. Logs provide detailed information about each

step of the pipeline, while monitoring tools track system performance. Errors found in logs or

unusual performance trends can trigger alerts, helping teams quickly understand and respond to

the problem. When errors are detected, the system can either attempt error recovery or initiate

error termination. Recovery involves retrying a failed step, while termination stops the pipeline

and often triggers a rollback to a previous version.

Here are some error management techniques:

•	 Retry mechanism: The system attempts to rerun a failed step instead of stopping the

entire pipeline. This is useful for handling temporary issues such as network timeouts or

transient errors in API calls.

•	 Fail-fast strategy: The pipeline stops immediately when a critical error is detected, pre-

venting unnecessary steps from being executed and allowing faster issue resolution.

•	 Graceful shutdowns: Services are properly stopped or reverted to avoid leftover processes

(often called “zombie processes”) that could interfere with future deployments.

•	 Error logging and alerting: Logs provide step-by-step details of pipeline execution, while

alerting systems notify teams when something goes wrong. This allows for faster root

cause analysis and quicker issue resolution.

Integrating Pulumi with CI/CD Pipelines150

Best practices for pipeline security and efficiency
Keeping your CI/CD pipeline secure and efficient is essential for protecting sensitive information,

ensuring smooth deployments, and speeding up delivery. A secure and efficient pipeline helps

avoid data breaches, reduces delays, and ensures fast and stable releases for Pulumi projects. By

following certain best practices, teams can create a CI/CD system that is fast, secure, and easy

to manage.

A key part of pipeline security is controlling access. Not every user or service needs access to all

parts of the pipeline. You can restrict access by using branch protection rules, which only allow

changes from certain branches, such as main or release, to trigger important workflows. This

prevents unreviewed or unapproved code from triggering sensitive actions, such as deployments.

Also, limit who can modify pipeline files or edit secrets. Applying the least privilege principle

ensures that users and services only have access to what they need and nothing more. Here’s an

example of how to ensure that a pipeline only runs on changes to specific branches:

on:

 push:

 branches:

 - main

 - release

This configuration ensures that only changes to the main or release branches will trigger the

pipeline. Developers working on feature branches won’t accidentally run the production deploy-

ment workflows.

To improve pipeline efficiency, avoid running unnecessary steps and try to reuse work that has

already been done. One way to do this is by caching Pulumi dependencies. CI/CD platforms such

as GitHub Actions, Azure DevOps, and CircleCI allow you to store files (for example, Pulumi CLI

binaries, configuration files, and state files) so they don’t have to be re-downloaded or rebuilt

every time the pipeline runs. Caching reduces build times and speeds up deployments. Here’s an

example of how to cache the Pulumi CLI in GitHub Actions:

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - name: Check out repository

 uses: actions/checkout@v3

Chapter 7 151

 - name: Cache Pulumi CLI

 uses: actions/cache@v3

 with:

 path: ~/.pulumi

 key: ${{ runner.os }}-pulumi-${{ hashFiles('**/Pulumi.yaml') }}

 restore-keys: |

 ${{ runner.os }}-pulumi-

 - name: Install Pulumi CLI

 run: |

 curl -fsSL https://get.pulumi.com | sh

This configuration caches the Pulumi CLI binaries so that future runs of the pipeline don’t need

to re-download Pulumi.

Another way to improve efficiency is to run steps in parallel. If some steps don’t depend on each

other, they can run at the same time, which shortens the total pipeline duration. For example,

running Pulumi previews and Pulumi stack validation at the same time can significantly reduce

the total pipeline execution time. Here’s an example of how to achieve parallel execution in Azure

DevOps:

jobs:

- job: Preview

 pool:

 vmImage: 'ubuntu-latest'

 steps:

 - script: |

 pulumi login

 pulumi preview --stack dev

- job: Validate

 pool:

 vmImage: 'ubuntu-latest'

 steps:

 - script: |

 pulumi stack export > stack.json

 jq . stack.json

Integrating Pulumi with CI/CD Pipelines152

In this example, the Preview and Validate jobs run in parallel. This speeds up the pipeline since

they don’t have to wait for each other to finish before moving on to the next step. The Preview

job runs a Pulumi preview to show what changes will be made, while the Validate job exports

the Pulumi stack to a JSON file and runs a validation check using jq.

Logging and monitoring are also important for security and efficiency. Logs provide a detailed

view of everything that happens in the pipeline. If a step fails, logs can show exactly where and

why it failed. Logs are also useful for spotting performance issues, such as slow-running tasks or

retries. Logs can also be used to track who made changes to the pipeline, when they were made,

and why. This is known as auditability, and it helps teams investigate issues when something

goes wrong. Here’s an example of how to capture logs in CircleCI:

jobs:

 build:

 docker:

 - image: circleci/node:latest

 steps:

 - checkout

 - run: |

 echo "Starting Pulumi deployment..."

 pulumi login

 pulumi up --yes

The echo and pulumi up outputs will be captured in the CircleCI job logs. These logs provide

insight into what happened during each step and help debug issues when errors occur. By in-

specting logs, teams can trace which steps took longer than expected and identify any errors in

the deployment process.

To further secure the pipeline, security checks should be built into the workflow. By scanning for

vulnerabilities in container images and infrastructure code, teams can catch potential security

issues before they reach production. Tools such as Trivy and Snyk can automatically scan for

known vulnerabilities before your code goes live. Here’s an example of how to run a security scan

in GitHub Actions using Trivy:

jobs:

 security-scan:

 runs-on: ubuntu-latest

 steps:

 - name: Check out code

Chapter 7 153

 uses: actions/checkout@v3

 - name: Run Trivy Security Scan

 run: |

 curl -sfL https://raw.githubusercontent.com/aquasecurity/trivy/
main/contrib/install.sh | sh

 trivy filesystem --exit-code 1 --severity HIGH,CRITICAL ./

In this example, the Trivy scan identifies known vulnerabilities in the files and container images

used in the project. If any critical vulnerabilities are found, the job will fail, preventing deployment.

Summary
In this chapter, we covered how to use Pulumi with CI/CD pipelines to automate infrastructure

deployments. You learned how to set up workflows with GitHub Actions, CircleCI, and Azure

DevOps, learning step by step how to configure each platform. The process included building

and testing application code, previewing changes to infrastructure, and automatically deploying

updates using Pulumi. The chapter also showed how to manage secrets securely, with guidance

on storing and accessing sensitive information such as API keys and tokens without exposing

them. Rollback strategies were discussed, along with ways to detect problems, handle errors, and

recover from failures during deployment. The chapter also provided tips on improving pipeline

speed and security, such as caching dependencies, running tasks at the same time, and tracking

changes to ensure accountability.

In the next chapter, we will explore Pulumi’s provider ecosystem.

Questions
1.	 Why is it necessary to move from local Pulumi CLI execution to CI/CD-based execution

for production environments?

2.	 How does caching Pulumi binaries and dependencies improve pipeline efficiency, and

how is it implemented in GitHub Actions?

3.	 What are the key benefits of running pipeline steps in parallel, and how is parallel execu-

tion implemented in Azure DevOps and GitHub Actions?

4.	 How do rollback strategies, such as blue-green and canary deployments, help mitigate

the impact of failed deployments in production?

5.	 What is the purpose of using branch protection rules in GitHub Actions workflows, and

how do they prevent unapproved changes from affecting production?

Integrating Pulumi with CI/CD Pipelines154

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

8
Exploring Pulumi’s Provider
Ecosystem

There are different kinds of providers in Pulumi, each serving as a link between your code and the

services you want to manage. Providers make it possible to control cloud resources, SaaS tools,

and even your own internal systems, all from one place. Without them, Pulumi wouldn’t be able

to connect to the platforms and services that power modern applications.

In this chapter, you’ll learn how to use Pulumi’s provider ecosystem to manage resources across

multiple platforms. We’ll start with core cloud providers such as AWS, Azure, Google Cloud, and

Kubernetes. You’ll see how to install these providers, set them up, and use them to deploy key

resources such as servers, storage, and serverless functions.

Next, we’ll explore community and custom providers. Community providers help you manage

tools such as GitHub, Datadog, and Cloudflare, which are tools you often use alongside cloud

platforms. Custom providers go a step further, letting you create your own connectors for services

that aren’t officially supported. By the end of this section, you’ll know how to use these providers

and even create one yourself if needed.

By the end of the chapter, you’ll have the skills to combine providers in a single Pulumi project,

letting you manage resources across clouds and services in one workflow.

Exploring Pulumi’s Provider Ecosystem156

In this chapter, we’re going to cover the following main topics:

•	 Introduction to Pulumi providers

•	 Using core cloud providers

•	 Exploring community and custom providers

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from here:

https://www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

Introduction to Pulumi providers
Pulumi providers are essential components of Pulumi’s infrastructure-as-code (IaC) system.

They act as connectors that allow Pulumi to interact with different platforms, services, and tools.

Without providers, Pulumi would not be able to manage infrastructure on cloud platforms such

as AWS, Azure, and Google Cloud, nor would it be able to configure resources for services such

as GitHub, Cloudflare, and Datadog.

At a high level, providers translate the resource definitions you write in your Pulumi program

into API calls that cloud platforms and services understand. Each provider knows how to speak

the language of the platform it manages. For example, the AWS provider understands AWS’s API

calls, while the Azure provider understands Azure’s API. This allows you to control infrastructure

on multiple platforms from a single Pulumi program.

Why are Pulumi providers important?
Pulumi providers play a central role in making Pulumi a truly multi-cloud, multi-service IaC tool.

Here’s why they matter:

•	 Unified control across platforms: Providers allow you to manage resources across multiple

platforms (such as AWS, Azure, Google Cloud, and Kubernetes) in a single project. This

removes the need to learn multiple cloud-specific tools (such as AWS CloudFormation or

Azure Resource Manager) and gives you a unified way to manage everything.

https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/

Chapter 8 157

•	 Multi-service integration: Providers aren’t limited to cloud platforms. Pulumi also has

providers for tools such as GitHub, Datadog, PagerDuty, and more. This allows you to

configure CI/CD workflows, monitoring dashboards, and incident alerting alongside

cloud resources—all from one program.

•	 Cross-cloud flexibility: Providers make it easier to adopt a multi-cloud strategy. If your

company uses AWS for some services and Azure for others, you don’t need separate work-

flows for each. With Pulumi, you can provision AWS resources alongside Azure resources,

all from the same script.

•	 Custom provider support: Sometimes, you may need to manage a service that isn’t offi-

cially supported. Pulumi allows you to build custom providers for internal tools or pro-

prietary APIs. This gives you control over everything in your environment, not just the

platforms that Pulumi officially supports.

•	 Automation: Providers automate complex workflows such as provisioning cloud instances,

configuring security policies, and setting up third-party services. By using Pulumi pro-

viders, you avoid the need to manually click through cloud dashboards or use multiple

command-line tools for different platforms.

Types of Pulumi providers
Pulumi providers are grouped into distinct types, each serving a specific role in managing in-

frastructure, DevOps workflows, and cloud-native services. Each type of provider addresses a

different part of the infrastructure stack, from cloud compute to SaaS integrations to internal

proprietary systems. Here’s a closer look at the types of Pulumi providers and how they fit into

the bigger picture of infrastructure management.

Core cloud providers
Core cloud providers are the most essential type of providers. They allow Pulumi to control the

foundational cloud platforms that power applications and services. These providers connect

Pulumi to popular cloud environments such as AWS, Azure, Google Cloud, and Kubernetes.

These providers allow you to create and manage essential cloud resources such as the following:

•	 Compute (EC2 instances on AWS, virtual machines on Azure, and Compute Engine on GCP)

•	 Storage (S3 buckets, Azure storage accounts, and Google Cloud Storage)

•	 Databases (RDS, Azure SQL, and Cloud SQL)

•	 Networking (VPCs, subnets, firewalls, and load balancers)

•	 Serverless functions (AWS Lambda, Azure Functions, and Google Cloud Functions)

•	 Kubernetes clusters (Deployments, Pods, Services, and ConfigMaps)

Exploring Pulumi’s Provider Ecosystem158

Each core cloud provider knows how to communicate directly with the cloud provider’s API.

This means that if you create an S3 bucket using Pulumi, the AWS provider translates your code

into the correct AWS API call, makes the request, waits for AWS to create the bucket, and then

updates the Pulumi state file to track that the bucket exists. The same process happens with other

providers such as Azure, Google Cloud, and Kubernetes.

The following code snippet shows an example of a core cloud provider (AWS):

import * as aws from "@pulumi/aws";

const bucket = new aws.s3.Bucket("example-bucket", {

 bucket: "my-unique-bucket-name",

 versioning: {

 enabled: true,

 },

});

In this example, Pulumi uses the AWS provider to create an S3 bucket. Pulumi automatically

converts this definition into the AWS API request to create the bucket.

SaaS and third-party service providers
This type of provider allows Pulumi to interact with third-party services that are commonly used

in DevOps, CI/CD, and application development. These services include source control systems,

observability tools, security platforms, and alerting systems. Unlike core cloud providers, these

providers focus on managing tools that sit outside of cloud infrastructure but are critical to mod-

ern software delivery workflows.

Examples of SaaS and third-party providers include the following:

•	 GitHub: Manage repositories, issues, pull requests, and GitHub Actions workflows

•	 GitLab: Configure projects, pipelines, and users in GitLab

•	 Cloudflare: Control DNS records, caching rules, and web application firewall (WAF)

policies

•	 Datadog: Configure monitoring dashboards, alert rules, and log aggregation for appli-

cation observability

•	 PagerDuty: Set up incident response workflows and on-call schedules

•	 New Relic: Manage performance monitoring dashboards and alerting policies

•	 Sentry: Control error tracking and issue notifications for applications

•	 Slack: Automate notifications and interactions with Slack channels

Chapter 8 159

With these providers, you can manage not only your cloud resources but also the SaaS services

that work alongside your infrastructure.

The following code snippet shows an example of a SaaS Provider (GitHub):

import * as github from "@pulumi/github";

const membershipForUserX = new github.Membership("membership_for_user_x",
{});

Here, the GitHub provider is used to create a new GitHub membership called membership_for_

user_x. Pulumi takes this resource definition and calls GitHub’s API to create the repository.

Custom providers
While core providers and third-party providers cover most platforms, sometimes you need to

manage something unique. This is where custom providers come in. Custom providers are useful

in the following situations:

•	 The platform or tool you want to manage doesn’t have an official Pulumi provider

•	 Your company has internal tools, APIs, or private services that only your team uses

•	 You want to build a provider specific to your company’s proprietary software

Custom providers are created using Pulumi’s Provider SDK. They allow you to define how Pulumi

should interact with an API, what commands to send, and how to handle responses. Custom pro-

viders operate like official providers, but they are tailored for use within a specific team, company,

or platform. Here’s an example of a custom provider for an internal ticketing system:

const ticket = new mycompany.Ticket("incident-ticket", {

 title: "Server Outage",

 description: "The production server is down.",

 priority: "High",

});

This custom provider defines a Ticket resource. When the Pulumi script is run, the provider

makes an API call to the internal ticketing system to create a new ticket.

Using core cloud providers
As organizations adopt multicloud strategies, a unified approach to managing resources across

different cloud platforms becomes essential. Without a consistent method to control AWS, Azure,

Google Cloud, and other cloud providers, managing infrastructure can become fragmented and

complex. Each cloud platform has its own tools, APIs, and workflows, which can create ineffi-

ciencies and operational overhead.

Exploring Pulumi’s Provider Ecosystem160

Pulumi solves this problem by allowing you to manage multiple cloud providers from a single

project and a single code base. With Pulumi’s provider system, you can create and control resources

across AWS, Azure, and GCP, all within one script. This approach makes it possible to provision

cloud infrastructure, storage, and networking resources on multiple platforms at the same time,

without juggling multiple IaC tools or IaC projects.

For each cloud, you create a provider instance that specifies where and how Pulumi should in-

teract with that specific cloud. For example, you might have one provider for AWS (us-west-2),

another for Azure (East US), and another for GCP (us-central1).

When you define resources, such as an S3 bucket, an Azure storage account, or a GCP Cloud Storage

bucket, you explicitly link each resource to its provider. This gives you control over which cloud

platform manages which resource and allows you to create AWS, Azure, and GCP resources in

one Pulumi project.

The key enabler of this multi-cloud approach is Pulumi’s ability to create and manage multiple

providers at the same time. Instead of working with three separate tools for three cloud platforms,

you work with one tool (Pulumi) to manage everything.

Here are some of the benefits of using core cloud providers in a multi-cloud setup:

•	 Unified multi-cloud control: Manage AWS, Azure, and GCP from a single Pulumi program.

No need to juggle different CLI tools, templates, or dashboards.

•	 Single source of truth: Define all cloud infrastructure in one place, reducing the risk of

inconsistency between environments.

•	 Reduce complexity: By using Pulumi’s programming model, you can write logic (such as

loops, conditionals, and shared modules) that work across clouds.

•	 Vendor flexibility: Easily move workloads between AWS, Azure, and GCP by modifying

a few configuration details.

•	 End-to-end automation: Deploy all cloud resources in a single automated pipeline.

Now that we’ve covered why this is important, here’s how multi-cloud management works in

Pulumi:

•	 Create providers for AWS, Azure, and GCP: Each cloud needs its own provider instance.

This is how Pulumi knows where to create resources and which API to call.

•	 Link resources to specific providers: Every AWS resource is linked to the AWS provider,

every Azure resource is linked to the Azure provider, and so on. This gives you control over

which cloud each resource lives in.

Chapter 8 161

•	 Run pulumi up: When you deploy, Pulumi figures out which provider to call for each

resource and communicates directly with AWS, Azure, and GCP. It runs the operations

concurrently, so all resources are created as efficiently as possible.

This example demonstrates how to create an AWS S3 bucket, an Azure Blob Storage account, and

a GCP Cloud Storage bucket, all from a single Pulumi program:

1.	 Begin by importing the necessary resources:

import * as pulumi from "@pulumi/pulumi";

import * as aws from "@pulumi/aws";

import * as azure from "@pulumi/azure-native";

import * as gcp from "@pulumi/gcp";

2.	 Next, create providers for AWS, Azure, and GCP:

const awsProvider = new aws.Provider("awsProvider", {

 region: "us-west-2",

});

const azureProvider = new azure.Provider("azureProvider", {

 location: "East US",

});

const gcpProvider = new gcp.Provider("gcpProvider", {

 project: "my-gcp-project",

 region: "us-central1",

});

3.	 Create an AWS S3 bucket using the AWS provider:

const awsBucket = new aws.s3.Bucket("awsBucket", {

 bucket: "multi-cloud-aws-bucket",

 versioning: {

 enabled: true,

 },

}, { provider: awsProvider });

Exploring Pulumi’s Provider Ecosystem162

4.	 Create an Azure Blob Storage account using the Azure provider:

const azureStorageAccount = new azure.storage.
StorageAccount("store", {

 resourceGroupName: "my-resource-group",

 location: "East US",

 sku: {

 name: "Standard_LRS",

 },

 kind: "StorageV2",

}, { provider: azureProvider });

5.	 Create a GCP Storage bucket using the GCP provider:

const gcpBucket = new gcp.storage.Bucket("gcpBucket", {

 location: gcpProvider.region,

 name: "multi-cloud-gcp-bucket"H,

}, { provider: gcpProvider });

The code creates cloud providers for AWS, Azure, and GCP, each configured with its specific re-

gion or project details. It then uses these providers to provision an AWS S3 bucket, an Azure Blob

Storage account, and a GCP Cloud Storage bucket, each tied to its respective cloud provider. This

allows all three cloud platforms to be managed from a single Pulumi program.

Now that we have established the core cloud providers, let’s take a look at some of the other

providers you can use.

Exploring community and custom providers
Beyond the official Pulumi providers for popular cloud platforms such as AWS, Azure, and GCP,

there are two other types of providers that significantly expand Pulumi’s capabilities: community

providers and custom providers. Community providers are developed and maintained by Pulumi

users and contributors through the Pulumiverse ecosystem. These providers allow Pulumi to

manage services such as Grafana, Vercel, and Redpanda, which are platforms used for observabil-

ity, frontend deployments, and data streaming, respectively. By using these community-driven

providers, you can automate workflows for these platforms directly within Pulumi projects.

Chapter 8 163

The Pulumiverse ecosystem
The Pulumiverse ecosystem is a collection of community-driven providers and libraries that

extend Pulumi’s support for platforms not officially managed by Pulumi. Notable providers in

Pulumiverse include Grafana, which allows you to create and manage dashboards and visual-

izations; Vercel, which enables the deployment and management of frontend applications; and

Redpanda, a Kafka-compatible streaming platform known for its high performance. You can

browse available providers through the Pulumiverse GitHub (https://github.com/pulumiverse)

or the Pulumi Registry (https://www.pulumi.com/registry/), making it simple to discover and

incorporate them into your Pulumi projects.

For example, you can create a Grafana dashboard using the Pulumiverse Grafana provider like this:

import * as grafana from "@pulumiverse/grafana/oss";

const folder = new grafana.Folder("folder", {

title: "Multi-cloud Demo",

});

const dashboardJson = JSON.stringify({

title: "Service Health Dashboard",

 uid: "service-health",

panels: [],

});

const dashboard = new grafana.Dashboard("dashboard", {

folder: folder.uid,

 configJson: dashboardJson,

});

This code creates a Grafana dashboard called Service Health Dashboard with a UTC time zone.

Normally, creating dashboards requires manual work in the Grafana UI, but with Pulumi, you

can define dashboards in code, making them reusable, version-controlled, and consistent across

environments.

https://github.com/pulumiverse
https://www.pulumi.com/registry/

Exploring Pulumi’s Provider Ecosystem164

In addition to Pulumiverse providers, Pulumi also supports a range of SaaS providers such as

Cloudflare, Datadog, and PagerDuty. These providers allow you to manage DNS (Cloudflare),

observability dashboards (Datadog), and incident response workflows (PagerDuty) directly from

Pulumi projects. By using these SaaS providers, you can automate key operational workflows that

go beyond cloud infrastructure, enabling end-to-end automation of infrastructure, monitoring,

and incident management. For example, you can configure DNS records in Cloudflare, create alerts

in Datadog, or define on-call schedules in PagerDuty, all from within a single Pulumi program.

While community providers such as Grafana, Vercel, and Redpanda help you automate workflows

for popular services, custom providers go one step further. Custom providers allow companies

to manage internal tools, proprietary APIs, or on-premises systems that aren’t supported by

Pulumiverse or Pulumi’s official providers. For instance, if your company has an internal ticket-

ing system or a custom business analytics API, you can create a custom provider to manage and

automate those workflows just like you would for a public service.

Custom Pulumi providers
A custom provider is a provider you build yourself when no official or community provider exists

for a specific platform, API, or tool. For example, if your company has a work order system with an

API to create work items and projects, and you want to automate the provisioning of this system,

you can build a custom provider to create, update, and delete tickets as part of your infrastructure

deployment process.

A custom provider has several essential components that enable it to interact with an external

API. It follows the same principles as Pulumi’s official providers for AWS, Azure, and GCP.

Here’s how a custom provider works:

•	 API integration: The provider sends HTTP requests to an API (such as a REST API) to create,

update, read, and delete resources

•	 CRUD functions: The provider defines methods for create, read, update, and delete

(CRUD) operations

•	 Pulumi’s Provider SDK: Pulumi’s Provider SDK allows you to define the schema and

logic of your provider

•	 Communication with APIs: Custom providers handle API rate limits, timeouts, and fail-

ures

Chapter 8 165

For example, let’s imagine a provider for a work order management system. Instead of managing

individual work orders, the provider will be responsible for provisioning an instance of the work

order tool. This might include configuring its name, region, plan (basic, standard, or enterprise),

and enabling email notifications. Once the system is provisioned, users can log in to create, track,

and manage their work orders directly in the system. The first step in building a custom provider

for this system is to define its schema, which describes the attributes needed to create the system.

This is similar to how you define inputs for AWS resources such as S3 buckets or EC2 instances.

For our work order system provider, we’ll define properties such as the following:

•	 name: The name of the work order system

•	 region: The region where the system will be hosted (e.g., us-west, us-east, or europe)

•	 plan: The type of subscription plan (basic, standard, or enterprise)

•	 notificationsEnabled: Whether to enable email notifications for system events

Here’s an example of the provider schema in JSON format:

{

 "name": "workorder-tool-provider",

 "version": "0.1.0",

 "resources": {

 "workOrderSystem": {

 "properties": {

 "name": { "type": "string" },

 "region": { "type": "string", "enum": ["us-west", "us-
east", "europe"] },

 "plan": {
"type": "string", "enum": ["basic", "standard", "enterprise"] },

 "notificationsEnabled": { "type": "boolean" }

 },

 "required": ["name", "region", "plan"]

 }

 }

}

This schema tells Pulumi that when someone wants to create a work order system, they must

provide the name, region, and plan values, while notificationsEnabled is optional. This struc-

ture will later be used to validate inputs when users call the provider.

Exploring Pulumi’s Provider Ecosystem166

Once the schema is ready, the next step is to define the CRUD logic for the resource. Each CRUD

function determines how Pulumi interacts with the provider’s API:

•	 Create: The create function sends a request to the API to provision a new system. The API

returns a unique ID for the system, which is used to track the system in Pulumi’s state file.

•	 Read: The read function retrieves the current state of the resource. It is especially useful in

cases where updates to the system are made outside of Pulumi, and you want to reconcile

the actual state with the expected state.

•	 Update: The update function is called whenever the user changes properties such as name,

region, or plan in the Pulumi program. This function sends an API PUT request to update

the resource. The Pulumi diff logic determines which properties have changed and only

calls update when necessary.

•	 Delete: The delete function removes the system from the platform. It deprovisions the

system and removes it from the external infrastructure.

Here’s a full implementation of the CRUD logic for our work order tool provider:

export class WorkOrderSystem extends pulumi.dynamic.Resource {

 constructor(name: string, args: WorkOrderSystemArgs, opts?: pulumi.
CustomResourceOptions) {

 super(new WorkOrderSystemProvider(), name, args, opts);

 }

}

class WorkOrderSystemProvider implements pulumi.dynamic.ResourceProvider {

 async create(inputs: WorkOrderSystemArgs) {

 const response = await fetch("https://api.workorderplatform.com/
systems", {

 method: "POST",

 headers: { "Content-Type": "application/json" },

 body: JSON.stringify(inputs)

 });

 const data = await response.json();

 return { id: data.id, outs: data };

 }

 async read(id: string) {

Chapter 8 167

 const response = await fetch(`https://api.workorderplatform.com/
systems/${id}`, {

 method: "GET",

 headers: { "Content-Type": "application/json" }

 });

 const data = await response.json();

 return { id: id, outs: data };

 }

 async
update(id: string, olds: WorkOrderSystemArgs, news: WorkOrderSystemArgs) {

 await fetch(`https://api.workorderplatform.com/systems/${id}`, {

 method: "PUT",

 headers: { "Content-Type": "application/json" },

 body: JSON.stringify(news)

 });

 return { outs: news };

 }

 async delete(id: string) {

 await fetch(`https://api.workorderplatform.com/systems/${id}`, {
method: "DELETE" });

 }

}

export interface WorkOrderSystemArgs {

 name: string;

 region: string;

 plan: string;

 notificationsEnabled: boolean;

}

Exploring Pulumi’s Provider Ecosystem168

Once your provider is ready, you can use it like any other Pulumi provider. Here’s an example of

how to provision our custom work order system with Pulumi:

import * as pulumi from "@pulumi/pulumi";

import { WorkOrderSystem } from "./provider";

// Create a new work order system

const workOrderSystem = new WorkOrderSystem("projectManagementSystem", {

 name: "Project Management System",

 region: "us-west",

 plan: "standard",

 notificationsEnabled: true

});

What happens when you run pulumi up?

•	 Pulumi calls the create method, which sends an API request to workorderplatform.com

to create the system

•	 The API returns an ID, and Pulumi stores this ID in the state file

•	 If you later change the plan from standard to enterprise, Pulumi detects the change,

triggers the update function, and sends a PUT request to update the system

•	 If you run pulumi destroy, Pulumi calls the delete method, which sends a DELETE re-

quest to remove the system

Once your provider is ready, you can make it available for others. If it’s a private provider, you

can distribute it as an npm package or private repo. However, if you created a provider for a new

PaaS tool and you want to make it available for the Pulumi community, you can submit it to Pu-

lumiverse and follow their guidelines for submitting new providers.

Summary
In this chapter, we covered the Pulumi provider ecosystem and its role in managing infrastructure

across cloud platforms, SaaS tools, and custom systems. The chapter explored core cloud providers

such as AWS, Azure, and GCP, which enable multi-cloud provisioning in a single Pulumi program.

It also highlighted SaaS providers such as Cloudflare, Datadog, and PagerDuty, which automate

workflows for DNS, monitoring, and incident response.

Chapter 8 169

We introduced community providers from Pulumiverse, focusing on Grafana, Vercel, and Red-

panda, which support dashboards, app deployments, and streaming services. The final section

focused on custom providers, which allow for the management of internal APIs and proprietary

tools. Using a work order tool provider as an example, the chapter explained how to define a sche-

ma and implement CRUD logic. This approach enables the creation, packaging, and publishing

of providers for both internal and external use.

In the next chapter, we will focus on how to manage your IaC in multiple regions and environments.

Questions
1.	 Explain the key difference between core cloud providers, SaaS providers, and community

providers in Pulumi.

2.	 How does multi-cloud resource creation in Pulumi ensure that AWS, Azure, and GCP

resources are created consistently in a single execution?

3.	 What is a custom provider, and when would you build one instead of using an official or

community provider?

4.	 How does the process of defining a provider schema affect the attributes available to users

when provisioning resources with a custom provider?

5.	 Explain the role of CRUD logic in a custom provider. Why is it essential to have distinct

logic for create, read, update, and delete actions?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

9
Managing your IaC in Multiple
Regions and Environments

As you deploy infrastructure, you probably wouldn’t deploy to just one environment and one re-

gion. In real-world scenarios, applications often need to be available in different parts of the world

to provide faster access for users and stay online even if something goes wrong in one location.

At the same time, you’ll need separate environments for development, testing, and production

to ensure smooth updates and avoid accidental changes to your live system. Managing all of this

can get complicated, but infrastructure as code (IaC) makes it possible to handle everything in

a clear, organized way.

In this chapter, you will learn how to manage IaC across multiple regions and environments,

making your infrastructure more reliable, efficient, and easy to maintain. We’ll start by looking

at how to plan deployments in different regions, where you’ll see how to set up infrastructure in

multiple locations to improve speed, availability, and disaster recovery. We’ll also look at how to

manage different environments, such as development, testing, and production. You’ll learn how

to keep these environments separate so that changes in one environment don’t affect the others.

We’ll also explore how to use configuration files and templates to make it easier to control what

happens in each environment.

Managing your IaC in Multiple Regions and Environments172

Finally, we’ll focus on automation. Instead of manually setting up each environment, you’ll learn

how to use tools such as CI/CD pipelines to automatically create, update, and delete environments

when needed. This makes it easier to manage infrastructure at scale, reduce mistakes, and save

time.

In this chapter, we’re going to cover the following main topics:

•	 Planning for multi-region deployments

•	 Environment management strategies

•	 Automating environment setup and management

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from here:

https://www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

•	 We will be using Pulumi ESC to manage shared configurations across different regions,

so you will need the ESC CLI. You can get it here: https://www.pulumi.com/docs/esc/

download-install/.

•	 Since we’ll be deploying resources to Azure, you’ll need an Azure account. You can sign

up for a free account or use your existing Azure account. For more details, visit the Azure

website here: https://azure.microsoft.com/en-us/pricing/purchase-options/

azure-account.

•	 The Azure CLI is required to interact with Azure resources from your local machine. You

can install the Azure CLI by following the instructions here: https://learn.microsoft.

com/en-us/cli/azure/install-azure-cli.

•	 The final section of this chapter is about automation and continuous integration, so you’d

need a GitHub account so that you can create a GitHub Actions workflow. You can create

an account here: https://github.com/.

https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/
https://www.pulumi.com/docs/esc/download-install/
https://www.pulumi.com/docs/esc/download-install/
https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account
https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://github.com/

Chapter 9 173

Planning for multi-region deployments
Modern applications demand speed, reliability, and resilience, which is why deploying infra-

structure in a single region is rarely enough. Multi-region deployments solve this by running

infrastructure in multiple geographical locations. This approach ensures continuous availability,

faster response times, and better disaster recovery. If one region experiences an outage due to a

power failure, network issue, or natural disaster, user traffic can be automatically redirected to

another region, minimizing downtime. Additionally, placing infrastructure closer to users reduces

network delays, improving application performance and user experience.

There are several key reasons for adopting multi-region deployments. One of the most important

is to support a global user base. Applications with users worldwide, such as Instagram and Slack,

rely on multi-region deployments to deliver fast, uninterrupted service. For example, a user in

Nigeria will experience faster load times when they connect to a server in Africa or Europe rather

than one in the United States. This reduces latency and ensures a seamless user experience, re-

gardless of where users are located. Without multi-region deployments, apps such as Instagram

would face slower image loads and message delays, frustrating users and increasing the risk of

users abandoning the platform.

Another reason is regulatory compliance. Certain countries have strict data privacy laws that

require user data to stay within their borders. The General Data Protection Regulation (GDPR)

in the European Union, for example, limits where personal data can be stored and processed.

Multi-region deployments allow companies to store and process user data in specific regions to

meet legal requirements while still supporting a global user base. For instance, Google Workspace

ensures that customer data from European users can be stored and processed within the European

Union to meet GDPR compliance, even as the service remains accessible globally.

Disaster recovery and business continuity are also major drivers for multi-region deployments.

By deploying infrastructure in multiple regions, companies protect themselves from regional

outages caused by natural disasters or system failures. If one region becomes unavailable, another

region can automatically take over, ensuring that users experience no service disruption. This is

especially important for applications with strict service-level agreements (SLAs), where even

a few minutes of downtime can result in significant financial losses or reputational damage. For

instance, Zoom relies on multi-region deployments to maintain uninterrupted video calls even if

one of its regions faces an outage. Without this strategy, a technical failure in one location could

disrupt business meetings, classes, and large-scale webinars globally.

Managing your IaC in Multiple Regions and Environments174

In addition to these benefits, load balancing and traffic management are easier with multi-re-

gion deployments. Instead of placing all the load on one region, traffic can be distributed across

multiple regions, preventing any one location from becoming overwhelmed during traffic spikes.

This approach ensures better system performance during high-traffic events, such as product

launches or major announcements.

Despite these benefits, multi-region deployments come with challenges. Higher costs are a major

consideration, as running duplicate infrastructure in multiple regions increases expenses for com-

pute, storage, and networking. Increased complexity is another challenge, as managing multiple

regions requires consistent configuration, automation, and monitoring. Data synchronization

issues can also be a challenge, especially when databases must remain consistent across regions.

But with the right design, these challenges can be managed. A good design helps control costs, keep

regions in sync, and make it easier to manage everything from one place. This makes it possible

to build systems that are reliable, fast, and able to support users all over the world.

Key concepts of multi-region design
When designing a multi-region system, one of the first decisions to make is whether to use an

active-active or active-passive deployment. These approaches define how traffic is handled across

multiple regions and how failovers are managed.

In an active-active deployment, all regions are fully operational and actively handle user traffic

at the same time. This setup improves performance because users are routed to the closest region,

reducing latency. It also provides high availability since, if one region fails, users can still be served

by another active region. Active-active deployments are ideal for global applications with users

spread across multiple continents, such as social media platforms (e.g., Instagram). Users can

be connected to the closest server, resulting in faster load times. However, this design is more

expensive since all regions are constantly running, and it requires complex data synchronization

to ensure that all regions have consistent information.

On the other hand, an active-passive deployment only has one region actively handling user

traffic at a time, while the other regions remain on standby. These standby regions remain ready

to take over in case of failure but do not process traffic under normal conditions. This approach

is often used for disaster recovery. For example, banking applications may use an active-passive

design where a primary region serves all customer transactions, while a secondary region is kept

on standby, ready to activate if the main region goes down. This setup reduces operational costs

since only one region is fully utilized.

Chapter 9 175

Choosing between active-active and active-passive depends on several factors:

•	 Cost: Active-active is more expensive since all regions are running, while active-passive

reduces costs by only having one active region

•	 Complexity: Active-active is more complex to set up due to synchronization needs, while

active-passive is simpler to manage since only one region is handling traffic at a time

•	 Failover time: Active-active has instant failover since all regions are already running,

while active-passive may experience delays during the switchover

Figure 9.1: Active-active versus active-passive

Quick tip: Need to see a high-resolution version of this image? Open this book

in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader is included for free with the purchase of this book. Scan

the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Managing your IaC in Multiple Regions and Environments176

Failover ensures that if one region becomes unavailable, traffic is automatically redirected to

another region to maintain system availability. This is essential for disaster recovery, allowing

applications to stay online even if a region experiences a major outage due to power failures,

natural disasters, or network issues.

Azure Traffic Manager supports automated failover using priority-based routing. This method

assigns a priority to each region (or endpoint) and routes all traffic to the highest-priority region.

If the primary region fails, Traffic Manager automatically redirects traffic to the next region on

the priority list. This process is fully automated, ensuring that failover happens instantly with-

out manual intervention. This setup is commonly used in disaster recovery scenarios where one

region serves as the primary region, and the other regions act as backups.

For example, consider a system with a primary region in the East US and a backup region in the

West US. During normal operation, users are routed to the East US region (priority 1). If that region

becomes unavailable, Azure Traffic Manager detects the failure using health checks and automat-

ically redirects user traffic to the West US region (priority 2) until the primary region is restored.

Two key metrics help define how well failover works:

•	 Recovery point objective (RPO): This defines the maximum acceptable amount of data

loss. For example, if the RPO is set to 5 minutes, it means that if a failure occurs, up to 5

minutes of data may be lost.

•	 Recovery time objective (RTO): This defines how quickly the system should be restored

after a failure. For instance, if the RTO is 10 minutes, then users should have full access

to the system within 10 minutes of the failure.

Here’s a Pulumi TypeScript example of how to create an Azure Traffic Manager profile using

priority-based routing. This profile will automatically route traffic to the primary endpoint first.

If the primary endpoint fails, it will route traffic to the secondary endpoint:

import * as azure from "@pulumi/azure-native";

const trafficManagerProfileName = "tm001";

const trafficManager = new azure.network.
Profile(trafficManagerProfileName, {

 resourceGroupName: "my-test-rg",

 trafficRoutingMethod: "Priority",

 dnsConfig: { relativeName: "tm001", ttl: 30 },

 monitorConfig: { protocol:"HTTP", port:80, path:"/" },

});

Chapter 9 177

const primaryEndpoint = new azure.network.Endpoint("primary", {

 profileName: trafficManager.name,

 resourceGroupName: "my-test-rg",

 endpointType: "ExternalEndpoints",

 target: "example-primary.mywebsite.com",

 priority: 1,

}, { dependsOn: [trafficManager] });

const secondaryEndpoint = new azure.network.Endpoint("secondary", {

 profileName: trafficManager.name,

 resourceGroupName: "my-test-rg",

 endpointType: "ExternalEndpoints",

 target: "example-secondary.mywebsite.com",

 priority: 2,

}, { dependsOn: [trafficManager] });

Let’s look at how it works:

•	 Traffic Manager profile: Uses priority-based routing, meaning traffic goes to the endpoint

with the highest priority value (1 is higher priority than 2)

•	 Primary endpoint: The endpoint has a priority value of 1, so all user traffic is sent here

first

•	 Secondary endpoint: The endpoint has a priority value of 2, so it will only receive traffic

if the primary endpoint becomes unhealthy

With this setup, failover happens automatically if the primary endpoint fails, and traffic is redi-

rected to the secondary endpoint.

Beyond managing failovers, you can also use Traffic Manager for load balancing. Load balancing

ensures that traffic is distributed across multiple regions, improving performance and availability.

Instead of directing all users to a single region, traffic is spread to multiple regions, reducing the

load on any single server. If one region fails, load balancing allows traffic to be redirected to the

next available region.

Azure provides Azure Traffic Manager to manage load balancing across multiple regions. By using

performance-based routing, Traffic Manager directs users to the region with the best response

time. This ensures that users are connected to the fastest, most available region.

Managing your IaC in Multiple Regions and Environments178

Here’s how to create a Traffic Manager profile with performance-based routing using Pulumi:

import * as azure from "@pulumi/azure-native";

const tm = new azure.network.Profile("tm001", {

 resourceGroupName: " my-test-rg",

 trafficRoutingMethod: "Performance",

 dnsConfig: { relativeName: " tm001", ttl: 30 },

 monitorConfig: { protocol:"HTTP", port:80, path:"/" },

});

The preceding code snippet creates an Azure Traffic Manager profile that uses performance-based

routing to send users to the region with the fastest response time. Traffic Manager continuously

monitors the health of each endpoint by sending HTTP requests to check whether they are re-

sponsive. If an endpoint becomes unhealthy, Traffic Manager automatically redirects users to the

next fastest available region. This ensures that users are always connected to a healthy, responsive

region, improving both performance and availability.

Designing a multi-region architecture
Designing a multi-region architecture requires thoughtful planning to ensure high performance,

availability, and security. It involves selecting the right regions, managing resources efficiently,

and securing inter-region communication. Using Pulumi makes this process easier with the

use of stacks, parameterized templates, environment-specific configurations, and parent-child

stack models. These tools enable shared configurations, region-specific overrides, and reusable

infrastructure logic.

If you have Pulumi Cloud and you’re not self-hosting, you can also use ESC for this. Pulumi’s

ESC (which stands for Environments, Secrets, and Configuration) provides an enhanced way

to manage shared environment configurations and secrets in a structured way. By using ESC, you

can centralize shared environment variables, manage sensitive information such as API keys, and

control configurations specific to production, staging, or development environments. ESC allows

these values to be easily accessed and modified without embedding them in the code. We will

cover ESC in more detail in Chapter 11, but before then, this chapter will show how you can use

ESC to achieve multi-region configurations.

Choosing the right cloud regions to deploy in is essential for multi-region design. Major cloud

providers have data centers worldwide, but not all regions have the same capabilities, costs, or

compliance guarantees.

Chapter 9 179

Here are some key factors to consider:

•	 To reduce latency, you should deploy your infrastructure in regions close to your users.

For example, if you have users in Southeast Asia, using Azure Southeast Asia (Singapore)

ensures faster access compared to the US or European regions.

•	 Certain countries have data sovereignty laws that require user data to be stored in specific

regions. For example, to comply with GDPR for European customers, you might deploy

to Azure West Europe.

•	 Different regions have different prices for compute, storage, and bandwidth. For instance,

cloud costs in Mumbai may be cheaper than in Tokyo. Balancing cost and performance is

important when choosing regions.

•	 To give your users the fastest experience, you should route them to the closest available

region. Multi-region architectures support this by allowing you to place resources in lo-

cations such as West US, East US, and Southeast Asia, each serving users from the nearest

location.

•	 Having at least one secondary region ensures availability even if the primary region fails.

Some architectures also use a tertiary region as an additional failover for disaster recovery.

Managing resources across multiple regions can become challenging, but Pulumi simplifies this

with stacks and configurations. You can use something I like to call the parent-child stack model,

and this paradigm follows the principle of inheritance in object-oriented programming. This model

allows you to create a shared configuration at the base (parent) level and specific configurations

for each region (child) stack. With the addition of Pulumi’s ESC, you can centralize and control

shared configuration values across environments and stacks.

What are primary, secondary, and tertiary regions?

Primary regions handle normal traffic and serve as the main endpoint for users. Sec-

ondary regions act as a failover for disaster recovery. If the primary region fails, the

system automatically redirects traffic to the secondary region. Tertiary regions pro-

vide additional redundancy for applications with very high availability requirements.

Managing your IaC in Multiple Regions and Environments180

Parent-child stack model
The parent-child stack model is a concept similar to inheritance in object-oriented programming:

•	 Parent stack: Contains shared logic and configuration. It acts as a “base” where shared

values are stored, such as app names, shared resource groups, or global secrets.

•	 Child stacks: Each child stack represents a specific region (e.g., West US, Southeast Asia,

etc.) and inherits configuration from the parent. It can override shared values and add its

own custom logic, such as region-specific virtual machine sizes.

This is what your directory structure may look like if you decide to adopt this model in your

Pulumi projects:

|-- ./templates

|-- Pulumi.yaml

|-- Pulumi.prod.yaml(Parent stack - shared configurations)

|-- Pulumi.prod-wu2.yaml (Child stack for West US 2)

|-- Pulumi.prod-sea.yaml (Child stack for Southeast Asia)

|-- index.ts (Main Pulumi script for defining resources)

Let’s imagine that the parent stack had the following configurations:

config:

 app: "myapp"

 environment: "prod"

 sharedResourceGroupName: "prod-shared-resources"

 loggingEnabled: true

Let’s also imagine that the child stack for westus2 had the following configurations:

config:

 region: "West US 2"

 vmSize: "Standard_D2s_v3"

 customEndpoint: "westus2.website.com"

Let’s also imagine that the child stack for southeastasia had the following configurations:

config:

 region: "Southeast Asia"

 vmSize: "Standard_D4s_v3"

 customEndpoint: "southeastasia.website.com"

Chapter 9 181

With this setup, Pulumi.prod.yaml holds shared values for the production environment,

while the Pulumi.prod-wu2.yaml and Pulumi.prod-sea.yaml child stacks define region-spe-

cific values. These child stacks can “inherit” shared properties such as app, environment, and

sharedResourceGroupName while defining their own regional properties such as region and

vmSize. To do this, they can use stack references. A stack reference allows one stack to access the

outputs of another stack. The parent stack can output shared configurations, and child stacks

can reference these outputs.

The following code snippet is the code for the parent stack’s index.ts file. It defines the shared

configurations and exports them so they can be accessed by child stacks:

import * as pulumi from "@pulumi/pulumi";

const config = new pulumi.Config();

const appName = config.require("app");

const environment = config.require("environment");

const sharedResourceGroupName = config.require("sharedResourceGroupName");

const loggingEnabled = config.require("loggingEnabled");

export const outputs = {

 appName,

 environment,

 sharedResourceGroupName,

 loggingEnabled,

};

The following code snippet is the code for the child stacks (westus2 and southeastasia). Child

stacks reference the parent stack’s shared configurations and define their own regional-specific

logic:

import * as pulumi from "@pulumi/pulumi";

import * as azure from "@pulumi/azure-native";

const parentStack = new pulumi.StackReference("org-name/project-name/
prod");

const appName = parentStack.getOutput("appName");

const environment = parentStack.getOutput("environment");

const sharedResourceGroupName = parentStack.

Managing your IaC in Multiple Regions and Environments182

getOutput("sharedResourceGroupName");

const loggingEnabled = parentStack.getOutput("loggingEnabled");

const config = new pulumi.Config();

const region = config.require("region");

const vmSize = config.require("vmSize");

const customEndpoint = config.require("customEndpoint");

const resourceGroup = new azure.resources.ResourceGroup(`${appName}-rg`, {

 location: region,

});

const vm = new azure.compute.VirtualMachine(`${appName}-vm`, {

 resourceGroupName: resourceGroup.name,

 location: region,

 size: vmSize,

 networkInterfaceIds: [],

 osProfile: {

 adminUsername: "adminuser",

 computerName: `${appName}-vm`,

 },

});

export const outputs = {

 region,

 vmSize,

 customEndpoint,

};

In the preceding code snippet, the child stack follows the parent-child stack model to inherit

shared configurations from the parent stack while also defining region-specific configurations.

The child stack references the parent stack using pulumi.StackReference, allowing it to access

shared configurations such as appName, environment, and sharedResourceGroupName. These

shared values are exported by the parent stack and made available for reuse in each child stack,

enabling consistent and maintainable infrastructure deployments.

Chapter 9 183

Each child stack defines its own region-specific configurations, such as region, vmSize, and

customEndpoint. While the parent stack provides shared values common to all regions, the child

stack specifies unique details required for the specific region. For instance, the child stack for West

US 2 may define its region as West US 2 with a Standard_D2s_v3 virtual machine, while the child

stack for Southeast Asia defines its region as Southeast Asia and uses a Standard_D4s_v3 virtual

machine. These region-specific configurations ensure that the infrastructure can be tailored to

meet the unique needs of each deployment region.

This entire setup promotes code reuse and consistency. By centralizing shared logic in the par-

ent stack, you avoid duplicating code in each child stack. Each child stack can access shared

values using parentStack.getOutput(), ensuring that if shared values such as appName or

sharedResourceGroupName change in the parent, all child stacks automatically receive the updated

values. This approach allows for flexibility, as region-specific details are kept separate from shared

logic, and it significantly reduces manual effort when updates are needed across multiple regions.

Pulumi ESC
When managing multi-region deployments, it’s important to have a clean separation between

shared configurations and region-specific configurations. Pulumi’s ESC also provides a structured

way to handle this. Shared configurations that apply to all production regions (such as West US 2

and Southeast Asia) can be managed through Pulumi ESC, while region-specific configurations

are stored in the standard stack configuration files. This approach reduces duplication, central-

izes shared values, and makes it easier to manage sensitive data and reusable configuration logic.

Pulumi has a dedicated ESC CLI (separate from the Pulumi CLI) for managing ESC-related com-

mands. The first step is to create an environment. This environment will store shared config-

urations and secrets that apply across multiple regions. For example, to create a production

environment for the myproject project, you can run the following command:

esc env init myorg/myproject/prod

This creates an environment called prod for the myorg/myproject project. The prod environment

will act as a global context where you can store configuration values, secrets, and shared logic for

all production regions (such as West US 2 and Southeast Asia). After creating the environment,

you can store shared configurations in it.

Managing your IaC in Multiple Regions and Environments184

The command to store configurations in the ESC environment is as follows:

esc env set myorg/myproject/prod shared.appName "myapp"

esc env set myorg/myproject/prod shared.environment "prod"

esc env set myorg/myproject/prod shared.sharedResourceGroupName "prod-
shared"

esc env set myorg/myproject/prod shared.loggingEnabled "true"

These values are now centrally stored in the ESC environment and can be accessed by any stack

that imports the myorg/myproject/prod environment. This allows shared values to be defined

once and accessed by all production stacks, reducing duplication and centralizing management.

To access the shared configurations in Pulumi.prod-wu2.yaml (West US 2) and Pulumi.prod-

sea.yaml (Southeast Asia), you need to import the ESC environment into the configuration files.

This is done using the imports key. For example, the configuration for the West US 2 child stack

might look like this:

imports:

 - myproject/prod

config:

 region: "West US 2"

 vmSize: "Standard_D2s_v3"

 customEndpoint: "westus2.website.com"

In this configuration, myproject/prod is imported, allowing the child stack to access shared

values defined in the prod ESC environment. In addition to the shared configurations, the child

stack also defines region-specific configurations such as region, vmSize, and customEndpoint.

These region-specific configurations are only applicable to the West US 2 stack.

For the Southeast Asia region, you can create a Pulumi.prod-sea.yaml file with its own region-spe-

cific configurations. This file also imports the myproject/prod environment to access shared values

while maintaining its own unique settings. The configuration might look like this:

imports:

 - myproject/prod

config:

 region: "Southeast Asia"

 vmSize: "Standard_D4s_v3"

 customEndpoint: "southeastasia.website.com"

Chapter 9 185

With this approach, the Pulumi.prod-wu2.yaml and Pulumi.prod-sea.yaml stacks both inherit

shared configurations (such as appName and sharedResourceGroupName) from myproject/prod.

They also define their own region-specific configurations, allowing for the flexibility to handle

differences between regions.

To access shared and region-specific configurations in your index.ts file, you can use Pulumi’s

Config object to retrieve shared values from the imported ESC environment as well as region-spe-

cific values defined in the stack. Here’s an example of how to retrieve both shared and region-spe-

cific values in the Pulumi code:

import * as pulumi from "@pulumi/pulumi";

import * as azure from "@pulumi/azure-native";

const config = new pulumi.Config();

const appName = config.require("shared.appName");

const environment = config.require("shared.environment");

const sharedResourceGroupName = config.require("shared.
sharedResourceGroupName");

const loggingEnabled = config.require("shared.loggingEnabled");

const region = config.require("region");

const vmSize = config.require("vmSize");

const customEndpoint = config.require("customEndpoint");

const resourceGroup = new azure.resources.ResourceGroup(`${appName}-rg`, {

 location: region,

});

const vm = new azure.compute.VirtualMachine(`${appName}-vm`, {

 resourceGroupName: resourceGroup.name,

 location: region,

 size: vmSize,

 networkInterfaceIds: [],

 osProfile: {

 adminUsername: "adminuser",

 computerName: `${appName}-vm`,

 },

Managing your IaC in Multiple Regions and Environments186

});

export const outputs = {

 appName,

 region,

 vmSize,

 customEndpoint,

};

There are many things you can do with Pulumi ESC, and this is just one of them. Centralizing

shared configurations and managing secrets with ESC makes it easier to maintain consistent and

secure multi-region deployments.

Best practices for multi-region deployments
When working with multi-region deployments, it’s easy to get caught up in the complexity of

managing resources across different regions. Without a clear strategy, you may end up with du-

plicated logic, increased costs, and unpredictable rollouts. Following best practices helps keep

everything clean, consistent, and cost-effective. Here are some practices you should keep in mind.

Minimize region-specific customizations
One of the most important things you can do is limit how much you customize deployments for

each region. The more differences you have between regions, the harder it becomes to maintain

and debug. Instead, use the same IaC templates for all regions and pass in region-specific pa-

rameters. For example, instead of hardcoding virtual machine sizes for each region, you can store

them in configuration files or Pulumi ESC environments. This makes it easy to deploy updates

consistently across all regions.

To achieve this, you can create one Pulumi script (such as index.ts) and reuse it for all regions

by providing the region-specific details in the stack configuration files (Pulumi.prod-wu2.yaml,

Pulumi.prod-sea.yaml, etc.). This approach is similar to using functions with parameters in pro-

gramming, where the function stays the same, but the input changes depending on the situation.

Use blue/green or canary deployments for safer rollouts
Deploying updates across multiple regions can be risky if done all at once. Instead of applying

changes everywhere at the same time, you can use blue/green deployments or canary deploy-

ments. Both methods reduce the risk of downtime and allow for quick rollbacks in case of issues.

Chapter 9 187

With a blue/green deployment, you have two environments: blue (the current environment) and

green (the new environment). The update is made to the green environment, and once it’s verified,

you switch traffic from blue to green. If issues arise, you can instantly switch back to blue. This

method works well for major infrastructure changes.

Canary deployments take a more gradual approach. Instead of switching all traffic at once, you

route traffic to the new environment in small percentages (such as 5%, 10%, 25%, and so on)

while monitoring its performance. If everything works as expected, you continue to increase the

percentage until 100% of traffic is on the new version. If something goes wrong, you can stop

the rollout and revert traffic back to the previous environment. This method works best when

changes are smaller but still have the potential to impact users.

Enable monitoring and observability for every region
You can’t fix what you can’t see. When you have applications running in multiple regions, you

need to know what’s happening in each one. Monitoring and observability are crucial for this.

Without visibility into each region’s performance, you might not even realize there’s a problem

until users report it.

Tools such as Azure Monitor, Amazon CloudWatch, and Prometheus help you track key metrics

such as CPU usage, memory, and request failures. By aggregating data from all regions into a

single dashboard, you can compare region performance side-by-side. If the Southeast Asia region

suddenly shows higher latency than West US 2, you’ll have immediate visibility into the issue.

It’s also important to set up alerts so your team is notified as soon as issues arise. Alerts can be

sent to PagerDuty, Slack, or via email, ensuring that someone on the team is always aware of

issues. Distributed tracing is another useful practice for tracking requests as they move through

different regions. It allows you to pinpoint slow steps in the request flow and determine which

region is causing delays.

Cost optimizations for multi-region deployments
Multi-region deployments aren’t cheap, especially when you have active infrastructure running

in multiple locations. The more regions you deploy to, the more you pay for compute, storage,

and data transfer. Without proper cost management, your cloud bill can spiral out of control.

If you want to track and control costs, use cost management tools such as AWS Cost Explorer

or Azure Cost Management. These tools break down where your costs are coming from, which

allows you to identify which regions are the most expensive. You can also set spending alerts so

you know whether your usage goes beyond a set budget. For example, if your normal monthly

cost is $1,000 and suddenly it jumps to $2,000, you’ll be notified right away.

Managing your IaC in Multiple Regions and Environments188

Environment management strategies
Beyond creating multiple regions in production, it’s still recommended to have multiple envi-

ronments such as development, staging, and production. Each environment serves a different

purpose. For example, the development environment is where engineers can test features and

experiment without worrying about breaking anything. Staging is used to replicate production

as closely as possible, acting as a final testing ground before updates go live. Production, of course,

is where your actual users interact with your application, so it must remain stable and secure.

Mismanaging these environments can lead to serious problems. Accidentally deploying untested

features from development to production could cause downtime, data loss, or a poor user experi-

ence. Overlapping resources, such as shared databases or networks, can lead to unexpected bugs

or disruptions. Without clear boundaries between environments, it becomes harder to debug,

test, and safely roll out updates.

With Pulumi stacks, you can create a stack as an environment, such as Pulumi.dev.yaml, to hold

your development configurations. The same applies to other environments, such as staging and

production. This approach lets you isolate environments while reusing shared logic across all of

them. For example, your development stack might use smaller, cost-efficient virtual machines

and minimal monitoring, while your production stack is configured with larger machines, mon-

itoring, and global failover setups. Each environment has its unique configuration but shares

the same code logic.

Stacks also make it straightforward to spin up new environments for testing or deployment.

Let’s say you need to test a feature in an isolated setting. You can simply copy your Pulumi code,

create a new stack configuration file (such as Pulumi.test.yaml), and deploy it as a temporary

test environment.

The ability to reuse the same code with different parameters means you can create new envi-

ronments in minutes, not hours or days. This is especially valuable in agile workflows, where

developers frequently need to test changes or deploy experimental features without affecting

ongoing work in development or staging.

Pulumi’s programming model supports this design by linking each stack to its own configu-

ration and state. These configurations are stored in YAML files, which Pulumi uses to generate

environment-specific infrastructure. For instance, Pulumi.dev.yaml might specify parameters

such as region, machine size, and logging preferences, while Pulumi.prod.yaml contains settings

optimized for production. The Pulumi code dynamically reads these parameters, ensuring that

the same script can deploy to multiple environments without duplication.

Chapter 9 189

Here’s an example of how these configurations might look:

Pulumi.dev.yaml

config:

 environment: "development"

 region: "West US 2"

 vmSize: "Standard_B2s"

 enableMonitoring: false

Pulumi.prod.yaml

config:

 environment: "production"

 region: "East US"

 vmSize: "Standard_D4s_v3"

 enableMonitoring: true

The corresponding Pulumi code reads these configurations dynamically:

import * as pulumi from "@pulumi/pulumi";

import * as azure from "@pulumi/azure-native";

const config = new pulumi.Config();

const environment = config.require("environment");

const region = config.require("region");

const vmSize = config.require("vmSize");

const enableMonitoring = config.requireBoolean("enableMonitoring");

const resourceGroup = new azure.resources.ResourceGroup(`${environment}-
rg`, {

 location: region,

});

const vm = new azure.compute.VirtualMachine(`${environment}-vm`, {

 resourceGroupName: resourceGroup.name,

 location: region,

 size: vmSize,

 osProfile: {

 adminUsername: "adminuser",

 computerName: `${environment}-vm`,

Managing your IaC in Multiple Regions and Environments190

 },

});

if (enableMonitoring) {

 const monitor = new azure.monitor.DiagnosticSetting(`${environment}-
monitor`, {

 resourceUri: resourceGroup.id,

 logs: [{ category: "Administrative", enabled: true }],

 });

}

Let’s say you need a temporary test environment. All you need to do is create a new stack called

test by running the following:

pulumi stack init test

This creates a new stack that you can configure independently. Next, define test-specific param-

eters in your Pulumi.test.yaml configuration file to specify settings unique to this environment,

as in this example:

config:

 environment: "test"

 region: "Central US"

 vmSize: "Standard_B2s"

 enableMonitoring: false

Once your configuration is in place, deploy the environment using the pulumi up command.

Proper environment management involves isolating resources to prevent unintended interactions.

Each environment should have its own dedicated resources, such as virtual networks, resource

groups, or databases. This ensures that testing in development or staging doesn’t accidentally

impact production. Pulumi supports resource isolation by linking resources to environment-spe-

cific parameters in stack configurations.

For example, a development stack could create its own resource group:

const resourceGroup = new azure.resources.ResourceGroup(

`${environment}-rg`, {

 location: region,

});

Chapter 9 191

The same script can create an entirely separate resource group for production, thanks to the

environment-specific parameters in Pulumi.prod.yaml.

Using Pulumi with CI/CD pipelines ensures that your deployments remain consistent across

all environments. With tools such as GitHub Actions or Azure DevOps, you can automate de-

ployments based on specific triggers and enforce rules for each environment. For example, you

might configure the pipeline to deploy to development automatically whenever a pull request is

opened. Once the code is approved and merged into the main branch, it gets deployed to staging

for further testing. Finally, production deployment might require a manual approval step to en-

sure everything is ready. This process ensures that changes are thoroughly tested and reviewed

before they reach the live environment, reducing the risk of downtime or bugs.

Automating environment setup and management
Managing multiple environments manually can quickly become error-prone and time-consuming,

especially as the number of environments or the complexity of the infrastructure grows. Auto-

mating environment setup and management not only saves time but also ensures consistency

and reliability across development, staging, and production.

For instance, you can configure pipelines to deploy a specific environment automatically when

certain triggers occur, as in this example:

•	 Development: Deploy when a pull request is created

•	 Staging: Deploy when code is merged into the main branch

•	 Production: Deploy after a manual approval step

Example use case: feature rollout

Let’s say you’re adding a new feature to an e-commerce platform. A developer opens

a pull request with their changes, which triggers a deployment to the development

environment using a small, cost-efficient setup. The team tests the feature, vali-

dates it, and approves the pull request. Once merged, the feature is automatically

deployed to staging, an environment that closely matches production. Here, the QA

team runs final checks, and only after staging passes verification does the pipeline

require manual approval for the production deployment. The feature is then rolled

out to customers in a controlled and predictable way.

Managing your IaC in Multiple Regions and Environments192

The following is a GitHub Actions pipeline that manages deployments for two environments:

development and production. The development step runs automatically on pull request (PR)

builds, staging runs when changes are merged into the main branch, and production runs only

after staging completes successfully and a manual approval is provided:

name: Deploy Environments

on:

 pull_request:

 branches:

 - '*'

 push:

 branches:

 - main

jobs:

 dev:

 name: Deploy to Development

 runs-on: ubuntu-latest

 if: github.event_name == 'pull_request'

 steps:

 - name: Check out repository

 uses: actions/checkout@v2

 - name: Set up Pulumi

 uses: pulumi/actions@v3

 with:

 command: up

 stack-name: dev

 work-dir: ./infrastructure

 production:

 name: Deploy to Production

 runs-on: ubuntu-latest

 needs: dev

 steps:

 - name: Manual approval

 uses: manual-approval-job

 - name: Check out repository

 uses: actions/checkout@v2

 - name: Set up Pulumi

 uses: pulumi/actions@v3

Chapter 9 193

 with:

 command: up

 stack-name: production

 work-dir: ./infrastructure

We’ve covered spinning up infrastructure for testing and production. How about tearing down

infrastructure for testing? Cleaning up resources after testing is just as important as creating them,

especially to avoid unnecessary costs and keep your environment tidy. You can automate this

process using two methods: a cleanup pipeline job triggered by specific events and a scheduled

cron job that runs periodically to remove unused test resources.

The first method involves adding a cleanup step to your CI/CD pipeline. This step automatically

destroys the development environment when a PR is closed or merged. For example, you could

configure your pipeline to run the following Pulumi job:

jobs:

 cleanup:

 name: Clean up Development Environment

 runs-on: ubuntu-latest

 if: github.event.action == 'closed' || github.event.action == 'merged'

 steps:

 - name: Check out repository

 uses: actions/checkout@v2

 - name: Set up Pulumi

 uses: pulumi/actions@v3

 with:

 command: destroy

 stack-name: dev

 work-dir: ./infrastructure

 refresh: true

 yes: true

This cleanup job is triggered when a PR is merged or closed, ensuring that test resources are

removed immediately after they are no longer needed. This method works well for PR-driven

workflows where each PR creates its own test environment. By tearing down the infrastructure

promptly, you minimize resource usage and costs while maintaining a clean development stack.

Managing your IaC in Multiple Regions and Environments194

The second method uses a scheduled cron job to remove unused test resources regularly. This is

particularly useful for catching resources that were not cleaned up due to incomplete workflows or

abandoned test environments. For instance, you can schedule a cron job to run daily and destroy

any lingering resources in the development environment:

name: Scheduled Cleanup

on:

 schedule:

 - cron: "0 2 * * *" # Runs daily at 2:00 AM

jobs:

 cleanup:

 name: Clean up Test Resources

 runs-on: ubuntu-latest

 steps:

 - name: Check out repository

 uses: actions/checkout@v2

 - name: Set up Pulumi

 uses: pulumi/actions@v3

 with:

 command: destroy

 stack-name: dev

 work-dir: ./infrastructure

 refresh: true

 yes: true

This job ensures that any test resources left behind after the pipeline cleanup are automatically

removed within 24 hours. Running the cron job daily keeps your infrastructure lean, reduces

operational clutter, and ensures that no resources are accidentally left consuming your budget.

Summary
In this chapter, we covered how to effectively manage IaC in multiple regions and environments.

We began by exploring the importance of multi-region deployments for global user bases, disaster

recovery, and regulatory compliance, followed by a discussion on designing architectures such

as active-active and active-passive setups.

Chapter 9 195

The chapter introduced practical strategies such as the parent-child stack model and Pulumi ESC

to centralize shared configurations while allowing region-specific overrides. We also detailed

best practices, including minimizing region-specific customizations, using blue/green or canary

deployments, and enabling observability and cost optimization. Finally, we covered automating

environment setup and life cycle management using Pulumi and CI/CD pipelines.

In the next chapter, we will cover managing multi-cloud and hybrid scenarios.

Questions
1.	 What are the primary benefits of managing IaC in multiple regions and environments?

2.	 Describe the difference between active-active and active-passive architectures in multi-re-

gion setups.

3.	 How do tools such as Pulumi ESC facilitate managing shared configurations across mul-

tiple environments?

4.	 What are the advantages of using a parent-child stack model for managing infrastructure

across regions?

5.	 How can you use Pulumi to automate the tearing down of unused resources in test en-

vironments?

6.	 Why is it important to minimize hardcoding in IaC templates when managing multiple

regions?

7.	 What best practices can help maintain consistency across multiple environments when

using Pulumi?

8.	 How can you ensure reliable failover mechanisms in a multi-region architecture?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

10
Managing Multi-Cloud and
Hybrid Scenarios

Beyond multi-environment and multi-region deployments, there is also the possibility that you

might need to handle infrastructure across multiple cloud providers or even combine cloud and

on-premises systems. These scenarios are becoming more common as organizations seek to bal-

ance flexibility, cost, and resilience while avoiding being tied to a single cloud provider.

The appeal of multi-cloud and hybrid setups is clear. They provide options to choose the best

tools and services from different platforms, distribute workloads to improve performance, and

minimize risk by avoiding over-reliance on a single provider. Hybrid scenarios take this a step

further by blending on-premises systems with cloud environments, which can be crucial for

industries with strict data residency or regulatory requirements.

But let’s not sugarcoat it; managing these environments is complex. Each cloud provider has its

own set of rules, tools, and unique features, making it challenging to maintain consistency across

platforms. This chapter dives deep into these challenges and provides practical strategies to

overcome them. Using Pulumi, we’ll explore how to orchestrate resources across multiple cloud

platforms with precision and control.

In this chapter, we’re going to cover the following main topics:

•	 Understanding multi-cloud and hybrid architectures

•	 Designing cross-platform network configurations

•	 Data integration and management across clouds

•	 Security and compliance in multi-cloud environments

Managing Multi-Cloud and Hybrid Scenarios198

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from here:

https://www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

•	 Since we’ll be deploying some resources to Azure, you’ll need an Azure account. You can

sign up for a free account or use your existing Azure account. For more details, visit the

Azure website here: https://azure.microsoft.com/en-us/pricing/purchase-options/

azure-account.

•	 The Azure CLI is required to interact with Azure resources from your local machine. You

can install the Azure CLI by following the instructions here: https://learn.microsoft.

com/en-us/cli/azure/install-azure-cli.

•	 Since we’ll be deploying some resources to AWS, you’ll need an AWS account. You can

sign up for a free account or use your existing AWS account. For more details, visit the

AWS website here: https://aws.amazon.com/.

•	 The AWS CLI is required to interact with AWS resources from your local machine. You can

install the AWS CLI by following the instructions here: https://aws.amazon.com/cli/.

Understanding multi-cloud and hybrid architectures
Managing infrastructure is no longer just about choosing one cloud provider or sticking to

on-premises servers. Organizations today have more complex needs that often require using

multiple clouds or blending on-premises systems with cloud environments. Let’s break this down

and explore how these strategies work in real-world scenarios.

Multi-cloud means using more than one cloud provider to meet your business needs. For ex-

ample, a company might store data in one cloud (e.g., AWS), run applications in another (e.g.,

Azure), and use a third for specialized services such as AI or analytics (e.g., Google Cloud). The

main idea is to take advantage of the best features from different providers while avoiding being

locked into just one.

https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/
https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account
https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://aws.amazon.com/
https://aws.amazon.com/cli/

Chapter 10 199

A hybrid cloud combines on-premises infrastructure with cloud environments. This allows orga-

nizations to keep some systems and data in their own data centers while still benefiting from the

scalability and flexibility of the cloud. It’s useful for companies with sensitive data or regulatory

requirements that make it hard to move everything to the cloud.

Use case examples
Let’s look at two hypothetical companies, Snapstagram and Doora AI, to see how multi-cloud

and hybrid strategies can be applied.

Snapstagram
Snapstagram is a fast-growing social media platform that lets users share photos and short videos.

To handle its massive user base, Snapstagram uses a multi-cloud strategy.

Why multi-cloud? Snapstagram stores its user data in Cloud A because of its reliable and affordable

storage services. Meanwhile, it uses Cloud B for video streaming since it offers better performance

for media delivery. Finally, Snapstagram uses Cloud C’s advanced AI tools to suggest content to

users based on their preferences. By combining the strengths of these providers, Snapstagram’s

platform stays fast, scalable, and engaging.

Doora AI
Doora AI is an AI platform that offers personalized insights to businesses using machine learn-

ing. Since some of its clients work in healthcare and finance, they need to keep sensitive data

on-premises for compliance reasons. However, Doora AI also requires the scalability of the cloud

to train large AI models.

Why hybrid cloud? Doora AI processes sensitive customer data on its private servers to meet

strict security and compliance requirements. Once the data is anonymized, it uploads the cleaned

datasets to a public cloud for large-scale training of AI models. This setup lets Doora AI maintain

high levels of security without giving up the power of the cloud.

Both Snapstagram and Doora AI have very different needs, but they’ve found solutions that work

best for their situations. As we move forward, you’ll learn about things to consider when designing

systems like these and making the most of both worlds.

Managing Multi-Cloud and Hybrid Scenarios200

Motivations behind multi-cloud strategies
One big reason companies choose a multi-cloud strategy is to avoid vendor lock-in. When you

rely too much on one cloud provider, you’re stuck with their pricing, tools, and limitations. This

can make it harder to negotiate better deals or adapt to new technologies. As a new platform,

Snapstagram might need flexibility to keep up with trends and user demands, and being locked

into a single provider could slow them down. By using multiple clouds, they have the freedom

to switch services or providers if something better comes along.

Another advantage is the ability to pick the best tools for the job. Each cloud provider has its

strengths. For example, Snapstagram stores its photos and videos in a provider with excellent

storage and retrieval capabilities, while using a different cloud that excels at streaming content

to deliver smooth video playback. And for AI-driven features such as personalized recommen-

dations, Snapstagram works with a third provider that offers very good machine learning tools.

Multi-cloud also improves resilience and disaster recovery. If one provider experiences an outage,

Snapstagram’s operations won’t grind to a halt because other parts of the platform are still running

on different clouds. This approach distributes risk and keeps the platform reliable for its users.

For example, even if the provider managing their AI tools goes down, users can still upload and

view content because those functions are handled by separate systems. This kind of redundancy

is critical for maintaining trust with users in an always-online world.

Motivations behind hybrid architectures
Hybrid architectures are often driven by the need to handle sensitive data while still benefiting

from the cloud’s scalability. Many industries, such as healthcare and finance, have strict regu-

lations about where data can be stored or processed. We created a hypothetical company called

Doora AI earlier, which works with clients in these sectors. For companies like them, keeping

sensitive data on their private servers is essential to ensure compliance with laws and regula-

tions. However, instead of limiting their capabilities to on-premises resources, Doora AI uses

the cloud for tasks such as large-scale AI model training, where sensitive data has already been

anonymized. This hybrid approach allows them to stay compliant while leveraging the cloud

for what it does best.

Another reason organizations adopt hybrid setups is to support a gradual migration to the cloud.

Moving all systems to the cloud in one go is risky, costly, and often unrealistic for companies with

complex operations or legacy systems. Hybrid architectures let businesses transition workloads

over time, testing and adapting at their own pace.

Chapter 10 201

Hybrid systems also allow organizations to extend the capabilities of their on-premises infra-

structure. Private data centers are often limited by physical constraints, such as the amount of

compute power or storage they can handle. Instead of investing heavily in expanding their own

servers, Doora AI could use the cloud to scale up quickly when needed. For example, during pe-

riods of high demand for AI insights, they can temporarily offload some of the processing work

to the cloud while keeping regular operations running on their private systems. This gives them

the ability to scale on demand without overcommitting resources.

Another important motivation for hybrid architectures is maintaining operational continuity

during disruptions. With a hybrid approach, businesses can create redundancy between on-prem-

ises and cloud systems. If an unexpected issue affects one environment, such as hardware failure

in their private data center or a temporary outage in their cloud provider, the other environment

can step in to keep critical services running. For Doora AI, this redundancy ensures that their

clients can continue accessing insights and tools, even when one part of the infrastructure is

temporarily unavailable.

Hybrid architectures also provide flexibility for experimenting with new technologies while

minimizing risks. For companies such as Doora AI, integrating emerging AI tools from the cloud

becomes easier because they can test these technologies in the cloud without impacting their

on-premises systems. This ability to explore innovation while maintaining control over sensitive

operations ensures that companies such as Doora AI can remain at the forefront of the AI industry

without compromising their clients’ trust.

Designing multi-cloud and hybrid cloud architectures
Designing multi-cloud and hybrid architectures requires careful planning. These setups can make

your applications flexible and resilient, but can also introduce complexity if not done properly.

To address these challenges, you need to prioritize consistency, interoperability, visibility, and

performance. Let’s look at each area and explore how tools such as Pulumi, using TypeScript, can

help simplify the process.

Standardization is key
Without standardization, maintaining consistent workflows across platforms becomes a night-

mare. Because Pulumi takes the approach to infrastructure as software, you can create reusable

abstractions that ensure consistency, regardless of the cloud provider. Imagine you want to design

a serverless infrastructure, but abstract away the underlying differences for developers.

Managing Multi-Cloud and Hybrid Scenarios202

Using Pulumi, you could create a ServerlessApp class that takes in properties such as cloud,

runtime, and handler. Based on the cloud property, it provisions resources in AWS or Azure,

ensuring that resource names follow a consistent format. Let’s build this step by step:

1.	 First, we define an interface for the class properties:

interface ServerlessAppProps {

 name: string;

 cloud: "AWS" | "Azure";

 runtime: string;

 handler: string;

}

Quick tip: Enhance your coding experience with the AI Code Explainer

and Quick Copy features. Open this book in the next-gen Packt Reader. Click

the Copy button

(1) to quickly copy code into your coding environment, or click the Explain

button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this

book. Scan the QR code OR visit packtpub.com/unlock, then use the search

bar to find this book by name. Double-check the edition shown to make sure

you get the right one.

http://packtpub.com/unlock

Chapter 10 203

The ServerlessAppProps interface ensures that the input to the class is structured and

enforces consistency. It includes the application name, the target cloud (either AWS or

Azure), and function-specific details such as runtime and handler.

2.	 Now, we move on to creating the class. The following code snippet does this and also

standardizes resource names:

class ServerlessApp {

 constructor(props: ServerlessAppProps) {

 const standardizedName = `${props.name}-serverless-app`;

}

This naming convention (<name>-serverless-app) ensures that resources across clouds

are named in the same format, making it easier to identify and manage them.

3.	 Next, we handle the AWS-specific implementation:

if (props.cloud === "AWS") {

 new aws.lambda.Function(standardizedName, {

 runtime: props.runtime,

 handler: props.handler,

 code: new pulumi.asset.AssetArchive({

 ".": new pulumi.asset.FileArchive("./code"),

 }),

 role: aws.iam.getRole({ name: "lambda-exec-role" }).
then((role) => role.arn),

 });

}

Here, the ServerlessApp class provisions an AWS Lambda function. It uses the standard-

ized name, along with the runtime and handler details passed to the constructor. The

function’s code is packaged from a local directory (./code), and an IAM role (lambda-

exec-role) is assigned for execution.

4.	 For Azure, we include a different block of logic:

else if (props.cloud === "Azure") {

 new azure.web.WebApp(standardizedName, {

 resourceGroupName: "example-resource-group",

 serverFarmId: azure.appservice.getAppServicePlan({

 name: "example-plan",

Managing Multi-Cloud and Hybrid Scenarios204

 resourceGroupName: "example-resource-group",

 }).then((plan) => plan.id),

 siteConfig: {

 appSettings: [

 { name: "FUNCTIONS_WORKER_RUNTIME", value: props.
runtime },

 { name: "WEBSITE_RUN_FROM_PACKAGE", value: "1" },

],

 },

 });

}

This block provisions an Azure function app. It sets the runtime and integrates it with

an existing App Service Plan. The use of appSettings ensures that the function app’s

environment is configured correctly.

5.	 Finally, we add error handling for unsupported cloud providers:

else {

 throw new Error(`Unsupported cloud: ${props.cloud}`);

}

This ensures that the class handles invalid input gracefully and prevents misconfigurations.

When you bring it all together, using this class is simple:

const app = new ServerlessApp({

 name: "my-app",

 cloud: "AWS",

 runtime: "nodejs14.x",

 handler: "index.handler",

});

When standardization is not an afterthought in your IaC code, it changes how you build and

manage infrastructure. It makes your deployments predictable, your resources consistent, and

your teams more productive. In multi-cloud and hybrid environments, where different provid-

ers have their own tools and rules, standardization helps keep things simple and organized. It

reduces mistakes, saves time, and ensures that your systems can grow without becoming chaotic.

Beyond naming conventions and abstraction, here are three examples of how you can enforce

standardization in your multi-cloud IaC.

Chapter 10 205

Tagging resources consistently
Adding the same tags (such as environment, owner, or project) to all your resources helps you

organize and track them better, as in this example:

const defaultTags = { environment: "production", owner: "team-xyz" };

For AWS, you can use this:

const awsBucket = new aws.s3.Bucket("myBucket", {

 tags: { ...defaultTags, service: "storage" },

});

For Azure, you can use this:

const azureStorage = new azure.storage.StorageAccount("myStorage", {

 tags: { ...defaultTags, service: "storage" },

});

Centralized configuration
Use shared configuration files or environment variables to define settings such as regions or

instance sizes. This ensures that all resources follow the same setup. The following code snippet

shows how you can retrieve configuration for your infrastructure:

const config = new pulumi.Config();

const region = config.require("region");

const instanceType = config.get("instanceType") || "t2.micro";

Reusable components
Instead of writing the same code repeatedly, you can create a single module or class that handles a

specific task, such as setting up a network or creating a storage bucket. This saves time and ensures

that all your resources follow the same standards. If something needs to change, such as a new

best practice or policy, you only update the component, and everything using it stays up to date.

It also reduces errors since the component can include tested configurations that work reliably.

Planning for interoperability
Interoperability is about ensuring that systems in different environments can communicate and

work together effectively. In multi-cloud and hybrid setups, resources often need to exchange

data or coordinate processes across providers, making seamless connections crucial.

Managing Multi-Cloud and Hybrid Scenarios206

For example, you might use an AWS database for its robust data storage options while running

backend processing with Azure Functions. To make this work, you can save the AWS database

connection string in the app settings of the Azure function, enabling it to securely access the

database without hardcoding sensitive information.

Here’s how you could achieve this with Pulumi:

1.	 First, create an AWS RDS database and retrieve its connection string, as shown here:

import * as aws from "@pulumi/aws";

// Create an RDS instance in AWS

const db = new aws.rds.Instance("myDatabase", {

 engine: "mysql",

 instanceClass: "db.t2.micro",

 allocatedStorage: 20,

 dbName: "mydb",

 username: "admin",

 password: "password123",

 publiclyAccessible: true,

});

// Export the connection string

export const dbConnectionString = pulumi.interpolate`mysql://${db.
username}:${db.password}@${db.endpoint}/mydb`;

2.	 Next, pass the database connection string to an Azure function’s app settings:

import * as azure from "@pulumi/azure-native";

// Create an Azure Function App

const appServicePlan = new azure.web.
AppServicePlan("myAppServicePlan", {

 resourceGroupName: "example-resource-group",

 sku: { tier: "Dynamic", name: "Y1" },

});

const functionApp = new azure.web.WebApp("myFunctionApp", {

 resourceGroupName: "example-resource-group",

 serverFarmId: appServicePlan.id,

Chapter 10 207

 siteConfig: {

 appSettings: [

 {

 name: "FUNCTIONS_WORKER_RUNTIME",

 value: "node" },

 {

 name: "AWS_DB_CONNECTION",

 value: dbConnectionString

},

],

 },

});

This setup allows your Azure function to securely interact with the AWS database. You’ve enabled

the Azure compute layer to connect to and leverage the storage capabilities of AWS, showcasing

real interoperability.

Beyond connecting resources, interoperability also involves managing security, ensuring low-la-

tency communication, and defining clear protocols. For instance, in the preceding example, you

can configure network rules to allow secure communication between the Azure function and the

AWS database while restricting public access.

Centralized monitoring and observability
Monitoring and observability are critical for managing multi-cloud setups effectively. When you

have resources running in both AWS and Azure, it’s important to have a clear picture of how ev-

erything is performing and where potential issues might arise. Without centralized monitoring,

diagnosing problems or tracking performance across different clouds can become overwhelming.

A good way to handle this is by using the native tools provided by each cloud platform, such

as Amazon CloudWatch and Azure Monitor, to collect logs and metrics. These tools can track

resource usage, errors, and other vital information for the services running in their respective

environments. For example, Amazon CloudWatch can monitor the CPU usage of EC2 instances,

while Azure Monitor can track memory usage and logs from virtual machines.

To make observability effective, you can send the collected data to a unified monitoring platform

such as Datadog, Grafana, or Elastic. This gives you a single dashboard where you can view per-

formance metrics and logs from both AWS and Azure in one place. It allows you to compare trends,

set up alerts, and quickly identify problems no matter which cloud is involved.

Managing Multi-Cloud and Hybrid Scenarios208

To monitor resources in AWS, connect CloudWatch to Grafana. You need to provide the necessary

AWS credentials and Regions:

const cloudWatchDataSource = new grafana.oss.DataSource(

"cloudWatchSource", {

 name: "AWS CloudWatch",

 type: "cloudwatch",

 url: "",

 access: "proxy",

 jsonDataEncoded: JSON.stringify({

 defaultRegion: "us-east-1",

 authType: "keys",

 }),

 secureJsonDataEncoded: JSON.stringify({

 accessKey: "your-aws-access-key",

 secretKey: "your-aws-secret-key",

 }),

});

To monitor Azure resources, connect Azure Monitor to Grafana using Azure credentials:

const azureMonitorDataSource = new grafana.oss.DataSource(

"azureMonitorSource", {

 name: "Azure Monitor",

 type: "grafana-azure-monitor-datasource",

 access: "proxy",

 jsonDataEncoded: JSON.stringify({

 cloudName: "azuremonitor",

 tenantId: "your-azure-tenant-id",

 clientId: "your-azure-client-id",

 subscriptionId: "your-azure-subscription-id",

 }),

 secureJsonDataEncoded: JSON.stringify({

 clientSecret: "your-azure-client-secret",

 }),

});

Chapter 10 209

Once the data sources are set up, you can define Grafana dashboards to visualize metrics from

both AWS and Azure. Here’s an example of a simple dashboard combining data from CloudWatch

and Azure Monitor:

const dashboard = new grafana.Dashboard("multiCloudDashboard", {

 configJson: JSON.stringify({

 title: "Multi-Cloud Metrics",

 panels: [

 {

 datasource: cloudWatchDataSource.name,

 type: "graph",

 title: "AWS EC2 CPU Usage",

 // ... more code to configure your AWS CloudWatch Data Source

 },

 {

 datasource: azureMonitorDataSource.name,

 type: "graph",

 title: "Azure VM Memory Usage",

 // ... more code to configure your Azure Monitor Data Source

 },

]

 })

});

Centralizing monitoring and observability also helps with scalability. As your infrastructure grows

across multiple clouds, a unified view ensures that your team doesn’t have to juggle separate

tools or dashboards for each provider. Instead, they can focus on making sure that your entire

system is reliable.

Scalability and performance
In a multi-cloud setup, scalability and performance are key to handling increasing demand while

keeping applications fast and reliable. A practical example is deploying serverless functions in

both AWS Lambda and Azure Function App and using Azure Traffic Manager to load balance

traffic between them. This approach allows you to scale serverless compute automatically and

direct requests to the best-performing or nearest cloud.

Managing Multi-Cloud and Hybrid Scenarios210

AWS Lambda and Azure Function Apps automatically scale based on the number of incoming

requests. Deploying the same function logic to both clouds keeps functionality and performance

consistent.

Azure Traffic Manager acts as a DNS-based load balancer, routing traffic based on policies such

as priority, geographic location, or performance. For example, it can send traffic to AWS Lambda

in one region and to Azure Function Apps in another, reducing latency for users.

This setup adapts dynamically. If one cloud experiences high traffic or an outage, Traffic Manager

redirects requests to the other, keeping services uninterrupted.

In the next section, you will see how to configure cross-platform networking.

Designing cross-platform network configurations
In multi-cloud and hybrid cloud architectures, networks from different providers may need to

communicate or interact. For example, you might have an application hosted in Azure that needs

to pull data from a database in AWS, or users accessing services from both clouds. To make this

possible, your network configurations must support seamless communication across these bound-

aries. There are two ways to do this: by maintaining consistent IP addressing and by managing

how traffic flows between application instances.

Implementing consistent IP addressing and DNS across
clouds
One of the most important aspects of cross-cloud networking is maintaining consistent IP ad-

dressing and DNS naming conventions. Each cloud provider has its own way of managing net-

works, but when you connect them, overlapping IP ranges or inconsistent DNS names can cause

conflicts. For example, if an Amazon VPC uses the same CIDR block as an Azure virtual network,

communication between the two will fail. To avoid this, you need to assign unique IP ranges to

each network.

In your Pulumi code, you can define and manage IP ranges and DNS names as part of your infra-

structure. You can standardize configurations across both clouds, reducing the risk of conflicts.

Here’s how this might look in practice:

•	 Define unique CIDR ranges: Assign separate, non-overlapping CIDR blocks for each

cloud, as in this example:

•	 Amazon VPC: 10.0.0.0/16

•	 Azure Virtual Network: 10.1.0.0/16

Chapter 10 211

•	 Shared DNS resolution: Set up DNS configurations that allow services in one cloud to

resolve the domain names of services in the other. For example, you can use Amazon Route

53 to manage a shared DNS zone or integrate Azure’s DNS service for a common namespace.

Using Pulumi, you can write code that manages these configurations consistently across clouds:

•	 Amazon VPC:

const awsVpc = new aws.ec2.Vpc("awsVpc", {

 cidrBlock: "10.0.0.0/16",

});

•	 Azure Virtual Network:

const azureVnet = new azure.network.VirtualNetwork("azureVnet", {

 addressSpace: { addressPrefixes: ["10.1.0.0/16"] },

 resourceGroupName: "example-resource-group",

 location: "East US",

});

•	 Shared DNS zone in AWS:

const dnsZone = new aws.route53.Zone("sharedDnsZone", {

 name: "multicloud.example.com",

});

With standardized IP ranges and shared DNS resolution, services in AWS and Azure can discover

and communicate with each other without conflicts.

Configuring load balancing and traffic routing
Once networks are connected, the next step is to manage how traffic flows between them. Tools

such as Azure Traffic Manager or Amazon Route 53 can route traffic based on factors such as

performance, geographic location, or failover requirements, as shown here:

•	 Performance-based routing: Traffic is sent to the cloud provider with the lowest latency

for the user

•	 Geographic routing: Users are directed to the nearest data center, whether it’s in AWS

or Azure

•	 Failover routing: If one provider experiences downtime, traffic is automatically routed

to the other

Managing Multi-Cloud and Hybrid Scenarios212

Pulumi can help automate this setup. For instance, you can use Azure Traffic Manager to distribute

traffic across serverless functions in AWS Lambda and Azure Functions:

•	 Traffic Manager profile:

const trafficManager = new azure.network.TrafficManagerProfile(

"trafficManager", {

 resourceGroupName: "example-resource-group",

 location: "global",

 dnsConfig: {

 relativeName: "multicloud-traffic",

 ttl: 30,

 },

 trafficRoutingMethod: "Performance",

 monitorConfig: {

 protocol: "HTTPS",

 port: 443,

 path: "/health",

 },

});

•	 AWS endpoint:

const awsEndpoint = new azure.network.TrafficManagerEndpoint(

"awsEndpoint", {

 profileName: trafficManager.name,

 resourceGroupName: "example-resource-group",

 type: "ExternalEndpoints",

 target: "aws-lambda-url.amazonaws.com",

 weight: 1,

});

•	 Azure endpoint:

const azureEndpoint = new azure.network.TrafficManagerEndpoint(

"azureEndpoint", {

 profileName: trafficManager.name,

 resourceGroupName: "example-resource-group",

 type: "ExternalEndpoints",

Chapter 10 213

 target: "azure-function-url.azurewebsites.net",

 weight: 1,

});

This configuration distributes requests based on performance, sending traffic to the fastest end-

point. If one endpoint becomes unavailable, Traffic Manager automatically directs traffic to the

healthy one. This means that as long as at least one instance of the application is up, users will

always get responses from a healthy endpoint.

Data integration and management across clouds
Imagine your users in Asia use your services through Azure, and your users in Europe use your

services through AWS. However, one of your Asia users goes to Europe for vacation and isn’t able

to log in because their data is only present in data centers in Asia. This is a common problem when

data isn’t synchronized across cloud providers. To avoid situations like this, you need a strategy

for keeping data consistent between multiple clouds.

One effective method is database replication. For example, you can use AWS Database Migration

Service (DMS) to replicate data from an Azure SQL Database to an Amazon RDS instance, or vice

versa. Replication can happen in near-real time, meaning any update made in one database is

quickly reflected in the other. Another option is scheduled syncs, where tools such as Azure Data

Factory are used to periodically copy and update data between clouds. These approaches ensure

that no matter where your users are, their data is always available. Using Azure Data Factory pipe-

lines, you can schedule regular syncs or even set up near-real-time replication. These pipelines

act as bridges, so that your data stays aligned regardless of the cloud it resides in.

To set up these connections, you need linked services in Azure Data Factory, which act as con-

nectors to your data sources. For example, to synchronize data from an Amazon RDS PostgreSQL

database to Azure SQL Database, you can create linked services for both data sources. The following

linked service connects Azure Data Factory to an Amazon RDS database:

const linkedServiceAmazonRds = new azure_native.datafactory.
LinkedService("linkedServiceAmazonRds", {

 factoryName: "myDataFactory",

 resourceGroupName: "myResourceGroup",

 linkedServiceName: "AmazonRdsService",

 ...

});

Managing Multi-Cloud and Hybrid Scenarios214

The following linked service connects Azure Data Factory to Azure SQL Database:

const linkedServiceAzureSql = new azure_native.datafactory.LinkedService(

"linkedServiceAzureSql", {

 factoryName: "myDataFactory",

 resourceGroupName: "myResourceGroup",

 linkedServiceName: "AzureSqlService",

 ...

});

The first linked service connects Azure Data Factory to an Amazon RDS PostgreSQL database. It in-

cludes basic details such as the factory name (myDataFactory), resource group (myResourceGroup),

and a unique name for the service (AmazonRdsService). This setup allows Azure Data Factory to

communicate with the RDS database in AWS, so it can read or process data. Although the specific

properties aren’t shown, it would include details such as the database endpoint, name, and secure

credentials stored in Azure Key Vault.

The second linked service connects Azure Data Factory to Azure SQL Database. It also includes

the factory name (myDataFactory), resource group (myResourceGroup), and a unique service

name (AzureSqlService). This linked service allows Azure Data Factory to send data to Azure

SQL Database. The missing details would usually include the database connection string and

secure authentication information.

However, as you replicate data, it’s critical to ensure you are not violating any compliance, reg-

ulatory, or data residency laws. For instance, certain regulations, such as GDPR in Europe or

HIPAA in the United States, require data to remain within specific geographic regions or follow

strict encryption and privacy standards. Before implementing cross-cloud replication, you need

to confirm that moving or syncing data across borders complies with these laws. This might

mean restricting replication for certain datasets or ensuring encrypted connections and storage.

While these tools make synchronization easier, there are challenges to think about. Latency is

a key issue. Data might not always update instantly, which can cause delays. This might not be

a big deal for less critical data, but for something like login information, even a few seconds of

delay can lead to a poor user experience. Data integrity is another concern. If the same piece of

data is updated in both systems at the same time, you’ll need a way to handle conflicts, such as

prioritizing one update over the other or merging changes intelligently.

Chapter 10 215

Another factor is the volume of data being synced. Small updates are manageable, but syncing

large datasets between clouds can strain bandwidth and increase costs. Tools such as DMS and

Data Factory often have features to filter and move only the most important data, helping you

manage these challenges. Since these are cloud services from the cloud providers (AWS and

Azure), we can use Pulumi (as displayed previously) to configure the infrastructure and set up

our multi-cloud data management. Beyond syncing databases, another powerful way to han-

dle cross-cloud data is by building data pipelines. These pipelines enable you to move, process,

and analyze data seamlessly between clouds in both real-time and batch modes. Tools such as

Apache Kafka, AWS Kinesis, and Azure Event Hubs are excellent choices for creating robust data

pipelines that work across clouds.

Real-time data streaming
Real-time data streaming pipelines are essential for use cases such as analytics, fraud detection,

or live data synchronization. For example, imagine your application collects real-time transaction

data from users globally. You might use AWS Kinesis to ingest the data in AWS and then forward

it to Azure Event Hubs for further processing in Azure. The streaming data could then trigger

Azure Functions for analysis or storage in Azure SQL Database.

Kafka can also act as a multi-cloud bridge, enabling producers and consumers to exchange data

in real time across AWS and Azure. By running Kafka clusters in both clouds and synchronizing

topics, you can ensure that all systems receive the same data with minimal delay.

Batch processing
Batch pipelines are ideal for scenarios like nightly data synchronization or ETL (Extract, Transform,

Load) workflows. For example, you can extract large volumes of data from AWS S3, transform

it using Apache Spark running in Azure, and then load the processed data back into Azure Blob

Storage or an Azure database for reporting.

Using tools like Azure Data Factory or AWS Glue, you can automate these workflows across clouds.

These tools support integration with a variety of data sources, allowing you to set up pipelines

that process data at scheduled intervals or based on triggers.

Managing Multi-Cloud and Hybrid Scenarios216

Using Pulumi to Automate Pipeline Deployment
Pulumi makes it easy to automate the deployment of cross-cloud data pipeline components. For

instance, you can create Kafka topics in AWS, configure event hubs in Azure, and link them into

a unified pipeline. Here’s an example:

import * as aws from "@pulumi/aws";

import * as azure from "@pulumi/azure-native";

import * as kafka from "@pulumi/kafka";

Following is an example of AWS Kinesis Stream:

const kinesisStream = new aws.kinesis.Stream("kinesisStream", {

 shardCount: 1

});

Following is an example of Azure Service Bus namespace:

const servicebusNamespace = new azure.servicebus.Namespace("servicebus", {

 location: "East US",

 resourceGroupName: "myResourceGroup"

 sku: "Standard"

});

Following is an example of Kafka topic:

const kafkaTopic = new kafka.Topic("kafkaTopic", {

 name: "multi-cloud-data",

 partitions: 3,

 replicationFactor: 2

});

In this example, we could use the following:

•	 AWS Kinesis Stream to ingest real-time data from applications in AWS

•	 Azure Service Bus to receive processed data from Kinesis for further analysis or storage

in Azure

•	 An Apache Kafka topic as a central data exchange point, allowing both clouds to produce

and consume data

In the next section, we will discuss security and compliance in multi-cloud environments.

Chapter 10 217

Security and compliance in multi-cloud environments
Managing identities and permissions in a multi-cloud setup can be challenging, but it is critical

for securing your resources. Each cloud provider offers tools to handle this: AWS uses IAM, and

Azure uses Entra ID. In AWS, IAM lets you define who can access what by creating policies for users,

roles, or services. In Azure, Entra ID helps manage identities and permissions using role-based

access control (RBAC), which assigns roles to users or applications at different levels, such as a

single resource or an entire subscription.

When working across both AWS and Azure, federated authentication and role mapping are es-

sential. For example, you can configure Entra ID as your central identity provider (IdP) and set

up AWS IAM to trust it. This allows users to log in with one account and securely access resources

in both clouds. You can also do the reverse by using AWS Identity Center to manage access to

both AWS and Azure. This approach avoids creating separate accounts in each cloud and keeps

permissions consistent.

By tying identity management together across clouds, you create a secure foundation for con-

trolling access. However, managing identities is only part of the picture—data itself must also

be protected. This brings us to the next critical aspect: data protection strategies.

Protecting data is one of the most critical aspects of securing a multi-cloud environment. In a

setup where data moves between AWS and Azure, you need to ensure that it is secure at all stag-

es—when it’s stored (at rest) and when it’s being transferred (in transit). Cloud providers have

tools such as AWS Key Management Service (KMS) and Azure Key Vault to handle encryption,

and secure transport mechanisms such as HTTPS and VPNs help protect data during transfers.

Additionally, sensitive configurations, such as database credentials or API keys, must be stored

securely using tools such as AWS Secrets Manager or Azure Key Vault.

Encrypting data at rest
Encryption at rest ensures that even if someone gains unauthorized access to the underlying stor-

age, they cannot read the data without the proper keys. Azure Storage integrates seamlessly with

Azure Key Vault to handle encryption keys securely. The following is an example of configuring

a storage account with customer-managed keys (CMKs) from Azure Key Vault using Pulumi:

const keyVault = new azure.keyvault.Vault("myKeyVault", {

 resourceGroupName: "myResourceGroup",

 location: "East US",

 properties: {

Managing Multi-Cloud and Hybrid Scenarios218

 sku: { family: "A", name: "standard" },

 tenantId: "your-tenant-id",

 accessPolicies: [{

 tenantId: "your-tenant-id",

 objectId: "your-object-id",

 permissions: {

 keys: ["get", "create", "list"],

 },

 }],

 },

});

const key = new azure.keyvault.Key("storageEncryptionKey", {

 keyName: "storageEncryptionKey",

 resourceGroupName: "myResourceGroup",

 vaultName: keyVault.name,

 properties: {

 kty: "RSA",

 keySize: 2048,

 },

});

const storageAccount = new azure.storage.StorageAccount(

"myStorageAccount", {

 resourceGroupName: "myResourceGroup",

 location: "East US",

 sku: { name: "Standard_LRS" },

 kind: "StorageV2",

 encryption: {

 keySource: "Microsoft.Keyvault",

 keyVaultProperties: {

 keyName: key.name,

 keyVaultUri: keyVault.properties.vaultUri,

 },

 },

});

Chapter 10 219

Here, Azure Key Vault manages the encryption keys for the storage account, providing a higher

level of control and security compared to platform-managed keys.

Encrypting data in transit
When data is in transit, encryption ensures that it cannot be intercepted by attackers. The most

common method is using HTTPS to secure communication between clients and services. HTTPS

encrypts the data using SSL/TLS certificates, which can be managed using cloud-native tools

such as Azure App Service certificates.

The following is an example of configuring HTTPS for Azure App Service:

// Create an App Service Plan

const appServicePlan = new azure.web.AppServicePlan("myAppServicePlan", {

 resourceGroupName: "myResourceGroup",

 location: "East US",

 sku: {

 tier: "Standard",

 size: "S1",

 },

});

// Create an App Service

const appService = new azure.web.WebApp("myWebApp", {

 resourceGroupName: "myResourceGroup",

 serverFarmId: appServicePlan.id,

 httpsOnly: true,

});

// Upload an SSL Certificate to Secure the App

const certificate = new azure.web.Certificate("mySSLCertificate", {

 resourceGroupName: "myResourceGroup",

 location: "East US",

 pfxBlob: "BASE64_ENCODED_CERTIFICATE_CONTENT",

 password: "CERTIFICATE_PASSWORD",

 serverFarmId: appServicePlan.id,

});

// Bind the Certificate to the App Service

Managing Multi-Cloud and Hybrid Scenarios220

const sslBinding = new azure.web.WebAppHostNameBinding ("sslBinding", {

 resourceGroupName: "myResourceGroup",

 siteName: appService.name,

 hostName: appService.defaultHostName,

 sslState: "SniEnabled",

 thumbprint: certificate.thumbprint,

});

This setup makes sure your Azure App Service uses HTTPS to protect all data sent between users

and the server. While encryption is a key part of securing multi-cloud environments, security

doesn’t stop there. To fully safeguard your systems, it’s also important to think about how com-

pliance requirements are met across different cloud providers.

In a multi-cloud setup, following rules such as GDPR, HIPAA, or CCPA is essential to avoid fines and

protect your users’ data. These regulations often require you to store and handle sensitive data in

specific ways, such as keeping data in certain regions or using encryption. Managing compliance

across multiple clouds can be tricky because each cloud provider has its own tools and processes.

Instead of checking everything manually, automating compliance is a smarter approach. Pulumi

Policy as Code lets you write rules in code that ensure your resources meet compliance require-

ments. For example, you can create a policy that checks whether all storage accounts in Azure

and S3 buckets in Amazon are encrypted. If a resource doesn’t follow the rule, the system will

block it automatically. We will cover Policy as Code in more detail in Chapter 14; however, here’s

how a policy might look with Pulumi:

import * as policy from "@pulumi/policy";

const ensureStorageEncryption = new policy.PolicyPack(

"storage-encryption", {

 policies: [

 {

 name: "require-storage-encryption",

 description: "Ensure all storage accounts and S3 buckets are

 encrypted",

 enforcementLevel: "mandatory",

 validateResource: (args, reportViolation) => {

 if (args.type === "azure-native:storage:StorageAccount"

 && !args.props.encryption) {

 reportViolation("Azure Storage Accounts must have

 encryption enabled.");

Chapter 10 221

 }

 if (args.type === "aws:s3/bucket:Bucket" &&

 !args.props.serverSideEncryptionConfiguration) {

 reportViolation("AWS S3 Buckets must have

 server-side encryption enabled.");

 }

 },

 },

],

});

This rule makes sure all your storage resources are encrypted before they are created, so you don’t

accidentally deploy something that breaks compliance.

By using tools such as these, you can automatically check that your cloud setup is compliant with

the necessary rules, and this saves you a lot of trouble later.

Summary
In this chapter, we looked at how to manage multi-cloud and hybrid environments, focusing on

making systems flexible, reliable, and secure. We discussed how to design multi-cloud setups to

use the best tools from different providers and hybrid architectures that combine on-premises

systems with the cloud. We went over how to standardize deployments with Pulumi, ensure

that systems in different clouds can work together, and use tools such as Grafana to monitor

everything in one place. We also talked about strategies for sharing and syncing data, such as

real-time streaming and database replication, and covered security tips such as encrypting data

and setting up automated compliance checks. These ideas provide a solid starting point for han-

dling the challenges of working across multiple cloud platforms.

In the next chapter, we will cover advanced Pulumi features.

Questions
1.	 How can Pulumi simplify the deployment of consistent infrastructure across multiple

cloud providers?

2.	 What are the advantages of using Pulumi to enforce naming conventions and standard-

ization in multi-cloud setups?

3.	 How does shared DNS resolution improve interoperability in multi-cloud architectures?

Managing Multi-Cloud and Hybrid Scenarios222

4.	 What factors should be considered when setting up real-time data pipelines between

AWS and Azure?

5.	 What Pulumi features can simplify compliance enforcement across multiple clouds?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

Part 4
Advanced Features, Best
Practices and Hands-On

Examples
The fourth and final part of the book brings together Pulumi’s most advanced capabilities with

proven best practices for building reliable, maintainable, and secure infrastructure at scale. It

moves beyond day-to-day usage and focuses on the techniques that make infrastructure code

production ready.

You will begin with advanced Pulumi features that enhance flexibility and efficiency, then learn

how to structure projects for maintainability, scalability, and ease of collaboration. This includes

applying design patterns, managing dependencies, and organizing code for long term success.

From there, you will focus on testing and debugging, gaining the skills to verify infrastructure

changes before deployment and troubleshoot issues with confidence. You will also implement

Policy as Code to enforce compliance and security rules across your environments.

The part concludes with guidance on migrating from other tools to Pulumi, followed by practical

exercises that walk through building a complete infrastructure solution from scratch to production.

By the time you come to the end of this part, you will have the knowledge and practical experi-

ence to design, implement, and operate high quality infrastructure solutions with Pulumi in any

environment.

﻿224

This part of the book includes the following chapters:

•	 Chapter 11, Advanced Pulumi Features

•	 Chapter 12, Writing Maintainable, Testable, and Scalable Code in Pulumi

•	 Chapter 13, Testing and Debugging Your Pulumi IaC

•	 Chapter 14, Implementing Policy as Code

•	 Chapter 15, Migrating From Other Tools to Pulumi

•	 Chapter 16, Tests and Exercises on Infrastructure Automation with Pulumi

11
Advanced Pulumi Features

In earlier chapters, we covered Pulumi as a tool for managing infrastructure, setting it up in

different environments, and using it in various scenarios. But Pulumi is more than just a tool for

writing infrastructure code. In this chapter, we’ll explore some of its more advanced features that

make managing and automating cloud resources even more powerful.

We’ll start by looking at Pulumi ESC, a feature that helps you organize environments, securely

handle secrets, and manage configurations in one place. From there, we’ll look at Pulumi AI, a

tool designed to boost your productivity by helping you build and manage infrastructure more

efficiently. The chapter also introduces the Automation API, which enables you to automate

workflows and complex tasks. Finally, we’ll cover dynamic ways to manage configurations, so

your infrastructure can adapt to changing needs.

These advanced capabilities work together to help you build smarter and more adaptable infra-

structure with Pulumi. By the end of this chapter, you’ll be ready to use them to solve real-world

challenges with confidence.

In this chapter, we’re going to cover the following main topics:

•	 Mastering Pulumi ESC: Environments, Secrets, and Configuration

•	 Building your projects using Pulumi AI

•	 Automation API: scripting and workflow automation

•	 Dynamic configuration management techniques

Advanced Pulumi Features226

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from here:

https://www.pulumi.com/docs/iac/download-install/.

•	 The Pulumi ESC CLI is required for executing ESC commands. You can download it from

here: https://www.pulumi.com/docs/esc/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

Mastering Pulumi ESC: Environments, Secrets, and
Configuration
In a real-world application, you’d probably be juggling multiple regions and environments si-

multaneously. For example, your development and staging environments might be deployed to

West Europe and East Europe regions, while a canary environment spans three regions, and your

production environment runs across six or more regions. Some of these environments might share

configurations, such as common API endpoints or shared database schemas, since certain aspects

won’t change, especially between development and staging or between canary and production.

Managing these individually can quickly become overwhelming, with duplicated settings, in-

consistencies, and increased risk of errors creeping into your workflow.

Pulumi ESC (which stands for Environments, Secrets, and Configuration) offers a practical

solution to this complexity by centralizing and streamlining the management of configurations

and secrets. With ESC, you can define reusable collections of configuration values and secrets

called environments, making it easier to maintain consistency while accommodating the unique

needs of each deployment setup. Let’s look at the key concepts of ESC.

Key concepts of Pulumi ESC
When talking about Pulumi ESC, there are four key concepts to note, and they are environments,

sources, targets, and centralized management.

https://www.pulumi.com/docs/iac/download-install/
https://www.pulumi.com/docs/esc/download-install/
https://nodejs.org/

Chapter 11 227

Environments
Environments in Pulumi ESC are organized collections of configurations and secrets that are

used for specific deployments, such as development, staging, or production. These environments

aren’t isolated; they can be reused and combined, which means you can share common settings

across environments while still customizing what makes each one unique. This makes managing

multiple setups much easier.

Environments can include both static and dynamic configurations. Static configurations are fixed

settings, such as an app name or a database URL, that don’t change often. Dynamic configurations

are more flexible and come from external sources, such as secret managers or APIs. For example,

instead of storing a password in a file, ESC can fetch it securely from a secret manager when

needed. This makes dynamic configurations a great option for handling sensitive or temporary

data, such as API keys or short-term access tokens.

Let’s say your staging and production environments both need to connect to the same external

API. Instead of defining this API URL in two places, you can store it in a shared base environment.

Staging and production can then inherit this shared setting but use their own database creden-

tials or region-specific overrides. This way, you avoid repeating yourself while still tailoring the

configuration for each environment.

Sources
Pulumi ESC supports static configurations defined as key-value pairs in YAML files. These are

straightforward and ideal for things such as default settings or constant values, such as a service

name or a timeout duration.

Dynamic sources allow ESC to securely fetch configurations and secrets from external systems.

For example, ESC can retrieve credentials from AWS Secrets Manager or Azure Key Vault when

they are needed, instead of storing them in a file. This makes it easy to keep secrets up to date

without manually updating files.

ESC also works with OpenID Connect (OIDC) to generate temporary credentials. These short-lived

credentials are more secure because they expire after a set time. For example, during a deployment,

ESC can request a token from AWS that only works for one hour. This means your infrastructure

only uses secure, time-limited access, reducing the risk of credentials being misused.

Advanced Pulumi Features228

Targets
Once your configurations and secrets are ready, ESC sends them to the right place. It can output

them as environment variables for your app, save them in configuration files, or make them

available through APIs. This flexibility allows ESC to fit into many workflows.

ESC is especially useful in automated pipelines and for local development. For example, during a

CI/CD process, ESC can provide secrets as environment variables. This ensures that your pipeline

has the right credentials at the right time. Similarly, in local development, you can use ESC to pull

configurations securely, avoiding the need to hardcode sensitive data into your code.

Centralized management
Pulumi ESC keeps all your environments, configurations, and secrets in one place, making them

easier to manage and secure. It uses role-based access control (RBAC) to ensure that only autho-

rized people or teams can access specific environments or secrets. For example, you can restrict

production secrets to senior engineers while letting junior developers access only the staging

environment.

Versioning helps track changes to environments. Every update creates a new version, so you can

label specific ones (e.g., staging-v2 or prod-release) and roll back if something breaks. This

is especially helpful for testing and deployment workflows, where different versions might be

running simultaneously.

Suppose your company has two teams: a billing team managing payment processor secrets and

a communications team handling email and SMS configurations. RBAC ensures that each team

only has access to its own configurations, preventing accidental access to unrelated secrets.

Setting up Pulumi ESC
To begin using Pulumi ESC, you’ll first need to install the ESC command-line interface (CLI).

The CLI is open source and freely available for various operating systems. For macOS users, the

recommended installation method is via Homebrew. You can install it by running the following

command in your terminal:

brew update && brew install pulumi/tap/esc

This command updates Homebrew and installs the ESC CLI from Pulumi’s tap. After installation,

verify that the CLI is correctly installed by checking its version with the following command:

esc version

Chapter 11 229

This should display the installed version of the ESC CLI, confirming a successful installation.

For Windows users, you can download the ESC binary from https://www.pulumi.com/docs/esc/

download-install/ or run the following installation script in your command line:

@"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.
exe" -NoProfile -InputFormat None -ExecutionPolicy Bypass
-Command "[Net.ServicePointManager]::SecurityProtocol = [Net.
SecurityProtocolType]::Tls12; iex ((New-Object System.Net.WebClient).
DownloadString('https : //get.pulumi . com/esc/install. ps1'))" && SET
"PATH=%PATH%;%USERPROFILE%\.pulumi\bin"

This will install the esc.exe CLI to %USERPROFILE%\.pulumi\bin and add it to your path. You can

then verify the installation by running the following:

esc version

This command should output the version number of the installed ESC CLI.

Now, you’re ready to begin properly. Follow these steps:

1.	 Once the CLI is installed, the next step is to log in to Pulumi Cloud, which ESC uses to

manage environments and secrets. Initiate the login process with the following:

esc login

This command prompts you to authenticate with Pulumi Cloud, either through a web

browser or by providing an access token. Upon successful authentication, you’ll see a

confirmation message indicating that you’re logged in.

2.	 Now that you’re logged into ESC, it’s time to use its functionality to manage configurations

and secrets in environments. Let’s imagine you were building a food delivery application

with multiple environments. For instance, you have a development environment for test-

ing new features, a staging environment for integrating with third-party services, and a

production environment running across multiple regions. Let’s say the organization you

created is named foodie-tech, and your project is delivery-app. You’d structure your

environments to clearly belong to both the organization and the project. For example, to

initialize the development environment, you will run the following command:

esc env init foodie-tech/delivery-app/development

This command creates the development environment under the delivery-app project

within the foodie-tech organization.

https://www.pulumi.com/docs/esc/download-install/
https://www.pulumi.com/docs/esc/download-install/

Advanced Pulumi Features230

3.	 To confirm the environment was created successfully, list all the available environments:

esc env ls

You should see foodie-tech/delivery-app/development listed.

4.	 Now, let’s add a configuration for the development database. Suppose your app needs a

PostgreSQL database connection string:

esc env set foodie-tech/delivery-app/development database_url
"postgres://dev_user:dev_password@localhost:5432/dev_db"

5.	 To verify the value, you can retrieve it like this:

esc env get foodie-tech/delivery-app/development database_url

This ensures that database_url is stored correctly and ready for use.

6.	 Next, suppose the development environment also requires an API key for a third-party

geolocation service. You can add it using the following:

esc env set foodie-tech/delivery-app/development geolocation_api_key
"dev_geo_key_123"

7.	 You can also decide to add more configurations to your environment as needed. For ex-

ample, in the development environment, you might include a VM size for testing, and

any other configuration you like:

esc env set foodie-tech/delivery-app/development vm_size "Standard_
D2s_v3"

8.	 Once these configurations are set, you can import the environment into your Pulumi stack

configuration file to use it. This is done using the imports key in the YAML file. For example,

your Pulumi.dev-wu2.yaml file for the West US 2 development stack might look like this:

imports:

 - foodie-tech/delivery-app/development

config:

 keyvaultName: "westus-kv"

 region: "West US 2"

 custom_endpoint: "westus2.dev.delivery-app.com"

Chapter 11 231

9.	 If you have another development stack in a different region, such as Southeast Asia, you

can create a similar configuration file while still importing the shared development en-

vironment:

imports:

 - foodie-tech/delivery-app/development

config:

 region: "Southeast Asia"

 keyvaultName: "sea-kv"

 custom_endpoint: "sea.dev.delivery-app.com"

10.	 In your Pulumi program, you can access these configurations easily. Here’s how to retrieve

them in a TypeScript Pulumi program:

const config = new pulumi.Config();

// Access shared configurations from the imported environment

const databaseUrl = config.require("database_url");

const geoApiKey = config.require("geolocation_api_key");

const vmSize = config.require("vm_size");

// Access region-
specific configurations from the stack configuration

const region = config.require("region");

const customEndpoint = config.require("custom_endpoint");

// ... Use them for your IaC

This setup allows you to maintain shared configurations in the foodie-tech/delivery-app/

development environment and customize them for specific regions or deployment needs. With

ESC, you’re able to share and reuse common configurations and secrets across different environ-

ments in a way that can scale as your IaC continues to grow.

Building your projects using Pulumi AI
Imagine you’re setting up the infrastructure for a new web app. You need a load balancer, a group

of VMs that can scale as needed, and a database. If you’re experienced with Pulumi, you might

start writing configuration files and code in your preferred language. But if you’re new or pressed

for time, Pulumi AI can help by generating the code for you based on a simple description.

Advanced Pulumi Features232

For example, you could type something like this:

I need an Azure App Service connected to a MySQL database, with logging
turned on and scaled for medium traffic.

Pulumi AI takes this input and generates the infrastructure code for you. Figure 11.1 shows an

example of what you might see as a response to your prompt.

Figure 11.1: Pulumi AI

This makes the process of building infrastructure much easier. Instead of spending time search-

ing for how to do things, you can focus on the overall design of your app while Pulumi AI fills in

the details.

Chapter 11 233

For people who are new to Pulumi, this is also a great way to learn. You can see how a simple

description turns into working code and pick up best practices along the way. Over time, you’ll

get more confident writing code yourself, even for more complex setups.

Pulumi AI doesn’t just help you get started; it’s also useful when you need to add new features or

make changes to an existing setup. To get started with Pulumi AI, you can visit the official website

and try it for yourself: https://www.pulumi.com/ai.

Pulumi also has AI answers, which is a curated collection of commonly asked infrastruc-

ture-as-code (IaC) questions that Pulumi AI has received. These questions are anonymized and

organized into an archive, making it a valuable resource for anyone building cloud infrastructure

with Pulumi. You can find some answers here: https://www.pulumi.com/ai/answers.

Automation API: scripting and workflow automation
Pulumi’s Automation API is a tool that lets you control your infrastructure directly through code.

Instead of using the Pulumi CLI, you can write programs that create, update, or manage cloud

resources as part of your application or scripts. It allows you to handle infrastructure tasks such as

deployments, updates, or tests dynamically, all within your own code base. Automation API has a

few key concepts and terms, and they are workspaces, stacks, local programs, and inline programs.

Workspace
Workspace is the execution context where Pulumi operations run. It includes the Pulumi proj-

ect, the program to execute, and one or more stacks. Workspaces are responsible for managing

the environment, such as installing plugins, configuring runtime settings, and handling stack

configurations.

LocalWorkspace is the default Workspace implementation that uses local Pulumi.yaml and Pulumi.

[stack].yaml files for project and stack configuration. It closely mirrors the behavior of the

Pulumi CLI. Modifying the project or stack settings through the API automatically updates the

corresponding YAML files.

RemoteWorkspace is used for Pulumi deployments, where the program is stored in a remote Git

repository. This is ideal for use cases where infrastructure operations need to run remotely, such

as in centralized CI/CD systems or managed services.

https://www.pulumi.com/ai
https://www.pulumi.com/ai/answers

Advanced Pulumi Features234

Stack
A stack represents an isolated, independently configurable instance of a Pulumi program. It al-

lows you to manage the full Pulumi life cycle, such as deploying, previewing changes, refreshing

state, or destroying resources, and to set and retrieve configuration values. Stacks are commonly

used to represent different environments (for example, development, staging, and production)

or feature branches.

RemoteStack is similar to a standard stack, but operates within RemoteWorkspace. It provides

life cycle methods such as up, preview, and destroy, but these operations are executed remotely.

Local program versus inline program
Local programs are traditional Pulumi programs with a dedicated directory, a Pulumi.yaml file,

and supporting program files. They are often driven by the CLI, but Automation API can also

execute them, making it possible to script their behavior programmatically.

Inline programs are defined as functions within your Automation API code. They don’t require a

separate directory or Pulumi.yaml file. This approach is lightweight and well-suited for dynamic

scenarios where the Pulumi logic is part of a larger application or service.

Use cases for Automation API
Automation API is versatile and supports several practical use cases:

•	 CI/CD workflows: Automate infrastructure changes by embedding Pulumi directly into

your CI/CD pipelines. For example, deploy new infrastructure whenever a new version

of your application is built.

•	 Integration testing: Spin up isolated environments programmatically to test application

code against realistic infrastructure setups.

•	 Application-centric deployments: Combine infrastructure operations with application

deployments, such as provisioning a database and running migrations in a single script.

•	 Custom tools and CLIs: Build higher-level tools, custom dashboards, or internal developer

platforms that simplify infrastructure management for non-technical teams.

•	 Infrastructure-as-a-service APIs: Use the API behind a REST interface, enabling teams

to request infrastructure on demand through a simple HTTP call.

Chapter 11 235

Here’s a real example of how Pulumi’s Automation API can be used to programmatically deploy

Azure resources. This script creates an Azure resource group and a storage account using an inline

program:

import * as automation from "@pulumi/pulumi/automation";

import * as azure from "@pulumi/azure-native";

async function createInfrastructure() {

 // Create or select a Pulumi stack

 const stack = await automation.LocalWorkspace.createOrSelectStack({

 stackName: "dev",

 projectName: "automation-api-example",

 program: async () => {

 // Define the infrastructure programmatically

 const resourceGroup = new azure.resources.ResourceGroup(

 "example-rg");

 const storageAccount = new azure.storage.StorageAccount(

 "examplestorage", {

 resourceGroupName: resourceGroup.name,

 sku: {

 name: "Standard_LRS",

 },

 kind: "StorageV2",

 });

 return {

 resourceGroupName: resourceGroup.name,

 storageAccountName: storageAccount.name,

 };

 },

 });

 console.log("Setting up stack configuration...");

 await stack.setConfig("azure:location", { value: "WestUS" });

 console.log("Refreshing stack...");

 await stack.refresh({ onOutput: console.log });

 console.log("Deploying infrastructure...");

Advanced Pulumi Features236

 const result = await stack.up({ onOutput: console.log });

 console.log("Deployment complete! Outputs:");

 console.log(result.outputs);

}

// Execute the function

createInfrastructure().catch((err) => {

 console.error("Error deploying infrastructure:", err);

});

In this example, the script starts by creating or selecting a Pulumi stack, which represents an

isolated environment for your infrastructure, such as development, staging, or production. The

stack setup is tied to an inline program that defines the infrastructure resources directly within the

code. Here, an Azure resource group and a storage account are provisioned as part of the program.

Before deployment, the script sets the Azure region dynamically using stack.setConfig. This

flexibility allows configurations to be adjusted at runtime based on the deployment requirements.

After setting up the configurations, the stack.refresh method ensures that the current state of

the resources is synced with Pulumi’s understanding of the infrastructure.

The deployment process is initiated with stack.up, which provisions the defined resources. The

script captures and logs the outputs of the deployment, such as the names of the created resource

group and storage account. These outputs can then be used in other parts of your application

or pipeline.

This script is a good fit for CI/CD workflows, where infrastructure needs to be provisioned as part

of an automated deployment process. It can also be adapted for use in event-driven workflows,

such as automatically creating resources when specific application events occur.

Dynamic configuration management techniques
Dynamic configuration values change, and not as a result of the state of your infrastructure

project changing. Different things, such as environment-specific requirements, runtime appli-

cation needs, or deployment contexts, can trigger changes to those values. As you build out your

infrastructure, some of your configuration values will be dynamic, and you’re going to manage

them that way. A technique for managing this is Pulumi ESC, something we discussed in the

earlier sections of this chapter.

Chapter 11 237

You can change the value of some configurations without opening a new pull request to make

the update, and the next time your IaC scripts need to run, the most current values will be used.

There are some other techniques for managing dynamic configurations: secrets references such

as Azure Key Vault, and configuration management in CI/CD pipelines.

Azure Key Vault
One effective way to manage dynamic configurations is by integrating secrets references from

services such as Azure Key Vault. Secrets such as API keys, database credentials, and storage ac-

count keys are sensitive and need to be managed securely. Using Azure Key Vault, you can store

these secrets and dynamically reference them in your infrastructure or applications. For instance,

when deploying Azure App Service, you can configure it to pull secrets from Azure Key Vault at

runtime using Key Vault references. This ensures that sensitive data remains secure and up to

date without being hardcoded into your configuration files.

The following Pulumi code dynamically configures the App Service with a Key Vault reference:

const keyVault = new azure.keyvault.Vault("exampleKeyVault", {

 properties: {

 sku: { family: "A", name: "standard" },

 tenantId: azure.authorization.getClientConfig().then(

 cfg => cfg.tenantId),

 accessPolicies: [{

 objectId: azure.authorization.getClientConfig().then(

 cfg => cfg.objectId),

 tenantId: azure.authorization.getClientConfig().then(

 cfg => cfg.tenantId),

 permissions: { secrets: ["get", "list"] },

 }],

 },

});

const storageKeySecret = new azure.keyvault.Secret("storageKeySecret", {

 vaultName: keyVault.name,

 properties: {

 value: "SuperSecretStorageKey",

 },

Advanced Pulumi Features238

});

// Configure an App Service with Key Vault references

const appService = new azure.web.WebApp("exampleAppService", {

 siteConfig: {

 appSettings: [

 {

 name: "AzureStorageKey",

 value: `@Microsoft.KeyVault(SecretUri=

 ${storageKeySecret.properties.secretUriWithVersion})`,

 },

],

 },

});

This code ensures that the App Service retrieves the storage key securely at runtime using the @

Microsoft.KeyVault syntax. This setup is reflected in the application settings, as shown in the

following figure, where secrets are dynamically referenced through Key Vault, providing both

security and ease of management. Figure 11.2 shows what it will look like in the Azure portal.

Figure 11.2: Key Vault reference

Azure Key Vault isn’t the only situation where you need to think about dynamic configurations.

Chapter 11 239

CI/CD pipelines
Dynamic configurations are also critical in CI/CD pipelines, where inputs such as artifact paths,

environment-specific settings, or build metadata need to be passed during runtime. For example,

when deploying an application binary built during a pipeline run, you need to pass the path to

that binary dynamically into your Pulumi configuration. In a CI/CD pipeline, this might look

like setting the artifact path during the build step and passing it as a Pulumi configuration value

during deployment. This allows Pulumi to use the correct file path dynamically without requiring

manual intervention or code changes. Here’s how you can set this up in an Azure DevOps pipeline:

trigger:

 - main

pool:

 vmImage: "ubuntu-latest"

steps:

 # Step 1: Install Pulumi and dependencies

 - task: UsePythonVersion@1

 displayName: "Install Python"

 inputs:

 versionSpec: "3.x"

 addToPath: true

 - task: Bash@3

 displayName: "Build Application"

 inputs:

 targetType: "inline"

 script: |

 mkdir -p $(Build.ArtifactStagingDirectory)/build

 echo "Hello, Pulumi!" > $(Build.ArtifactStagingDirectory)/build

 /app.txt

 - task: PublishPipelineArtifact@1

 displayName: "Publish Build Artifact"

 inputs:

 targetPath: "$(Build.ArtifactStagingDirectory)/build"

 artifact: "build"

 # Step 2: Pulumi Login, Configure, and Deploy in one task

 - task: Bash@3

 displayName: "Pulumi Login, Configure, and Deploy"

Advanced Pulumi Features240

 inputs:

 targetType: "inline"

 script: |

 # Add Pulumi to PATH

 curl -fsSL https://get.pulumi.com | sh

 export PATH=$PATH:$HOME/.pulumi/bin

 # Log in to Pulumi

 pulumi login --cloud-url https://app.pulumi.com

 # Set the artifact path in Pulumi configuration

 pulumi config set artifactPath "$(Build.ArtifactStagingDirectory)

 /build/app.txt"

 # Deploy infrastructure

 pulumi up --stack dev --yes

 env:

 PULUMI_ACCESS_TOKEN: "$(PulumiAccessToken)"

The pipeline begins by installing Pulumi and ensuring the necessary tools are available. Next, it

builds the application and saves the resulting artifact in the $(Build.ArtifactStagingDirectory)/

build directory. This artifact is then published as part of the pipeline’s outputs, ensuring that it

can be referenced in subsequent steps. Pulumi login is handled securely using the pulumi login

command with the access token passed through the PULUMI_ACCESS_TOKEN environment variable.

Once authenticated, the path to the artifact is dynamically set as a Pulumi configuration using

the pulumi config set command. This ensures that the deployment references the correct build

artifact without manual updates to the Pulumi stack configuration files. Finally, pulumi up is

executed to deploy the infrastructure, using the configuration values set earlier. This pipeline

dynamically ties the build artifacts to the infrastructure deployment process, making it highly

automated and efficient for deploying infrastructure and application code.

Summary
In this chapter, we covered advanced Pulumi features that help you manage infrastructure more

effectively. We started with Pulumi ESC, which allows you to handle environments, secrets, and

configurations in a centralized and reusable way. Then, we explored Pulumi AI, which helps you

write infrastructure code and find answers to common questions.

Chapter 11 241

We also introduced Automation API, showing how it lets you control deployments and workflows

directly in your code. Finally, we discussed dynamic configuration management, focusing on us-

ing Pulumi ESC, Azure Key Vault for secure secrets, and managing configuration values in CI/CD

pipelines. These features make it easier to manage cloud infrastructure in real-world scenarios.

In the next chapter, we will cover writing maintainable, testable, and scalable code in Pulumi.

Questions
1.	 What is Pulumi ESC, and how does it help with managing environments, secrets, and

configurations?

2.	 How does Pulumi AI assist in generating infrastructure code?

3.	 What is the difference between an inline Pulumi program and a local Pulumi program?

4.	 How does Automation API differ from the Pulumi CLI in terms of infrastructure man-

agement?

5.	 What are the key features of the Pulumi Automation API’s LocalWorkspace class?

6.	 What are the steps to dynamically configure artifact paths in a CI/CD pipeline using Pu-

lumi?

7.	 What are some common use cases for Pulumi’s Automation API?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

12
Writing Maintainable, Testable,
and Scalable Code in Pulumi

Pulumi’s approach to infrastructure as software means that developers can use programming

principles and patterns to organize their infrastructure code in a way that makes it easier to under-

stand, maintain, and scale. In this chapter, you will learn how to structure Pulumi projects using

modular design, making your code reusable and easier to manage as your infrastructure grows.

You will see how principles such as Don’t Repeat Yourself (DRY) and SOLID can be applied to

create cleaner and more reliable infrastructure code. This chapter will also explain the importance

of consistent naming and documentation to keep projects clear and easy for teams to work on

together. Finally, you will learn how to write tests for your infrastructure code to catch problems

early and ensure high-quality deployments. By the end, you’ll know how to create Pulumi projects

that are both efficient and built to last.

In this chapter, we’re going to cover the following main topics:

•	 Modularity and code reusability

•	 Applying traditional programming paradigms to IaC

•	 Consistent naming and documentation practices

Writing Maintainable, Testable, and Scalable Code in Pulumi244

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it here: https://

www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site: https://nodejs.org/.

Modularity and code reusability
Modularity in Infrastructure as Code (IaC) means breaking your infrastructure setup into smaller,

manageable pieces. Instead of writing one large block of code for everything, you separate parts of

the infrastructure into smaller components that can work together. Each of these pieces handles

a specific task, making it easier to work with and understand.

Breaking infrastructure into reusable components is important because it keeps your code clean

and organized. If a part of the infrastructure needs to change or be updated, you only need to work

on that specific part instead of going through everything. This saves time and reduces mistakes.

Modularity also makes it easy to manage your project as it grows. When you reuse the same com-

ponents in different parts of the infrastructure, it’s faster to build new features. It also makes it

easier for teams to work together, as everyone can focus on specific parts of the project without

getting overwhelmed by the entire system.

A well-thought-out structure helps developers work more efficiently and makes it easier to debug

or extend the project over time. There are two common approaches to organizing Pulumi projects:

the single-project layout and the multi-project layout.

In a single-project layout, all resources are defined in one project. This approach is ideal for smaller

projects or when managing a single environment. For example, your project might be organized

like this:

iac-project/

├── Pulumi.yaml

├── Pulumi.dev.yaml

├── Pulumi.prod.yaml

├── index.ts

├── resources/

https://www.pulumi.com/docs/iac/download-install/
https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/

Chapter 12 245

│ ├── network.ts

│ ├── storage.ts

│ └── compute.ts

Here, the index.ts file serves as the entry point for the project, where you import and use re-

sources defined in the resources directory. Different environments, such as development and

production, are managed using Pulumi.dev.yaml and Pulumi.prod.yaml.

For larger projects, a multi-project layout is more appropriate. This structure splits the infrastruc-

ture into multiple Pulumi projects, making it easier to manage different components or delegate

work across teams. An example layout might look like this:

pulumi-infra/

├── auth-service/

│ ├── Pulumi.yaml

│ ├── Pulumi.dev.yaml

│ ├── Pulumi.prod.yaml

│ ├── index.ts

│ └── resources/

│ ├── network.ts

│ └── storage.ts

├── payments-service/

│ ├── Pulumi.yaml

│ ├── Pulumi.dev.yaml

│ ├── Pulumi.prod.yaml

│ ├── index.ts

│ └── resources/

│ ├── storage.ts

│ ├── compute.ts

│ └── security.ts

└── shared/

 ├── Pulumi.yaml

 ├── utils.ts

 └── monitoring/

 ├── logging.ts

 ├── alerts.ts

 └── metrics.ts

Writing Maintainable, Testable, and Scalable Code in Pulumi246

In this structure, each service, such as auth-service and payments-service, is self-contained

and includes everything it needs for its infrastructure. Shared code, such as utilities or monitor-

ing configurations, lives in a dedicated shared folder, and it’s reusable across multiple services.

Organizing resources into logical groups is another key aspect of modularity. For example, a

network group might define resources such as virtual networks, subnets, and public IP addresses,

while a compute group might include virtual machines and scale sets. Here’s an example of how

you might define multiple resources in a network.ts file using Azure resources:

// network.ts

import * as azure from "@pulumi/azure-native";

export const virtualNetwork = new azure.network.VirtualNetwork("my-
vnet", {

 location: "WestUS",

 addressSpace: { addressPrefixes: ["10.0.0.0/16"] },

 resourceGroupName: "my-resource-group",

});

export const subnet = new azure.network.Subnet("my-subnet", {

 addressPrefix: "10.0.1.0/24",

 virtualNetworkName: virtualNetwork.name,

 resourceGroupName: "my-resource-group",

});

export const publicIp = new azure.network.PublicIPAddress("my-public-
ip", {

 dnsSettings: {

 domainNameLabel: "dnslbl",

 },

 location: "westus",

 publicIpAddressName: "my-ip",

 resourceGroupName: " my-resource-group",

});

Chapter 12 247

In the compute.ts file, you could define resources such as virtual machines and scale sets:

// compute.ts

import * as azure from "@pulumi/azure-native";

import { subnet } from "./network";

export const virtualMachine = new azure.compute.VirtualMachine("my-vm", {

 location: "WestUS",

 resourceGroupName: "my-resource-group",

 networkProfile: {

 networkInterfaces: [{

 id: subnet.id,

 primary: true,

 }],

 },

 osProfile: {

 adminUsername: "adminuser",

 adminPassword: "secure-password",

 computerName: "my-compute",

 },

 hardwareProfile: {

 vmSize: "Standard_B2ms",

 },

});

export const scaleSet = new azure.compute.VirtualMachineScaleSet("my-
scale-set", {

 location: "WestUS",

 resourceGroupName: "my-resource-group",

 sku: {

 name: "Standard_B2ms",

 capacity: 2,

 },

 virtualMachineProfile: {

 storageProfile: {

 imageReference: {

 offer: "UbuntuServer",

 publisher: "Canonical",

Writing Maintainable, Testable, and Scalable Code in Pulumi248

 sku: "18.04-LTS",

 version: "latest",

 },

 },

 osProfile: {

 adminUsername: "adminuser",

 adminPassword: "secure-password",

 },

 networkProfile: {

 networkInterfaceConfigurations: [{

 name: "my-nic",

 primary: true,

 ipConfigurations: [{

 name: "my-ipconfig",

 subnet: { id: subnet.id },

 }],

 }],

 },

 },

});

In your index.ts file, you would then bring all of these resources together:

import { virtualNetwork, subnet, publicIp } from "./resources/network";

import { virtualMachine, scaleSet } from "./resources/compute";

export { virtualNetwork, subnet, publicIp, virtualMachine, scaleSet };

Separating concerns by grouping resources into logical files and directories keeps your project

organized and makes the code easier to navigate.

Applying traditional programming paradigms to IaC
As we treat infrastructure like software, using common programming ideas can help make our

code easier to manage and understand. Principles such as DRY, SOLID, and design patterns can

reduce repeated code, keep things organized, and make it easier to grow your Pulumi projects.

This section looks at how these ideas can be used to write clear and simple IaC.

Chapter 12 249

Understanding DRY and its application in IaC
The DRY principle is a key idea in programming that focuses on reducing repetition in code. In

IaC, repetition often happens when similar resources or configurations are defined multiple times

across different parts of the project. Following DRY helps create cleaner and more efficient code

by grouping common patterns into reusable components or modules.

In Pulumi, applying DRY means identifying repetitive parts of your infrastructure code and re-

factoring them into shared functions, classes, or even separate modules. This makes your code

easier to maintain because changes only need to be made in one place. For example, if you find

yourself creating similar virtual networks for different environments, you can write a reusable

function to handle that setup.

Here’s an example where DRY is applied to avoid repeating code to create a virtual network and

its subnet:

Without DRY (repetitive code)
const devVnet = new azure.network.VirtualNetwork("dev-vnet", {

 location: "WestUS",

 addressSpace: { addressPrefixes: ["10.0.0.0/16"] },

 resourceGroupName: "dev-rg",

});

const devSubnet = new azure.network.Subnet("dev-subnet", {

 addressPrefix: "10.0.1.0/24",

 virtualNetworkName: devVnet.name,

 resourceGroupName: "dev-rg",

});

const prodVnet = new azure.network.VirtualNetwork("prod-vnet", {

 location: "WestUS",

 addressSpace: { addressPrefixes: ["10.1.0.0/16"] },

 resourceGroupName: "prod-rg",

});

const prodSubnet = new azure.network.Subnet("prod-subnet", {

Writing Maintainable, Testable, and Scalable Code in Pulumi250

 addressPrefix: "10.1.1.0/24",

 virtualNetworkName: prodVnet.name,

 resourceGroupName: "prod-rg",

});

In this example, the code for creating virtual networks and subnets is repeated for both the dev

and prod environments. This not only clutters the code but also makes updates tedious.

With DRY (reusable function)
function createNetwork(name: string, addressSpace: string, subnetPrefix:

string, resourceGroupName: string) {

 const vnet = new azure.network.VirtualNetwork(`${name}-vnet`, {

 location: "WestUS",

 addressSpace: { addressPrefixes: [addressSpace] },

 resourceGroupName,

 });

 const subnet = new azure.network.Subnet(`${name}-subnet`, {

 addressPrefix: subnetPrefix,

 virtualNetworkName: vnet.name,

 resourceGroupName,

 });

 return { vnet, subnet };

}

const devNetwork = createNetwork(

"dev", "10.0.0.0/16", "10.0.1.0/24", "dev-rg");

const prodNetwork = createNetwork(

"prod", "10.1.0.0/16", "10.1.1.0/24", "prod-rg");

With this approach, the repetitive code is replaced by a reusable function, createNetwork. You

only need to call the function with the required parameters to set up networks for different envi-

ronments. If you need to change something (e.g., adding a new tag or updating a property), you

can update it once in the function, and all instances will automatically reflect the change.

By following DRY, your infrastructure code becomes easier to read and maintain. It also reduces

the chance of errors, as there’s less duplication.

Chapter 12 251

Using SOLID principles to improve infrastructure code
The SOLID principles are a set of five guidelines that help developers create better-organized and

more flexible code. Originally meant for object-oriented programming, these principles can also

be applied to IaC to make your Pulumi projects easier to maintain and scale. Let’s look at how

each principle works and how it relates to IaC.

Single responsibility principle
The single responsibility principle states that each class or function should handle one specific

responsibility. For IaC, this means creating components that focus on distinct tasks, such as

managing virtual networks or subnets, instead of mixing multiple responsibilities in one place.

The following code snippet shows a class, AzureNetworkManager, that focuses on networking

tasks, such as creating virtual networks and subnets. Each method is designed to handle a single

task, keeping the logic modular and easy to maintain.

import * as azure from "@pulumi/azure-native";

Here’s a class that handles different networking tasks:

class AzureNetworkManager {

 createVirtualNetwork(

 name: string, resourceGroupName: string, cidr: string) {

 return new azure.network.VirtualNetwork(name, {

 resourceGroupName,

 location: "WestUS",

 addressSpace: { addressPrefixes: [cidr] },

 });

 }

 createSubnet(

 name: string, vnetName: string, resourceGroupName: string,

 cidr: string) {

 return new azure.network.Subnet(name, {

 virtualNetworkName: vnetName,

 resourceGroupName,

 addressPrefix: cidr,

 });

 }

}

Writing Maintainable, Testable, and Scalable Code in Pulumi252

You can use AzureNetworkManager to handle tasks:

const networkManager = new AzureNetworkManager();

const vnet = networkManager.createVirtualNetwork(

 "prod-vnet", "prod-rg", "10.0.0.0/16");

const appSubnet = networkManager.createSubnet(

 "app-subnet", vnet.name, "prod-rg", "10.0.1.0/24");

const dbSubnet = networkManager.createSubnet(

 "db-subnet", vnet.name, "prod-rg", "10.0.2.0/24");

Here, we separate responsibilities into methods such as createVirtualNetwork and createSubnet.

As a result, the class remains modular, and each method is easy to maintain and test independently.

Open-closed principle
The open-closed principle means that code should be open to extensions but closed to modi-

fications. For IaC, this means building abstractions that allow for additional configurations or

features without changing the original logic.

The following code snippet shows how AzureNetworkManager uses a configuration object to

handle dynamic network requirements. This allows new features, such as additional subnets or

properties, to be added without modifying the existing logic.

interface NetworkConfig {

 name: string;

 resourceGroupName: string;

 location: string;

 addressPrefixes: string[];

 subnets: { name: string; addressPrefix: string }[];

}

Here’s a class to create networks with dynamic configurations:

class AzureNetworkManager {

 createNetwork(config: NetworkConfig) {

 const vnet = new azure.network.VirtualNetwork(config.name, {

 resourceGroupName: config.resourceGroupName,

 location: config.location,

 addressSpace: { addressPrefixes: config.addressPrefixes },

Chapter 12 253

 });

 const subnets = config.subnets.map(subnet =>

 new azure.network.Subnet(`${config.name}-${subnet.name}`, {

 virtualNetworkName: vnet.name,

 resourceGroupName: config.resourceGroupName,

 addressPrefix: subnet.addressPrefix,

 }),

);

 return { vnet, subnets };

 }

}

const networkConfig: NetworkConfig = {

 name: "prod-vnet",

 resourceGroupName: "prod-rg",

 location: "WestUS",

 addressPrefixes: ["10.0.0.0/16"],

 subnets: [

 { name: "subnet1", addressPrefix: "10.0.1.0/24" },

 { name: "subnet2", addressPrefix: "10.0.2.0/24" },

],

};

const networkManager = new AzureNetworkManager();

const resources = networkManager.createNetwork(networkConfig);

This approach ensures that new configurations or features (e.g., additional subnets) can be added

without modifying the core logic.

Liskov substitution principle
The Liskov substitution principle states that objects of a parent class or interface should be

replaceable by objects of a subclass without affecting the program. In IaC, this is useful when

dealing with multiple providers or resource types.

Writing Maintainable, Testable, and Scalable Code in Pulumi254

The following code snippet shows how a common NetworkProvider interface enables different

providers, such as Azure, to implement the same method for creating networks. This abstraction

makes it easy to swap out providers without changing the core logic.

// Define a common interface for network providers

interface NetworkProvider {

 createNetwork(config: NetworkConfig): { vnet: any; subnets: any[] };

}

// Implement Azure as a provider

class AzureNetworkProvider implements NetworkProvider {

 createNetwork(config: NetworkConfig) {

 const vnet = new azure.network.VirtualNetwork(config.name, {

 ...

 });

 const subnets = config.subnets.map(subnet =>

 new azure.network.Subnet(`${config.name}-${subnet.name}`, {

 ...

 }),

);

 return { vnet, subnets };

 }

}

// Use the interface to deploy a network

function deployNetwork(provider: NetworkProvider, config: NetworkConfig) {

 return provider.createNetwork(config);

}

const azureProvider = new AzureNetworkProvider();

const resources = deployNetwork(azureProvider, networkConfig);

With this abstraction, switching to a different provider (e.g., AWS) only requires creating a new

implementation of the NetworkProvider interface.

Chapter 12 255

Interface segregation principle
The interface segregation principle ensures that components only implement the functionality

they actually need. In IaC, this means creating specific interfaces for distinct tasks rather than

forcing a single class to handle unrelated operations.

The following code snippet demonstrates how networking responsibilities, such as managing

virtual networks, subnets, and security groups, are split into targeted interfaces. A single class

implements these interfaces, keeping the design modular and focused.

// Interfaces for distinct networking tasks

interface VirtualNetworkManager {

 createVirtualNetwork(

 name: string, resourceGroupName: string, cidr: string): any;

}

interface SubnetManager {

 addSubnet(

 vnetName: string, resourceGroupName: string, name: string,

 cidr: string): any;

}

interface SecurityGroupManager {

 createSecurityGroup(name: string, resourceGroupName: string): any;

}

// A class implementing all networking interfaces

class AzureNetworkManager implements VirtualNetworkManager, SubnetManager,
SecurityGroupManager {

 createVirtualNetwork(name: string, resourceGroupName: string, cidr:
string) {

 return new azure.network.VirtualNetwork(name, {

 resourceGroupName,

 location: "WestUS",

 addressSpace: { addressPrefixes: [cidr] },

 });

 }

 addSubnet(vnetName: string, resourceGroupName: string, name: string,

 cidr: string) {

 return new azure.network.Subnet(name, {

Writing Maintainable, Testable, and Scalable Code in Pulumi256

 virtualNetworkName: vnetName,

 resourceGroupName,

 addressPrefix: cidr,

 });

 }

 createSecurityGroup(name: string, resourceGroupName: string) {

 return new azure.network.NetworkSecurityGroup(name, {

 resourceGroupName,

 location: "WestUS",

 });

 }

}

// Using the manager class

const networkManager = new AzureNetworkManager();

const vnet = networkManager.createVirtualNetwork(

 "prod-vnet", "prod-rg", "10.0.0.0/16");

const subnet = networkManager.addSubnet(

 vnet.name, "prod-rg", "app-subnet", "10.0.1.0/24");

const nsg = networkManager.createSecurityGroup("prod-nsg", "prod-rg");

This design ensures that responsibilities are clear, interfaces are focused, and the class remains

easy to extend or modify without becoming bloated.

Dependency inversion principle
The dependency inversion principle ensures that high-level modules don’t depend on low-level

modules; instead, both should rely on abstractions. In IaC, this means your core deployment

logic should depend on interfaces or abstractions, not concrete implementations, so the system

remains flexible and easy to extend.

The following code snippet demonstrates how a DeploymentStrategy interface abstracts deploy-

ment logic. This allows you to swap implementations, such as deploying networks or storage,

without changing the main deployment flow.

// Define an abstraction for deployment

interface DeploymentStrategy {

 deploy(): void;

}

Chapter 12 257

// A strategy for deploying networks

class NetworkDeployment implements DeploymentStrategy {

 constructor(private config: NetworkConfig, private
provider: NetworkProvider) {}

 deploy() {

 const resources = this.provider.createNetwork(this.config);

 console.log("Deployed Network:", resources.vnet.name);

 }

}

// Another strategy for deploying storage

class StorageDeployment implements DeploymentStrategy {

 constructor(private config: StorageConfig,

 private provider: StorageProvider) {}

 deploy() {

 const storageAccount = this.provider.createStorage(this.config);

 console.log("Deployed Storage Account:", storageAccount.name);

 }

}

// Use the abstraction in the main program

function executeDeployment(strategy: DeploymentStrategy) {

 strategy.deploy();

}

// Create configurations and providers

const networkStrategy = new NetworkDeployment(

 networkConfig, azureProvider);

const storageStrategy = new StorageDeployment(

 storageConfig, azureStorageProvider);

// Execute deployments

executeDeployment(networkStrategy);

executeDeployment(storageStrategy);

Writing Maintainable, Testable, and Scalable Code in Pulumi258

In the code snippet, the DeploymentStrategy interface defines a common abstraction for de-

ployments. The NetworkDeployment class implements this interface for provisioning networks,

while StorageDeployment handles storage accounts. The executeDeployment function depends

only on the DeploymentStrategy abstraction, allowing it to work with any deployment strategy.

If a new type of resource, such as databases, needs to be added, you only need to create a new

implementation of DeploymentStrategy, without altering the main logic.

This decoupling provides flexibility and scalability. For example, switching from Azure to AWS for

storage doesn’t require changes to the high-level deployment process; only the low-level storage

implementation needs to be replaced.

Applying Gang of Four Design patterns to IaC
The Gang of Four (GoF) design patterns are a set of 23 classic solutions for common software

design problems. They are common solutions for organizing code in a way that is reusable and

easy to work with. These patterns are very helpful in IaC projects, where the infrastructure can get

complicated quickly. Patterns such as Factory Method, Builder, and Singleton can make it easier

to manage resources, reduce repetition, and handle complex setups step by step.

These patterns are especially useful when building Internal Developer Platforms (IDPs). IDPs

often need flexible, reusable infrastructure components that teams can adapt to their needs. Us-

ing GoF patterns helps create clean, consistent, and modular infrastructure code that simplifies

this process.

Using the Factory Method pattern
The Factory Method pattern is useful when you need to create resources dynamically based on

input, such as the environment or configuration. This helps standardize resource creation while

allowing flexibility for different requirements.

The following code snippet demonstrates using the Factory Method pattern to create storage

accounts based on the target environment:

import * as azure from "@pulumi/azure-native";

// Base class for storage factories

abstract class StorageFactory {

 abstract getSku(): azure.types.input.storage.SkuName;

 abstract getLocation(): string;

 createStorageAccount(name: string, resourceGroupName: string) {

Chapter 12 259

 return new azure.storage.StorageAccount(name, {

 resourceGroupName,

 location: this.getLocation(),

 sku: { name: this.getSku() },

 kind: "StorageV2",

 });

 }

}

// Factory for development storage accounts

class DevStorageFactory extends StorageFactory {

 getSku() {

 return "Standard_LRS";

 }

 getLocation() {

 return "WestUS";

 }

}

// Factory for production storage accounts

class ProdStorageFactory extends StorageFactory {

 getSku() {

 return "Standard_GRS";

 }

 getLocation() {

 return "EastUS";

 }

}

// Function to decide which factory to use based on environment

function getStorageFactory(environment: string): StorageFactory {

 if (environment === "dev") return new DevStorageFactory();

 if (environment === "prod") return new ProdStorageFactory();

 throw new Error(`Unknown environment: ${environment}`);

}

Writing Maintainable, Testable, and Scalable Code in Pulumi260

// Create a storage account for the "dev" environment

const factory = getStorageFactory("dev");

const storageAccount = factory.createStorageAccount(

 "devstorage", "dev-rg"

);

This pattern lets you dynamically create resources for different environments without duplicat-

ing code.

Using the Builder pattern
The Builder pattern is ideal for creating resources that need multiple configurations. It breaks

down the creation process into steps, making it easy to customize and reuse.

The following code snippet shows how the Builder pattern can create a web app with a configu-

rable app service plan and settings:

class WebAppBuilder {

 private name: string;

 private resourceGroupName: string;

 private planId: string = "";

 private appSettings: { name: string; value: string }[] = [];

 constructor(name: string, resourceGroupName: string) {

 this.name = name;

 this.resourceGroupName = resourceGroupName;

 }

 setAppServicePlan(planId: string) {

 this.planId = planId;

 return this;

 }

 addAppSetting(key: string, value: string) {

 this.appSettings.push({ name: key, value: value });

 return this;

 }

 build() {

Chapter 12 261

 return new azure.web.WebApp(this.name, {

 resourceGroupName: this.resourceGroupName,

 serverFarmId: this.planId,

 siteConfig: { appSettings: this.appSettings },

 location: "WestUS",

 });

 }

}

// Build a web app step by step

const webApp = new WebAppBuilder("dev-webapp", "dev-rg")

 .setAppServicePlan("/subscriptions/subId/resourceGroups/dev-rg/
providers/Microsoft.Web/serverfarms/dev-plan")

 .addAppSetting("ENVIRONMENT", "Development")

 .addAppSetting("API_URL", "https://dev.api.example.com")

 .build();

The Builder pattern makes creating configurable resources easier to read and maintain, which is

especially useful in IDPs where developers may need custom setups for their applications.

Using the Singleton pattern
The Singleton pattern ensures that a single instance of a resource is created, which is useful for

shared resources such as monitoring workspaces or logging setups.

The following code snippet demonstrates how the Singleton pattern manages a shared App

Insights instance:

class AppInsights {

 private static instance: azure.insights.Component;

 static getInstance(resourceGroupName: string, location: string) {

 if (!AppInsights.instance) {

 AppInsights.instance = new azure.insights.Component("shared-
app-insights", {

 resourceGroupName,

 location,

 applicationType: "web",

 });

 }

Writing Maintainable, Testable, and Scalable Code in Pulumi262

 return AppInsights.instance;

 }

}

// Ensure only one App Insights instance exists

const appInsights = AppInsights.getInstance("shared-rg", "WestUS");

This ensures that all teams or environments using the IDP share the same App Insights instance,

which avoids duplication and reduces costs.

While this book can’t possibly show all the different ways to use the GoF patterns in your IaC,

this is supposed to open your mind to the possibilities of applying software design principles to

infrastructure management. These patterns are not just theoretical; they give you solutions to

real-world challenges such as managing shared resources, handling configuration complexity,

and adapting to different team or environment needs.

Using patterns such as Factory Method, Builder, and Singleton encourages consistency and scal-

ability in your code base, which becomes critical as your projects grow in size and complexity.

Beyond simplifying resource provisioning, they foster collaboration within teams by making

your infrastructure code modular and understandable. For example, Factory Method can enable

teams to easily switch environments or resource types without rewriting core logic, while the

Builder pattern can standardize how configurations are created across multiple teams or services.

Moreover, these patterns can be extended far beyond what is covered here. You might use the

Observer pattern to trigger alerts when certain infrastructure changes occur or the Strategy pat-

tern to define different deployment methods for different application types. The goal is to spark

your creativity so you can take these foundational ideas and adapt them to your unique use cases,

whether you’re building an IDP, a cloud-native application, or automating infrastructure at scale.

Ensuring infrastructure validity with basic assertions
Before deploying any infrastructure, it’s important to validate configurations to ensure they meet

your requirements. Basic assertions provide a simple way to catch common misconfigurations

early in the development process. These checks allow you to confirm that critical parameters,

such as resource locations or settings, are correctly configured before any infrastructure is pro-

visioned. By performing these validations, you can save time and prevent costly mistakes that

might otherwise only appear during deployment.

Chapter 12 263

Basic assertions are especially useful when dealing with user-provided inputs, such as configu-

ration files or environment variables. Instead of allowing invalid values to proceed to resource

creation, assertions flag these issues early and provide clear feedback for corrections. For instance,

you can verify that a storage account is configured to use the correct redundancy level or that it

will be deployed to an approved region.

The following code demonstrates how to validate inputs for a storage account, using an array of

acceptable values to enforce standards for configuration parameters:

// Define acceptable values for validation

const allowedLocations = ["WestUS", "EastUS"];

const allowedSkus = ["Standard_LRS", "Standard_GRS"];

// Input parameters for storage account configuration

const config = new pulumi.Config();

const location = config.require("location");

const sku = config.require("sku");

// Assertions to validate inputs against allowed values

if (!allowedLocations.includes(location)) {

 throw new Error(`Invalid location: ${location}. Allowed locations
are: ${allowedLocations.join(", ")}.`);

}

if (!allowedSkus.includes(sku)) {

 throw new Error(`Invalid SKU: ${sku}. Allowed SKUs are:

 ${allowedSkus.join(", ")}.`);

}

// Define the storage account only after inputs pass validation

const storageAccount = new azure.storage.
StorageAccount("validatedStorage,{

 resourceGroupName: "my-rg",

 location,

 sku: { name: sku },

 kind: "StorageV2",

});

Writing Maintainable, Testable, and Scalable Code in Pulumi264

In this example, the allowedLocations and allowedSkus arrays define the permissible values

for the location and redundancy level of the storage account. The program retrieves these inputs

using Pulumi’s Config module and validates them against the allowed values. If an input doesn’t

match the expected values, the program provides a clear error message and halts execution. This

ensures that only valid configurations proceed to resource creation.

The use of arrays for validation makes it easy to adapt to new requirements. For instance, add-

ing a new location or SKU is as simple as updating the respective array. This approach provides

flexibility while maintaining control over infrastructure configurations.

Basic assertions like these are an excellent starting point for ensuring infrastructure validity, but

they are not sufficient for validating complex scenarios or interactions between resources. To

address these needs, unit and integration testing come into play. Unit tests allow you to isolate

specific parts of your infrastructure code, verifying that logic generates the correct resource defini-

tions. Integration tests take this further by simulating real-world deployment scenarios, ensuring

that resources interact correctly and perform as expected in a live environment.

While we’ve done a basic introduction here, the next chapter will cover testing in much more

detail. It will guide you through setting up and automating unit and integration tests, running

them in CI/CD pipelines, and debugging issues when they arise.

Consistent naming and documentation practices
The easiest way to help other developers find things in a large project is by naming classes, meth-

ods, and resources clearly and consistently. It sounds simple, but proper naming is one of the

most effective ways to make infrastructure projects easier to understand and work with. When

names are clear and follow a predictable pattern, teams can quickly identify resources, know

what they are for, and avoid mistakes.

Consistent naming conventions improve collaboration and readability because they give ev-

eryone a shared understanding of how resources are named. For example, using a pattern such

as {environment}-{resource-type}-{name} makes it obvious what a resource is, what it does,

and where it belongs. A name such as prod-app-db instantly tells you this is a database for the

production environment, while dev-app-web clearly points to a web app in the development envi-

ronment. Without naming conventions like these, resources can become hard to track, especially

in large projects with multiple environments and many contributors.

Chapter 12 265

Bad naming habits can lead to big problems. For instance, if resource names don’t follow a clear

pattern, it can be hard to find the right resource when troubleshooting an issue. You might ac-

cidentally delete the wrong resource or waste time trying to figure out what something does.

Inconsistent names also make onboarding new team members more difficult because they have

to spend extra time learning how the project is organized. These problems grow worse as the

project gets bigger and more people work on it.

Good naming conventions, on the other hand, keep your project organized and save time. Devel-

opers can trust that names make sense and follow the same rules everywhere. This is especially

helpful in Pulumi projects, where infrastructure code defines many different resources. Clear

names allow teams to scale their projects without worrying about losing track of what each

resource does or where it belongs.

Establishing a naming convention
A good naming convention is built on three key principles: clarity, predictability, and adherence

to standards. These principles ensure that resource names are easy to understand, follow a con-

sistent structure, and align with any organizational or team-specific guidelines. When naming

conventions are clear and predictable, they reduce confusion, improve collaboration, and make

managing infrastructure simpler, even in large Pulumi projects.

Clarity means using names that accurately describe the resource’s purpose and context. A clear

name immediately tells you what the resource is, what it’s used for, and where it belongs. For

example, a storage account named prod-storage-logs clearly indicates that it is a storage account

in the production environment used for logs. Compare this to a vague name such as storage1,

which provides no useful information and could easily lead to mistakes.

Predictability ensures that naming follows a consistent format or pattern across the project. For

Pulumi projects, a common pattern is {environment}-{resource-type}-{name}. This structure

helps standardize naming while allowing enough flexibility to describe different types of resources.

Here are some examples:

•	 dev-app-web refers to a web app in the development environment

•	 prod-db-main refers to the main database in production

•	 test-storage-backups refers to a storage account for backups in a testing environment

Using such patterns makes it easy to guess or deduce the name of a resource even if you’ve never

worked with it before, saving time and reducing errors.

Writing Maintainable, Testable, and Scalable Code in Pulumi266

Adherence to standards ensures that your naming conventions align with broader organization-

al policies or cloud provider constraints. For example, Azure imposes limits on resource name

lengths and allows only certain characters. Naming conventions should consider these restrictions

while remaining consistent. For instance, a team might adopt a rule such as limiting names to 24

characters and using hyphens (-) as separators to comply with Azure’s guidelines.

Prefixes and suffixes are especially important for differentiating between environments, regions,

or versions:

•	 Using prefixes such as prod- or dev- makes it immediately clear which environment a

resource belongs to, avoiding accidental changes to production resources

•	 Suffixes can help distinguish resources in different regions, such as prod-app-web-us for

a US-based web app versus prod-app-web-eu for one in Europe

•	 Including versioning in names can make it easier to manage updates, such as prod-app-v1

and prod-app-v2

Managing naming conventions manually for every resource in a project can quickly become

error-prone and tedious, especially in large-scale infrastructure projects. Automating naming

conventions not only ensures consistency but also helps maintain clean, organized code. Instead

of creating separate naming logic for each resource, you can use a single utility function to gen-

erate all required resource names in one step. This simplifies resource management and ensures

uniformity across teams and environments.

In a multi-team setup, including the project name, environment, and optionally the region in re-

source names is crucial. It prevents conflicts in shared environments and makes it easy to identify

team-owned resources. A centralized utility, such as generateResourceNames, can automate this

process, generating names for all required resources while adhering to organizational standards.

Here’s an example of a utility function that generates consistent names for resources such as

resource groups, storage accounts, key vaults, and traffic manager profiles:

// resource-name-generator.ts

export function generateResourceNames({

 project,

 environment,

 region,

}: {

 project: string;

 environment: string;

Chapter 12 267

 region?: string;

}): {

 resourceGroupName: string;

 storageAccountName: string;

 appName: string;

 trafficManagerName: string;

 keyVaultName: string;

} {

 const baseName = `${project}-${environment}`;

 const regionSuffix = region ? `-${region}` : "";

 return {

 resourceGroupName: `${baseName}-rg${regionSuffix}`,

 storageAccountName: `${baseName}-storage${regionSuffix}`,

 appName: `${baseName}-app${regionSuffix}`,

 trafficManagerName: `${baseName}-tm${regionSuffix}`,

 keyVaultName: `${baseName}-kv${regionSuffix}`,

 };

}

This function dynamically generates names based on the provided project, environment, and

optional region. The returned object contains consistent names for various resources. Here’s

how you can use this utility in a Pulumi project:

import * as azure from "@pulumi/azure-native";

import { generateResourceNames } from "./resource-name-generator";

// Define parameters for naming

const project = "devex";

const environment = "prod";

const region = "us";

// Generate names for resources

const resourceNames = generateResourceNames({ project, environment, region
});

// Create a resource group

const resourceGroup = new azure.resources.ResourceGroup(resourceNames.

Writing Maintainable, Testable, and Scalable Code in Pulumi268

resourceGroupName, {

 location: "WestUS",

});

// Create a storage account

const storageAccount = new azure.storage.StorageAccount(resourceNames.
storageAccountName, {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 sku: { name: "Standard_LRS" },

 kind: "StorageV2",

});

// Create a key vault

const keyVault = new azure.keyvault.Vault(resourceNames.keyVaultName, {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 properties: {

 sku: { name: "standard" },

 tenantId: "your-tenant-id",

 },

});

// Create a traffic manager profile

const trafficManager = new azure.network.
TrafficManagerProfile(resourceNames.trafficManagerName, {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 trafficRoutingMethod: "Performance",

});

For a project named devex in the prod environment and us region, the generated names would

be as follows:

{

 "resourceGroupName": "teamA-prod-rg-us",

 "storageAccountName": "teamA-prod-storage-us",

 "appName": "teamA-prod-app-us",

Chapter 12 269

 "trafficManagerName": "teamA-prod-tm-us",

 "keyVaultName": "teamA-prod-kv-us"

}

This approach makes things clearer because the names show useful information about the proj-

ect, environment, and purpose of each resource. In big organizations where many teams share

the same environments, automated naming helps keep everything organized and easy to follow.

The role of good documentation
Documentation is one of the most important parts of any Pulumi project. It helps developers

understand the project, especially when new team members join or when the project is handed

over to another team. Without clear documentation, it can take a lot of time to figure out why

certain decisions were made or how the project is structured.

Good documentation explains both what the code does and why it was done that way. For exam-

ple, you should document the purpose of each resource, the naming rules you are following, and

how the files are organized. If a specific region or redundancy setting was chosen, documenting

the reason makes it easier for others to understand the project’s requirements and avoid making

changes that might cause problems. Documentation also helps developers quickly find what they

need, making it easier to work together.

Over time, as a project grows, documentation becomes even more useful. It serves as a guide for

making updates, fixing issues, or scaling the system. When teams change, having clear documen-

tation ensures that new contributors can easily pick up where others left off.

To make documentation effective, it should include both an overview of the project and details

where necessary. A README file can provide high-level information, while inline comments can

explain specific parts of the code.

Using README files
Every project folder should have a README file that explains what the folder is for and what

resources it manages. A README is like a quick guide for anyone working on the project.

Here’s a simple outline for a Pulumi project README:

•	 Project overview: A short description of the project, its purpose, and the infrastructure

it manages

•	 Resource naming rules: The naming conventions used in the project, with examples

•	 File structure: A description of the folders and files, and what they contain

Writing Maintainable, Testable, and Scalable Code in Pulumi270

•	 Configuration details: Information on required settings such as environment variables

or Pulumi stack configurations

•	 How to deploy: Step-by-step instructions for running Pulumi and deploying the resources

•	 Troubleshooting: A section for common issues and how to fix them

Inline comments
Inline comments in your Pulumi code are also important. They explain why certain choices were

made or how things work. Here are some examples:

•	 Document why a specific region was chosen for a resource

•	 Highlight connections between resources, such as why two resources need to be in the

same resource group

•	 Explain any settings that aren’t obvious, such as custom configurations

Here’s an example of using inline comments:

import * as azure from "@pulumi/azure-native";

// Create the main resource group for the project

// This is where all resources for "teamA" will be organized

const resourceGroup = new azure.resources.ResourceGroup("teamA-rg", {

 location: "WestUS", // Selected for better performance for our users

 // in the US

});

// Create a storage account for log data

// Using Standard_LRS to keep storage costs low

const storageAccount = new azure.storage.StorageAccount("teamA-storage", {

 resourceGroupName: resourceGroup.name,

 location: resourceGroup.location,

 sku: { name: "Standard_LRS" },

 kind: "StorageV2",

});

Consistent naming and clear documentation are key to keeping Pulumi projects organized and

easy to work with. Predictable names make it simple to understand what resources are for, while

good documentation explains the reasoning behind decisions and provides a guide for navigating

the project. They reduce confusion and help teams collaborate more effectively.

Chapter 12 271

These practices also bring long-term benefits. They make debugging faster, as developers can

quickly find and identify resources. As projects grow, they ensure that infrastructure remains

structured and manageable, even with many resources or contributors.

Summary
In this chapter, we covered how to apply essential programming principles and practices to Pulumi

projects to create infrastructure code that is modular, maintainable, and scalable. We discussed

how to structure code with modular design and reusable components, using principles such

as DRY and SOLID to reduce complexity and repetition. We looked at simple strategies such as

basic assertions to catch errors early and how consistent naming and clear documentation make

projects more organized and easier to navigate.

In the next chapter, we will cover testing and debugging your Pulumi IaC.

Questions
1.	 What is the primary benefit of modularizing Pulumi projects, and how can it improve

code reuse?

2.	 Explain how the DRY principle applies to Pulumi infrastructure code. Can you provide

an example?

3.	 How can SOLID principles, such as single responsibility and dependency inversion, be

applied in Pulumi projects?

4.	 What is the purpose of using design patterns such as Factory Method or Builder in Pulumi

projects?

5.	 What are the core components of a good naming convention for infrastructure resources?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

13
Testing and Debugging Your
Pulumi IaC

Testing helps us confirm that our Infrastructure as Code (IaC) works as expected. Just like we

test application code, it’s important to test our infrastructure to catch mistakes early, set things

up securely, and make sure everything performs well in the cloud.

In this chapter, we’ll cover why testing Pulumi programs matters and how to do it step by step.

You’ll learn about different types of testing, such as unit testing to check your code’s logic without

deploying it, and integration testing to check how everything works together once it’s deployed.

These methods help find and fix problems so you can trust your infrastructure.

We’ll also explain how to set up tests in CI/CD pipelines so they run on their own whenever you

make changes. Lastly, we’ll cover how to debug Pulumi programs and solve problems when

something goes wrong. By the end of this chapter, you’ll know how to test and debug Pulumi

projects in simple and practical ways, and this will help make your infrastructure work smoothly

and as planned.

In this chapter, we’re going to cover the following main topics:

•	 Introduction to testing in Pulumi

•	 Unit testing your Pulumi code

•	 Integration testing for Pulumi

•	 Automating tests in CI/CD pipelines

•	 Debugging Pulumi programs

Testing and Debugging Your Pulumi IaC274

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it here: https://

www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

Introduction to testing in Pulumi
It’s not recommended to create infrastructure and deploy it in production without running some

validations first. Without testing, there’s a higher risk of making mistakes such as setting up

resources incorrectly, exposing sensitive data, or using configurations that slow things down or

cost more money. These issues might not seem obvious at first, but can lead to bigger problems

such as security breaches, downtime, or unexpected costs.

Testing helps avoid these risks by catching errors early, before they affect production systems. It

also ensures that your application behaves exactly as it should when running on the deployed

infrastructure. For example, testing can confirm that a database is configured properly and is

accessible only to the application, or that a load balancer routes traffic to the correct servers.

Testing isn’t just about verifying the infrastructure; it’s also about validating that the application

works as intended when it runs on that infrastructure.

By running tests during development, you can check that all components, both the infrastructure

and the application, interact correctly. This helps uncover issues such as missing permissions,

incorrect networking setups, or resource limitations that could break the application once it’s

deployed. Testing both the infrastructure and the application together gives you confidence that

the system as a whole will work smoothly when it goes live.

With Pulumi, there are different things you can do to test your infrastructure, depending on

what you need to validate. Let’s look at three key approaches: unit testing, integration testing,

and property testing.

Unit testing
Unit testing focuses on testing the logic of your Pulumi code in isolation, without deploying any

resources to the cloud. With Pulumi’s programming capabilities, you can write unit tests using

your favorite testing frameworks, such as Mocha for JavaScript/TypeScript or pytest for Python.

These tests rely on mocking cloud resources to simulate how they are created and configured.

https://www.pulumi.com/docs/iac/download-install/
https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/

Chapter 13 275

Integration testing
Integration testing takes things a step further by deploying the infrastructure and verifying that

it behaves as expected in a real environment.

For example, you might deploy a virtual network, a virtual machine, and an Azure SQL database.

Once deployed, you can write and run tests to verify that the virtual machine has connectivity to

the database, the network security rules allow traffic as expected, and the database is accepting

connections with the correct authentication method.

Integration testing can also include running application-specific checks, such as ensuring an API

deployed to Azure App Service can query the database and return the expected results. These tests

give you confidence that both the infrastructure and the applications deployed on it function

properly together.

Property testing
Property testing is about validating specific properties of the resources you create. These tests

ensure that your infrastructure adheres to policies, standards, and best practices. For example,

you can use Pulumi to verify that all virtual machines in Azure are deployed with managed disks,

that storage accounts use private endpoints, or that Azure Kubernetes Service (AKS) clusters

enforce role-based access control (RBAC).

While property testing ensures compliance at a detailed level, it also forms the basis for high-

er-level validation methods such as Policy as Code, which will be explored in Chapter 14. Policy

as Code allows you to enforce rules across your infrastructure automatically, and this ensures

that every resource deployed meets your organization’s requirements.

With these fundamentals in mind, you’re ready to dive deeper into testing strategies that will help

you handle larger, more dynamic environments and address the challenges of real-world cloud

deployments. Let’s explore how to take your Pulumi testing practices to the next level.

Unit testing your Pulumi code
To write unit tests for your infrastructure, you need to validate the logic of your Pulumi code

without deploying actual resources. Now, let’s focus on a critical part of unit testing in Pulumi:

mocking cloud resources.

Testing and Debugging Your Pulumi IaC276

Mocking is a technique used in unit testing to simulate the behavior of real systems without di-

rectly interacting with them. This means you can test your code’s logic without creating actual

resources in Azure or any other cloud environment. Mocking is essential because it speeds up test-

ing, avoids costs, and provides a controlled environment for checking the correctness of your code.

Pulumi provides built-in support for mocking cloud resources using pulumi.runtime.Mocks and

makes it easy to simulate the resources your program creates. For example, if your Pulumi program

defines an Azure storage account, a mock can mimic the behavior of the storage account during

the test. You can use mocks to verify specific properties, such as whether encryption is enabled

or the storage tier is set correctly.

Working with mocks in Pulumi
You can work with mocks in Pulumi in the following three steps:

1.	 You define a mock class or function that simulates the behavior of your resources. For

instance, if your Pulumi program creates any kind of resource (e.g., an Azure storage

account), you can define a mock that returns specific properties.

import * as pulumi from "@pulumi/pulumi";

Class IaCMocks implements pulumi.runtime.Mocks {

 newResource(type: string, name: string, inputs: pulumi.
Inputs): { id: string; state: pulumi.Outputs } {

 return {

 id: `${name}-mock-id`, // Simulate resource ID

 state: { ...inputs }, // Pass through the inputs as the
state

 };

 }

 call(args: pulumi.runtime.MockCallArgs): Record<string, any> {

 return {};

 }

}

2.	 After creating your mocks, the next step would be to inject your mocks into the testing

framework. When your Pulumi code runs, it interacts with the mocks instead of real cloud

services. You can do this with the following line of code:

pulumi.runtime.setMocks(new IaCMocks());

Chapter 13 277

3.	 After writing your IaC code, defining your mocks and injecting them, you can now write

tests to validate the logic of your Pulumi code using a testing framework such as Mocha

and assertion libraries such as Chai. Here’s an example of testing a Pulumi program that

creates an Azure storage account:

import * as pulumi from "@pulumi/pulumi";

import { expect } from "chai";

import * as myProgram from "./index"; // Replace with your Pulumi

 // program file path

describe("Azure Storage Account", () => {

 before(() => {

 pulumi.runtime.setMocks(new IaCMocks());

Quick tip: Enhance your coding experience with the AI Code Explainer

and Quick Copy features. Open this book in the next-gen Packt Reader. Click

the Copy button

(1) to quickly copy code into your coding environment, or click the Explain

button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this

book. Scan the QR code OR visit packtpub.com/unlock, then use the search

bar to find this book by name. Double-check the edition shown to make sure

you get the right one.

http://packtpub.com/unlock

Testing and Debugging Your Pulumi IaC278

 });

 it("should create a storage account with HTTPS-only enabled",

 async () => {

 const httpsOnly = await myProgram.httpsOnly;

 expect(httpsOnly).to.be.true; // Assert HTTPS-only is

 // enabled

 });

 it("should have a specific name", async () => {

 const name = await myProgram.storageAccountName;

 expect(name).to.include("mystorageaccount"); // Assert the

 // name contains

 // "mystorageaccount"

 });

});

The code for the corresponding Pulumi program is shown here:

import * as azure from "@pulumi/azure";

const storageAccount = new azure.storage.
Account("mystorageaccount", {

 resourceGroupName: "my-resource-group",

 location: "West Europe",

 accountTier: "Standard",

 accountReplicationType: "LRS",

 enableHttpsTrafficOnly: true,

});

export const storageAccountName = storageAccount.name;

export const httpsOnly = storageAccount.enableHttpsTrafficOnly;

This shows you what’s possible with unit testing in Pulumi. However, there’s a limit to the impact

that this kind of testing can have on your overall Infrastructure as Code (IaC) workflow. While

unit testing is great for validating the logic of your Pulumi programs and catching early-stage

errors, it doesn’t cover everything. The next section will discuss some of these limitations in detail.

Chapter 13 279

Limitations of unit testing
Unit testing focuses on testing your code in isolation, using mocks to stand in for real cloud re-

sources. While this is helpful, there are some things it can’t handle:

•	 Unit tests don’t check how resources interact once deployed. For example, suppose your

Pulumi program creates an Azure function app and an Azure SQL database. A unit test can

verify that both resources are defined and configured properly, but it won’t test whether

the function app has the correct permissions to connect to the database. This means

you can’t confirm that a GET request to your API will correctly query the database and

return the expected results. These kinds of end-to-end interactions need to be validated

to conclude that the infrastructure and application work well together and it’s safe to do

live deployments.

•	 Mocks are useful for testing your code, but they don’t act exactly like real cloud services.

For instance, a mock of an Azure storage account might pass all your tests, but during a

real deployment, you could run into issues such as unsupported settings or conflicts with

existing resources. These problems won’t show up in unit tests.

•	 Unit tests don’t account for real-world changes, like what happens during a network

failure or how resources behave under heavy load. For example, testing whether a load

balancer handles traffic correctly during a failover isn’t something a unit test can do. These

scenarios need to be tested in a deployed environment.

•	 Unit tests don’t ensure that your resources follow organizational policies or best practices.

For example, if your organization requires all databases to have encryption enabled or all

function apps to use managed identities for secure access, unit tests won’t validate these

rules. Property testing or policy as code is better suited for these kinds of checks.

To test more scenarios holistically, you need to go beyond unit tests and validate how your infra-

structure behaves in a real environment. The next section will focus on integration testing, where

you’ll deploy resources and ensure that they interact correctly to support real-world use cases,

such as serving API requests and handling data securely.

Integration testing for Pulumi
Imagine you’re building a social media application and you want to verify that the chat feature

works as expected when you deploy new infrastructure. This isn’t just about ensuring that your

servers, databases, and APIs exist; it’s about confirming that they are created correctly, configured

properly, and function together as intended in a real-world environment.

Testing and Debugging Your Pulumi IaC280

This is where integration testing comes in. For this, you’d need to test that the application is live,

that messages can be exchanged between two users, that data is stored and retrieved accurately,

and that the infrastructure supports all these actions seamlessly.

In Pulumi, integration testing is a black-box testing approach where your Pulumi program is run

through the Pulumi CLI to deploy infrastructure to an ephemeral environment, a temporary setup

specifically for testing. Once the test is complete, the infrastructure is automatically destroyed.

Unlike unit testing, which focuses on the logic of your program in isolation, integration testing

deploys real infrastructure to verify that your program runs without errors and that the deployed

resources behave as expected.

Here are some important checks that integration tests make:

•	 They confirm that your Pulumi program runs without any errors, meaning the code is

written correctly.

•	 They verify that your stack settings, including sensitive data such as secrets, are applied

properly.

•	 They check that the infrastructure can be deployed to your cloud provider without prob-

lems.

•	 They ensure that the right resources are created with the right settings – for example,

making sure a function app has the correct environment variables or that a SQL database

has proper access rules.

•	 They test that the deployed infrastructure behaves as it should. For instance, a health-

check endpoint should respond correctly, or an API should handle requests as expected.

•	 They validate that updates to the infrastructure can be made smoothly, such as scaling a

database or adding new resources, without breaking existing setups.

•	 They confirm that the infrastructure can be cleaned up properly, leaving no leftover re-

sources in your cloud environment.

Pulumi integration tests don’t directly interact with your program’s internal code. Instead, they

use the Pulumi CLI to deploy, update, and delete infrastructure as part of the testing process.

This helps you verify that your program can handle real-world deployments, including applying

configurations, running resources, and cleaning them up after use. By using integration tests, you

can ensure your Pulumi program is ready for production.

Chapter 13 281

Writing integration tests
Let’s write an integration test for our infrastructure and application. Here, we will assume that the

app binaries were zip deployed to an Azure function app as part of the infrastructure deployment

process when running Pulumi up. The goal is to test our social media application’s chat feature,

ensuring that the deployed infrastructure supports its functionality. Specifically, we want to

validate the following scenarios:

•	 The function app is live and accessible

•	 Two users can authenticate with the application using the provided API

•	 The users can send messages to each other using the messaging API, and the messages

are stored and retrieved correctly

To achieve this, we’ll deploy the infrastructure with Pulumi and write integration tests to simulate

these scenarios. Here is the Pulumi code for setting up the infrastructure:

1.	 The following code defines an Azure function app that will host the chat application,

including endpoints for authentication and messaging. The application binaries are pack-

aged and uploaded as a ZIP file to Azure Storage, from where the function app will run:

import * as path from "path";

const resourceGroup = new azure_native.resources.ResourceGroup(

"resourceGroup", {

 location: "eastus",

 resourceGroupName: "my-resource-group",

});

const storageAccount = new azureNative.storage.StorageAccount(

"storageAccount", {

 ...

});

const appServicePlan = new azureNative.web.AppServicePlan(

"appServicePlan", {

 kind: "FunctionApp",

 ...

});

const functionAppFolder = "./function-app-code";

const zipFile = new pulumi.asset.AssetArchive({

Testing and Debugging Your Pulumi IaC282

 ".": new pulumi.asset.FileArchive(functionAppFolder),

});

const storageContainer = new azureNative.storage.BlobContainer(

"functionapp-container", {

 accountName: storageAccount.name,

});

const codeBlob = new azureNative.storage.Blob(

"functionapp-zip", {

 ...

 type: azureNative.storage.BlobType.Block,

 source: zipFile,

});

const codeBlobUrl = pulumi.interpolate`https://${storageAccount.
name}.blob.core.windows.net/${storageContainer.name}/${codeBlob.
name}`;

const primaryStorageKey = azureNative.storage

 .listStorageAccountKeysOutput({

 resourceGroupName: resourceGroup.name,

 accountName: storageAccount.name,

 }).keys[0].value;

const functionApp = new azureNative.web.WebApp("functionApp", {

 serverFarmId: appServicePlan.id,

 kind: "FunctionApp",

 siteConfig: {

 appSettings: [

 { name: "AzureWebJobsStorage",

 value: pulumi.
interpolate`DefaultEndpointsProtocol=https;

 AccountName=${storageAccount.name};

 AccountKey=${s primaryStorageKey}` },

 { name: "WEBSITE_RUN_FROM_PACKAGE", value: codeBlobUrl
},

],

 },

}, { dependsOn: [codeBlob] });

Chapter 13 283

export const functionAppEndpoint = pulumi.
interpolate`https://${functionApp.defaultHostName}/api/`;

2.	 Now, let’s write an integration test to validate the deployed infrastructure. The test will

ensure the following:

•	 The function app is live.

•	 Two users can authenticate successfully.

•	 The users can send and retrieve messages using the API.

3.	 Here’s the integration test code using Mocha and node-fetch. To start, import all the

necessary modules and dependencies, including Pulumi to access the deployed infrastruc-

ture, Chai for assertions, and node-fetch for making HTTP requests to the function app:

import * as pulumi from "@pulumi/pulumi";

import { expect } from "chai";

import fetch from "node-fetch";

import * as infra from "./index"; // Import the Pulumi program

This setup allows you to access the function app endpoint exported from the Pulumi

program (infra.functionAppEndpoint) and perform assertions on API responses.

4.	 Next, define the test suite using Mocha’s describe function as shown in the following

code snippet. Set a timeout to allow enough time for the infrastructure to be deployed

and accessible:

describe("Integration Test: Chat App", function () {

 this.timeout(300000); // Time for resource creation

});

5.	 In the describe block, add a before hook to retrieve the function app’s endpoint before

running any tests. The before hook ensures that this information is available for all sub-

sequent test cases. See the following code snippet:

let functionAppEndpoint: string;

 before(async () => {

 // Get the Function App endpoint

 functionAppEndpoint = await infra.functionAppEndpoint;

});

Testing and Debugging Your Pulumi IaC284

6.	 The first test case in the following code snippet checks whether the function app is live. The

snippet sends a GET request to the healthcheck endpoint and verifies that the response

status is 200 and that the body includes the message App is running. This confirms that

the function app is operational.

it("should validate that the Function App is live", async () => {

 // Send a request to the health-check endpoint

 const response = await fetch(`${functionAppEndpoint}
healthcheck`);

 const responseBody = await response.text();

 // Validate that the Function App is live

 expect(response.status).to.equal(200);

 expect(responseBody).to.include("App is running");

});

7.	 Next, the following snippet adds a test case to validate user authentication. Two POST re-

quests are sent to the auth/login endpoint with credentials for two users. The responses

are checked to ensure that both users receive valid authentication tokens.

it("should allow two users to authenticate", async () => {

 // User 1 authentication

 const user1AuthResponse = await fetch(`${functionAppEndpoint}
auth/login`, {

 method: "POST",

 headers: { "Content-Type": "application/json" },

 body: JSON.
stringify({ username: "user1", password: "password1" }),

 });

 const user1AuthBody = await user1AuthResponse.json();

 expect(user1AuthResponse.status).to.equal(200);

 expect(user1AuthBody.token).to.exist;

 // User 2 authentication

 const user2AuthResponse = await fetch(`${functionAppEndpoint}
auth/login`, {

 method: "POST",

 headers: { "Content-Type": "application/json" },

 body: JSON.
stringify({ username: "user2", password: "password2" }),

 });

Chapter 13 285

 const user2AuthBody = await user2AuthResponse.json();

 expect(user2AuthResponse.status).to.equal(200);

 expect(user2AuthBody.token).to.exist;

});

8.	 The following snippet adds the final test case to validate messaging functionality. User

1 sends a message to User 2 using the messages/send endpoint, and User 2 retrieves it

using the messages/inbox endpoint. The test confirms that the message is successfully

sent and retrieved.

it("should allow users to send and retrieve messages", async () => {

 // User 1 sends a message to User 2

 const messageResponse = await fetch(`${functionAppEndpoint}
messages/send`, {

 method: "POST",

 headers: { "Content-Type": "application/json" },

 body: JSON.stringify({

 from: "user1",

 to: "user2",

 message: "Hello, User 2!",

 }),

 });

 const messageBody = await messageResponse.json();

 expect(messageResponse.status).to.equal(200);

 expect(messageBody.status).to.equal("Message sent");

 // User 2 retrieves messages

 const inboxResponse = await fetch(`${functionAppEndpoint}
messages/inbox?username=user2`);

 const inboxBody = await inboxResponse.json();

 expect(inboxResponse.status).to.equal(200);

 expect(inboxBody.messages).to.be.an("array").that.deep.
includes({ from: "user1", message: "Hello, User 2!" });

});

These integration tests simulate real-world usage of the function app and validate its health, au-

thentication, and messaging functionality. By running these tests after deploying the infrastruc-

ture, you can confirm that the application behaves as expected and is ready for production use.

Testing and Debugging Your Pulumi IaC286

Testing deployments without Pulumi integration tests
Teams might opt out of mocked integration tests and instead deploy straight into a cloud sandbox

because spinning up and maintaining realistic test doubles is often more work than it’s worth,

especially for complex services such as IAM policies, networking, or managed databases that

don’t behave the same under emulation because their existing CI/CD pipelines, monitoring, and

manual QA processes are already geared toward real environments, because compliance or security

requirements sometimes demand proof against actual resources, because smaller teams or tight

deadlines can’t afford the overhead of building and updating a full suite of stubs and mocks, and

because the cost of ephemeral test deployments is outweighed by the confidence gained from

exercising the real stack end to end. As a result, some teams prefer to deploy infrastructure into

a real cloud environment and test it directly using their existing processes. This means actually

standing up the infrastructure and running tests against it as if it were a production system, al-

lowing you to see how it behaves in a live environment. This approach can be especially helpful

for teams that already have a well-defined way of testing their applications and want to extend

that process to include infrastructure validation.

To do this, you would deploy your infrastructure to a specific test environment, such as a staging

subscription or a separate resource group. Once the deployment is complete, the testing process

begins by interacting directly with the live environment. For example, you could make requests to

the APIs your application exposes, simulate user workflows, or validate that all components are

working as expected. This hands-on method allows you to test not only the individual resources

but also how they interact with each other in a real-world setup.

This process often involves creating temporary environments that mirror production as closely as

possible. After the tests are completed, the environment can be torn down to avoid unnecessary

costs or resource clutter. Automating the creation and destruction of these environments is key

to ensuring this approach doesn’t become time-consuming or error-prone.

Testing in a live environment provides an opportunity to catch issues that might not show up

during local testing or in mocked scenarios. It helps validate that your infrastructure works as

intended and supports the application effectively. While this method requires more manual

setup and monitoring, it aligns well with workflows that prioritize real-world validation over

pre-deployment checks, and it gives you confidence that everything works as expected when it

matters most.

Chapter 13 287

Common challenges in integration testing
Integration testing can be very useful, but it also comes with challenges that teams often face.

One common issue is handling network delays or timeouts, especially when working with cloud

environments. Since integration tests interact with live infrastructure, network latency or tem-

porary outages can cause tests to fail even when the infrastructure is working correctly. This can

make it hard to tell whether a failure is due to the system being tested or an external issue. Another

challenge is running tests in shared environments, where conflicts might occur if multiple tests

try to access the same resources or make changes at the same time.

To deal with flaky tests caused by network issues, a simple solution is to use retries. For example,

if a test fails because a resource wasn’t ready or a network delay occurred, retrying the test a few

seconds later can often solve the problem. You can implement retries with a simple loop or a

utility function. Here’s an example of how to retry a request:

async function fetchWithRetries(url: string, retries: number
= 3, delay: number = 2000): Promise<Response> {

 for (let attempt = 1; attempt <= retries; attempt++) {

 try {

 const response = await fetch(url);

 if (response.ok) return response;

 } catch (error) {

 if (attempt === retries) throw error;

 await new Promise((resolve) => setTimeout(resolve, delay));

 }

 }

 throw new Error("Request failed after retries");

}

For shared environments, conflicts can be avoided by isolating resources for each test. One way

to do this is by giving resources unique names based on the test or the time it runs. For instance,

appending a timestamp or a random ID to resource names ensures that each test uses its own

set of resources, avoiding overlap with other tests. Here’s an example of dynamically generating

unique resource names:

const uniqueId = new Date().getTime();

const resourceName = `test-resource-${uniqueId}`;

Testing and Debugging Your Pulumi IaC288

Another option is to create entirely separate environments for each test, such as using different

resource groups or accounts. This ensures tests don’t interfere with one another. You can automate

the creation of isolated environments in your Pulumi program like this:

const resourceGroup = new azureNative.resources.ResourceGroup(`test-rg-
${uniqueId}`);

These small adjustments help you avoid common pitfalls, so that you are able to focus on finding

meaningful issues in the system rather than dealing with test failures caused by external factors.

The next section will cover automating tests in your CI/CD pipelines.

Automating tests in CI/CD pipelines
In a typical CI/CD pipeline, the Pulumi test step fits between the build and deployment stages.

Its purpose is to validate your infrastructure code to ensure that any issues are caught before

the deployment step. By running the tests after the code is built but before any resources are

provisioned, you can confirm that your infrastructure logic is correct and ready for deployment.

Imagine your CI/CD pipeline starts with a build step that compiles your application code and

packages it for deployment. Once the build is successful, the pipeline moves to the test step, where

Pulumi tests are run. This step checks for issues in your infrastructure code, such as incorrect con-

figurations or missing dependencies. If the tests pass, the pipeline continues to the deployment

step, where the infrastructure and application are deployed to the cloud.

name: CI/CD Pipeline

on: push

jobs:

 test:

 runs-on: ubuntu-latest

 steps:

 - name: Check out code

 uses: actions/checkout@v3

 - name: Install dependencies

 run: npm install

 - name: Run Pulumi tests

 run: npm test

 deploy:

 runs-on: ubuntu-latest

Chapter 13 289

 needs: test

 steps:

 - name: Deploy to cloud

 run: pulumi up –y

In the preceding code snippet, the test step runs Pulumi tests right after the dependencies are

installed, validating your infrastructure code. The deploy step only runs if the test step passes,

preventing faulty code from being deployed. This approach tests the infrastructure thoroughly

while keeping the pipeline configuration concise and easy to maintain.

For a pipeline that involves deploying to a staging environment and using external tools or mech-

anisms to test, the CI/CD pipeline includes a step to deploy the infrastructure and application to

a temporary staging environment. Once deployed, other testing tools or automated workflows

interact with the environment to validate functionality, performance, and reliability.

This type of pipeline often follows a structure like this:

1.	 Build step: The pipeline begins by building the application and packaging it for deploy-

ment.

2.	 Deploy to test stack: The pipeline deploys the infrastructure and application to a test stack

(or staging environment). This environment is a temporary setup that mimics production

as closely as possible. Pulumi’s pulumi up command can be used here to automate the

deployment.

3.	 External testing: After the deployment, external tools or scripts run tests against the live

staging environment. For example, API endpoints can be tested for expected responses,

user workflows can be simulated, and system behavior under load can be validated.

4.	 Teardown: Once the tests are complete, the staging environment is destroyed to save

costs and clean up resources.

Here’s an example of such a pipeline using GitHub Actions:

name: Staging Test Pipeline

on: push

jobs:

 deploy-and-test:

 runs-on: ubuntu-latest

 steps:

 - name: Check out code

Testing and Debugging Your Pulumi IaC290

 uses: actions/checkout@v3

 - name: Install Pulumi CLI

 uses: pulumi/actions@v3

 - name: Deploy to staging

 run: pulumi up -y --stack staging

 - name: Run external tests

 run: ./run-tests.sh

 - name: Teardown staging environment

 if: success() || failure() # Always run teardown

 run: pulumi destroy -y --stack staging

In this pipeline, the deployment step uses Pulumi to set up the staging environment with the

infrastructure and application. The testing step runs external scripts, such as run-tests.sh, to

check that the APIs and workflows work as expected. Finally, the teardown step removes the

staging environment to avoid leaving any resources running. This method lets teams test real

infrastructure in a flexible way without needing Pulumi integration tests. Now that you know the

different ways to run tests, the next section will cover debugging Pulumi programs.

Debugging Pulumi Programs
When something goes wrong during a deployment, it can be caused by anything from a simple

typo in the configuration to more complex issues such as misconfigured resources or missing

dependencies. Here, you’ll see some methods for troubleshooting and debugging Pulumi deploy-

ments, helping you identify and fix problems efficiently. Let’s list them:

•	 Using the Pulumi CLI: The Pulumi CLI gives you detailed output during deployments that

can help you identify issues. When running pulumi up, any errors encountered during

the deployment process are displayed in the console, often with specific details about the

failing resource and the associated issue. For example, if a required configuration value

is missing or a resource property is invalid, the CLI will point to the problem. Reviewing

the output carefully is one of the first steps in debugging Pulumi deployments.

•	 Debugging resource definitions: Many errors stem from incorrect resource definitions. For

example, missing required properties, invalid values, or incorrect dependencies between

resources can all cause failures. Breaking down complex resource configurations into

simpler parts can help isolate issues. For instance, if you’re deploying an Azure function

app, check whether all required app settings are defined, such as the WEBSITE_RUN_FROM_

PACKAGE setting for deploying code.

Chapter 13 291

•	 Adding debugging output: You can add console.log statements or use Pulumi’s pulumi.

log.info to output debug information during the execution of your program. For exam-

ple, you can log the value of dynamically generated resource names or check whether a

configuration value is being read correctly. This helps track the flow of your program and

identify where things might be going wrong. See the following code snippet for an example:

const storageAccount = new azureNative.storage.
StorageAccount("storageAccount", {

 resourceGroupName: resourceGroup.name,

 sku: {

 name: azureNative.storage.SkuName.Standard_LRS,

 },

 kind: azureNative.storage.Kind.StorageV2,

});

pulumi.log.info(`Storage Account Name: ${storageAccount.name}`);

•	 Testing resources in isolation: Sometimes, issues occur because of interactions between

multiple resources in your stack. Deploying resources in isolation can help narrow down

the problem. For example, if an Azure SQL database fails to connect with a function app,

try deploying each resource separately to verify they are independently functional before

testing their integration.

•	 Using cloud provider tools: For runtime issues or resource-specific errors, using the tools

provided by your cloud provider can be helpful. In Azure, you can use the Azure portal to

view logs, check resource health, or inspect metrics. For an Azure function app, the Log

Stream feature or Kudu in the Azure portal are good places that can help identify errors

in your application.

Testing and debugging are key to creating a solid infrastructure with Pulumi. They help catch

problems early and confirm everything works as expected. This process improves the quality of

infrastructure code and keeps it reliable for real-world applications.

Summary
In this chapter, we covered how testing and debugging play an important role in creating reliable

Pulumi Infrastructure as Code (IaC) projects. We explored various testing methods, including

unit testing for validating logic without deploying resources and integration testing to confirm

infrastructure behaves as expected in real-world environments.

Testing and Debugging Your Pulumi IaC292

We also looked at how to automate tests in CI/CD pipelines and effectively debug Pulumi programs

by using tools such as the Pulumi CLI and cloud provider diagnostics.

In the next chapter, we will cover policy as code.

Questions
1.	 What is the purpose of testing in Pulumi Infrastructure as Code (IaC) projects?

2.	 How does unit testing differ from integration testing in Pulumi?

3.	 What is the role of mocking in Pulumi unit tests, and why is it important?

4.	 What are some common challenges in writing unit tests for Pulumi programs?

5.	 Describe how to run Pulumi integration tests using a staging environment.

6.	 What is the advantage of using retries in integration tests?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

14
Implementing Policy as Code

In modern infrastructure management, ensuring that systems are secure, efficient, and com-

pliant with organizational standards is essential. This is where property testing plays a critical

role. Property testing is a method for checking whether certain rules or properties are true about

a system, such as making sure a server is configured securely or a network is set up to prevent

unauthorized access.

Policy as code (PaC) takes this concept further by turning these rules into automated, program-

mable policies. Using Pulumi’s policy framework, you can define and enforce these rules directly

within your infrastructure code. Instead of manually reviewing configurations, policies written in

code allow for quick, consistent checks during every deployment. This helps teams catch issues

early, improve security, and align infrastructure with best practices automatically.

This chapter will guide you through the process of implementing PaC with Pulumi. You’ll learn

how to define policies using familiar programming languages, apply them to your infrastructure,

and integrate these checks into your CI/CD pipelines. By the end of this chapter, you’ll have the

skills to automate governance and compliance, making your infrastructure deployments more

reliable and secure.

In this chapter, we’re going to cover the following main topics:

•	 Introduction to PaC

•	 Writing and defining policies

•	 Applying policies to infrastructure

Implementing Policy as Code294

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from here:

https://www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

Introduction to PaC
Beyond defining application infrastructure, you can use code to set rules and enforce standards for

how that infrastructure is built and managed. This approach, known as PaC, allows organizations

to encode compliance, security, and operational requirements directly into their infrastructure

code base. Instead of relying on manual checks or external audits, PaC ensures these rules are

applied consistently and automatically during every deployment.

In the context of cloud infrastructure, PaC acts as a property testing method. Property testing is

about verifying whether a system adheres to specific rules or properties, such as ensuring all stor-

age accounts are encrypted, network traffic is restricted to secure channels, or compute instances

are appropriately sized for workloads. By adding these checks as policies in your infrastructure

code, you can spot problems early, even before your systems go live.

With the pace and scale at which we interact with cloud environments today, it’s easy for things to

go wrong. Teams often manage hundreds or thousands of resources across different environments,

which can lead to different kinds of mistakes. PaC helps solve these problems by automating the

process of checking and enforcing standards.

Using PaC has many important benefits. One of the biggest is that it lets you automate compliance

and governance checks. Instead of having people manually check whether resources follow orga-

nization rules, you can write these rules as code. This means every deployment is automatically

checked against the policies you’ve created. For example, you can make sure all storage accounts

have encryption turned on or that virtual machines are only deployed in approved regions, with-

out needing to check each one yourself.

Another great benefit is that it helps keep things consistent across different environments. Whether

you’re deploying to development, testing, or production, the same rules are applied every time.

This consistency reduces the chance of mistakes that could cause problems later. It also helps

ensure that your systems work as expected, no matter where they are deployed.

https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/

Chapter 14 295

PaC also saves time by reducing the need for manual work. Manually reviewing and fixing con-

figurations can take a lot of effort, especially if you’re managing a large number of resources.

Automated policy checks handle this for you, so your team can spend more time focusing on im-

proving your infrastructure instead of fixing mistakes. This is especially helpful for organizations

with hundreds or thousands of resources to manage.

PaC also makes your systems more secure and reliable. Best practices, such as using encryption,

limiting public access, or sticking to approved configurations, are automatically enforced. This

lowers the risk of mistakes or vulnerabilities that could cause security issues. It also ensures that

resources are deployed in a stable, predictable way.

How PaC works in Pulumi
Pulumi’s policy framework is central to CrossGuard, a product that enables PaC by providing

a framework to define, enforce, and manage infrastructure governance directly in your Pulumi

projects. It allows policies to be written as code using popular programming languages such as

TypeScript, JavaScript, and Python, the same way you can create IaC declarations using regular

programming languages. These policies can validate resources in a Pulumi stack and enforce rules

during the deployment process (pulumi preview and pulumi up). For example, a policy might

prevent deploying publicly readable storage buckets or require that virtual machines include

specific security configurations.

This automation ensures that non-compliant resources are flagged or remediated before they

are created or updated.

During pulumi preview or pulumi up, the engine checks resource inputs against resource policies

before any changes are made. If a violation is detected, it either flags the issue, halts the deploy-

ment, or applies a remediation to fix the resource.

Policies in Pulumi are written as validation functions. These functions are evaluated against

resources in a stack and determine whether they meet specific rules. If a resource violates a policy,

the reportViolation method flags it. Policies can also include remediations, which automatically

adjust the resource’s properties to bring it into compliance:

•	 A validation function might ensure that storage buckets are not publicly accessible

•	 A remediation can automatically change the bucket’s access control settings to private

if a violation is detected

Implementing Policy as Code296

When organizing these policies, Pulumi uses a policy pack. A policy pack is a collection of related

policies grouped together for better management and enforcement. For example, an organization

might create a policy pack for security best practices, another for cost management, or separate

packs for AWS and Kubernetes policies. Each policy pack includes a name for easy identification,

a list of policies it enforces, and an enforcement level for each policy, such as the following:

•	 Advisory: Logs warnings for policy violations but allows the deployment to continue

•	 Mandatory: Stops the deployment if a violation is detected

•	 Remediate: Fixes violations automatically where possible

•	 Disabled: Disables the policy entirely

There are two types of policies in Pulumi:

•	 Resource policies: These validate individual resources before they are created or updated.

For example, you might use a resource policy to ensure that all Azure function apps use

Linux. Resource policies can also include remediations to fix issues automatically.

•	 Stack policies: These validate all resources in a stack after they have been created or up-

dated. Stack policies are useful for checks involving multiple resources, such as ensuring

that a load balancer is configured to route traffic to specific instances. However, they

cannot remediate issues and only flag violations.

Now that you have an insight into the different types of policies and how PaC works, let’s look at

some use cases and how we can apply them.

Use cases for PaC
Here are some use cases that illustrate how PaC improves infrastructure management and helps

teams maintain control.

Enforcing security standards
This is one of the ways PaC makes a difference in cloud infrastructure. Let’s say you have a storage

account; you can write a policy that checks whether encryption is enabled. If it’s not, the policy

can either stop the deployment or fix it by turning encryption on. You can also use policies to

secure your network by ensuring only approved IP addresses can access certain resources or that

firewalls are properly set up. These kinds of automated checks make it easier to protect sensitive

data and avoid security gaps.

Chapter 14 297

Validating resource configurations
Validating resource configurations is another important use of PAC. For example, in Azure, you

can use policies to check whether App Service Plans are set to the right pricing tier. You might

require all non-production plans to use the B1 tier to keep costs low. A policy can also check

whether important tags such as Environment or Owner are added to the App Service Plans to

make it easier to track and manage resources. If something doesn’t match the rules, the policy

can either flag the issue or automatically fix it, such as switching the pricing tier or adding the

missing tags. This helps keep infrastructure organized and cost-effective without relying only

on checks such as PR reviews.

Auditing infrastructure for regulatory compliance
Auditing infrastructure for regulatory compliance is another powerful use of PaC, especially

in industries such as finance, healthcare, or government, where compliance is non-negotiable.

With PaC, you can automate certain compliance checks, such as ensuring that databases have

encryption at rest enabled, access logs configured, and backups scheduled. A policy might also

validate that resources are deployed only in approved Azure regions to meet data residency rules.

While PaC helps with compliance, it’s important to remember that it’s only one part of the solution.

Compliance involves more than just checking infrastructure. It includes things such as proper

data handling, audits, and documentation. Take GDPR as an example. PaC can enforce technical

rules, such as ensuring that resources are deployed in EU regions or making sure encryption is

enabled for databases. But meeting GDPR requirements also means managing how personal data

is collected, processed, and deleted. PaC handles the technical side of compliance efficiently, but

achieving full compliance requires addressing both technical and operational aspects.

Preventing misconfigurations
Misconfigurations are a major cause of security problems, performance issues, and even outages

in cloud environments. PaC can help catch these issues early, during deployment. For example,

imagine you’re building an application that uses an Azure function app to process user requests

and an Azure SQL database to store the data. A misconfiguration, such as failing to assign the

correct managed identity role for the function app to access the database, could prevent the app

from working properly or open up security risks if overly permissive roles are used.

With PaC, you can write a policy to check that the function app is assigned the correct db_

datareader or db_datawriter roles in the database, ensuring it has just enough access to per-

form its tasks.

Implementing Policy as Code298

Another policy could validate that the database is deployed with geo-redundant backups enabled

to protect against data loss. When you catch these configuration issues during deployment, PaC

helps make sure your app runs securely and efficiently. It reduces the risk of downtime caused by

misconfigurations and helps prevent vulnerabilities that could expose sensitive data or disrupt

your application.

You’ve seen that PaC can help catch misconfigurations, enforce security, and maintain compliance

in your infrastructure, but to make it truly effective, you need to know how to write and define

the policies that enforce these rules. In the next section, we’ll explore how to create these policies

using code and customize them to fit your organization’s specific needs.

Writing and defining policies
To start writing policies in Pulumi using TypeScript, it’s important to understand the structure

of a policy and how it’s defined. Policies in Pulumi are written as validation functions, and their

primary role is to check whether resources meet specific requirements. A policy typically includes

key components such as a name, description, enforcement level, and the validation logic that

checks resource configurations against your rules.

Here’s a simple example to demonstrate these components. Imagine you want to ensure that all

Azure storage accounts in your stack have encryption enabled. The policy would need to validate

the properties of each storage account to confirm that encryption is configured correctly.

The structure of such a policy looks like this:

const ensureStorageEncryption: ResourceValidationPolicy = {

 name: "ensure-storage-encryption",

 description: "Ensures that all Azure storage accounts have
encryption enabled.",

 enforcementLevel: "mandatory", // Stops deployment if the policy is

 // violated

 validateResource: validateResourceOfType(azure.storage.
StorageAccount, (storageAccount, args, reportViolation) => {

 // Check if encryption is enabled for blob services

 if (

 !storageAccount.encryption || storageAccount.encryption.
services?. blob?.enabled !== true

) {

 reportViolation("Encryption must be enabled for all Azure

 storage accounts.");

Chapter 14 299

 }

 }),

};

In this example, name identifies the policy, making it easier to manage within a policy pack.

description explains what the policy enforces. enforcementLevel is set to "mandatory", which

means the deployment will stop if the policy is violated. Finally, the validation logic uses the

validateResource function to inspect each resource in the stack. If the resource is an Azure

storage account and encryption is not enabled, the reportViolation function flags the resource

as non-compliant.

To get started with writing a policy to validate Azure resources using Pulumi, the first step is to

scaffold a new policy pack project. You can do this using Pulumi’s command-line tools. Begin by

running the following command:

pulumi policy new azure-typescript

This initializes a new policy pack project using TypeScript with a template geared toward Azure

resources. The project will include the necessary dependencies and a basic structure for defining

policies. Once the project is created, navigate into the project directory and open the index.ts

file, which is where your policies will be defined.

Let’s walk through creating a policy that ensures Azure function apps are configured with the

correct pricing tier. This is critical to avoid unnecessary costs in non-production environments or

to enforce scalability requirements in production. For this example, we will validate that function

apps use the Consumption or Premium tier, depending on the environment:

1.	 First, update the index.ts file to define the policy:

import * as azure from "@pulumi/azure-native";

import { ResourceValidationPolicy, validateResourceOfType,
PolicyPack } from "@pulumi/policy";

const functionAppPricingPolicy: ResourceValidationPolicy = {

 name: "validate-function-app-pricing",

 description: "Ensures Azure Function Apps use the correct
pricing tier based on the environment.",

 enforcementLevel: "mandatory", // Halts deployment if the policy
is violated

 validateResource: validateResourceOfType(azure.web.
AppServicePlan, (appServicePlan, args, reportViolation) => {

Implementing Policy as Code300

 // Determine the deployment environment from the stack tags

 const environment = args.stack.tags?.Environment
|| "unknown";

 // Define allowed pricing tiers for each environment

 const allowedTiersByEnvironment: { [key: string]: string[] }
= {

 production: ["Premium"], // Production environments must
use Premium

 staging: ["Consumption", "Premium"], // Staging
environments can use Consumption or Premium

 development: ["Consumption"], // Development
environments must use Consumption

 };

 // Get the allowed tiers for the current environment

 const allowedTiers = allowedTiersByEnvironment[environment.
toLowerCase()] || [];

 // Check if the App Service Plan's pricing tier is valid for
the environment

 if (!allowedTiers.includes(appServicePlan.sku?.tier
|| "")) {

 reportViolation(

 `Invalid pricing tier '${appServicePlan.
sku?.tier}' for Azure Function App in
'${environment}' environment. Allowed tiers are: ${allowedTiers.
join(", ")}.`

);

 }

 }),

};

In this policy, the validateResourceOfType function is used to focus specifically on re-

sources of the AppServicePlan type, which defines the pricing tier for Azure function

apps. The appServicePlan.sku.tier property is validated against an array of allowed

tiers. If the pricing tier doesn’t match the allowed options for the environment, the policy

uses reportViolation to flag the issue with a clear message indicating what is wrong

and what is expected.

Chapter 14 301

2.	 Next, add this policy to the policy pack so it can be applied during deployment. Modify

the index.ts file to include the policy in a policy pack:

new PolicyPack("azure-function-app-policies", {

 enforcementLevel: "mandatory",

 policies: [functionAppPricingPolicy],

});

This groups functionAppPricingPolicy into a named policy pack called azure-function-

app-policies. A policy pack is a way to manage and enforce multiple policies together,

making it easier to apply a set of governance rules across your Azure infrastructure. For

example, alongside functionAppPricingPolicy, you could add a policy to ensure that

all Azure storage accounts have secure transfer enabled. This allows you to define and

enforce multiple rules within the same pack.

Here’s how you can add another policy to the same policy pack:

const secureStoragePolicy: ResourceValidationPolicy = {

 name: "secure-storage-account",

 description: "Ensures that secure transfer is enabled for all
Azure Storage Accounts.",

 enforcementLevel: "mandatory",

 validateResource: validateResourceOfType(azure.storage.
StorageAccount, (storageAccount, args, reportViolation) => {

 // Check if secure transfer is enabled

 if (!storageAccount.enableHttpsTrafficOnly) {

 reportViolation("Secure transfer (HTTPS only) must be
enabled for all Azure Storage Accounts.");

 }

 }),

};

// Group the policies in a Policy Pack

new PolicyPack("azure-function-app-policies", {

 enforcementLevel: "mandatory",

 policies: [functionAppPricingPolicy, secureStoragePolicy],

});

Implementing Policy as Code302

Now, the policy pack contains both functionAppPricingPolicy and secureStoragePolicy.

This structure allows you to manage policies for different resources, such as function apps

and storage accounts, in a centralized and reusable way.

3.	 Once the policy is defined, you can test it. Run the following command in your project

directory:

pulumi preview --policy-pack .

If you are not in the project directory, run the following command:

pulumi preview --policy-pack <path-to-directory>

This applies the policy pack to the stack and checks resources against the defined pol-

icies. If a function app is deployed with a pricing tier outside the allowed options, the

reportViolation function halts the deployment and displays an error message, as in

this example:

Policy Violation: validate-function-app-pricing

Invalid pricing tier 'Basic' for Azure Function App. Allowed tiers
are: Consumption, Premium.

When you follow these steps, you’d create a custom policy to validate individual Azure function

apps and Azure storage configurations. Now that you know how to define these policies, let’s see

how to automate policy checks for our infrastructure projects.

Applying policies to infrastructure
In a production environment, you won’t be able to run pulumi preview manually, and you’d

need to automate the policy checks because that’s where the critical deployments happen. To

automate policy checks, you integrate Pulumi’s policy packs directly into your pipeline workflow.

For example, if you are using GitHub Actions, you can configure a pipeline that runs Pulumi com-

mands with policy enforcement during each deployment. Here’s how the workflow might look:

name: Production Deployment

on:

 push:

 branches:

 - release

jobs:

 deploy:

Chapter 14 303

 runs-on: ubuntu-latest

 steps:

 - name: Checkout code

 uses: actions/checkout@v3

 - name: Set up Node.js

 uses: actions/setup-node@v3

 with:

 node-version: '18.x'

 - name: Install Pulumi CLI

 uses: pulumi/actions-install-pulumi-cli@v1

 - name: Install dependencies

 run: npm install

 - name: Deploy with Pulumi

 env:

 PULUMI_ACCESS_TOKEN: ${{ secrets.PULUMI_ACCESS_TOKEN }}

 run: pulumi up --policy-pack ./path-to-policy-pack --yes

In this example, the workflow is triggered on a push to the release branch, which may represent

a production deployment. After checking out the repository and setting up the required environ-

ment, the pipeline runs pulumi up with the --policy-pack flag to enforce the policies defined in

your policy pack. If a policy violation is detected, the deployment will fail, and the issue will be

reported in the pipeline logs, preventing non-compliant resources from being deployed.

This is something you can do with other CI/CD tools such as Azure Pipelines, CircleCI, GitLab

CI, and more. By integrating Pulumi policy packs into these pipelines, you can automate policy

checks as part of your infrastructure as code (IaC) deployments, regardless of the tools your

team uses. This ensures every deployment is validated against organizational standards before

reaching production, no matter the platform.

For teams with dedicated security engineers, this approach becomes even more powerful. Secu-

rity engineers can take the lead in defining critical policies that enforce compliance, security, and

best practices. They can create policy packs tailored to the organization’s requirements, ensuring

that all deployments adhere to these rules automatically. Developers can then focus on building

infrastructure while the policies act as guardrails that catch issues like misconfigurations or

non-compliance before they become problems.

Implementing Policy as Code304

Summary
In this chapter, we covered the foundational concepts of PaC and its implementation using Pulumi.

From understanding how policies enforce compliance and security to writing effective policies

in TypeScript and automating their application in CI/CD pipelines, you’ve gained the skills to

integrate governance into your infrastructure deployments. When you apply these principles,

you can make sure that your systems are secure, compliant, and aligned with organizational

standards, all while minimizing manual oversight.

In the next chapter, we will cover how to migrate from other tools to Pulumi.

Questions
1.	 What is PaC, and how does it relate to IaC?

2.	 What are the different enforcement levels available for Pulumi policies, and what do

they do?

3.	 How does Pulumi handle a policy violation during a deployment?

4.	 What is a policy pack, and how is it used in Pulumi?

5.	 What is the difference between a resource policy and a stack policy in Pulumi?

6.	 How can policy packs be integrated into CI/CD pipelines for automated validation?

7.	 How do you define and test a policy locally before integrating it into a pipeline?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

15
Migrating from Other Tools to
Pulumi

You may already be familiar with other kinds of IaC tools, and you might be looking to switch to

Pulumi. Making the switch requires more than simply rewriting code; it involves understanding

the fundamental differences in how Pulumi operates compared to other frameworks. This chap-

ter is designed to guide you through the migration process, highlighting key considerations and

providing practical steps for transitioning from tools such as Terraform, AWS CloudFormation,

Azure Resource Manager, Kubernetes YAML, or Helm.

As you explore this chapter, you’ll learn how to translate your existing configurations into Pulumi

code. Each section will focus on specific tools, demonstrating how to coexist with or migrate away

from them, ensuring minimal disruption to your current systems. By the end, you’ll be equipped

with strategies for minimizing downtime, managing gradual migrations, and adopting Pulumi

at scale within your organization, making the transition as smooth as possible.

In this chapter, we’re going to cover the following main topics:

•	 Introduction to migration

•	 Migrating from Terraform to Pulumi

•	 Migrating from AWS CloudFormation to Pulumi

•	 Migrating from Azure Resource Manager or Azure Bicep to Pulumi

•	 Migrating from Kubernetes YAML or Helm to Pulumi

•	 Migrating from any other cloud to Pulumi

•	 Best practices for minimizing downtime during migration

Migrating from Other Tools to Pulumi306

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from here:

https://www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

Node.js official site here: https://nodejs.org/.

Introduction to migration
Migrating requires moving your existing infrastructure setup from one tool to another, which can

affect everything from how resources are provisioned to how they are managed long-term. This

shift involves more than just rewriting configurations; it requires careful planning and consider-

ation to avoid unnecessary disruptions. As a result, it’s crucial to carry out informed decision-mak-

ing to determine whether migrating to Pulumi aligns with your current and future infrastructure

needs. This process starts with understanding the key differences between Pulumi and the tools

you currently use, as well as the unique advantages Pulumi offers.

Pulumi stands out because of its programming model, which allows you to use familiar languages

such as TypeScript, Python, Go, and C#. This means you can apply standard programming prac-

tices, such as loops, conditionals, and reusable modules, to define and manage your infrastructure.

Additionally, Pulumi’s multi-language support makes it flexible for teams with diverse skill sets,

enabling collaboration without requiring a single tool or language expertise. Beyond its program-

ming capabilities, Pulumi simplifies state management and supports resource importing, making

it easier to transition from existing setups without losing track of your infrastructure’s history.

When considering migration, it’s essential to evaluate whether Pulumi can address the chal-

lenges you face with your current tools. For instance, if you’ve struggled with the limitations of

declarative approaches, Pulumi’s imperative style might be a better fit. Similarly, if your team

has been using Azure Bicep for their Azure infrastructure and now wants to go multicloud, and

as a result, they need a unified approach for managing cloud resources across multiple providers,

Pulumi could be a good solution.

https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/

Chapter 15 307

In addition to assessing Pulumi’s features, you must analyze your current infrastructure. What

does your existing setup look like? Are your configurations straightforward, or do they include

complex interdependencies that could complicate migration? Is your infrastructure relatively

static, or do you frequently need to update and scale resources? Answering these questions will

help you gauge whether Pulumi can meet your needs and how much effort will be required to

make the transition.

Finally, the decision to migrate should take into account the long-term benefits versus the short-

term effort. Migration can simplify how you manage infrastructure, improve maintainability,

and open doors to features that weren’t available in your current tool. However, it also requires

a commitment of time and resources to plan, test, and implement. By the end of this chapter,

you’ll have a clear understanding of how to migrate to Pulumi from other tools, and you’ll also

learn about migration best practices.

Migrating from Terraform to Pulumi
Migrating from Terraform to Pulumi can be done in several ways, including coexisting with

existing Terraform workspaces, converting HCL configurations to Pulumi code, and integrating

Pulumi into your current Terraform-based workflows.

Coexisting with existing Terraform workspaces
If you have infrastructure already managed by Terraform, an immediate full migration to Pulumi

might not be feasible. Fortunately, Pulumi allows you to coexist with your existing Terraform

workflows by referencing Terraform state files (.tfstate). Pulumi’s RemoteStateReference re-

source lets you seamlessly access outputs from Terraform-managed infrastructure and integrate

them into Pulumi programs.

For example, if your Terraform state file contains outputs such as AWS VPC IDs or subnet IDs,

you can use these directly in Pulumi.

Install Pulumi’s Terraform plugin through your CLI using the following command:

npm install @pulumi/terraform

Reference the Terraform state in your Pulumi program, similar to the following code snippet:

import * as pulumi from "@pulumi/pulumi";

import * as aws from "@pulumi/aws";

import * as tf from "@pulumi/terraform";

Migrating from Other Tools to Pulumi308

// Reference the Terraform state file

const tfState = new tf.state.RemoteStateReference("tfstate", {

 backendType: "local",

 path: "terraform.tfstate",

});

// Access outputs from the Terraform state

const vpcId = tfState.getOutput("vpc_id");

const subnetIds = tfState.getOutput("subnet_ids");

// Use the outputs in Pulumi

const server = new aws.ec2.Instance("server", {

 instanceType: "t2.micro",

 ami: "ami-0c55b159cbfafe1f0",

 subnetId: subnetIds[0],

 vpcSecurityGroupIds: [vpcId],

});

This approach enables you to manage new resources with Pulumi while continuing to rely on

Terraform for existing infrastructure. This coexistence reduces the risk of disruptions and provides

flexibility to adopt Pulumi incrementally.

Converting HCL configurations to Pulumi code
One of the most significant hurdles in migration is translating your existing Terraform config-

urations into Pulumi’s programming model. Pulumi simplifies this with a conversion tool that

automatically transforms Terraform HCL code into Pulumi programs written in TypeScript, Py-

thon, Go, or C#.

To perform a conversion, navigate to your Terraform project directory and run the Pulumi con-

version command:

pulumi convert --from terraform --language typescript

This command generates a Pulumi program that replicates your Terraform configuration in the

language of your choice. For example, let’s say you had Terraform code that looked like the fol-

lowing snippet:

resource "aws_s3_bucket" "example" {

 bucket = "my-example-bucket"

Chapter 15 309

 acl = "private"

}

After conversion, it will look similar to the following TypeScript code:

import * as aws from "@pulumi/aws";

const example = new aws.s3.Bucket("example", {

 bucket: "my-example-bucket",

 acl: "private",

});

After the conversion, you can refine the generated code to align with Pulumi’s best practices, such

as modularizing infrastructure or taking advantage of loops and functions.

Integrating Pulumi into Terraform-based workflows
Migrating from Terraform to Pulumi doesn’t have to happen all at once. You can gradually in-

troduce Pulumi into your current workflows while continuing to use Terraform for parts of your

infrastructure.

You can start by managing new resources with Pulumi while keeping your existing infrastructure

under Terraform. For instance, if Terraform already manages your network (such as VPCs or sub-

nets), you can use Pulumi to handle other resources, such as servers, storage, or Kubernetes clusters.

You can also decide to move things gradually. Instead of switching everything at once, you can

move parts of your infrastructure to Pulumi step by step. Start with simpler resources such as

storage buckets or IAM roles, and move to more complex resources such as databases or networks

later. This lets you test each part and make sure everything works before moving on.

Pulumi has a feature called resource importing, which makes it easier to bring existing resources

under Pulumi’s control. For example, if you already have an S3 bucket managed by Terraform,

you can import it into Pulumi with this command:

pulumi import aws:s3/bucket:Bucket my-bucket my-storage-bucket

Once imported, you can manage the bucket using Pulumi without losing the existing setup. This

gives you a clue on how to move your Terraform declarations to Pulumi. Let’s look at how to also

do this for AWS CloudFormation.

Migrating from Other Tools to Pulumi310

Migrating from AWS CloudFormation to Pulumi
You may want to migrate from CloudFormation to Pulumi to take advantage of multi-cloud

support, allowing you to manage resources beyond AWS in one place. To do this, you can start

by keeping your current CloudFormation stacks, then gradually move to Pulumi by importing

resources or rewriting your templates. This way, you can make the transition without disrupting

your existing infrastructure.

Working with CloudFormation and Pulumi together
You don’t have to stop using CloudFormation right away. Pulumi lets you work with your existing

CloudFormation stacks while you begin using it for new resources. For example, if CloudForma-

tion is already managing your network, such as VPCs or subnets, you can use Pulumi to deploy

things such as servers or storage in that network.

Here’s an example of referencing a CloudFormation stack from Pulumi:

import * as aws from "@pulumi/aws";

// Reference the CloudFormation stack

const networkStack = aws.cloudformation.getStackOutput({

 name: "my-network",

});

// Use a subnet ID from the CloudFormation stack

const subnetId = networkStack.outputs["SubnetId"];

// Deploy a new EC2 instance using Pulumi

const instance = new aws.ec2.Instance("exampleInstance", {

 instanceType: "t2.micro",

 ami: "ami-0c55b159cbfafe1f0",

 subnetId: subnetId,

});

This allows you to build new things with Pulumi while keeping the resources managed by Cloud-

Formation untouched.

Chapter 15 311

Importing resources into Pulumi
If you want Pulumi to take over managing specific resources, you can import them. This is helpful

for gradually moving away from CloudFormation without deleting or recreating resources. Before

importing, ensure the CloudFormation stack won’t delete your resource. For example, add this

to its template definition:

DeletionPolicy: Retain

You can also remove the resource from the template altogether so that future stack updates won’t

destroy it. Then, import it into Pulumi like this:

const bucket = new aws.s3.Bucket("myBucket", {}, { import: "my-example-
bucket" });

Now, Pulumi manages the S3 bucket. You can update it using Pulumi while keeping the existing

setup.

Converting CloudFormation templates to Pulumi code
Instead of moving everything at once, you can convert CloudFormation templates into Pulumi

code piece by piece. Start with smaller resources, then move on to more complex ones.

For example, take this CloudFormation YAML:

Resources:

 MyBucket:

 Type: "AWS::S3::Bucket"

 Properties:

 BucketName: "my-example-bucket"

This can be rewritten in Pulumi like this:

const myBucket = new aws.s3.Bucket("myBucket", {

 bucket: "my-example-bucket",

});

This gradual approach makes it easier to test and ensures that everything works correctly before

moving to the next resource.

Migrating from Other Tools to Pulumi312

Migrating from Azure Resource Manager or Azure
Bicep to Pulumi
If you’re currently using Azure Resource Manager (ARM) or Bicep templates, moving to Pulumi

can be done gradually without disrupting your existing infrastructure. This process involves using

Pulumi alongside your ARM or Bicep templates, converting ARM or Bicep templates to Pulumi

code, and importing existing resources into Pulumi as needed.

Working with ARM or Bicep and Pulumi together
You can reference resources managed by ARM templates or Azure Bicep without making imme-

diate changes to them. You can use deployment outputs from Azure in your Pulumi programs,

and it makes the integration smooth.

For instance, let’s say your team has deployed a key vault using ARM, and you need to reference

its name in Pulumi. Instead of hardcoding the name, you can dynamically fetch it from the ARM

deployment.

The following code snippet shows an example of how to do this:

const deployment = azure.resources.Deployment.get("myKeyVaultDeployment",

"/subscriptions/<YOUR-SUBSCRIPTION-ID>/resourceGroups/myrg/providers/

Microsoft.Resources/deployments/myKeyVaultDeployment");

const keyVaultName = deployment.properties.outputs["keyVaultName"].value;

// Use the Key Vault name in Pulumi to add a new secret

const secret = new azure.keyvault.Secret("mySecret", {

 resourceGroupName: "myrg",

 vaultName: keyVaultName,

 properties: {

 value: "my-secret-value",

 },

});

In this approach, Pulumi queries the ARM deployment to read its output values, such as

keyVaultName. These outputs are treated as reference data, meaning Pulumi doesn’t alter the

original deployment or its resources.

Chapter 15 313

The resources provisioned by ARM remain under ARM’s control, while Pulumi focuses on creating

new resources, such as the secret, that depend on the ARM-managed key vault. This ensures a

clean separation between resources managed by ARM and those managed by Pulumi.

Importing existing resources into Pulumi
To manage ARM or Bicep resources fully with Pulumi, you can import them into Pulumi’s state.

This allows you to bring existing resources under Pulumi’s control without recreating them. Pu-

lumi uses the resource’s Azure ID to adopt it into its state, so that you can do future updates and

lifecycle management directly through Pulumi. For instance, you can import an existing Azure key

vault by retrieving its resource ID and specifying it in your Pulumi program using the import option.

The following code snippet shows an example of how to do this:

const keyVault = new azure.keyvault.Vault("keyVault", {

 location: "eastus",

 resourceGroupName: "existing-rg",

 properties: {

 sku: { family: "A", name: "standard" },

 tenantId: "your-tenant-id",

 },

}, {

 import: "/subscriptions/<YOUR-SUBSCRIPTION-ID>/resourceGroups

 /existing-rg/providers/Microsoft.KeyVault/vaults

 /existingKeyVault"

});

After importing a resource, Pulumi treats it as though it were created by your program and will

track its live state going forward. Azure often injects system-generated values (such as unique IDs,

hostnames, timestamps, or default configuration settings) that you don’t declare in your Pulumi

code. When Pulumi compares your program to the actual resource, it will see these differences

and propose to “fix” them on every update, even though you never intended to manage them.

To suppress those spurious diffs, add an ignoreChanges array in the resource options listing the

exact property paths of the auto-generated fields you want Pulumi to skip. This tells Pulumi not

to include those fields in its diff or update plan, avoiding unnecessary update operations and

having no negative impact on your migration. If you later decide you do want to manage any of

those values, simply remove them from ignoreChanges, and Pulumi will resume tracking them.

Migrating from Other Tools to Pulumi314

Converting ARM templates to Pulumi code
For a full migration, you can convert ARM templates into Pulumi programs using the arm2pulumi

tool. This tool simplifies the process by taking an ARM template and generating equivalent Pulumi

code. It preserves the structure and configuration of your resources while enabling you to begin

managing them within Pulumi. By converting templates into Pulumi programs, you can transi-

tion from declarative templates to programmatic infrastructure management while maintaining

consistency with your existing setup.

The conversion process is simple. You copy and paste your ARM template into the arm2pulumi tool,

available at https://www.pulumi.com/arm2pulumi/. Select the language you want to generate

the code in, and click the Convert button. The tool generates Pulumi code that mirrors your ARM

configuration, which you can then integrate into your Pulumi projects. After conversion, you can

further refine the generated program, such as adding dynamic parameters or handling resource

dependencies.

Migrating from Kubernetes YAML or Helm to Pulumi
You can also migrate your current Kubernetes manifests or Helm charts to Pulumi. This approach

allows you to keep using your existing configurations while moving to Pulumi gradually. You can

deploy YAML files and Helm charts without rewriting them, use them alongside Pulumi-managed

resources, or convert them into Pulumi programs.

Reusing Kubernetes YAML files in Pulumi
Pulumi supports deploying Kubernetes YAML files using the ConfigFile resource for single files

or the ConfigGroup resource for collections of files. This enables you to integrate existing YAML

configurations with Pulumi workflows without changes.

Suppose you have a YAML file that defines a deployment and service. You can use Pulumi to

deploy these resources as follows:

import * as k8s from "@pulumi/kubernetes";

// Deploy resources from a single YAML file

const appResources = new k8s.yaml.ConfigFile("appResources", {

 file: "app-resources.yaml",

});

// Export the name of the deployed service

https://www.pulumi.com/arm2pulumi/

Chapter 15 315

const service = appResources.getResource("v1/Service", "my-app-service");

export const serviceName = service.metadata.name;

If you have multiple YAML files, you can deploy them together using ConfigGroup:

import * as k8s from "@pulumi/kubernetes";

// Deploy resources from multiple YAML files

const appResources = new k8s.yaml.ConfigGroup("appResources", {

 files: ["manifests/deployment.yaml", "manifests/service.yaml"],

});

// Export the namespace of the deployed resources

export const namespace = appResources.getResource("v1/Namespace", "my-app-
namespace").metadata.name;

This is useful when you have a set of files defining different parts of your application that need

to be deployed as a group.

Deploying Helm charts with Pulumi
Pulumi also supports deploying Helm charts, making it easy to integrate Helm-based applications

into your infrastructure management. If you have a Helm chart for your application stored locally,

you can deploy it using Pulumi:

import * as k8s from "@pulumi/kubernetes";

import * as path from "path";

// Deploy a Helm chart from a local path

const appChart = new k8s.helm.v3.Chart("myApp", {

 path: path.join("charts", "my-app"),

 values: {

 replicaCount: 2,

 service: {

 type: "LoadBalancer",

 },

 },

});

// Export the IP address of the LoadBalancer service

Migrating from Other Tools to Pulumi316

const service = appChart.getResource("v1/Service", "default/my-app-
service");

export const loadBalancerIp = service.status.loadBalancer.ingress[0].ip;

This approach lets you manage Helm charts dynamically, customize parameters, and combine

them with other Pulumi-managed resources.

Converting Kubernetes YAML to Pulumi programs
For a complete transition to Pulumi, you can convert Kubernetes YAML files into Pulumi programs.

This can be done using the pulumi convert command, which translates YAML into Pulumi code

in your preferred language (a language that Pulumi supports). To convert the code base from

Kubernetes to a language such as TypeScript, you can run the following command:

pulumi convert --from kubernetes --language typescript \

--out <output-directory>

After conversion, you can adjust the generated code to make it more efficient or easier to manage.

For example, you can introduce loops to handle repetitive resource definitions, add conditions for

environment-specific configurations, or create functions to simplify resource reuse across projects.

Migrating from any other cloud to Pulumi
Beyond Terraform, AWS CloudFormation, ARM, Azure Bicep, and Kubernetes, Pulumi can also

manage resources created on other cloud platforms. No matter how your infrastructure was

originally provisioned, Pulumi allows you to import existing resources and bring them under its

management. This approach helps unify the way you manage your cloud infrastructure, using

Pulumi as a single tool for managing resources across providers.

Pulumi uses the resource IDs provided by your cloud provider to adopt existing infrastructure.

By specifying these IDs in your Pulumi program, you can link resources to Pulumi’s state without

recreating or disrupting them. For instance, if you have a virtual machine created on Google Cloud,

you can seamlessly bring it into Pulumi’s control.

Here’s how you can import a virtual machine from Google Cloud into Pulumi:

import * as gcp from "@pulumi/gcp";

const instance = new gcp.compute.Instance("myInstance", {

 machineType: "e2-medium",

 zone: "us-central1-a",

Chapter 15 317

}, {

 import: "projects/my-project/zones/us-central1-a/instances

 /my-instance",

});

export const instanceName = instance.name;

In this example, Pulumi’s import option links the existing virtual machine to your Pulumi program.

The virtual machine is adopted into Pulumi’s state, allowing you to manage configurations and

updates without recreating the resource. This ensures that the current setup remains operational

during the transition.

Once resources are imported, you can integrate them with other Pulumi-managed infrastructure

and apply consistent configurations across environments. The next section will explore migration

best practices, which can provide additional guidance on how to plan and execute a successful

migration to Pulumi from other providers.

Best practices for minimizing downtime during
migration
Disruptions can happen in the middle of migrations, and it is good practice to learn about ways to

reduce (or completely eliminate) the negative effects that they may have on customer experience:

•	 One effective strategy is to create a new infrastructure environment with Pulumi while

maintaining the existing infrastructure. This approach allows both environments to run

simultaneously, giving you the flexibility to thoroughly test the new infrastructure before

gradually shifting traffic. By running the two environments in parallel, you minimize risks

and ensure that any potential issues can be addressed without affecting your live systems.

•	 When handling data migration in such setups, you should make sure that data consis-

tency is maintained between the old and new environments. This might involve setting

up data replication, where changes made in the old infrastructure are mirrored in the

new one during the transition. For databases, this could mean enabling read replicas or

building custom tools that synchronize changes in real time. Once the new infrastruc-

ture proves stable, you can switch the primary database to the new environment with

minimal disruption.

Migrating from Other Tools to Pulumi318

•	 Testing the new environment is a key step before moving traffic. You should run integration

tests to ensure that all services interact as expected, load tests to verify that the new infra-

structure can handle peak traffic, and chaos testing to see how the system behaves under

failure scenarios. These tests provide confidence that the new setup is ready to handle

production workloads. Gradual traffic migration is also recommended. Start by directing

a small percentage of traffic to the new environment and monitor the system for issues

before increasing the load.

In addition to setting up a parallel environment, there are other best practices that can help. First,

maintain a clear rollback plan in case the migration introduces issues. A rollback strategy helps

you quickly revert to the old infrastructure if needed. Second, communicate effectively with stake-

holders, including internal teams and customers, about the migration timeline and any expected

impact. Transparency helps manage expectations and reduces confusion. You can also use Pulumi’s

preview feature (pulumi preview) to understand what changes will be applied before running

them. This step allows you to catch unintended changes and refine your configurations in advance.

With these practices, you can minimize downtime and make sure that your migration process

is stable and reliable.

Summary
In this chapter, we looked at how to move your infrastructure from other tools such as Terraform,

AWS CloudFormation, ARM, Azure Bicep, Kubernetes YAML, Helm, and even other cloud platforms

into Pulumi. The chapter explained how you can start by running your current setup alongside

Pulumi, import existing resources, and convert configurations into Pulumi programs. We also

covered how to test the new setup before fully switching and shared tips for avoiding downtime,

such as creating a parallel environment, keeping data in sync, running detailed tests, and having

a rollback plan in case anything goes wrong. The next chapter will cover tests and exercises on

infrastructure automation with Pulumi.

Chapter 15 319

Questions
1.	 How does Pulumi’s import option work, and why is it important during migration?

2.	 Explain how you can run Kubernetes YAML files in Pulumi without rewriting them.

3.	 What is the purpose of the pulumi convert tool, and how can it help during migration?

4.	 Why is it important to test your new Pulumi-managed infrastructure before fully switch-

ing?

5.	 What are the benefits of setting up a parallel environment during migration?

6.	 What is the role of gradual traffic migration when transitioning to Pulumi?

7.	 What is the difference between the ConfigFile and ConfigGroup resources in Pulumi?

8.	 What types of tests should you run on your new Pulumi environment before switching?

9.	 What is a rollback plan, and why is it essential in Pulumi migrations?

10.	 What best practices can help you avoid downtime during a Pulumi migration?

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

16
Tests and Exercises on
Infrastructure Automation
with Pulumi

The previous 15 chapters of this book have introduced you to the key ideas behind Infrastructure

as Code (IaC) and Pulumi. Now, it’s time to put everything you’ve learned into practice. This

chapter focuses on hands-on exercises and real-world scenarios to help you strengthen your

skills. You’ll work on tasks such as writing Pulumi scripts, setting up complex projects, handling

multi-cloud deployments, and using policy as code. Along the way, you’ll revisit best practices and

apply advanced techniques. By completing these exercises, you’ll be better prepared to automate

and manage infrastructure confidently in real-world environments.

In this chapter, we’re going to cover the following main topics:

•	 Getting started with Pulumi IaC scripts

•	 Building and testing complex Pulumi projects

•	 Simulating multi-cloud deployments

•	 Implementing policy as code

•	 Best practices and advanced techniques

Tests and Exercises on Infrastructure Automation with Pulumi322

Technical requirements
If you would like to follow along with the examples in this chapter, you will require the following:

•	 The Pulumi CLI is required for executing commands. You can download it from here:

https://www.pulumi.com/docs/iac/download-install/.

•	 Pulumi supports multiple programming languages, but for this chapter, we’ll be using

JavaScript/TypeScript, which requires Node.js. You can download and install it from the

official Node.js site here: https://nodejs.org/.

•	 You’ll need an Azure account. You can sign up for a free account or use your existing Azure

account. For more details, visit the Azure website here: https://azure.microsoft.com/

en-us/pricing/purchase-options/azure-account.

•	 The Azure CLI is required to interact with Azure resources from your local machine. You

can install the Azure CLI by following the instructions here: https://learn.microsoft.

com/en-us/cli/azure/install-azure-cli.

•	 You’ll need an AWS account. You can sign up for a free account or use your existing AWS

account. For more details, visit https://aws.amazon.com/.

•	 The AWS CLI is required to interact with AWS resources from your local machine. You can

install the AWS CLI by following the instructions here: https://aws.amazon.com/cli/.

•	 You may also need a Google Cloud account. You can sign up for a free account or use your

existing Google Cloud account. For more details, visit https://cloud.google.com/free/.

•	 The gcloud CLI is required to interact with Google Cloud resources from your local ma-

chine. You can install the gcloud CLI by following the instructions here: https://cloud.

google.com/sdk/docs/install.

•	 You’ll need a GitHub account so that you can create a GitHub Actions workflow. You can

create an account here: https://github.com/.

Getting started with Pulumi IaC scripts
In this section, you’ll work on writing simple Pulumi scripts to practice the basics of IaC. The

exercises will help you define resources, manage configurations, and understand how Pulumi

works. By completing these tasks, you’ll build a solid foundation for creating infrastructure with

Pulumi, starting with straightforward setups. While Pulumi supports a variety of cloud providers,

these exercises will use popular platforms such as Azure, AWS, and GCP.

https://www.pulumi.com/docs/iac/download-install/
https://nodejs.org/
https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account
https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://aws.amazon.com/
https://aws.amazon.com/cli/
https://cloud.google.com/free/
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install
https://github.com/

Chapter 16 323

Exercise 1: Creating a storage bucket
Objective: Create a simple storage bucket on GCP to practice basic resource creation and con-

figuration.

To create the storage bucket, use the following code snippet. Note that it contains placeholders

for your input:

import * as gcp from "@pulumi/gcp";

const bucket = new gcp.storage.Bucket("myBucket", {

 // YOUR CODE HERE: Add bucket properties

});

Your tasks are as follows:

•	 Add properties such as location (e.g., US) and storageClass (e.g., STANDARD).

•	 Deploy the stack using pulumi up, and verify the bucket in the GCP console.

•	 Add a property to enable versioning for the bucket.

Quick tip: Need to see a high-resolution version of this image? Open this book

in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader is included for free with the purchase of this book. Scan

the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Tests and Exercises on Infrastructure Automation with Pulumi324

Exercise 2: Setting up multiple resources using a loop
Objective: Use a loop to dynamically create multiple resources, such as buckets, to streamline

repetitive tasks.

To create multiple buckets, modify the following snippet to include your configuration:

import * as aws from "@pulumi/aws";

const bucketNames = ["bucket1", "bucket2", "bucket3"];

// Loop to create multiple buckets

const buckets = bucketNames.map((name) => {

 return new aws.s3.Bucket(name, {

 // YOUR CODE HERE: Add bucket properties, such as ACL or tags

 });

});

Your tasks are as follows:

•	 Replace YOUR CODE HERE with properties such as acl and optional tags for each bucket.

•	 Deploy the stack and verify that all buckets are created in AWS.

•	 Experiment by adding and removing more bucket names to the array and redeploying.

Exercise 3: Using conditionals to control resource creation
Objective: Learn how to use conditional logic to decide whether resources should be created

based on specific flags or criteria.

Use the following snippet to create a resource only when a condition is met:

import * as azure from "@pulumi/azure-native/network";

// Define a flag to control resource creation

const createNetwork = true; // Change this to false to skip resource
creation

// Conditional virtual network creation

const vnet = createNetwork

 ? new azure.VirtualNetwork("myVNet", {

Chapter 16 325

 // YOUR CODE HERE: Add required properties, such as address
space and location

 })

 : undefined;

// Export the virtual network ID if created

export const vnetId = vnet ? vnet.id : "No network created";

Your tasks are as follows:

•	 Add properties such as addressSpace (e.g., ["10.0.0.0/16"]) and location (e.g.,

"eastus") to the virtual network.

•	 Test the conditional logic by toggling the createNetwork flag and deploying the stack.

•	 Modify the code to add a default subnet if the network is created.

Exercise 4: Using outputs as inputs for dependencies
Objective: Understand how to create dependent resources by using outputs from one resource

as inputs for another.

The following snippet demonstrates how to use the output of a VPC to create a dependent subnet:

import * as aws from "@pulumi/aws";

const vpc = new aws.ec2.Vpc("myVpc", {

 // YOUR CODE HERE: Add required properties, such as CIDR block

});

const subnet = new aws.ec2.Subnet("mySubnet", {

 vpcId: vpc.id, // Use the VPC ID as an input

 // YOUR CODE HERE: Add required properties

});

Your tasks are as follows:

•	 Add properties such as cidrBlock for both the VPC and subnet.

•	 Deploy the stack and verify that the subnet is correctly created within the VPC.

•	 Add additional subnets by creating an array of configurations and iterating over them.

Tests and Exercises on Infrastructure Automation with Pulumi326

Exercise 5: Dynamically configuring resources with stacks
Objective: Learn how to use Pulumi stacks to dynamically configure resource properties based

on the deployment environment.

The following snippet shows how to create environment-specific resources using Pulumi stacks:

import * as aws from "@pulumi/aws";

import * as pulumi from "@pulumi/pulumi";

const stack = pulumi.getStack();

const bucketName = stack === "prod" ? "my-prod-bucket" : "my-dev-bucket";

const bucket = new aws.s3.Bucket(bucketName, {

 // YOUR CODE HERE

});

Your tasks are as follows:

•	 Replace YOUR CODE HERE with bucket properties.

•	 Create separate stacks for dev and prod using the Pulumi CLI (pulumi stack init).

•	 Deploy the stack in both environments and observe how the bucket name changes based

on the stack.

Once you have a clear understanding of the concepts in these exercises, you are ready to take

on more complex challenges with Pulumi. Now that you’ve practiced creating resources, using

loops, applying conditionals, and working with dependencies, you can start working on bigger

and more detailed projects.

Building and testing complex Pulumi projects
In this section, you’ll work on creating more advanced Pulumi projects that involve multiple

resources, complex dependencies, and additional features. You’ll also learn how to write unit

and integration tests to verify that your infrastructure code works as intended. These exercises

will help you build the skills needed to design, implement, and test more sophisticated setups.

Exercise 1: Dynamically managing environments with stacks
Objective: Use Pulumi stacks to define and manage separate environments, such as development

and production, with environment-specific configurations.

Chapter 16 327

Here’s a snippet to configure resources dynamically based on the current stack:

import * as pulumi from "@pulumi/pulumi";

import * as aws from "@pulumi/aws";

const stack = pulumi.getStack();

const instanceType = stack === "prod" ? "t3.large" : "t3.micro";

const bucketName = stack === "prod" ? "prod-bucket" : "dev-bucket";

const bucket = new aws.s3.Bucket(bucketName, {

 // YOUR CODE HERE

});

const instance = new aws.ec2.Instance("myInstance", {

 instanceType,

 ami: "ami-12345678", // YOUR CODE HERE: Replace with a valid AMI ID

 // Other properties as needed

});

Your tasks are as follows:

•	 Set up separate stacks for dev and prod using the Pulumi CLI.

•	 Deploy the stack in each environment and verify that the configurations differ (e.g.,

instanceType and bucket names).

•	 Extend the logic to handle additional environments or resource types.

Exercise 2: Using stack references to share data between
projects
Objective: Use Pulumi stack references to pass outputs from one stack to another.

Here are snippets to use outputs from a networking stack in an application stack.

Networking Stack (networking/index.ts): The following code snippet illustrates how a Net-

wroking Stack is used:

import * as aws from "@pulumi/aws";

const vpc = new aws.ec2.Vpc("myVpc", {

 // YOUR CODE HERE: Add VPC properties

});

export const vpcId = vpc.id;

Tests and Exercises on Infrastructure Automation with Pulumi328

Application Stack (application/index.ts): The following code snippet illustrates how an Ap-

plication Stack is used:

import * as pulumi from "@pulumi/pulumi";

import * as aws from "@pulumi/aws";

// Reference the networking stack

const networkingStack = new pulumi.StackReference("your-org/networking/
dev");

// Get the VPC ID from the networking stack

const vpcId = networkingStack.getOutput("vpcId");

// Use the VPC ID to create a security group

const securityGroup = new aws.ec2.SecurityGroup("appSecurityGroup", {

 vpcId: vpcId.apply(id => id), // YOUR CODE HERE: Add rules

});

// Export the security group ID

export const securityGroupId = securityGroup.id;

Your tasks are as follows:

•	 Create two separate stacks: networking and application.

•	 Deploy the networking stack first and ensure its outputs are available to the application

stack, then deploy the application stack next.

•	 Add logic to verify that the correct resources are linked.

Exercise 3: Securing resources with Pulumi secrets
Objective: Use Pulumi’s secrets management feature to securely store and reference sensitive data.

Here’s a snippet for securely managing database credentials:

import * as pulumi from "@pulumi/pulumi";

import * as aws from "@pulumi/aws";

const config = new pulumi.Config();

const dbPassword = // YOUR CODE HERE: retrieve the password as a secret

const database = new aws.rds.Instance("myDatabase", {

 username: "admin",

 password: dbPassword, // Securely pass the password

Chapter 16 329

 engine: "mysql",

 instanceClass: "db.t3.micro",

 // YOUR CODE HERE: Add other properties like allocated storage

});

Your tasks are as follows:

•	 Use the Pulumi CLI to set dbPassword as a secret: pulumi config set --secret

dbPassword mySecurePassword.

•	 Retrieve the password in your code base

•	 Deploy the stack and confirm that the secret is encrypted.

•	 Experiment with referencing secrets in other parts of your infrastructure.

Exercise 4: Implementing cross-region infrastructure
Objective: Deploy resources in multiple regions and link them together.

Here’s a snippet to create resources in two regions:

import * as aws from "@pulumi/aws";

const primaryBucket = new aws.s3.Bucket("primaryBucket", {

 region: "us-east-1",

 // YOUR CODE HERE: Add bucket properties

});

const secondaryBucket = new aws.s3.Bucket("secondaryBucket", {

 region: "us-west-1",

 // YOUR CODE HERE: Add bucket properties

});

const replicationConfig = new aws.
s3.BucketReplicationConfig("replicationConfig", {

 role: "YOUR CODE HERE", // IAM role for replication

 rules: [{

 id: "replicationRule",

 destination: {

 bucket: secondaryBucket.arn,

 },

 // YOUR CODE HERE: Add replication rules

 }],

 bucket: primaryBucket.id,

});

Tests and Exercises on Infrastructure Automation with Pulumi330

Your tasks are as follows:

•	 Add properties for both buckets, including versioning and replication rules.

•	 Set up the IAM role required for S3 replication.

•	 Deploy and verify that objects in the primary bucket replicate to the secondary bucket.

Exercise 5: Writing unit tests with Pulumi’s testing
framework
Objective: Write unit tests to validate resource configurations using Pulumi’s testing library for

Azure.

Use the following snippet to test a storage account configuration:

import * as pulumi from "@pulumi/pulumi";

import * as azure from "@pulumi/azure-native/storage";

import * as assert from "assert";

const storageAccount = new azure.StorageAccount("myStorageAccount", {

 // YOUR CODE HERE

});

// Unit test to validate the storage account configuration

pulumi.runtime.invoke("pulumi:pulumi:test:unit", {}, (args) => {

 assert.strictEqual(storageAccount.kind, "StorageV2", "Storage account

 kind should be StorageV2");

 assert.strictEqual(storageAccount.sku.name, "Standard_LRS",

 "SKU should be Standard_LRS");

 // YOUR CODE HERE: Add additional assertions for tags, encryption, or

 // other properties

});

Your tasks are as follows:

•	 Replace YOUR CODE HERE with the appropriate configurations.

•	 Add assertions to validate the properties of the storage account, such as encryption set-

tings, tags, or replication.

•	 Run the unit tests to ensure the configuration matches the expected requirements.

Chapter 16 331

Exercise 6: Writing integration tests to validate deployed
infrastructure
Objective: Use integration tests to validate that deployed Azure resources behave as expected

in the cloud.

Here’s a snippet for testing an Azure SQL Database connection:

const sqlServer = new azure.Server("mySqlServer", {

 // YOUR CODE HERE

});

const database = new azure.Database("myDatabase", {

 // YOUR CODE HERE

});

// Integration test: Verify the database connection

const testDatabaseConnection = async () => {

 const connectionString =

 pulumi.interpolate`Server=${sqlServer.fullyQualifiedDomainName};

 Database=${database.name};

 User Id=adminUser;Password=YOUR_CODE_HERE`;

 // YOUR CODE HERE

};

Your tasks are as follows:

•	 Replace YOUR CODE HERE with the Azure infrastructure and testing logic.

•	 Deploy the stack and use a Node.js SQL library (e.g., mssql or tedious) to test the con-

nection to Azure SQL Database.

•	 Automate the test to run after deployment and verify that the database is accessible and

operational.

Once you understand the concepts in these exercises, you are ready to take on even more chal-

lenges with Pulumi. Now that you’ve practiced building and testing complex projects, managing

dependencies, and ensuring your infrastructure is reliable through testing, it’s time to expand

your scope to multi-cloud deployments.

Tests and Exercises on Infrastructure Automation with Pulumi332

Simulating multi-cloud deployments
In this section, you will deploy infrastructure across multiple cloud providers to understand the

complexities of a multi-cloud environment. These exercises will give you hands-on experience

in building and managing resilient systems that operate across diverse cloud ecosystems.

Exercise 1: Load balancing AWS Lambda and Azure
Functions with Azure Traffic Manager
Objective: Use Azure Traffic Manager to distribute requests between an AWS Lambda function

and an Azure function for better availability and performance in a multi-cloud environment.

Here’s a sample code snippet:

import * as aws from "@pulumi/aws";

import * as azure from "@pulumi/azure-native/network";

import * as azureFunctions from "@pulumi/azure-native/web";

const awsLambda = new aws.lambda.Function("awsLambda", {

 // YOUR CODE HERE

});

const azureFunctionApp = new azureFunctions.
FunctionApp("azureFunctionApp", {

 // YOUR CODE HERE

});

const trafficManager = new azure.TrafficManagerProfile("trafficManager", {

 // YOUR CODE HERE"

});

// Add AWS Lambda and Azure Function endpoints to Traffic Manager

new azure.TrafficManagerEndpoint("awsEndpoint", {

 profileName: trafficManager.name,

 resourceGroupName: "YOUR CODE HERE",

 target: "YOUR CODE HERE"

});

new azure.TrafficManagerEndpoint("azureEndpoint", {

 profileName: trafficManager.name,

 resourceGroupName: "YOUR CODE HERE",

 target: "YOUR CODE HERE"

});

Chapter 16 333

Your tasks are as follows:

•	 Replace YOUR CODE HERE with appropriate settings for Azure resources and configure the

AWS Lambda and Azure Functions apps.

•	 Write a health check endpoint for both AWS Lambda and Azure Functions to monitor

their status.

•	 Test the Traffic Manager URL to verify requests are routed to both AWS Lambda and Azure

Functions based on latency.

Exercise 2: Accessing an AWS database from an Azure Web
App
Objective: Configure an Azure Web App to access an AWS RDS database securely.

Here’s a sample code snippet:

import * as aws from "@pulumi/aws";

import * as azure from "@pulumi/azure-native/web";

import * as pulumi from "@pulumi/pulumi";

const awsDb = new aws.rds.Instance("awsDb", {

 // YOUR CODE HERE: Create an AWS RDS Database

});

const appServicePlan = new azure.AppServicePlan("myAppServicePlan", {

 // YOUR CODE HERE: Create an Azure Web App

});

const webApp = new azure.WebApp("myWebApp", {

 resourceGroupName: appServicePlan.resourceGroupName,

 location: appServicePlan.location,

 serverFarmId: appServicePlan.id,

 siteConfig: {

 appSettings: [

 { name: "DB_HOST", value: awsDb.endpoint },

 { name: "DB_USER", value: " YOUR CODE HERE " },

 { name: "DB_PASSWORD", value: "YOUR CODE HERE" },

],

 },

});

Tests and Exercises on Infrastructure Automation with Pulumi334

Your tasks are as follows:

•	 Replace YOUR CODE HERE with appropriate settings for the AWS RDS database, Azure App

Service plan, and App Settings (Database Config).

•	 Write and deploy a basic CRUD API that reads and writes to the database, and ensure that

the API behaves correctly.

Exercise 3: Implementing a multi-cloud backup solution
Objective: Configure a backup solution where Azure Blob Storage acts as a failover for data stored

in AWS S3.

Here’s a sample code snippet:

import * as aws from "@pulumi/aws";

import * as azure from "@pulumi/azure-native/storage";

const awsBucket = new aws.s3.Bucket("awsBucket", {

 // YOUR CODE HERE

});

const azureStorageAccount = new azure.
StorageAccount("azureStorageAccount", {

 // YOUR CODE HERE

});

const azureBlobContainer = new azure.BlobContainer("azureBlobContainer", {

 // YOUR CODE HERE

});

// Set up a backup job to sync data

const backupJob = new aws.s3.BucketPolicy("backupPolicy", {

 bucket: awsBucket.bucket,

 policy: // YOUR CODE HERE

});

Your tasks are as follows:

•	 Replace YOUR CODE HERE with appropriate infrastructure details.

•	 Use AWS DataSync or a custom script to sync data from S3 to the Azure Blob container.

•	 Test the backup by adding files to the S3 bucket and verifying their presence in Azure

Blob Storage.

Chapter 16 335

Demonstrating a clear understanding of the concepts in these exercises means that you’re ready

to take on even more challenges with Pulumi. Now that you’ve practiced deploying and managing

multi-cloud infrastructure, it’s time to shift your focus to governance and compliance.

Implementing policy as code
In this section, you will learn how to create and enforce rules in your Pulumi projects to keep your

infrastructure secure and well managed. You’ll see how to write policies that automatically check

your deployments to make sure they follow important standards and best practices.

Exercise 1: Enforcing resource tags across deployments
Objective: Write a policy to ensure that all resources created in a Pulumi project include specific

tags for better organization and cost tracking.

Here’s a sample code snippet:

import * as pulumi from "@pulumi/pulumi";

import * as pulumipolicy from "@pulumi/policy";

const policy = new pulumipolicy.PolicyPack("tagPolicy", {

 policies: [

 {

 name: "enforce-resource-tags",

 description: "Ensures that all resources have required tags",

 enforcementLevel: "mandatory", // Policy must be followed

 validateResource: (args, reportViolation) => {

 const tags = args.props?.tags || {};

 if (!tags["environment"] || !tags["owner"]) {

 reportViolation("All resources must include

 'environment' and 'owner' tags.");

 }

 // YOUR CODE HERE

 },

 },

],

});

Tests and Exercises on Infrastructure Automation with Pulumi336

Your tasks are as follows:

•	 Add logic to check for additional required tags, such as project or costCenter.

•	 Write the infrastructure that complies with this policy.

•	 Test the policy by deploying resources without the required tags and observing the vio-

lation.

•	 Modify the policy to make it advisory instead of mandatory and compare the behavior.

Exercise 2: Restricting public access to storage buckets
Objective: Write a policy to prevent the creation of storage buckets that allow public access.

Here’s a sample code snippet:

const policy = new pulumipolicy.PolicyPack("bucketPolicy", {

 policies: [

 {

 name: "restrict-public-buckets",

 description: "Disallows storage buckets with public access",

 enforcementLevel: "mandatory",

 validateResource: (args, reportViolation) => {

 // YOUR CODE HERE

 },

 },

],

});

Your tasks are as follows:

•	 Write the policy to prevent the creation of storage buckets that allow public access.

•	 Add support for other cloud providers such as AWS, Azure, and GCP to enforce the same

restriction.

•	 Test the policy by creating a public bucket and verifying that the policy prevents it.

•	 Extend the policy to allow public access only for specific projects by checking tags or

resource names.

Chapter 16 337

Exercise 3: Limiting resource creation to specific regions
Objective: Write a policy to restrict the deployment of resources to approved regions for com-

pliance.

Here’s a sample code snippet:

const policy = new pulumipolicy.PolicyPack("regionPolicy", {

 policies: [

 {

 name: "limit-regions",

 description: "Restricts resources to specific regions",

 enforcementLevel: "mandatory",

 validateResource: (args, reportViolation) => {

 // Add allowed regions here

 const allowedRegions = ["us-east-1", "eastus"];

 // YOUR CODE HERE

 // Add logic to restrict the deployment of resources to approved regions

 },

 },

],

});

Once you have a clear understanding of the concepts in these exercises, you are ready to take on

even more challenges with Pulumi. Now that you’ve practiced creating and enforcing policies to

ensure compliance and governance, it’s time to focus on refining your workflows and mastering

advanced techniques.

Best practices and advanced techniques
In this section, you will focus on best practices and advanced techniques to enhance how you

manage infrastructure with Pulumi.

Exercise 1: Implementing CI/CD for deploying to dev,
staging, and prod environments
Objective: Set up a CI/CD pipeline to deploy Pulumi stacks to development, staging, and produc-

tion environments using a popular CI/CD tool such as GitHub Actions.

Tests and Exercises on Infrastructure Automation with Pulumi338

Your tasks are as follows:

•	 Configure secrets for AWS and Azure credentials in your GitHub repository settings.

•	 Set up separate Pulumi stacks for dev, staging, and prod and ensure they use appropriate

configurations.

•	 Set up the deployments in the pipeline after the code is merged to main, so that it deploys

to dev first, then staging, before production. The entire pipeline should halt if one de-

ployment step fails.

•	 Verify that the correct environments are deployed.

Exercise 2: Using the Pulumi Automation API for
programmatic deployment
Objective: Use Pulumi’s Automation API to programmatically manage deployments from a Node.

js application.

Here’s a sample code snippet:

async function deployInfrastructure() {

 const stack = await pulumi.automation.createOrSelectStack({

 stackName: "dev",

 projectName: "my-automation-project",

 program: async () => {

 const bucket = new aws.s3.Bucket("myBucket", {

 acl: "private",

 });

 // YOUR CODE HERE

 return { bucketName: bucket.bucket };

 },

 });

 console.log("Setting up config...");

 await stack.setConfig("aws:region", { value: "us-east-1" });

 console.log("Updating stack...");

 const upResult = await stack.up();

 console.log(

Chapter 16 339

 `Deployment finished: ${upResult.outputs.bucketName.value} `

);

}

deployInfrastructure().catch(err => console.error(err));

Your tasks are as follows:

•	 Modify the script to deploy additional resources, such as a Functions app and databases

in Azure.

•	 Test the script by running it and verifying the infrastructure.

•	 Extend the program to support multiple environments by parameterizing the stack name

and region.

Exercise 3: Implementing resource modularization for code
reuse
Objective: Refactor your Pulumi project to follow modular design principles by organizing re-

sources into reusable components.

Here’s a sample code snippet that creates a networking.ts module for network resources:

import * as azure from "@pulumi/azure-native/network";

export function createVirtualNetwork(resourceGroupName: string,

location: string) {

 const vnet = new azure.VirtualNetwork("vnet", {

 resourceGroupName,

 location,

 addressSpace: { addressPrefixes: ["10.0.0.0/16"] },

 });

 const subnet = new azure.Subnet("subnet", {

 resourceGroupName,

 virtualNetworkName: vnet.name,

 addressPrefix: "10.0.1.0/24",

 });

 return { vnet, subnet };

}

Tests and Exercises on Infrastructure Automation with Pulumi340

Here’s a sample code snippet that uses the module in your main Pulumi project:

import { createVirtualNetwork } from "./networking";

const resourceGroupName = "my-resource-group";

const location = "eastus";

const networkResources = createVirtualNetwork(

 resourceGroupName, location

);

Your tasks are as follows:

•	 Create additional modules for common resource types, such as storage or compute, and

refactor your project to use them.

•	 Deploy the refactored project and verify that the resources are created as expected.

•	 Extend the modules to support parameterization so that it is more flexible. Some of the

parametrized settings/parameters can be CIDR ranges, resource tags, or resource base

names.

Exercise 4: Building a custom resource component with
validation logic
Objective: Create a reusable custom resource component that validates its inputs to ensure cor-

rectness and applies default values for optional properties.

Here’s a sample code snippet:

export class ValidatedBucket extends pulumi.ComponentResource {

 public readonly bucketName: pulumi.Output<string>;

 constructor(name: string, args: ValidatedBucketArgs,

 opts?: pulumi.ComponentResourceOptions) {

 super("custom:resource:ValidatedBucket", name, {}, opts);

 if (!args.environment || !["dev", "staging", "prod"]

 .includes(args.environment)) {

 throw new Error("Environment must be 'dev', 'staging', or

 'prod'");

 }

 Const bucketName =

 args.bucketName ?? `${name}-${args.environment}-bucket`;

Chapter 16 341

 const bucket = new aws.s3.Bucket(name, {

 bucket: bucketName,

 tags: {

 Environment: args.environment,

 Owner: args.owner || "unknown",

 },

 acl: "private",

 });

 this.bucketName = bucket.bucket;

 this.registerOutputs({

 bucketName: this.bucketName,

 });

 }

}

export interface ValidatedBucketArgs {

 environment: string;

 bucketName?: string;

 owner?: string;

}

Your tasks are as follows:

•	 Use the ValidatedBucket component in a Pulumi project. It will look similar to the fol-

lowing code snippet:

const devBucket = new
ValidatedBucket("myDevBucket", { environment: "dev" });

export const devBucketName = devBucket.bucketName;

•	 Deploy the stack and test the validation logic by providing invalid values for environment

or omitting required properties.

•	 Extend the component to include additional validations, such as enforcing specific naming

conventions for the bucket.

•	 Write unit tests to verify that the component behaves correctly under various input sce-

narios.

Tests and Exercises on Infrastructure Automation with Pulumi342

Once you have a clear understanding of the concepts in these exercises, you can create infrastruc-

ture that can go all the way to production with Pulumi. By using techniques such as modular

design, custom components, validation, and testing, you can write cleaner, more reliable code.

These best practices will help you keep your projects organized and easy to manage, even as they

grow larger and more complex.

Summary
You have officially come to the end of the exercises and the end of the book, and I am truly proud

of you. Throughout this journey, you’ve learned how to use Pulumi and IaC to design, deploy,

and manage your systems. Starting with the basics and moving to more advanced features and

real-world examples, you’ve built the skills needed to handle infrastructure across different cloud

providers and environments.

Now, you should feel confident in creating and managing systems that are reliable, easy to main-

tain, and scalable. You’ve seen how Pulumi works with CI/CD pipelines, supports policy as code,

and helps manage multi-cloud setups. These tools and ideas will help you solve challenges and

build better solutions.

This book wasn’t just about teaching Pulumi. It was about helping you think clearly about au-

tomating infrastructure in a way that saves time and makes your work easier. Keep learning,

experimenting, and trying out new features as you grow your skills.

Thank you for letting me guide you on this journey. I hope this book inspires you to use what

you’ve learned to build systems that make a real difference. Now it’s your turn to take these tools

and ideas and create something great. Good luck!

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packtpub.com

www.packtpub.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Infrastructure as Code for Beginners

Russ McKendrick

ISBN: 978-1-83763-163-6

•	 Determine the right time to implement Infrastructure as Code for your workload

•	 Select the appropriate approach for Infrastructure-as-Code deployment

•	 Get hands-on experience with Ansible and Terraform and understand their use cases

•	 Plan and deploy a workload to Azure and AWS clouds using Infrastructure as Code

•	 Leverage CI/CD in the cloud to deploy your infrastructure using your code

•	 Discover troubleshooting tips and tricks to avoid pitfalls during deployment

https://www.amazon.com/Infrastructure-Code-Beginners-cloud-based-Terraform/dp/1837631638

Other Books You May Enjoy346

Atlassian DevOps Toolchain Cookbook

Robert Wen, Alex Ortiz, Edward Gaile, Rodney Nissen

ISBN: 978-1-83546-378-9

•	 Extend reporting capabilities in Jira using Open DevOps

•	 Integrate Jira with popular tools for tracking the build and deployment status

•	 Track the progress of product ideas with Jira Product Discovery

•	 Document and report projects using Confluence

•	 Create and deploy CI/CD pipelines in Bitbucket and perform testing in SonarQube

•	 Integrate security scanning into your CI/CD pipeline using Snyk

•	 Create an observability portal in Compass

•	 Use Opsgenie to collaborate with other teams when incidents occur

https://www.amazon.com/Atlassian-DevOps-Toolchain-Cookbook-applications/dp/1835463789

347

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Infrastructure as Code with Pulumi, we’d love to hear your thoughts! If you

purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

authors.packtpub.com
https://packt.link/r/1835467520
https://packt.link/r/1835467520

Index

A
active-active deployment 174

active-passive deployment 174

advanced Pulumi projects
building 326
cross-region infrastructure,

implementing 329, 330
environments, managing dynamically

with stacks 326
integration tests, writing to validate

deployed infrastructure 331
resources, securing with Pulumi

secrets 328, 329
stack references, using to share data

between projects 327, 328
testing 326
unit tests, writing with Pulumi’s testing

framework 330

AKS cluster 124
creating 76

Amazon EKS cluster 124

Apache Kafka 215

API keys 37

application default credentials (ADC) 87

App Service Environment (ASE) 80

Archive Function App 96

auditability 152

automatic rollbacks 148

automation 81, 83

Automation API 233
use cases 234-236

automation tests
in CI/CD pipelines 288, 289

AWS
automation 66
continuous integration 66

AWS CloudFormation
converting, to Pulumi code 311
migrating, to Pulumi 310
working with 310

AWS Command Line Interface (CLI) 54
installation link 55

AWS environment
setting up 54-56

AWS Kinesis 215

AWS Management Console 55

AWS resources
creating 56
EC2 instance, creating 59, 60
IAM roles, working with 60, 61
managing 56
S3 bucket, creating 57-59

Azure 71
environment, setting up 72-75

Azure App Service
creating 77

Azure Bicep
migrating, to Pulumi 312
resources, importing into Pulumi 313
working, with Pulumi 312

Index350

Azure Blob container 14

Azure DevOps
secure secrets management 144, 145

Azure Event Hubs 215

azure-function-app-policies 301

Azure Functions app 47

Azure Key Vault 237, 238
creating 76

Azure Kubernetes Service (AKS) 275

Azure Load Balancer
configuring 78

Azure Native 12

Azure Resource Manager (ARM) 312
migrating, to Pulumi 312
resources, importing into Pulumi 313
templates, converting to Pulumi code 314
working, with Pulumi 312

Azure resources
AKS cluster, creating 76
Azure App Service, creating 77
Azure key Vault, creating 76
Azure Load Balancer, configuring 78
creating 75
managing 75

Azure SQL database 38

Azure storage account 12, 34, 44

Azure Virtual Network (VNet) 35

B
blue-green deployment 148

Builder pattern 260
using 260, 261

build process
automating 136-142

C
C# 6

canary deployments 148

Chocolatey
download link 6

CI/CD environments
Pulumi, setting up 133-136

CI/CD pipelines 239, 240
automation tests 288, 289

CircleCI
secure secrets management 146, 147

Cloud functions infrastructure
creating 93, 94

cloud migration
to Pulumi 316, 317

Cloud Pub/Sub topic
creating 95

Cloud SQL database
creating 90-93

code reusability 244-248

Command-Line Interface (CLI) 72, 228

complexity
scaling 46-48

Compute Engine instance
creating 89, 90

conditional logic
example 44, 45
loops, using 45, 46
using 44

conditional rollbacks 148

configuration drift 4

configurations 37
dynamic infrastructure 39, 40

Index 351

configuration values
accessing 41
default values, providing 43
require() and get(), combining 42
require() method, using for mandatory

values 41, 42
secret configurations, retrieving 43

consistent IP addressing
implementing 210, 211

consistent naming conventions 264, 265

continuous delivery and continuous
integration (CI/CD) 5

continuous integration 81, 83

core cloud providers
using 159-162

create function 166

create, read, update, and delete (CRUD) 164

cross-platform network configurations
consistent IP addressing 210, 211
designing 210
DNS across clouds, implementing 210, 211
load balancing, configuration 211-213
traffic routing, configuration 211-213

custom AWS resources
benefits 62
creating 61
organizing 66
sharing 66
versioning 66
with Pulumi’s ComponentResource 62-65

custom Azure resources
creating 79-81

customer-managed keys (CMKs) 217

custom Google Cloud resources
creating 96-98

custom providers 164

D
data, across clouds

batch processing 215
integration and management 213-215
Pulumi, using to automate pipeline

development 216
real-time data streaming 215

Database Migration Service (DMS) 213

database passwords 37

delete function 166

deployment process 108
automating 136-142

documentation 269
inline comments 270
README files, using 269

domain-specific language (DSL) 6

Doora AI platform 199

DRY principle 249
application, in IaC 249

dynamic configuration management
techniques 236

Azure Key Vault 237, 238
CI/CD pipelines 239, 240

E
EC2 instance

creating 59, 60

environment management
setup and management,

automating 191-194
strategies 188-191

environments 226, 227

Environment, Secrets and Configuration
(ESC) 116, 178

Index352

environment slot swaps 148

error management
handling 147-149

error management techniques
error logging and alerting 149
fail-fast strategy 149
raceful shutdowns 149
retry mechanism 149

F
Factory Method pattern 258

using 258-260

full rollbacks 148

G
Gang of Four (GoF) design patterns 258

applying to IaC 258
Builder pattern 260, 261
Factory Method pattern 258-260
Singleton pattern 261, 262

General Data Protection Regulation
(GDPR) 173

GitHub Actions
secure secrets management 143, 144

GitHub Actions workflow
creating 66-68
parts 83

GKE cluster 124

Go 6

Google Cloud 85
automation 98-100
continuous integration 98-100
environment, setting up 86-88
installation link 87

Google Cloud resources
Cloud functions infrastructure,

creating 93, 94
Cloud Pub/Sub topic, creating 95
Cloud SQL database, creating 90-93
Compute Engine instance, creating 89, 90
creating 89
managing 89

H
Helm charts

deploying, with Pulumi 315
migrating, to Pulumi 314

Homebrew
reference link 8

hybrid architectures
motivation 200, 201

hybrid cloud architecture 199
use case examples 199

I
Identity and Access Management (IAM) roles

working with 60, 61

identity provider (IdP) 217

Infrastructure as Code
(IaC) 4, 5, 156, 171, 273, 278, 303

benefits 5
DRY principle, using 249
Gang of Four (GoF) design patterns,

applying 258
infrastructure validity, ensuring with basic

assertions 262, 264
modularity 244-248

Index 353

SOLID principles, using 251
traditional programming paradigms,

applying 248
with DRY (reusable code) 250
without DRY (repetitive code) 249, 250

infrastructure-as-code (IaC) questions,
Pulumi AI

reference link 233

ingress resource 114

inline programs 234

inputs 27

integration testing 275

interoperability
planning 205-207

J
JavaScript Object Notation (JSON) 18

K
Key Management Service (KMS) 217

Kubernetes
installation link 105
multi-cloud management 124-126

Kubernetes environment
setting up 105-107

Kubernetes resources 108-110
defining 108
defining, with Pulumi 110-117
deploying 108
deploying, with Pulumi 118-121
existing resources, managing 121-123

Kubernetes YAML files
converting, to Pulumi programs 316
migrating, to Pulumi 314
reusing, in Pulumi 314, 315

L
Lambda function 64

least privilege principle 150

Linux
Pulumi, installing on 10

LoadBalancer service 109

load balancing
configuration 211-213

locally redundant storage (LRS) 80

local programs 234

long-term support (LTS) 11

M
macOS

Pulumi, installing on 8

manual rollbacks 148

migration 306, 307
downtime, best practices 317, 318

mocking 276

modularity, IaC 244-248

multi-cloud, and hybrid cloud architectures
centralized monitoring and

observability 207-209
designing 201
scalability and performance 209, 210
standardization 201, 204

multi-cloud architecture 198
use case examples 199

multi-cloud deployments
AWS database, accessing from Azure Web

App 333
AWS Lambda, load balancing with Azure

Traffic Manager 332
Azure function, load balancing with Azure

Traffic Manager 332

Index354

multi-cloud backup solution,
implementing 334

simulating 332

multi-cloud environments
data encryption, at rest 217-219
data encryption, in transit 219-221
security and compliance 217

multi-cloud strategies
motivation 200

multi-region architecture
best practices 186, 187
designing 178, 179
parent-child stack model 180-183
Pulumi ESC 183-186

multi-region deployments
design, concepts 174-178
planning 173, 174

multi-tier architecture 46
backend tier 46
database tier 46
frontend tier 46

N
naming convention

clarity 265
establishing 265-269
predictability 265
standards, adherence to 266

Node.js
reference link 306
URL 11

Node Package Manager (npm) 11

O
OpenID Connect (OIDC) 227

outputs 27, 28

P
parent-child stack model 180-183

partial rollbacks 148

pipeline security and efficiency
best practices 150-153

pod 108

policies
applying, to infrastructure 302, 303
defining 298-302
writing 298-302

Policy as Code (PaC) 275, 293-295
implementing 335
public access, restricting

to storage buckets 336
resource creation,

limiting to specific regions 337
resource tags, enforcing 335
use cases 296
working, in Pulumi 295, 296

Policy as Code (PaC), use cases
infrastructure, auditing for regulatory

compliance 297
misconfigurations, preventing 297, 298
resource configurations, validating 297
security standards, enforcing 296

policy pack 296

PostgreSQL database
creating 91

project
basic resource creation 34-36
creating 32, 33

property testing 275, 293

pull request (PR) 192

Index 355

Pulumi
AWS CloudFormation, migrating 310
configuring 28, 29
dependencies, installing 6
installing 6
installing, on Linux 10
installing, on macOS 8
installing, on Windows 6
installing, with installation script 9
integrating, into Terraform-based

workflows 309
manual installation 8
resources, importing 311
setting, up in CI/CD environments 133-136
state 15
Terraform, migrating 307
using, for automating pipeline

development 216
working with 310

Pulumi AI
projects, building 231-233
reference link 233

Pulumi CLI 21, 22
commands and operations 21-26
reference link 306

Pulumi Cloud 16

Pulumi code, unit testing 276
mocks, working with 276-278
unit testing, limitations 279

Pulumi ESC 183-186, 226
centralized management 228
environments 227
setting up 228-231
sources 227
targets 228

Pulumi IaC scripts 322
conditionals, using to control resource

creation 324, 325
multiple resources, setting up with loop 324
outputs as inputs,

using for dependencies 325
resources, configuring dynamically with

stacks 326
storage bucket, creating 323

Pulumi infrastructure
advanced techniques 337
best practices 337
CI/CD pipeline, implementing to

development environments 337
CI/CD pipeline, implementing to production

environments 337
CI/CD pipeline, implementing to staging

environments 337
custom resource component, building with

validation logic 340, 342
Pulumi Automation API, using for

programmatic deployment 338, 339
resource modularization, implementing for

code reuse 339, 340

Pulumi installation, on Linux 10
dependencies, installing 11
installation script, using 10
manual installation 11

Pulumi installation, on macOS
Homebrew, installing 8, 9
installation script, using 9
manual installation 10

Pulumi installation, on Windows
Chocolatey, using 6, 7
installation script, using 7
manual installation 8

Index356

Pulumi integration tests 280
challenges 287, 288
deployments, testing without 286
writing 281-285

Pulumi organization 26

Pulumi policies
resources policies 296
stack policies 296

Pulumi programming model 20, 21

Pulumi Programs
debugging 290, 291

Pulumi providers 156
community and custom providers 162
core cloud providers 157
custom providers 159
importance 156
SaaS 158
third-party service providers 158
types 157

Pulumi Registry
reference link 163

Pulumi’s ComponentResource
custom resources, creating with 62, 64, 65

Pulumi scripts 322

Pulumi Service 16

Pulumi state
management 15, 16
managing 18-20
storage 16
storage, in local state 17
storage, in Pulumi Cloud 16
storage, in self-hosted state backends 16, 17

Pulumi testing 274
integration testing 275
property testing 275
unit testing 274

Pulumiverse ecosystem 163
custom Pulumi providers 164-168

Python 6

R
read function 166

resource importing 309

resources 12

resources policies 296

role-based access control
(RBAC) 147, 217, 228, 275

rollback
handling 147-149
types 148

rolling update 109

S
S3 bucket

creating 57-59

secret 37

secure key 39

secure secrets management
in Azure DevOps 144, 145
in CircleCI 146, 147
in GitHub Actions 143, 144

sensitive information
configuration values, accessing 41
dynamic infrastructure, with configs 39, 40
managing 37-39

service-level agreements (SLAs) 173

shims 7

Singleton pattern 261
using 261, 262

Snapstagram platform 199

Index 357

SOLID principles
application in IaC 251
dependency inversion principle 256, 258
interface segregation principle 255, 256
Liskov substitution principle 253, 254
open-closed principle 252, 253
single responsibility principle 251, 252

stack 12, 13, 234

stack policies 296

standardization 201, 204

StatefulSet 109

T
tarball file 10

Terraform
coexisting, with existing Terraform

workspaces 307, 308
HCL configurations, converting to Pulumi

code 308, 309
migrating, to Pulumi 307

testing process
automating 136-142

traffic route
configuration 211-213

U
unit testing 274

update function 166

use cases, Automation API
application-centric deployments 234
CI/CD workflows 234
custom tools and CLIs 234
infrastructure-as-a-service APIs 234
integration testing 234

V
validation functions 295

versioning 66

virtual machine (VM) 37

W
Windows

Pulumi, installing 6

Windows x64 binaries 8

Workspace 233

Z
zombie processes 149

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors

	Table of Contents
	Preface
	Your Book Comes with Exclusive Perks - Here’s How to Unlock Them

	Part 1: Introduction to Pulumi and Infrastructure as Code
	Chapter 1: Introduction to Infrastructure as Code and Pulumi
	Technical requirements
	Introduction to IaC
	Installing Pulumi and dependencies
	Installing Pulumi on Windows
	Installing using Chocolatey
	Installing using the installation script
	Installing manually

	Installing Pulumi on macOS
	Installing using Homebrew
	Installing using the installation script
	Installing manually

	Installing Pulumi on Linux
	Installing using the installation script
	Installing manually

	Installing dependencies

	Understanding resources and stacks
	Pulumi state and state management
	Where is Pulumi state stored?
	Pulumi Cloud
	Self-hosted state backends
	Local state

	Managing Pulumi state

	The Pulumi programming model
	Pulumi CLI: key commands and operations
	Input, output, and configuration
	Inputs
	Outputs
	Configuration in Pulumi

	Summary
	Questions
	Further reading

	Chapter 2: Creating Your First Pulumi IaC
	Technical requirements
	Kickstarting your first project
	Laying the foundation: Basic resource creation
	Secrets and configs: Managing sensitive data
	Dynamic infrastructure with configs
	Accessing configuration values
	Using require() for mandatory values
	Combining require() and get()
	Providing default values
	Retrieving secret configurations

	Smart infrastructure: Using conditional logic
	Conditional logic
	Using loops

	Scaling complexity: From simple to sophisticated
	Summary
	Questions

	Part 2: Deploying Infrastructure Across Major Cloud Providers
	Chapter 3: Deploying with Pulumi on AWS
	Technical requirements
	Setting up your AWS environment
	Creating and managing core AWS resources
	Creating an S3 bucket
	Creating an EC2 instance
	Working with IAM roles

	Creating custom AWS resources
	Why create custom resources?
	Custom resources with Pulumi’s ComponentResource
	Organizing and sharing custom resources
	Versioning custom resources

	Automation and continuous integration
	Summary
	Questions

	Chapter 4: Deploying with Pulumi on Azure
	Technical requirements
	Setting up your Azure environment
	Creating and managing core Azure resources
	Creating an AKS cluster
	Creating an Azure key vault
	Creating an Azure web app (Azure App Service)
	Configuring an Azure Load Balancer

	Creating custom Azure resources
	Automation and continuous integration
	Summary
	Questions

	Chapter 5: Deploying with Pulumi on Google Cloud
	Technical requirements
	Setting up your Google Cloud environment
	Creating and managing core Google Cloud resources
	Creating a Compute Engine instance
	Creating a Cloud SQL database
	Creating your Cloud functions infrastructure
	Creating a Cloud Pub/Sub topic

	Creating custom Google Cloud resources
	Automation and continuous integration
	Summary
	Questions

	Chapter 6: Deploying with Pulumi on Kubernetes
	Technical requirements
	Setting up your Kubernetes environment
	Defining and deploying Kubernetes resources
	Introduction to Kubernetes resources
	Defining Kubernetes resources with Pulumi
	Deploying Kubernetes resources with Pulumi
	Updating and managing existing resources

	Multi-cloud Kubernetes management
	Summary
	Questions

	Part 3: Integration and Cross-Provider Capabilities
	Chapter 7: Integrating Pulumi with CI/CD Pipelines
	Technical requirements
	Setting up Pulumi in CI/CD environments
	Automating build, test, and deployment processes
	Managing secrets and secure access
	Secure secrets management in GitHub Actions
	Secure secrets management in Azure DevOps
	Secure secrets management in CircleCI

	Handling rollbacks and error management
	Best practices for pipeline security and efficiency
	Summary
	Questions

	Chapter 8: Exploring Pulumi’s Provider Ecosystem
	Technical requirements
	Introduction to Pulumi providers
	Why are Pulumi providers important?
	Types of Pulumi providers
	Core cloud providers
	SaaS and third-party service providers
	Custom providers

	Using core cloud providers
	Exploring community and custom providers
	The Pulumiverse ecosystem
	Custom Pulumi providers

	Summary
	Questions

	Chapter 9: Managing your IaC in Multiple Regions and Environments
	Technical requirements
	Planning for multi-region deployments
	Key concepts of multi-region design
	Designing a multi-region architecture
	Parent-child stack model
	Pulumi ESC

	Best practices for multi-region deployments
	Minimize region-specific customizations
	Enable monitoring and observability for every region
	Cost optimizations for multi-region deployments

	Environment management strategies
	Automating environment setup and management
	Summary
	Questions

	Chapter 9: Managing Multi-Cloud and Hybrid Scenarios
	Technical requirements
	Understanding multi-cloud and hybrid architectures
	Use case examples
	Snapstagram
	Doora AI

	Motivations behind multi-cloud strategies
	Motivations behind hybrid architectures
	Designing multi-cloud and hybrid cloud architectures
	Standardization is key
	Planning for interoperability
	Centralized monitoring and observability
	Scalability and performance

	Designing cross-platform network configurations
	Implementing consistent IP addressing and DNS across clouds
	Configuring load balancing and traffic routing

	Data integration and management across clouds
	Real-time data streaming
	Batch processing
	Using Pulumi to Automate Pipeline Deployment

	Security and compliance in multi-cloud environments
	Encrypting data at rest
	Encrypting data in transit

	Summary
	Questions

	Part 4: Advanced Features, Best Practices and Hands-On Examples
	Chapter 10: Advanced Pulumi Features
	Technical requirements
	Mastering Pulumi ESC: Environments, Secrets, and Configuration
	Key concepts of Pulumi ESC
	Environments
	Sources
	Targets
	Centralized management

	Setting up Pulumi ESC

	Building your projects using Pulumi AI
	Automation API: scripting and workflow automation
	Workspace
	Stack
	Local program versus inline program
	Use cases for Automation API

	Dynamic configuration management techniques
	Azure Key Vault
	CI/CD pipelines

	Summary
	Questions

	Chapter 11: Writing Maintainable, Testable, and Scalable Code in Pulumi
	Technical requirements
	Modularity and code reusability
	Applying traditional programming paradigms to IaC
	Understanding DRY and its application in IaC
	Without DRY (repetitive code)
	With DRY (reusable function)

	Using SOLID principles to improve infrastructure code
	Single responsibility principle
	Open-closed principle
	Liskov substitution principle
	Interface segregation principle
	Dependency inversion principle

	Applying Gang of Four Design patterns to IaC
	Using the Factory Method pattern
	Using the Builder pattern
	Using the Singleton pattern

	Ensuring infrastructure validity with basic assertions

	Consistent naming and documentation practices
	Establishing a naming convention
	The role of good documentation
	Using README files
	Inline comments

	Summary
	Questions

	Chapter 12: Testing and Debugging Your Pulumi IaC
	Technical requirements
	Introduction to testing in Pulumi
	Unit testing
	Integration testing
	Property testing

	Unit testing your Pulumi code
	Working with mocks in Pulumi
	Limitations of unit testing

	Integration testing for Pulumi
	Writing integration tests
	Testing deployments without Pulumi integration tests
	Common challenges in integration testing

	Automating tests in CI/CD pipelines
	Debugging Pulumi Programs
	Summary
	Questions

	Chapter 13: Implementing Policy as Code
	Technical requirements
	Introduction to PaC
	How PaC works in Pulumi
	Use cases for PaC
	Enforcing security standards
	Validating resource configurations
	Auditing infrastructure for regulatory compliance
	Preventing misconfigurations

	Writing and defining policies
	Applying policies to infrastructure
	Summary
	Questions

	Chapter 14: Migrating from Other Tools to Pulumi
	Technical requirements
	Introduction to migration
	Migrating from Terraform to Pulumi
	Coexisting with existing Terraform workspaces
	Converting HCL configurations to Pulumi code
	Integrating Pulumi into Terraform-based workflows

	Migrating from AWS CloudFormation to Pulumi
	Working with CloudFormation and Pulumi together
	Importing resources into Pulumi
	Converting CloudFormation templates to Pulumi code

	Migrating from Azure Resource Manager or Azure Bicep to Pulumi
	Working with ARM or Bicep and Pulumi together
	Importing existing resources into Pulumi
	Converting ARM templates to Pulumi code

	Migrating from Kubernetes YAML or Helm to Pulumi
	Reusing Kubernetes YAML files in Pulumi
	Deploying Helm charts with Pulumi
	Converting Kubernetes YAML to Pulumi programs

	Migrating from any other cloud to Pulumi
	Best practices for minimizing downtime during migration
	Summary
	Questions

	Chapter 15: Tests and Exercises on Infrastructure Automation with Pulumi
	Technical requirements
	Getting started with Pulumi IaC scripts
	Exercise 1: Creating a storage bucket
	Exercise 2: Setting up multiple resources using a loop
	Exercise 3: Using conditionals to control resource creation
	Exercise 4: Using outputs as inputs for dependencies
	Exercise 5: Dynamically configuring resources with stacks

	Building and testing complex Pulumi projects
	Exercise 1: Dynamically managing environments with stacks
	Exercise 2: Using stack references to share data between projects
	Exercise 3: Securing resources with Pulumi secrets
	Exercise 4: Implementing cross-region infrastructure
	Exercise 5: Writing unit tests with Pulumi’s testing framework
	Exercise 6: Writing integration tests to validate deployed infrastructure

	Simulating multi-cloud deployments
	Exercise 1: Load balancing AWS Lambda and Azure Functions with Azure Traffic Manager
	Exercise 2: Accessing an AWS database from an Azure Web App
	Exercise 3: Implementing a multi-cloud backup solution

	Implementing policy as code
	Exercise 1: Enforcing resource tags across deployments
	Exercise 2: Restricting public access to storage buckets
	Exercise 3: Limiting resource creation to specific regions

	Best practices and advanced techniques
	Exercise 1: Implementing CI/CD for deploying to dev, staging, and prod environments
	Exercise 2: Using the Pulumi Automation API for programmatic deployment
	Exercise 3: Implementing resource modularization for code reuse
	Exercise 4: Building a custom resource component with validation logic

	Summary

	Other Books You May Enjoy
	Index

